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Abstract

This thesis presents the experimental, numerical and optimization studies on a

hinged-type wave energy converter, SeaWEED (Sea Wave Energy Extraction Device),

developed by Grey Island Energy. The device is considered as an improved attenuator

consisting of four modules connected by adjustable truss structures.

Extensive model tests of a 1:35 scale SeaWEED model with and without the

power-take-off (PTO) units have been conducted at the towing tank of Memorial Uni-

versity (MUN). Friction dampers were designed to mimic the PTO systems. Repeated

tests were carried out at a few wave frequencies around the region with maximum

responses, and good repeatability has been observed.

Potential-flow based time- and frequency- domain programs utilizing the Lagrange

multiplier approach have been developed to simulate the dynamics of SeaWEED. In

the time-domain program, nonlinear Froude-Krylov forces are calculated over the

instantaneous wetted surfaces of the bodies under the wave profile, and the Wheeler

Stretching method is applied to compute the wave pressure. The numerical results

are compared with the experimental data, and good agreement is achieved.

Optimization studies have been further conducted utilizing the frequency-domain

program. Various parameters, including damping coefficients of the PTO systems,

lengths of truss structures and the draft of the device, are considered. The uniform

design method is used for sampling, and the response surface method is employed for

surrogate construction. The desirability optimization method is utilized to optimize

the response. An optimal combination of parameters is determined for an intended

operation site.
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Chapter 1

Introduction

1.1 Background

During the past decades, renewable wave energy has become a research focus due

to the ever-increasing energy consumption demand and environmental issues. Waves

are created by wind blowing over the ocean surface and can travel a great distance

with little energy loss (Clément et al., 2002). Comparing to other forms of renewable

energies, wave energy has a relatively less adverse impact on the environment, larger

energy density and power output efficiency (Drew et al., 2009). The globally available

wave power is estimated as 3.7 TW, which is in the same order of magnitude of

the world consumption of electrical energy (Mørk et al., 2010). Although wave-

induced electricity generation is not well-developed currently (Pecher et al., 2017), its

outstanding benefits encourage many countries to devote efforts into the wave energy

conversion field.

1



1.1.1 Wave Energy Converters

Wave energy converters (WECs) are devices that can convert wave energy and

generate electricity or other forms of energies (Day et al., 2015). Girard and son

proposed the earliest patent of WEC (1799) and the first experiment of WEC was

conducted during the 1800s (Gonzalez). In the 1970s, the remarkable energy crisis

and a paper by Salter (1974) roused the research interest on wave power at sea. Since

then, more than 1000 WEC patents have been proposed (Drew et al., 2009).

WECs can be categorized according to their working principles: oscillating wa-

ter columns (OWCs), oscillating bodies (OBs), and overtopping devices (Day et al.,

2015). Representative WECs of each categorization are given in Fig. 1.1, and the

working principles of them are given in Fig. 1.2.

Figure 1.1: Category of WECs Based on Working Principles (IEA, 2012)

2



Figure 1.2: WEC Working Principles (Day et al., 2015)

1.1.1.1 Oscillating Water Columns

An OWC WEC consists of a semi-submerged chamber open to the sea below. As

waves oscillate in the chamber, the air is forced out of the chamber and back into it.

The high-velocity air then drives the turbine to generate power, as shown in Fig. 1.2.

OWC devices can be fixed on the seabed, which makes them convenient and

economical to construct and maintain, such as the Pico power plant (Falcão et al.,

2000) and the Mutriku breakwater wave plant (Torre-Enciso et al., 2009), as shown

in Fig. 1.3.

On the other hand, The LeanCon WEC (Kofoed et al., 2008) is a large floating

type OWC, which consists of a large number of chambers, as shown in Fig. 1.4. The

device covers more than one wave length and utilizes an ordinary wind turbine to

generate power. In addition, due to the unique design of non-return valves, the air

flow can be rectified before the flow reaches the generator (Kofoed et al., 2008).

3



Figure 1.3: Fixed OWCs (Falcão et al., 2000 and Torre-Enciso et al., 2009)

Figure 1.4: LeanCon WEC (LeanCon)
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1.1.1.2 Oscillating Bodies

Oscillating body (OB) WECs harvest energy from the relative motions between

bodies driven by waves. OB WECs have diverse forms, and they can be further

categorized into attenuators, point absorbers, and oscillating wave surge converters,

as shown in Fig. 1.2.

The Pelamis WEC, as shown in Fig. 1.5, is a semi-submerged floating attenuator,

which converts wave energy into electricity. Its articulated structure is made of five

tube sections by the universal hinge joints (Yemm et al., 2012). The device weather-

vanes in head seas, and the relative pitch motions drive the hydraulic power-take-off

(PTO) systems at the hinge joints.

Figure 1.5: Pelamis (Yemm et al., 2012)

Examples of point absorbers include PowerBuoy (Edwards et al., 2014), Seabased

(Seabased Technology) and Wavebob (Mouwen, 2008), as shown in Fig. 1.6. Power-

Buoy is a floating WEC which consists of a heave plate rigidly connected to a spar

and a float moving along the spar. The float oscillates in response to waves, and the

relative motions between the float and the spar drive the PTO hydraulic system and

5



generate power. Wavebob consists of two oscillating structures, a torus and a tank,

and power is generated from the relative motions between the two parts. Different

from PowerBuoy and Wavebob which float in the sea, Seabased has a base fixed on

the seabed.

Figure 1.6: Point Absorbers

Among oscillating wave surge converters, examples are WaveRoller (AW-Energy)

and Oyster (Renzi et al., 2014), as shown in Fig. 1.7. The lower parts of devices are

anchored on the sea bed or fixed to a submerged floating reference frame; while the

upper parts move back and forth due to wave surge to drive hydraulic piston pumps

6



to generate energy.

Figure 1.7: Oscillating Wave Surge Converters (AW-Energy and Renzi et al., 2014)

1.1.1.3 Overtopping Devices

Overtopping devices capture power as waves flow up a ramp and over the top into a

storage reservoir and the water passes through turbines, as shown in Fig. 1.2. Typical

examples include the fixed-type Seawave Slot-Cone Generator (SSG) (Margheritini

et al., 2009) and floating-type Wave Dragon (Kofoed et al., 2006).

The SSG device is designed to be fixed offshore, as presented in Fig. 1.8, and it

is equipped with three reservoirs with different heights to increase power generation

efficiency.

As shown in Fig. 1.9, the Wave Dragon WEC has a curved ramp, a large floating

reservoir, a platform with two reflectors for concentrating the power of incoming

waves, and several low-head hydro turbines (Kofoed et al., 2006).

7



Figure 1.8: Seawave Slot-Cone Generator (Vicinanza et al., 2008)

Figure 1.9: Wave Dragon (Kofoed et al., 2006)
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1.1.2 SeaWEED (Sea Wave Energy Extraction Device)

SeaWEED is an attenuator-type WEC proposed by Grey Island Energy Inc.

(GIE), which consists of four modules that are connected by rigid truss structures.

The four-module array includes a non-energy producing nose module in the front, fol-

lowed by two energy producing modules, and another non-energy producing module

at the rear.

Initial conceptual studies have been carried out to evaluate the performance of the

first generation device (see Fig. 1.10) by testing a 1:16 scale model in the wave basin

of National Research Council Canada. The experimental and numerical results for the

first generation model led to the second generation (see Fig. 1.11) with improvements

in the hull geometry, a lower draft, and a different connection structure.

The device is considered as an improved attenuator in comparison with Pelamis.

The use of the rigid truss structure would allow for a higher power output per unit

mass, and also reduce the side loading due to tidal currents, local wind or bi-modal

swells in comparison with other attenuator devices. Additionally, the trusses can be

customized in length to archive high efficiency for a specified site. The design also

attempted to address the wave topping and slamming issues encountered by devices

such as Pelamis.

1.1.3 Constrained Dynamics

SeaWEED undergoes constrained motions in waves due to the hinged joints. It is

therefore essential to accurately predict the constrained motions. Many efforts have

been made to solve the dynamics of multiple constrained bodies. Newman (1994)
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Figure 1.10: The First Generation of SeaWEED

Figure 1.11: The Second Generation of SeaWEED

used arbitrary modal shape functions to describe the body deformation, and solved

the motion of a hinged system by using the extended motion modes, i.e., additional

vertical motion modes perpendicular to the undisturbed free surface were employed

to describe motions of hinge joints. The mode expansion technique was adopted by

Lee and Newman (2000) to assess the hydroelastic effects on large arrays of hinged

structures. Newton-Euler equations of motion with eliminated constraint forces have

been utilized to model a multi-body interconnected WEC system by Ó’Catháin et

al. (2008) in time domain. The reduced-coordinate approach removes the redundant

degrees of freedom due to constraints.

The Lagrange multiplier method, which has been extensively used in the robotics

and gaming industries, is another one to solve constrained motions. Baraff (1996)
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presented a Lagrange multiplier based method to simulate constraint motions in the

time domain, where various constraints were described by constraint matrices and

incorporated into the equations of motions. Constraint motions and forces were solved

simultaneously. Catto (2009) used the sequential impulse method to solve multi-

constraint motions, where velocities of bodies were first solved without considering the

constraints, and the constraint forces were then computed based on the intermediate

velocities and constraint matrices to satisfy the constraint conditions.

In ocean engineering field, Sun et al. (2011) applied the Lagrange multiplier

technique in the frequency domain. Under linear assumption, a position constraint

matrix was combined into equations of motion, and the constrained displacements

and forces were obtained directly. The method was employed by Sun et al. (2012)

for the dynamic analysis of an installation barge interacting with a substructure of

large volume, and by Sun et al. (2016) to predict motions and power of a three-

floater WEC. Similar to the method proposed by Baraff (1996), Feng and Bai (2017)

investigated the hydrodynamic performance of two freely floating and interconnected

barges in the time domain. In their work, the constraints were described by a con-

straint matrix which was incorporated into equations of motion, and the nonlinearity

of the hydrodynamic forces was taken into account.

1.1.4 Optimization of Simulation-based Design

Simulation-based Design (SBD), or the computer experimental design, can deal

with multi-factor and large-domain problems. Because of the deterministic nature

of computer experiments, no replication, no randomization, and no blocking are re-
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quired.

As for design optimization, the procedure typically starts with the determination

of design responses, variables, associated domains and levels according to the problem

of interest. A set of sampling points are then selected in the design domains. Based

on the selected sample points, surrogate models can be constructed to describe the

relationship between the design variables and the responses. After the surrogates are

verified, the optimized responses, such as the maximum or the minimum values, can

then be determined.

1.1.4.1 Selecting Sampling Points

Various sampling methods can be employed to select sampling points on the de-

sign domain, for example, the full and fractional factorial design method, the Latin

Hypercubes sampling method (McKay et al., 2000) and the uniform design method

(Fang et al., 2000).

A full factorial design investigates the effect of all the possible combinations of

the factors and levels. This leads to a large number of simulations for problems with

more factors and levels. Therefore, fractional factorial design is more practical since

it requires less test runs.

In order to conduct the same test with less runs than the factorial designs, the

concept of the space-filling design is proposed to distribute sample points uniformly

in the experimental region (Joseph, 2016). The Latin Hypercube sampling method

(LHS) was first proposed by McKay et al. (2000), which was developed based on the

stratified sampling. The layered feature of the LHS method enables a large number

of input variables and test runs. The method is easy to conduct, and has relatively
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small variance (Fang et al., 2000). Moreover, the stratified manner gives the Latin

Hypercube Design (LHD) a main advantage that if only one or a few input variables

are dominating, the projections onto subspaces will distribute distinctly. However,

the LHS method confronts several disadvantages, for example uniform distribution of

sampling points in the sample space is not guaranteed. Thus, many efficient extended

LHS methods have been proposed to improve the method, such as randomized or-

thogonal arrays LHD (Tang, 1993) (Owen, 1994), maximin LHD (Morris et al., 1995),

orthogonal LHD (Ye, 1998), uniform LHD (Jin et al., 2003), generalized LHD (Dette

et al., 2010), and maximum projection LHD (Joseph, 2016).

Another widely utilized sampling method is the Uniform Design (UD) method,

which was proposed by Fang et al. (2000). Unlike the randomly uniform feature in

the LHS methods, UD is deterministically uniform. The sampling of UD is based

on the Good Lattice Point method. For each n-test-run design with s factors and n

levels, there is a unique UD table, Un(n
m), to determine the sample points, where

m is the largest factor number that the design table can deal with (s ≤ m). The

uniformity of the UD sampling points is measured by the discrepancy of the sampling

points.

To date, many other space-filling design sampling methods have been proposed,

such as integrated mean squared error design by Sacks et al. (1989), nested and sliced

space-filling design by Qian et al. (2009), fast flexible filling design by Lekivetz et al.

(2015), and bridge design by Jones et al. (2015).
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1.1.4.2 Constructing and Exploiting a Surrogate

Based on the selected sample points, surrogate models can be constructed to

describe the relationship between the design variables and the responses. Several

surrogate modeling methods have been proposed. Examples include the Response

Surface method (Box et al., 1951), the Kriging method (Sacks et al., 1989) and the

Neural Network Model method (Grossberg, 1988). After the surrogates are verified,

the optimized responses, such as the maximum or the minimum values, can then be

determined. For unimodal-function surrogate models, a local searcher can be applied.

On the other hand, for multimodal-function surrogate models, a global searcher can

be utilized.

Response Surface Methodology (RSM) was proposed by Box and Wilson (1951),

which is based on the polynomial model. RSM is generally utilized to analyze the

influence of single or multiple input variables to one or several output variables. This

method is a sequential procedure that utilizes small steps to find the optimum re-

sponses. The basic search procedure of RSM is a local search procedure by using the

steepest ascent and steepest descent methods. However, the number of the required

sampling data may increase dramatically as the number of the input variables in-

crease. To overcome the drawbacks, Derringer et al. (1980) purposed a desirability

optimization method which combines the desirability function with RSM to optimize

single and multiple responses.

The Kriging method, also called the Gaussian process regression method is also

widely used in simulation-based experiments and spatial analysis. Comparing to the

traditional polynomial model that uses local searchers, the Kriging model is more
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suitable for searching in a larger domain utilizing global searchers. The method was

first purposed by Krige (1951) and was formally developed by Matheron to conduct

spatial analysis (1963). This method utilizes an exact Gaussian process interpolation

technique to predict the output variables by calculating the weighted value around

the point. In 1989, the Kriging modeling was first introduced to the modeling and

optimization in computer experiments (Sacks et al.).

Recently, many new methods are developed based on the Kriging method. For

example, the Least Improvement Function method, developed by Sun et al. (2017),

applied to structural reliability analysis, and the blind Kriging, developed by Joseph

et al. (2008), which is based on a Bayesian variable selection technique, and has a

robust performance when dealing with the mis-specification problem (Joseph et al.,

2008).

The Neural Network model is generated by adjusting the connection weights be-

tween components based on a network function (Grossberg, 1988). The Multilayer

Neural Network model (Kůrková, 1992) and the Radial Basis Function Network model

(Chen et al., 1991) are the most widely utilized in Neural Network models. Other

types of models include the Multivariate Adaptive Regression Splines (Friedman,

1991), the Least Interpolating Polynomials (De Boor et al., 1990), the Inductive

Learning (Langley et al., 1995), the Support Vector Regression (Clarke et al., 2005),

and the Multi-point Approximation (Toropov et al., 1993).

The local models are usually utilized to search the optimized responses in small

experimental domain to fit unimodal functions. Examples are the Newton method

(Fischer, 1992) which is an iterative method to find the stationary points of the sur-

rogate function by computing the first and second derivatives, Quasi-Newton method
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(Dennis et al., 1977) which is a modification of Newton method by avoiding comput-

ing the Hessian matrix in higher dimensions, simplex algorithm (Dantzig, 2016) for

linear optimization, Nelder-Mead method (Olsson et al., 1975) for non-linear opti-

mization, and pattern search (derivative-free search) (Hooke et al., 1961) which can

be used to search in noncontinuous and non-differentiable spaces.

As for the global searchers, various methods are proposed to search the optima

of a non-linear and complicated surrogate. The genetic algorithm was proposed by

Holland (1992), which is based on Darwin’s theory of evolution. It is a population-

based model that utilizes selection and recombination operators to generate accurate

solutions in searching the optima (Whitley, 1994). Similar to genetic algorithm, the

particle swarm optimization (Eberhart et al., 1995) also starts with a population of

random solutions (particles), and the particles flow through the search domain with

randomized velocities, which are determined by their own best position and the overall

best position of the entire swarm. The velocities of each particle are kept computed

and tuned in each time step until the optimal solution is searched.

1.1.4.3 Wave Energy Converter Optimization

In terms of WEC optimization, the primary objective is to maximize average

power extraction for intended operation sites (Khaleghi et al., 2015, Goggins et al.,

2014 and Babarit et al., 2005). Basically, geometrical parameters and PTO systems

need to be optimized, and several constraints should be set, such as slamming due

to large response, the limitation of the WEC motions, and the capacity of the WEC

devices (Goggins et al., 2014).

Kofoed et al. (2006) optimized the overall structural geometry, turbines and
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reservoir of the Wave Dragon to maximize power production. Babarit et al. (2005)

conducted optimization studies on body shape and mechanical features of an oscillat-

ing water column WEC, SEAREV, where several constraints were considered, such

as static stability, realistic inner pendulum density, and draft of the device.

More recently, Goggins et al. (2014) optimized the geometric shape and the struc-

tural radius of an oscillating-body type WEC related to the dynamic heave velocity

response of the device. Dai et al. (2017) assessed the performance of an oscillating-

body type WEC and optimized the geometry and mechanical parameters of the de-

vice. Primary optimization of SeaWEED was conducted by Li et al. (2016), where

hinged motions were computed using WAMIT based on the mode expansion method

(Newman, 1994). However, since the hinged motions of SeaWEED were described by

the vertical movement of joints, it is difficult to incorporate PTO damping into the

simulations with WAMIT.

1.2 Overview

In this thesis, a hinged-type wave energy converter, SeaWEED, is introduced.

Potential-flow based time- and frequency-domain programs with the Lagrange multi-

plier approach have been developed to simulate the dynamics of constrained multiple

bodies, and the numerical results have been validated using model test data. Op-

timization studies have been further conducted utilizing the frequency-domain pro-

gram by considering various parameters, including damping coefficients of the PTO

systems, lengths of truss structures and the draft of the device.

Chapter 2 describes the design of SeaWEED and model tests. Model tests on the
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first generation device (1:16 scale) are then briefly introduced. Following, model tests

on the second generation device (1:35 scale) are described in detail, including test

preparation, instrument calibration, measurement, data-processing, etc.

Chapter 3 derives the mathematical formulations for the constrained multi-body

hydrodynamic interactions in the time domain. The Lagrange multiplier approach is

utilized to model the constrained dynamics. Nonlinear Froude-Krylov forces are cal-

culated over the instantaneous wetted surfaces of the bodies. The numerical method

is validated using the test data.

Chapter 4 presents the numerical method for solving the constrained multi-body

hydrodynamic interactions in the frequency domain. The numerical results are com-

pared against the experimental data.

Chapter 5 elaborates the optimization studies of SeaWEED. Based on the uniform

design method for the selection of sample points and the response surface method for

surrogate modeling, optimization studies were carried out by considering a variety of

parameters, including damping coefficients at the two PTOs, truss lengths, and draft

of the device, as independent variables. An optimum combination of these parameters

was determined for an intended operation site.

Chapter 6 concludes the current work and brings forward the future work.
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Chapter 2

Introduction and Model Tests of

SeaWEED

2.1 Introduction of SeaWEED

SeaWEED consists of floating sections linked by trusses or rods and universal

joints. The device has semi-submerged floats on the surface of water and inherently

faces into the direction of waves. The wave-induced motions of the floats can be

converted to electricity through the hydraulic power-take-off (PTO) systems. Floats

are connected by trusses which can be customized in length to archive high efficiency

for a specified site. The device is considered as an improved attenuator in comparison

with Pelamis (Pizer et al., 2000). The design also attempted to address the wave

topping and slamming issues encountered by devices such as Pelamis. A complete

device has two PTOs and each PTO is located in the back end of a producing module.

Each PTO consists of four double acting hydraulic rams to capture energy from pitch
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motions. The use of the rigid truss structure would allow for a higher power output

per unit mass, and also reduce the side loading due to tidal currents, local wind or

bi-modal swells in comparison with other attenuator devices.

The design of SeaWEED would permit heave, pitch, roll and yaw motions. The

electrical power will be only converted from the pitch motion. Inside each module,

there is a removable pin. When the pin is removed, each module is allowed to roll

independently, which would reduce stress on the entire system thus the risk of failure.

Located in each module, surrounding the mechanical space are positive air-pressure

ballast tanks. In the occurrence of extreme sea conditions that could damage the

system, air valves on these ballast tanks would open and release air, allowing the

tanks to be filled with sea water. Once the sea conditions are improved, the tanks

can be re-pressurized with air and the water will be discharged. The system can then

return to the normal operating condition.

Furthermore, the device can be customized to operate in various locations by

changing its truss lengths and draft. It can utilize on-board electrical generator and

standard subsea electrical cables to generate and transmit the energy to shore. In

term of applications, an offshore farm of SeaWEED WECs can be utilized to provide

electricity to coastal communities and by oil and gas companies to power subsea

infrastructure.

The proposed SeaWEED PTOs, currently based on the use of a conventional

hydraulic system, with the utilization of a linear generator being an alternative pos-

sibility, are entirely housed inside the two energy producing modules for maximum

protection. The PTO systems, utilizing a water tight multi-axis joint in the stern

of each module, are driven by movements between interconnected modules, i.e., the
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motion between the interconnected modules drives a swashplate located internally

(Fig. 2.1) to tilt in various planes and thus to actuate the hydraulic rams. This PTO

design is intended not only to protect all PTO components from the harsh marine

environment but also to protect the environment from contamination by possible hy-

draulic leaks. As shown in Fig. 2.1, each PTO system consists of four hydraulic

power capture rams and two horizontal struts. The horizontal struts are primarily

for the control of yaw motions but not for energy capturing.

Figure 2.1: SeaWEED PTO System

As for the operational limits, they include both the maximum sea state that a

device is capable of producing electricity in and its method and ability to survive

severe sea conditions. The present design considers methods of decreasing end-stop

issues, through increased flexibility and system damping to increase the operational

limits of the system. This is due in part to being an attenuator but more importantly

is related to how each module in the system connects and flexes. Based on the PTO

design, each section can articulate up to 30 degrees from the neutral axis in any

direction before the end-stop becomes an issue. The proposed PTO design aims to
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enable the device to arch over entire wavelengths in high sea states. As indicated

above, the purpose of the ballast systems is to allow the SeaWEED to semi-submerge

when it is in severe sea conditions. The internal tanks are shown in the illustration

and highlighted in green (Fig. 2.2).

Figure 2.2: SeaWEED Ballast Tank

2.2 Model Tests on the First Generation of Sea-

WEED

Model tests (scale 1 : 16) of the first generation SeaWEED were conducted by

Grey Island Energy Inc. (GIE) at the ocean engineering basin of National Research

Council-Institute of Ocean Technology (NRC-IOT) in St. John’s, NL, Canada. The

basin (see Fig. 2.3) is 75 m long, 32 m wide and 3.2 m deep. Fig. 2.4 shows the

SeaWEED model in the basin.

As shown in Fig. 2.5, the first generation SeaWEED system consists of four equal-

length modules with cambered surfaces connected by three tie-rods with stiffeners.
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Figure 2.3: General Arrangement of the Basin (NRC)

Figure 2.4: SeaWEED Model in the NRC-IOT Basin
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Table 2.1: Particulars of SeaWEED (first generation)

Parameter Full Scale 1:16 Scale

Total Length, L(m) 145.000 9.063

Length of Module, Lm(m) 16.000 1.000

Length of Tie-rod, Lt(m) 27.000 1.688

Width, B(m) 8.800 0.550

Height, H(m) 6.880 0.430

Planned Draft, Tplan(m), 2.500 0.156

Test Draft, Ttest(m), 4.480 0.280

The principle dimensions of the first generation SeaWEED and the 1 : 16 model

are defined in Fig. 2.5 and Table 2.1. During the tests, the relative pitch angles

at PTO-1 were measured. Two hydraulic PTO systems were built to simulate the

power capturing procedure of SeaWEED, and the hydraulic damping coefficients were

obtained from the flow meter and pressure sensor installed in PTO-1.

Figure 2.5: Body and Tie-rod Length Definition

In the model tests, regular wave periods were 6 s, 8 s, 10 s, and 12 s (full scale).
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2.3 Model Tests on the Second Generation of Sea-

WEED

The experimental and numerical studies of the first generation model led to the

second generation with improvements in the hull geometry, a lower draft and a dif-

ferent connection structure, which is shown in Fig. 2.7. Model tests on the second

generation of SeaWEED were conducted at the towing tank of Memorial University

(MUN). The towing tank is 58.0 m in length, 4.6 m in width, and 1.8m in depth, as

shown in Fig. 2.6. Fig. 2.7 presents the SeaWEED model in the towing tank. The

1:16 model tests for the first generation of SeaWEED was done by Grey Island Energy

Inc in a large wave tank, and for the second generation of SeaWEED, the model test

scale, 1 : 35, was then determined according to the dimension of the towing tank at

MUN. The principle dimensions of SeaWEED and the 1 : 35 model are listed in Table

2.2.
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Figure 2.6: Towing Tank of MUN

Figure 2.7: SeaWEED Model in the Towing Tank
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Table 2.2: Particulars of SeaWEED (second generation)

Parameter Full Scale 1:35 Scale

Length of Nose Module, Ln(m) 9.000 0.257

Length of Tail Module, Lt(m) 9.000 0.257

Length of Producing Module, Lp(m) 16.000 0.457

Width, B(m) 8.000 0.229

Height, H(m) 5.000 0.143

Draft, T (m), 2.50 0.0714

2.3.1 Test Matrix

In the model tests, the wave periods were varied from 5.5 s to 10.0 s (full scale),

and the wave steepness was set as 1/50. The definition of the body length is shown

in Fig. 2.8. The combinations of truss lengths are presented Table 2.3, and the draft

was 2.5 m in full scale. The test matrix is presented in Table 2.4. The corresponding

PTO damping settings are given in Table 2.5. Several repeated tests were carried

out at a few wave frequencies around the region with maximum responses. Good

repeatability was achieved in tests.

Figure 2.8: Body and Truss Length Definition
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Table 2.3: Truss length combinations

Case
Full Scale 1:35 Scale

L1(m) L2(m) L3(m) Ltotal(m) L1(m) L2(m) L3(m) Ltotal(m)

T1 46.912 43.912 43.912 134.736 1.340 1.255 1.255 3.850

T2 41.252 43.912 49.962 135.126 1.179 1.255 1.427 3.861

T3 41.252 43.912 56.402 141.566 1.179 1.255 1.611 4.045

T4 41.252 43.912 63.233 148.397 1.179 1.255 1.807 4.240

Table 2.5: Damping cases

Spring Compression (mm)

Case No. PTO-1 PTO-2

D0 - -

D1 3.0 2.3

D2 4.3 4.0

D3 4.3 -

D4 - 4.0

D5 6.0 5.0
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Table 2.4: Test matrix

No.
T (s) No. of Conducted Tests

Full

Scale

Model

Scale

T1

D0

T2

D0

T3

D0

T4

D0

T1

D1

T1

D2

T1

D3

T1

D4

T1

D5

1 5.50 0.93 1 1 1 1 0 0 0 0 0

2 6.00 1.01 1 1 1 3 0 0 0 0 0

3 6.50 1.10 1 1 1 3 0 0 0 0 0

4 7.00 1.18 3 1 3 1 0 0 0 0 0

5 7.50 1.27 3 3 3 3 3 3 3 3 3

6 8.00 1.35 3 3 3 3 2 3 1 2 3

7 8.50 1.44 3 3 3 1 1 1 3 3 1

8 9.00 1.52 3 1 1 3 1 1 3 3 1

9 10.00 1.69 1 3 1 1 1 1 1 1 1

T1− T4: Body length combinations; D0−D5: PTO Damping cases
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2.3.2 Test Set-up

The test set-up is given in Fig. 2.9. The model was constrained by four soft

mooring lines from drift motions. Four AWP-24 resistive wave probes were used to

measure the wave elevations. Motions of the model were measured by a Qualisys

motion capture system. Fig. 2.7 shows the scaled model with tracking markers

distributed on its floats and trusses.

Figure 2.9: Test Set-up

The PTO systems were mimicked by friction dampers. As shown in Fig. 2.10,

the angular hinge motions of the model were transferred to the linear motion of the

sliding bar of the damper by the swash plate. Honeywell Model 31 load cells and

the Contelec linear position sensors were used to measure the friction forces and the

sliding motions, respectively.

As shown in Fig. 2.11, the damper is consisted of a steel frame, an aluminum
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Figure 2.10: Friction Damper

sliding bar, a spring, and two Teflon bars. The aluminum bar is guided by four

low-friction bearings. The upper Teflon bar is pressed by the spring, which can be

adjusted using the screw on top of the frame to change the friction forces. To quantify

the adjustments, marks were also machined to indicate the spring displacement. It

is noted that friction dampers with aluminum-leather and aluminum-steel contacts

were also tested. However, the former suffered from inconsistent frictions due to the

change of humidity, and the latter failed to provide smooth frictions since the contact

surfaces were not perfectly even. The damper with the Teflon-aluminum contact

showed good repeatability. Two identical dampers were manufactured to mimic the

two PTO systems.

2.3.3 Pre-tests

Before the model tests, the instruments including wave probes, load cells and

displacement sensors were calibrated. The Qualisys system was calibrated according

to the calibration quality indicator in the Qualisys Track Manager software. For each

damping set-up, the friction dampers were calibrated before being installed on the
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Figure 2.11: Friction Damper

model.

2.3.3.1 Wave Probe Calibration

Static calibrations were preformed on the AWP-24 wave probes. The voltages were

measured when the wave probes were submerged in five different depths, as shown

in Fig. 2.12. For each wave probe, the calibration was repeated for three times. An

example of the calibration results for WP3 is presented in Fig. 2.13.

2.3.3.2 Load Cell Calibration

Two Honeywell Model-31 load cells (see Fig. 2.14) were used to measure the forces

in the PTO system. Three static calibrations were repeated for each load cell. In

each calibration, six load steps were used in compressing and expansion directions,

and each step was kept stable for 30 seconds. The calibration results for the load cell

in PTO-2 are presented in Fig. 2.15.
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Figure 2.12: Wave Probe Calibration
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Figure 2.13: Wave Probe Calibration Results (WP3)
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Figure 2.14: Honeywell Model-31 Load Cell
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Figure 2.15: Load Cell Calibration Results (PTO-2)
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2.3.3.3 Displacement Sensor Calibration

Two Contelec linear position sensors with ranges of 50 mm and 75 mm were

used to measure the damper sliding bar movements. The sensors were calibrated

by recording the output voltage when different displacements were applied. Each

displacement sensor was calibrated for three time. Fig. 2.16 shows the calibration

results of the displacement sensor in PTO-2.
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Figure 2.16: Displacement Sensor Calibration Results (PTO-2)

2.3.3.4 Damper Calibration

As shown in Fig. 2.17, a calibration frame was designed and built to calibrate the

dampers before the model tests. The motor was turned to a fixed revolving speed by

a controller. The speed was recorded by an RPM sensor. A 1:20 gearbox converted
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the speed to the disk system speed, and a slider-crank mechanism transformed the

rotational motion to the translational motion of the sliding bar. The amplitude of

the bar movement was controlled by changing the rotating diameter of the stick

connecting to the disk. The displacements and the friction forces were measured by

a displacement sensor paralleled to the bar and a load cell on the bar.

Figure 2.17: Damper Calibration Apparatus

Three damper set-ups were conducted, and the springs of two dampers were ad-

justed to a certain compression to achieve the target damping forces. The damping
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coefficients from the calibration and the tests of two damping systems are presented

with respect to the velocity amplitude of the sliding motion in Fig. 2.18, Fig. 2.19,

and Fig. 2.20.
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Figure 2.18: Damper Calibration Results (D1)

2.3.3.5 Sychronization of Measurements

During tests, the measurements of wave amplitudes and friction forces and dis-

placements of the dampers are recorded by the LabView system, and the motions

of SeaWEED are measured by the Qualisys system. These measurements need to

be synchronized. An electrical synchronization signal was generated and recorded in

the data collection by the two systems, i.e., the LabView system and the Qualisys

system.
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Figure 2.19: Damper Calibration Results (D2, D3 and D4)
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Figure 2.20: Damper Calibration Results (D5)
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The Qualisys system can receive a square wave voltage signal as a trigger via the

Oqus sync unit of the Qualisys system. The triggering signal was generated by the

National Instruments NI-9264 module installed on the data acquisition system. The

motion measurements were then recorded by the Qualisys system after a preset delay

(20 ms in the present tests). In the present model tests, a square wave signal with

an amplitude of 5 V and a duration of 50 ms was generated as shown in Fig. 2.21.

Based on the triggering signal, the delay between the two measurement systems can be

precisely determined, and a re-alignment can be performed on all the measurements.
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Figure 2.21: Synchronization Input by Module NI9264

2.3.4 Experimental Data-processing

As shown Fig. 2.22, the experimental relative pitch angles, θ1 and θ2, at the

joints of two PTO systems, PTO − 1 and PTO − 2, were captured and measured
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by a Qualisys motion capture system. FFT analysis was conducted to obtain the

amplitudes of angular motions.

Figure 2.22: Relative Pitch Angles

When the PTO systems were activated, the damping forces and the displacements

of the sliding bars were measured. The velocities of the bars were obtained from time

series of their displacements. The moving average method was applied to remove

unrealistic oscillations in the time series of force and velocity. Fig. 2.23 presents

a segment of time series of force and velocity for PTO-1. The corresponding wave

period was 1.35 s in model scale.
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Figure 2.23: Damping Force and Sliding Velocity

The average power absorption of the ith PTO, denoted as Pi, is

Pi =

∫ T

0
Fi(t)vi(t)dt

T
(2.1)
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where Fi(t) is the damping force, vi(t) is the sliding velocity, and T is the time length.

Then the equivalent damping coefficient, di, was obtained as

di =

∫ T

0
Fi(t)vi(t)dt
∫ T

0
v2i (t)dt

(2.2)

Introducing the total power of the incident wave per unit crest length across the

device,

E =
ρg2A2

4ω
(2.3)

the power capture width for the SeaWEED is given as

Cwidth =

∑2
i=1 Pi

E
(2.4)

where A is the wave amplitude and ω is the wave frequency.

In order to map the model test results to the full scale device, the similitude

theory is applied. Two main similarity parameters are involved, namely, the Strouhal

number, S = L
UT

, and the Froude number, Fr = U√
gL
, where L is the length of

the device, U is the wave speed, T is the wave period and g is the gravitational

acceleration. Denote a quantity of interest, such as relative pitch angle, damping

coefficient and capture width, as Q, the relationship between the model scale value

and the full scale one can be expressed by Qfull = Qmodel ∗ λ
n, where λ is the scale

and n is the scaling factor derived based on the similarity parameters. The scaling of

the quantities involved in the present study are listed in Table 2.6.
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Table 2.6: Scaling of quantities

Quantity, Q Unit Scaling factor, n

Device dimensions (length, breadth and draft), L, B and T (m) 1.0

Wave period, T (s) 0.5

Damping coefficient, d (Nms) 4.5

Velocity, U (m/s) 0.5

Relative pitch angle, θ − 0.0

Capture width, Cw (m) 1.0

Absorbed power, Ps (kW ) 3.5
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Chapter 3

Time-domain Simulation of

SeaWEED

The three bodies of SeaWEED articulated by hinge joints are subjected to con-

strained motions. To simulate the dynamics of SeaWEED, a potential-flow based

time-domain program is developed. This chapter presents the mathematical for-

mulations of the time-domain method where the constraints are modeled using the

Lagrange multiplier approach (Baraff,1996), the Froude-Krylov forces are calculated

over the instantaneous wetted surfaces of the bodies and the wave pressure on the

body surfaces is computed applying the Wheeler Stretching method (Wheeler et al.,

1969). The numerical method is validated using the model test data, and good agree-

ment is achieved.
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3.1 Mathematical Formulation

3.1.1 Coordinate System Definition

As shown in Fig. 3.1, an earth-fixed Cartesian coordinate system, OXY Z, is

employed with the OXY plane coinciding with the undisturbed free surface and the

OZ axis pointing vertically upward. In three body-fixed coordinate systems, oixiyizi,

i = 1, 2, 3, oi is at the point of intersection of calm water surface, the longitudinal

plane of symmetry, and the vertical plane passing through the centre of gravity (CG)

of the ith body; the oizi axis points upward; the oixiyi plane coincides with the

undisturbed free surface when the body is at rest; and the oixi axis points from the

tail module to the nose module.

Figure 3.1: Coordinate Systems

3.1.2 Equations of Motion

According to the work of Danmeier (1999) and Qiu and Peng (2013), equations

of motion for the SeaWEED system can be developed as follows.
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Denoting a column vector by braces {}, translational displacements of the ith

body in the OXY Z system are represented byXXXi = {Xi,1, Xi,2, Xi,3} and the Eulerian

angles are given byXXXRi
= {Xi,4, Xi,5, Xi,6}. The angular velocity in oixiyizi is denoted

by ωωωi. The time rate change of the Eulerian angles is related to the angular velocity

by

Ẋ̇ẊXRi = TTT iωωωi =















1 s1t2 c1t2

0 c1 −s1

0 s1/c2 c1/c2















ωωωi (3.1)

where ck = cos(Xi,3+k), sk = sin(Xi,3+k) and tk = tan(Xi,3+k) for k=1,2 and 3.

Equations of motion for the ith body are then given as






mmmi −mixxxcgiDDD
T
i

mixxxcgiDDDi IIIoi

















ẌXX i

ω̇ωωi











=











FFF i

MMM oi











(3.2)

where mmmi is the 3 × 3 matrix with the body mass, mi, along its diagonal and zero

everywhere else, IIIoi is the mass moment of inertia matrix with respect to the origin

of the ith body, xxxcgi is the centre of gravity of ith body, FFF i are the external forces

acting on the body in OXY Z, MMM oi are the moment about the origin of the body-

fixed coordinate system, and DDDi is the rotational transformation matrix between the

earth-fixed and body-fixed coordinate systems as follows:

DDDi =















c2c3 c2s3 −s2

s1s2c3 − c1s3 s1s2s3 + c1c3 s1c2

c1s2c3 + s1s3 c1s2s3 − s1c3 c1c2















(3.3)

Equation 3.2 can also be written in a concise form as below:

MMM iv̇̇v̇vi = FFFE
i (3.4)
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where FFFE
i is the vector including resultant forces and moments on the ith body, and

vvvi = {Ẋi1, Ẋi2, Ẋi3, ωi1, ωi2, ωi3}, i = 1, 2, 3 (3.5)

The total force acting on the ith body can be written as

FFFE
i = FFFFK

i +FFFRS
i +FFFR

i +FFFD
i +FFF PTO

i +FFFC
i (3.6)

where FFFFK
i are the Froude-Krylov forces; FFFRS

i are the restoring forces; FFFR
i and FFFD

i are

the forces due to radiated and diffracted waves, respectively; FFF PTO
i are the damping

forces from the PTO system; and FFFC
i are the constraint forces due to hinge joints.

The nonlinear Froude-Krylov forces are calculated according to instantaneous wet-

ted surface applying the Wheeler Stretching Approach (Wheeler et al., 1969). The lin-

ear diffraction forces are obtained from the frequency domain solution using WAMIT.

The linear radiation forces on the ith body are calculated using the impulse function

method and the added mass and damping matrices from WAMIT, i.e.,

FFFR
i = −AAA(∞)ijẍxxj(t)−

∫ t

−∞
KKKij(t− τ)ẋxxj(τ)dt (3.7)

where AAA(∞)ij is the added mass matrix (6 × 6) at the infinite frequency of the ith

body due to the jth body, i = 1, 2, 3 and j = 1, 2, 3 for SeaWEED, ẋxxj(τ) and ẍxxj(t)

are the velocities and accelerations of the jth body, respectively, KKKij(t − τ) is the

impulse function of the ith body due to the jth body, which is also a 6 × 6 matrix.

The response function can be obtained from the damping matrix, BBBij(ω), which is a

function of wave frequency ω and was calculated from WAMIT in this work, i.e.,

KKKij(τ) =
2

π

∫ ∞

0

BBBij(ω) cosωτdω (3.8)
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Denoting the damping coefficients of PTO-1 and PTO-2 as d1 and d1, respectively,

the damping moments can be computed as

MPTO1
1 = −d1θ̇1, MPTO1

2 = d1θ̇1

MPTO2
2 = −d2θ̇2, MPTO2

3 = d2θ̇2 (3.9)

where MPTOk
i is the moment acting on the ith body due to PTO-k, and θ̇1 = β̇1 − β̇2

and θ̇2 = β̇2 − β̇3 are the relative pitch velocities of PTO-1 and PTO-2, respectively,

as depicted in Fig. 3.2.

Figure 3.2: Damping Moments

3.1.3 Computation of Constraint Forces

The computation of the constraint forces, FFFC , is discussed in this sub-section.

SeaWEED has two hinge connectors, A and B, for the 1st and 2nd bodies and for

the 2nd and 3rd bodies, respectively, as shown in Fig. 3.2. Denoting the position of

hinge A on Body 1 as HHHA1 and on Body 2 asHHHA2 in OXY Z, the following constraint

condition should be satisfied,

HHHA1 =HHHA2 (3.10)

The same condition can be applied to the hinge point, B. Introducing the relative
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position vector, CCC, the constraint conditions can be rewritten as

CCC =







HHHA1 −HHHA2

HHHB2 −HHHB3






= 000 (3.11)

The time derivatives of the constraint conditions, ĊCC = 0, i,e., the conditions for

relative velocities, are given as

ĊCC =







ḢHHA1 − ḢHHA2

ḢHHB2 − ḢHHB3






= 000 (3.12)

where ḢHHAi = ẊXX i + ωωωi × rrrAi, i = 1, 2, and ḢHHBi = ẊXX i + ωωωi × rrrBi, i = 2, 3 are

the position vectors of the hinge points, A and B, respectively, in the body-fixed

coordinate systems, oixiyizi, with respect to the center of gravity of each body.

Equation 3.12 can also be rewritten as

JJJVVV = 000 (3.13)

where JJJ is the Jacobian matrix (6× 18),

VVV = {vvv1, vvv2, vvv3}
T (3.14)

Furthermore, the acceleration constraint are given as

C̈CC =







ḦHHA1 − ḦHHA2

ḦHHB2 − ḦHHB3






= 000 (3.15)

where ḦHHAi = ẌXX i+ ω̇ωωi×rrrAi+ωωωi× (ωωωi×rrrAi), i = 1, 2, and ḦHHBi = ẌXX i+ ω̇ωωi×rrrBi+ωωωi×

(ωωωi × rrrBi), i = 2, 3, and ẌXX i and ω̇ωωi are the translational and angular accelerations of

the ith body, respectively.
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Equation 3.15 can be rewritten as

JJJV̇VV + kkk = 000 (3.16)

where kkk is given as

kkk =







ωωω1 × (ωωω1 × rrrA1)−ωωω2 × (ωωω2 × rrrA2)

ωωω2 × (ωωω2 × rrrB2)−ωωω3 × (ωωω3 × rrrB3)






(3.17)

Since the constraint forces are internal forces and do not change the energy of the

system (Witkin, 1997), it implies the constraint forces can be expressed as

FFFC = JJJTλλλ (3.18)

where λλλ is the Lagrange multiplier.

Combining Eqs. 3.2, 3.16 and 3.18, a system of equations can be obtained as







MMM −JJJT

JJJ 000













V̇VV

λλλ






=







FFFE−C

−kkk






(3.19)

where MMM is a 18 × 18 matrix consisting of mass matrices of three bodies, as defined

in Eq. 3.4, i.e.,

MMM =















MMM1

MMM 2

MMM 3















(3.20)

and FFFE−C is the external force acted on the three bodies excluding the constraint

forces.

Accelerations and the Lagrange multipliers (hence the constraint forces) can be

solved by solving Eq. 3.19.
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3.1.4 Computation of Nonlinear Froude-Krylov Forces

To better resolve the nonlinearities associated with the changing underwater hull

shape, the instantaneous wetted surfaces under the wave profile are considered, as

shown in Fig. 3.3, and the pressure on the body surfaces is computed applying the

Wheeler Stretching Approach (Wheeler et al., 1969).

Figure 3.3: SeaWEED Wetted Surfaces under Waves

Under linear wave theory, the wave potential can be written as

φ0(x, y, z, t) =
igη0
ω0

cosh[k(z + h)]

coshkh
eiωt−ik(x cos β+y sinβ) (3.21)

where η0 is wave amplitude, ω0 is wave frequency, h is water depth, β is wave heading

direction (180 degrees for head waves) and g is the gravity acceleration.

For infinite water depth, Eq. 3.21 becomes

φ0(x, y, z, t) =
igη0
ω0

ekzeiωt−ik(x cos β+y sinβ) (3.22)
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The wave elevation can be expressed using the wave potential

η(t) = −
1

g

∂φ0

∂t
(z = 0) (3.23)

As the wave potential is defined under the undisturbed free surface, the Wheeler

stretching method, proposed by Wheeler (1969), is used to compute the pressure on

the instantaneous wetted surfaces. In the stretching method, the wave velocity distri-

bution from sea bed to the mean water level, η = 0, is stretched to the instantaneous

wave surface, η(t). As shown in Fig. 3.4, the red dashed lines represent the inci-

dent wave velocity profile under the undisturbed free surface, and the red solid lines

represent the stretched velocity profile applying the Wheeler stretching method.

Figure 3.4: Illustration of Wheeler Stretching Theory

The incident wave pressure, p(x, y, z, t), at point, Q(x, y, z), and time, t, under

the calm waterline can be expressed

p(x, y, z, t) = −ρ
∂φ0(x, y, z, t)

∂t
(3.24)
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In the Wheeler stretching approach, the velocities at the mean water level are

applied to the true surface and the distribution from the sea bed to the wave surface

is stretched accordingly. Introducing the scaled vertical coordinate, z′

z′ = [z − η(t)]
d

d+ η(t)
(3.25)

where z is the vertical coordinate of a point of interest, η(t) is wave elevation, d is

water depth. For infinite water depth, the scaled coordinate z′ can be expressed as

z′ = z − η(t) (3.26)

Substituting the vertical coordinate z by the scaled vertical coordinate z′, the

dynamic pressure at the any point on the submerged surfaces can be computed. In

the end, the Froude-Krylov forces on the ith body can be calculated as

FFF FK
i =

∫

Swet

p(x, y, z − η(t), t)nnnds (3.27)

3.1.5 Convergence Studies

3.1.5.1 Convergence Studies on Mesh

Convergence studies on the computational mesh were conducted in the first place.

As presented in Fig. 3.5, the added mass in the heave direction of Body 1 caused

by the heave motion of Body 2 were computed by WAMIT using different numbers

of panels. It can be seen from the results that a total of 2064 panels is sufficient to

represent the three bodies.
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Figure 3.5: Convergence Study on the Mesh Size

3.1.5.2 Convergence Studies on Time Step

In the simulations, the two-step Adams-Bashforth method was employed for time

marching. Sensitivity studies on the time step were carried out. Predicted motions

of PTO-1 in regular waves with a period of 1.69 s (model scale) for the case of T1-D0

using time steps, 0.005 s, 0.0075 s and 0.01 s, are presented in Fig. 3.6

Slight drift can be observed in the results after a long-time simulation, resulting

the violation of constraint condition for displacement. This was further investigated

by checking the relative displacements between XA1 and XA2, which should be zero

in theory:

EAx = |
XA1 −XA2

XA

| × 100% (3.28)

where XA1 and XA2 are the horizontal motions of the hinge joint, A, calculated based

on the motions of Bodies 1 and 2, respectively, and XA is the horizontal displace-
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Figure 3.6: Time Histories of Simulated Hinge Motions

ment amplitude of the hinge joint A. As shown in Fig. 3.7, the error was reduced

significantly when a smaller time step was used.

In the following simulations, the time step was set as 0.0075 second. After a

120-second simulation (model scale), the accumulated error is below 0.05%, which is

acceptable and does not cause any noticeable change in the relative pitch motions.

3.2 Validation Studies

The numerical method is validated using the model tests data on the second gener-

ation SeaWEED, as detailed in Chapter 2. The results applying nonlinear and linear

Froude-Krylov forces are compared with the experimental results for both free hinge

cases and damped cases. In the following, cases are defined by the combination of

body-length and damper set-up, as detailed in Table 2.3 and Table 2.5. For example,
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T1-D2 denotes a case with body length, T1, and damper set-up, D2.

3.2.1 Free Hinge Conditions

Validation studies were first carried out for the SeaWEED without PTOs. The

computed relative pitch motions at the two PTOs with nonlinear and linear F-K

forces were compared with the experimental data for various combinations of truss

lengths as listed in Table 2.3.

Figs. 3.8 and 3.9 present the comparisons of the non-dimensional relative pitch

angles at PTO-1 and PTO-2 for Case T1-D0 (see Table 2.3) in terms of the wave

length to body length ratio, i.e., λ
L2

, where λ is the wave length and L2 is the length

of Body 2, which is constant in all the combinations of truss lengths. The relative

pitch angle, θ, is non-dimensionalized as θ
kη0

, where k is the wave number and η0 is
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the amplitude of incident waves. The numerical results for Case 2 are presented in

Figs. 3.10 and 3.11.

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5

θ 1
/(

k
η 0

)

λ/L2

Nonlinear F−K Force
Linear F−K Force

Experimental
Repeated Test 1
Repeated Test 2

Figure 3.8: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D0)

As shown in Table 2.3, the lengths of Body 3 for Case T3-D0 and T4-D0 are

greater than that for Case T2-D0 while the lengths of Body 1 and Body 2 remain

constant. The corresponding relative pitch motions at the joints are presented in

Figs. 3.13, 3.13, 3.14 and 3.15.

As shown in these comparisons, the numerical results agree very well with the

experimental data for the cases without PTOs. In addition, for longer wave cases,

better agreement is achieved when considering the nonlinear F-K forces.
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Figure 3.9: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D0)
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Figure 3.10: Non-dimensional Relative Pitch Angles at PTO-1 (Case T2-D0)
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Figure 3.11: Non-dimensional Relative Pitch Angles at PTO-2 (Case T2-D0)
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Figure 3.12: Non-dimensional Relative Pitch Angles at PTO-1 (Case T3-D0)
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Figure 3.13: Non-dimensional Relative Pitch Angles at PTO-2 (Case T3-D0)
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Figure 3.14: Non-dimensional Relative Pitch Angles at PTO-1 (Case T4-D0)
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Figure 3.15: Non-dimensional Relative Pitch Angles at PTO-2 (Case T4-D0)

3.2.2 Damped Conditions

Experimental tests were carried out with three damper set-ups as shown in Table

2.5, i.e., with PTOs. In each set-up, the spring was adjusted to provide desired

damping force. Figs. 2.18, 2.19 and 2.20 present the damping coefficients of the

two dampers obtained from calibrations and measurements during tests for the three

set-ups.

Using the equivalent damping coefficients obtained from the measurements during

tests as input, numerical simulations were carried out to predict relative motions at

the joints of PTOs. Figs. 3.16 and 3.17 present the non-dimensional pitch angles and

Figs. 3.18 and 3.19 show the corresponding capture widths by PTO-1 and PTO-2 for

the damping Case T1-D1. It can be seen that the power absorbed by the two PTOs
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is similar.
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Figure 3.16: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D1)

For the damping Case T1-D2, Figs. 3.20, 3.21, 3.22 and 3.23 show the non-

dimensional hinge angular motions and the capture widths by PTO-1 and PTO-2.

Due to the increased resistance from the damper, the response of PTO-2 was decreased

in comparison with that in Case T1-D1.

Further, additional two sets of tests were carried out by activating PTO-1 and

PTO-2 independently using the same damping in Case T1-D2 to validate the present

method. Figs. 3.24, 3.25 and 3.26 present the non-dimensional hinge motions and the

capture widths of PTO-1 and PTO-2 with only PTO-1 activated. Compared to the

case where both dampers were activated, the disengagement of the damper PTO-2

led to an increase of the hinge motions at PTO-2.
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Figure 3.17: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D1)
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Figure 3.18: Full-scale Capture Width at PTO-1 (Case T1-D1)
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Figure 3.19: Full-scale Capture Width at PTO-2 (Case T1-D1)
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Figure 3.20: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D2)
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Figure 3.21: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D2)
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Figure 3.22: Full-scale Capture Width at PTO-1 (Case T1-D2)
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Figure 3.23: Full-scale Capture Width at PTO-2 (Case T1-D2)
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Figure 3.24: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D3)
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Figure 3.25: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D3)
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Figure 3.26: Full-scale Capture Width at PTO-1 (Case T1-D3)

66



Figs. 3.27, 3.28 and 3.29 present the non-dimensional hinge angles and the capture

widths of PTO-1 and PTO-2 with only PTO-2 activated. In this case, both the

relative pitch motions of PTO-1 and PTO-2 are larger in comparison with those for

Case T1-D2.
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Figure 3.27: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D4)

Further increasing the damping, the overall captured power widths in Case T1-D5

are less than that in Case T1-D2, as shown in Figs. 3.32 and 3.33. The corresponding

non-dimensional angular motions are presented in Figs. 3.30 and 3.31.

As a summary, it can be seen that good repeatability was achieved from the model

tests. Relative pitch angles and capture widths were slightly over predicted by the

present numerical model for damping cases. This could be due to various reasons, such

as the energy loss in the measuring system due to the frictions between the connectors
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Figure 3.28: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D4)
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Figure 3.29: Full-scale Capture Width at PTO-2 (Case T1-D4)
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Figure 3.30: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D5)
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Figure 3.31: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D5)
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Figure 3.32: Full-scale Capture Width at PTO-1 (Case T1-D5)
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Figure 3.33: Full-scale Capture Width at PTO-2 (Case T1-D5)
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and possible misalignment of the apparatus. Similar to the free-hinge cases, better

predictions were achieved by using the nonlinear F-K forces for low-frequency-wave

cases. The overall agreement between the experimental and computational results is

satisfactory.
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Chapter 4

Frequency-domain Simulation of

SeaWEED

As shown in the previous chapter, the time-domain program can well predict

the hinged motions and captured power of SeaWEED. However, to optimize the

power output of SeaWEED for a target operation site, a more efficiency computer

program is needed. Based on the methodologies used in the time-domain analysis

and linearization of the wave forces and body motions, a frequency-domain program

is developed. This chapter presents the mathematical formulations of the frequency-

domain potential-flow program and validations using the experimental data.

4.1 Mathematical Formulation

The definition of the coordinate systems follows that in Chapter 3.
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4.1.1 Equations of Motion and Constraint Matrix

Equations of motion of the three bodies can be expressed as

18
∑

k=1

[−ω2(∆jk + Ajk) + iωBjk + Cjk]η̄k = FE
j , j = 1, . . . , 18 (4.1)

where ω is the frequency of incident wave, η̄k is the complex amplitude of motion

in mode k, ∆jk are the masses or moments of inertia, Ajk and Bjk are the added

mass and damping coefficients, Cjk are the hydrostatic restoring force coefficients,

respectively.

The total exciting forces, FE
j , include the Froude-Krylov forces, F FK

j , forces due

to diffracted waves, FD
j , damping forces from the PTO systems, F PTO

j , and constraint

forces due to hinge joints, FC
j

FE
j = F FK

j + FD
j + F PTO

j + FC
j , j = 1, . . . , 18 (4.2)

In the SeaWEED system, the PTO is due to the relative pitch motions at the

hinge joints A and B, as shown in Fig. 4.1. The damping forces are computed as

F PTO
j =

18
∑

k=1

(−iωBPTO
jk η̄k), j = 1, . . . , 18 (4.3)

where BPTO
jk are the damping coefficients due to the PTO systems with

BPTO
5,5 = −d1 ; BPTO

5,11 = +d1

BPTO
11,5 = +d1 ; BPTO

11,11 = −d1 − d2

BPTO
11,17 = +d2 ; BPTO

17,11 = +d2 (4.4)

BPTO
17,17 = −d2

where d1 and d2 are the damping coefficients at PTO-1 and PTO-2, respectively, and

the rest terms of BPTO
jk are zero.
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Figure 4.1: Relative Pitch Angles

Denote the positions of hinge joint A on Body 1 and Body 2 as HHHA1 and HHHA2,

and those of hinge joint B on Body 2 and Body 3 as HHHB2 and HHHB3, in the earth-fixed

coordinate system, OXY Z, respectively, the following condition should be satisfied







HHH1A −HHH2A

HHH2B −HHH3B






= 000 (4.5)

The position of a hinge joint in the global coordinate system can be expressed

using the motions of a rigid body and the relative position of the hinge joint in the

body-fixed frame. Under the assumption that the motions are linear, Eq. (4.5) can

be rewritten as






η̄i + ǫijkη̄j+3r
A1
k − η̄i+6 − ǫijkη̄j+9r

A2
k

η̄i+6 + ǫijkη̄j+9r
B2
k − η̄i+12 − ǫijkη̄j+15r

B3
k






= 000, i, j, k = 1− 3 (4.6)

where ǫijk is the Levi-Civita symbol, rrrAm, m = 1, 2 and rrrBm, m = 2, 3, are the

position vectors of the hinge joints, A and B, respectively, in the body fixed coordinate

system, omxmymzm, with respect to the origin om. Further, Eq. (4.6) can be expressed

as
18
∑

k=1

Jjkη̄k = 0, j = 1− 6 (4.7)

where Jjk are elements of the Jacobian matrix JJJ in size of 6 × 18 in this work. The
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elements in JJJ are detailed as

J1,1 = 1 ; J1,5 = rA1
3 ; J1,7 = −1 ; J1,11 = −rA2

3

J2,2 = 1 ; J2,6 = rA1
1 ; J2,8 = −1 ; J2,12 = −rA2

1

J3,3 = 1 ; J3,5 = rA1
1 ; J3,9 = −1 ; J3,11 = −rA2

1

J4,7 = 1 ; J4,11 = rB2
3 ; J4,13 = −1 ; J4,17 = −rB3

3 (4.8)

J5,8 = 1 ; J5,12 = rB2
1 ; J5,14 = −1 ; J5,18 = −rB3

1

J6,9 = 1 ; J6,11 = rB2
1 ; J6,15 = −1 ; J6,17 = −rB3

1

where the rest are zero.

As the constraint forces do not change the energy of the whole system (Witkin,

1997), they can be expressed as

FC
j =

6
∑

k=1

JT
jkλk, j = 1, . . . , 18 (4.9)

where T denotes transpose and λk are the Lagrange multipliers.

Combining Eqs. (4.1), (4.7) and (4.9), and expressing them in a matrix form, a

system of equations can be obtained







[−ω2(∆∆∆+AAA) + iω(BBB +BBBPTO) +CCC] JJJT

JJJ 000













η̄̄η̄η

λλλ






=







FFF FK +FFFD

000






(4.10)

4.1.2 Power Absorption in Regular and Irregular Waves

The complex constraint motion amplitudes and the Lagrange multipliers (hence

the constraint forces) can be obtained simultaneously by solving Eq. 4.10, and the

average power absorbed by PTO-1, PN
1 , and PTO-2, PN

2 in a regular wave can be
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calculated as

PN
1 =

1

2
ω2η20d1 | η̄5 − η̄11 |

2 (4.11)

PN
2 =

1

2
ω2η20d2 | η̄11 − η̄17 |

2 (4.12)

where η0 is the amplitude of incident wave.

Introducing the wave power per unit crest length

PW =
ρg2η20
4ω

(4.13)

the power capture width, Ci, by PTO-i is given by

Ci =
PN
i

PW
, i = 1, 2 (4.14)

In irregular waves, under a certain sea state, (Hs, Tp), the average wave power,

P I
W (Hs, Tp), can be expressed as

P I
W (Hs, Tp) =

∫ ∞

0

ρg2

2ω
S(Hs, Tp, ω)dω (4.15)

where S(Hs, Tp, ω) is the wave spectrum.

For an intended operation site, the annual average wave power, PA
W , is the sum-

mation of the average wave power of every single sea state weighted by its probability

of occurrence, µ(Hs, Tp),

PA
W =

∑

Hs

∑

Tp

µ(Hs, Tp)P
I
w(Hs, Tp) (4.16)

Note that the summations are over the ranges of Hs and Tp. The average power

captured by SeaWEED under a certainty sea state, (Hs, Tp), P
I
S(Hs, Tp), can be com-

puted as

P I
S(Hs, Tp) =

∫ ∞

0

[ω2d1S(Hs, Tp, ω) | η̄5 − η̄11 |
2 (4.17)

+ ω2d2S(Hs, Tp, ω) | η̄11 − η̄17 |
2]dω
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and the annual power absorption, PA
S , can be obtained applying Eq. (4.16) as

PA
S =

∑

Hs

∑

Tp

µ(Hs, Tp)P
I
S(Hs, Tp) (4.18)

The annual capture width, CA, can finally be calculated as

CA =
PA
S

PA
W

(4.19)

4.2 Validation Studies

4.2.1 First Generation SeaWEED Simulation

In the model test of the first generation SeaWEED, the relative pitch motions and

captured power at PTO-1 were measured (Lundrigan, 2013). Figure 4.2 presents the

comparisons of the non-dimensional relative pitch angles at PTO-1 for free-hinged

conditions. The x-axis shows the wave length to body length ratio, i.e., λ/L2, where

λ is the wave length and L2 is the length of Body 2. The relative pitch angle, θ, is

non-dimensionalized as θ
kη0

, where k is the wave number and η0 is the amplitude of

incident waves.

Using the damping coefficents obtained from the model tests (Lundrigan, 2013),

simulations with the PTO systems activated were also conducted. Figs. 4.3 and 4.4

present the non-dimensional relative pitch angles and corresponding capture widths

at PTO-1.

As can be seen from the plots, the general trend of the numerical and experimental

results is the same. However, due to lack of model test details and repeated tests

data, the numerical method is validated using the test data for the second generation

SeaWEED conducted at the towing tank of MUN, as detailed in Chapter 2.
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Figure 4.2: Non-dimensional Relative Pitch Angles at PTO-1
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Figure 4.3: Non-dimensional Relative Pitch Angles at PTO-1
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Figure 4.4: Full-scale Capture Width at PTO-1

4.2.2 Second Generation SeaWEED Simulation

The numerical method is validated using the experimental results from the model

tests on the second generation SeaWEED for both free hinge cases and damped cases.

In addition, the numerical results are compared to those simulated using the time-

domain program using linear Froude-Krylov forces. In the following, cases are defined

by the combination of body-length and damper set-up, as detailed in Table 2.3 and

Table 2.5. For example, T1-D2 denotes a case with body length, T1, and damper

set-up, D2.
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4.2.2.1 Free-hinged Conditions

Figs. 4.5 and 4.6 present the comparisons of the non-dimensional relative pitch

angles at PTO-1 and PTO-2 for Case T1-D0 (see Table 2.4) in terms of the wave

length to body length ratio, i.e., λ/L2, where λ is the wave length and L2 is the

length of Body 2, which is constant in all the combinations of truss lengths (see Table

2.3). The relative pitch angle, θ, is non-dimensionalized as θ
kη0

, where k is the wave

number and η0 is the amplitude of incident waves.
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Figure 4.5: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D0)

The results for Cases T2-D0, T3-D0 and T4-D0 are presented in Figs. 4.7, 4.8,

4.9, 4.10, 4.11 and 4.12.

As linear F-K forces are used in the time-domain simulations, the frequency-
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Figure 4.6: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D0)
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Figure 4.7: Non-dimensional Relative Pitch Angles at PTO-1 (Case T2-D0)
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Figure 4.8: Non-dimensional Relative Pitch Angles at PTO-2 (Case T2-D0)
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Figure 4.9: Non-dimensional Relative Pitch Angles at PTO-1 (Case T3-D0)
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Figure 4.10: Non-dimensional Relative Pitch Angles at PTO-2 (Case T3-D0)
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Figure 4.11: Non-dimensional Relative Pitch Angles at PTO-1 (Case T4-D0)
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Figure 4.12: Non-dimensional Relative Pitch Angles at PTO-2 (Case T4-D0)

domain results are almost identical to the time-domain ones. Comparing the nu-

merical results to the experimental ones, very good agreement is achieved for cases

without PTOs.

4.2.2.2 Damped Conditions

Tests on different damped set-ups (see Table 2.5) were conducted using Body

Length Combination Case T1, as detailed in Table 2.3. Fig. 4.13 and 4.14 present the

non-dimensional relative pitch angles, and Fig. 4.15 and 4.16 show the corresponding

capture widths by PTO-1 and PTO-2 for Case T1-D1.

For the damping Case T1-D2, Figs. 4.17, 4.18, 4.19 and 4.20 show the non-

dimensional relative pitch angles and the full scale capture widths of PTO-1 and

PTO-2, respectively.
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Figure 4.13: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D1)
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Figure 4.14: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D1)
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Figure 4.15: Full-scale Capture Width at PTO-1 (Case T1-D1)
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Figure 4.16: Full-scale Capture Width at PTO-2 (Case T1-D1)
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Figure 4.17: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D2)
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Figure 4.18: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D2)
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Figure 4.19: Full-scale Capture Width at PTO-1 (Case T1-D2)
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Figure 4.20: Full-scale Capture Width at PTO-2 (Case T1-D2)
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For validation purposes, two additional sets of tests were conducted by activating

PTO-1 and PTO-2 separately under the same damper set-up as Case T1-D2. Figs.

4.21, 4.22 and 4.23 present the relative pitch angles and capture widths for Case

T1-D3 with only PTO-1 activated.
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Figure 4.21: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D3)

Figs. 4.24, 4.25 and 4.26 show the relative pitch angles and capture widths for

Case T1-D4 with only PTO-2 activated.

Further increasing the damping, the responses of the PTOs were suppressed. The

relative pitch angles and capture widths for Case T1-D5 are presented in Figs. 4.27,

4.28, 4.29 and 4.30.

To summarize, both frequency-domain and time-domain results agree well with

the experimental data. For the damping tests, both relative pitch angles and capture
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Figure 4.22: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D3)
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Figure 4.23: Full-scale Capture Width at PTO-1 (Case T1-D3)
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Figure 4.24: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D4)
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Figure 4.25: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D4)
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Figure 4.26: Full-scale Capture Width at PTO-2 (Case T1-D4)
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Figure 4.27: Non-dimensional Relative Pitch Angles at PTO-1 (Case T1-D5)
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Figure 4.28: Non-dimensional Relative Pitch Angles at PTO-2 (Case T1-D5)

 0

 1

 2

 3

 4

 5

 6

 7

 2  2.5  3  3.5

F
u

ll
 S

ca
le

 C
W

1
 (

m
)

λ/L2

Frequency Domain Method
Time Domain Method with Linear F−K Forces

Experimental Test
Repeated Test 1
Repeated Test 2

Figure 4.29: Full-scale Capture Width at PTO-1 (Case T1-D5)
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Figure 4.30: Full-scale Capture Width at PTO-2 (Case T1-D5)

width were slightly over-predicted by the present numerical method. As mentioned in

the previous chapter, this is reasonable since the power extracted from the PTOs was

not fully captured by the measuring system. The energy loss could be caused by the

friction in the apparatus, the slight looseness between the connection parts and the

measuring systems. The overall agreement between the experimental and numerical

results of the free hinge and damped hinge tests is achieved. Therefore the numerical

method can be further used for optimization studies.
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Chapter 5

Optimization of the Second

Generation of SeaWEED

In this chapter, optimization of the annual power absorption by SeaWEED in

a particular area is studied. The design variables and the design domain are first

identified. The Uniform design method is then applied to select the sample points

from the geometrical design space. For each geometrical combination, the optimized

damping coefficients and power absorption are determined applying the full factorial

design method. The surrogate model is constructed by using the response surface

method. Effects on the accuracy of the surrogate modeling by the number of sampling

points and levels on the design space are investigated. After the surrogate model is

verified, the desirability optimization method is used to find the optimal annual power

absorption.
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5.1 Optimization Problem

SeaWEED can be customized to operate in any intended locations with optimum

efficiency, multiple design variables, including the truss lengths, drafts and damping

of the WEC, were considered in the optimization. The mathematical formulation of

the optimization problem is

Maximize[PA
S (LT1, LT2, LT3, D, d1, d2)] (5.1)

where the objective function, PA
S , is the annual power absorption of SeaWEED at

an intended operation site, and the design variables include truss structure lengths

of the three body segments, LT1, LT2, and LT3, as shown in Fig. 2.8, draft of the

device, D, and damping coefficients at PTO-1 and PTO-2, d1 and d2, respectively.

5.2 Selection of Sample Points

To determine the sample points for geometrical variables, the uniform design

method (Fang et al., 2000) is utilized, which is categorized as a space-filling design.

A brief overview of the application of the method is presented below. More details

on the method can be found in the work of Fang et al. (2005).

Based on the good lattice point method proposed by Korobov (Niederreiter, 1978),

a uniform design (UD) table is generated according to the number of sample points,

n, to be selected (Fang et al., 2005). The UD table consists of n rows and s columns.

In a design with v design variables and n sampling points, v out of s UD table

columns are selected. For each sampling point, the locations of the v design variables
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in the design domains are selected according to the index u in the selected columns.

However, there are Cv
s choices, a selection criterion is thus needed. It is desirable

that the resulting sampling points are uniformly distributed on the design domain.

To evaluate the uniformity of the sampling, the centered L2-discrepancy, CD, should

be calculated as (Fang et al., 2005)

CD2 =
13

12

v

−
2

n

n
∑

k=1

v
∏

j=1

[1 +
1

2
|xkj − 0.5| −

1

2
|xkj − 0.5|2] +

1

n2

n
∑

k=1

n
∑

j=1

v
∏

i=1

[1 +
1

2
|xki − 0.5|+

1

2
|xji − 0.5| −

1

2
|xki − xji|] (5.2)

where x is the normalized form of u in the UD table, given as x = 2u−1
2n

. The lower

the CD value is, the more uniform the design will be.

5.3 Surrogate Model Construction

Response Surface Methodology (RSM) consists of a group of mathematical and

statistical techniques that can be utilized to find an empirical model to describe the

relationship between the input variables and the responses (Myers et al., 1995).

An experimental optimization procedure by utilizing the RSM has the following

steps (Baş et al., 2007). (1) Determine the experimental region, the independent

input variables, and the level of each variable. (2) Select the experimental design

method, generate the experimental matrix (choose the sampling points), and carry

out the experiment. (3) Find a polynomial function to predict the experiment and

verify the function. (4) Generate the response surface and the contour plots, and

search the optimum values.

Polynomial functions, obtained from experiments or numerical simulations, are
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used to approximate responses. From the polynomial functions, the target points,

such as maximum or minimum values of a response, can be determined.

When constructing the surrogate, the adjusted R-squared value based on the

sampling points should be checked. Further, to validate the regression model, 0.25 ×

the total number of sample points, as suggested by Forrester et al. (2008), located

within the search domains but different from the sample points, should be selected to

compute the errors, E, between the results obtained from direct numerical simulation

and the surrogate model fitting.

E = |
PSIM − PRSM

PSIM

| × 100% (5.3)

where PRSM is the power obtained from the response surface and PSIM is the power

directly calculated from simulation, respectively.

5.4 Optimal Response Exploration

After the surrogate model is validated, the desirability optimization methodology

(Derringer et al., 1980) can be utilized to search the optimal responses. This method

is based on a modified desirability function and useful in optimizing multiple response

variables (Li et al., 2017).

For each response, Yi(x), a desirability function di(Yi) ranges between zero and

one can be determined. A desirability of zero represents a completely undesirable

value of Yi; while a desirability of one means a completely desirable or ideal response

value.

Different desirability functions di(Yi) can be used, depending on whether a par-

ticular response Yi is to be maximized, minimized, or assigned a target value. Der-
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ringer and Suich (1980) proposed a set of desirability functions. Let Li, Ui and Ti

(Li ≤ Ti ≤ Ui) be the lower, upper, and target values, respectively, that are desired

for response Yi.

To maximize the response, the desirability is expressed as

di(Ŷi) =



























0 if Ŷi(x) < Li

(

Ŷi(x)−Li

Ti−Li

)s

if Li ≤ Ŷi(x) ≤ Ti

1.0 if Ŷi(x) > Ti

(5.4)

where Ti is a large enough value for the response and s is the weight, which determines

how important it is to hit the maximum value.

To minimize the response, the desirability is defined as

di(Ŷi) =



























1.0 if Ŷi(x) < Ti

(

Ŷi(x)−Ui

Ti−Ui

)s

if Ti ≤ Ŷi(x) ≤ Ui

0 if Ŷi(x) > Ui

(5.5)

where Ti is a small enough value for the response.

If the response is to achieve a target value, the desirability function is

di(Ŷi) =







































0 if Ŷi(x) < Li

(

Ŷi(x)−Li

Ti−Li

)s

if Li ≤ Ŷi(x) ≤ Ti

(

Ŷi(x)−Ui

Ti−Ui

)t

if Ti ≤ Ŷi(x) ≤ Ui

0 if Ŷi(x) > Ui

(5.6)

where t is also a weight that attributes levels of importance to the target value.

Based on the problem of interest, the individual desirability functions can be

combined using the geometric mean, resulting the overall desirability, D

D = [d1(Y1)d2(Y2) · · · dk(Yk)]
1/k (5.7)
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where k is the number of responses.

The maximum value of the overall desirability function, D, can then be searched

to achieve the optimal responses. For problems with only one response, the overall

desirability function, D, is the individual one.

5.5 Optimization of SeaWEED

5.5.1 Optimization Problem Definition

In the present work, the wave climate off the Cork Harbour in Ireland is considered,

and the JONSWAP spectrum (Hasselmann, 1973) is applied. The wave climate table

is generated from the percentage of the occurrence hours in the data base (SmartBay,

2015), as shown in Fig. 5.1.

Figure 5.1: Wave Climate Table off Cork Harbour in Ireland

The target is to optimize the annual power absorption of SeaWEED, PS (see Eq.
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(5.1)), for this operation site. The design domains of the design variables are listed in

Table 5.1. The selection of levels of design variables will be discussed in the following

context.

Table 5.1: Geometrical design variables (full-scale)

Variable Lower Bound Upper Bound

LT1(m) 10.0 100.0

LT2(m) 10.0 100.0

LT3(m) 10.0 100.0

D(m) 1.0 4.0

The geometrical design variables, LT1, LT1, LT1 and D, and the damping design

variables, d1 and d2, are optimized in two stages. To determine the sample points for

geometrical variables, the uniform design method (Fang et al., 2005) is utilized. For

each sampling point, i.e. geometrical combination, the optimum damping coefficients,

d1 and d2, at the two PTOs and the annul power absorption, PA
Smax(LT1, LT2, LT3, D),

are determined using a full factorial design, as presented in Table 5.2.

Table 5.2: PTO damping coefficients (full-scale)

Variable Upper Bound Lower Bound Level

d1(Nms) 8.8 × 106 8.6 × 108 50

d2(Nms) 8.8 × 106 8.6 × 108 50
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The powers for all d1 and d2 combinations are computed using the frequency-

domain program and the optimal combination with maximum power is determined.

Fig. 5.2 presents an example for a case with LT1 =10 m, LT2 =50 m, LT3 =20 m,

and D =2.5 m.
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Figure 5.2: Damping Optimization

5.5.2 Selection of Sampling Points and Levels

Investigation on the levels of design variables and total number of sampling points

were conducted. Three different level combinations (denoted as Level1, Level2 and

Level3, respectively) were used to discretize the design domains, as presented in Table
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5.3, and 30, 60, and 100 sampling points were selected to check the quality of the

surrogate model.

Table 5.3: Geometrical design variable level combination

Variable Level1 Level2 Level3

LT1 3 5 10

LT2 3 5 10

LT3 3 5 10

D 3 5 5

As mentioned earlier, the centered L2-discrepancy, CD, should be calculated to

investigate the uniformity of sampling. The smaller the CD value, the more uniform

the sampling points distribute on the design space. Table 5.4 presents the CD values

using different number of sampling points.

Table 5.4: CD value

Number of Sampling Points CD Value

30 0.056

60 0.035

100 0.022

To investigate the level of design variables, regression models obtained using differ-
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ent level combinations and sampling points were constructed and the corresponding

adjusted R-squared values were calculated. As the adjusted R-squared value ap-

proaches one, the quality of the regression model increases. Usually, an adjusted

R-squared value greater than 0.8 indicates a surrogate with good predictive capabil-

ities (Forrester et al., 2008).

Figure 5.3 presents the power obtained from the response surface method and that

by the direct computation with the frequency-domain method for different levels and

numbers of sampling points combinations, and the corresponding adjusted R-squared

values are listed in Table 5.5.

Table 5.5: Adjusted R-squared value

Number of Sampling Points Level1 Level2 Level3

30 0.884 0.840 0.780

60 0.937 0.993 0.971

100 - 0.996 0.988

It can be seen that when the number of sampling points is greater than 60, the

adjusted R-squared value is closer to one, indicating a better surrogate model. On

the other hand, the levels of variables do not have significantly effect on the adjusted

R-squared values.

Further, validations on the surrogate models were conducted. As mentioned ear-

lier, 0.25 × the total number of sample points located within the search domains but

different from the sample points were selected for each regression model, and the er-
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Figure 5.3: Verification of RSM
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rors between the results achieved from numerical simulation and the surrogate model

fitting were computed, as presented in Table 5.6.

Table 5.6: Average error

Number of Sampling Points Level1 Level2 Level3

30 5.51% 5.85% 6.10%

60 5.31% 2.07% 2.11%

100 - 1.87% 1.67%

Similar to the observations from the adjusted R-squared values, sampling points

more then 60 are more desirable and the levels of design variables should be greater

than 3.

5.5.3 Optimization Results

In the optimization of SeaWEED, the design variables were discretized according

to level combination Level3 (see Table 5.3) and 100 sample points were selected. A

4th-order polynomial function was found using the Design Expert software, which can

be expressed as

PA
Smax(LT1, LT2, LT3, D) =

np
∑

i=1

wiΦi (5.8)

where np is the total number of terms in the polynomial function, wi is the coefficient

for the ith term, Φi is the ith element in {Φ}, which includes a set of terms with an
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Table 5.7: Optimal parameters (full-scale)

Parameter Value

LT1 (m) 47.13

LT2 (m) 70.69

LT3 (m) 45.68

D (m) 2.48

d1 (Nms) 7.893 ×108

d2 (Nms) 6.019 ×108

order less than or equal to four

{Φ} = {1, LT1, LT2, LT3, D, LT1, LT2, ..., L
4
T1, L

4
T2, L

4
T3, D

4} (5.9)

The response surfaces in terms of draft and body length for annual power absorp-

tion are presented in Fig. 5.4 based on the verified polynomial functions.

As the maximum annual power absorption is the only desired response in the

current problem, the desirability function is to maximize the annual power absorption.

The optimal combination and its corresponding parameters are listed in Table 5.7.

The predicted maximum annual power absorption is 149.56 kW. For verification, the

optimal case was also simulated using the present program, and the computed result

is 152.71 kW, 2.1% different from the one by the response surface method.

The optimum power capture width of SeaWEED is 6.08 m. The power matrix,

calculated using Eq. 4.18 at each sea state, (Hs, Tp), with the optimal combination of

parameters, is presented in Fig. 5.5. It is noted that when the relative pitch angle is
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Figure 5.4: Response Surfaces for Annual Power Absorption

108



greater than the constraint angle in the optimization process, it was set to 30 degrees.

Figure 5.5: Power Matrix of SeaWEED
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Chapter 6

Conclusions and Future Work

In this thesis, the experimental, numerical and optimization studies have been

conducted to evaluate the performance of a multi-body floating WEC, SeaWEED.

Model tests of a 1:35 scale second generation SeaWEED model were conducted

at the towing tank of MUN. A friction damper was designed to mimic the PTO unit.

Detailed description of the experiment is presented.

To simulate the dynamics and power-take-off (PTO) of SeaWEED, potential-flow

based time- and frequency-domain programs with the Lagrange multiplier approach

have been developed. In the time-domain program, nonlinear Froude-Krylov forces

were considered. Good agreement was achieved comparing the numerical results to

the experimental data.

Optimization studies were further conducted involving the damping coefficients of

the PTO systems, the lengths of the body segments and the drafts of the device. The

uniform design method was applied to select sample points, and the response surface

method was utilized to construct the surrogate model. The desirability optimization
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method is applied to search for the optimum response. The optimal combination of

PTO damping coefficients and geometrical parameters was determined for an intended

site off the Cork Harbour in Ireland.

Optimization of SeaWEED for any operation locations can be performed in a

straightforward way using the present method. The time-domain program can be

extended to account for more nonlinearity by considering the exact body movements.

Coupled analysis of SeaWEED with mooring lines can be further investigated by

incorporating mooring line dynamics programs with the present time-domain code.
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