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ABSTRACT

Cumulative evidence indicates thai the release of spinal prostaglandins

(PGs) is increased in hyperalgesia and persistent pain states following peripheral

inflammation or injury, events thai are associated with repetitive C-fiber stimulation.

Non-steroidal anti-inflammatory drugs (NSAIDs), given intrathecally (i.t.), inhibited

PG release and attenuated persistent pain and hyperalgesia, approximately 500

1000 more potently when compared with systemic administration suggesting a

central site of action. CycloQxygenase (COX), the enzyme for PG synthesis, is

present in the spinal dorsal horn where the nociceptive C-fibers terminate.

Furthermore. i.1. PGE2 induces hyperalgesia and allodynia in conscious mice. All

these observations support the hypothesis that PGs are involved in C-fiber

mediated spinal sensitization processes underlying hyperalgesia and allodynia.

Tactile stimulation (A~-fiber input) induces prominent, well-defined allodynia after

i.t. bicuculline (BIC) in the rat. However, the mechanism of al10dynia is unclear.

The objective of the present study was to determine whether the low threshold

mechanoreceptive (A~) primary afferent fibers activate a similar prostanoid

sensitizing mechanism in the rat spinal cord in allodynia. Male Sprague Dawley rats

(325-400g)were anaesthetized with halothane and maintained with urethane for the

continuous monitoring of blood pressure (MAP), heart rate (HR) and cortical

electroencephalogram (EEG). A laminectomy was performed to expose the dorsal

surface of the spinal cord. Unilateral application of bicuculline (0.1 I-Ig in 0.1 1-11) to

the L5 or L6 spinal segment induced a highly localized allodynia (e.g .• one or two

digits) on the ipsilateral hind paw. Thus, hair deflection (HD) (brushing the hair with



a cotton-tipped applicator) in the presence, but not absence of bicuculhne, evoked

an increase in MAP and HR, abrupt motor responses (MR) (e.g., withdrawal of the

hind leg, kicking, and/or scratching) on the affected side, and desynchrony of the

EEG. Bicuculline-allodynia was dose-dependent, yielding EDso values (95% CI) of

0.055 mg (0.035-0.085) for MAP; 0.075 mg (0.048-0.118) for HR and 0.097 mg

(0.078-0.122) for MR. Allodynia was sustained for up to 2 h with repeated

bicuculline doses without any detectable change in the location or area of peripheral

sensitization. Pretreatment with either the EP-receptor antagonist, SC-51322, the

cyclooxygenase (COX)-2 selective inhibitor, NS-398, or the NMDA-receptor

antagonist, AP-7, inhibited bicuculline-allodynia in a dose-dependent manner.

Innocuous tactile stimulation in the presence of i.t. PGE2 induced nociceptive,like

behavioural responses (allodynia) in conscious rats. These allodynic responses

were attenuated by SC-51322, or AP-7. Bicuculline, given i.t. 5 min before PGE2,

enhanced PGE2,induced anodynia and shifted the PGE2 dose-response curve to the

left. The spontaneous behavioural response after i.t. PGE2 was also enhanced by

bicuculline, but to a much less extent. The present results demonstrate: a) the utility

of topical drug delivery for inducing highly localized and sustained allodynia in the

lightly-anaesthetized rat; b) that PGs, synthesized by constitutive COX-2 in the

spinal cord in response to NMDA-dependent afferent input, contribute to the

abnormal processing of tactile input via spinal EP-receptors; c) i.t PGE2 induces

allodynia in conscious rats which is mediated by EP and NMDA receptors, and is

potentiated by pretreatment with i.1. bicuculline. These results suggest that low

threshold afferent input acquires access to a PG-sensitizing process during



bicuculline-disinhibition in the rat.
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1 INTRODUCTION

1.1 Neuropathic Pain and AlJodynia

Neuropathic pain is defined by the International Association for the Study of

Pain (IASP) as ·pain initiated or caused by a primary lesion or dysfunction in the

nervous system- (Merskey, 1994). It usually arises from trauma or disease in the

peripheral nerves, the posterior spinal roots, the spinal cord itself, or certain regions

of the brain. Examples include phantom limb pain; central post-stroke pain;

diabetic, alcoholic, nutritional, traumatic or cancerous neuropathy; anterior spinal

artery syndrome; postherpetic neural9ia; reflex sympathetic dystrophy; plexus

avulsion; postcordotomy dysesthesia and painful conditions associated with

paraplegia and multiple sclerosis (Shibasaki and Kuroiwa, 1974; Boivie, 1989;

Tasker, 1990; Portenoy and Hagen, 1990; Tanelian and Brose, 1991; Price et aI.,

1992; Triggs and Beric, 1992; Baron and Saguer, 1993; Portenoy, 2000).

The rate of occurrence of neuropathic pain varies with the causative event.

For example, poststroke pain was found in 16 out of 207 (8%) stroke patients

(Andersen et al., 1995). Postherpetic neuralgia (PHN), defined as neuropathic pain

persisting for 1 month or longer after herpes zoster infection, affects about 10% of

all patients who have contracted the disease (Watson, 1995). This increases to

approximately 50% of patients infected with herpes zoster who are older than 50

years (Beydoun et al., 1999).

Spinal cord injury, which affects about one in 40 patients who present 10 a

major trauma centre (Kearney el aI., 1991), is another common cause of

neuropathic pain. Although the annual incidence in developed countries is relatively

-1-



low (from 11.5-53.4 per million population) (Botterell et al.. 1975; Kurtzke 1975).

victims frequently develop chronic musculooskeletal and neuropathic pain. in

addition to the loss of motor control. Approximately 30% of patients with spinal cord

injury experience symptoms of neuropathic pain. This neuropathic pain is a

relatively rare and idiosyncratic outcome of nerve injury (Noordenbos and Wall,

1981; Amer and Meyerson, 1988; Tasker, 1990). However, it is extremely

debilitating, often intractable and a major burden on the health and social systems

(Arner and Meyerson, 1988; Rowbotham et at, 1991; Baron and Saguer, 1993:

Schmader, 1998).

Neuropathic pain differs from normal nociceptive pain in a number of

important ways. The former is chronic in nature, persisting for years or even

decades after the initial injury has healed. The onset of neuropathic pain is

normally delayed for weeks to months after the causative event (Tasker, 1990). For

example, 82% of patients with spinal rord lesions experienced a delay in the onset

of pain, which ranged from less than a month to more than one year after injury

(Tasker et aI., 1992). Neuropathic pain is frequently described by patients as a

burning, ripping, tearing, pressing or twisting pain, terms normally associated with

physical injury. Patients are often unable to identify or locate the inciting stimulus

and radiation of sensation, abnormal temporal summation, and after-sensations are

frequent sequelae oflhis syndrome (Lindblom and Varrillo, 1979: Noordenbos and

Wall, 1981; Price at at, 1992).

One of the major problems of neuropathic pain is its poor response to

treatment. Surgical interventions, intended to alleviate neuropathic pain, usually

-2-



provide only incomplete and temporary relief, with the pain eventually returning

(Tasker et aI., 1992; Eide, 1998). Pharmacotherapy with dl1Jgs such as opioid

analgesics, tricyclic antidepressants, anticonvulsants, barbiturates, local anesthetics

and/or use-dependent sodium channel blockers is highly variable from patient to

patient, and rarely successful in effecting complete pain control. As a result, the

majority of patients with neuropathic pain are inadequately controlled, making

neuropathic pain a serious clinical problem and a major therapeutic challenge (Eide,

1998).

Surveys of patients with neuropathic pain report that the most common and

troublesome symptom is allodynia (Campbell et aI., 1988; Raja et aI., 1988).

Allodynia is defined by the IASP as ~pain arising from a stimulus that does not

normally evoke pain" (Merskey. 1986). Thus, a cold draft of air or the light touch of

clothing can acquire the ability to evoke excl1Jciating pain after nerve injury.

Mechanical (tactile)allodynia is the most common type, occurring in 54% of patients

with central neuropathic pain and 48% of patients with peripheral neuropathic pain

(Nurmikko and Hietaharju, 1992), and it is the major clinical form of allodynia (Woolf

and Doubell, 1994; Ma and Woolf, 1996).

1.2 Putative Mechanisms of ANodynia

A fundamental characteristic of allodynia is the altered afferent input (Af3- vs

C-fibers) that elicits pain. Thus, ischemic nerve block or nerve compression

eliminated allodynia and the sensation of light touch on adjacent normal skin in

patients with neuropathic pain (Campbell et aI., 1988; Price et at, 1989). These

-3-



results indicated that both sensations are mediated by the same neural elements,

namely All fibers. In contrast, temperature discrimination in the same region was

unaffected, indicating that functional A& and C-fibers do not mediate the allodynia

(Campbell et al., 1988). Studies of the response latencies for the detection of

mechanical stimuli showed that the conduction velocity for detection of pain in the

nerve-injured limb was similar to that for detection of touch in the normal limb

(Lindblom and Verrillo, 1979; Campbell et aI., 1988; Gracely et aI., 1992).

Additional evidence for the involvement of All-fibers in allodynia is derived from the

observation that high-frequency, low-intensity electrical nerve stimulation

exacerbates allodynia. rather than eliciting the analgesic effect seen with

nociceptive pain (Price et aI., 1992). Since All-fibers do not normally cause pain,

their acqUired ability to do so after peripheral or central nerve injury implies a

dramatic change in somatosensory processing at the spinal and/or supraspinal

level.

In the periphery, nerve injury has been shown to result in a variety of

changes. These include: i) spontaneous afferent activity in the injured terminals

andlor the dorsal root ganglion cells of the injured axons (Devor 1991); ii) increased

mechanosensitivity of the neuroma leading to increased A~-fiber discharges

(Babbedge et al; 1996); iii) infiltration of inflammatory cells such as macrophages

into the myelin lamellae similar to that seen in inflammatory neuropathies (Nukada

et aI., 2000); iv) development of post-ganglionic sympathetic sprouts around type

A dorsal root ganglion cells (McLachlan et at, 1993); and v) ephaptic connections

(abnormal electrical connections between demyelinated adjacent axons, (Janig et

-4-



ai"1988). Each of these has the ability to generate an excitatory barrage reaching

the spinal cord. Sustained excitatory input is known to induce a facilitated central

hyperexcitability in the spinal cord (Coderre, 1993; Millan, 1999).

Nerve injury is also known to elicit pronounced changes in the spinal cord.

These include: i) the sprouting of nerve terminals of large primary afferent (A~)

fibers into lamina I and II of the dorsal hom of spinal cord (LaMotte et al., 1991;

Woolf et aI., 1992); ii) changes in the postsynaptic function of spinal neurons

including the loss of opioid binding sites in the superiicial dorsal hom (Besse el aI.,

1992; Molander et aI., 1992); iii) the appearance of new neurotransmitters such as

neuropeptide Y, galanin. and vasoactive intestinal peptide in spinal afferent

terminals (Wakisaka et aI., 1992); iv) alterations in intracellular and cell suriace

markers (e.g., glial fibrillary acidic protein) (Garrison at al,. 191992); v) the

upregulation of several immediate early gene products in the spinal cord such as

c-fos and c-jun which are implicated in the increased responsiveness of second

order neurons (Herdegen et a!.. 91. Cameron-Curry et at, 1991); and Vi) the

appearance of dark staining neurons in the dorsal hom thought to be deteriorating

interneurons (Sugimoto et aI., 1989; 1990; Mayer et at, 1999).

These presynaptic and postsynaptic changes suggest a major reorganization

of spinal cord connections andfor nerve function after nerve injury. Many of these

are directly or indirectly correlated with the development of hypersensitivity in the

spinal cord (Millan, 1999). Although the functional significance of these changes

remains to be determined, it is clear that the spinal cord is a major site of injury

induced adaptations to neuropathic pain.

-5-



1.3 Spinal Mechanisms of AlJodynia

The spinal cord contains the first synaptic connection in somatosensory

pathways, and represents the first site of signal processing. Thus, primalY afferent

fibers form extensive synaptic contacts with second order neurons in the dorsal

hom. The latter are either relay cells, with axons projecting to the brain stem or

thalamus, or intemeurons that transfer information locally to other intemeurons or

to relay cells in adjacent spinal segments. Functionally, second order neurons are

classified into three general types (Besson and Chaouch, 1987; HenlY, 1989): 1)

non-nociceptive (those receiving input from Ab primalY afferent fibers), 2)

nociceptive specific (those receiving input from C and Ad fibers), and 3) nociceptive

non-specific or wide dynamic range (WDR) neurons. The latter group, which are

known to be involved in normal pain processing, receive convergent input from both

nociceptive and non-nociceptive primalY afferent fibers (Figure 1A). This synaptic

arrangement and the ability of these neurons to elicit a graded response to a range

of stimulus intensities make WDR neurons a logical site for the investigation of

allodynia. A basic question related to WDR neurons and allodynia is why, under

normal conditions, All input is not routinely perceived as pain.

The ultimate perception of a stimulus as tactile or nociceptive appears to be

governed by the balance of excitatolY and inhibilolY input that determines the

discharge of second order neurons (see reviews by Yaksh et aI., 1999b; Milan,

1999; Figure 1A, B). Convergent lines of evidence suggest that low threshold All

afferent fibers activate inhibitolY interneurons in the spinal dorsal horn which

modulate the evoked discharge ofWDR neurons (Millan, 1999) (Figure 1A). These
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Figure 1. A schematic diagram showing the convergent input of primary

afferent fibers onto a wide dynamic range (WOR) neuron In the spinal dorsal
hom. A: In nonnal conditions. WDR neurons receive input from large
diameter, myelinated, low·threshold mechanoreceptive (lTM) AI3 fibers;

intermediate diameter, myelinated. high threshold mechanoreceptive (HTM)
and thermosensitive (heat) AfJ fibers, and small diameter, unmyelinated,

polymodal C fibers. Collateral axons of LTM fibers make synaptic contacts
with small inhibitory intemeurons (small filled circle and arrow) that modulate
the response of WDR neurons to LTM input. B: Central or peripheral nerve
injury may induce dysfunction and/orloss of these lntemeurons. The removal

of this inhibitory modulation results in an exaggerated response to normal

low threshold mechanoreceptive (A~) input that could be mistakenly
interpreted as pain. The small open circle and arrow represents an excitatory

Interneuron. The shaded circle and arrow represents damaged inhibitory

interneuron. The + and • symbols indicate excitation and inhibition,
respectively (adapted from Wall et aI., 1989).
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inhibitory intemeurons contain GABA and glycine (Todd and Sullivan; 1990: Carlton

et at. 1996). GABA-like immunoreactivity (1I) is concentrated in the somata,

dendrites and axon terminals within laminae 1·111 of the spinal dorsal hom (Todd,

1990). In the spinal cord, GABAergic dendrites receive synaptic input from the

central terminals of primary afferent fibers, especially those of the low·thrashold,

myelinated, A13·type (Todd, 1990; Todd at al., 1996). In tum, GABA·containing

neurons synapse directly on the proximal dendrites or cell bodies of spinothalamic

tract (STI) cells (Carlton and Hayes; 1990; Carlton et aI., 1992) which relay

information to sensory nuclei in the thalamus.

Immunohistochemical studies have also confirmed the presence of GABAA

receptors in the synaptic regions formed by these inlerneurons (Solodkin et aI.,

1984). Indeed, GABA interneurons are thought to effect both presynaptic inhibition

at axoaxonic synapses (Solodkin et aI., 1984), and postsynaptic inhibition at

axodendrilic and axosomalic synapses by means of the GABAA receptors present

at these sites (Todd et aI., 1996).

Likewise, glycinergic cells are most abundant in lamina III and IV of the spinal

dorsal hom (less in lamina II, and V) (Carlton et at, 1996) where glycine appears

to co--exist with GABA in many (but not all) GABAergic cells (Todd, 1990). The

dendrites of neurons exhibitingglycine·U in laminae II and III are postsynaptic to the

central axons of type II (myelinated axons), but not type I (unmyelinated axons)

glomeruli (Todd, 1990). Thus, glycinergic interneurons appear to receive a major

monosynaptic input from myelinated primary afferent fibers (Todd 1990; Carlton et

al., 1996). Glycinergic interneurons also make functional synaptic contacts with
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STT cells in the spinal dorsal horn (Hori and Endo, 1992; Antal et aI., 1996).

Consistent with these data are reports of glycine receptor- and GABAA receptor-L1

in the synapses formed by these interneurons. Glycine and GABAA receptor

immunoreactivity was enriched in the postsynaptic dendrites, cell bodies as well as

presynaptic axons. These results suggest that glycine effects both pre-synaptic and

post-synaptic inhibition of second order neurons in cats and rats (Solodkin et aI.,

1984; Todd et aI., 1996) and provide further anatomical evidence for the model

illustrated in Figure 1A.

Glycine and GABA are known to exert powerful inhibitory effects on spinal

neurons. For example, in cats and monkeys, iontophoretic delivery of GABA or

glycine onto STT cells elicited a profound and dose-related inhibition of their

responses to cutaneous mechanical stimuli (Lin, 1996a; 1996b; Sorkin and Puig,

1996; Sorkin et at, 1998). Likewise, iontophoresis of glycine or GABA in the cat

dorsal horn diminished the responsiveness of spinal neurons to light tactile

stimulation (light touch/light pressure), and decreased the size of the cutaneous

receptive fields (Zieglgansberger and Herz, 1971). Conversely, application of the

GABAA receptor antagonist, bicuculline, or the glycine receptor antagonist,

strychnine into the dorsal horn increased both the background activity and the

responses to cutaneous mechanical stimuli (Un et aI., 1996; Sorkin et aI., 1998;

Willcockson et aI., 1984). These data suggest a tonic inhibition of STT cells by

GABAergic and glycinergic neurons. The intrathecal (i.t.) injection of bicuculline and

strychnine has also been shown to induce a long-lasting increase in the

responsiveness of dorsal hom neurons to low intensity, AI3-fiber stimulation
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resembling the hyperexcitability of allodynia (Sivilotti and Doubell, 1994). Finally,

genetic variants such as the Poll Hereford calf (Gundlach et aI., 1988) and the

spastic mouse (White and Heller, 1982), which exhibit up to 10-fold decrease in

STR binding in the spinal cord, display exaggerated sensitivity to even modest

cutaneous stimulation.

Collectively, these studies provide convergent evidence thai low threshold

AfHibers activate local GABAergic and glycinergic interneurons that regulate the

excitability ofWDR neurons (Carlton et aI., 1996; Millan, 1999), and support for the

modulatory effects of GABA and glycine in spinal sensory processing. Thus, the

encoding of a low-threshold mechanical stimulus as an innocuous event may

depend on the presence of intrinsic GABAergic and/or glycinergic inhibition in the

spinal dorsal horn

1.4 Evidence for Spinal Disinhibition After Neural Injury and Experimental Models

of Allodynia

By virtue of its location and anatomy, the spinal cord is vulnerable to injuries

that commonly precede the onset of clinical allodynia (Tasker, 1990). For example,

infarction of the anterior spinal artery (anterior spinal arlery syndrome) leads to

painful burning dysesthesia below the level of lhe spinal lesion which is refractory

to opioid, anticonvulsant and antidepressant therapy (Triggs and Beric, 1992).

Traumatic spinal cord injury is also a common cause of neuropathic pain. This is

generally characterized by diffuse burning dysesthetic sensations (inclUding

allodynia) distal to the level of spinal injury (Davidoff et aI., 1987; Yezierski, 1996).

-10-



That the spinal cord is a major site of dysfunction in neuropathic pain is not

surprising given the fact that the dorsal hom contains the first synapse in pathways

sUbserving nociceptioo.

Animals subjected to central or peripheral nerve injury exhibit a reduction in

the functional tone ofspinal GABAergic and glycinergic intemeurons. For example,

photochemically-induced spinal cord ischemia in the rat produced severe

mechanical allodynia, and a significant decrease in GABA-L1 in lamina I-III of the

irradiated dorsal hom (Demediuk et al., 1989; Hao el al., 1991; Zhang et al., 1994).

Electrophysiological studies revealed enhanced sensitivity of spinal WDR neurons

to electrical, and low threshold mechanical stimulation that persisted 10-20 days

after focal spinal ischemia corresponding to the behavioural data (Hao et aI.,

1992a). This sensory dysfunction was limited to All afferent fiber input (Hao et aI.,

1992a, b); the responses to A6IC fiber activity remained normal. Of relevance to the

spinal disinhibition model of a1lodynia is the observation that the recovery from

a1lodynia paral1elled the return of GABAergic tone in the spinal dorsal hom (Zhan9

et aI., 1994).

Similar observations have been reported following partial ligation of the

sciatic nerve; an experimental model of peripheral neuropathy. Thus, GABA-L1 was

si9nificantly decreased on the side ipsilateral to the sciatic nerve ligation (Ibuki et

al., 1997; Eaton et al., 1999). Abnormal pain-related behaviour, including cold and

tactile allodynia and thermal and tactile hyperalgesia, parallelled these

immunohistochemical changes in the spinal dorsal hom. Extracellular recordin9s

of WDR neurons revealed a significant increase in the frequency of spontaneous
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discharges, and the responsiveness to brush and light pressure (Yakhnitsa et aI.,

1999). Interestingly, spinal cord stimulation (SCS) depressed the activity of WDR

neurons, and produced a marked and long-lasting increase in the threshold of

activation by tactile input (Meyerson et at, 1995; Yakhnitsa et aI., 1999). These

inhibitory effects were associated with a significant increase of GABA concentration

in spinal microdialysate samples (Linderoth et al., 1994; Stiller et at, 1996). These

results provide further evidence for the role of GABAergic modulation of the low

threshold (A-fiber) mediated WDR neuron hyperactivity in peripheral neuropathy.

In tum, pharmacological blockade of spinal GABAergic and glycinergic tone

with bicuculline and strychnine enhanced the already established hyperalgesia and

allodynia following sciatic nerve ligation (Yamamoto and Yaksh, 1993; Satoh and

Ornate, 1996; Hwang and Yaksh, 1997). Conversely, tactile and cold allodynia and

hyperalgesia were completely blocked by a single dose of i.t. GABA, and

significantly reduced by cultured GABAergic cells grafted into the subarachnoid

space close to the spinal dorsal horn (Eaton et aI., 1999). These results suggest

that a local supply of GABA in the spinal dorsal horn was able to reverse the

development of allodynia following peripheral nerve injury. Finally, a bilateral

reduction in the population of STR-sensitive glycine receptors in the spinal dorsal

horn has been reported after unilateral constriction of the rat sciatic nerve (Simpson

and Hwang, 1998).

Even in the absence of nerve injury, a reduction in spinal GABAergic and/or

glycinergic tone evokes robust allodynia in experimental animals. Cumulative

evidence indicates that normally innocuous mechanical stimulation acquires
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nociceptive characteristics during the pharmacological blockade ofspinal glycine or

GABA" receptors (Yaksh, 1989; Shennan and Loomis, 1994). Thus, the i.t.

injection of sub-convulsive doses of strychnine or bicuculline induced an

exaggerated excitatory state in spinal cord Whereby innocuous tactile stimulation

evoked behavioral, autonomic and neurochemical responses characteristic of a

noxiousevent(Beyeretal., 1985;Yaksh, 1989: Sherman and Loomis, 1994: 1995).

The resulting allodynia was: 1) evoked by low threshold All-fiber activity; 2) only

elicited by li9ht brushing of the hair at circumscribed sites corresponding to the

spinal segments affected by Lt. strychnine or bicuculline (segmentally organized;

Sherman and Loomis 1994); 3) reversible and reproducible; 4) unaffected by

phannacological treatments that interfere with high-threshold C·fiber input (e.g.,

morphine, capsaicin, substance P antagonists) (Triggs and Beric, 1992); and 5)

attenuated by i.t. glycine, the glycine pro-drug, milacemide or the GABA" agonist,

muscimol (Hwang and Yaksh, 1997: Khandwala and Loomis, 1998).

In summary, there is growing evidence that disruption of GABAergic and/or

gtycinergic modulation in the spinal dorsal hom, either pharmacologically or by

nerve injury, yields an exaggerated sensitivity to otherwise innocuous stimuli (Figure

1A, B). In the absence of this inhibitory modulation, A13·fibers appear to activate

cellular mechanisms normally limited to nociceptive signalling; and only recruited by

repealed, high-threshold C-fiber input.

1.5 Evidence for the Role of Prostaglandins in Normal Pain and Hyperalgesia

One of the notable biochemical mechanisms enhancing pain signalling in the
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spinal cord is the production of prostaglandins (PGs). This mechanism is

completely independent of the well-known roJe of peripheral PGs in pain and

inflammation. That PGs might be generated within the central nervous system

(CNS) in response to repeated C·fiber input was first suggested by Malmberg and

Yaksh (1992a). This was based on the observation that non-steroidal anti

inflammatory drugs (NSAIDs), injected directly into spinal subarachnoid space of

conscious rats, elicited dose-dependent inhibition of the behavioral responses

evoked by formalin injection into the foot pad (Malmberg and Yaksh, 1992a).

NSAIDs, given spinally, were 100-1000 times more potent than systemic

administration in inhibiting the second phase of the formalin test (Malmberg and

Yaksh, 1992a). Intrathecal NSAIDs were also effective in inhibiting glutamate- or

substance P-induced hyperalgesia in the rat (Malmberg and Yaksh. 1992b). These

results implicate a spinal antinociceptive effect of NSAIDs that is distinct from their

usual anti-inflammatory actions, and are consistent with a central as well as

peripheral site of action in pain. The spinal antinociceptive effect of NSAIDs was

found to be stereospecifIC (Jett et at. 1999). suggesting that the inhibition of

c:ycIooxygenase in the spinal cord, and thus the suppression of central PG

synthesis, is the mechanism responsible.

The central production of PGs in response to high-threshold nociceptive input

has been confirmed in in vivo and in vitro experiments. The injection of

carrageenan/kaolin into the knee joint of the rat evoked persistent pain behaviour

and a time-dependent increase in the concentration of PGE2 in spinal microdialysis

samples (146 t 11% and 143 ± 18% of baseline 10 min and 24 h after knee joint
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carrageenanlkaolin injection, respectively) (Yang et at. 1996). An increase in PGE2

concentration of 109:t 10% and 83:t 15% of baseline was also re~>rted during the

first and second phase of the rat fonnalin test, respectively (Malmberg and Yaksh,

1995b.c). Whereas both pain behaviour and the increase in PGE2 concentration

were suppressed by i.t. S (+)-ibuprofen, the R(-)-enanliomer had no effect

(Malmberg and Yaksh, 1995c; Yang etal.. 1996). The i.t. injection of substance P,

which induces hyperalgesia in the rat, also elicited a dramatic increase (362 ± 37%

of baseline) in PGE2 concentration in spinal CSF (Hua et at. 1999).

The ability of the spinal cord to generate PGs has been verified using an in

vitro spinal superfusion model (Dirig and Yaksh, 1999). Spinal cords, harvested

from rats that were pretreated with kaolin/carrageenan into knee joint for 5-72 h,

exhibited an increased release of PGE2 into the perfusion medium compared to

control. Further elevations in PGE2 concentrations were evoked by perfusion of

these same spinal cords with substance P (0.1-1.0 flM) or capsaicin (0.1·10 flM).

Thus. PGE2 synthesis in the spinal cord is triggered by peripheral inflammation and

by direct exposure to receptor ligands known to induce hyperalgesia in response to

peripheral input.

The concept that PGs are generated centrally has been strengthened by

reports that cydooxygenase (COX), the prostanoid·fonning enzyme, is constitutively

present in the brain and spinal cord. Immunocytochemical and autoradiographic

studies of the CNS have verified the presence of COX-L1 in nociceptive pathways

in the spinal cord (Goppett-Struebe and Beiche, 1997: Willingale et al.. 1997:

Beiche et al.. 1998a,b). This immunoreactivity was especially abundant in the
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superficial dorsal horn where the nociceptive primary afferent fibers are known to

terminate. COX-2-1I (one of the two isoforms of COX) was found in neurons of

laminae II-III, motorneurons of lamina IX and in glial cells located in the spinal cord

of untreated rats (Goppelt-Struebe and Seiche. 1997).

Cyclooxygenase in the spinal cord is also subject to induction. A transient

increase (2-fold) in COX-2 mRNA, and a smaller increase in COX-2 protein. were

detected bilaterally in the lumbar spinal cord of the rat following acute carrageenan

induced, peripheral inflammation (Goppelt-Struebe and Seiche. 1997; Ichitani etai.,

1997; Hay et al.. 1997). Western blot analysis revealed a 1.6·fold increase in the

level of COX·2 protein in the lumbar dorsal hom (lamina II-III) 22 days after the

onset of adjuvant-induced arthritis in the rat (Goppelt-Struebe and Seiche, 1997;

Seiche et al.. 1998a,b). These results indicate that the COX-2 is also inducible in

the CNS, and may be responsible for the increase in spinal prostanoid synthesis

and release during peripheral inflammation.

The localization of COX in the dendrites of central excitatory neurons in the

spinal cord supports a role for PGs in the modulation of synaptic signalling

(Yamamoto and Yaksh, 1993). This hypothesis is supported by the abundance of

PGE2 binding sites in the spinal dorsal hom (Onoe et aI., 1992; Matsumura et ai..

1992: 1995). These appear to be located on the terminals of primary afferent fibers,

since these binding sites almost completely disappeared after dorsal rhizotomy.

Their density on the operated side was only 4 ± 4% of the control side, 8 days after

surgery (Matsumura et aI., 1995). This pattern of PGE2 receptor binding is

consistent with a presynaptic facilitation of nociceptive signalling.
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In summary, there is considerable evidence that PGs are synthesized and

released in the spinal cord in response 10 nociceptive (C-fiber) input. The temporal

correlation of this central biochemical process with pain behaviour and peripheral

inflammation indicates that spinal PGs may be critical in the induction of a central

pain state at the spinal level.

1.6 Central NMDA Receptor Activation and the Effects of Spinal Prostaglandins

Persistent C-fiber input from peripheral inflammation or repeated high

threshold electrical stimulation effects a rapid change in the sensitivity of spinal

dorsal hom neurons. This process, known as wind-up, reflects the slow temporal

summation of C-afferent fiber-evoked responses and is thought to be an important

central mechanism of hyperalgesia (Mayer, et aI., 1999). This process is triggered

by the co-release of glutamate and substance P from the terminals of primary

afferent C-fibers. Acting at NMDA· and NK1-receptorson the membranes of dorsal

horn neurons (Wall and Woolf, 1986; Dickenson et aI., 1997; Yaksh et a!., 1999b),

these neurotransmitters elicit prolonged depolarizations. Pharmacological studies

have consistently identified the NMDA receptor as an essential feature in the

development of wind-up (see Figure 2) (Dickenson and Sullivan, 1990; Yaksh et aI.,

1999b). Indeed, all aspects of the hyperalgesic state, regardless of the initiating

event, are reversed by agents that block spinal NMDA receptors (Chaplan et a!.,

1997; Yaksh, 1999a).

The NMOA receptor normally remains inactive. even in the presence of

released glutamate, because it is partially blocked by MgH

• Prolonged depolariza-
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Fig. 2 A schematic summary of the functional organization of elements in
dorsal horn showing the NMOA receptor activation and PG release. The
primary afferent C-fibers contain and release both peptide and excitatory
amino acid products. Primary A~fibers contain and release excitatory amino
acids. It is believed that glutamate activates the second order neurons via
non-NMOA receptors on sites postsynaptic to A or C afferent input. Excitatory
interneurons, excited by an appropriate afferent barrage, activate second
order neurons via NMOA receptors. This leads to an increase In intracellular
Ca'" and the activation of a number of enzymes (e.g., COX, NOS) (see text for
details). Inhibitory Interneurons, activated by A fibers (not shown in the
graph), release GABA or glycine and modulate the excitability of second order
neurons. Abbreviations: AA: arachidonic acid, COX: cyclooxygenase, ORG:
dorsal root ganglion, Glu: glutamate, non·NMOA: non-N-methyl-O-aspartic
acid receptor, NK-1: neurokinin-1 receptor, NO: nitric oxide, NOS: NO
synthase, NMOA:,NMOAreceptor, PG: prostaglandin, PLA.,: phospholipase~,
sP: substance P, WOR: wide dynamic range (Adapted from Yaksh et al.
1999b).
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tion evoked by substance P is thought to remove the voltage-dependent MgH block

of the NMDA receptor. This allows glutamate to exert its agonist effect at the NMDA

receptor-ehannel complex. The opening of this channel leads to a large influx of

CaH into the cytosol and the initiation of a cascade of intracellular events

(MacDermott et al., 1986; Chaplan et aI., 1994) induding: 1) the

translocation/activation of protein kinases such as protein kinase C (Sluka and

Willis, 1997; Ramakers, et al., 1997; Millan, 1999); 2) the release of arachidonic

acid from the cell membrane into the cytosol; 3) the activation of COX and nitric

oxide synthase (NOS); and 4) the generation of prostanoids and NO within the cell.

The latter are thought to diffuse from the perikarya to adjacent cells where they

promote excitatory neurotransmitter release from primary and non-primary afferent

terminals (Yaksh, 1999a; Yaksh et aI., 1999b; Milan, 1999) (Figure 2).

The exact mechanisms by which central PGs enhance nociceptive signalling

have yet to be elucidated. One strong possibility is that PGs exert their effects

through excitatory receptors located on primary afferent terminals that form synaptic

connections with second order neurons and/or excitatory intemeurons in the dorsal

hom (Millan, 1999). In this regard, PGE2 has been shown to evoke Ca H -dependent

release of glutamate from synaptosomes of rat spinal cord (maximum effect at 1

nM) (Nishihara et al., 1995), and substance P from cultured rat dorsal root ganglion

(DRG) cells (Vasko et aI., 1994) or spinal cord slices (Vasko, 1995). The effect of

PGE2 (100nM) on substance P release was inhibited by the selective EPj-receptor

antagonist, SC19220, and by guanosine-5'-[beta-thio] diphosphate, an inhibitor of

stimulatory G-protein (Gs) to which the EP1 receptor is coupled (Cui and Nicol.
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1995; White, 1996), Conversely, guanosine-5'-[gamma·thio] triphosphate, an

activator of Gs protein, enhanced PGE2-evoked release of substance P. Perfusion

with low concentrations of PGE2 has also been shown to facilitate capsaicin- or

bradykinin-evoked release of substance P or CGRP from rat spinal cord slices

(Hingtgen et aI., 1995; Vasko, 1995). Collectively, these results indicate that PGE2,

acting through G-protein-coupled receptors, can directly effect neurotransmitter

release from the spinal cord, as well as augment the release of neuropeptides from

the spinal terminals of C-fibers evoked by known algogenic agents.

PGs may also enhance the excitability of dorsal hom neurons to afferent

input by a direct postsynaptic effect. In an early study, microiontophoretic

application of PGE 1 to motorneurons and interneurons in the isolated spinal cord of

the frog induced an abrupt excitatory effect (Coceani and Viti, 1975). More recently,

PGE2 was shown to induce a long-lasting facilitation of evoked excitatory

postsynaptic currents of dorsal hom neurons in mice (Minami et al., 1999). The

"wind-up· of a spinal C·fiber nociceptive reflex, induced by repeated electrical

stimulation of the sural nerve, was also dose-dependently inhibited by the 1.1. or i.v.

administration of indomethacin, and by i.v. administration of the selective COX-2

inhibitor, SC58125 (Bustamante et aI., 1997; Willingale et aI., 1997). While these

studies do not preclude a change in neuronal excitability secondary to an increase

in glutamate and neuropeptide release, they do provide further support for the

positive modulatory effect of PGs on spinal neurotransmission.

In summary, there is substantial evidence that: 1) PGs are synthesized in

and released from the spinal cord in response 10 noxious (high-threshold) C-fiber
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input; 2) central PG synthesis is coupled to NMDA receptor activation and the

intracellular activation of COX; and 3) PGs, generated locally in the spinal cord, play

a role in the cellular events that underlie hyperalgesia.

1.7 Central Prostaglandins and Aflodynia

The ability of PGs to sensitize spinal cord neurons to high-threshold (C-fiber)

somatosensory input raises an important question about their possible role in

abnormal pain states (e.g., neuropathic pain and allodynia). Specifically, do low

threshold mechanoreceptive (AI3) primary afferent fibers activate a similar

prostanoid-sensitlzing mechanism in the spinal cord in allodynia?

Preliminary evidence suggests that the answer to this question is yes.

Intrathecal ketorolac or S (+)-ibuprofen suppressed the hair deflection (HD)-evoked

increase in heart rate, blood pressure and catechol olOdation current in the locus

coeruleus of i.t. strychnine-treated rats (Hall et aI., 1999). The inactive R (-) isomer

of ibuprofen was without effect indicating thai the attenuation of these allodynic

responses was related 10 the inhibition of COX in the spinal cord. Messenger RNA

hybridization analysis revealed a 3-fold increase above control in the level of COX-2

mRNA in the rat lumbar spinal cord 2-4 h after unilateral intraplantar injection of

Freund's complete adjuvant (FCA) (Hay et at, 1997). This was followed by a

significant increase in the spinal concentration of6-keto PGF lQ and PGE2 (maximal

effect 8 h after FCA injection). These changes were temporally correlated with a

decrease in the weight-bearing capacity of the affected paw (a quantitative measure

of allodynia). The s.c. administration of indomethacin, or the COX-2 selective



inhibitor, f1osulide, attenuated the increase in spinal PG concentration. and inhibited

allodynia by 80-100%. These drugs had no effect on the development of

mechanical hyperalgesia (Hay et al., 1997). The results of these studies provMje

indirect evidence for the role of spinal PGs in the development ofallodynia. whether

induced by peripheral inflammation or by central disinhibition.

If spinal PGs are relevant to the cellular changes that underlie allodynia in the

eNS, then their direct injection into the spinal subarachnoid space should yield a

measurable allodynic state. The i.t. injection of PGE2• PGD2 or PGF2a in conscious

mice elicited dose-dependent, touch-evoked agitation. The allodynic effect of PGE2

was blocked by tha receptor antagonist. NON·NT·Q12 suggesting that this was

mediated by EP1 receptors (Uda et al .. 1990; Minami at a!., 1995b). Delivery of

PGE2 through a microdialysis probe implanted in the spinal subarachnoid space of

rats triggered an immediate increase in the concentration of glutamate, aspartate,

taurine. glycine and GASA in dialysate samples (Malmberg et at. 1995a). These

neurochemical responses were temporally correlated with the onset and decline of

behaviourally-defined allodynia (Malmberg et a!.. 1995a). The combination of PGE2

(1 0 ~M) and capsaicin (0.1 or 1.0 ~M). concentrations that individually had no effect,

evoked a significant increase (60-100%) in glutamate, aspartate, taurine, glycine

and GABA concentration and produced tactile allodynia. Thus, the introduction of

exogenous PGs into the spinal subarachnoid space induces neurochemical

changes and behavioural responses consistent with the development of tactile

anodynia in experimental animals. However, the localization and spinal

pharmacology of this prostanoid modulation have not been well investigated.
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especially in the bicuculline model of allodynia.

1.8 Hypothesis and Specific Objectives

Increased glutamatergic tone activating spinal NMDA receptors leads to a

state of facilitated neurotransmission of high-threshold (C-fiber) input and

hyperalgesia in the spinal cord. PGs, synthesized and released within the CNS in

response to C-fiber input, appear to playa major role in this facilitation. Sustained

C-fiber activity induces a rapid increase in the expression of COX-2 and the

synthesis of PGs. Because this central sensitization process is dependent on

NMDA-receptor activation, it is normally only recruited by high-threshold

(nociceptive) input.

AUodynia is an abnormal sensory state in which pain is triggered by

innocuous stimuli. Peripheral or central nerve injury appears to reduce the

functional tone of spinal glycine and/or GABAA inhibitory modulation, thereby

permitting innocuous tactile stimulation to be interpreted as pain. Indeed, the

pharmacological blockade of spinal glycine receptors with Lt. strychnine or GABAA

receptors with i.t. bicuculline induces a selective and reversible allodynic state. In

lightly anaesthetitized rats given i.t. strychnine or bicuculline, HD induces

cardiovascular, motor and neurochemical responses comparable to those evoked

by noxious thermal, mechanical or chemical stimulation in the absence or

bicuculline or strychnine (Sherman and Loomis, 1994, 1995; Khandwala et al.,

1997; Loomis et al., 2001). The hypothesis of this thesis research is that during

allodynia, low threshold mechanoreceptive input activates a PG-mediated
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sensitization mechanism in the spinal cord. The overall goal of this research was

to characterize the spinal pharmacology of bicueulline-aJlodynia with an emphasis

on the role of spinal PGE2 (the prostanoid most frequently associated with facilitated

pain states in the spinal cord). The specific objectives of the research were:

1. To determine the magnitude and area ofallodynia following the single topical

application of bicucuUine to the dorsal surface of the rat spinal cord (spinal

topical application).

2. To determine the time course and area of allodynia following repeated spinal

topical application of bicuculline.

3. To determine the effect of the COX-2 inhibitor, NS·398, on allodynia

following spinal topical application of bicucuilline.

4. To determine the effect of AP-7 (an NMDA receptor antagonist) and SC

51322 (EP-receptor antagonist) on allodynia following spinal topical

application of bicuculline.

5. To determine the effect of i.t. AP-7 and SC-51322 on 1.1. PGE2-induced

allodynia in conscious rats.

6. To determine effect of i.t. pretreatment with bicuculline on PGE2·induced

allodynia in conscious rats.

2 METHODS

2./Animals

All experiments were conducted using male, Sprague-Dawley rats (330-4oog

at the time of experiments), obtained from the Vivarium of Memorial University of
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Newfoundland. Animals were housed in the Animal Care Facility. with a room

temperature of 220 C. and a 12 h light-dark cycle (lights on 0700 h). Rats had free

access to rat chow and tap water. All experiments were performed in accordance

with the guidelines of the Canadian Council on Animal Care and were approved by

the Memorial University Animal Care Committee.

2.2 Anaesthetized Animal Experimentation

2.2.1 Laminectomy and Recording

Surgical anaesthesia was induced with halothane (4% in oxygen) until the left

jugular vein was cannulated. Thereafter, anaesthesia was maintained with i.v,

urethane (10% w/v in saline; Sigma Chemical. Inc.). The initial dose of urethane

(1.1g1kg) was infused slowty over 5-10min as the anaesthetic effect of halothane

declined. Anaesthesia was supplemented with i.v. urethane (O.1g1kg) as required

during the experiment. The trachea was cannulated and the animal was allowed

to breathe spontaneously. The left carotid artery was cannulated for monitoring

blood pressure and heart rate. The incision was then dosed and the rat was placed

in a supine position for laminectomy.

A skin incision (3-4cm in length) was made along the midline of the back.

corresponding to the thorace-Iumbar region of the spinal cord. The muscles were

then separated from the spinal column by blunt dissection. The spinous processes

and part of the laminae of the vertebrae (T13-L1) were removed carefully using a

rongeur. The rat was then placed in a stereotaxic apparatus (Narishige, Tokyo,

Japan) with the head firmly secured using ear bars. The dura mater and arachnoid

-25-



membrane were gently removed with the aid of a dissecting microscope to expose

the dorsal surface of the spinal cord. Endogenous CSF production was sufficient

to keep the exposed surface of the spinal cord (length by width, 1.5 x 0.5cm) from

drying throughout the experiment. Excess CSF was absorbed with a soft paper

wick.

Blood pressure and heart rate were continuously monitored using a pressure

transducer (P23XL) and polygraph (Model 79E, Grass Instruments, Mass, USA).

Cortical EEG activity was recorded continuously using two subcutaneous needle

electrodes (E2, Grass Instruments) placed 2 mm left of the midline, one extending

rostrally, entering the skin near bregma, the other extending caudally, entering the

skin about 2 mm caudal to the first. Body temperature was maintained at 36-37°C

with a thermostatically regulated blanket (Harvard Apparatus). The animal was

allowed to stabilize for at least 1h before experiments. All the experiments were

conducted al a light plane of anaesthesia. Light anaesthesia was defined as the

presence of an EEG pattern fluctuating between synchrony and desynchrony, with

synchrony present for not more than 60% of the time (Sherman and Loomis, 1994).

Animals were killed with an overdose of urethane at the end of the experiment.

2.2.2 General Protocol

Following a 1-h stabilization period, rats were given a single application of

0.9% saline (0.1 Ill) to the dorsal surface of the spinal cord. Brushing the hair (HD;

hair deflection) was performed with a cotton-tipped applicator using no more force

than required 10 move the applicator through the hair such that only the pelage was
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disturbed. The HD stimulus (2-min duration repeated every 5 min) was applied

bilaterally to the caudal dermatomes including the hind leg, foot and lower back.

Allodynia was induced by applying bicuculline (in 0.1 ~I sterile saline) to the left or

right side of the spinal cord followed 5 min later by HD. The HD stimulus was used

to identity the sites of allodynia; subsequent stimulation was restricted to that

sites(s). The maximum HD-evoked change in mean arterial pressure (MAP). heart

rate (HR) and the duration of motor responses (MR) were recorded as previously

described (Sherman and Loomis, 1994). HD was repeated every 5 min until no

evoked responses were detected. All animals were allowed to recover for at least

30 min before further drug application.

To determine the dose-response relationship of spinal topical bicuculline,

four separate sub-convulsive doses (0.01,0.03,0.1,0.3 I-Ig)were tested (maximum

of 2 doses per animal). In separate animals, the effect of repeated spinallopical

dosing with bicucutlinewas also determined (0.1 I-Ig bicuculline given once every 20

min for 2h). All drugs were applied to the same site on the spinal cord as defined

by anatomical landmarks observed through the dissecting microscope (Olympus

255040, Tokyo, Japan).

In a further group of rats, 0.1 J.!g of bicuculline (in 0.1 J.!I saline) was given

topically to the spinal cord as a positive control test. After a complete recovery from

allodynia, rats were pretreated with one of the following: NS-398 (0.1, 1.0, 1.5. 5.0

J.!g), 20-min pre-treatment; SC-51322 (0.1, 1.0, 4.0, 8.0 J.!g), 15-min pre-treatment;

and AP·7 (0.01, 0.1, 1.0 J.!g), 20-min pre-treatment. Bicuculline (0.1 J.!g) was

repeated every h thereafter until the effects of the pretreatment had completely
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disappeared. The maximum HD-evoked change in MAP, HR and MR following

each dose of bicucuUine was determined. All drugs, induding bicuculline, were

applied to the same site on the dorsal surface of the spinal cord.

To examine the extent of drug diffusion after topical drug administration to

the spinal cord, a fluorescent tracer, bisbenzimide, was added to the bicuculline

solution (0.1% w!v each) and applied to the dorsal spinal cord. Twenty minutes

later, the animals were perfused with 4% paraformaldehyde transcardiatly and

spinal cords (2 em, including lumbar segments)were removed. Transverse sections

(40 j..lm) of the lumbar spinal cord were cut using a vibratome (Vibratome Series

1000 Technical Products International, Inc. St. Louis, MO, USA). The sections were

analyzed and photographed under UV illumination using a fluorescent microscope

(Can Zeiss MC 63, Germany).

2.2.3 Drugs

Bicucul1ine IH..bicuculline methiodide, MW: 509.3], AP-7 (+/-)-2-amino-7

phosphono-heptanoic acid, MW: 219.2), and bisbenzimide

(2'-14·ethoxyphenyfl ..5-[4-methyl"1 ..piperazinyfJ..2,5'·bi..1H·benzimidazole) were

obtained from Sigma (St. Louis, USA). NS-398

[N-(2..cyclohexyloxy--4..nitrophenyl)·methanesulfonamide, MW: 314.4] and

SC-51322 [8..chlorodibenz(b,f)(1 ,4}oxazepine..10i11 H]-carboxyl acid, 2-(3-(2-[fury

anylmethyl}thio)..1-oxopropyl)hyrazide: MW: 457.9) and were purchased from

BIOMOL Research Laboratories Inc. (Plymouth Meeting, USA). Bicuculline and

Ap..7 were dissolved in 0.9% sterile saline (Astra Pharma Inc.). Bisbenzimide was
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dissolved with bicuculline in sterile saline. NS-398 and SC·51322 were dissolved

in 70% and 90% DMSO (in water), respectively (BDH Inc., Toronto, Canada).

The volume of drug solution applied to the dorsal surface of the spinal cord

ranged from 0.05-0.2 ~1. All drugs were administered by means of a hand-held

microsyringe (1 Ill) with the aid of a dissecting microscope (Olympus 255040,

Tokyo, Japan). Specific structures on the dorsal surface of the spinal cord such as

blood vessels and nerve root bundles were used as landmarks to apply drugs

precisely to a specific site each time. Drugs were applied immediately after soaking

up the CSF with a paper wick. Only one dose of a pretreatment drug was used in

each animal.

2.2.4 Data Analysis

The maximum HD-evoked change in MAP(mm Hg), HR (bpm) and MR (min)

was used for all data analyses. The change in MAP and HR was calculated relative

to the immediate pre-stimulus control (not relative to T=O). The maximum change

in MAP or HR observed in the 1-minute interval immediately before stimulus

application was subtracted from the maximum value observed during HD.

Variability associated with single measurements is indicated by the SEM, while

variability associated with blocks of data is indicated by the pooled 95% confidence

intervals (95'''IoCI). Repeated measures one-way analysis of variance (ANOVA)

followed by the Neuman-Keuls multiple comparison test was used to detect

statistical differences within treatment groups over time (pretreatment data).

Completely randomized ANOVA followed by the Neuman-Keuls multiple
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comparison test was used to identify statistical differences between treatment

groups (dose·response data). Dose-response curves were fttted using least

squares regression analysis. P<O.05 was considered to be statistically signifICant.

The methods of data analysis were based on general statistics texts and the

program Sigmastat for Windows Version 2.03 (SPSS Inc.).

2.3 Conscious Animal Experimentation

2.3.1 Implantation of Intrathecal Catheter

The i.t. catheter was constructed from a segment of PE·1 0 tubing stretched

to two times its original length to reduce its diameter. A small loop was made at one

end of the tubing and secured with nail polish. The tubing was cut to a length of 8.5

cm from the loop for insertion into the spinal subarachnoid space. The tubing was

filled with sterile saline before implantation.

Surgical anaesthesia was induced by placing the rat in a transparent

plexiglass box filled with 4% halothane in oxygen. The rat was then transferred to

a stereotaxic apparatus (Narishige, Tokyo, Japan) with the head firmly secured

using ear bars. Anaesthesia was maintained with 2.5% halothane in oxygen. The

hair was shaved at the back of the head and swabbed with 10% povidone iodine

topical solution U.S.P. and 75% ethanol. An incision (approximately 1 em in length)

was made along the midline at the base of the skull. The muscles were cut

transversely and carefUlly separated to expose the dural membrane of the cisterna

magna. A small puncture was made in the dural atlant<K>ccipital membrane using

a 16G needle. Leakage of a small amount of cerebrospinal fluid (CSF) through the
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hole verified penetration into the subarachnoid space. This was immediately

absorbed with a cotton-tipped applicator.

The i.t. catheter was inserted through the hole and carefully guided 8.5 em

caudally in the spinal subarachnoid space so that the catheter tip reached the LS-L6

spinal segments. The catheter was anchored in place by suturing the fixed loop at

the rostral end to the overlying muscle and skin. The rostral tip was externalized

through the skin on the top of the skull and sealed with a stainless steel plug. The

incision was closed with sutures and swabbed with 10% povidone iodine solution.

Ten ml of norma! saline was then injected s.c. on the back of the animal for

hydration.

Rats recovering from anaesthesia were immediately observed for signs of

neurological damage, including hind limb weakness or paralysis, abnormal gait,

locomotordifficulty and atypical behaviour. Rals free of neurological sequelaewere

returned to the Animal Care Facility where they were housed individually in regular

plexiglass cages. They were allowed to recover for at least 3 days prior to

experimentation. Animals exhibiting symptoms of neurological damage were

immediately killed by an overdose of urethane.

2.3.2 General Protocol

On the day before the experiment, rats were transported from the Animal

Care Facilityto a quiet behavioural room in the research laboratory. They were kept

in their home cages at a room temperature of 22° C using a 12-h light-dark cycle

(lights on 0700 h). Free access to rat chow and tap water was provided. All
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behavioural experiments were conducted at the same time period (14:00-20:00 h)

each day. Rats were gently and repeatedly handled by the investigator for one h

before the start of the experiment. During this time. rats were also brushed with a

cotton-tipped applicator at 5-min intervals to acclimatize them to the HD stimulus.

All drugs were injected i." by slow infusion (20 pi over 1.5-2 min). Injections were

made using a hand-held 25-pl microsyringe to which was attached a segment of

PE-lO tUbing. The latter was used as a flexible extension to connect the

microsyringe to the externalized tip of the Lt. catheter. Drug solutions were loaded

into the PE-10 extension from the microsyringe such that all drugs were injected in

a volume of 10 pi and flushed with 10 ~I of normal saline (i.t. catheter volume: 6-8

To assess baseline responses, animals were injected with 20 ~I of normal

saline (equivalent to 10 pI of drug solution + 10 ~I saline flush) and continuously

observed for spontaneous (without HD) and HD-evoked behaviour. These were

scored according 10 the systems described below, One h later, a single dose of

PGE2 (0.8, 3.0, 8.0, 20 pg) or vehicle (3% ethanol in water) was injected and the

behavioural scoring repeated until no further spontaneous or evoked responses

were observed. In separate experiments (designed to study the pharmacology of

the PGE2-allodynia), a fixed dose of PGE2 (8 pg) was injected Lt. in rats pretreated

with one of the following: AP-7: (0.4 pg), 20-min pretreatment; SC-51322: (6, 30,

100 ~g), 15-min pretreatment: Bicuculline: (0.01 ~g), 5-min pretreatment: or Vehicle:

water or 90% DMSO in water. The spontaneous and HD-evoked behaviours were
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scored as described below. All animals were monitored individually throughout the

experiment and were used no more than twice. Rats were killed with an overdose

of urethane. In all experiments, the investigator was blinded to the identity of the

drug/vehicle treatment.

2.3.3 Behavioural Scoring System

The protocol for the evaluation of behaviour, with and without HD, is

illustrated in Figure 3. The behaviour of each rat observed without HD was

monitored continuously for a 4-min period. The maximum score achieved was

recorded in a computer every 30 sec for a total of 8 scores per rat per 4·min

observation period. At the conclusion of this observation period, HD was applied

continuously for 1 min to the affected dermatome{s). The latter were determined

by brushing the hair over the back, flanks, limbs, and hind paws until a response

was observed. The maximum score evoked by HD was recorded in a computer at

the end of the 1-min stimulus period. This cycle was then repeated until no

behavioural responses (spontaneous or HD evoked) were detected.

Behaviour in the absence of HD was rated using the following scoring system (as

modified from Malmberg et al., 1995a, and Ishikawa et al., 2000).

Score Behaviour

Normal behaviour (bright, alert, and exploring)

Huddling, burrowing or hiding

One of the following: stationary with one paw elevated, limping

on movement, piloerection, occasional vocalization, attention

directed to the affected site
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Figure 3. Protocol for the evaluation of behaviour in conscious PGE2 treated rats.

I 11 21 31 41 51 61 71 61 91 101 111 121 131 141 151 161 171 181 191 201 211... (M;n)

Note: Each number Indicates the Ume in minutes. Intrathecal PGE2 was given at time t=O. The solid bars under the

time scale indicate the time periods during which HD-evoked behaviour was evaluated. During Intervals indicated by
intefTUpted line. the behaviour in the absence of HO stimulus was scored. All behaviour was scored according to the

scale modified after Malmberg (Malmberg and Yaksh 1995a).



Score Behaviour

Two or more of following together: stationary with one paw

elevated, limping on movement, piloerection, occasional

vocalization, attention directed to the affected site

Frequent vocalization, circling (very agitated), licking, biting

and scratching the affected dermatome(s)

HD·evoked behaviour was rated using the following (as modified from Malmberg et

aI., 1995a, and Ishikawa et aI., 2000):

Score Behaviour

Normal (curious. responsive and exploring)

Moderate effort to escape: walking away from the stimulus

source (avoidance) or protecting the affected dermatome(s)

Moderate agitation: paw withdrawal. piloerection (back and

flank), or occasional vocalization upon stimulation

Strong agitation (two or more of the following together): paw

withdrawal; piloerection (back and flank); occasional

vocalization upon stimulation

Vigorous effort to escape: attacking the applicator, frequent

and persistent vocalization, circling the cage, licking, biting and

scratching the affected dermatome(s)

2.3.4 Drugs

PGE2 and SC-51322 were purchased from BIOMOl Research Laboratories,

Inc. (Plymouth Meeting, USA). AP-7 and bicuculine were purchased from Sigma

Chemical Co. (St. louis, MO, USA). PGE2 was dissolved in ethanol and diluted with



sterile saline such that the maximum concentration of ethanol never exceeded 3%

(vlv). AP-7 and bicuculline were dissolved in 0.9% sterile saline (Astra Pharma

Inc.). SC-51322 was dissolved in OMSO (max 90% in water. SOH Inc.• Toronto.

Canada). All drug doses were administered in a volume of 10 ~.

2.3.5 Verification of Catheter Position

After the completion of the experiment, animals were injected with 10 ~I of

5% lidocaine followed by 10 ~I saline. Rats were observed for evidence of hind limb

weakness or paralysis, indicative of the correct placement of the spinal catheter at

the L5 or L6 lumbar levels. A laminectomy was also performed to visually confirm

the position of the Lt. catheter in randomly selected rats.

2.3.6 Data Analysis

For behaviour observed without HO stimulation. the average of 8 scores was

calculated for each rat per 4-min observation period and expressed as the percent

of the maximum possible score (4). The HO-evoked score for each rat is also

expressed as the percent of the maximum possible score (4). Time-course data

represent the mean ± SEM of the percent maximum possible score of all animals

in each treatment group. The cumulative behavioural score was calculated from the

entire time-course curve (120 min) for each rat (equivalent to the area-under-the

time-course curve). Dose-response data represent the mean ± SEM of the

cumulative behavioural scores for each dose of PGE2• Completely randomized

ANOVA followed by the Neuman-Keuls multiple comparison lest was used to
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identify the statistical differences between multiple treatment groups (dose-response

data). The paired Student t-test was used to detect significant differences between

two experimental conditions (before and after pretreatment) within animals. P<0.05

was considered to be statistically significant.

3 RESULTS

3.1 Spinal Topical Bicuculline-Induced Alfodynia in Anaesthetized Rats

3.1.1 Unilateral Application of Bicuculline to the Spinal Cord Induces Localized

Allodynia

Mild brushing of the hair (HD) with a cotton-tipped applicator evoked no

cardiovascular changes or molor responses after saline application (0.1 1-11) to the

dorsal surface of the spinal cord (Figure 4B). In contrast, an identical HD stimulus

applied to the hind leg or foot ipsilateral to the site of bicuculline application evoked

a progressive increase in mean arterial pressure (MAP) and heart rate (HR) (Figure

4C) that persisted beyond the duration of HD. The allodynia arising from this

unilateral treatment was normally restricted to a circumscribed area such as a single

digit or the area between two digits on the ipsilateral hind paw (Figure 4G, Table 1).

Maximum HD-evoked cardiovascular responses were normally observed during the

first 2-min stimulus (5 min after bicuculline). These were accompanied by abrupt

motor responses (MR) on the affected side (e.g .• withdrawal of the hind leg, kicking,

and/or scratching), as well as desynchrony of the EEG (Figure 4).

The cardiovascular responses disappeared gradually (0.5-3 min) after the

discontinuation of HD. In most cases, termination of HD coincided with a change
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Figure 4. Representative tracings ofhair-deflecUon (HD).evoked changes In blood pressure, heart rate and

EEG in a ureth.ne.-anesthetized rat. The top trace in each panel denotes time. HD (2 min duration), applied

before and every 5 min after SIC, Is Indicated by the solid bar below the time trace. All the drugs or vehicle

were applied topically to the right or left side of the dorsal spinal cord (see Methods). A fixed dose of BIC (0.1

~g) was used. A: Before any drug administration. B: 5 min after saline (0.1 ~I) on the right side; HD on the

W
Cf right side. C: 5 min after SIC (0.1 ~g) on the right side; HD on the right side. 0: 25 min after NS·398 (1.0j.lg),

5 min after BIC (SIC was applied 20mln later after NS..J98. Both agents were applied to the same spot on the

right side), HD on the right side. E: 2 h after NS..J98 on the right side, 5 min after SIC (0.1 I-1g) on the left side

(contralateral to NS..J98 site), HD on the left side. F: 3 h after NS..J98, 5 min after BIC (0.1 ~g) on the same site

as NS..J98 (right side), HD on the right side. G: Shading Indicates ttl!.areas ofailodynla on the right hind paw

following topical application of BIC (0.1 ~g) to the right side oftha dorsal spinal cord.
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Table 1. Comparison of Topical and Intrathecal BicucuJline

Induced AlJodynia in the Rat.

Parameters

Cardiovascular and
motor responses at
equi-effective dose

Topical

MAP: 18.5 i 3.21mmHg
HR: 35±5.75bpm
MR: 30.83 ± 3.96 min

(BICO.1.,.g)

Intrathecal§

MAP:16.67 ± 1.66 mmHg¥
HR: 30.83 ± 3.96 bpm'
MR: 35i5min'

(BICO.75~g)

InJectJonvolume

Area of allodynia

0.1 f.ll (on spinal cord) 5 ~ (into CSF)

Unilateral, highly restricted Bilateral, large
(e.g., one digit on hind paw) (e.g., flanks and hind legs)

Duration of anodynia 30 min after single dose. 20-30 min
sustained up to 2 h with
reoeated dosino.

Drug delivery Multiple sites available for Single route into spinal CSF
topical application on spinal
surface

Abbreviations: MAP: mean arterial pressure

HR: heart rate

MR: motor response

CSF: cerebrospinal fluid

... No significant difference compared with the corresponding values from

topical BIC administration.

§ Data from Loomis et al., 2001.
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in the EEG from a desynchronous to a synchronous pattern. The HD-evoked

cardiovascular responses outlasted the motor responses; the former persisted for

an additional 5-10 min. The duration of bicuculline-allodynia (from the time of drug

application until the disappearance ofcardiovascular responses) ranged from 30-50

min for 0.1 /-lg bicuculline, and increased with bicuculline dose. There was a linear

relationship between the log dose of spinal bicuculline (0.01-0.3 ).1g) and the

maximum HD-evoked change in MAP, HR, and MR (Figure 5). The corresponding

ED5(I values and 95% confidence intervals (CI) are shown in Table 2. Allodynia

remained localized to the ipsilateral hind paw with all bicuculline doses, and there

was no detectable expansion of the allodynic area over time.

3.1.2 Multiple Doses of Bicuculline Induce Sustained Allodynia

When repetitive doses of bicuculline (0.11Jg) were applied to the same site

on the left or right side of the spinal cord every 20 min, allodynia was sustained for

up to 2 h. As shown in Figure 6, HD-evoked responses in MAP, HR and MR were

significantly different from their respective control after each dose of bicuculline (n

= 5-9). There were no significant differences across the 6 doses of bicuculline

within each evoked response (MAP, HR and MR). In addition, there was no

detectable change in the location ofallodynia overtime, norwas there an expansion

of the allodynic area with the mUltiple bicuculline dosing.

3.1.3 Distribufion of Drug Solution after Topical Application to the Spinal Cord

To assess the extent of drug distribution, bisbenzimide was added to the
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Figure 5. The dose-response relationship of topical bicuculllne (BIC) on hair deflocllon-evoked changes in

mean arterial pressure (MAP; Panel AI, heart rate (HR; Panel B) and motor responses (MR; Panel C).

Bicuculiine (0.01, 0.03, 0.1, 0.3 1-19) was applied topically on the left or right side of the dorsal spinal cord (see

Methods). Doses greater than 1.0"'9 produced exaggerated allodynla and convulsions In the lower quadrants

and were excluded from the data analysis. Each point represents the mean ± SEM of 5-8 rats. The solid line

is the least squares regression line and the dashed lines Indicate the 95-;' confidence Intervals (el). The ED50

values and 95% CI are listed in Table 2.
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Table 2. EDso Values and 95% Confidence Intervals (CI) of Spinal

Topical Application of Bicuculline

Parameters ED" (95% GI) (~g)

Mean Arterial Pressure 0.055 (0.035-0.085)

Heart Rate 0.075 (0.048-0.118)

Motor Response 0.097 (0.078-0.122)
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Figure 6. The maximum hair deflection-evoked change in mean arterial

pressure (MAP), heart rate (HR) and motor response (MR) after repeated doses

of bicuculline. Bicuculline (0.1 ~g) was applied unilaterally to the same site

on the dorsal spinal cord every 20 min for 2 h. All points are significantly

different from their respective (saline) control (P < 0.05). Each point

represents the mean ± SEM of 5-9 rats.
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bicucuUine solution (0.1 % vlw for bisbenzimide and bieuculline). Fluorescence was

restricted to the ipsilateral dorsal spinal cord following either a single application

(Figure 7C and 0) or 6 consecutive applications of the bisbenzimideJ bicuculline

solution (Figure 7A and B). Penetration of the fluorescent tracer was dearly

observed in the superfICial laminae of the dorsal hom (laminae I-III) (Figure 7A,

Figure 70). In contrast, i.t. bisbenzimide displayed an extensive bilateral distribution

over the surface of the spinal cord (data not shown).

3.2 Inhibitory Effect of COX the Inhibitor, NS-398 on Bicuculline-Allodynia

After complete recovery from bicuculline allodynia (control), animals were

pretreated with NS·398 (1.0 I-Ig) 20 min before further bicuculline (0.1 IJg)

application. Both drugs were applied unilaterally to the same site on the spinal cord.

Figure 8 illustrates the time.course of inhibition of allodynia by N5-398 (1 ~g). All

indices of b+cuculline-allodynia were significantly reduced. The maximum inhibition

achieved with this dose of N$-398 was 66% for MAP. 70% for HR and 62% forMR,

and lasted for 1-2 h (Figure 8, Figure 4). The inhibitory effect of NS-398 was

confined 10 the ipsilateral spinal cord. When bicuculline (0.11J9)was applied 10 the

mirror site (contralateral side) 2 h after NS-398 (time of near maximal inhibition;

n=3), no attenuation of allodynia was observed (Figure 4E).

As shown in Figure 9, the inhibitory effect of NS-398 was dose-dependent

(n=5-8 for each). The 1050 values ranged from 0.49-0.91 I-\g, although these were

not significantly different from one another (Table 3). The maximum inhibitory effect

of NS-398'obtained with the highest dose tested (5 f.lg) was 81% for MAP. 86% for
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Figure 7. Fluorescent photomicrograph showing transverse sections of

the left and right lumbar dorsal horn. Rats received either mUltiple doses

of a bicucullinelbisbenzlmlde (0.1"10 wlv each) solution applied to the dorsal

surface on the left side of the spinal cord every 20 min for 2 h {Al, or a single

dose of the same solution on the right side of the spinal cord (D). All doses

were delivered In a volume of 0.1 III (see Methods). The animals were

pertused transcardlally 20 min after the last dose. Note that fluorescence is

restricted to the drug application side of the drug application (A, B: repeated

dose; C, 0: single dose). Fluorescence was evident in lamina I-III of dorsal

horn after repeated (A) or single drug application (D). Scale bar, 100 pm.
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Figure 8. Time course of the inhibitory effect of NS-398 (1.0 fig) on the

maximum hairdeflection (HO)-evoked change in mean arterial pressure (MAP),

heart rate (HR) and motor responses (MR) in bicuculline (BIC)-treated rats.

Control indicates the HD-evoked responses to BIC (0.1 fig) before NS-398.

Animals were pretreated with NS-398 twenty min before BIC (0.1 I-1g). Both

drugs were applied topically to the same site on the dorsal spinal cord. HO

evoked responses were determined 20min, 1h, 2h and 3h after NS-398; BIC

(0.1 119) was applied immediately before each time point. The maximum HO

evoked change in HR, MR and MAP occurred five mIn after each BIC

application. Each column represents the mean ± SEM of 5-8 rats. The

asterisk at each time point indicates a significant difference from the

respective control (P < 0.05). NS-398 reduced all the indices of BIC-induced

allodynia.
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Figure 9. The dose-response relationship of NS-398 on hair deflection (HD)-evoked allodynia In bicuculllne

(BICHreated rats. Rats were pretreated with NS·398 (0.1, 1.0, 1.5 or 5.0 ~g) fifteen min before BIC (0.1 ~g).

Both drugs were applied topically to the same site on the dorsal spinal cord (see Methods). Maximum HD

evoked changes In mean arterial pressure (MAP; Panel A), heart rate (HR; Panel B) and motor responses (MR;

Panel C) are shown. Each point represents the mean ± SEM of S-8 rats. The solid line Is the least squares

regression line and the dashed lines Indicate the 95% confidence intervals (CI). The slopes ofthe regression

lines were significantly different from 0 (slope P ~ 0, one-way AN OVA, P < 0.05). The IDS(! values and 95% CI

are listed in Table 3.



Table 3. Summary of the IDso Values and 95% Confidence Intervals

(CI) for NS-398, AP-7 and SC-51322 in Bicuculline-Treated Rats.

DRUGS MAP HR MR

NS-398 (~g) 0.50 (0.32-0.79) 0.49 (0.27-0.94) 0.91 (0.38-1.32)

AP-7 (~g) 0.23 (0.09-0.56) 0.17 (0.07-0.42) 0.09 (0.01-0.31)

SC-51322 (~g) 2.11 (0.65-6.86) 1.36 (0.67-2.75) 1.74 (0.91-3.32)

Note: All drugs were applied unilaterally to the dorsal surface of the spinal
cord (see Methods). Allodynia was evoked by repeated hair deflection to the
affected dermatome(s). The dose-response curves are shown in Figure 9,10,
and 13. Abbreviations: MAP - mean arterial pressure; HR· heart rate; MR

motor response.
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HR and 75% for MR. Vehicle pretreatment (OMSO 70% + 30% water) had no

significant effect on bicuculline-allodynia.

3.3 Inhibitory Effect of NMDA Receptor Antagonist, AP-7 on Bicucufline-Allodynia

Following complete recovery from bicuculline allodynia (control), rats were

treated with AP-7 (0.01,0.1, 1.0, or 4.0 Ilg) for20 min. Bicuculline, applied topically

to the same site of the spinal cord, was given 20 min, 1 hand 2 h after AP-7. The

HO-evoked cardiovascular and molar responses were doslHtepenclently inhibited

by AP-7 (n = 4-6 for each dose) (Figure 10). The 10sovalues and 95%CI shown in

Table 3 were obtained at the Ume of maximum inhibition (i.e. the first dose of

bicuculline after AP-7).· The time course of the inhibitory effect of AP-7 (0.1 I-1g) on

bicuculline-allodynia is shown in Figure 11. At the maximum dose of 4 Ilg, AP-7

produced an almost complete blockade of bicuculline allodynia (Figure 10). The

cardiovascular responses 10 phasic noxious pinch remained unaltered after AP-7

(data not shown).

3.4 Inhibitory Effect ofEP-ReceptorAntagonist SC-51322 on Bicuculfine-Aflodynia

Pretreatment with SC-51322 (0.1. 1.0, 4.0, 8.0 }lg) 15 min before bicuculline

(0.1 }lg) attenuated the HO-evoked cardiovascular and motor responses of

bicuGulline·allodynia. Figure 12 shows the time course of the inhibitory effect of 4.0

Ilg of SC-51322 on bicuculline·allodynia. This inhibitory effect was statistically

significant from control for up to 2 h. This effect was also dose-dependent (n =4-6

for each dose)(Figure 13). yielding 1050 values of2.1, 1.4 and 1.7}lg for MAP. HR
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Figure 10. The dose~esponse relationship of AP-7 on hair deflection (HD)-evoked allodynia In blcuculline

(Ble)-treated rats. Rats were pretreated with AP-7 (0.01, 0.1, 1.0 or 4.0 I-IQ) twenty before BIC (0.1 1-19). Both

drugs were applied topically to the same site on the dorsal spinal cord (see. Methods). Maximum HD-evoked

changes in mean arterial pressure (MAP; Panel AI, heart rate (HR; Panel B) and motor responses (MR; Panel

C) are shown. Each point represents the mean:!: SEMof 5-8 rats. The solid line is the least squares regression

line and the dashed lines indicate the 95"10 confidence Intervals (CI). The slopes of the regression lines were

significantly different from 0 (slope 13 .,. 0, one-way ANOVA, P < 0.05). The corresponding ID50 values and 95"10

CI are summarized in Table 3.
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Figure 11. The time course of the inhibitory effect of Ap·7 (0.1 Ilg) on the

maximum hair deflection (HDI~vokedchange in mean arterial blood pressure

(MAP), heart rate (HR) and motor responses (MR) in bicuculline (BIC)·treated

rats. Control indicates the HO~voked responses to SIC (0.1 Ilg) before AP-7.

Animals were pretreated with AP·7 twenty min before BIC (0.1 J.L9). Both drugs

were applied topically to the same site on the dorsal spinal cord. HO-evoked

responses were determined 20min. 1h, 2h and 3h after AP-7; SIC (0.1Ilg) was

applied immediately before each time point. The maximum HO-evoked change

in HR, MR and MAP occurred five min after each BIC application. Each

column represents the moan :t SEM of 5-8 rats. The asterisk at each time

point indicates a significant difference from the respective control (P < 0.05).

AP·7 reduced all the indices of SIC-induced allodynia.
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Figure 12. The time course of the inhibitory effect of SC-S1322 (4.0 Ilg) on the

maximum hair deflection (HD)-evoked change in mean arterial pressure (MAP),

heart rate (HR) and motor responses (MR) in bicuculline (BIC)-treated rats.

Control indicates the HD-evoked responses to BIC (0.1 I-1g) before SC-51322.

Animals were pretreated with SC-51322 ten min before BIC (0.1 }lg). Both

drugs were applied topically to the same site on the dorsal spinal cord. HD

evoked responses were determined 10min, 1h and 2h after SC-S1322; BIC (0.1

f.lg) was applied immediately before each time point. The maximum HD

evoked change in HR, MR and MAP occurred five min after each BIC

application. Each point represents the mean ± SEM of 4·9 rats. The asterisk

at each time point indicates a significant difference from the respective

control (P< 0.05). SC-51322 reduced all the indices of BIC-induced allodynia.
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Figure 13. The dose-response relationship ofSC·51322 on hair deflection (HD)-evoked allodynia in bicuculline

(BJCl·treated rats. Rats were pretreated with SC·51322 (0.1, 1.0, 4.0 or 8.0 1J9) before BIC (0.1 IJg) treatment.

Both drugs were applied topically to the same site on the dorsal spinal cord (see Methods). Maximum HD~

evoked changes in mean arterial pressure (MAP; Panel A), heart rate (HR; Panel B) and motor responses (MR;

Panel C) are shown. Each point represents the mean ± SEM of 4~ rats. The solid line is the least squares

regression line and the dashed lines indicate the 95% confidence intervals (el). The slopes of the regression

lines were significantly different from a (slope Ill- 0, one-way ANOVA, P < 0.05). The lDso values and 95"10 CI

are summarized in Table 3.



and MR. respectively (Table 3).

3.5 Intrathecal PGEzElicits AlJodyn;a-like Behaviour in Conscious Rats

3.5.1 Effects Observed in the Absence of Hair Deflection

PGEzelicited behavioural responses ranging from mild burrowing and hiding

behaviour to vocalization and biting or scratching the caudal dermatomes.

These behaviours were transient, lasting only during the period of i.t. injection, and

yielded scores in the 2-3 range. After injection, these responses rapidly decreased

in frequency and severity yielding scores in the 1-2 range (Le. 20-45% of the

maximum possible score depending on the dose). These remained relatively stable

for the next 19-29 min and declined gradually thereafter (Figure 14). The Lt.

injection of vehicle (3% ethanol in water) yielded very mild effects as indicated by

the low behavioural scores (5-10% of the maximum possible score) throughout the

observation period. Although there appeared to be some relationship between the

magnitude of the scores for the behavioural changes observed in the absence of

HD stimulation and the dose of PGEz (Figure 15), statistical analysis of the

regression line indicated that the slope was not significantly different from O.

3.5.2 Hair Deflection-Evoked Allodynia

Brushing the hair on the lower dermalomes (hind limbs, flanks or lower back)

with a cotlon+tipped applicator evoked abrupt and robust behavioural responses in

rats treated with i.t. PGEz. These included avoidance behaviour(hiding the affected

dermatome); paw withdrawal, vocalization, piloerection; and aggressive nocifensive
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Figure 14. The time course of behavioural responses without hair deflection In PGE2-treated rats. Animals

were injected with intrathecal PGEi (0.8. 3.0. 8.0 or 20 ~g) or vehicle (3% ethanol In water) at time O. Each

column represents the mean t SEM of the percent maximum possible score of 5-8 rats for each 4-mln

observation period. The only lime period that exhibited a significant dose-dependent effect was 14 min (one·

way ANOVA; P < 0.05).



PGE, OO$e(~g)

Figure 15. The dose-response relationship of intrathecal (Lt.) PGE2;

behavioural responses observed without hair deflection. Rats were injected

with Lt. PGE2 (0.8~g, 31Jg, 8IJQ and 201Jg) and behaviour was rated using a

behavioural scoring system. In all cases, the investigator was blinded to the

nature of the treatment. Each point represents the mean ±SEM of the sum of

the behavioural scores per rat overthe 2-h time course (n= 5-8). The solid line

is the least squares regression line and the dashed lines indicate the 95%

confidence intervals. The slope of the linear regression line was not

significantly different from 0 (slope ~ = 0, one-way ANQVA, P = 0.066).
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behaviours such as attacking and biting the stimulus applicator. Identical brushing

of the face, head and fore paws of PGE2-treated rats was without effect. The time

course of HD-evoked allodynia for four separate doses of PGE2(0.8, 3.0, 8.0 and

20 I-Ig) is shown in Figure 16. Peak allodynia occurred 5-15 min after injection

depending on the dose. Recovery from allodynia was complete 90 min after

injection except for the 20 1-19 dose (Fi9ure 16). Brushing of the caudal dermalomes

in vehicle {3'% ethanol in water)-treated rals yielded very low behavioural scores

«10% of the maximum possible score; Figure 16). These were not significantly

different from those evoked by HD in i.t. saline-treated controls (data not shown).

As illustrated in Figure 17, the effect of PGE2 on HD-evoked allodynia was linear1y

related to the log of the dose. The slope of the linear regression line was

significantly different from°and the maximum allodynia appeared to occur between

3 and 20 I-Ig. Dose-response analysis yielded an ED50 and 95% CI of i.t. PGE2=2.6

'9 (1.6-4.2).

3.6 Effect ofSC-51322 on Hair Deflection-Evoked A/lodynia in PGEr Treated Rats

Pretreatment with Ll. SC-51322 (100 I-Ig), 15 min before i.t. PGE2 (81-19),

significantly reduced HD-evoked allodynia as compared to control (Figure 188).

Maximum inhibition occurred 15 min after i.l. PGE2 (30 min after SC-51322) and the

inhibitory effect remained significantly different from that of vehicle control for up to

60 min. Pretreatment with i.t. DMSO (the injection vehicle for SC-51322) had no

effect on HD-evoked allodynia in PGE2~treated rats as compared to rats treated only

with i.t. PGE2(except at 55 and 60 min after injection){Figure 188).
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Figure 16. The time course of hair deflection (HO)-evoked behavioural responses in PGE2-treated rats. Rats

were injected with intrathecal PGE2 (0.8, 3.0, 8.0 or 20 I-lg) or vehicle (3% ethanol in water) at time O. Each

column represents the mean ± SEM of the percent maximum possible score of 5-8 rats evaluated for each 5

min observation period. All time periods exhibited a significant dose-dependent effect except 120 min (one.

way ANOVA; P < 0.05).
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Figure 17. The dose-response relationship of intrathecal (Lt.) PGE2; hair

deflection (HD)-evaked allodynia. Rats were injected with i.t. PGE2(O.8~g,3).1.9,

8).1.9 and 201-\9) and HD-evoked behavioural responses were rated using a

behavioural scoring system. In all cases, the investigator was blinded to the

nature aftha treatment. Each point represents the mean ± SEM of the sum of

the behavioural scores per rat over the 2·h observation period (n= 5-8). The

solid line is the least squares regression tine. The dashed lines indicate the

95% confidence intervals. The slope of the linear regression line was

significantly different from 0 (slope f.I ~ 0, one-way ANOVA, P = 0.0019).
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Figure 18. The time course aftha inhibitory effect ofSC-51322 in PGE2-treated

rats. Intrathecal (Lt.) PGE2 (8Ilg) was given alone orfifteen min after i.t. OMSO

(90% in water) or Lt. SC-51322 (100 Ilg). Spontaneous (A) and hair deflection

(HD)-evoked (B) behaviours were rated using behavioural scoring systems

with the investigator blinded to the nature of the treatment. Each column

represents the mean ±SEM of the percent maximum possible score of7 rats.

SC-51322 significantly inhibited PGE2-induced behaviour without HD at the 14'

and 19' time periods (Panel A), and HO-evoked behaviour at 10', 15',20',25'

and 30' (Panel B) (one-way ANOVA, P < 0.05).
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The inhibitory effect of SC-51322 on PGE2-allodynia was dose-dependent (Figure

19). The reduction in the mean cumulative behavioural score was linearly related

10 the log dose of i.t. SC-51322 over the range of doses that were tested (6, 30 and

100I-lg). At the highest dose (100 I-Ig), SC-51322 decreased the cumulative

behavioural score evoked by HD by approximately 60%; behavioural scores

evaluated between the HD tests (without HD) were reduced by 48% (Figure 20).

SC-51322 attenuated the latter (Figure 18A) in a dose-dependent manner (Figure

20), although the slope of the dose-response was markedly lower than that of the

HD-evoked responses (Figure 19).

3.7 Effect of AP-7 on Hair Deflection-Evoked Allodynia in PGE2- Treated Rats

The i.t. AP-7 experiments were conducted on another separate group of

freely moving conscious rats. In order to prevent any nonspecific effect of AP-7

such as immobilization, pilot experiments were performed to choose a maximum

dose of AP-7 devoid of any overt behavioural effect. Intrathecal injection of AP-7,

at a dose less than 0.4 I-Ig, did not induce any obvious behavioural changes or

decreases in mobility. Thus, a maximum dose ofO.4l-1g (in 51-11 saline) was chosen

for i.t. injection. Pretreatment of the rat with AP-7 (0.4 I-IQ) 20 min before PGE2 (8

I-Ig) significantly attenuated the HD-evoked allodynia-like responses. The inhibitory

effect became significant 15 min after PGE2 treatment, then gradually decreased

and disappeared 90 min thereafter (Paired t test, P < 0.05, Figure 21). The mean

cumulative behavioural score of HD-evoked responses was significantly decreased

by AP-7 (Paired t test, P < 0.001, Figure 22). The behaviour observed in the

-62-



120~-------------_

-;:- 100
g

~ 80
Z
"0

1 60

o
:;. 40

10

SC-51322 Dose (1-I9)

100

Figure 19. Dose-response relationship of intrathecal (Lt.) $C-51322 on hair

deflection (HD)-evoked allodynia in PGE2-treated rats. Rats were pretreated

with i.t. SC-S1322 (6 ~g" 30 ~g, or 100 1-19) 15 min before Lt. PGE2 (81-19). Hair

deflection-evoked behavioural responses were rated by means of a

behavioural scoring system with the observer blinded to the nature of the

treatment. Each point represents the mean ±SEM (5-7 rats) aftha cumulative

score of HD-evoked behaviour per rat over the 2-h experimental time period,

expressed as the percent of control (no SC-51322). The solid line is the least

squares regression line and the dashed lines indicate the 95% confidence

intervals. All points were significantly different from one anotherexcept6 and

30 IJg (one-way ANOVA, P < 0.05). The slope of the linear regression line was

significantly different from 0 (slope 13" 0, one-way ANOVA, P = 0.0036).
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Figure 20. Dose-response relationship of Intrathecal (Lt.) SC·51322 on PGE2"

evoked behaviour without hair deflection (HO). Rats were pretreated with Lt.

SC-51322 (61-19, 30 1-19 or 100 1-19) fifteen min before i.t. PGE2 (81-19). Behaviour

in the absence of HD was rated using a behavioural scoring system with the

observer blinded to the nature of the treatment. Each point represents the

mean ± SEM (5-7 rats) of the cumulative score of the observed behaviour per

rat overthe 2-h experimental time period, expressed as the percent of contraI

(no SC-S1322). The solid line is the least squares regression line and the

dashed lines indicate the 95% confidence intervals. The effects of 61-19 and

100 ~g SC·51322 were significantly different from each other (Kruskal.Wallis

ANOVA on ranks, P < 0.05). The slope of the linear regression line was

significantly different from 0 (slope ~ .. 0).
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Figure 21. The time course of the inhibitory effect of AP-7 in PGE2-treated

rats. Intrathecal (Lt.) PGE2 (8 ~g) was given before (control) or twenty min

after Lt. AP-7 (0.4 ~g). Spontaneous (A) and hair deflection (HD)-evoked (8)

behaviours were rated using behavioural scoring systems with the observer

blinded to the nature of the treatment. Each column represents the mean :!:

SEM of the percent maximum possible score of 12 rats. AP-7 significantly

inhibited PGE2-induced behaviour without HD at the 19 and 29-59 min time

periods (Panel A) and HD-evoked behaviour at all time points except 10, 15,

90 and 120 min (Panel B) (Paired t-test, P < 0.05).
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Figure 22. The effect of intrathecal (Lt.) Ap·7 on PGE2..evoked behaviour with

and without hair deflection (HD). Rats were pretreated with vehicle or Ap·7

(0.4 IJg) twenty minutes before i.t. PGE2 (8 I-IQ). Behavioural responses were

rated using behavioural scoring systems with the observer blinded to the

nature aftha treatment. The cumulative score was calculated from the entire

time-course curve (120 min) for each rat (see Data Analysis; 2.3.6). Each bar

represents the mean ±SEM of 12 animals. The asterisks indicate a significant

difference from the corresponding control (Paired t·test, P <0.001).
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absence of HD stimulation was also significantly inhibited by Ap-7 pretreatment

during 16-19, 26-29, 31-34, 36-39, 1-44, 46-49, 51-54 and 56-59 min time intervals

during the 2-h experimental period (Paired t test, P < 0.05, n=12, Figure 21). The

sum of the behavioural scores per rat without HD was significantly reduced after

AP-7 (Paired t test, P < 0.001, n=12, Figure 22).

3.8 Effect of Bicuculline on Behavioural Responses in PGE2-Trealed Rats

In pilot experiments, i.t. bicuculline dose-dependently induced allodynia-like

behavioural responses in conscious rats (data not shown). After a sub-threshold

dose of Lt. bicuculline (0.01 IJg in 5 IJI saline), rats did not show any overt

behavioural changes; an HD stimulus to the lower dermatomes of the rat did not

evoke obvious behavioural agitation. This dose of bicuculline (0.01 IJg in 5 IJI

saline) was chosen for Lt. injection.

Pretreatment with this sub-threshold dose of bicuculline (0.01 IJg in 5 IJI

saline) 5 min before PGE2 enhanced PGE2-induced allodynia. Figure 238 shows

the time course of the effect of bicuculline pretreatment on the HD-evoked

behavioural responses in 8 IJg PGE2-treated rats; the percent maximum possible

score was significantly increased at all time point except 90' and 120' during the 2-h

experimental time period (Paired t test, P < 0.05). The percent maximum possible

scores for behaviour in the absence of HD stimulation was also increased during 1

4,6-9,11-14,16-19,21-24,26-29,36-39,41-44 and 56-59 min time periods (Figure

23A).
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Figure 23. The time course of the effect of bicuculline (BIC) in PGE2·treated

rats. Intrathecal (i.t.) PGE2 (8 ~g) was given before (control) or five min after

a sub-threshold dose ofi.t. BIC (0.01 ~g), Spontaneous (A) and hair deflection

(HD)~voked (B) behaviours were rated using behavioural scoring systems

with observer blinded to the nature of the treatment. Each column represents

the mean ± SEM of the percent maximum possible score. Bicuculline

significantly enhanced PGE2-induced behaviour without HD atthe 4-29, 39, 44

and 58 min time periods (Panel A) and HD~voked behaviour at all time points

except 90 and 120 min (Panel B) (Paired t-test, P < 0.05).
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Intrathecal PGE2 (0.1 1Jg) had no effect on the spontaneous and HD-evoked

behaviour in conscious rats. After pretreatment of rats with subthreshold dose of

bicuculline (0.01 I-\g in 5 1-11 saline), intrathecal 0.1 !lg of PGE2 indeed induced

obvious behavioural responses. Figure 24 and Figure 25 show the dose-response

curve of PGE2 (with or without HD, respectively) before and after bicuculline

pretreatment. The dose response-curves of PGE2 were shifted to the left.

4 DISCUSSION

4.1 Topical Application ofBicuculline fo the Dorsal Spinal Cord Induces Localized

Allodynia

The acute blockade of spinal gtycine- or GABAA-receptors with sub

convulsive doses of intrathecal strychnine or bicuculline, respectively, induces a

rapid, reversible and highly selective allodynic state in conscious and lightly

anaesthetized animals (Yaksh 1989; Sherman and Loomis, 1994; Onaka et aI.,

1996). Thus, in the presence, but not absence, of i.t. strychnine or bicuculline, mild

brushing of the hair on the affected dermatomes evokes behavioural, autonomic

and neurochemical responses thai are strongly indicative of a nociceptive event.

In the present study, we have shown that bicuculline, applied locally to the surface

of the dorsal spinal cord, is equally effective in altering somatosensory processing,

but in a much more circumscribed cutaneous field (Table 1). Indeed, the ailodynia

induced by the unilateral application of bicuculline (0.1 I-Ig in 0.1 1-11 saline) to the L5

or L6 spinal segment was limited to one to two digits on the ipsilateral hind paw

(Figure 4G; Table 1). This is in sharp contrast to the bilateral and more widespread
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Figure 24. The effect of intrathecal (i.t.) bicuculline (BIC) on the dose

response relationship of i.t. PGE2• Rats were pretreated with a sub-threshold

dose of BIC (0.01 ~g) five mIn before PGE2 (0.1, 0.8 or 8 ~g). Hair deflection

evoked behavioural responses were rated using a behavioural scoring system

with the observer blinded to the nature of the treatment. Each point

represents the mean :t: SEM (5-7 rats) of the cumulative scores of HD-evoked

behaviour per rat over the 2-h experiment. Bicuculline significantly enhanced

the HD-evoked responses of 0.8 and 8 IJg PGE2 (Paired t-test: P =0.006 and

P = 0.012, respectively).
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Figure 25. The effect of intrathecal (Lt.) bicuculline (BIC) on the dose

response relationship of lot. PGE2 (no hair deflection). Rats were pretreated

with a sub-threshold dose of BIC (0.01 IJg) five min before PGE2 (0.1, 0.8 or 8

IJg). Behavioural responses were rated using a behavioural scoring system

with the observer blinded to the nature of the treatment. Each point

represents the mean ±SEM (5-7 rats) ofthe cumulative scores of the observed

behaviour over the 2-h experiment. Bicuculline significantly enhanced the

behavioural responses of 0.8 and 8.0 1J9 PGE2 (Paired t test: P = 0.042 and P

= 0.049, respectively).
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sensitization of cutaneous dermatomes induced by i.t. strychnine or bicucuUine

(Table 1) (Yaksh 1989; Sherman and Loomis, 1995: Onaka et al., 1996). Allodynic

responses were evoked by hair deflection only on the affected digits of the hind

paw; they occurred without general or localized convulsive activity, and the

sensitization did not expand to the contralateral extremity over time or after

repeated bicuculline dosing (up to 6 consecutive doses every 20 min).

The magnitude of allodynia, determined from the maximum HD-evoked

responses, was dependent on the topical dose of bicuculline. These results provide

further evidence for the role of GABA in modulating low-threshold afferent input at

the spinal level, and indicate that topical bicuculline elicits allodynia by blocking

GABAA-receptors at discrete sites with the spinal segment(s) on which it is applied.

Clearty, allodynia is not the result of a generalized increase in the sensitivity to

afferent input along the spinal cord.

The localized effect of bicuculline in this study is also consistent with the

unilateral distribution of fluorescence following the topical application of a

bicuculline/bisbenzimide solution. There was no evidence of spread to the

contralateral cord after single or multiple applications. In terms of penetration into

the dorsal horn, fluorescence was highest in laminae I-III. While this fluorescence

pattern does not necessarily reflect the penetration of bicuculline into the dorsal

horn, it is noteworthy that fluorescence was highest in those laminae known to

contain the highest density of GABAA-receptors in rat spinal cord (laminae II-III;

Persohn et al. 1991), and where GABAergic terminals contact primary afferent

nerve endings (Barber et ai, 1978, Carlton and Hayes, 1990, Alvarez et al, 1992)
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or the cell bodies and dendrites of second order neurons (Barber et ai, 1978;

Magoul et al, 1987; Spike and Todd, 1992). Indeed, bicuculine, delivered into the

spinal cord of the monkey or cat by means of a microdialys)s probe placed

transversely through the mid-dorsal horn, enhanced both the background activity

and the evoked responses of spinal projection neurons (Lin et aI., 1996; Sorkin et

ai, 1998). Conversely, the delivery of GABA or the GABAA receptor agonist,

muscimol, elicited dose-dependent inhibition. These results indicate that

GABAergic neurons modulate the transfer of low threshold mechanical input from

primary afferent fibers to second order neurons in the spinal dorsal horn. That

spinal GABAergic modulation has relevance to abnormal pain stales is indicated by

the marked allodynia arising from the blockade of spinal GABAA receptors with

bicuculline (Yaksh, 1989, Onaka et ai, 1996, Loomis et ai, 2001), and by the loss

of GABA-like immunoreactive cells in lamina I-III following focal spinal cord ischemia

(Demediuk et ai, 1989; Zhang et ai, 1994; Hao et ai, 1991). Bicuculline applied to

the dorsal surface of the spinal cord appears to mimic the acute features of GABA

deficiency but in a highly site·specific and circumscribed manner.

In an effect to prolong a bicuculline effect, the drug was reapplied to the

same spot on the dorsal spinal cord every 20 min for 2 h. Allodynia was sustained

at a reproducible level throughout the experiment with no detectable change in the

size or location of cutaneous sensitization. While a similar approach is possible

using Lt. drug delivery, this is often complicated by the volume and pressure

changes introduced by repeated i.t. injections, and the attendant problem of non

specific effects. The results of present study demonstrate the ability to induce
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highly localized and sustained allodynia using repeated topical drug administration

to the dorsal spinal corel. Sustained disinhibition will be important in determining the

immediate and delayed changes in somatosensory processing and for comparison

with changes induced by spinal cord injury.

4.2 Effect ofNS-398 on Blcucufline-Alfodynia: Evidence ofProstaglandin Synthesis

In the present study, the topical application of NS-398 to the dorsal surface

of the spinal cord dose-dependently inhibited bicuculline-allodynia. NS-398 is a

potent and selective inhibitorofCOX·2 (Copeland etal, 1994; Yamamoto, 1996b),

exhibiting a selectivity ratio (IC5(I COX-1/IC50 COX-2) of 163 in human whole blood

cells (Panara et ai, 1995), 300 in COX-1 and COX-2 transfected Chinese hamster

ovary cells (Riendeau et ai, 1997a, b) and 1263 in intact human platelets and

synovial cells (Kawai et ai, 1998) by measuring the inhibition of PGE2 production.

These data, combined with our previous report of stereo~selective inhibition of

STRYCHNINE~allodyniawith i.t. S(+) ibuprofen (Hall et aI., 1999), support the

hypothesis that PGs, synthesized and released in the rat spinal cord, facilitate the

abnormal processing of low threshold mechanoreceptive input during bicuculline·

or strychnine-disinhibition.

The synthesis of PGs from arachidonic acid is catalyzed by the enzyme COX.

There are two known isoforms of this enzyme (COX-1 and COX-2)that reside in the

membranes of the endoplasmic reticulum and nuclear envelope. Although both

have considerable sequence homology, COX-1 and COX-2 are differentially

expressed and thought to subserve different biological functions (Otto and Smith,
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1995; Herschman, 1996). COX-1 is the constitutive isoform in most tissues

including spinal cord, and is thought to be responsible for the synthesis of PGs

mediating homeostatic regUlation. Conversely, CQX-2 is primarily an inducible

isoform whose expression is triggered by a variety of chemical (e.g., growth factors,

cylokines) and electrical (depolarizing) stimuli. As SUCh, COX-2 is thought to be

responsible for the generation of PGs mediating pathogenic events. However,

CQX-2 mRNA and protein exhibited basal expression in the brain and spinal cord

(Brederet aI., 1995; Beiche et aI., 1996; Willingale et aI., 1997; Vane et aI., 1998),

suggesting that constitutive COX-2 also plays an important regulatory role within the

eNS.

This concept is supported by the results of the present study with NS-398.

Indeed, the rapid onset (5 min after topical application) and short duration of

allodynia (35-40 min) after a single dose of bicuculline (0.1 g), and the time course

of inhibition by NS-398, argue against the recruitment of inducible CQX-2 in this

experiment model. These results are in agreement with earlier reports showing

that: 1) the COX-2 selective inhibitor, celecoxib, but not the highly selective COX-1

inhibitor, SC-560, blocked the release of spinal PGs following the injection of

carrageenan into the hind paw of the rat (Smith el a!., 1998); and 2) PGD2 1eveis in

the Hippocampus of the gerbil increased -50 fold within 5 min of a seizure and

returned to near pre-seizure levels by 30 min (Forstermann et aI., 1984; Hertting

and Seregi, 1989). In addition, the restricted area of spinal cord over which the

inhibitory effects of NS-398 were observed strongly suggests that the PGs

facilitating allodynia in this model are products of COX-2 within the affected spinal
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segment(s). Whether HD ultimately triggers the expression of COX-2 during

GABAA-receptor blockade remains to be determined. However, this would

presumably require a more prolonged allodynic state (>2 h) which could be induced

with repeated bicuculline application.

4.3 Effect of AP-7 on Bicuculline-Allodynia: Role of NMDA Receptors

Pretreatment of the rat with the NMDA receptor antagonist, AP-7, markedly

suppressed the responses evoked by hair deflection during GABAA receptor

blockade. This dose-dependent effect was not due to a general depression of

spinal reflexes. Cardiovascular responses to phasic noxious pinch remained

unaltered after AP-7 (data not shown). This finding suggests that low threshold

afferent input acquires access to an NMDA receptor-dependent mechanism(s)

during GABAAreceptor blockade. It is well established that the activation of NMDA

receptors is a very important component for both hyperalgesia and mechanical or

thermal allodynia in the acute or the chronic facilitated pain animal models (Davar

et aI., 1991; Kim et aI., 1997; Khandwala et aI., 1997; Yamamoto et aI., 1996a),

while the COX-prostanoid pathway is also implicated in these abnormal pain states

(Yaksh and Malmberg, 1993; Malmberg, 1995b,c; Hay et aI., 1997). Ample

evidence demonstrated a sequential functional link between NMDA receptor

activation and the production ofprostanoids in nociceptive neurotransmission in the

spinal cord (Yaksh, 1999a). For example, in an in vitro perfusion study, PGE2 1eveis

in the perfusion medium were increased after NMDA incubation of the spinal cord

of naive rats or rats with thermal hyperalgesia after peripheral inflammation (Dirig
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and Yaksh, 1999), Intrathecal NMDA-induced mechanical allodynia and

hyperalgesia were attenuated by the NMDA receptor antagonist MK801, the COX-2

selective inhibitor DFU or NS-398 and the non-selective COX inhibitor

indomethacin, but not by the metabotropic glutamate receptor antagonist MCPG or

the non·NMDA receptor antagonists DNQX in sheep or rats (Dolan and Nelan,

1999; Yamamoto and Sakashita, 1998). Therefore, it appears that there exists an

NMDA receptor-CQX-prostagtandin pathway in the spinal nociceptive

neurotransmision (Yaksh, 1999a) and that spinal bicuculline induces allodynia, at

least in part, through prostaglandin release (Fig 2).

GABA" receptors are distributed throughout rat spinal cord dorsal horn,

especially, abundant in laminae 11·111 (Persohn et al. 1991). GABAergic neurons are

presynaptic to primary afferent input terminals or axons of interneurons and appear

to modulate glutamate release (Persohn et al. 1991, Barber et aI., 1978, Carlton

and Hayes, 1990; Alvarez et al., 1992). In situ hybridization analysis has confirmed

the presence of GABA" receptor subunit mRNAs and protein within both small and

large diameter dorsal root ganglion cells and in spinal cord dorsal horn (Persohn et

al., 1991). As much as 30% of GABA" receptors in the spinal cord dorsal horn are

believed to be on primary afferent terminals (estimates from the effects of

rhizotomies and neonatal capsaicin). Therefore, the development of allodynia may

result from an excessive glutamate release due to a loss of GABA inhibition on the

presynaptic input. Indeed, GABA released from inhibitory intemeurons of the spinal

cord is believed to activate GABA" receptors in the afferent terminals and to reduce

transmitter release (Rudomin, 1999); intrathecal bicuculline induces a transient
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glutamate release in the CSF of the rat (Ishikawa and Yaksh, 1996). On the other

hand, GABAergic neurons may produce postsynaptic inhibition by contacting the

dendrites and cell bodies of the second order neurons. Thus, the.blockade of GABA

function with bicuculline may produce a partial depolarization in the membrane of

the second order neurons and remove the MgH blockade from the NMDA receptor

ion channel. In the presence of glutamate, this partial depolarization produces a

facilitated sensitization in the spinal cord, thus, HD induces allodynia.

In a more recent study (Ishikawa et aI., 2000) using a loop dialysis catheter,

intrathecal strychnine or bicuculline yielded a touch-evoked agitation. Intrathecal

bicuculline also evoked a transient spinal release of glutamate in the 0-10 min

sample, white strychnine did not affect spinal transmitter release at any time. As

intrathecal bicuculline but not strychnine increases glutamate release, while the

allodynia of both is blocked by NMDA receptor antagonism, this furthersupports the

hypothesis that GABA{A) sites regulate presynaptic glutamate release, while glycine

regulates the excitability of neurons postsynaptic to glutamatergic terminals.

In the present study, the NMDA receptor antagonist Ap·7 dose-dependently

inhibited bicuculline-allodynia. This provides further evidence that NMDA receptor

activation mediates the facilitated sensory signal processing of bicuculline-allodynia.

4.4 Effect ofAP-7 on PGE2-Allodynia in Conscious Rats: Role ofNMDA Receptors

Experiments using conscious rats afford several advantages over

anaesthetized animal experiments. Conscious experimental animals have similar

physiological conditions to those of naive animals. This is especially important in
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studies of sensory processing and pain. In this study, PGE2-allodynia was

investigated using conscious rats.

In the present study, intrathecal injection of PGE2 to conscious rats dose

dependently induced nociceptive-like behavioural responses to innocuous tactile

stimuli. These data agree with other studies which have shown that i.t.

administration of PGE2 caused allodynia in conscious mice (Minami et aI., 1994a,b;

1995a) and rats (Malmberg et al., 1995a). The spontaneous behavioural response

(without HO stimulation) showed a trend to increase with the PGE2 dose, however,

statistical analysis indicated that this response was not dose-dependent (the slope

of linear regression line ~ = 2.95, P = 0.066).

The mechanism(s) of this innocuous tactile stimulus evoked nociceptive-like

responses (anodynia) in PGE~-treated rats remain{s) unclear. As shown in previous

studies using HPLC and fluorescence detection method PGE2 induces an

immediate increase in glutamate and aspartate release in intrathecal dialysis

perfusate of the rat spinal cord and in the superfusion of rat spinal cord

synaptosomes. Thus, one may infer that the release of excitatory amino acid (EAA)

glutamate and aspartate represents an important mechanism in PGE2 -allodynia.

Indeed, in the present study, intrathecal pretreatment of sub-immobilization dose

of an NMOA receptor antagonist AP-7 significantly inhibited PGE~-allodynia in

conscious rats. This is consistent with other data obtained in conscious mice. Co

administration of MK·801, a non-eompetitive NMOA receptor channel blocker, orO

AP-5, a selective NMOA receptor antagonist, with PGE2, dose-dependently blocked

PGE2·induced allodynia. In contrast, none of these NMDA receptor antagonists
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inhibited PGF2n-aliodynia (Minami e1 aI., 1994b). These results are also supported

by the preliminary data of our laboratory showing that perfusion of lumbar spinal

cord slices with PGE2 increases glutamate release. All these results suggest a

presynaptic action of PGE2 on the primary afferent terminals.

EAA such as glutamate and aspartate have been proposed as primary

afferent neurotransmitters involved in nociception in the spinal cord (Watkins and

Evans, 1981; Salt and Hill, 1983; Merighi et aI., 1991). The results of

electrophysiologicat and immunohistochemical studies suggest that these EAAs are

involved in the neurotransmission between low-threshold afferent and dorsal horn

neurons (Kangrga and Randic, 1991; Schneider and Perl 1994). Although the

precise mechanism of allodynia induced by PG is not known at present, our results

with AP-7 suggest that the PGE2 receptor activation gives rise to an increased

spinal EAA release or prolongs the release of EAA in response to low-threshold

tactile stimuli and that spinal NMDA sites activated by the released EAA may initiate

a facilitated state of spinal sensory signal processing leading to the PGE2-induced

allodynia.

In conscious mice, post-treatment with MK-801, the NMDA receptor

antagonist, 5 min after i.t. PGE2 failed to block PGE2-allodynia (Minami et aI.,

1994b). It is suggested that this facilitated state, once activated, does not require

glutamate receptor sites. Our preliminary experiments (data not shown) suggest

that post-treatment with AP.7, 5 min after i.t. PGE2does not block innocuous tactile

stimulus-induced allodynia-like behavioural responses. These results combined

with other data from post-treatment experiments suggest that in the presence of
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PGE2, once an afferent barrage from Ap fibers has generated a threshold effect on

neuronal function, the resulting activation of glutamate receptors may cause a

series of subsequent events (e.g., the production of PGs, NO) that maintain the

established allodynia without further requirement of NMDA receptor activation.

In the present study, a low dose of AP-7 (0.4 I-Ig) was used in order to

prevent drug diffusion-induced immobilization effects. AP-7 significantly but only

partially inhibited PGE2-allodynia suggesting that the dose employed may not have

been sufficient to produce a stronger or even complete blockade of the PGE2 effect.

Another strong possibility is that PGE2-induced glutamate release may only

represent one mechanism that underlies the allodynic effect of Lt. PGE2.

An alternative mechanism of PGE2-allodynia is that PGE2 may act via

neuropeptide release. PGE2 has been shown to increase the release of substance

P and to facilitate depolarization-evoked substance P release from both dorsal root

ganglion neurons in culture (Nicol et aI., 1992) and spinal cord slices in vitro (Vasko

et aI., 1994; Vasko, 1995). Substance P and glutamate, acting at NK1- and NMDA·

receptors of dorsal horn neurons, respectively, (Wall and Woolf, 1986; Dickenson

et aI., 1997; Yaksh et aI., 1999b), elicit prolonged depolarization and initiate the

facilitated excitation state in the spinal cord. Furthermore, there is cumulative

evidence showing that PGE2 may directly increase the excitability of sensory

neurons. For example, in patch clamp studies of sensory neurons isolated from

embryonic rats and grown in culture, PGE2 enhances the excitability through the

suppression of an outward potassium currenlthat may modulate the firing threshold

for generation of the action potential (Nicol et al., 1997; Evans et al., 1999), through
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the activation of the cyclic adenosine 3',5'-monophosphate pathway. PGE2 also

enhanced the capsaicin-evoked current in rat sensory neurons (by 2- to 3-fold)

(lopshire and Nicol, 1997; 1998). Intrathecal injection of an inactive dose of PGE2

enhanced capsaicin-evoked amino acid release in the spinal cord perfusate of the

conscious rat. The hypothesis that PGE2 has a direct action on the primary afferent

terminals is also supported by the finding that PGE2 enhanced CGRP release from

the spinal cord in vitro in response to dorsal root stimulation (Andreeva and Rang,

1993). CGRP is contained exclusively in primary afferent nerve terminals in the

dorsal horn (Chung et al., 1988).

Although there is no direct evidence showing the existence of postsynaptic

PGE2 receptors in the dorsal horn, the possibility of a PGE2 postsynaptic action on

the intrinsic spinal dorsal horn neurons still cannotbeexduded. Forexample, nerve

ligation central to the ganglion (central ligation) yielded an accumulation of iloprost

binding sites (PGI2 binding sites) in the ganglion side proximal to the ligature. On

the contrary no clear accumulation of PGE2 binding sites could be demonstrated.

It is suggested that iloprost binding sites are transported from ganglion cell body to

afferent input terminals (Matsumura et aI., 1995). Thus, i!oprost binding sites may

exist at the presynaptic sites while PGE2 binding sites may exist on postsynaptic

sites as suggested by the absence of PGE2 accumulation after ligature. The

decrease of PGE2 binding sites after rhizotomy may possibly only suggest that the

expression of the binding sites is under the regulatory control of primary sensory

input (Matsumura et aI., 1992, 1995).
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Taiwo and Levine (1988) proposed another possible mechanism of PGEz

action at the spinal cord level. Intrathecal PGEz antagonized the analgesia

produced by both nucleus reticularis paragigantocellularis (NRPG) electrical

stimulation and intracerebroventricular morphine. In contrast, the NSAlDs

synergized with brain stimulation and morphine-induced analgesia. The

a-adrenergic antagonist phentolamine and the catecholaminergic selective

neurotoxin 6-hydroxydopamine (used to block tonic catecholamine neuron activity

in endogenous opioid-mediated analgesia systems) prevented the hyperalgesia

induced by intrathecal PGEz. Phentolamine did not, however, block the

hyperalgesia caused by intradermal PGEz. These results suggest that PGEzcould

block both electrical stimulation-produced analgesia and endogenous opioid

mediated analgesia by inhibiting the noradrenergic synaptic transmission in the

spinal terminals of bulbospinal noradrenergic projection neurons of this analgesia

pathway. The observations that PGE2 induced-allodynia was dose-dependently

relieved by a high dose of the Uz-adrenoceptor agonist clonidine (Minami et al.,

1994b) and that PGE2 could inhibit the synaptic release of norepinephrine in the

brain (Bergstrom et al.. 1973) provide further evidence for the hypothesis that PGE2

may act at spinal postsynaptic sites in nociceptive neurotransmission.

Collectively, PGE2 may facilitate spinal sensory neurotransmission by both

postsynaptic and presynaptic mechanisms, for example, by increasing glutamate

release from primary afferent terminals as supported by the present study, by

increasing the release of neuropeptide (the latter may in turn increase glutamate

release) or by the inhibition of opioid and adrenergic mediated analgesia

mechanisms.
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4.5 Effect of SC-51322 on Bicuculline- and PGE2,Allodynia: Role ofEP Recep/ors

There is considerable evidence that PGE2. released in the rat spinal cord in

response to noxious stimuli, is the major PG that facilitates spinal nociceptive

processing (Willingale et al., 1997; Malmberg and Yaksh, 1992a; Yang et ai, 1996;

Hay et aI., 1997; and Goppelt-Struebe and Seiche, 1997). For example,

superfusion of the lumbar spinal cord of normal rats with artificial CSF and

subsequent radioimmunoassay revealed the presence of PGE2 > PGD2, but not

PGl2 (determined by measurement of the stable metabolite, 6-keto-PGF 1'..) or

PGFw

If central PGs are relevant to the abnormal processing of sensory input

during spinal disinhibition, then their effects should be attenuated by the local

application of a PG receptor antagonist. In the present study using SC-S1322, we

have demonstrated that bicuculline-allodynia is sensitive to the effects of EP

receptor blockade; an effect that was dose-dependent. PGE2 -allodynia was also

dose-dependently inhibited by SC-51322 in conscious PGE2-treated rats. These

data are consistent with previous studies demonstrating: a) the involvement of

spinal EP receptors in the induction of allodynia by Lt. PGE2 (Minami et aI., 1995b;

Sakai et al., 1998); b) PGE2 as the major arachidonic acid product facilitating spinal

nociceptive processing (Malmberg and Yaksh, 1994; Yang et aI., 1996; Hay et al.,

1997; and Goppelt Struebe and Seiche, 1997); and c) the high affinity of PGE2 to

EP receptors (Lawrence et aI., 1992). They are also in agreement with preliminary

experiments in our laboratory showing a significant increase in the concentration of

PGE2 in spinal microdialysis samples during but not aflerstrychnine-allodynia (Hall
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et aI., unpublished observation). These results, combined with the local inhibitory

effect of NS-398, provide further evidence that spinal PGs contribute to the cellular

events which effect bicuculline-allodynia.

At [east four subtypes of the PG E-series receptors have been identified: EP,.

EP2 , EP3, EP4 . The four PGE2 receptor subtypes couple to different major signal

transduction pathways: namely elevation of intracellular calcium (EP1), stimulation

(EP2, EP4) orinhibition of adenyly[ cyclase (EP J ). Several lines of evidence indicate

that sensory neurons express EP receptors (Sley et aI., 1998). Although (3HJPGE2

binding sites are present at a high density in rat dorsal horn of the spinal cord, the

identity of the receptor subtypes is unclear. For example, using in situ hybridization

techniques, EPJ , and to a lesser extent EP1 and EP4 receptor mRNAs have been

detected in mouse dorsal root ganglia neurons (Oida et aI., 1995; Sugimoto et aI.,

1994). EP2 mRNA was detected in the spinal dorsal horn of rats (Kawamura etal.,

1997). A recent study showed that the EP3receptor is also expressed in the spinal

cord of the rat (Seiche et aI., 1998a). Immunocytochemical staining with EPJ

antibody revealed a spatia[lyconlained expression ofEPJ IR in the superficial dorsal

horn laminae 1-1[, where the nociceptive afferent terminates (Seiche et at, 1998a).

It seems that multiple EP receptors are associated with the PGE2 action in the

sensory processing of spinal cord dorsal horn. In the present study, the EP

receptor antagonist SC-51322 partially inhibited bicuculline·allodynia as well as

PGE2-allodynia suggesting that PGE2, at least partially, mediate this abnormal

sensory processing of allodynia. While this distortion of sensory processing

appears to be mediated by spinal EP receptors, the contribution of specific EP

receptor subtypes remains to be determined.
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4.6 Bicuculline~ and PGE2-Allodynia

Bicuculline selectively induced an augmented excitatory state in the spinal

dorsal horn; an innocuous stimulus in the presence of bicuculline evoked allodynia.

This allodynic stale is sensitive to inhibition of COX, or blockade of EP and NMDA

receptors. These results combined with the observations that PGE2 dose

dependently induced allodynia-like behaviour in conscious rats provide further

evidence for the possible role of PGE2 in bicuculline-allodynia. These results

suggest that PGs, especially PGE2, may mediate bicuculline-allodynia via affecting

EP receptors, and that the activation of NMDA receptors is important for the

abnormal sensory processing of bicuculline-allodynia. Furthermore, in the present

study, pretreatment of bicuculline enhanced PGE2-induced allodynia as evidenced

by the leftward shift of the PGE2 dose-response curve. This result indicates that

bicuculline may act, at least partially through a PGE2 pathway; in the presence of

bicuculline, administration of PGE2 may incrementally facilitate the excitatory signal

processing and produce an additive effect.

It is obvious that there is a functional link between bicuculline-induced

disinhibition and PGE2 release. This link may include: 1) bicuculline-induced

glutamate release, 2) NMDA receptor activation, 3) activation ofa cascade of signal

transduction pathways inclUding PGE2 release. PGE2 would induce more glutamate

release and further NMDA receptor activation. This positive feedback process could

represent an important mechanism in bicuculline-allodynia and PGE2 allodynia.

There also seems to be some evidence showing the direct effect of PGE2 on

GABAergic systems. For example, in the rat brain PGE2 inhibited spontaneous
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inhibitory postsynaptic currents (IPSCs) of the rat supraoptic neurons in the

presence of tetrodotoxin, a blocker of Na' channels, suggesting that PGE2 acts

presynaptically on the GABAergic terminals to decrease GABA release (Ibrahim et

aI., 1999). In a study (Eguchi et aI., 1999) using lipocalin-type PGD synthase

deficient mice (L-PGDS-I- mice), Lt. PGE2 and bicuculline failed 10 induce tactile

allodynia. while simultaneous injection of PGE2 or BIC with a femtogram amount of

PGD2 induced allodynia in L-PGDS-I- mice to the same extent as in wild-type mice.

The PGE2 or bicuculline induced allodynia in L-PGDS-I- mice was blocked by a

PGD2 receptor antagonist given in a femtogram amount. These results combined

with the present observations that bicuculline-allodynia was markedly inhibited by

the blocking of PGE2 pathway and that bicuculline enhanced PGE2 allodynia

suggest that bicuculline and PGE2 may, at least partially, share the same signal

transduction pathways in inducing allodynia.

4.7 Summary

Increased spinal glutamatergic tone has been shown to yield a state of

facilitated transmission of both low- and high-intensity stimuli (Dougherty et aI.,

1992). Of the glutamate receptor family, spinal NMDA.receptors are especially

important as those receptors that mediate long lasting depolarization including the

phenomenon of "wind up" (Dickenson and Sullivan, 1987). Such excitation appears

to be an important spinal mechanism underlying the condition of allodynia and

hyperalgesia (Yaksh et al., 1999b, Woolf and Thompson, 1991). The present

research demonstrates that the abnormal responses evoked by input from low-
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threshold mechanoreceptive afferents in the presence of spinal bicuculline and

PGE2 are indeed sensitive to NMDA·receptor blockade by AP-7 or the EP-receptor

antagonist SC-51322. In summary, the evidence obtained in this study supports the

following conclusions:

1. Bicuculline is a modulator of non-noxious somatosensory input in the spinal

cord of the rat.

2. In the presence of spinal topical bicuculline, low threshold afferent input

selectively accesses a spinal sensitization mechanism normally activated by

nociceptive fibers.

3. Blockade of the PGE2 system by the selective COX-2 inhibitor, NS-398 or by

the EP-receptor antagonist, SC·51322 attenuates bicucultine-allodynia.

4. Intrathecal application of PGE2 dose-dependently induces nociceptive-like

behavioural responses similar to those induced by i.t. bicuculline.

5. Blockade of spinal NMDA receptors inhibits both bicuculline- and PGE2

allodynia, and at high dose, completely inhibits bicuculline-allodynia.

6. A sub-allodynic dose of bicuculline potentiates PGE2-induced al!odynic

behavioural responses.
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