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Abstract 

 

Studies on the greenhouse gases (GHG) potential and emissions from peatlands have been 

studied extensively in recent years due to the increasing atmospheric concentration of GHG 

and impact on climate change. However, most research estimating GHG emissions and 

factors regulating these emissions from peatlands are focused on the terrestrial microforms 

of peatlands. Thus, less is known about the GHG emission potential from peatland pools, 

which are the aquatic components. I conducted a study in small bog pools during the 2018 

growing season to determine the drivers and concentration of CH4 dissolved in pool surface 

waters using the headspace method. Also, a five-year growing season (2013, 2014, 2015, 

2016 and 2018) static floating chamber was used to quantify the variation in GHG flux 

from pools across the growing seasons. Results showed that pools are supersaturated with 

CH4 ranging in concentration from 2.32 to 180.98 µmol L-1, among the highest 

concentration reported for small inland waters. The super-saturation observed in these 

pools may have been influenced by several biological, chemical, and physical factors but 

were best predicted by a relationship with temperature, vegetation, dissolved organic 

carbon (DOC), and pool surface area. I also found that CO2 flux was significantly different 

across the years (p < 0.05) in which pools acted as sources during 2013 and 2018 ( 𝑥 = 

23.91 and 7.79 mmol m-2 d-1 respectively) and as sinks in 2014, 2015 and 2016 ( 𝑥 = -7.41, 

-8.98 and -9.04 mmol m-2 d-1 respectively). In contrast, pools acted mostly as sources of 

CH4 to the atmosphere in 2013, 2016 and 2018 and were negligible sinks during 2014 and 

2015 ( 𝑥 = 0.41, 0.00, -0.01, 0.19 and 0.52 mmol m-2 d-1 for years 2013 to 2018 

respectively). However, flux of CH4 was not significantly different across the years (P > 
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0.05). Pools acted mostly as negligible sinks of N2O flux, which is typical of ombrotrophic 

peatlands. N2O flux did not vary among years (p > 0.05). Pool depth was found to be the 

best predictor of CO2 fluxes, while dissolved organic carbon was found to be the major 

predictor of CH4 emission. This study shows that the concentration and emission of GHG 

from bog pools varies depending on climatic conditions and within pool biogeochemistry, 

therefore bog pools’ GHG emission potential can be influenced in future climate scenarios. 

Keywords: Peatlands, Bog pools, Greenhouse gases (GHG), Fluxes, Carbon dioxide (CO2), 

Methane (CH4), Nitrous oxide (N2O), Dissolved organic carbon (DOC), Total nitrogen 

(TN), Electrical conductivity (EC), Dissolved oxygen (DO), Hydrogen ion concentration 

(pH). Vegetation, Sink, Source. 
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Chapter 1 

1.0 Introduction and overview 

 

1.1 Introduction 

 

Peatlands are wetlands that accumulate peat (partially-decomposed organic matter) 

(Strack, 2008). They store about 450 × 1015 g C which accounts for about one-third of 

global soil carbon (C) stock and play a significant role in climate regulation (Gorham, 

1991; Turunen et al., 2002). In their pristine state, peatlands act as C sinks by taking in 

atmospheric CO2, and as sources of C by emitting CH4 into the atmosphere. Peatlands are 

a low or negligible source of N2O (Rinne et al., 2007; Maljanen et al., 2010; Kløve et al., 

2017). The ability of peatlands to sequester C is due to waterlogged and anoxic soil 

conditions that is controlled by hydrology, temperature, and vegetation characteristics of 

the boreal region (Yu et al., 2010). Many peatlands are characterized by a 

microtopographic gradient of hummocks, lawns, hollows, and pools (Rydin and Jeglum, 

2006). The distinction among these gradients has been related to differences in water table 

levels since hummocks, lawns and hollows are raised above the water table making them 

land surfaces while pools are permanently filled with water (Rydin and Jeglum, 2006, 

Comas et al., 2011). Consequently, variation in GHG emissions have been reported from 

the various peatland microforms within a contiguous peatland due to differences in 

physical and environmental conditions responsible for the microtographic variability 

(Hamilton et al., 1994; Dinsmore et al., 2009a; Pelletier et al., 2011).  

Small bog pools are a common feature in many boreal and temperate peatlands and have 

been found in all continents except Antarctica (Belyea and Lancaster, 2002; Turner et al., 
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2016). Most studies on the control of GHG emission and budget from peatlands are focused 

on the terrestrial microforms of peatland, with little attention given to peatland pools. 

Furthermore, available studies on emissions of GHG from peatland pools are based on 

short-term measurements, which do not capture variation in GHG emissions over long-

term changing weather patterns (Hamilton et al., 1994; Macrea et al., 2004; Pelletier et al., 

2014). Therefore, GHG emission potential from peatlands pools remains largely uncertain.  

1.2 Thesis questions and objectives 

 

This thesis seeks to address these questions: 

1) What is the concentration level of CH4 in bog pools? 

2) What are the controlling factors regulating the concentration of CH4 in pools? 

3) What is the growing season flux of GHG (CO2, CH4, and N2O) from bog pools? 

4) Do fluxes of GHG vary temporally in peatland pools? 

The following specific objectives were formulated to answer these questions: 

1) measure the CH4 concentration in small bog pools (chapter 2),  

2) identify local drivers of dissolved CH4 concentration (chapter 2) 

3) quantify and compare the variations in fluxes of CO2, CH4, and N2O from bog pools 

over five growing seasons in an ombrotrophic peatland (chapter 3).  

This study will contribute to the inventory of GHG fluxes from bog pools.  
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1.3 Thesis outline 

 

This thesis is divided into four chapters, with relevant literature being reviewed within each 

chapter. 

Chapter one provides an introduction and basic overview of current research literature, 

which includes wetlands, peatlands, bog pools, and greenhouse gas exchange in natural 

peatlands. 

Chapter two and three are the main contribution of this thesis and written in a format 

suitable for publication in scientific journals. Chapter two presents the result of the 

concentration of dissolved CH4 in pools and drivers of its production and concentration. 

Chapter three presents the results of the multiyear diffusive greenhouse gas flux from the 

pools and the controlling factors regulating its emission. Although there is an overlap of 

physicochemical data in the growing season of 2018 in both chapters, chapter two uses 

data from seven measured pools measured from mid-June to October while chapter three 

uses data from three pools out of the seven pools in chapter two, and its data included 

measurements from May. However, chapter two discusses the dissolved CH4 measured in 

pools over one growing season (2018) which provides the answer to my thesis questions 

and objectives (1 and 2), chapter three on the other hand, discusses the temporal variation 

in diffusive flux of CO2, CH4 and N2O for five growing seasons (2013, 2014, 2015, 2016, 

2018) and provides answers to my thesis questions (3 and 4) and objective (3). 

Chapter four consists of the summary and conclusion of the significant findings from the 

research. 
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1.4 Overview of research 

 

1.4.1 Wetlands 

 

According to Banner and MacKenzie (2000), “Wetlands ecosystems are areas where a 

water table is at, near or just below the surface and where soil are water-saturated for a 

sufficient length of time such that excess water and resulting low soil oxygen levels are 

principal determinants of vegetation and soil development”. Due to differences in 

topography, climate, hydrology, water chemistry, vegetation and other factors including 

human disturbance the distribution of the extent of wetlands vary widely across the globe 

(U.S. EPA, 2018). In Canada, wetlands are classified as marsh, swamp, fen, and bog 

(National Wetlands Working Group, 1997). The classification into these classes is based 

on physiognomic and dominance type approach (Rydin and Jeglum, 2006). Marshes are 

characterized by slow-moving water or standing water with submerged, floating-leaved or 

emergent plant cover while the swamp is forested or thicketed wetland whose water comes 

from underlying soil or lateral groundwater flow (Rydin and Jeglum, 2006). A fen is a 

minerotrophic peatland with a water table at or slightly below the surface while bogs are 

ombrotrophic peatlands with the surface above the surrounding terrain or isolated from 

laterally moving mineral-rich soil water (Rydin and Jeglum, 2006). Sometimes, peatland 

landscape may contain areas of both fen and bog (Beadle et al., 2015). Therefore, not all 

wetland areas are peatlands.  

 



5 
 

1.4.2 Peatlands characteristics 

 

Peat is partially decomposed plant and animal constituents accumulating under anoxic and 

water-saturated conditions (Rydin and Jeglum, 2006). Therefore, peatlands are ecosystems 

with peat covered terrain. In Canada, a minimum depth of 40 cm peat is required to be 

classified peat while in many other countries a minimum depth of 30 cm is required 

(National Wetlands Working Group, 1997; Joosten and Clarke, 2002). Peatlands are a 

significant store of the Earth's carbon, storing about 450 × 1015 g C equivalent or about 

one-third of global soil C stock (Gorham, 1991; Turunen et al., 2002). The accumulation 

of carbon in peatlands is due to the slow decomposition and accretion of partially 

decomposed biomass (Klove, 2017). They are estimated to cover an area of about 400 Mha 

which is equivalent to about 3% of the Earth’s surface (Strack, 2008; Yu et al., 2010; Page 

et al., 2011). About 350 Mha of this distribution, is situated in the Northern hemisphere 

covering North America and Europe (Strack, 2008). Peatlands cover about 113.6 Mha or 

12% of the Canadian land area of which 64% lies in the Boreal Wetland Region and 33% 

in the Subarctic Wetland Region, giving a total 97% (Tarnocai, 2006; Strack, 2008). The 

term minerotrophic is used to indicate peatlands that are influenced by mineral soil 

groundwater while ombrotrophic indicates peatlands which are fed water solely by 

precipitation (Beadle et al., 2015). Ombrotrophic peatlands are characterized by nutrient 

poor, acidic conditions, and peat depth of more than 40 cm (National Wetlands Working 

Group, 1997; Rydin and Jeglum, 2006). In many peatlands, a microtopographic gradient 

of hummocks, lawns, hollows, and pools are formed due to interactions between the 

underlying terrain, climate, and hydrology (hydromorphology; Glaser, 1992; Rydin and 
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Jeglum, 2006). Hummocks, hollow and lawns are raised about 5-50 cm above the water 

table and composed of a variety of vegetation while pools are permanently filled with water 

with little vegetation within or surrounding their edges (Rydin and Jeglum, 2006). The 

controlling physical condition dividing peatlands into a microtopographic gradient is based 

on groundwater table levels (Sjörs, 1948; Rydin and Jeglum, 2006). 

1.4.3 Bog pools 

 

Bog pools occur over a variety of climatic conditions and have been found in all continents 

except Antarctica (Glaser 1998; Belyea and Lancaster, 2002; Turner et al., 2016). They are 

secondary features on peat surfaces resulting from reduced peat accumulation in 

depressions (Forster and Glaser, 1986; Sjörs, 1990; Comas et al., 2011). After initial 

formation, they are deepened due to changes in vegetation (Sjörs 1990, Rydin and Jeglum, 

2006). The interaction of vegetation decomposition and factors such as climate, local 

hydrology, and topography determines the rate of peat accumulation establishing pool 

patterning (Belyea and Lancaster, 2002; Beadle et al., 2015). As the size of pools increases, 

they become deeper and elongated in shape (Forster et al., 1986). The age of pools 

determines its location in the peatlands, as younger pools, which are small and shallow, are 

located at the margins while older pools, which are larger and deep, are located in the center 

(Belyea and Lancaster, 2002). Bog pools are characterized by low pH, low levels of 

nutrients and primary productivity but with high levels of dissolved organic matter (Rydin 

and Jeglum, 2006; Beadle et al., 2015). 
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1.4.4 Greenhouse Gas Exchange (GHG) in Natural Peatlands 

 

Peatlands play a significant role in the balance of GHG. Generally, in their pristine or 

natural state, peatlands are sinks of CO2 due to the saturated waterlogged soil condition 

inhibiting aerobic decomposition and favoring the accumulation of organic soil matter 

(Dise, 2009; Teh et al., 2011). The net sink uptake is estimated to range from -2.5 to -144 

g C m-2 yr-1 (Roulet, 2007; Nilsson et al., 2008; Olson et al., 2013; Fortuniak et al., 2017).  

The net ecosystem exchange (NEE) of CO2 uptake is determined by the difference between 

the process of gross ecosystem photosynthesis (GEP) and ecosystem respiration (ER) 

(Strack, 2008). Photosynthesis is mostly carried out by plants, while ecosystem respiration 

includes soil and plant respiration (Strack, 2008). 

Conversely, peatlands are natural sources of CH4 due to the anaerobic soil condition which 

promote CH4 production (Strack, 2008). Peatlands are estimated to emit an average of 70 

Tg yr-1 ranging from 3.7 to 65.7 g C m-2 yr-1 (Gorham, 1991; Turetsky et al., 2008; Moore 

et al., 2011). The net flux of CH4 emission from peatland is determined by the balance 

between production, consumption, and transport (Strack, 2008; Lai, 2009). Production of 

CH4 is carried out by methanogenic bacteria or methanogens in highly reduced conditions 

in the saturated zone (Strack, 2008). This is emitted into the atmosphere through either 

diffusion, ebullition (bubbling), or mass flow or diffusion via vascular plants (Strack, 

2008). CH4 can be oxidized through methanotrophic bacteria when it moves through a 

reduced zone in peat or the rhizosphere of vascular plants (Stack, 2008). N2O are low or 

negligible for natural peatlands and are usually net sinks in many ombrotrophic bogs 
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(Martikainen et al., 1993). The net flux of N2O is determined by the balance between 

nitrification and denitrification (Soued et al., 2015).  

Emission of GHG from waterbodies in peatlands is associated with gas transfer across the 

water surface to the atmosphere and referred to as ‘on-site’ emissions using the IPCC 

terminology (IPCC, 2014). These emissions may include degassing of CO2, CH4 and N2O 

transported from the peat matrix and gas produced within the waterbody or its underlying 

sediment as labile organic substrates are metabolized (Evans et al., 2016). GHG from 

waterbodies may also be emitted through diffusive fluxes across the water surface, due to 

over-saturation of the gas in the water column relative to the atmosphere or through 

ebullition through the water column (Billet and Moore, 2008; Evans et al., 2016). 

1.4 Contribution statement 

 

The research site, refinement of objectives and funding for sample collection and analysis 

were provided by Dr. Jianghua Wu. I formulated the objectives, analyzed data and wrote 

the first draft of this thesis. Dr. Jianghua Wu reviewed, provided edits, comments and 

revised this thesis. My committee member, Dr. Robert Scott suggested the statistical tools 

for analyzing data and data presentation, provided edits and comments to this thesis. Dr. 

Junwei Luan, Dr. Mei Wang collected the diffusive flux data of GHG for the growing 

seasons of 2013, 2014 and 2015, Raid Eissa, Asare Gyimah and Maryam Hajheidari 

collected the diffusive flux data of GHG for the growing season of 2016. 
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Chapter 2 

 

2.0 Drivers of methane super-saturation in small bog pools 

 

2.1 Introduction 

 

Methane (CH4) has 86 times greater global warming potential than CO2 in a 20-year time 

horizon (IPCC, 2013). Atmospheric CH4 concentration increased 150% from 722 ppb to 

1803 ppb between 1990s and 2011 following a period of stagnation, since pre-industrial 

times (IPCC, 2013). While atmospheric CH4 emission has largely been attributed to 

anthropogenic human activities, about one-third of its emission are driven by natural 

sources (Nisbet et al., 2014). Wetlands are the most significant natural sources of CH4, 

contributing to about 20% of atmospheric CH4 emissions (Mitra et al., 2005b, IPCC 2013; 

Sabrekov et al., 2017). CH4 emissions from wetlands will likely increase due to climate 

warming as ecosystem C cycling reacts positively with warmer temperatures, stimulating 

organic matter breakdown and CH4 release to the atmosphere (Bridgham et al., 2013, 

Stanley et al., 2016). 

Peatlands are wetlands with waterlogged, anoxic soils composed of partially decomposed 

organic matter (Strack, 2008). The rich organic sediments and inputs of labile organic C 

from root exudates provide suitable conditions for CH4 production by methanogens (Mitra 

et al., 2005a; Sabrekov et al., 2017; Rinne et al., 2018). Total CH4 emissions from peatlands 

are the balance between production by methanogens in the anaerobic peat layer and 

consumption or oxidation by methanotrophs in the aerobic peat layer (Rinne et al., 2018). 

The regulatory controls of CH4 production and consumption have been related to water 
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table position, temperature, vascular plant activity and substrate quality (Waddington et 

al., 1996; Bellisario et al., 1999; Luan and Wu, 2015).  However, most of the regulatory 

control has been studied on terrestrial peatlands microforms, and factors influencing CH4 

flux in peatland pools is not well known.  

Small permanent natural pools are a common feature in many boreal and temperate 

peatlands (Belyea and Lancaster, 2002). Their development occurs over a number of years 

through differential peat accumulation within a peatland and has been related to several 

factors such as topography, hydrology, and geology, which cause their variation in shape, 

area, and depth (Belyea, 2007). However, few studies have been conducted to measure the 

CH4 production potential of peatland pools compared to other microforms of peatlands. 

Conventional thinking is that aerated water and high oxygen concentration of small water 

bodies is not suitable for CH4 production (Trimmer et al., 2012; Thornton et al., 2016). 

Peatland pools may have also not received much attention due to the difficulty of mapping 

pools less than 0.1 km2 invisible to satellites (Lehner, and Döll, 2004; Verpoorter et al., 

2014).  

Small bog pools may have a high potential for CH4 production due to their intrinsic small 

water size and water volume, which allows for quicker warming during summer and 

subsequent elevated CH4 production since methanogenesis increases with increasing 

temperature (Yvon-Durocher et al., 2014). The increased contact between surface waters 

and the anoxic bottom sediments of shallower pools helps to reduce CH4 oxidation, leading 

to higher CH4 concentrations in these waters (Juutinen et al., 2009; Kankaala et al., 2013; 

Holgerson and Raymond, 2016). Most importantly, peatland pools are underlain with high 
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organic matter sediments in the form of decomposing peat, which can promote the 

formation of anoxic conditions facilitating methanogenesis (Zender, 1978; Juutinen et al., 

2009). Available studies on small peatland pools have reported supersaturated conditions 

of CH4 in surface waters (Hamilton et al., 1994; Riera et al.,1999; Pelletier et al., 2014). 

Due to the high dissolved CH4 concentration in these waters relative to their atmospheric 

concentrations, they have been reported to result in evasion of CH4 from the surface water 

to the atmosphere (Billet and Moore, 2008; Wanninkhof, 2014; Pelletier et al., 2014).  

However, little is known about the regulatory drivers of CH4 production such as 

biogeochemical differences in local conditions at different regions (Saarnio et al., 2009; 

Saunois et al., 2016). 

The study of small bog pools is especially important in the northern hemisphere due to 

their relative abundance. For instance, Canada’s inland waters (excluding the Great Lakes) 

are estimated to cover about 884,000 km2 or 9% of its surface area, and in these estimations 

contain about 5.4 million small water bodies less than 0.001 km2 (Butman et al., 2018). 

Small peatland pools with a surface area of less than 1 km2 are estimated to cover about 

77% of the surface area of the Boreal region of Quebec, Canada (Beadle et al., 2015). Such 

small inland waters may contribute significantly to CH4 production and, since they are 

widely distributed across the Earth surface, could contribute significantly to the total CH4 

budget when pooled together. The aim of this study is to examine factors responsible for 

CH4 production in small bog pools in boreal peatlands. Specifically, our objectives are to 

1) measure the CH4 concentration in small bog pools 2) identify local drivers of dissolved 

CH4 concentration. 
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2.2 Methodology 

 

2.2.1 Study site  

 

The study was conducted at an ombrotrophic peatland located at Robinson’s Pasture, 100 

km southwest of Corner Brook, Newfoundland, Canada (48̊ 26́ N, 58̊ 66́ W). The 30-year 

climate normal (1981 – 2000) mean daily temperature during the coldest and warmest 

month is -10.7 °C in February and 20.6 °C in August. The regional climate is classified as 

oceanic, with annual mean precipitation of 1340.4 mm and mean annual air temperature of 

5.0 °C (Environment Canada, 2018). The research site is a peatland complex made up of a 

discontinued pasture and natural bog. A detailed description of the site was provided by 

Luan and Wu (2014). My study was restricted to the flat, gently sloping natural peatland 

portion consisting of hummocks, hollows, lawns, and pools. The pools cover about 10% of 

the total surface area and range in size from 10 – 200 m2 with water depth less than 1 m. I 

chose seven unconnected pools with permanent standing water. Pools were selected to be 

representative of the range of water depth, pool size, and bottom composition of the site. 

Pools are fed through precipitation, freeze up entirely during winter, and thaw in spring. 

The spring thaw causes an elevated water level and temporary connection of pools. The 

open ice-free period lasts for six to seven months from May/June to October/November 

depending on the end and start of winter for that given year. 
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2.2.2 Sampling Design 

 

All measurements were carried out weekly from mid-June to August and biweekly from 

September to October 2018, except for pool depth and vegetation, which was measured 

once on the 20th of July, 2018. All measurements were carried out between 9:00 – 15:00h 

local time. The determination of dissolved methane concentration and local drivers was 

carried out by collecting water samples from the seven studied pools at 10cm below the 

water surface. The pools are shallow and well mixed so surface water is representative of 

the entire depth. Daily air temperature data at the time of sampling and precipitation data 

for each sampling date was obtained from an eddy covariance tower located at the study 

site. 

2.2.3 Physicochemical Measurements  

 

2.2.3.1 Pool morphology and vegetation 

 

A one-time survey was used to assess pool depth and vegetation cover to determine spatial 

variability and eliminate variation in water levels caused by precipitation. Pool depths were 

manually determined by lowering a lightly weighted perforated disk attached to a rope into 

the pool until its base rests on the surface of the bottom. Seven to ten measurements were 

made at random locations within each pool depending on its size. Mean pool depth is used 

in the subsequent analysis.  

Surface area and perimeter of each pool were estimated using Google Earth Pro.  Shape 

complexity was determined by calculating shape index (SI) according to:SI =
p

2√πa
  ; 

(where ‘P’ is the pool perimeter (m) and ‘a’ is the pool area (m2)).  
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SI is unit-less and has a range of ≥ 1, in which a circle has a value of 1, with larger values 

indicating increasing shape complexity (Turner et al., 2016; Arsenault et al., 2018). 

Vegetation cover surrounding and within pools was visually inspected and included both 

vegetation within the pool (submerged and emergent) and along the pool perimeter. 

Vegetation cover was estimated using the Braun–Blanquet (1932) method employed in 

previous studies (e.g. Forster and Glaser, 1986; Turner et al., 2016, Arsenault et al., 2018) 

where cover-abundance scale indicated: N = not many individual, 1-10 individuals; T = 

sparsely present, cover less than 5%; 1 = plentiful, cover less than 5%; 2 = very numerous, 

cover 5– 25%; 3 = cover 25–50%; 4 = cover 50–75%; 5 = cover more than 75%.   

2.2.3.2 Water chemistry 

 

Water temperature, electrical conductivity (EC), dissolved oxygen (DO), and barometric 

pressure were measured in-situ using an HQ40d multi-parameter meter (Hach Company, 

Loveland, Colorado, USA).  The hydrogen ion concentration (pH) was also measured in-

situ using an Oakton EcoTestr pH2 waterproof pH meter. The multi-parameter meter and 

pH meter were calibrated before the start of data collection.  

Dissolved organic carbon (DOC) and total nitrogen (TN) concentration were determined 

for each pool by collecting water samples 10cm below the surface water using a 60mL 

syringe. Samples were filtered using a 0.45µm syringe filter to remove particulate matter, 

acidified, and analyzed using the Shimadzu TOC-LCPH/TN analyzer (Shimadzu Inc., 

Kyoto, Japan).  
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2.2.4 Dissolved CH4 concentration  

 

Dissolved CH4 gas samples were taken using the headspace method (Dinsmore et al., 2009; 

Turner et al., 2016; Arsenault et al., 2018). A 60mL syringe was used to directly draw in 

40mL pool water from the pool, and then another 60mL syringe was used to draw in 

ambient atmospheric air of which 20mL was injected into the water sample syringe, and 

the remaining ambient air was kept aside to calculate ambient concentration. The water 

sample syringe was subsequently equilibrated at pool temperature by shaking vigorously 

under water for one minute to shift the dissolved gases from the water phase into the 

gaseous phase. The equilibrated headspace was then extracted into an empty gas-tight 

syringe. Headspace samples were analyzed within one week of sample collection using the 

Bruker GHG gas chromatography (with CH4 2.52 ppm detection limit). Concentrations of 

CH4 in the pool water were calculated from the equilibrated headspace and ambient 

concentration using Henry’s law for headspace concentrations (Hope et al., 2001).  

2.2.5 Statistical Analysis 

 

To evaluate the gas saturation level of dissolved CH4 relative to atmospheric concentration, 

I compared the average monthly CH4 air concentrations from June to October, 2018 (2.0 

ppm) recorded by the Eddy Covariance Tower located at the study site, to the mean 

dissolved CH4 concentration measured within the pools. All data were tested for normality 

using the Shapiro-Wilk test and transformed when necessary to meet the conditions of 

homogeneity of variance. Differences in concentration of CH4 among pools were tested 
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using one-way ANOVA. Significant ANOVA tests were followed with Tukey post-hoc 

tests.  

Simple linear regression and Pearson’s correlation analyses were used to examine 

relationships and correlations among the physiochemical variables and surface dissolved 

CH4 concentration. Stepwise linear regression and the Akaike Information Criterion (AIC) 

(Burnham and Anderson, 2002; Akaike, 2011) were finally applied to select the best model 

explaining CH4 concentration in pool water. Stepwise multiple linear regression was built 

using AIC best subset method. Variables included in the model were determined for 

collinearity by calculating the variance inflation factor (VIF). Variables with a VIF of ≥ 7 

were excluded from the model (Kock and Lynn, 2012). Statistical analysis was done using 

IBM SPSS 25.0. 
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2. 3 Results 

 

2.3.1 Site Characteristics 

 

Pools varied in depth and area from 40.0 to 61.0 cm (0.4 – 0.61m) and 27.7 to 165 m2 

(0.0000277 – 0.000165 km2) respectively. Pool shapes were not very complex, as most 

were nearly circular (SI=1.13, 1.17, 1.18), linear (SI = 1.94), or convoluted (SI= 2.33) 

(Table 2.1).  Pools had emergent vegetation consisting of Nuphar variegata (Yellow Pond-

lily) and Eriocaulon aquaticum (White Buttons) during the summer months and submerged 

vegetation consisting of Utricularia spp. and algae. The pools were surrounded by sedges, 

shrubs, Sphagnum spp. and grasses all year round. Smaller pools had higher vegetation 

cover, with pool #2 and #4 having the most abundant cover with vegetation while pool #5 

was the least covered with vegetation (Table 2.1).   

2.3.2 Seasonal variation and correlation among physicochemical variables 

 

Mean air temperature at the study site ranged from 3.9 to 25.2 °C while the pool water 

temperature ranged from 6.6 to 25.8 °C throughout the study (Fig. 2.1). Surface water 

temperature was not significantly different among pools (ANOVA, F (6, 98) = 0.50, p = 0.81, 

Table 2.1) but significantly differed across the sampling dates (ANOVA, F (14, 90) = 203.87, 

P < 0.001) with the highest mean temperature in August and lowest temperature in October 

(Fig. 2.1), the onset of winter in Newfoundland. Pool water temperature positively 

correlated with air temperature and negatively with precipitation (Table 2.3; p < 0.01 for 

both).  
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DOC concentration ranged from 11.35 to 43.90 mg L-1 with a mean of 25.61 ± 0.82            

mg L-1. Concentration of DOC was different among pools (ANOVA, F (6, 84) = 7.79, P < 

0.001), with pool #2 having the highest DOC concentration and pool #5 having the lowest 

concentration (Table 2.1). The concentration of DOC also varied across the sampled dates 

(ANOVA, F (12, 78) = 7.48, P < 0.001) with the highest concentration of 43.90 mg L-1 

recorded in September, and lowest concentration of 11.35 mg L-1 recorded in June (Fig. 

2.2a). DOC was positively correlated with TN, EC and air temperature and negatively 

correlated with DO, pH, and precipitation (all p values < 0.05). 

The TN concentrations in the measured pools were low with a mean of 0.56 ± 0.02              

mg L-1 ranging from 0.07 to 1.07 mg L-1 (Table 2.1). TN concentration was not different 

among the pools (ANOVA, F (6, 98) = 0.26, P = 0.95, Table 2.1) but did vary across the 

sampling dates (ANOVA, F (14, 90) = 3.83, P < 0.001, Fig. 2.2b). TN was not correlated with 

any of the other variable measured (Table 2.3). 

DO concentration ranged from 6.63 to 11.41 mg L-1 with a mean of 8.97 ± 0.10 mg L-1. 

Concentration of DO was different across the sampling dates (ANOVA, F (14, 90) = 41.06, 

P < 0.001, Fig. 2.2c), with a concentration of 6.63 mg L-1 in August and 11.41 mg L-1 in 

October. DO concentration did not vary among the pools (ANOVA, F (6, 98) = 0.81, P = 

0.56, Table 2.1). DO was positively correlated with precipitation and negatively correlated 

with water and air temperature (Table 2.3; all p values less than < 0.05).  

EC ranged from 39.80 to 86.80 µs cm-1 with a mean of 51.21 ± 0.89 µs cm-1. Conductivity 

of pool water varied across the sampled dates, with a conductivity of 39.80 µs cm-1 in June 
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and 86.80 µs cm-1 in October (ANOVA, F (14, 90) = 31.09, P < 0.001, Fig. 2.2d), but did not 

vary among pools (ANOVA, F (6, 98) = 2.08, P = 0.06, Table 2.1). EC was positively 

correlated with DO and vegetation cover and negatively correlated with pH, water and air 

temperature (Table 2.2; all p values less than < 0.05). 

pH ranged from 3.60 to 4.60 with a mean of 4.18 ± 0.02. pH varied across the sampling 

dates (ANOVA, F (14, 90) = 22.58, P < 0.001, Fig. 2.2e) but did not vary among the pools 

(ANOVA, F (6, 98) = 1.18, P = 0.32, Table 2.1). pH only positively correlated with water 

and air temperature but did not correlate with any other variable measured (Table 2.3; all 

p values less < 0.05).  

 

 
 

Figure 2.1: Daily mean air and water temperature during the time of sampling. Error bars 

represent standard errors. 
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Figure 2.2a: Seasonal variation of dissolved organic carbon (DOC) measured in the seven 

studied pools over the growing season of 2018. 
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Figure 2.2b: Seasonal variation of total nitrogen (TN) measured in the seven studied pools 

over the growing season of 2018. 
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Figure 2.2c: Seasonal variation of dissolved oxygen (DO) measured in the seven studied 

pools over the growing season of 2018. 
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Figure 2.2d: Seasonal variation of  electrical conductivity (EC) measured in the seven 

studied pools over the growing season of 2018. 

 

 



28 
 

 
 

Figure 2.2e: Seasonal variation of the potential of hydrogen (pH) measured in the seven 

studied pools over the growing season of 2018. 
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Table 2.1: Physicochemical characteristics of the seven sampled pools during the study period.  
              
  Coordinates DOC  

(mg L-1) 

TN 
(mg L-

1) 

EC  

(µs cm-1) 

DO  
(mg L-1) 

pH Water 

T. (°C) 

Depth 

(cm) 

Area 

(m2) 

Perimeter 

(cm) 

SI Vegetation 

cover 

 
Pool 

1 

48˚15' 39.03"N,  

58˚ 39'45.36"W 
23.11 bcd 

(15.78-

32.26) 

 0.53 a 

(0.12-

1.02) 

 51.58 a 

(46.40-

71.60) 

8.64 a 

(7.07-

10.84) 

4.23 a 

(3.70-

4.50) 

17.45 a 

(7.10-

23.00) 

 

61 148 48.8 1.13 4 

 
Pool 

2 

48˚15' 38.32"N,  

58˚ 39'44.82"W 
 32.28 a 

(19.01-

43.90) 

 0.58 a 

(0.15-

0.81) 

 56.73 a 

(49.20-

85.40) 

 8.91 a 

(7.01-

10.92) 

4.15 a 

(3.60 - 

4.50) 

16.96 a 

 (6.90-

22.00) 

 

40 27.7 22 1.18 5 

 
Pool 

3 

48˚15' 38.33"N,  

58˚ 39'44.09"W 
21.94 cd 

(13.90-

28.78) 

0.53 a 

 (0.24 -

0.74) 

48.77 a 

(42.60-

70.90) 

9.17 a 

 (7.76-

10.75) 

4.17 a 

(3.60 - 

4.50) 

17.69 a 

 (7.00-

23.60) 

 

43 74.7 45.8 1.49 3 

 
Pool 

4 

48˚15' 37.78"N,  

58˚ 39'43.30"W 
26.65 abc 

(18.05 -

40.51) 

0.56 a 

(0.28 -

0.77) 

52.36 a 

(43.10-

86.80) 

8.67 a 

(6.63-

10.27) 

4.11 a 

(3.80 - 

4.50) 

17.64 a 

 (6.80-

23.10) 

 

43 93.1 50 1.46 5 

 
Pool 

5 

48˚15' 37.33"N, 

58˚ 39'46.78"W 
19.63 d 

(11.35 -

27.39) 

 0.59 a 

(0.07-

1.07) 

 46.17 a 

(39.80-

68.70) 

 9.37 a 

 (7.86-

11.41) 

4.27 a 

 (3.80-

4.60) 

18.95 a 

(7.10-

25.00) 

 

42 38.4 25.6 1.17 2 

 
Pool 

6 

48˚15' 36.14"N,  

58˚ 39'48.78"W 
22.17 cd 

(15.25-

29.74) 

 0.55 a 

(0.17- 

0.93) 

50.28 a 

(44.80-

76.90) 

9.02 a 

(7.54-

11.13) 

4.16 a 

 (3.80 - 

4.40) 

19.03 a 

(6.60-

25.30) 

 

58 107 71 1.94 4 
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Pool 

7 

48˚15' 37.44"N,  

58˚ 39'49.18"W 
30.46 ab 

(18.11 - 

43.88) 

 0.59 a 

(0.00 -

1.10) 

 52.59 a 

(44.30-

82.60) 

 9.00 a 

(8.00-

11.00) 

 4.15 a 

(3.80 - 

4.50) 

19.62 a 

 (6.60-

25.80) 

45 165 106 2.33 3 

 
                                             

            

 
Note: Data values are means and range of values given in parenthesis. Common lowercase letter indicate no significant 

differences (p > 0.05) between pools. 

Dissolved Organic Carbon (DOC), Total Nitrogen (TN), Electrical Conductivity (EC), Dissolved Oxygen (DO), Water 

Temperature (Water T.), and Shape Index (SI). 
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2.3.3 CH4 concentration 

 

Surface dissolved CH4 concentration ranged from 2.32 to 180.98 µmol L-1 with an overall 

mean of 39.06 ± 3.92 µmol L-1 equal to ~ 437-fold supersaturation. The surface dissolved 

CH4 concentration was significantly different across the pools (ANOVA, F (6, 97) = 8.81, p 

< 0.001) with smaller pools having the highest concentration compared to pools with larger 

surface area (Fig. 2.3). Mean monthly CH4 concentration was significantly different across 

the sampling dates (ANOVA, F (4, 99) = 6.35, P < 0.001), with a mean of 13.15 µmol L-1 in 

June, rising to a peak of 50. 95 and 64. 23 µmol L-1 in August and September respectively 

and then declining to 17.96 µmol L-1 in October (Fig. 2.4). 

 
Figure 2.3: Surface water dissolved CH4 concentration across the pools over the sampled 

period. Error bars represent standard errors. Different lowercase letters represents 

significant differences (p > 0.05) between pools. 
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Figure 2.4: Surface water dissolved CH4 concentration across the sampled months  

 

 

2.3.4 Physiochemical variables influencing CH4 concentration 

 

The correlation between CH4 concentration and physicochemical parameters is reported in 

Table 2.3. CH4 concentration had a strong positive correlation with DOC and air 

temperature (r = 0.51, 0.53 respectively) both significant (p < 0.01) and weak positive 

correlation with TN, water temperature and vegetation (r = 0.24, 0.33, 0.26 respectively) 

significant (p < 0.05, p < 0.01 and p < 0.01 respectively). Conversely, it correlated 

negatively with DO, pool depth, surface area and precipitation (r = -0.44, -0.41, -0.39,           

-0.31 respectively), all significant (p < 0.01).  However, it did not correlate with EC and 

pH (Table 2.3). Simple linear regression analysis showed that CH4 concentration had a 

stronger relationship with air temperature (Linear regression, F (1, 102) = 40.68, p < 0.001, 
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R2 = 0.29, N= 104) than water temperature (Linear regression, F (1, 102) = 12.70, p < 0.001, 

R2 = 0.11, N= 104). Water temperature was therefore excluded when building the stepwise 

linear regression and AIC since it had a weaker relationship with CH4 concentration and a 

VIF of ≥ 7. The minimum adequate model based on stepwise linear regression suggests 

that CH4 concentration in the pools can be modelled based on air temperature, vegetation 

cover, DOC and Area (adjusted R2 = 0.64, Fig. 2.5, Table 2.2.1, 2.2.2, 2.2.3) expressed by 

the equation: 

 

Log (CH4) = 1.893 + 0.034 * log (air temperature) + 0.259* log (vegetation cover) 

 - 0.012 * log (DOC) – 0.002 *log (area)   --- Equation 1 
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Table 2.2.1: Parameter Effects on Dissolved CH4 Concentration in AIC Stepwise Linear Regression Model 

Source Sum of Squares df Mean square F Sig. Importance 

Corrected model 11.712 5 2.342 38.006 0  
AirTemp_transformed 3.72 1 3.72 60.361 0 0.608 

Veg.cover 1.388 2 0.694 11.259 0 0.227 

DOC_transformed 0.558 1 0.558 9.047 0.003 0.091 

Area_transformed 0.456 1 0.456 7.392 0.008 0.074 

Residual 6.04 98 0.062    
Corrected model 17.753 103         

 

 

Table 2.2.2: Coefficients of Dissolved CH4 Concentration in AIC Stepwise Linear Regression Model 

          95% Confidence 

interval 

  

Model Term Coefficient Std.Error t Sig. Lower Upper Importance 

Intercept 1.893 0.111 17.129 0 1.674 2.112  
AirTemp_transformed 0.034 0.004 7.769 0 0.025 0.042 0.608 

Veg.cover_transformed 0.259 0.07 3.699 0 0.12 0.398 0.227 

DOC_transformed 0.012 0.004 3.008 0.003 0.004 0.02 0.091 

Area_transformed -0.002 0.001 -2.719 0.008 -0.003 0 0.074 

 

 

 

 

 

 

 



35 
 

 

Table 2.2.3: Model Building Summary of Dissolved CH4 Concentration in AIC Stepwise Linear Regression 

            Model           

    1 2 3 4 5 6 7 8 9 10 

Information Criterion -283.11 -282.58 -282.16 -281.88 -281.36 -281.32 -281.31 -281.31 -281.08 -281.90 

 Veg.cover_transformation          

 DOC_transformed          

 AirTemp_transformed          

 Area_transformed          

 TN_transformed          

Effect pH_transformed           

 DO_transformed          

 EC_transformed           

 Precipitation_transformed          

  Depth_transformed                    
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Table 2.3: Pearson correlation coefficients of CH4 concentration and physicochemical variables measured in the seven study 

pools  
             
  CH4_log DOC  TN  EC  DO  pH Water T. Air T. Veg. cover Area  Depth  Prec. 

CH4_log 1.            

DOC (mg L-1) .51** 1.           

TN  (mg L-1) .24* .46** 1.          

EC (µs cm-1) -.18 .34** .05 1.         

DO (mg L-1) -.44** -.22* -.02 .45** 1.        

pH .05 -.38** -.07 -.62** -.1 1.       

Water T. (°C) .33** -.01 -.03 -.77** -.78** .34** 1.      

Air T.  (°C) .53** .27** .13 -.61** -.87** .24* .86** 1.     

Veg. cover .26** .38** -.03 .27** -.17 -.17 -.11 -.02 1.    

Area (m2) -.39** .05 -.02 .02 -.1 -.05 .07 .01 -.03 1.   

Depth (cm) -.41** -.16 -.05 .02 -.1 .04 .01 -.01 .21* .55** 1.  

Prec. (mm) -.31** -.36** -.11 .14 .33** .19 -.40** -.42** . . . 1. 

Note: Significant correlation indicated by: p < 0.01, “**”, p < 0.05, “*”  

(N = 104 for CH4, 90 for DOC, 91 for TN and 105 for other variables) 

Dissolved organic carbon (DOC), Total nitrogen (TN), Electrical conductivity (EC), Dissolved oxygen (DO), Hydrogen ion 

concentration (pH), Air Temperature (Air T.), Water Temperature (Water T.) Vegetation cover (Veg. cover) and Precipitation 

(Prec.). 
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Figure 2.5a: Relationship between dissolved CH4 concentrations and air temperature across 

the seven measured pools. 
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Figure 2.5b: Relationship between dissolved CH4 concentrations and vegetation across the 

seven measured pools. 
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Figure 2.5c: Relationship between dissolved CH4 concentrations and dissolved organic 

carbon (DOC) across the seven measured pools. 
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Figure 2.5d: Relationship between dissolved CH4 concentrations and area across the seven 

measured pools. 
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2.4 Discussion 

 

2.4.1 Dissolved CH4 Concentration in the bog pool 

 

This study shows that small bog pools are super-saturated with dissolved CH4 and that CH4 

in these pools is influenced by climatic variables, C inputs and pool morphology (Table 

2.3, Equation 1, and Figure 2.5). Apart from the major drivers indicated in the model, other 

parameters significantly correlated with dissolved CH4 concentration suggesting that 

biological, physical and chemical factors are connected in the production of CH4 in aquatic 

environments. sThe strongest predictor of CH4 in these pools was temperature followed by 

vegetation cover, DOC, and pool surface area (Equation 1, Figure 2.5). 

The range of dissolved CH4 concentration at each sampling date and pool (2.32 - 180.96 

µmol L-1) were consistently super-saturated (Figure 2.3 and 2.4). The mean concentration 

of 39.06 µmol L-1 was about 482 times above atmospheric concentration. The mean CH4 

concentration found in my study were lower in concentration to that reported from a study 

conducted in a beaver pond at Mer Bleue peatland (Dinsmore et al., 2009), similar to that 

reported in a study conducted in a forest pond (Holgerson et al., 2015) but higher in 

concentration than those reported in literature from similar peatland pools (Hamilton et al., 

1994; Riera et al., 1999; Repo et al., 2007; Pelletier et al., 2014) and other small inland 

water bodies (Barber et al., 1988, Kankaala et al., 2013, and Shirokova et al., 2013; Table 

2.4). The range of surface water dissolved CH4 concentration in this study is among the 

highest concentrations reported around the world for small inland water bodies, and this 
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may be related to the smaller surface area of pools in this study in comparison to other 

studies (Table 2.4).  

Table 2.4: Surface Dissolved CH4 Concentration from Small Inland Waters 

Country Surface Area  

(km2) 

Inland water 

type 

(No studied) 

CH4 Conc.  

(µmol L-1) 

References 

Canada 

 

 

Canada 

 

0.0000277 - 

0.000165 

 

- 

Peatland pool 

(7) 

 

Beaver pond (1) 

39.06 (2.32 -

180.96) 

 

93.52 (6.23-230.67) 

This Study 

 

 

Dinsmore et al. 

(2009) 

Canada 0.00003 - 0.0015 Peatland pool 

(22) 

6.2 (1.6 - 17.9) Hamilton et al. 

(1994) 

Canada 0.00002 - 0.0003 Permafrost pool 

(9) 

1.7 (0.1 - 3.9) Laurion et al. 

(2010) 

Canada 0.00013 - 0.0026 Peatland pool (5) 2.3 (0.5 - 6.7) Pelletier et al. 

(2014) 

Finland 0.0035-0.01 Boreal lake (5) 1.5(0.7-2.6) Kankaala et al. 

(2013)  

Siberia 0.005 Peatland lake (1) 2.6 Repo et al. (2007) 

Siberia 0.0000025-0.01 Pond (19) 0.8 (0.01-4.09) Shirokova et al. 

(2013) 

UK 0.01 Lake (1) 1.3 Casper et al. (2000) 

USA 0.005 Pond (1) 2.2 Barber et al. (1988) 

USA 0.0003 - 0.0008 Forest pond (6) 33.4 (21.0 - 58.9) Holgerson et al. 

(2015) 

USA 0.0054 - 0.0109 Peatland pool (2) 7.1 (3.9 - 10.2) Riera et al. (1999) 

 

 

2.4.2 Relationship and drivers of dissolved CH4 concentration in the bog pool 

 

Variation in pool CH4 was explained mostly by temperature, consistent with previous 

studies which demonstrated the influence of temperature in CH4 concentration (Pighini et 

al., 2018, Rasilo et al., 2015, Borrel et al., 2011). Temperature may be associated with the 

rate of methanogenesis; increased temperature leads to an increase in methanogenesis 

(Bastviken, 2010, Guenet et al., 2019). Moore and Dalva (1993); reported that a 
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temperature increases from 10ºC to 23ºC led to 6.6 times more CH4 production in a 

laboratory peat column. The dissolved CH4 concentration in our study followed a temporal 

trend coinciding with the environmental temperature variation, as it gradually increased 

from June when the temperature was low to a peak concentration in late July to early 

September when the temperatures were highest, and dropped sharply in mid-September 

when the temperature started decreasing (Fig. 2.4). Thus, air temperature was strongly 

positively correlated to water temperature (Table 2.3, Fig. 2.1). In accordance with studies 

in lakes, the surface temperature of lakes has been observed to be closely linked with air 

temperature (Livingstone and Dokulil, 2001). Surface water temperature was removed 

from the model due to collinearity and because it had a lower significant correlation and 

linear relationship with CH4 concentration compared to air temperature. A similar 

relationship between air and water temperatures with dissolved CH4 concentration was 

observed by Cadieux et al. (2017) in small arctic lakes. In that study, the air temperature 

was correlated with the bottom sediment temperature, the location of methanogenesis. 

Despite the absence of surface water temperature differences across pools in this study 

(Table 2.1), CH4 concentration was significantly negatively correlated with depth and DO 

(Table 2.3), indicating decreased dissolved CH4 concentration as pool depth increases, due 

to the gradual increase in anoxic condition in the water column (Huttunen et al., 2003). 

Pelletier et al. (2014) observed that the shallowest peatland pool had consistently higher 

sediment temperatures and also had the highest dissolved CH4 concentration. A similar 

negative relationship between CH4 concentration and depth have also been observed in 

lakes where dissolved CH4 is lower at the surface of deepest lakes and higher at the surface 
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of shallow lakes (Pighini et al., 2018, Juutinen et al., 2009). This relationship could be 

explained by faster warming of bottom sediments by the sun leading to an increase in 

microbial peat degradation and a subsequent higher concentration of CH4 in the water 

column of shallow pools and lakes (Thebrath et al., 1993, Pighini et al., 2018). 

 

The second and third parameter predicting the dissolved surface CH4 concentration in the 

model was vegetation cover and DOC concentration. Organic matter can be derived from 

two sources: autochthonous primary production within pools (plant and algae exudations) 

and allochthonous organic carbon (decomposition of organic matter from dead plants, 

peats, sapropel, gyttja, etc.) entering into the water from the surrounding catchment 

(Whiting and Chanton 1993; Segers, 1998; Mitrovic and Baldwin, 2016; Sabrekov et al., 

2017). Although bog pools are hydrologically isolated from the surrounding catchment and 

receive nutrients and water through precipitation and atmospheric deposition of nutrients, 

temporary connection has been observed between surface water and their adjacent 

catchments during significant precipitation events and spring runoff (Quinton and Roulet, 

1998; Quinton and Marsh, 1999). Such events have been attributed to introducing nutrients 

and terrestrial organic matter, which support primary production within the pool (Crump 

et al., 2003; Macrea et al., 2004). Vegetation was present in our pools with emergent plant 

growth and submerged algae mats in pool sediment. Pool perimeters were surrounded by 

macrophytes which had their roots growing within the littoral zones of the pools. 

Productivity by plants may lead to increased substrate availability in sediments, which may 

lead to a higher production rate of CH4 as increased methanogenic biomass has been linked 

to increased substrate presence (Grant and Roulet 2002; Kettunen, 2003; Sabrekov et al., 
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2017).  Dissolved CH4 concentration significantly correlated with vegetation cover in my 

study (Table 2.3). This result is in accordance with studies by Whiting and Chanton 1993 

and Mitra et al., 2005a who observed a positive correlation between CH4 production and 

plant productivity caused by root exudates that provides an additional provision of fresh 

organic substrates for methanogens (Whiting and Chanton 1993; Mitra et al., 2005a). 

Autochthonous primary production has been associated to driving methanogenesis in lake 

sediments (Boon and Mitchell, 1995; Schulz and Conrad, 1995) due to more labile algal 

biomass which can provide a source of organic matter for decomposition. On the other 

hand, DOC is positively correlated with dissolved CH4 concentration but was also 

negatively correlated with precipitation (Table 2.3). However, this is in contrast with other 

literature, which reported catchment runoff from precipitation events leading to high DOC 

content within the pool led to increased CH4 concentration. This relationship suggests that 

the DOC concentration in our pools were probably obtained from autochthonous derived 

DOC and microbial decomposition from the underlying peat layer rather than 

allochthonous organic carbon as is likely the case in the other studies. The corresponding 

higher dissolved CH4 concentration and DOC concentration measured in pools having 

comparatively more vegetation cover (pool #2 and 4), confirms the source of DOC in this 

study (Table 2.1 and 2.3, Figure 2.5). A similar negative correlation between DOC and 

precipitation has been observed in small shallow ponds by Holgerson (2015) after a rainfall 

event, where the depth of the ponds increased, causing a dilution effect for most of its 

biological and chemical parameters (Holgerson, 2015). In that study, increased 

precipitation also correlated with decreased DOC, temperature, and increased DO, thus 
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altering CH4 production and concentration. The range of DOC concentration in this current 

study (9.8 – 44.0 mg L-1) is comparable (but higher upper range) to that of other peatland 

pools (8.64 – 36.91 mg L-1; Arsenault et al., 2018, 3.10 – 20.44 mg L-1; Turner et al., 2016, 

16.7-21.4 mg L-1; Pelletier et al., 2014, ~ 25.0 mg L-1; Billett and Moore, 2008); peatland 

streams (2 – 40 mg L-1; Billett et al., 2007, Clark et al., 2008; Dinsmore et al., 2011) and 

forest pond 4.9 – 38.4 mg L-1 (Holgerson, 2015). The relationship between CH4 

concentration and DOC is consistent with other studies that DOC is an indicator of 

substrate availability for methanogenesis (Bianchi et al., 1996; Garcia et al., 2000; Sanches 

et al., 2019).  

The TN concentration, which represents nutrient status, showed a positive correlation with 

CH4 concentration (Table 2.3), also suggesting that plant and algal productivity could play 

a role in CH4 production in pools. TN has been previously linked to influencing primary 

production and greenhouse gas dynamics in lakes (Rasilo et al., 2015; Kortelainen et al., 

2013; Bergstrom et al., 2008). Stimulation of autochthonous production by TN and 

subsequent decomposition of the organic source would increase CH4 production in water 

(Bastviken et al., 2004).  

Pool surface area is a weaker predictor in our model and is negatively correlated with 

dissolved CH4 concentration (Table 2.3). This indicates that an increase in the surface area 

likely leads to a decrease in concentration, as observed in Fig. 2.4. Surface area, however, 

did not influence other variables but positively correlated with depth, indicating that an 

increase in the area may lead to an increase in pool depth (Table 2.3). This correlation 

between area and depth has been observed in other boreal waters (Juutinen et al., 2013; 
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Kankaala et al., 2013 Pighini et al., 2018). These studies also found a similar negative 

relationship between water body area and CH4 concentration. The relative depth to area 

ratio may influence the level of dissolved concentration of CH4 in water, as small and 

shallow pools are more compact and have more water in contact with the anoxic peat 

sediment.  Thus, frequent wind forced mixing experienced by the shallow waters allows 

CH4 produced in pool sediments to get to the pool surface before methane oxidation, 

permitting higher dissolved CH4 concentration in the pool (Bastviken et al., 2004; 

Kankaala et al., 2013; Holgerson et al., 2015). A comprehensive study of 427 lakes and 

ponds ranging in size from 2.5 m2 to 674 km2 by Holgerson and Raymond (2016) reported 

higher CH4 concentration from smaller ponds than larger sized lakes due to their shallower 

waters, high sediment and edge to water ratio and frequent wind mixing.  

The drivers of CH4 concentration established in this study are related to some of the factors 

described by other studies; Forster and Glaser (1986) postulated that warm temperatures 

and high oxygen in shallower water pools enhanced peat degradation in the bottom 

sediment which increased CH4 concentration in water. Hamilton et al. (1994) was of the 

same opinion but proposed that the degradation of peat in pool bottom is introduced and 

maintained by nitrogen-fixing cyanobacteria, whereas Wang et al. (2017) stated that the 

oversaturation of CH4 experienced in lakes water with high oxygen concentration was 

produced by phototrophs and oxygen tolerant methanogens. However, most studies have 

attributed surface area and depth to be a major factor in CH4 production (Bastviken et al., 

2008; Juutinen et al., 2009; Kankaala et al., 2013 Holgerson and Raymond, 2016) which 

is consistent with this study.   
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2.5 Conclusion 

 

This study shows that surface waters of small peatland pools are super-saturated with the 

surface dissolved CH4 concentration and are therefore “hot-spots” for CH4 emissions. The 

dissolved CH4 concentration was significantly related to several internal and external 

characteristics but was mainly driven by temperature, vegetation, dissolved organic carbon, 

and pool surface area. These results suggest that CH4 production in small peatlands pools 

is not dependent upon a single parameter. The prediction of temperature as the most 

important factor leading to increased dissolved CH4 concentration measured in pools in our 

study is not surprising, as higher temperature levels have been known to drive 

methanogenesis.The small pool size and depth also facilitated faster warming experienced 

in the pool sediment. This relationship, therefore, shows that small peatland pools are 

sensitive to climate conditions.  Further research in inland water types especially in small 

bog pools, will help provide a comprehensive knowledge of local drivers of CH4 from 

aquatic environments and their impact in CH4 concentration in future climate scenarios.  
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Chapter 3 

3.0 Multi-year Greenhouse Gas Flux from Small Bog Pools in a Boreal Peatland in 

Newfoundland 

 

3.1 Introduction 

 

Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are three greenhouse gases 

(GHG) with high radiative forcing and global warming potential (IPCC, 2013). These three 

gases accounts for up to 80% of the total radiative forcing from well-mixed GHG (Ciais et 

al., 2013). Atmospheric concentrations of these gases have also exceeded pre-industrial 

levels (pre 1750) of 391 ppm, 1803 ppb, and 324 ppb by 40%, 150%, and 20 % respectively 

in 2011 (IPCC, 2013). The net emissions of these gases into the atmosphere result from the 

changing balance between anthropogenic emissions and changes in natural processes that 

has caused a switch from net removal or sink from the atmosphere to net release or source 

(Cias et al., 2013). Thus, the study of concentrations and pathways of emissions of these 

GHG has gained significant attention in recent times due to their recent surge in the 

atmosphere and contribution to climate change (IPCC, 2013). 

Peatlands cover approximately 3% of the Earth’s surface but store about one-third of the 

total soil carbon (Gorham, 1991; Strack, 2008). Generally, undisturbed peatlands are sinks 

for CO2, sources of methane CH4 and low or negligible sources of N2O (Rinne et al., 2007, 

Maljanen et al., 2010, Kløve et al., 2017). The flux of CO2 is controlled by the balance 

between absorption of CO2 for photosynthesis by surface vegetation and release of CO2 

through autotrophic and heterotrophic respiration (Pelletier et al., 2014). Similarly, CH4 

flux is determined by the balance between production by methanogenic bacteria in 



57 
 

anaerobic sediment and consumption by methanotrophs in aerobic peat sediment (Rinnie 

et al., 2018). The balance between nitrification and denitrification processes determines 

N2O flux (Maljanen et al., 2010). GHG emissions in peatlands are regulated by natural 

ecosystem processes. However, GHG emissions have been reported to vary within the 

same peatland due to environmental conditions and differences in microtopography: 

hummocks, hollows, lawns and pools (Waddington and Roulet et al., 1996; Dinsmore et 

al., 2009b, Trudeau et al., 2013). 

Natural water pools are a common feature of many peatlands (Glaser, 1998; Turner et al., 

2016). Until recently, peatland pools were not considered important in GHG studies, as 

most research on peatlands was biased towards the terrestrial microforms of peatland i.e. 

the hummocks, hollows, and lawns (Bubier et al., 1995; Pelletier et al., 2011). A 

comprehensive study of GHG from whole peatland microforms at Hudson Bay Lowlands 

(HBL), Canada, by Hamilton et al. (1994) revealed that peatland pools, covering only 8-

12% of the HBL area, accounted for 30% of the total CH4 flux to the atmosphere. The net 

CO2 flux from the pool was similar in scale but opposite in direction to the magnitude of 

fluxes from the land microforms (Hamilton et al., 1994). This indicates that the GHG 

emission potential of peatland pools is more important than previously thought. Similar 

results were also reported in other peatland catchments (Huttunen et al., 2002; Billet et al., 

2004; Dinsmore et al., 2009a).   

In the last decade, research on emissions of GHG at scales ranging from aquatic 

microforms of peatlands to the total GHG budget from peatlands has been increasing 

(McEnroe et al., 2009; Pelletier et al., 2014; Burger et al., 2016). Most previous studies 
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estimating flux of GHG from peatland pools have been based on short-term (one or two 

growing seasons) seasonal measurements, which do not capture GHG emission over long-

term changing weather patterns. Furthermore, most studies are focused on measurement of 

single GHG gases (CO2, CH4 or N2O) or pairs of C (CO2 and CH4) (Macrea et al., 2004; 

Pelletier et al., 2014, Burger et al., 2016). Consequently, there is still much uncertainty in 

the magnitude of GHG from peatland aquatic microforms (Billet et al., 2010). An 

understanding of the variations in GHG emissions over a temporal period (over three 

growing seasons) is essential, as the estimation of atmospheric GHG has been 

recommended to be the quickest method of observing efforts towards mitigating climate 

change (Fletcher and Schaefer, 2019). 

Peatland pools may be susceptible to the effects of climate change (Strack, 2008). Water 

bodies can act either as sinks or sources of GHG depending on the balance between primary 

production and respiration which are sensitive to temperature and precipitation (Sobek et 

al., 2005; Cole et al., 2007). For instance, increase or decrease in precipitation changes the 

inputs of organic matter and nutrients from the catchment into the water body, which can 

influence primary production, aquatic respiration and substrate availability and ultimately 

C emissions (Schallenberg and Burns, 1997; Kosten et al., 2010). Therefore, anticipated 

climate change scenarios such as increased Earth temperature and rainfall are likely to 

impact peatland GHG emissions (Dinsmore et al., 2009a).  

The overall aim of this study is, therefore, to emphasize the role of small peatland pools in 

GHG emissions and contribute to the inventory of data of GHG fluxes from bog pools. The 
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specific objective of this study is to quantify and compare the variations in fluxes of CO2, 

CH4, and N2O from pools over five growing seasons in an ombrotrophic peatland.  

3.2 Methodology 

 

3.2.1 Study site, Pool Descriptions and Climate 

 

This study was carried out at the same site, described in chapter 2 of this thesis. However, 

only three pools #1, 2, and 3 described in chapter 2 are analyzed in this chapter because 

only these pools have been sampled since the growing season of 2013, 2014, 2015 and 

2016. 

3.2.2 Gas Measurements  

 

Fluxes of CO2, CH4 and N2O representing diffusive fluxes were measured at three pools in 

the growing seasons of 2013, 2014, 2015, 2016 and 2018. Measurements were conducted 

biweekly in the growing seasons of 2013, 2014, 2015, 2016, while measurements were 

obtained weekly from May to August and biweekly from September to October in the 

growing season of 2018. All measurements were carried out between 9:00 – 15:00 local 

time. Diffusive flux measurement across the water-air interface was measured with floating 

static chambers (50 cm height and 26.3 cm diameter, Huttunen et al., 2002). To ensure that 

the chambers were held in position and floating when placed in the water, four Acrylonitrile 

Butadiene Styrene (ABS) pipes with supporting frames were permanently inserted into the 

pools two weeks before the start of measurements in May 2013. The static floating chamber 

method was chosen because a drifting chamber may likely disrupt the aqueous boundary 

layer contolling gas exchange (Kremer et al., 2003). However, static floating chambers 
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have been noted to possibly lead to underestimation of flux due to the wind breaking effect 

of the chamber walls but this effect is minimal in lentic water bodies e.g lakes, pools 

(Duchemin et al., 1999; Kremer et al., 2003). Flux measurements were made by lowering 

the chamber at least 5 to 10 cm beneath the pool surface in between the ABS pipes 

(Fig.3.1). An airtight syringe of 60 mL was used to draw four gas samples from the 

chamber headspace every 10 minutes over 30 minutes (0, 10, 20, and 30). Before sampling, 

the sampling tube was flushed with chamber air three times. Air samples were stored 

temporarily in the syringe and analyzed within a week after collection using a Bruker GHG 

gas chromatography equipped with flame ionization detector (FID) to analyze the CH4, 

thermal conductivity detector (TCD) for CO2 and electron capture detector (ECD) for N2O. 

All fluxes were adjusted for field sampling temperature, headspace volume, and chamber 

area (Holland et al., 1999). The slope of the gas concentration change over the sampling 

period was estimated using linear regression, and the flux was calculated using:  

F = (dC/dt) × V/A (where F is the individual gas flux (CH4, CO2, or N2O), V is the volume 

of the chamber, A is the chamber cover area, and dC/dt is the rate of concentration change). 

Normalized root mean square error (NRMSE) was used to screen the samples, and fluxes 

were accepted if NRMSE < 0.01 (Minke et al., 2016, Gong et al., 2018 and 2019).  
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Figure 3.1: Collection of GHG samples from pool using the static floating chamber method 

 

3.2.3 Physicochemical measurements sampling design 

 

Physicochemical parameters were measured simultaneously with the diffusive flux weekly 

from May to August and biweekly from September to October, in the growing season of 

2018. To evaluate the drivers of CO2, CH4, and N2O fluxes, long-term mean monthly air 

temperature and precipitation data for the study period of 2013, 2014, 2015, 2016 and 2018 
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and 30-year (1981 – 2010) climate normal were obtained from the closest weather station 

in Stephenville, ~ 50 km away from our study area. (Environment Canada, 2018).  

3.2.3.1 Pool morphology and vegetation 

 

Pool depth, surface area, perimeter, shape index, and vegetation cover were determined at 

the same date and procedure described in chapter 2 of this thesis. 

3.2.3.2 Water chemistry 

 

Dissolved organic carbon (DOC), total nitrogen (TN), water temperature, electrical 

conductivity (EC), dissolved oxygen (DO), and barometric pressure were measured in-situ 

weekly from May to August and biweekly from September to October using the same 

procedure described in chapter 2 of this thesis. 

 

3.2.4 Statistical Analysis 

 

Data were tested for normality using the Shapiro-Wilk tests and transformed when 

necessary to meet the conditions of homogeneity of variance. Differences in fluxes of CO2, 

CH4, and N2O among the five growing seasons were tested using one-way ANOVA. 

Significant ANOVA tests were followed with Tukey post-hoc tests. Simple linear 

regression and Pearson’s correlation analysis were used to examine relationships and 

correlations among the physiochemical variables and GHG flux. Stepwise linear regression 

and the Akaike Information Criterion (AIC) (Burnham and Anderson, 2002; Akaike, 2011) 

were finally applied to select the best model explaining gas fluxes. Stepwise multiple linear 

regression was built using AIC best subset. Variables included in the model were 
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determined for collinearity by calculating the variance inflation factor (VIF) and excluding 

any variable with a VIF of ≥ 18 (Kock and Lynn, 2012). Statistical analysis was done using 

IBM SPSS 25.0 statistical software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

3.3 Results 

 

3.3.1 Climatic conditions during the study period 

 

The mean monthly air temperature generally varied from 11.4 °C to 13.6 °C in the study 

period (Table 3.1). Air temperature during the study period was within range of the long-

term climate average of 12.2 °C except for the growing season of 2014 with a higher mean 

temperature of 13.6 °C and a lower mean temperature of 11.4 °C in the growing season of 

2018 (Table 3.1).  Peak air temperature was measured during July and August, which are 

the primary summer months in Newfoundland while lower air temperatures were recorded 

in May and October, which represented the end and beginning of winter (Fig. 3.2a). 

Cumulative precipitation for the growing season months was 815.8 mm in 2013, 469.6 mm 

in 2014, 658.0 mm in 2015, 734.8 mm in 2016 and 740 mm in 2018 (Table 3.1), compared 

to the long-term average of 704.8 mm.  The lower than normal 30-year average 

precipitation of the growing seasons of 2014, 2015, and 2016 indicate drier conditions 

compared to growing seasons of 2013 and 2018 (Fig. 3.2b).   
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Figure 3.2: Climate data for the study area in 2013, 2014, 2015, 2016, and 2018 compared 

to 30-year climate normal (1981-2010). Error bars represent standard errors. 
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Table 3.1: Average cumulative monthly precipitation and mean monthly air temperature 

during the five years’ study period and 30-years climate normal (1981 -2010). 
      Precipitation (mm)       Temperature (°C)   

Period Normal 2013 2014 2015 2016 2018 Normal 2013 2014 2015 2016 2018 

May 97.4 126.4 68.4 112.8 129.8 138.8 7.6 9.1 7.9 7.0 7.7 5.0 

June 104.1 113.9 73.4 64.2 98.8 110.8 12.1 12.4 13.2 10.8 12.1 9.1 

July 118.4 110.1 94.0 67.6 132.6 65.8 16.4 16.4 19.4 15.0 16.2 17.4 

August 130.4 135.0 98.8 191.8 108.0 63.0 16.7 17.0 18.3 18.7 16.3 18.5 

September 127.6 188.6 87.0 70.2 102.0 128.6 12.8 14.2 13.4 13.9 12.3 12.0 

October 126.9 141.8 48.0 151.4 163.6 233.0 7.4 7.9 9.4 7.3 7.8 6.3 

Sum 704.8 815.8 469.6 658.0 734.8 740.0 73.0 77.0 81.6 72.7 72.4 68.3 

Mean 117.5 136.0 78.3 109.7 122.5 123.3 12.2 12.8 13.6 12.1 12.1 11.4 

SEM 5.6 11.6 7.7 21.5 10.1 25.4 1.7 1.5 1.9 1.9 1.6 2.3 

Note: SEM indicates standard error of mean 
 

 

3.3.2 Pool Characteristics  

 

Measured pools were small and shallow, with an average depth of 48 cm and a surface area 

of 83.47 m2 (Table 3.2). Vegetation was present in each pool and consisted of emergent 

plants: Nuphar variegata (Yellow Pond-lily) and Eriocaulon aquaticum (White Buttons) 

which emerged during the summer months, and submerged vegetation consisting of 

Utricularia spp. and algae. Sedges, shrubs, Sphagnum spp., and grasses also surrounded 

pool perimeters all year round. Surface area of pool correlated positively with pool depth 

(r = 0.86, p < 0.01, Table 3.3) and negatively with vegetation cover (r2= -0.39, p < 0.01, 

Table 3.3).  
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3.3.3 Seasonal variation and correlation among physicochemical variables 

 

Daily air temperature and water temperature at sampling time ranged from 2.0 °C to        

21.8 °C and 5.7 °C to 23.7 °C, respectively. Air and water temperature increased steadily 

through the growing season, starting with a low temperature of 2.0°C in May rising to a 

peak temperature in July and decreasing in mid-September (Fig. 3.3a and b). Water 

temperature significantly differed across the growing season of 2018 (ANOVA, F (5, 54) = 

90.24, p < 0.001) and correlating strongly with air temperature (r = 0.94; p < 0.01) (Table 

3.3). 

Pools had a DOC mean concentration of 23.78 ± 1.23 mg L-1 and differed across the 

growing season (ANOVA, F (5, 48) = 15.76, p < 0.001), ranging from 10.3 to 43.9 mg/L 

(Table 3.2, Fig. 3.3c). DOC positively correlated with TN (r = 0.68) at a significance of    

(p < 0.01), moderately positive with vegetation cover (r = 0.44; p < 0.01) and negatively 

with DO and pH (r = -0.42, -0.46 respectively; both at p < 0.01). DOC however had a 

significant positive weak correlation with EC (r = 0.33, p < 0.05), water temperature             

(r = 0.29, p < 0.05) and air temperature (r = 0.37, p < 0.01) and negative weak correlation 

with area (r = -0.35; p < 0.01) (Table 3.3). 

TN concentration differed across the growing season (ANOVA, F (5, 53) = 10.35, p < 0.001) 

ranging from 0.12 to 1.02 mg L-1 with a mean of 0.55 ± 0.03 mg L-1 (Table 3.2, Fig. 3.3d).  

Concentration of TN correlated negatively with pH (r = -0.32, p < 0.05). 

Pools DO ranged from 7.01 to 12.39 mg L-1 with a mean 8.91 ± 0.18 mg L-1 (Table 3.2, 

Fig. 3.3e), differing significantly across the growing season (ANOVA, F (5, 54) = 39.09,        
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p < 0.001). A strong negative correlation between DO with both air and water temperature 

(r = -0.90 and -0.90 respectively; p < 0.01) were observed from Pearson’s correlation 

(Table 3.3). 

Mean pools EC was 52.36 ± 1.25 µs cm-1 with a range of 42.60 to 85.40 µs cm-1 (Table 3.2, 

Fig. 3.3f), varying significantly across the growing season (ANOVA, F (5, 54) = 14.42,            

p < 0.001). It correlated strongly negatively with water temperature (r = -0.61; p < 0.01) 

and moderately negative with air temperature and pH (r2 = -0.57, -0.43 respectively;              

p < 0.01). Positive correlation was observed between DO and vegetation cover (r = 0.40, 

0.45; p < 0.01) (Table 3.3).  

Pools were acidic with a mean pH of 4.18 ± 0.03, ranging from 3.60 to 5.00 (Table 3.2, 

Fig. 3.3g). It varied significantly across the growing season (ANOVA, F (5, 54) = 14.30,         

p < 0.001), but did not correlate significantly with any measured variable (Table 3.3). 
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Figure 3.3a: Seasonal variation of air temperature across the sampled pools in the growing 

season of 2018. Error bars represent standard errors (SE). 
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Figure 3.3b: Seasonal variation of water temperature across the sampled pools in the 

growing season of 2018. Error bars represent standard errors (SE). 

 

 



71 
 

 

Figure 3.3c: Seasonal variation of dissolved organic carbon (DOC) across the sampled 

pools in the growing season of 2018. Error bars represent standard errors (SE). 
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Figure 3.3d: Seasonal variation of total nitrogen (TN) across the sampled pools in the 

growing season of 2018. Error bars represent standard errors (SE). 
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Figure 3.3e: Seasonal variation of dissolved oxygen (DO) across the sampled pools in the 

growing season of 2018. Error bars represent standard errors (SE). 
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Figure 3.3f: Seasonal variation of electrical conductivity (EC) across the sampled pools in 

the growing season of 2018. Error bars represent standard errors (SE). 
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Figure 3.3g: Seasonal variation of the potential of hydrogen (pH) across the sampled pools 

in the growing season of 2018. Error bars represent standard errors (SE). 

 

Table 3.2: Summary of physicochemical properties of pools measured in the growing 

season of 2018 (N = 54 for DOC, 59 for TN and 60 for other variables) 
Pool property  Mean ± Standard Error (Minimum - Maximum) 

DOC (mg L-1) 23.78 ±  1.23 (10.23 - 43.9) 

TN (mg L-1) 0.55 ±  0.03  (0.12 - 1.02) 

DO (mg L-1) 8.91 ±  0.18  (7.01 - 12.39) 

EC (µs cm-1) 52.36 ±  1.25 (42.60 - 85.40) 

pH 4.18 ±  0.03 (3.60 - 5.00) 

Water T. (°C) 17.37 ±  0.78 (5.70 - 23.60) 

Veg. Cover 4.00 ±  0.12 (3 -5) 

Area (m2) 83.47 ±  7.46 (27.7 - 148.0) 

Depth (cm) 48.00 ±  1.39 (40 - 61) 

Note: Dissolved Organic Carbon (DOC), Total Nitrogen (TN), Dissolved Oxygen (DO), 

Electrical Conductivity (EC), potential of hydrogen (pH), Water Temperature (Water T.), 

and Vegetation cover (Veg. cover) 
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Table 3.3: Pearson’s correlation (r) coefficients between fluxes of (CO2, CH4, and N2O) and physicochemical variables measured 

in the three study pools in the growing season of 2018 (N= 54 for CO2, 49 for CH4, 54 for DOC, 59 for TN and 60 for other 

variables) 

  CO2 CH4 N2O DOC  TN  EC  DO  pH Water 

T. 

Air 

T. 

Prec. Area  Depth  Veg. 

C. 

CO2 (mmol m-2 d-1) 1. 
             

CH4 (mmol m-2 d-1) -.11 1. 
            

N2O (µmol m-2 d-1) .12 -.07 1. 
           

DOC (mg L-1) .05 .41** .04 1. 
          

TN (mg L-1) .04 .28 -.01 .68** 1. 
         

EC (µs cm-1) -.09 .13 .1 .33* .23 1. 
        

DO (mg L-1) -.17 -.19 .15 -.42** -.15 .40** 1. 
       

pH -.05 .01 .01 -.46** -.32* -.43** .12 1. 
      

Water T. (°C) .2 .08 -.11 .29* -.01 -.61** -.90** . 1. 
     

Air T.  (°C) .16 .06 -.11 .37** .06 -.57** -.90** -.05 .94** 1. 
    

Precipitation .03 .01 .22 -.23 -.04 .12 .2 .05 -.24 -.18 1. 
   

Area (m2) -.01 -.04 . -.35** -.09 -.22 -.15 .16 .03 . . 1. 
  

Depth (cm) -.13 .14 .06 -.14 -.05 .01 -.19 .15 .01 . . .86** 1. 
 

Vegetation cover -.22 .34* .11 .44** .1 .45** -.06 -.05 -.05 . . -.39** .13 1. 

Note: Significant correlation indicated by: p < 0.01, “**”, p < 0.05, “*” 

Dissolved Organic Carbon (DOC), Total Nitrogen (TN), Electrical Conductivity (EC), Dissolved Oxygen (DO), Water 

Temperature (Water T.), Air Temperature (Air T.) and Precipitation (Prec.). 
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3.3.4 CO2, CH4 and N2O Dynamics 

 

Fluxes of CO2, CH4, and N2O across the growing seasons of 2013, 2014, 2015, 2016, and 

2018 are presented in Fig. 3.4, 3.5, 3.6 and Table 3.6. Negative fluxes indicate uptake or 

absorption (sink) from the atmosphere into the pool while positive fluxes indicate release 

or gas emission (source) into the atmosphere. Generally, GHG flux varied widely between 

uptake and release, and no systematic pattern of flux could be deduced across the growing 

seasons. However, only CO2 flux was observed to vary temporarily over the study period 

while flux of CH4 and N2O were similar over the study period. 

3.3.4.1 CO2 flux  

 

Daily flux of CO2 ranged widely from -39.80 to 71.79 mmol m-2 d-1 with a mean of 23.91 

± 13.90 mmol m-2 d-1 in 2013, acting as a mean source of CO2 into the atmosphere. In 2014, 

pools acted as a sink of CO2 with a mean of -7.41 ± 6.46 mmol m-2 d-1, ranging from -41.89 

to 12.76 mmol m-2 d-1.  Pools also acted as mean sinks in 2015 with a mean of 8.98 ± 7.07 

mmol m-2 d-1 and in 2016 with a mean of -9.04 ± 8.05 mmol m-2 d-1, ranging from -50.65 

to 51.61 mmol m-2 d-1, and -65.70 to 43.61 mmol m-2 d-1 respectively. However, it acted as 

mean source in 2018 with a mean of 7.79 ± 2.21 mmol m-2 d-1, ranging from -21.09 to 

52.37 mmol m-2 d-1. Overall, yearly growing season CO2 fluxes ranged from - 65.70 to 

71.79 mmol m-2 d-1 with a mean of 2.39 ± 2.45 mmol m-2 d-1 (Table 3.6). Nevertheless, no 

seasonal variation in daily mean CO2 fluxes was observed across sampling dates and 

among pools (ANOVA, F (2, 98) = 0.57, p = 0.57) but flux varied significantly across the 

growing seasons (ANOVA, F (4, 96) = 4.59, P = 0.002; Fig. 3.4).  Pearson’s correlation 
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between physiochemical variables and CO2 fluxes in the growing season of 2018 showed 

no significant correlations (Table 3.3), but analysis of stepwise linear regression suggested 

that CO2 flux is best predicted by pool depth, DO and vegetation cover (adjusted R2 = 0.07; 

Table 3.4.1, 3.4.2, 3.4.3). 

CO2 = 28.01 + 10.12 * log (depth) - 2.54 * log (DO) + 0.00 * 

log (Veg. cover)       ------ Equation  1
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Table 3.4.1: Parameter Effects on CO2 Flux in AIC Stepwise Linear Regression Model 

Source Sum of Squares df Mean square F Sig. Importance 

Corrected model 1,531.57 2 765.783 3.126 0.052 
 

Depth_transformed 1,149.26 1 1,149.26 4.691 0.035 0.636 

DO_transformed 656.837 1 656.837 2.681 0.108 0.364 

Veg.cover_transformed . 0 . . . 0 

Residual 12,494.23 51 244.985 
   

Corrected Total 14,025.80 53         

 

Table 3.4.2: Coefficients of CO2 Flux in AIC Stepwise Linear Regression Model 

          95% Confidence 

interval 

  

Model Term Coefficient Std. 

Error 

t Sig. Lower Upper Importance 

Intercept 28.013 14.25 1.966 0.055 -0.595 56.62 
 

Depth_transformed 10.117 4.671 2.166 0.035 0.74 19.494 0.636 

DO_transformed -2.544 1.554 -1.637 0.108 -5.664 0.575 0.364 

Veg.cover_transformed 0a           0 

Note: a – This coefficient is set to zero because it is redundant 
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Table 3.4.3: Model Building Summary of CO2 Flux in AIC Stepwise Linear Regression 

            Model           

 

 
1 2 3 4 5 6 7 8 9 10 

  Information Criterion 300.458 300.458 301.145 301.145 301.942 301.942 302.051 302.051 302.233 302.233 

 Depth_transformed          

 Veg.cover_transformed 



















Effects DO_transformed  

  
 

    

 AirTemp_transformed 
  

 

    
 

 EC_transformed 
    

 

  
 

  DOC_transformed                   

Note: A checkmark means the effects is in the model 
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Figure 3.4: Mean CO2 flux across the growing season of 2013, 2014, 2015, 2016 and 2018. 

Error bars and letters represent standard errors (SE) and significant differences (p < 0.05) 

between the growing seasons.  

 

3.3.4.2 CH4 flux  

 

Average fluxes of CH4 did not vary across the growing seasons (ANOVA, F (4, 99) = 1.70, 

p = 0.156; Fig. 3.5), but were significantly different among pools (ANOVA, F (2, 101) = 4.27, 

p = 0.02). Fluxes of CH4 ranged from -0.19 to 2.66 mmol m-2 d-1 in 2013, -0.19 to 0.38 

mmol m-2 d-1 in 2014, -2.28 to 1.52 mmol m-2 d-1 in 2015, -0.38 to 1.14 mmol m-2 d-1 in 

2016 and -2.09 to 2.97 mmol m-2 d-1 in 2018 (Table 3.6). Overall, mean yearly growing 

season flux ranged from -2.8 to 2.97 mmol m-2 d-1 with a mean of 0.32 ± 0.09  mmol m-2 

d-1. Pools acted as sources in three growing seasons with a mean 0.41 ± 0.23 mmol m-2 d-1 

in 2013, with a mean of 0.19 ± 0.08 mmol m-2 d-1 in 2016 and a mean of 0.52 ± 0.15 mmol 
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m-2 d-1 in 2018. Conversely, pools were mean sinks in 2014 and 2015 with mean fluxes of 

-0.001 ± 0.06 mmol m-2 d-1 and -0.01 ± 0.21 mmol m-2 d-1 respectively.  

Pearson’s correlation between CH4 fluxes and physicochemical variables in the 2018 

growing season showed significantly positively correlation between CH4 flux with DOC  

(r = 41, p < 0.01) and vegetation cover (r = 0.34, p < 0.05) (Table 3.3).  Stepwise multiple 

linear regression suggested that DOC, depth, EC and air temperature and vegetation cover 

best predicted CH4 fluxes (adjusted R2 = 0.22; Table 3.5.1, 3.5.2 and 3.5.3).  

CH4 = 5.01 + 0.08 * log (DOC) - 0.92 * log (Depth) - 0.098 * log (EC)  

- 0.084 * log (air temperature) + 0.00 * log (vegetation cover) ---- Equation 2 
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Table 3.5.1: Parameter Effects on CH4 Flux in AIC Stepwise Linear Regression Model 

Source Sum of Squares df Mean square F Sig. Importance 

Corrected model 15.046 4 3.762 4.401 0.004 
 

DOC_transformed 8.733 1 8.733 10.218 0.003 0.391 

Depth_transformed 5.917 1 5.917 6.923 0.01 0.265 

EC_transformed 4.241 1 4.241 4.962 0.03 0.190 

AirTemp_transformed 3.449 1 3.449 4.036 0.051 0.154 

Veg.cover_transformed . 0 . . . 0 

Residual 37.605 44 0.855 
   

Corrected Total 52.651 48         

 

 

Table 3.5.2: Coefficients of CH4 Flux in AIC Stepwise Linear Regression Model 

          95% Confidence 

interval 

  

Model Term Coefficient Std.Error t Sig. Lower Upper Importance 

Intercept 5.005 2.373 2.109 0.041 0.223 9.786 
 

DOC_transformed 0.084 0.026 3.197 0.003 0.031 0.138 0.391 

Depth_transformed -0.921 0.350 -2.631 0.012 -1.627 -0.216 0.265 

EC_transformed -0.098 0.044 -2.228 0.031 -0.186 -0.009 0.190 

AirTemp_transformed -0.084 0.042 -2.009 0.051 -0.169 0 0.154 

Veg.cover_transformed 0a           0 

Note: a – This coefficient is set to zero because it is redundant 
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Table 3.5.3: Model Building Summary of CH4 Flux in AIC Stepwise Linear Regression 

            Model           

  1 2 3 4 5 6 7 8 9 10 

  Information Criterion -1.574 -1.574 -1.35 -1.35 -1.334 -1.334 -1.22 -1.22 -1.143 -1.143 

 Depth_transformed          

 Veg.cover_transformed          

 EC_transformed           

Effects AirTemp_transformed           

 DOC_transformed          

 pH_transformed           

  DO_transformed                   

Note: A checkmark means the effects is in the model 
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Figure 3.5: Mean CH4 flux across the growing season of 2013, 2014, 2015, 2016 and 

2018. Error bars and letters represent standard errors (SE) and significant differences (p < 

0.05) between the growing seasons. 

 

3.3.4.3 N2O flux  

 

Flux of N2O did not vary across the growing seasons (ANOVA, F (4, 108) = 0.56, p = 0.69; 

Fig. 3.6) and among pools (ANOVA, F (2, 110) = 2.31, p = 0.10). Overall, it has a mean flux 

of -2.77 ± 3.98 µmol m-2 d-1 ranging from -133.37 to 114.28 µmol m-2 d-1 (Table 3.6).   Pools 

acted as sinks of N2O in three growing season of 2013, 2016 and 2018 with a means of -

3.92 ± 4.09 µmol m-2 d-1 (-38.17 to 19.09 µmol m-2 d-1), -2.49 ± 14.29 µmol m-2 d-1 (-133.37 

to 76.11 µmol m-2 d-1) and mean of -7.51 ± 5.09 µmol m-2 d-1 (-99.06 to 95.20 µmol m-2 d-

1) respectively. Conversely, pools acted as mean sources in the growing season of 2014 

and 2015 with a mean 3.96 ± 4.22 µmol m-2 d-1 (-13.41 - 38.17 µmol m-2 d-1) and 9.63 ± 

18.17 µmol m-2 d-1 (-133.37 - 114.28 µmol m-2 d-1) respectively.  
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N2O fluxes did not significantly correlate with any physicochemical parameters and were 

not best predicted by any variable when applied in the stepwise multiple linear regression 

model. 

 
Figure 3.6: Mean N2O flux across the growing season of 2013, 2014, 2015, 2016 and 

2018. Error bars and letters represent standard errors (SE) and significant differences (p < 

0.05) between the growing seasons. 
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Table 3.6: Mean (±Standard Error) and range of CO2, CH4 and N2O fluxes during the 

growing seasons of 2013, 2014, 2015, 2016 and 2018 (N = 101 for CO2, 104 for CH4, 

113 for N2O, take note for differences in unit) 

  CO2  

(mmol m-2 d-1) 

CH4  

(mmol m-2 d-1) 

N2O 

 (µmol m-2 d-1)   

2013 23.91 ± 13.90  

(-39.80 - 71.79) 

0.41 ± 0.23 

 (-0.19 - 2.66) 

-3.92 ± 4.09  

(-38.17 - 19.09) 

 

2014 -7.41 ± 6.46 

 (-41.89 - 12.76) 

-0.00 ± 0.06  

(-0.19 - 0.38) 

3.96 ± 4.22  

(-13.41 - 38.17) 

 

2015 -8.98 ± 7.07 

 (-50.65 - 51.61) 

-0.01 ± 0.21  

(-2.28 - 1.52) 

9.63 ± 18.17  

(-133.37 - 114.28) 

 

2016 -9.04 ± 8.05 

 (-65.70 - 43.61) 

0.19 ± 0.08 

 (-0.38 - 1.14) 

-2.49 ± 14.29 

 (-133.37 - 76.11) 

 

2018 7.79 ± 2.21 

 (-21.09 - 52.37) 

0.52 ± 0.15  

(-2.09 - 2.97) 

-7.51 ± 5.09 

 (-99.06 - 95.20)   
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3.4 Discussion  

 

3.4.1 CO2 flux  

 

The range of CO2 fluxes from this study varied widely from an influx of -65 mmol m-2 d-1 

to efflux of 71.79 mmol m-2 d-1 with an average evasion value of 2.39 mmol m-2 d-1. CO2 

fluxes in this study were lower in range than the CO2 fluxes of 3.18 to 377.19 mmol m-2   

d-1   reported from open water pools in a peatland in Quebec, Canada (Pelletier et al., 2014) 

and highly organic peatland open water pool in Hudson Bay Lowland, Canada with a range 

of 84.07 to 249.94 mmol m-2 d-1 (Hamilton et al., 1994). The variability of fluxes from 

influx to evasion observed in this study is consistent with reported fluxes from other inland 

waters.  Kling et al. (1991) reported instantaneous fluxes of -5.5 to 59.8 mmol m-2 d-1 in a 

study of lakes in Alaska. Invasion of CO2 into the lake from the atmosphere was recorded 

in that study due to the photosynthetic need of algae for production after fertilization 

experiment. Laurion et al. (2010) also recorded atmospheric influx of CO2 in the range of 

-20.5 to 114.4 mmol m-2 d-1 to support the photosynthetic demands of benthic microbial 

mats in arctic ponds in Nunavik, Canada. Similarly, a flux range of -8.9 to 161.1 mmol     

m-2 d-1 was also reported from a reservoir in Germany also attributed to primary production 

(Halbedel and Koschorreck, 2013). The uptake of CO2 by high primary productive inland 

waters have also been observed by (Hanson et al., 2004; Cole et al., 2007, Downing et al., 

2008, Tranvik et al., 2009). In this study, analysis of stepwise linear regression predicted 

vegetation to be one of the important predictors of CO2 flux in the pools in the growing 

season of 2018. Thus, the invasion of CO2 into pools in our study may be related to an 
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influx of CO2 to support photosynthesis activities of macrophytes highly visible in our 

studied pools.  

Atmospheric exchange of CO2 across the water-air interface varied significantly among the 

different growing seasons (Table 3.6, Fig. 3.4). The switch of CO2 emission between sink 

and source has also been observed in peatland pools, lakes and reservoirs (Kling et al., 

1992, Macrea et al., 2004, Tranvik et al., 2009). Inter-annual CO2 flux variability observed 

in other previous studies has been linked to variation in precipitation and summer 

conditions (Rantakari and Kortelainen, 2005; Halbedel and Koschorreck, 2013, Knoll et 

al., 2013). In a comprehensive six-year study by Fontes et al. (2015), higher levels of CO2 

in lake surface water were related to rainfall.  Precipitation events have been observed to 

increase dissolved inorganic carbon (DIC) inputs into water (Macrea et al., 2004; Raymond 

and Oh, 2007) and have been suggested to be positively related to CO2 evasion in Boreal 

lakes (Einola et al., 2011). Rantakari and Kortelainen (2005) demonstrated that the annual 

CO2 emission followed the open water season precipitation while Kelly et al. (2001) also 

found that the year-to-year variability in the partial pressure in 11 boreal lakes was linked 

to changes in the weather pattern. Kortelainen et al. (2006) observed higher CO2 emission 

during years with the highest precipitation in small boreal lakes while Waddington and 

Roulet (1996) attributed reduced evasion from peatland pools to be related to revegetation 

of pools as they dry up due to no precipitation. A study by Macrea et al. (2004) reported 

that instantaneous fluxes of -49.7 to 1490 mmol m-2 d-1 in peatland open water pools in the 

subarctic region of Manitoba, Canada. The varied fluxes of CO2 in that study were 

attributed to hydrological connection with the peatland catchment after precipitation 
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events. Evasion of CO2 was observed to occur after input of DIC during summer storms 

while the invasion of CO2 into pools occurred to support photosynthetic demand of aquatic 

plants due to lack of precipitation to cause hydrological connection of pools. 

Knoll et al. (2013) observed that both reservoirs in their study were CO2 sinks during dry 

summers and sources during wet summers. Although CO2 flux did not significantly 

correlate with precipitation in our study, comparison of the yearly growing season long-

term precipitation data shows that the CO2 flux of growing season 2013 with considerably 

higher total precipitation and low temperature was significantly different from the other 

growing seasons with lower precipitation and higher temperature (Fig.3.2 and Fig. 3.4). 

The dryer growing seasons of 2014, 2015 and 2016 acted as sinks of CO2 in contrast with 

the wetter growing season of 2013 and 2018 which, acted as sources of CO2. Therefore, 

the variability of CO2 fluxes among the different growing seasons may be related to the 

differences in precipitation. Interestingly, shallow pools have been observed to have higher 

biological activities during the summer period, due to water dry-up from evaporation, 

which enables revegetation of macrophytes in the littoral and perimeters of pools, 

increasing CO2 concentration (Waddington and Roulet, 1996). Thus, the shallow depth of 

pools in this study (Table 3.1) may have also contributed to the gas exchange recorded. 

Although the R2 of the adjusted minimum adequate model was low, the influence of pools 

depth as a regulator of CO2 fluxes in this study was confirmed in the stepwise linear 

regression (equation 1). The low R2 value suggests that other explanatory variables such as 

chlorophyll a, or photosynthetic active radiation (PAR) not measured in this study may be 

required to establish a more robust linear model for CO2. 
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3.4.2 CH4 flux  

 

The mean fluxes of CH4 across the different growing seasons were not significantly 

different among each other (Table 3.6, Fig. 3.5). Pools acted as mean sources in 2013, 2016 

and 2018 and sink in 2014 and 2015. Variation in CH4 emissions in peatlands has been 

linked to changes in temperature and precipitation (Walter et al., 2001; Sanches et al., 

2019). This may be due to the influx of DOC during precipitation events or temporary 

connection of pools with peatland catchment increased substrate availability for 

methanogenesis and ultimately evasion of CH4 into the atmosphere (West et al., 2012; 

Camino‐Serrano et al., 2014; Sabrekov et al., 2017). Increased frequency of passing low 

pressures and rainstorms may also enable the transport of CH4 from pool sediments to the 

atmosphere, reducing the time for oxidation (Natchimuthu et al., 2014). Precipitation and 

temperature may have influenced the mean fluxes of CH4 in this study, as pools were 

sources in the wetter growing season and sinks in the drier season (Fig 3.2 and 3.5). 

CH4 fluxes in this study were low, with an overall mean of 0.32 ± 0.09 mmol m-2 d-1 and 

range of -2.8 to 2.97 mmol m-2 d-1. Fluxes were lower but within range of CH4 fluxes from 

a subtropical lake in India with a flux range of -3.1 to 194.7 mmol m-2 d-1 (Mallick and 

Dutta, 2009), in a beaver pond in Canada with a range of -0.25 to 17.24 mmol m-2 d-1 

(Roulet et al., 1997), lakes in Alaska with a range of 0.08 to 1.02 mmol m-2 d-1 (Kling et 

al., 1992) and a permafrost thaw pond in Quebec, Canada with a range of 0.03 to 5.62 

mmol m-2 d-1 (Laurion et al., 2010). Fluxes were, however, lower in range to fluxes reported 

in peatland open water pools in Canada, with a flux range of 0 to 184.54 mmol m-2 d-1 
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(McEnroe et al., 2009), with a range of 6.86 to 11.22 mmol m-2 d-1 (Hamilton et al., 1994) 

and 0.06 to 116.58 mmol m-2 d-1 (Pelletier et al., 2014).  

Emission of methane to the atmosphere has been reported to occur through a combination 

of plant-mediated transport through emergent aquatic plants, ebullition through bubble flux 

from sediments and diffusive flux (Bastviken et al., 2004, Pelletier et al., 2014). Ebullition 

and plant-mediated transport are the major pathways of CH4 emissions (Bastviken et al., 

2004, 2011). Ebullition is considered the most important contributor to emissions in surface 

water and has been reported to be larger than diffusive fluxes in shallow pools (Bastviken 

et al., 2004, Juutinen et al., 2009). Consequently, the fluxes of CH4 reported in this study 

are likely underestimated because ebullition flux and plant-mediated transport were not 

captured. It is interesting to note that higher fluxes reported from pools in Canada by 

Hamilton et al. (1994), McEnroe et al. (2009) and Pelletier et al. (2014) were measured 

from open water pools containing very little vegetation or devoid of vegetation. 

Despite the significant input of other drivers, DOC was predicted to be the most important 

driver of CH4 flux in the 2018 growing season in this study. Also, a significant positive 

correlation was observed between CH4 flux and DOC emphasizing their relationship (Table 

3.3). The positive relationship between DOC and CH4 flux has been reported in other 

studies, where DOC indicated substrate availability for methanogenesis increasing CH4 

concentration and flux (Bianchi et al., 1996, Garcia et al., 2000, Sanches et al., 2019). 

DOC can be derived from autochthonous sources (plant and algae exudations) and 

allochthonous sources (terrestrial organic matter) which can both be utilized by 

methanogens for methanogenesis (Casper, 1992, West et al., 2012). The positive 
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correlation between DOC and vegetation in this study suggests that DOC concentration 

was sourced more from autochthonous production.  

3.4.3 N2O flux 

 

Pools in this study acted as mean net sinks of N2O. The low flux range reported in this 

study is similar in range to other inland waters in the Boreal region (Huttenen et al., 2003; 

Hendzel et al., 2005; Soued et al., 2015). The low flux recorded in this study could be 

attributed to the low nutrient availability in ombrotrophic peatlands, as ponds receive their 

nutrients solely from precipitation events. Hence, small natural boreal pools are not 

important sources of atmospheric N2O (Huttenen et al., 2002; Soued et al., 2015). Soued 

et al. (2015) observed that lakes acted as sinks when pH was less than 6.27 and DOC were 

more than 7.49 mg L-1 due to the limitation of nitrification by pH thus, supplying NO3 for 

denitrification which reduces N2O production. In our study, pools were acidic with a pH 

range of 3.60 to 5.00 and DOC range of 10.3 to 43.9 mg L-1, which may suggest the possible 

invasion of N2O recorded in this study.  
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3.5 Conclusion 

 

To the best of our knowledge, this is the first comprehensive five year temporal study of 

GHG: CO2, CH4 and N2O fluxes from peatland pools in Newfoundland, Canada. The fluxes 

of GHG were dynamic over the study period, switching between uptake and release over 

the growing seasons. However, no systematic pattern of gas exchange with the atmosphere 

was observed seasonally. This study demonstrated that small peatland pools could be net 

sinks and sources of CO2 and CH4 to the atmosphere depending on the weather pattern, 

pool morphology and within pool biogeochemical processes. Consequently, small peatland 

pools would either act as sinks of CO2 and CH4 in a drier climate or sources of CO2 and 

CH4 in a wetter climate. The net emission of GHG from our study pools would, therefore, 

depend on future weather changes.  
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Chapter 4 

4.0 Summary and Conclusion 

 

The overall aim of my research was to highlight the significance of the research of bog 

pools in peatland studies and its inclusion in greenhouse gas budget from peatlands to 

ensure accurate budgeting of greenhouse gas levels in the atmosphere. Specifically, the 

purpose of this thesis was to measure the concentration of dissolved methane in bog pools, 

identify the local drivers of methane concentration and estimate and compare the variation 

of fluxes of GHG from bog pools.  

In chapter 2, I found that pools in our study had dissolved CH4 concentrations ranging from 

2.32 to 180.98 µmol/L. This was found to be among the highest range of dissolved CH4 

concentration reported from small inland waters around the world, showing that small bog 

pools are "hot-spots" for methane production. It is interesting to note that concentration 

increase and decrease of CH4 in the pools coincided with temperature increase and 

decrease, respectively. Higher concentration was found in mid-July to early September, 

which is the typical summer months in Newfoundland, Canada. Also, concentrations were 

lower in June and October when air temperatures are lower. The influence of temperature 

on the concentration levels of the pool was supported by the stepwise linear model, which 

predicted air temperature to be the most important predictor of CH4 concentration in the 

pool. This was similar to other studies (Pighini et al., 2018, Rasilo et al., 2015). This was 

not surprising as temperature has been reported to affect methanogenesis, where an 

increase in temperature leads to a rise in methanogenesis and subsequent increase in the 

CH4 levels. However, the influence of temperature in determining CH4 concentration in 
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my studied pools shows that bog pools are sensitive to climatic conditions. Also, the 

influence of within pool factors such as vegetation, DOC, and surface area shows that these 

intrinsic characteristics of bog pools have a particular effect in aiding CH4 production.   

In chapter 3, the estimate and variation of GHG fluxes over the five-year growing seasons 

were determined. The temporal pattern of CH4 and N2O were similar across the years, 

while only fluxes of CO2 were different. Also, there was no systematic pattern of emissions 

of GHG as pools alternated between acting as sinks and sources, and no pattern of emission 

could be established seasonally. However, I found that the mean growing season fluxes of 

CO2 and CH4 were influenced by the prevailing weather conditions of that growing season, 

where pools acted as CO2 and CH4 sources to the atmosphere in a wetter growing season 

and net sinks in a drier growing season.  

Overall, this study has shown that bog pools have natural intrinsic features aiding CH4 

production, and the emission of CO2 and CH4 varies depending on climate and within pool 

biogeochemistry. Thus, bog pools may be affected in future climate scenarios.  

4.1 Future work 

 

This study improves the knowledge of GHG in peatlands and contributes to a better 

understanding of the role of bog pools in peatlands GHG flux budget. However, based on 

my finding that the fluxes are rather variable, future work should focus on continuous 

measurements of GHG from peatlands pools at different regional locations, as well as 

comparing inter-annual variations. This would help to link unusual emission patterns to the 

prevalent climatic conditions and physicochemical drivers.  
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Also, in the estimation of CH4 flux from pools, future work should consider a more 

comprehensive methodology involving diffusive flux measurements, in addition to 

ebullition, and plant-mediated flux measurements to ensure accurate assessment and 

budgeting.  
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