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Abstract

The circulation and transport in the ocean region adjacent to the Greenland-

Scotland Ridge (GSR) are crucial for maintaining heat, freshwater, and sea-ice ex-

change between the Nordic Seas and Subpolar North Atlantic Ocean. The Nordic

Seas receive low-density Atlantic Water and transform it into dense water. The dense

water overflow contributes to the North Atlantic Deep Water mass formation, which

feeds the lower limb of the Atlantic Meridional Overturning Circulation. The thesis

presents results from a study of the temperature and salinity transport in the ocean

region adjacent to the GSR consisting of three sub-projects.

The first sub-project is focused on model simulations of interannual to decadal

variability of the exchange through the GSR and its impact on the variability of the

temperature and salinity in the Nordic Seas. The model results demonstrate that

the increase in the transport of fresh and cold waters through Fram Strait in the

1960s was concurrent with a reduction in the exchange over the GSR. The resulting

imbalance in salinity and heat fluxes through the strait and over the ridge contributed

to the freshening of the water masses of the Nordic Seas and intensified the Great

Salinity Anomaly in the 1960s. In the late 1980s the AW transport over the GSR was

stronger than normal while the exchange through Fram Strait was close to normal.

The related imbalance in the lateral heat fluxes through the strait and over the ridge

warmed the Nordic Seas and caused an increase in the temperature of the AW inflow

to the Arctic Ocean in the late 1980s (i.e., about a decade earlier than the warming

of the subpolar North Atlantic Ocean in the mid-1990s).

The second sub-project is focused on observational estimates of the heat flux
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convergence of the ocean region adjacent to the GSR. Along-track altimeter and

sea surface temperature satellite observations and ARGO in-situ measurements of

temperature and salinity are used to investigate the heat transport by mean currents

and eddies in the ocean region adjacent to the GSR from 2003 to 2008. The results

from the analysis show that the heat advection by the mean flow in the surface layer

is zonally asymmetric with a higher magnitude in the western part of the region. This

asymmetry is associated with an excessive mean heat advection in an area adjacent

to the Denmark Strait. The advection of heat is high and positive south of the strait

and low and negative north of it. We suggest that this heat advection impacts the

local budgets of heat and potential energy of the mean flow in the surface layer.

The third sub-project studies the vertical structure of the convergence of advective

fluxes of heat (HFC) and salt (SFC) in the ocean region adjacent to the GSR. The

study is based on SODA (Simple Ocean Data Assimilation) ocean reanalysis for the

period between 1965 and 2010. The SODA based estimates show that the high

values found in satellite based estimates of HFC over the Denmark Strait are part

of a pattern of high HFC and SFC in the whole water column. In this region, the

HFC has a maximum at the surface. The highest values of SFC there are found in

the subsurface layer at depths between 500 and 1500 m. A similar structure of high

positive SFC and HFC are observed at intermediate depths over the Iceland-Faroe

Ridge. The EOF analysis of the HFC and SFC shows that the variability of the HFC

and SFC in these two regions are dominated by modes of coherent variations in the

SFC and HFC. During warming period in the late 1980s these modes drove strong

variations of the HFC and SFC over Denmark Strait and Iceland-Faroe Ridge which

correlated well with the variations in the surface wind stress curl.
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Chapter 1

Introduction

The subarctic ocean is a crucial element of the global climate system. It connects

the cool, fresh Arctic and the warm, salty Atlantic Ocean. The ocean transport

through the subarctic is essential for maintaining the present day exchange of heat

and freshwater between the Arctic Mediterranean and the Atlantic Ocean.

The Arctic Mediterranean comprises the Arctic and Nordic Seas, see Figure 1.1. It

receives warm and salty Atlantic waters and transforms them into cold dense interme-

diate and deep water masses (Meincke, Rudels & HJ Friedrich, 1997). The overflow of

dense waters from the Arctic Mediterranean through the Greenland Scotland Ridge

(GSR) contributes to the North Atlantic Deep Water which feeds the lower limb of the

Atlantic Meridional Overturning Circulation -AMOC (R.R. Dickson & Brown, 1994).

The warm and salty Atlantic waters enter the ocean region adjacent to the GSR

through multiple branches of the North Atlantic Current (Figure 1.2). The air-sea

exchange and mixing in the subpolar gyre modify these waters. As they propagate

in the subarctic they gradually become colder and denser and a part of them enters
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Figure 1.1: Bathymetry of the Arctic Ocean, Nordic Seas and Subpolar ocean.
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the Arctic Mediterranean through the GSR. The rest of the modified Atlantic waters

propagate in the Irminger and Labrador Seas.

The waters of the Arctic Ocean enter the subpolar North Atlantic through three

main conduits: the Canadian Arctic Archipelago, Baffin Bay and Fram Strait. The

latter is the deepest connection between Arctic and subarctic and is of key significance

for heat, freshwater and sea-ice exchange between these two ocean regions. The inflow

from the Fram Strait spreads in the Nordic Seas along the east coast of Greenland.

It is gradually modified by the processes of air-sea exchange and mixing. Part of

these waters enter the North Atlantic through the GSR. The rest of them propagates

through the Nordic Seas.

Being relatively shallow the GSR, which separates the North Atlantic from the

Arctic Mediterranean, restricts the exchange of deep and intermediate waters between

these two basins. The transport through the GSR includes inflow of surface modified

Atlantic water into the Nordic Seas over the Iceland-Faroe Ridge and through the

Faroe-Shetland Channel, and a return flow of polar waters of Arctic origin and dense-

water overflow into the Atlantic Ocean (Hansen & Østerhus, 2000). The difference

in the characteristics of the inflow and outflow through the GSR implies a net heat

and salt flux into the Arctic Mediterranean. The long-term variations in heat and

salt transport through the GSR have significant implications for the variability of the

Arctic Mediterranean (Yashayaev & Seidov, 2015).

The focus of this thesis is on the ocean dynamics in the region adjacent to the

GSR and its impact on the transport of heat and freshwater. This chapter gives an

overview of the region in the context of the study outlining the main oceanographic

characteristics of the region, such as general topography, water masses and circulation
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and the data and methods of the study.

1.1 The Ocean Region Adjacent to the Greenland

Scotland Ridge

1.1.1 Bathymetry and Configuration

The ocean region of this study extends from 59oN to 80oN in the meridional direction.

Zonally, it is limited by the coasts of Norway and Greenland (Figure 1.2). The GSR

which separates the North Atlantic from the Arctic Mediterranean spans a relatively

shallow sub-area in this region. The maximum depth in the Iceland-Faroe Ridge is

450m. The Faroe Bank Channel and the Denmark Strait provide a deeper connection

with sill depths of 840 and 630 m respectively.

The part of the Eastern North Atlantic in the studied region south of the GSR is

subdivided into two basins, the Irminger Sea and the Iceland Basin separated from

each other by the Reykjanes Ridge. The maximum depth in these two ocean basins

are about 3000 m. In the south-west the Irminger Sea is connected to the Labrador

Sea.

To the north of the GSR is the Nordic Seas which refer collectively to the Nor-

wegian, Greenland and Iceland Seas (Figure 1.2). The Norwegian Sea includes the

Lofoten (maximum depth of 3200 m) and the Norwegian (maximum depth of 3600 m

deep) basin. The Iceland Sea (maximum depth of 1800 m) is bounded by Greenland-

Scotland Ridge to the south and the Jan Mayen Fracture zone to the north. The

Greenland Sea is separated from Iceland Sea and the Norwegian Sea by the Jan

4



Figure 1.2: Bathymetry and main currents in the ocean region adjacent to the GSR.

The red arrows show currents transporting the warm waters of the Atlantic Ocean.

The green arrows show near surface currents and blue arrows show the currents at

the intermediate and deep layers. The dots indicate the positions of the TS diagrams

shown in Figure 1.3. The Mohn’s Ridge and Jan Mayen Fracture Zone (JMFZ) are

labeled.
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Mayen Fracture zone and the Mohns Ridge. The northern border of the Nordic Seas

is the Fram Strait. The Fram Strait, which is located between Greenland and Sval-

bard, provides the deepest connection (sill depth of 2600m) between the Arctic Ocean

and the Nordic Seas. The other connections between the global ocean and the Arctic

have significantly smaller depth; about 250 m in the Barents Sea; about 200 m in the

Canadian Arctic Archipelago and 50 m in the Bering Sea.

1.1.2 Water Masses

In the ocean region south of the GSR, the warm and salty Atlantic waters are cooled

and modified as they spread through the subpolar gyre. These modified Atlantic

Waters form the Subpolar Mode Water (SPMW) which is nearly uniform vertically in

temperature, salinity and density. The SPMW extends over a large horizontal area in

the subpolar gyre. In the Irminger Sea the SPMW (Figure 1.3) has a density of about

27.5 kg/m3 and occupies the surface 700 m layer (V̊age et al., 2011). A remnant of

the SPMW, called the Irminger Water (IW) (see Myers, Kulan & Ribergaard (2007)),

spreads at intermediate depths in the Irminger and Labrador seas. The IW has a

density less than 27.70 kg/m3. It is relatively warm and salty (see Figure 1.3) and

plays an essential significant role in the heat budget of the Irminger and Labrador

Seas (Straneo, 2006; Zhu & Demirov, 2011). In the Irminger Sea, there is a sharp

horizontal frontal area separating the SPMW from the cold and fresh water of Arctic

origin that is transported by East Greenland Current southward along the east coast

of Greenland.

There are no major bathymetric restrictions for the propagation of deep and inter-
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mediate water masses between the Irminger Sea and the Labrador Sea. The Labrador

Sea Water (LSW) spreads easily in the Irminger Sea. The LSW is mostly formed by

deep convection in the Labrador Sea and propagates at intermediate depths along the

western boundary current, towards the Irminger Sea, and into the central Atlantic.

The depth of the LSW is between 500 and 1500 m. During cold winter periods,

the part of the LSW entering the Irminger Sea can be renewed by deep convection

(Pickart, Torres & Fratantoni, 2005). The LSW is a weakly stratified water mass. It

has density between 27.70 kg/m3 and 27.80 kg/m3 (V̊age et al., 2011).

The North Atlantic Deep Water in the Irminger Sea is comprised of two water

masses, the Denmark Strait Overflow water (DSOW) and the Iceland-Scotland Over-

flow (ISOW). Both of these water masses have a density greater than 27.80 kg/m3.

They originate in the Nordic Seas and are carried into the Irminger Sea by the near-

bottom dense overflow through the Denmark Strait and over the Iceland-Faroe Ridge.

The DSOW is the slightly denser of the two. The ISOW is relatively salty and warm

and spreads above the DSOW in the North Atlantic. The greater salinity of the

ISOW is a result of entrainment of the SPMW over the Iceland-Scotland Ridge.

There are four main water masses in the Nordic Seas, the Atlantic Water (AW),

the Polar Water (PW), the intermediate Atlantic Water (IAW) and the deep water.

The PW is located from the surface to 150 m mostly in the western half of the Nordic

Seas. These are Arctic waters which enter through the Fram Strait. The temperature

of the PW is below 0oC near Greenland in both the summer and the winter (see Figure

1.3). The PW is separated vertically from the underlying IAW by a sharp halocline.

The surface salinity of the PW is less than 30 PSU and increases with depth to about

34 PSU or higher near the halocline (Coachman & Aagaard, 1974).
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Figure 1.3: Temperature-Salinity diagram of water masses in the Nordic Seas. Loca-

tion of the T-S curves are shown in Figure 1.2. Lines of constant σθ are shown with

dotted lines.
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The upper ocean layer in the eastern Nordic Seas is occupied by the warm and

salty AW. As it travels northward the temperature of the AW decrease from 8oC to

3oC in the winter and from 10oC to 6oC in the summer. The salinity of the AW varies

and increases from the polar water values downward until the salinity reaches 34.88 to

35.00 PSU. Below the AW is the IAW which forms from the vertical mixing between

warm AW and colder waters at intermediate depths. The IAW extends between the

bottom of the AW and down to depths of about 800 m. The temperature of the IAW

is positive and has a maximum at between 200 and 400 m depth.

The layer under 800 m in the Nordic Seas is occupied by the deep water. It has

quasi-uniform temperature and salinity in the vertical (Coachman & Aagaard, 1974).

The temperatures of the deep water is below 0oC and its salinity is between 34.87

and 34.95 PSU. The deep water forms, normally, from deep convection events in

the winter and predominantly in the Greenland and Norwegian Seas (Coachman &

Aagaard, 1974) (see Figure 1.3).

1.1.3 Ocean Currents

The main ocean currents of the region adjacent to the GSR are shown in Figure

1.2. The red arrows indicate warm currents and the blue/green arrows show ocean

currents transporting relatively cold waters.

The North Atlantic Current (NAC) originates from the Gulf Stream. It transports

warm and salty water northwards in the upper layers mostly in the eastern part of

the region. In the subpolar North Atlantic the NAC splits in several branches. One of

them passes over the GSR and becomes the Norwegian Atlantic Current (NwAC). A
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second branch recirculates in the subpolar gyre and feeds the Irminger Current (IC).

The IC transports warm salty water over the Reykjanes Ridge into the Irminger and

Labrador Seas (Bersch, 1995). At the northernmost part of the IC, near Iceland, a

small portion of the current branches off and continues northward and becomes the

North Icelandic Irminger Current (NIIC) while the rest of the IC returns south. The

NIIC continues northward and eastward along the coast of Iceland, which brings salty

and warm surface SPMW along the Iceland coast.

The NwAC carries the AW northward over the GSR into the Nordic Seas. Then

it propagates along the coast of Norway. The NwAC has two main branches which

are relatively narrow and persistent currents. The inner branch follows closely the

continental slope off the coast of Norway. The outer branch is a baroclinic, topo-

graphically steered jet. In the northern part the waters transported by NwAC exit

the Nordic Seas into the Arctic Ocean through the Barents Sea and the Fram Strait.

In this region, the NwAC partly recirculates in the Greenland Sea.

In the western part of the studied region, the East Greenland Current (EGC)

transports cold and fresh waters (see Figure 1.2) and sea ice of Arctic origin along

the east coast of Greenland (B. Rudels, H. Friedrich & Quadfasel, 1999; B. Rudels,

Fahrbach, et al., 2002). The waters transported by the EGC includes PW, recirculated

IAW and deep water.

At the Jan Mayen Fracture Zone, the part of the EGC that is deeper than 1800 m

is diverted eastward. In the upper later, the EGC branches, with the main branch

flowing along the coast of Greenland. The deflected part of the EGC flows eastward

and becomes the Jan Mayen Current. This current extends along the southern part

of the Greenland Sea gyre.

10



Further south, another branch separates from the EGC (see Figure 1.2) and forms

the East Icelandic Current (EIC) (Blindheim & Osterhus, 2005). This current brings

cold and fresh waters from the EGC along the northern and eastern coasts of Iceland.

The main branch of the EGC extends southward and passes through the Denmark

Strait.

South of the Denmark Strait, the EGC flows over the shelf along the coast of

Greenland parallel to the IC. The IC and the EGC that flows southward in this region

along the East Greenland/Irminger hydrographic front are collectively referred to as

the East Greenland Irminger Current (EGIC) (Pickart, Torres & Fratantoni, 2005).

1.1.4 Mesoscale Dynamics

The warm salty Atlantic Water transported by the NwAC north of the GSR under-

goes intense transformation in the Nordic Seas. The air-sea exchange through the

ocean surface drives vertical mixing and deepening of the surface mixed layer. The

Intermediate Atlantic Water (IAW) forms as a result of the vertical mixing of AW

with the dense intermediate waters.

Deep convection in the Nordic Sea occurs mostly in the Greenland and Iceland

Seas. The weak stratification (Johannessen, Lygre & Eldevik, 2005), doming of the

isopyncals (Rhein, 1996), and winter sea ice formation (Pawlowicz et al., 1995) con-

tribute to the intensification of winter convection in the central part of these two

ocean basins. The deep convection in the centers of the Greenland and Iceland gyres

reach depths of about 1000 m (B. Rudels, Quadfasel, et al., 1989). The relatively

warm and saline AW and IAW and cold PW are entrained into the two gyres and
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play an essential role in their overall heat budget. The heat gain due to the inflow

of the AW and IAW is balanced by air-sea exchange and transport of cold waters

and sea-ice by nearby PW. The eddy-induced transport plays a dominant role in the

lateral exchange of heat and salt in the Greenland and Iceland Seas. (Latarius &

Quadfasel, 2010; Mauritzen, 1996a; Mauritzen, 1996b; Eldevik et al., 2009).

The assessment of the heat and salt eddy-induced transport using high-latitude

observations is difficult because of the small scale of the mesoscale eddies. The typical

scale of mesoscale eddies can be determined by the first Rossby Baroclinic Radius of

Deformation (Rd1). This is the length scale at which the effects of rotation become

as important as buoyancy effects in the geostrophic balance. The values of Rd1 in

the ocean depend on the buoyancy frequency N:

N2 = −
g

ρo

∂ρ(z)

∂z

where g is gravity, ρ(z) is the potential density, ρo is the averaged ocean density.

For a constant N

Rd1 =
NH

πf

where H is the ocean depth and f is the Coriolis parameter (Gill, 1982). The first

Rossby Baroclinic Radius of deformation is much smaller at higher latitudes, where

the values of N are relatively small. In more realistic ocean applications where N is

not a constant but depends on the depth, the exact value of Rd1 can be obtained by

solving the Sturm-Liouville eigenvalue problem for the vertical structure of vertical

velocity.
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N−2(z)
d2φ

dx2
+ c2φ = 0

with boundary conditions:

φ = 0; z = 0; z = −H

The solutions of the eigenvalue value problem

ci = fRdi

determine the phase speed for the i-th baroclinic Rossby mode. The average estimate

of Rd1 for the Norwegian Sea is about 7 km (Nurser & Bacon, 2014) and can be as low

as 1.4 km in the Greenland Sea. For comparison the values of Rd1 in the Subtropical

North Atlantic vary between 20 and 60 km (Chelton, DeSzoeke, et al., 1998).

The small Rossby radius at high latitudes imposes restrictions on the quality and

resolution of the observational data sets used in studies of mesoscale dynamics. The

spatial resolution of gridded satellite and in-situ data is not sufficient for studies of

mesoscale eddies and their impact on the transport of salt and heat. Karimova (2017)

have shown that gridded altimeter products are suitable for studies of eddies with

diameter is larger than 70 km. In this study, eddy-induced heat and salt transports are

assessed with along-track satellite altimetry observations which resolve the mesoscale

at high latitudes.

1.2 Ocean Observations

The subarctic has been studied since the late 19th century (Mohn, 1887). For a

long time, however, observational data remained rather limited in terms of spatial
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coverage and frequency. Severe weather and presence of sea-ice at the ocean surface

made large scale observational surveys rather difficult. The following developments

over the past two-three decades made such studies possible. In the late 19th century

and through most of the 20th century the observations were largely ship based. These

observational studies were the first to identify the Arctic and Atlantic water masses

and the characteristics of their variability, the major bathymetric features and they

main currents. At the same time these observations were shipped based and therefore

limited in their spatial and temporal coverage and due to their equipment at the time

limited in their accuracy.

Over the past few decades there was a dramatic development in the technology for

ocean observations in the subarctic. A major development in the observing system

was the addition of regular mooring station observations which started in the Nor-

wegian Sea in the late 1990s and early 2000s. Some of these stations were positioned

at key points along the GSR to study the inflow of AW into the Norwegian Sea.

These mooring observations include ADCP and standard CTD sections (B. Dickson,

J. Meincke & P. Rhines, 2008). Repeated hydrographic sections were conducted along

the coast of Norway to monitor the flow of the AW in the Norwegian Sea, the Barents

Sea Opening, Svinoy and the Sorkapp sections. In the Barents Sea Opening there are

repeated hydrographic (CTD) sampling since the 1960s and current measurements

since 1997. The Svinoy section has been studied since the mid 1950s and the Sorkapp

section since the late 1970s. These moorings give detailed information about the vari-

ations of the water mass characteristics at these sections. However, some moorings

only existed for a short period of time and, due to the fact that moorings are station-

ary, they only take measurements at specific locations and usually only for certain
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periods of time. Over the last two to three decades, the technology of ocean obser-

vation dramatically improved. The new methods of ocean observations implemented

over the past two decades include new sensors, mobile autonomous platforms, and

fast communication tools.

The development in the satellite altimetry technology was a major breakthrough

in ocean observing methods which started in the 1980s and 1990s. The first satellite

mission of GEOSAT in 1978 demonstrated the strong potential of the sea-surface

height observations in ocean studies. Many different satellite missions (for example

Geosat, ERS-1, Topex/Poseidon, GFO, ERS-2, Envisat, Jason-1) were launched over

the past couple of decades. Presently, several satellites (Jason-2, Cryosat-2, HY-2A,

SARAL, Sentinel-3, Jason-3) are operational and they produce high quality near-real

time sea-surface height data. The high-accuracy observations of sea-level from the

space were a basis for essential advancement of the understanding of ocean dynamics

over the past two decades.

Satellite altimetry measures the time taken by a radar pulse to travel from the

satellite antenna to the surface and back to the satellite receiver. Using this precise

time measurement combined with exact location of the satellite, the sea-surface height

(SSH) can be calculated. The SSH is a sum of three components – the geiod, the

absolute dynamic dynamic topography, and the sea-level anomaly. The geoid is the

equipotential surface of the Earth, which is everywhere perpendicular to the local

direction of gravity plus centrifugal force due to the planetary rotation. It would be

the equilibrium surface for the motionless ocean, i.e. where no waves and currents

exist. The absolute dynamic topography is the best fit, in a least-squares sense,

of global mean sea level above the geoid. It depends on the ocean temperature,
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Figure 1.4: The surface of Earth Geoid. (reproduced from Ince et al. (2019) with

permission.

salinity and mean circulation and is usually assumed to be constant in time. The

absolute dynamic topography, however, can vary due to climate change and long

term interdecadal and centennial changes in the bottom topography, temperature,

salinity, and ocean currents.

The reference ellipsoid is much smoother than the real Earth surface. The GOCE

satellite mission determined the exact height of the earth’s surface based on precise

gravity observations (see Figure 1.4). The spatial irregularities of the geoid height

are produced by the distribution of the Earth’s density.
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As a satellite passes over the surface of the oceans it measures the instantaneous

sea surface height. The along-track sea level is then calculated as the difference

between the height measured by the satellite SSH and the mean sea surface height.

It is also corrected for any atmospheric interference, such as cloud cover.

Satellite observations of the global ocean are available operationally in near-real

time beginning in the early 1990s. However, not all ocean observing satellites follow

tracks that allow for high latitude observations. For example Jason-3 only observes up

to 60oN. For our study, Geodetic and Oceanographic SATellite Follow-On (GFO) and

Envisat (EN) were chosen because they had good coverage of our study area. The

data from the satellite sea level observations is available both as gridded products

and as along track data which determine the sea surface height at points along the

path of the satellite’s orbit. The gridded products are averaged over space and time to

create evenly gridded sea level data, from which other physical characteristics, such as

velocity, can be calculated. This gridding often leads to smoothing of data and loss of

spatial and temporal resolution. This issue is significant in the areas of small Rossby

radius of deformation. A major part of the mesoscale processes in the subarctic are

unresolved by gridded altimeter data. In this study we use the along-track data for

analysis of eddy-induced fluxes determined by Equations 1.6 and 1.7.

Another important component of the global ocean observing system in the sub-

arctic is the Global Drifter Program (GDP), which also known as the Surface Velocity

Program (SVP). Together with the satellite observations, these programs provide a

comprehensive data set for the study of surface ocean dynamics. This includes surface

characteristics such as current velocities, sea surface temperature, sea surface salinity

and atmospheric characteristics at sea level. The project started in 1979 but a sig-
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nificant amount of drifters were deployed only since 1992. However, the observations

from ocean drifters as repeat measurements at the same location and time of year are

not likely. Another limitation of drifter observations in the ocean region adjacent the

GSR is that the drifter deployments are still sparse.

1.3 Ocean Heat and Salt Transport

Mean currents and turbulence in the ocean region adjacent to the GSR play an

essential role in the meridional heat and freshwater transports. The waters in the

ocean region adjacent to the GSR, are intensively transformed through surface air-

sea exchange, advection, and mixing. This transformation modifies the seawater

characteristics like the heat and salt content.

The main boundary currents in the studied region like the Irminger Current, East

Greenland Currents and Norwegian Atlantic Current are persistent flows with quasi-

permanent paths. They are baroclincally unstable and generate mesoscale eddies

which have an impact on the horizontal heat and the freshwater transport across the

ocean region adjacent to the GSR. When the eddies move (Dong et al., 2014) towards

the central part of the region they bring waters with characteristics typical of the

area of their formation in the boundary currents. Some eddies have a lifetime of up

to several months. During this time they cover distances of hundreds of kilometres

(Isachsen, Koszalka & JH LaCasce, 2012).

Variability in ocean temperature (T) and salinity (S) is determined by the advection-

diffusion equations:
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∂T

∂t
+ u · ∇T + w

∂T

∂z
= ∇ · ν∇T +

∂

∂z
ν
∂T

∂z
(1.1)

∂S

∂t
+ u · ∇S + w

∂S

∂z
= ∇ · ν∇S +

∂

∂z
ν
∂S

∂z
(1.2)

where u = (u, v) is the horizontal current velocity, w is the vertical component, ν

is the molecular diffusivity and ∇ is the horizontal gradient operator. Equations 1.1

and 1.2 determine the change in T and S due to dynamical processes in the ocean

which span motions and scales from small and fast to large and slow.

Present day models and observations in general agree about the mean large-scale

circulation of the global ocean. Mesoscale and sub-mesoscale processes are less un-

derstood. These processes have relatively small scales and are not entirely resolved

by ocean models and observations. Understanding of their dynamics is important

for understanding meridional heat and freshwater exchange since they can influence

ocean transport due to nonlinear dynamics.

Model data and observations are used in this study to assess the horizontal trans-

port heat and salt. This transport is separated into mean and eddy components. The

mean advection due the large-scale ocean general circulation assumes quasi-steady

characteristics ((u), (v), (w), (T ), (S)) which in this study are estimated as the mean

over a specific time period. The latter is normally determined based on the time scale

of the studied processes and the length of the data.

Following the definition of Wunsch (1999), the eddy components of velocity,

temperature and salinity here are defined as the variability with respect to the

record mean, regardless of its dynamical cause. Therefore, the “eddy” components
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(u′, v′, w′, T ′, S ′) of u, v, w, T, and S involve physical processes in a rather broad tem-

poral interval including intraseasonal, seasonal, interannual and decadal time scales.

There are also limitations in resolving the fine-scale components of the “eddy”-

induced flow and transport. It is considered later in this study that eddy-driven

advection consists of a part which is resolved by the data and a second part which

is subscale and unresolved in the data. With these definitions, the budget of mean

temperature and salinity is given by the averaged advection-diffusion Equations 1.1

and 1.2:

∂T

∂t
= −

(
u · ∇T −∇ · k∇T

)
−

(
w
∂T

∂z
−

∂

∂z
k
∂T

∂z

)
(1.3)

∂S

∂t
= −

(
u · ∇S −∇ · k∇S

)
−

(
w
∂S

∂z
−

∂

∂z
k
∂S

∂z

)
(1.4)

The transport terms in the right-hand sides of 1.3 and 1.4 represent the horizontal

advection and diffusion (the first two terms) and vertical advection and diffusion (the

third and fourth terms). By using the Reynolds averaging (Vallis & Lam, 1996), the

horizontal transport of heat is written as:

u · ∇T −∇ · k∇T = u∇T + u′ · ∇T ′ −∇khT∇T (1.5)

The first term on the right-hand side of 1.5 is the advection by the mean flow, the

second is the eddy-induced transport due to mesoscale eddies resolved in the data,

the third one represents the smaller scale turbulence unresolved in the data. The

eddy-induced advection term u′ · ∇T ′ is a sum of two components - divergent and

rotational (J. Marshall & Shutts, 1981). The divergent component of u′ · ∇T ′ is due
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to the ageostrophic component of the flow. It represents the local contribution of

eddy advection to the heat budget.

The mesoscale and sub-mesoscale eddies are in quasigeostrophic balance. A part of

the eddy velocity vector (u′) is approximately parallel to the ispoycnals (isolines of ρ′

and respectively to isotherms for T ′ and isohalines for S ′). The rotational component

of the heat advection is due to this part of the flow vanishes in 1.5. It is associated with

the formation and propagation of mesoscale eddies through the region. The rotational

component of eddy-induced heat advection resolved in the data still contributes to the

temperature change through the heat released in the area of eddy decay through the

enhancement of irreversible mixing created by eddy stirring and fine-scale patterns.

This heat is normally parameterized as ∇kOC∇T where kOC is the so-called Osborn-

Cox diffusivity (T. Osborn & Cox, 1972). The sub-scale rotational (non-divergent)

eddy-driven advection unresolved by the data is normally determined as ∇kK∇T .

The diffusion coefficient kK can be locally positive or negative but it vanishes in the

equation of globally integrated heat budget. Therefore, the turbulent heat diffusion

coefficient khT in Equation 1.5 is defined (see Abernathey & Marshall, 2013) as the

sum of the following components.

khT = k + kK + kOC

The vertical heat transport in Equation 1.3 is

w
∂T

∂z
−

∂

∂z
k
∂T

∂z
= w

∂T

∂z
+ w′

∂T ′

∂z
−

∂

∂z
k
∂T

∂z

The vertical subscale heat transport is normally determined by using models of

turbulence (see Burchard & Beckers, 2004)

∂

∂z
k
∂T

∂z
− w′

∂T ′

∂z
=

∂

∂z
kvT

∂T

∂z
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where kvT , the vertical turbulent heat diffusion coefficient is a function of vertical

velocity shear and buoyancy. The same concept of separation of the advective terms

into mean and eddy-components apply for the salinity equation. The final form of

the equations for salinity and temperature used in this study are

∂T

∂t
= −u · ∇T − w

∂T

∂z
− u′ · ∇T ′ +∇ · khT∇T +

∂

∂z
kvT

∂T

∂z
(1.6)

∂S

∂t
= −u · ∇S − w

∂S

∂z
− u′ · ∇S ′ +∇ · khS∇S +

∂

∂z
kvS

∂S

∂z
(1.7)

where khS, kvS are the horizontal and vertical coefficient of salinity turbulent

diffusion respectively.

1.4 Heat Budget of the Nordic Seas

The GSR is positioned along the southern boundary of the Nordic Seas with the

Atlantic Ocean. The Fram Strait separates Arctic from the Nordic Seas. The waters

of the Arctic and Atlantic origin which flow through these straits are transformed by

air-sea interaction and mixing in the Nordic Seas. The net effect of the transport

through the straits and air-sea fluxes on the heat budget of this ocean basin is given

by the integrated equation of temperature (Equation 1.3):

∂

∂t

∫
TdV = −

∫ (
u · ∇T + w

∂T

∂z

)
dV −

∫ (
u′ · ∇T ′

)
dV

+

∫ (
∇ · khT∇T

)
dV +

∫ (
∂

∂z
kvT

∂T

∂z

)
dV
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The left-hand side represents the rate of change of the basin’s heat content HT

where HT = ρcp
∫
TdV , ρ is the seawater density, and cp is the heat capacity. The

first integral on the right-hand side can be expanded by using integration by parts in

conjunction with the continuity equation:

∇ · u+
∂w

∂z
= 0

−

∫ (
u∇T + w

∂T

∂z

)
dV = −

∮
u · nTdAL

Here AL is the area of the lateral boundary surrounding the region and n is a unit

outward vector normal to the boundary. The condition
∫
wdAS = 0 was assumed,

where AS is the area of the ocean surface. By using the same approach we can express

the other volume integrals in the integrated temperature equations:

−

∫ (
∇ · u′T ′

)
dV = −

∮
u′T ′ · ndAL

∫ (
∇ · khT∇T

)
dV =

∮
khTn · ∇TdAL

and

∫ (
∂

∂z
kvT

∂T

∂z

)
dV =

∫
kvT

∂T

∂z
dAS −

∫
kvT

∂T

∂z
dAB

Here AB is the area of the bottom surface. The final form of the equation of the

net heat content of the Nordic Seas is:
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1

ρcp

∂HT

∂t
= −

∮
u · nTdAL −

∮
u′T ′ · ndAL +

∮
khTn · ∇TdAL

+

∫
kvT

∂T

∂z
dAS −

∫
kvT

∂T

∂z
dAB (1.8)

The heat content of the basin is a sum of the mean (first term on the right) and

eddy-induced (second and third terms on the right) lateral heat transport through the

boundaries, the surface net heat flux (the fourth term on the right) and geothermal

heat (the last term).

Similarly the equation of salinity content HS = ρ
∫
SdV is

1

ρ

∂HS

∂t
= −

∮
u ·n SdAL −

∮
u′S ′ ·ndAL +

∮
khSn · ∇SdAL +

∫
kvS

∂S

∂z
dAS (1.9)

The open boundaries of the Nordic Seas consist of the GSR, Fram Strait and the

connection to the Barents and Kara Seas. Equation 1.8 in this case is:

1

ρcp

∂HT

∂t
= FhGSR + FhFS + FhBK +QhS −QhB (1.10)

where FhGSR, FhFS and FhBK are the lateral mean and eddy-induced fluxes

of heat in the GSR, Fram Strait and to the Barents and Kara Seas respectively and

shown graphically in Figure 1.5. QhS is the integral surface net heat flux, and QhB

is the geothermal heat. The existing estimates of the QhB in the ocean are relatively

small with respect to the other terms of Equation 1.10. Similarly, the salt budget of

the basin is

1

ρ

∂HS

∂t
= FsGSR + FsFS + FsBK +QsB (1.11)
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Figure 1.5: Diagram of fluxes into and out of the Nordic Seas. The arrows represent

the lateral fluxes into the Nordic Seas through the Fram Strait, Barents and Kara

Seas (BK) and over the Greenland Scotland Ridge (GSR) and the surface flux (Qs)

and the geothermal heat (Qb).
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The transport through the GSR involves flow of surface modified Atlantic waters

into the Nordic Seas over the Iceland-Faroe Ridge and through the Faroe-Shetland

Channel, and a return flow of PW and dense-water overflow into the Atlantic Ocean

(Hansen & Østerhus, 2000). The difference in the characteristics of the inflow and out-

flow through the GSR implies net heat and salt fluxes into the Arctic Mediterranean

of about 330 TW (1 TW = 1012 W ) and 303× 106 kg/s (Serreze et al., 2006), respec-

tively. The long-term variations in heat and salt transport through the GSR influ-

ences the climate variability of the Arctic Mediterranean (Yashayaev & Seidov, 2015);

(Polyakov, Alekseev, et al., 2004). Understanding the dynamics and variability of this

transport is essential for understanding of the meridional exchange of energy and mass

in the subarctic.

1.5 Aims and Objectives

1.5.1 Research Questions

• What role, if any, the heat and salt transports through the GSR play in the

long-term interannual and decadal variability of the Nordic Seas?

• What are the characteristics of the convergence of surface mean and eddy in-

duced transport of heat in the ocean region adjacent to the GSR?

• What is the spatial and temporal variability of the convergence of mean advec-

tive heat and salt transport in the water ocean region adjacent to the GSR?
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1.5.2 Aim

To explore and further understand the processes of exchange between the Arctic

Mediterranean and North Atlantic.

1.5.3 Objectives

1. To estimate interannual variability of temperature and salinity transport through

the GSR and assess its impact on the heat and salt budgets of the Nordic Seas

using ensemble simulations with a global ocean model.

2. To explore the physical causes of past long-term variability in the heat and salt

content in the Nordic Seas.

3. To assess the characteristics of mesoscale eddies in the ocean region adjacent to

the GSR using ocean satellite and in-situ observations.

4. To assess the mean and eddy induced fluxes of heat and salt in the surface layer

using observations.

5. To explore the vertical structure of the heat and salt flux convergence by using

ocean reanalysis.

1.5.4 Layout of the Dissertation

The study is composed of three sub-projects. Chapter 2 presents results from a

model study of long-term variability of volume and heat transport through the GSR

and its impact on the Nordic Seas. In Chapter 3 the mean and eddy-driven heat

advection in the surface ocean region adjacent to the GSR derived from satellite
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altimetry are discussed. Chapter 4 presents results from a study of vertical structure

of convergence of mean advection of temperature and salinity. A discussion of key

results and conclusions of the dissertation is presented in Chapter 5.

This thesis is written in manuscript format. The content is presented in three

journal articles that have either been published in journals or are being prepared for

publication. They are written as standalone articles and therefore some information

may be repeated in the introduction. Memorial University thesis guidelines requires

each article be presented with its associated bibliography with an additional bibliog-

raphy for the entire thesis. All appendices are appended after the thesis bibliography.

1.6 Co-Authorship statement

Authorship for the research paper presented in Chapter 2 is in the following order:

Sarah Lundrigan and Dr. Entcho Demirov (thesis supervisor). Model implemen-

tation, model runs and analysis of results were performed by Ms. Lundrigan with

direction from Dr. Demirov. The manuscript was prepared by Ms. Lundrigan and

critically reviewed by Dr. Demriov.

Authorship for the research paper presented in Chapter 3 is in the following order:

Sarah Lundrigan and Dr. Entcho Demirov. Experimental design and analysis was

performed by Ms. Lundrigan. The manuscript was prepared by Ms. Lundrigan and

critically reviewed by Dr. Demirov.

Authorship for the research paper presented in Chapter 4 is in the following order:

Sarah Lundrigan and Dr. Entcho Demirov. The data analysis was performed by Ms.

Lundrigan. The manuscript was prepared by Ms. Lundrigan and critically reviewed
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by Dr. Demirov.
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Connecting Text

The first article in this thesis addresses objectives 1 and 2 described in Section 1.5.3.

It investigates the interannual and decadal variability of the Nordic Seas. Results

from ensemble model simulations are used to asses the impact of the heat flux through

the lateral boundaries of the Nordic Seas on its heat budget. The ocean model

is a coarse-resolution global circulation model forced with surface fluxes from the

reanalysis of the National Center for Environmental Predictions (NCEP). The model

results focus specifically on the role of the imbalance of the lateral fluxes of heat

through the GSR and Fram Strait on the strong events of interannual ocean variability

like the Great Salinity Anomaly and warming of the Nordic Seas in the late 1980s

early 1990s.

This article appeared as S. Lundrigan & E. Demirov (2012) in Atmosphere Ocean.
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Chapter 2

Long-Term Variability of Volume

and Heat Transport in the Nordic

Seas: A Model Study

2.1 Abstract

The article presents results from a model study of interannual and decadal variability

of the Nordic Seas. Fifty years of simulations are conducted in an initial condition

ensemble mode forced with the NCEP reanalysis. We study two major events in the

interannual and interdecadal variability of the Nordic Sea during the past fifty years:

the Great Salinity Anomaly in the 1960s and early 1970s and the warming of Arctic

and subarctic in the late 1990s.

Previous studies demonstrated that the Great Salinity Anomaly observed in the

sub-Arctic in 1960 was originally generated by intensified sea-ice and fresh water
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inflow from Arctic Ocean. Our model results demonstrate that the increase in the

transport of fresh and cold waters through the Fram Strait in the 1960s was concurrent

with a reduction in the meridional water exchange through the Greenland Scotland

Ridge. The resulting imbalance in salinity and heat fluxes through the two straits

contributed additionally to the freshening of the water masses of the Nordic Seas and

intensified the Great Salinity Anomaly in the Nordic Seas.

The warming of the Atlantic Waters in the Nordic Seas and Arctic Ocean in recent

decades had an important impact on the variability of these two ocean basins. The

observations and model results suggest that the warming of sub-polar Atlantic Ocean

in the late 1990s had a significant contribution to this process. The warming of the

Atlantic Water (AW) in the Nordic Seas, however, started earlier in the 1980s and

according to our model results was triggered by the disbalance in the lateral heat

fluxes through the straits. In the late 1980s the AW transport over the Greenland-

Scotland Ridge was stronger than normal while the exchange through the Fram Strait

was close to normal. The related imbalalnce in the lateral heat fluxes through the

straits warmed up the Nordic Seas and caused an increase in the temperature of

the Atlantic Water inflow to the Arctic in late 1980s, i.e. about a decade earlier

than the warming of the source of AW in the sub-polar North Atlantic. The model

results suggest that the disbalance of lateral heat and salinity fluxes through the

straits connecting the Nordic Seas with the North Atlantic and Arctic can potentially

amplify the interannual variability in the subarctic.
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2.2 Introduction

The subarctic ocean plays an important role in the climate system. Previous studies

demonstrated that the interannual variability in this region has an impact on major

circulation patterns, water mass properties and sea-ice (B. Dickson, J. Meincke &

P. Rhines, 2008; Hakkinen & P.B. Rhines, 2004; Lohmann, Drange & Bentsen, 2008;

Marsh et al., 2008; Schlichtholz, 2011). Driven primarily by changes in atmospheric

circulation regimes (Lohmann, Drange & Bentsen, 2008) interannual variability in

this ocean region includes influences influences on the meridional exchange of fresh

water, sea-ice and heat between the North Atlantic and Arctic (Hakkinen & P.B.

Rhines, 2004) with ultimately a potential strong feedback on weather and climate

(P. Rhines, Häkkinen & Josey, 2008). The Nordic Seas (Figure 2.1(a)) are located

between the Arctic and the North Atlantic and play an important role for the varia-

tions of the meridional heat and volume fluxes (Orvik & Niiler, 2002). In this article

we discuss the interannual variability of the Nordic seas and their impact on the

volume and heat exchange between the Arctic Ocean and sub-polar North Atlantic.

More specifically we focus on two events that recently had a strong signature in the

interannual variability of the polar ocean. These are the Great Salinity Anomaly (R.

Dickson et al., 1988) and warming of the Arctic and subarctic in the 1990s (Quadfasel

et al., 1991).

The largest sea-ice and fresh water export from the Arctic Ocean takes place

through the Fram Strait. In the Nordic Sea the sea-ice/surface fresh waters are carried

southward by the Eastern Greenland Current. R. Dickson et al. (1988) and Belkin

et al. (1998) suggested that the stronger than normal advection of Arctic Waters
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Figure 2.1: (a) Sections used to study climatic characteristics and variability of fluxes

in and out of the Nordic and Sub-polar seas. F- Fram Strait, BSO- Barents Sea Open-

ing, GS- Greenland Scotland Ridge. The ”South Greenland” and ”Sub-Polar” lines

define the boundary of what is defined as the Sub-Polar Ocean. (b) Two degree global

grid (ORCA2) used in model simulations (NEMO (Nucleus for European Modelling

of the Ocean), 2011)
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in the late 1960s and early 1970s created a cold and fresh anomaly, known as the

Great Salinity Anomaly (GSA) which propagated cyclonically through the subarctic

for about fifteen years. Mysak, Manak & Marsden (1990) and Mysak & Power (1992)

explained the formation of the GSA with the existence of a teleconnection pattern

with origin in the western Arctic Ocean. The existing observations suggest that when

the GSA propagates in the Nordic Seas and sub-polar North Atlantic it tends to

intensify locally. In particular, as the GSA propagated through the Labrador sea, it

was shown that the GSA can be amplified by the fresh water inflow from the Hudson

Bay (Hilmer & Jung, 2000) and modulated by the variations in deep convection

(Khatiwala, Schlosser & Visbeck, 2002).

R. Dickson et al. (1988) found that in the 1960s there were at least two processes

in that amplified the GSA the Nordic Seas. (1) The increased contribution of the

Polar Waters in the Eastern Greenland and Eastern Icelandic Current. Both cur-

rent systems became colder and fresher than usual. The Eastern Greenland Current

expanded, and the Eastern Icelandic Current which is normally ice-free, was trans-

porting ice in the late 1960s. (2) The low salinity of the surface layer north of Iceland

strengthened the vertical stratification and prevented these waters from mixing with

intermediate and deep saltier waters. That kept the low salinity anomaly stable

and expanding. In this article we study another mechanism that may potentially

have strengthened the GSA in the Nordic Seas in the 1960s. It is related to specific

variations in the local heat and salt balance of the basin at that time.

Observational studies (Quadfasel et al., 1991; Polyakov, Alekseev, et al., 2004)

revealed a warming trend in the Atlantic Water (AW) layer in the Arctic in the

1990s. The mechanism of this warming is still not well known. There are in general
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two main hypotheses about the causes of this event. The model results of Zhang,

Rothrock & Steele (1998); Häkkinen & Geiger (2000) suggest that the inflow of AW

into the Arctic intensified in the 1990s. Zhang, Rothrock & Steele (1998) and Aksenov

et al. (2010) found that the increase in the volume inflow of the AW occurred mostly

via the Barents Sea route. Häkkinen & Geiger (2000) related the intensified AW

inflow with a shift in the Arctic Ocean in the early 1990s.

The second hypothesis relates the warming of the AW in Arctic with a shift in

atmospheric conditions over the Nordic Seas. R.R. Dickson, J. Osborn, et al. (2000)

suggested that a reduction in the surface heat loss to the atmosphere and warming

of the AW in the Nordic Seas was related to the rising of the NAO index in the early

1990s.

Hydrographic observations (S. Østerhus & Gammelsrød, 1999; Tereshchenko, 1997)

confirm (see also Section 2.4) that warming in the Nordic Seas (S. Østerhus & Gam-

melsrød, 1999) in the 1980s correlates well with the temperature increase of the AW

(Tereshchenko, 1997) inflow to the Arctic. In this article we study another possible

mechanism of the AW warming in Arctic which is related to the local heat balance

of the Nordic Seas.

The article is organized as follows: Section 2.3 describes the model set up, Section

2.4 presents some characteristics of recent variability of Arctic and subarctic from

model and observations. Section 2.5 discusses the mean circulation and transports of

the Nordic Seas. Section 2.6 discusses the effect of the variability in the volume fluxes

through the straits and their impact on the Nordic Seas and on the local amplification

of the GSA and warming in the 1990s. Finally, Section 2.7 offers conclusions.
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2.3 Model Setup

In this study we use a coupled ocean and sea-ice models OPA 9.0 (Madec, 2008).

It is a z-coordinate, primitive equation, free surface ocean model coupled with the

multi-layered sea-ice LIM2 model (T.Fichefet & M.A.Morales Maqueda, 1997). The

equation of state is represented using the formulation of Jackett & McDougall (1995).

Isopycnical eddy-induced advection is parameterized following Gent &McWilliams (1990).

Lateral mixing for tracers is defined along isopycnal surfaces. Vertical mixing coeffi-

cients are calculated by using level-1.5 turbulence model of (Blanke & Delecluse, 1993).

Lateral momentum mixing is biharmonic along the model level surfaces. Double dif-

fusion mixing is computed following the Merryfield, Holloway & Gargett (1999) pa-

rameterization. Advection in the bottom layer is improved through application of the

Beckmann & Döscher (1997) scheme for geopotential-coordinate models.

The sea-ice model is the Louvain-la-Neuve sea ice model (LIM). It is a dynamic-

thermodynamic model specifically designed for climate studies (T.Fichefet & M.A.Morales

Maqueda, 1997; Fichefet & M.A. Maqueda, 1999) and uses a viscous-plastic rheology

(Hibler, 1979). The thermodynamic part of LIM uses a three-layer model (one layer

for snow and two layers for ice) for sensible heat storage and vertical heat conduction

within snow and ice.

The ocean and sea-ice models equations are written in a curvilinear coordinate

system. The ORCA2-LIM model grid configuration is based on a 2 degree Mercator

mesh. It has 31 vertical levels, 20 of which are in the top 500 m. In the northern

hemisphere the mesh has two poles (Figure 2.1)b. The mean grid spacing is about

2/3 of the nominal value or 1.3 degrees. The meridional grid spacing is about 0.5
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degrees near the equator to improve the equatorial dynamics and increases to about

2o cos(φ) at 20 degrees latitude. The highest grid resolution is about 65 km in Arctic.

The bottom topography is computed from ETOPO2 data set.

The model is initialized with Levitus climatology (Antonov et al., 2005). A 30

year spin-up is forced using NCEP-NCAR monthly mean climatological fields for

atmospheric 2 m temperature, humidity, wind speed at 10 m, total cloudiness and

surface wind stress. The river discharge is defined from monthly mean climatology.

Surface fluxes are computed by using standard bulk empirical formulas and model

SST.

The model is spun up by a 30 years run with seasoonal mean surface forcing.

After 30 years of simulations, the global model does not reach an equilibrium state

in a stric sense. However as mentioned by Timmermann et al. (2005) ”in contrast

to the low latitude ocean, in which deep water properties change on time scales of

decades to centuries, communication between the surface and the deep ocean in polar

regions occurs as part of the seasonal signal or an interannual variability. So, in

order to investigate ice-ocean interaction, the model does not need to be integrated

for hundreds of years provided that areas that feature a much slower variability are

initialized close to reality”. Additionally in our simulations, a spectral nudging scheme

(Thompson et al., 2006) is applied to reduce model bias. The model temperature and

salinity are nudged towards the observed climatology with a prescribed frequency-

wavenumber band and is not constrained outside of this interval.

After the initial period of spin up, the model is run for 50 years, from 1948-2005,

using the NCEP/NCAR forcing. Six configurations were then chosen to form the

initial conditions for each ensemble member after the first 37 years of simulation
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with 6 hourly NCEP/NCAR forcing. The chosen years for the initial conditions were

1985, 1989, 1992, 1994, 1996 and 1997. Each of these 6 initial conditions were used

to run ensemble members from 1948-2005 saving the output monthly for analysis.

The output from 1965-2005 is used for analysis in this study. The results presented

in this paper are an average of the ensemble members and the error is the standard

deviation between the ensemble members.

In a previous study Timmermann et al. (2005) validated the OCRA2 LIM model

configuration and assessed its skills in representing high-latitude processes. These

authors demonstrated that the ORCA2 LIM model represents realistically large scale

seasonal and interannual variability in the sea-ice extent and drift, the major patterns

of circulation and the location of the main sites of deep convection. Here we use the

ORCA2 LIM model configuration to study the subarctic interannual variability and

related meridional volume and heat fluxes through the Fram Strait and over the

Greenland-Scotland Ridge.

2.4 Arctic and Subarctic Temperature Interannual

Variability from Observations and Model Sim-

ulations

Figure 2.2 shows the observed interannual variability of temperature characteristics

of three regions. It shows the heat balance of the sub-polar North Atlantic (Figure

2.2a), three-year annual mean 0−200 m temperature anomaly at the Kola transect in

the Barents Sea and three year mean July-September SST anomaly at Ocean Weather
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Station Mike (Figure 2.2b)and temperature of the core of the AW in Arctic (Figure

2.2c). The temperature in the three regions decreases in the 1960s and 1970s and

increases after 1995. In the late 1980s and early 1990s the surface and intermediate

water masses of the sub-polar North Atlantic were colder than usual (see Figure 2.2a,

(Straneo et al., 2009; Yashayaev, 2007)). Surface cooling and winter deep convection

during this period were stronger than normal and the temperatures and salinities in

the surface and intermediate Labrador Sea water were the coldest observed in this

region since the 1950s (Yashayaev, 2007). During the same period the AW started

warming up in the Nordic Seas and Arctic (see Figure 2.2b,c).

The variations in model heat content in Arctic and subarctic are shown on Figure

2.3. Simulated temperatures follow broad changes found in observations, including

cooling of the polar ocean in the 1960s and 70s followed by warming after 1995 In

particular the sub-polar ocean in the model was colder than normal between 1989 and

1994 (Figure 2.3a) and started warming up only in 1995. The warming of the Nordic

Seas and the AW in Arctic started earlier, in late 1980s and early 1990s. This increase

in the temperature developed locally and appears to be related to the local variability

in Nordic Seas. Our estimations (not shown here) suggest that the contributions of

the lateral heat transport through the Fram Strait and over the Scotland-Greenland

Ridge dominate the heat balance of the Nordic Sea during the studied period.
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Figure 2.2: (a) Time series of heat storage anomaly (1020 J) for the upper ocean

(0 − 1200 m) of the subtropical (20o-50oN), the subpolar (50oN to Davis Strait and

the Greenland-Scotland Ridge) basins of the North Atlantic and for the two combined

(reproduced from (Straneo et al., 2009) by permission). (b) Observed three-year an-

nual mean 0 − 200 m temperature variations at the Kola transect in the Barents

Sea (70o30’-72o30’N, 33o30’E, thin line, Tereshchenko (1997) and observed three-year

mean July-September SST variations at OWS M (66oN, 2oE, thick gray line (repro-

duced from Drange et al. (2005) by permission of American Geophysical Union) and

(c) observed temperature of the core of the Atlantic water mass in the Arctic Ocean

(reproduced from Polyakov, Alekseev, et al. (2004) by permission of the American

Meteorological Society).
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Figure 2.3: Standard Deviations in the average temperature of the (a) Sub-polar

ocean, and (b) Nordic Seas.
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2.5 Model Simulation of Mean Circulation in the

Nordic Sea

The schematic circulation in the surface layer of the Nordic Seas and the simulated

barotropic streamfunction averaged over the period 1965 - 2005 are shown on Figure

2.4. The AW flows into the Nordic Seas by crossing the Greenland-Scotland Ridge. It

does so in three branches: the Iceland, Faroe and Shetland branches (Figure 2.4). The

warmest and saltiest water is flowing over the eastern side of the ridge and the coldest

and freshest over the western side. North of the Greenland-Scotland Ridge the main

part of the Atlantic Water flows along the coast of Norway as a slope current with a

speed between 5 and 20 cm/s (Haugan et al., 1991). This slope current follows the

Norwegian Coast until it splits so that a small part of the current enters the Barents

Sea while the remainder continues north to Spitsbergen. This portion of the current

either passes through the Fram Strait with a velocity of about 2.0 cm/s - 5.5 cm/s

or recirculates in the Nordic Seas (Schauer et al., 2008). The average volume flux of

Atlantic Water through the Fram Strait, defined as water above 1oC, was about 5 Sv

in the late 1990s (Schauer et al., 2008). The Fram Strait is also a passage for the cold

Arctic waters to enter the Nordic Seas. The cold fresh water enters the Nordic Seas

with an average annual speed of 8 cm/s (Muench et al., 1992) as the East Greenland

Current. This current follows the coast of Greenland southward from the Fram Strait

to the tip of Greenland.

Both the observations and model results show that the circulation is cyclonic (Voet

et al., 2010; Isachsen, J.H LaCasce, et al., 2003; Rossby, Prater & Søiland, 2009) in

each of the basins in the Nordic Seas with stronger velocities at the rims. An exception
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Figure 2.4: Mean Circulation in the Nordic Seas. (a) Major Currents and (b) Mean

Barotropic Streamfunction calculated from model results. Arrows indicate model

transport over study period.
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is the Lofoten Basin where the flow has cyclonic vorticity in the western part and

anticyclonic vorticity near the coasts of Norway. The strongest barotropic currents

are in the Norwegian Basin and Iceland Plateau. The volume transport here is about

10-15 Sv which is close to observational estimate of Voet et al. (2010). The Norwegian

Atlantic Current branches in the northern part of the Norwegian Basin. Part of the

AW is recirculated here within the cyclonic gyre in this basin and mixes with the

waters in the gyre. The dominant mode of variability of the basin circulation is

related to changes in the intensity of this recirculation.

Figure 2.5a shows the 1st Empirical Orthogonal Function (EOF) of satellite sea

surface altimetry (AVISO, 2011) and Figure 2.5b shows the 1st EOF of the barotropic

streamfunction for the model results. Both are calculated for the period from 1993

to 2005. The sea surface height is the geostrophic stream function for the barotropic

flow in the deep part of the ocean. Therefore, suing sea level anomalies the barotropic

streamfunction can be calculated. The variability of the model circulation resembles

the major elements of the structure of the first ssh EOF in the deep part of the

ocean. The spatial pattern of the first dominant mode of variability in both model

and data is related mostly to the variations in the intensity of the cyclonic gyre in

the Norwegian Sea and Iceland Plateau. The model also captures a prominent cycle

in the strength of the first EOF of SSH. The Principal component for both the ssh

observations and model stream function show a trend of decrease in the strength

of the cyclonic circulation in the Norwegian Sea from 1993 to 1998. Later the two

principle components show a long term trend of increase in the circulation intensity

from 1998 to 2005.

The volume flux and temperature of the AW averaged over the period 1999-
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Figure 2.5: Main mode of variations in circulation in the Nordic Seas. The 1st EOF

of (a) SSH from satellite altimetery (AVISO, 2011) and (b) barotropic streamfunction

calculated from model results. The principal component of the1st EOF for observa-

tions (green line) and for the calculated barotropic stream function (blue) are shown

in (c). All EOFs here are calculated for the period 1993-2005 for the ice-free months

only.
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Modeled Observations

Branch Vol. (Sv) ToC Salinity Vol.(Sv) ToC Salinity

Iceland 1.6± 0.1 5.7± 0.2 35.10± 0.03 0.8± 1 6 < 35

Faroe 3.1± 0.4 6.0± 0.2 35.21± 0.04 3.8± 1 8.2 35.23

Shetland 4.0± 0.3 9.1± 0.1 35.28± 0.02 3.8± 1 9.5 35.32

Total Atl. 8.7± 0.8 6.9± 0.5 35.19± 0.03 8.5 8.5± 3 35.25

Table 2.1: Table of modeled and observed (Hansen, S. Osterhus, et al., 2008)

Greenland-Scotland Ridge Atlantic Water characteristics

2001 for the three branches of the Greenland Scotland ridge are shown on Table 2.1.

The model results are given with in error calculated as standard deviations of each

quantity in ensemble runs. The results are compared with the observations for the

same period of time given by Hansen, S. Osterhus, et al. (2008). The Atlantic Water

of the model results is defined using the same definition as the observations in Hansen,

S. Osterhus, et al. (2008). The mean volume transports through all three branches

of the AW (see Table 2.1) correspond to data within the limits of the uncertainty

of the model solutions and observations. The temperature of the AW in all of the

branches over the Greenland-Scotland Ridge is cooler for the model results than for

the observations. The modelled AW salinity is higher near the west coast of Iceland

and less in the two other branches when compared with observations. However,

these differences are within the uncertainty of observations as defined by Hansen, S.

Osterhus, et al. (2008).

The main part of the AW passes through the Faroe and Shetland Branches. The

flow through the Iceland Branch is cooler and fresher than the other two due to the
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close proximity of the cold, fresh East Greenland Current. The observed northward

volume flux through the Fram Strait is 12±1 Sv (Schauer et al., 2008). It is lower, 7.5±

0.7 Sv in the model results. Similarly, the southward volume flux from observations

is 14± 1 Sv and is 10.7± 0.6 Sv from model results. The total volume flux through

the Fram Strait calculated from model results is 3.1 ± 1 Sv and corresponds to the

observed 2 ± 2 Sv (Schauer et al., 2008) within the uncertainty of observations and

model simulation. This net inflow flux into the Nordic Seas balances the net inflow

from Pacific Ocean into the Arctic.

2.6 Interannual Variability of the Nordic Seas from

1965 to 2005

Figure 2.6 shows the time evolution of the anomalies of northward and southward

volume annual mean fluxes separately for the Greenland-Scotland Ridge (GS) and

the Fram Strait (FS). The variation in the model solution is computed from the

ensembles and accounts for error due to uncertainty in the initial conditions. There is

relatively high uncertainty in the amplitude of quasi-decadal variation of the FS flux

between 1980 and 1990 and in the GS volume transport from 1973 to 1978. Here we

focus our discussion on two periods when all ensemble members suggest that there

was strong inter-annual and inter-decadal variability in the volume transport through

the GS and FS. The first one is the late 1960s and beginning of the 1970s and the

second one is the period 1980 - 2005.

In the late 1960s the model water exchange through the FS is intensified and its
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Figure 2.6: Northward (pink) and Southward (blue) volume fluxes (a) over the

Greenland-Scotland Ridge and (b) through the Fram Strait. Where north flows are

positive and southward negative. The dashed black line in both (a) and (b) indicates

the principal component for the 1st EOF of the barotropic stream function for the

period 1965 to 2005 (calculated from model results).
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anomaly reaches the highest value of 2 Sv in 1969. This increase in the transport

is balanced approximately by the outflow to the Arctic Ocean. The model volume

fluxes in and out the Nordic Seas through the GS during the same period of time was

weaker than normal. The flow anomaly reached its lowest value of about -4 Sv in

the 1969. These variations in the transport through the GS and FS in the late 1960s

favored intensification of the low salinity anomaly (reduction of water mass saltiness)

in the Nordic Sea through two processes (i) reduction of inflow of salty Atlantic waters

through the GS and intensification outflow of AW through the FS; (ii) intensification

of inflow of fresh and cold Arctic Waters through the FS and reduction of the fresh

water outflow to the Atlantic through the GSA. In this way the variations of the

volume transport through the FS and GS created a disbalance in the heat and salt

transport through the two straits which additionally strengthened the GSA in the

model solution originally generated by the intensified advection of Arctic waters.

The model water exchange through the GS intensified in 1987 and remained higher

than normal until 1997. In 1990 the magnitude of this intensification was between 6

and 8 Sv and in 1993 between 4 and 7Sv. The interannual variations of the model

volume flux through the Fram Strait during this period were relatively low and had

magnitudes below 1Sv. The Nordic Sea gained heat during this period through two

processes (i) intensification of the inflow of salty AW and (ii) stronger than normal

outflow of fresh and cold waters into the Atlantic Ocean.

After 1997 the volume flux through the two straits, FS and GS, is weaker than

normal (Figure 2.6). At the same time during this period the properties of the source

water of the inflow into the Nordic Seas through the GS changed, see Figure 2.3.

This inflow consists of the AW and modified Atlantic Water (MAW) (Dickson et al,
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1988). The AW originates from the warm and salty waters of the North Atlantic

Current (NAC). The MAW is formed through mixing of the waters of the sub-polar

North Atlantic and the North Atlantic Current. It is fresher and colder than the

AW. Here we calculated the AW transport through GS and FS by using the approach

of Hansen, S. Osterhus, et al. (2008). The model long term mean transport of AW

through the GS is 8.7 Sv (see Table 1). The interannual variations of AW inflow have

magnitude of about 1Sv (Figure 2.7). On average it was below normal before 1985

and higher than normal after 1985. In the period after 1997 when the total volume

inflow through the GS weakens (see Figure 2.6) the AW transport remains higher

than normal (Figure 2.7). The AW transport through FS is larger than average in

the 1960s and decays by about 4Sv between 1990 and 2000. The variations of the

volume flux influenced the heat balance of the Nordic Seas.

The normalized rate of change of the heat content calculated as the sum of lateral

and surface heat fluxes is shown on Figure 2.8 separately for the Nordic Seas and

Sub-Polar North Atlantic. The variations of the volume transport through the straits

affected the heat balance of the Nordic Seas in the two periods discussed in this

work. The heat loss due to intensified inflow of cold Arctic waters and outflow of

AW through the Fram Strait in the 1960 was in disbalance with the reduced heat

gain due to the weaker than normal inflow of AW from the Atlantic Ocean during the

same period. The intensified inflow of AW from Atlantic in the late 1980s and early

1990s was not balanced by equivalent heat loss through the Fram Strait. In the later

period from 1998 to 2005 the volume transport through the two straits is lower than

normal but the AW volume transport over the GS remains high. In this period the

heat balance of the Nordic Seas is positive (Figure 2.8).
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Figure 2.7: Annual average volume transport (Sv) of the Atlantic water crossing (a)

over the Greenland Scotland Ridge and (b) through the Fram Strait. The Atlantic

water mass is defined using the definitions in Hansen, S. Osterhus, et al. (2008) and

O. Skagseth et al. (2008). The dashed black line in both (a) and (b) indicates the

principal component for the 1st EOF of the barotropic stream function for the period

1965 to 2005 (calculated from model results).
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Figure 2.8: The normalized rate of change of the heat content calculated as sum of

lateral and surface heat fluxes into (a) Sub-polar North Atlantic and (b) into the

Nordic Seas for the period 1965-2005. Horizontal bars are 10 year averages.
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The lateral heat and salt transport has an impact on the change of the water

mass properties in the Nordic Seas. These changes interact in a complex way with

the intensity of the general circulation and boundary currents in the Nordic Seas. The

black curve on the Figure 2.6 shows the principle component of the dominant EOF

of the barotropic stream function. The strongest intensification of simulated circu-

lation occurred in the late 1960s. The intensified advection of fresh and cold water

anomalies in the surface 200− 300 m layer in the 1960s and early 1970s strengthened

stratification. Surface ice formation and strong stratification limited intense vertical

mixing typical of the region through the 1960s and early 1970s. This large scale

anomaly intensified the horizontal density gradients and the circulation in the 1960s.

Intensified circulation, reduced inflow from the Atlantic Ocean and horizontal mixing

were factors that favored spreading of the fresh water anomaly in the Nordic Seas in

the late 1960s. This caused a weakening of horizontal density gradients and a sharp

decline in the intensity of simulated cyclonic circulation in the late 1960s.

Figure 2.9 shows the dominant mode of variability of the surface wind stress curl.

It defines the variations of the intensity of a cyclonic pattern in the central part of

the basin (Figure 2.9a). When this mode is in it’s positive phase, the atmospheric

circulation favors intensification of cold Arctic air transport over the Nordic Seas,

strong surface cooling and deep convection. The cyclonic boundary current in the

Nordic Seas intensifies between 1973 and 1987 (Figure 2.5). This change correlates

well with the increase of the strength of the surface forcing during the same period of

time (Figure 2.9). The intensified circulation in the Nordic Seas and reduced transport

through the GS and FS (Figure 2.6) along with the weak surface forcing (Figure 2.9)

between 1987 and 1989 favored reduction in the horizontal density gradients and
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caused a sharp decline in the cyclonic circulation between 1985 and 1989 (Figure

2.5). The annual mean SSH data used in this figure are obtained over a period of 12

years. The calculation of the correlation coefficient from a timeseries with 12 elements

can not be done with an acceptable statistical significance. Therefore, the discussion

focuses on the comparison of the long-term trends in the two curves. In the last 10

years of simulation the surface forcing and lateral transport over the GS and through

FS are weaker than normal and hence there is not much variability in the intensity

of circulation during this period.

2.7 Conclusion

The article presents results from a model study of the mechanism of the variability

of the Nordic Seas in the past 50 years. We study the processes that had impact on

the GSA in the late 1960s and early 1970s and warming of the sub-arctic and arctic

in the 1990s. Previous studies (R. Dickson et al., 1988; Marsh et al., 2008; Polyakov,

Beszczynska, et al., 2005; Karcher et al., 2003; Zhang, Rothrock & Steele, 1998)

demonstrated that advection played an important role in these two events for propa-

gation of anomalies of water characteristics between the Arctic and sub-polar North

Atlantic. The atmospheric forcing related to changes of the NAO is considered an-

other factor which had a major impact on the dynamics of this region (R.R. Dickson,

J. Osborn, et al., 2000) during the GSA and in the 1990s.

In this article we study interannual variability of the volume and heat transport

through the Nordic Seas in the last 50 years and the impact which it had on water mass

properties. Previous studies demonstrated that transport through the straits show a
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Figure 2.9: (a) 1st EOF of the wind stress curl over the Nordic Seas and (b) its

principal component.
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good correlation with NAO atmospheric forcing (see Zhang, Steele, et al., 2004). At

the same time our results suggest the exchange through the Fram Strait and over the

Greenland-Scotland Ridge can also differ significantly in time. In the past fifty years,

there were two periods of time when this difference had large amplitude - the time

period of the GSA and the late 1990s.

The model net volume flux through the Fram Strait is about 3 Sv, which is the

difference of the rate of inflow of Arctic Waters and outflow of Atlantic Waters. The

interannual variability is related to change in both inflow and outflow while the net

flux does not change significantly. The intensification of transport through the Fram

Strait is related to loss of heat and salt by the Nordic Seas through both increase of

the fresh and cold water inflow and intensified AW outflow. Similarly, the intensified

exchange over the Greenland-Scotland Ridge is related to increased salt and heat

flux into the Nordic Sea. When anomalies of the inflow and outflow through the two

straits have opposite signs, they have the same effect on the heat and salt balance of

the Nordic Seas, either contributing to the cooling/freshening or to the warming of

the region. In the 1960s they both contributed to the freshening and cooling of the

Nordic Seas, in the 1980s they initiated the warming of the basin. In both periods,

the cyclonic circulation intensified, seen in the principal component of the barotropic

streamfunction, as a response to the changes in the water mass transport through the

straits.

The potential of the Nordic Seas to amplify the interannual variability in the

subarctic through the disbalance of lateral heat and salinity fluxes through the straits

that connect it with the North Atlantic and Arctic Oceans is an important feature

that should not be ignored when studying the effects of climate change on this region.
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In conclusion, our model results suggest that there are common elements in the

dynamics of the Nordic Seas during the warming of the Arctic and subarctic in the

1990s and during the GSA: (1) During both periods the heat and salt exchange

through the Greenland - Scotland Ridge and Fram Strait had opposite signs and

large magnitudes. (2) In the 1960s they favored the intensification the large scale

fresh and cold anomaly in the surface layer caused by the GSA. In the 1980s and

1990s it produced anomalous warm AW entering Arctic. (3) The variations of the

thermohaline properties that were created by the variations in the lateral exchange

through the straits were associated with intensified the barotropic circulation during

the two periods.
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Connecting Text

This article addresses objectives 3 and 4 described in Section 1.5.3 .

Chapter 2 demonstrates that advection of heat through the GSR had an essential

impact on the long-term variability of the heat budget in the adjacent region. The

study was based on a coarse resolution global ocean general circulation model. As

such, it is limited in realistically representing important details of the water dynamics

in the ocean region adjacent to the GSR and the impact of mesoscale processes on

heat transport.

The complex bottom topography in the region is a challenge that limits the realism

in present-day ocean model simulations in this region. Therefore, the study of ocean

heat transport in the following article is based on ocean observations. Argo data,

satellite along-track altimeter and SST observations are used to asses the mean and

eddy-induced heat advection.

This article appears as Lundrigan and Demirov (2019) in Journal of Geophysical

Research: Oceans.
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Chapter 3

Mean and Eddy-Driven Heat

Advection in the Ocean Region

Adjacent to the

Greenland-Scotland Ridge Derived

from Satellite Altimetry

3.1 Abstract

Along-track altimeter and sea surface temperature (SST) satellite observations and

ARGO in-situ measurements of temperature and salinity are used to investigate the

heat transport by mean currents and eddies in the ocean region adjacent to the

Greenland-Scotland Ridge (GSR) from 2003 to 2008. Our results show that heat
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advection by the mean flow in the surface layer is zonally asymmetric with a higher

magnitude in the western part of the region. This asymmetry is associated with

an excessive mean heat advection in an area adjacent to the Denmark Strait. The

advection of heat is high and positive south of the strait and low and negative north

of it. We suggest that this heat advection impacts the local budgets of heat and

potential energy of the mean flow in the surface layer.

Mesoscale eddies are identified and their characteristics, including radius, sea-level

anomaly, lifetime, and paths of propagation, are assessed using along-track altimeter

data. About 70% of the eddies are observed in the eastern part of the studied region.

The eddy-induced heat transport by warm mesoscale eddies in the Norwegian Sea

was found to be about two-and-a-half times larger than the mean advection by the

Norwegian Atlantic Current. We suggest, therefore, that the eddy-induced transport

is a dominant factor in the heat budget of this region.

3.2 Introduction

The ocean circulation and transport over the Greenland Scotland Ridge (GSR) are

crucial for maintaining heat, freshwater, and sea-ice exchange between the Arctic

Mediterranean and the Subpolar North Atlantic Ocean. The Arctic Mediterranean is

the region north of the GSR, which comprises the Arctic and Nordic Seas. Like the

Mediterranean Sea, the Arctic Mediterranean receives low-density Atlantic Water

and transforms it into dense water (Meincke, Rudels & HJ Friedrich, 1997). The

dense water overflow over the GSR contributes to the North Atlantic Deep Water

mass formation, which feeds the lower limb of the Atlantic Meridional Overturning
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Circulation (AMOC) (R.R. Dickson & Brown, 1994).

Warm and salty Atlantic Water enters the Arctic Mediterranean mainly in the

eastern part of the GSR over the Iceland-Faroe Ridge and through the Faroe-Shetland

Channel (see Figure 3.2). The return flow into the Atlantic Ocean includes cold

and fresh surface Polar Water and dense-water overflow (Hansen & Østerhus, 2000).

The different characteristics of the inflow and outflow through the GSR imply a net

heat and salt flux into the Arctic Mediterranean of about 330 TW (1 TW=1012 W )

and 303 × 106 kg/s (Serreze et al., 2006), respectively. The long-term variations

in heat and salt transport through the GSR have significant implications for the

variability of the Arctic Mediterranean (Yashayaev & Seidov, 2015). These variations

are driven by changes (1) in the volume transport through the GSR (S. Lundrigan

& E. Demirov, 2012) and (2) in the temperature and salinity of the Atlantic Water

entering the Nordic Seas (Glessmer et al., 2014).
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Figure 3.1: Sea Surface Temperature in the Northeast Subpolar North Atlantic Ocean

and Nordic Seas, bottom topography, and major currents (after AMAP, 1998).

When the main surface water masses involved in heat and freshwater transport

spread through the region adjacent to the GSR, they experience a gradual transfor-

mation (Brambilla, Talley & Robbins, 2008). South of the GSR, the warm and salty

waters of the subtropical North Atlantic enter the region along the multiple branches

of the North Atlantic Current (Figure 3.2). These waters are cooled and transformed

in the subpolar gyre, where they are the origin of the surface Subpolar Mode Wa-

ters (SPMW) (McCartney & Talley, 1982). The SPMW are vertically nearly uniform

and gradually change as they spread horizontally. Because of their uniform temper-

ature and large volume, the SPMW are a source of heat for the atmosphere of the

subpolar Atlantic Ocean (Hanawa & Talley, 2001). A remnant of the SPMW called

the Irminger Water spreads (see Myers, Kulan & Ribergaard, 2007) at intermediate
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depths and plays a significant role in the heat budget of the Irminger and Labrador

Seas (Straneo, 2006; Zhu & Demirov, 2011).

North of the GSR, the surface Atlantic Water is intensively transformed and cooled

as it is transported northward by the Norwegian Atlantic Current (NwAC) (Mau-

ritzen, 1996a; Mauritzen, 1996b). The processes of air-sea exchange, advection by

mean currents, and eddy-induced diffusion drive the transformation of surface water

masses and determine their heat and freshwater budgets (Brambilla, Talley & Rob-

bins, 2008). Mesoscale eddies in this region play an essential role in the transformation

of the Atlantic Water and the exchange of heat and freshwater between the NwAC

and the central part of the Norwegian Sea. Isachsen, Koszalka & JH LaCasce (2012)

demonstrated that the horizontal eddy-induced heat transport in the NwAC is ”of

first-order importance to the total buoyancy budget of the region and, ultimately, to

the exchanges across the Greenland–Scotland Ridge.”

Here, we focus on the horizontal mean and eddy-induced heat advection and

diffusion and their impact on the heat budget of the surface layer. We use satellite

altimeter and SST observations to assess the contribution to the heat budget of the

divergent part of the advective mean and eddy heat flux in the surface layer. The

non-divergent (rotational) eddy-induced heat advection vanishes in the equations of

the heat budget. During eddy decay, this transport indirectly affects the heat content

of the surface layer through local enhancement of stirring, the formation of fine-scale

filaments, and irreversible mixing. These processes are generally unresolved in the

regular data from the global ocean observing system. In this study, we assess their

contribution as the change in local heat content in the area of eddy decay.

The article is organized as follows. Section 3.3 describes the data and method of
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the study. Section 3.4 discusses the characteristics of mean flow and eddies over the

GSR, which determine the advection and eddy-induced diffusion of heat. Section 3.5

presents an analysis of the mean and eddy-induced fluxes of heat in the area adjacent

to the GSR. The last section provides discussions and conclusions.

3.3 Data and Method of Analysis

In this study, we use satellite altimeter observations of mean sea level (MSL) and

sea level anomaly (SLA), gridded SST weekly maps, and ARGO temperature and

salinity profiles for the period from 2003 to 2008. Two satellite missions, Geodetic

and Oceanographic SATellite Follow-On (GFO) and Envisat (EN), were active during

this time and provided observations for six years with a relatively regular temporal

and spatial resolution over the studied area.

The GFO traverses the earth with a 17-day repetitive orbit up to 72oN with a

precision of ± 3.5 cm. The altimeter noise level for this satellite is between 2.5 and

2.58 cm for a significant wave height (SWH) of 2 m (Conger et al., 2009; Tran et

al., 2002). The EN traverses the earth with a 35-day repetitive orbit up to about

80oN. The noise in the EN altimeter observations is ± 4.5 cm (AVISO, 2013).

The ocean mesoscale is defined as variability with spatial scales between 10 km and

500 km (Chelton, Schlax & Samelson, 2011). In this study, the along-track altimeter

data (AVISO, 2011) are averaged over one-second time bins, which correspond to

distances of about 6.6 km for GFO and 6.5 km for EN at the latitude of the GSR.

The previous study of Stammer & Dieterich (1999) demonstrated that the error of

estimates of geostrophic velocities based on this method is sensitive to the spatial track
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separation. These authors demonstrated, in particular, that zonal track separation

of 0.5− 0.75 degrees leads to the best results and reported a substaintial degradation

of the method for a track separation beyond 1 degree. In this study we use data

from two satellites which improves the spatial resolution of the data and estimates

of geostrophic velocities. The results still should be carefully used especially in the

high-energy regions (see Stammer & Dieterich, 1999).

Therefore, the GFO and EN along-track data resolve the lower end of the mesoscale

spectrum. The data is de-spiked, and gaps in the data of up to 10 points are linearly

interpolated, following the work of Lilly et al. (2003). Gaps larger than 10 points and

track sections shorter than 7 km are ignored. A five-point Hanning window is applied

to filter out the high-frequency noise in the sea level anomaly data. Then, the altime-

ter data are used (a) to calculate the surface mean (u,v) and eddy (u′,v′) components

of the geostrophic velocity and mean and eddy components of heat flux divergence

and (b) to detect eddies automatically and study mesoscale eddy characteristics.

3.3.1 Method of Calculation of Surface Geostrophic Velocity

and Heat Flux Divergence

The current velocity v and temperature T can be written as sums of their mean and

eddy components:

v = v + v′, (3.1)

T = T + T ′ (3.2)

Here, the eddy temperature T ′ and velocity v′ are defined as the variations relative

to all record mean T and v. The components of the mean geostrophic velocity are
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computed using the mean sea surface height η:

ui,j = −g
fa

ηi,j+1−ηi,j−1

2∆φ
(3.3)

vi,j = g
fa cosφ

ηi+1,j−ηi−1,j

2∆λ
(3.4)

Here, a is the radius of Earth; (i, j) are the indexes of gridded mean sea level η(i, j)

data points in longitude and latitude, respectively; and ∆λ, ∆φ is the spatial resolu-

tion of the observations. The mean horizontal advection of heat flux is:

(v · ∇T )i,j =
ui,j

a cosφ

T i+1,j − T i−1,j

2∆λ
+

vi,j
a

T i,j+1 − T i,j−1

2∆φ
(3.5)

where v = (u, v) is the vector of mean velocity and T is the mean surface tem-

perature. The surface eddy velocity (u′, v′) and eddy-induced heat flux (u′∇T ′) are

computed based on the method of Stammer & Dieterich (1999), which uses altimeter

observations from parallel satellite tracks to define the two orthogonal components of

geostrophic velocity. Appendix B provides a detailed description of this method. The

method was previously used in studies on eddy kinetic energy, surface circulation,

and eddy-induced heat transport in the subpolar ocean (see Brath et al., 2010).

The SST data set used in this study is the Reynolds 1/4o gridded observations

from the High-Resolution SST (GHRSST) Level 4 AVHRR OI daily SST product

from 2003 to 2008 (available from http://ghrsst.jpl.nasa.gov). The data set includes

measurements from Advanced Very High-Resolution Radiometers (AVHRR) NOAA

series satellites, calibrated by and blended with in-situ observations (Reynolds et

al., 2007). In the heat flux calculations, the temperature is interpolated on the regular

mean altimeter grid points in Equation (3.5) and along-track points in Equation (B.2).
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3.3.2 Eddy Detection

The method of automatic detection of mesoscale eddies (see Lilly et al., 2003) uses

wavelet analysis of along-track altimeter observations (see Appendix C). It was previ-

ously applied in studies of the Labrador Sea (Lilly et al., 2003) and the Bay of Biscay

(Dussurget et al., 2011). In this method, the eddies are defined as long-living iso-

lated potential vorticity anomalies associated with distinct patterns in the SLA. The

eddy sea-level anomaly (Lilly, 2002; Lilly et al., 2003) has an azimuthally symmetric

spatial structure with a surface displacement δ0 and a radius R0. δ0 is positive for

anticyclonic and negative for cyclonic eddies. The radius R0 is defined as the distance

between the eddy’s center and the position of the maximum azimuthal speed.

Satellite tracks would not necessarily pass over the centers of the eddies that were

observed. Therefore, the estimates of the ”apparent” radius (R∗) and ”apparent”

surface displacement (δ∗) found in the wavelet analysis (see Appendix C) have mag-

nitudes equal to or smaller than R0 and δ0, respectively. The Rossby number (ζ∗) of

each eddy based on apparent eddy characteristics is

ζ∗ = 2b
gδ∗
R2

∗
f 2

(3.6)

where b is a constant that depends on eddy type (Lilly et al., 2003).

Based on this analysis, we identified 5103 eddies in the period from 2003 to 2008.

Of these, 3077 are anticyclonic, and 2026 are cyclonic. Figure 3.2a shows the event

census histogram for all the eddies observed in the studied area. Most eddies have

spatial scales between 15 and 40 km, with maximum apparent sea level anomalies

δ∗ of up to 30 cm. The noise in the altimeter observations is an inherent problem

that can potentially impact the analysis based on the along-track data sets, especially
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Figure 3.2: Histogram of all eddy events within the study area as a function of

scale and sea-level height anomalies for (a) along-track altimeter observations and

(b) synthetic noise data. See the main text for more details

79



for small sea level elevations. To determine the effect of noise on the event census

histogram, we use a synthetic data set with characteristics identical to that of the

observational error. The observational error is simulated as a Gaussian white noise

time series with a standard deviation of 2.58 cm and the same spatial structure as

in the GFO altimeter data. The synthetic data are then filtered in the same way as

the observations, and the wavelet analysis is applied. The scale magnitude histogram

of the noise data set is shown in Figure 3.2b. ”Events” in the synthetic data occur

predominantly at small scales and amplitudes. The number of these events vanishes

for sea level amplitudes larger than 6-7 cm. Based on these results, a cut-off value

of 10 cm is used. All events with magnitudes smaller than 10 cm are discarded in

our analysis. The same cut-off value was applied in a previous study on along-track

altimeter observations in the Labrador Sea by Lilly et al. (2003).

The ARGO floats data from the National Oceanographic Data Center (NOAA

& NODC, 2007) are used to study the vertical structure of mesoscale eddies. The

ARGO archive is searched for profiles with positions that fall within mesoscale events

identified from the SLA data. They are used to estimate eddy-induced anomalies in

heat and salt content and heat flux. The standard instrumental error of temperature

sensors of the ARGO floats is ±0.002oC for temperature, ±2.4 dbar for pressure,

and ±0.01 PSU for salinity. The measurement accuracy of eddy-driven heat and salt

anomalies, however, is affected by additional uncertainties in the estimates of the

center positions and radii of eddies.
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3.4 Characteristics of Mean Flow and Mesoscale

Eddies over the Greenland-Scotland Ridge

The study area extends meridionally from 59oN in the south to 72oN in the north

(see Figure 3.2). Zonally, it is limited by the coast of Norway to the east and East

Greenland to the west. To account for the large spatial variations in water mass

characteristics and dynamics in this region, the analysis of the mean flow, mesoscale

eddies, and heat advection is done separately for the four subregions shown in Fig-

ure 3.3a. The 65oN parallel divides the northern and southern parts of the region. In

the zonal direction, the subregions are separated by the 10oW meridian.

3.4.1 Surface Mean Circulation

Figure 3.3b shows the surface mean geostrophic currents and SST averaged over the

period from 2003 to 2008. The inflow of subtropical Atlantic waters influences the

surface water mass and flow characteristics in Subregions 3 and 4 in Figure 3.3a.

The waters enter the southeastern part of the studied area (see Figure 3.3b) along

multiple branches of the North Atlantic Current, often collectively referred to as the

North Atlantic Drift Current (NADC). The NADC is a relatively slow, wind-driven,

and widespread current system (Veron et al., 1999). A part of the NADC passes over

the Iceland-Faroe Ridge and the Faroe-Shetland Channel and continues as the NwAC

in the Nordic Seas. The NwAC (see Figure 3.3b) consists of two branches, which are

relatively narrow and have persistent currents. The two branches are topographically

constrained along quasi-permanent paths. The eastern NwAC branch, also called
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the Norwegian Atlantic Slope Current, is a barotropic current along the continental

slope off the coast of Norway. The western branch of the NwAC is the Norwegian

Atlantic Front Current. It is a baroclinic, topographically steered jet linked to the

Arctic Front (K. Mork & Ø. Skagseth, 2010).

In the western part of the studied region, the East Greenland Current (EGC)

transports cold and fresh waters (see Figure 3.3b) and sea ice of Arctic origin along the

coast of Greenland (B. Rudels, H. Friedrich & Quadfasel, 1999; B. Rudels, Fahrbach,

et al., 2002). At the Jan Mayen Fracture Zone, the flow in the EGC that is deeper than

1800 m is diverted eastward. In the upper layer, the EGC branches, with the main

branch flowing along the coast of Greenland. The second, smaller branch extends

eastward as the Jan Mayen current (see Figure 3.3b). Further south, another branch

separates from the EGC (see Figure 3.3b) and forms the East Icelandic Current

(Blindheim & Osterhus, 2005). This current brings cold and fresh waters from the

EGC along the northern and eastern coasts of Iceland.

South of the Denmark Strait, the EGC flows over the shelf along the coast of

Greenland parallel to the Irminger Current (IC). The IC originates as a branch of the

North Atlantic Current in the southern part of the Irminger Sea at about 30oW and

travels northward along the Reykjanes Ridge (Bersch, 1995). In the northern part of

the Irminger Sea, the IC separates into two branches. A major part of the IC turns

westward toward the Greenland coast and flows over the continental slope parallel to

the EGC (see Figure 3.3b). The parts of the IC and the EGC that flow southward

along the East Greenland/Irminger hydrographic front are collectively referred to as

the East Greenland Irminger Current (EGIC) (Pickart, Torres & Fratantoni, 2005).

The second branch of the IC in the northern part of the Irminger Sea extends over the
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Figure 3.3: (a) Four subregions of the ocean region adjacent to the GSR used in the

data analysis. (b) Mean surface temperature and geostrophic velocities between 2003

and 2008. The white solid lines show the boundaries of the areas used in the advective

heat flux calculations in Section 3.5.2. (c) Annual mean air-sea turbulent heat flux

between 2003 and 2008.
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western and northern shelves of Iceland. This current is the North Icelandic Irminger

Current, which brings salty and warm surface SPMW along the Iceland coast.

Figure 3.3c shows the annual mean surface turbulent heat flux Qst, calculated as

the sum of sensible and latent heat flux from NCEP. It is predominantly negative

over the studied area. Its magnitude is relatively small over the coastal areas. The

sea ice partly covers these areas during the coldest months of the year and prevents

surface ocean waters from interacting with cold subarctic air. The turbulent heat

exchange, shown in Figure 3.3c, is generally intense in the areas where the Atlantic

Water and the SPMW spread and transform into the Norwegian Sea and the Irminger

Sea, respectively. The presence there of relatively warm surface waters intensifies the

temperature contrast between ocean and cold subpolar air and strengthens the heat

exchange between ocean and atmosphere. The ocean dynamics over the GSR addi-

tionally contribute to the intensity of the heat exchange between sea and near-surface

air. In winter, the vertical advection in the central part of the subpolar gyre brings

relatively warm subsurface waters up. It intensifies the surface air-sea temperature

contrast and heat exchange in the Irminger Sea (see Figure 3.3c). The mesoscale dy-

namics and eddy-driven transport also affect the air-sea exchange. Isachsen, Koszalka

& JH LaCasce (2012) suggested that the transport of the warm surface Atlantic Wa-

ter by the mesoscale eddies toward the central part of the Norwegian Sea intensifies

the surface air-sea exchange there (see Figure 3.3c). Therefore, the horizontal heat

flux due to mean circulation and eddies is an essential element of the heat budget in

the surface layer of the region adjacent to the GSR.
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3.4.2 Characteristics of Mesoscale Eddies

Figure 3.4 shows maps of the eddy kinetic energy and the number of mesoscale ed-

dies observed during the studied period. The eddy kinetic energy (Figure 3.4a) is

calculated by using the surface geostrophic velocity anomalies in Equation (B.1):

EKE =
1

2
(u′2 + v′2) (3.7)

In general, high values of EKE are observed in the areas where the surface waters

originating from the subtropical Atlantic (Figure 3.4a) spread. The processes that

contribute to the EKE include baroclinic instability, meandering of the main currents,

mesoscale filaments as well as eddies (Chelton, Schlax & Samelson, 2011). The EKE

has high values in the NwAC, NADC, and EGIC. The maximum value of 500 cm2/s2

in the NwAC corresponds well with the standard deviation of the velocity of about

30 cm/s observed in this region by Isachsen, Koszalka & JH LaCasce (2012). Values

of EKE higher than 600 m2/s2 are found in the Reykjanes Rise, Rockwell Rise, Faroe

and Shetland islands, and Denmark Strait (Greenland-Iceland Rise). All these regions

have substantial slopes in their bottom topography. Previously, Hurlburt et al. (2008)

demonstrated that the topographically constrained abyssal currents steer the mean

paths of currents in the surface layer over regions with large bottom slopes. The

coupling of the upper and deep layers triggers instability in surface ocean currents.

Figure 3.4b shows the number of eddies observed in each 1o×1o box normalized by

the total number of along-track observations in that box. About 70% of all eddy events

in this study are found in Subregions 3 and 4, and a major part of them are in the

NwAC. Baroclinic instability is the essential mechanism driving the strong mesoscale

variability of the Norwegian Sea (Ikeda et al., 1989). The local bottom topography
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and time-varying winds play a role in triggering the instability of the NwAC (M.

Mork, 1981). Studies based on ARGO float observations in the Norwegian Sea have

shown that mesoscale eddies with a diameter of larger than 50 km and lifetimes of

up to one to two weeks have a marked impact on the circulation and water transport

in the region (Gascard & K. Mork, 2008).

Figure 3.5 shows histograms of eddy radius (Figure 3.5a) and sea-level anomaly

(Figure 3.5b) for eddy events with |δ| ≥ 10 cm, |ζ | ≥ 0.1. These cutoffs ensure

the eddy events are clearly not noise (|δ| ≥ 10 cm) and are dynamically meaningful

(|ζ | ≥ 0.1). The values of these cutoffs are defined based on obervational data in the

the subpolar ocean by Lilly et al. (2003). They define a statistically significant subset

of events that can be identified as coherent eddies or “eddy band”. The red curves in

Figure 3.5 show the distributions for the anticyclonic eddies, and the blue curves the

distributions for the cyclonic eddies. In total, the population of anticyclonic eddies

exceeds the population of cyclonic eddies by 35% in the ocean region adjacent to the

GSR.

The core radius histograms (in the ”eddy band” |δ| ≥ 10 cm, |ζ | ≥ 0.1) for all

four subregions have maxima at about 23 km. The eddies with this core radius

(R∗ = 23 km) are observed for seven data points in along-track altimeter observations

and hence are resolved by our analysis. Previous estimates of the typical scale of

eddies in the Subpolar North Atlantic Ocean showed very similar values. Lilly et

al. (2003) showed that the dominant radius of eddies in the Labrador Sea is 22.7 km.

Fan et al. (2013) observed anticyclonic eddies with a radius of about 20 km in the

Irminger Sea.

The histograms in Figure 3.5a show some differences between the radius distribu-
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Figure 3.4: (a) Eddy kinetic energy of surface geostrophic flow, (b) Number of eddies

observed in 1ox1o box normalized by the total number of satellite observations in that

box.

tions for the four subregions, which reflect differences in eddy dynamics. The peak

at 23 km is two to six times higher in Subregion 4 than in the other subregions

(Figure 3.5a). This result is consistent with the observation that the overall num-
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Figure 3.5: Histograms of eddy events (δ∗ > 0.1 m, and ζ > 0.1) versus (a) apparent

radius R∗ and (b) eddy sea level anomaly (δ∗). The curves are red for anticyclonic,

green for cyclonic, and blue for all eddy events. The number of the subregions are

indicated in the upper right part of the figures.
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ber of eddies is significantly higher in Subregion 4 than in the rest of the studied

area (Figure 3.4b). The radius distribution in Subregion 4 (Figure 3.5a) is skewed

to the right, with a significant tail for eddy radii larger than 30 km ( kurtosis≈ 3.5,

skewness≈ 1.3 ). The histograms in the three other subregions (Subregions 1, 2, and

3) are more symmetric and have somewhat smaller tails at large eddy scales (kurtosis

between 1.8 and 2.9, skewness between 0.5 and 0.98). The modes in the histograms

of eddy amplitudes (Figure 3.5b) are about 12 cm. This value is close to the cut-off

value of 10 cm for the anomalies in this study(see Section 3.3.2). Therefore, in all

four subregions, the distributions of amplitudes have maxima at the smallest sea-level

anomalies that can be resolved in this analysis. The distributions of eddy sea-level

anomalies have a kurtosis between 3.4 and 5.1 and a skewness between 1.4 and 1.7.

The paths traveled by the eddies are found by an iterative search for eddy events

in subsequent observation points. The Norwegian Sea is the most densely populated

with long-living eddies. In this basin, 173 eddies were found to have paths longer

than 500 km. Other areas densely populated with eddies are the Irminger Sea and the

regions adjacent to the Denmark Strait and southeastern Iceland. The lifetimes and

distances traveled by eddies are shorter in Subregion 2 than in the other areas. Only

nine of the eddies found in this subregion have tracks longer than 500 km. Because of

the significant zonal contrast in temperature in the studied area (see Figure 3.3b), the

zonal propagation of eddies has a substantial impact on heat transport. Figure 3.6

shows for each subregion the fraction of eddy tracks that travel eastward. A general

tendency is that many eddies propagate in the direction pointing toward the central

part of the ocean subregions. In all subregions except Subregion 2, between 65-70%

of the eddies that travel distances longer than 500 km propagate toward the central
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Figure 3.6: The fraction of eddy tracks moving eastward as a function of distance

traveled.

parts of the subregions (see Figure 3.6). In Subregion 2, the number of eddies moving

in both directions is approximately equal.

3.5 Mean and Eddy-Induced Transport of Heat

Mean currents and eddies of the GSR (Section 3.4) play an essential role in the

meridional heat and freshwater transports by bringing warm and salty Atlantic Water

poleward and cold and fresh waters of Arctic and Subarctic origin equatorward. In

the ocean region adjacent to the GSR, these waters are intensively transformed due

to surface air-sea exchange, advection, and mixing. The change in heat content in a
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surface layer of depth h during this transformation is defined by

1

ρcp

∆H

∆t
=

Qs

ρcp
− kv

∂T

∂z

∣∣∣∣
−h

−

∫ 0

−h

(
u · ∇T + w

∂T

∂z
+∇ · kH∇T

)
dz (3.8)

Here Qs is the surface air-sea turbulent and radiative heat flux to a surface layer of

thickness h, with the heat content H determined as

H =

∫ 0

−h

ρcpTdz,

where ρ and cp are the density and heat capacity of seawater, respectively; u = (u, v)

is the vector of horizontal velocity; ∇ is the horizontal divergence operator; and kH

and kv are the horizontal and vertical turbulent diffusivities, respectively. The mean

() is computed as a time average over the whole period of the study (2003 to 2008).

Assuming that the vertical variations in u, v, T in the surface layer are small, we omit

the vertical integration on the right-hand side of this equation. All the estimates of

advective heat flux in this article refer to a layer of unit thickness h = 1 m.

The horizontal heat transport in Equation (3.8) includes three components:

u · ∇T +∇ · kH∇T = u · ∇T + u′ · ∇T ′ +∇ · kH∇T ≡ (3.9)

≡ Advection by mean flow + Advection by mesoscale eddies + Small-scale turbulence.

The first term on the right-hand side of Equation (3.9) is the large-scale advection

by the mean flow; the second term represents the contribution of the mesoscale eddies

with scales of tens of kilometers; the last term is associated with irreversible eddy-

induced fine-scale mixing at scales from centimeters to kilometers. The heat advection

by mean flow (u ·∇T ) is a dot product of mean velocity and mean temperature gradi-

ent. The heat advection is significant in areas where the current velocity points along
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the temperature gradient, i.e., where velocity has a significant component across the

isotherms. The vector of eddy-driven heat flux is the correlation between velocity and

gradient of eddy-induced temperature anomalies u′ · T ′. This vector can be written

as a sum (see J. Marshall & Shutts, 1981) of its rotational (u′ · T ′)R and divergent

(u′ · T ′)D components. The contribution of the rotational component that is related

to the growth and decay of mesoscale eddies (J. Marshall & Shutts, 1981) vanishes

in the equation for the temperature (see Equation (3.8)). This component influences

the ocean heat budget indirectly through irreversible fine-scale mixing during eddy

decay (Eden, 2010). The heat flux due to fine-scale mixing appears in the last term

on the right-hand side of Equation (3.9). The eddy-diffusion kH in this term is a sum

of three components (Abernathey & Marshall, 2013):

kH = k + kK + kOC

Here k is diffusivity of temperature, and kK includes the contribution from the rota-

tional component of eddy-driven heat flux. The associated heat flux can be positive or

negative locally but vanishes in the equation of globally integrated heat budget. The

eddy-induced diffusion contributes to heat transport through the local enhancement

of irreversible mixing created by eddy stirring and fine-scale patterns. This mixing is

represented by kOC, which is the Osborn-Cox diffusivity (T. Osborn & Cox, 1972).

3.5.1 Integral Heat Transport in the Four Subregions.

In Equation (3.8), the horizontal mean and eddy-induced heat advection in the surface

layer are estimated based on the method described in Section 3.3 and Appendix

B. Our preliminary analysis (not shown here) demonstrated that the observational
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Subregion 1 Subregion 2 Subregion 3 Subregion 4

Eddy Heat Advection (EHA) 2.3± 0.1 −5.5± 0.2 −0.4± 0.1 1.1± 0.1

Mean Heat Advection (MHA) 8.2± 0.2 −6.8± 0.2 −2.6± 0.1 4.7± 0.1

Total Heat Advection (THA) 10.5± 0.3 −12.3± 0.4 −2.9± 0.2 5.8± 0.2

Table 3.1: Eddy (EHA), mean (MHA), and total (THA) heat advection in the surface

layer integrated over the four subregions. The units are 104 m2 oC/s.

estimate of the spatial distribution of eddy-driven heat advection (EHA) is noisy

and notoriously difficult to analyze. The interpretation of this spatial distribution is

further complicated by its non-Gaussian statistics (Chinn & Gille, 2007). Following

the approach of Isachsen, Koszalka & JH LaCasce (2012), we determine area integrals

of mean and eddy-driven advection by

MHA = −

∫

A

u · ∇TdA (3.10)

EHA = −

∫

A

u′ · ∇T ′dA (3.11)

The integrals MHA and EHA and their sum THA = MHA + EHA over the four

subregions in Figure 3.3a are presented in Table 3.1. The total heat advection (THA)

is positive in Subregions 1 and 4 and negative in Subregions 2 and 3. The positive

THA in Subregions 1 and 4 ( 16.3 ± 0.5 ) × 104 m2 oC / s is approximately balanced

by the advective heat loss in Subregions 2 and 3 −(15.2 ± 0.6) × 104 m2.oC / s.

The THA integrated over the whole area is 1.1 × 104 m2 oC / s, which is only about

7% of the total heat gain due to the THA in Subregions 1 and 4.

We also observe that the magnitude of THA shows significant zonal differences
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(asymmetry), with high THA values in the western Subregions 1 and 2 and low

values in the eastern Subregions 3 and 4. The magnitude of THA in the Subregion 2

is almost twice as large as the magnitude of THA in Subregion 4 and more than three

times larger than the THA in Subregion 3. Both the EHA and the MHA contribute

to these zonal differences (see Table 3.1). The link between the intensified THA in

the western part of the region and the dynamics of main currents is discussed in the

following Section 3.5.2.

The eddy heat flux advection (EHA) has significant contributions to the THA in

all four subregions (see Table 1). The eddy components of u′, v′, T ′ are defined (see

also Wunsch, 1999) as the variability with respect to the record mean, regardless of its

dynamical cause. This variability includes intraseasonal, seasonal, and interannual

processes. To assess the contributions of processes with different time scales, we

separate the eddy variability in temperature (T ′) and velocity (u′, v′) over the studied

period from 2003 to 2008 into sums of interannual (linear) trends (u′

in, v
′

in, T
′

in) and

seasonal (u′

s, v
′

s, T
′

s) and intraseasonal (u′

is = u′−u′

in−u′

s, T
′

is = T ′−T ′

in−T ′

s) variability:

T ′ = T ′

in + T ′

s + T ′

is (3.12)

u′ = u′

in + u′

s + u′

is (3.13)

v′ = v′in + v′s + v′is (3.14)

To calculate the interannual, seasonal, and intraseasonal components of u′,and v′,

the eddy velocity (u′, v′) is first linearly interpolated onto a regular grid with a

resolution of 1/4o. Then, the interannual trends in T ′

in, u
′

in, and v′in are removed from

the interpolated data. The contributions of the seasonal (EHAs) and intraseasonal
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Subregion 1 Subregion 2 Subregion 3 Subregion 4

EHAis 0.5± 0.1 0.1± 0.2 −0.2± 0.1 0.3± 0.1

EHAs −0.8± 0.1 −0.9 ± 0.2 0.2± 0.1 −0.1± 0.1

EHAcov −0.1± 0.1 0.1± 0.2 0.0± 0.1 0.0± 0.1

Total −0.4± 0.3 −0.7 ± 0.6 0.4± 0.3 0.2± 0.3

Table 3.2: Seasonal (EHAs) and intraseasonal (EHAis, EHAcov) contributions to

the eddy-driven advective heat flux. The units are 104 m2 oC/s.

(EHAis) variability and the covariance (EHAcov) are computed as follows:

EHAs = −
∫
A
u′

s∇T ′

sdA (3.15)

EHAis = −
∫
A
u′

is∇T ′

isdA (3.16)

EHAcov = −
∫
A

(
u′

s∇T ′

is + u′
is∇T ′

s

)
dA (3.17)

The values of EHAs, EHAis, EHAcov integrated over the four subregions are

shown in Table 3.2. The seasonal contribution to the eddy heat transport to the

surface layer heat budget has the largest magnitude in Subregions 1 and 2. Our anal-

ysis (not shown here) suggests that the seasonal component of eddy heat advection

in these subregions is mostly due to seasonal variability in the cores of the IC and

EGC. The intraseasonal component of eddy heat transport has relatively high values

in Subregions 1 and 4. This component includes variations in eddy heat flux due

to processes like meanders, mesoscale eddies, and Rossby waves. The magnitudes

of EHAs, EHAis, and EHAcov in all four subregions (Table 3.2) are significantly

smaller than the total eddy-driven THA in Table 3.1.

These smaller magnitudes in all four subregions are somewhat surprising because
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the sum of the three components, EHAis, EHAs, and EHAcov defines the total

eddy-driven EHA. However, their estimates computed by using interpolated data

are significantly smaller than the eddy EHA calculated from along-track data. The

intensity of the intraseasonal variability (see Table 3.2) is significantly affected (re-

duced) by the interpolation of u′, v′ onto a regular grid with 1/4o resolution.

Our analysis (not shown here) suggests that only eddies with a radius higher than

50 km in Subregions 1, 2, and 4 are not affected by the interpolation procedure.

At the same time, the event census analysis (Figure 3.2a) and the results described

in Section 3.4.2 demonstrate that eddies with a radius of 50 km and larger constitute

only a small part of the mesoscale eddies identified using satellite along-track sea

level anomalies. Therefore, the EHA based on interpolated data (Table 3.2) does not

account for the impact of many of the eddies found in the along-track observations.

This result is also supported by findings of Isachsen, Koszalka & JH LaCasce (2012),

who demonstrated that eddy advective heat fluxes calculated using gridded altimeter

data (with 1/4o resolution) are several times smaller than eddy heat fluxes calculated

based on drifter observations and high-resolution model simulations.

3.5.2 Advection of Heat by the Main Current Systems

To elucidate further the links between the estimates of MHA and EHA (Table 3.1)

and the dynamics of the main currents we sub-divide the four subregions into boxes

with a meridional extent of 1.5 degrees. The east-west boundaries of the boxes of

integration are shown as white solid lines in Figure 3.3b. They separate the studied

region into four parts. The first part (see Figure 3.3b) is over the EGC north and the

96



EGIC south of the Denmark Strait. The second part is over the Irminger Sea. The

third part includes the southern part of the Greenland Sea, the Iceland Sea, and the

western part of the NADC. The fourth part is over the eastern part of the NADC

and the NwAC. The MHA and EHA averaged over the boxes ,which have a width

shown as white lines in Figure 3.3b and a meridional extension of 1.5o are shown in

Figure 3.7.

The mean (MHA) and eddy (EHA) heat advection integrated over the four parts

are shown in Figures 3.7a, b, c, d. The highest MHA magnitudes for the whole re-

gion are observed in two of the boxes positioned north and south of the Denmark

Strait (Figure 3.7a). These boxes cover the areas of branching of the EGC and IC

in the vicinity of the Iceland-Greenland Ridge. South of the Denmark Strait, the

IC branches at about 64o − 65oN (see Figure 3.2). Its main branch turns westward

and then flows southward along the Greenland shelf, while a second branch creates

the origin of the North Irminger Iceland Current (NIIC). The maximum of advective

heat gain (MHA) over the area of the IC is (5.6 ± 0.3) × 104 oC/m2, which is the

highest MHA value found in the whole studied region (see Figure 3.7). A minimum

of the MHA is observed north of the Denmark Strait at latitudes 67o − 69oN in the

box covering the area where the East Icelandic Current (see Figures 3.2 and 3.3b)

separates from the EGC in the vicinity of the Iceland-Greenland Ridge. The maxi-

mum heat loss due to the MHA over this area is ( − 3.6 ± 0.1) × 104 oC/m2. This

distribution of MHA in Figure 3.7a implies that there is a meridional variation in the

mean advective heat flux contribution to the heat budget of the surface layer across

the Denmark Strait. The large magnitudes of both the gradient in mean tempera-

ture and the along-gradient component of mean velocity (see Equation (3.9) in the
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branches of the IC and EGC are responsible for these high MHA values (Figure 3.3b).

Figure 3.7: Mean (blue bars) and eddy (red bars) advective fluxes integrated over (a)

the EGC and EGIC, (b) the Irminger Sea, (c) the Iceland Sea and NADC, and (d)

the NwAC. The error bars represent the standard error.

The EHA and MHA integrated over the Irminger Sea (Figure 3.7b) have smaller

magnitudes than those integrated over the other areas. The THA = MHA + EHA

in the Irminger Sea is about 1 → 2× 104 oC/m2. A larger THA magnitude of 1.5 →

3× 104 oC/m2 is observed in the third area (Figure 3.7c) between 63o and 69oN and

over the Jan Mayen Current and the East Icelandic Current (EIC) (Figure 3.2). These

currents bring cold and fresh Arctic waters into the central part of the Greenland and

Iceland Seas. The associated advective heat loss in the surface layer over this area is
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high in the Iceland Sea and along the east coast of Iceland.

Figure 3.7d shows the EHA and MHA over the NwAC. In the southern part of the

NwAC, the THA (see Figure 3.7d) is negative due to the influence of the cold East

Icelandic Current. This influence is maximal at about 63o-64oN, where the THA is

about −1 × 104 m2 oC/s. The positive THA over the NwAC represents the source

of heat for the ocean surface layer in the area where the Atlantic Water spreads into

the Norwegian Sea between latitudes 64o and 72oN. Both eddy and mean heat flux

convergence contribute to the heat gain by the NwAC, which has a maximum of

(2.5± 0.1)× 104 m2 oC/s at 68oN.

Assuming that the surface layer heat content is quasi-stationary, we can derive

that

∫

A

(
u∇T + u′∇T ′

)
dA =

∫

A

(
Qs

ρcp

)
dA−

∫

A

(
kv

∂T

∂z

∣∣∣∣
z=−h

+ w
∂T

∂z

)
dA+

∫

A

∇·kH∇TdA

(3.18)

The left-hand side of this equation defines the mean heat advection (MHA) and

the divergent part of the eddy-driven heat flux (EHA) in Figure 3.7. These fluxes

are balanced by the three groups of processes represented on the right-hand side of

Equation (3.18): (i) surface heat flux Qs/(cpρ), (ii) vertical advective and turbulent

transport, and (iii) irreversible eddy-induced mixing. Our analysis (not shown here)

suggests that the surface heat flux (Qs) has a relatively small contribution to the heat

budget of the surface layer over the Denmark Strait. According to Equation (3.18),

the large values of MHA are balanced by the surface heat flux, vertical transport

at the bottom of the surface layer and the irreversible eddy-induced mixing. These

processes occur over the region where the Denmark Strait Overflow Water is formed
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and spreads out. The large advection of heat has potentially important consequences

for the heat content and the potential energy of the mean flow in the surface layer.

An important question that arises from this analysis is whether the results in

Figure 3.7 are sensitive to the data and method used in our study. To address this

question, we present MHA and EHA estimates based on independent data from the

SODA ocean reanalysis version 2.2.4 (Carton & Giese, 2008). The SODA reanalysis

is a global ocean simulation with 50 vertical levels and a horizontal resolution of

1/4o × 1/4o. The data assimilation scheme is an optimal interpolation that also

includes a method for correcting the model bias.

Figure 3.8 shows the MHA and EHA estimated from the SODA reanalysis over

the same four areas as in Figure 3.7 and for the period from 2003 to 2008. The MHA

distributions computed from our data (Figure 3.7) are substantially similar to the

ones calculated based on the SODA reanalysis (Figure 3.8). These two independent

data sets demonstrate that the largest MHA values for the whole studied area are

observed north and south of the Denmark Strait. The maximum of the MHA over the

IC south of the Denmark Strait in the SODA data (Figure 3.8a) is equal to our MHA

estimate in Figure 3.7a, within the standard error of the estimation. The minimum

of the MHA north of the Denmark Strait (Figure 3.8b), however, is more than two

times larger than our estimate based on satellite data in Figure 3.7a.

The net heat advection (THA=MHA+EHA) in the Irminger Sea (Figure 3.8b)

estimated by SODA data is generally positive and close to our observational estimates

(Figure 3.7b). The SODA data also show the negative THA over the Jan Mayen

Current and the East Icelandic Current (EIC) at 65o and 66oN (see Figure 3.8c).

The MHA is generally positive over the NwAC between 64o and 72oN (Figure 3.8d)
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Figure 3.8: Mean (blue bars) and eddy (red bars) advective fluxes computed using

SODA (Carton & Giese, 2008) data and integrated over (a) the EGC and EGIC, (b)

the Irminger Sea, (c) the Iceland Sea and NADC, and (d) the NwAC.

and has a maximum of about 2.75 × 104 m2 oC/s at 69oN. This maximum occurs

approximately in the area where the NwAC leaves the shallow Vøring Plateau as it

flows northward along the Norwegian coast. Our estimate of this maximum from

satellite data (Figure 3.7d) is (2.5± 0.1)× 104 m2 oC/s at 68oN.

The MHA distributions derived from satellite data (Figure 3.7) and SODA re-
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analysis (Figure 3.8) show some minor differences. The extreme values of MHA in

the estimates based on SODA data exceed our estimates in a few areas with sub-

stantial topographical irregularities. The bottom topography is a significant factor

in the ocean dynamics in the region adjacent to the GSR. The details of the way

in which the flow interacts with the bathymetry in z-coordinate models, however,

depend on the resolution of the numerical grid, especially in regions with a steep

bottom slope. We also observe that the eddy-driven EHA has a significantly smaller

magnitude in SODA simulations (Figure 3.8) than in our results (Figure 3.7). The

SODA model is not eddy-resolving and therefore underrepresents the eddy dynamics

in this region, which, according to our estimates, have a dominant radius of about

20 km (Figure 3.2a). Beyond these minor differences, the SODA simulations and the

results from our analysis agree about the main patterns in the MHA distributions

in the studied region. In particular, both the results from our data analysis (Fig-

ure 3.7) and the SODA simulations (Figure 3.8) show that a substantial advective

heat gain/loss in the surface layer occurs in a relatively narrow region adjacent to the

Denmark Strait.

3.5.3 Irreversible Eddy-Induced Horizontal Mixing

When eddies move across the studied area, they trap waters with characteristics

typical of the region of their formation. During their decay, the eddies release these

waters, affecting the heat and salt content of the water column at their final position.

The associated eddy-induced irreversible heat flux depends on eddy size, the path

of eddy propagation, and temperature and salinity anomalies. The most significant
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contributions to this flux are made by long-living and large eddies, which can travel

considerable distances during their lifetime. Their impact on the heat content of the

water column during eddy decay is associated with the processes of eddy stirring and

small-scale turbulent mixing.

ARGO profiles were previously used to study the three-dimensional structure of

ocean mesoscale eddies and their contribution to the volume, heat, and freshwater

transport (Chaigneau et al. (2011) and Johnson & McTaggart (2010)). The positions

and spatial characteristics of mesoscale vortices in these studies are determined based

on gridded satellite altimeter observations. The ARGO profiles are used to deter-

mine the vertical structure of eddy-induced temperature and salinity anomalies of

composite cyclonic and anticyclonic eddies (Chaigneau et al., 2011). We follow a sim-

ilar approach in the assessment of eddy-induced temperature and salinity anomalies

of mesoscale vortices detected in our study by using along-track satellite altimeter

observations (see Sections 3.3.2 and 3.4.2).

The observations from ARGO profiles that remained inside individual eddies for a

period longer than 12 weeks were used to compute the average eddy-induced anomalies

in temperature (T) and salinity (S). Our analysis (not shown here) suggests that the T

and S profiles inside eddies are determined mainly by the water mass characteristics

in the region of eddy formation. They depend less on their polarity (cyclonic or

anticyclonic) or on the properties of the local environment where the eddies propagate.

Temperature and salinity profiles identified in this analysis are inside Subregions 1 and

4. No ARGO profiles were found inside eddies in the other two subregions (Subregions

2 and 3) for a period long enough to assess anomalies in eddy heat and salt content.

Furthermore, only a few profiles were found inside the eddies in Subregion 1. Our
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discussion in this section focuses only on Subregion 4.

Figure 3.9 shows the temperature and salinity anomalies inside the composite

eddies in Subregion 4. The anomalies are calculated relative to the Levitus decadal

climatology for the period 2005-2012 (http://data.nodc.noaa.gov). The horizontal

bars show the standard deviations of the anomalies at each depth. The temperature

and salinity profiles of eddies in Subregion 4 fall into two groups. The first one includes

the temperature and salinity anomalies observed south of 69.5oN (Figure 3.9a), and

the second group (Figure 3.9b) consists of the profiles found north of 69.5oN.

The maxima of eddy-induced temperature and salinity anomalies south of 69.5oN

are 2o and 0.1psu, respectively (see Figure 3.9a). They are observed at about a depth

of 150-200-m, which is the depth of the cores of the eddies. Below and above this

depth, the anomalies decrease monotonically. The magnitudes of the eddy-induced

temperature and salinity anomalies north of 69.5oN (see Figure 3.9b) are similar and

close to 2o and 0.1psu, respectively. The vertical structure of the profiles, however,

is different. The anomalies related to the warm eddies are relatively uniform across

the whole layer, from the surface down to a depth of 500 m (Figure 3.9b). These

eddies trap Atlantic Waters as they propagate in the central Norwegian Sea, keeping

them exposed to surface cooling during their whole lifetime. The intense mixing and

transformation of the Atlantic Water north of 69.5oN cause the homogenization of

the vertical thermohaline structure of the surface 500 m layer. The magnitudes of

temperature and salinity anomalies in the cold eddies increase monotonically with

depth and reach a maximum in their core at about 600 m deep (Figure 3.9b).

The mean geometric and thermohaline characteristics of the composite cold and

warm eddies for Subregion 4 are shown in Table 3.3. The range of eddy radii used in
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these calculations is between 19 km and 25 km. The average radii of warm and cold

composite eddies are 21 km and 23 km, respectively. The average distance between

the initial and final positions of both types of eddies is about 100 km. Their paths,

however, are generally not straight lines, and the distance traveled can be several

times larger than 100 km. The average lifetime of the composite eddies is about 100

days. These characteristics are used to assess the eddy-induced anomalies and the

heat and salt fluxes associated with the motion of eddies. Following Hátún, Eriksen

& P.B Rhines (2007) and Chaigneau et al. (2011), we first define the vertical integrals

of Available Heat and Salt Anomalies (AHA and ASA):

AHA = πR2
e

∫ 0m

−1000m

ρcp (∆T (z)) dz

and

ASA = πR2
e

∫ 0m

−1000m

(∆S(z)) dz

where ∆T (z) and ∆S(z) are the temperature and salinity anomalies of each eddy.

Based on the estimates of AHA and ASA, we calculate the advective heat and salt

transport over the lifetimes of the eddies normalized by the depth of the surface 1000

m layer. The mean heat transport by warm and cold eddies are −180 oCm2s−1 and

160 oCm2s−1, respectively. These values are two orders of magnitude smaller than

the surface EHA estimates in Subregion 4 (see Table 3.1). The heat flux due to

eddy-induced irreversible mixing is still significant because of the large number of

eddies in Subregion 4 (see Section 3.4.2). Assuming that the estimated values of

AHA and ASA are representative of eddies with a radius between 19 km and 25 km,

the total heat transport by these eddies (referenced to a vertical thickness of 1 m) is

(1.7±0.3)×105 m2 oC/s for warm and (−1.0±0.2)×105 m2 oC/s for cold eddies. This
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flux is estimated based on the total numbers of warm (1088) and cold (639) eddies

observed in Subregion 4 with radii between 19 km and 25 km over the period from

2003 to 2008. Notice that these values are 2 to 2.5 times higher than the total heat

advection (THA) in the surface layer (see Table 3.1). The THA is, however, close to

the estimate of the total irreversible eddy-induced heat mixing (7± 5)× 104 m2 oC/s

computed based on the sum of heat fluxes by warm and cold eddies.

The errors in the estimates of eddy-induced irreversible heat mixing are related to

observational uncertainties in eddy radii, temperature and salinity anomalies, eddy

paths, and eddy lifetimes. Moreover, these estimates are based only on ARGO profiles

found inside mesoscale vortices with radii from 19 km to 25 km. There is a significant

number of eddies in Subregion 4 with size greater than 25 km (see Figure 3.5) that are

known to have a substantial impact on ocean dynamics and transport (see Gascard

& K. Mork (2008)). In this context, the values of AHA, ASA, and heat transport

found in this section should be considered as an approximation and lower limit of the

real eddy-induced irreversible heat mixing. When comparing these fluxes with the

divergent eddy-driven heat, we need to consider also that the latter is representative

for a sub-surface mixed layer whose exact depth is generally unknown. The eddy-

driven irreversible heat transport is averaged over a column of 1000 m, and its values

are subject to uncertainties due to the limited number of observed eddies by ARGO

observations.

The estimates of AHA and ASA for all eddies observed by ARGO profilers in

Subregion 4 are presented graphically in Figure 3.10. The arrows are red for posi-

tive and blue for negative values of AHA and ASA. The thickness of the arrows is

proportional to the magnitudes of AHA and ASA, and arrow length and direction
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Table 3.3: Characteristics of Composite Eddies in Subregion 4.

radius lifetime distance traveled AHA ASA Heat flux

km days km ×1018 J ×1010 kg oCm2/s

warm eddy 21± 1 100± 30 100± 20 5.0± 1.0 5.0± 2.0 160± 30

cold eddy 23± 2 100± 20 130± 30 −6.0± 1.0 −4.0 ± 2.0 −180± 30

define the displacement of an eddy during its lifetime. As can be seen in Figure 3.10,

the motion of eddies is somewhat chaotic. The mesoscale vortices moving in a zonal

direction have the highest impact on eddy-induced heat exchange. In particular, the

highest heat transport is in the Lofoten Basin and is due to eddies that propagate

predominantly in a zonal direction across the NwAC. The velocities of cold eddies

tend to have large southward or eastward components.
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Figure 3.9: Mean vertical profiles of temperature (T) and salinity (S) inside warm

(red curves) and cold (blue curves) composite eddies in Subregion 4. Figures (a) and

(b) show the eddy-induced T and S anomalies south of 69.5oN. Figures (c) and (d)

show the eddy-induced T and S anomalies warm (red curves) and cold (blue curves)

eddies north of 69.5oN. The horizontal lines indicate the standard deviation of the

profiles. ARGO profiles were found in only one cold eddy south of 69.5oN
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Figure 3.10: Eddy-induced (a) AHA and (b) ASA in Subregion 4. The arrows show

the direction and distance traveled by eddies; the thickness of the arrows is propor-

tional to the magnitudes of AHA and ASA. The red arrows show positive AHA and

ASA while the blue arrows show the negative.
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3.6 Conclusions

This article presents results from a study on advective heat fluxes in the ocean region

adjacent to the Greenland-Scotland Ridge based on altimeter satellite observations

and SST and ARGO data. Two types of advective fluxes are studied: (a) mean and

eddy-driven divergent advective heat transport in the surface layer and (b) eddy-

induced irreversible heat transfer. The results from this analysis demonstrate that

there are significant zonal variations in the magnitude of heat advection in the surface

layer. The heat advection is between two and three times higher in the western part

of the region (see Table 3.1) than in the eastern part. This zonal asymmetry is due

to intense heat advection by the mean flow (MHA) and eddies (EHA) in the ocean

surface layer adjacent to the Denmark Strait. The MHA has opposite signs north and

south of the strait. It is high and positive over the area where the NIIC separates

from the IC in the south, whereas it is low and negative over the region where the

North Icelandic Current forms north of the strait.

The intense heat advection in the surface layer over the Denmark Strait is approx-

imately balanced by surface heat flux, vertical transport, and irreversible horizontal

mixing. The strong heat advection can influence this ocean region in at least two

ways: (a) it increases the meridional contrast in the heat content of the water column

across the Denmark Strait, and (b) it is a source of potential energy for the mean

flow.

During the studied period, most eddies (about 70%) are found in the eastern

half of the studied region (Figures 3.4b, and 3.5). The heat advection due to quasi-

geostrophic eddies is predominantly non-divergent (rotational) (J. Marshall & Shutts, 1981).
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It is associated with the growth and decay of eddies. The rotational flux vanishes in

the heat budget equation. Eddies can affect heat content through the processes of

irreversible mixing and small-scale turbulence.

The distribution of eddy radii in the studied region has a maximum at 23 km. As

eddies move across the studied region, they trap waters with characteristics typical of

the area in which they were formed. During their decay, they rerelease these waters,

affecting the heat and salt content of the water column at their final position. The

associated eddy-induced irreversible heat flux depends on eddy size, the path of eddy

propagation, and temperature and salinity anomalies. Our estimates of the transport

by eddies and associated eddy-induced irreversible mixing exceed about two-and-a-

half times the mean heat advection by the NwAC. The heat exported by warm eddies

toward the central part of the Norwegian Sea exceeds two to three times the advective

of heat by the NwAC. This transfer, together with the transport by cold mesoscale

eddies, constitutes a potentially significant component of the heat transport in the

Nordic Seas.
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Connecting Text

This article addresses objective 5 described in Section 1.5.3

The results in Chapter 3 demonstrate that the convergence of advective heat

flux in the surface layer has the largest magnitude in a relatively small area near

the Denmark Strait. The convergence of heat flux there exceeds several times the

values of this characteristic in the rest of the region. The question if and how this

pattern projects in the subsurface distribution of the heat flux convergence can not

be answered using surface satellite observations only.

The following article presents results from a study of the vertical structure and

temporal variability of convergence of the advective fluxes of temperature and salinity

based on an ocean reanalysis. The reanalysis data are obtained by using a numerical

model and data assimilation.

At time of thesis completion, this article has been submitted for publication.
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Chapter 4

Vertical Structure and Temporal

Variability of Heat and Salt Flux

Convergence over the

Greenland-Scotland Ridge Derived

from SODA Ocean Reanalysis

4.1 Abstract

The article presents results from the analysis of the vertical structure of the conver-

gence of horizontal advective fluxes of heat (HFC) and salt (SFC) over the Greenland-

Scotland Ridge. The fluxes are calculated from the ocean reanalysis Simple Ocean

Data Assimilation (SODA) for the period from 1965 to 2010. Empirical orthogonal
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function analysis is used to study the dominant modes of coherent spatial variability

of HFC and SFC. Results from the analysis of the HFC and SFC in the surface layer

are in good agreement with our previous study based on satellite data. Therefore,

the article focuses on the “fingerprints” in the water column of the patterns in the

surface distribution of HFC and SFC identified from observations.

Based on analysis of the HFC and SFC derived from the SODA reanalysis we

found that (1) the mean HFC and SFC over the Denmark Strait and Iceland-Faroe

Ridge exceed by an order of magnitude the HFC and SFC in the Irminger Sea and are

more than twice as large as these characteristics in the Norwegian Sea; (2) The layer

of high HFC over the Denmark Strait extends through the whole water column with

the maximum at the surface, while the high values of SFC over both the Denmark

Strait and Iceland-Faroe Ridge are observed at intermediate depths between 500 m

and 1500 m. (3) The spatial distribution of the HFC and SFC in the Irminger Sea

includes two characteristic features in the upper 1500 m layer in the northern part of

the basin, a layer of negative HFC and SFC at depths 1500 - 2000 m, and a surface

area of negative HFC in the central part of the subpolar gyre. (4) The time variability

of the HFC and SFC over the Greenland-Scotland Ridge is dominated by modes of

coherent oscillations in the two characteristic features over the Denmark Strait and

Iceland-Faroe Ridge.

4.2 Introduction

The ocean stores about 84% of the heat added to the climate system by global warm-

ing (Levitus et al., 2000). The related rise in ocean temperature is a major contributor
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to human-induced changes in sea level and has profound effects on the sea-ice and

ocean environment (Stocker, 2014; Kuhlbrodt & Gregory, 2012). The impact of cli-

mate warming on the ocean heat content, however, is non-uniform across the planet

(Barnett et al., 2005). The heat absorbed in the surface layer is distributed in a

complex way by the ocean currents and mixing. This transport plays a fundamental

role in global and regional climate dynamics (C.D. Roberts et al., 2016).

Factors that affect regional variations in the ocean’s heat content include surface

forcing and ocean advection and diffusion. Observational estimates of the contribution

of ocean transport to the heat budget are often determined as the residue of the

surface radiative and turbulent heat flux and the time derivative of the heat content

(see C. Roberts et al., 2017). These estimates include the effects of wind-driven

transport, advection by the mean currents, and diffusion. The results of C. Roberts

et al. (2017) demonstrated, in particular, that in areas with strong currents, apart

from the ocean regions of deep convection and intense water mass transformation,

interannual variations in the ocean’s heat content are dominated by advection. The

effect of advective transport in these regions on the heat budget can be comparable

and even stronger than the contribution of the surface air-sea exchange (Barnett et

al., 2005).

This article presents results from a study of the convergence of ocean advec-

tive heat and salinity fluxes in the region adjacent to the Greenland-Scotland Ridge

(GSR). It is an ocean region of intense winter convection and water mass transforma-

tion (Brambilla, Talley & Robbins, 2008; Mauritzen, 1996a; Mauritzen, 1996b) driven

by the air-sea exchange and ocean mixing (Isachsen, Koszalka & JH LaCasce, 2012).

The Atlantic waters enter this region along the multiple branches of the North At-
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lantic Current (Figure 4.1a). In the subpolar gyre, they progressively lose their heat

due to the air-sea exchange and form the surface Subpolar Mode Water (SPMW)

(McCartney & Talley, 1982). The SPMW is vertically nearly uniform and gradu-

ally change as it spreads horizontally (Brambilla, Talley & Robbins, 2008). A rem-

nant of the SPMW called the Irminger water spreads (see Myers, Kulan & Riber-

gaard, 2007) at intermediate depths and plays a significant role in the heat budgets

of the Irminger and Labrador Seas (Myers, Kulan & Ribergaard, 2007; Straneo, 2006;

Zhu & Demirov, 2011).

North of the GSR, the surface Atlantic Water is intensively transformed and cooled

as it is transported northward by the Norwegian Atlantic Current (NwAC) (Mau-

ritzen, 1996a; Mauritzen, 1996b)). The processes of air-sea exchange, advection by

mean currents, and eddy-induced diffusion are the main drivers of the transformation

of Atlantic Water. Mesoscale eddies in this region play an essential role in the trans-

formation of the Atlantic Water and the exchange of heat and freshwater between

the NwAC and the central part of the Norwegian Sea. Isachsen, Koszalka & JH La-

Casce (2012) found in particular that the horizontal eddy-induced heat transport in

the NwAC is ”of first-order importance to the total buoyancy budget of the region

and, ultimately, to the exchanges across the Greenland-Scotland Ridge.” In the west-

ern part of the ocean region adjacent to the GSR, the East Greenland Current (EGC)

transports cold and fresh waters (see Figure 4.1a) and sea ice of Arctic origin along

the coast of Greenland (B. Rudels, Fahrbach, et al., 2002). The EGC partly branches

north of the GSR and forms the Jan Mayen Current and the East Iceland Current

(Figure 4.1a). Part of the waters of the EGC enter the North Atlantic through the

Denmark Strait and spread along the Eastern Greenland Coast. The horizontal heat
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flux convergence (HFC) and salt flux convergence (SFC) determine the impact of the

transport by the currents on the local budgets of heat and salt.

The observational estimates in our previous study (Lundrigan & Demirov, 2019)

show that the HFC in the surface layer of the ocean region adjacent to the GSR

is spatially non-uniform. Over the Denmark Strait (see Figure 7 in Lundrigan &

Demirov, 2019), the surface-layer HFC has a magnitude several times that of this

characteristic in the rest of the region. The available subsurface observations of the

ocean are rather sparse in space and time and do not allow the study of the subsurface

projection of the observed surface patterns of the HFC. Instead, an ocean reanalysis

is used in this article to estimate the subsurface distribution of the HFC and SFC.

A combination of models and data were previously used by Barnett et al. (2005)

to identify the characteristics and vertical extension of the surface warming and their

geographical variations. These authors found in particular that the warming signal in

the North Atlantic extends to depths of about 700 m. Another model study by Meehl

et al. (2011) demonstrated that the warming of the water column is not vertically

homogeneous. Here, we study the subsurface structure of the advective heat flux

convergence (HFC) and salt flux convergence (SFC) in model simulations of the ocean

region adjacent to the GSR in an attempt to identify the vertical projection of the

observational estimates of the surface HFC found by (Lundrigan & Demirov, 2019).

The article is organized as follows: The data and methods of our analysis are

presented in Section 4.3. Section 4.4 describes the vertical structure of the convergence

of HFC and SFC in the ocean region adjacent to the GSR. Section 4.5 presents the

results from EOF analysis of the HFC and SFC. Finally, the discussion in Section 4.6

focuses on the physical causes of the HFC and SFC found in SODA model reanalysis.
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4.3 Data and Method of Analysis

In this study, we use the SODA ocean reanalysis, version 3 (Carton & Giese, 2008) in

the ocean region adjacent to the GSR. The SODA reanalysis system is based on the

GFDL MOM-5 ocean model coupled to the SIS1 (Sea Ice Simulator) sea-ice model

(Griffies, 2012). The numerical grid is irregular, with an average resolution of about

1/4o. The ocean model grid size is about 28 km at the equator and down to less

than 10 km at polar latitudes (Carton, Chepurin & Chen, 2018). SODA uses a

data assimilation scheme of ocean observations for the correction of the model errors

and biases. Model output includes monthly mean temperature, salinity, and velocity

interpolated on a regular 0.5o horizontal grid with 50 vertical levels for the period

from 1965 to 2010. Our previous estimates based on SODA (Figure 8 in Lundrigan

& Demirov (2019)) showed a very good agreement with the observed (Figure 7 in

Lundrigan & Demirov (2019)) heat flux convergence in the surface layer. The goal

of the present article is to understand the vertical structure of the convergence of

heat and salt fluxes and the subsurface projection of the patterns observed in the

observational and SODA surface characteristics of HFC and SFC by Lundrigan &

Demirov (2019).

To elucidate the links between estimates of convergences of heat and salinity ad-

vective fluxes and the dynamics of the main currents, we subdivide the studied region

into four subregions with zonal boundaries shown as black solid lines in Figure 4.1b.

The first subregion is over the Eastern Greenland Current (EGC) to the north and

over the Eastern Greenland and Irminger Current (EGIC) to the south of the Den-

mark Strait. The second subregion is over the Irminger Sea. The third includes the
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Figure 4.1: (a) Sea Surface Temperature in the Northeast Subpolar North Atlantic

Ocean and Nordic Seas, bottom topography, and major currents (after AMAP, 1998).

(b) The boundaries of the four subregions.
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southern part of the Greenland Sea, the Iceland Sea, and the western part of the

North Atlantic Drift Current (NADC). The fourth subregion is over the eastern part

of the North Atlantic Drift Current and the Norwegian Atlantic Current (NwAC).

The boundaries of the subregions are defined based on consideration of the topogra-

phy of the studied ocean basin (Figure 4.1b). Notice that there are small differences

between (Figure 4.1b) and the boundaries of the subregions used in our previous

work (Lundrigan & Demirov, 2019). The latter were determined based on sea surface

temperature (see Figure 3c in Lundrigan & Demirov, 2019).

The HFC and SFC is averaged over the boxes ,which have a width shown as

black lines in Figure 4.1b and a meridional extension of 1.5o. The zonally averaged

advective heat flux convergence (HFC) in the four subregions for each 1.5o meridional

slice is calculated as:

HFC = −
ρ0cp
L

∫ λE

λW

ũ · ∇T (Re cosϕ)dλ (4.1)

where ũ is the monthly mean vector of horizontal velocity, ∇ is the horizontal

gradient operator, T is the monthly mean temperature, Re is the Earth’s radius, and

λW and λE determine the longitudes of the western and eastern boundaries of each of

the subregions (see Figure 4.1) correspondingly. The length of the path of integration

is L =
∫ λE

λW
Re cosϕdλ. The HFC (see Equation 4.1) is a negative dot product of the

vectors of horizontal velocity and temperature gradient. Therefore, the largest mag-

nitudes of the HFC are observed in regions of high horizontal temperature gradients

and where the current velocity has a significant component across the isotherms.
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Similarly, the convergence of advective flux of salt (SFC) is defined as

SFC = −
ρ0cp
L

∫ λE

λW

ũ · ∇S(Re cosϕ)dλ

where S is the monthly mean salinity. The HFC (W/m3) and SFC (g/m3/s) represent

the density of the gain/loss of heat and salt per unit volume in each of the four

subregions.

4.4 Vertical Structure of the Convergence of Mean

Heat and Salt Fluxes

The vertical sections of HFC and SFC estimates based on SODA reanalysis in the

four subregions are shown in Figure 4.2 and Figure 4.3, respectively. The HFC and

SFC are calculated as mean zonal convergence of the advective fluxes of heat and

salt averaged for the period of time from 1965 to 2010. As such they determine the

local long-term mean gain/loss of heat and salt due to the advection over the region

adjacent to the GSR.

The HFC and SFC in Subregion 1 are positive in the area south of the Denmark

Strait between latitudes 63oN and 66oN. The values of both characteristics have max-

imums in a narrow area just south of the Denmark Strait and at about 65 N. The

HFC in this area has values higher than 200 W/m3 in the upper 1500 m layer with a

maximum at the surface of 450 W/m3. In agreement with the observational estimates

by Lundrigan & Demirov (2019) this value is higher than the surface HFC magni-

tudes in the other three subregions (Figures 4.2). As in the observational estimates of

Lundrigan & Demirov (2019) the values of HFC are negative at the surface north of
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Figure 4.2: The HFC estimates based on SODA reanalysis in the four subregions.

Note the different scale used in Subregion 2
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Figure 4.3: The SFC estimates based on SODA reanalysis in the four subregions.
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the Denmark Strait. In Figure 4.2a this layer of negative HFC extends meridionally

between latitudes of 66oN and 69.5oN and vertically down to depths of about 300 m.

The maximum of SODA based estimates of the SFC in Subregion 1 (Figure 4.3a)

is observed in the layer between 500 m and 1500 m at latitude 65.5oN. The SFC

values in this layer exceed by an order of magnitude the SFC in Subregion 2 and are

several times higher than the SFC in the Subregion 4. Unlike the HFC, however, the

layer of high SFC do not extend above the 500 m depth where the values of SFC are

relatively low.

In good agreement with the observational estimates (see Lundrigan & Demirov, 2019)),

the values of HFC in the surface layer of the Subregion 2 (Figure 4.2b) are significantly

smaller than the HFC estimates in the other three subregions. The HFC and SFC at

all depths are also smaller than in the three other subregions. Three major patterns

in HFC and SFC are observed in the vertical section over Subregion 2. The first one

is a dipole in HFC and SFC in the surface 1500 m layer the northern part of the

subregion in the vicinity of the Denmark Strait. While the dipole extends vertically

down to about 1500 m, the magnitudes of HFC and SFC are relatively small below

1000 m. The second pattern is an intermediate layer of negative HFC and SFC at

depths between 1500 and 2000 m (see Figures 4.2b 4.3b). Finally, negative HFC and

SFC values are present in the surface 500 m layer of the southern part of the region

which is over the central part of the subpolar gyre in the Irminger Sea.

The observational estimates of HFC in the surface layer of Subregion 3 by Lundri-

gan & Demirov (2019) are negative over the Iceland-Faroe Ridge. The SODA-based

estimates of surface HFC and SFC are also predominantly negative in this region.

The layer of negative HFC and SFC in this part of Subregion 3 extends from the
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surface down to 300 m (Figures 4.2c 4.3c). The values HFC and SFC in the layer

between 500 m and 1500 m over the Iceland-Faroe Ridge are relatively high with a

HFC maximum of 200 W/m3 and SFC maximum of 0.4 g/m3/s in the 500-1500 m.

The HFC and SFC have relatively small magnitudes in Subregion 4. The HFC in

this subregion varies between −140 W/m3 and 40 W/m3 (Figure 4.2d). The values

of SFC are between −0.04 g/m3/s and 0.1 g/m3/s (Figure 4.3d). The distribution

of HFC and SFC in the surface 500 m layer of the southern part of Subregion 4 is

“patchy” where areas of negative HFC and SFC are irregularly distributed within

areas of positive HFC and SFC. In the layer below 500 and between latitudes 61oN

and 66oN (Figures 4.2d, 4.3d) the values of HFC low positive and the SFC are low

negative. In the northern part of the Subregion 4, the negative HFC in the surface

500 m has a large magnitude (about −140 W/m3) while the SFC in this area is close

to zero.

The GSR restricts the exchange of deep and intermediate waters between the

North Atlantic and the Nordic Seas. The transport of surface and overflow waters is

limited mostly to the flow through the shallow Denmark Strait, over the Iceland-Faroe

Ridge, and Faroe-Shetland Channel. The limitations on the meridional transport im-

posed by the GSR and the co-presence of the cold and fresh waters of the Nordic

Seas and warm and salty waters of the Atlantic Ocean intensify the meridional tem-

perature gradients (see Figure 4.1a) across the GSR. The SODA based estimates of

HFC and SFC indicate that strongest heat and salt advective fluxes occur over the

southern parts of Denmark Strait and Iceland-Faroe Ridge. These are the areas where

the Irminger Current branches south of the Denmark Strait (Figures 4.2a, 4.3a) and

where the Central Iceland Basin Branch separates from the North Atlantic Current
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south of the Iceland-Faroe Ridge (Figures 4.2a, 4.3a). The dynamics of these currents

over the complex bottom topography south of the GSR generates strong ageostrophic

components of current velocity across the isotherms. The distribution of current ve-

locity and large meridional temperature gradients both contribute to the large values

of the HFC (Equation 4.1) and SFC (Equation 4.3).

Another important pattern in the SODA based estimates of HFC and SFC is the

presence of a surface layer of negative HFC north of the GSR in Subregions 1, 3, and

4. Lundrigan & Demirov (2019) explained this pattern with the impact which the

Eastern Icelandic Current (EIC) (see Figure 4.1a) has on the surface layer in this part

of the studied area. The EIC branches from the EGC at about 66−67oN in Subregion

1. It flows southeastward across the Subregion 3 and approaches the southern part

of the Subregion 4. The HFC in the surface 300-500 m layer along the path of this

current is negative representing the net heat loss due to the spreading and mixing

of the polar water in the surface modified Atlantic Water. Another surface layer of

negative HFC is observed in the northern part of the Subregion 4 (Figure 4.2d) where

the Jan Mayen Current separates into two branches flowing in the Greenland and

Iceland Sea respectively (Figure 4.1a)

4.5 Interannual variability of HFC and SFC

To study the dominant patterns of interannual variability of the convergence of heat

and salt advective fluxes in the ocean region adjacent to the GSR, in this section,

we present results from the Empirical Orthogonal Function analysis of the HFC and

SFC for the period from 1965 to 2010. The seasonal cycle is removed from the data
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Subregion 1 Subregion 2 Subregion 3 Subregion 4

HFC 60% 52% 66% 43%

SFC 84% 63% 85% 60%

Table 4.1: The variance explained by the first EOFs of HFC and SFC for each of the

subregions.

prior the EOF calculations. The dominant (first) EOFs calculated from the monthly

mean fields of HFC and SFC for the four subregions are shown in Figures 4.4 and 4.5.

The variance explained by the first EOFs of HFC and SFC is correspondingly

60% and 84% in Subregion 1 and 66% and 85% in Subregion 3. In Subregion 2 the

variance explained by the first EOFs is smaller, 52% for the EOF of HFC and 63% for

the EOF of SFC. The lowest variance related to the first EOF was found in Subregion

4, 43% for the EOF of HFC and 60% for the EOF of SFC correspondingly.

The dominant EOFs are calculated separately for HFC and SFC. Therefore, they

do not necessarily represent coherent variations in the two characteristics. To as-

sess how strong the HFC and SFC dominant EOFs are related, we calculated the

correlation coefficients of their principal components (see Table 4.2).

The correlation coefficients between the dominant modes of HFC and SFC are

high and statistically significant only in the Subregion 1 (r=0.65, p-value = 10−6)

and Subregion 3 (r= 0.94, p-value= 10−23). The correlations between the princi-

pal components of the HFC and SFC in the Subregion 2 and 4 are r= −0.3 (p-

value= 0.83) and r= 0.09, (p-value= 0.56) respectively. The coherent nature of the

dominant EOFs in Subregion 1 and 3 is further supported by their spatial patterns

(Figures 4.4 and 4.5). The spatial structures of the dominant EOFs of HFC and SFC
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Figure 4.4: The dominant (first) EOFs calculated from the monthly mean fields of

HFC for the four subregions.
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Figure 4.5: The dominant (first) EOFs calculated from the monthly mean fields of

SFC for the four subregions.
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in Subregion 1 and 3 (Figures 4.4a,c and 4.5a,c) constitute variations in the intensity

in the main patterns of the mean HFC and SFC (Figures 4.2a,c and 4.3a,c). These

are coherent in-phase oscillations throughout these subregions (i.e. the EOFs have

the same sign in the subregion). The amplitude of the variations of HFC related to

the dominant EOF in Subregions 1 and 3 are close and about 160 W/m3. Similarly,

the amplitude of SFC EOFs are close and about 0.2 g/m3/s. We observe that there

is a difference in the structure of the magnitudes of the dominant EOFs of HFC and

SFC in Subregion 1. The SFC maximum in this subregion occurs not south of Den-

mark Strait but at about 67-68oN (Figure 4.5a). The SFC variations in the surface

layer of this subregion depend on the advection of salinity and transport of sea-ice.

The EGC transports cold and fresh waters and sea-ice of Arctic origin along the east

coast of Greenland. At 67-68oN in the Subregion 1, the EGC branches into the East-

ern Icelandic Current and EGC. The interannual variability and partitioning of the

freshwater and sea-ice transport by these currents dominates the spatial structure of

the first EOF of the SFC in this subregion. Relatively high values of the amplitude

of the first EOF of SFC are observed also south of the Denmark Strait but they are

less than half the size of the surface values the dominant EOF of SFC at 67-68oN.

As mentioned earlier there is a weak correlation between the principal components of

the dominant EOFs of HFC and SFC in Subregions 2 and 4. The spatial structure

of the EOFs of HFC and SFC in each of these two subregions is also different. The

dominant EOFs of HFC in Subregion 2 and 4 constitute mostly surface-intensified

variations Figures 4.4 b and d. The maximum of the amplitude of the HFC EOF

in Subregion 2 is over the central part of the gyre in the Irminger Sea is 20 W/m3

(Figure 4.4b). Notice that this value is about two times higher than the magnitude of
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Subregion 1 Subregion 2 Subregion 3 Subregion 4

HFC - Wind 0.37(P < 0.01) 0.14(P = 0.35) 0.27(P < 0.075) −0.04(P = 0.79)

SFC - Wind 0.55(P < 0.0002) 0.23(P = 0.12) 0.40(P < 0.007) 0.67(P < 4e− 6)

HFC - SFC 0.65(P < 1e− 6) −0.03(P = 0.83) 0.94(P < 1e− 23) 0.08(P = 0.58)

Table 4.2: The correlation coefficients of the principal components of the dominant

EOFs of the HFC and SFC

the mean HFC (Figure 4.2b). Similarly, the highest amplitude of the dominant EOF

of HFC in the northern part of Subregion 4 is 250 W/m3 (Figure 4.4d) is almost twice

as the magnitude of mean HFC in this region(Figure 4.2d). These high amplitudes

are observed in the areas of strong air-sea exchange in the central part of the subpolar

gyre (Figure 4.1) in the Subregion 2 and in the Lofoten Basin in the northern part

of Subregion 4. On the other hand, the EOFs of the SFC in the Subregions 2 and

4 (Figures 4.5bd) represent structures of coherent variations in the intensity of the

patterns of mean SFC (Figures 4.3bd) in the surface 500 m.

Figure 4.6 shows the principal components of the EOFs of HFC (blue solid curves),

of the EOFs of the SFC (red solid curves). The dashed curve shows the principal

component of the dominant EOF of the wind curl over the ocean region adjacent

to the GSR as a measure of wind forcing in the local region. The principal com-

ponents of HFC in the Subregions 2 and 4 have weak and statistically insignificant

correlations with the surface wind curl. In Subregion 2 it is r= 0.14 (p-value= 0.35)

and in Subregion 4 r= −0.04 (p-value= 0.79). The principal components of SFC in

these subregions have significantly higher correlations with the wind stress curl. In

Subregion 2 r= 0.23 (p-value= 0.12) and in Subregion 4 r= 0.67 (p-values< 4 · 10−6).
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Figure 4.6: The principal components of the EOFs of HFC (blue solid curves), of the

EOFs of the SFC (red solid curves). The dashed curve shows the principal component

of the dominant EOF of the wind curl over the ocean region adjacent to the GSR.
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The correlations of the wind stress with the principal components of the dominant

EOFs of the HFC in Subregion 1 is r= 0.37 (p-value< 0.01) and Subregion 3 r=0.27

(p-value < 0.08). The corresponding correlation coefficients between the wind curl

and principal components of SFC are r= 0.55 (p-value< 2 · 10−4) for Subregion 1

and r=0.40 (p-value< 7 · 10−3). Figures 4.6 a, c show that in general, the correspon-

dence between the variations of the principal components of wind stress curl, HFC

and SFC in these subregions are in a good agreement under strong wind curl. The

long term variations in the surface wind forcing affects the Ekman pumping over the

entire region and the intensity of wind-driven component of ocean circulation (see

Section 2.7). One example is the interannual shift of the wind principal component

from low negative in 1985 to high positive in 1990. The principal components of

the HFC and SFC in subregions followed this strong variation in the surface wind

forcing and both changed from low negative to high positive. We observe that the

patterns of the EOFs of the HFC and SFC (Figures 4.4a,c 4.5a,c) impose variations

of heat and salt advective fluxes convergence in Subregions 1 and 3 which have op-

posite phases. For example, during the interannual shift in the late 1980s, the HFC

over the Denmark Strait increased by an amount equal to twice the amplitude of the

EOF (Figures 4.4a) while the HFC over the Iceland-Faroe Ridge decreased by 1.75

times the amplitude the EOF (Figure 4.5a). Similarly, the SFC variations due to the

dominant EOF modes have opposite signs in the two subregions.
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4.6 Discussions

The GSR restricts the exchange of deep and intermediate waters between the North

Atlantic and the Nordic Seas. The strong temperature gradient across the GSR and

the impact which the ridge has on the main currents contribute to the convergence

of heat and salt advective fluxes. The estimates of the HFC and SFC derived from

SODA reanalysis suggest that the GSR has a strong impact in relatively narrow areas

south near the Denmark Strait and Iceland-Faroe Ridge. These estimates suggest in

particular that the large surface gain of heat due to the HFC south of the Denmark

Strait observed in our previous study (Lundrigan & Demirov, 2019) is the surface part

of patterns of high and positive HFC and SFC which extends in the water column

down to depths of about 1500 m in these two areas. The values of HFC and SFC

near the Denmark Strait and Iceland-Faroe Ridge exceed by an order of magnitude

this characteristics in the Irminger Sea and more than twice the HFC and SFC in the

Norwegian Sea.

Our analysis suggests that the variations in the dominant EOF constitutes physical

modes of coherent oscillations of HFC and SFC near the Denmark Strait and Iceland-

Faroe Ridge. The variability in the principal component of these modes correspond

well to the local change in the intensity of the wind stress curl over the GSR in the

late 1980s. Our previous study (S. Lundrigan & E. Demirov, 2012) found that this

was the period of onset imbalance of lateral fluxes of heat and salt into the Nordic

Seas which contributed to the decadal warming of this basin in the late 1980s and

1990s.
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Chapter 5

Conclusions

5.1 Summary

The ocean transport through the GSR is essential for maintaining the present-day

exchange of heat and freshwater between the Arctic Mediterranean and the North At-

lantic Ocean. Understanding this transport is crucial for improving our understanding

of the climate of the Arctic and Subarctic. The main objective of this thesis is to

quantify the characteristics of advective heat transport in the ocean region adjacent

to the GSR. The study consists of three Sub-projects.

Sub-project 1, presented in Chapter 2, focuses on a model study of interannual

and decadal variability in the Nordic Seas. The advective heat transport though the

GSR and its impact on the heat budget of the Nordic Seas are estimated based on

fifty years of ensemble simulations forced with the reanalysis of the National Centers

for Environmental Prediction (NCEP). The goal of the model data analysis is to un-

derstand the role of the advection of heat through the GSR in driving the interannual
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variability of the Nordic Seas observed over the last fifty years.

Sub-project 2, presented in Chapter 3, provides observational estimates of surface

mean and eddy-induced heat fluxes derived from satellite and in-situ data. The goal

of this study is to identify the spatial patterns of the heat flux convergence (HFC)

over the region adjacent to the GSR and the contributions of mean advection and

eddy-induced transport to the HFC.

Sub-project 3, presented in Chapter 4, focuses on the vertical structure of conver-

gence of the advective fluxes of heat and salt. The primary goal of this sub-project

is to find the ”fingerprints” in the surface patterns of the heat advection convergence

found in Sub-project 2. The heat and salt fluxes in this sub-project are derived from

the SODA (Simple Ocean Data Analysis) reanalysis.

5.2 Main conclusions

The analysis of ensemble model simulations in Sub-project 1 focuses on two events in

the interannual and interdecadal variability of the Nordic Seas during the past fifty

years. The first one is the Great Salinity Anomaly in the 1960s and early 1970s. The

second one is the warming of the Arctic and Subarctic oceans in the late 1980s. The

results from model simulations demonstrate that the increase in the transport of fresh

and cold waters through Fram Strait in the 1960s was concurrent with a reduction in

the meridional water exchange over the GSR. The resulting imbalance in salinity and

heat fluxes through the strait and over the ridge also contributed to the freshening

of the water masses of the Nordic Seas and intensified the Great Salinity Anomaly

in the Nordic Seas. The model results also demonstrated that in the late 1980s, the
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AW transport over the GSR was stronger than usual while the exchange through

Fram Strait was close to normal. The related imbalance in the lateral heat fluxes

through the strait and over the ridge warmed the Nordic Seas and caused an increase

in the temperature of the AW inflow to the Arctic Ocean in the late 1980s (i.e., about

a decade earlier than the warming of the source of the AW in the subpolar North

Atlantic Ocean).

The results from the analysis of satellite and in-situ observations in Sub-project

2 demonstrated that heat advection by the mean flow in the surface layer of the

ocean region adjacent to the GSR is zonally asymmetric with higher magnitude in

the western part of the region. This asymmetry is associated with a large magnitude

mean heat advection in an area adjacent to the Denmark Strait. The advection of

heat is high and positive south of the strait and low and negative north of it. We

suggest that this heat advection impacts the local budgets of heat and potential

energy of the mean flow in the surface layer. The satellite altimeter observations are

used to identify and study the characteristics of mesoscale eddies in the ocean region

adjacent to the GSR. The radius, lifetime, and paths of propagation, are assessed.

About 70% of the eddies are observed in the eastern part of the studied region.

The eddy-induced heat transport by warm mesoscale eddies in the Norwegian Sea

was found to be about two-and-a-half times larger than the mean advection by the

Norwegian Atlantic Current.

The analysis of SODA data demonstrates that model reanalysis represents the

large-scale patterns of surface heat convergence found in the observational estimates

(HFC) correctly in the ocean region adjacent to the GSR found in Sub-project 2. The

SODA based results show also that the high values of the HFC over the Denmark
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Strait are part of a pattern of intensified mean HFC and convergence of advective

fluxes of salinity (SFC) in the surface 1500 m ocean layer. A similar pattern of

high positive SFC and HFC is observed at depths between 500 m and 1500 m over

the Iceland-Faroe Ridge. The EOF analysis of the HFC and SFC shows that the

variability of the centers of high HFC and SFC over the Denmark Strait and Iceland-

Faroe Ridge is dominated by physical modes of coherent variations in the SFC and

HFC in these regions. In particular, these modes caused an intensification of the

heat and salt exchange through the GSR during the decadal shift in the transport of

heat through the GSR in the late 1980s found in Sub-project 1. The method of this

study is based on using surface observations and simulations from coarse resolution

and eddy-permitting ocean models. By their nature, these data do not resolve the

dynamics in the overflow regions in the GSR. The results focus mostly on the heat

fluxes in the surface and intermediate ocean layers (Chapters 4,5) and the long-term

variability of integral heat and salt transport through the GSR (Chapter 3). While

the results are robust and consistent in both observations and ocean simulations, they

do not provide any insight into the role of the deepwater overflow through the GSR

on the meridional heat and salt transport.

5.3 Ideas for future research

The results presented in the thesis raise questions about the physical processes of the

exchange through the GSR. The scales of these processes range in a broad interval,

from the fine-scale, sub-mesoscale and mesoscale to the large-scale ocean circulation.

What are the physical processes that govern the observed patterns of HFC and
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SFC? What is the relative importance of mean advection, mesoscale eddies, and sub-

mesoscale events on this transport?

How significant is the global impact of the patterns of high HFC and SFC over

the Denmark Strait and Iceland-Faroe Ridge on the meridional transport of heat and

freshwater in the Arctic and Subarctic?

How significant are the local impacts of observed patterns of HFC and SFC and

their variability on the properties of water mass characteristics in the ocean region

adjacent to the GSR?

The model simulations used in the thesis have an insufficient resolution to address

these questions. The satellite observations used to estimate HFC provide information

only for the surface layer of the ocean. Therefore, more observations and improved

models are needed to address these questions. The most recent advances in ocean

observations and modeling provide the foundation for addressing these research ques-

tions.

- The technological advance in the ocean observing system provides an unprece-

dented opportunity to obtain high-quality in-situ subsurface observations. The moor-

ings and gliders deployed by international programs like OSNAP, VITALS, and OFI

provide valuable information about the heat transport in the Arctic and Subarctic.

- Over the past two decades, there was an essential development in the methods of

numerical modelling of ocean circulation. Present-day ocean models have enhanced

capabilities in simulating the ocean dynamics over complex topography with a res-

olution of the order of kilometres. The present-day ocean models, in combination

with observations, provide an opportunity to study the interaction of the large scale

transport with local HFC and SFC over the GSR.
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Appendix A

Ocean Model and Experimental

Design

The model setup used in Chapter 2 was the same model runs used in my Master’s

thesis (S. Lundrigan, 2010). This appendix is Chapter 3 from my Master’s thesis to

give details on the specifics of the model and its setup and forcing that was used.

The model used in this study is the NEMO-OPA model (Madec, 2008) coupled to

the multi-layered ice model NEMO-LIM (T.Fichefet & M.A.Morales Maqueda, 1997).

Both the ocean model (NEMO-OPA) and sea-ice model (NEMO-LIM) are configured

on a global tripolar grid at 2o horizontal resolution with 31 vertical levels, 20 of which

are in the top 500 m, (see Figure A). This coarse resolution tri-polar grid has two

north poles, one over northern Canada and the other over Siberia in order to avoid

singularities of the model grid over the ocean (see Figure A). The configuration of

this grid leads to a horizontal resolution of about 90 km within the study region.

Other models are often chosen to be used, such as the NAOSIM hierarchy, which
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Figure A.1: The tripolar model grid shown for the study region.
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are a group of ocean/sea ice models that are used to study the North Atlantic and

Arctic Ocean and the HadCM3 model, which is a coupled ocean and atmosphere

model. The NEMO-OPA model is used in this study because it met the requirements

for the needed resolution and speed and its ability to be set up easily on our computing

platform.

A.1 The Model Equations

The governing equations of the model are geophysical fluid dynamics equations on a

curvilinear coordinate system. The model assumes the ocean is incompressible, i.e.

∇ ·U = 0 (A.1)

The Reynold’s number is defined as the ratio of advective terms to diffusive terms

and simplifies to:

Re =
UL

ν
≈

(0.1m/s)(105 m)

10−6 m2/s
= 1010 (A.2)

The Reynold’s number is very large due to the large length scales (L ∼ 100 km) of

the ocean. This means that oceanic flows are always turbulent. Therefore the friction

in the model must include turbulent stress and eddies.

The Navier-Stokes equation for an incompressible turbulent fluid in a rotating

coordinate system is:

ρ
DU

Dt
= −∇P + ρg+∇ν∇U− 2Ω×U (A.3)

where D
Dt

is the material derivative , ∇ is the gradient, t is the time, z is the

vertical coordinate, P the pressure, Ω is the Earth’s angular velocity vector, g is the
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gravitational acceleration, ν is the turbulent viscosity, and ρ is the in situ density

given by the equation of state

ρ = ρ(T, S, P ) (A.4)

The material derivative in Equation A.3 is defined according to:

DU

Dt
=

∂U

∂t
+U · ∇U (A.5)

which after using some vector algebra identities becomes

DU

Dt
=

∂U

∂t
+

∇U2

2
+ (∇×U)×U (A.6)

The small-scale physics for momentum is parametrized by using a turbulent model

in the vertical and Laplacian operator in the horizontal. We will use the notation

Du
h = ∇ν∇U for the mixing.

The Boussinesq approximation, usually used in ocean models, assumes that the

density is equal to the average density,ρo, in all equations except the vertical momen-

tum equation, therefore Equation A.3 becomes:

∂Uh

∂t
+

[
∇U2

2
+ (∇×U)×U

]

h

= −
1

ρo
∇hP +DU

h − 2Ω×Uh (A.7)

where the h subscript denotes that it is the local horizontal vector.

In the vertical we assume that all the terms except the pressure gradient and

gravity are negligible. Then we obtain

∂p

∂z
= −ρg (A.8)

which is known as the hydrostatic approximation.

The equations for the conservation of temperature and salinity close the system

∂T

∂t
= −∇ · (TU) +DT (A.9)
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∂S

∂t
= −∇ · (SU) +DS (A.10)

where DT and DS are the parametrizations of small-scale physics for temperature

and salinity.

The model uses a 2nd order centered advection scheme. In this formulation the

value at the velocity points is the mean of the two neighbouring T-point values and

is of second order accuracy. The vorticity term in Equation A.7 is calculated using

an enstrophy conserving scheme. With this scheme there is a global conservation of

enstrophy, ([(ζ + f)/eef ]
2), for a horizontally non-divergent flow (Madec, 2008).

The kinematic boundary conditions are defined at the surface and at solid earth

- ocean boundaries. At the bottom mass must be conserved and therefore

w = −Uh · ∇(H), z = H (A.11)

when H is the depth of the ocean at a given location.

At the surface boundary mass conservation gives

w =
∂η

∂t
+Uh|z=η · ∇h(η) + P − E, z = 0 (A.12)

where P − E is the mass flux of freshwater into the surface. Using Equations A.11,

A.12 and the continuity equations we find the free surface equation

∂η

∂t
= ∇ ·

[
(H + η)Ū+ P − E

]
(A.13)

which is used to calculate the height of the ocean free surface.

The wind stress is calculated from the bulk formulas

τ = ρCDU
2
10 (A.14)
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where τ is the wind stress, ρ is the density of the air, CD is the drag coefficient of

the surface and U10 is the wind speed at 10 m above the surface. Over the ocean

there is a lower coefficient of friction than over regions with highly ridged sea ice.

The dynamic boundary condition at the surface is (Madec, 2008):

τx = ν
∂u

∂z
, z = 0 (A.15)

τy = ν
∂v

∂z
, z = 0

No slip boundary condition is defined at the bottom boundary is defined:

u = v = 0 (A.16)

The temperature and salinity surface flux boundary conditions are given by

∂T

∂t
|z=0 =

Qns

ρoCpe3t
(A.17)

∂S

∂t
|z=0 =

EMP S|z=0

e3t

respectively (Madec, 2008). Where Qns is the heat flux absorbed at the surface

and includes the sensible, latent and long wave radiative fluxes. EMP is the total

surface freshwater budget, evaporation - precipitation - river runoff + change is sea

ice thickness. The heat capacity is Cp and e3t is the depth of the first model layer.

The short wave radiative flux penetrates below the surface and is absorbed in the

water column.

A.2 Model Grid

The model is configured on a standard staggered Arakawa C grid. The scalar grid

points are denoted by t, vector grid points are denoted by u and v and the vorticity
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Figure A.2: Arakawa C-grid.

grid points are denoted by f . The different grid point are shifted by a half step as

shown in Figure A.2.

The scale factors define the local metrics of the curvilinear tri-polar grid. They

are defined as the distance between the grid points. In the both the north-south

direction and the east-west directions they are given by:

e1 = (a+ z)

[(
∂λ

∂i
cos φ

)2

+

(
∂φ

∂i

)2
]1/2

e2 = (a+ z)

[(
∂λ

∂j
cos φ

)2

+

(
∂φ

∂j

)2
]1/2

e3 =

(
∂z

∂k

)
(A.18)

where a is the radius of the earth, z is the altitude above a reference sea level, λ is

the longitude and φ is the latitude. Within the thin-shell approximation (a+ z) can

be replaced by a. (Madec, 2008)
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Partial steps are used along the bottom topography. Without using the partial

steps the bottom topography is divided up into discrete steps that have the size of the

model vertical levels. These larger steps can misrepresent a shallow sloped bottom or

large localized depth gradients and this can lead to large localized vertical velocities

which leads to numerical dispersion effects. Therefore, partial steps are used to better

represent the topography (Madec, 2008) (B.Bernard et al., 2006).

The model’s salinity and temperature profiles were initialized using monthly av-

eraged Levitus salinity and temperature (Antonov et al., 2005). In order to reduce

model drift and bias on the climatological time scale a spectral nudging scheme is

applied (Thompson et al., 2006). The nudging is applied to the surface layers above

45oN for salinity only so as to not affect the interannual variability in the intermediate

waters in which we are concerned.

A.3 Forcing and Ensemble model runs

The model forcing is computed from bulk parametrization of the surface turbulent

heat, momentum and water fluxes. These turbulent fluxes are computed with model

SST, near surface atmospheric temperature, wind speed, humidity and precipitation

using the bulk formulae. They relate the wind stress (τ), sensible heat (SH) and
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latent heat (LH) to the measured quantities of the atmosphere.

τ = ρatmCd(uatm − us) (A.19)

SH = ρatmCh(Tatm − Ts)

LH = ρatmCeu(qatm − qs)

Where ρatm is the surface air density, uatm, Tatm, qatm are the wind speed, temperature

and specific humidity respectively at 10 m. uatm, Tatm, qatm at 10 m can be calculated

from wind, temperature and humidity at any height and stratification using profile

relationships. The ’s’ subscript means the value at the surface. In these formulas us is

assumed to be zero and qs is the saturation humidity at Ts multiplied by 0.98 because

of the reduced saturation of the specific humidity due to being over salt water. The

coefficients Cd, Ch, Ce are determined empirically. The total cloud cover is used to

calculate the surface radiative balance.

Ocean models are not a perfect representation of the actual physics that occurs in

the ocean. They are many parametrizations in the models and therefore there is error

associated with the model itself. The coarseness of this model allows for an ensemble

of runs to be possible. Using different initial conditions for each ensemble member

the model’s error in the results can be studied. In this thesis all results presented

are the raw mean of the ensemble members and the error bars given are the 95%

confidence level in the ensemble unless otherwise stated.

The atmospheric parameters used in this study are from NCEP/NCAR reanalysis.

Two data sets of these parameters are used in this study: they are monthly mean

data and 6-hourly NCEP/NCAR data for the period 1948-2005. This is first spun-up
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for 30years using climatological atmospheric conditions as the forcing. The model is

then run for 50 years, from 1948-2005, using the 6 hourly NCEP/NCAR forcing. A

’snap-shot’ is saved every year during this run. Six of these ’snap-shots’ were then

chosen to be the initial conditions for each of the ensemble members, the first one

after another 37 years of spin-up. The initial conditions are chosen so as to have a

spread of intensities and sign of the North Atlantic Oscillation (NAO) index. The

chosen years were 1985, 1989, 1992, 1994, 1996 and 1997. Each of these 6 initial

conditions were used to the ensemble from 1948-2005 saving the output monthly for

analysis. The output from 1965-2005 is used for analysis in this study.
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Appendix B

Determination of Surface

Geostrophic Eddy Velocity

In this study, EN and GFO along-track altimeter observations are used to estimate

eddy surface geostrophic velocity. The calculation of geostrophic velocity from along-

track data is based on the method suggested by Stammer and Dieterich (1999). This

method was previously successfully applied in a study by Brath et al. (2010) on

eddy kinetic energy (EKE), mean circulation, and eddy-driven heat transport in the

subpolar ocean.

The sea-level anomaly η′ = η − η is defined as the difference between sea level η

and the record mean η over the period of study from 2003 to 2008. The values of

η may differ from the long-term mean η̂ (the geoid) used in the calculation of the

sea-level anomalies. The latter is typically calculated over another period than the

period used in our study and may differ from η because of the presence of interannual

variability. To account for this difference, we correct the long-term effects in the
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following way. First, the time average of sea-level anomalies is calculated on a 1×0.5

grid. The grid size was chosen to ensure that there are enough sea-level anomaly

points in all grid boxes. Then, the time mean sea-level anomaly is interpolated and

added to the long-time mean η̂.

The anomaly of surface geostrophic velocities (Brath et al., 2010) is calculated on

a virtual track between two satellite tracks. The points 1, 2, and 3 are the closest

observation points on the two tracks. The η′4 is found through interpolation between

the closest data points. Then, the eddy velocity along-track components are defined

by

ũ′ =
−g

f

η′2 − η′1
D12

ṽ′ =
g

f

η′3 − η′4
D34

(B.1)

where η′1, η′2, η
′

3, and η′4 (see Figure B.1) are the sea-surface height anomalies on

separate satellite tracks and D12 > 0 and D34 > 0 are the distances between the

observations on the two satellite tracks. To ensure that the satellite tracks are close

together, data points further apart than 40 km are not used. On average the points

from the two tracks are approximately 12 km. The velocities ũ′ and ṽ′ are then

rotated by θ to get the final x and y components of velocity ~U .

The advective heat flux at the along-track points is calculated in a similar way:

u′ · ∇T ′ = ũ′
T ′

3 − T ′

4

D34
+ ṽ′

T ′

2 − T ′

1

D12
(B.2)

The values of T ′

1, T
′

2, T
′

3, andT
′

4 are interpolated in space and time from the satellite

gridded SST data onto the points 1, 2, 3, and 4 along the two satellite tracks in

Figure B.1. These along-track values of the advective heat flux convergence are then
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Figure B.1: A schematic diagram of the geometry of geostrophic velocity computation

using along-track sea-level anomalies. The black line is the virtual track for which

the velocities are calculated. The two red lines are the paths of the two satellite

along-track observations. Numbers 1−4 define the positions of the sea-level anomaly

observations that are used to compute the green velocity components. ~U is the final

velocity on the Cartesian coordinate system after a rotation by θ.
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averaged in time over a regular grid where the mean eddy heat convergence u′∇T ′ is

calculated.
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Appendix C

Eddy Detection from Surface

Altimetry

In this study, we use wavelet transformations of sea-level anomaly data as an objective

method for eddy detection. The window size of the wavelet transform is inversely

proportional to the frequency of an event. Therefore, the window size is larger for

low-frequency events than for high-frequency events. The wavelet transform is a

natural choice when the high-frequency events are expected to be rescaled versions

of a signal that has a similar structure across different scales, which is the case for

eddies. The wavelet method used in this study follows the work of Lilly et al. (2003).

The wavelet transform of a time series x(t) with a wavelet g(t), shown in Figure

C.1, is defined as

W (n)[x](τ, a) =

∫
∞

−∞

1

an
g∗

(
t− τ

a

)
dt (C.1)

The wavelet transform of x(t) with g(t) is the convolution of x(t) with rescaled
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Figure C.1: Slepian Wavelet example. The thin black (thick gray) line is the real

(imaginary) part of the wavelet, the thick dashed line is the envelope function h.

(Lilly et al., 2003)

and time-reversed versions of the wavelet. The wavelet transform

W (n)[x](τ, a) = x ∗ g(n)a (τ) (C.2)

is just the convolution of x(t) with g(t) itself.

The wavelet g(t) has the form

gτ,a(x) =
1

a
h

(
t− τ

a

)
e(2πik(x−τ)) +

ǫ

a
(C.3)

where h(t) is a slowly varying envelope and k is the wavenumber of the wavelet at

scale a. The envelope function h(t) is a real valued and even window. In order for the

wavelet analysis to yield phase information the wavelet needs to be complex, therefore

the real valued envelope function is multiplied by the e(2πik(x−τ)) term. If the window

were chosen to be the simple Gaussian window, as is often done, it would make a

Morlet wavelet. However this wavelet has long tails and makes the localization of
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time less precise. Therefore in this analysis, as per Lilly et al. (2003), the discrete

prolate spheroidal sequences (DPSS) are used, Figure C.1. The shape of the DPSS

matches better the shape of the eddies we expect to observe.

Before the wavelet analysis was done the seasonal signal was removed. The regular

seasonal cycle we defined as

A+B × cos(Ct+D) (C.4)

The first step to find the seasonal signal is to fit the data to Equation C.4. The

seasonal cycle is then removed to find the outliers in the timeseries. The low frequency

signal was then found using low pass filtering on the timeseries with no outliers and

no seasonal signal. The next step (and all subsequent steps) involves removing the

low frequency signal and the outliers identified in the last step from the original data.

The seasonal cycle is found again by fitting this data to equation 3. The outliers

and the low frequency signal are found again and removed for the next step in the

iteration. This is done until there are no more outliers and the seasonal cycle and

low frequency signal are no different than in the previous step.

The wavelet transform has a greater strength when the time series of anomalies

matches well with the wavelet of a particular scale. The largest value of the wavelet

transform modulus within some neighbourhood is an ’isolated anomaly’ as per Lilly

et al. (2003). The isolated anomaly point (τ∗, a∗) is therefore defined as

|W (τ∗, a∗)| ≥ |W (τ, a)|





|τ∗ − τ | ≤ bτa∗

|a∗ − a| ≤ baa∗

(C.5)

184



where bτ and ba are the dimensions of the neighborhood.

The phase of our complex wavelet transform at point (τ∗, a∗) indicates whether

the isolated event at that point is even or odd. The phase angle is defined as

φ∗ = arctan

(
Ws(τ∗, a∗)

Wc(τ∗, a∗)

)
(C.6)

φ∗ =





= 0 even, with a positive SSH anomaly

= ±π even, with a negative SSH anomaly

= ±π
2

odd

(C.7)

The dimensions of the apparent radius of the event signal are defined using the

phase angle in such a way that the radius can be calculated for both monopole events

(φ∗ = 0 or φ∗ = ±π) and dipole events (φ∗ = ±π/2). The radius of the dipole signal

is considered for each pole separately:

R∗ = a∗
(
sin2(φ∗) + 1

)
(C.8)

The dynamical strength of an eddy-like event is characterized by the maximum of the

vertical vorticity within the core. A non-dimensional measure of this (or an estimate

of the Rossby number) is given by

Z∗ =
(
cos2(φ∗) + 1

) V∗

fR∗

(C.9)

where V∗ is estimated assuming the event has a velocity profile expected from a solid-

body core geostrophic eddy:

V∗ = −2b
gδ∗
fR∗

(C.10)

where b is based upon the profile of the eddy (it is 0.3 for a typical monopole) and

δ∗ is the SSH excursion at the location of interest.
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Appendix D

Method of Eddy Path detection

The paths travelled by eddies that are identified using the wavelet analysis are found

by iteratively looking for eddy events that are similar and near-by in space and time.

From a list of all eddy events taking the first one, Eddy A, all other eddy events

are searched to find eddy events that are similar. Similar is defined here as the two

eddy events being within 150 km, be observed within 35 days of each other and have

amplitudes and radii that are within 0.25 and 2.5 times their previous size. If there

is an eddy event, say Eddy B, which meets this criteria then it is added to the ’eddy

path’ of Eddy A, which we will call Eddy Path α. If there are multiple eddy events

that meet the criteria then the closest in space event is chosen as the next eddy in the

path. Both Eddy A and Eddy B are removed from the list of available events before

the next step. To find the next eddy event in Eddy Path alpha the location, date and

size of Eddy B is used to search in the list again to find similar eddy events. This

iterative approach is used until no eddy events left in the list are similar to the last

eddy in the Eddy Path α. Then you have the complete Eddy Path α which starts at
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Eddy A. Next you start the search again with the list of eddy events that has all the

eddies from Eddy Path α removed.
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