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Abstract

Process safety has paramount importance in a chemical process. A well designed con-

trol system is the first layer in a process system. The warning system works as the

upper protection layer above the control system. It alerts the operators when the

control system fails to prevent an undesired situation. A typical warning system is-

sues warnings when a monitored variable exceeds the threshold. Often these do not

allow operators sufficient lead-time to take corrective actions. With the motivation

of improving the operator’s working environment by providing lead-time, the current

research develops a predictive warning scheme using a moving horizon technique.

The main hypothesis proposed in this thesis is given the current state of process sys-

tem, the future states of the system can be predicted using a suitable model of process

system. If an external input disturbs the system state, the controller will try to bring

the system within the desired control/safety limits of the system. A warning is issued

if it is determined that the control system will not be able to keep the system withing

the safety limits. Based on the hypothesis, warning systems were developed for both

linear and nonlinear systems. For linear systems, using the gain of the models, a

linear constrained optimization problem was formulated. Linear programming (LP)

was used to determine if the system will remain within the safety limits or not. In

case the LP determines that there is no feasible solution within the constrained limits,

warnings are issued.
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The predictive warning scheme was also extended for nonlinear systems. A non-linear

receding horizon predictor was used to predict the future states of the nonlinear

system. However, for nonlinear system formulation leads to nonlinear constrained

optimization problem, where the constraints are the safety limits. Controller’s ability

to keep the predicted states inside the safety limit was checked using a feasibility

test algorithm. The algorithm uses a constraint separation method with weighting

functions to determine the existence of a feasible solution. The algorithm calculates

the global minimum of the objective function. If the global minimum of the objective

function is positive, it signifies no feasible solution within the input and output con-

straints of the system and a warning is issued.

Prediction of the effect of the disturbances requires the knowledge of the disturbances.

In process industries, disturbances are often unmeasured. This thesis also investigates

the estimation of unknown disturbances. An iterative Expectation Minimization (EM)

algorithm was proposed for the estimation of the unknown states and disturbances of

nonlinear systems.

Efficacy of the proposed methods was shown through a number of case studies. The

warning system for the linear system was simulated on a virtual plant of a continuous

stirred tank heater (CSTH). The nonlinear warning system was implemented on a

continuous stirred tank reactor (CSTR). Both case studies showed that, the proposed

method was capable of providing a warning earlier than the traditional methods that

issues warning based on the measured signals.

iii



Acknowledgements

I would like to take the opportunity to thank my supervisors Dr. Syed Imtiaz, Dr.

Faisal Khan and Dr. Salim Ahmed for all their generous help, support and valuable

suggestions throughout my academic journey. Since the first day, they have been

steady guides on this difficult voyage. There were times of frustration during research,

when they encouraged me and provided me with directions, spending hours with me

solving problems. I would like thank Dr. Shoukat Choudhury and Malik Tahiyat for

their support to conduct my experiments for research.

The financial support provided by the Research and Development Corporation (RDC),

Natural Sciences and Engineering Research Council (NSERC) and School Graduate

Studies, Memorial University of Newfoundland and the Faculty of Engineering and

Applied Science is much appreciated.I would like to thank my research colleagues

and friends in Memorial University who helped me through the journey with the

share of their knowledge and expertise. I would like to thank the stuffs of Faculty of

Engineering and Applied Science Moya Crocker, Colleen Mahoney, Nicole Parisi and

Tina Dwyer for their support throughout my Ph.D.

I would like to express the highest gratitude to my family in St. John’s and in

Bangladesh, especially my wife Gulshan Naher as well as my siblings and relatives

for their encouragement and support. Finally, I express my greatest gratitude to my

parents and dedicate this thesis to them.

iv



Co-authorship Statement

I, Mohammad Aminul Islam Khan, hold primary author status for all the Chapters

in this thesis. However, each manuscript is co-authored by my supervisors and co-

researchers. Contributions of each of the co-authors are listed below:

• Mohammad Aminul Islam Khan, Malik Tahiyat, Syed Imtiaz, Mohammad Choud-

hury, Faisal Khan, "Experimental evaluation of control performance of

MPC as a regulatory controller" has been accepted for publication in ISA

transaction (2017).

Statement: The research was conducted by Mohammad Aminul Khan as the

first author. He prepared the manuscripts. Malik Tahiyat helped to conduct the

experiment and gave access to the experimental set up. Other authors supervised

to design experiment and reviewed the manuscript and provided feedback.

• Mohammad Aminul Islam Khan, Syed Imtiaz, Faisal Khan, "Predictive alarm

generation for chemical processes with unknown disturbance" has been

accepted for publication in Canadian Journal of Chemical Engineering (2018).

Statement: The research is conducted by Mohammad Aminul Islam Khan as

the first author. He prepared the manuscripts. Other authors supervised and

reviewed the manuscript.

• Mohammad Aminul Islam Khan, Syed Imtiaz, Faisal Khan, "Simultaneous

v



estimation of hidden state and unknown input using expectation max-

imization (EM) algorithm" has been accepted for publication in Industrial

Engineering and Chemistry Research (2019).

Statement: The research is conducted by Mohammad Aminul Islam Khan as

the first author. He prepared the manuscripts. Other authors supervised and

reviewed the manuscript and provided feedback.

• Mohammad Aminul Islam Khan, Syed Imtiaz, Faisal Khan, "Predictive Warn-

ing System for Nonlinear Process" to be submitted in a journal.

Statement: The research is conducted by Mohammad Aminul Islam Khan as

the first author. He prepared the manuscripts. Other authors supervised and

reviewed the manuscript and provided feedback.

vi



Table of Contents

Abstract ii

Acknowledgments iv

Co-authorship Statement v

List of Tables xiii

List of Figures xvii

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Brief overview of existing literature . . . . . . . . . . . . . . . . . . . 4

1.3.1 MPC as a regulatory controller . . . . . . . . . . . . . . . . . 4

1.3.2 Warning generation for linear systems with unknown input . . 5

1.3.3 State and unknown input estimator . . . . . . . . . . . . . . . 7

1.3.4 Warning generation for nonlinear systems with unknown input 7

1.3.4.1 Simultaneous state and input estimation for a nonlin-

ear system . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4.2 Predictive warning for nonlinear system . . . . . . . 9

vii



1.4 Summary and knowledge gap . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Implementation tools and expected outcome of the proposed tasks . . 12

1.6 Organisation of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Experimental Evaluation of Control Performance of MPC as a Reg-

ulatory Controller 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Current State of Regulatory Control Layer in process Industry 21

2.2.2 Comparative study between MPC and PID . . . . . . . . . . . 22

2.3 Control strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 IMC based tuning for PI . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 DMC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Experiments on a pilot scale Continuous Stirred Tank Heater (CSTH) 29

2.4.1 Plant description . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Open-loop Model identification . . . . . . . . . . . . . . . . . 30

2.5 Design of different control structures . . . . . . . . . . . . . . . . . . 33

2.5.1 Design of the ‘Cascaded PI Structure’ . . . . . . . . . . . . . . 35

2.5.2 Design of the ‘DMC Cascaded to PI’ structure . . . . . . . . . 37

2.5.3 Design of the ‘Direct DMC’ Structure . . . . . . . . . . . . . . 39

2.6 Results: Comparison of the performances of three control structures . 39

2.6.1 Set point tracking performance of the three control structures 41

2.6.2 Effect of Control Frequencies on Direct DMC Performance . . 45

2.7 Conclusions and Suggestion for Additional Work . . . . . . . . . . . . 48

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



3 Predictive Alarm Generation for Chemical Processes with Unknown

Disturbance 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Proposed Predictive ‘Warning Generation’ System . . . . . . . . . . . 59

3.2.1 Unknown disturbance estimation . . . . . . . . . . . . . . . . 64

3.2.1.1 Unknown input observer . . . . . . . . . . . . . . . . 64

3.2.2 Warning generation for time-delay condition . . . . . . . . . . 67

3.2.3 Warning generation for limited actuator capacity . . . . . . . 69

3.3 Case Study for a Simulated CSTH Model . . . . . . . . . . . . . . . . 71

3.3.1 Warning generation for time-delay . . . . . . . . . . . . . . . . 74

3.3.1.1 Warning generation for low measurement noise . . . 75

3.3.1.2 Warning generation for noisy measurements . . . . . 77

3.3.2 Warning generation for limited actuator capacity . . . . . . . 82

3.3.3 Performance comparison of the proposed framework with an

existing method . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.3.1 Performance comparison for monitoring during delay

period . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.3.2 Performance comparison for monitoring for limited ac-

tuator capacity . . . . . . . . . . . . . . . . . . . . . 89

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Simultaneous Estimation of Hidden State and Unknown Input Using

Expectation Maximization (EM) Algorithm 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Problem formulation and theoretical framework . . . . . . . . . . . . 107

4.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 107

ix



4.2.2 Bayesian framework . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.3 Proposed Expectation Maximization (EM) algorithm . . . . . 109

4.2.3.1 Expectation step (E-step) . . . . . . . . . . . . . . . 110

4.2.3.2 Maximization step (M step) . . . . . . . . . . . . . . 112

4.3 Implementation of the proposed method for a simple linear system . . 114

4.4 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.1 Non-linear CSTR system . . . . . . . . . . . . . . . . . . . . . 115

4.4.2 Four tank pilot plant . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.2.1 Simulation study . . . . . . . . . . . . . . . . . . . . 122

4.4.2.2 Experimental study . . . . . . . . . . . . . . . . . . 122

4.4.2.3 Convergence of the Algorithm . . . . . . . . . . . . . 127

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Predictive Warning System for Nonlinear Process 142

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Predictive warning system . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.2 Implementation of predictive warning system . . . . . . . . . . 148

5.2.3 Open loop prediction to check a safety condition . . . . . . . . 150

5.2.4 Safety check for closed loop system . . . . . . . . . . . . . . . 151

5.2.5 Feasibility analysis using constraint separation method . . . . 153

5.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3.1 Demonstration of the warning system . . . . . . . . . . . . . . 157

5.3.2 Performance of the proposed method using different weight func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

x



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6 Conclusions and Future Recommendations 168

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 Future recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 170

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xi



List of Tables

1.1 Description of Task 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Description of Task 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Description of Task 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Description of Task 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 IMC tuning rules for First Order Time Delay (FOPTD process . . . . 26

2.2 Operating points of CSTH for different control structures . . . . . . . 32

2.3 Step response plots of level and temperature from open loop step test 33

2.4 Step response plots of cold water flow and steam flow from open loop

step test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Identified transfer function models from open loop step test (time unit

in sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Tuning parameters for the cascaded PI structure . . . . . . . . . . . . 35

2.7 Identified transfer function models for flow PI set points (time unit in

sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Comparison of ISE values for level set point tracking and variance of

control signal to cold water valve for three control structures . . . . . 43

2.9 Comparison of ISE for temperature set point tracking values and vari-

ance of control signal to steam valve for three control structures . . . 45

xii



2.10 Comparison of ISE values for level set point change and variance of

control output to cold water valve for level set point change in Direct

DMC structure with different control intervals . . . . . . . . . . . . . 47

2.11 Comparison of ISE values for temperature set point change and vari-

ance of control output to steam valve in Direct DMC structure with

different control intervals . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Typical operating point of the CSTH . . . . . . . . . . . . . . . . . . 74

3.2 ISE of estimation for different observers at different duration . . . . . 75

3.3 ISE of estimation for different observers at different duration . . . . . 79

3.4 Lead time of different scenarios for monitoring time delay period . . . 89

3.5 Comparison of different warning systems to monitor the system with

constrained actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 Dimensions of experimental setup . . . . . . . . . . . . . . . . . . . . 121

5.1 Parameters of CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xiii



List of Figures

2.1 Receding horizon scheme (adopted from [Bemporad and Morari, 1999]) 26

2.2 Pilot scale CSTH set up . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Schematic diagram of the CSTH . . . . . . . . . . . . . . . . . . . . . 31

2.4 Two layer cascaded PI structure . . . . . . . . . . . . . . . . . . . . . 36

2.5 DMC cascaded with PI structure . . . . . . . . . . . . . . . . . . . . 38

2.6 Direct DMC control structure . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Performance comparison of three structures for level set point tracking 42

2.8 Control output to cold water valve due to level set point change(comparison

between DMC-PI and cascaded structure) . . . . . . . . . . . . . . . 43

2.9 Control output to cold water valve due to level set point change(comparison

between Direct DMC and cascaded structure) . . . . . . . . . . . . . 44

2.10 Performance comparison of three structures for temperature set point

tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 Control output to steam valve comparison of the three control structures 46

2.12 Comparison of Direct DMC structure with different control intervals

for level set point tracking . . . . . . . . . . . . . . . . . . . . . . . . 46

2.13 Comparison of Direct DMC structure with different control intervals

for temperature set point tracking . . . . . . . . . . . . . . . . . . . . 47

xiv



2.14 Comparison of the control output to cold water valve for Direct DMC

structure with different control intervals . . . . . . . . . . . . . . . . 49

2.15 Comparison of the control output to steam valve for Direct DMC struc-

ture with different control intervals . . . . . . . . . . . . . . . . . . . 49

3.1 Different responses of process variable in presence of disturbance . . . 60

3.2 Different responses of process variables in presence of disturbance . . 62

3.3 Proposed alarm generation protocol with observer . . . . . . . . . . . 63

3.4 Schematic Diagram of the CSTH plant . . . . . . . . . . . . . . . . . 72

3.5 Estimated disturbance from observers for low noise scenario . . . . . 76

3.6 Predicted values over ‘monitoring horizon’ using UIO . . . . . . . . . 77

3.7 Predicted values over ‘monitoring horizon’ using Kalman based ob-

server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 Temperature measurement with estimated value from Kalman filter . 78

3.9 Estimated disturbance from observers for high noise scenario . . . . . 79

3.10 Predicted values over ‘monitoring horizon’ using UIO . . . . . . . . . 80

3.11 Predicted values over ‘monitoring horizon’ using Kalman based ob-

server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.12 Temperature measurement with estimated value from Kalman filter . 82

3.13 Constraints inequalities for the robustness check ( [Khan et al., 2014] ) 84

3.14 Constraints inequalities for authenticity check ( [Khan et al., 2014] ) 85

3.15 Estimated disturbance from observers . . . . . . . . . . . . . . . . . . 86

3.16 LP plot for inequalities with marginal value of disturbance showing no

feasible solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.17 Process measurements and the limits . . . . . . . . . . . . . . . . . . 87

4.1 Implementation procedure of the proposed methodology. . . . . . . . 113

xv



4.2 Schematic diagram of a CSTR. . . . . . . . . . . . . . . . . . . . . . 116

4.3 Comparison of actual and estimated states of the CSTR system (Rr =

diag [0.01 0.01]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Comparison of the unknown input of the CSTR system with the esti-

mated input signal (Rr = diag [0.01 0.01]) . . . . . . . . . . . . . . 118

4.5 Comparison of actual and estimated states of the CSTR system (Rr =

diag [0.04 0.04]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6 Comparison of the unknown input of the CSTR system with the esti-

mated input signal (Rr = diag [0.04 0.04]) . . . . . . . . . . . . . . 120

4.7 Schematic diagram of a Four tank system . . . . . . . . . . . . . . . . 120

4.8 Comparison of actual and estimated states of the simulated four tank

system (noise variance σ2I=diag [0.1 0.1] cm2) . . . . . . . . . . . 123

4.9 Comparison of actual and estimated states of the simulated four-tank

system (noise variance σ2I=diag [0.5 0.5] cm2) . . . . . . . . . . . 124

4.10 Actual and estimated inputs of simulated four-tank system for different

noise scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.11 Comparison of actual and estimated states of the pilot-scale four-tank

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.12 Actual and estimated unknown inputs and known input for experimen-

tal study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.13 Dynamic tracking of the estimated input signal for simulated four tank

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.14 Change of error between estimated and actual input signal for simu-

lated four-tank system . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.15 Dynamic tracking of the estimated input signal for four-tank system in

experimental scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xvi



4.16 Change of error between estimated and actual input signal for simu-

lated four-tank system in experimental scenario . . . . . . . . . . . . 129

5.1 Possible abnormal scenarios when disturbance affect the process mea-

surement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Implementation steps of proposed alarm system . . . . . . . . . . . . 149

5.3 Responses of a typical weight function . . . . . . . . . . . . . . . . . 154

5.4 Schematic diagram of a CSTR . . . . . . . . . . . . . . . . . . . . . . 155

5.5 Predicted open loop states and closed loop measurements of the CSTR

when feed flow is changed from 1.6 to 1 litre/s . . . . . . . . . . . . . 158

5.6 Predicted open loop states and closed loop measurements of the CSTR

when feed flow is changed from 1.6 to 0.8 litre/s . . . . . . . . . . . . 159

5.7 Global minima evaluated for a feasible solution when flow rate is changed

to 0.8 litre/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.8 Predicted open loop states and closed loop measurements of the CSTR

when feed flow is changed from 1.6 to 1 litre/s . . . . . . . . . . . . . 161

5.9 Global minima evaluated for a feasible solution when flow rate is changed

to 0.2 litre/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.10 Responses of the different weight functions . . . . . . . . . . . . . . . 163

5.11 Global minimum and alarm profile using w1 . . . . . . . . . . . . . . 163

5.12 Global minimum and alarm profile using w2 . . . . . . . . . . . . . . 164

5.13 Global minimum and alarm profile using w3 . . . . . . . . . . . . . . 164

xvii



Chapter 1

Introduction

1.1 Background and motivation

The number of measured variables of a typical process plant has increased significantly

over the past decades with the advent of sensor technology. Currently, operators have

access to more in-depth information about the plant through these variables. Safe and

uninterrupted operation of a plant is understood by comparing the measured variables

with predefined limits. Process systems are often affected by disturbances. When a

disturbance affects a process, it changes the process states and may trigger a warning,

when a state crosses the safety limits. A control system counteracts this phenomenon

and tries to bring the process back to the original set points. If the actuator’s capac-

ity was unbounded, it can always bring the process back to safety. However, in most

practical cases the controller’s ability to mitigate the effect of a disturbance is limited

by actuator capacity. When the controller cannot nullify the effect of the disturbance,

one or more variables may exceed the safety limits. A well designed warning system

identifies this type of situation and alerts the operators. A warning is triggered when

the control system cannot keep the process variables within the desired limits. Cur-

1



rently, most warning systems monitor important process variables individually. Due

to an increasing number of measured variables, many variables are interlinked and a

large number of alarms may be triggered from a single violation of the safety limit

and lead to alarm flooding. Alarm flooding creates a stressful environment, as the op-

erator has to respond to a large number of alarms with corrective actions in a limited

period of time. A number of researchers have attempted to improve the operator’s

environment by reducing the number of alarms. Some of the works focused on design

techniques (e.g. delay timer, deadband, filter). These methods introduced an addi-

tional delay in detecting the fault. Others used multivariate statistical tools to reduce

the number of alarms [Kresta et al., 1991,MacGregor et al., 1994,MacGregor and

Kourti, 1995]. Multivariate statistical methods minimize the number of alarms and

in some cases facilitate early warnings, compared to univariate methods. However,

both multivariate and single variable methods use measured signals to generate the

warning. This may be the only way of generating warnings for abrupt faults. How-

ever, process systems are frequently affected by disturbances which go through the

system before they affect the states or measured outputs. Thus, there is a possibility

to predict the impact of these disturbances as soon as they enter the system. However

very little work has been done to generate warnings using a predictive signal. Due to

extensive use of the model predictive controller (MPC) in the process industry, open

loop models are typically known and process states are predicted in real time. This

offers a unique opportunity to use process models for predicting states of the system

using the existing control structure of the system. The motivation of the current re-

search is to develop a ‘predictive warning system’ using the existing control structure

of the system that is able to provide an early warning for disturbance type faults.
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1.2 Objective

The objective of the current research is to develop a warning system that issues early

warnings to give operators sufficient time to respond with corrective actions. Instead

of using measured signals, predictive signals from a moving horizon predictor are used

to issue warnings. Moving horizon predictors are integral parts of MPC. The idea of

moving horizon prediction is demonstrated through the implementation of an MPC

controller. An experimental study has compared the performance of MPC with intrinc-

sic model control (IMC)-based proportional-integral-derivative (PID) controller. Next,

a framework for a ‘predictive warning system’ for a linear system is developed. In an

earlier study, a ‘predictive warning’ was developed for a linear system which assumed

that the disturbance was known. The objective of the current study is to relax the as-

sumption and develop a ‘predictive warning’ framework for more general cases when

the disturbance is unknown. In the next step, the proposed warning system is ex-

tended for non-linear systems. Unknown input estimation of a non-linear system is a

non-trivial problem and hence this step is has two stages. In the first stage, a simul-

taneous state and input estimation scheme has been developed, and then a warning

system for nonlinear system has been developed. The major contributions of the thesis

are:

Task 1: Evaluate the performance of the MPC and compare it with the PID as a

regulatory controller.

Task 2: Design a predictive warning system for a linear system using receding hori-

zon predictions and couple the system with a simultaneous state and input

estimator.

Task 3: Develop a simultaneous state and input estimator for a nonlinear system.
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Task 4: Develop a predictive warning system for a nonlinear system.

1.3 Brief overview of existing literature

The current study aims to use a receding horizon prediction in an MPC structure for

warning generation. As stated in the previous section, the study will complete four

tasks. This section presents a brief review of existing literature on the different topics

of the current research. Instead of presenting a complete bibliography, the following

subsections provide an overall summary of relevant literature and highlight significant

works in control, monitoring and safety.

1.3.1 MPC as a regulatory controller

The PID is the most widely used controller in process industries due to its simplicity

and reliability. Nevertheless, it has several limitations, such as being a SISO controller

and thus structurally not optimal for highly interactive MIMO systems. Also, there is

no universally accepted optimal tuning method for PID controllers. These limitations

result in suboptimal tuning parameters for many PID loops in a process plant. To

improve the performance of PID, different strategies were suggested by researchers,

such as using of auto-tuning [Na, 2001] and a robust alternative structure [Ogun-

naike and Mukati, 2006]. Many previous studies sought potential replacements for

the PID of industrial settings, for example, state feedback observers, MPC, fuzzy

controllers, constrained linear quadratic controllers (CLQ) and active disturbance re-

jection controllers (ADRC). Among the different alternatives, the MPC showed the

most potential to replace PID controllers in process industries. Different comparative

studies of the MPC with PID were performed to verify the superiority of the MPC

in the supervisory layer. One such work showed the application of the MPC to opti-
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mize energy for a heat exchanger in the work of [Krishna Vinaya et al., 2012]. The

authors concluded that the MPC is the better of these two structures. A performance

comparison between the cascaded PID and hybrid MPC-PID structure was reported

by [Singh et al., 2014], which used a PAT data management tool, OPC communication

protocols, and a standard control platform for real time feedback control. This study

suggested the potential of the MPC to replace the PID in the regulatory layer. An-

other study was performed in a pilot scale industrial setup by [Marzaki et al., 2014]

which showed similar results. A hybrid MPC-PID control system was compared with

a PID-only structure by [Sen et al., 2014] and the authors concluded that a hybrid

structure has the potential to enhance the control performance and efficiency of phar-

maceutical manufacturing operations.

Though there have been several studies to evaluate the performance of the MPC

compared with the PID controller, there has been no prior study to compare the per-

formances of an ‘MPC directly manipulating actuator’ with other structures. In Task

1 of the current research, an objective investigation of the performance of a direct

MPC with its several other competing control structures was undertaken.

1.3.2 Warning generation for linear systems with unknown

input

Next, predictive features of the MPC were used to develop an early warning gener-

ation framework. The objective of this study was to provide operators a lead-time

to react to an abnormal situation. A predictive warning system was developed for a

linear process with unknown input.

Typically, in process system, alarms are generated based on a measured variable ex-

ceeding the safety limits. Often, due to sensor noise, measurements momentarily

exceed the threshold and this leads to a false alarm. Earlier approaches focused on
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improving the robustness of the alarm system by reducing false and missed alarms op-

timally. [Izadi et al., 2009] discussed the application of different signal processing and

threshold design approaches such as filtering, deadband and delay-timer to reduce the

false and missed alarms. A statistical approach to optimize the false and missed alarm

is discussed in [Adnan et al., 2011]. As process systems are highly correlated, a single

fault may excite several variables triggering multiple alarms. Thus, monitoring sin-

gle variables sometimes leads to a high number of alarms. Multivariate statistics were

used as an effective tool to generate alarms and monitor process systems [Kresta et al.,

1991,MacGregor et al., 1994,MacGregor and Kourti, 1995]. All these methods relied

on the measured signal to generate an alarm; thus they do not have much predictive

capability. In recent years, there have been some studies which bring the predictive

features into the warning system. Predictive warning generation provides a lead-time

to the operator. [Juricek et al., 2001] showed an application of the Kalman filter based

predictive warning method which was able to forecast an abnormal situation before

it appeared. [Fernandez et al., 2005] proposed a neural network based supervisory

method to generate a warning for an abnormal situation. A model based warning

generation scheme with an open loop model was designed by [Khan et al., 2014]. Re-

ceding horizon predictions were used in this work to predict the future states. However,

this work assumed that the disturbance input of the process was known, which is not

realistic for most practical cases. To overcome the limitation, in the present study a si-

multaneous state and unknown input estimator were incorporated into the predictive

alarm system. Next, the literature related to an unknown input estimator is reviewed.
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1.3.3 State and unknown input estimator

[Radke and Gao, 2006] reviewed the observers used in the process industry and con-

cluded that, the Luenberger based unknown input observer (UIO) shows promise for

design simplicity and accurate estimation. [Corless and Tu, 1998] proposed a frame-

work to estimate states and inputs simultaneously using ‘Lyapunov-type characteri-

zation’. A fault reconstruction technique using UIO is shown in the work of [Lee and

Park, 2012]. A more comprehensive review of observers used in chemical processes is

provided by [Ali et al., 2015] with a conclusion that, despite their design simplicity,

performance of the Luenberger observers suffer in the presence of model mismatch

and higher noise levels. They also suggested the ‘Bayesian estimator’ as the possible

replacement for these scenarios. An optimal recursive filter was proposed by [Kitani-

dis, 1987] for a process with unknown inputs, which was improved to become an

unbiased minimum variance filter. This filter was used by [Hsieh, 2000] to estimate

the unknown inputs. State and input estimators were linked together by [Gillijns and

De Moor, 2007]. They proved that their estimation procedure showed optimal perfor-

mance. This estimator was used to estimate the unknown disturbance and has been

included in the ‘model predictive warning’ in Task 2.

1.3.4 Warning generation for nonlinear systems with unknown

input

In most practical cases, processes show a certain amount of nonlinearity. Hence, it

is necessary to improve the warning generation method for a nonlinear system with

unknown disturbances. Estimation of unknown input for the process with hidden

states is a challenging problem. So, the task of improving the warning generation

system is divided into two sub-tasks. The goal of the first sub-task is to develop a
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procedure to estimate the state and unknown input simultaneously for a non-linear

system. The second sub-task is to design a warning generation scheme for a non-linear

process. Integration of these two sub-tasks provides a warning generation scheme for

all general cases. Related research works for the sub-tasks are discussed separately in

the following sections.

1.3.4.1 Simultaneous state and input estimation for a nonlinear system

State estimation is the focus of many researchers, as it is an integral part of con-

trol application. It is used for control and also for monitoring process health. It is

more challenging when some of the inputs are unknown and hence a simultaneous

estimation of both states and inputs is necessary. For linear cases, a Luenberger or

Kalman based recursive filter solves the issue. However, these observers are not capa-

ble of handling the nonlinearity. A UIO based estimator was presented by [Imsland

et al., 2007]. Another alternative was presented by [Korbicz et al., 2007] in the form

of linear matrix inequality (LMI) based observer. A Bayesian framework provides a

more general solution for state estimation. Some improved versions of the Kalman

filter (e.g. extended Kalman filter(EKF), unscented Kalman filter(UKF)) are avail-

able to handle the system nonlinerity. A UKF based fault diagnosis and disturbance

estimation method is discussed in [Zarei and Poshtan, 2010]. Both EKF and UKF use

Gaussian approximation for process and measurement noises. A particle filter is more

suitable for non-Gaussian nonlinear state estimation [Chen, 2003]. The Bayesian es-

timator for practical purposes requires constraint handling; hence optimization based

estimation methods have been developed. One such work is presented by [Fang et al.,

2013] to encompass simultaneous state and input estimation. In this work, state and

input were estimated by optimizing the cost function. While implementing lineariza-

tion based cost estimation, non-linearity propagates through the linearized point. For
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this, the accuracy of approximation deteriorates. Moreover, evaluating the derivative

is challenging in most of the practical cases. The expectation maximization (EM)

algorithm is an alternative tool to estimate the likelihood iteratively. It was used

by [Andrieu and Doucet, 2003] to estimate the model parameters online. [Gopaluni,

2008] presented a particle filter based EM framework to estimate state and parameter

simultaneously. In the work of [Güntürkün et al., 2014], an EM algorithm was used to

estimate input. In the current study, the Bayesian solution is implemented to estimate

state and input simultaneously using an EM algorithm. A particle filter was used in

the E-step to estimate state, and gradient based optimization was used in the M-step

to estimate input.

1.3.4.2 Predictive warning for nonlinear system

[Primbs et al., 1999] discussed two well known approaches for nonlinear optimum

control: the control Lyapunov function and receding horizon control. They concluded

that the control Lyapunov approach is more suitable for off-line computation, while

a receding horizon works better in on-line control. In the work of [Albalawi et al.,

2017], a comprehensive review is presented of current research efforts to design a

control system that includes the safety consideration. They suggested one possible

future research direction would be to use an MPC based triggering mechanism for

a safety instrument. The proposed mechanism used closed loop state predictions to

generate warning. One such effort by [Varga et al., 2009] predicted future states us-

ing a simulator based approach. They combined the Lyapunov criteria to check the

last controllable point. Warning was generated when there was no controllable state

in the prediction horizon. Lyapunov based model predictive controller (LMPC) was

used by [Albalawi et al., 2016] to propose a safety scheme which varied the upper

bound of the Lyapunov function to achieve the improved rate that drives the closed
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loop state to a safe operating region. [Aswani et al., 2013] combined safety with an

MPC and proposed an MPC with an adaptive learning rate.

The Lyapunov approach is more suitable for off-line calculation, as suggested by

[Primbs et al., 1999]. As the goal of this work is to generate warning based on the

predictive signals from current measurements, on-line calculation is more suitable. Re-

ceding horizon or moving horizon estimates are attractive choices to predict future

outputs and generate warnings on-line, based on the predictive signal. A receding

horizon based model predictive safety (MPS) scheme was proposed by [Ahooyi et al.,

2016] which used a moving horizon estimator to generate predictive warnings. If one

of the output constraints was violated, the capacity of the controller was checked

with the extreme value to determine whether the controller was able to nullify the

disturbance. When multiple points of a moving horizon for multiple variables exceed

the safety limit, determining the extreme condition for each variable would be dif-

ficult. Moreover, different variables are interconnected and hence control actions to

nullify an extreme condition may cause other variables to exceed the safety limit.

1.4 Summary and knowledge gap

Reviewed literature of the previous section is summarized and the scope of further

research is identified as follows:

i) The model predictive control was extensively used as a supervisory controller to

a base layer PID. Many existing studies focused on the performance comparison of

MPC and PID in a supervisory layer, but the potential of the MPC to replace the

PID as a regulatory controller was not comprehensively studied. In our current study,

performance of a regulatory MPC is compared with the two commonly used control

structures: cascaded PID and PID cascaded to MPC.
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ii) Different approaches were taken to improve the alarm system. The goal of most

studies was to design a robust alarm to reduce false and missed alarms. Most of these

methodologies used existing measurements and had no predictive features to generate

an early warning. Predictive features of MPC can be used to improve warning genera-

tion. For most practical scenarios, the disturbance is unknown. Considering these two

facts, a predictive warning scheme is proposed for the process with unknown inputs.

iii) Simultaneous state and input estimation of a nonlinear system is still an open

problem. Different types of observers were able to solve the problem for specific sys-

tems, but Bayesian solutions showed the most promise for the general cases. In the

current study an EM based framework is presented that iteratively estimates states

and inputs. A particle filter is proposed as the tool for the E step to estimate state,

and gradient based optimization was used in the M step to estimate input.

iv) Works on the predictive control and warning generation for non-linear systems can

be classified into two types: Lyapunov based and receding horizon based. The former

one was more suitable for off-line applications, while the latter showed promise for

online monitoring. A solution for this problem was proposed by [Ahooyi et al., 2016]

who compared the controllers’ capacity to nullify a predicted extreme value. However,

for a more complex system with a large number of interacting inputs and outputs,

checking only extreme values will not be sufficient. Hence, a more general tool is

required that considers safety limits of all outputs and actuator constraints of all ma-

nipulated variables. A warning scheme is proposed here that checks whether all the

safety constraints and input constraints can be satisfied simultaneously. A constraint

separation method was used to check the feasible solution of all safety constraints.
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1.5 Implementation tools and expected outcome of

the proposed tasks

Various tasks of the research were accomplished using proposed works identified from

the literature review and knowledge gap. Implementation tools and outcome of the

each task are reported in Tables 1.1 to 1.4.

Table 1.1: Description of Task 1

Properties
Goal Validate the potential of MPC as regulatory controller
Tool used Dynamic matrix controller (DMC) as representative of MPC
Case study Pilot plant of continuous stirred tank heater
Outcome Result from comparative study of different control structures

demonstrated MPC can deliver superior performance compared to
PID.

Table 1.2: Description of Task 2

Properties
Goal Develop a predictive warning system for unknown disturbances
Tool used Receding horizon prediction

Kalman and Luenberger based observer for disturbance estimation
Case study Virtual CSTH plant from literature
Outcome A well designed warning generation scheme for linear process

with unknown disturbance

1.6 Organisation of thesis

The thesis is written in manuscript format. Three published journal articles and one

article under review are included in the thesis. Co-authorship statement is provided

in the beginning of the thesis. Each task shown in Tables 1.1 to 1.4 is performed in

each manuscript. Organaisation of the overall thesis is as follows:
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Table 1.3: Description of Task 3

Properties
Goal Develop a simultaneous state and input estimation (SISE) scheme

for non-linear system
Tool used Expectation Maximization Algorithm

Particle filter (E-step), gradient based optimization (M-step).
Case study Simulation model of CSTR

Simulated data of a four tank system
Experimental four tank system.

Outcome EM based estimation

Table 1.4: Description of Task 4

Properties
Goal Developed predictive warning scheme for nonlinear system
Tool used Nonlinear receding horizon prediction

Non-linear optimization
Feasible region identification tool

Case study Simulation model of CSTR
Outcome Early warning generation scheme for nonlinear system.

Chapter 1 of the thesis describes the motivation and objective of the research. This

chapter includes a brief review of the related work.

Chapter 2 describes the experimental comparison of PID and MPC controllers. The

chapter shows that the MPC has the potential to replace the PID as a regulatory

controller.

Chapter 3 presents a predictive warning system for a linear process with unknown in-

put. Applicability of the warning system is shown for a continuous stirred tank heater

(CSTH) system.

Chapter 4 describes an EM based estimator that was able to estimate the states and

inputs of a non-linear system. Effectiveness of the proposed method is demonstrated

for simulated and experimental case studies.

Chapter 5 presents a predictive warning generation scheme for a non-linear sys-
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tem. Moving horizon and constraint separation methods were used as the tools.

Chapter 6 states the conclusions of the study and the scope of future work.
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Chapter 2

Experimental Evaluation of

Control Performance of MPC as a

Regulatory Controller

Abstract: Proportional-integral-derivative (PID) control is widely practised as the

base layer controller in the industry due to its robustness and design simplicity. How-

ever, a supervisory control layer over the base layer, namely a model predictive con-

troller (MPC), is becoming increasingly popular with the advent of computer process

control. The use of a supervisory layer has led to different control structures. In this

study, we perform an objective investigation of several commonly used control struc-

tures such as ‘Cascaded PI controller’, ‘DMC cascaded to PI’ and ‘Direct DMC’. Per-

formance of these control structures are compared on a pilot-scale continuous stirred

tank heater (CSTH) system. We used dynamic matrix control (DMC) algorithm as a

representative of MPC. In the DMC cascaded to PI structure, the flow-loops are reg-

ulated by the PI controller. On top of that a DMC manipulates the set-points of the

flow-loops to control the temperature and the level of water in the tank. The ‘Direct

19



DMC’ structure, as its name suggests, uses DMC to manipulate the valves directly.

Performance of all control structures were evaluated based on the integrated squared

error (ISE) values. In this empirical study, the ‘Direct DMC’ structure showed a

promise to act as regulatory controller. The selection of control frequency is critical

for this structure. The effect of control frequency on controller performance of the

‘Direct DMC’ structure was also studied. Keywords: Model predictive control, PI,

Control Performance, CSTH

2.1 Introduction

In process industries model predictive controller (MPC) is typically used as a super-

visory layer over the base level PID controller, especially in large-scale applications.

This structure has gained acceptance as it allows the implementation of MPC with

minimal changes to the existing base level controllers. Also, the PID layer can act

as a fall back when the MPC is turned off for any reason. However, this structure

does not allow harnessing full potentials of the MPC. In practice, it was observed

that there are many incentives in breaking the PID loop, and directly manipulating

the valves using the MPC. One common example is when trying to use the full valve

capacity (e.g., maximizing feed, maximizing cooling capacities) it is common practice

to manipulate the valve directly from MPC. Also, without PID controller layer, open

loop models used in MPCs remain valid for a longer period, as they are independent

of PID tuning parameters.

Recently, a software called MaxAPC from the original inventors of dynamic matix

control (DMC) came to market, that uses a DMC type controller which directly

manipulates the actuator. It is claimed that, this controller performs better than

the ‘MPC cascaded to PID’ structure. Therefore, an objective investigation of the
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performances of these competing control structures is necessary. In this study, an

experimental evaluation is carried out among three control structures: ‘Cascade PI

controller’, ‘DMC cascaded to PI’ and ‘DMC directly manipulating the valve output’.

However, instead of using MaxAPC, an in-house DMC code developed in Matlab

simulink was used in this study.

2.2 Literature Review

2.2.1 Current State of Regulatory Control Layer in process

Industry

PID is the most widely used controller in process industries. Desborough and Miller

estimated that 98 percent of the controllers in a typical chemical plant are PID con-

trollers [Desborough and Miller, 2001]. Though it is widely used for its simplic-

ity and reliability, it has several limitations. PID is a SISO controller, thus struc-

turally it is not optimal for highly interactive MIMO systems. Van Oversee and De

Moor [Van Overschee et al., 1997] reported 80 percent of industrial PID controllers

are poorly tuned; 30 percent of the PID loops operate in manual mode; and 25 percent

of the PID loops operate under default factory settings.

To overcome three limitations many improvements have been suggested by researchers

of industry practitioners. A self-tuned PID controller to overcome the drawbacks of

the conventional PID controllers with fixed tuning parameters, was proposed in [Na,

2001]. The PID gains are automatically tuned in order to keep a predefined cost func-

tion to a minimum. The auto tuned methodology improved the performance of the

PID controller in both set point tracking and regulatory control. Another simple but

robust technique is described in [Ogunnaike and Mukati, 2006] which combines the
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simplicity of PID and versatility of MPC. [Astrom and Hagglund, 2001] investigates

potential alternatives for PID in industrial setting and recommended different tech-

niques such as, discrete-time linear MISO controllers, state feedback and observers

(SFO), model predictive controllers (MPC), and fuzzy controllers as alternative for

PIDs. Controllers based on SFO require significant modelling effort, as such its use

is justified only when modelling efforts are moderate. MPC is typically used as a

supervisory layer to the base layer PID. The use of MPC provides a drastic improve-

ment of set point tracking. However, computational complexity is a challenge for

MPC. [Zhang et al., 2014] developed a new improved MPC approach using a state-

space model for the air-supply system. This model is formulated through a rough

linear representation of the process, which enables the controller design to be based

on linear theory. This approach works best for plants where there is mismatch between

the process and the model. Pannocchia et al. [Pannocchia et al., 2005] proposed an

offset-free constrained linear quadratic (CLQ) controller as a potential candidate to

replace PID, that outperformed PID in simulation studies. Hans described active

disturbance rejection controller (ADRC) as an improved control scheme to replace

PID [Han, 2009]. ADRC is error driven similar to PID, uses a state observer to utilize

the power of non-linear feedback.

2.2.2 Comparative study between MPC and PID

Though various controllers have been proposed as alternatives to PID controllers,

MPC shows most potential to replace a portion of the PID controllers in process

industries. In this subsection, some of the articles that compared MPC with PID are

reviewed.

A comparative study between standard PID and generalized predictive controller

(GPC) is presented for a heat exchanger in [Bonivento et al., 2001], where an identified
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model is used to design both PID controller and GPC. GPC provides better perfor-

mance for both set-point tracking and disturbance rejection. In [Krishna Vinaya et al.,

2012], MPC was implemented for a heat exchanger to optimize and conserve energy.

MPC and PID controller were designed and implemented to control the temperature

of a fluid stream. MPC provided better performance based on the rise time, over-

shoot and settling time. A comparative study of PID controller, MPC and model free

adaptive controller (MFA) is reported in [LUKÁČOVÁ and BORŽÍKOVÁ, 2010].

PID was found the fastest of the three controllers but with overshoot and steady

state error, where both MFA and MPC were steady state error-free. MFA tracks the

set point faster than MPC, but has significant overshoot. [Lim et al., 2014] presents

finite-control-set model predictive control (FCS-MPC) for a five-phase induction mo-

tor drive. Both FCS-MPC were compared against steady-state and transient perfor-

mance of a proportional-integral pulse width modulation (PI-PWM) based current

control scheme. While a better transient performance was obtained with FCS-MPC,

steady-state performance was always superior with PI-PWM control. An advanced

hybrid MPC-PID control system was implemented in [Singh et al., 2014]. PAT data

management tool, OPC communication protocols, and a standard control platform

were used for real time feedback control. MPC relevant linear time invariant model

was identified using step response test. The performance of hybrid MPC-PID control

scheme was compared with a cascade PID scheme.

In [Marzaki et al., 2014], performances of MPC and PID were compared on a small

scale industrial steam distillation pilot plant. The results show that MPC provided

better performance compared to PIDs that are tuned based on Ziegler-Nichols tuning

rule (PID-ZN) and Cohen-Coon tuning rule (PID-CC). Although the analysis are not

exhaustive but the paper concludes that MPC has better performance against PID

when the system has large dead time. [Ghadami et al., 2013] describes a compara-
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tive study of two feedback control methods for a microfluidic electroporation (EP)

system. [Sen et al., 2014] presents a hybrid MPC-PID control system for the con-

tinuous purification and processing of active pharmaceutical ingredients (APIs). A

comparative study between the performances of the hybrid MPC-PID and a PID-only

control scheme showed that an enhanced control loop performance can be obtained

under the hybrid control scheme and has high potential of improving the efficiency of

pharmaceutical manufacturing operations.

The above literature survey shows that, even though there were several studies to

evaluate the performance of MPC against PID controller, there was no prior study

to compare the performances of two important control structures: ‘MPC cascaded

to PID’ and ‘MPC directly manipulating actuator’. A simulation based study was

conducted in our prior work [Khan et al., 2014]. In this study we further conducted

experimental study and compared the performances of the above mentioned control

structures.

2.3 Control strategies

As current study is aimed to perform a comparative study among the different types

of control structures, it is necessary to have an optimized control strategy for each

control components. Two basic controllers are used in these structures: PI and MPC.

IMC based tuning rules were used to tune PI whereas DMC is used as the MPC

strategy. Brief overviews of IMC based tuning and DMC algorithm are presented in

this section.
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2.3.1 IMC based tuning for PI

IMC tuning method is based on an approximate process model. Thus a model is iden-

tified using step test and system identification technique to tune PI or PID controller.

A two step PID design procedure is presented in [Seborg et al., 2010]. In the first

stage process model is factored into two parts as follows

G̃ = G̃+G̃− (2.1)

where G̃+ contains the time delay and right half plane (RHP) zeros of the process

model and G̃− contains the invertible part of the model. The controller is given by,

G∗c = 1
G̃−

f (2.2)

where f is a low pass filter and is typically defined as

f = 1
τcs+ 1 (2.3)

where τc usually is the desired closed-loop time constant. The IMC tuning rules for

different types of transfer functions are listed in [Seborg et al., 2010]. For this current

work, the system was modelled as a first order time delay process (FOTPD) and its

corresponding PI controller was designed based on IMC tuning rule. Tuning rules for

generalized FOTPD is given in Table 2.1. In the Table, proportional gain of the PI

controller are described as KCK and τi is the integral time constant, where K, τ and

θ are the estimated model parameters.
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Table 2.1: IMC tuning rules for First Order Time Delay (FOPTD process

Model KcK τi

Ke−θs

τs+1
τ

τc+θ τ

 

Sampling time 

Prediction Horizon 

Control Horizon 

Past Future 

Implemented actuator 

Predicted actuator 

Past actuator 

k k+c k+1 k+p …… 

…… 

Figure 2.1: Receding horizon scheme (adopted from [Bemporad and Morari, 1999])

2.3.2 DMC Algorithm

This section briefly explains the steps for implementing DMC on a simple single input

single output (SISO) system. A step response model for a SISO system can be written

as

yt =
∞∑
i=1

ai∆ut−i (2.4)

where yt is the model output, ai is the i-th coefficient of the step response model,

and ∆ut−i contains the past input changes. Using the time-shifting and taking the

constant disturbance into account, a future predicted value can be written as

ŷt+k =
∞∑
i=1

ai∆ut+k−i + νt+k (2.5)
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where ŷt+k is the predicted output at time t+ k, νt+k is the disturbance at time t+ k.

As the disturbance is assumed to be constant over the horizon, it is given by

νt+k = νt = ym(t)− ŷt (2.6)

where ym(t) is the measured output at time t. Replacing νt+k in Equation 2.5 we get

the following form

ŷt+k =
k∑
i=1

ai∆ut+k−i +
∞∑

i=k+1
ai∆ut+k−i

+ ym(t)−
∞∑
i=1

ai∆ut−i.
(2.7)

The last three terms of Equation 2.7 express the output of the system if no control

action is taken from time t to t + k, and is termed free response of the system, y∗t+k.

The free response of the system thus can be expressed mathematically as follows

y∗t+k = ym(t) +
∞∑

i=k+1
(ak+i − ai)∆ut−i. (2.8)

If the process is asymptotically stable, the step response tends to reach a constant

value after N samples. Therefore, finite step response of N samples can be used

instead of infinite step response model as, ak+i − ai ' 0 for i > N . Using this finite

step response model, free response of the system can be represented as,

y∗t+k = ym(t) +
N∑

i=k+1
(ak+i − ai)∆ut−i. (2.9)

Using the free response of the system, Equation 2.7 is rewritten in the following

form

ŷt+k =
k∑
i=1

ai∆ut+k−i + y∗t+k (2.10)
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Equation 2.10 will be used to predict system response for the entire prediction

horizon (k=1, 2, ..., p) with m control actions. These calculated predicted values can

be expressed in the following matrix form

ŷ = y∗ + A∆u (2.11)

where ŷ is a p dimensional vector containing the predicted output over prediction

horizon, y∗ is also a p dimensional vector which contains the free response of the

system over the horizon, ∆u is an m dimensional vector of control increments. A is

the dynamic matrix of the system, which is defined in Equation 2.12

A =



a1 0 0 ... ... 0

a2 a1 0 ... ... 0

... ... ... ... ...

am am−1 am−2 ... ... a1

... ... ... ... ...

ap ap−1 ap−2 ... ... ap−m+1



. (2.12)

Equation 2.11 expresses the relation between the predicted future output with

control increment. The control actions are calculated by minimizing the objective

function defined in Equation 2.13. The objective function calculates a set of control

actions that minimizes the deviation between r and ŷ, using penalty on the size of

control increment and to avoid large movements in controller output.

J(∆u) = (r − ŷ)TQ(r − ŷ) + ∆uTR∆u (2.13a)

s.t.

ŷ = y∗ + A∆y, (2.13b)
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where Q and R are the weighting matrix to penalize the control action. Minimization

of the above objective function gives the following explicit expression for ∆u

∆u = (ATQA + R)−1ATQT (r − y∗). (2.14)

This scheme can be easily generalized for a MIMO system.

2.4 Experiments on a pilot scale Continuous Stirred

Tank Heater (CSTH)

Experiments were conducted in a Continuous Stirred Tank Heater (CSTH) pilot plant

located in the Chemical Engineering Department of Bangladesh University of Engi-

neering and Technology, Dhaka, Bangladesh. The CSTH serves as a MIMO system

with two outputs and two inputs. A detailed description of the setup and experimental

procedures are given below.

2.4.1 Plant description

A photograph of the CSTH plant appeared in Figure 2.2 and the schematics of the

plant is shown in Figure 2.3. The setup is connected to Matlab Simulink through Ad-

vantech’s ADAM-5000/TCP module and OPC server. Controllers were implemented

using Simulink. The tank water level and the water temperature were considered as

controlled variables (CVs). The schematic diagram shows that the readings of LT01

and TT02 sensors are the measured output of the system. Mesurement from the flow

sensors FT01 and FT03 were used to design Proportional Integral (PI) controllers

for the flow loops. Actuators of the flow loop valves are FCV01 and TCV01. Tank

has a diameter of 26 inches, and inlet-outlet tubes have a diameter of 1 inch each.
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Figure 2.2: Pilot scale CSTH set up

Because of the small inlet flow line compared to the tank size, the level of the tank

requires an extended period of time to reach steady state. Thus, it is expected that

the time constant of the tank is large and hence it acts similar to an integrating or

lag dominant process.

2.4.2 Open-loop Model identification

The system described in the previous section can be represented structurally by the

following transfer functions

y1

y2

 =

G11(s) 0

G21(s) G22(s)


u1

u2

 , (2.15)

where y1 is the level, y2 is the temperature, u1 is the cold water valve position, u2 is

the steam valve position, and Gij represents the transfer function that relates the ith

output with the jth input. In the model identification stage, the first order transfer

function models for all Gij were identified by making step changes to u1 and u2. In
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Figure 2.3: Schematic diagram of the CSTH
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Table 2.2: Operating points of CSTH for different control structures

Variable Op Pt

Level/percent 52
Temperature/Deg C 40

CW valve/mA 11.90
Steam valve/mA 9

order to avoid valve non-linearity effect, operating conditions were selected in such

a way that both cold water valve and steam valve have linear effect on level and

temperature.

Initially process was brought to the steady-state condition stated in Table 2.2. A

step change from 11.9 mA to 12.38 mA is made in cold water valve at t= 189 min.

Corresponding responses in cold water flow, level and temperature are shown in the

first rows of Table 2.3 and 2.4 . After system reached steady state a step change was

made on steam valve. Steam valve was changed from 9 mA to 12 mA at t=338 min.

Responses of steam flow and temperature for step change in steam valve is shown in

the second rows of Table 2.3 and 2.4. Graphical method was used to estimate the first

order transfer function from the response curves. First order plus delay models were

estimated in the form of

G(s) = Keθs

τs+ 1 , (2.16)

where K is the total gain of the response for unit step change, θ is the delay time of

the response after a step change is made, and τ is the time constant calculated from

response curve. The identified first order transfer functions are reported in 2.5. These

transfer functions plays an important role in designing the ‘PI free DMC’. Using

the Matlab ’step’ function, the open loop step response of the transfer functions was

obtained. The Finite Impulse Response (FIR) coefficients for the DMC algorithm was

determined by sampling these step responses with an appropriate sampling time. A
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Table 2.3: Step response plots of level and temperature from open loop step test

Level Temperature

Cold water valve

Steam valve

guideline for choosing the value of the sampling time and the number of FIR response

coefficients can be found in [Shridhar and Cooper, 1998] and [Dougherty and Cooper,

2003].

2.5 Design of different control structures

This section describes the three different control structures implemented on the sys-

tem.
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Table 2.4: Step response plots of cold water flow and steam flow from open loop step
test

Cold water flow Steam flow

Cold water valve

Steam valve

Table 2.5: Identified transfer function models from open loop step test (time unit in
sec)

Level Temperature Cold water flow Steam flow

Cold water valve 68.75e−50s

5800s+1
−18.22e−350s

4000s+1
1.875e−2s

3s+1

Steam valve 3.583e−293s

1603s+1
0.7667e−15s

24s+1
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Table 2.6: Tuning parameters for the cascaded PI structure

PI P I

Cold water flow PI (FIC1) 0.1778 0.06
Steam flow PI (FIC2) 1.16 0.048

Level PI (LIC) 0.053 9.24× 10−6

Temperature PI (TIC) 0.313 1.95× 10−4

2.5.1 Design of the ‘Cascaded PI Structure’

The ‘Cascaded PI’ structure is presented in Figure 2.4, cold water flow rate and steam

flow rate are the two measured variables used as the feedback to the base layer PI in

the inner loop. The outputs of the base layer PI controllers manipulate the positions

of the cold water flow control valve and steam flow control valve. Set-points of the

base layer PI controllers are provided by the supervisory layer PI controllers.

IMC based tuning described in the previous section was used to tune PI controllers. How-

ever, as the identified open loop model between tank level and cold water valve has

a large time constant, this system can be considered as an integrating system. For

this reason, the tuning methods for the lag dominant systems were used for this case.

There are different methods available to tune a lag-dominant system. In this work,

controller was designed to provide good set point tracking performance [Seborg et al.,

2010]. As the time constant is too large, selection of τ1 = τ would lead to a sluggish

performance from the controller. As a remedy, we used Equation 2.17 to redesign the

value of τ1 as proposed in [Skogestad, 2003].

τ1 = min{τ1, 4(τc + θ)} (2.17)

Tuning parameters of the PI controllers are reported in Table 2.6. Control intervals

for both base layer and supervisory layer PIs were set to 1 sec.
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Figure 2.4: Two layer cascaded PI structure
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Table 2.7: Identified transfer function models for flow PI set points (time unit in sec)

Variables CW Flow Steam flow

Level/% 35e−100s

5463s+1

Temperature/Deg C −9.65e−400s

4350s+1
4.67e−350s

1950s+1

2.5.2 Design of the ‘DMC Cascaded to PI’ structure

This hybrid control structure is shown in Figure 2.5. In this structure, the supervisory

layer is a DMC controller that controls the tank level and temperature by manipulat-

ing the set-points of the base layer PI flow controllers (i.e. FIC1, FIC2).

In order to design the DMC for this structure, models between controlled variables

(level and temperature) and manipulated variables (cold water flow and steam flow)

were identified. The identified first order transfer function models for this structure

are given in Table 2.7. Here, the PI controller manipulates the valve at every 1 sec

interval. Set point of the PI is changed according to the DMC output. Hence, the

control frequency of DMC has to be less than 1 sec to allow the PI sufficient time to

react to the base layer set point changes. In this case, control interval of DMC was set

to 50 sec. Tuning parameters for DMC (e.g. prediction horizon, control horizon) were

selected based on [Shridhar and Cooper, 1998] and [Dougherty and Cooper, 2003].

Prediction horizon and control horizon were set to 20 and 5 samples respectively for

this case. Closed loop transfer function models stated in Table 2.7 were used to gen-

erate FIR coefficients. The built in Matlab function ‘step’ was applied to the models

to evaluate the step response. The step response was sampled at 50 sec sampling

interval to find the FIR coefficients. The FIR coefficients and the above stated tuning

parameters were used to design the DMC as described in Section 3.
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Figure 2.5: DMC cascaded with PI structure
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2.5.3 Design of the ‘Direct DMC’ Structure

The ‘Direct DMC’ control structure is presented in Figure 2.6. In this control struc-

ture, the DMC controls the tank level and temperature by directly manipulating the

positions of the cold water valve and the steam valve. The DMC algorithm was de-

veloped based on the open loop models stated in Table 2.5. Since model between the

water valve and the level is a ramp, for controlling the level a modified DMC algorithm

was used. Modifications for the tuning of this integrating system was done following

the rules described in [Gupta, 1998]. As there is no base layer PI, DMC writes the

control output directly to the control valve. As such DMC needs to execute at a much

higher frequency compared to that of the DMC-PI structure. For the present work,

the control interval of DMC was initially set to 10 sec. In the later stage, the effect of

changing the control frequency was studied for ‘Direct DMC structure’. The different

tuning parameters (i.e. prediction horizon, control horizon, weight matrices) are cho-

sen based on the guideline provided in [Shridhar and Cooper, 1998] and [Dougherty

and Cooper, 2003]. The prediction horizon and the control horizon were 100 sam-

ples and 5 samples, respectively for this structure. These parameters along with the

step response coefficients from the identified first order models were used to design

the DMC controller. Due to the presence of high noise in the level measurements, a

moving average filter was used to denoise the level signal.

2.6 Results: Comparison of the performances of

three control structures

The control structures described in the previous sections, were implemented in the

CSTH plant and performances of these controllers for set point tracking were evalu-
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Figure 2.6: Direct DMC control structure
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ated. For comparison purpose, the integrated squared error (ISE) values for process

variables (i.e. level, temperature) were calculated for the set point changes. Another

concern in application of a controller is the fluctuation of control valve, which is also

reported in this study. The effect of control frequency on the ‘Direct DMC structure’

was also studied.

2.6.1 Set point tracking performance of the three control

structures

To assess the set point tracking performances of the three control structures, step

type set point changes of the same magnitude were made to all three controllers.

At 50 min, set point of the level is changed from 60% to 65% and the data were

collected until the level reached to a new steady state. In the ‘DMC-PI structure’

the control interval of DMC was set to 50 sec and for the ‘Direct DMC structure’

the control interval was set to 10 sec. The closed loop responses for these level

set point change experiments for all three structures are shown in Figure 2.7. The

‘DMC PI structure’ has higher settling time compared to the other two structures.

‘Direct DMC structure’ is as good as ‘Cascaded PI structure’ except some errors after

reaching the set point. The ISE values for level in the time span of 50 to 100 min

are shown in Table 3.2. It shows that ‘Cascaded PI’ has the best performance among

the three structures while the ‘Direct DMC’ proved to be better than the ‘DMC

PI structure’. The benefits of DMC is not reflected in this case due to the highly

integrating nature of the system. The modified DMC algorithm for the integrating

system is equivalent to a PID controller [Gupta, 1998]. The variations of the control

output to cold water valve during the set point change of level for all three structures

are shown in Figures 2.8 and 2.9. The variances of the control signal outputs were

also calculated and shown in Table 3.2. From the results, it appears that there were
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Figure 2.7: Performance comparison of three structures for level set point tracking

significant jitters in control output when DMC was directly manipulating the valve.

This excessive movements of control output are because of the integrating nature of

the level. The integrating system was approximated by a first order model with a large

time constant, this caused some plant model mismatch. Also, in this experiment our

objective was to track the level set point which may have also contributed to the

fluctuations. In industrial scenario usually the level set-points are not tracked tightly,

rather tank levels are allowed to move freely within a lower and upper bound. Thus

the controller does not react to small disturbances and these jitters can be avoided.

In the present DMC, we did not had the flexibility to implement such strategy. In

commercial DMC, move suppression and move accumulation techniques are usually

used. The controllers usually wait for control actions to exceed a certain threshold

before passing the control actions to the actuators and thus reduce the high frequency

movements of the valves significantly.

Temperature was the other controlled variable of the system. At 150 min, the
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Table 2.8: Comparison of ISE values for level set point tracking and variance of control
signal to cold water valve for three control structures

Control structure ISE value Variance

Cascaded PI 3380 0.2
DMC PI 7190 0.99

Direct DMC 5174 3.79

Figure 2.8: Control output to cold water valve due to level set point
change(comparison between DMC-PI and cascaded structure)
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Figure 2.9: Control output to cold water valve due to level set point
change(comparison between Direct DMC and cascaded structure)

Figure 2.10: Performance comparison of three structures for temperature set point
tracking
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Table 2.9: Comparison of ISE for temperature set point tracking values and variance
of control signal to steam valve for three control structures

Control structure ISE value Variance

Cascaded PI 13500 0.12
DMC PI 7490 0.24

Direct DMC 4482 0.25

temperature set point was changed from 48◦C to 53◦C and the response is observed

till it reaches the new steady state. The closed loop responses for temperature set

point change for all three structures are shown in Figure 2.10. The ‘Cascaded PI

structure’ has longer settling time compared to the other two structures. The ‘Direct

DMC structure’ has the fastest settling time of the three structures. The ISE values

calculated for temperature for the span of 150 to 200 min are shown in Table 2.9.

The ‘Direct DMC structure’ clearly shows the superior performance compared to the

other two structures.

Steam valve position during the temperature set point change is shown in Figure

2.11. Valve movements are similar for all the structures. Variances of the control

outputs were calculated and reported in Table 2.9. Results show that PI control

structure provides less movement compared to the other two structures.

2.6.2 Effect of Control Frequencies on Direct DMC Perfor-

mance

Next, we studied control performance of the ‘Direct DMC structure’ at 10 sec and 20

sec control intervals. At 50 min, level set point was changed from 60% to 65%. At 150

min, temperature set point was changed from 48◦C to 53◦C. The closed loop responses

of both process variables were observed during the set point changes with 20 sec control

interval. Then, the same experiment was replicated with 10 sec control interval. The
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Figure 2.11: Control output to steam valve comparison of the three control structures

Figure 2.12: Comparison of Direct DMC structure with different control intervals for
level set point tracking
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Table 2.10: Comparison of ISE values for level set point change and variance of control
output to cold water valve for level set point change in Direct DMC structure with
different control intervals

Control interval ISE value Variance

20 sec 7190 0.29
10 sec 5174 3.79

Figure 2.13: Comparison of Direct DMC structure with different control intervals for
temperature set point tracking

Table 2.11: Comparison of ISE values for temperature set point change and variance of
control output to steam valve in Direct DMC structure with different control intervals

Control interval ISE value Variance

20 sec 7490 0.55
10 sec 4482 0.25
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closed loop responses of level and temperature for both cases are shown in Figures 2.12

and 2.13 respectively. Results suggest a significant improvement of performance with

the decrease of control interval. The settling time for 10 sec controller is significantly

lower compared to that of 20 sec. The ISE values for level and temperature during

the set point changes are shown in Tables 2.10 and 2.11. The ISE values decreased

significantly with the decrease of control intervals for both level and temperature

variables. However, further increase of control frequency did not show any significant

improvement in tracking performance.

The cold water valve for the above two experimental scenarios are shown in Figure

2.14. It appears that the controller output is jittery when DMC is executed at a lower

control interval. Steam valve position for the above scenarios are shown in Figure

2.15. In these cases no jitters were observed but low frequency movements of control

outputs were observed at higher control frequency. Variances of the control output to

valve are reported in Table 2.10 and 2.11.

2.7 Conclusions and Suggestion for Additional Work

The present study experimentally evaluated performances of three control struc-

tures: ‘Cascaded PI’, ‘DMC cascaded to PI’ and a ‘Direct DMC’. A CSTH system

was used to carry out the experimental study. The findings of the experimental study

broadly corroborates the results of the previous simulation studies [Khan et al., 2014].

On the basis of ISE, the ‘Direct DMC’ structure showed superior performance in set

point tracking compared to the other two control structures at the expense of more

valve movements. Performance of the ’Direct DMC’ heavily relies on the control fre-

quency. Control frequencies for the different control structures were set based on the

current industrial practice so that the good performance can be achieved. In order
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Figure 2.14: Comparison of the control output to cold water valve for Direct DMC
structure with different control intervals

Figure 2.15: Comparison of the control output to steam valve for Direct DMC struc-
ture with different control intervals
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to improve controller performance of the ’Direct DMC’, it may be helpful to increase

control frequency of DMC when plant is operating at low frequency. However, this

may introduce unwanted fluctuations in the control outputs especially for an integrat-

ing system. A low pass filter can be used to reduce the high frequency control valve

movements. It should be also noted that the control frequencies of these different

controllers could not be compared on an equal basis because of the diverse structures

of the controllers. Control frequency of ‘Direct DMC’ structure was five times higher

than the control frequency of ‘DMC cascaded to PI’ structure. This is somewhat

compensated by the fact that the base layer PI controller executed at a frequency ten

times higher than the control frequency of the DMC in the ‘Direct DMC’ structure.

As control frequency increases computational load also increases. The computational

load imparted by the increased control frequency was modest for the 2 input and 2

output CSTH system. However, it may be a concern when implementing controllers

on large scale industrial systems.

In this study we did not consider some other possible control structures, for exam-

ple, a single layer PID controller where PID controls the secondary CV by directly

manipulating the actuator. Direct PID is a preferred option when there is no local

disturbance affecting the system. Also in this study, we used DMC algorithm which

is optimal for linear system. As such we evaluated the controller performance within

a narrow operating region to keep the system characteristics linear. Therefore, the

effect of valve non-linearity and its impact on controller performance could not be

evaluated.

Though the ‘Direct DMC’ structure demonstrated better performance than the ‘Cas-

caded PI’ or the ‘DMC cascaded to PI’, it is difficult to see that DMC/MPC will

replace PI/PID controllers in near future only based on superior performance. The

bigger issue here is the reliability of the controllers, in particular the reliability of
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the third party MPC software platform and their communication with DCS. In or-

der to improve reliability and gain more operator confidence, a better approach is

to integrate MPC with the DCS. There is already some initiative in that direction.

For example, Emerson DeltaV offers some limited capability to implement MPC in

their DCS. If MPC is available in this DCS platform. There is a possibility that in-

house control engineers will try MPC for some difficult-to-control-loops (e.g., control

loops with many feed forward variables) and thus MPC will slowly gain a ground as

a regulatory controller.
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Chapter 3

Predictive Alarm Generation for

Chemical Processes with Unknown

Disturbance

Abstract A predictive warning generation scheme for chemical processes with un-

known disturbances is proposed in this paper. The proposed methodology uses pre-

dicted states of a process system evaluated from the open loop process model and dis-

turbance estimates. Alarms are issued for two conditions, during a time delay period

and at the steady state. Disturbances are estimated using unknown input estimators.

‘Moving horizon’ predictor combined with bias correction is used to predict the dy-

namic state of a process for a time-delay period. To generate warnings for actuator

limitations, steady state gain for disturbances, along with input constraints, are used

to check for a feasible solution for using linear programming. A warning is generated

to the operator when a feasible solution does not exist. The proposed methodology

is demonstrated in a simulated model for a continuous stirred tank heater system

(CSTH). Results show an early detection of an abnormal situation that provides the
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operator a lead time to react in the case of a disturbance affecting the system.

3.1 Introduction

A well-designed warning generation system is imperative for a safe and uninterrupted

operation of a process plant. Process variables are required to be kept inside certain

limits for operational requirements and process safety. The purpose of a warning

system is to issue alarms to operators when abnormal events are triggered. Usually,

process control is the first layer of protection. A warning is triggered when the control

system cannot keep the process variables within the desired limits. An effective warn-

ing system is required to have a reduced number of false alarms and missed alarms. A

missed alarm may bring dire consequence to process facilities. A false alarm may lead

to alarm flooding which is exhausting for an operator and reduces the work efficiency

in an abnormal situation. In addition, the early detection of an abnormal situation

provides an operator a lead time to respond with corrective actions.

Significant research has been performed to design optimized warning systems to keep

false and missed alarms to a minimal level. Filtering, deadband, and delay are the

conventional approaches to minimize false alarms which lead to detection delay. Some

earlier efforts were made to strike a balance between false alarms and detection de-

lay [Izadi et al., 2009a,Izadi et al., 2009b,Adnan et al., 2011]. To reduce false alarms,

the process variables were compressed using multivariate statistical tools. Since the

pioneering work by [Kresta et al., 1991], multivariate statistical tools have been used

for process monitoring in many other studies [Kresta et al., 1991,MacGregor et al.,

1994,MacGregor and Kourti, 1995]. All these methods relied on the process measure-

ments for alarm generation, as they emphasised the robustness of the alarm system.

Inclusion of predictive features make the warning system capable of forecasting an

56



abnormal system significantly earlier. Significant work in this area includes a Kalman

filter based predictor, proposed by [Juricek et al., 2001], which was extended by [Za-

manizadeh et al., 2008] for nonlinear systems. They used an extended Kalman filter

as the tool to handle the nonlinearity. [Fernandez et al., 2005] proposed a neural

network based supervisory method to generate an alarm for an abnormal situation.

These methodologies demonstrated good performance in forecasting abnormal situa-

tions, with some drawbacks. The main drawback of the predictive methodologies is

that the prediction horizon of the warning systems is not large enough to take full

advantage of the predictive features. In order to predict for a longer time horizon, a

closed loop model is required to predict system behaviour.Thus the monitoring system

becomes dependent on the controller tuning parameter and has to be updated as the

tuning parameter changes.

In our prior work [Khan et al., 2014], a warning generation framework was proposed

for systems with time delay and actuator capacity limitations using open loop mod-

els. The main benefit of using an open loop model is that it remains unchanged in

the event of any change in the control structure. A receding horizon algorithm and

linear programming are used as the tools for the warning system for a time-delay

period and constrained actuator scenario respectively. The limitation of the proposed

method was that it assumed the disturbance input to be known, which may not be the

case for most practical cases. The motivation of this work is to improve the previously

proposed methodology for unmeasured disturbance inputs. Estimation of unknown

inputs varies depending on the nature of the process model. We limit our scope of

work to linear systems only.

A state observer is widely used in control systems to estimate the hidden states. In the

last few decades, the functionality of the state observer was broadened to estimate the

disturbance inputs along with hidden states. [Radke and Gao, 2006] provided a review

57



of the observers used in the process industry. They concluded that computation sim-

plicity is as important as accurate state estimation. The Luenberger based unknown

input observer (UIO) shows promise for both criteria. [Chang et al., 1994] presented an

initial work on the unknown input observer explaining its design procedure for a linear

system. The initial design was focused on estimating the states of the system. [Xiong

and Saif, 2003] addressed the simultaneous estimation of the states and inputs for the

process. A framework to estimate the state and input simultaneously was proposed

by [Corless and Tu, 1998]. This framework used ‘Lyapunov-type characterization’ to

obtain an estimator which was able to estimate the unmeasured disturbance inputs

based on the measured output. [Xiong and Saif, 2003] focused on reducing the com-

putational complexity of the designed observer with a lower order. [Mattavelli et al.,

2005] used a disturbance observer for voltage control and estimation of unknown in-

put. [Sundaram and Hadjicostis, 2008] demonstrated the use of UIO for time-delay

systems and [Lee and Park, 2012] discussed a fault reconstruction scheme using finite

time UIO.

A more comprehensive review of observers used in chemical processes is provided

by [Ali et al., 2015]. They stated that, though Luenberger based observers are easy

to implement, they require perfect knowledge of the system. Performance of this

observer is limited if there exists a model mismatch and high level of noise. They

also suggested a Bayesian estimator (e.g, Kalman filter) as the suitable tool for fast

estimation results. The two-stage Kalman filter were proposed in an earlier work

by [Friedland, 1969] for some restrictive conditions, where state and input were de-

coupled. [Kitanidis, 1987] used an optimal recursive filter with no prior information

of unknown inputs, which was extended by [Darouach and Zasadzinski, 1997] with

an unbiased minimum variance filter. They also provided stability and convergence

criteria of the proposed filter. Both the work of [Kitanidis, 1987] and [Darouach and
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Zasadzinski, 1997] estimated the hidden state in presence of unknown inputs. Con-

necting these filters, [Hsieh, 2000] proposed an input estimation method. [Gillijns and

De Moor, 2007] proposed a recursive filter which can simultaneously estimate the

states and inputs using an unbiased minimum variance filter. They also proved the

optimality of the input estimation method proposed by [Hsieh, 2000].

In our work, we have used the Kalman filter based observer proposed by [Gillijns

and De Moor, 2007] for estimation of unknown inputs and states simultaneously. For

comparison, the Luenberger based unknown input observer described in [Zarei and

Poshtan, 2010] was also used for input reconstruction.

3.2 Proposed Predictive ‘Warning Generation’ Sys-

tem

Due to extensive use of the model predictive controller, open loop process models

of chemical processes are usually available. In the current study, we used open loop

process models to our advantage to generate warnings for two limiting conditions

when the process is vulnerable to a disturbance input. These conditions are briefly

explained below.

Monitoring during delay period:

A dynamic system with disturbance entering into the system can be written in the

following state space form given by Equations 3.1 and 3.2:

xk+1 = Axk + Buk−td + Eudk + wk (3.1)

yk = Cxk + vk, (3.2)
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Figure 3.1: Different responses of process variable in presence of disturbance

where xk is the state vector with dimension n, uk−td is the process inputs delay td

with dimension m, udk is the disturbance to the system, yk is the process outputs with

dimension p, and wk and vk are the process and measurement noise. It is assumed that

wk and vk are mutually uncorrelated, zero mean, white noise with known covariance

matrices Q and R respectively. When a disturbance udk enters into the system, process

outputs will start to change. Figure 3.1 shows the different responses of the process

measurement based on the availability of the controller and nature of the system.

If the process has no controller, process variables will increase and settle to steady

state value. This response can be estimated from the open loop process and distur-

bance models. As soon as disturbance affects the outputs, the controller counteracts

and try to bring the process back to its original state. However, if the process has

a time-delay, controller action is delayed until the delay period is over. Thus, the

process is vulnerable in this period and needs to be monitored. From the figure, it

is evident that the closed loop response followed the predicted open loop response

when controller has no effect. We call this window the ‘ time-delay monitoring hori-

zon’. The proposed methodology monitors the process continuously over this horizon

using the open loop predictions. As it is evident from Figure 3.1, though the closed
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loop response follow the open loop response during the ‘monitoring horizon’, there

are some deviations due to the presence of noise. Proposed methodology uses lumped

bias correction to nullify these deviations.

Monitoring system for limited actuator capacity:

Next we consider the steady state of a system with a limited actuator. If disturbance

enters the system, the steady state of a system will be disturbed and the process will

settle to a new steady state, provided the system is stable and there is no effect of

the controller. But, similar to the previous scenario, the controller will counteract the

effect of the disturbance and try to maintain the original steady state value. If the

actuator capacity is not limited, a well tuned controller will bring the process back

to the original steady state irrespective of the size of the disturbance. However, if

the actuator capacity is constrained, it cannot make the input changes calculated by

the controller and the original state of the system may not be restored. Figure 3.2

shows the different steady states of the process. When the actuator is saturated, the

process variables settle to a different state compared to the nominal one. Steady state

conditions are analysed to check whether the actuator has the capacity to counteract a

certain disturbance and bring process outputs within the safety limit at steady state.

If it is identified that with a certain disturbance, the input actuator cannot bring back

the process within safety limit, an alarm is generated.

In [Khan et al., 2014], it was assumed that the disturbance entering the system is

known. Future states of process variables were predicted using the known disturbance

and an open loop model. In the current study, disturbance inputs are assumed to be

unknown, which is a more realistic scenario, and are estimated before proceeding to

generate a warning for the system. The estimation procedure is performed using ob-

servers. Receding horizon prediction and linear programming (LP) are the main tools
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Figure 3.2: Different responses of process variables in presence of disturbance

used for the warning system.

Figure 3.3 shows the detailed implementation scheme. The alarm system works in

three steps. In the first step, observers use the filtered outputs to estimate the un-

known disturbance. The estimated disturbance is used in the next steps. Next, LP

checks for a feasible solution for the actuator constrained scenario. In the case of non-

existence of a feasible solution, an alarm is generated. If LP finds a feasible solution,

the system will proceed to the next step. In this step, calculations are performed

for the ‘time-delay monitoring horizon’ condition using the open loop prediction from

process models, inputs and estimated disturbances. If predicted values cross the

threshold over the ‘time-delay monitoring horizon’, an alarm is generated; otherwise

the alarm system will proceed to the next time step where measurement is filtered and

is sent to the estimation step of next iteration. Filtered data is also used at the bias

correction stage in the next iteration. Different steps of the implementation scheme

are described in the following subsections in detail.
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Figure 3.3: Proposed alarm generation protocol with observer
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3.2.1 Unknown disturbance estimation

Observers were used in this work for reconstructing the unknown inputs (i.e. dis-

turbances). Estimated inputs from observers were used as inputs to the warning

generation system. Design procedures of the observers used in the monitoring system

are briefly explained in this subsection.

3.2.1.1 Unknown input observer

The main feature of an unknown input observer (UIO) is that it is able to estimate the

states in the presence of unknown inputs; more precisely, the state estimation error

asymptotically approaches to zero, even in the presence of unknown inputs. The UIO

estimates the states in such a way that disturbance is decoupled in the estimation

process.

zk+1 = Fzk + TBuk−td + Kyk (3.3)

x̂k+1 = zk+1 + Hyk+1, (3.4)

K = K1 + K2, (3.5)

where x̂k ∈ Rn is the estimated state, z ∈ Rn is the new state of the unknown input

observer, and F, T, K1, K2, H are the design matrices to achieve the the unknown

input decoupling. The matrices are designed from the primary condition of unknown

input observer, that state estimation error ek+1 approaches zero asymptotically, where

ek+1 = xk+1 − x̂k+1. (3.6)
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From the unknown input observer theory it can be shown that, for the estimated

state to converge asymptotically, the following conditions must hold.

(HC− I)E = 0 (3.7)

T = I−HC (3.8)

F = A−HCA−K1C (3.9)

K2 = FH. (3.10)

When these conditions hold, we will have:

ek+1 = Fek + EN,k, (3.11)

where EN,k is the error term due to process and measurement noise. It is evident

from Equation 3.11 that ek+1 does not depend on udk. Therefore, the estimation error

remains bounded asymptotically in the presence of the unknown disturbance if the

designed matrix F is stable. UIO is designed solving Equations 3.8 to 3.10 with the

proper choice of F andK1. In our work, we have used the result of [Zarei and Poshtan,

2010] for choosing aK1 that minimizes the variance of estimation errors and estimates

x̂k+1. The estimated state is used to estimate the disturbance ûdk using the following

equation

ûdk = (CE)+[Cx̂k+1 −CAxk −CBuk], (3.12)

where (CE)+ is the pseudo-inverse matrix of CE.

65



Kalman based input estimation approach

[Gillijns and De Moor, 2007] proposed a Kalman filter based observer that estimates

the hidden states and unknown inputs of the system simultaneously. Consider the

dynamic system described in Equation 3.1 and 3.2. First, we concatenate the input

and disturbance vectors and their corresponding model matrices and describe them

as uk,d = [uk udk]T and G = [B E]. A recursive filter was used as the estimation tool

for this system. Use of the recursive filter is only applicable for this system when the

following conditions hold:

Assumption 1: rank CGk = rank Gk ;

Assumption 2: n > m, p > m.

Upon fulfilling the necessary conditions, the recursive filter is described as follows:

x̂k/k−1 = Akx̂k−1/k−1, (3.13)

ûd,k−1 = Mk(yk − Cx̂k/k−1), (3.14)

x̂∗k/k = x̂k/k−1 +Gûd,k−1, (3.15)

x̂k/k = x̂∗k/k +Kk(yk − Ckx̂∗k/k). (3.16)

Mk and Kk are the tuning parameters with dimensions of m × p and n × p. A de-

tailed tuning procedure and proof of optimality are stated by [Gillijns and De Moor,

2007]. Mk is tuned from the least square solution of the innovation and Kk is

tuned by minimizing the state variance. For tuning these parameters, initially the

covariance matrix for state innovation is defined as Pk/k ≡ E [x̃ x̃T ], where x̃ de-

notes the difference between the true state and the unbiased estimated state. The

value of Pk/k changes at each time sample and used to define the error variance

of biased estimate state (x̂k/k−1). Error variance of biased estimate is defined from
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Pk−1/k−1 as Pk/k−1 = APk−1/k−1A
T + Q. It can be shown from further calculation

that, R̃k = CPk/k−1C
T +R, where R̃k is the expected value of ek, where ek is defined

from the model parameters as ek = C(Ax̃k +wk−1)+vk. It has been shown in [Gillijns

and De Moor, 2007], using the above defined parameters, that optimal tuning of MK

and Kk is given by the following equations:

Mk = (F T R̃−1
k F )−1F TR−1

k , (3.17)

Kk = Pk/k−1CR̃
−1
k , (3.18)

where F = CG. Using these rules, the unknown disturbance and states can be

obtained. Mk was used to estimate input from measurement and biased state, as

shown in Equation 3.14. Estimated input was used to update the estimated state

using Kalman gain Kk, as shown in Equation 3.16.

3.2.2 Warning generation for time-delay condition

As stated in the first limiting condition, within the monitoring horizon, the open-loop

and closed-loop predictions remain the same. Process variables are predicted over the

entire monitoring horizon using the open loop models, process and estimated inputs.

Predictions are then bias corrected to reduce the effect of process noise. An alarm

will be generated if an open-loop prediction exceeds the alarm threshold within the

monitoring horizon. The detailed procedure is described below step by step.

Step 1 is to identify the process and disturbance vectors using one of the observers

described. Estimated disturbance ûdk will be used to predict process responses over

the ‘time-delay monitoring horizon’.

Step 2 predicts the future states from the open loop model and estimates inputs

from Step 1. Process variables are predicted over the monitoring horizon, considering
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the disturbance model of the process. The monitoring horizon is chosen based on the

time delay of the process. For a given process with time delay td, the monitoring

horizon tp ≥ td.

For the system described in Equations 3.1 and 3.2, the l sample ahead predicted

output is described by the Equation 3.19.

yk+l = C[Alxk +
l∑

i=1
Ai−1Buk−td+l−i + Ai−1Eudk+l−i], (3.19)

where l=[1,2,3,...,P] and P is the horizon defined based on the process knowledge.

Equation 3.19 predicts the i-th output over the horizon P .

Step 3 is a correction step to account for the noise and process model mis-

match. Predicted outputs are updated using the current process measurements. At

each time step, measured outputs are compared with the predictions from the pre-

vious time step. The deviation of these two values is defined as bias error. The bias

error at time t is defined as Equation 3.20:

bk = yk − y∗k (3.20)

where y∗k is the predicted value of the variable y for discrete time sample k-1 and yk

is the output of the filter at discrete time k. This bias error is used to update all the

predicted outputs over the horizon as given in Equation 3.21:

ŷk+l = y∗k+l + bk, (3.21)

where l= 1,2,... P. As updated predictions use both process and disturbance models,

they are able to forecast the effect of disturbance before it actually appears in the

measurement.
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However, measured output cannot be used directly if it is heavily affected by the

measurement noise. In such cases, measured data need to be preprocessed passing

through a filter and filtered measurements will be used for warning generation. For the

Kalman based approach, filtered process variables can be extracted from the estimated

state.

Step 4 analyses the updated prediction and generates the alarm. Maximum and

minimum limits for safe operation of each variable are defined. Predicted values are

checked to determine if they exceed the limits. When predictions cross the limits, an

alarm will be generated to the operator.

Step 5 improves the robustness of the alarm. If an alarm is generated based on a

single value exceeding the threshold, there will be false alarms in a noisy measurement

or a model mismatch scenario. To improve the robustness, an alarm is issued only

when three consecutive predictions exceed the limit. However, the heuristic can be

changed based on the nature of the process variable, the defined threshold value and

the consequence for such limit violation.

3.2.3 Warning generation for limited actuator capacity

This protocol is developed for a constrained actuator scenario. The concept hinges on

the idea that an actuator has a limited capacity, as such, it may not be possible to

counteract a large disturbance effect. The decision is made based upon the disturbance

effect on the process which is predicted using the ‘process model’ and ‘disturbance

model’, available control actions based on the actuator capacity and the various input-

output limits. The steady state values without any control action are calculated for

process gain and estimated changes in the disturbance variable. In our previous work

[Khan et al., 2014], known disturbance inputs were used to calculate the open loop

steady state value. In the current work, disturbance input is unknown and is estimated
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with the procedure described in ‘Unknown disturbance estimation’. Let us consider

a disturbance size estimated as ∆ud entering the system at time step k. If there is

no controller, the steady state value of the ‘i-th’ output variable is given by Equation

3.22:

yssi = yi,k +Gi∆udk,. (3.22)

where Gi is the gain of ‘i-th’ output to the disturbance. The controller will try to

negate the effect of disturbance by manipulating the actuator so that process output

remains inside the desired safety limits. If the maximum and minimum safety limits

for the i-th output are yi,low and yi,high respectively, the following condition needs to

be satisfied for safe operation:

yi,low ≤ yssi + ∆yssi ≤ yi,high, (3.23)

where ∆yssi is the steady state change in the i-th variable due to controller ma-

nipulation of the actuators. Input and output relations at the steady state can be

described using process gain as follows:

∆yssi =
m∑
j=1

Gij(0)∆uj (3.24)

whereGij(0) is the process gain of a step which is the step response at the steady state.

Combining Equations 3.23 and 3.24, safe operational condition in terms of input

variables is derived as:

yi,low − yssi ≤
m∑
j=1

Gij(0)∆uj ≤ yi,high − yssi . (3.25)
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Actuator capacity at a certain steady state is the difference between the steady

state and the two limiting positions (maximum and minimum) of the actuator (e.g.,

valve). It is expressed as follows:

uj,low − uj,t ≤ ∆uj ≤ uj,high − uj,t, (3.26)

where uj,low and uj,high are the maximum and minimum positions of the actuator.

Controllers will be able to bring the output variables inside safety limits at the

steady state when inequalities 3.25 and 3.26 are satisfied simultaneously. Thus, these

inequalities are the necessary criteria for safe operation of a process at the steady

state. When any of the inequalities cannot be satisfied, a warning will be issued to

operator. These criteria are checked using a linear programming (LP) algorithm. LP

can confirm if there exists a region where all constraints are satisfied. Similarly, the

methodology can be scaled for any number of variables.

3.3 Case Study for a Simulated CSTH Model

The proposed predictive warning scheme was demonstrated using the Simulink model

of a continuous stirred tank heater (CSTH) presented in Thornhill et el [Thornhill

et al., 2008]. The model mimics an experimental CSTH system located in the De-

partment of Chemical and Material Engineering at the University of Alberta. The

model is mild nonlinear as outflow is nonlinearly related to the height of the tank.

Moreover, the model provides a complete characterization of actuators and sensors

based on experimental data. This nonlinear model was used as a benchmark system

for implementation of the warning protocol. The CSTH system is shown schematically

in Figure 3.4. Level and temperature of the tank water are the process outputs. Ma-

nipulated variables for the system are, steam flow and cold water flow regulated by
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Figure 3.4: Schematic Diagram of the CSTH plant
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control valves. The other input to the system is hot water flow. For our current study,

we consider this to be the disturbance. Any change in hot water flow affects both of

the process outputs.

For implementing the model predictive controller and the predictive monitoring sys-

tem, we used the linear state space model provided in Thornhill et el. [Thornhill et al.,

2008]. The process is described in state space form as follows:

ẋ = Ax + Bu′ + Eud (3.27a)

y′ = Cx, (3.27b)

where

u′1(t)

u′2(t)

 =

u1(t− 1)

u2(t)

,

y1(t)

y2(t)

y3(t)

 =


y′1(t)

y′2(t)

y′2(t− 8)

 and ud(t) = u3(t)

Here, u1 is the cold water valve position, u2 is the steam valve position, u3 is the

hot water valve position, y1 is the level measurement, y2 is the flow measurement of

the water going out, y3 is the water temperature, x1 is tank volume, x2 is output of

valve transfer function and x3 is the total enthalpy in the tank. A, B, C and E are

the model matrices for the system linearized at a given operating point. The model

was operated at the nominal operating conditions stated in Table 3.1. Model matrices

for the given operating point when all the input and output variables are measured

in mA, are as follows:

A =


−3.7313× 10−3 1.5789× 10−6 0

0 −2.6316× 10−1 0

4.158× 103 1.5842× 10−1 −2.7316× 10−2

, B =


0 0

1 0

0 0.64

,
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Table 3.1: Typical operating point of the CSTH

Variable Op Pt
Level 20.50 cm
Temperature 42.50◦C
CW valve 17.7%
Steam valve 9.8 %
HW valve/percent 9.4%

C =


2690 0 0

0 1.5132× 10−1 0

−1979.2 0 1.1226× 10−2

 and E =


4.29× 10−5

0

8.8712

.

Note that, the measurement delay in the system for temperature is 8 s which is an

important factor for the proposed warning system, since it is developed for systems

with output time-delay. Dynamic Matrix Control (DMC) was used to control the

level and temperature of the tank water. The DMC regulated the cold water valve

and steam valve to control the level and temperature of the water. The hot water

valve position is the unknown disturbance that gives rise to measured outputs (e.g,

level and temperature of water). The plant was initially steadied at a temperature

of 42.5◦C. High alarm limit for temperature is set at 43.8◦C. In closed loop, the hot

water valve position was changed as a disturbance input and the temperature was

monitored. The warning system was configured to issue warning to the operator when

the temperature of the water exceeded the high alarm limit.

3.3.1 Warning generation for time-delay

In this section, we show the performance of the warning system for monitoring the

process during the time delay period. As shown in ‘Proposedpredictive ‘warning gen-

eration’ system’, the estimated open loop response is the same as the closed loop re-
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Table 3.2: ISE of estimation for different observers at different duration

600-650 s 620-650 s
UIO 10.08 1.16
Kalman based observer 16.72 0.38

sponse over the ‘time-delay monitoring horizon’ due to the delay in controller action.

Unknown input was estimated from the state space model of the system described

above, using Luenberger based and Kalman Filter based unknown input observers.

Estimated input along with the open loop model were used to generate a warning for

the plant. The robustness of the method was checked for two levels of measurement

noise.

3.3.1.1 Warning generation for low measurement noise

In the first scenario a moderate noisy environment with temperature noise variance

σ2
T = 0.0044◦ C2 was considered. At t = 600 s, a disturbance was introduced to the

system by opening the hot water valve from 9.4% to 11.3%. Disturbance affects both

level and temperature. From the measured value, unknown input was estimated using

the observers and validated against actual change of valve position. Figure 3.5 shows

the estimated changes of the hot water valve from the UIO and the Kalman based

observers. From the figure, it is evident that both observers were able to estimate

the disturbance magnitude. Integral squared error (ISE) is calculated to quantify the

performance comparison. ISE was calculated for the whole duration of a step change

and at the steady state separately. Calculated ISE values are given in Table 3.2. It is

observed that the UIO was able to estimate the step change more quickly compared

to the Kalman based observer. However, the Kalman based observer estimated the

disturbance more precisely at the steady state, as is evident from ISE.

As, the temperature has a time-delay of 8 s, any control action to the system affects
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Figure 3.5: Estimated disturbance from observers for low noise scenario

temperature after the delay period. Hence, temperature is continuously monitored

for a horizon of 8 s at each instant. The estimated disturbance and open loop model

together evaluate the open loop process response over the ‘monitoring horizon’.

Predicted temperature using the UIO over the monitoring horizon for different

instances are shown in Figure 3.6. This shows that predicted values started to cross

the threshold at 633 s. However, to improve robustness, a warning was generated only

when three consecutive predicted values crossed the threshold. Hence, a warning was

issued to the operator at t = 634 s. The predicted temperature over the monitoring

horizon using the Kalman based observer is shown in Figure 3.7.

The measured value and the Kalman estimation of temperature are shown in

Figure 3.8. This shows that the Kalman filter provides a good estimate of temperature

which is less noisy compared to the original measurement. Moreover, it is observed

that the temperature originally crossed the threshold at t = 641 s. Hence, the warning

system was successfully able to forecast an abnormal situation 7 s earlier in a less noisy
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Figure 3.6: Predicted values over ‘monitoring horizon’ using UIO

environment. From the identified model provided by Thornhill et el. [Thornhill et al.,

2008], the time constant for temperature, τ = 36.6 s. As such the proposed warning

system provided a lead time of 19.1% of the process time constant.

3.3.1.2 Warning generation for noisy measurements

Chemical processes usually have significant noise in the system. In this section we

investigate the effect of measurement noise in the proposed warning system. Variance

of temperature noise is increased by a factor of 10 compared to the previous scenario.

At t = 600 s, a disturbance is introduced into the system by changing the hot wa-

ter valve position from 9.4% to 11.3%. The estimated disturbance from the UIO and

the Kalman based observer are shown in Figure 3.17. ISE for this scenario is reported

in Table 3.3. Though the UIO was able to estimate the disturbance faster, ripples of
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Figure 3.7: Predicted values over ‘monitoring horizon’ using Kalman based observer

Figure 3.8: Temperature measurement with estimated value from Kalman filter
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Table 3.3: ISE of estimation for different observers at different duration

600-650 s 620-650 s
UIO 18.54 4.98
Kalman based observer 20.10 0.96

Figure 3.9: Estimated disturbance from observers for high noise scenario

the estimated signal increased significantly compared to the previous scenario. The

Kalman based observer estimated more accurately compared to the UIO at a steady

state in noisy environment. However, estimation accuracy deteriorated more in the

noisy case compared to the previous scenario. Temperature was predicted using this

estimated disturbance and a warning issued using the proposed warning system. Pre-

dicted values of the temperature using the UIO at different instances are shown in

Figure 3.10. It is observed that at t=634, three of the predicted values crossed the

threshold and a warning was generated. However, at t = 635 and 636 s, the predic-

tions remained within threshold and the process is in a non-warning state. At t =

637 s, all the predictions again crossed the threshold and the warning was reissued. A

flip-flop behaviour of the alarm was observed in this scenario due to the oscillation in

the estimated disturbance.
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Figure 3.10: Predicted values over ‘monitoring horizon’ using UIO
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Figure 3.11: Predicted values over ‘monitoring horizon’ using Kalman based observer

The predicted temperature values over the monitoring horizon using the Kalman

based observer are shown in Figure 3.11. The warning is stable and a more consistent

behaviour is observed. At t = 637 s, three of the predictions crossed the threshold

value and a warning was generated to the operator.

The measurement and Kalman estimation of temperature for the ‘high noise sce-

nario’ are shown in Figure 3.12. It shows that the Kalman filter was able to track the

temperature, even in the presence of high noise. Moreover, the temperature crossed

the threshold at t = 641 s. Using this proposed warning system, the abnormal situa-

tion was predicted 4 s earlier. Comparing the time constant of the temperature, τ =

36.6 s, it can be said that the proposed framework provides a lead time of 10.9% of

the process time constant.

It is clear from the results reported above that the warning system requires a lit-
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Figure 3.12: Temperature measurement with estimated value from Kalman filter

tle longer time to respond to the increase of noise and gives the operator less lead

time. The noise to disturbance ratio is around 10% for the second case. Even in the

presence of large noise, the proposed methodology is able to provide a warning to the

operator and allow the time to respond before the temperature actually exceeds the

safety limit.

3.3.2 Warning generation for limited actuator capacity

Necessary criteria for safe operation of a process is described by output constraints,

whereas input constraints describe the availability of the actuator capacity. Violation

of any of these constraints will trigger a warning. For the current scenario, our output

constraints are on level (y1) and temperature (y2), and input constraints are on the

steam valve position (u1) and cold water valve position (u2). Also, the inputs and

outputs are related in the system at the steady state through process gain. These

relationships are used to formulate an LP problem for the system.. At a steady state,
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the CSTH system model is given by:

∆yss1 = 2.766∆u1 (3.28a)

∆yss2 = −0.293∆u1 + 0.369∆u2, (3.28b)

where ∆yss1 , ∆yss2 are the changes in level and temperature at a steady state, re-

spectively, and ∆u1 and ∆u2 are the changes in the position of the cold water valve

and steam valve. The inequality limits arise from the operational limits of the output

variables and the capacities of the actuators. Maximum and minimum operator lim-

its for the tank level are 15.8 cm and 52 cm; for temperature, the limits are 39.2◦C

and 43.2◦C. Both the steam valve and cold water valve can be either fully open or

fully closed; thus, the maximum and minimum limits for both valves are 100% and

0%. Based on these values, the inequality constraints are given by Equation 3.29.

15.8− yss1 ≤ ∆yss1 ≤ 25.2− yss1 (3.29a)

39.2− yss2 ≤ ∆yss2 ≤ 43.2− yss2 (3.29b)

0− u1,t ≤ ∆u1 ≤ 100− u1,t (3.29c)

0− u2,t ≤ ∆u2 ≤ 100− u2,t (3.29d)

In the work of Khan et el. [Khan et al., 2014], two different sizes of disturbances

were used to check the authenticity and robustness of the warning system. The hot

water valve was opened from 7.1% to 7.6% in the first scenario to check the robustness.

It was found from the LP that there exists a feasible region, as shown in Figure 3.13

and the process measurements were consistent with the generated ‘no warning’ state.
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Figure 3.13: Constraints inequalities for the robustness check ( [Khan et al., 2014] )

In the second scenario, the hot water valve was opened from 7.1% to 9.5%, which

resulted in changes in the system. LP calculation revealed that there was no feasible

region, as shown in Figure 3.14 and hence an alarm was generated. The temperature

at the steady state was measured outside threshold and the robustness of alarm is

justified.

As, a step disturbance was used in previous case, feasibility checks at the initial and

final values of the transition were made to generate a warning. However, as the

disturbance was unknown for current case, the estimated inputs from observers were

used. As estimated input was changed gradually, LP needed to check for a feasible

region at each instance. From the Equation 3.29, it is clear that input constraint

inequalities represent the limiting actuator capacity only and do not change with the

disturbance size. It is observed from the two LP plots shown in Figures 3.13 and

3.14 that output constraint inequalities for temperature depend on disturbance size.
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Figure 3.14: Constraints inequalities for authenticity check ( [Khan et al., 2014] )

When disturbance size increases, the upper temperature constraint line in the LP plot

tends to slide towards the origin point. Whenever this line slides far from the origin,

a feasible region no longer exists. This property of LP was used for our current case

study.

We have upper constraint inequality in 3.29b. Using the value of ∆yss2 from 3.28b,

this inequality can be written in terms of input change:

−0.293∆u1 + 0.369∆u2 ≤ 43.2− yss2 (3.30)

From the property of the straight line we can say that the constraint line will cross

origin when we have, yss2 = 43.2◦C. So, whenever disturbance input is large enough to

bring the steady state of temperature over 43.2◦C, there will be no feasible solution

and hence an alarm is generated.

A step type disturbance was introduced into the system by changing the hot water
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(a) Estimated disturbance using UIO (b) Estimated disturbance using Kalman based
observer

Figure 3.15: Estimated disturbance from observers

valve position from 7.1% to 9.5% at t=800 s. Disturbance was estimated from the

change in measurements using two observers. Estimated values of disturbance from

different observers are shown in Figures 3.15a and 3.15b.

Due to the system dynamics, the effect of the disturbance on the output is not

immediate. This is reflected in the estimated values of the disturbance. The estimated

values of disturbance show a second order system dynamics and gradually reaches

from 7.1% to 9.5%. At each instant the estimated disturbance value is used by LP to

check for a feasible solution. An alarm is generated at 812 s and 814 s for the UIO

and Kalman based observer respectively. In both instances the disturbance size is

around 8.84% and the predicted steady state value of the temperature is 43.5◦C. An

LP plot for this condition is shown in Figure 3.16. Closed loop responses for the

above disturbance scenario are shown in Figure 3.17a and 3.17b. It is observed that,

the temperature settled to a new steady state outside the high alarm limit and thus

validates the alarm generated based on the estimated value from observers.
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Figure 3.16: LP plot for inequalities with marginal value of disturbance showing no
feasible solution

(a) Level measurement and the limits (b) Temperature measurement and the limits

Figure 3.17: Process measurements and the limits
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3.3.3 Performance comparison of the proposed framework

with an existing method

The proposed warning system is an extension of the work presented by [Khan et al.,

2014]. Case studies for the proposed method were performed on the same CSTH sys-

tem and similar disturbance scenarios were considered to compare the performance of

the current warning system with the framework proposed by [Khan et al., 2014]. Per-

formance comparison for the different disturbance scenarios are discussed in following

subsections.

3.3.3.1 Performance comparison for monitoring during delay period

To monitor temperature during the time delay period, a disturbance was introduced

to the system by opening the hot water valve from 9.4% to 11.3% at t = 600 s.

Disturbance affects both level and temperature and temperature crossed threshold at

t = 640 s. Warning would have been issued at this instance, if it was generated based

on the measured signal. Predictive methods issued warning early to provide a lead

time to take corrective action.

Table 3.4 reported the lead time for different scenarios of the proposed predictive

method. These are also compared to the lead time generated by the warning system

of [Khan et al., 2014]. Lead time of the current system decreases compared to the

previous one in a noisy scenario. However, the previous method assumed that the

disturbance was known, which limits its applicability. The proposed method consid-

ers disturbance to be unknown and hence relaxes the restrictive assumption of the

previous work at the cost of a slight decline in performance.
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Table 3.4: Lead time of different scenarios for monitoring time delay period

Lead time (s)
UIO low noise 7
Kalman based observer low noise 7
UIO high noise 4
Kalman based observer high noise 4
Known input [Khan et al., 2014] 7

3.3.3.2 Performance comparison for monitoring for limited actuator ca-

pacity

To monitor process’s vulnerability to a limited actuator capacity at steady state, dis-

turbance was introduced at t = 800 s. The hot water valve was opened from 7.1% to

9.5%, which resulted in changes in the system. In Khan et el. [Khan et al., 2014], it

was assumed that disturbance was known and LP revealed that, there was no feasible

region and warning was generated at t = 800 s. For the proposed method, unknown

disturbance was used and estimated disturbance for estimator increased gradually and

warning generation was delayed.

Comparison of the warning generation instances for different scenarios are pre-

sented in Table 3.5. It is observed that the warning generation of the current method

is delayed compared to the case where the disturbance was known [Khan et al.,

2014]. This is due to the fact that the estimator requires time to estimate the step

change and the disturbance increases gradually, in contrast to the previous case, where

the known input changed instantly at 800 s. However, proposed method was able to

generate warning earlier than a monitoring system that would issue warning based on

measured signal.

89



Table 3.5: Comparison of different warning systems to monitor the system with con-
strained actuators

Warning system Alarm generation instant (s)
UIO based predictive for unknown input 812

Kalman based predictive for unknown input 814
Predictive for known input [Khan et al., 2014] 800

Based on measured signal 825

3.4 Conclusions

The present work extended the predictive alarm system proposed by [Khan et al.,

2014] to consider a more realistic scenario where disturbance is unmeasured. A

methodology was developed where the unknown input estimator was combined with

the warning system. Luenberger based and Kalman filter based unknown input ob-

servers were used to estimate disturbance. As expected, the Luenberger observer based

method was good for noise free cases, but did not perform well in a noisy scenario.

The Kalman filter based method gave consistent results in a noisy scenario. Detailed

implementation steps of the methodology are described in the paper. The proposed

methodology showed consistent performance in generating an early alarm. However,

the lead time to detect the alarm reduced with the increase of measurement noise.

The proposed methodology generates a warning for the system during the time-delay

period and at steady state condition only; the dynamic change period of the process is

not covered by the alarm generation system. Moreover, the developed warning system

is applicable to a linear system only. For a nonlinear system, a more elaborate set of

conditions are required for alarm generation; also, the disturbance estimator needs to

be adapted for a nonlinear system.
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Nomenclature

A,B,C,D System matrices for the linear state space system

∆H Reaction heat

∆udk Step change in disturbance at time k (unit)

∆yssi Change in steady state controller made to the i-th variable (unit)

ε Threshold value for two iterations

γi Valve opening of i-th pump

û+
k−1 Estimated input after M-step

ûdk Estimated disturbance (unit)

ûk−1 Estimated input at time step k − 1

x̂k Estimated state at time step k

x̂k Estimated state (unit)

ŷk Estimation of process variables from estimated state x̂k at time step k

νk Measurement noise at time-step k

ρ Density of the reactant
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σ2I Variance of measurement noise of four tank system

σ2
T Noise variance of temperature (◦ C2)

A,B C and E Matrices of state space system

F, T, K1, K2, H Design matrices for UIO

Ai Cross section area of i-th tank of Four tank system

ai Cross section are of the flow line coming out of ith tank of Four tank system

Ar Area of heat transfer

bk Bias error (unit)

CA Concentration of the reactant

Cp Specific heat of the reactant

CAi Feed concentration

ek Estimation error (unit)

EN,k Error due to noise (unit)

Gi Gain of ‘i-th’ output

Gij(0) Step response at steady state

hi Water level of ith tank of Four tank system

k0e
−EA/TCA Reaction rate

kivi Flow of of i-th pump

m Number of total inputs
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Mk,Kk Design matrices for Kalman based observer

N Total number of particles

n Number of states

P Monitoring horizon

p Number of measurements

Q Variance of process noise wk

q(xk/xk−1, Yk−1) Proposal distribution

Qr Variance of process model mismatch of CSTR

qr Flow rate of feed at CSTR

R Variance of measurement noise νk

Rr Variance of measurement noise of CSTR

T Temperature in the reactor

Tc Temperature of the cooling fluid

Ti Feed temperature

U Effective heat co-efficient

udk Disturbance to the system (unit)

ud+
k−1 Estimated disturbance after M-step

ud−k−1 Initial value of unknown disturbance at time step k

udk Unknown input at time-step k
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uink Known input at time-step k

u1 Cold water valve position (%)

u2 Steam valve position (%)

u3 Hot water valve position (%)

uk Process inputs (unit)

ul Left pump input of Four tank system

ur Right pump input of Four tank system

V Volume of the feed at CSTR

vi Applied voltage of i-th pump

vk Measurement noise (unit)

w Unmodelled dynamics of CSTR

wk Process noise (unit)

Wk Importance weight at time step k

wk Process noise at time-step k

W i
k Importance weight of i-th particle at time step k

xik Random particle at time step k

xik,resamp Resampled particles

x1 Tank volume

x2 Output of valve transfer function
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x3 Enthalpy of tank

xk Unknown state of the system (unit)

xk Unknown states at time-step k

y1 Level measurement (cm)

y2 Flow measurement (m3/s)

y3 Temperature measurement (◦C)

yssi the steady state of the ‘i-th’ output variable (unit)

yk Process measurement (unit)

yk Process measurement at time-step k

yi,high Maximum safety limit of ‘i’th output (unit)

yi,k Measurement of i-th’ output at time k

yi,low Minimum safety limit of ‘i’th output (unit)

zk State of UIO (unit)

uj,high Minimum position of actuator (unit)

uj,low Maximum position of actuator (unit)

y∗k predicted value of the variable y for at time sample k-1 (unit)
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Chapter 4

Simultaneous Estimation of Hidden

State and Unknown Input Using

Expectation Maximization (EM)

Algorithm

Abstract: An expectation maximization (EM) algorithm-based simultaneous state

and input estimator for nonlinear systems is developed. This study uses a Bayesian

solution to estimate the states and unknown inputs simultaneously. It was assumed

that a joint distribution between states and inputs exist. The joint distribution was

estimated sequentially using an EM algorithm. The EM algorithm has two steps:

expectation step (E-step) and maximization step (M-step). In the E-step, a particle

filter was used to estimate the conditional probability of states. The expected state

was also estimated for an assumed value of input. The conditional distribution of

the measurement conditioned on the estimated states was maximized with respect

to input in the M-step, and inputs were estimated. These two steps were performed
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alternatively until both states and inputs converged to a solution. The effectiveness

of the proposed method was demonstrated using simulation and experimental case

studies.

4.1 Introduction

Safe and uninterrupted operation is the top priority in a process plant. The control

system works as the first layer of safeguard to keep the process variables inside the

desired limit. When a disturbance enters into the process, the existing controller re-

acts to it and tries to nullify the effect of the disturbance. However, in some instances,

available control actions are not sufficient in size or dynamically not quick enough to

reject the disturbance effect. Due to this, it is important to monitor process health and

check its vulnerability to abnormal situation. Monitoring process states can often give

an early indication of a fault. Many of the states are not measured directly, and hidden

states need to be estimated from the available process measurements. Estimation of

the state is more challenging when a process is perturbed by unknown disturbances. If

a disturbance is unknown, it needs to be estimated and reconstructed to forecast an

abnormal situation. The motivation of this work is to develop an estimation technique

for nonlinear systems that estimates the hidden states and reconstructs unknown in-

puts from the available measured variables.

State observers and Kalman-based estimators have been widely used over the last sev-

eral decades to recursively estimate system states [Luenberger, 1971,Kalman, 1960]. In

recent years, these two types of observers were modified and several improved ver-

sions are in use. Application of different types of observers in a chemical process is

extensively discussed by [Mohd Ali et al., 2015]. The most common type of observer

is classical Luenberger observer and its improved versions such as extended Luen-
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berger observer, sliding mode observer, and adaptive state observer (e.g. [Dochain,

2003], [Floquet et al., 2004], [Vries et al., 2010], and [Spurgeon, 2008]). These ob-

servers are easy to implement but not suitable for a complex dynamic system with

plant model mismatch and measurement noise. Luenberger observers were modified to

disturbance observers or unknown input observers to handle the model mismatch and

disturbance. [Radke and Gao, 2006] presented the design advantages of disturbance

observers and concluded that computation simplicity popularized the UIO, especially

for simple processes. A Lyapunov characterization was used by [Corless and Tu, 1998]

to design an estimator that was able to estimate the state and input simultaneously. A

similar approach was used by [Xiong and Saif, 2003] to estimate input and state with

an observer with reduced order. Disturbance observers were used to reconstruct the

disturbances by [Mattavelli et al., 2005], [Lee and Park, 2012] and [Sundaram and

Hadjicostis, 2008].

Bayesian estimators fall into another group of observers. This group of observers

estimates the states and inputs from the joint posterior distribution of states and

inputs, and can handle the complex process with measurement noise. A wide va-

riety of filters such as the Kalman filter, particle filter, and moving horizon esti-

mators belong to this observer group. For estimating state and input, a two-stage

Kalman-based estimator was proposed by [Friedland, 1969] which was further modi-

fied as a recursive filter by [Kitanidis, 1987]. [Hsieh, 2000] and [Gillijns and De Moor,

2007] proposed a recursive filter with minimum variance and proved their optimal-

ity. They used Kalman-based tuning to minimize the state. An application of UIO

for lateral vehicle velocity estimation is presented by [Imsland et al., 2007]. They

concluded that designing a UIO is more challenging for nonlinear systems and syn-

thesis criteria are difficult to obtain. A novel linear matrix inequality (LMI)-based

observer for a nonlinear system was proposed by [Korbicz et al., 2007]. LMI was
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defined from the Lipschitz constant, using the Lyapunov theorem to check the sta-

bility and calculate the observer gain. Applicability of this method is limited to a

Lipschitz type system. Kalman filter-based approaches are not optimal for nonlinear

systems, and many modifications have been done to deal with the system nonlin-

earity. Bayesian solutions are applicable for more general cases of state estimation

problems. [Patwardhan et al., 2012] presented an exhaustive review on recent devel-

opments of Bayesian nonlinear state estimation. Bayesian estimators were classified

based on nonlinearity handling approaches. Early attempts to handle nonlinearity

(e.g., extended Kalman filter (EKF) and versions of EKF [Söderström, 2012]) are

based on Taylor series approximation. This approach has several limitations. First of

all, nonlinearity propagates through the mean value, and hence, accuracy of approx-

imation is compromised. Moreover, evaluating the derivative is nontrivial in most of

the practical cases. These problems are addressed with a statistical linearization ap-

proach. An unscented Kalman filter (UKF) proposed by [Julier and Uhlmann, 2004]

is most popular among this type of estimators. [Kandepu et al., 2008] and [Zarei and

Poshtan, 2010] used UKF to design a nonlinear unknown input observer and applied

it for fault handling and disturbance estimation. However, both EKF and UKF as-

sume Gaussian distribution for process and measurement noises and initial states. A

group of filters that approximates the posterior using random samples is known as a

particle filter (PF). [Rawlings and Bakshi, 2006] discussed the several state estimators

for nonlinear systems and concluded that the PF has the potential to estimate state

without restrictive assumptions. [Chen, 2003] discussed the application of PF in the

field of computer vision and target tracking. Some of the implementation challenges

of PF were resolved in [Imtiaz et al., 2006]. [Jampana et al., 2010] used PF to develop

a vision sensor for an oil sand separation unit. Implementation of PF to estimate the

state and input is shown in [Mejri et al., 2013].
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Implementation of a Bayesian estimator for practical purposes requires constraint

handling. Thus, optimization-based estimation methods were developed. The moving

horizon estimator (MHE) is one of the most common of this genre. MHE estimates

the conditional density and calculates the arrival cost using MLE or MAP. As arrival

cost approximation is crucial for estimation accuracy, researchers have used different

methods to estimate arrival cost. [Qu and Hahn, 2009] used UKF to update the co-

variance of the arrival cost. An optimization-based framework is used by [Fang et al.,

2013] and [Fang and de Callafon, 2015] for simultaneous state and input estimation

(SISE). While [Fang and de Callafon, 2015] used the ensemble approach to handle

nonlinearity, [Fang et al., 2013] linearized using the nonlinear function using the first-

order Taylor’s series. They developed the SISE scheme that was applied for flow field

estimation.

The expectation maximization (EM) algorithm is a sequential method to estimate the

states and parameters from joint distribution. The EM algorithm proposed by [Demp-

ster et al., 1977] optimizes the likelihood iteratively instead of seeking for an analytical

solution. Many researchers have used this as an efficient tool to identify the hidden

model from incomplete data. [Zia et al., 2008] used the EM algorithm to estimate

the state of a nonlinear process with model uncertainty, and [Andrieu and Doucet,

2003] applied the EM algorithm to estimate the model parameter online. [Gopaluni,

2008] presented a framework to estimate state and parameter simultaneously, using a

particle filter as the approximation tool in the E-step and an optimization method to

perform the M-step. A particle filter-based EM algorithm was also used by [Zhao et al.,

2013] for estimating the model parameters for a batch process. The EM algorithm was

used by [Güntürkün et al., 2014] to estimate the hidden driving force from incomplete

a priori knowledge. The EM algorithm-based framework was used to estimate state

and identify the time varying random latency probability of measurements by [Wang
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et al., 2017,Wang et al., 2016]. A Gaussian filter smoother and standard maximization

procedure were used in the E-step and the M-step, respectively. A stochastic counter-

part of the EM algorithm called data augmentation has also been used for parameter

estimation. Data augmentation is a iterative optimization or sampling algorithm which

was popularized by [Tanner and Wong, 1987] to estimate the posterior distribution of

parameter. This algorithm solves the incomplete-data problem by repeatedly solving

the available complete-data problem. The relation between data augmentation and

the EM algorithm is discussed by [Wei and Tanner, 1990]. They also showed a Monte

Carlo implementation of the EM algorithm. From the efficient results of the related

works, we conclude that the EM algorithm is an attractive optimization-based choice

for SISE.

The proposed estimator used the EM-based framework to simultaneously estimate

states and unknown inputs. However, instead of evaluating the expected value of log-

likelihood in the E-step, the conditional probability density of state is approximated

in a sample space similar to data augmentation shown in [Wei and Tanner, 1990]. A

particle filter was used to implement this step. In the M-step, the unknown input

is estimated by maximizing the conditional posterior of input. Multiple iterations of

the E-step and M-step of the EM algorithm were performed sequentially at each time

step until the state and input converged. The proposed method is significantly dif-

ferent from existing literature [Wang et al., 2017,Wang et al., 2016]. The proposed

estimator uses a particle Filter in contrast to a Gaussian filter used in [Wang et al.,

2017,Wang et al., 2016,Wang et al., 2014]. As such, the estimator is optimal for a

nonlinear non-Gaussian system as well. Also, from an application point of view the

estimator is designed for estimating states and unknown inputs, while [Wang et al.,

2016] estimates unknown or time-varying latency probability and system states.

The article is organized as follows: In Section 2, the estimation problem is defined
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and a Bayesian solution framework is described. In Section 3, the proposed scheme

is derived for a simple linear system. In Section 4, three case studies are presented

to demonstrate the effectiveness of the proposed method. Section 5 describes the

conclusions and future work.

4.2 Problem formulation and theoretical framework

4.2.1 Problem formulation

Let us consider a discrete time nonlinear system described by Equations 4.1 and 4.2:

xk = f(xk−1, uk−1) + wk, (4.1)

yk = g(xk) + νk, (4.2)

where xk ∈ Rn is the state vector, yk ∈ Rp is the measurement, uk= [uink udk] where

udk ∈ Rm is the unknown input to the system, uink is the known inputs to the sys-

tem, and wk and νk are the process and measurement noises, respectively. Process

and measurement noises are assumed to be uncorrelated and can be any arbitrary

distribution. State is updated by a nonlinear relation f(.), and the measurement is

related to the state by nonlinear function g(.). It is assumed that uk is uncorrelated

with wk, νk. Further, no prior distribution for uk is available except their relation with

the state as given in Equation 4.1. Full information on measurement variable yk up

to current timestep ‘k’ is available and stored in Yk = {y1, y2, ... ,yk }. Without loss

of the generality, in the derivation we ignore the known inputs uink and consider udk as

the input to the system.

The objective of this estimation problem is to estimate state xk and input uk−1 from

available Yk. In case uk−1 is a manipulated variable. Its values are set by the operators,
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and uk−1 is a deterministic signal. Our interest is in unknown inputs or disturbances,

which can be either deterministic or stochastic. However, there is uncertainty in these

inputs; as such, we assume the input uk−1 to be stochastic. Further, it was assumed

that there exists a joint distribution between xk and uk−1. Our ultimate goal is to

estimate the joint distribution p(xk, uk−1/Yk).

4.2.2 Bayesian framework

Estimation of the joint distribution is a difficult problem. A stepwise process is much

simpler to implement. Using Bayes’ rule and invoking the results in data augmentation

[Tanner and Wong, 1987], we can formulate a two step iterative procedure. Using

Bayes’ rule, we can write:

p(uk−1, xk/Yk) = p(xk/Yk)p(uk−1/Yk, xk). (4.3)

Integrating both sides with respect to xk, we have the following relation

p(uk−1/Yk) =
∫
p(xk/Yk)p(uk−1/Yk, xk)dxk. (4.4)

Similarly, from the Bayes’ rule, joint posterior is expressed as follows:

p(uk−1, xk/Yk) = p(uk−1/Yk)p(xk/Yk, uk−1). (4.5)

Integrating both sides with respect to uk−1, we obtain,

p(xk/Yk) =
∫
p(uk−1/Yk)p(xk/Yk, uk−1)duk−1. (4.6)
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Observation 1: For integrating Equation 4.6, we should be able to sample from

p(uk−1/Yk), and for integrating Equation 4.4, we should be able to sample from

p(xk/Yk). Equations 4.4 and 4.6 together suggest an EM-like iterative scheme be-

tween these two equations. According to [Tanner and Wong, 1987], if iterations are

performed for an extended period, p(uk−1/Yk) and p(xk/Yk) will converge to the joint

distribution p(xk, uk−1/Yk).

Observation 2: In Equation 4.6, if uk−1 is known, estimation of p(xk/Yk, uk−1) is

essentially a state estimation problem. For any given input u−k−1, we can use any

Bayesian filter (e.g., particle filter) to estimate p(xk/Yk, u−k−1). Since there is uncer-

tainty in input, it is integrated over duk−1 to reduce the uncertainty and make the

estimate independent of uk−1. In discrete form:

p(xk/Yk) = 1
m

m∑
i=1

p(xk/Yk, uik−1) (4.7)

where uik−1 is sampled from p(uk−1/Yk). Finally, the expected value of xk is given by

E[xk] =
∫
xkp(xk/Yk, u−k−1)dxk (4.8)

Observation 3: In Equation 4.4, p(uk−1/Yk, xk) is not defined, rather p(Yk/xk, uk−1)

is easy to define given that xk and noise distribution of Yk are known. For an esti-

mated state x̂k, input uk−1 can be estimated through maximization of density function

p(Yk/x̂k, uk−1)

4.2.3 Proposed Expectation Maximization (EM) algorithm

Based on the above observations, we propose an EM-like algorithm. The algorithm is

initiated with a assumed value of input. In the expectation step (E-step), a Bayesian

109



filter can be used to estimate p(xk/Yk, u−k−1). However, the choice of the filter will

depend on the characteristics of the system and noise distribution. For example, for a

linear Gaussian system a Kalman filter can be used. In this study, we describe the use

of a particle filter to make the estimation problem general for nonlinear non-Gaussian

system. Subsequently, in the maximization step (M-step), we use maximum likelihood

estimation (MLE) technique to estimate uk−1 from p(Yk/xk, uk−1). These two steps

are described in the following sections.

4.2.3.1 Expectation step (E-step)

The goal of this step is to estimate the posterior distribution p(xk/uk−1, Yk). The

algorithm is initiated with an assumed u−k−1 and prior distribution of xk−1. Particles

are sampled from the prior distribution. These particles along with u−k−1 are passed

through the prediction equation to predict p(xk/Yk−1, u
−
k−1). As soon as measurement

yk becomes available, prior distribution is updated to p(xk/Yk, u−k−1). Exact evaluation

of p(xk/Yk, û−k−1) is nontrivial for a nonlinear non-Gaussian process. For this reason a

SIR filter is used to approximate the posterior. In this approach, particles are sampled

using a known importance function q(x1:k/y1:k, uk−1) and importance weight

Wk = p(x1:k/Yk,uk−1)
q(x1:k/Yk,uk−1) .

Using the Markovian chain rule on the state, importance weights can be factored as

follows:

Wk = p(x1:k/Yk, uk−1)

q(x1:k/Yk, uk−1)

= p(xk/Yk, p(x1:k−1)uk−1)p(x1:k−1/Yk−1, uk−1)

q(xk/Yk, x1:k−1uk−1)q(x1:k−1/Yk−1, uk−1)

= p(xk/Yk)p(x1:k−1)uk−1

q(xk/Yk, x1:k−1uk−1) Wk−1

(4.9)
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It is shown in [Fang and de Callafon, 2011] that
p(xk/Yk,p(x1:k−1)uk−1)
q(xk/Yk,x1:k−1uk−1) ∝ p(yk/xk).

Thus we have a recursive relation of the importance weight Wk as follows:

Wk ∝ p(yk/xk)Wk−1. (4.10)

The recursive property of the SIR filter is used to estimate the target posterior dis-

tribution. The implementation steps of the SIR filter are as follows:

Step 1: Random particles xi ∼ q(xk/xk−1, Yk−1) are generated where i = 1, 2, ...N , N

is the number of particles. Particles are passed through the state equation to predict

prior distribution in the next timestep.

Step 2: Importance weights are calculated in this step. The importance weight of a

any particle i is calculated as:

W i
k = p(yk/xik)p(xik/xik−1, uk−1)

q(xik/xik−1, uk−1, YK) W i
k−1. (4.11)

Step 3: Information of the calculated weight is transferred to the next time sam-

ple through resampling using importance weight W i
k. After resampling, all particles’

weights are reset to 1/N . The resampled particles xik,resamp constitute an approximate

distribution of the target posterior p(xk/Yk, u−k−1). This conditional pdf will be used

to derive the arrival cost function in the M-step. The expected value of the state from

the distribution can be calculated directly from the average of the resampled particles

as follows:

x̂k = 1
N

N∑
i=1

xik,resamp. (4.12)
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4.2.3.2 Maximization step (M step)

In this step, the cost function is defined from the conditional posterior distribution

of states p(xk/Yk, u−k−1) evaluated in the E-step. By augmenting estimated x̂k, the

conditional distribution of Yk, p(Yk/x̂k, uk−1)can be written easily. This augmented

posterior is maximized for uk−1.

û+
k−1 = argmax

uk−1
p(yk/x̂k, uk−1) (4.13)

A gradient-based optimization approach was used to maximize the distribution. For

Gaussian distribution

p(yk/x̂k, uk−1) = 1√
2πR0.5 e

− 1
2 (yk−ŷk)TR−1(yk−ŷk)

leads to the following log likelihood function:

`(uk−1) = δ − (yk − ŷk)TR−1
k (yk − ŷk) (4.14)

where δ is a constant and ŷk = g(x̂k/uk−1, Yk−1). Input uk−1 is estimated by minimizing

`(uk−1). The estimated input ûk−1 is supplied back to the E-step.

The E-step and M-step are performed alternatively several times at each time step

to update x̂k and ûk−1 until the difference between the two iterations is smaller than

the specified threshold value, ε.

Implementation of the proposed methodology is shown in Figure 4.1.
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Figure 4.1: Implementation procedure of the proposed methodology.
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4.3 Implementation of the proposed method for a

simple linear system

In this section, the proposed methodology is implemented on a simple linear sys-

tem. Let us consider the following linear state space system:

xk = Axk−1 + Buink−1 + Dudk−1 + wk, (4.15)

yk = Cxk + νk. (4.16)

where, xk is the state of the system at time k, yk is the measurement, uink−1 is the

known input, and udk−1 is the unknown input to the system. A, B, C, and D are

matrices describing the system dynamics, and wk and νk are the Gaussian process

and measurement noise with a zero mean and covariance of Q and R, respectively.

First, the unknown inputs, ud−k−1, and states, xk−1, are initialized. Next, particles are

sampled randomly from a proposed distribution xik ∼ q(xk/xk−1, ûk−1). These particles

are passed through the state equation to evaluate the estimate of particles after state

transition x̂ik as follows:

x̂ik = Axik−1 + Buink−1 + Dud−k−1 (4.17)

Next, importance weight of the i-th particle is calculated using the following equation:

W i
k =

exp(−1
2(yk −Cxik)T (Q+ CTRC)(yk −Cxik))∑N

i=1 exp(−1
2(yk −Cxik)T (Q+ CTRC)(yk −Cxik))

W i
k−1, (4.18)

where N is the total number of particles, and yk is the measurement of the system. In

the next step, information on the weight is transferred to the particles through resam-

pling. W i
k is used to get the resampled particles xik,resamp. After calculating xik,resamp,

114



all the weights are set to 1
N

and the estimated state x̂k is calculated to complete the

E-step.

x̂k = 1
N

N∑
i=1

xik,resamp (4.19)

In the M-step, x̂k−1 and uk−1 are used to construct the cost function. The log likelihood

function is given as follows:

`(udk−1) = δ−(yk −C(Ax̂k−1 + Buink−1 + Dudk−1))T (Q+ CTRC)

(yk −C(Ax̂k−1 + Buink−1 + Dudk−1)).
(4.20)

Input for the system can be estimated by maximizing the cost function.

ûd+
k−1 = argmax

uk−1
`(udk−1) (4.21)

At each time step k, the E-step and M-step are repeated several times until some

convergence criteria are met.

4.4 Case studies

The proposed methodology is demonstrated on two systems. First, a simulated model

nonlinear continuous stirred tank reactor (CSTR) system is used with different process

and measurement noise scenarios. The second system is a laboratory-scale four-tank

plant.

4.4.1 Non-linear CSTR system

A schematic diagram of a CSTR is shown in Figure 5.4. Nonlinear state equations of
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Figure 4.2: Schematic diagram of a CSTR.

the process are given as follows:

dCA
dt

= q

V
(CAi − CA)− k0e

−EA/TCA + w1 (4.22)

dT

dt
= q

V
(Ti − T )− ∆H

ρCp
k0e
−EA/TCA −

UAr
ρCpV

(T − Tc) + w2, (4.23)

where CA is the concentration of the reactant, T is the temperature in the reactor, q

and V are flow-rate and volume of feed, respectively, CAi and Ti are feed concentra-

tion and temperature respectively, k0e
−EA/TCA is the reaction rate, ∆H is the heat

of reaction, ρ is the density, Cp is the specific heat, Ar is the area of heat transfer, U

is the effective heat coefficient and Tc is the temperature of the cooling fluid. w = [w1

w2]T is the unmodeled dynamics of the system modeled as an additive process Gaus-

sian noise with variance Qr = diag [0.001 0.001]. The operating range of process

inputs and different parameters of the system were chosen from [Henson and Seborg,

1997]. Nonlinear state equations at the given operating conditions were solved to eval-

uate the simulated open loop response.
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This model was used by [Imtiaz et al., 2006] to estimate CA and T from a noisy

measurement scenario. For the current case study, the estimation objective was dif-

ferent. We considered that the feed temperature, Ti, was unknown, and we sought to

estimate Ti along with filtered CA and T from the noisy process measurement. The

measurement equation is:

yk = 0.5[CA T ]T + ν (4.24)

where yk is the available measurement, and ν is the measurement noise that was

varied to study the performance of the estimator at different noise intensities. Simu-

lations were performed for two different noise scenarios.

For the first scenario, we considered measurement noise ν ∼ N(0, Rr) where Rr =

diag [0.01 0.01]. The proposed estimator filtered the states, concentration (CA) and

temperature (T ) of the reactor and estimated input feed temperature (Ti). The SIR

filter was tuned using a process noise of a higher order than the actual process noise to

ensure that the prior pdf was not too narrow while choosing the process noise. Mea-

surement uncertainty of the SIR filter was chosen as the same order of the actual

measurement noise. Considering both computation load and estimation accuracy, the

number of particles for the filter is chosen to be 50 for the current case study. Filtered

states and estimated input along with their actual values are shown in Figures 4.3

and 4.4. The figures suggest that the proposed method was able to filter the states

and estimate the unknown input. However, as noisy estimation was observed while

estimating temperature, a filter was used to improve the noisy estimate.

For the second scenario, measurement noise was doubled. Both estimated and actual

states and input are shown in Figures 4.5 and 4.6. The performance of estimation

deteriorated with additional noise intensity. The increased noise affects input esti-

mation significantly. Thus, filtering the estimated input is required to improve the

performance of the estimator.
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(a) Concentration plot (b) Temperature plot

Figure 4.3: Comparison of actual and estimated states of the CSTR system (Rr =
diag [0.01 0.01])

Figure 4.4: Comparison of the unknown input of the CSTR system with the estimated
input signal (Rr = diag [0.01 0.01])
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(a) Concentration plot (b) Temperature plot

Figure 4.5: Comparison of actual and estimated states of the CSTR system (Rr =
diag [0.04 0.04])

4.4.2 Four tank pilot plant

A schematic diagram of a four-tank system is shown in Figure 4.7. Governing differ-

ential equations for this system were described by [Johansson, 2000] as follows:

dh1

dt
= − a1

A1

√
2gh1 + a3

A1

√
2gh3 + γ1k1v1

A1
(4.25)

dh2

dt
= − a2

A2

√
2gh2 + a4

A2

√
2gh4 + γ2k2v2

A2
(4.26)

dh3

dt
= − a3

A3

√
2gh3 + (1− γ2)k2v2

A3
(4.27)

dh4

dt
= − a4

A4

√
2gh4 + (1− γ1)k1v1

A4
, (4.28)

where hi is the water level, Ai is the cross-section area, ai is the cross-section area

of the flow line coming out of the i-th tank. Applied voltage of the i-th pump is vi,
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Figure 4.6: Comparison of the unknown input of the CSTR system with the estimated
input signal (Rr = diag [0.04 0.04])

Pump 1
Pump 2

Tank 3

Tank 2

Tank 1

Tank 4

 

Figure 4.7: Schematic diagram of a Four tank system
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Table 4.1: Dimensions of experimental setup

Variable Unit Op Pt
A1, A2, A3, A4 cm2 392.7
a1, a2 cm2 1.308
a3, a4 cm2 0.829
kc e/V/cm 0.5
g cm/s2 981

kivi is the corresponding flow, and γ1 and γ2 are the parameters that determine the

valve opening. For the current study, γ1k1v1 and γ2k2v2 are mentioned as ul and ur,

respectively, and used as the process inputs. Equations 4.25-4.28 are the state tran-

sition equations and measurement matrix C is defined as follows:

C=

1 0 0 0

0 1 0 0

.
The experiment was performed on the four-tank plant located at the Chemical and

Materials Engineering Department of University of Alberta. A mechanistic nonlinear

model of the system was developed from the measured dimensions of the tank. The

dimensions of the experimental setup are given in Table 5.1. States h1 and h2 are

measured, and h3 and h4 are the unmeasured states. Position of the pumps ul and

ur are the inputs of the system. Further, we assumed that the position of the right

pump, ur, was known, and the position of the left-side ul was unknown. The proposed

state and unknown input estimator was applied to estimate the hidden states h3 and

h4, and unknown input ul. Two sets of validations were performed for the four-tank

system. For the first case study, measurements were simulated solving the nonlinear

model with added measurement noise. Next, we used the data set collected from

the laboratory setup to validate the estimator performance. In order to compare the

results, we used the same input signals for the simulated model and the experiments.
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4.4.2.1 Simulation study

In the simulated model we added different levels of noise to the system and checked

the consistency and robustness of the proposed scheme. Equations 4.25 to 4.28 were

solved to generate open loop state responses. Measurements were evaluated adding the

measurement noise with the state variables h1 and h2. The SIR filter was tuned with

500 particles, and the proposed method was used to estimate the states and unknown

inputs. Based on the intensity of the measurement noise, two different scenarios were

considered. For the first scenario, a measurement noise ν ∼ N(0, σ2I) was added where

the noise variance σ2I = diag [0.1 0.1] cm2. In the second scenario, noise intensity

was increased to σ2I = diag [0.5 0.5] cm2. Estimated and filtered states for these two

scenarios are shown in Figures 4.8 and 4.9. From the figures, it is evident that even

with the increased intensity of noise the proposed method was able to estimate the

states fairly well. On the contrary, estimation of input was affected by the increased

intensity of the noise. Positions of the left pump were estimated for both scenarios

using the proposed algorithm. Estimated inputs for the two scenarios and actual

inputs are shown in Figure 4.10. Figure 4.10 shows that noise in the measurement

aggravates the estimated input. Though both of the estimated inputs follow the actual

inputs, estimation deviated more in the higher noise scenario.

4.4.2.2 Experimental study

An open loop experiment was performed on the laboratory scale four tank system

at the Process Dynamics and Control Lab of University of Alberta. Similar to the

simulation study, it was assumed that only h1, h2, and ur were available to the es-

timator. The estimator used available measurements and known input to estimate

h3, h4, and ul. As this is a pilot-scale setup, we expect that there is significant plant

model mismatch and measurement noise in the system. Through validating the es-
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Figure 4.8: Comparison of actual and estimated states of the simulated four tank
system (noise variance σ2I=diag [0.1 0.1] cm2)
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Figure 4.9: Comparison of actual and estimated states of the simulated four-tank
system (noise variance σ2I=diag [0.5 0.5] cm2)

(a) At noise level (σ2I= diag [0.1 0.1] cm2 )(b) At noise level (σ2I= diag [0.5 0.5] cm2 )

Figure 4.10: Actual and estimated inputs of simulated four-tank system for different
noise scenarios
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Figure 4.11: Comparison of actual and estimated states of the pilot-scale four-tank
system

timator using this system, we want to demonstrate the robustness of the proposed

method. The particle filter was tuned with 1000 particles to improve the performance

of the estimator.

In the experiment, both the speed of the left and right pumps were varied as step

inputs. Figure 4.11 shows the actual and estimated states of the process. Figure 4.12

shows the estimated and actual unknown inputs along with the known input to the

process.

The results in Figures 4.11 and 4.12 reveal that the proposed method estimated

states and unknown input correctly for most parts of the experiment. However, for

some instances, estimated state and input deviated significantly from the experimen-

tal data. Deviations of the estimated states from the actual states are mostly due to

plant model mismatch and impact of the deviations in the estimated input. Change
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(a) Unknown Inputs

(b) Known input

Figure 4.12: Actual and estimated unknown inputs and known input for experimental
study
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Figure 4.13: Dynamic tracking of the estimated input signal for simulated four tank
system

in the speed of the right-side pump interacts dynamically with process states and

unknown input. This interaction affects the estimate of the input and increases the

error between the estimated state and the actual value.

4.4.2.3 Convergence of the Algorithm

As the proposed EM framework is an iterative approach, we sought to check the

convergence of the estimator. Two different time frames, one from the simulation and

the other from the experimental study, were considered to show the convergence of the

estimated input. We considered the results of the low noise scenario of the simulation

study. To study the convergence of this scenario, we considered a time frame from 400s

to 460s, where a step change was made on input. Actual left-side pump input and the

estimated signals for this time-frame are shown in Figure 4.13. Four time instances

in this transition were selected to show the convergence behaviour. The squared

percentage errors between the estimation and the actual input were calculated at

these time instances and plotted against the iteration number. In Figure 4.14, the

squared errors with iteration numbers for the selected time instances are plotted. In
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Figure 4.14: Change of error between estimated and actual input signal for simulated
four-tank system

all three cases, the error decreased fairly quickly, and estimated the input converged

to a steady value and remained stable.

For the experimental case study, we consider a time window from 1720 to 1900s, where

a step change in input was made. Estimated input from experimental data along with

the actual input are shown in Figure 4.15. We report the convergence profile at four

time steps during this period. Percentages of the squared error for these instances are

plotted against the iteration number in Figure 4.16. The estimated input converged

to a steady value after the second iteration. The convergence shows a smooth profile.

The estimation error is higher immediately after step changes were made. However,

it quickly goes to a stable state.

4.5 Conclusions

An expectation maximization (EM) based methodology is proposed to estimate the

states and unknown inputs of a nonlinear system simultaneously. States and inputs

were iteratively corrected in two steps of an EM algorithm. The E-step approximated
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Figure 4.15: Dynamic tracking of the estimated input signal for four-tank system in
experimental scenario

Figure 4.16: Change of error between estimated and actual input signal for simulated
four-tank system in experimental scenario
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the conditional posterior distribution of the states using a SIR filter. The M-step esti-

mated the unknown input using the maximum likelihood estimation. In this study, we

mainly focused on Gaussian distribution; however, the proposed algorithm is applica-

ble to a non-Gaussian posterior, as a particle filter was used for estimating states. Both

experimental and simulation studies were performed to demonstrate the efficacy of

the proposed methodology. For all case studies, the proposed framework showed good

results. Performance of the estimator degraded for the experimental case due to the

presence of a plant model mismatch and measurement noise. As the estimator relies

more on the measurements if noise in the measurement increases, the estimated in-

put gets jittery. Filtering the estimated input signal can remove some of this jittery

behaviour and give a better estimate of the input. Both the state and input estimates

were affected by the interaction of the inputs and states.
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Nomenclature

A,B,C,D System matrices for the linear state space system

∆H Reaction heat

∆udk Step change in disturbance at time k (unit)

∆yssi Change in steady state controller made to the i-th variable (unit)

ε Threshold value for two iterations

γi Valve opening of i-th pump

û+
k−1 Estimated input after M-step

ûdk Estimated disturbance (unit)

ûk−1 Estimated input at time step k − 1

x̂k Estimated state at time step k

x̂k Estimated state (unit)

ŷk Estimation of process variables from estimated state x̂k at time step k

νk Measurement noise at time-step k

ρ Density of the reactant
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σ2I Variance of measurement noise of four tank system

σ2
T Noise variance of temperature (◦ C2)

A,B C and E Matrices of state space system

F, T, K1, K2, H Design matrices for UIO

Ai Cross section area of i-th tank of Four tank system

ai Cross section are of the flow line coming out of ith tank of Four tank system

Ar Area of heat transfer

bk Bias error (unit)

CA Concentration of the reactant

Cp Specific heat of the reactant

CAi Feed concentration

ek Estimation error (unit)

EN,k Error due to noise (unit)

Gi Gain of ‘i-th’ output

Gij(0) Step response at steady state

hi Water level of ith tank of Four tank system

k0e
−EA/TCA Reaction rate

kivi Flow of of i-th pump

m Number of total inputs
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Mk,Kk Design matrices for Kalman based observer

N Total number of particles

n Number of states

P Monitoring horizon

p Number of measurements

Q Variance of process noise wk

q(xk/xk−1, Yk−1) Proposal distribution

Qr Variance of process model mismatch of CSTR

qr Flow rate of feed at CSTR

R Variance of measurement noise νk

Rr Variance of measurement noise of CSTR

T Temperature in the reactor

Tc Temperature of the cooling fluid

Ti Feed temperature

U Effective heat co-efficient

udk Disturbance to the system (unit)

ud+
k−1 Estimated disturbance after M-step

ud−k−1 Initial value of unknown disturbance at time step k

udk Unknown input at time-step k
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uink Known input at time-step k

u1 Cold water valve position (%)

u2 Steam valve position (%)

u3 Hot water valve position (%)

uk Process inputs (unit)

ul Left pump input of Four tank system

ur Right pump input of Four tank system

V Volume of the feed at CSTR

vi Applied voltage of i-th pump

vk Measurement noise (unit)

w Unmodelled dynamics of CSTR

wk Process noise (unit)

Wk Importance weight at time step k

wk Process noise at time-step k

W i
k Importance weight of i-th particle at time step k

xik Random particle at time step k

xik,resamp Resampled particles

x1 Tank volume

x2 Output of valve transfer function
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x3 Enthalpy of tank

xk Unknown state of the system (unit)

xk Unknown states at time-step k

y1 Level measurement (cm)

y2 Flow measurement (m3/s)

y3 Temperature measurement (◦C)

yssi the steady state of the ‘i-th’ output variable (unit)

yk Process measurement (unit)

yk Process measurement at time-step k

yi,high Maximum safety limit of ‘i’th output (unit)

yi,k Measurement of i-th’ output at time k

yi,low Minimum safety limit of ‘i’th output (unit)

zk State of UIO (unit)

uj,high Minimum position of actuator (unit)

uj,low Maximum position of actuator (unit)

y∗k predicted value of the variable y for at time sample k-1 (unit)
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Chapter 5

Predictive Warning System for

Nonlinear Process

Abstract: A robust warning generation method for non-linear systems is presented

for forecasting abnormal situation in process systems. In contrast to traditional method,

the proposed method issues warning based on the predicted signal. A process is con-

sidered in normal state when a feasible solution can be found that satisfies all input

and output constraints. A constraint separation optimization algorithm was used to

check the existence of feasible solution under various disturbance effects. An open loop

dynamic model, process states and inputs at a given instance are used to predict the

future states of the process over a prediction horizon. Predicted states and safety lim-

its were used to define output constraints, while actuator capacity and process inputs

defined input constraints. All the output and input constraints need to be satisfied for

a safe operation. The proposed method was demonstrated using a continuous stirred

tank reactor (CSTR) with different disturbance scenarios. The results show that the

proposed method is able to detect a violation of a safety limit significantly earlier

compared to the methods base on monitoring the measured signals.

142



5.1 Introduction

A well designed warning system is critical in chemical processes for safe operation.

The motivation of the present work is to design a warning system that is capable of

providing a lead time for the operator to take necessary corrective actions, when a

process system is impacted by disturbances. In an earlier study [Khan et al., 2014],

we focused on designing a predictive warning system for a linear process system. The

scope of work for that study was limited to steady state and time-delay region of the

system. In practical cases, most of the processes exhibit non-linear behaviour. Also

the entire dynamic region of the system is of interest. In this work, we propose a

systematic methodology to generate predictive warnings for a nonlinear system for

the entire dynamic region of the process system.

When a disturbance enters into a process, process states deviate from the normal

operating point. The control system counteracts this phenomenon and tries to bring

the process back to the original set point. If a controller had infinite capacity to ma-

nipulate the actuators, it could always bring the process back to safety. However, in

practical cases, an actuator operates within a certain range and hence a controller’s

action is limited by the actuator’s capacity. Depending on the magnitude of the dis-

turbance, a controller may or may not be able to bring the process back to the safe

operating point. If the effect of disturbance is large, process states may cross safety

limits. For some cases, controllers will not be able to bring the process inside safety

limits. We seek a predictive scheme to identify these cases and issue an alert to the

operator before the measured variable actually crosses the safety limit.

In the present study, a warning system is combined with controller design. The basic

philosophy of the work is to use the predictive feature of advanced control technology

to generate a warning for a non-linear system.

[Primbs et al., 1999] discussed two well known approaches for nonlinear optimum
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control: control Lyapunov function and receding horizon control. They concluded

that each approach has its own strength based on the on-line or off-line calcula-

tion required. They also suggested an approach to combine both approaches to har-

ness the maximum benefit. [Albalawi et al., 2017] presented a good review of the

current research direction that combines control system design with safety consid-

erations. [Varga et al., 2009] used predictive alarm management to generate warn-

ings. They used a simulator-based approach to detect the last controllable point of

the system in a particular trajectory. Lyapunov’s indirect stability analysis of the

state variables are used to detect the boundary of the controllable region of the pro-

cess. Alarm is generated when states lie outside the controllable region. A Lyapunov

based model predictive controller (LMPC) was used by [Zarei and Poshtan, 2010] to

propose different safety schemes. All the proposed schemes varied the upper bound

of the Lyapunov function to achieve the improved rate that drives the closed loop

state to a safe operating region. An MPC with an adaptive learning rate was pro-

posed by [Aswani et al., 2013]. The proposed scheme decoupled the safety and control

performances in their framework. The Lyapunov approach is more suitable for off-line

calculation, as suggested by [Primbs et al., 1999]. Our current goal is to generate

warnings in real-time as such on-line calculation is necessary. A receding horizon or

moving horizon estimate is an attractive choice to predict future outputs and generate

a warning in real-time based on the predictive signal. [Ahooyi et al., 2016] proposed a

model predictive safety (MPS) scheme that uses moving horizon estimates to gener-

ate a predictive warning. They generated warnings based on the controller’s capacity

to negate an extreme value of a predicted state. In practice, process variables are

interconnected and hence, counteracting one extreme state using one manipulated

variable may cause other variables to exceed the safety limit. The present study is

motivated to improve this scheme for the multiple input multiple output interactive
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system. Moreover, we seek to use all predicted states over the moving horizon to define

safety constraints instead of considering only one extreme point.

Safe operation of a process is determined by the existence of a feasible solution of

all states within the safety constraints. In [Khan et al., 2014], a linear programming

was used to check to determine if the controller is able to satisfy all linear constraints

of the system. Determining a feasible solution for a nonlinear system is a difficult

problem. [Chinneck, 2007] described different methodologies to check feasibility. Most

of the algorithms work very well for identification of a feasible region of linear sys-

tem. Feasibility of a nonlinear system is still an open problem. A sampling based

approach is described by [Banerjee and Ierapetritou, 2005] to identify a feasible so-

lution. Their proposed method is computationally inefficient for on-line calculations

as a computationally expensive genetic algorithm was used to determine the feasible

solution. The computational load of the genetic algorithm slows down the warning

generation process.

[Schnabel, 1982] proposed a constraint separation method to determine the feasible

solution of multiple non-linear and linear constraints. They separated the non-linear

constraints from the linear constraints. Non-linear constraints were combined to for-

mulate an objective function. Existence of a positive minimum of the objective func-

tion suggests an infeasible solution. Application of the method is shown for static

non-linear constraints. We used this method to check the feasibility of dynamic non-

linear constraints.

The rest of the article is organised as follows: in Section 2, the proposed methodology

is presented and different modules of the methodology are described. In Section 3,

the proposed method is demonstrated on a nonlinear continuous stirred tank reactor

(CSTR) and finally Section 4 gives some concluding remarks.
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5.2 Predictive warning system

5.2.1 Theory

Consider a dynamic model of a nonlinear system of the following form:

xk+1 = f(xk, uk, dk),

yk = g(xk),
(5.1)

where x ∈ Rnx is the unknown states, y ∈ Rny is the process measurements, u ∈

Rnu is the manipulated variables, and d ∈ Rnd is disturbances to the system. When

a disturbance is introduced to the system, it affects the system outputs. If the system

is an open loop, large disturbances will drive the system states outside the normal

operating limits. Under closed loop control, one of two possible scenarios may occur,

based on the system dynamics. The first possible scenario is that process measure-

ments start to rise and may exceed the upper/lower safety threshold, despite control

actions. In the second scenario, the controller regulates the manipulated variables and

nullifies the disturbance effect, and is capable of keeping all system states within the

threshold limits. These two scenarios are shown in Figure 5.1.

For the system, l step ahead prediction of a measured output is ŷk+l and effect of

the control action is ∆yk+l,c; upper and lower thresholds of measured variable y are

yh and yl respectively. Necessary safety conditions for the output constraints are as

follows:

yl ≤ ŷk+l + ∆yk+l,c ≤ yh (5.2)

where l=1, 2, ..., L, and L is large enough to capture the system dynamic response

up to the steady state. Output constraints will always be satisfied if ∆uk+L is un-

bounded. For all practical applications the actuator’s capacity is limited and is defined
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Figure 5.1: Possible abnormal scenarios when disturbance affect the process measure-
ment

as input constraints as follows:

ul ≤ uk + ∆uk+l ≤ uh, (5.3)

where ul and uh are the lower and upper limits of the actuator. Based on these

conditions, we provide the following definitions for predictive warning in a generalized

system.

Definition 1: Consider a system with ny outputs and nu manipulated variables.

In the normal state (i.e, ‘no warning state’) the system must satisfy the following

feasibility conditions. For a bounded disturbance ‖dk‖ < ∞, at any time step k,

yi,l ≤ ŷi,k+l + ∆yi,k+l ≤ yi,h,

uj,l ≤ uj,k + ∆uj,k+l ≤ uj,h.

(5.4)
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subject to

xk+1 = f(xk, uk, dk),

yk = g(xk),
(5.5)

where i = 1, 2, ... , ny, and j = 1, 2, ... , nu; l = 1, 2, ... , N and N is sufficiently large

that at k +N time step the system reaches a new steady state.

5.2.2 Implementation of predictive warning system

The proposed model based warning scheme works in two steps. In the first step, an

open loop predictor predicts the dynamic response of the system. If the predicted re-

sponse shows a violation of the safety limits and identifies a potential abnormal event,

the system is further investigated in the next step. In the second step, a feasibility

check is performed to determine if all safety constraints can be satisfied simultane-

ously. Safety constraints are defined based on the system safety limits and controllers’

capacity.

A flow chart of the proposed warning generation protocol is shown in Figure 5.2. When

a disturbance enters the system, it affects the states and is reflected by the change in

measurements. Impact of the disturbance on the future time steps is predicted using

a moving horizon estimator (MHE). The MHE uses the system model, disturbance

model and current measurements and the disturbance input. If predicted states over

the ‘monitoring horizon’ do not exceed the safety limit, a ‘no warning’ status is set

and the monitoring system progresses to the next time step.

If one or more predicted states exceed the safety limits, the warning system checks

whether the controllers have enough capacity to mitigate the effect. Inequality con-

straints are formulated for all predicted states. A feasibility analysis is performed to
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Figure 5.2: Implementation steps of proposed alarm system
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determine whether they can be satisfied simultaneously. This analysis is performed

using a constraint separation optimization method, which formulates an objective

function using the non-linear constraints and keeps the linear inequalities as con-

straints. Global minimum of the objective function is determined subject to all the

linear constraints. A non-negative global minimum of the objective function implies

that there is no feasible solution that satisfies all the inequality constraints. Thus a

‘warning’ is issued to the operator, when a non-negative minimum is determined for

the objective function. In the following sections, descriptions of the different modules

of the predictive warning system are presented in detail.

5.2.3 Open loop prediction to check a safety condition

Consider the non-linear system in Equation 5.1. One-step ahead prediction of states

can be found as:

xk+1 = f(xk,uk,dk), (5.6)

where, xk uk and dk are the state variables, manipulated variables and disturbances

respectively. We assume that the process is at a steady state before disturbance affects

the system.

Assume that a disturbance entered the system at time step k. The disturbance will

cause the system states to change. If there is no controller in the system, the one step

ahead ‘open-loop response’ of the system can be predicted using the system model as

follows:

x̂r,k+1 = f(xr,k, uk,1, uk,2, ......, uk,nu , dk,1, dk,2, ..., dk,np) (5.7)
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where r=1, 2, ..., nx. This equation can be used successively to evaluate l-step ahead

prediction of states as follows:

x̂r,k+l = f(xr,k+l−1, uk,1, uk,2, ......, uk,nu , dk,1, dk,2, ..., dk,np) (5.8)

where l = 2, 3, ...L and L is the length of the ‘monitoring horizon’. From Equations 5.7

and 5.8 we have prediction profiles for each variable. Future outputs can be evaluated

from the predicted states as follows:

yk+l = g(xk+l), (5.9)

where non-linear mapping g : Rnx → Rny describes the relation between states and

measurements.

Open loop predicted states indicate a possible outcome of the states without any con-

trol action. The predicted states are checked against the safety limits of the system. If

all predicted variables are within safety limits, that indicates that the disturbance will

not cause a violation of safety limits and the system will remain in a normal state,

even in presence of disturbance. However, if any of the predicted states violates safety

conditions, further analysis is performed to check whether the effect of the disturbance

can be mitigated by the controller.

5.2.4 Safety check for closed loop system

The controller’s ability to keep the system within safety limits is checked in this

step. This is done independent of the controller. Using a non-linear feasibility analysis

algorithm, it is determined if there is exists a feasible solution within the input and

output safety limits of the system (i.e. Definition 1). If there is a feasible solution, ‘no
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warning’ will be issued by monitoring system; otherwise, a warning will be issued.

Following the notations discussed earlier, ∆yi,k+l,c is a function of all the control

actions at time step k + l; output constraints can be written as the following two

inequalities:

yi,l − ŷi,k+l −Gi(u1,k+l, u2,k+l, ...unu,k+l) ≤ 0, (5.10)

ŷi,k+l −Gi(u1,k+l, u2,k+l, ...unu,k+l)− yi,h ≤ 0, (5.11)

where, i = 1, 2, ...ny, and Gi is a nonlinear function describing the effect of control

action on i-th output. Input constraints are described as:

uj,1 ≤ uj,k+l ≤ uj,h. (5.12)

If all the output and input constraints described above are satisfied simultaneously,

we conclude that the controller has the capacity to bring the process back to a safe

operating region. This feasibility check is carried out successively for each time step

in the ‘monitoring horizon’. If all the constraints are linear, the problem can be for-

mulated as a linear optimization problem, and linear programming can be used to

check for feasible solution. However, from Equations 5.10, 5.11 and 5.12, it is evident

that, though input constraints are linear, output constraints are nonlinear for any

non-linear system. Hence, feasibility checking of all the constraints is a non-trivial

problem. In our current study a feasibility test is performed through the constraint

separation method described by [Schnabel, 1982].
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5.2.5 Feasibility analysis using constraint separation method

Consider a nonlinear constraint of the form in Equation 5.10,

y1,l − ŷ1,k+l −G1(u1,k+l, u2,k+l, ...unu,k+l) ≤ 0,

or

O(uj,k+l) ≤ 0,

(5.13)

along with 2nu number of linear constraints as follows: =

uj,1 ≤ uj,k+l ≤ uj,h, (5.14)

where j = 1, 2, ..nu, l = 1, 2, ..L and O is the non-linear function of uj,k+l that describes

the non-linear constraint in Equation 5.10. To determine whether there exists a feasible

solution of all the constraints, an optimization problem can be formulated as follows:

min
uj,k+l

O(uj,k+l)

subject to uj,1 ≤ uj,k+l ≤ uj,h.

(5.15)

Now, if the global minimum of the optimization problem is positive, it clearly indicates

that Equation 5.13 cannot be satisfied with the given linear constraints. Thus a feasible

solution of all the constraints is not possible. Now we will expand this result for m

number of non-linear constraints Oi where, i = 1, 2..m. However, inclusion of more

non-linear constraints will lead to a discontinuous objective function of the following

form:
min
uj,k+l

φ(uj,k+l) =
m∑
i=1

Oi+(uj,k+l)

subject to uj,1 ≤ uj,k+l ≤ uj,h.

(5.16)
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Figure 5.3: Responses of a typical weight function

where

Oi+(uj,k+l) =


Oi(uj,k+l) Oi(uj,k+l) > 0

0 Oi(uj,k+l) ≤ 0
(5.17)

Due to discontinuity in the objective function, evaluation of the global minimum

using standard optimization procedure is difficult. [Schnabel, 1982] proposed the use

of a continuous weight function. The property of the weight function is such that

it penalizes a positive input and rewards a negative input. Different types of weight

functions are suggested by the work of [Schnabel, 1982]. For our current study, we

used a weight function from the exponential family. A typical shape of weight function

is shown in Figure 5.3. Using weight function, Equation 5.18 is redefined as:

min
uj,k+l

φ(x) =
m∑
i=1

W (Oi(uj,k+l))

subject to uj,1 ≤ uj,k+l ≤ uj,h.

(5.18)
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Figure 5.4: Schematic diagram of a CSTR

Optimization is performed with a gradient descent nonlinear optimizer to evaluate the

global minimum of function φ(uj,k+l). A positive value of the objective function indi-

cates that one or more constraints are violated. However, when a negative minimum

is found, it indicates that a feasible solution can be found.

5.3 Case study

The proposed predictive warning system is demonstrated on a continuous stirred

tank reactor (CSTR) model. A schematic diagram of a CSTR is shown in Figure 5.4.

Governing equations of the CSTR are described as follows:

dCA
dt

= q

V
(CAi − CA)− k0e

−EA/TCA + w1 (5.19)

dT

dt
= q

V
(Ti − T )− ∆H

ρCp
k0e
−EA/TCA −

UA

ρCpV
(T − Tc) + w2, (5.20)
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Table 5.1: Parameters of CSTR

Variable Unit Value
V Litre 100
k0 s−1 1.2× 109

dH Jmol−1 -5× 104

ρ gLitre−1 1000
Cp Jg−1K−1 0.239
U Jcm2s−1K−1 83.3
A cm2 10
Tc K 305
EA/R K 8750

where CA is the concentration of the reactant, T is the temperature in the reactor,

q and V are flow-rate and volume and CAi and Ti are the feed concentration and

temperature respectively. The reaction rate is k0e
−EA/TCA, ∆H is the reaction heat,

ρ is the density, Cp is the specific heat, A is the area of heat transfer, U is the

overall heat co-efficient and Tc is the temperature of the cooling fluid. w = [w1 w2]T

represents the plant model mismatch of the system. In this case we assumed w was

random Gaussian. The operating range of process inputs and different parameters of

the system were chosen from the work of [Henson and Seborg, 1997] and are stated in

Table 5.1. These parameters remain the same throughout the case study. Nonlinear

state equations were solved by the differential equation editor (DEE) of Simulink

and were used as the process plant. Measurement noise was added to the states and

measurement equation is expressed as follows:

yk = [CA T ]T + ν (5.21)

where, yk is the process measurement and ν is the measurement noise. Measured

outputs CA and T were controlled by two PID controllers. Controllers regulated the

feed concentration CAi and feed temperature Ti to achieve the desired concentration
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CA and temperature T of the reactant. Feed concentration was varied between 0 and

1 and feed temperature was varied between 300◦C and 500◦C. A step change in feed

flow q was considered as disturbance to the plant. Different scenarios were defined

based on the size of the step disturbance.

5.3.1 Demonstration of the warning system

The proposed predictive warning system had been demonstrated for three different

disturbance scenarios. From many case simulations, these scenarios were selected to

show the three possible outcomes when a disturbance affects the system. These are:

(i) disturbance size is small and does not cause a violation of the safety threshold,

even if there is no control action; (ii) disturbance is large enough to cause a violation

for an open loop system; however, the controller has the capacity to nullify the effect;

(iii) a large disturbance that perturbs the system significantly. These three scenarios

were created changing the step size of feed flow. The proposed warning scheme was

applied to these three simulated cases and the consistency of the alarm system out-

comes (i.e., ‘no alarm’, ‘alarm’) was checked against the actual closed loop signal.

For all the scenarios, the plant was initially brought to a steady state at CA=0.7 and

T=330K using two PID controllers. Controllers govern the manipulated variables:

feed concentration CAi and temperature Ti. The ranges of these manipulated vari-

ables are :

0 ≤ CAi ≤ 1 and 200 K ≤ Ti ≤ 500 K.

The lower safety threshold of concentration CA and temperature T were set at 0.6 and

320 K respectively. Feed flow q was set at 1.667 litre/s, till plant steady state was

achieved by the controller. After a steady state was achieved, feed flow was decreased

to a lower value to introduce a disturbance to the system.
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(a) Concentration plot (b) Temperature plot

Figure 5.5: Predicted open loop states and closed loop measurements of the CSTR
when feed flow is changed from 1.6 to 1 litre/s

For the first scenario, feed flow was decreased to 1 litre/s. Open loop predictions of

concentration and temperature for different time instances are shown in Figures 5.5a

and 5.5b. The results showed that the predicted temperature and concentration at

the monitoring horizon (400s to 500s) remain within the safety limits and no alarm

was issued. Measured concentration and temperature validated the ‘no warning’ state

and are shown in Figures 5.5a and 5.5b.

For the second scenario, feed flow was changed to 0.8 litre/s after the steady state

was achieved. Open loop predictions of concentration and temperature for this sce-

nario are shown in Figures 5.6a and 5.6b. Results show that the open loop predicted

temperature exceeds the safety threshold. Hence, the warning system proceeds to the

next stage to check if all the input and output constraints can be satisfied in a closed

loop scenario. Input constraints are defined from the upper and lower thresholds of

the manipulated variables. Output constraints are defined from the safety thresholds

and open loop predictions of states. To reduce the computational load, predictions are

sampled every 20 seconds and five samples are used to define five output constraints
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(a) Concentration plot (b) Temperature plot

Figure 5.6: Predicted open loop states and closed loop measurements of the CSTR
when feed flow is changed from 1.6 to 0.8 litre/s

for each measured variable. Hence, concentration constraints and temperature con-

straints are defined. In the feasibility analysis, it was checked to determine whether

all the input and output constraints could be satisfied simultaneously. The proposed

constraint separation method was used to perform this analysis at each time instant.

A weighting function was used to penalize a positive minimum and reward a negative

minimum. It was initially set as w1(x) = e4x − 1. The solution of the optimization

function for the given constrained conditions for each time instant is shown in Figure

5.7. It was found that the minimum for the optimization function remained negative

for each time instant. This result suggests that controllers have sufficient capacity

to nullify the disturbance; the system remained at the ‘no warning state’. Measured

variables for this scenario are shown in Figures 5.6a and 5.6b. Figures show that

both concentration and temperature started to decrease after a disturbance was in-

troduced. However, the controllers were able to counteract the effect and brought the

measured variables to their original positions. Thus, measured variables support the

‘no alarm’ state from the warning system.
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Figure 5.7: Global minima evaluated for a feasible solution when flow rate is changed
to 0.8 litre/s.

For the third scenario, a higher level of disturbance was introduced by changing the

flow from 1.667 litre/s to 0.2 litre/s at t = 400 s. Predicted concentration and

temperature for this case are shown in Figures 5.8a and 5.8b. Though the predicted

concentration remained above the lower threshold, the predicted temperature violated

the lower threshold. Similar to the previous scenario, the controller’s ability to nullify

this disturbance was checked using the feasibility analysis algorithm.

Three weighting functions were used for making the system more robust. The global

minimum for this case is shown in Figure 5.9. It was found that after the disturbance

was introduced, the global minimum showed a positive value, which indicates a viola-

tion of one or more safety conditions. Thus, a warning was issued to the operators for

this scenario. The warning system is validated from the process measurements shown

in Figures 5.8a and 5.8b. The results show that the temperature exceeded the safety

threshold at t = 425s. Thus, using the proposed method, a warning was issued 25 s

earlier, compared to the conventional method. The predictive warning system issued
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(a) Concentration plot (b) Temperature plot

Figure 5.8: Predicted open loop states and closed loop measurements of the CSTR
when feed flow is changed from 1.6 to 1 litre/s

a warning at t = 400s, as soon as the disturbance entered the system.

5.3.2 Performance of the proposed method using different

weight functions

The variable separation method uses a weighting function to smooth the discontinu-

ity in an objective function. The weighting function was chosen such that it penalizes

a positive value and rewards a negative optimized solution. As different nonlinear

safety constraints contribute in the objective function, there is a possibility that a

small positive value from certain constraints may not be realizable as one can be neu-

tralized by a number of negative solutions. To eliminate that possibility, the weighting

function was changed after a negative outcome from the objective function was ob-

tained. For the case study, the weight function was initially set as, w1(x)=e4x − 1.

After a negative outcome of the objective function was observed, this weight function

was changed to w2(x)=e8x − 1. This procedure was repeated twice to improve the

robustness of the overall ‘warning generation’ procedure. Consider the third scenario

161



Figure 5.9: Global minima evaluated for a feasible solution when flow rate is changed
to 0.2 litre/s.

of the previous section, where the disturbance was large enough to take the process

measurement below the lower threshold. The plant was initially steadied at 0.7 and

330 K. At the steady state, feed flow was changed from 1.6 to 0.2 litre/s. A robust

result was obtained in the previous case study by successively changing the weight

function when a negative minimum was observed. Three different fixed weight func-

tions were used. These functions are:

w1=e4x − 1;

w2=e8x − 1;

w3=e12x − 1.

Steps of the weight functions are shown in Figure 5.10. Global minima of the objective

functions are evaluated and passed through the weight functions at each instant. Eval-

uated minima at the output of the different weights and alarm generation threshold

are shown in Figure 5.11a, 5.12a and 5.13a. A warning is generated when output at

the weight function shows non-zero values. Generated alarm profiles from the different

weight functions are shown in Figure 5.11b, 5.12b and 5.13b.
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Figure 5.10: Responses of the different weight functions

(a) Evaluated global minimum using w1 (b) Generated warning using w1

Figure 5.11: Global minimum and alarm profile using w1
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(a) Evaluated global minimum using w2 (b) Generated warning using w2

Figure 5.12: Global minimum and alarm profile using w2

(a) Evaluated global minimum using w3 (b) Generated warning using w3

Figure 5.13: Global minimum and alarm profile using w3
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The alarm profile from w1 shows a ‘no warning state’ after 418s, even though mea-

surements show a violation of the safety condition. For weight function w2, there was

alarm chattering, as for some instances the positive minimum was nullified by the

other negative minima. The third curve shows the same alarm profile found using

weight function w3. It shows a sustained alarm, which is consistent with the ob-

served measurement. Execution time of the proposed warning generation system is

also an important factor. Execution time increases with the use of steeper weight func-

tions. Thus, accuracy and execution time both need to be considered when selecting

an initial weight function and its gradual increase for warning generation.

5.4 Conclusions

A predictive warning generation system for a nonlinear system was presented. The

warning was generated analysing the predictive states, current measurement, safety

limits and available controllers’ capacity. Future states were predicted from the open-

loop process model using a nonlinear receding horizon predictor. Predicted states

were used to identify a possible violation of safety limits. Once a potential abnormal

outcome was detected, a feasibility analysis was performed to check whether the

existing controller was capable of negating the effect of disturbance.

Performance and robustness of the proposed method was demonstrated through a case

study with different scenarios. The proposed method was able to issue an early warning

significantly earlier compared to monitoring a measured signal. In this paper, we also

deal with identification of a feasible solution of nonlinear constrained system. In the

proposed monitoring system, constraint separation based optimization method was

used to perform this task. The constraint separation method uses weight function

which was changed iteratively to improve the robustness. The ability of this weight
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function to generate a warning was also studied. Results showed that accuracy of the

warning system increases with the use of steeper weight functions.
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Chapter 6

Conclusions and Future

Recommendations

6.1 Contributions

The current research was performed to develop a predictive warning generation scheme

for chemical processes with unknown disturbances. Warning was generated using pre-

dictive states from the moving horizon predictor of MPC. The predictive scheme was

initially developed for restrictive cases; later the scheme was modified for more general

cases, relaxing the constraints. The research was completed fulfilling the goals defined

in chapter 1. Contributions and outcomes of the thesis is summarized below:

(i) In chapter 2, an experimental study is performed to evaluate the control perfor-

mance of PID-free MPC as supervisory controller. In-house DMC was designed on a

pilot scale plant of CSTH and control performance of the controller was compared

with its competitor structures. Based on the ISE value, PID-free MPC showed supe-

rior performance in set-point tracking of the temperature.

(ii) Control frequency plays an important role while executing PID-free controller. Ef-
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fect of control frequency on PID-free MPC was also studied in chapter 2, through a

comparative study of the control performance of DMCs designed with different con-

trol frequencies.

(iii) In chapter 3, predictive warning generation system was designed for linear

process with unknown disturbance. This work improved an earlier warning scheme

of [Khan et al., 2014] including unknown input observer. Luenberger and Kalman-

based observers were designed and used in the warning scheme to estimate the distur-

bance. Proposed scheme was applied to a virtual plant described in [Thornhill et al.,

2008]. Results showed robust performance while generating warning. Kalman-based

scheme showed improved performance compared to Luenberger-based scheme while

estimating the disturbance in the noisy scenarios.

(iv) As, the proposed scheme in chapter 3 is an extension of an earlier work, a compar-

ison of the performances of the two schemes is provided. The results of the proposed

scheme was consistent with the previous work. However, lead-time of the warning

generation reduced with the introduction of the unknown disturbance.

(v) In chapter 4, an EM-like particle filter based simultaneous state and unknown

disturbance estimation framework was developed. The proposed framework was ap-

plied to simulated models of CSTR and four-tank system, and an experimental data

of a pilot-scale plant of a four-tank system. The results showed consistent estimation

of states and inputs for all cases.

(vi) Convergence analysis of the estimated input was performed for both simulation

and experimental cases. The results showed that, proposed algorithm converged to

the estimated inputs after few iterations.

(vii) In chapter 5, warning generation of a nonlinear system is presented using mov-

ing horizon predictor and feasibility analysis. Moving horizon was used to predicted

the process states. The predicted states, safety limits and actuator capacity was used
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to formulate the output and input constraints. A feasibility analysis was used to

determined if all the input and output constraints were satisfied using the existing

controllers’ capacity. Constraint separation method was used to perform the feasibil-

ity analysis.

(viii) Proposed warning scheme of chapter 5 was applied to a nonlinear CSTR

model. For different cases, proposed method was able to generate warning consis-

tently. Weight function plays a significant roles in constraint separation method. Hence,

performance of the warning system for different weight functions was also studied.

6.2 Future recommendations

Predictive warning generation for nonlinear system is still an open problem. In this

thesis, we systematically developed predictive scheme initially for linear process with

unknown input; later was extended for nonlinear system. Some areas of further re-

search is listed below:

(i) For simultaneous estimation of hidden states and unknown disturbances, we con-

sidered only step-type additive disturbance. Estimation scheme for multiplicative and

ramp-type disturbance needs further investigation. Estimation of the unknown dis-

turbance was hampered, when there was model mismatch. Improving the estimation

scheme for that case needs further consideration.

(ii) Warning generation scheme proposed in chapter 5, used known disturbance. Es-

timation scheme of the chapter 4 needs to be integrated with the warning scheme to

improve it further.
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