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Abstract 

Sea cucumbers play fundamental roles in marine ecosystems, and they have long been 

commercially harvested for seafood. In light of stock declines worldwide, research on cold-

water suspension-feeding species is expanding. This thesis explores two species from the 

North Atlantic. The first chapter validates an aging technique in Psolus fabricii, based on 

the growth rings found in its large calcareous dermal plates. Imaging of plates obtained 

from juveniles of known age confirmed the annual addition of a layer that extends the plate 

both vertically and horizontally, generating a pair of dark and light rings that can be used 

for aging. Wild individuals from shallow inshore areas were aged to a maximum of 28 

years and their main morphometrics compared with age. The three other experimental 

chapters focus on Cucumaria frondosa, which has been commercially harvested for 

decades in North America and was identified as a potential candidate for aquaculture, 

especially as a biofilter in integrated multi-tropic aquaculture (IMTA). The locomotor and 

feeding behaviours, and microhabitat selection (spatial distribution) of C. frondosa in 

response to various environmental factors were investigated in the laboratory. Sea 

cucumbers moved away from static conditions and fled the strongest flows, and their 

tentacle deployment and insertion rates (i.e. feeding rate) increased with flow. The flow 

regime favoured by C. frondosa was 21-40 cm s-1. Individuals were overall more mobile 

during the night, whereas no feeding differences were detected between diurnal and 

nocturnal phases. Gradients in phytoplankton concentration modulated the deployment of 

feeding tentacles but did not trigger any displacement toward the food source. C. frondosa 

exhibited a clear preference for substrates composed of bare rocks and rocks with coralline 
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algae and displayed a slight preference for darker substrate backgrounds. Finally, C. 

frondosa held in effluent water from salmon culture was determined to assimilate the waste, 

which modulated its biochemical composition; however, its health condition declined, 

suggesting that it cannot find appropriate or sufficient nutrients for growth and 

reproduction in these wastes. The findings presented here aim to improve our 

understanding of the biology and ecology of cold-water suspension-feeding sea cucumbers 

to guide and assist fisheries management and aquaculture development. 
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1.1 Ecological and social values of sea cucumbers 

Sea cucumbers, also called holothuroids or holothurians, belong to class 

Holothuroidea of phylum Echinodermata. They colonize most benthic habitats in temperate, 

polar and tropical oceans, from the intertidal zone to the deep sea (Conand, 2006). Based 

on their feeding modes, they can be broadly divided into deposit feeders (order 

Holothuriida), which gather organic detritus and sediments from the seafloor, and 

suspension feeders (order Dendrochirotida), which extract phytoplankton, microorganisms 

and particulate organic matter from the water column.  

Overall, sea cucumbers contribute greatly to benthic communities and they play 

important roles in marine ecosystems (Purcell et al., 2016). Some deposit-feeding species 

can maintain and improve sediment health through cleaning and bioturbation processes, 

thereby oxygenating sediments and altering the stratification and stability of soft bottoms 

(Uthicke, 1999; Purcell et al., 2016). A study conducted on the Great Barrier Reef showed 

that the species Holothuria atra and Stichopus chloronotus can bioturbate about 4600 kg 

year-1 1000 m-2 (dry weight), which is approximately the weight of the upper 5 mm of 

sediment (Uthicke, 1999). Also, some suspension-feeding sea cucumbers can regulate 

water quality by modulating its carbonate content and pH (Massin, 1982).  

Nutrient recycling has been suggested to be one of the most important ecological 

functions of sea cucumbers (Uthicke, 2001; Massin, 1982; Purcell et al., 2016). The release 

of inorganic nitrogen as ammonium and phosphate by sea cucumbers can be absorbed by 

nearby corals, microalgae and bacteria, therefore promoting their growth; in turn, the 

increased productivity provides food to sea cucumbers (Uthicke, 2001), thus developing a 
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recycling loop in the ecosystem (Purcell et al., 2016). Many symbionts have been found on 

sea cucumbers, acting as commensals or parasites [see Jangoux and Kinne (1990) and 

Eeckhaut et al. (2004) for reviews]. Studies have reported that H. atra acts as a critical host 

to the opisthobranch gastropod Plakobranchus ocellatus, which uses the sea cucumber as 

a refuge against predators and as a protected spawning site (Mercier and Hamel, 2005). A 

study by Caulier et al. (2014) reported that the diet of the harlequin crab Lissocarcinus 

orbicularis is closely associated with its hosts, sea cucumbers belonging to the genera 

Thelenota, Bohadschia and Holothuria. Finally, sea cucumbers are known to constitute 

important food sources for other species, both in shallow and in deep waters, thereby 

transferring energy from microalgae and organic detritus to consumers at higher trophic 

levels (Purcell et al., 2016). For example, primary productivity enters the food web through  

predation on the phytoplankton-feeding dendrochirotid Cucumaria frondosa by the sea star 

Solaster endeca (So et al., 2010). 

In addition to their ecological importance, sea cucumbers represent an economically 

valuable, conservation-worthy marine resource that supports coastal livelihoods around the 

world (Anderson et al., 2011). Owing to their nutritional and medicinal values, sea 

cucumbers have been an important food source for centuries in Asia and have been 

harvested in China and around the world for at least 400 years (Yang et al., 2015). Currently, 

over 70 species of holothuroids are commercially exploited and traded (Purcell et al., 2010). 

The majority of species harvested commercially belong to the order Holothuriida, 

specifically to the families Holothuriidae and Stichopodidae, which are mostly tropical 

(Purcell et al., 2012). Processed (cooked and dried) sea cucumber, often called bêche -de-

mer or trepang, is exported mostly to Asian markets (Conand, 2004; Purcell et al., 2012).  
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Over the past few decades, sea cucumber fisheries have developed rapidly because of 

an increasing demand for this prized seafood (Conand, 2004). Consequent overexploitation 

and declines in stocks of sea cucumbers have ensued in many parts of the world (Anderson 

et al., 2011; Friedman et al., 2011; Purcell et al., 2013). The most recent global 

investigation of the status of sea cucumber fisheries revealed that 20% of the stocks were 

depleted or collapsed, 38% over-exploited and 14% fully-exploited, with no room for 

expansion (Purcell et al., 2013). The management of sea cucumber populations is becoming 

a crucial imperative around the world; however, it is often hampered by a scarcity of 

biological and stock assessment information (Caddy, 1986; Purcell et al., 2013). 

Aquaculture has the potential to help replenish depleted sea cucumber stocks and mitigate 

the impacts of fisheries on wild populations (Bell et al., 2005; Yang et al., 2015). 

Commercial aquaculture of sea cucumber has begun relatively recently in some countries 

(Toral-Granda et al., 2008; Purcell et al., 2014) and protocols have only been developed 

for a small number of temperate and tropical species, such as Apostichopus japonicus, 

Isostichopus fuscus and Holothuria scabra (Chen, 2005; Eriksson et al., 2012; Hamel et 

al., 2001; Yang et al., 2015; Mercier and Hamel, 2013). Knowledge of the basic ecology 

and biology of most commercially important sea cucumbers remains too limited to develop 

efficient and cost-effective aquaculture programs.  
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1.2 Overview of focal species Cucumaria frondosa and Psolus 

fabricii 

1.2.1 Biology and commercial exploitation of Cucumaria frondosa  

Cucumaria frondosa is the most common sea cucumber in the North Atlantic and 

Arctic oceans, and one of the most abundant worldwide (Hamel and Mercier, 1996b; Singh 

et al., 2001). It is distributed off New England (USA), eastern and Arctic Canada, 

Greenland, and Scandinavia, as well as in the Faroe Islands and Russia (Fig. 1.1) (Hamel 

and Mercier, 2008; Jordan, 1972). It is therefore a prominent member of cold-water and 

polar benthic communities. Dense populations are most commonly found at depths of ~30 

m (Jordan, 1972; Singh et al., 1998), but the species occurs from shallow tide pools (Klugh, 

1924) to 300-400 m (Gosner, 1978), with few specimens found deeper than 800 m (Hamel 

and Mercier, 2008). C. frondosa differs markedly from most harvested and cultured species 

(Fig. 1.2). It is a cold-water species with annual reproduction and non-feeding 

(lecithotrophic) larval development (Hamel and Mercier, 1996a). It is also a passive 

suspension-feeder that captures particulate food, chiefly phytoplankton, by extending its 

tentacles in the water column (Hamel and Mercier, 1998).  

Declines in global sea cucumber resources have fueled an expansion of the industry, 

from traditional centers in Asia and the Indo-Pacific towards Europe and the Americas. In 

this context, C. frondosa became the target of commercial fisheries in eastern North 

America at the turn of the century. Like many other commercially important sea cucumber 

species, C. frondosa has been fished extensively in its distribution range to meet the 

increasing demand from Asia (Hamel and Mercier, 2008). The most commonly traded 
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product is the dried or fresh frozen body wall, generally including the longitudinal muscle 

bands (Fig. 1.3A). Dried aquapharyngeal bulbs (flowers), liquid or gel extracts and various 

supplements can also be found on the market (Hamel and Mercier, 2008). The price for C. 

frondosa (i.e. dried body wall or whole sea cucumber) on Asian markets reached 

approximately US$ 230 kg-1 dried weight a few years ago (Sze and Conand, 2015) and its 

value is steadily increasing (Fig. 1.3B). Recently, the use of sea cucumbers for medicinal 

and cosmetic purposes has gained popularity. Studies have shown that the tissues of C. 

frondosa are useful sources of antioxidants for human consumption (Mamelona et al., 2007) 

and Frondanol-A5P extracted from them has the ability to inhibit the growth of pancreatic 

cancer cells (Roginsky et al., 2010). In addition, it was shown that C. frondosa could 

consume particulate organic material efficiently, both in the laboratory and in the natural 

environment (absorption efficiency of 68-85%), making it a good candidate biofilter within 

integrated multi-tropic aquaculture (IMTA) settings (Nelson et al., 2012). The constant 

decline of wild stocks and the high marketability of C. frondosa for food and 

pharmaceutical/nutraceutical products highlight the importance of efficient management 

and investigation of its potential for aquaculture. Fisheries and ecological data have been 

gathered on C. frondosa over the past several decades, including on the reproductive cycle, 

larval development, settlement, and feeding (Hamel and Mercier, 1996b; 1998; Holtz and 

MacDonald, 2009; Singh et al., 1998; Gianasi et al., 2018; Gianasi et al., 2017). Several 

aspects of the biology and ecology of C. frondosa that would be crucial to the sustainable 

management of wild stocks and for the development of aquaculture techniques are still 

incompletely understood, such as age at maturity, recruitment processes, reproductive rate, 

and natural mortality (DFO, 2018). 
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1.2.2 Biology of Psolus fabricii  

Psolus fabricii belongs to family Psolidae in the order Dendrochirotida (Fig. 1.4) 

(Duben and Koren, 1846). It is an epifaunal suspension feeder occurring commonly in the 

North Atlantic, from the low tide mark to approximately 150 m depth from the Artic to 

Cape Cod (WoRMS, 2019). P. fabricii is covered with imbricating scales (plates) on the 

dorsal side. Tube feet are developed exclusively on the ventral sole, except for a few on 

the soft-skinned introvert (oral complex of dendrochirotids) and in the form of anal papillae 

around the anal opening (Coady, 1973). Research on P. fabricii is very limited because it 

is not a commercial species. Hopcroft et al. (1985) reported that P. fabricii depended less 

than other sea cucumbers on body surface respiration whereas Hamel et al. (1993) 

examined the reproductive cycle in relation to various environmental factors. Jennings and 

Hunt (2010) studied the recruitment patterns in the Bocabec Cove, Bay of Fundy, Canada 

and found P. fabricii settled in the highest densities in early July. This species is also a 

source of bioactive triterpene glycosides, which have a wide range of biological effects, 

such as cytotoxic, antifungal and immunomodulatory activities (Kalinin et al., 1989; 

Kalinin et al., 1983; Gorshkova et al., 1999).  

1.3 Major gaps in knowledge 

In order to sustainably manage populations of cold-water suspension-feeding sea 

cucumbers efficiently and generate metrics of strategic value for the development of their 

aquaculture, much deeper biological and ecological knowledge needs to be acquired (DFO, 

2018). 
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Chief among the current knowledge gaps is the relationship between size and age, 

which is instrumental for calculating growth, mortality and productivity. Among 

echinoderms, aging studies have centered on sea urchins (Brady and Scheibling, 2006; 

Ebert, 1988; Ebert et al., 1999; Ebert and Southon, 2003), brittle stars (Dahm and Brey, 

1998; Gage, 2003) and sea stars (Stump and Lucas, 1990) by measuring increments in 

skeletal plates. However, sea cucumbers have proven very difficult to age, because of their 

soft-bodied, polymorphic shape, and the small size or lack of permanent hard structures 

likely to exhibit growth rings (Watanabe et al., 2014). The most common approach so far 

for this group has relied on methods that are based on the indirect estimation of age, such 

as modal-progression analysis of size or weight (Poot-Salazar et al., 2014; Herrero-Pérezrul 

and Reyes-Bonilla, 2008), which is not accurate and often does not apply for juveniles. 

The habitat preferences, locomotion, and distribution patterns of sea cucumbers have 

previously been attributed to a variety of factors including substratum characteristics, food 

availability, light intensity, temperature and salinity fluctuations, tidal current and predator 

pressure (Slater and Jeffs, 2010; Navarro et al., 2013; Dissanayake and Stefansson, 2012; 

Mercier et al., 2000; Navarro et al., 2014; Mercier et al., 1999; Hamel and Mercier, 1996b; 

Da Silva et al., 1986). Knowledge of the spatial distribution patterns, and habitat 

preferences of C. frondosa are scant apart from field distribution studies conducted in the 

St. Lawrence Estuary (Hamel and Mercier, 1996b).  

Sea cucumbers are becoming popular candidates for IMTA. Some deposit-feeding 

species have been shown to consume and reduce aquaculture wastes, including 

Apostichopus japonicus (Zhou et al., 2006), and Parastichopus californicus (Paltzat et al., 

2008). As a suspension-feeder, C. frondosa may be held in suspended cages or directly on 
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the substrate. Recent research has revealed that C. frondosa is capable of consuming 

aquaculture waste material and can absorb particulate organic material efficiently, which 

means it may be a good biofilter within an IMTA setting (Fig. 1.5) (Nelson et al., 2012). 

However, whether C. frondosa in an IMTA system can use energy from the ingested wastes 

to grow and whether their overall health and biochemical profile will be affected remain 

unclear. 

1.4 Main objectives and thesis structure 

Drawing from some of the main knowledge gaps, the present work presents and 

validates a promising aging technique using the species P. fabricii, determines the 

influence of several external factors on the distribution, feeding and locomotor behaviour 

of C. frondosa, and explores its suitability for integration in IMTA systems. 

In an effort to develop a direct aging technique, Chapter 2 uncovered and explored 

growth rings on the dermal plates (ossicles) of P. fabricii. Ossicles are a key characteristic 

of sea cucumbers and they are of primary importance for taxonomic identification. They 

are mostly of microscopic size (Stricker, 1985), and they come in a wide variety of simple 

to complex shapes, such as rods, buttons, and anchors (Massin et al., 2000). The 

dendrochirotid species P. fabricii is covered by imbricating scale-like plates (ossicles), 

which can reach ~2 cm length in adults, and form a semi-rigid armour (Hopcroft et al., 

1985). In Chapter 2, the plates of sea cucumbers that were either wild-caught (unknown 

age) or laboratory-reared (known age) were examined and compared. The relationship 

between the number of annual plate rings (age) and other morphological parameters and 

features was also studied. The findings will be an important addition to the knowledge of 
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sea cucumber biology and may eventually be transferred to other less calcified 

dendrochirotids, such as C. frondosa (from the same geographic location) to provide a 

valuable tool for stock assessment, fisheries management and aquaculture.  

An understanding of the factors that influence the distribution of sea cucumbers is 

critical to improving the management of their populations and providing some basis for the 

development of aquaculture protocols (i.e. holding conditions). Two experimental chapters 

focused on determining locomotor and feeding behaviours, and microhabitat selection 

(spatial distribution) of C. frondosa in response to different flow regimes (Chapter 3), light 

intensities, levels of phytoplankton concentration (its main source of food), substrate types 

and background colours (Chapter 4). The putative influence of light on its diel locomotor 

and feeding activities was also assessed in Chapter 4, and a parallel analysis of behavioural 

responses to flow in C. frondosa was integrated in another publication (Appendix 1).  

Chapter 5 compared several metrics between wild individuals of C. frondosa and 

individuals having been held for 4 years in the effluent of an Atlantic salmon culture (i.e. 

IMTA). The aims were (i) to determine whether C. frondosa can assimilate the wastes 

using stable isotope and specific fish-feed fatty acid biomarkers and (ii) whether they can 

be sustained on effluent wastes from a salmon culture by comparing health metrics and 

biochemical composition between the two groups of sea cucumbers. 

Finally, Chapter 6 provides a summary of the research findings and highlights the main 

conclusions, indicating how they may improve our understanding of the biology and 

ecology of cold-water suspension-feeding sea cucumbers with applications to management 

and aquaculture. It also presents directions for future research in these areas.   
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1.6 Figures 

 

Figure 1.1 Known distribution of Cucumaria frondosa around the world (excluding C. 

frondosa japonica). 
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Figure 1.2 Three adults of Cucumaria frondosa, displaying the most common colour 

morphs. The individual on top is actively feeding. 
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Figure 1.3 (A) Dried body wall (from Ocean Choice International) and (B) commercial 

bags of Cucumaria frondosa (from a Chinese grocery store). 
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Figure 1.4 Adult of Psolus fabricii. 
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Figure 1.5 Illustration of a conceptual model for an integrated multi-trophic aquaculture 

(IMTA) system that includes caged suspension-feeding sea cucumbers (from DFO, 2013). 
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2.1 Abstract 

While age is fundamental in animal biology, forming the basis of critical concepts 

such as life-history strategies, longevity and population structures, measuring this variable 

in some taxa remains problematic. Such is the case of holothuroid echinoderms, which play 

key roles in marine benthic communities from the shore to the abyss, and are extensively 

fished in many regions across the globe. Here we present and validate a promising aging 

technique using the cold-water species Psolus fabricii. The method involves the extraction 

of the oldest dermal plates (largest dorsal ossicles) to preserve their original pigments and 

structure. While plates initially appear to have a uniform texture, polishing and dying them 

reveals layered ring patterns. A study of laboratory-reared juveniles from settlement to 40 

months of age, confirmed that one layer is added annually, making plates both larger and 

thicker, and generating successive light and dark rings, the latter representing the transition 

(overlap) between two layers. Therefore, each pair of rings represents an annual growth 

band. Size-at-age data obtained using this method revealed that growth of P. fabricii is 

slow and that wild individuals collected at diving depths had reached an age of several 

decades.    

Key words: sea cucumber, skeletal plates, age metrics, size at age, ossicles, morphometrics 

2.2 Introduction 

Understanding the age metrics of marine organisms is fundamental for estimating 

baseline parameters such as growth rate, population age structure, mortality rate, 

productivity, and recruitment (Campana, 2001; Moltschaniwskyj and Cappo, 2009). The 
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availability of a reliable aging tool is instrumental to the assessment of longevity as a basis 

for developing fishery management plans and conservation or recovery strategies, as well 

as understanding the role of focal species in maintaining and modifying the ecosystems 

they inhabit (Moltschaniwskyj and Cappo, 2009).  

The determination of age in certain marine organisms may be hampered by a lack of 

valid assessment methods, causing inaccuracy and/or imprecision (Campana, 2001; 

Bertignac and De Pontual, 2007). Within the phylum Echinodermata, all five extant classes 

possess ossicles, i.e. dermal calcareous elements that form part of the endoskeleton and 

provide rigidity and protection (Ruppert et al., 2004), which can display different forms 

and arrangements (Evamy and Shearman, 1965). Aging studies on echinoderms have 

centered on taxonomic classes exhibiting well-developed skeletons, such echinoids, i.e. sea 

urchins (Agatsuma and Nakata, 2004; Brady and Scheibling, 2006; Ebert et al., 1999), 

ophiuroids, i.e. brittle stars (Dahm and Brey, 1998; Gage, 2003) and asteroids, i.e. sea stars 

(Stump and Lucas, 1990). Among them, echinoids are the most calcified and the most 

widely studied. Two techniques are currently used to estimate their age: mark-recapture 

and sclerochronology (Moltschaniwskyj and Cappo, 2009). In the mark-recapture method, 

the diameter of the calcareous test is measured, and the skeletal elements (ossicles or plates) 

are tagged using baths or injections of chemicals such as tetracycline and calcein. Using 

sclerochronology methods, the bands on plates or plate-like ossicles, similar to the rings 

on trees, are used to estimate age (Ouréns et al., 2013). An essential assumption for using 

this technique is that a complete cycle (one translucent or dark ring and one opaque or light 

ring) is added each year (or following any other quantifiable periodicity), independent of 

individual size. However, these assumptions are not unanimously supported by 
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experiments and their accuracy remains open to discussion (Russell and Meredith, 2000; 

Narvaez et al., 2016).  

Echinoderms belonging to the class Holothuroidea (sea cucumbers) contribute 

significantly to species diversity, abundance and biomass, and they play fundamental roles 

in benthic communities of the world ocean (Purcell et al., 2016). They are also prized 

seafood (Yang et al., 2015), which has led to the overexploitation and consequent collapse 

of wild stocks in many regions (Anderson et al., 2011; Purcell et al., 2013). Therefore, the 

management of sea cucumbers has become a worldwide concern, and conservation plans 

are often hampered by the scarcity or unreliability of biological and ecological knowledge 

(Purcell et al., 2013). Management of commercial sea cucumber stocks is, to a significant 

extent, based on the estimation of population dynamics, which in turn depends on the 

determination of recruitment, growth rate, mortality and size at age. However, sea 

cucumbers have proven very difficult to age, because of their soft-bodied, polymorphic 

shape, and the small size of hard structures that could exhibit growth rings (Watanabe et 

al., 2014). Marking of ossicles of sea cucumbers with fluorochromes, such as tetracycline 

and calcein, may provide a valuable tool for mark-recapture studies and was tested in some 

of those species, such as Holothuria scabra (Purcell et al., 2006; Purcell and Blockmans, 

2009). However, ossicles in holothuroids may grow discontinuously and can take several 

months to reach full size (Stricker, 1985), making it difficult to age slow-growing and long-

lived species. Consequently, the most common approach so far for aging them has relied 

on indirect estimation, such as modal-progression analysis of size or weight (Poot-Salazar 

et al., 2014; Morgan, 2012; Hannah et al., 2012; Watanabe et al., 2014; Ebert, 1978; 

Herrero-Pérezrul and Reyes-Bonilla, 2008). For example, the growth pattern of Holothuria 
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atra has been studied using the Brody-Bertalanffy growth function (Ebert, 1978). One 

problem with such techniques is that there is not always a correlation between size (or 

weight) and age because environmental and endogenous factors may cause differences in 

growth rate or even negative growth (i.e. shrinking) in some individuals (Hamel and 

Mercier, 1996; So et al., 2010; Gianasi et al., 2017). 

In this study, we present and validate a technique for aging sea cucumbers based on 

the growth rings found in those calcareous plates using the species Psolus fabricii (Duben 

and Koren, 1846), a Psolidae sea cucumber belonging to the order Dendrochirotida. The 

species is an epifaunal suspension feeder occurring commonly from the low tide mark to 

approximately 150 m depth on hard substrates around the North Atlantic and Arctic Oceans 

(Brinkhurst et al., 1976). Like other psolids, P. fabricii is covered by imbricating scale-like 

plates, which form a semi-rigid armour (Hopcroft et al., 1985). Calcareous plates were first 

analyzed from their initial appearance in newly settled captive-reared juveniles over 40 

months of growth. The results showed clearly and consistently that one layer is added 

annually, in the form of a light (new) and a dark (overlapping) section. Plates of wild-

caught individuals of various sizes were then examined and their age determined using the 

number of rings, showing that this species lives in the order of decades. Plate metrics were 

also plotted against other morphological parameters that might be used to estimate age in 

a preliminary exploration of growth patterns. To our knowledge, this is the first evidence 

of the occurrence of growth rings in Holothuroidea, offering a promising tool as well as 

preliminary data on longevity and mean growth rates in a cold-water sea cucumber. 
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2.3 Material and methods 

2.3.1 Collections and cultures 

Fifty P. fabricii of various sizes (wet weight of 0.5-187.7 g) were collected between 

5 and 11 m depths in Logy Bay (47°39'12.8"N: 52°41'45.3"W) off southeastern 

Newfoundland, Canada. Over the holding period (2015-2018), these sea cucumbers were 

cultured in ten 40-L tanks with running seawater (20 L h-1) at ambient temperatures ranging 

from 1 to 7℃ under a naturally fluctuating photoperiod (9L/15D to 16L/8D) where light 

intensities ranged daily from 5 to 450 lx (Mercier and Hamel, 2010). Continuous input of 

new seawater in the tanks provided natural plankton and particulate organic matter as food 

sources (Gianasi et al., 2018b). Also, one individual (5.2 cm in maximum length; 19.2 g in 

wet weight) was collected opportunistically from 1050 m depth using a bottom-trawl 

operated by Fisheries and Oceans Canada (DFO), from the CCGS Teleost research vessel, 

in eastern Newfoundland (49°11'23.5"N: 50°12'42.3"W) in 2008. 

Hundreds of juveniles were reared from gametes that were naturally spawned in the 

laboratory on April 12, 2015 and April 28, 2018. Details of the rearing method are reported 

in the Supplementary Material, Method. During the 40 months of this study, tanks holding 

juveniles and adults were periodically examined for the presence of plates by siphoning the 

bottom of the tanks and examining the debris under a microscope (Leica M205FA), and no 

natural shedding of plates was detected. 
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2.3.2 Plate extraction and identification 

In early juveniles of P. fabricii (to about 4 mm in length, laboratory-reared), the plates 

are clearly visible and do not overlap. To extract them, whole individuals were placed 

individually into Eppendorf tubes (1.5 mL) and soft tissues dissolved by adding 1-2 drops 

of commercial bleach (2% NaClO, sodium hypochlorite). After 10-15 seconds, the plates 

deposited on the bottom of the tubes; they were subsequently rinsed 10 times with distilled 

water, transferred into depression slides and dried at room temperature (~20 ℃) for 1-2 h. 

The plates were first examined using a microscope and intact plates then placed onto stubs 

with pre-mounted carbon tabs and imaged using a scanning electron microscope (SEM, 

Phenom ProX) to characterize their ultrastructure, especially the ring patterns. 

In older juveniles and adults (wild-caught), the body wall is covered with several 

overlapping plates (Fig. S.2.1) firmly attached to tissues of the body wall. Two sampling 

methods were therefore used and compared. The first involved placing the body wall 

(without muscle bands) in a concentrated commercial bleach solution (8.25% NaClO) for 

12 h. The second method involved boiling the body wall in distilled water inside a slow 

cooker (Crock-Pot®), at low temperature (79-93 ℃) for 12 h. Three individuals were tested 

for each method. Once soft tissues had been dissolved, the remaining plates were rinsed 10 

times in distilled water and dried in the oven at 60 ℃ for 6 h. The plates were then examined 

under light microscopy and SEM. The plates obtained with the bleaching method showed 

thin node points (connection points) with frequent breakage between them, an irregular 

surface and an accentuated porous appearance, yielding an overall weaker texture. 

Extraction through low-temperature boiling did not cause any visual alteration of the 

surface of the plates and ensured preservation of their original shape, dimension and red 
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pigmentation (details in Fig. S.2.2 and Supplementary Material, Results). The boiling 

method also had the advantage of not requiring careful monitoring of immersion time and 

pH associated with the bleaching technique. Therefore, it was adopted for the remainder of 

the sampled individuals. 

As plates extracted from older juveniles and adults are thicker and opaque (compared 

to those of early juveniles up to 40-month old that are mainly translucent), they were 

polished manually with sandpaper (800-2000 grits) on both sides to decrease their thickness 

and increase their transparency. They were then bathed in ~1 mL red tissue marking dye 

(2-aminoethanol 2%, formaldehyde 0.05%, N-dimethylaminoethanol 2%, water 66%; 

Triangle Biomedical Sciences, Inc), rinsed using distilled water and lightly blotted to 

improve the ring visualization. The plates were immersed in xylene before examination 

under a microscope to further accentuate the rings, consisting of alternating light and dark 

regions.  

2.3.3 Validation of annual ring deposition 

The plates of laboratory-reared juveniles of various ages (3, 20, 30, and 40 months 

old; n = 3-5 from each age class) were detached. Based on preliminary experiments and by 

monitoring the primary plate from time 0 (settlement) in early juveniles (and their 

persistence during subsequent growth), the oldest plates with the highest number of rings 

were determined to be the largest plates from the middle body between the mouth and the 

anus (Fig. S.2.3). A subsample of 3-4 of these oldest plates were examined under light 

microscopy and SEM, and the number of growth rings of each plate was determined and 

compared with the actual age of each individual.  
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2.3.4 Correlation between growth rings and other morphometrics 

The actual age (ring counts on oldest plates) of laboratory-reared juveniles was 

compared to the following metrics: maximum body length (ventrally, from anterior to 

posterior end), total number of plates and size of the oldest plates.  

For wild-caught individuals, a suite of the following selected morphometrics were 

also collected prior to the soft tissues being rendered by boiling, and compared with their 

age (ring counts). Immersed weights of each individual (n = 37, including all organs) were 

obtained using an underhook weighing system (Ohaus® V21PW6) to which a net basket 

immersed in seawater was attached. Total wet weights were also obtained after wiping 

excess water. Maximum length and width (Fig. S.2.1B), distance mouth-to-anus (Fig. 

S.2.1A) and girth (circumference around the maximum width) were measured using rope. 

The ventral area of this species is flat (sole-like), rimmed with a marginal band of tube feet 

and a sparser row of tube feet in the middle (Fig. S.2.1B). The sole surface area of each 

individual was photographed and measured using ImageJ software. Eviscerated weight 

(body wall without aquapharyngeal bulb and muscle bands) was recorded after all other 

metrics were collated. The sexual maturity of each individual was determined by the gonad 

color and the presence of mature gametes in the gonad tubule using a microscope (Hamel 

et al., 1993). The plates of each individual were detached and their total number and 

combined dry weight were determined. Four of the oldest plates (the largest plate with the 

highest number of rings, described in section 2.3.3, Fig. S.2.1) in each of the 37 individuals 

were processed and photographed. Their Feret diameter and thickness measured using a 

digital caliper (Traceable®), and the oldest plates were used to determine the age of sea 

cucumbers. The widths of light and dark section of the rings on the plates were measured 
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under the microscope. In addition, the freshly collected deep-sea individual was processed 

in the same way, and its age was determined.  

To preliminarily model individual growth of wild sea cucumbers, the von Bertalanffy 

growth function (VBGF), which has been widely used with other species (Herrero-Pérezrul 

et al., 1999; Morgan, 2012; Poot-Salazar et al., 2014; Watanabe et al., 2014), was fitted to 

size-at-age data, including maximum length, maximum width, distance mouth-to-anus, and 

girth (all in cm) using: 

Lt = L∞(1 – e-K (t – t
0

)), 

where Lt is the expected size at age t, L∞ is the asymptotic size (theoretical average 

maximum length, width, distance mouth-to-anus or girth, in cm), K (year-1) is the growth 

rate coefficient, and t0 (year) is a modeling artifact of age at which size would be zero. 

Growth parameters of the VBGF were calculated for wild-caught individuals (excluding 

captive juveniles) using the FSA package in R (Ogle et al., 2018).   

2.4 Results 

2.4.1 Plate morphology and layered ring patterns 

The oldest plates are the largest among the plates located in the middle body section 

between the mouth and the anus and have the highest number of rings (Fig. S.2.1C). 

Inversely, the newest (smallest) plates occur along the margins close to the sole and have 

the lowest number of rings (Fig. S.2.1D). After the detachment of plates from the dermis, 

each of them showed a rhomboidal or irregular shape from a top view and a dome shape 
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from a side view, with a relatively hunched-up top and flat bottom (the latter being in 

contact with the soft tissue of the body wall).  

In juveniles, most plates were porous and nearly round; under scanning electron 

microscopy (SEM), the central perforations were larger than the marginal ones (Fig. 2.1). 

Fresh plates collected from adults were reddish in colour and superficially appeared to be 

uniform and composed of loosely compacted materials (Fig. S.2.2A). After being boiled, 

polished and dyed, the plates generally became whitish and opaque with a light brown 

colour in the center. Clear ring-like patterns became visible to the naked eye, which were 

shown to consist of broad light rings, alternating consistently with narrow dark rings under 

light microscopy (Fig. 2.2).    

2.4.2 Validation of annual ring deposition in juveniles of known age 

SEM revealed the details of the accretion pattern, showing that the plates from 3, 

20, 30, and 40-month-old (i.e. ˂1 to nearly 4 years) had one, two, three, and four layers, 

respectively (Fig. 2.1). By comparing the number of layers with the actual age of the 

juveniles, an annual growth pattern was obtained (Fig. 2.3). Specifically, from birth to one-

year-old, the plates increased in both diameter and thickness, but remained uniform in 

appearance, with no visible ring pattern. From one year onward, the plates added one layer 

each year, which made them both larger and thicker (Fig. 2.3A). The new layer is always 

added on the surface in contact with the soft body wall tissue. The plate increase in size 

was a combination of both an increase diameter of the newly added layer that was 

consistently greater than that of the previous layer (Fig. 2.3B), which made the plate expand 
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on the horizontal axis with only the last layer visible from bottom view (Fig. 2.1E) and the 

rings visible from top view (section naturally exposed to the surrounding environment).  

Based on this analysis of plates in known age juveniles, the light rings are those 

generated each year, and the dark rings represent the transition (vertical overlap) between 

two layers (i.e. two years). Hence, in the study of plates from larger (wild) individuals, 

paired light and dark rings were counted as one-year growth. 

2.4.3 Analysis of age-related metrics in juvenile, wild and deep-sea 

individuals  

The laboratory-reared juveniles aged 3-40 months ranged in length from 1.0-4.1 

mm and displayed 12 to 52 plates, the oldest plate measuring 398-1089 μm in diameter and 

65-156 μm in thickness (Fig. 2.1A). The specific morphological metrics of juveniles of 

various sizes are provided in the Supplementary Material, Results. Overall, the average 

number and size of plates and body length increased with age (Figs. 2.1, S.2.2). The mean 

increase in body length for juveniles was 1.1 ± 0.2 mm year-1 and the diameter and 

thickness of plates increased by 295 ± 56 μm and 42 ± 11 μm per year, respectively.  

The wild-caught individuals ranged from 0.1 to 18.9 g immersed weight, 0.5 to 187.7 

g total wet weight, 0.2 to 65.5 g eviscerated weight and 2.0 to 114.8 cm2 in sole surface 

area. They had between 211-1992 plates, totalling a dry weight between 0.1-19.5 g, and 

measuring 2.9-13.8 mm in diameter, and 0.54-1.96 mm in thickness. The number of annual 

rings on the plates varied from 4 to 28 (Fig. 2.2), indicating that age of the wild individuals 

examined was between 4-28 years. Based on the fact that no fully developed gonad 

(containing mature gametes) was detected in individuals with less than 10 annual rings, it 
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can be concluded that the age at sexual maturity is around 10 years. The mean widths of 

the light and dark rings were 74 ± 72 μm and 43 ± 24 μm, respectively. This metric was 

highly variable across a given plate and the plates of different individuals of the same age 

(Fig. 2.2). For the individual collected from a deep-sea location, the number of annual rings 

was established at 25 and the widths of light and dark rings were 56 ± 20 μm and 40 ± 17 

μm, respectively.  

Fit of the von Bertalanffy growth function to size-at-age data available from the wild-

caught individuals is presented in Fig. 2.4. The asymptotic (maximum) parameters were 

estimated to be 13.3 cm length, 9.9 cm width, 7.9 cm mouth-to-anus and 26.6 cm girth. 

The corresponding growth rate coefficients were 0.056, 0.059, 0.077, and 0.058 year-1, 

respectively. 

2.5 Discussion 

The present study combined the use of captive-reared juveniles of known age and wild 

juveniles and adults to validate the annual deposition of ring patterns on the dorsal plates 

of Psolus fabricii, representing the first successful direct aging method for sea cucumbers. 

It highlights a new research avenue involving growth rings in Holothuroidea and paves the 

way for future research in other holothuroid families and species. 

In Holothuroidea, ossicles occur in the tentacles, podia and body wall; they can be 

shaped like rods, tables, or anchors (Massin et al., 2000), and they are generally small, i.e. 

20-145 μm in Leptosynapta clarki (Stricker, 1985) and 35-250 μm in Holothuria scabra 

(Massin et al., 2000). However, the focal species, P. fabricii, exhibits permanent imbricated 

scale-like ossicles (i.e. plates) on the surface of the body wall, common to all members of 
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the Psolidae family, that measure between 450 μm in diameter in 3-month-old juveniles 

and 1.4 cm in the largest adults, making them easier to distinguish. While investigators had 

reported the presence of these plates in psolid species before (Bingham and Braithwaite, 

1986; McEuen and Chia, 1991; O’Loughlin and Whitfield, 2010; Giménez and 

Penchaszadeh, 2010), their porous aspect and uniform colour probably prevented them 

from being considered potential indicators of age. Moreover, these plates can be 

challenging to extract without damaging their fine structure. The boiling method developed 

here preserved the original pigments of plates and did not change their shape, dimension 

or fine details. Moreover, the rings on the plate obtained by boiling were more obvious 

than those on plates obtained by bleaching after polishing and dying them. 

Even though plate rings in echinoderms, especially in echinoids, have been studied 

for decades, very little is known about the mechanisms that underlie their addition and 

growth patterns. Rings were generally interpreted to reflect zones of rapid skeletal growth 

(coarse-pored stereo, opaque rings that appear light in reflected light, dark in transmitted 

light) possibly over a short period in spring/summer, followed by zones of slower growth 

(fine-pored stereo, translucent rings that appear dark in reflected light, light in transmitted 

light) probably encompassing a longer growth period in autumn/winter driven by 

temperature and food availability fluctuations (Pearse and Pearse, 1975). In the present 

study, the dual light and dark zones were also added each year; however, the light ring was 

added marginally and the dark ring consisted of the overlap between successive layers 

rather than representing a different density, i.e. the dark section grows over the margin of 

the plate from the previous year, and the light zone extends outward. While it is still unclear 

why the plates add one layer each year and how they are connected, it is obvious that the 
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dual ring pattern in P. fabricii is not the result of differences between rapid and slow growth 

periods reported in other echinoderms (Moltschaniwskyj and Cappo, 2009).  

The shallow-water population of P. fabricii examined here was exposed to seasonal 

fluctuations in both primary productivity and temperature, identifying these as potential 

drivers of the rings on the plates. Phytoplankton, which represents the principal food source 

of P. fabricii (Hamel et al. 1993), blooms between March and June, whereas seawater 

temperatures range from -1 to 8℃. The former factor is a more likely candidate since 

growth bursts were reported to coincide with peaks in phytoplankton production in another 

dendrochirotid sea cucumber from the same geographic location (So et al., 2010). 

Furthermore, the deep-sea specimen of P. fabricii examined opportunistically was exposed 

relatively stable temperature around 2-4℃, DFO station 27 (47°33'N, 52°35'24"W, 

Fisheries and Oceans Canada), minimizing the role of temperature relative to food 

availability. Deep-sea echinoids also contain cyclical growth rings (e.g. Echinus affinis 

(Gage and Tyler, 1985) and Echinosigra phiale (Gage, 1987)), and are exposed to relatively 

constant temperature. Annual rings in these species have been reported to mirror annual 

pulses in the downward flux of detrital food from the euphotic zone (Gage, 1987). Here, 

the difference in thickness between rings developed in the shallow-water versus deep-sea 

individuals of P. fabricii could reflect the quality and intensity of the food supply they are 

submitted to (fresh and abundant vs. degraded and sparse, respectively).  

The dependence of ring patterns on food supply may explain some of the 

inconsistencies reported to date in calcified echinoderms. While sclerochronology and the 

addition of a complete cycle of growth rings was validated annually in chemically tagged 

individuals of the echinoids Paracentrotus lividus (Ouréns et al., 2013) and 
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Strongylocentrotus droebachiensis (Robinson and MacIntyre, 1997), another study found 

that less than half of the individuals in the latter added a full cycle of growth rings for a 

given year (Russell and Meredith, 2000). Similarly, growth rings in the congener S. 

purpuratus were not necessarily laid down annually (Ebert, 1988). In the present study, 

imaging of plates obtained from juveniles of known age confirmed that the plates of the 

holothuroid P. fabricii consistently added one layer underneath the previously deposited 

one each year (in all individuals examined). Further studies will be required to confirm that 

this annual pattern persists throughout the adult life. The diameter of the newly added layer 

was consistently greater than that of the previous layer, which made the plate expand 

horizontally as well as vertically, so that only the last layer could be seen from bottom view. 

This growth pattern underlies the dome shape of the plate, with a relatively flat bottom and 

hunched-up top. Since the bottom of the plates is firmly imbedded in the body wall dermis, 

it can be assumed that they grow through basal nourishment. Because plates become more 

abundant with age, it is important to determine age by counting the number of rings in the 

oldest (largest) dorsal plates located in the proximal area between mouth and anus (as 

determined in the juveniles of known age); smaller plates located elsewhere on the body 

wall display fewer growth rings, as they are synthetized later in the life of the sea 

cucumbers.  

Annual rings in plates not only constitute a proxy of age but can also be used to derive 

useful information on growth patterns. Data from the present study suggest that P. fabricii 

is a long-lived, slow-growing animal. Since the individuals under study were obtained from 

shallow inshore locations, where smaller individuals are expected to occur compared to 

deeper habitats (30-60 m deep), longevity is assumed to be significantly longer than the 28 
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years measured here. A majority of benthic marine animals display asymptotic growth 

patterns, with rapid growth rates during the juvenile period followed by a slower growth 

once individuals reach sexual maturity (Moltschaniwskyj and Cappo, 2009). Fitting the 

size-at-age data from ring counts in wild individuals of P. fabricii to the commonly used 

von Bertalanffy growth function (VBGF) provided theoretical average maximum sizes in 

line with what we know of the species, and an overall stronger fit with the distance mouth-

to-anus metric. There was no clear growth asymptote within the range of the data, 

supporting that the individuals sampled had not yet reached maximum age. The unrealistic 

t0 values (age at which the size metrics would be zero) are not uncommon and illustrate the 

complexity and limitations of growth function fitting in echinoderms (Rogers-Bennett et 

al., 2003; Gage, 1987; Gage, 2003). Keeping in mind that direct aging of sea cucumbers 

has not been possible until now, it is difficult to explore growth models properly without 

going beyond the scope of the present study. Future investigations using larger samples 

sizes across a broader range of age classes are needed to provide greater insights into 

growth with age in this species. 

Among the challenges ahead is the considerable variability in size (length or weight) 

at age among individuals of wild populations, which may result from heredity and/or sex, 

or even from the fusion of embryos generating larger juveniles at a corresponding age 

(Gianasi et al., 2018a). Environmental factors may also be at play, as exemplified by 

differences between laboratory-reared and wild juveniles. The latter reached 0.4 cm in 

length after 40 months (3.3 years), consistent with growth of another dendrochirotid species 

from the same area inside similar mesocosm setups (So et al., 2010; Gianasi et al., 2018b). 

However, the smallest wild-caught P. fabricii in the present study measured 1.4 cm in 
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length and was determined to be 4 years old, i.e. it was just eight months older but 3.5 times 

larger. Similarly, the individual collected from the deep-water location was older (25 years 

old) than shallow-water counterparts of similar size (13-17 years old), and it had thinner 

ring intervals, consistent with slower growth rates in the deep-sea environment (Gage, 

1987). Inter-individual variability in size at age has been reported in holothuroids during 

early ontogeny (Liang et al., 2010), and has long been challenging studies of population 

structures. In addition, intra-individual variability in growth was evidenced here, which 

may reflect annual shifts in environmental conditions or a change in food supply following 

relocation to a different habitat (Hamel et al., 2019).  

Although it has yet to be extended to other sea cucumbers, solid evidence for annual 

periodicity in the size increment of the primary ossicle plates was provided here for P. 

fabricii, generating visible rings that allow the determination of age and growth rates at the 

individual and population level. Similar growth rings were also recently observed in a 

congener species, P. phantapus, from shallow waters of eastern Canada (J. Sun, 2018). The 

use of this new method in psolids and its potential application to other species with 

calcareous structures, such as circum-oral rings and smaller ossicles, provides a valuable 

tool for exploring longevity, population turnover, as well as patterns of growth under 

different environmental conditions and in various habitats. These may improve our 

understanding of population dynamics in sea cucumbers, which are key members of 

benthic communities worldwide and prized marine resources worldwide. 



44 

 

2.6 Acknowledgements 

The authors wish to thank the Field Services Unit for animal collections and the China 

Scholarship Council for support to J. Sun. Funding for some of the analytical work was 

provided by the Ocean Frontier Institute, through an award from the Canada First Research 

Excellence Fund (to A. Mercier). Many thanks to M. Montgomery and J. Ferguson-Roberts 

for providing captive-reared juveniles for this study, Y. Liang and N. Hu for helping with 

the figure and data analyses, S. Hill for assistance with the SEM study, and two anonymous 

reviewers for constructive comments. 

2.7 References 

Agatsuma, Y., Nakata, A., 2004. Age determination, reproduction and growth of the sea 

urchin Hemicentrotus pulcherrimus in Oshoro Bay, Hokkaido, Japan. Journal of the 

Marine Biological Association of the United Kingdom. 84, 401-405. 

Anderson, S.C., Flemming, J.M., Watson, R., Lotze, H.K., 2011. Serial exploitation of 

global sea cucumber fisheries. Fish and Fisheries. 12, 317-339. 

Bertignac, M., De Pontual, H., 2007. Consequences of bias in age estimation on assessment 

of the northern stock of European hake (Merluccius merluccius) and on management 

advice. ICES Journal of Marine Science. 64, 981-988. 

Bingham, B.L., Braithwaite, L.F., 1986. Defense adaptations of the dendrochirote 

holothurian Psolus chitonoides Clark. Journal of Experimental Marine Biology and 

Ecology. 98, 311-322. 

Brady, S.M., Scheibling, R.E., 2006. Changes in growth and reproduction of green sea 

urchins, Strongylocentrotus droebachiensis (Müller), during repopulation of the 



45 

 

shallow subtidal zone after mass mortality. Journal of Experimental Marine Biology 

and Ecology. 335, 277-291. 

Brinkhurst, R.O., Linkletter, L.E., Lord, E.I., Connors, S.A., Dadswell, M.J., 1976. A 

preliminary guide to the littoral and sublittoral marine invertebrates of 

Passamaquoddy Bay. Barns Hopkins Ltd., Saint John, New Brunswick. 

Campana, S., 2001. Accuracy, precision and quality control in age determination, including 

a review of the use and abuse of age validation methods. Journal of Fish Biology. 59, 

197-242. 

Dahm, C., Brey, T., 1998. Determination of growth and age of slow growing brittle stars 

(Echinodermata: Ophiuroidea) from natural growth bands. Journal of the Marine 

Biological Association of the United Kingdom. 78, 941-951. 

Ebert, T.A., 1978. Growth and size of the tropical sea cucumber Holothuria (Halodeima) 

atra Jager at Enewetak Atoll, Marshall Islands. Pacific Science. 32, 183-191. 

Ebert, T.A., 1988. Calibration of natural growth lines in ossicles of two sea urchins, 

Strongylocentrotus purpuratus and Echinometra mathaei, using tetracycline. in: 

Burke R.D., Mladenov P.V., Lambert P., Parsley R.L. (Eds.), Echinoderm Biology: 

Proceedings 6th International Echinoderm Conference. Balkema, Rotterdam, the 

Netherlands, pp. 435-443. 

Ebert, T.A., Dixon, J.D., Schroeter, S.C., Kalvass, P.E., Richmond, N.T., Bradbury, W.A., 

Woodby, D.A., 1999. Growth and mortality of red sea urchins Strongylocentrotus 

franciscanus across a latitudinal gradient. Marine Ecology Progress Series. 190, 189-

209. 



46 

 

Evamy, B., Shearman, D., 1965. The development of overgrowths from echinoderm 

fragments. Sedimentology. 5, 211-233. 

Fisheries and Oceans Canada, 2005. Hydographic Data. http://www.meds-sdmm.dfo-

mpo.gc.ca/isdmgdsi/azmp-pmza/hydro/index-eng.html (accessed on 09 February 

2019). 

Gage, J., 1987. Growth of the deep-sea irregular sea urchins Echinosigra phiale and 

Hemiaster expergitus in the Rockall Trough (NE Atlantic Ocean). Marine Biology. 96, 

19-30. 

Gage, J., Tyler, P., 1985. Growth and recruitment of the deep-sea urchin Echinus affinis. 

Marine Biology. 90, 41-53. 

Gage, J.D., 2003. Growth and production of Ophiocten gracilis (Ophiuroidea: 

Echinodermata) on the Scottish continental slope. Marine Biology. 143, 85-97. 

Gianasi, B.L., Hamel, J.-F., Mercier, A., 2018a. Full allogeneic fusion of embryos in a 

holothuroid echinoderm. Proceedings of the Royal Society B: Biological Sciences. 

285, 20180339. 

Gianasi, B.L., Hamel, J.-F., Mercier, A., 2018b. Morphometric and behavioural changes in 

the early life stages of the sea cucumber Cucumaria frondosa. Aquaculture. 490, 5-18. 

Gianasi, B.L., Parrish, C.C., Hamel, J.-F., Mercier, A., 2017. Influence of diet on growth, 

reproduction and lipid and fatty acid composition in the sea cucumber Cucumaria 

frondosa. Aquaculture Research. 48, 3413-3432. 

Giménez, J., Penchaszadeh, P.E., 2010. Brooding in Psolus patagonicus (Echinodermata: 

Holothuroidea) from Argentina, SW Atlantic Ocean. Helgoland Marine Research. 64, 

21-26. 



47 

 

Hamel, J.-F., Mercier, A., 1996. Evidence of chemical communication during the 

gametogenesis of holothuroids. Ecology. 77, 1600-1616. 

Hamel, J.-F., Himmelman, J.H., Dufresne, L., 1993. Gametogenesis and spawning of the 

sea cucumber Psolus fabricii (Duben and Koren). The Biological Bulletin. 184, 125-

143. 

Hamel, J.-F., Sun, J., Gianasi, B.L., Montgomery, E.M., Kenchington, E.L., Burel, B., 

Rowe, S., Winger, P.D., Mercier, A., 2019. Active buoyancy adjustment increases 

dispersal potential in benthic marine animals. Journal of Animal Ecology. 88, 820-

832. 

Hannah, L., Duprey, N., Blackburn, J., Hand, C.M., Pearce, C.M., 2012. Growth rate of the 

California sea cucumber Parastichopus californicus: measurement accuracy and 

relationships between size and weight metrics. North American Journal of Fisheries 

Management. 32, 167-176. 

Herrero-Pérezrul, M., Bonilla, H.R., García-Domínguez, F., Cintra-Buenrostro, C., 1999. 

Reproduction and growth of Isostichopus fuscus (Echinodermata: Holothuroidea) in 

the southern Gulf of California, Mexico. Marine Biology. 135, 521-532. 

Herrero-Pérezrul, M.D., Reyes-Bonilla, H., 2008. Weight-Length relationship and relative 

condition of the holothurian Isostichopus fuscus at Espíritu Santo Island, Gulf of 

California, Mexico. Revista de Biologia Tropical. 56. 

Hopcroft, R.R., Ward, D.B., Roff, J.C., 1985. The relative significance of body surface and 

cloacal respiration in Psolus fabricii (Holothuroidea: Dendrochirotida). Canadian 

Journal of Zoology. 63, 2878-2881. 



48 

 

Liang, M., Dong, S., Gao, Q., Wang, F., Tian, X., 2010. Individual variation in growth in 

sea cucumber Apostichopus japonicus (Selenck) housed individually. Journal of 

Ocean University of China. 9, 291-296. 

Massin, C., Mercier, A., Hamel, J.-F., 2000. Ossicle change in Holothuria scabra with a 

discussion of ossicle evolution within the Holothuriidae (Echinodermata). Acta 

Zoologica. 81, 77-91. 

McEuen, F., Chia, F.-S., 1991. Development and metamorphosis of two psolid sea 

cucumbers, Psolus chitonoides and Psolidium bullatum, with a review of reproductive 

patterns in the family Psolidae (Holothuroidea: Echinodermata). Marine Biology. 109, 

267-279. 

Mercier, A., Hamel, J.-F., 2010. Synchronized breeding events in sympatric marine 

invertebrates: role of behavior and fine temporal windows in maintaining reproductive 

isolation. Behavioral Ecology and Sociobiology. 64, 1749-1765. 

Moltschaniwskyj, N., Cappo, M., 2009. Alternatives to sectioned otoliths: the use of other 

structures and chemical techniques to estimate age and growth for marine vertebrates 

and invertebrates. in: Green B.S., Carlos G., Begg G.A. (Eds.), Tropical Fish Otoliths: 

Information for Assessment, Management and Ecology, Reviews: Methods and 

Technologies in Fish Biology and Fisheries. Springer, New York, pp. 133-173. 

Morgan, A.D., 2012. Use of a growth model to estimate size at age in the temperate sea 

cucumber Australostichopus mollis. SPC Beche-de-mer Information Bulletin. 32, 24-

32. 



49 

 

Narvaez, C.A., Johnson, L.E., Sainte‐Marie, B., 2016. Growth bands are an unreliable 

indicator of sea urchin age: evidence from the laboratory and the literature. Limnology 

and Oceanography: Methods. 14, 527-541. 

O’Loughlin, P.M., Whitfield, E., 2010. New species of Psolus Oken from Antarctica 

(Echinodermata: Holothuroidea: Psolidae). Zootaxa. 2528, 61-68. 

Ogle, D.H., Wheeler, P., Dinno, A., 2018. FSA: Fisheries Stock Analysis. R package 

version 0.8.22.9000. See https://github.com/droglenc/FSA. 

Ouréns, R., Flores, L., Fernández, L., Freire, J., 2013. Habitat and density-dependent 

growth of the sea urchin Paracentrotus lividus in Galicia (NW Spain). Journal of Sea 

Research. 76, 50-60. 

Pearse, J.S., Pearse, V.B., 1975. Growth zones in the echinoid skeleton. American Zoologist. 

15, 731-751. 

Poot-Salazar, A., Hernández-Flores, Á., Ardisson, P.-L., 2014. Use of the SLW index to 

calculate growth function in the sea cucumber Isostichopus badionotus. Scientific 

Reports. 4. 

Purcell, S.W., Blockmans, B.F., 2009. Effective fluorochrome marking of juvenile sea 

cucumbers for sea ranching and restocking. Aquaculture. 296, 263-270. 

Purcell, S.W., Blockmans, B.F., Nash, W.J., 2006. Efficacy of chemical markers and 

physical tags for large-scale release of an exploited holothurian. Journal of 

Experimental Marine Biology and Ecology. 334, 283-293. 

Purcell, S.W., Conand, C., Uthicke, S., Byrne, M., 2016. Ecological roles of exploited sea 

cucumbers. Oceanography and Marine Biology: An Annual Review. 54, 367-386. 



50 

 

Purcell, S.W., Mercier, A., Conand, C., Hamel, J.-F., Toral-Granda, M.V., Lovatelli, A., 

Uthicke, S., 2013. Sea cucumber fisheries: global analysis of stocks, management 

measures and drivers of overfishing. Fish and Fisheries. 14, 34-59. 

Robinson, S.M.C., MacIntyre, A.D., 1997. Aging and growth of the green sea urchin. 

Bulletin Aquaculture Association of Canada. 97, 56-60. 

Rogers-Bennett, L., Rogers, D.W., Bennett, W.A., Ebert, T.A., 2003. Modeling red sea 

urchin (Strongylocentrotus franciscanus) growth using six growth functions. Fishery 

Bulletin. 101, 614-626. 

Ruppert, E.E., Barnes, R.D., Fox, R.S., 2004. Invertebrate zoology: a functional 

evolutionary approach. Brooks/Cole-Thamson Learning, Belmont, CA, USA. 

Russell, M.P., Meredith, R.W., 2000. Natural growth lines in echinoid ossicles are not 

reliable indicators of age: a test using Strongylocentrotus droebachiensis. Invertebrate 

Biology. 119, 410-420. 

So, J.J., Hamel, J.-F., Mercier, A., 2010. Habitat utilisation, growth and predation of 

Cucumaria frondosa: implications for an emerging sea cucumber fishery. Fisheries 

Management and Ecology. 17, 473-484. 

Stricker, S.A., 1985. The ultrastructure and formation of the calcareous ossicles in the body 

wall of the sea cucumber Leptosynapta clarki (Echinodermata, Holothuroida). 

Zoomorphology. 105, 209-222. 

Stump, R., Lucas, J., 1990. Linear growth in spines from Acanthaster planci (L.) involving 

growth lines and periodic pigment bands. Coral Reefs. 9, 149-154. 



51 

 

Watanabe, S., Sumbing, J.G., Lebata-Ramos, M.J.H., 2014. Growth pattern of the tropical 

sea cucumber, Holothuria scabra, under captivity. Japan Agricultural Research 

Quarterly. 48, 457-464. 

Yang, H., Hamel, J.-F., Mercier, A., 2015. The sea cucumber Apostichopus japonicus: 

history, biology and aquaculture. Academic Press, New York, NY, USA. 



52 

 

2.8 Figures 
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Figure 2.1 Scanning electron microscopy (SEM) of the oldest plates in 3, 20, 30, and 40-

month-old juveniles of Psolus fabricii. Images on the right show the pattern more clearly 

using different colours for each layer. (A) Top view of the plate from a three-month-old 

(0.25 y) juvenile showing round shape with holes, and central holes larger than marginal 

holes. (B) Top view of the plate from a twenty-month-old (1.7 y) juvenile showing two 

layers (arrows). (C) Top view of the plate from a thirty-month-old (2.5 y) juvenile showing 

three layers (arrows). (D) Top view of the plate from a forty-month-old (3.3 y) juvenile 

showing four layers (arrows). (E) Bottom view of the plate from a forty-month-old (3.3 y) 

juvenile showing the fourth layer (arrow). The scale bar represents 200 μm in all panels. 
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Figure 2.2 Plates from wild-caught individuals of Psolus fabricii of different sizes, with different numbers of growth rings (A: 4 rings; 

B: 10 rings; C: 12 rings; D: 28 rings). One pair, consisting of a dark and a light ring, was considered to represent 1 year of growth. 

Therefore, the innermost rings of individuals A, B, C, and D were respectively developed in 2013, 2007, 2005, and 1989 and all the 

outermost rings were developed in 2017. The scale bar at the bottom represents 200 μm. 
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Figure 2.3 Schematic diagram of 2-D plate growth in the sea cucumber Psolus fabricii. (A) 

Vertical addition of one layer every year, shown from the side view. (B) Annual ring 

expansion on the horizontal plane, shown from the top view. The values above the panels 

correspond to the relative year. 

  



56 
 

 

 

Figure 2.4 von Bertalanffy function fitted to size-at-age data collected from wild 

individuals of Psolus fabricii (n = 37). (A) Maximum length-at-age; (B) Maximum width-

at-age; (C) Distance mouth-to-anus-at-age; (D) Girth-at-age. L∞ (cm) represents the 

asymptotic size, K (year-1) represents the growth rate coefficient, t0 (year) is the calculated 

age at which the selected size metrics would be zero, R2 is the coefficient of determination, 

and RSS is the residual sum of squares. Dotted lines represent 95% confidence intervals. 
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2.9 Supplementary Material  

Methods 

Rearing methods for juveniles of P. fabricii 

Fertilized oocytes (eggs) were collected and were incubated in flow-through rearing 

vessels. The latter consisted of 4-L round plastic containers with black bottom and walls, 

placed inside a 40-L tank supplied with ambient running seawater. In order to ensure a 

constant water flow into the rearing tanks, four equally spaced holes (40 cm2 each) were 

made on the walls close to the bottom of the round containers and covered with 1-mm mesh. 

Results 

Optimal method to extract plates in wild individuals 

Images obtained under the light microscope showed that the slow-cooking method 

preserved the original pigments (Fig. S.2.2A), whereas the use of hypochlorite solution 

bleached the plate (Fig. S.2.2D). SEM images of the plates also revealed striking 

differences in the structure and surface of the plates obtained with each method (Fig. S.2.2B, 

C, E, F). The hypochlorite solution clearly corroded the calcite crystals and modified the 

original plate shape, as well as its dimension and fine details. The plate obtained by low-

temperature boiling showed thick node points with no breakage between them (Fig. S.2.2B); 

in contrast, the plate obtained by bleaching showed thin node points with frequent breakage 

between them, and a frailer appearance overall (Fig. S.2.2E). The plate obtained by 

bleaching also showed an irregular surface and a porous appearance (Fig. S.2.2C) 

contrasting with that of the plate obtained by boiling, where the entire surface remained 
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smooth (Fig. S.2.2F). The plate obtained by bleaching was frailer than the plate obtained 

by boiling when they were polished. 

Morphological metrics of laboratory-reared and wild-caught individuals of various size 

Three-month-old juveniles were 1.2 ± 0.2 mm in length (Fig. S.2.3A) and displayed 

12 to 16 plates, the oldest measuring 448 ± 52 μm in diameter and 73 ± 9 μm in thickness 

(Fig. 2.1A). At 20 months, juveniles were 2.8 ± 0.2 mm long (Fig. S.2.3B), the number of 

plates ranged from 20 to 24, with the oldest ones measured 645 ± 44 μm in diameter and 

95 ± 11 μm in thickness (Fig. 2.1B). Thirty-month-old juveniles reached 3.4 ± 0.4 mm in 

length, had between 32 and 35 plates the oldest of which measured 746 ± 105 μm in 

diameter and 126 ± 24 μm in thickness (Fig. 2.1C). At 40 months of age, juveniles were 

3.7 ± 0.4 mm long (Fig. S.2.3C), with 41 to 52 plates of 985 ± 81 μm in diameter and 138 

± 19 μm in thickness (Fig. 2.1D, E).  
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Figures 

 

Figure S.2.1 Diagram of main morphometrics measured in adults of Psolus fabricii. (A) 

The dorsal body wall was covered with an “armour” of imbricating plates. The distance 

from mouth to anus measured in this study is illustrated. (B) The ventral area is flat (sole-

like) and rimmed with a marginal band of tube feet and a weaker row down (arrow) the 

middle. The maximum length, maximum width and sole area measured in this study are 

shown. (C) The largest (i.e. oldest) plates (arrow) are located in the middle body section 

between mouth and anus. (D) The smallest (newest) plates (arrow) occur along the margins 

close to the sole. The scale bar presents 3 cm in all panels. 
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Figure S.2.2 Plates of Psolus fabricii obtained from either low-temperature boiling (A, B, 

C) or bleaching (D, E, F) examined under a light stereomicroscope (A, D) or a scanning 

electron microscope (B, C, E, F). (A) Caramel colour pigment (cp, arrow) present in the 

centre of the plate. (B) Plate with thick node points (tknp, arrows) and no breakage between 

them. (C) Plate displaying a solid structure without cavities. (D) Plate showing loss of 

pigmentation. (E) Plate showing thin node points (tnnp, arrows) and breakage (b, arrows) 

between node points. (F) Porous surface (ps, arrows) of plate. The scale bar at the bottom 

represents 1000 μm in (A, D), 200 μm in (B, E) and 30 μm in (C, F). 
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Figure S.2.3 Juveniles of Psolus fabricii are covered with imbricating plates, the oldest of 

which increase in size and number with age (A: 3 months; B: 20 months; and C: 40 months). 

The scale bar represents 0.47 mm in (A), 0.88 mm in (B) and 1.0 mm in (C). 
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Chapter 3. Influence of flow on locomotion, feeding 

behaviour and spatial distribution of a suspension-

feeding sea cucumber 2 

 

 

 

 

 

 

 

 

___________________________ 

2A version of this manuscript was published in Journal of Experimental Biology (2018) 

221, jeb189597. doi: 10.1242/jeb.189597 

 



63 
 

3.1 Abstract 

Although movement in response to environmental conditions represents a 

fundamental link between animal behaviour and population ecology, it is rarely 

investigated in suspension feeders because they are generally perceived as sessile. Here, 

the interplay between water flow and fine locomotor and feeding behaviours was 

experimentally investigated for the first time in a free-moving suspension-feeding sea 

cucumber (Cucumaria frondosa; Echinodermata: Holothuroidea) using time-lapse 

videography in a mesocosm setting. Individuals moved away from static conditions in the 

weakest flow treatment and fled the strongest flows (>40 cm s-1) in the more dynamic 

treatments. The tentacles of individuals located in areas with flows of ≥40 cm s-1 was 

aligned with the direction of the current, whereas in flows <40 cm s-1, they were typically 

perpendicular to the direction of flow. Tentacle deployment and insertion rates (i.e. feeding 

rate) increased with flow, from 0.95 min-1 at 10 cm s-1 to 1.13 min-1 at 40 cm s-1. Three 

modes of locomotion were detected. Forward crawling was most frequent at flows ≤40 cm 

s-1, passive rolling dominated at flows >40 cm s-1, and active rolling occurred randomly at 

flows between 0 and 120 cm s-1. Overall, the flow regime favoured by Cucumaria frondosa 

was determined to be between 21 and 40 cm s-1, under which an optimal balance between 

efficient food capture and energy expenditure for attachment to the bottom was presumably 

found. These findings provide insight into the distribution and population dynamics of 

suspension-feeding holothuroids, and may also assist the fisheries management and 

aquaculture development of commercial species. 

Key words: Suspension feeding; Benthic animals, Sea cucumbers, Flow, Feeding, 

Locomotion. 
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3.2 Introduction 

Almost all organisms need to move at some point during their lives, either through 

active locomotion or through passive transport by physical means (e.g. water, winds) or 

other agents (Holyoak et al., 2008). The short-term goals of movement mainly relate to 

reproduction, feeding and survival, and the longer-term goals are to avoid inbreeding and 

population extinction (Holyoak et al., 2008). The causes, patterns, mechanisms, and 

consequences of movement play an important role in determining the structure and 

dynamics of populations, communities, and ecosystems; as well as the evolution and 

diversity of life (Nathan et al., 2008; Holyoak et al., 2008).  

Sea cucumbers are echinoderms belonging to class Holothuroidea. They are 

ubiquitous, sometimes dominant, and they play fundamental roles in marine ecosystems 

(Purcell et al., 2016). Deposit-feeding sea cucumbers influence the stratification and 

stability of the sediment via ingestion and bioturbation, and suspension-feeding sea 

cucumbers modulate water quality by altering its carbonate content and pH (Massin, 1982; 

Uthicke, 2001). Sea cucumbers are also known to constitute important food sources for 

other species, such as cod, salmon, and walruses (Hamel and Mercier, 2008a; 2008b). 

Finally, they represent an economically-valuable conservation-worthy marine resource that 

supports coastal livelihoods around the world (Anderson et al., 2011; Purcell et al., 2013). 

The habitat requirements, movement, population densities and broad spatial distribution of 

sea cucumbers have previously been linked to a variety of factors including depth (Woodby 

et al., 2000; Mercier et al., 2000b), substratum characteristics (Slater and Jeffs, 2010; 

Hamel and Mercier, 1996; Woodby et al., 2000; Young and Chia, 1982; Dissanayake and 
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Stefansson, 2012; Mercier et al., 2000b; 2000a), food availability (van Dam-Bates et al., 

2016; Navarro et al., 2014; Navarro et al., 2013), light intensity, temperature and salinity 

fluctuations (Navarro et al., 2014). Under most circumstances, sea cucumbers are 

considered sedentary or sessile, although they may move in direct response to 

environmental conditions (Young and Chia, 1982). Substrate type is a well-known driver 

of distribution; for example, the densities of the deposit-feeding Parastichopus californicus 

in the vicinity of Sitka Sound, Alaska (USA) were highest on shell debris and gravel, and 

lowest on mud and silt bottoms (Woodby et al., 2000). In a study of another deposit feeder, 

Holothuria scabra, the smallest juveniles (10-40 mm) buried themselves around sunrise 

and emerged close to sunset, and larger juveniles (40-140 mm) buried when the 

temperature declined and emerged around mid-day (Mercier et al., 1999). Other deposit-

feeding species, such as Australostichopus mollis and Holothuria sanctori, have been 

shown to congregate towards areas offering organic-rich food sources (Slater et al., 2011; 

Slater and Jeffs, 2010; Navarro et al., 2013). Water motion has also been shown to influence 

distribution in suspension-feeding sea cucumbers, which depend upon currents to bring 

food particles within reach of their tentacles (Fankboner, 1978; McKenzie, 1991). 

Clumping in response to wave action was documented along the west coast of South Africa 

(Barkai, 1991), and dense populations of the dendrochirotid Aslia lefevrei were most 

commonly found in areas of moderately strong water movement and hard substratum 

(Costelloe and Keegan, 1984a; 1984b).  

Cucumaria frondosa (Holothuroidea: Dendrochirotida) is the most abundant sea 

cucumber in the North Atlantic and Arctic Oceans, and it has been the target of commercial 

fisheries since the 1980s (Hamel and Mercier, 2008b). The long-lived species is distributed 
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along the coast of New England (USA), the eastern coast of Canada, Iceland and Greenland, 

down the coast of northern Europe and Scandinavia, as well as in the Faroe Islands (Jordan, 

1972). As a suspension feeder, C. frondosa ingests suspended particulate food, chiefly 

phytoplankton, by extending its tentacles in the water column (Hamel and Mercier, 1998). 

Dense populations are most commonly found on the rocky substrate at depths of ~30 m 

(Jordan, 1972), but the species occurs from shallow tide pools down to 300-400 m (Klugh, 

1924), with few specimens found deeper than 800 m (Hamel and Mercier, 2008b). Fisheries 

and ecological data have been gathered on C. frondosa over the past several decades, 

including on the reproductive cycle (Hamel and Mercier, 1995), larval development and 

settlement (Hamel and Mercier, 1996), and feeding (Singh et al., 1998; Hamel and Mercier, 

1998; Singh et al., 1999; Holtz and MacDonald, 2009). Knowledge of the spatial 

distribution patterns, and habitat preferences of C. frondosa are scant apart from 

distribution studies conducted in the St. Lawrence Estuary (Hamel and Mercier, 1996), 

which showed that smaller individuals mainly inhabited shallow water (<20 m) and larger 

ones concentrated in deeper water (≥20 m). 

The purpose of the present study was to explore locomotion in this seemingly slow 

moving benthic animal and assess how flow influences key behavioural metrics and 

ultimately determines the spatial distribution of this species. Experiments were first 

conducted to assess whether the presence or absence of current affected locomotor and 

feeding behaviours. Another set of experiments was conducted in a large mesocosm to 

refine our understanding and determine: (i) whether locomotor behaviour and proportions 

of immobile vs moving individuals vary among different water flows; (ii) whether cloacal 

respiration and feeding behaviour, indicated by proportions of individuals with tentacles 
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deployed and tentacle insertion rates (TIRs), are affected by water flows; and (iii) how the 

water flow will modulate the ultimate spatial distribution of suspension-feeding sea 

cucumbers. This knowledge will refine our ecological understanding of one of the 

dominant benthic species in the North Atlantic Ocean, provide tools for more efficient 

management of suspension-feeding sea cucumber populations, and generate metrics of 

strategic value for the development of optimal flow conditions during captive breeding and 

sea ranching.  

3.3 Materials and methods 

3.3.1 Collection, holding and experimental conditions  

Approximately 1000 adult sea cucumbers were collected by a fishing vessel 

(commercially licensed by the federal authority; Fisheries and Oceans Canada) on the 

southwest Grand Banks of Newfoundland (46°20’43.5” N: 56°23’0.28” W), eastern 

Canada, at depths between 20 and 30 m. They were kept in a flow-through raceway (11.5 

m × 2.5 m × 1.2 m) supplied with 30-60 L min-1 of ambient running seawater that was 

pumped directly from the ocean at 37 m depth. Healthy undamaged sea cucumbers of 

similar size, with a contracted body length of 15.6 ± 2.5 cm and a wet body mass of 293 ± 

36 g were selected for the experiments. Over the holding and study periods, the water 

temperature varied seasonally from 1 to 7℃, the salinity was 34-35, the pH was 7.8-8.2, 

and the dissolved oxygen remained >9.0 mg L-1 (all parameters were measured with a YSI® 

556 MPS probe every other day). Illumination was provided by multiple fluorescent lights 

suspended above the holding and experimental tanks. The maximum light intensity was 

80-270 lx (Traceable® 3252 light meter) and the light/dark (day-night) cycle varied 
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seasonally from 12 h: 12 h to 16 h:8 h light:dark. These ranges of environmental conditions 

are in line with those occurring in the native habitat of C. frondosa (Gianasi et al., 2015). 

Natural planktonic food (seston biomass in dry weight: 26.7-34.2 mg L-1) in ambient 

running seawater was available to sea cucumbers during the study.  

3.3.2 Small-scale preliminary experiments 

A first set of trials was conducted to verify the assumption that current is a factor in 

the movement and distribution of C. frondosa. They were conducted in two tanks (80 cm 

× 74 cm × 26 cm) supplied with ambient seawater and covered by black tarps to prevent 

interference from external factors; these served as control and experimental tanks. At the 

onset of a trial, a group of ten sea cucumbers was placed simultaneously into each of the 

two tanks, using new individuals for each trial. Over 12 h of acclimation under static 

conditions, the sea cucumbers moved around freely and distributed themselves randomly 

in the experimental tanks. Afterward, a small submersible pump (Hydor Koralia Nano 240 

Aquarium Circulation Pump) placed at one end of the tank was turned on to generate a 

nominal bottom current speed of ~27 cm s-1 toward the outflow at the other end (the pump 

in the control tank remained off). This nominal value, which was reduced gradually away 

from the source, is in the middle of the range determined to be suitable for feeding in C. 

frondosa (Holtz and MacDonald, 2009). Each trial was run for 48 h, after which the 

individuals were removed and the tanks were drained, cleaned and refilled; the whole 

process was repeated four consecutive times. To minimize tank effects, the control and 

experimental tanks were permuted after each replicate. Each trial was recorded via time 

lapse cameras sensitive to normal and infrared light (Brinno TLC 200 Pro and MAC 200 

DN) set to take one picture of the entire arenas every 10 min and stitch them together into 
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a video output. At night, an LED infrared illuminator (DC 12V) was automatically turned 

on as soon as the lights went off to allow recording of nocturnal activity. A grid dividing 

the tank into six equal rectangles was overlaid on the output videos and the number of line 

crossed by the sea cucumbers was used as an index of horizontal distance travelled along 

the bottom of the tank over 24 h. The time spent travelling and the time spent with tentacles 

deployed (Hamel and Mercier, 1998; Fankboner, 1978) over 24 h were determined in the 

presence and absence of flow. 

3.3.3 Large-scale mesocosm experiments 

Following the results of the small-scale trials, a set of experiments was conducted in 

a mesocosm mimicking natural conditions, consisting of a large flow-through raceway 

(8.25 m× 2.5 m× 0.85 m, length × width × depth). The bottom of the raceway was covered 

with 20-30 cm of gravel (1-3 cm diameter), with several scattered pebbles and small 

boulders (8-13 cm diameter). Gravelly and rocky substrates are reported to yield the highest 

densities of C. frondosa (Hamel and Mercier, 1996; So et al., 2010). A plate (5.5 m long) 

partially divided the tank longitudinally, thus creating a circular flume with unobstructed 

flow (Fig. 3.1). The two sections of the raceway on each side of the dividing plate, labeled 

A and B, were used alternately during the replicate trials to minimize any tank effect. Grid 

markings were made on the dividing plate and along the raceway, at 50-cm intervals, 

creating 11 equal areas on each side of the raceway and providing a reference for spatial 

analysis. The diameters of the inlet and outlet were 4.5 cm and 10 cm, respectively. Three 

nominal flow regimes at the water inlet (i.e. maximum flow measured using a hand-held 

Global Water FP211 probe) were used to create three treatments: weakly dynamic (≤20 cm 

s-1), mildly dynamic (≤100 cm s-1) and highly dynamic (≤200 cm s-1). The three nominal 
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flows generated an increasingly broad continuum of flow regimes across the experimental 

arena, all consistent with field values (Holtz and MacDonald, 2009). The near-bottom 

flows (speed and directionality) in the mesocosm were determined by pipetting fluorescein 

sodium salt (FSA, Sigma-Aldrich) 5 cm from the bottom and recording the movement of 

FSA with a camera. As the experimental arena is a raceway, a nearly laminar flow with 

minor turbulence was generated. The experimental design and the nominal flow regimes 

for each treatment are illustrated in Fig. 3.1.   

At the beginning of each experiment in the morning (09:00 h), 100 sea cucumbers 

were evenly spread between areas 2 and 11 at a density of 16 individuals m-2 (Fig. 3.1). 

After 5 h of acclimation in static conditions, sufficient to allow sea cucumbers to attach to 

the substrate (Holtz and MacDonald, 2009), the water flow was turned on (14:00 h) (as 

described above). A time-lapse video camera (described previously) was mounted 3 m 

above the experimental raceway to render a full view of the arena and allow measurement 

of the locomotor and feeding behaviours, and spatial distribution of sea cucumbers. The 

three flow treatments were conducted randomly. To minimize the possibility of 

environmental effects, the 4 replicate treatments were conducted alternatingly in side A or 

B (2 replicates for each; Fig. 3.1). Every replicate run lasted four days. No individual was 

ever used for two successive trials. The water flow in the tank was determined not only in 

tanks without sea cucumbers (i.e. nominal flows), but also around individual sea cucumbers 

using the handheld flow probe at the various time points (1, 3, 6, 18, 48 and 96 h) during 

each replicate run.  
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3.3.3.1 Distribution and locomotor behaviour 

Based on videos recorded, the distribution of sea cucumbers was determined at 

various time points (1, 3, 6, 18, 48 and 96 h). The proportion of sea cucumbers positioned 

under specific flow regimes in each treatment was analyzed over time. 

Based on the videos, the proportion of moving individuals in the different flow 

treatments at various times was calculated as follows: proportion of moving individuals (%) 

= NMt/NT × 100, where NMt is the number of sea cucumbers that moved more than one body 

length within 1 h prior to time interval t, and NT is the total number of sea cucumbers. From 

the above results, only 0-1% of sea cucumbers moved after 6 h in the mildly- and highly-

dynamic treatments. Therefore, the proportions of moving individuals in various sectors of 

the experimental arena experiencing different flow regimes and the modes of locomotion 

were compared across treatments at times 1, 3, 6, and 96 h. In addition, the proportion of 

sea cucumbers in the feeding posture (with tentacles deployed) while using various 

locomotion modes was determined in the first experimental hour (a universally active phase 

across treatments).     

The proportion of moving individuals in various sectors of the experimental arena 

experiencing different flow regimes over time was calculated for each treatment as: 

Proportion of moving individuals (%) = NMs/NTs × 100, where NMs is the number of sea 

cucumbers that moved more than one body length within 1 h prior to the specific time 

intervals in sector s, and NTs is the total number of sea cucumbers in sector s. 
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3.3.3.2 Tentacle deployment and feeding rate 

Based on videos, the proportion of sea cucumbers with tentacles deployed (i.e. 

deployed individuals) at the various time points (1, 3, 6, 18, 48 and 96 h) was calculated 

for each treatment as: Proportion of deployed individuals (%) = NFt/NT × 100, where NFt 

corresponds to the number of sea cucumbers with tentacles fully deployed in the water 

column at time t, and NT is the total number of sea cucumbers. In addition, the proportion 

of deployed individuals in various sectors of the experimental arena experiencing different 

flow regimes over time was calculated for each treatment as: proportion of deployed 

individuals (%) = NFs/NTs × 100, where NFs corresponds to the number of sea cucumbers 

with tentacles fully deployed in the water column (i.e. presumably feeding) in sector s at 

the various times, and NTs is the total number of the sea cucumbers in sector s. 

Because the highly-dynamic treatment offered the broadest overall range of flow 

regimes (when considering the distribution of sea cucumbers in the whole mesocosm; see 

Fig. 3.1C), the relationship between tentacle insertion rates (TIRs; i.e. feeding rate) and 

flow speed was studied at the end of this treatment, when the spatial distribution of sea 

cucumbers had stabilized. TIR was defined as the number of tentacles inserted into the 

mouth per minute (insertions per minute) and is regarded as a useful indicator of food intake 

(Holtz and MacDonald, 2009; Singh et al., 1999). Four feeding sea cucumbers exposed to 

each of four main flow rates (10, 20, 30 and 40 cm s-1) in each of the treatment replicates 

were recorded using an underwater camera (GoPro, Hero 4 Silver). The camera was placed 

close to the focal individual, using an extension pole, to record tentacle movements. Videos 

were analyzed to determine TIR and the orientation of the crown of oral tentacles relative 

to current at the various flow speeds. TIRs were determined using frame-by-frame analysis 
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over 10-min intervals. Mean TIRs from a total of 16 individuals for each flow rate were 

thus obtained.  

3.3.3.3 Cloacal respiration rate 

Cloacal movement is regarded as an indicator of respiratory rate, i.e. water circulation 

in the respiratory tree where oxygenation occurs (Doyle and McNiell, 1964; Jaeckle and 

Strathmann, 2013; Gianasi et al., 2015). The cloacal movements of sea cucumbers 

occupying different locations in the tank (submitted to different water flow regimes) were 

recorded using the GoPro camera at the end of the highly-dynamic treatment to determine 

the variation of respiratory rates in response to different flow rates. This treatment and time 

point were selected for reasons stated previously. Cloacal respiratory rates were determined 

by counting the number of cloacal openings over 10-min intervals. Values of openings per 

minute were averaged for 16 individuals at each flow rate. 

3.3.4 Statistical analysis 

All data were tested for normality and equal variance using Kolmogorov-Smirnov and 

Levene’s tests (α = 0.05), respectively. For the small-scale experiment, the average distance 

travelled, the time spent travelling and the time spent deployed were compared between 

the two treatments (presence and absence of flow) using t-tests. For the large-scale 

experiment, a two-way repeated-measures analysis of variance (RM-ANOVA) was used 

to test the proportion of moving individuals and the proportion of deployed individuals 

among different time points and flow treatments. When interaction between the factors was 

significant, each factor was analysed separately using one-way RM ANOVA, followed by 

a Bonferroni test. Significant differences between flow rates and the proportion of moving 
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individuals, the proportion of deployed individuals, the locomotion modes, TIRs and 

cloacal movement were determined using one-way ANOVA followed by post hoc multiple 

comparisons with Tukey’s method or t-test. Significance level in all tests was set at P < 

0.05. 

3.4 Results 

3.4.1 Small-scale preliminary experiments 

There were significant differences between treatments in both the time sea cucumbers 

spent travelling (t = -3.57, df = 14, P = 0.003) and the distance they travelled (t = -4.56, df 

= 14, P < 0.001) over 24 h, which both were less in the presence of flow (mean of 65 min 

and 91 cm, respectively) than in its absence (mean of 97 min and 140 cm; Fig. 3.2A, B). 

Inversely, the time spent with tentacles deployed over 24 h was significantly greater in the 

presence of flow (10 h) than in its absence (3 h) (t = 11.42, df = 14, P < 0.001; Fig. 3.2C). 

3.4.2 Large-scale experiments 

3.4.2.1 Distribution and locomotor behaviour 

Overall, marked flow preference was determined and no aggregation behaviour was 

detected. The sea cucumbers typically spread in the experimental arena under all flows 

tested. They moved away from near-zero flow conditions over time under weak flow, 

whereas under mildly- and highly-dynamic flows, individuals consistently moved away 

from the strongest flow regimes >40 cm s-1.   

Specifically, in the weakly-dynamic treatment, the proportion of sea cucumbers 

located in areas with flows of <10 cm s-1 decreased from 91% at the beginning of the 
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experiment (0 h) to 80% at the end of the experiment (96 h), whereas the proportion of sea 

cucumbers located in areas with flows of 10-20 cm s-1 increased from 9 to 20% (Fig. 3.3A). 

In the mildly-dynamic treatment, the proportion of sea cucumbers located in areas with 

flows of >80 cm s-1 decreased from 7 to 0% after only 3 h and no sea cucumbers were 

found in areas with flows >60 cm s-1 after 6 h (Fig. 3.3B). In the highly-dynamic treatment, 

the proportion of sea cucumbers located in areas with the strongest flows (>120 cm s-1) 

decreased from 10 to 0% after only 1 h, whereas the proportion of sea cucumbers located 

in areas with the lowest flows (≤20 cm s-1) increased from 41 to 63%. No sea cucumbers 

were found in areas with flows >80 cm s-1 after 6 h in the highly-dynamic treatment (Fig. 

3.3C). At the end of the mildly- and highly-dynamic treatments (96 h), no sea cucumbers 

were found in areas with flows > 40 cm s-1. 

A two-way RM ANOVA showed that both treatment (F2,6 = 43.44, P < 0.001) and 

time (F5,15 = 116.78, P < 0.001) had a significant influence on the proportion of moving 

sea cucumbers, but also revealed a significant interaction between the two factors (F10,30 = 

19.746, P < 0.001; Fig. 3.4). Independent analyses at each level (one-way RM ANOVA) 

showed that the proportion of moving sea cucumbers was significantly affected by 

treatment at all time points (Table S.3.1). During the first experimental hour, the proportion 

of moving sea cucumbers in the highly-dynamic treatment was significantly higher than in 

the weakly- and mildly-dynamic treatments (Bonferroni test, P < 0.05). From the third hour 

(3 h) to the end of the experiment (96 h), the proportion of moving sea cucumbers in the 

weakly-dynamic treatment was significantly higher than in the two other treatments (P < 

0.05), and no significant differences were found between the mildly- and highly-dynamic 

treatments (P > 0.05). No significant differences in the proportion of moving individuals 
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were found across time points in the weakly-dynamic treatment (F5,15 = 1.07, P = 0.415), 

but significant differences over time were found in the mildly- (F5,15 = 35.95, P < 0.001) 

and highly-dynamic treatments (F5,15 = 78.93, P < 0.001). Specifically, the proportion of 

moving individuals was significantly greater at 1 h than at any other time in both treatments 

(Bonferroni test, P < 0.05), but no significant differences were found among 6, 18, 48 and 

96 h (P > 0.05). 

In the weakly-dynamic treatment, the proportion of moving sea cucumbers located in 

more dynamic areas (flows of 10-20 cm s-1) was significantly greater than in areas with 

flow of <10 cm s-1 at 1 h and 96 h (Table S.3.2; Fig. 3.5A). In the mildly-dynamic treatment, 

the proportion of moving sea cucumbers was significantly affected by flow regimes at all 

time points except 96 h (Table S.3.2; Fig. 3.5B). During the first hour of the mildly-

dynamic treatment, the proportions of moving sea cucumbers located in areas with flows 

of 61-80 and >80 cm s-1 were significantly greater than in other areas (Tukey’s test, P < 

0.05; Fig. 3.5B). In the highly-dynamic treatment, the proportion of moving individuals 

was also significantly affected by flow regimes at 1 h and 3 h (Table S.3.2; Fig. 3.5C). 

Movements at other times points were nearly null. During the first hour of the highly-

dynamic treatment, the proportions of moving sea cucumbers located in areas with flow of 

41-80, 81-120 and >120 cm s-1 were significantly greater than in other areas (Tukey’s test, 

P < 0.05; Fig. 3.5C). 

3.4.2.2 Tentacle deployment and feeding rate  

A two-way RM ANOVA showed that both treatment (F2,6 = 42.22, P < 0.001) and 

time (F5,15 = 75.07, P < 0.001) had a significant influence on the proportion of deployed 

sea cucumbers, but also revealed a significant interaction between the two factors (F10,30 = 
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10.52, P < 0.001; Fig. 3.6). The results of independent one-way RM ANOVA showed that 

the proportion of deployed sea cucumbers was significantly affected by treatment at all 

time points (Table S.3.3). From the beginning to the end of the experiment, the proportion 

of deployed sea cucumbers in the weakly-dynamic treatment remained significantly lower 

than in the mildly- and highly-dynamic treatments (Bonferroni test, P < 0.05). In addition, 

the proportion of deployed sea cucumbers varied significantly over time under all 

treatments (weakly-dynamic, F5,15 = 10.80, P < 0.001; mildly-dynamic, F5,15 = 31.26, P < 

0.001; highly-dynamic, F5,15 = 44.84, P < 0.001). The proportion of sea cucumbers with 

tentacles deployed at 1 h was significantly lower than at all other times in all treatments 

(Bonferroni test, P < 0.05), and no significant differences were found among 6, 18, 48, and 

96 h in all treatments (P > 0.05).  

In the weakly-dynamic treatment, the proportion of deployed sea cucumbers located 

in areas with flows of 0-10 cm s-1 was significantly lower than in areas with flows of 10-

20 cm s-1 at all time points (Table S.3.4; Fig. 3.7A). Only 11-18% of sea cucumbers located 

in areas with flows of <10 cm s-1 had tentacles deployed at all time points, compared with 

49-60% of sea cucumbers located in areas with flows of 10-20 cm s-1. In the mildly-

dynamic treatment, the proportion of deployed sea cucumbers was significantly affected 

by flow regimes at all time points except at 1 h (Table S.3.4; Fig. 3.7B). The proportion of 

deployed sea cucumbers located in areas with flows of 21-40 cm s-1 was highest (31-85%) 

at all time points (Fig. 3.7B). In the highly-dynamic treatment, the proportion of deployed 

sea cucumbers was significantly affected by flow regimes at all time points (Table S.3.4; 

Fig. 3.7C). The proportion of deployed sea cucumbers located in areas with flows of 81-

120 cm s-1 was lowest at 1 h (13 ± 10%), and the proportion of deployed sea cucumbers 
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located in areas with flows of 21-40 cm s-1 was highest (49-90%) at all time points (Fig. 

3.7C). 

TIRs varied significantly among sea cucumbers positioned in different flow regimes 

across the experimental arena (F3,60 = 15.50, P < 0.001, Fig. 3.8A). TIRs increased from a 

low of 0.95 ± 0.09 insertions min-1 at flows of 10 cm s-1 to a high of 1.13 ± 0.06 insertions 

min-1 at flows of 40 cm s-1 (Fig. 3.8A). 

3.4.2.3 Cloacal respiration rate 

Cloacal movements measured during the highly-dynamic treatment did not differ 

significantly among sea cucumbers positioned in different flow regimes across the 

experimental arena (F3,60 = 0.79, P = 0.503; Fig. 3.8B). Nevertheless, individuals located 

in stronger flow regimes generally had higher respiration rates, which ranged from 1.95 ± 

0.25 opening min-1 at a flow regime of 10 cm s-1 to 2.09 ± 0.27 opening min-1 at 40 cm s-1.  

3.4.3 Behavioural observations 

3.4.3.1 Tentacle orientation  

Videos and still pictures revealed that the crown of tentacles of the sea cucumbers had 

different orientations under different water flow regimes. The crown of tentacles of 

individuals located in areas with flows ≥40 cm s-1 tended to follow the direction of the 

current and was not fully deployed (Fig. 3.9A). The crown of tentacles of individuals 

located in areas with flows between 10 and 40 cm s-1 typically faced the current or were 

perpendicular to the direction of water flow (Fig. 3.9B, C). The crown of tentacles of 

individuals located in areas with flows＜10 cm s-1 was typically perpendicular to the 
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direction of water flow (Fig. 3.9D). Overall, tentacles were only fully deployed at flows 

between 0 and 40 cm s-1 (Fig. 3.9B, C, and D). 

3.4.3.2 Locomotion modes 

Three different modes of locomotion were detected; namely, forward crawling 

(moving forward through contraction-extension and using podia on ventral surface; movie 

S1), active rolling (on the longest body axis without significant body shape change; movie 

S2), and passive rolling (carried by water movement; movie S3). Overall, 42 ± 10% of sea 

cucumbers that used crawling, 25 ± 19% that used active rolling, and 10 ± 6% that used 

passive rolling were found to extend their tentacles when moving. The movement speed of 

forward crawling and active rolling was similar, ranging from 0.2 to 0.9 m h-1. However, 

the movement speed of passive rolling was 180-3000 m h-1, which mainly depended on the 

water flow rate. 

In the weakly-dynamic treatment of the large-scale experiments, 68-85% of moving 

sea cucumbers located in areas with flows of <10 cm s-1 were crawling, and 15-32% used 

active rolling or alternated crawling and active rolling at all time points. Between 38 and 

75% of moving sea cucumbers located in areas with flows of 10-20 cm s-1 were crawling, 

and 25-62% used active rolling or alternated between crawling and active rolling at all time 

points. During the first experimental hour of the mildly-dynamic treatment, no sea 

cucumbers located in areas with flows of ≤40 cm s-1 used passive rolling, and 75-81% 

displayed forward crawling. However, 84 ± 16% of moving sea cucumbers located in areas 

with flows of >80 cm s-1 used passive rolling, and only 5 ± 4% displayed forward crawling. 

During the third experimental hour of the mildly-dynamic treatment, 58-75% of moving 

sea cucumbers located in areas with flows of 41-80 cm s-1 displayed passive rolling. During 
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the first experimental hour of the highly-dynamic treatment, no sea cucumbers located in 

areas with flows of <40 cm s-1 displayed passive rolling, and 60-71% of them exhibited 

forward crawling. Inversely, 64-93% of moving sea cucumbers located in areas with flows 

of >80 cm s-1 displayed passive rolling, and only 2-6% displayed forward crawling.  

3.5 Discussion 

Forces imposed by moving water can dramatically influence the locomotor behaviour 

of marine organisms (Wildish and Kristmanson, 2005). Behavioural responses to flow 

include rheotaxis, which is a directed response to flow direction involving locomotion or 

muscular turning of body parts, and rheokinesis, which is a non-directed response causing 

random movement proportional to flow velocity (Wildish and Kristmanson, 2005). 

Relatively few suspension feeders have significant locomotor capabilities because most of 

them are sessile or tube-dwelling. Therefore, previous studies on suspension-feeders in 

response to flow mainly focused on their feeding behaviour and body/appendage 

orientation.  For sea cucumbers, most behavioural studies have been conducted on 

deposit-feeding species and food availability was identified as the main factor driving 

movement (van Dam-Bates et al., 2016; Navarro et al., 2014; Slater et al., 2011). In the 

present study, water flow was shown to play an important role in eliciting displacement in 

C. frondosa, a free-moving suspension feeder. Individuals tended to move away from near-

zero flow conditions over time and avoid the strongest flow areas >40 cm s-1. It can be 

suggested that in weakly dynamic environments, C. frondosa sought stronger flows to find 

more suitable grounds for passive suspension feeding (i.e. conditions likely to supply 

phytoplankton and other suspended particles). However, in more dynamic environments, 
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C. frondosa fled flow regimes above a certain strength, presumably to minimize drag that 

would impede suspension feeding and might induce dislodgement. Pan et al. (2015) 

observed that the sea cucumber Apostichopus japonicus, which feeds on deposited organic 

matter, moved downstream under high flows of 30 cm s-1, and moved either downstream 

or upstream under flows of 15 cm s-1. For deposit feeders, displacement from dynamic to 

weaker flows is chiefly about reducing drag effects. For suspension feeders such as C. 

frondosa, it is also and perhaps more importantly, a question of capture/feeding efficiency. 

Water flow was determined to drive the movement but also the activity level of C. 

frondosa. In the small-scale experiments conducted under weak flow, the time spent 

travelling and the distance travelled were less in the presence of flow than in its absence. 

Similarly, in the large-scale mesocosm experiments, 12-15% of the sea cucumbers kept 

moving throughout the 96 h of the trial in the weakly-dynamic treatment, suggesting that 

the available flow regimes were not suitable or optimal. Conversely, few sea cucumbers 

were moving after 6 h in the mildly- and highly-dynamic treatments, suggesting they had 

found suitable flow conditions within that interval. This finding contrasts with the 

locomotion of deposit-feeders such as A. japonicus, in which water current consistently 

acts as a stimulating factor, causing an increase in movement (Pan et al., 2015). It emerges 

that C. frondosa can actively move away from suboptimal flow regimes (that are either too 

weak or too strong) and towards more suitable intermediate conditions (10-40 cm s-1). 

Another study conducted on a suspension feeder, the polychaete Manayunkia speciosa, 

showed that it moved from high flow to low flow to increase survivorship (Malakauskas et 

al., 2013). 
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An unexpected finding of the present study was that C. frondosa exhibits different 

modes of locomotion, i.e. not only the typical forward crawling, but also active rolling (on 

the side), and passive rolling, in response to different flow regimes. Forward crawling 

remained the most frequently observed locomotor behaviour under weak flow regimes. It 

also commonly occurred in areas with flows <40 cm s-1 in the more dynamic treatments, 

suggesting that it is widely used by C. frondosa when flow conditions are below that 

threshold (40 cm s-1). Low incidence of active rolling (moving sideways while remaining 

partly attached to the bottom) consistently occurred under all the flows tested up to 120 cm 

s-1, whereas passive rolling occurred strictly in areas with flows >40 cm s-1. There are two 

main differences between these two modes of locomotion. First, passive rolling relies partly 

on the power of flow, whereas active rolling is independent of flow. Second, passive rolling 

involves a change of shape (ballooning) to increase buoyancy (Hamel et al., 2019), whereas 

active rolling does not. In the highly-dynamic treatment, the proportion of sea cucumbers 

located in areas with the lowest flows (≤20 cm s-1) increased from 41 to 63%. Based on the 

video records, it appears that sea cucumbers initially located in flows >40 cm s-1 were 

passively carried (rolling) to the opposite area. However, sea cucumbers in the weakest 

flows actively crawled towards areas with flows between 21 and 40 cm s-1, suggesting 

relocation to a preferred habitat. In other words, passive rolling seems to be used by sea 

cucumbers to move from strong to weak flow areas, after which they may move by 

crawling or active rolling towards definitive optimal locations. This diversity in locomotor 

behaviour is currently being investigated, as it would suggest that sea cucumbers can move 

much faster and over greater distances than typically assumed (Hamel et al., 2019), and not 

only during escape responses to a predator (Margolin, 1976). These modes of locomotion 
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may enhance their responsiveness to environmental stimulation and favour broader 

distribution ranges and massive relocation when required, even at the adult stage. 

The present study highlighted a close relationship between water flow and feeding in 

C. frondosa, based on tentacle deployment, orientation and insertion rates. Under flows 

<20 cm s-1, the crown of tentacles typically faced the current, which may help C. frondosa 

capture more food particles per unit of time (increase efficiency). More typically sessile 

suspension-feeding benthic organisms, such as scallops (Sakurai and Seto, 2000), sea fans 

(Leversee, 1976), sea anemones (Anthony, 1997), and crinoids (Leonard et al., 1988), also 

orient themselves or their feeding appendages relative to currents in order to enhance their 

capture capacities and exploit their food supply optimally. Here, in flows ≥40 cm s-1, C. 

frondosa oriented its tentacles to follow the direction of the current and did not deploy them 

fully, which was reported in a previous study (Holtz and MacDonald, 2009), likely to 

alleviate the deformation of the tentacles caused by the increase in flow. Changes in 

orientation in response to variable water currents has also been observed in a few elasipodid 

species, including Peniagone japonica distributed in deep bays in Japan (Okada and Ohta, 

1993). Moreover, most individuals of the species Irpa abyssicola filmed on the bottom of 

Hayes Deep (2700 m depth, Norwegian and Greenland Seas) faced into the current, 

whereas on the slope they mainly oriented with the current (Gebruk et al., 2003). To a large 

extent, tentacle deployment in C. frondosa can be associated with feeding behaviour, 

although the tentacles may be extended without any movements towards the mouth for 

several hours (Hamel and Mercier, 1998), indicating that its serves other purposes as well. 

It is possible that C. frondosa uses its tentacles to detect the direction and strength of water 

flow and reacts accordingly by adjusting its body orientation or by moving. Optimal 
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location and orientation relative to flow presumably allow this planktivorous species to 

maximize food capture and minimize energetic costs.  

Cucumaria frondosa, like other passive suspension feeders, depends entirely on the 

ambient flow to supply food particles to its feeding appendages (Singh et al., 1998; Leichter 

and Witman, 1997). This may explain why the time spent with tentacles deployed in C. 

frondosa was greater in the presence of flow than in the absence of flow. However, in the 

mildly- and highly-dynamic treatments, the proportion of sea cucumbers with tentacles 

deployed was relatively low (8-12%) especially in areas with flows >80 cm s-1. This may 

be related to an increasing difficulty in deploying tentacles. The cessation of feeding 

(tentacle retraction) by dendrochirotids in strong currents may occur to avoid damage or 

may be due to a failure to maintain efficient particle capture (McKenzie, 1987). In the two 

more dynamic treatments, the proportion of deployed sea cucumbers located in areas with 

flows of 21-40 cm s-1 was greater than in all other areas (with different flows) at given time 

points, suggesting that this optimal range allows C. frondosa to fully deploy its tentacles 

while providing a sufficient supply of particulate food. 

Beyond the proportion of individuals with deployed tentacles, the TIR is a more 

specific indicator of feeding activity (Holtz and MacDonald, 2009; Singh et al., 1999). 

Holtz and MacDonald (2009) used a small laboratory flume holding five individuals to 

determine that TIRs were not affected by water flows <40 cm s-1 and were reduced when 

flow was above a threshold velocity of ~55 cm s-1. In contrast, the present study found that 

TIRs increased with increasing water flow between 0 and 40 cm s-1 in the larger life-size 

tank setup, which held 100 individuals and may have provided C. frondosa with an 

environment that is closer to natural conditions. As the water flow increases, suspension-
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feeders will more easily capture food particles because more particles come into contact 

with their feeding structures (Shimeta and Jumars, 1991). This could mean that C. frondosa 

needs less time to capture food particles before the tentacles are inserted into the mouth 

with increasing water flow, up to a certain threshold, as discussed previously. From results 

obtained here combining the proportion of deployed sea cucumbers and TIR, the optimum 

water flow for C. frondosa to feed lies between 21 and 40 cm s-1. 

Sea cucumbers respire mainly by two mechanisms; one is by taking up oxygen across 

the general body surface (Hopcroft et al., 1985), and the other is by drawing and expelling 

water through the cloaca, in and out of the respiratory tree (Woodby et al., 2000). In the 

present study, cloacal movement (respiration rate) was not related to the water flow. In 

contrast, the need for more frequent renewal of water in the respiratory tree is a good 

indicator of stress in sea cucumbers (Shiell, 2006; Gianasi et al., 2015). Therefore, 

experimental results of the present study have shown that C. frondosa was stress-free at 

flows ≤40 cm s-1 and was otherwise well adapted to a wide range of water flows.  

Ultimately, the final spatial distribution displayed by C. frondosa in the mesocosm 

reflected the fact that, as a passive suspension feeder, it must seek optimal water flow to 

subsist. In areas where the water flow was zero or close to zero, a proportion of sea 

cucumbers was still moving around even after four days, presumably in search of better 

conditions. In contrast, strong flow may impede tentacle deployment in C. frondosa, as 

outlined previously, and it also requires more energy to adhere to the bottom as suggested 

in Apostichopus japonicus (Pan et al., 2015). Here, between 50 and 93% of sea cucumbers 

were moving during the first hour spent in the mildly-dynamic and highly-dynamic 

treatments, which generated locally high flow regimes of >80 cm s-1 and >120 cm s-1, 
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respectively. After 96 h, no sea cucumbers were found in areas with flows >40 cm s-1. 

However, a previous study revealed that C. frondosa can colonize areas of water flow >40 

cm s-1 in the field (Holtz and MacDonald, 2009). There are a number of possible 

explanations for this. The high water velocity in the field may have been transient; for 

example, the sea cucumbers at Jamieson Island were exposed to high velocities of 99-130 

cm s-1 only 17% of the time (Holtz and MacDonald, 2009). Flow velocities in the field are 

more variable than in the laboratory, changing with tides and oceanographic conditions 

(e.g. storms), and the seafloor is more complex (rock, crevices, macrophytes) offering 

zones with moderate current even under high flows. Furthermore, gregarious or clumping 

behaviour in the wild can enhance the resistance of organisms to dynamic environments, 

as exemplified by a study in the sea cucumbers Thyone aurea and Pentacta doliolum on 

the west coast of South Africa (Barkai, 1991).  

In conclusion, the present study highlighted significant shifts in the locomotor and 

feeding behaviours of a suspension-feeding sea cucumber in response to water flow. The 

findings not only provide novel information on the ecology of suspension feeders, but will 

help our understanding of the broad yet patchy distribution of sea cucumbers in various 

environments, and will be of strategic value to the management of commercial fisheries. In 

addition, knowledge of the preferred conditions of water flow in suspension-feeding sea 

cucumbers will inform the design of holding conditions in the context of captive breeding, 

integrated multi-trophic aquaculture and sea ranching.  
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3.8 Figures 

 

Figure 3.1 Top view of the experimental raceway (8.25 m × 2.5 m× 0.85 m, length × width 

× depth) used in the large-scale experiments. (A) Weakly dynamic (20 cm s-1), (B) mildly 

dynamic (100 cm s-1), and (C) highly dynamic (200 cm s-1) treatments. The vectors show 

the direction and strength of the nominal flow in each treatment. The scale bar at the bottom 

represents 10 cm s-1 in (A), 50 cm s-1 in (B) and 100 cm s-1 in (C). The black numbers 

identify 11 tank sections that provided a reference for spatial analysis. Side A or B was 

used alternately in the replicates of each treatment (shown here alternating across the panels 

only to illustrate the position of the inlet on both sides).  
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Figure 3.2 Feeding and locomotion behaviour of C. frondosa with and without flow. Effect 

of the presence/absence of flow on (A) time spent travelling, (B) horizontal distance 

travelled, and (C) time spent with tentacles deployed over 24 h by C. frondosa. Data are 

shown as mean ± s.d. for 10 individuals in each treatment (n = 4 replicate runs per 

treatment). Means with different letters are significantly different (t-test, P < 0.05). 
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Figure 3.3 Distribution of 100 individuals of C. frondosa in various sectors of the 

experimental arena experiencing different flow regimes (from 0-10 to 120-200 cm s-1) over 

time (0, 1, 3, 6, 18, 48, and 96 h). (A) Weakly dynamic (20 cm s-1), (B) mildly dynamic 

(100 cm s-1), and (C) highly dynamic (200 cm s-1) treatments. Data are shown as means (n 

= 4). 
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Figure 3.4 Percentage of individuals of C. frondosa that were scored as moving at the 

different time points (1, 3, 6, 18, 48, and 96 h) under the three treatments (weakly, 20 cm 

s-1; mildly, 100 cm s-1; and highly dynamic, 200 cm s-1). Data are shown as mean ± s.d. for 

100 individuals in each treatment (n = 4 replicate runs per treatment). Different letters 

highlight significant differences between different time points within treatments (two-way 

RM ANOVA, P < 0.05). 
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Figure 3.5 Percentage of individuals of C. frondosa that were scored as moving in various 

sectors of the experimental arena experiencing different flow regimes (from 0-10 to 120-

200 cm s-1) over time (1, 3, 6, and 96 h). (A) Weakly dynamic (20 cm s-1), (B) mildly 

dynamic (100 cm s-1), and (C) highly dynamic (200 cm s-1) treatments. Data are shown as 

means ± s.d. (n = 4). Means with different letters are significantly different (ANOVA or t-

test, P < 0.05). 
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Figure 3.6 Percentage of individuals of C. frondosa with tentacles deployed at various time 

points (1, 3, 6, 18, 48, and 96 h) under different treatments (weakly, 20 cm s-1; mildly, 100 

cm s-1; and highly dynamic, 200 cm s-1). Data are shown as means ± s.d. for 100 individuals 

in each treatment (n = 4 replicate runs per treatment) with standard deviation. Means with 

different letters show significant differences between time points within treatments (two-

way RM-ANOVA, P < 0.05). 
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Figure 3.7 Percentage of individuals of C. frondosa with tentacles deployed in various 

sectors of the experimental arena experiencing different flow regimes (from 0-10 to 120-

200 cm s-1) over time. (A) Weakly dynamic (20 cm s-1), (B) mildly dynamic (100 cm s-1), 

and (C) highly dynamic (200 cm s-1) treatments. Data are shown as means ± s.d. (n = 4). 

Means with different letters are significantly different (one-way ANOVA or t-test, P < 

0.05).  
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Figure 3.8 Effect of flow on the feeding and cloacal (respirator) behaviours of C. frondosa. 

Tentacle insertion rates (A) and cloacal movements (B) under different flow regimes. Data 

are shown as mean with standard deviation (n = 16 individuals per flow regime). Means 

with different letters are significantly different (ANOVA, P < 0.05). 
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Figure 3.9 Orientation of the crown of tentacles of C. frondosa under different flow 

regimes. The arrow shows the direction of the flow and its length is proportional to the flow 

speed. (A) The crown of tentacles follows the direction of the flow at ≥40 cm s-1. (B) The 

crown of tentacles directly faces the direction of the flow at 20 cm s-1. (C) The crown of 

tentacles is perpendicular to the direction of the flow at 10 cm s-1. (D) The crown of 

tentacles is perpendicular to the direction of the flow at <10 cm s-1. 
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3.9 Supplementary Material 

Table S.3.1 Statistical comparison of the proportion of moving sea cucumbers among the 

three flow treatments (weakly, 20 cm s-1; mildly, 100 cm s-1; and highly dynamic, 200 cm 

s-1) at determined time points, using one-way repeated-measures ANOVA 

Time since start of trial (h) F df P 

1 19.20 2 0.002 

3 19.98 2 0.002 

6 33.36 2 0.001 

18 99.73 2 <0.001 

48 23.00 2 0.002 

96 28.70 2 0.001 
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Table S.3.2 Statistical comparison of the proportion of moving sea cucumbers among the 

2-6 sectors of the experimental arena (experiencing different flow regimes) at selected time 

points in each of the flow treatments (weakly, 20 cm s-1; mildly, 100 cm s-1; and highly 

dynamic, 200 cm s-1), using t-test or one-way ANOVA  

Flow treatments Time since start of trial (h) F(t) df P 

Weakly dynamic  1 3.03 6 0.023 

 3 1.42 6 0.206 

 6 1.79 6 0.124 

 96 3.89 6 0.008 

Mildly dynamic 1 44.00 5 <0.001 

 3 6.29 4 0.004 

 6 5.62 3 0.012 

 96 0.17 2 0.850 

Highly dynamic 1 47.35 5 <0.001 

 3 35.40 3 <0.001 

 6 1.65 3 0.231 

 96 0.07 2 0.935 
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Table S.3.3 Statistical comparison of the proportion of deployed sea cucumbers among the 

three flow treatments (weakly, 20 cm s-1; mildly, 100 cm s-1; and highly dynamic, 200 cm 

s-1) at selected time points, using one-way repeated-measures ANOVA 

Time since start of trial (h) F df P 

1 17.62 2 0.003 

3 24.20 2 0.001 

6 37.16 2 <0.001 

18 33.03 2 0.001 

48 41.86 2 <0.001 

96 31.51 2 0.001 
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Table S.3.4 Statistical comparison of the proportion of deployed sea cucumbers among 2-

6 sectors of the experimental arena (experiencing different flow regimes) at selected time 

points for each of the flow treatments (weakly, 20 cm s-1; mildly, 100 cm s-1; and highly 

dynamic, 200 cm s-1), using t-test or one-way ANOVA 

Flow treatments Time since start of trial (h) F(t) df P 

Weakly dynamic  1 -11.58 6 <0.001 

 3 -8.15 6 <0.001 

 6 -10.31 6 <0.001 

 18 -8.43 6 <0.001 

 48 -7.46 6 <0.001 

 96 -6.45 6 0.001 

Mildly dynamic 1 0.93 5 0.485 

 3 6.57 4 0.003 

 6 15.32 3 <0.001 

 18 11.44 3 0.001 

 48 15.09 3 <0.001 

 96 18.18 2 0.001 

Highly dynamic 1 3.26 4 0.041 

 3 29.97 3 <0.001 

 6 50.88 3 <0.001 

 18 2.03 3 0.015 

 48 5.04 3 0.017 

 96 42.15 2 <0.001 
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Movie S.3.1 Illustration of forward crawling (arrow) 

Movie S.3.2 Illustration of active rolling (arrow) 

Movie S.3.3 Illustration of passive rolling (arrows) 

All the movies are available: 

http://jeb.biologists.org/lookup/doi/10.1242/jeb.189597.supplemental  

  

http://jeb.biologists.org/lookup/doi/10.1242/jeb.189597.supplemental
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4.1 Abstract 

While the suspension-feeding sea cucumber Cucumaria frondosa is commercially 

exploited in the North Atlantic and is considered to have potential for integrated 

aquaculture, the impact of environmental conditions on its behaviour and population 

structure remains incompletely understood. The present study showed that adults are not 

photosensitive; they do not exhibit any preference for either illuminated or shaded areas. 

Within each photoperiod treatment, analyses of the daily activity cycle revealed that the 

proportion of individuals with feeding tentacles deployed did not change over time; 

however, the proportion of moving individuals increased in the dark phase under the 12 h 

light/12 dark regime, but remained relatively constant under continuous light or darkness. 

Hence, from an aquaculture perspective, long days (i.e. summer photoperiod) might 

decrease the time spent moving in favour of feeding, potentially shifting the energy budget 

towards faster growth. Variations in phytoplankton concentration modulated the 

deployment of tentacles but did not trigger any displacement toward the food source, 

indicating that feeding responds directly to the presence of food. Moreover, C. frondosa 

exhibited a clear preference for substrates composed of bare rocks and rocks with coralline 

algae and displayed a weak preference for darker substrate backgrounds. Together, these 

findings highlight how some key environmental factors can govern the feeding, locomotor 

activities, and eventual distribution of cold-water suspension-feeding sea cucumbers.  

Key words: Environmental factors; Diel rhythm, Behaviour; Distribution; Holothuroid, 

Echinoderm 
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4.2 Introduction 

Sea cucumbers, or holothuroid echinoderms, colonize most benthic habitats in 

temperate, polar and tropical oceans, where they may occur from the intertidal zone to the 

deep sea (Conand, 2006). They play important roles in marine ecosystems, such as 

regulating water chemistry/quality and modulating sediment stratification and nutrient 

cycling (Massin, 1982; Uthicke, 2001; Purcell et al., 2016). Owing to their nutritional and 

medicinal values, sea cucumbers have been an important food source for centuries in Asia 

and have been harvested in China and around the world for at least 400 years (Yang et al., 

2015). However, an increasing demand from Asian markets combined with the lack of 

effective management measures have led to overexploitation and severe decline in stocks 

of high-value species in many parts of the world (Anderson et al., 2011; Purcell et al., 2013). 

Aquaculture has the potential to help replenish depleted sea cucumber stocks and mitigate 

fisheries impacts on wild populations (Bell et al., 2005; Yang et al., 2015). However, 

commercial aquaculture protocols have only been developed for a small number of 

temperate and tropical species, such as Apostichopus japonicus and Holothuria scabra, to 

supply markets and/or assist the natural recovery of wild stocks (Chen, 2005; Eriksson et 

al., 2012; Hamel et al., 2001; Yang et al., 2015; Mercier and Hamel, 2013). Beyond these 

species, knowledge of the basic ecology and biology of most commercially important sea 

cucumbers remains too limited to develop efficient and cost-effective aquaculture 

programs.  

Many marine benthic species are capable of extensive movement during their different 

life stages (Grantham et al., 2003). Movement at various scales enables benthic animals to 

find better feeding conditions, to promote increased rates of growth and reproduction 
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(Scheibling, 1981; Pittman and McAlpine, 2003; Brady and Scheibling, 2006), or to escape 

sub-optimal environmental conditions (Hamel et al., 2019). Factors that influence sea 

cucumber distribution, growth, and behaviours have been studied in many respects to better 

understand population persistence, community dynamics and species-specific aquaculture 

prerequisites. Light cycles are known to drive daily activity rhythms, such as in juveniles 

of Apostichopus japonicus, which displayed nocturnal activity and hid during daytime 

(Dong et al., 2010). Similarly, juveniles of Holothuria scabra and Stichopus cf. horrens 

were shown to display a diel cycle, being the most active at night, exhibiting intermediate 

activity during twilight, and minimal to no activity during daytime (Mercier et al., 1999; 

Palomar-Abesamis et al., 2017). Sea cucumbers typically concentrate in areas that provide 

the best habitat, environmental conditions or food availability while reducing the risk of 

predation (Yingst, 1982; Sibuet, 1985). For example, the deposit-feeding sea cucumbers 

Stichopus variegatus, Australostichopus mollis and H. scabra exhibited a very distinct 

patch selectivity based on total organic matter in the sediments (Uthicke and Karez, 1999; 

Mercier et al., 2000; Slater et al., 2011). Juveniles of H. scabra studied in the Solomon 

Islands preferred seagrass habitat characterized by muddy sand with 7-15% organic content, 

and cover against some predators (Mercier et al., 2000). Moreover, a study of 

Parastichopus californicus showed that densities were highest on shell debris and gravel, 

and lowest on mud and silt bottoms in the vicinity of Sitka Sound, Alaska (USA). Hard 

substrates could provide more solid footing to keep individuals from drifting away under 

high dynamic flows (Woodby et al., 2000).  

The sea cucumber Cucumaria frondosa (Holothuroidea: Dendrochirotida) has been 

the focus of commercial fisheries in the North Atlantic since the 1980s (Hamel and Mercier, 
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2008). The species is widely distributed in cold-water habitats, from the Arctic Ocean to 

Cape Cod (USA) in the Northwest Atlantic, as well as along the coast of northern Europe 

and Russia (Hamel and Mercier, 2008). It has recently been identified as a potential 

candidate for integrated multi-trophic aquaculture (Nelson et al., 2012). Unlike the most 

commonly studied species of sea cucumbers, which are deposit-feeders, C. frondosa feeds 

on suspended particulate materials by deploying ramified tentacles into the water column 

(Hamel and Mercier, 1998). Previous studies on C. frondosa have explored local field 

distributions (Hamel and Mercier, 1996), population genetics (So et al., 2011), diet and 

feeding patterns (Singh et al., 1998; Hamel and Mercier, 1998; Singh et al., 1999), 

movement in response to flow (Sun et al., 2018) and disturbances (Hamel et al., 2019), 

sexual dimorphism, reproductive cycle and spawning (Singh et al., 2001; Montgomery et 

al., 2018b; Hamel and Mercier, 1995), larval swimming capacity and photosensitivity 

(Montgomery et al., 2017; 2018a), and juvenile growth and behaviour in the laboratory 

(Hamel and Mercier, 1996; Gianasi et al., 2018; So et al., 2010). So far, only one study has 

documented photosensitivity in C. frondosa and it was restricted to early juveniles showing 

an increasing tolerance to light intensity with age (Gianasi et al., 2018), which explains 

why they congregate under rocks or in crevices during the first few years of life (Hamel 

and Mercier, 1996). The quality and quantity of food was also found to affect the feeding 

behaviour and growth of C. frondosa (Singh et al., 1998; Hamel and Mercier, 1998; Singh 

et al., 1999; Gianasi et al., 2017); however, whether food availability is a driver of 

locomotion and spatial distribution has never been tested. Similarly, dense populations of 

C. frondosa are commonly found on rocky bottoms (Hamel and Mercier, 1996), but the 

substrate preferences of adults have not been assessed experimentally. 
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The present study was conducted to determine the locomotor and feeding behaviours, 

and the microhabitat selection (spatial distribution) of C. frondosa in response to different 

light intensities, levels of phytoplankton concentration (its main source of food), substrate 

types and background colours. The putative influence of light on its diel locomotor and 

feeding activities was also assessed. Understanding the distribution as well as the feeding 

and locomotor behaviours of C. frondosa in response to various stimuli will provide 

baseline information that could be useful for stock management in identifying the most 

probable high-density areas, and also assist in the eventual development of aquaculture 

programs. 

4.3 Materials and methods 

4.3.1 Sea cucumber collection and maintenance  

Adults of C. frondosa were collected through Fogo Island Co-operative Society Ltd 

(commercially licensed by the federal authority; Fisheries and Oceans Canada) on the 

Southwest Grand Banks of Newfoundland, eastern Canada, at depths between 20 and 30 

m (Northwest Atlantic Fisheries Organization, NAFO Subdivision 3Ps). Individuals were 

kept in a flow-through tank (11.5 m × 2.5 m × 1.2 m, length × width × depth) with running 

water (30-60 L min-1) at ambient temperature (1-7 ℃). Light was provided by multiple 

fluorescent lights ranging from 5-450 lux (over the daily cycle) and naturally fluctuating 

photoperiod (from 15L/9D in the summer to 8L/16D during winter). These ranges of 

environmental conditions are in line with those occurring in the native habitat of C. 

frondosa (Gianasi et al., 2015). Planktonic food present in the ambient seawater was 

available to sea cucumbers as food (as per Hamel and Mercier, 1998). Healthy and 
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undamaged individuals displaying normal feeding activity, firm attachment to the substrate 

and no skin lesions were selected for the experiments. They had an average total wet weight 

of 280.6 ± 76.3 g and contracted body length of 15.2 ± 3.9 cm.  

4.3.2 Effect of light 

4.3.2.1 Response to illuminated/shaded areas 

Experiments were conducted in a tank composed of two circular sections (81 cm 

diameter × 40 cm depth) linked by a narrow passage (width: 7.5 cm) that could be opened 

or closed by a guillotine door. The whole tank was covered with either a transparent or 

black fiberglass cover and each circular section had independent seawater inflow (70 L h-

1) and outflow systems (Fig. S.4.1). For each trial, ten sea cucumbers (size described above) 

were placed in the centre of each of the circular section with the guillotine door closed and 

left to acclimate for 12-16 h until they had attached firmly and/or resumed normal activity 

(tentacle deployment and retraction). Two ambient light intensities (low: 90-126 lux; high: 

420-560 lux, gradient ranging from the border to the centre of the tank) were tested 

successively by changing the height of the fluorescent light fixture (spectrum of 350-750 

nm) above the experimental tank. Both light intensity ranges tested are commonly found 

where C. frondosa occurs in nature (Hamel and Mercier, 1996). The light intensity at the 

surface of the tanks was measured using a light meter (Traceable® 3252).  

At the onset of a trial, the guillotine door was slid upward to provide an opening height 

of 5.0 cm, which was enough for sea cucumbers to get through. Some faint light could 

penetrate from the middle opening and the light intensity gradient in the shaded section 

varied from 4 to 2 lux in the low light intensity and from 6 to 2 lux in the high light intensity 

(weakening towards the shaded area). To control for potential tank effects, the shaded and 



116 

 

illuminated sections were permuted across four replicate trials, each of which lasted four 

days. No individual was ever used for two successive trials. A time-lapse camera (Brinno 

TLC 200 Pro) was set to take one photograph of the entire experimental field (illuminated 

section) every 10 minutes. Pictures were automatically stitched together into a video output 

by the camera. Based on the videos, the distribution of the sea cucumbers in the illuminated 

area was analyzed at various time points (0/initial distribution, 8, 24, 48, 96 h) and 

compared using one-way repeated measures (RM) ANOVA after confirming normality and 

equal variance using Kolmogorov-Smirnov and Levene’s tests (α = 0.05), respectively. 

4.3.2.2 Diel rhythms under different photoperiod regimes 

This experiment was conducted to determine the daily rhythm of feeding (based on 

tentacle deployment in the water column, as per Sun et al. 2018) and locomotor activities 

of C. frondosa under 12 h light/12 h dark, 24 h light and 24 h dark photoperiod regimes. 

The 12 h light/12 h dark photoperiod was set at 12 hours of light starting at 08:00 

(maximum intensity of 230-270 lux; Hamel and Mercier, 1996) and 12 hours of darkness 

starting at 20:00 (corresponding to springtime photoperiod when sea cucumbers feed the 

most; Hamel and Mercier, 1998). More precisely, the photoperiod occurring in nature 

during the experimental period, 08:00-20:00 was defined as “day” and 20:00-08:00 was 

defined as “night” in the present study. Photoperiod was controlled using Hydro Farm light 

timers (TM 01015). All experiments were conducted in one rectangular tank (80 cm length 

× 74 cm width × 26 cm depth) supplied with ambient seawater. Ten sea cucumbers were 

placed in the center of the tank and acclimated for 24 h. Each trial lasted 24 h and was 

replicated four times. No individual was ever used for two successive trials. A time-lapse 

infrared-sensitive camera (described previously) was set to take one photograph of the 
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entire experimental field every 60 seconds. In the dark phase, a LED infrared illuminator 

(DC 12V, ICAMI) was automatically turned on as soon as the lights went off to allow 

recording of nocturnal activity. 

The number of individuals with tentacles deployed for more than 30 minutes (feeding 

proxy) and the number of individuals that underwent displacement of more than three body 

lengths (by forward crawling or rolling; Sun et al., 2018; Hamel et al., 2019) were measured 

every 2 h to estimate feeding and locomotion rhythms, respectively (individuals that 

writhed around, i.e. back-and-forth swaying, were not regarded as moving). The difference 

among different 2-h intervals (6 intervals between 08:00-20:00, and another 6 intervals 

between 20:00-08:00) was compared using one-way RM ANOVA followed by Bonferroni 

test. The proportions of individuals with deployed tentacles or moving under different 

photoperiods were analysed with one-way ANOVA followed by post hoc multiple 

comparisons with Tukey’s test. A mean value of the proportions of deployed/feeding and 

moving individuals was also calculated separately for period of daytime (from 08:00 to 

20:00) and night time (from 20:00 to 08:00) and compared using paired sample t-test.  

 In addition, the distance travelled by each individual was analysed using the video-

tracking algorithm in ImageJ/Fiji with the MTrackJ plug-in (Schneider et al., 2012) at 

intervals of 1 frame per minute. Each video was first calibrated to convert pixels into real 

distances (cm) using reference marks. The average distance travelled by the ten sea 

cucumbers over 24 h from each trial among different photoperiod treatments was then 

determined and compared using one-way ANOVA followed by post-hoc multiple 

comparisons with Tukey’s method. The distance travelled during the day (08:00-20:00, 12 

h) and night (20:00-08:00, 12 h) periods were compared using paired sample t-test. All data 
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were tested for normality and equal variance using Kolmogorov-Smirnov and Levene’s 

tests (α = 0.05), respectively. 

4.3.3 Effect of phytoplankton 

4.3.3.1 Small-scale experiments 

A first set of trials were conducted to verify the assumption that phytoplankton 

concentration (a preferred food in C. frondosa: Hamel and Mercier, 1998) is a factor in 

both feeding response and movement of C. frondosa. They were conducted in two tanks as 

described in section 4.3.2.2 above. At the onset of a trial, ten sea cucumbers were placed 

into each of the two tanks for a period of 12-h acclimation under static conditions. Food 

was distributed by gravity in each tank from 20-L reservoirs. One reservoir was filled with 

natural seawater to which 2 mL of commercial phytoplankton was added to generate a 

phytoplankton concentration in the reservoir of ~15 mg L-1, comparable to that found 

during the peak of autumn plankton blooms in the northern Atlantic Ocean (i.e. ~17.5 mg 

L-1, Henson et al., 2009). The other reservoir was filled solely with natural seawater 

representing the baseline phytoplankton concentration (~5 mg L-1). The phytoplankton 

used (commercial Shellfish Diet 1800, Reed Mariculture) consisted of a mix of Isochrysis 

sp., Pavlova sp., Chateoceros calcitrans, Thalassiosira weissflogii, and T. pseudonana, 

which is well accepted as food by C. frondosa (Gianasi et al., 2019). The contents of both 

reservoirs (one per experimental tank) were mixed continuously through bubbling and 

trickled at a flow rate of 400-500 ml h-1 through a small hose submerged into the tanks 5 

cm below the surface. The phytoplankton concentration was determined in the reservoir by 

collecting 600 ml of water, filtering it on pre-weighed 25-mm Whatman GF/C filters, 

drying at 60 ℃ for 24 h, and reweighing after having cooled to ambient temperature in a 
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desiccator (Thermo ScientificTM). Phytoplankton concentration by weight was calculated 

from dilution factors using an average of triplicate measures for each seawater sample. 

Each trial was run for 24 h, after which individuals were removed, and the tanks drained, 

cleaned and refilled; the whole process was repeated four consecutive times. To minimize 

tank effects, the two tanks were permuted after each replicate. The time sea cucumbers 

spent with tentacles deployed and the distance each individual travelled over 24 h were 

determined under the two conditions and compared using a t-test after testing for normality 

and equal variance using Kolmogorov-Smirnov and Levene’s tests (α = 0.05), respectively. 

4.3.3.2 Large-scale mesocosm experiments 

Based on the results of the small-scale experiments, another experiment was 

conducted in a large mesocosm, to determine whether variable phytoplankton 

concentrations could drive a change in the spatial distribution of C. frondosa in a less 

constrained, more life-size environment, using live phytoplankton. The experiment was 

conducted in a tank (11.5 m length × 2.5 m width × 0.9 m depth) supplied with flow-

through seawater (200 L min-1). To maintain the water quality while minimizing the 

influence of flow on the locomotion and distribution (Sun et al., 2018), the seawater inflow 

and outflow were located in the upper half of the tank, separated from the experimental 

arena (subsection of the entire mesocosm: 5.75 m × 2.5 m × 0.9 m). Two 20-L reservoirs 

described previously were set on opposite sides of the experimental arena of the tank. One 

was filled with live diatom Chaetoceros muelleri (~4–9 μm diameter, 4.7 × 106 cell ml-1), 

a species of phytoplankton that is well accepted as food by C. frondosa (Gianasi et al., 

2017) and the other was filled with natural seawater (control for water agitation). The water 

in each of the reservoirs was mixed continuously through bubbling. Two food 
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concentrations (low: 250–300 ml h-1; high: 550–700 ml h-1, see phytoplankton 

concentration details below) were tested by adjusting the inflow of phytoplankton supply 

(mirrored by the flow of the corresponding agitation control). A small hose connected to 

the reservoirs was submerged into the tank, 50 cm below the surface, to trickle the contents 

into the experimental arena. The phytoplankton concentration in the experimental arena 

was measured at mid-day on days 1 and 2 by collecting triplicate 1-L samples of seawater 

20 cm from the phytoplankton and control inlets, 70 cm below the surface (close to the sea 

cucumber). Both concentrations tested generated a gradient from the food source to the 

opposite side. Specifically, the phytoplankton concentration varied from 18.7 to 10.7 mg 

L-1 in the low-food concentration treatment (corresponding to the natural food in winter) 

and from 32.2 to 12.5 mg L-1 in the high-food concentration (corresponding to the natural 

food in spring).  

At the beginning of the experiment, fifty sea cucumbers were placed in the center of 

the experimental arena. A time-lapse video camera (described previously) was mounted 3 

m above the experimental arena with a view of the entire experimental arena to allow 

measurement of the spatial distribution of sea cucumbers over time. Each trial lasted two 

days and was replicated four times. To minimize the possibility of tank effects, replicate 

treatments were conducted by alternating the placement of the food and control reservoirs 

on either side of the raceway. Based on videos recorded, the spatial distribution of 

individuals in both food gradients was determined at various time points (0, 6, 12, 24, and 

48 h) and compared between the two sides of the tank (food side vs opposite side) using t-

test after testing for normality and equal variance using Kolmogorov-Smirnov and 

Levene’s tests (α = 0.05), respectively. 
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4.3.4 Effect of substrate type and colour 

This experiment was designed to assess whether adults of C. frondosa exhibit any 

substrate preference. The trials were conducted in one rectangular tank (80 cm length × 74 

cm width × 26 cm depth) supplied with ambient seawater under natural photoperiod. Three 

types of substrate were tested: (1) bare rocks, (2) rocks with coralline algae (Lithothamnion 

glaciale), (3) rocks with kelp (Laminaria longicruris). All substrates had a similar surface 

area (18-24 cm long and 12-17 cm wide, ~350 cm2). Three replicates of each substrate were 

haphazardly distributed into the experimental tank, leaving an open area (bottom of tank) 

in the center to place ten sea cucumbers at time 0. Each trial lasted four days (96 h) and 

was replicated four times. No individual was ever used for two successive trials. To 

minimize the possibility of tank effects, the distribution of the three substrates (n=9) were 

haphazardly rearranged after each replicate. Based on the time lapse videos, the number of 

individuals on each substrate was recorded at various time points (8, 24, 48, 96 h) using 

the camera system described previously and was tested using a chi-square test.  

Another experiment was designed to verify whether substrate colour can affect the 

distribution of C. frondosa. This experiment was conducted in one 50-L rectangular tank 

(90 cm length × 35 cm width × 16 cm depth) with a white background on the first third of 

the tank and black background in the last third of the tank, with uniform grey portion 

between the two (~ 1000 cm2 for each colour). The grey portion was considered a 

transitional neutral zone between the white and black sections. The tank was supplied with 

ambient seawater under a natural photoperiod. One sea cucumber was placed in each of the 

three colour quadrants, as assigned by a random number computer generator 

(https://www.random.org/widgets). Each trial lasted 24 h and was replicated four times. 

https://www.random.org/widgets
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No individual was ever used for two successive trials. Between each replicate the tank was 

drained, scrubbed and rotated 180° (to reduce tank effect). Based on the time lapse videos 

(as described previously), the number of individuals on each substrate colour was measured 

at various time points (0, 6, 12, 18, 24 h) and compared using one-way ANOVA or one-

way ANOVA on ranks. 

4.4 Results 

4.4.1 Response to illuminated/shaded areas 

Under the low light intensity condition, the proportion of sea cucumbers distributed 

in the illuminated area of the experimental arena did not show any significant change over 

time (one-way RM ANOVA; F3,4 = 0.36, P = 0.829, Fig. 4.1A). Under the high light 

intensity condition, the proportion of individuals distributed in the illuminated vs shaded 

area increased from 50.0 ± 0 to 57.5 ± 6.5% over time; but not significantly (F3,4 = 2.12, P 

= 0.141, Fig. 4.1B).  

4.4.2 Diel rhythms under different photoperiods 

Overall, the proportion of individuals with tentacles deployed was significantly 

affected by the photoperiod treatments (F2,9 = 17.20, P < 0.001, Fig. 4.2A). Specifically, 

the proportion of individuals with tentacles deployed in the 24 h light treatment (20 ± 2%) 

was significantly lower than other photoperiod treatments (Tukey’s test, P < 0.05), but no 

significant differences were detected between 12 h light/12 h dark (27 ± 2%) and 24 h dark 

conditions (27 ± 2%, P > 0.05, Fig. 4.2A). When each photoperiod treatment was 

considered separately, the proportion of individuals with deployed tentacles did not 
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significantly change across 2-h intervals over the 24-h cycle in any of the photoperiod 

treatments (one-way RM ANOVA; 12 h light/12 h dark, F3,11 = 1.67, P = 0.124, Fig. 4.2B; 

24 h light, F3,11 = 0.777, P = 0.66, Fig. 4.2C; 24 h dark, F3,11 = 0.317, P = 0.977, Fig. 4.2D). 

In addition, no significant differences in the proportion of individuals with tentacles 

deployed were found between the ‘day’ (08:00-20:00) and ‘night’ periods (20:00-08:00) in 

any photoperiod treatment (12 h light/12 h dark, t = 0.40, df = 3, P = 0.718; 24 light, t = -

1.19, df = 3, P = 0.319; 24 h dark, t = -0.68, df = 3, P = 0.544; Fig. 4.2E).  

Overall, the proportion of moving individuals was significantly affected by the 

photoperiod treatment (F2,9 = 28.83, P < 0.001, Fig. 4.3A). Specifically, the proportion of 

moving individuals under 12 h light/12 h dark (11 ± 1%) and 24 h dark (15 ± 2%) was 

significantly greater than under 24 h light (6 ± 2%, Tukey’s test, P < 0.05). When each 

photoperiod treatment was considered separately, the proportion of moving sea cucumbers 

changed significantly across 2-h intervals of the 24-h cycle under 12 h light/12 h dark (one-

way RM ANOVA, F3,11 = 6.34, P < 0.001; Fig. 4.3B), but not under 24-h light (F3,11 = 0.67, 

P = 0.753; Fig. 4.3C) or 24-h dark (F3,11 = 1.49, P = 0.181; Fig. 4.3D). During the transition 

period between the light and dark phases (18:00 to 22:00) and between the dark and light 

phases (06:00-10:00) of 12 h light/12 h dark, the proportion of moving individuals 

increased rapidly from 6 ± 5% to 14 ± 6% and decreased rapidly from 17 ± 9% to 8 ± 6% 

(Fig. 4.3B), respectively. In addition, the proportion of moving individuals was 

significantly lower in the ‘day’ than in the ‘night’ periods under 12 h light/12 h dark (t = -

6.71, df = 3, P = 0.007) and 24 h dark treatments (t = -5.75, df = 3, P = 0.011); however, 

no significant differences were found between ‘day’ and ‘night’ under 24 h light (t = -1.99, 

df = 3, P = 0.141; Fig. 4.3E).  
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The average distance travelled by sea cucumbers in a day varied significantly 

depending on the photoperiod (one-way ANOVA, F2,9 = 20.17, P < 0.001, Fig. 4.4A). 

Specifically, individuals traveled significantly greater daily distances (Tukey’s test, P < 

0.05) when held under 12 h light/12 h dark (95.4 ± 21.9 cm d-1) and continuous darkness 

(96.5 ± 8.6 cm d-1), with no difference between the two (P > 0.05), than they did under 

continuous light (42.3 ± 4.2 cm d-1). In addition, sea cucumbers travelled significantly 

shorter distances during the ‘day’ (from 08:00 to 20:00) than during the ‘night’ (20:00 to 

8:00) both under 12 h light/12 h dark (mean of 20.9 vs 74.5 cm; t = -9.82, df = 3, P = 0.002) 

and in continuous darkness (mean of  40.4 vs 56.1 cm; t = -3.88, df = 3, P = 0.030). 

However, under 24-h light, individuals moved equal mean distances in both phases (20.5 

vs 21.8 cm; t = -1.04, df = 3, P = 0.374; Fig. 4.4B). 

4.4.3 Effect of phytoplankton 

Overall, the small-scale experiment showed that the presence of phytoplankton 

increased the feeding behaviour (tentacles deployed), but did not elicit any detectable 

change in locomotor behaviour in C. frondosa. Specifically, there was a significant 

difference between treatments in the time spent with tentacles deployed over 24 h, which 

was greater in the presence of phytoplankton (185.6 ± 14.1 mins) than in the control (103.7 

± 8.9 mins; t = 9.80, df = 6, P < 0.001, Fig. 4.5A). However, no significant differences in 

the distance travelled by sea cucumbers over 24 h were found between control (99.9 ± 16.0 

cm) and phytoplankton conditions (85.8 ± 11.6 cm; t = -1.43, df = 6, P = 0.204; Fig. 4.5B).  

In the larger mesocosm, phytoplankton concentration did not stimulate locomotion or 

influence spatial distribution in sea cucumbers. Specifically, at either low or high 

phytoplankton concentrations, most sea cucumbers (low: 72 ± 4%; high: 66 ± 9%) 
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remained in the center (initial position) of the arena after 48 h; only a few individuals 

moved toward (low: 16 ± 2%; high: 17 ± 2%) or away from the food source (low: 13 ± 2%; 

high: 18 ± 5%; Fig. 4.5CD). Under the two nominal phytoplankton concentrations tested, 

the proportions of individuals close to the food source were similar to the opposite (no-

food) side, with no significant differences between the two at any time point (Table S.4.1, 

Fig. 4.5CD).  

4.4.4 Effect of substrate type and background colour 

In these trials, sea cucumbers changed their distribution over time and showed strong 

substrate preferences (Fig. 4.6A). The proportion of individuals located on the bare tank 

bottom/walls decreased from the predetermined value of 100% at the beginning of the 

experiment (0 h) to 20 ± 12% at the end of the experiment (96 h), whereas the proportion 

of individuals on bare rocks and on rocks with coralline algae increased from 0 to 35 ± 5% 

and from 0 to 40 ± 7%, respectively. The proportion of individuals on rocks with kelp was 

10 ± 2% after 8 h and had decreased to 5 ± 2% at the end of the experiment (96 h). Analysis 

showed that the proportions of individuals on bare rocks and rocks with coralline algae 

were greater than would be expected on the basis of random distribution across surface 

areas alone; inversely, the proportions of individuals on rocks with kelp and bare tank 

sections were significantly lower than expected (Table 4.1).  

 Despite the proportions of individuals distributed on the darker substrates generally 

being greater (black, 33-42%; grey, 33-50%) than on the white substrate section (17-33%, 

Fig. 4.6B), no significant differences were found at any time point (6 h, F2,9 = 1.5, P = 

0.274; 12 h, H = 0.9, P = 0.632; 18 h, H = 0, P = 1; 24 h, F2,9 = 1.5, P = 0.274). Overall, 

sea cucumbers showed a weak preference for darker substrate backgrounds. 
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4.5 Discussion 

In the natural environment, species have evolved multiple behavioural strategies to 

maximise their chances of surviving and optimizing fitness when faced with various 

ecological pressures, such as the shifting availability of food in space and time, and the 

presence of predators (Davies et al., 2012). Among environmental drivers, light was 

identified as one of the most important factors affecting ecological processes in aquatic 

species, including rhythms in daily activity, reproductive cycle as well as migratory and 

aggregative behaviours (Lythgoe, 1988; Mercier and Hamel, 2009). Spatial distribution is 

also commonly modulated by substrate type, which can facilitate food acquisition and/or 

provide shelter to marine benthic species (Jones et al., 1994). 

Findings suggests that adults of Cucumaria frondosa do not exhibit any direct reaction 

to light (photosensitivity) since they did not show a preference for either illuminated or 

shaded areas under any light intensity, in contrast to their early juveniles, which were 

determined to display clear photo-negativity (Hamel and Mercier, 1996). More precisely, 

Gianasi et al. (2018) reported that tolerance to light increased with age, from 25 lux in 1-

month-old to >50 lux in 6, 12, and 21-month-old individuals. The present findings complete 

this trend, suggesting that while C. frondosa never becomes photopositive, adults become 

less sensitive to light. The photo-negativity documented in just-settled juveniles of C. 

frondosa was demonstrated to play a role in their capacity to choose appropriate locations 

on the settlement substrate, generally undersurfaces, to minimize predatory pressure from 

sea stars (Legault and Himmelman, 1993; Hamel and Mercier, 1996; So et al., 2010) and 

grazing sea urchins (Hamel and Mercier, 1996). While a greater abundance of larger 

individuals of C. frondosa occur in dimmer waters down to 60 m (Hamel and Mercier, 
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1996), the present findings suggest that they are not doing so because they are actively 

seeking darker environments, as initially assumed.   

Diel activity cycles vary among different holothuroid species, with peaks in activity 

being diurnal (Shiell, 2006), nocturnal (Mercier et al., 1999; 2000; Dong et al., 2011; Sun 

et al., 2015), or crepuscular (Graham and Battaglene, 2004), in response to a variety of 

environmental factors, such as light and water temperature. In C. frondosa, more 

individuals exhibited locomotor activity during the nocturnal phase of the 24-h cycle, and 

the distance travelled was consequently greater at night than during the day, when they 

remained mostly immobile (with or without tentacles extended for feeding). Nocturnal 

displacement may point to a protective strategy against predators (Nelson and Vance, 1979; 

Mercier et al., 1999), especially for C. frondosa, which is known to be preyed upon by 

several large diurnal hunters such as fishes, seals and walruses (Hamel and Mercier, 2008). 

The daily mean distance travelled was 0.95 m under the 12 h light/12 h dark regime, which 

is lower than in deposit-feeding species, i.e. 8 m in H. arguinensis (Navarro et al., 2014), 

3 m in Actinopyga mauritiana (Graham and Battaglene, 2004), and 4 m in Parastichopus 

californicus (Da Silva et al., 1986). Greater movements were associated with enhanced 

food acquisition in deposited-feeding sea cucumbers since they generally ingest and 

process organic matter as they move (Mercier et al., 2000; van Dam-Bates et al., 2016). In 

contrast, C. frondosa is a suspension feeder that does not need to forage for food; instead, 

water flow was demonstrated as one of the key factors involved in food capture for this 

species (Sun et al., 2018) since it carries the planktonic particles that represent its main 

food source (Hamel and Mercier, 1998).  
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The present study determined that greater nocturnal movement in C. frondosa was 

maintained under constant darkness for 24 h (similar to 12 h light-12 h dark regime), in 

line with endogenous control reported in A. japonicus (Dong et al., 2010; Sun et al., 2015) 

and Stichopus cf. horrens (Palomar-Abesamis et al., 2017). Also, the proportion of moving 

individuals and the distance travelled did not differ between 12-h segments corresponding 

to ‘day’ and ‘night’ phases under 24-h light, suggesting the absence of any internal rhythm; 

instead, the cue that stimulates movement is the decrease in light intensity, as shown in 

other sea cucumbers (Wheeling et al., 2007; Dong et al., 2010). The proportion of moving 

individuals and the distance travelled in 24-h darkness were overall greater compared to 

individuals under 12 h light/12 dark and 24-h light, which further supports that C. frondosa 

is more active, especially more mobile, in darkness. Interestingly, increased activity in 

darkness may explain why more individuals of C. frondosa ended up in the illuminated 

section of the tank under high light intensities. Because they were more mobile in the dark, 

sea cucumbers were more likely to move from the shaded to the illuminated section than 

inversely. Whether the enhanced locomotor patterns of C. frondosa would persist after 

longer-term exposure to constant darkness remains to be clarified.  

In deposit-feeding sea cucumbers, nocturnal behaviour has fueled research into 

improved culture conditions. For instance, Dong et al. (2011) showed that A. japonicus 

maintained in darkness can exhibit longer periods of feeding, which potentially increases 

its growth rate. In the present study of a suspension-feeding species, no significant 

differences in the proportion of sea cucumbers with tentacles deployed were found over 

time or between diurnal and nocturnal phases under 12 h light/12 h dark. This was 

consistent with the work of Singh et al. (1999), where no marked difference was found in 
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the number of adult sea cucumbers with tentacles extended and feeding in the day or at 

night from the field. Also, no major differences in the proportion of sea cucumbers with 

tentacles deployed were found over time or between diurnal and nocturnal periods under 

constant light and constant darkness, further supporting that suspension-feeding in C. 

frondosa is not photosensitive, unlike deposit-feeding in other species (Mercier et al., 1999; 

Dong et al., 2010). The interspecific and ontogenetic differences in the photosensitivity of 

sea cucumbers may therefore be linked to feeding guilds, i.e. planktivore for suspension 

feeders and detritivore for deposit feeders. Even though no obvious eye-like structure was 

evidenced in sea cucumbers, pigmented photoreceptors at the base of the tentacles have 

been identified in some species (Yamamoto and Yoshida, 1978; Pawson et al., 2010). The 

suspension feeders’ tentacles are oriented upwards (toward the light) and the deposit 

feeders’ tentacles are generally oriented downwards (away from light) when feeding. This 

may result in greater tolerance and lower sensitivity to light in suspension feeders. Unlike 

members of Holothuriidae that feed when moving at night (Mercier et al., 1999; Dong et 

al., 2011; Sun et al., 2015), nocturnal displacement in C. frondosa, which may last as long 

as ~100 min per night (Sun et al., 2018), prevents feeding (as tentacles are retracted) and 

requires energy expenditure. Therefore, shifting the photoperiod in favour of longer days 

(e.g. 16 h light and 8 h dark) during captive rearing could potentially translate into 

improved growth rates (more feeding, less movement) in this notoriously slow growing 

species (Hamel and Mercier, 1996). On the other hand, individuals maintained under 

continuous 24-h light exhibited reduced feeding activity compared to other treatments, 

suggesting photo-inhibition under constant exposure to light, which should thus be avoided 

from an aquaculture perspective.  
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Although C. frondosa was found to be able to feed around the clock, the time spent 

with tentacles deployed was greater in response to phytoplankton spikes than under 

baseline food conditions, in line with the field studies of Hamel and Mercier (1998) and 

Singh et al. (1998) who showed that changing tides (and concurrent influx of phytoplankton) 

increased the proportion of individuals with tentacles deployed. The fact that the presence 

of food alone can stimulate tentacle deployment separates the roles played by tidal current 

and food supply in the feeding response of C. frondosa. On the other hand, there were no 

significant differences in the locomotor behaviours of C. frondosa based on food gradients 

(i.e. no movement towards the food source). This finding differs from the locomotor pattern 

of most deposit feeders, whereby individuals may travel long distances to find a suitably 

rich sediment patches to feed on (Navarro et al., 2014). For example, the movement of 

juveniles of H. scabra was greater on bare surfaces, or substrates deprived of organic matter 

(OM), relative to substrates with high OM (Mercier et al., 1999). Also, A. mollis and H. 

arguinensis rapidly moved through sediment with low organic content, whereas they 

slowed down, or even stopped, when an area with available food was found (Slater et al., 

2011; Navarro et al., 2014). For suspension feeders, these imperatives are not as strong, as 

the food is coming to them passively through currents. In the large-mesocosm experiments, 

the distribution of individuals did not vary across the phytoplankton gradient at any time 

point, suggesting that food may not be a major driver of locomotor behaviour in C. 

frondosa. While unlikely, it cannot be totally excluded that the difference between the 

spiked and baseline food side was not steep enough to stimulate movement. Previous 

studies have shown that the feeding response of C. frondosa may be initiated by both 

chemical and tactile stimuli (Jordan, 1972; Hamel and Mercier, 1998; Singh et al., 1998); 
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however, the low turbulence level conditions in this experiment may not have been aligned 

perfectly with the food detection abilities of this species.  

Both newly-settled juveniles and adults of C. frondosa have been suggested to favour 

rocky substrates in the wild, e.g. in the St. Lawrence Estuary and over the St. Pierre Bank 

(Hamel and Mercier, 1996; So et al., 2010), and sea cucumbers found on rocky substrates 

are reportedly heavier than those found on other substrates (So et al., 2010). Hard bottoms 

are believed to possess optimal water flow and provide solid attachment for this species 

compared to soft bottoms, enabling full deployment of their feeding tentacles. In line with 

these assumptions, the present study confirmed that, when given the choice, C. frondosa 

favoured substrates composed of bare rocks and rocks covered coralline algae. It further 

highlighted that rocks with coralline algae were slightly more attractive compared to bare 

rocks, consistent with preferences recorded in juveniles during field and laboratory 

investigations (Medeiros-Bergen and Miles, 1997; Gianasi et al., 2018). Preference for 

rocks covered with coralline algae could be attributed to the fact that they signal optimal 

conditions of light and/or current on which this species depends to identify ideal feeding 

grounds. The relatively coarse surface offered by coralline algae may also enable firmer 

attachment than the smooth bare rocky surface. Moreover, individuals were rarely found 

on the rock covered with kelp, possibly because the swaying movement of seaweed 

hampered tentacle deployment and feeding and/or disrupted food-carrying water flow. 

Why darker shades of background were also preferred is still unclear, although it may offer 

camouflage against pelagic predators viewing sea cucumbers from above. 

The present work suggests that while a tendency towards increased nocturnal 

movement/activity was detected, gradients in light (at intensities typical of their depth 
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range) and food concentrations did not emerge as direct drivers of spatial distribution in 

fully-grown individuals. However, C. frondosa was influenced by substrate types and 

background colours, clearly preferring darker coloured bare rocks and rocks covered in 

coralline algae. The findings not only provide baseline information of value for stock 

management, but will inform the eventual development of aquaculture programs. 

Importantly, in contrast to common aquaculture practices for deposit-feeding species where 

constant darkness prolongs feeding and stimulates growth, the absence of light is unlikely 

to enhance growth in the suspension-feeding C. frondosa (except perhaps during the 

earliest life stages). Constant light would not enhance feeding either. Overall, long days 

(i.e. summer photoperiod) and a continuous supply of food might offer the optimal 

aquaculture conditions, since it would decrease the time spent moving in favour of feeding, 

creating an energy budget that might translate into faster growth. 
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4.8 Tables 

Table 4.1 Results of chi-square test of the distribution of C. frondosa on different substrates over time (8, 24, 48, 96 h)* 

Substrates Surface area (m2) No. settled Expected 

 

χ2 

8 h 24 h  48 h 96 h 8 h 24 h 48 h 96 h 

Bare rocks 0.42 (17.6%) 8 12 14 14 7.04 0.13 3.49 6.88 6.88 

Rocks with kelp 0.42 (17.6%) 4 3 3 2 7.04 1.31 2.32 2.32 3.61 

Rocks with coralline algae 0.42 (17.6%) 9 14 15 16 7.04 0.55 6.88 9.00 11.40 

Bare tank 1.12 (47.2%) 19 11 8 8 18.88 0 3.29 6.27 6.27 

Totals 2.38 40 - 1.99 

(P = 0.574) 

15.98 

(P = 0.001) 

24.47 

(P < 0.001) 

28.16 

(P < 0.001) 

*Individuals were initially placed in the middle of the experimental tank (on bare tank substrate) at time 0 h. 
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4.9 Figures 

 

Figure 4.1 Distribution of C. frondosa in the illuminated section of the tank under (A) low 

and (B) high light intensity over time. At time 0 h, the guillotine door between illuminated 

and shaded sections was closed and there was an equal number of individuals in each. Data 

are shown as mean with standard deviation (n = 4) and no significant differences were 

detected among different time points (one-way RM ANOVA, P > 0.05). 
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Figure 4.2 Effect of photoperiod on feeding behaviour in C. frondosa. Mean proportion of deployed individuals (A) under different 

photoperiods. Proportion of individuals with deployed tentacles at 2-h intervals over the daily cycle under (B) 12 h light/12 h dark 

(normal photoperiod), (C) 24 h light and (D) 24 h darkness. Mean proportion of deployed individuals (E) during the diurnal (08:00-

20:00) versus nocturnal (20:00-08:00) phases of the cycle. Grey areas in panels B and D correspond to periods of darkness. Data are 

shown as mean with standard deviation (n = 4). Statistical differences were detected among different photoperiod regimes in A (one-

way ANOVA followed by Tukey’s test, P < 0.05), but no statistical differences were detected among different time points in B, C and 

D (RM-ANOVA, P > 0.05) or between day/night in E (paired sample t-test, P > 0.05). 
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Figure 4.3 Effect of photoperiod on locomotor behaviour in C. frondosa. Mean proportion of moving individuals (A) under different 

photoperiod regimes. Proportion of moving individuals at 2-h intervals over the daily cycle under (B) 12 h light/12 h dark, (C) 24 h light 

and (D) 24 h darkness. Mean proportion of moving individuals (E) during the diurnal (08:00-20:00) versus nocturnal (20:00-08:00) 

phases of the cycle. Grey areas in panels B and D correspond to periods of darkness. Data are shown as mean with standard deviation 

(n = 4). Superscript letters illustrate statistical differences among different photoperiod regimes in A (one-way ANOVA followed by 

Tukey’s test, P < 0.05), among different time points in B (RM-ANOVA followed by Bonferroni test, P < 0.05), and between day/night 

in E (paired sample t-test, P < 0.05), but no statistical differences were detected among different time points in C and D (RM-ANOVA, 

P > 0.05). 
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Figure 4.4 Effect of photoperiod on distance travelled by C. frondosa. (A) Distance 

travelled under different photoperiod regimes over the 24-h cycle. (B) Distance travelled 

during the diurnal (08:00-20:00, 12 h) versus nocturnal (20:00-08:00, 12 h) phases of the 

cycle. Data are shown as mean with standard deviation (n = 4) and means with different 

letters are significantly different (one-way ANOVA followed by Tukey’s test or paired 

sample t-test, P < 0.05). 
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Figure 4.5 Effect of phytoplankton on feeding and locomotor behaviours in C. frondosa. 

(A) Time spent with tentacles deployed and (B) distance travelled over 24 h under control 

and spiked food conditions (small-scale experiments). Spatial distribution, shown by the 

proportion of individuals in three locations (food side, centre, no-food side) of the 

experimental arena (mesocosm) under gradients of (C) low phytoplankton concentration 

and (D) high phytoplankton concentration treatments over time (0, 6, 12, 24, and 48 h). 

The values above each panel in C and D illustrate the decreasing phytoplankton 

concentration gradient. Data are shown as mean (n = 4) with standard deviation in A and 

B, and different letters highlight significant differences between treatment and control (t-

test, P < 0.05). 
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Figure 4.6 Effect of substrate type and background colour on distribution in C. frondosa. 

Mean proportion (n = 4) of individuals on various (A) substrate types and (B) background 

colours over time. 

  



151 

 

4.10 Supplementary material 

Table S.4.1 Results of t-test of the distribution of C. frondosa between food and no food 

sections of the tank under low and high food concentrations over time (6, 12, 24 and 48 h) 

Treatments Time since start of trial (h)* t P 

Low food concentration 6  0.66 0.537 

12 -0.63 0.550 

 24 -0.29 0.780 

 48 1.81 0.121 

High food concentration 6 -0.29 0.780 

12 -0.34 0.743 

 24 -0.17 0.868 

 48 -0.17 0.870 

* Individuals were placed in the centre of the experimental arena (initial position) at time 0 h
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Figure S.4.1 Diagram of the experimental setup of a dual round tank system. Each section 

(81 cm diameter × 40 cm depth) had an independent inflow and outflow system. The two 

sections were linked by a narrow corridor equipped with a guillotine door (width: 7.5 cm). 

Half of the fiberglass cover was wrapped with black tarp to keep either one of the two tank 

sections in shade. The light intensities in the illuminated section varied between 90-126 lux 

under the weak light treatment and 420-560 lux under the strong light treatment; whereas 

light intensities in the shade section were 2-6 lux in both treatments. 
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Chapter 5. Health condition of the sea cucumber 

Cucumaria frondosa after multi-year holding in effluent 

waters of land-based salmon cultures4 

 

 

 

 

 

 

 

 

______________________________ 

4 A version of this manuscript is currently being prepared for submission to Aquaculture. 

 



154 

 

5.1 Abstract 

Aquaculture activities are known to release excess dissolved and particulate matter 

into the surrounding environment and several methods have been proposed to mitigate this 

footprint, including co-culture of species occupying different trophic levels. In the present 

study, sea cucumbers either held in effluent water from salmon culture over 4 years or 

collected from the field were compared using stable isotope, lipid and fatty acid (FA) 

signatures as indicators of waste assimilation, health condition and biochemical 

composition. Enrichment of δ13C in muscle bands and intestine and of δ15N in all tissues 

was detected in captive individuals relative to wild individuals, indicating the uptake and 

assimilation of waste from salmon culture. The higher levels of FA biomarkers typical of 

salmon feed (18:1ω9, 18:2ω6 and 20:1ω9) and lower ω3/ω6 ratio in the captive sea 

cucumbers also implied assimilation of the waste. However, male and female sea 

cucumbers from the co-culture became smaller with time, their organ indices were lower 

than those of wild individuals (e.g. poorly developed gonad), and their biochemical 

composition differed in various aspects: triacylglycerols (TAG) content was greater in wild 

individuals and phospholipids (PL) content was greater in captive individuals. Also, FA 

profiles of all the tissues differed between the two groups of sea cucumbers, whereas total 

lipid contents of muscle bands and gonad remained similar. Overall, results are consistent 

with assimilation by C. frondosa of some of the particulate matter generated by salmon 

culture, suggesting it may help mitigate the footprint of this industry to some extent. In 

turn, the biochemical composition of the sea cucumbers changed and their reduced size and 
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body indices suggested that this food source did not provide suitable nutrients to sustain 

growth and reproduction.  

Key words: Co-culture, suspension-feeder, salmon, IMTA, stable isotope, fatty acid 

5.2 Introduction 

Atlantic salmon (Salmo salar) is one of the most intensively-farmed marine fish, 

owing to its amenability to high stocking densities and rapid growth, and to well established 

international markets (Jobling et al., 2010). Canada is the world’s fourth largest producer 

of Atlantic salmon after Norway, United Kingdom and Chile (Liu and Sumaila, 2008). 

Although salmon farming brings unquestionable economic benefits, concern about its 

environmental costs is growing. Whether the expansion of intensive marine-finfish 

aquaculture can be sustained is being questioned in light of the potential effect of inorganic 

and organic wastes produced by fish farms (Navarrete-Mier et al., 2010; Wang et al., 2012). 

Atlantic salmon culture releases extra nitrogen (N) and phosphorus (P) and produce organic 

wastes in the form of unconsumed feed and feces (Pillay, 2008). An estimated 3% of 

salmon feed remains uneaten, representing approximately 12-17% of the total solid waste 

(Cromey et al., 2002). Consequently, salmon farming using sea cages may lead to 

eutrophication of the water column, while solid waste accumulates on the ocean floor, 

impacting the oxygen demand at the substrate/benthos, and leading to a decline of oxygen-

sensitive species in favour of more resistant opportunistic species (Mayor and Solan, 2011; 

Pillay, 2008).  

To make fish farming more sustainable in the long term, emphasis has been placed on 

exploring land-based models (Shpigel et al., 1993) and/or using integrated multi-trophic 
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aquaculture (IMTA), which has the potential to reduce waste loading and environmental 

impacts and to increase the efficiency and productivity of intensive monoculture systems 

(Neori et al., 2004). In brief, IMTA makes use of by-products, including wastes, from one 

aquatic species to provide nutrients to another (Troell et al., 2009; Chopin et al., 2012).  

IMTA involves the culture of aquatic animals and the use of their waste products (excess 

feed and feces) as a food source for other commercially viable extractive species to favor 

environmental remediation, economic stability and social acceptability (Ridler et al., 2007; 

Troell et al., 2009). Many species have successfully been integrated into IMTA systems to 

extract inorganic and organic waste, such as seaweed (Abreu et al., 2011; Kang et al., 2008), 

mussels (MacDonald et al., 2011; Irisarri et al., 2015; Reid et al., 2010), and sea urchins 

(Orr et al., 2014; Sterling et al., 2016). 

Sea cucumbers are high-value products from marine aquaculture and fisheries; they 

have also been identified as prospective extractive species for IMTA due to their ability to 

feed on the particulate waste generated by other animals (Zamora et al., 2018). Many 

studies have shown them to be good candidates for co-culture with finfish (Ahlgren, 1998; 

Yokoyama, 2013; Hannah et al., 2013), bivalves (Zhou et al., 2006; Slater and Carton, 

2007; Paltzat et al., 2008; Yokoyama, 2015), gastropods (Kang et al., 2003; Maxwell et al., 

2009), shrimps (Purcell et al., 2006; Bell et al., 2007) and jellyfish (Ren et al., 2014). In 

one case, Kang et al. (2008) co-cultured the deposit-feeding sea cucumber Apostichopus 

japonicus and the abalone Haliotis discus in circulating culture tanks to clean up the 

hatchery effluent during the overwintering period. They showed that ammonia and nitrite 

contents in seawater decreased, and that the survival and growth rates increased in co-

cultured abalone compared to abalone cultured alone in the same experimental setup. 
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Moreover, Hannah et al. (2013) suggested that another deposit-feeding species 

(Parastichopus californicus) suspended directly below net pens of sablefish (Anoplopoma 

fimbria) grew faster and reduced the total organic carbon and total nitrogen contents of the 

fish feces by an average of 60% and 62%, respectively. The potential use of suspension-

feeding sea cucumbers remains comparatively understudied and is only starting to be 

explored. 

Cucumaria frondosa is the most common sea cucumber in the North Atlantic and one 

of the most abundant worldwide, occurring off New England (USA), in eastern and Arctic 

Canada, Greenland, and Scandinavia, as well as in the Faroe Islands and Russia (Hamel 

and Mercier, 2008; Jordan, 1972). Like many other commercially important sea cucumber 

species, C. frondosa has been fished extensively in its distribution range to meet the 

increasing demand from Asia (Hamel and Mercier, 2008). However, C. frondosa differs 

from most previously cultured holothuroid species. It is a cold-water species and a passive 

suspension-feeder that captures a wide range of particulate food (4-1500 µm), by extending 

its tentacles in the water column (Hamel and Mercier, 1998; Gianasi et al., 2017). A recent 

interest has arisen to utilize C. frondosa as a bio-filter within IMTA systems to help reduce 

particulate organic loading (Nelson et al., 2012b). It was shown that C. frondosa could 

ingest excess salmon feed and feces efficiently, both in the laboratory and in the natural 

environment, making it a candidate biofilter within an IMTA setting (Nelson et al., 2012a). 

What remains untested is whether individuals in this IMTA system can use energy from 

the ingested wastes to grow and whether their overall health and biochemical profile differ 

from those of wild individuals.  
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Organic matter can be incorporated into the tissue of an animal via its diet (Peterson 

and Fry, 1987) and its assimilation can be measured by a shift in the carbon and nitrogen 

stable isotope signatures (Post, 2002). Moreover, fatty acid biomarkers can be used to trace 

specific lipid sources and make inferences about the diet of aquatic animals. In recent years, 

greater levels of plant oils have been incorporated into salmon feed to reduce costs and 

minimize dependence on fish oil sources; such terrestrial lipid sources naturally contain 

high proportions of 18:1ω9, 18:2ω6 and 18:3ω3 (Skog et al., 2003; Narváez et al., 2008), 

which can be used as tracers of fish feed.  

The present study was designed to compare several key metrics between wild 

individuals of C. frondosa and individuals held for 4 years in the effluent of an Atlantic 

salmon culture (i.e. IMTA system). The stable carbon and nitrogen isotope signatures and 

specific fatty acids in tissues were studied to confirm whether the co-cultured sea 

cucumbers assimilated the waste products coming from the salmons. Also, their general 

health condition and biochemical composition were measured to determine if sea 

cucumbers could be sustained on the effluent waste from salmon culture. In particular, 

whether co-cultured sea cucumbers could not only survive but grow and eventually 

reproduce in captivity was assessed. 

5.3 Material and methods 

5.3.1 Captive holding conditions (IMTA) 

The experiment was performed in a land-based aquaculture facility (Wave Energy 

Research Centre of College of the North Atlantic) in Lord’s Cove, Newfoundland (Canada), 

which was designed to demonstrate the viability of cascaded IMTA in an open flow-
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through tank system. Seawater was pumped into the facility from 120 m offshore at 10 m 

depth. The water was filtered to 200 µm by the filtration system (sand filters) before passing 

through a degassing column on the way to a 7000-L header tank. The filtered seawater was 

delivered directly to three 8000-L cylindrical tanks (2.9 × 1.3 m; diameter × depth). Around 

200 juveniles (70-80 g) of Atlantic salmon (Salmo salar) were cultured in the three tanks 

(~ 70 individuals per tank) with flow-through water (~ 3000 L h-1). They were fed the 

equivalent of 5-90 g of feed (EWOS®) per day per fish, depending on the size of fish. 

Effluent water from the salmon tanks was thoroughly mixed in a common head tank before 

being directed through a valve system at a rate of 25-30 L min-1, to two 2000-L rectangular 

tanks (3.2 × 1.6 × 0.4 m; length × width × depth), each containing ~350 adults of C. 

frondosa. Light was provided through several windows and multiple fluorescent lights (32-

Watt, 5000 Kelvin white T8) following natural photoperiod. All sea cucumbers had been 

collected by licensed harvesters at depths between 20 and 30 m in October 2013.  

5.3.2 Sample collection for body indices and chemical analysis 

To assess the state of sea cucumbers in the IMTA system, 40 individuals were sampled 

haphazardly after 20 months (June 2015) and after 32 months (June 2016) and their weights 

were measured. At the end of the study in August 2017, after 45 months under IMTA 

conditions, 12 sea cucumbers were collected from each of two holding tanks (n = 24 total). 

For comparison purposed, 24 adults were collected from the wild at approximately the 

same date (~10 day earlier). These wild sea cucumbers were of similar size, came from the 

same area (Grand Bank) and were caught using the same fishing gear as those placed in 

the IMTA 4 years prior. Individuals from the IMTA system and from the wild were 
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transported to the laboratory in coolers with iced seawater (Gianasi et al., 2016), and 

separately held in two 500-L tanks with filtered seawater (200 µm) for 4 days to allow all 

feces to be evacuated.  

The total wet weight of each individual (n = 48) was obtained and their contracted 

length (mouth-to-anus) measured using rope. The sex of each individual was determined 

with a gonad smear when determination from the genital papilla described by Montgomery 

et al. (2018) could not be made. All individuals were dissected and their different 

organs/tissues (body wall, longitudinal and circular muscle bands, intestine, respiratory tree) 

were separately weighted and stored at -20℃ for further analysis. The wet weight of the 

body wall (without the aquapharyngeal bulb and muscle bands) was chosen as a 

denominator to establish the different organ indices (Hamel and Mercier, 1996). 

In addition, the fish feed and the particulate wastes, representing the main food 

sources for the sea cucumbers held in the IMTA system, were collected from four locations 

on of the bottom of the effluent mixed tank (described above), by siphoning and passing 

through a 100-μm mesh. The filtrates were stored at -20℃ until further analysis.  

5.3.3 Sample analysis  

The organs (muscle bands, intestine, and gonad) of 4 males and 4 females from either 

the IMTA system or the wild, together with the waste samples from effluent water, were 

submitted to the following analyses to confirm whether captive sea cucumbers assimilated 

the waste from salmon tanks and determine their respective biochemical composition. 
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5.3.3.1 Stable isotope and elemental analyses 

Samples were oven-dried at 70°C for 24 hours, and then ground into a fine powder 

using mortar and pestle. To get rid of carbonates that might affect the stable C isotope ratio 

data, hydrochloric acid (HCl, 1 M) was added dropwise to waste samples until bubbles 

stopped forming. Samples were then rinsed 3 times with distilled water, and oven dried 

again. Subsamples of 1 mg were packed into tin cups and simultaneously analyzed for 

stable carbon and nitrogen isotope ratios, and for elemental C and N, at the Earth Resources 

Research and Analysis (TERRA) of the Core Research Equipment and Instrument Training 

Network (CREAIT) of Memorial University, using a Delta V Plus (Carlo Erba) continuous-

flow isotope-ratio mass spectrometer. Isotope ratios are expressed in the conventional 

notation (i.e. δ13C and δ15N) in parts per thousand (‰), following the equation: 

δ15N or δ13C = [(Rsample / Rstandard) - 1] × 1000 

where Rsample is the ratio of 13C/12C or 15N/14N. The average standard deviation of selected 

replicates was ± 0.1‰ for δ15N and ± 0.1‰ for δ13C. Total elemental C and N were 

measured as % of dry mass, and the average standard deviation was ± 3.2 for %C and ± 

0.1 for %N. L-valine, USGS-24 graphite, IAEA-CH-6 sucrose, LSVEC, MUN-CO-1, and 

MUN-CO-2 were used as standards for stable carbon isotopes. IAEA-N-1, USGS-25, 

USGS-26, and L-valine were used to assess accuracy and precision of stable nitrogen 

isotope data. B2155 protein was used as a standard for δ13C and δ15N. 

5.3.3.2 Lipid content and lipid class analyses 

Samples of muscle bands, gonad and intestine (0.5-1.0 g) were collected from each 

still-frozen individual to limit lipid oxidation and hydrolysis. Also, four samples of 3.5-4.5 

g of waste were collected from the effluent mixing tank. Each sample was immersed in 
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chloroform (8 ml), topped up with nitrogen gas (N2), sealed with Teflon tape and stored in 

a freezer at -20 ºC until extraction.  

Lipids were extracted and analyzed following Parrish (1999). Briefly, samples were 

homogenized in a chloroform:methanol:water (2:1:1) mixture, sonicated for 5 min, and 

centrifuged for 2 min. The bottom, organic layer was removed using a double pipetting 

technique involving placing two pipettes inside one another. Chloroform was then added 

to the sample, and the procedure was repeated three times.  The top layer (lipid extracts) 

was pooled into a lipid-clean vial, and the total amount was blown down to volume under 

a gentle stream of nitrogen. Vials were sealed and stored at -20ºC until lipid and fatty acid 

analysis. 

Lipid classes were determined by thin layer chromatography with flame ionization 

detection using an Iatroscan MK-6 and a three-stage development system to separate lipid 

classes. The first separation consisted of 25 min and 20 min developments in a mixture of 

hexane:diethyl ether:formic acid (98.95:1:0.05). The second development used a mixture 

of hexane, diethyl ether, and formic acid (79.9:20:0.1) for 40 min. The last separation 

consisted of a 15 min development of 100% acetone followed by two 10 min developments 

in chloroform:methanol:chloroform-extracted-water (5:4:1). Lipid classes were identified 

and quantified through comparison with a prepared standard. Data were processed using 

the PeakSimple Chromatography software (V4.51, SRI Instruments, US). 

5.3.3.3 Fatty acid analysis 

Fatty acids were determined from the same samples previously used for lipid class 

analysis. The fatty acid derivatization procedure is based on Parrish (1999). Briefly, an 

aliquot of the lipid extracts (muscle bands, 100 µl; intestine and gonad, 30 µl; waste, 10 
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µl), calculated in relation to the total amount of lipids within each sample, was transferred 

into a lipid clean vial and dried under N2. After the addition of 1.5 ml of dichloromethane 

and 3 ml of Hilditch reagent (i.e. H2SO4 dissolved in methanol), the vials were sonicated, 

sealed with Teflon tape, and heated for 1 h at 100ºC. After cooling, 0.5 ml of saturated 

sodium bicarbonate and 1.5 ml of hexane were added to each vial, thus creating two layers. 

The upper, organic layer was removed and transferred into a new lipid clean vial. Finally, 

the solution was blown dry under N2, and 0.5 ml of hexane was added to each vial. Vials 

were then sealed and kept at -20ºC until analysis. The samples were analyzed as fatty acids 

methyl esters (FAME) on a HP 6890 Gas Chromatograph FID equipped with a 7683 

autosampler. Chromatograms were compared to a prepared standard and analysed using 

the software Varian Galaxie Chromatography Data System. Shorthand FA notations of the 

form A:BωX were used, where A represents the number of carbons atoms, B the number 

of double bonds and X is the position of the first double bond closest the terminal methyl 

group (CH3).  

5.3.4 Statistical analysis  

All data were tested for normality and equal variance using Kolmogorov-Smirnov and 

Levene’s tests (α = 0.05), respectively. Differences in health condition between the sea 

cucumbers from the field (wild individuals) and from the IMTA system (captive 

individuals), were assessed using t-test for each organ index (muscle bands, intestine, 

gonad and respiratory tree). Stable isotopes (δ15N and δ13C) and elemental N (%N) and C 

(%C), and total lipid content were also compared between the two groups using t-test. 

Permutational multivariate ANOVA (PERMANOVA) was performed to explore the FA 
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composition variability among captive and wild individuals, and waste. Data in the text are 

expressed as mean ± standard deviation. Statistical analyses were conducted with 

Sigmaplot® (Systat Software, San Jose, CA, USA) and Primer® (Primer-E, Lutton, UK). 

5.4 Results 

5.4.1 Morphological metrics and organ indices 

Overall, the survival rate of sea cucumbers under IMTA over 4 years was around 90% 

and the wet weight of captive individuals varied significantly over time (F3,124 = 18.56, P 

< 0.001). The wet weight of captive individuals decreased from 253 ± 52 g in June 2015 to 

122 ± 60 g in August 2017 (Fig. 1). The freshly-collected wild sea cucumbers (229 ± 48 g) 

were significantly larger than the captive individuals at the end of this study (122 ± 60 g, 

Tukey’s test, P < 0.001) and showed higher organ indices (Fig. 5.1, 5.2). All the organ 

indices of wild individuals were significantly greater than those of captive individuals, in 

both males (muscle bands, t = 3.78, df = 16, P = 0.002; intestine, t = 3.30, df = 16, P = 

0.005; gonad, t = 3.48, df = 16, P = 0.003; respiratory tree, t = 2.38, df = 16, P = 0.030) and 

females (muscle bands, t = 5.76, df = 20, P < 0.001; intestine, t = 2.16, df = 20, P = 0.043; 

gonad, t = 3.53, df = 20, P = 0.002; respiratory tree, t = 2.28, df = 20, P = 0.017; Fig. 5.2). 

All the wild sea cucumbers had a well-developed gonad with the presence of reddish 

vitellogenic oocytes and small yellowish oocytes in the gonad tubules (Fig. S.5.1A), 

whereas only 67% of captive sea cucumbers had a gonad, and when present it was 

consistently smaller than in wild counterparts (Fig. S.5.1B). The gonad index displayed the 

greatest difference; with 22.0 ± 11.7% in wild males and 27.0 ± 15.1% in wild females, 
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which was roughly three times the gonad index measured in captive males (7.2 ± 3.0%) 

and females (7.5 ± 4.4%) (Fig. 5.2). 

5.4.2 Stable isotope and elemental analyses 

Stable N isotope ratios (δ15N) of all organs of captive individuals were significantly 

greater than those of wild individuals, for both sexes (Table S.5.1). Specifically, a marked 

difference in δ15N of intestine occurred between captive (male, 12.0 ± 0.8‰; female, 12.1 

± 0.5‰) and wild individuals (male, 7.1 ± 0.2‰, t = -12.51, df = 6, P < 0.001; female, 7.4 

± 0.7‰, t = -11.17, df = 6, P < 0.001). Stable C isotope ratios (δ13C) of muscle bands of 

captive sea cucumbers were -17.4 ± 0.2‰ in males and -17.3 ± 0.2‰ in females, 

significantly greater than in wild individuals (male, -18.3 ± 0.4‰, t = -3.83, df = 6, P = 

0.009; female, -18.1 ± 0.5‰, t = -3.10, df = 6, P = 0.020). Also, δ13C of intestine was 

significantly greater in captive than wild individuals, in both males (captive, -19.8 ± 0.5‰; 

wild, -21.8 ± 0.3‰, t = -6.19, df = 6, P < 0.001) and females (captive, -19.6 ± 0.1‰; wild, 

-21.1 ± 0.8‰, t = -3.52, df = 6, P = 0.013). However, no significant differences in δ13C of 

the gonad was found between the two groups for both males (captive, -21.1 ± 0.4‰; wild, 

-21.1 ± 0.4‰, t = 0.06, df = 6, P = 0.953) and females (captive, -20.9 ± 0.3‰; wild, -20.9 

± 0.7‰, t = -0.19, df = 6, P = 0.857). Overall, sea cucumbers held in the IMTA system 

displayed enrichment in δ13C and δ15N relative to those collected from the wild (Fig. 5.3). 

In addition, δ13C and δ15N values obtained for the samples of salmon waste were -22.4 ± 

0.3‰ and 11.8 ± 0.2‰, respectively.  

The concentration of elemental N was greater in captive than wild individuals for 

muscle bands and intestine, but not for the gonad. Specifically, the concentration of 
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elemental N in percent dry mass was significantly greater in the muscle bands (t = -3.35, 

df = 6, P = 0.015) and intestine (t = -3.49, df = 6, P = 0.013) of captive males (11.8 ± 0.5%, 

9.5 ± 0.4%) than wild males (10.4 ± 0.7%, 8.6 ± 0.3%). The same was true in females for 

both muscle bands (captive, 12.0 ± 0.1%; wild, 10.8 ± 0.6%, t = -3.86, df = 6, P = 0.008) 

and intestine (captive, 9.9 ± 0.5%; wild, 8.4 ± 0.6%, t = -3.85, df = 6, P = 0.008). However, 

the percent dry mass of N in the gonad was significantly greater in wild than in captive 

individuals for males (captive, 6.5 ± 0.7%; wild, 8.2 ± 1.5%, t = 2.13, df = 6, P = 0.048) 

and females (captive, 7.1 ± 0.9%; wild, 8.6 ± 0.8%, t = 2.66, df = 6, P = 0.038). The 

concentration of elemental C in percent dry mass was significantly greater in the muscle 

bands (t = -3.12, df = 6, P = 0.021) and gonad (t = -6.86, df = 6, P < 0.001) of captive males 

(46.0 ± 1.9%, 55.6 ± 1.1%) than wild males (41.8 ± 1.9%, 48.0 ± 2.0%). The same was 

true in females for both muscle bands (captive, 46.1 ± 0.4%; wild, 42.7 ± 1.5%, t = -4.18, 

df = 6, P = 0.006) and gonad (captive, 54.1 ± 0.7%; wild, 50.2 ± 1.4%, t = -4.92, df = 6, P 

= 0.003). The percent dry mass of elemental C in the intestine was significantly greater in 

captive than in wild females (captive, 49.2 ± 2.0%; wild, 45.7 ± 1.8%, t = -2.57, df = 6, P 

= 0.042) but no significant difference occurred in males (captive, 48.9 ± 2.4%; wild, 47.4 

± 3.1%, t = -0.81, df = 6, P = 0.450).  

5.4.3 Lipid classes and total lipids 

The following lipid classes were found in all tissues of wild and captive sea cucumbers: 

acylated glyceryl ethers (AGE), triacylglycerols (TAG), sterols (ST) and phospholipids 

(PL). However, hydrocarbons (HC) were only found in gonad tissue, and acetone mobile 

polar lipids (AMPL) occurred in the gonad and intestine but not in muscle bands. For both 
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groups of sea cucumbers, total lipid content was generally higher in the gonad (males: 

captive, 26.0 mg g-1; wild, 27.2 mg g-1, females: captive, 25.9 mg g-1; wild, 26.6 mg g-1) 

than in the intestine (males: captive, 12.0 mg g-1; wild, 14.1 mg g-1, females: captive, 9.2 

mg g-1; wild, 11.4 mg g-1) and muscle bands (males: captive, 3.2 mg g-1; wild, 3.3 mg g-1, 

females: captive, 3.1 mg g-1; wild, 3.6 mg g-1, Fig. 5.4).  

For all tissues examined in both sexes, total lipid contents were consistent between 

wild and captive sea cucumbers, except for the intestine of males, where the total lipid 

levels were significantly greater in wild (14.1 ± 1.0 mg g-1) than in captive individuals (12.0 

± 1.0 mg g-1, t = 2.98, df = 6, P = 0.025; Fig. 5.4). When comparing each lipid class between 

wild and captive sea cucumbers, the gonad of the latter displayed low content of AMPL 

(males, 0.20 ± 0.05 mg g-1; females, 0.23 ± 0.06 mg g-1), whereas AMPL was not detected 

in the gonad of wild individuals. The PL content was greater in captive than wild 

individuals and, inversely, the TAG content was higher in wild individuals for both sexes 

(Table 5.1). 

5.4.4 Fatty acids 

For both groups of sea cucumbers, the most abundant FA in muscle bands were: 

eicosapentaenoic acid, 20:5ω3 (EPA; 27.8-36.0%); docosatetraenoic acid, 22:4ω6 (9.0-

20.0%); and hexadecatetraenoic acid, 16:4ω3 (6.9-13%) and the majority of FA found in 

the gonad comprised palmitoleic acid, 16:1ω7 (20.4-22.5%) and EPA (12.7-22.5%). Also, 

large proportions of EPA (31.3-36.4%) were found in the intestine of both wild and captive 

sea cucumbers.  
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The FA composition of all the tissues (muscle bands, gonad and intestine) differed 

between wild and captive sea cucumbers, in both sexes, and between sea cucumber tissues 

and waste material (Fig. 5.5, 5.6, 5.7); these differences were significant according to the 

PERMANOVA analysis (Table S.5.2). When comparing each fatty acid between wild and 

captive individuals, 16:1ω7 content was greater in all tissues of the former for both sexes 

(Table 5.2); however, the contents of oleic acid (18:1ω9), linoleic acid (18:2ω6) and 

gadoleic acid (20:1ω9) were greater in the tissues of captive than wild individuals. 

Regardless of sex, the arachidonic acid (ARA, 20:4ω6) content of muscle bands and 

intestine were greater in captive than in wild individuals. The EPA content in muscle bands 

and intestine of wild individuals were similar to those of captive individuals, in both males 

and females, but the contents in the gonad were nearly twice greater in wild (21.0-22.5%) 

than captive individuals (12.7-13.5%). The docosahexaenoic acid (DHA, 22:6ω3) was 

detected in the gonads of wild individuals but not in the gonads of captive individuals; 

moreover, DHA content in the intestine of both males and females of captive individuals 

(3.9-4.7%) was roughly three times that found in wild counterparts (1.1-1.3%).  

5.5. Discussion  

While C. frondosa has been identified as a potential candidate for IMTA, limited 

information currently exists on the suitability of suspension-feeding sea cucumbers in such 

systems. From a study of sea cucumbers either held close to a fish farming site or held in 

the laboratory supplemented with fish feed and feces, Nelson et al. (2012) found that C. 

frondosa was capable of capturing and ingesting excess salmon feed and feces, suggesting 

its potential use as an extractive species. The isotope and fatty acid profiles determined 
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here support that C. frondosa not only ingests but can assimilate the organic waste of 

effluent water from salmon farming; however, the net outcome for its health appears to be 

negative.  

Assimilation of food resources is known to be reflected in the stable isotope signature 

of animal tissues (Peterson and Fry, 1987), which gets shifted towards that of the food 

source (Post, 2002). The present results are in line with this description. Individuals held 

in a land-based IMTA system along with salmon for nearly 4 years displayed enrichment 

in δ13C and δ15N relative to those collected from the wild. The food available in the IMTA 

was chiefly composed of salmon waste (residual feed and feces) as the water supplying the 

system was filtered, thereby minimizing the availability of natural plankton. In contrast, 

previous studies have shown that seston, including plankton and particulate organic and 

inorganic matter, are the main food sources of wild C. frondosa (Singh et al., 1998; Hamel 

and Mercier, 1998). The isotopic signatures of these food sources differed accordingly, 

with waste material displaying -22.4‰ for δ13C and 11.8‰ for δ15N, whereas Ostrom and 

Macko (1992) and Ostrom et al. (1997) reported lower δ13C and δ15N values for seston 

(plankton and particulate materials) in Newfoundland (-23.5‰ and 3‰, respectively). The 

enrichment in the δ13C and δ15N signatures of captive individuals is therefore consistent 

with processing and assimilation of the salmon waste materials. Another study conducted 

on a deposit feeder, Australostichopus mollis, showed that isotope signatures of sea 

cucumbers at the farm site were more enriched relative to those of individuals from the 

natural site (Slater and Carton, 2010). Alternately, or additionally, some of the changes in 

δ13C and δ15N signatures might be the result of long-term starvation (discussed later on). 
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Certain specific fatty acids (FA) have been successfully used as tracers of fish feed to 

determine its assimilation by aquatic animals (Gao et al., 2006; Redmond et al., 2010; 

Irisarri et al., 2015). Here, all the tissues of the individuals held in the IMTA system had 

greater levels of FA biomarkers of fish feed (18:1ω9, 18:2ω6 and 20:1ω9) than wild 

individuals of both sexes, in line with assimilation of residual feed by sea cucumbers. In 

addition, fish feed now use plant oils (Skog et al., 2003; Narváez et al., 2008), which are 

depleted in ω3 PUFA and rich in ω6 PUFA (Menoyo et al., 2007). Therefore, a lower 

ω3/ω6 ratio in all the tissues of captive sea cucumbers compared to wild individuals further 

suggests that salmon feed was assimilated by sea cucumbers. Similarly, previous studies 

showed the assimilation of fish feed by mussels cultured close to fish pens or supplemented 

with crushed fish pellets or fish effluents, based on the lower ω3/ω6 ratio in their digestive 

gland and mantle tissue relative to those of mussels from the natural site (Gao et al., 2006; 

Redmond et al., 2010; Irisarri et al., 2015; Handå et al., 2012).  

While the shift in biochemical composition supports an assimilation of particulate 

waste present in effluent water from salmon tanks, C. frondosa may not have been able to 

ingest enough of it (due to rapid sinking) or did not get nutrients of sufficient quality 

through this system based on its decreasing body size over the years. Insufficient or poor-

quality food was described to induce auto-digestion of stored nutrient reserves in the 

different organs (including body wall and muscle bands) resulting in progressive weight 

loss (see below). Previous studies suggested that stable isotope analysis might serve as an 

index of nutritional stress (Gannes et al., 1997). Specifically, nitrogen isotope ratios appear 

to be particularly sensitive in that δ15N of the whole body should increase with the duration 

of starvation (Hatch, 2012). Therefore, the enrichment in the δ15N signatures of captive 
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individuals in the present study may be related to their long-term starvation. However, a 

number of studies have challenged this assumption (Gorokhova and Hansson, 1999; Hatch, 

2012) so whether starvation affected the stable isotope signatures of sea cucumbers in the 

present study remains to be clarified. What is clear is that the physical condition of sea 

cucumbers held for 4 years under IMTA differed from that of wild individuals; they were 

overall smaller, suggesting that the salmon waste did not provide adequate nourishment for 

their sustenance and growth. Muscle bands are one of the most important energy storage 

organs in C. frondosa, and their weight-based proportion is closely related to food supply 

and reproductive state (Hamel and Mercier, 1996; Gianasi et al., 2017). The lower index 

of muscle bands in captive sea cucumbers further suggests long-term malnutrition, whereby 

the energy stored in the muscle bands was used for other basal activities. In addition, 

spawning in captive sea cucumbers was only recorded in the first year of the 4-year study, 

likely enabled by stored nutrients still present in the gonad. A third of captive individuals 

did not have a gonad at the end of the study, and in those that did, the gonad was not well 

developed. 

Previous studies have suggested that the biochemical composition of sea cucumbers 

was reflective of their diet (Yu et al., 2015; Wen et al., 2016; Gianasi et al., 2017) as also 

described in other taxa (Kanazawa et al., 1979). In the present study, differences in specific 

lipid classes between wild and captive sea cucumbers were observed. TAG in male and 

female tissues was greater in wild than captive individuals; this lipid class was described 

to play a role as energy storage in echinoderms and can be accumulated during periods of 

high food availability (Prowse et al., 2017). The variability of TAG likely reflects the 

different energy allocation strategies, i.e. how energy is distributed towards growth, 
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survival, and reproduction (Parzanini et al., 2018). For example, the proportion of TAG 

displayed increasing trends in the pre-spawning period, and declined in ovaries of C. 

frondosa post spawning (Verkaik et al., 2016; Gianasi et al., 2017). The reduction of TAG 

in captive individuals may suggest that they maximized their survival at the expense of 

preserving energetic lipid storage. Similarly, TAG decreased more slowly in fed than unfed 

larvae of the sea urchin Heliocidaris tuberculata (Prowse et al., 2017). However, the 

greater content of PL in captive C. frondosa may be related to the high content of PL in 

waste (main food source). The present study also revealed that the FA composition of all 

the tissues of wild individuals differed from captive individuals of both sexes. The FA 

biomarker of diatom, 16:4ω1, was detected in all tissues of wild sea cucumbers but not in 

any tissue of captive individuals, and the content of 16:1ω7 was greater in all the tissues of 

wild individuals than captive individuals. This supports the absence of diatoms as a food 

source in the IMTA system. However, the presence of bacterial fatty acids (i.e. i15:0, ai15:0, 

15:0, i16:0, ai16:0) (Kaneda, 1991) in the tissues of both wild and captive individuals 

provides an indicator of bacterial contribution to their diet. In aquatic organisms, ARA, 

EPA and DHA are considered essential nutrients because they are required for optimal 

health (growth, reproduction, and immunity) and most of them are unable to synthesize 

them de novo (Parrish, 2009). Here, the proportion of EPA in the gonad was lower in 

captive than wild individuals of both sexes and DHA was not detected at all in the captive 

individuals. This may explain the poor development of gonad and the lack of reproduction 

in captive sea cucumbers. 

The results of this study showed that suspension-feeding sea cucumbers held 

downstream of salmon cultures exhibited shifts in both stable carbon and nitrogen isotopes, 
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and in some specific fatty acids indicative of salmon feed. This suggests that C. frondosa 

can perform the role of an extractive species, assimilating and incorporating salmon-

farming waste, and mitigating the accumulation of heavier solids, while providing an 

additional remunerative product. However, the poor physical condition, associated with the 

change in biochemical composition of captive sea cucumbers indicates that waste from fish 

farming may not completely meet their nutritional requirements for normal growth and 

reproduction, questioning the possibility of growing juveniles of C. frondosa to 

commercial size under such conditions. In other words, a natural diet including 

phytoplankton or lipid-rich suspended particulate matter may be crucial to maintain overall 

health in C. frondosa, which was not provided under the present salmon IMTA system. 

Further experimental trials will be required to obtain more precise information on the 

effects of salmon waste, what nutrients may be missing, whether supplements can offset 

any deficiencies, and whether the flavor and texture of sea cucumbers from IMTA systems 

will be changed. Importantly, the present study was conducted in a land-based aquaculture 

facility using filtered seawater, whereas the most popular salmon farming method uses 

cages (pens) at sea. It is possible that such an open-ocean design could provide enough 

natural seston for C. frondosa to remain healthy, although whether it would still ingest and 

assimilate salmon waste is uncertain. Additional work is needed to measure the assimilative 

capacity of suspension-feeding sea cucumbers inside various IMTA designs, including 

salmon floating pens and co-culture with other extractive species, such as bivalves.  
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5.8 Tables 

Table 5.1 Lipid classes in salmon culture waste and in tissues (muscle bands, gonad and 

intestine) of male and female individuals of wild and captive sea cucumbers. The hyphen 

indicates that the concentration was below detection. Data are shown as means ± s.d. (n = 

4) in mg g-1 wet weight 

  Male  Female  

   Muscle 

bands 

  Gonad   Intestine   Muscle 

bands 

  Gonad   Intestine  

Lipid 

classes 

Waste Wild Captive Wild  Captive Wild Captive Wild Captive Wild  Captive Wild  Captive 

HC 0.09 ± 

0.01 

- - 0.32 ± 

0.11 

0.29 ± 

0.06 

- - - - 0.30 

± 

0.03 

0.28 ± 

0.03 

- - 

AGE - 0.11 

± 

0.03 

0.10 ± 

0.02 

7.89 ± 

3.17 

8.63 ± 

2.67 

0.56 ± 

0.17 

0.55 ± 

0.15 

0.10 

± 

0.03 

0.08 ± 

0.02 

9.31 

± 

2.18 

8.44 ± 

3.73 

0.53 ± 

0.26 

0.56 ± 

0.21 

TAG 0.83 ± 

0.10 

1.39 

± 

0.45 

0.19 ± 

0.08 

10.76 

± 4.22 

8.67 ± 

3.27 

3.60 ± 

1.62 

0.95 ± 

0.24 

1.24 

± 

0.41 

0.21 ± 

0.05 

10.78 

± 

5.36 

8.12 ± 

3.73 

3.67 ± 

0.56 

0.95 ± 

0.20 

FFA 3.20 ± 

0.46 

- - 2.51 ± 

0.35 

3.20 ± 

0.95 

2.48 ± 

1.32 

0.78 ± 

0.27 

- - 2.43 

± 

1.21 

3.32 ± 

0.44 

2.05 ± 

0.73 

0.73 ± 

0.25 

ALC - - 0.09 ± 

0.02 

- 0.31 ± 

0.11 

- 0.05 ± 

0.01 

- 0.09 ± 

0.05 

- 0.29 ± 

0.02 

- 0.05 ± 

0.01 

ST 0.37 ± 

0.05 

0.09 

± 

0.01 

0.19 ± 

0.03 

1.12 ± 

0.35 

1.07 ± 

0.10 

0.23 ± 

0.08 

0.95 ± 

0.24 

0.09 

± 

0.01 

0.20 ± 

0.01 

0.97 

± 

0.29 

1.08 ± 

0.18 

0.29 ± 

0.09 

0.74 ± 

0.14 
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AMPL 0.18 ± 

0.06 

- - - 0.20 ± 

0.05 

0.60 ± 

0.07 

0.63 ± 

0.30 

- - - 0.23 ± 

0.06 

0.62 ± 

0.11 

0.61 ± 

0.15 

PL 4.07 ± 

0.50 

1.68 

± 

0.33 

2.68 ± 

0.38 

3.65 ± 

1.14 

4.63 ± 

1.16 

6.60 ± 

1.64 

8.06 ± 

0.94 

1.58 

± 

0.30 

2.56 ± 

0.32 

2.84 

± 

0.21 

4.15 ± 

1.42 

4.26 ± 

0.44 

5.52 ± 

0.98 

*Lipid classes: HC, hydrocarbons; AGE, acylated glyceryl ethers; TAG, triacylglycerols; 

FFA, free fatty acids; ALC, alcohols; ST, sterols; AMPL, acetone mobile polar lipids; PL, 

phospholipids  
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Table 5.2 Fatty acid composition of waste from salmon farming, and of tissues (muscle 

bands, gonad and intestine) in male and female indivuduals of wild and captive sea 

cucumbers. The hyphen indicates that the concentration was below detection. Data are 

shown as means ± s.d. (n = 4) as proportions (%) 

  Male  Female  

   Muscle 

bands 

  Gonad   Intestine   Muscle bands   Gonad   Intestine  

Fatty 

acid 

Waste Wild Captive Wild  Captive Wild Captive Wild Captive Wild  Captive Wild  Captive 

14:0 8.5 ± 

1.9 

4.6 ± 

0.7 

0.4 ± 0.1 3.9 ± 

0.6 

0.5 ± 

0.2 

6.4 ± 

1.6 

0.3 ± 0.1 3.5 ± 

1.6 

0.3 ± 0.1 3.6 ± 

0.7 

0.8 ± 0.4 6.2 

± 

2.1 

0.4 ± 0.1 

i15:0 0.4 ± 

0.0 

- - - - - - - - - - - - 

ai15:0 - 1.4 ± 

0.2 

0.6 ± 0.2 13.4 

± 3.4 

12.0 ± 

2.1 

2.0 ± 

0.5 

1.5 ± 0.3 1.1 ± 

0.2 

0.5 ± 0.2 13.3 

± 3.3 

13.4 ± 

2.1 

2.0 

± 

0.3 

1.3 ± 0.4 

15:0 0.8 ± 

0.04 

- - 0.7 ± 

0.2 

1.0 ± 

0.2 

0.2 ± 

0.1 

- - - 0.6 ± 

0.2 

0.9 ± 0.1 0.2 

± 

0.1 

- 

i16:0 - 0.2 ± 

0.1 

0.2 ± 0.1 1.8 ± 

0.3 

4.0 ± 

0.1 

0.7 ± 

0.2 

- 0.2 ± 

0.1 

0.2 ± 0.1 2.0 ± 

0.2 

3.7 ± 0.3 0.6 

± 

0.2 

- 

ai16:0 - 0.2 ± 

0.1 

- 0.3 ± 

0.0 

0.3 ± 

0.1 

- - 0.2 ± 

0.1 

- 0.2 ± 

0.1 

0.3 ± 0.1 - - 

16:0 32.0 

± 0.8 

4.3 ± 

0.6 

2.1 ± 0.3 4.6 ± 

1.1 

2.2 ± 

0.4 

2.3 ± 

0.2 

1.8 ± 0.2 3.4 ± 

0.5 

2.0 ± 0.2 3.5 ± 

0.5 

2.7 ± 0.5 2.3 

± 

0.3 

1.7 ± 0.3 

16:1ω7 7.0 ± 

0.3 

4.0 ± 

0.8 

1.2 ± 0.2 22.5 

± 1.4 

20.4 ± 

1.8 

13.4 ± 

2.2 

1.4 ± 0.8 6.4 ± 

0.8 

0.8 ± 0.5 22.1 

± 1.4 

20.1 ± 

2.0 

15.5 

± 

2.9 

3.5 ± 2.0 

16:1ω5 0.3 ± 

0.1 

0.2 ± 

0.1 

- 0.7 ± 

0.2 

1.3 ± 

0.2 

- - 0.2 ± 

0.1 

- 0.7 ± 

0.1 

0.8 ± 0.1 - - 

ai17:0 0.2 ± 

0.1 

0.3 ± 

0.1 

0.4 ± 0.2 1.2 ± 

0.1 

5.4 ± 

1.3 

0.2 ± 

0.1 

0.9 ± 0.3 0.3 ± 

0.1 

0.4 ± 0.2 1.4 ± 

0.4 

5.6 ± 1.4 0.2 

± 

0.0 

1.1 ± 0.2 

16:2ω4 0.4 ± 

0.0 

0.4 ± 

0.2 

- 0.9 ± 

0.2 

0.3 ± 

0.1 

0.9 ± 

0.1 

- 0.5 ± 

0.2 

- 0.9 ± 

0.1 

0.3 ± 0.1 1.1 

± 

0.2 

- 

16:3ω4 0.1 ± 

0.0 

0.1 ± 

0.0 

- 0.5 ± 

0.2 

1.5 ± 

0.1 

0.6 ± 

0.2 

- 0.2 ± 

0.1 

- 0.6 ± 

0.3 

1.2 ± 0.7 0.7 

± 

0.2 

- 
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17:1 - - - 0.3 ± 

0.2 

0.6 ± 

0.2 

0.5 ± 

0.1 

0.5 ± 0.1 - - 0.4 ± 

0.1 

0.5 ± 0.2 0.5 

± 

0.1 

0.5 ± 0.2 

16:4ω3 - 6.9 ± 

3.5 

13.0 ± 

0.5 

2.5 ± 

0.3 

2.1 ± 

0.5 

4.2 ± 

1.7 

8.2 ± 3.5 9.4 ± 

2.0 

9.9 ± 3.7 2.0 ± 

1.0 

2.4 ± 0.6 3.9 

± 

1.0 

7.8 ± 2.0 

16:4ω1 0.1 ± 

0.1 

0.7 ± 

0.7 

- 1.8 ± 

0.4 

- 1.9 ± 

0.5 

- 0.9 ± 

0.5 

- 1.3 ± 

0.4 

- 2.5 

± 

0.7 

- 

18:0 7.6 ± 

0.3 

4.0 ± 

0.6 

2.0 ± 0.4 3.0 ± 

0.9 

1.0 ± 

0.3 

4.2 ± 

0.4 

2.6 ± 1.1 3.6 ± 

0.4 

1.9 ± 0.2 2.9 ± 

1.1 

1.4 ± 0.4 4.1 

± 

0.1 

3.2 ± 1.4 

18:1ω9 11.5 ± 

0.4 

1.1 ± 

0.2 

2.0 ± 0.4 3.8 ± 

0.9 

4.7 ± 

1.0 

2.5 ± 

0.5 

3.4 ± 0.5 1.5 ± 

1.2 

1.8 ± 0.4 3.9 ± 

0.5 

5.4 ± 1.1 3.2 

± 

0.4 

4.2 ± 0.3 

18:1ω7 6.0 ± 

0.1 

1.7 ± 

1.6 

2.2 ± 0.6 3.6 ± 

0.4 

9.1 ± 

1.3 

2.9 ± 

0.3 

3.1 ± 0.4 3.2 ± 

0.2 

2.6 ± 0.8 4.1 ± 

0.6 

8.2 ± 1.4 3.0 

± 

0.4 

3.5 ± 1.0 

18:2ω6 4.1 ± 

0.1 

0.8 ± 

0.3 

1.7 ± 0.3 0.4 ± 

0.0 

1.5 ± 

0.4 

0.8 ± 

0.0 

3.1 ± 0.8 1.0 ± 

0.3 

1.4 ± 0.9 0.4 ± 

0.1 

1.9 ± 0.1 0.8 

± 

0.1 

3.0 ± 0.9 

20:1ω9 2.0 ± 

1.1 

2.8 ± 

1.9 

6.5 ± 0.8 1.0 ± 

0.2 

1.7 ± 

0.7 

0.9 ± 

0.2 

4.9 ± 0.5 2.9 ± 

0.5 

5.4 ± 3.1 1.2 ± 

0.4 

1.6 ± 0.4 1.5 

± 

0.8 

4.0 ± 1.5 

20:4ω6 1.1 ± 

0.1 

2.2 ± 

0.6 

5.9 ± 0.3 - - 0.5 ± 

0.3 

3.0 ± 0.8 2.2 ± 

0.4 

6.3 ± 1.1 - - 0.5 

± 

0.1 

2.2 ± 0.7 

20:5ω3 2.8 ± 

0.2 

36.0 

± 2.8 

27.8 ± 

0.8 

22.5 

± 3.3 

12.7 ± 

0.8 

35.3 ± 

3.5 

36.4 ± 

6.6 

35.1 

± 1.3 

32.0 ± 

3.9 

21.0 

± 3.2 

13.5 ± 

1.4 

34.0 

± 

2.5 

31.3 ± 

7.9 

22:1ω7 - - - 0.8 ± 

0.1 

1.0 ± 

0.1 

1.3 ± 

0.4 

- - - 0.7 ± 

0.2 

0.7 ± 0.4 0.9 

± 

0.2 

- 

22:4ω6 1.7 ± 

0.1 

9.0 ± 

1.0 

19.3 ± 

1.4 

2.0 ± 

0.4 

5.4 ± 

0.5 

3.6 ± 

1.4 

12.5 ± 

2.6 

9.9 ± 

2.8 

20.0 ± 

2.1 

2.3 ± 

0.7 

5.6 ± 1.3 3.5 

± 

1.5 

9.9 ± 5.4 

22:6ω3 3.0 ± 

0.2 

0.6 ± 

0.2 

0.7 ± 0.2 0.9 ± 

0.2 

- 1.3 ± 

0.1 

3.9 ± 0.5 0.7 ± 

0.4 

0.5 ± 0.4 0.9 ± 

0.3 

- 1.1 

± 

0.3 

4.7 ± 0.7 

24:1 0.6 ± 

0.1 

2.1 ± 

0.4 

1.5 ± 0.4 2.7 ± 

0.3 

1.8 ± 

0.2 

2.2 ± 

0.4 

0.6 ± 0.2 2.0 ± 

0.3 

1.7 ± 0.3 2.3 ± 

0.3 

1.3 ± 0.3 1.9 

± 

0.2 

0.8 ± 0.3 

∑ SFA 51.1 

±1.9 

14.5 

± 2.5 

7.4 ± 0.7 12.7 

± 2.6 

6.0 ± 

1.5 

16.4 ± 

1.2 

7.2 ± 3.0 11.6 

± 2.4 

6.3 ± 1.8 11.1 

± 3.7 

6.4 ± 1.2 15.0 

± 

2.4 

8.9 ± 5.8 

∑ 

MUFA 

32.3 

± 1.9 

22.6 

± 2.2 

13.4 ± 

0.8 

36.1 

± 2.5 

43.6 ± 

3.9 

25.4 ± 

3.9 

14.9 ± 

3.4 

19.3 

± 2.5 

15.4 ± 

2.6 

39.2 

± 3.9 

41.2 ± 

2.3 

28.0 

± 

2.7 

17.9 ± 

7.4 
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∑ 

PUFA 

15.5 

± 0.8 

60.3 

± 4.5 

78.1 ± 

1.1 

34.5 

± 4.8 

28.8 ± 

1.4 

55.0 ± 

5.4 

76.9 ± 

6.3 

67.1 

± 4.8 

77.2 ± 

1.9 

32.8 

± 4.4 

29.6 ± 

1.6 

54.1 

± 

5.5 

70.5 ± 

13.4 

ω3/ω6 0.8 ± 

0.1 

3.6 ± 

0.3 

1.5 ± 0.2 10.8 

± 1.5 

2.1 ± 

0.3 

8.3 ± 

2.1 

2.6 ± 0.4 3.5 ± 

0.7 

1.5 ± 0.3 8.9 ± 

2.1 

2.1 ± 0.3 8.1 

± 

1.3 

2.9 ± 0.4 

SFA = saturated fatty acids, MUFA = monounsaturated fatty acids and PUFA = 

polyunsaturated fatty acids 

  



189 

 

5.9 Figures 

 

Figure 5.1 Wet weight of wild individuals (collected in 2017) and change in the wet weight 

of captive individuals over time (2013-2017). Data are shown as means ± s.d. (n = 24 for 

wild and captive individuals in August 2017; n = 40 for 2015 and 2016). Means with 

different letters are significantly different (ANOVA, P < 0.05). ND: not determined. 
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Figure 5.2 Organ indices of (A) male and (B) female individuals of wild and captive sea 

cucumbers. Data are shown as means ± s.d. (n = 10 for wild and n = 8 for captive in A; n 

= 14 for wild and n = 8 for captive in B). Different letters show statistically significant 

differences (t-test, P < 0.05). 
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Figure 5.3 Biplot of δ13C and δ15N in the muscle bands, intestine and gonad of wild and 

captive sea cucumbers (males and females), and in the waste from salmon tanks (food for 

captive individuals). All the data are shown as means ± s.d. (n =4). WMM = wild male 

muscle bands, WFM = wild female muscle bands, WMI = wild male intestine, WFI = wild 

female intestine, WMG = wild male gonad, WFG = wild female gonad; CMM = captive 

male muscle bands, CFM = captive female muscle bands, CMI = captive male intestine, 

CFI = captive female intestine, CMG = captive male gonad, CFG = captive female gonad. 

The triangles and circles represent male and female individuals, respectively, and the green 

and red colours represent wild and captive individuals, respectively. The black square 

corresponds to waste material. 
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Figure 5.4 Total lipids in muscle bands, gonad and intestine of (A) male and (B) female 

individuals of wild and captive sea cucumbers. Data are shown as means ± s.d. (n = 4). 

Comparsions were made between wild and captive individuals (t-test), and means with 

different letters are significantly different (P < 0.05). 
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Figure 5.5 MDS plot of fatty acid composition of muscle bands in (A) male and (B) female 

individuals of wild and captive sea cucumbers, and in waste from salmon tanks (food for 

captive individuals).  
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Figure 5.6 MDS plot of fatty acid composition of gonad in (A) male and (B) female 

individuals of wild and captive sea cucumbers, and in waste from salmon tanks (food for 

captive individuals).  
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Figure 5.7 MDS plot of fatty acid composition of intestine in (A) male and (B) female 

individuals of wild and captive sea cucumbers, and in waste from salmon tanks (food for 

captive individuals). 
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5.10 Supplementary Material  

Table S.5.1 Stable isotopes (δ15N and δ13C) and elemental N (%N) and C (%C) composition of waste from salmon tanks, and of tissues 

(muscle bands, gonad, and intestine) in captive and wild sea cucumbers. Data are shown as means ± s.d. (n = 4). Values for captive and 

wild individuals were compared using t-test; different letters indicate statistical differences. 

  Male  Female  

   Muscle bands   Gonad   Intestine   Muscle bands   Gonad   Intestine  

 Waste Wild Captive Wild  Captive Wild Captive Wild Captive Wild  Captive Wild  Captive 

%N 3.2 ± 

0.1 

10.4 ± 0.7a 11.8 ± 

0.5b 

8.2 ± 1.5b 6.5 ± 

0.7a 

8.6 ± 0.3a 9.5 ± 

0.4b 

10.8 ± 

0.6a 

12.0 ± 

0.1b 

8.6 ± 0.8b 7.1 ± 

0.9a 

8.4 ± 0.6a 9.9 ± 0.5b 

%C 27.0 ± 

0.9 

41.8 ± 1.9a 46.0 ± 

1.9b 

48.0 ± 

2.0a 

55.6 ± 

1.1b 

47.4 ± 3.1a 48.9 ± 

2.4a 

42.7 ± 

1.5a 

46.1 ± 

0.4b 

50.2 ± 

1.4a 

54.1 ± 

0.7b 

45.7 ± 1.8a 49.2 ± 

2.0b 

δ15N 11.8 ± 

0.2 

10.3 ± 1.2a 11.4 ± 

0.3b 

7.7 ± 1.2a 10.8 ± 

0.3b 

7.1 ± 0.2a 12.0 ± 

0.8b 

10.3 ± 

1.0a 

11.7 ± 

0.2b 

8.1 ± 1.6a 10.5 ± 

0.6b 

7.4 ± 0.7a 12.1 ± 

0.5b 

δ13C -22.4 ± 

0.3 

-18.3 ± 

0.4a 

-17.4 ± 

0.2b 

-21.1 ± 

0.4a 

-21.1 ± 

0.4a 

-21.8 ± 

0.3a 

-19.8 ± 

0.5b 

-18.1 ± 

0.5a 

-17.3 ± 

0.2b 

-20.9 ± 

0.7a 

-20.9 ± 

0.3a 

-21.1 ± 0.8a -19.6 ± 

0.1b 
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Table S.5.2 Results of PERMANOVA analysis conducted on fatty acid profiles of salmon 

waste and of various tissuses in males and females of Cucumaria frondosa. 

Sex Tissues Contrast P (perm) 

Male Muscle bands Captive vs Wild 0.046 

  Captive vs Waste 0.031 

  Wild vs Waste 0.038 

 Gonad Captive vs Wild 0.027 

  Captive vs Waste 0.024 

  Wild vs Waste 0.023 

 Intestine Captive vs Wild 0.025 

  Captive vs Waste 0.027 

  Wild vs Waste 0.025 

Female Muscle bands Captive vs Wild 0.031 

  Captive vs Waste 0.029 

  Wild vs Waste 0.033 

 Gonad Captive vs Wild 0.029 

  Captive vs Waste 0.029 

  Wild vs Waste 0.031 

 Intestine Captive vs Wild 0.034 

  Captive vs Waste 0.034 

  Wild vs Waste 0.027 
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Figure S.5.1 Morphometrics of (A) wild and (B) captive sea cucumbers. BW: body wall; 

AB: aquapharyngeal bulb; MB: muscle bands; I: intestine; RT: respiratory tree; G: gonad. 

Scale bar represents 3 cm.   
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6.1 Summary 

Sea cucumber is a high value seafood product that is exploited through wild fisheries 

and commercial aquaculture (Conand, 2004). It is perceived as healthy food, used in 

traditional medicine and as dietary supplement, and it has been consumed for centuries, 

especially in East Asia (Kiew and Don, 2012; Yang et al., 2015). The high demand and 

market prices for sea cucumber have led to the expansion of fisheries and to stock depletion 

for the most highly prized species (Anderson et al., 2011; Purcell et al., 2013). In this 

context, the sea cucumber Cucumaria frondosa is currently the target of an emerging 

fishery in Atlantic Canada and becoming one of the predominant commercial species on 

the global market (Hamel and Mercier, 2008). Developing a sustainable management 

strategy is a key factor in the emergence of any fishery. However, according to the 

Department of Fisheries and Oceans Canada (DFO), the information available on C. 

fronsosa does not currently provide enough of a scientific basis for determining the 

sustainable exploitation rate and assessing the risk of any increase in harvest level (DFO, 

2018). Therefore, more scientific data must be collected to manage this emerging fishery 

species and conserve natural populations. In addition, C. frondosa is considered to have 

potential as an aquaculture candidate and as an extractive species in integrated multi-tropic 

aquaculture (IMTA) systems, i.e. to reduce the environmental footprint of salmon and 

mussel farming (Nelson et al., 2012). In this thesis, key biological and ecological aspects 

of C. frondosa were investigated to provide managers with additional information 

necessary to develop sustainable management strategies and aquaculture protocols. The 

work focused on developing a direct method to determine age (using the sibling 
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dendrochirotid Psolus fabricii), examined the potential factors that may underlie the spatial 

distribution of adults of C. frondosa, and explored its suitability for integration in IMTA 

systems. 

Chapter 2 presented and validated an aging technique using the cold-water 

dendrochirotid species P. fabricii. A novel method of detaching plates (ossicles) from 

tissues was developed. Compared to the traditional bleaching method, boiling the body wall 

at low-temperature preserved the original pigments and structure of plates. Freshly 

extracted plates superficially appeared to be uniform and composed of loosely compacted 

materials; however, polishing and dying them revealed ring patterns (light and dark rings) 

visible to the naked eye and under light microscopy. SEM images revealed that the plates 

from 3, 20, 30, and 40-month-old laboratory-reared juveniles had one, two, three, and four 

layers, respectively. By mirroring the results of the growth rings of the very small juveniles 

on the plates of larger individuals (wild individuals), it was implied that one layer is added 

annually, making plates both larger and thicker, and generating successive light and dark 

rings, the latter representing the transition (overlap) between two layers. Therefore, paired 

light and dark rings were counted as annular rings, representing one-year growth. Age 

determination using this technique suggested that growth of P. fabricii is slow and that wild 

individuals collected at diving depths had reached 28 years old. The study also highlighted 

that individuals of similar sizes may be of different ages and that some environmental 

factors contributed greatly to the difference. The use of this new method provides a valuable 

tool for exploring longevity, population turnover, as well as patterns of growth under 

different environmental conditions and in various habitats. Further research will hopefully 
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show that this aging method may be applied in other commercial species, including C. 

frondosa, to provide new data of value to management and conservation. 

Chapter 3 explored the influence of water flow on the fine locomotor and feeding 

behaviours, and spatial distribution in adults of C. frondosa using time-lapse videography. 

In the small-scale experiments, both the time sea cucumbers spent travelling and the 

distance they travelled were less in the presence of flow than in its absence; inversely, the 

time spent with tentacles deployed was significantly greater in the presence of flow than in 

its absence. In the large-scale mesocosm experiments, the sea cucumbers moved away from 

near-zero flow conditions over time, whereas under mildly- and highly-dynamic flow 

treatments, individuals consistently moved away from the strongest flow regimes >40 cm s-

1. The crown of tentacles of individuals located in areas with flows ≥40 cm s-1 tended to 

follow the direction of the current and were not fully deployed, whereas in flows <40 cm 

s-1 they typically faced the current or were perpendicular to the direction of water flow. 

Tentacle deployment and insertion rates increased with flow and individuals located in 

stronger flow regimes generally had higher cloacal respiration rates. Three modes of 

locomotion were detected. Forward crawling was most frequent at flows ≤40 cm s-1, passive 

rolling dominated at flows >40 cm s-1, and active rolling occurred randomly at flows 

between 0 and 120 cm s-1. Using the same experiment, locomotion aided by an active 

increase in buoyancy under various flows was further explored in a separate publication 

(Appendix 1). The final spatial distribution displayed by C. frondosa in the mesocosm 

reflected the fact that, as a passive suspension feeder, it sought optimal water flow (21-40 

cm s-1) that can balance between efficient food capture and energy expenditure for 

attachment to the bottom.  
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Chapter 4 explored the influence of other stimuli such as light, food, substrate types 

and colour on the locomotion, feeding behaviour and microhabitat selection in adults of C. 

frondosa. Individuals did not exhibit any strong preference for either illuminated or shaded 

areas. Under three photoperiod treatments (12 h light/12 h dark, full light and full darkness), 

the proportion of individuals with feeding tentacles deployed did not change significantly 

over 24 h. The proportion of moving sea cucumbers changed significantly over 24 h under 

12 h light/12 h dark, but not under 24-h light and 24-h dark. Individuals maintained under 

continuous light did exhibit overall reduced feeding and locomotor activities compared to 

those kept under the natural photoperiod (12 h light/12 h dark) and continuous darkness. C. 

frondosa was overall more mobile during the night, whereas no feeding differences were 

detected between diurnal and nocturnal phases. In the small-scale experiment, the presence 

of phytoplankton increased the feeding behaviour, but did not elicit any detectable change 

in locomotor behaviour. In the large mesocosm experiment, gradients in phytoplankton 

concentration did not trigger any displacement toward the food source. Moreover, C. 

frondosa exhibited a clear preference for substrates composed of bare rocks and rocks with 

coralline algae and displayed a slight preference for darker substrate backgrounds. Taken 

together, the findings of Chapters 3 and 4 highlighted how some key environmental factors 

can govern the feeding, locomotor activities, and eventual distribution of C. frondosa, 

which will not only provide baseline information of value for stock management, but will 

inform the eventual development of aquaculture programs. 

Chapter 5 compared several key metrics between wild individuals of C. frondosa and 

individuals held for 4 years in the effluent of an Atlantic salmon culture (i.e. IMTA). The 

greater content of δ13C in muscle bands and intestine and δ15N in all tissues of cultured sea 
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cucumbers, and the higher levels of salmon feed fatty acid (FA) biomarkers 18:1ω9, 18:2ω6 

and 20:1ω9 and lower ω3/ω6 ration in the cultured individuals as compared to those in wild 

individuals indicated the uptake and assimilation of waste from salmon farming by cultured 

individuals. However, individuals from the IMTA system were smaller and their organ 

indices lower than those of wild individuals. All the wild sea cucumbers had a well-

developed gonad; whereas only two thirds of the cultured individuals had a gonad and it 

was consistently smaller that that of wild counterparts. Moreover, the biochemical 

composition of cultured individuals differed from that of wild individuals. The 

triacylglycerols (TAG) content was greater in wild individuals, whereas phospholipids (PL) 

content was greater in cultured individuals. The arachidonic acid (ARA, 20:4ω6) content 

of muscle bands and intestine were greater in cultured than in the wild individuals, whereas 

eicosapentaenoic acid (EPA, 20:5ω3) content of the gonad was nearly twice higher in wild 

than cultured individuals. The docosahexaenoic acid (DHA, 20:6ω3) was detected in the 

gonad of wild individuals but not in cultured individuals. The findings suggested that C. 

frondosa could be used as an extractive species in IMTA systems, and provided novel 

information that will help to develop protocols or tools for aquaculture programs. However, 

whether the species itself could yield high-quality products following maintenance in such 

an IMTA system was questioned.  

Appended to the thesis is a published paper that partly relied on data collected during 

the experiments described in Chapter 3. It demonstrated the occurrence of active buoyancy 

adjustment (ABA) in C. frondosa and another species (Holothruria scabra), whereby 

individuals can achieve neutral or positive buoyancy, leading them to tumble or float at 

speeds orders of magnitudes faster than during benthic crawling. ABA involves an increase 
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in seawater to flesh ratio (by up to 740% in C. frondosa, in the most severe response), and 

simultaneous detachment from the substrate while changing shape and spatial orientation. 

This reaction was confirmed to start occurring as early as 6 months post settlement in 

juveniles and was also documented in wild adult populations. Based on video footage, 

tumbling assisted by currents yielded displacement speeds of up to 90 km d-1. In both 

species, ABA was triggered by high conspecific density, decreasing salinity and increasing 

water turbidity. Taken together, these findings imply that displacement during planktonic 

larval stages may not supersede the locomotor capacity of benthic adult stages, challenging 

the notion of their sedentary lifestyle. ABA emerges as a potentially generalized means of 

dispersal among holothuroids, with critical implications for worldwide conservation, 

management and sea ranching of commercial species.   

Overall, the studies presented in this thesis provided solid knowledge on the biology 

of two dendrochirotid species, which is not only significant from an ecological viewpoint 

but also provide managers with tools to develop appropriate management strategies. 

Beyond these, the findings also contribute significantly to current efforts being deployed 

toward the aquaculture of C. frondosa. 

6.2 Future directions 

Research on C. frondosa has so far provided basic information on the species. For 

instance, previous work has explored settlement, early growth and spatial distribution 

(Hamel and Mercier, 1996a; Gianasi et al., 2018), reproductive biology (Hamel and 

Mercier, 1996b; Gianasi et al., 2019; Singh et al., 2001), juvenile growth and behaviour in 
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the laboratory (Hamel and Mercier, 1996a; Gianasi et al., 2018; So et al., 2010), population 

genetics (So et al., 2011), diet and feeding behaviour (Singh et al., 1998; Hamel and Mercier, 

1998; Gianasi et al., 2017), and ABA behavior (Hamel et al., 2019). The present thesis 

contributed a potential aging technique as well as better knowledge of the environmental 

drivers of locomotor and feeding behaviours. However, several aspects of the biology and 

ecology of C. frondosa still need to be investigated from the fishery management 

perspective. Although great progress has been made, there is still a long way to go before 

the development of an aquaculture industry can become possible. Some areas that deserve 

further attention are outlined below. 

6.2.1 Age determination in sea cucumbers 

Chapter 2 presented and validated an aging technique using P. fabricii. The method 

may be applied confidently in other psolid species with large plates. However, it may be 

more difficult to apply directly to other groups of commercial sea cucumbers possessing 

ossicles that are smaller and/or grow discontinuously (Stricker, 1985). Nevertheless, the 

findings provide a valuable starting point for further studies on age determination in 

commercial species, which is imperative for their management and conservation. Statolith 

in the statocysts have been successfully used to determine the age in many aquatic species, 

such as sea lampreys (Volk, 1986), whelks (Richardson et al., 2005; Hollyman et al., 2018), 

and gonatid squids (Arkhipkin and Bjørke, 2000; Natsukari and Komine, 1992; Jackson, 

1994). Previous studies have also shown that apodous sea cucumbers possess statocysts 

(Clark, 1907; Ehlers, 1997). Further studies need to be conducted to determine whether C. 

frondosa and other commercial species have statoliths, which may give more possibilities 
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to determine their ages. In addition, whether the aging technique developed here can be 

applied to other calcareous structures present in sea cucumbers, such as circum-oral rings 

and smaller ossicles, needs to be tested. 

Interestingly, the low-temperature boiling method developed in Chapter 2 did not 

cause any visual alteration of the dermal plates’ surface and ensured preservation of their 

original shape, dimension and red pigmentation. Given its great advantage, further studies 

can be conducted to determine whether this method can be applied to other echinoderms to 

extract well-preserved dermal ossicles (or other calcareous structures). Based on the SEM 

images of the plates in juveniles of various age, it was concluded that the light ring was 

added marginally and the dark ring consisted of the overlap between successive layers 

rather than representing a different density, i.e. the dark section grows over the margin of 

the plate from the previous year, and the light zone extends outward. However, why the 

plates add one layer each year and how they are connected is still unclear. Further studies 

of the plates using tetracycline and calcein incorporation might shed some light on this, and 

improve our understanding of growth of dermal plates. The results of Chapter 2 also 

showed the significance of environmental factors on the growth of P. fabricii; however, 

only one deep-sea individual was compared with individuals from shallow waters. In future 

studies, more deep-sea individuals should be collected to solidify our knowledge of growth 

patterns in deep-sea environments. 

6.2.2 Effect of various environmental factors on C. frondosa 

The results of Chapter 3 highlighted that locomotor and feeding behaviours of the 

suspension-feeding C. frondosa varied in response to water flow, and that water flow could 
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affect the final spatial distribution. However, the seawater used in Chapter 3 was pumped 

directly from the ocean, which means natural planktonic food was available in the water. 

Chapter 4 suggested that the presence of phytoplankton increased the feeding behaviour; 

however, gradients in phytoplankton concentration did not trigger any displacement toward 

the food source in C. frondosa. In other words, the action of flow carrying food can 

modulate locomotion in sea cucumbers, while food alone cannot. Further studies might use 

filtered seawater to confirm whether flow in isolation can elicit locomotion and alter spatial 

distribution. The present work also suggested that light is not one of the main factors 

affecting the feeding behaviour and spatial distribution of fully-grown individuals of C. 

frondosa, which differed from results obtained with other deposited-feeding species. Even 

though no obvious eye-like structure was evidenced in sea cucumbers, pigmented 

photoreceptors at the base of the tentacles were identified in some species (Yamamoto and 

Yoshida, 1978; Pawson et al., 2010). Further studies can explore whether C. frondosa 

displays any photoreceptive structures. Furthermore, environmental conditions occurring 

in the field are more complex than those offered in the laboratory (even in large-scale 

mesocosms). More field studies should ideally be conducted to confirm the results obtained 

from the laboratory work to better manage wild stocks of C. frondosa. Finally, a study 

(Appendix 1) showed that high flow regimes, high conspecific density, low salinity and 

turbidity can stimulate alternate (faster) means of locomotion through active buoyancy 

adjustment (ABA). Determining the mechanisms underlying this reaction and whether it 

can be triggered by other environmental factors requires further research. 

The growth rate of C. frondosa is thought to be rather slow under naturally fluctuating 

conditions. From current knowledge, C. frondosa is expected to require between 12 to 25 
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years to grow from larva to commercial adult size, based on previous field and laboratory 

studies (Hamel and Mercier, 1996a; So et al., 2010). Slow growth is one of the most 

important factors that hampers the development of aquaculture in C. frondosa. A 

quantitative study of the effects of water temperature, food quantity and quality and stock 

density on the growth rates of C. frondosa may help find ways to increase their growth rate. 

Moreover, all the relevant factors will need to be integrated to determine the optimal culture 

conditions for C. frondosa.  

6.2.3 Use of C. frondosa in IMTA systems 

The study in Chapter 5 suggested that C. frondosa could assimilate and incorporate 

the wastes from a land-based salmon culture, but that resulting health metrics were not 

optimal. Further experimental trials will be required to obtain more precise information on 

the effects of salmon wastes, what nutrients may be missing, and whether supplements can 

offset the detrimental effects. Some aspects of acceptance by consumers, such as smell, 

flavor and texture, should be compared between sea cucumbers from IMTA systems and 

wild individuals. A semi-open system that would give access to live phytoplankton may be 

considered. Further studies are also needed to ascertain the feasibility of scaling up such 

IMTA systems and to further explore the assimilative capacity of C. frondosa. As a 

suspension-feeder, C. frondosa may be held in suspended cages or directly on the substrate. 

However, which method is more suitable and whether the biology of C. frondosa is 

compatible with the notions of captive holding are still unknown. Further work is also 

needed to adapt these designs for a variety of species and conditions because C. frondosa 

may be cultured with other extractive species, such as mussels. Any potential positive or 
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negative relationship between C. frondosa and other co-occurring suspension feeders will 

need to be determined in future work.   
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Abstract 

1. While the study of dispersal and connectivity in the ocean typically centers on pelagic 

species and planktonic larval stages of benthic species, the present work explores an 

overlooked locomotor means in post-settlement benthic stages that redefines their 

dispersal potential.  

2. Members of the echinoderm class Holothuroidea colonize a diversity of marine 

environments worldwide, where they play key ecological and economical roles, making 

their conservation a priority. Holothuroids are commonly called sea cucumbers or sea 

slugs to reflect their slow movements and are assumed to disperse chiefly through 

pelagic larvae.  

3. The present study documents and explores their unexpected ability to actively modify 

their buoyancy, leading them to tumble or float at speeds orders of magnitudes faster 

than through benthic crawling. Two focal species representing different taxonomic 

orders, geographic distributions and reproductive strategies were studied over several 

years.  

4. Active buoyancy adjustment (ABA) was achieved through a rapid increase in seawater 

to flesh ratio by up to 740%, leading to bloating, and simultaneously detachment from 

the substrate. It occurred as early as 6 months post settlement in juveniles and was 

recorded in wild adult populations. In experimental trials, ABA was triggered by high 

conspecific density, decreasing salinity and increasing water turbidity. Based on field 

video footage, ABA-assisted movements generated speeds of up to 90 km d-1.  
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5. These findings imply that displacement during planktonic larval stages may not 

supersede the locomotor capacity of benthic stages, challenging the notion of 

sedentarity. Combining the present results and anecdotal reports, ABA emerges as a 

generalized means of dispersal among benthic animals, with critical implications for 

worldwide management and conservation of commercially and ecologically significant 

species.   

Key words: benthic organisms, dispersal, echinoderm, locomotor behaviour, marine 

organisms, movement ecology, sea cucumber  

Introduction 

Movement is among the fundamental components of life, and a key determinant of 

community structure (Bie et al., 2012), population and ecosystem connectivity (Baguette, 

Blanchet, Legrand, Stevens & Turlure, 2013), and ecological and evolutionary processes 

(Nathan et al., 2008). Understanding why and how organisms disperse is also central to 

wildlife management and conservation (Allen & Singh, 2016). Overall, the interplay 

between adaptation and dispersal determines the persistence of species in a dynamic and 

ever changing world (Berg et al., 2010). Various dispersal attributes and strategies have 

evolved among terrestrial and aquatic organisms to offset the associated costs of movement 

(Bonte et al., 2012). Some organisms are motile throughout their lives, whereas others are 

adapted to undergo movement at precise, limited phases of their life cycles, commonly 

called the dispersive phase(s) (Allen, Metaxas & Snelgrove, 2018). The life-history 

strategies of organisms are often driven by the nature and circumstances of their dispersive 

phases (e.g. restricted or prolonged, active or passive). In the marine realm, movement 
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ecology focuses on large pelagic megafauna (Hays et al., 2016; Sequeira et al., 2018), with 

fewer data on non-vertebrate benthic taxa (Holyoak, Casagrandi, Nathan, Revilla & Spiegel, 

2008) despite the fact that they form the bulk of marine macrofaunal biodiversity.  

Most benthic organisms exhibit a complex life-history, whereby the early life stages 

are pelagic and the adults are either sessile (permanently anchored), such as barnacles, 

sponges and corals, or sedentary (exhibiting limited movement) such as many molluscs and 

echinoderms. While benthic stages can display transient movement (Winston, 2012), 

dispersal is commonly presumed to occur predominantly during planktonic embryonic and 

larval phases lasting days to weeks (Grantham, Eckert & Shanks, 2003). Consequently, 

research on marine population structures and connectivity is chiefly centered on pelagic 

propagules (Cowen & Sponaugle, 2009), and secondarily on rafting of benthic juveniles or 

adults (Thiel & Gutow, 2005; Macfarlane et al., 2013), although a more holistic view is 

increasingly being advocated (Pilditch, Valanko, Norkko & Norkko, 2015; Allen et al., 

2018).  

Holothuroids (Echinodermata: Holothuroidea), also commonly known as sea 

cucumbers or sea slugs, are ubiquitous members of benthic communities extending from 

the poles to the equator and from the shores to the abyssal trenches, where they may 

represent up to 95% of the whole biomass (Heezen & Hollister, 1971). Many species have 

broad geographic distributions; for instance Holothuria scabra occurs throughout the Indo-

Pacific and along most of the tropical Asian and Eastern African coasts (Hamel, Conand, 

Pawson & Mercier, 2001), and Cucumaria frondosa is common in the Arctic and on both 

sides of the North Atlantic Ocean (Hamel & Mercier, 2008a). Several holothuroid species, 

including H. scabra and C. frondosa, are also commercially exploited in several regions of 
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the globe (Purcell, Samyn & Conand, 2012; 2013). The notorious boom-and-bust pattern 

of wild fisheries has led the most prized species to the brink of extinction, earning them a 

spot on the IUCN Red List of endangered species (Anderson, Flemming, Watson & Lotze, 

2011; Purcell, Polidoro, Hamel, Gamboa & Mercier, 2014). Apart from being one of the 

most sought after luxury seafoods, holothuroids play critical roles in several marine 

environments, from bioturbation to nutrient recycling (Purcell, Conand, Uthicke & Byrne, 

2016).  

Our current understanding of holothuroid biology, including life-history strategy, 

population structure/connectivity and biogeography, revolves around the notion of a 

sedentary adult with a dispersive larval stage. Many species are classified as sessile 

(Grantham et al., 2003), and estimates of benthic displacement through forward crawling 

in juveniles and adults range from a few centimeters to a few meters a day. For instance, 

H. scabra was found to cover 40-80 cm d-1 through crawling as a juvenile (Mercier, 

Battaglene & Hamel, 2000) and 1.3 m d-1 as an adult (Purcell & Kirby, 2006). Short-term 

average movement rates were 2–8 m d-1 in Bohadschia argus and 5–9 m d-1 in Thelenota 

ananas, yielding a long-term range of 15–47 m over 2 years (Purcell, Piddocke, Dalton & 

Wang, 2016). Average displacements of 3.9 m d-1 have been reported in Parastichopus 

californicus (Da Silva, Cameron & Fankboner, 1986). In C. frondosa, 12-month old 

juveniles were shown to move up to 5 cm h-1 (Gianasi, Hamel & Mercier, 2018), equivalent 

to 1.2 m d-1. In addition, some coastal species (including C. frondosa) can display enhanced 

contractions when encountering a predator (e.g. Margolin, 1976; Legault & Himmelman, 

1993; So, Hamel & Mercier, 2010), although these escape responses are of short duration 

and not considered true means of locomotion.  
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The present study revisits the dispersal capacity of juvenile and adult holothuroids in 

subtidal and intertidal environments, based on evidence that they commonly and 

predictably rely on semi-pelagic means of locomotion that can be orders of magnitude 

faster than their podia-assisted benthic crawling movements. A combination of 

experimental trials and observational data from the field, gathered in two species belonging 

to different taxonomic orders and native environments, suggest that juveniles and adults 

are capable of moving as efficiently as pelagic embryos/larvae. In challenging the notion 

that these long-lived macrobenthic organisms strictly disperse during a brief period in their 

early life history, the findings have crucial implications for management and conservation 

initiatives.  

Materials and Methods 

The two holothuroid species under study, Cucumaria frondosa and Holothuria scabra, 

are among the well studied echinoderms, both from biological/ecological and commercial 

perspectives, including studies in wild and captive individuals. Among others, papers have 

been published on their reproductive cycle, embryonic and larval development, settlement, 

growth, population genetics, feeding, movement, prey-predator interactions, chemical 

composition, as well as on the effect of various environmental stressors on their health (e.g., 

Hamel et al., 2001; Hamel & Mercier, 2008a, b; Mercier & Hamel, 2013). 

Field studies 

Adults of Cucumaria frondosa in Newfoundland and Nova Scotia (eastern Canada) 

At-sea monitoring in Newfoundland was conducted off the south coast on St. Pierre 

Bank in the Northwest Atlantic Fisheries Organization (NAFO) Subdivision 3Ps (around 
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46o13’N 56o30’W). A first survey was conducted in August 2004 aboard the CCGS 

Shamook at depths of 45-52 m (3.5-4.5oC) and a second survey was conducted in August 

2005 aboard the CCGS Templeman at depths of 41-57 m (2.9 to 5.0 oC). Video footage of 

the seafloor was collected using a benthic sled (Lauth, Wakefield & Smith, 2004) deployed 

over the stern of the vessel. An underwater camera (Simrad OE 1367) was mounted on the 

front of the sled and was angled slightly downward. Digital video was stored on an 

autonomous recording unit (Underwood, Winger & Legge, 2012). Descent of the sled was 

monitored using a SCANMAR depth sensor and bottom temperature was recorded using a 

VEMCO Minilog-TR thermograph. Successful video transects were conducted at a total of 

3 stations in 2004 and 6 in 2005, at a towing speed of 2.0 knots with on-bottom durations 

ranging from 0.09 to 0.62 h. All transects were made during daylight hours.  

The video survey in Nova Scotia was conducted in the Shortland Canyon on the 

Scotian Shelf in NAFO Subdivision 4Vs (around 44°14’N: 58°28’W) using a Campod unit 

deployed from the CCGS Hudson between 220 and 300 m depth in July 2008. Campod, 

which is a static observation platform equipped with a high-resolution video camera for 

viewing the seabed directly below and an oblique video camera for viewing the seabed 

ahead (Gordon et al., 2000), was deployed while the ship was slowly drifting (<1 knot; 

~2 m from the seafloor) over the investigation site for 20-30 min on each set. The ship’s 

position was used as a proxy for on-bottom location.  

For both locations, video footage was used to conduct an analysis of displacement and 

behaviour in C. frondosa. The number of individuals tumbling or floating as well as their 

proportion relative to other individuals present on the seafloor were assessed. Tumbling 

individuals are defined as those that drift with the current while remaining in constant or 
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partial contact with the substrate (i.e. rolling and bouncing movements). Floating 

individuals are those that drift with the current without touching the substrate. 

Displacement speeds of individuals were calculated as the number of body lengths travelled 

per interval of 15 s relative to a reference point on the bottom (successive measures were 

taken to obtain a mean for each focal individual). The speed value over 15 s was 

extrapolated to m min-1 and daily displacement (km d-1). Because only individuals traveling 

parallel to the viewpoint were considered, speed sample sizes (number of individuals 

analyzed) varied as provided in the results. Based on their estimated length of 21-26 cm 

mouth-anus (CSAR, 2006), individuals in the videos from Newfoundland and Nova Scotia 

were all adults. 

Holothuria scabra in Madagascar 

This study was conducted in offshore enclosures (Indian Ocean Trepang, IOT) located 

off Belaza, 25 km south of Toliara, Madagascar (23°29’S; 43°45’E). They were spread 

over 100 Ha, in the upper intertidal zone, 0.5 to 1.5 km from the high water mark, consistent 

with the typical habitat of H. scabra. Each of the seven focal enclosures covered an area of 

~15,000 m² and was seeded with a mean of 24,500 (± 5,500 SD) individuals obtained from 

spawning local wild broodstock. They were submerged with 1.5 to 2.5 m of water at high 

tide and 0.10 m at low tide. Freshwater channels a few meters wide and a few centimeters 

deep fed the enclosures at low tide (decreasing salinity to 18-30 psu). The other enclosures 

not under the influence of freshwater runoff were at 35-36 psu. Juveniles and adults of H. 

scabra were maintained in these enclosures at a density not exceeding 2 ind m-2, which is 

at the low end of densities reported for individuals in the wild (Mercier et al., 2000).   
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Every 15 days between April 2014 and November 2016, the number of 

tumbling/floating individuals was counted in 9-10 subsamples per enclosure (using 

standardized effort), and mean proportions derived from counts based on the total number 

of individuals held in each enclosure (established at night on a weekly basis). In addition, 

video footage was taken at night when most individuals were surfacing and 

tumbling/floating events were detected, towards the end of ebb tide when the water level 

was 0.3 m. The speed of displacement of tumbling or floating individuals was calculated 

using video clips, whereby the time to travel across 0.7-m markers was measured.  

Laboratory studies 

Early juveniles of Cucumaria frondosa 

Adults of C. frondosa (n = 200) measuring 11.0 ± 1.7 cm (± SD; n = 30) contracted 

body length were kept in two 500-L tanks supplied with running ambient seawater (20 L h-

1). Males and females spawned freely during the natural breeding season. Embryos and 

larvae (n=150 per vessel) were incubated in three rearing vessels (~0.4 embryo ml-1) 

consisting of 4-L round containers with meshed openings (1-mm in diameter), placed inside 

a 40-L tank supplied with running ambient seawater (20 L h-1). Natural light was provided 

through large windows following ambient photoperiod (from 15 h light/9 h dark in the 

summer to 8 h light/16 h dark during winter). Natural instances of active buoyancy 

adjustment or ABA (e.g. bloating, floating) were visually recorded on a daily basis in 

several cohorts of juveniles between post-settlement until 2 years of age (~5-6 mm long). 

Photos and measurements were taken under an automated stereomicroscope (Leica 

M205FA) using the associated software (Leica LAS-X). 
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Adults of Cucumaria frondosa 

To identify the drivers of ABA, trials were conducted in 20-L tanks. The response of 

adult individuals (as described above) to ecologically relevant factors (from general 

knowledge of the species and preliminary experiments) was measured, using 4 population 

densities (1, 5, 10 and 15 individual m-2), 3 salinities [32, 26 and 22 psu; based on threshold 

tolerance for the species in So et al. (2010)] and 2 turbidity levels (pristine vs. 1-L solution 

of detritic organic matter; mimicking turbidity flows generated by storms, tidal currents or 

trawling activities close to the seafloor). Except when otherwise mentioned, trials were 

conducted in triplicate with 4 individuals per tank following 2 h of acclimation. The salinity 

was adjusted by slowly adding freshwater (~50 ml min-1) to the tank; salinity was measured 

with a multiparameter probe (YSI 556 MPS). The load of turbidity water (suspended 

sediment concentration) was adjusted by adding the whole volume once; the number of 

particles and bacteria was established to be 1.4-2.2 X 109 ml-1 (measured with a 

hemocytometer). Response metrics were recorded for 2 h after the targeted parameter of 

each treatment was established, including orientation of the tentacles and their level of 

extension (relative to the substrate and the water surface), the shape of the body (degree of 

bloating) as well as the orientation of the anus (relative to the substrate and the water 

surface).   

 In distinct experiments, individuals of a similar size (as described above) that were 

either in the normal state or undergoing ABA (showing signs of morphological and 

behavioural changes) were compared for the strength of their attachment to the substrate, 

the amount of water they contained, and the rhythm of their cloacal respiration. The strength 

of attachment to the substrate was assessed in 24 normal individuals and in individuals 
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undergoing ABA (22 stimulated by high conspecific density, 17 by turbidity and 20 by low 

salinity). This was done by gently placing a zip-tie around their middle section to hook 

them to a digital precision spring balance (WeiHeng®) as per a method used with sea 

urchins (Santos & Flammang, 2007). The force (in Newton) necessary to detach the 

individual from the substrate was determined, and the number of podia used for anchorage 

was counted through the transparent glass wall of the tank. Another set of individuals 

exhibiting either weak ABA (induced by conspecific density) or severe ABA (from 

turbidity) were used to assess behaviour and importance of water intake during ABA. The 

shapes of the two groups of individuals (n=19 of each) were monitored, including the 

precise orientation of the tentacles and anus relative to the rest of the body, the level of 

tentacle extension, and the ratio between total length (distance mouth-anus) and mid-body 

diameter. After they had reached the maximum size established during preliminary 

observations, their wet weight (bloated) was measured before making a longitudinal slit 

across the body wall to expose the organs (Polian vesicle, intestine, respiratory tree), which 

were punctured and drained. The water content was collected and weighed. The same 

procedure was repeated on a group of normal individuals (n=18). A final experiment was 

undertaken to measure cloacal respiration rate (opening min-1) in weakly and severely 

bloated individuals (n=9 of each, induced by density and turbidity, respectively). The 

dilatation of the anus was also measured with a ruler at different times during ABA. 

Triplicates of all measurements were obtained from each individual. The same procedures 

were repeated on 7 individuals under normal holding conditions, which were firmly 

attached to the substrate and not showing signs of ABA. 
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 To fine-tune our understanding of the relationship between flow regime and the 

occurrence of ABA, trials were conducted in a large mesocosm. A population of ~1000 

adults of C. frondosa was held in a 34,500-L flow-through tank (11.5 m long × 2.5 m wide 

× 1.2 m deep) in ambient running seawater (30-60 L min-1). An experimental flow-through 

raceway (8.25 m long × 2.5 m wide × 0.85 m deep) was covered with gravel (1-3 cm 

diameter) to mimic the natural habitat where C. frondosa can be found. Grid markings were 

made on the dividing plate and the raceway, at 50-cm intervals to allow measurement of 

movements and speed of displacement.  

For the trials, 100 individuals of similar size (described earlier) were evenly spread, 

at a density considered equivalent to the high-density level in experiments described above, 

and left to acclimate for 5 h in static conditions before effecting a nominal flow of 200 cm 

sec-1 (at the inflow). Precise flows were measured around focal individuals in the 

experimental arena using a hand-held flow probe (Global Water, FP211). A time-lapse 

video camera (Brinno, TLC 200 Pro) placed above the arena took one picture every minute 

for 3 h. Pictures were automatically stitched together into a video output. To minimize the 

possibility of tank effects, 4 successive replicates were conducted, alternatingly placing the 

inflow in different locations. No individual was ever used for two successive trials. Based 

on analysis of the video footage, the proportions of crawling, tumbling and floating 

individuals were determined for the various flow regimes, and their respective speeds of 

displacement were measured.  

Data analysis 

Data on strength of attachment in adults of C. frondosa did not meet the assumptions 

of normal distribution and equal variance; the effect of ABA type on this variable was 
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therefore tested using one-way analysis of variance (ANOVA) on ranks followed by 

pairwise comparisons using Dunn’s method. Data on water to flesh ratio (weight based) 

among independent groups of C. frondosa adults exhibiting different ABA levels were not 

normally distributed but exhibited equal variance, and were thus tested using one-way 

ANOVA followed by Holm-Sidak pairwise comparisons (non-parametric counterparts 

yielded the same results). The same approach was applied to proportions of tumbling 

individuals among different water flows. In H. scabra, data on proportions of individuals 

displaying tumbling/floating across locations did not meet the normality and equal variance 

assumptions; analysis was conducted using one-way ANOVA on ranks followed by 

pairwise comparisons (Tukey’s method). Data on the intensity of ABA reaction across 

seasons and lunar cycles in H. scabra were normally distributed and displayed equal 

variance, and were thus compared using two-way ANOVA and Holm-Sidak post-hoc tests. 

All data in the text are reported as mean and standard deviation (SD).          

Results 

Adults of Cucumaria frondosa in the field 

Occurrences of tumbling individuals (Supporting Information S1) were recorded in 

two geographic locations (located >400 km apart) in eastern Canada.  In Newfoundland, 

the proportion of tumbling individuals ranged from 1.22 to 45% with individuals moving 

at speeds of 30 ± 6 m min-1 (n=13). In Nova Scotia, the proportion of tumbling individuals 

reached 100% and they were determined to move faster, around 55 ± 9 m min-1 (n=21). 

The holothuroids in Nova Scotia were tumbling across an area of muddy sand where no 

attached individuals could be detected. Conversely, a mix of attached and tumbling 
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individuals was observed in Newfoundland, where the substrate was mostly composed of 

pebbles, small boulders or compacted sand. Based on the calculated speeds, it was 

estimated that individuals could travel 41.1 ± 7.7 km d-1 (Newfoundland) and 79.3 ± 7.6 

km d-1 (Nova Scotia). In both locations, tumbling was recorded in the day time (no data 

obtained at night). No special weather events (e.g. storms) or unusual environmental 

conditions were noted in the study areas at the time. Tumbling individuals were 

characteristically bloated with ambulacral podia and tentacles retracted (Supporting 

Information S1).  

Juveniles of Cucumaria frondosa in the laboratory  

A capacity to expand the entire body into a balloon shape was first detected when 

juveniles were 6 months old, in ~35% of the population (all individuals exhibiting this 

behaviour were doing it synchronously in 3 independent culture vessels). Bloated 

individuals were up to 3.8 times larger in volume than the normal juveniles (Fig. A.1A, B). 

The length of normal juveniles (mouth-anus) was 1.8 ± 0.2 mm and their height (maximum 

distance from the dorsal to the ventral side) was 0.4 ± 0.1 mm compared to 2.1 ± 0.2 mm 

in length and 1.3 ± 0.1 mm in height for bloated individuals, representing an average 

increase of ~17% in length and ~225% in height. The ossicles covering the body wall of 

normal individuals were tightly packed and often overlapped. However, ossicles of bloated 

juveniles were spaced out over the body wall (Fig. A.1A, B). In the absence of current, the 

majority of bloated juveniles remained attached to the wall of the rearing tanks; however, 

9% of individuals (n=14) were seen floating at the surface of the water. The ABA reaction 

persisted for ~2 days before individuals resumed their normal body shape and position on 

the bottom of the tanks. No mortality was observed as a result of this reaction. Sporadic 
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ABA was also noticed in older juveniles (>6 months of age), however, the frequency of 

occurrence was lower (~1% of the population). This behaviour was recorded both during 

the day and at night. No perceptible change in environmental factors (temperature, salinity) 

were noted while juveniles were exhibiting ABA.  

Adults of Cucumaria frondosa in the laboratory 

Undisturbed (normal) individuals of C. frondosa remained firmly attached to the 

substrate with their tentacles either retracted or extended; the oral end occupied the highest 

position, i.e. farthest from the substrate, or closest to the water surface (Fig. A.1C).  

After the treatments (density, salinity, turbidity) were applied, the following changes 

in general behaviour were recorded:  decrease in the strength of attachment to the substrate, 

retraction of the tentacles (when initially extended), bloating of the whole body, and in 

some cases change in orientation whereby the anus was in an upright position (above the 

oral end), followed by tumbling or floating when water current was present. These 

behaviours were categorized in two distinct intensity levels that were determined to be 

related to the intensity of the stimulus. The responses recorded during these experiments 

highlighted the fact that, depending on the severity of the stressor (from mild to life-

threatening), the sequence and/or intensity of responses varied.  

Normal state (baseline metrics) 

When kept in pristine natural seawater at low population densities (≤5 ind m-2) and 

normal salinity (~32-34 psu), individuals remained firmly attached, requiring a force of 

803.4 ± 57.9 g (7.87 ± 0.57 Newtons) to detach them from the substrate (Fig. A.2). The 

number of podia used for anchorage fluctuated around 390 ± 55 ; several of these podia 

were torn during forcible detachment. The average wet weight of normal individuals was 
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352 ± 32 g, corresponding to an underwater weight of 6.7 g, ~12.5 cm length and 6.5 cm 

diameter (contracted condition). Water on average represented 31 ± 2% of the wet weight 

of normal individuals corresponding to a water:flesh ratio of 0.45 (Fig. A.3), and their 

tentacle crown was consistently upward (Fig. A.1C). The opening diameter of the anus was 

1.7 ± 0.2 mm in the normal state, with a cloacal respiration rate of 0.99 ± 0.13 opening 

min-1. 

Weak reactions 

When exposed to high densities of 10 or 15 ind m-2, individuals generally displayed a 

posture and behaviour similar to those of the normal holothuroids except that the number 

of podia involved was reduced and the corresponding strength of attachment was 

significantly weakened (Fig. A.2). Inside a 20 min period, the number of anchored podia 

varied from 53.7 ± 14.1 overall, and the force required to detach them varied between 38.0 

± 24.6 g (0.37 ± 0.24 Newtons; Fig. A.2) with a cloacal respiration rate of 0.9 ± 0.1 opening 

min-1 and an opening diameter of the anus of 1.7 ± 0.3 mm. Water content increased by 

~75% compared to the normal state, representing on average 39 ± 5% of the body weight 

of individuals (Fig. A.3), which displayed a more rounded shape. The water:flesh ratio 

increased to 0.65 (Fig. A.3). A light water current was enough to detach such individuals.  

Severe reactions 

Compared to weak reactions induced by high conspecific density, ABA reactions to 

turbidity and low salinities (22-26 psu) developed more quickly and were more severe (Fig. 

A.2). Firstly, the number of attached podia decreased to 0.8 ± 2.2 within 5 min. The body 

shape started to become rounded, and the cloacal respiration increased to 3.9 ± 0.2 openings 

min-1 until maximum bloating of the whole body, after which it decreased to 0.7 ± 0.4 
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opening min-1. The opening diameter of the anus increased to a maximum of 3.7 ± 0.4 mm 

at the peak of the bloated state. The reaction culminated with retraction of all podia and 

complete detachment of the bloated individuals from the substrate (Fig. A.1D, E) inside 

10-15 min, corresponding to an almost null or null force of attachment (1.4 ± 2.7 g, 0.01 ± 

0.03 Newtons; Fig. A.2). Finally, there was a consistent change in the body orientation, 

switching from mouth-up (Fig. A.1C) to anus-up (Fig. A.1F, G). The total wet weight 

increased to an average of 1044 ± 134 g in fully bloated individuals; their underwater 

weight was close to 0 g; the average body length was 20.0 cm and the diameter 12.5 cm. 

Severely bloated individuals displayed a ~742 % increase on average in their flesh:water 

ratio relative to normal individuals; water filled the respiratory tree, intestine, Polian vesicle 

and coelomic cavity, representing 78 ± 5% of the whole weight on average or a water:flesh 

ratio of 3.79 (Fig. A.3). These individuals were extremely buoyant, and the slightest water 

movement was enough to carry them away.    

Flow experiments 

There was a clear increment in the proportion of tumbling individuals from ABA 

responses induced by increased current (Fig. A.4). At flow regimes ≤40 cm s-1, most 

individuals exhibited forward crawling and a few were rolling on their side while remaining 

in contact with the substrate (but not using their ambulacral podia). When exposed to flows 

between 41 and 120 cm s-1, a majority of individuals started tumbling (Fig. A.4), and many 

were bouncing (periodically losing contact with the substrate). The ranges of displacement 

speeds measured in the tumbling individuals were 9.3 ± 3.0, 22.0 ± 5.2, 39.3 ± 13.2, and 

54.7 ± 26.3 cm s-1 when the flow speeds were 0-20, 21-40, 41-80, and 81-120 cm s-1, 
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respectively. In normal individuals, the maximum forward crawling speeds averaged 0.013 

± 0.006 cm s-1.  

Juveniles and adults of Holothuria scabra 

In contrast to adults of C. frondosa where tumbling close to the bottom was the main 

ABA behaviour detected in the field, adults of H. scabra (>270 g wet weight) displayed 

both tumbling and floating (Supporting Information S2). Thousands of individuals were 

seen displaying ABA since July 2014; whereby they either float near the sea surface at low 

tide (in 0.2-0.7 m depth), or they tumble on the sediment, and get carried away by the 

current. The speed of floating H. scabra was estimated to be 0.1 m sec-1, equivalent to 6 m 

min-1 whereas tumbling speed was around 0.02 m sec-1. Normal individuals of this species 

exhibit a length:width ratio of 2:3, depending on contraction state, whereas bloated 

individuals had a 1:3 ratio. The wet weight of tumbling/floating individuals was 329.3 ± 

91.0 g, compared to normal values of 298.7 ± 53.4 g. When tumbling or floating, both 

males and females became flabby, crescent-shaped, and slightly transparent under direct 

light (Supporting Information S2). ABA was related to the uptake of seawater in the 

respiratory trees and coelomic cavity. Tumbling and floating behaviours were only 

recorded during ebb tides (never during flood tides).   

Between 33 and 73 tumbling/floating individuals of H. scabra were recorded by each 

observer during rounds conducted at the full or new moons every month for over two years, 

which was extrapolated to constitute between 0.5 and 4% of the entire surveyed population 

on any occasion. Instances of tumbling/floating occurred at unequal frequencies in the 

different enclosures monitored (mean conspecific density of 1.5 ind m-2). The individuals 

housed in the offshore pens (35-36 psu) did not exhibit the behaviour (data not illustrated), 
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whereas those in the 6 focal enclosures closest to land (18-27 psu) displayed the behaviour 

at frequencies that varied between 0.8±0.1% and 2.9±0.6% (Fig. A.5) with an average of 

2.0±0.8% (n=294) over the course of the study. Enclosure B11 was the least affected by 

drops of salinities (27-30 psu), being located 600 m from the shore; it also showed the 

lowest proportion of individuals with ABA, i.e. 0.8±0.1% (Fig. A.5). Overall, occurrences 

of ABA were higher during full moons than during new moons and more frequent during 

the cool than during the warm season (Fig. A.6). Although most frequent at night, ABA 

also occurred during the day. The location of tumbling/floating individuals at the full moon 

and at the new moons carried them to the west side of the enclosures where they 

accumulated, especially in the northwest corner, corresponding to the open sea.  Several 

floating individuals found their way over the fences (Supporting Information S3) and were 

later seen hundreds of meters out at sea.  

Discussion 

Movement ecology represents a strategic link between animal behaviour and 

population dynamics that can be defined as the interplay between an individual’s internal 

state, its motion capacity, its navigation capacity, and external factors (Nathan et al., 2008). 

These topics are understudied in the marine realm compared to the terrestrial environment, 

in part because movement patterns in the ocean are uniquely shaped by the pelago-benthic 

life history of most animal species, whereby adults are benthic and early life stages are 

pelagic (Walther, Munguia & Fuiman, 2015).  While focus has been placed on pelagic 

larvae that drift with the currents, it has been postulated that benthic adults may be the 

missing link in population connectivity relevant to fisheries biology and marine 
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conservation studies (Frisk, Jordaan & Miller, 2014). A recent review of movement ecology 

in marine animals with complex life cycles (i.e. the bulk of marine faunal biodiversity) 

further emphasized the importance of holistically considering all life stages (Allen et al., 

2018). Interestingly, the movement of sessile or sedentary benthic adults through physical 

transport by currents was presented only as being either passive, i.e. following dislodgment, 

or indirect through dispersal of colonized substrates, i.e. rafting (Allen et al., 2018).  

The present study highlights a different strategy, i.e. active alternation between self-

directed motion and physical transport, which evokes potentially more frequent and more 

predictable patterns of benthic locomotion under environmental control. Two species from 

drastically different climes and environments (C. frondosa and H. scabra) were shown to 

consistently react in a matter of minutes to undesirable environmental conditions and/or 

abnormally high conspecific densities. Instead of using their podia to crawl away, they 

actively underwent a change in body shape, water content (buoyancy) and strength of 

attachment to the substrate that allowed them to be carried away passively at speeds >1000 

times greater than crawling. Thereby, population metrics of sedentary organisms may be 

responding more quickly than expected to environmental, social and reproductive 

imperatives. Overall, a change in our perception of sedentarity in marine benthic animals 

appears to be warranted, towards a deeper integration of how behavioural adaptations 

modulate mobility and dispersal across all life stages.  

Until now, accounts of “swimming” in adult holothuroids were thought to be unique 

to certain deep-sea species (Rogacheva, Gebruk & Alt, 2012), except for burst responses 

to predator encounters (Margolin, 1976; Legault & Himmelman, 1993). The unprecedented 

evidence provided here for subtidal/intertidal species, from combined experimental and 
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observational work, underscores that dispersal in holothuroids (and other macrobenthic 

animals) may not be limited to the pelagic larval phase, but also occur during the benthic 

juvenile/adult stages through ABA. Such findings shed new light on a growing body of 

anecdotal reports (Supporting Information S3), including “ballooning” in cultured 

holothuroid juveniles (C. Hair pers. comm., University of the Sunshine Coast, Australia), 

“balling” in asteroid echinoderms (Sheehan & Cousens, 2017) and “inflating” in 

pennatulacean corals (Chimienti, Angeletti & Mastrototaro, 2018), supporting that ABA-

assisted locomotion could be widespread, if not generalized. While most larval forms 

disperse through mid-column or near-surface currents, the potential contribution of bottom 

currents to ABA-assisted migration suggests that dispersal of benthic species may not only 

occur over longer periods, but also take advantage of broader oceanographic processes than 

typically accounted for in plankton-centric models (e.g. Cowen & Sponaugle, 2009). This 

could even lead to a shift in dispersal paradigms; i.e. over a lifetime, displacement might 

be equal or greater during the adult benthic stage than through larval dispersal. The present 

study also hints at predictable patterns of ABA-assisted migrations (e.g. monthly, 

seasonally) likely to have significant impacts, both from ecological and economical 

perspectives. 

Already, the occurrence of ABA and associated behaviours in Holothuroidea can help 

understand population structures, and variations thereof, which are not easily reconciled 

with a slow-moving sedentary benthic lifestyle. For one, it may contribute to the broad or 

cosmopolitan distributions, as those seen in the focal species. In addition, large 

aggregations of C. frondosa have been reported around Newfoundland (CSAR, 2006). 

These patchy distribution patterns could be the result of mass migrations, such as those 
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depicted here in the videos, perhaps in response to transient currents or turbidity flows (e.g. 

tides, storms).  ABA and tumbling in C. frondosa may also explain bathymetric trends in 

size frequency distributions, whereby large individuals are typically found in greater 

number at deeper depths (Hamel & Mercier, 1996). Interestingly, sudden mass beaching of 

holothuroids and other echinoderms has been reported, which could have involved ABA 

reactions (Supporting Information S3).  

While the general ABA behaviours were similar in the two focal species, nuances were 

detected, which may or may not be related to the fact that the study on C. frondosa involved 

wild individuals and field surveys, whereas that on H. scabra involved captive individuals 

(albeit of first generation studied in close-to-natural settings). Only tumbling was 

commonly recorded in C. frondosa, whereas tumbling and floating were both consistently 

documented in H. scabra. In general, C. frondosa is found at subtidal depths on rocky or 

gravely bottoms (Hamel & Mercier, 1996), while H. scabra typically occurs on soft 

substrate at shallower depths, sometimes <1 m (Hamel et al., 2001). The latter therefore 

have a greater likelihood of coming in contact with air, which is suspected to assist in the 

floating behaviour by combining ABA with accumulation of air in the body cavity. Another 

difference between the focal species was the more predictable ABA behaviour evidenced 

in H. scabra juveniles and adults during certain lunar/tidal phases, which may be a dispersal 

strategy to counter drops in the quality or quantity of benthic food supply (organic matter) 

in sea-ranching settings. In contrast, C. frondosa is a suspension feeder that captures 

plankton carried by the currents, virtually eliminating any need for periodic movement 

related to localized depletion of food. 
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The experimental segment on C. frondosa highlighted different strengths of ABA, 

which might afford a certain level of control over its use and outcome. When triggered by 

an increase in conspecific density (weak response) only minimum bloating (~40% increase 

in seawater to flesh ratio) and detachment were noted in C. frondosa. Under laboratory 

conditions this behaviour persisted for days or weeks, as long as conspecific density was 

not decreased, and it disrupted normal feeding (which requires firm attachment to the 

substrate and deployment of the oral tentacles). This weak ABA response may be akin to a 

standby state, allowing the individual to be carried away opportunistically. This mechanism 

may prevent accumulations of holothuroids at bottlenecks or boundaries by helping to 

redistribute individuals more evenly after mass physical-migration events. The latter appear 

to occur in response to greater stress, such as a sudden decrease in salinity or surge in 

turbidity, which triggered a more severe ABA response in the trials (>700% increase in 

water:flesh ratio). Like other echinoderms, holothuroids have a limited capacity for 

osmoregulation that makes them susceptible to low salinities (Meng, Dong, Dong, Yu & 

Zhou, 2011). Under such adverse conditions, ABA was also linked to body reorientation in 

C. frondosa, from a normal upward to an unusual downward (anus-up) posture, persisting 

as long as the stressor was present. Moreover, cloacal respiration, which is a known 

indicator of stress level in C. frondosa (Gianasi, Verkaik, Hamel & Mercier, 2015), 

increased immediately after exposure to low salinity or high turbidity, possibly to help fill 

the body cavity and aid ABA. Once the response was established, slower cloacal respiration 

rates were recorded, presumably to limit exchanges with the adverse external environment. 

Most ABA reactions, with the exception of positive buoyancy observed at the air-sea 

interface (discussed earlier), were not immediately conducive to movement, but instead 
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dependent on the presence and strength of water flow. Therefore, ABA-generated speeds 

were highly variable, but generally yielded greater displacements than the 1-2 m d-1 

typically effected by forward crawling in the focal species (Purcell & Kirby, 2006; Gianasi 

et al., 2018) and the maximum crawling speeds measured here in adults of C. frondosa (12 

m d-1). Tumbling of C. frondosa (from camera tows) was estimated to generate 

displacement rates of up to ~90 km d-1. In comparison, the pelagic embryos/larvae that 

develop over 40-45 days (Hamel & Mercier, 1996) are estimated to cover 17-20 km d-1 

over that period (So, Uthicke, Hamel & Mercier, 2011). Weak ABA generated by high 

conspecific densities was maintained as long as the stressor persisted (in the order of weeks 

under laboratory setting); similarly, severe ABA reactions started to subside only when 

conditions of turbidity or salinity returned to normal, supporting that ABA may underlie 

both short- and long-term travel. Over the lifetime of the species, which is likely in the 

order of several decades (Ebert & Southon, 2003), dispersal of adults through ABA could 

be several orders of magnitude greater than larval dispersal. Movements through ABA are 

probably not rare either, since they were captured on video during random benthic surveys 

conducted hundreds of km and years apart. Conditions that trigger them may occur 

relatively frequently. Based on results obtained in the mesocosm, water flows between 20-

120 cm s-1 induced tumbling behaviour. Overall, tumbling under laboratory conditions 

effected displacement speeds between 5 and 86 cm s-1 that represented ~70% of the 

concurrent flow regimes to which they were exposed. Tumbling events documented in the 

field may correspond to periods of changing tide and/or may have followed residual storm-

induced currents, which can fetch up to 110 cm s-1 over the Newfoundland Grand Banks 

(Wu, Tang, Li & Prescott, 2011). Similarly, tumbling and floating in H. scabra was 
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favoured by tidal currents along the coast of Madagascar, as evidenced by greater 

occurrence during the full/new moons and ebbing tides, although the greater intensity of 

ABA events at the full than at the new moon remains unresolved. Moreover, H. scabra 

exhibited ABA behaviour when the current was in an offshore direction, presumably to 

avoid being washed ashore. It was demonstrated during the mesocosm trials that individuals 

of C. frondosa were able to re-anchor to the substrate after ABA events under water flows 

of similar strengths, emphasizing the “active” component of ABA. However, more 

experiments should be performed to better understand the limitation of this dispersive 

strategy.  

While no direct comparison can be made with terrestrial taxa, due to the 

distinctiveness of the aquatic medium, a few interesting parallels may be drawn. Tumbling 

behaviour on land is best exemplified by tumbleweeds that break free of attachment to be 

carried by the wind (Baker, Beck, Bienkiewicz & Bjostad, 2008). However, this adaptation 

involves the death of the parental unit to enable the dispersal of seeds. Indeed, much like 

dispersal in the ocean (Cowen & Sponaugle, 2009), dispersal in air largely centers on 

propagules (Howe & Smallwood, 1982; Cain, Milligan & Strand, 2000), rather than on the 

adult and juvenile stages discussed here. One exception may be the transient aerial dispersal 

of adult arachnids using silk (dubbed “ballooning”), which has been described as a mixed 

Evolutionary Stable Strategy (Bell, Bohan, Shaw & Weyman, 2005). Overall, the drivers 

and implications of mixing directed small-scale movements and undirected long-distance 

dispersal (e.g. crawling and tumbling; walking and ballooning) deserve better integration 

in the conceptual frameworks of movement ecology (Nathan et al., 2008). 



241 

 

The occurrence of ABA in Holothuroidea is also of great significance for their 

management and conservation, since they are the target of important fisheries and 

aquaculture programs (Hamel & Mercier, 2008a; Purcell et al., 2013; 2014). Rapid ABA 

responses could explain why well-known fishing grounds for C. frondosa can start to yield 

dramatically decreased catches over short periods, and recover again (Quin Sea Ltd. 

meeting, 13 Dec 2017). Bottom trawling activity is known to generate increased turbidity 

(Palanques, Guillén & Puig, 2001), which likely triggers ABA and momentarily reduces 

overall catchability (as neutrally-buoyant individuals likely bounce off the gear, and could 

drift away). Such sudden variations in the catchability of C. frondosa due to ABA not only 

impact the fisheries, but also need to be factored in during stock assessments. On the other 

hand, certain areas may function as bottlenecks where holothuroids accumulate transiently 

after mass ABA events, as was suspected to occur in the highly dynamic tidal environment 

of the Passamaquoddy Bay (S. Rowe, pers. comm.). Should these areas become targeted 

by fisheries, increased catches could deplete the resource at much faster rates than 

estimated by monitoring programs. The occurrence of ABA also has major implications for 

aquaculture and sea ranching. Until now, the loss of juveniles (seedlings) during the grow-

out phase was principally attributed to either mortality or predation. However, the main 

culprit may well be ABA, as shown here with H. scabra in Madagascar and suspected by 

other stakeholders in several regions, including Vietnam, Papua New Guinea and Malaysia 

(C. Hair pers. comm., World Aquaculture Conference symposium; E. Nesher pers. comm., 

Malaysia; Supporting Information S3).  Moreover, climatic changes will likely drive 

increases in the occurrence and/or severity of storm events and rainy seasons, thereby 

stimulating ABA and tumbling/floating behaviours over the coming years, which could 



242 

 

change the population dynamics and distribution range of focal holothuroids. For all these 

reasons, more attention should henceforth be given to ABA in painting a more holistic 

picture of the ecology and biogeography of so-called sedentary benthic organisms. 
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Figures 

 

Figure A.1 Illustration of posturing and behaviour involved during active buoyancy 

adjustment (ABA) in Cucumaria frondosa.  A) Juvenile in normal state exhibiting typical 

elongated shape, with tentacles deployed (right). B) Juvenile exhibiting bloating (balloon 

shape) typical of ABA, with podia (p) and tentacles (t) deployed, and space visible between 

ossicles (o) on the surface of the body wall. C) Adult in normal state with ventral podia 
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attached, oral end elevated and tentacles deployed (t). D) Adult detaching from the substrate 

and assuming a bloated shape during initiation of ABA. E) Adult in middle stage of ABA 

with anus (a) becoming elevated. F-G) Posture at culmination of ABA in adult, i.e. fully 

bloated, completely detached, neutrally buoyant, with anal end pointing upwards. Scale 

bars in A and B represent 0.5 mm; individuals in C to G are ~24 cm long (relaxed). 
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Figure A.2 Box plot of strength of attachment to the substrate in Cucumaria frondosa 

measured as force (N) necessary to forcibly pull away individuals in different states (at the 

peak of the reaction), comparing normal adults to adults exhibiting ABA in response to 

high conspecific density (weak ABA), water turbidity and low salinity (severe ABA). The 

box shows the mean in white (n=17-24) with upper and lower quartiles, the whiskers show 

minimum and maximum values, and the circles show the outliers (5th and 95th percentile). 

Different letters denote statistically significant differences (one-way ANOVA on ranks, H 

= 73.51, df = 3, p <0.001; post-hoc Dunn’s method, p <0.05). 
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Figure A.3 Pie charts showing percent water content and box plot depicting water to flesh 

ratio (weight based) in normal adults and in bloated adults exhibiting weak or severe ABA. 

The pies show mean proportions. Each box shows the mean in white (n=18-19) with upper 
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and lower quartiles, whiskers show minimum and maximum values, and the circles show 

the outliers (5th and 95th percentile). Different letters denote statistically significant 

differences between conditions (one-way ANOVA, F2,53 = 671.03, p <0.001; post-hoc 

Holm-Sidak method, p <0.05). 
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Figure A.4 Proportion of tumbling individuals of Cucumaria frondosa under various flow 

regimes in a large mesocosm. Data shown as mean (±SD) across 4 replicate trials. Different 

letters denote statistically significant differences between conditions (one-way ANOVA, 

F3,12 = 19.19, p <0.001; post-hoc Holm-Sidak method, p <0.05). 
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Figure A.5 Proportion of individuals of Holothuria scabra displaying tumbling/floating 

from ABA in 7 focal enclosures around the full and new moons over the study. The box 

shows the mean in white (n=42) with upper and lower quartiles, the whiskers show 

minimum and maximum values, and the circles show the outliers (5th and 95th percentile). 

Different letters denote statistically significant differences between pens (one-way 

ANOVA on ranks, H = 219.16, df = 6, p <0.001; post-hoc Tukey’s method, p <0.05).   
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Figure A.6 Intensity of ABA reaction across seasons and lunar cycles in Holothuria scabra, 

shown as mean proportion (±SD) of individuals scored as “floating” or “tumbling” while 

monitoring the seven sea pens every 15 days in 2015-2016. Sample size is shown on each 

bar. Different lowercase letters denote statistically significant differences between moon 

phases in each season (two-way ANOVA, F1,38 = 20.43, p <0.001; post-hoc Holm-Sidak 

method, p <0.005), and different capital letters denote statistically significant differences 

between seasons (two-way ANOVA, F1,38 = 22.73, p <0.001).   
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Supplementary Material 

Video (S.A.1) showing example of tumbling in Cucumaria frondosa (Nova Scotia, Canada). 

Video (S.A.2) showing example of tumbling and floating in Holothuria scabra 

(Madagascar). 

Anecdotal reports (S.A.3) of ABA-related behaviours in Holothuroidea and other 

Echinodermata. 

All the supplementary materials are available: 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12943 

 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12943
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