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ABSTRACT 

 

 Atlantic cod and Atlantic salmon are among the main species of the Canadian 

fisheries and aquaculture industries. Populations of both fish species are exposed to 

different pathogens such as bacteria that cause infectious diseases. Vibrio anguillarum, 

Francisella noatunensis, Renibacterium salmoninarum, and Aeromonas salmonicida 

subsp. salmonicida are the most frequent bacteria that infect Atlantic cod and Atlantic 

salmon. 

 Aeromonas salmonicida subsp. salmonicida, is one of the oldest known fish 

pathogens and the causative agent of furunculosis in marine and freshwater fish. This 

Gram-negative pathogen is having a negative impact on fish health, especially in emergent 

marine aquaculture in Canada. A. salmonicida is also an excellent bacterial model to study 

fish host-pathogen interactions and assist with analyzing compounds that can be useful to 

stimulate the immunity of the fish. 

 Here, I evaluate the effect of A. salmonicida on the innate immune response of 

Atlantic cod and Atlantic salmon primary macrophages utilizing microbiological and 

molecular biology tools. Additionally, I determine the effect of vitamin D2 and D3 as 

potential immunostimulants against the bacterial infection caused by A. salmonicida in 

Atlantic salmon. 
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1. CHAPTER I: GENERAL INTRODUCTION 
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1.1 Atlantic cod and the stressors in wild environments 

 The bottom-dwelling fish, Atlantic cod (Gadus morhua), is one of the most 

important commercial fish species for the North Atlantic fisheries [Tørresen et al. 2016]. 

In accordance with the Committee on the Status of Endangered Wildlife in Canada 

(COSEWIC) report published in 2010, the cod populations of Laurentian North, Laurentian 

South, and Newfoundland and Labrador, are endangered, meanwhile, the population of 

Arctic Lakes presents a status of special concern, due to overfishing. Overfishing has been 

recognized as the main factor associated with the decline in the populations of the Atlantic 

cod, however, studies indicate that factors like global warming, changes in the composition 

of the bottom environments, the decrease in the populations of capelin (Mallotus villosus), 

the principal prey of Atlantic cod, and bacterial infectious diseases are affecting the 

populations [Harris 1998; Choi et al. 2004; Drinkwater 2005]. The latter factor, bacterial 

infectious diseases, have been observed in both wild and cultured Atlantic cod [Magnadóttir 

et al. 2002]. The emergence of diseases is associated with the pressures associated with 

environmental stressors to which wild fish are generally exposed to, as well as the intensive 

culture conditions that predispose them to infections [Kaatari and Tripp 1987; Robertson 

et al. 1987; Portz et al. 2006]. Outbreaks of Vibrio anguillarum, Streptococcus parauberis, 

Francisella noatunensis and Aeromonas salmonicida have been reported in wild and 

cultured Atlantic cod [Magnadóttir et al. 2002; Bakkemo et al. 2011]. In contrast to other 

teleosts, Atlantic cod lacks the genes for the major histocompatibility complex class II 

(MHC-II), the invariant chain/CD74 (Ii), and CD4+ T cell response, normally necessary to 

mount an effective humoral adaptive immune response [Langefors et al. 2001; Star et al. 
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2011]. The mechanisms underlying responses to bacterial infections in G. morhua are not 

totally understood. 

 

1.2 Atlantic salmon aquaculture and infectious diseases 

 Aquaculture has been the world's fastest growing food producing industry during 

recent decades [FAO 2010; Asche et al. 2013]. According to the Food and Agriculture 

Organization of the United Nations (FAO), Atlantic salmon (Salmo salar) is the highest 

value commercial aquaculture fish species globally, with a production of ~2.2 million 

tonnes between 2016 and 2017. Higher production is not only associated with the increase 

in the economic income of the producing countries, but also with an important impact on 

the environments and disease outbreaks where the production occurs [Maisey et al. 2016]. 

Several studies associate the environmental conditions in the industry with episodes of 

immunosuppression and diseases in cultured fish [Kaatari and Tripp 1987; Robertson et al. 

1987; Portz et al. 2006]. Infectious diseases represent the main causes of losses in Atlantic 

salmon aquaculture [Maisey et al. 2016]. Piscirickettsia salmonis, Renibacterium 

salmoninarum, Vibrio anguillarum, and Aeromonas salmonicida are the most frequent 

bacterial pathogens of Atlantic salmon [Toranzo et al. 2005; Higuera et al. 2013; Maisey et 

al. 2016; Valderrama et al. 2017]. The strategy used by the Atlantic salmon industry to 

prevent or control bacterial outbreaks is the use of antibiotics and vaccines [Maisey et al. 

2016; Lozano et al. 2018]. However, antibiotic treatments frequently lead to the emergence 

of antibiotic-resistant isolates [Martinez et al. 2018]. Immunostimulants or functional feed 

ingredients are frequently utilized in the diet in conjunction with the current measures (e.g. 

vaccines, antibiotics) to prevent infectious diseases [Jadhav et al. 2006; Barman et al. 2013; 
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Wang et al. 2017]. Understanding how novel and current functional feed ingredients (e.g. 

vitamins) influence fish immunity and contribute to fighting bacterial infections is 

necessary for their optimal utilization as immunostimulants in aquaculture species against 

current pathogens. 

 

1.3 Aeromonas salmonicida subsp. salmonicida: a common bacterial pathogen in 

Atlantic cod and Atlantic salmon 

 Members of the genus Aeromonas are found worldwide in aquatic environments 

and has been implicated in the etiology of a large variety of human and animal diseases 

[Crivelli 2001; Saavedra 2006]. This genus is composed of around 35 different species and 

there has been a progressive increase in the discovery of new species in the last two decades 

[Demarta et al. 2008; Beaz-Hidalgo et al. 2009; Alperi et al. 2010; Beaz-Hidalgo et al. 

2010]. From these, the species A. hydrophila, A. veronii, and A. salmonicida have been 

described as the three main pathogens of fish [Janda 2010]. The first two, A. hydrophila 

and A. veronii, are the causative agents of Aeromonas septicemia (hemorrhagic septicemia) 

and red sore disease, respectively, in different fish species [Wilcox 1992; Janda 2010]. On 

the other hand, A. salmonicida has been described as the cause of massive mortality and 

great economic losses in marine and continental aquaculture species [Goldschmidt-

Clermont 2009; Beaz-Hidalgo et al. 2010; Austin and Austin 2016]. A. salmonicida has 

five subspecies, salmonicida, achromogenes, smithia, masoucida, and pectinolytica [Graf 

2015]. Specifically, the facultative anaerobic, non-motile, and bacillus-shaped bacterium 

Aeromonas salmonicida subsp. salmonicida, one of the oldest known pathogens of fish, is 

the etiological agent of furunculosis, which represents a recurrent health problem in the 
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aquaculture industry [Hiney 1994; O´Brien 1994; Cipriano and Bullock 2001; Dallaire-

Dufresne 2014; Valderrama et al. 2017]. A. salmonicida subsp. salmonicida requires 

specific attention due to the negative impact that it causes to emergent aquaculture species 

in Canada (e.g. sablefish, lumpfish,), as it can infect different hosts, including Atlantic 

salmon [Samuelsen et al. 2006]. 

 The immune response against the subsp. Achromogenes has been well studied in 

Atlantic cod, however information about the interaction with the subsp. salmonicida 

remains unavailable [Magnadóttir et al. 2002; Fazio et al. 2015]. In contrast, in Atlantic 

salmon, studies have focused on the infection caused by the subsp. salmonicida, making it 

one of the most studied bacterial pathogens of fish [Brown and Johnson 2008; Gulla et al. 

2016; Novak et al. 2016]. Despite this, much of the pathogenesis of A. salmonicida subsp. 

salmonicida remains poorly understood in Atlantic salmon [Magnadottir and 

Gudmundsdottir 1992; Boyd et al. 2008; Romstad et al. 2013]. 

 

1.4 Vitamin D mechanisms and their role in the immune system of Atlantic salmon. 

  Vitamin D is a secosteroid hormone that plays a crucial role in calcium and 

phosphorus metabolism, cell growth, and tissue differentiation, among others [Walters 

1992; Miller and Gallo 2010; Darias et al. 2011].  Vitamin D can be obtained through diet 

from plant sources in the form of vitamin D2, also known as ergocalciferol, and from animal 

sources in the form of vitamin D3, also known as cholecalciferol [Rao and Raghuramulu 

1996; Darias et al. 2011]. 

 Once having entered the organism, vitamin D2 and vitamin D3 travel through the 

bloodstream to the liver where they are hydroxylated by 25-hydroxylase, converted into 
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25-hydroxyvitamin D2 and 25-hydroxyvitamin D3, respectively [Haussler et al. 2013; 

Shuler et al. 2013; Bikle 2014]. After the first hydroxylation, in mammals the hydroxylated 

forms of vitamin D travel to the kidneys for a second hydroxylation to produce the final 

active form of vitamin D; however, in fish the second hydroxylation occurs in the liver 

without the appearance of precursors in the blood plasma [Kobayashi et al. 1991; Takeuchi 

et al. 1991; Lock et al. 2010; Christakos et al. 2016]. 

 After the active form is produced, either vitamin D2 active form 1,25(OH)2D2 or 

vitamin D3 active form 1,25(OH)2D3, bind to vitamin D binding protein (DBP) to be 

transported to the target cells [Hay and Watson 1976, Lock et al. 2010]. Then, the active 

vitamin D metabolites in addition to DBP passes through the cell membrane and interact 

with the vitamin D receptor (VDR), a transcriptional factor which belongs to the nuclear 

receptor superfamily [Hay and Watson 1976, Lock et al. 2010; Shin et al. 2010]. This 

interaction is capable to trigger among other things, the expression of immune-related genes 

[Mangelsdorf et al. 1995; Lock et al. 2010; Shin et al. 2010]. For instance, several studies 

have shown the importance of vitamin D forms in mammals to prevent or fight against 

diseases [Deluca and Cantorna 2001; Adams et al. 2007; Yamshchikov et al. 2009; 

Hewison 2011; Badenhoop et al. 2012, Téllez-Pérez et al. 2012; Yue et al. 2017]. In 

contrast, the role of vitamin D in the regulation of the immune response in fish is poorly 

understood [Bikle 2008; Lock et al. 2010]. 

 Vitamin D is a compound generally present in fish feeds, nonetheless, its utilization 

has been focused on the prevention of skeletal diseases, controlling calcium and phosphorus 

homeostasis, and cell differentiation [Lall and Lewis-McCrea 2007; Oliva‐Teles 2012]. In 

mammals, vitamin D’s actions are related to certain physiological mechanisms such as 
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intestinal calcium absorption, bone homeostasis, or increasing the expression of 

antimicrobial peptides during infection, and has evolved recently in time compared with 

the teleosts [Kamen and Tangpricha 2010; Lin et al. 2012; Haussler et al 2013; Bouillon 

and Suda 2014]. As a result, it is of interest to understand the role that vitamin D2 and D3 

can also play in the improvement of the immune system of teleosts such as Atlantic salmon 

[Bikle 2008], to determine the evolutionary differences with terrestrial vertebrates. 

 

1.5 General objectives 

 The general objective for chapter II was to determine the responses of Atlantic cod 

primary macrophages to A. salmonicida infection. 

 The general objective for chapter III was to determine the effect of vitamins D2 and 

D3 in Atlantic salmon (Salmo salar) primary macrophages’ immune response. 

 

1.6 Specific objectives 

 The specific objectives for chapter II were to: i) quantify the attachment-invasion 

and cell viability of Atlantic cod macrophages infected with Aeromonas salmonicida; ii) 

evaluate the relative expression of genes involved in the innate immune response of 

Atlantic cod macrophages infected with Aeromonas salmonicida; iii) determine the ability 

of Atlantic cod macrophages to produce reactive oxygen species (ROS) against Aeromonas 

salmonicida infection; and iv) co-localize Aeromonas salmonicida in Atlantic cod 

macrophages. 

 In chapter III, the specific objectives were to: i) determine the growth of Aeromonas 

salmonicida at different concentrations of vitamin D2 and D3; ii) evaluate the viability of 
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Atlantic salmon macrophages at different concentrations of D2 and D3; iii) quantify the 

attachment, invasion and viability of Atlantic salmon macrophages treated with D2 and D3; 

and iv) to determine the relative expression of several genes involved in the innate immune 

response of Atlantic salmon macrophages treated with D2 and D3. 
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2. CHAPTER II: Aeromonas salmonicida subsp. salmonicida early 

infection and immune response of Atlantic cod (Gadus morhua L.) 

primary macrophages 
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2.1 Abstract 

 In contrast to other teleosts, Atlantic cod (Gadus morhua) has an expanded 

repertoire of MHC-I and TLR components, but lacks the MHC-II, the invariant 

chain/CD74, and a CD4+ T cell response, which are all essential for production of 

antibodies and prevention of bacterial infectious diseases. The mechanisms by which G. 

morhua fight bacterial infections are not well understood. Aeromonas salmonicida subsp. 

salmonicida is a recurrent pathogen in cultured and wild fish, and has been reported in 

Atlantic cod. Macrophages are some of the first responders to bacterial infection and the 

link between innate and adaptive immune response. Here, I evaluated the viability, reactive 

oxygen species (ROS) production, cell morphology, and gene expression of cod primary 

macrophages in response to A. salmonicida infection. I found that A. salmonicida infects 

cod primary macrophages without killing the cells. Likewise, infected Atlantic cod 

macrophages up-regulated key genes involved in the inflammatory response (e.g., IL-1β 

and IL-8) and bacterial recognition (e.g., BPI/LBP). Nevertheless, our results showed a 

down-regulation of genes related to antimicrobial peptide and ROS production, suggesting 

that A. salmonicida utilizes its virulence mechanisms to control and prevent macrophage 

anti-bacterial activity. Our results also indicate that Atlantic cod has a basal ROS 

production in non-infected cells, and this was not increased after contact with A. 

salmonicida. Transmission electron microscopy results showed that A. salmonicida was 

able to infect the macrophages in a high number, and release outer membrane vesicles 

(OMV) during intracellular infection. These results suggest that Atlantic cod macrophage 

innate immunity is able to detect A. salmonicida and trigger an anti-inflammatory response, 
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however A. salmonicida controls the cell immune response to prevent bacterial clearance, 

during early infection. 

 

2.2 Introduction 

 Atlantic cod (Gadus morhua), one of the most important commercial fish species in 

the North Atlantic fisheries, has unusual modifications of the immune gene repertoire that 

set it apart from other teleosts [Malmstrøm et al. 2016]. This Gadiform fish lacks the genes 

for the major histocompatibility complex class II (MHC-II), the invariant chain/CD74 (Ii), 

and the CD4+ T cell response, representing an important evolutionary diversification of the 

adaptive immune system of vertebrates [Star et al. 2011]. The MHC-II binds antigens from 

extracellular pathogens, and the MHC-II-antigen complex activates helper CD4+ T cells, 

which play an essential role fighting bacterial infectious diseases [Parham 2016]. 

 The Atlantic cod appears to have compensated for the lack of the MHC-II pathway 

by expanding the number of MHC-I genes [Malmstrøm et al. 2013]. This expanded MHC-

I gene family has been divided into two clades, one maintaining the classical MHC-I 

functionality, and the other showing a MHC-II-like function [Star et al. 2011]. Indeed, 

around 80–100 copies of the MHC-I loci are found in the Atlantic cod genome, in contrast 

to other gadiformes that present only 40 copies [Star et al. 2011; Malmstrøm et al. 2016; 

Solbakken et al. 2017], or to humans that harbor only ~10 copies [Buonocore and Gerdol 

2016]. In addition to the MHC-I diversification, the Atlantic cod has expanded some Toll-

like receptor (TLR) families, which have an important role in the innate immune response 

and pathogen detection [Star et al. 2011; Solbakken et al. 2016a; Solbakken et al. 2016b]. 

The Atlantic cod lacks TLR1, TLR2, and TLR5 that recognize bacterial surface antigens, 
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however, this seems to be compensated by an expansion of the TLR7, TLR8, TLR9, and 

TLR22 families related to nucleic acids recognition [Star et al. 2011; Star and Jentoft 2012; 

Sundaram et al. 2012; Buonocore and Gerdol 2016]. 

 The Atlantic cod is a very successful teleost species and not particularly susceptible 

to infectious diseases [Magnadóttir 2014], even though some of the prevalent marine 

bacterial pathogens such as Vibrio anguillarum, Francisella noatunensis, and Aeromonas 

salmonicida have been reported in wild and cultured cod [Samuelsen et al. 2006; Bakkemo 

et al. 2016]. 

 A. salmonicida is found worldwide in aquatic environments and has been implicated 

in the etiology of a large variety of fish diseases [Graf 2015]. A. salmonicida has five 

subspecies, salmonicida, achromogenes, smithia, masoucida, and pectinolytica [Graf 

2015]. The immune response of Atlantic cod to subsp. achromogenes infection has been 

described [Magnadóttir et al. 2002; Fazio et al. 2015]. In contrast, the immune response of 

Atlantic cod to subsp. salmonicida has not been studied. 

 Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a 

causative agent of furunculosis, a recurrent health problem for several marine fish species 

[Valderrama et al. 2017]. This Gram negative, facultative anaerobic, non-motile, and 

bacillus shaped bacterium [Janda and Abbott 2010; Dallaire-Dufresne et al. 2014], contains 

among others, a type-three secretion system that translocates to the eukaryotic cell several 

effector proteins, which influence immune response, including inflammation [Ebanks et al. 

2006; Frey and Origgi 2016]. 

 Inflammation is a protective reaction of the host in response to bacterial infection, 

involving the migration of leukocytes, including macrophages, to the site of infection 
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[Suzuky and Lida 1992]. Macrophages, in addition to neutrophils, are the first defense line 

of vertebrates, including Atlantic cod. Upon infection, macrophages are activated, secreting 

antimicrobial peptides (AMPs), cytokines, and chemokines, among others immune 

modulatory molecules [Tort et al. 2003; Whyte 2007; Magnadóttir 2014]. Activated 

macrophages have an increased phagocytic activity, correlated with an increased 

production of reactive oxygen species (ROS), and up-regulation of anti-bacterial gene 

transcription [Secombes and Fletcher 1992; Stafford and Belosevic 2003; Esteban et al. 

2015]. 

 How Atlantic cod primary macrophages respond to A. salmonicida infection is 

unknown. Therefore, the aim of this study was to investigate the immune response of 

Atlantic cod head kidney primary macrophages to A. salmonicida infection. 

 

2.3 Material and methods 

2.3.1 Aeromonas salmonicida growth conditions 

 A single colony of A. salmonicida J223 [Valderrama et al. 2017] was grown 

routinely in 3 ml of Trypticase Soy Broth (TSB, Difco, Franklin Lakes, NJ) at 15°C in a 16 

mm diameter glass tube and placed in a roller for 24 h. After growth, 300 μl of the overnight 

culture were added in 30 ml of TSB media using a 250 ml flask and incubated for 24 h at 

15°C with aeration (180 rpm). The bacterial growth was monitored spectrophotometrically 

until O.D. 600 nm ~0.7 (1 × 108 CFU ml−1) using the Genesys 10 UV spectrophotometer 

(Thermo Spectronic, Thermo Fischer Scientific Inc., Waltham, MA, USA). Then the 

bacterial culture was centrifuged at 6,000 rpm at room temperature for 10 min. The pellet 

was washed twice with PBS and centrifuged at 6,000 rpm at room temperature for 5 min, 
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and finally resuspended in 300 μl of PBS (~5 × 1010 CFU ml−1). The concentrated bacterial 

inoculum was serial diluted and quantified by plating onto TSA supplemented with Congo 

red (50 μg ml−1). 

 

2.3.2 Formalin-killed A. salmonicida 

 A. salmonicida J223 strain was grown in TSB media supplemented with 100 μM 2, 

2′-dypyridyl at 15°C with aeration (180 rpm) up to an optical density of O.D. 600 nm ~0.7 

(~1 × 108 CFU ml−1). The bacterial cells were washed three times with PBS and then fixed 

with 6% formalin for 3 days at room temperature with gentile agitation. Formalin-killed 

cells were dialyzed (Molecular Weight cut off 3.5 kDa; Spectra/Por, Laguna Hills, CA) in 

PBS three times and stored at 4°C at the concentration of 6 × 1010 CFU ml−1 until utilization. 

 

2.3.3 Fish holding 

 Adult specimens of Atlantic cod 1.5 ± 0.2 kg (mean ± SE) were obtained from the 

Dr. Joe Brown Aquatic Research Building (JBARB) at the Department of Ocean Sciences, 

Memorial University of Newfoundland, Canada. The animals were kept in 21 m3 tanks, 

with flow-through (75.l × min−1) of sea water (6°C) and ambient photoperiod. The 

individuals were fed with commercial dry pellets (Skretting: 50% protein, 18% fat, 1.5% 

carbohydrate, 3% calcium, 1.4% phosphorus) with a ratio of 1% of body weight 3 days per 

week. The experiment was performed in accordance with the guidelines of the Canadian 

Council on Animal Care and approved by Memorial University of Newfoundland's 

Institutional Animal Care Committee (protocols #17-01-JS; #17-02-JS). 
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2.3.4 Macrophage isolation 

 Primary macrophages were isolated from Atlantic cod head kidney in accordance 

to the protocol established by Eslamloo et al. 2018 [Eslamloo et al. 2018] with 

modifications. Briefly, head kidney tissues from six fish were aseptically removed and 

individually minced through 100 μm nylon sterile cell strainers (Fisher Scientific, Thermo 

Fisher Scientific, Waltham, MA, USA) in isolation media [(Leibovitz-15 (Gibco®, Gran 

Island, NY, USA) supplemented with 2 mM L-glutamine, 4.2 mM NaHCO3, 25 mM 

HEPES, 1.8 mM glucose, 20 U ml−1 heparin, 100 U ml−1 penicillin, 100 μg ml−1 

streptomycin, and 1% Fetal Bovine Serum (FBS)]. After this period, 3 ml of cell suspension 

were centrifuged (400 × g at 4°C) for 40 min in a 25/51% Percoll gradient (GE Healthcare, 

Uppsala, Sweden). Macrophages collected from the macrophage-enriched interface were 

washed with phosphate buffered saline [PBS; 136 mM NaCl, 2.7 mM KCl, 10.1 mM 

Na2HPO4, 1.5 mM KH2PO4 (pH 7.2)] [Sambrook and Russell 2001] twice and the number 

and viable cells were determined using the Countness™ cell counter (Invitrogen), and 

trypan blue stain (Invitrogen). After determining the numbers of cells from each sample, 

the primary macrophages were seeded in 22 mm 12-well or 35 mm 6-well cell-culture 

multidishes (Thermo Scientific, Roskilde, Denmark) at a concentration of 1 × 107 cells 

ml−1. The plates were incubated at 15°C for 24 h in isolation media. After this period the 

cells were washed with PBS and incubated at 15°C for additional 24 h in 1 ml of culture 

media [Leibovitz-15 (Gibco®), supplemented with 2 mM L-glutamine, 4.2 mM NaHCO3, 

25 mM HEPES, 1.8 mM glucose, 100 U ml−1 penicillin, 100 μg ml−1 streptomycin, and 1% 

FBS] to allow cell attachment until the infection assay. 
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2.3.5 Gentamicin exclusion assay 

 Infections of primary macrophages with A. salmonicida were performed according 

to a previously established protocol [Valderrama et al. 2017]. To remove the antibiotic 

present in the culture media, the isolated primary macrophages were washed once with 1 

ml of PBS, and then inoculated with 1 ml of cultured media without antibiotics. After this, 

the primary macrophage monolayers were infected with 10 μl of bacterial suspension [~1 

× 106 cells ml−1; Multiplicity of Infection (MOI) 1:1 (bacteria:macrophage)] and incubated 

at 15°C. After 1 h post infection, the A. salmonicida attached to the Atlantic cod 

macrophages were quantified. The infected primary macrophage monolayers were washed 

3 times with PBS, and lysed with 400 μl of Triton X100 (0.01%; Sigma) during 10 min 

[Sung et al. 2003] and then 600 μl of PBS were added to complete 1 ml of lysed macrophage 

suspension. Then the lysed macrophage suspensions were serially diluted (1:10) and 

plate/counted on TSA plates supplemented with Congo Red to determine the number of 

viable A. salmonicida per monolayer. The plates were incubated at 15°C for 5 days to 

determine the CFU per well. In addition, samples were taken for cell viability, RNA 

extraction, and transmission electron microscopy (see below for details). 

 For the invasion assay, cell monolayers were infected for 1 h, washed 3 times with 

PBS, followed by the addition of 1 ml of fresh culture media supplemented with gentamicin 

(10 μg ml−1, a higher concentration than the minimal inhibitory concentration for A. 

salmonicida) [Aravena-Román et al. 2012], and incubated at 15°C. Samples were taken at 

2, 3, and 6 h post infection for bacterial count, cell viability, RNA extraction, and 

transmission electron microscopy. All the macrophages were isolated from three individual 

fish and triplicates were utilized for each treatment in the assays. 
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2.3.6 Primary macrophages viability determination 

 To determine the viability of infected primary macrophages, the cells were seeded 

in 12 wells plates, infected with A. salmonicida, and processed as described in the 

gentamicin exclusion assay. For each time point post A. salmonicida infection, the cells 

were washed with 1 ml of PBS and then treated with 500 μl of trypsin-EDTA (0.5%; Gibco) 

for 10 to 15 min. After this period, the trypsin was inactivated with 500 μl of culture media. 

The cells were stained with trypan blue (0.4%; Invitrogen) in a ratio of 1:1 (10 μl: 10 μl) 

and quantified using Countess™ Cell Counting Chamber Slides (Invitrogen) and 

Countess® Automated Cell Counter (Invitrogen) according to the manufacturer's 

instructions. The numbers of alive and dead cells were determined at each time point post- 

infection. All the macrophages were isolated from three individual fish and technical 

triplicates were utilized in the assays. 

 

2.3.7 RNA extraction and qPCR 

 To determine the effect of A. salmonicida on the innate immune response of Atlantic 

cod primary macrophages, samples of RNA were isolated from infected cells at 1, 2, and 6 

h post A. salmonicida infection, using the previously described gentamycin exclusion 

methodology. Primary macrophages that were either mock infected with PBS or inoculated 

with 1 × 106 CFU of formalin-killed A. salmonicida were utilized as controls. Total RNA 

was extracted using TRIzol (Invitrogen), and purified using RNeasy (QIAGEN) following 

manufacturers' instruction [Santander et al. 2014]. RNA samples were treated with TURBO 

DNA-free™ Kit (Invitrogen) for complete digestion of DNA and removal of remaining 
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DNase and divalent cations, such as magnesium and calcium. Purified RNA samples were 

quantified and evaluated for purity using a Nano-quant spectrophotometer (Genway, UK), 

and evaluated for integrity by 1% agarose gel electrophoresis [Sambrook and Russell 

2001]. cDNA was synthetized with the SuperScript™ III First-Strand Synthesis System 

(Invitrogen) using 500 ng of RNA per reaction and random hexamers according to the 

manufacturer's instructions. 

 Primer pair efficiencies were analyzed using a 20 ng μl−1 pooled cDNA from each 

set of samples, which was serially diluted (dilutions starting with 1 (20 ng μl−1), 1:3 (6.67 

ng μl−1), 1:9 (2.22 ng μl−1), 1:27 (0.74 ng μl−1), 1:81 (0.25 ng μl−1), 1:243 (0.08 ng μl−1), 

1:729 (0.03 ng μl−1)). Primer pair efficiencies were calculated using the formula E = 

10(−1/slope) [Pfaffl 2001]. 

 All qPCR reactions were done in a final volume of 20 μl, containing 10 μl of 1 × 

PowerUp-SYBR Master Mix (Applied BioSystems, Foster City, CA, USA), 1 μl (10 μM) 

of each primer, 6 μl of nuclease free water (Ambion), and 2 μl of cDNA. All samples were 

amplified and detected in a QuantStudio 3 (Applied BioSystems). The reaction mixtures 

were incubated for 2 min at 95°C, followed by 40 cycles of 1 s at 95°C, 30 s at 60°C, and 

finally 15 s at 95°C, 1 min at 60°C, and 15 s at 95°C. Initially, a total of five Atlantic cod 

genes were tested as reference gene candidates (EF-1α, ß-actin, Eif3, 18S, 60S). cDNA 

from a sub-set of samples (Appendix I) were utilized for evaluation of reference gene 

stability. The most stable gene for this set of individual samples was determined by using 

geNorm (M value 0.102) and BestKeeper (Value 0.101) (Appendix I). After this 

determination, the individual samples were analyzed. The mRNA gene expression was 

normalized to the Atlantic cod elongation factor 1 alpha (EF-1a) due to its stability across 
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different treatments. Gene expression was determined using the comparative −ΔΔCt method 

[Livak and Schmittgen 2001]. 

 The primers used in this study are listed in Table 2.1. In all cases, each qPCR was 

performed with triplicate samples and repeated with six independent fish. 
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Table 2-1. Primer sequences used in Atlantic cod experiment. 
 

Gene Forward (5´to 3´) Reverse (5´to 3´) Tm ºC Efficiency (%) Reference 

IL-1b TGAGGACCTGCTCAACCTCT TCTTCTGGTGGTCCCTCAAC 55.6 103.7 Perez-Casanova et al. 2010 

IL-8 GGTTTGTTCAATGATGGGCTGTT GACCTTGCCTCCTCATGGTAATACT 56.5 98.4 Seppola et al. 2008 

IL-10 CCTATAAAGCCATCGGCGAGTTA TGAAGTCGTCGTTTTGAACCAAG 56.6 100.1 Seppola et al. 2008 

MHC-I CTAGCGTGGGACCTGAAGAC CAGAGTGCTCTTCCCGTAGG 56.5 108.4 Perez-Casanova et al. 2010 

g-type lysozyme CATTGACCAAGCCACTGGAATCCT ATTCGACTCTACCGTCTCCAGTGT 59.3 102.3 Perez-Casanova et al. 2010 

BPI/LBP GACCGTCAACGTGATGGCCCCGGT CTTTGTTGGCCTCTATGCTGGAGAG 59.4 96.8 Caipang et al. 2008 

Cathelicidin (CAMP) ATTGCAATTTCACCCTGAGC CCAGACCTGCTCCTTCTCAC 56.4 108.1 Feng et al. 2009 

Transferrin GAGCTCCCATCGACAGCTAC CAAACCCAGCAGAGGAGAAG 56.7 108.9 Audunsdottir et al. 2012 

Hepcidin (HAMP) CCACAGGCTCCTCTCAAGTC CTGCAACTGCAATGCTGAAT 56.4 105.1 Feng et al. 2009 

nrf2 TCGCAGTAGGAGCTGGATGA CTCCGGTCTGTCCTTGGAAA 57.0 98.1 Skjærven et al. 2013 

nox1 GCCTATATGATTGGCCTGATGAC GCTGTGCTGAGTGGGTCGTA 55.3 108.6 Skjærven et al. 2013 

Mn-Sod ATGTGGCCTCCTCCATTGAA GCATCACGCCACCTATGTCA 55.1 109.2 Skjærven et al. 2013 

Cu/Zn-Sod CATGGCTTCCACGTCCATG CGTTTCCCAGGTCTCCAACAT 56.8 98.0 Skjærven et al. 2013 

cat GCCAAGTTGTTTGAGCACGTT CTGGGATCACGCACCGTATC 57.3 101.0 Skjærven et al. 2013 

EF-1a GATGCACCACGAGTCTCTGA GGGTGGTTCAGGATGATGAC 56.2 98.3 Perez-Casanova et al. 2010 
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2.3.8 Respiratory burst assay 

 Respiratory burst of primary cod macrophages infected with A. salmonicida was 

determined according to the protocol established by Smith et al. [Smith et al. 2018a; Smith 

et al. 2018b] with some modifications. Briefly, isolated primary macrophages were infected 

with 10 μl of bacterial suspension (~1 × 106 cells ml−1; MOI 1:1) and incubated at 15°C for 

48 h. Primary macrophages inoculated with PBS were utilized as negative control, and 

phorbol myristate acetate (PMA 1 mM; Sigma) dissolved in dimethyl sulfoxide (DMSO) 

was utilized as positive control. 

 After 1 h post infection, cells were washed and the culture media was replaced with 

respiratory burst assay buffer (Leibovitz L-15 media supplemented with 1% BSA and 1 

mM CaCl2). Then, 1 μl of dihydrorhodamine 123 (DHR, 5 mg/ml; Sigma) was diluted in 1 

ml of PBS, and 50 μl of the dilution added to the macrophages for 15 min. Subsequently, 

125 μl of PBS for negative control, or 125 μl of PMA (1 mM, final concentration 0.185 μM 

PMA) were added to the macrophages monolayers for 45 min to stimulate ROS production 

[Nikoskelainen et al. 2006; Kalgraff et al. 2011]. Finally, the macrophages were detached 

using 1 ml of trypsin-EDTA (0.5%; Gibco), washed with PBS, centrifuged for 5 min (500 

× g at 4°C), and resuspended in fluorescence-activated cell sorting (FACS) buffer (1% FBS 

in PBS). Fluorescence was detected from 10,000 cells using a BD FACS Aria II flow 

cytometer (Becton Dickinson™) and analyzed using BD FACS Diva v7.0 software (BD 

Biosciences, San Jose, CA, USA). The PBS control cells were used to define the region of 

ROS negative cells, and based on this gating the FITC positive cells were identified. The 

mean fluorescence intensity and percentage of FITC-positive cells were determined for 
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each condition. The experiments were conducted in macrophages isolated from six 

independent fish, and 10,000 events were measured for each sample. 

 

2.3.9 Transmission electron microscopy (TEM) 

 Primary macrophages were fixed in anhydrous paraformaldehyde (4%; Electron 

Microscope Sciences, Hatfield, PA, USA) at 4°C until the samples were processed at the 

Electron Microscopy/Flow Cytometry Unit at Memorial University of Newfoundland. The 

cells were pelleted and resuspended in Karnovsky fixative for 20 min [Karnovsky 2003], 

washed in 0.1 M sodium cacodylate buffer pH 7.4 for 5 min, and post-fixed in 1% Osmium 

tetroxide during 15 min. After this, the fixed cells were dehydrated in increasing 

concentrations of ethanol and acetone followed by infiltration with EPON resin (Sigma). 

Cells were pelletized between incubation steps. Resin blocks were polymerized in BEEM 

capsules (Electron Microscope Sciences) overnight at 70°C and ultra-thin sections were cut 

with a diamond knife (Diatome, Hatfield, PA, USA). The ultra-thin sections were mounted 

on 300 copper mesh grids, stained with uranyl acetate and lead citrate, and examined in a 

Tecnai™ Spirit TMA with an accelerating voltage of 80 kV. Cells incubated for 3 h with 

PBS (control), J223 strain, and formalin-killed A. salmonicida were observed. 

 

2.3.10 Statistical analysis 

 All data are shown as the mean ± standard error (SE). Assumptions of normality 

and homogeneity were tested for the detected variances. A Kruskal-Wallis nonparametric 

test was performed for gentamicin exclusion assay results. Gene expression and ROS data 

were analyzed using a repeated measures two-way ANOVA test, followed by Sidak 
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multiple comparisons post hoc test to identify significant differences of each treatment in 

different times and between treatments in the same time point. Differences were considered 

significant at P < 0.05. All statistical analyses were performed using GraphPad Prism 

(GraphPad Software, La Jolla California USA, www.graphpad.com). 

 

2.4 Results 

2.4.1 Macrophage viability and Aeromonas salmonicida infection 

 The viability of Atlantic cod primary macrophages infected with A. salmonicida 

was determined at 1, 2, 4, and 6 h post-infection. The results did not show significant 

differences between the time points post-infection in the number of live cells and 

percentage of viability. For instance, after 1, 2, 4, and 6 h post-infection 1.32 × 106 ± 8.02 

× 105, 1.18 × 106 ± 7.13 × 105, 1.17 × 106 ± 6.64 × 105, and 7.77 × 105 ± 4.77 × 105 cells 

were quantified, respectively (Fig. 2-1a). The percentage of viability during the infection 

process also did not show significant differences between time points post-infection. After 

1, 2, 4, and 6 h the infected cells showed a viability of 89% ± 4.8, 87% ± 3.1, 80% ± 4.2%, 

and 92% ± 6%, respectively (Fig. 2-1b). 

 Although the primary cod macrophage cells seemed to survive the A. salmonicida 

infection, the bacteria infected and invaded the cell monolayers. The Atlantic cod 

macrophages were infected with a MOI of 1:1 (bacteria: macrophage) with an initial 

inoculum of 9.6 × 106 CFU. After 1 h post-infection, 7.39% (6.8 × 105 CFU) was attached 

to the macrophage monolayer, and after 2, 4, and 6 h post-infection, 0.42% (3.87 × 104 

CFU), 0.37% (3.42 × 104 CFU), and 0.21% (1.94 × 104 CFU) of A. salmonicida were 

located intracellularly, respectively (Fig. 2-1c). 
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Figure 2-1. Gentamicin exclusion assay in Atlantic cod macrophages infected with 

Aeromonas salmonicida subsp. salmonicida. (a) Live cells and (b) percentage of viability, 

after 1, 2, 4, and 6 h post infection. (c) Colony forming units (CFU) recovered after 1, 2, 4, 

and 6 h post infection with A. salmonicida. The percentage showed above bars indicate the 

total % of attachment (1 h post infection) and invasion (2, 4, and 6 h post invasion) of A. 

salmonicida in Atlantic cod macrophages, p < 0.05. Each value represents the mean ± 

S.E.M (n = 3). Symbol (*) indicate statistical differences between each time post infection. 
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2.4.2 Gene expression response of Atlantic cod macrophages to A. salmonicida infection 

 Quantitative real-time expression of selected genes related to Atlantic cod 

macrophage immunity was evaluated during A. salmonicida infection, and compared with 

macrophages inoculated with inactivated A. salmonicida (formalin-killed), and PBS 

inoculated controls. Significant increases in the expression of the pro-inflammatory 

cytokine interleukin 1β (IL-1β) gene were observed 1, 2, and 6 h post A. salmonicida 

infection compared to the time-matched PBS controls (Fig. 2-2a). An up-regulation of the 

pro-inflammatory cytokine interleukin 8 (IL-8) gene, was also observed, nonetheless, this 

up-regulation occurred at 2 h, and 6 h post A. salmonicida infection compared to the PBS 

controls (Fig. 2-2b). In contrast, the macrophages inoculated with inactivated A. 

salmonicida showed a higher expression of IL-1β at 2 and 6 h post-inoculation compared 

to their respective PBS controls (Fig. 2-2a). IL-8 was up-regulated in cells treated with 

formalin-killed bacteria after 1 and 2 h post-inoculation (Fig. 2-2b). At 6 h post-inoculation 

with the inactivated A. salmonicida, the expression of IL-8 in cod macrophages did not 

show differences compared to the PBS inoculated cells (Fig. 2-2b). The expression of IL-

1b was significantly up-regulated at 1 and 2 h after A. salmonicida infection compared with 

bacterin-exposed macrophages, whereas for IL-8 significant up-regulation in infected vs. 

bacterin-exposed macrophages was only seen at the 6 h time point (Fig. 2-2a, b). 

 In contrast, the relative expression of the anti-inflammatory cytokine Interleukin 10 

(IL-10) gene, was significantly down-regulated after 1 and 2 h post A. salmonicida infection 

compared to the non-infected control macrophages (Fig. 2-2c). Cod macrophages 

inoculated with the inactivated pathogen also showed a significant down-regulation at 1, 2, 

and 6 h compared with PBS controls (Fig. 2-2c). 
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 Genes involved in antigen recognition and host defense showed different patterns 

of expression after macrophage exposure to the live or inactivated A. salmonicida. In the 

case of the major histocompatibility complex class I (MHC-I) gene, a significant down-

regulation was observed after 6 h post live A. salmonicida infection and post-inoculation 

with the formalin-killed bacteria (Fig. 2-2d). 

 A down-regulation of the relative expression of the Goose-type lysozyme (g-type 

lysozyme) gene was observed at 1 and 2 h post A. salmonicida infection, and at 1, 2, and 6 

h post inoculation with the formalin-killed pathogen, compared to their respective controls 

(Fig. 2-2e). At 6 h post-treatment, g-type lysozyme expression was significantly different in 

infected vs. inactivated pathogen exposed macrophages (Fig. 2-2e). 

 In contrast, the bactericidal permeability-increasing protein/lipopolysaccharide-

binding protein (BPI/LBP) gene, involved in the antimicrobial defense against Gram 

negative bacteria, showed a significant up-regulation at 2 and 6 h post-infection only in 

cells inoculated with the live bacteria compared with the control and formalin-killed 

inoculated treatments (Fig. 2-2f). 

 The relative expression of AMPs encoding-genes showed different expression 

patterns. Cathelicidin (CAMP) gene was down-regulated in macrophages infected with A. 

salmonicida and those inoculated with formalin-killed A. salmonicida at 1, 2, and 6 h post-

infection compared with time-matched PBS controls (Fig. 2-2g). Macrophages infected 

with A. salmonicida showed a significant down-regulation of CAMP 2 h post-infection 

compared to the cells inoculated with inactivated bacteria (Fig. 2-2g). 

 Transferrin did not show variation in the level of expression of both treatments 

compared with the time-PBS matched controls during the assays, as well as, between 
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macrophages inoculated with live and bacterin A. salmonicida (Fig. 2-2h). Hepcidin 

(HAMP) expression was significantly up-regulated only at 6 h post-exposure to the 

formalin-killed A. salmonicida (Fig. 2-2i). However, HAMP was significantly down-

regulated at 2 h post-infection with A. salmonicida (Fig. 2-2i). 

 Expression of genes involved in the synthesis of ROS was also evaluated (Fig. 2-

2j, 2-2k, 2-2l, 2-2m, 2-2n). Nuclear factor erythroid 2-related factor 2 (nrf2), a 

transcriptional factor that is translocated into the nucleus under oxidative stress and initiates 

transcription of antioxidative genes, did not show transcriptional variation in cells 

inoculated with formalin-killed A. salmonicida compared to their respective controls (Fig. 

2-2j). In contrast, macrophages infected with A. salmonicida showed a significant down-

regulation in the expression of nrf2 at 2 and 6 h post-infection (Figure 2.2j). After 1 h of 

infection, nrf2 transcript was significantly lower expressed in pathogen-infected 

macrophages compared to bacterin-exposed macrophages. 

 The expression of NADPH oxidase 1 (nox1) gene, which encodes a membrane-

bound pro-oxidant enzyme that catalyzes superoxide synthesis, was significantly down-

regulated 1 h post-infection with A. salmonicida compared to the non-treated cells and the 

bacterin-exposed macrophages (Fig. 2-2k). Furthermore, this gene was significantly lower 

expressed at 1 h compared with 2 and 6 h post-infection (Fig. 2-2k). 

 The relative expression of the Mn superoxide dismutase (Mn-Sod) and the CuZn 

superoxide dismutase (Cu/Zn-Sod) genes, involved in the transformation of superoxide into 

H2O2 in the mitochondria and the cytosol, respectively, also was evaluated. The Mn-Sod 

was significantly up-regulated at 2 h post-inoculation with inactivated A. salmonicida, 

compared to the controls (Fig. 2-2l). In contrast, macrophages infected with A. salmonicida 
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showed a Mn-Sod down-regulation tendency, with a significant down-regulation at 2 and 6 

h post-infection compared to the bacterin-exposed macrophages (Fig. 2-2l). 

 Similar patterns were observed in Cu/Zn-Sod and catalase (cat) expression, where 

a higher expression was observed post-inoculation with the formalin-killed A. salmonicida 

and a down-regulation was observed in cells infected with A. salmonicida (Fig. 2-2m, n). 

For instance, Cu/Zn-Sod show a significant down-regulation at 6 h post A. salmonicida 

infection compared to the PBS control inoculated cells, and 2 and 6 h post-infection 

compared to cells treated with the inactivated pathogen (Fig. 2-2m). 

 The relative expression of cat, which encodes for the catalase enzyme that plays an 

important role in H2O2 detoxification, showed a down-regulation at 1, 2, and 6 h in 

macrophages infected with A. salmonicida compared to the control and the cells treated 

with the inactivated pathogen (Fig. 2-2n). In contrast, macrophages exposed to inactivated 

A. salmonicida did not show significant differential expression of cat, compared to their 

respective controls (Fig. 2-2n). 



 

38 
 

 

Figure 2-2. Gene expression of (a) Interleukin 1b (IL-1b), (b) Interleukin 8 (IL-8), (c) 

Interleukin 10 (IL-10), (d) Major histocompatibility complex class 1 (MHC-I), (e) Goose 
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type lysozyme (g-type lysozyme), (f) Bactericidal permeability increasing protein / 

lipopolysaccharide-binding protein (BPL/LBP), (g) Cathelicidin (CAMP), (h) Transferrin, 

(i) Hepcidin (HAMP), (j) Nuclear factor erythroid 2-related factor 2 (nrf2), (k) NADPH 

oxidase 1 (nox1), (l) Mn superoxide dismutase (Mn-Sod), (m) CuZn superoxide dismutase 

(Cu/Zn-Sod), and (n) Catalase (cat) in Atlantic cod primary macrophages isolated from 

head kidney and infected with live (J223) and formalin-killed A. salmonicida (FK 223) at 

different times post infection (1, 2, and 6 h). Relative expression was calculated using the 

2(−ΔΔCt) method and Log2 converted using EF-1a as internal reference gene. Different 

letters represent significant differences between primary macrophages infected with J223 

strain (lower case) or inoculated with FK J223 (upper case) at different times-points. 

Asterisks (*) represent significant differences between treatments on each time-point (*p < 

0.05, **p < 0.01, ***p < 0.001). Each value is the mean ± S.E.M (n = 6). 

 

2.4.3 Reactive oxygen species (ROS) production 

 ROS production was determined in Atlantic cod primary macrophages infected with 

A. salmonicida. Macrophages inoculated with PBS or PMA were utilized as negative and 

positive controls, respectively. ROS production was analyzed at 1 h and 6 h post A. 

salmonicida infection. I did not observe significant differences in ROS production between 

treatments. Macrophages treated with PBS showed that 85.1% ± 6.1 and 70.4% ± 6.2 were 

producing ROS after 1 h and 6 h, respectively. Macrophages treated with PMA showed that 

75.8% ± 7.0 and 53.6% ± 12.4 were producing ROS after 1 h and 6 h, respectively. 

Similarly, macrophages treated with PBS and infected with A. salmonicida showed that 

74.5% ± 6.4 and 52.9% ± 11.9 of the cells were producing ROS after 1h and 6 h post 
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infection, respectively. Additionally, macrophages treated with PMA and infected with A. 

salmonicida showed that 68.5% ± 9.5 and 53.1% ± 12.4 of the cells were producing ROS 

after 1 h and 6 h post treatment, respectively (Fig. 2-3a, b). 

 

 

Figure 2-3. Reactive oxygen species (ROS) production in Atlantic cod macrophages after 

1 and 6 h post-infection with A. salmonicida. (a) Mean FITC fluorescence and (b) 

percentage of FITC positive cells were obtained by flow cytometry. PBS inoculated cells 

(PBS) and PMA inoculated cells were utilized as negative and positive controls, 

respectively. Each value is the mean ± S.E.M (n = 6). Symbol (*) indicate differences on 

each group at different times of infection, p < 0.05. 

 

2.4.4 Transmission electron microscopy (TEM) 

 Cod primary macrophages infected with A. salmonicida were visualized 3 h post 

infection using TEM. A group of non-infected cells were utilized as reference control (Fig. 

2-4a, b). These cells showed a rounded cell morphology, large nucleus, and evident 

presence of cell organelles (e.g. mitochondria, endoplasmic reticulum, endocytic vesicles) 

and pseudopodias (Fig. 2-4a, b). In contrast, Atlantic cod macrophages infected with A. 
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salmonicida showed poorly defined nuclei, membrane ruffling, and large vesicles 

containing A. salmonicida cells (average of 2-3 bacterial cells per macrophage, a maximum 

of 8 bacterial cells per macrophages, and 70-80% macrophages infected) (Fig. 2-4c, 2-4d, 

2-4e). Furthermore, secretion of A. salmonicida outer membrane vesicles (OMVs) was 

observed in intracellular bacterial cells (Fig. 2-4f, g). 

 Macrophages inoculated with the formalin-killed A. salmonicida showed a defined 

nucleus and a large number of secretion bodies within the cytoplasm (Fig. 2-4h). Apoptotic-

like bodies were observed in high numbers in the presence of extracellular A. salmonicida 

bacterin (Fig. 2-4i). 
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Figure 2-4. Transmission electron microscopy of Atlantic cod macrophages infected with 

A. salmonicida. (a, b) Mock infected Atlantic cod head kidney macrophages (control). (× 

2,100, scale bar 1 μm). (c–e) Atlantic cod head kidney macrophages infected with A. 

salmonicida. (c and d: × 2700, scale bar 1 μm; e: × 2,100, scale bar 1 μm). (f, g) Intracellular 

A. salmonicida. (f: × 15,000, scale bar 200 nm; g: × 30,000, scale bar 100 nm). (h, i) Atlantic 
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cod head kidney macrophages infected with the formalin killed A. salmonicida. (h: × 2,700, 

scale bar 1 μm; i: × 1,650, scale bar 2 μm). NU, Nucleus; PS, Pseudopodia; ER, 

Endoplasmic reticulum; MI, Mitochondria; AS, A. salmonicida; EV, Endoplasmic vesicles; 

OMV, Outer membrane vesicles (arrows); FK, Formalin killed A. salmonicida; SB, 

Secretion bodies; and AC, Apoptotic bodies. 

 

2.5 Discussion 

 Atlantic cod lacks the genes for MHC-II, the invariant chain/CD74 (Ii), and CD4+ 

T cell responses, representing a paradigm in the context of adaptive immunity against 

bacterial infectious diseases [Star et al. 2011; Parham 2016]. Additionally, Atlantic cod 

lacks TLR1, TLR2, and TLR5, which recognize bacterial surface antigens [Star et al. 2011; 

Star & Jentoft 2012; Sundaram et al. 2012; Buonocore & Gerdol 2016]. However, this 

absence seems to be compensated for by an expansion of the MHC-I [Malmstrøm et al. 

2013; Malmstrøm et al. 2016; Solbakken et al. 2017] and the TLR7, TLR8, TLR9, and 

TLR22 families [Star et al. 2011; Solbakken et al. 2016a]. Nevertheless, how Atlantic cod 

fight bacterial infections is unknown. Here, I evaluated the early response of Atlantic cod 

primary macrophages to A. salmonicida infection. 

 To evaluate the early response of Atlantic cod primary macrophages to A. 

salmonicida infection, a gentamicin exclusion assay was conducted. The macrophage 

viability results obtained 1 h post infection (attachment) and 2, 4, and 6 h post-infection 

(invasion) showed similar viability, with 89% ± 4.8, 87% ± 3.1, 80% ± 4.2%, and 92% ± 

6%, respectively (Fig. 2-1b). In contrast, Atlantic salmon primary macrophages isolated 

and infected under similar conditions, showed 3 h post A. salmonicida infection a viability 
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around ~40% (see Appendix II). Similar reduction in viability was reported in non-

phagocytic Chinook salmon embryo cell line (CHSE-214) infected with the A. salmonicida 

J223 strain, showing a viability of ~40% at 2 and 4 h post-infection [Valderrama et al. 

2017]. These results reveal that Atlantic cod macrophages are more resistant to A. 

salmonicida infection compared with Atlantic salmon macrophages and CHSE-214 cells. 

 The attachment of A. salmonicida in cod primary macrophages was 7.39%, and only 

0.42, 0.37, and 0.21% was able to invade 2, 4, and 6 h post-infection, respectively (Fig. 2-

1c). A study conducted in CHSE-214 embryo cell line infected with A. salmonicida J223 

strain showed an attachment of ~60% at 1 h post-infection, and an invasion of 0.47% and 

0.29% after 2 and 4 h post-infection, respectively [Valderrama et al. 2017]. Moreover, A. 

hydrophila isolated from ornamental fish, showed an attachment between 75 and 80% in 

the mammalian cell line CaCo-2 (cells from human colon adenocarcinoma) at 1 h post-

infection [Saidi et al. 2011]. In contrast, the attachment of A. salmonicida J223 in Atlantic 

salmon primary macrophages was 10.7% at 1 h post-infection, and the invasion was 0.42, 

0.26, and 0.28% after 2, 3, and 4 h post-infection, respectively (Appendix II). These results 

suggest that primary macrophages are less susceptible to be infected by A. salmonicida than 

non-phagocytic cells, even when the intracellular A. salmonicida recovered in non-

phagocytic and phagocytic cells have been shown to be relatively similar. 

 The transcriptional profiles of cytokine genes, antibacterial genes, antimicrobial 

peptide genes, and ROS related genes were determined by using qPCR. The observed up-

regulation of IL-1β and IL-8 after infection with A. salmonicida or inoculation with 

formalin killed A. salmonicida (Fig. 2-2a, b) indicates a canonical macrophage innate 

immune response [Secombes et al. 2001; Tort el al. 2003]. Coincident with the up-
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regulation of the pro-inflammatory IL-1β and IL-8 genes (Fig. 2-2a, b), the anti-

inflammatory IL-10 gene was down-regulated in macrophages infected with A. salmonicida 

or inoculated with the formalin killed pathogen (Fig. 2-2c). 

 Similar up-regulation of the pro-inflammatory cytokine IL-1β was observed in 

Atlantic cod intramuscular injected with A. salmonicida subsp. achromogenes, meanwhile 

an up-regulation in both, IL-1β and IL-8, has been reported in Atlantic cod gill epithelial 

cells infected with Vibrio anguillarum and A. salmonicida [Caipang et al. 2010], and in 

Atlantic cod macrophages infected with Francisella noatunensis [Bakkemo et al. 2011], 

reinforcing the importance of these canonical interleukins against Gram-negative 

pathogens during the first hours of infection. 

 Antigen recognition and host defense genes, like MHC-I, g-type lysozyme, and 

BPI/LBP were also evaluated. As mentioned previously, BPI/LBP participates in the 

recognition of lipopolysaccharide (LPS) [Kono & Sakai 2003; Stenvik et al. 2004], the 

major component of Gram negative bacterial outer membrane [Raetz et al. 2007], MHC-I 

participate in the recognition of intracellular pathogens, like viruses or cytoplasmic invader 

bacteria [Parham 2016], and g-type lysozyme is related to both Gram positive and Gram 

negative antibacterial activity [Larsen et al. 2009]. Interestingly, BPI/LBP was up-regulated 

only after infection with live A. salmonicida but not in presence of formalin-killed A. 

salmonicida (Fig. 2-2f). BPI/LBP up-regulation has been observed in Atlantic cod 

vaccinated with inactivated V. anguillarum and A. salmonicida [Stenvik et al. 2004; 

Magnadottir 2014], and in Atlantic cod intestinal epithelial cells after exposure with the 

bacterial probiotics GP21 (Pseudomonas spp.) and GP12 (Psychrobacter spp.) isolated 
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from the intestinal tract of an adult Atlantic cod [Lazado et al. 2010; Lazado & Caipang 

2014]. 

 The AMP-encoding genes CAMP and transferrin, both involved in the iron 

homeostasis, showed unexpected transcriptional profiles (Fig. 2-2g, h), meanwhile HAMP, 

also related to the iron ion homeostasis, was the only AMP-encoding gene that showed an 

up-regulation after inoculation with the inactivated bacteria (Fig. 2-2i). CAMP was down-

regulated after infection with the live bacteria or inoculation with the formalin-killed 

pathogen (Fig. 2-2g), meanwhile transferrin did not show variations compared to the 

controls (Fig. 2-2h, i). In the case of HAMP, up-regulation was observed only at 6 h post-

inoculation with the inactivated pathogen (Fig. 2-2i). As previously mentioned, it has been 

reported that CAMP, transferrin, and HAMP AMPs are key during bacterial infection, and 

in general these genes are expressed in several immune tissues of Atlantic cod after 

bacterial (e.g., Mycobacterium chelonei, Aeromonas salmonicida subsp. salmonicida, and 

Aeromonas salmonicida subsp. achromogenes) and viral (infectious pancreatic necrosis 

virus) infection, or viral mimic [poly (I:C)] stimulation [Seppola et al. 2008; Solstad et al. 

2008; Magnadottir 2014]. However, our results show that these genes were either lower 

expressed (CAMP and HAMP) or not affected (transferrin) in Atlantic cod macrophages 

compared with formalin-killed A. salmonicida stimulation (Fig. 2-2g, 2-2h, 2-2i). A study 

in Atlantic cod intramuscular infected with A. salmonicida subsp. achromogenes showed 

an up-regulation in the expression of transferrin and HAMP [Fazio et al. 2015]. In contrast, 

I found that in Atlantic cod primary macrophages, the infection with A. salmonicida subsp. 

salmonicida down-regulated the expression of CAMP and HAMP. This can suggest a 

different mechanism of infection between A. salmonicida subsps. 
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 The Atlantic cod CAMP has a potent antimicrobial activity against Gram-negative 

bacteria and fungi [Broekman et al. 2011]. Nonetheless, some bacterial pathogens, like V. 

anguillarum, A. salmonicida subsp. achromogenes and A. hydrophila are able to evade the 

action of CAMP [Broekman et al. 2011], and this can be the case for A. salmonicida J223 

in Atlantic cod macrophages. 

 Atlantic cod injected with turpentine oil, an inducer of acute immune response that 

involves inflammation and other biological processes (e.g., hemostasis), showed an 

increase in the relative expression of these AMP genes after 24 h of injection [Audunsdottir 

et al. 2012], and similar results were observed in intestinal epithelial cells after probiotic 

exposure to the probiotics GP21 and GP12 [Lazado & Caipang 2014]. Moreover, a study 

conducted in Atlantic cod stimulated with formalin-killed A. salmonicida showed lower 

levels of expression in the transcripts encoding CAMP and HAMP in head kidney and 

spleen, compared with PBS control samples [Feng et al. 2009]. In this study, only a peak 

was observed after 24 h of stimulation with the inactivated pathogen [Feng et al. 2009]. 

Therefore, our results suggest that likely more time is required for Atlantic cod 

macrophages to up-regulate the CAMP, transferrin, and HAMP genes after inactivated A. 

salmonicida exposition. 

 A study conducted in the Gram-negative bacteria, Pseudomonas syringae, showed 

that outer membrane vesicles (OMVs) can potentially suppress the action of AMPs 

[Kulkarni et al. 2014]. OMVs bind and sequester AMPs to prevent bacterial cell damage, 

and also induce the release of peptidases, proteases, and other lytic enzymes to degrade the 

host AMPs [Chua et al. 2013; Kulkarni et al. 2014]. Combining this reported evidence with 

our results, where a high number of OMVs were released by A. salmonicida during 
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intracellular infection (Fig. 2-4f, g), I hypothesize that the presence of OMVs during 

intracellular infection might be related to a mechanism by which the bacterium tolerates 

the action of host AMPs or translocate virulence factors to the host cell. This is in addition 

to unknown A. salmonicida mechanism involving the down-regulation of AMP-related 

genes. 

 Typically, macrophages phagocytize the invading bacteria, assemble the lysosome, 

and eliminate them through the action of several enzymes and production of ROS 

[Skjærven et al. 2013]. Here, I evaluated the expression of nrf2, nox1, Mn-Sod, Cu/Zn-Sod, 

and cat genes that are part of the redox system and antioxidant enzymes related to ROS 

synthesis [Kansanen et al. 2012; Skjærven et al. 2013]. Relative expression levels of nrf2, 

nox1, Mn-Sod, Cu/Zn-Sod, and cat genes in cod primary macrophages were down-regulated 

after infection with A. salmonicida (Fig. 2-2j, 2-2k, 2-2l, 2-2m, 2-2n). In contrast, 

macrophages inoculated with the formalin-killed A. salmonicida, showed an up-regulation 

in the expression of the Mn-Sod and Cu/Zn-Sod genes (Fig. 2-2l, 2-2m, 2-2n). 

 The macrophage gene expression of nrf2, nox1, Mn-Sod, Cu/Zn-Sod, and cat after 

A. salmonicida infection, together with the ROS flow cytometry results, shows that Atlantic 

cod macrophages do not increase ROS levels after exposure to A. salmonicida (Fig. 2-3a, 

b). 

 High basal levels of ROS production have been observed in non-induced Atlantic 

cod blood phagocytes [Nikoskelainen et al. 2006], suggesting that ROS synthesis in 

Atlantic cod cells is related to the in vitro culture conditions [Nikoskelainen et al. 2006]. 

However, I hypothesize that high basal production of ROS could be normal in G. morhua, 

and the lack of ROS production, above the basal levels after A. salmonicida infection, could 
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be associated to mechanisms used by A. salmonicida to control the macrophage immune 

response, as described previously in other pathogens such as Mycobacterium leprae, R. 

salmoninarum, Salmonella spp, and Edwardsiella tarda [Holzer et al. 1986; Bandin et al. 

1993; Foster & Spector 1995; Rao et al. 2001]. 

 Macrophages are usually highly efficient killers of bacteria, however pathogenic 

bacteria, like A. salmonicida, have evolved multiple strategies to infect, avoid enzymatic 

digestion, and trigger immunosuppression of the host [Bakkemo et al. 2011]. Our TEM 

results showed that A. salmonicida was localized intracellularly in bacteria containing 

vesicles (Fig. 2-4c, e). Also, I observed that the cytoskeleton of the infected cells was 

rearranged, and several structures, like the nuclei, pseudopodia, and endoplasmic reticulum, 

were not observed in infected macrophages, in contrast to non-infected cells (Fig. 2-4a, 2-

4b, 2-4c, 2-4d, 2-4e). Additionally, the TEM images of infected macrophages showed a 

significant number of intracellular bacteria at 3 h post-infection (Fig. 2-4c, 2-4d, 2-4e). Not 

all Gram-negative pathogens gain access to macrophages in high numbers. For instance, F. 

noatunensis and F. tularensis invade in lower numbers, even 24 h post-infection with high 

infectious doses. Thus, few F. tularensis cells are required to cause fatal diseases [Anthony 

et al. 1991; Fortier et al. 1995; Golovliov et al. 2003; Kirimanjeswara et al. 2008; Bakkemo 

et al. 2011]. In contrast to these previous studies, our results indicate that A. salmonicida 

required a higher number of infecting bacterial cells, compared to other bacterial pathogens, 

to have a productive infection (Fig. 2-4c, 2-4d, 2-4e), Additionally, a single macrophage is 

infected with a significant number of bacterial cells (maximum of 8 bacterial cells per 

macrophage was founded, 2–3 average) suggesting that these are the target cells of A. 

salmonicida. 
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 An interesting finding of our study was the presence of several OMVs produced by 

A. salmonicida during intracellular infection (Fig. 2-4f, g). The OMVs are virulence factors 

released by mammalian pathogens like Neisseria meningitides, Escherichia coli, Vibrio 

spp., Brucella spp., among others [Avila-Calderón et al. 2015]. These OMVs play an 

important role during pathogenesis, delivering toxins and immunomodulatory proteins to 

the host cell [Avila-Calderón et al. 2015]. Also, OMVs have been observed and described 

previously in marine pathogens such as F. noatunensis subsp. orientalis, Edwardsiella 

anguillarum, and Piscirickettsia salmonis [Oliver et al. 2016; Shahin et al. 2018; LiHua et 

al. 2019]. Our results suggest that A. salmonicida release the OMVs during intracellular 

infection in order to control the immune response of the Atlantic cod primary macrophages, 

and perhaps neutralizing antimicrobial peptides to avoid lysis. 

 Phagocytosis is a highly efficient mechanism for bacterial elimination used by 

macrophages. However, Atlantic cod macrophages exposed to formalin-killed A. 

salmonicida for 3 h showed that most of the formalin-killed bacteria were localized in the 

extracellular milieu, with a reduced number of bacterial cells in phagocytic vesicles (Fig. 

2-4h, i). These results suggest that A. salmonicida promote macrophage phagocytosis, in 

contrast to inactivated bacteria. 

 Also, I observed that Atlantic cod macrophages exposed to formalin-killed A. 

salmonicida produced a large amount of apoptotic-like bodies (Fig. 2-4h, i). Programmed 

cell death (i.e., apoptosis), is a highly regulated process and an important mechanism used 

by the host to prevent infectious diseases [Jacobson et al. 1997]. Cells undergoing apoptosis 

maintain membrane integrity until very late in the process, unlike cells undergoing necrosis, 

but produce several morphological and biochemical changes inside the cells, including 
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chromatin condensation, nuclear segmentation, internucleosomal DNA fragmentation, and 

cytoplasmic vacuolization [Häcker 2000; do Vale et al. 2003]. Similar morphological 

changes were observed in Atlantic cod macrophages inoculated with formalin-killed A. 

salmonicida (Fig. 2-4h, i). This suggest that A. salmonicida is displaying pathogenesis 

mechanisms to avoid not only phagocytosis but also to prevent apoptosis. 

 

2.6 Conclusion 

 In this study I evaluated the infection of Atlantic cod macrophages with A. 

salmonicida J223 strain. A. salmonicida infects and invades Atlantic cod primary 

macrophages. I found between 2 to 8 A. salmonicida cells per infected macrophage. The 

infected Atlantic cod macrophages survived during the first 6 h of A. salmonicida infection. 

Nevertheless, TEM observations showed that A. salmonicida remained in A. salmonicida-

containing vesicles. Gene expression results from infected macrophages suggest that A. 

salmonicida modulate the expression of several genes involved in the innate immune 

response. For instance, relative expression of HAMP, nrf2, nox1, Mn-Sod, Cu/Zn-Sod, and 

cat genes were down-regulated and BPI/LBP was up-regulated after A. salmonicida 

infection. Additionally, I observed that A. salmonicida secrete OMVs during intracellular 

infection. These results suggest that A. salmonicida has immune suppressive mechanisms 

to control cod macrophage immune response, where OMVs could play an essential role. 

 In contrast, macrophages inoculated with formalin-killed A. salmonicida, showed a 

canonical innate immune response, where most of the evaluated genes were up-regulated 

or not induced, like the relative expression of HAMP, nrf2, nox1, Mn-Sod, Cu/Zn-Sod, and 

cat genes. Additionally, I observed that macrophages inoculated with inactivated A. 
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salmonicida did not phagocytize the formalin-killed pathogen, and post-exposure to the 

bacterin, several apoptotic-like bodies were presented. These results suggest that inactivate 

A. salmonicida trigger a potent innate immunity modulated by the macrophage. 

 Previously, the effects caused by A. salmonicida subsp. achromogenes have been 

reported in Atlantic cod, therefore, the results obtained in this chapter represents one of the 

first evidence on the effects of A. salmonicida subsp. salmonicida on the innate immune 

response of Atlantic cod primary macrophages. Moreover, Atlantic cod exhibit a markedly 

different immunological model compared to vertebrate standard and other fish species 

studied, therefore, the results showed in this chapter can be utilized for comparative studies 

with other fish families commonly infected by A. salmonicida subsp. salmonicida such as 

salmonids. Finally, this model showed that during early infection of fish macrophages A. 

salmonicida controls the cellular machinery and can be utilized to study fundamental 

aspects for bacterial pathogenesis in fish host. 
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 3. CHAPTER III: Effects of Vitamin D2 (ergocalciferol) and D3 

(cholecalciferol) on Atlantic salmon (Salmo salar) primary macrophages 

immune response to Aeromonas salmonicida subsp. salmonicida infection. 
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3.1 Abstract 

 Vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol) are fat-soluble 

secosteroid hormones obtained from plant and animal sources, respectively. Fish 

incorporate vitamin D2 and D3 through their diet since they lack the mechanisms to produce 

them through the photochemical pathway. In mammals, vitamin D forms are involved in 

mineral metabolism, cell growth, tissue differentiation, and antibacterial immune response. 

Vitamin D is an essential nutrient in aquafeeds for finfish. However, the influence of 

vitamin D on fish cell immunity has not yet been explored. Here, I examined the effects of 

ergocalciferol and cholecalciferol on Salmon salar primary macrophage immune response 

after A. salmonicida subspecies salmonicida infection. I determined that high 

concentrations of vitamin D2 and D3 affect the growth of A. salmonicida and decreases the 

viability of S. salar primary macrophages. I determined that primary macrophages pre-

treated with a biologically relevant concentration of vitamin D3 for 24 h had decrease A. 

salmonicida infection compared with non-vitamin D3 pre-treated cells. In contrast, vitamin 

D2 did not influence the antibacterial activity of the S. salar macrophages infected with A. 

salmonicida. Vitamin D2 and D3 did not influence the expression of canonical genes related 

to innate immune response (e.g. il-1b, il-8, tnf-α, and tlr5s). In contrast, A. salmonicida 

stimulated the expression of several canonical genes (e.g. il-1b, il-8, tnf-α, and tlr5s) and 

suppressed the expression of lect-2, involved in neutrophil recruitment. Primary 

macrophages pre-treated for 24 h with vitamin D3 counteracted this immune suppression 

and up-regulated the transcription of lect-2. I conclude that vitamin D3 affects A. 

salmonicida attachment to the S. salar primary macrophages, and as a consequence the A. 

salmonicida invasion decreased. The positive effects of D3 on fish cell immunity seems to 
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be related to the lect-2 innate immunity pathways. I did not identify effects of D2 on the 

fish cell immunity. Vitamin D3 induced anti-bacterial innate immunity pathways, 

confirming its utilization as component of a healthy aquafeed diet for the Atlantic salmon. 

 

3.2 Introduction 

 Vitamin D is a fat-soluble secosteroid hormone that plays a crucial role in calcium 

and phosphorus homeostasis, cardiovascular physiology, cell proliferation and 

differentiation, among other functions [Zittermann 2003; Grant 2006; Lips 2006; Lock et 

al. 2010; Borges et al. 2011; Wang et al 2017]. In fish, vitamin D is involved in the 

endocrine control of calcium and phosphorus homeostasis, similar to mammals [Lock et al. 

2010]. Also, it has been shown that vitamin D can act as an immunomodulatory agent in 

mammals [Miller and Gallo 2010; Téllez-Pérez et al. 2012].  

 In contrast to terrestrial vertebrates, fish are not able to obtain vitamin D through 

the photochemical pathway, thus fish must ingest vitamin D from dietary sources [Rao and 

Raghuramulu 1996]. In wild freshwater and marine environments, the main diet source of 

vitamin D is the phytoplankton and zooplankton [Rao and Raghuramulu 1996]. The 

phytoplankton provide the fish with vitamin D2 (ergocalciferol), while the zooplankton 

provide the fish with vitamin D3 (cholecalciferol) [Darias et al. 2011]. 

 The beneficial stimulatory effects of vitamins D2 and D3 on innate immunity have 

been described in humans and other mammals [Mora et al. 2008; Prentice et al. 2008; 

Borges et al. 2011; Téllez-Pérez et al. 2012; Alva-Murillo et al. 2014; Yue et al. 2017]. The 

beneficial effects of vitamins in fish are well established, and currently vitamin D2 and D3 

are essential component of aquafeed diets [Lock et al. 2010]. Additionally, vitamin D is 
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utilized as an adjuvant in aqua-vaccine preparation [Sadarangani et al. 2015]. However, the 

role of vitamin D in fish physiology is still enigmatic, and the immune stimulant 

mechanisms against infectious diseases are unknown.  

 Atlantic salmon (Salmo salar) is a high-value cultured finfish species, and the main 

species cultured in Canada, Chile, UK, and Norway [Asche et al. 2013; Liu et al. 2016; 

FAO 2018]. Infectious diseases, including Renibacterium salmoninarum, Piscirickettsia 

salmonis, Vibrio anguillarum, and Aeromonas salmonicida subsp. salmonicida [Fryer and 

Sanders 1981; Cvitanich et al. 1991; Toranzo et al. 2005; Higuera et al. 2013; Maisey et al. 

2016; Valderrama et al. 2017] have affected this industry since its origin [Kaatari & Tripp 

1987; Robertson et al. 1987]. Currently, several measures are utilized to prevent infectious 

diseases in the Atlantic salmon aquaculture industry, including a healthy diet that includes 

immunostimulants [Siwicki et al. 1994; Murray et al. 2003; Dawood et al. 2017]. 

 Functional constituents like essential nutrients in healthy diets used in aquaculture 

(such as probiotics, prebiotics and immunostimulants) are currently considered to improve 

not only fish growth and stress tolerance, but also resistance to diseases by enhancing non-

specific defense mechanisms [Sakai 1999; Olivia-Teles 2012]. These essential nutrients are 

able to directly activate immune mechanisms, such as phagocytic activity (i.e. macrophages 

and neutrophils), complement system, lysozyme activity, and others [Cook et al. 2003; 

Bridle et al. 2005; Song et al. 2014]. Phagocytosis is an active host defense mechanism, 

involving the action of monocytes, dendritic cells, neutrophils and macrophages [Secombes 

et al. 1992; Song et al. 2014; Esteban et al. 2015]. From these phagocytic leukocytes, the 

macrophages play an important role linking the innate and adaptive immune response, and 

previous studies have shown that immunostimulants (i.e. Fructooligosaccharides, 
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mannanoligosaccharides) can successfully enhance their phagocytic activity [Torrecillas et 

al. 2011; Vogt et al. 2013; Song et al. 2014]. 

 Immunostimulants are natural compounds that have shown to be safe and efficient 

for fish [Sakai 1999; Bridle et al. 2005; Smith et al. 2018]. In humans, vitamin D plays an 

important role in the suppression of pro-inflammatory cytokines like IL-17, IL-1β, and 

TNF-α in individuals affected by type 2 diabetes and autoimmune diseases, preventing 

chronic inflammation [Szodoray et al. 2008; Chagas et al. 2013].  Additionally, vitamin D 

significantly reduces the infection of Staphylococcus aureus in pre-treated bovine 

mammary epithelial cells and modulates the expression of innate immune related genes 

[Téllez-Pérez et al. 2012; Alva-Murillo et al. 2014; Yue et al. 2017]. This evidence suggests 

that vitamin D could trigger a similar protective effects in fish. Here, I evaluate the effects 

of vitamins D2 and D3 on the innate immunity responses of Atlantic salmon primary 

macrophages to A. salmonicida infection. 

 

3.3 Material and methods 

3.3.1 Aeromonas salmonicida growth conditions 

 A. salmonicida was grown in accordance to the protocol used by Soto-Dávila et al. 

(2019). Briefly, a single colony of A. salmonicida J223 [Valderrama et al. 2017] was grown 

in 3 ml of Trypticase Soy Broth (TSB, Difco, Franklin Lakes, NJ) at 15ºC in a 16 mm 

diameter glass tube and placed in a roller for 24 h. After growth, 300 µl of the overnight 

culture were added in 30 ml of TSB media using a 250 ml flask and incubated for 24 h at 

15ºC with aeration (180 rpm). After bacteria reached an O.D. 600 nm 0.7 (1 x 108 CFU 
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ml-1), the bacterial culture was centrifuged at 6,000 rpm at room temperature for 10 min. 

The pellet was washed twice with phosphate buffered saline (PBS; 136 mM NaCl, 2.7 mM 

KCl, 10.1 mM Na2HPO4, 1.5 mM KH2PO4 (pH 7.2)) and centrifuged at 6,000 rpm at 

room temperature for 5 min, and finally resuspended in 300 µl of PBS (5 x 1010 CFU ml-

1). The concentrated bacterial inoculum was serial diluted and quantified by plating onto 

TSA supplemented with Congo red (50 g ml-1) for4 days. 

 

3.3.2 Vitamin D2 and D3 inhibitory effects in A. salmonicida growth 

 To determine whether ergocalciferol and cholecalciferol have inhibitory effects on 

A. salmonicida growth, 30 μl of the overnight growth bacteria were placed in 3 ml of TBS 

containing different concentrations of ergocalciferol (10; 100; 1,000; 10,000; and 100,000 

ng/ml) or cholecalciferol (10; 100; 1,000; and 10,000 ng/ml). Bacterial growth was 

measured by O.D. 600 nm until 48 h. Each concentration was measured in triplicate and a 

blank containing the respective vitamin D concentration was utilized as a control. 

 

3.3.3 Fish holding 

 Adult specimens of Atlantic salmon 4.0 ± 0.1 kg (mean ± SE)) were obtained from 

the Dr. Joe Brown Aquatic Research Building (JBARB) at the Department of Ocean 

Sciences, Memorial University of Newfoundland, Canada. The animals were kept in 37 m³ 

tanks, with flow-through (100 l x min-1) seawater (6.5 ºC) and ambient photoperiod. The 

individuals were fed twice per day with commercial salmonid dry pellets (Skretting optiline 

microbalance 3000 ep, 12.0 mm pellets: 38% protein, 33% fat, 1.6% calcium, 1.5% fiber, 
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1% phosphorus) with a ration of 0.5% of body weight per day. The experiment was 

performed in accordance with the guidelines of the Canadian Council on Animal Care and 

approved by Memorial University of Newfoundland’s Institutional Animal Care 

Committee (protocols #17-01-JS; #17-02-JS). 

 

3.3.4 Macrophage isolation 

 Primary macrophages were isolated from Atlantic salmon head kidney. Tissues 

from 6 fish were aseptically removed and individually minced through 100 µm nylon sterile 

cell strainers (Fisher Scientific, Thermo Fisher Scientific, Waltham, MA, USA) in isolation 

media ((Leibovitz-15 (Gibco®, Gran Island, NY, USA) supplemented with 250 μg ml-1 

heparin, 100 U ml-1 penicillin, 100 g ml-1 streptomycin, and 0.1% Fetal Bovine Serum 

(FBS)). After this period, 4 ml of cell suspension were centrifuged (1,000 x g at 4ºC) for 

30 min in a 34/51% Percoll gradient (GE Healthcare, Uppsala, Sweden). Macrophages 

collected from the macrophage-enriched interface were washed with PBS [Sambrook and 

Russell 2001] twice and the number and viable cells were determined using the 

Countness™ cell counter (Invitrogen), and trypan blue stain (Invitrogen). After 

determining the cell concentration (number of cells per ml) of each sample, the primary 

macrophages were seeded in 22 mm 12-well or 35 mm 6-well cell-culture multidishes 

(Thermo Scientific, Roskilde, Denmark) at a concentration of 1 x 107 cells ml-1. The plates 

were incubated at 15ºC for 24 h in isolation media. After this period the cells were washed 

with PBS and incubated at 15ºC for an additional 4 days in 1 ml of culture media (Leibovitz-
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15 (Gibco®), supplemented with 0.1% 2-Mercaptoethanol, 100 U ml-1 penicillin, 100 g 

ml-1 streptomycin, and 5% FBS) to allow cell attachment until the assays were performed. 

 

3.3.5 Vitamin D2 and D3 toxicity in Atlantic salmon primary macrophages 

 Atlantic salmon primary macrophages seeded in 12 well cell-culture multidishes in 

a concentration of 1 x 107 cells ml-1 were utilized. After 4 days of isolation the culture 

media was removed, cells washed with PBS, and 1 ml of culture media containing different 

concentrations of ergocalciferol (10; 100; 1,000; 10,000; and 100,000 ng/ml) or 

cholecalciferol (10; 100; 1,000; and 10,000 ng/ml) was added. Twenty-four hours and 48 

h post-vitamin treatment, cells were treated with 500 µl of trypsin-EDTA (0.5%; Gibco) 

for 10 min, and then trypsin was inactivated with 500 µl of culture media. The cells were 

stained with trypan blue (0,4%; Invitrogen) in a ratio of 1:1 (10 µl: 10 µl) and quantified 

using Countess™ Cell Counting Chamber Slides (Invitrogen) and Countess® Automated 

Cell Counter (Invitrogen) according to the manufacturer’s instructions. Viability of cells 

was determined for each vitamin D2 and D3 concentration and the control group. All 

samples were taken from 6 individual fish. 

 

3.3.6 Gentamicin exclusion assay 

 Infections of primary macrophages with A. salmonicida were performed according 

to the protocol used by Soto-Dávila et al. (2019) with modifications. Briefly, after 4 days, 

cells were washed with 1 ml of PBS and inoculated with 1 ml of culture media without 

antibiotics containing either 100 ng/ml of vitamin D2 and D3 for 24 h. After this period, 
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media was removed, cells washed with 1 ml of PBS, and pre-treated primary macrophage 

monolayers were infected with 10 µl of bacterial suspension (1 x 107 cells ml-1; 

Multiplicity of Infection (MOI) 1:1 (bacteria:macrophage)) and incubated at 15°C. After 1 

h (attachment), and 2 h, 3 h, and 4 h (invasion) of infection, A. salmonicida was quantified. 

Infected primary macrophage monolayers in each well were washed twice with PBS and 

then lysed using 400 l of Triton X100 (0.01%; Sigma) for 10 min [Sung et al. 2003]. After 

this, 600 l of PBS were added to make a total of 1 ml of lysed macrophage suspension. 

Lysed macrophage suspensions were serially diluted (1:10) and plate/counted on TSA 

plates supplemented with Congo Red to determine the number of viable A. salmonicida per 

monolayer. The plates were incubated at 15°C for 5 days to determine the CFU per well. 

All samples were taken from 6 individual fish. 

 

3.3.7 Vitamin D2 and D3 pre-treated primary macrophage viability against A. 

salmonicida 

 To determine the viability of infected primary macrophages, the cells were seeded 

in 12 wells plates, pre-treated with 100 ng/ml of ergocalciferol or cholecalciferol, infected 

with A. salmonicida, and processed following the method used during the gentamicin 

exclusion assay. Cells were washed with 1 ml of PBS and then treated with 500 µl of 

trypsin-EDTA (0.5%; Gibco) for 10 min. After this period, the trypsin was inactivated with 

500 µl of culture media. The primary macrophages were stained using trypan blue (0,4%; 

Invitrogen) in a ratio of 1:1 (10 µl: 10 µl) and quantified using Countess™ Cell Counting 

Chamber Slides (Invitrogen) and Countess® Automated Cell Counter (Invitrogen) 
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according to the manufacturer’s instructions. The numbers of alive and dead cells were 

determined at each time point post-infection. All the primary macrophages were isolated 

from 6 individual fish and technical triplicates were utilized. 

 

3.3.8 RNA extraction and qPCR 

 RNA samples were obtained from head kidney primary macrophages inoculated 

with either PBS; live A. salmonicida (J223); formalin-killed A. salmonicida (FK J223); 100 

ng ml-1 vitamin D2 or D3; 1,000 ng ml-1 vitamin D2 or D3, or 100 ng ml-1 vitamin D2 or D3 

+ live A. salmonicida (J223). The treatments that include vitamin D (D2 or D3) were pre-

treated with the respective concentration 24 h before the challenge, meanwhile treatments 

without vitamin D were pre-treated only with the control vehicle 24 h before the challenge. 

Each sample was obtained 3 h post-inoculation. 

 Total RNA from Atlantic salmon primary macrophages was extracted using 1 ml of 

TRIzol Reagent (Invitrogen), and purified using the RNeasy® Mini Kit (QIAGEN) 

following the manufacturer’s instructions [Santander et al. 2014]. RNA samples were 

treated with 2 U of TURBO DNase (TURBO DNA-free™ Kit, Invitrogen) following the 

manufacturer’s instructions to degrade any residual genomic DNA. Briefly, samples were 

incubated at 37°C for 30 min, 2.5 μl of DNase Inactivation Reagent was added, and samples 

incubated 5 min at room temperature. Then, samples were centrifuged at 10,000 x g for 1.5 

min and the supernatant containing the RNA carefully transferred to a new tube. Purified 

RNA samples were quantified and evaluated for purity (A260/280 and A260/230 ratios) 

using a Nano-quant spectrophotometer (Genway, UK), and evaluated for integrity using 

1% agarose gel electrophoresis [Sambrook and Russell 2001]. Column purified RNA 



 

73 
 

samples had A260/280 ratios between 1.9 and 2.1 and A260/230 ratios between 1.9 and 

2.2. A PCR test was conducted using the reference genes primers (60S ribosomal protein 

and β-actin) and the RNA as template to discard presence of DNA. All RNA samples did 

not showed presence of DNA. 

 First-strand cDNA templates for qPCR were synthesized from 500 ng of DNaseI-

treated, column-purified total RNA using SuperScript™ IV VILO™ Master Mix 

(Invitrogen) following the manufacturer’s instructions. Each sample was incubated at 25°C 

for 10 min, at 50°C for 10 min, and at 85°C for 5 min. 

 All qPCR reactions were performed in a 20 μl reaction, containing 1× PowerUp 

SYBR Green Master Mix (Applied BioSystems, Foster City, CA, USA), 500 nM (final 

concentration) of both the forward and reverse primer and the indicated cDNA quantity. 

All samples were amplified and detected using the QuantStudio 3 Real Time PCR System 

(Applied BioSystems). The reaction mixtures were incubated for 2 min at 50°C, then 2 min 

at 95°C, followed by 40 cycles of 1 s at 95°C, 30 s at 60°C, and finally 15 s at 95°C, 1 min 

at 60°C, and 15 s at 95°C. 

 Gene paralogue discovery, qPCR primer design and quality testing was performed 

as described in Caballero-Solares et al. (2017). Since the reagents, cycling conditions and 

samples were different in the current study, primer efficiencies (Table 3.1) were reassessed. 

Briefly, a 7-point 1:3 dilution series starting with cDNA representing 40 ng of input total 

RNA was generated, and efficiencies then calculated using the formula E=10(−1/slope) [Pfaffl 

2001]. 

 Transcripts levels of the genes of interest (il-1b, il-8, tnf-α, stlr5, and lect-2) were 

normalized to transcript levels of two endogenous control genes. Levels of five candidate 
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normalizers (60S ribosomal protein 32; β-actin, 18S, elongation factor 1 alpha, and 

hypoxanthine phosphoribosyl transferase 1) were assessed in 50% of the samples (i.e. in 3 

random samples per treatment) using cDNA representing 40 ng of input total RNA. 

Reference gene stability was then analyzed using both geNorm and BestKeeper. Both 

analyses identified β-actin (geNorm M = 0.592; BestKeeper value = 0.263) and 60S 

ribosomal protein 32 (geNorm M = 0.592; BestKeeper value = 0.364) and as the most 

stably expressed genes. 

 After normalizer testing was completed, transcript levels of the genes of interest 

were analyzed in the individual study samples, with normalization to both β-actin and 60S 

ribosomal protein 32. In all cases, levels were assessed (in triplicate) in six individuals per 

treatment using cDNA representing 40 ng of input total RNA. On each gene a no RT control 

was included. Gene expression was determined using the comparative 2-ΔΔCt method [Livak 

and Schmittgen 2001]. 
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Table 3-1. Primer sequences used in Atlantic salmon experiment. 

Gene Forward (5´to 3´) Reverse (5´to 3´) Efficiency (%) Reference 

IL-1β GTATCCCATCACCCCATCAC TTGAGCAGGTCCTTGTCCTT 99.7 This study* 

IL-8 GAAAGCAGACGAATTGGTAGAC GCTGTTGCTCAGAGTTGCAAT 100.7 This study* 

tnf-α GGATGGAATGGAGCATCAGC TGCACGGTGTTAGCGGTAAG 106.4 Smith et al. 2018 

lect-2 CAGATGGGGACAAGGACACT GCCTTCTTCGGGTCTGTGTA 101.1 Smith et al. 2018 

tlr5s ATCGCCCTGCAGATTTTATG GAGCCCTCAGCGAGTTAAAG 94.1 Smith et al. 2018 

β-actin CCAAAGCCAACAGGGAGAAG AGGGACAACACTGCCTGGAT 104.4 Xue et al. 2015 

rpl32 AGGCGGTTTAAGGGTCAGAT TCGAGCTCCTTGATGTTGTG 100.7 Xue et al. 2015 

*Pair of primer sequences designed by Jennifer Hall and provided by Dr. Matthew L. Rise. 
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3.3.9 Phagocytosis assay 

 The phagocytosis assay was performed following the protocol used by Smith et al. 

(2018) with modifications. Cells were incubated for 3 days and inoculated with vehicle 

control (2 μl of ethanol in 1 ml of culture media without antibiotics), 100; 1,000; or 10,000 

ng/ml of either vitamin D2 or D3 for 24 h. After this time, cells were washed twice with 

PBS, and inoculated with 1 μm of Fluoresbrite YG microspheres at a ratio of approximately 

1:30 macrophage:microsphere (Polysciences, Warrington, PA, USA) [Overland et al. 2010; 

Smith et al. 2018]. Twenty-four hours after microsphere addition, primary macrophages 

were washed with PBS, removed, and cells treated with trypsin-EDTA (0.5%; Gibco) for 

10 min. Then, cells were resuspended in 500 μl of FACS buffer (PBS + 1% FBS). 

Fluorescence was detected from 10,000 cells using a BD FACS Aria II flow cytometer and 

analyzed using BD FACS Diva v7.0 software (BD Biosciences, San Jose, CA, USA). The 

control pre-treated macrophages were used to compared the FITC positive cells in vitamin 

D pre-treated cells. Percentage of FITC positive cells were determined for each condition. 

The experiments were conducted in macrophages isolated from 3 independent fish. 

 

3.3.10 Statistical analysis 

 All data are shown as the mean ± standard error (SE). Assumptions of normality 

and homogeneity were tested for the detected variances. A Kruskal-Wallis nonparametric 

test was performed for A. salmonicida growth curve and gene expression results. 

Macrophage viability, gentamicin exclusion assay, and phagocytosis assay data were 

analyzed using a repeated measures two-way ANOVA test, followed by Sidak multiple 

comparisons post hoc test to identify significant differences of each treatment in different 
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times or concentrations and between treatments in the same time point. Differences were 

considered significant at P < 0.05. All statistical analyses were performed using GraphPad 

Prism (GraphPad Software, La Jolla, California, USA, www.graphpad.com). 

 

3.4 Results 

3.4.1 Inhibitory effects of vitamin D2 and D3 in A. salmonicida growth 

 Growth of A. salmonicida at different concentrations of vitamin D2 and D3 was 

determined by O.D. 600 nm at different time points until 48 h. Bacteria growth was not 

affected by concentrations of 10, 100, 1,000, and 10,000 ng/ml of vitamin D2 (Fig. 3-1A). 

In contrast, A. salmonicida growth was significantly reduced in the presence of 100,000 

ng/ml of vitamin D2 (Fig. 3-1A). A. salmonicida growth was not affected by 10 and 100 

ng/ml of vitamin D3 (Fig. 3-1B). However, A. salmonicida growth was significantly 

affected by 1,000 and 10,000 ng/ml of the vitamin D3 (Fig. 3-1B). 
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Figure 3-1.  Aeromonas salmonicida subsp. salmonicida growth curve in TSB media 

supplemented with (A) 10, 100, 1,000, 10,000, and 100,000 ng/ml of vitamin D2 and (B) 

10, 100, 1,000, and 10,000 ng/ml of vitamin D3. Growth was determined by reading O.D. 

600 nm at different time points until 48 h. Each value is the mean ± S.E.M (n = 3). Symbols 

(*, +) indicate differences between each group at different time points of measure, p < 0.05. 
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3.4.2 Evaluation of the toxicity of vitamin D2 and D3 in Atlantic salmon primary 

macrophages 

 Atlantic salmon primary macrophage viability was determined after 24 h and 48 h 

of exposure to concentrations of 0, 10, 100, 1,000, 10,000, and 100,000 ng/ml of vitamin 

D2. Results obtained did not show significant differences between the control group (2.17 

x 105 ± 6.49 x 104 and 2.10 x 105 ± 7.77 x 104 after 24 h and 48 h, respectively), compared 

with the cells treated with 10 ng/ml (3.57 x 105 ± 7.36 x 104 and 2.33 x 105 ± 8.51 x 104 

after 24 h and 48 h, respectively), 100 ng/ml (2.10 x 105 ± 4.00 x 104 and 2.37 x 105 ± 6.33 

x 104 after 24 h and 48 h, respectively), 1,000 ng/ml (1.77 x 105 ± 2.03 x 104 and 2.47 x 

105 ± 5.90 x 104 after 24 h and 48 h, respectively), and 10,000 ng/ml (1.43 x 105 ± 4.67 x 

104 and 2.23 x 105 ± 7.36 x 104 after 24 h and 48 h, respectively) of vitamin D2. However, 

a significant difference was observed in cells inoculated with the media containing a 

concentration of 100,000 ng/ml of vitamin D2 after 24 h (1.67 x 104 ± 6.67 x 103) and 48 h 

(6.67 x 103 ± 6.67 x 103) (Fig. 3-2A). 

 The percentage of viability did not show significant differences between the control 

group (65.67% ± 1.76% and 66.00% ± 5.13% after 24 h and 48 h, respectively) and the 

primary macrophages treated with 10 ng/ml (77.00% ± 3.51% and 66.67% ± 5.93% after 

24 h and 48 h, respectively), 100 ng/ml (75.67% ± 1.76% and 71.33% ± 4.84% after 24 h 

and 48 h, respectively), 1,000 ng/ml (67.67% ± 5.17% and 63.67% ± 5.24% after 24 h and 

48 h, respectively), and 10,000 ng/ml (64.33% ± 0.88% and 67.33% ± 2.91% after 24 h and 

48 h, respectively) of vitamin D2. Nevertheless, a highly significant decrease in macrophage 
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viability was observed at a concentration of 100,000 ng/ml of ergocalciferol after 24 h 

(13.33 ± 4.48) and 48 h (5.67 ± 5.67) (Fig. 3-2B). 

 The viability of Atlantic salmon primary macrophages was also determined at 24 h 

and 48 h post-treatment with vitamin D3 in concentrations of 10, 100, 1,000, and 10,000 

ng/ml. The number of live cells per ml did not show significant differences in primary 

macrophages treated with 10 (4.45 x 105 ± 8.66 x 103 and 4.65 x 105 ± 2.60 x 104 after 24 

h and 48 h, respectively), 100 (5.70 x 105 ± 8.08 x 104 and 4.70 x 105 ± 1.15 x 104 after 24 

h and 48 h, respectively), and 1,000 ng/ml (5.85 x 105 ± 9.53 x 104 and 5.60 x 105 ± 2.89 x 

104 after 24 h and 48 h, respectively) (Fig. 3-2C). Moreover, no significant differences were 

observed in the viability of primary macrophages treated with 10,000 ng/ml of vitamin D3 

after 24 h (4.25 x 105 ± 8.95 x 104) compared with the control (Fig. 3-2C). Nevertheless, in 

cells exposed to 10,000 ng/ml of vitamin D3, a significant decrease in the viability was 

observed after 48 h of treatment (2.85 x 105 ± 1.44 x 104) (Fig. 3-2C). 

 The percentage of viability in cholecalciferol treated cells did not show significant 

differences after 24 h of exposure to concentrations of 10 ng/ml (73.67% ± 2.60%), 100 

ng/ml (74.67% ± 0.33%), 1,000 ng/ml (69.00% ± 4.04%), and 10,000 ng/ml (69.00% ± 

2.31%) compared with the control group (70.33% ± 0.33%) (Fig. 3-2D). Also, no 

significant differences were observed in Atlantic salmon macrophages treated during 48 h 

with vitamin D3 in a concentration of 10 ng/ml (70.67% ± 1.45%), 100 ng/ml (79.67% ± 

0.88%), and 1,000 ng/ml (76.00% ± 3.46%) compared with the control (Fig. 3-2D). 

However, a significant decrease was observed in cells incubated with media and a 

concentration of 10,000 ng/ml of vitamin D3 after 48 h (59.00% ± 1.15%) (Fig. 3-2D). 

Moreover, in the group incubated at a concentration of 1,000 ng/ml of vitamin D3, a 
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significant higher percentage of viability was observed in cells treated for 48 h compared 

with the 24 h group (Fig. 3-2D). Also, in the primary macrophages treated with 10,000 

ng/ml of vitamin D3, a significant difference was observed at different times, showing a 

decrease in the viability of cells treated for 48 h with vitamin D3 compared with the cells 

incubated for only 24 h (Fig 3-2D). 
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Figure 3-2. Atlantic salmon primary macrophages treated with vitamin D2 or D3. (A) Live 

cells and (B) percentage of viability of primary macrophages treated with 10, 100, 1,000, 

10,000, and 100,000 of vitamin D2, were measured after 24 h and 48 h of treatment. (C) 

Live cells and (D) percentage of viability of primary macrophages treated with 10, 100, 

1,000, and 10,000 ng/ml of vitamin D3 were measured after 24 h and 48 h of treatment. 

Each value represents the mean ± S.E.M (n = 6). Lower case letters (a, b) show differences 

between treatments after 24 h. Upper case letters (A, B, C) show differences between 

treatments after 48 h, p < 0.05. 
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3.4.3 Gentamicin exclusion assay in vitamin D2 and D3 pre-treated cells infected with A. 

salmonicida 

 The effects of vitamins D2 and D3 on the growth of A. salmonicida (Fig. 3-1) and 

the effects on the viability of primary macrophages (Fig. 3-2) were used to determine the 

concentration to be utilized in the gentamicin exclusion assays. Based on these results, the 

primary macrophages were pre-treated with 100 ng/ml (vitamin D2 or D3) for the 

gentamicin exclusion assay. 

 Cells pre-treated with 100 ng/ml of vitamin D2 and posteriorly infected with A. 

salmonicida, did not show significant differences in cell numbers at 1, 2, 3, and 4 h post-

infection (7.27 x 105 ± 8.11 x 104; 6.07 x 105 ± 1.37 x 105; 5.27 x 105 ± 9.94 x 104; and 

5.33 x 105 ± 1.83 x 105, respectively) compared with the control group (6.33 x 105 ± 1.92 x 

105; 6.9 x 105 ± 1.31 x 105; 6.13 x 105 ± 9.53 x 104; and 6.27 x 105 ± 1.46 x 105, respectively) 

(Fig. 3-3A). Also, no significant differences were observed in the viability of primary 

macrophages pre-treated and then infected with A. salmonicida at 1, 2, 3 and 4 h post-

infection (62% ± 6.81%; 61% ± 5.13%; 62.67% ± 1.86%; and 61.67% ± 2.33%, 

respectively) compared with the control group (64% ± 5.51%; 62.67% ± 6.96%; 58% ± 

3.21%; and 59.33% ± 3.28%, respectively) (Fig. 3-3B). 

 The primary macrophages were infected with a total of 4.3 x 106 CFU per ml at a 

MOI of 1. The percentage of A. salmonicida attached was significantly higher in primary 

macrophages pre-treated with vitamin D2 (49.09% ± 2.76%) compared with the control 

group (34.39% ± 2.12%) (Fig. 3-3D). At invasion time-points, after 2 h of infection no 

significant was observed in cells pre-treated with ergocalciferol (4.48% ± 0.68%) compared 

with the control group (2.84% ± 0.40%) at the same time (Fig. 3-3D). Moreover, no 
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significant differences were observed either in the control group (2.86% ± 0.57%) and the 

vitamin D2 pre-treated primary macrophages (2.49% ± 0.21%) after 3 h of infection with 

A. salmonicida (Fig. 3-3D). No significant differences were also found between the control 

(2.06% ± 0.42%) and the vitamin D2 treatment (1.94% ± 0.38%) 4 h post-infection. 

However, a significant decrease in bacterial invasion was observed between 2 h and 4 h in 

the primary macrophages pre-treated with vitamin D2 (Fig. 3-3D). 

 A similar response was obtained in cells pre-treated for 24 h with vitamin D3 and 

then infected with A. salmonicida. For instance, no significant differences were found in 

the percentage of viability between the control group after 1 h, 2 h, 3 h, and 4 h of infection 

(48.67% ± 4.98%; 48.66% ± 2.03%; 55.67% ± 4.33%; and 58.67% ± 6.74%, respectively) 

and the cholecalciferol pre-treated macrophages at 1 h, 2 h, 3 h, and 4 h (54% ± 2.31%; 

58.67% ± 1.45%; 64% ± 5.77%; and 61% ± 1.73%, respectively) (Fig. 3-3F). 

 Atlantic salmon primary macrophages pre-treated with vitamin D3 were infected 

with a total of 2.56 x 106 bacterial cells per ml (Fig. 3-3G). The percentage of attachment 

(1 h post-infection) was significantly lower in the primary macrophages that were pre-

treated for 24 h with cholecalciferol (10.61% ± 0.97%) compared with the control group 

(51.56% ± 17.12%) (Fig. 3-3H). In contrast, even when a tendency of lower invasion is 

observed, no significant differences were obtained between the control group after 2 h, 3 h, 

and 4 h of infection (2.58% ± 0.65%; 2.23% ± 0.54%; and 1.82% ± 0.64%, respectively) 

compared with the fish cells pre-treated with vitamin D3 (1.32% ± 0.65%; 1.43% ± 0.26%; 

and 0.91% ± 0.28%, respectively) (Fig. 3-3H). 
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Figure 3-3. Gentamicin exclusion assay in Atlantic salmon primary macrophages pre-

treated for 24 h with either control or 100 ng/ml of vitamin D2 or vitamin D3, and then 

infected with Aeromonas salmonicida subsp. salmonicida. Live cells of primary 
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macrophages pre-treated with vitamin D2 (A), or vitamin D3 (E); percentage of viability of 

primary macrophages pre-treated with vitamin D2 (B), or vitamin D3 (F), Colony forming 

unit (CFU) of A. salmonicida in Atlantic salmon primary macrophages pre-treated with 

vitamin D2 (C), or vitamin D3 (G); and percentage of attachment and invasion of A. 

salmonicida in Atlantic salmon primary macrophages pre-treated with vitamin D2 (D), or 

vitamin D3 (H), were measured 1 h, 2 h, 3 h, and 4 h post-infection. Initial A. salmonicida 

inoculum calculated in TSA Congo red plates are shown above the CFU figures. Each value 

represents the mean ± S.E.M (n = 6). Asterisks (*) represent significant differences between 

treatments on each time-point (*p < 0.05, **p < 0.01, ***p < 0.001). Lower case letters (a, 

b) show differences in the control at different time points post-infection. Upper case letters 

(A, B) show differences in vitamin D2 or D3 pre-treated cells in different time points post-

infection. 

 

3.4.4 Atlantic salmon primary macrophage gene expression 

 Innate immune response related genes were evaluated in Atlantic salmon primary 

macrophages after 3 h of each treatment previously mentioned. 

 In the experiments conducted for both vitamins D2 and D3, a significant increase in 

the expression of interleukin 1 beta (il-1b) (Fig. 3-4A, F), interleukin 8 (il-8) (Fig. 3-4B, 

G), tumor necrosis factor alpha (tnf-α) (Fig. 3-4A, H), and soluble toll-like receptor 5 

(stlr5) (Fig. 3-4E, J) was observed in the cells inoculated with the live A. salmonicida, the 

formalin-killed A. salmonicida, and the cells pre-treated with either vitamin D2 or D3 and 

subsequently infected, compared to the PBS inoculated primary macrophages. In contrast, 

no differences in the expression of il-1b, il-8, tnf-α and stlr5 were observed in Atlantic 
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salmon non-infected cells inoculated only with 100 ng/ml or 1,000 ng/ml of each vitamin 

D forms compared with the control (Fig. 3-4A, 3-4B, 3-4C, 3-4E, 3-4F, 3-4G, 3-4H, and 

3-4J). 

 A differential pattern was observed in the transcript encoding for the expression of 

leukocyte-derived chemotaxin 2 (lect-2) between both assays. For instance, in the vitamin 

D2 experiment, no significant differences were observed in the expression of lect-2 in any 

of the treatments compared with the PBS inoculated primary macrophages (Fig. 3-4D). In 

contrast, lect-2 was significantly up-regulated compared with the control in primary 

macrophages pre-treated with vitamin D3 and then challenged with A. salmonicida (Fig. 3-

4I). The primary macrophages treated with live A. salmonicida, formalin-killed A. 

salmonicida, 100 ng/ml of vitamin D3, and 1,000 ng/ml of vitamin D3 did not show 

significant differences in the expression of lect-2 compared with the control (Fig. 3-4I). 
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Figure 3-4. Gene expression of (A, E) Interleukin 1b (il-1b), (B, G) Interleukin 8 (il-8), (C, 

H) Tumor necrosis factor alpha (tnf-α), (D, I) Leukocyte-derived chemotaxin 2 (lect-2), and 

(E, J) soluble toll-like receptor 5 (stlr5) in Atlantic salmon primary macrophages isolated 

from head kidney pre-treated 24 h with either the control, vitamin D2 (100 and 1,000 ng/ml) 

or vitamin D3 (100 and 1,000 ng/ml), and then inoculated with PBS (control) or infected 

with live (J223) or formalin-killed A. salmonicida for 3 h. Relative expression was 

calculated using the 2(−ΔΔCt) method and Log2 converted using β-actin and 60S ribosomal 

protein 32 (rpl32) as internal reference genes. Each value is the mean ± S.E.M (n = 6). 

Different letters represent significant differences between treatments, p < 0.05. 
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3.4.5 Phagocytosis assay 

 Atlantic salmon primary macrophages did not show significant differences in 

phagocytosis after 24 h of treatment with 100 ng/ml of vitamin D2 (4.80% ± 1.62%) and 

vitamin D3 (4.93% ± 1.56%), 1,000 ng/ml of vitamin D2 (3.33% ± 0.67%) and vitamin D3 

(2.67% ± 0.41%), and 10,000 ng/ml of vitamin D2 (0.97% ± 0.20%) and vitamin D3 (0.87% 

± 0.09%) compared with the control cells (4.80% ± 1.08%) (Fig. 3-5). 

 

Figure 3-5. Effect of vitamin D2 and vitamin D3 in Atlantic salmon primary macrophage 

phagocytosis. Macrophages were pre-treated with 100, 1,000, and 10,000 ng/ml of vitamin 

D2 or vitamin D3 for 24 h, and then inoculated with 1 μm of Fluoresbrite YG microspheres. 

A non pre-treated control was utilized to determine the percentage of FITC-positive 

positive cells. Phagocytosis was determined by flow cytometry. Each value represents the 

mean ± S.E.M (n = 3), p < 0.05. 
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3.5 Discussion 

 Vitamin D is involved in important processes including mineral metabolism, cell 

growth, and cardiovascular physiology, among others [Zittermann 2003; Grant 2006; Lips 

2006; Lock et al. 2010; Borges et al. 2011; Wang et al 2017]. Moreover, it has been 

observed that vitamin D can stimulate the antibacterial immune response in mammals 

[Miller and Gallo 2010; Téllez-Pérez et al. 2012]. However, these mechanisms have not 

been explored in fish cells. 

 The two major sources of vitamin D in natural environments are vitamin D2 and D3, 

obtained by fish after the ingestion of phytoplankton and zooplankton, respectively [Rao 

and Raghuramulu 1996; Darias et al. 2011]. Even when it was thought that both vitamin D 

forms have the same impact on physiological mechanisms, previous studies have shown 

that vitamin D3 is much more potent compared with vitamin D2 [Trang et al. 1998; 

Ostermeyer and Schmidt 2006], suggesting a differential modulation of the innate immune 

system of fish in the presence of the specific vitamin D form. Also, the effect that vitamin 

D forms can have over the growth of A. salmonicida has not been described. 

 To evaluate if A. salmonicida is able to grow in the presence of vitamin D2 and D3, 

a growth curve experiment was conducted in the presence of different concentrations of 

vitamin D2 and vitamin D3 for 48 h. Our results showed that only high concentrations of 

vitamin D2 and D3 reduced the growth of A. salmonicida after 48 h (Fig. 3-1A, B). 

Normally, A. salmonicida is able to reach stationary growth in approximately 36 h 

[Cipriano and Bullock 2001; Valderrama et al. 2017; Connors et al. 2019]. I observed a 

similar pattern of growth previously observed in A. salmonicida J223 strain [Valderrama 

et al. 2017] in culture media containing low concentrations of vitamin D3 (100 and 1,000 
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ng/ml). Nevertheless, A. salmonicida seems to better tolerate higher concentrations of 

vitamin D2 since only the highest concentration (100,000 ng/ml) reduced its growth rate. A 

previous study showed that high doses of vitamin C (128, 512, and 2048 mg/ml) can inhibit 

the growth of Helicobacter pylori, a risk factor for gastric carcinoma in mammals, during 

in vitro and in vivo experiments after 12 h [Zhang et al. 1997]. Additionally, it has been 

reported that high concentrations of vitamin C (90 μM) can also inhibit the growth of S. 

aureus in in vitro conditions [Kallio et al. 2012]. High concentrations of vitamin D2 and D3 

decreased the growth rate of S. aureus strain A1 after 24 h [Aarestrup et al. 1994; Yue et 

al. 2017]. Nevertheless, no significant differences were observed in the growth rate of S. 

aureus subsp. aureus (ATCC 27543) in the presence of different concentrations of vitamin 

D3 after 48 h [Gutierrez-Barroso et al. 2008; Téllez-Pérez et al. 2012]. These results indicate 

that in the bacterial strains studied, vitamin D can inhibit the growth when utilized in 

concentrations over 1,000 ng/ml, affecting both Gram negative and Gram positive bacteria. 

 The primary S. salar macrophage viability decreased after 24 h and 48 h of exposure 

to 100,000 ng/ml of vitamin D2, and a lower viability compared with the control was 

observed after 48 h with 10,000 ng/ml of vitamin D3 (Fig. 3-2). Similar to our results, it has 

been observed that low concentrations of vitamin D3 (1, 10, and 50 nM) did not affect the 

viability of bovine mammary epithelial cells at 24 h [Téllez-Pérez et al. 2012]. However, a 

decrease in the viability of bovine mammary epithelial cells occurs in the presence of high 

concentrations of vitamin D2 (6,000, 8,000, 10,000, 12,000, and 14,000 ng/ml) and D3 

(8,000, 10,000, 12,000, and 14,000 ng/ml) after 24 h of exposure, suggesting that vitamin 

D can induce cell cycle arrest, apoptosis, or both [Samuel and Sitrin 2008; Yue et al. 2017]. 
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 The values obtained in the A. salmonicida growth curve and Atlantic salmon 

primary macrophages exposed to different vitamin D2 and D3 concentrations (Fig. 3-1 and 

3-2), were utilized to finally utilized 100 ng/ml for further infection assays. 

 The number of live cells and percentage of viability of Atlantic salmon primary 

macrophages after 1 h, 2 h, 3 h, and 4 h of infection did not show significant differences 

between the control and the vitamin D2 or D3 pre-treated cells (Fig. 3-3A, 3-2B, 3-2E, and 

3-2F). Our finding agrees with a previous infection assay using A. salmonicida J223 strain 

in Atlantic cod primary macrophages, where no significant differences were observed in 

macrophages viability after 6 h of infection [Soto-Dávila et al. 2019]. This indicated that 

Atlantic salmon and Atlantic cod primary macrophages were not killed during this period 

by A. salmonicida J223. Soto-Dávila et al. (2019) suggested that A. salmonicida controls 

the macrophages machinery and prevents cell apoptosis. As mentioned previously, vitamin 

D3 in high concentration (8,000, 10,000, 12,000, and 14,000 ng/ml) could induce apoptosis 

[Samuel and Sitrin 2008; Yue et al. 2017], contrary to the suggested prevention of apoptosis 

produced by A. salmonicida by Soto-Dávila et al. (2019). These results agree with the lower 

attachment and infection rates of A. salmonicida in cell pre-treated with D3, where vitamin 

D3 might interfere with the infection.  

 One of the most interesting findings in our results is related to the bacterial 

attachment and invasion. For instance, an unexpected significant increase of A. salmonicida 

infections was observed at 1 h post-infection in primary macrophages pre-treated with 

vitamin D2 compared with the control (Fig. 3-3C and D). In contrast, a significant decrease 

in A. salmonicida attachment at 1 h was observed in cells pre-treated with vitamin D3 

compared with the control (Fig. 3-3G and 3-3H). Previous studies indicate that vitamin D3 
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has a stronger activity compared to vitamin D2 in terrestrial mammals [Trang et al. 1998; 

Ostermeyer and Schmidt 2006]. This agrees with our results where pre-treatment of 

primary macrophages with vitamin D3 decreased A. salmonicida infection, meanwhile, the 

vitamin D2 did not reduce the bacterial infection, in contrast, increased the infection. Our 

findings agree with the beneficial utilization of vitamin D in aquafeeds [Barnett et al. 1979; 

Barnett et al. 1982; Lock et al. 2010] and seems to have a broad positive effect in all 

vertebrates, including fish.  

 To complement our results showed above, I explored the immune mechanism 

behind the beneficial effects of vitamin D by profiling the expression of specific innate 

immune genes using qPCR. An up-regulation of il-1b, il-8, tnf-α, and stlr5 occurred in 

primary macrophages inoculated with either the live or formalin-killed A. salmonicida (Fig. 

3-4A, 3-4B, 3-4C, 3-4E, 3-4F, 3-4G, 3-4H, and 3-4J). These results were expected, since 

cytokines, chemokines, and anti-bacterial and inflammatory proteins, such as il-1b, il-8, 

tnf-α, and stlr5, play essential roles controlling both acute and chronic inflammation in fish 

tissues mediated by macrophages [Smith et al. 2018]. In Atlantic salmon, the evidence 

shows that this canonical macrophage innate immune response can be triggered rapidly by 

either a bacterial pathogen-associated molecular pattern (PAMP), such as 

lipopolysaccharide (LPS), or pathogens like Yersinia ruckeri, Aeromonas salmonicida, 

Pseudomonas aeruginosa, Flavobacterium psychrophilum, among others [Martin et al. 

2006; Bridle et al. 2011; Santana et al. 2018; Smith et al. 2018; Hoare et al. 2019]. 

 Some viruses, bacteria, and parasites can modify the expression of genes related 

with the host immune response as part of a mechanism of evading its defense mechanisms 

[Finlay and McFadden 2006]. In humans, agents of three important infectious diseases, 
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such as HIV, tuberculosis, and malaria have developed highly effective mechanisms to 

subvert the immune response [Finlay and McFadden 2006], making it difficult to control 

the diseases and develop effective vaccines. Further examples of this are Yersinia 

pseudotuberculosis and Y. enterocolitica which are able to control human macrophage 

immune response and induce apoptosis after the translocation of effector molecules through 

the type III secretion system [Monack et al. 1998; Schesser et al. 1998; Gao and Kwaik 

2000]. 

 In fish head kidney, a modulation of the expression of il-1b and the major 

histocompatibility complex class 1 (mhc-I) has been observed in Atlantic salmon after being 

infested by the sea louse Lepeophtheirus salmonis [Fast et al. 2006]. Moreover, Lewis et 

al. 2014 [Lewis et al. 2014] show that L. salmonis produces substances than modify the 

expression of genes encoding inflammatory mediators in the Atlantic salmon head kidney 

(SHK-1) cell line. Here, our results obtained during the infection with live A. salmonicida 

in Atlantic salmon primary macrophages showed no significant differences in the 

expression of leukocyte-derived chemotaxin 2 (lect-2) compared with the control (Fig 3-

4D, I). When the fish cells were pre-treated with vitamin D2 and then infected with the live 

bacteria, the gene expression also did not increase, suggesting that lect-2 is not involved in 

the first line of defense against A. salmonicida in Atlantic salmon. However, the expression 

of lect-2 in Atlantic salmon macrophages pre-treated with vitamin D3 and challenged with 

live A. salmonicida was significantly up-regulated compared to the control. lect-2 is a 

chemotactic factor involved in the recruitment of neutrophils to the site of infection 

[Yamagoe et al. 1996; Smith et al. 2018]. In the study conducted by Smith et al. 2018, an 

up-regulation of lect-2 was observed only in treatments with LPS, confirming that its role 
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in presence of external pathogenic agents is active in Atlantic salmon. Comparing the 

expression of lect-2 in primary macrophages treated with the live A. salmonicida and the 

samples pre-treated with vitamin D3 and then inoculated with A. salmonicida, our result 

suggest that A. salmonicida avoid the transcriptional expression of lect-2, perhaps to 

prevent neutrophil recruitment during infection. Our results suggest that pre-treatments 

with vitamin D3 can counteract the effect of A. salmonicida in this particular gene, and up-

regulate the expression of lect-2 during A. salmonicida infection (Fig. 3-4I).  

  To determine if vitamin D2 and D3 can also exert an effect in the phagocytosis of 

the Atlantic salmon primary macrophages, the phagocytic activity was tested using 

Fluorescent latex beads (Fig. 3-5). Phagocytosis is used by organisms to eliminate external 

agents such as bacteria in a highly efficient way [Rabinovitch 1995; Neuman et al. 2001; 

Øverland et al. 2010; Soto-Dávila et al. 2019]. The effect of vitamins over macrophage 

phagocytic activity has been previously tested in Atlantic salmon, however, no significant 

variations were obtained after treatments with vitamin C or vitamin E [Hardie et al. 1990; 

Hardie et al. 1991]. I found similar results in Atlantic salmon primary macrophages after 

24 h pre-treatments with either vitamin D2 or D3 suggesting that, independent of the vitamin 

used, the phagocytic activity of Atlantic salmon is not modulated by its action. 

 

3.6 Conclusion 

 In this study I evaluated the effects of vitamin D2 and D3 over A. salmonicida 

growth, Atlantic salmon primary macrophage viability, and the fish cells’ immune 

response. I determined that only high concentrations of vitamin D2 (100,000 ng/ml) and 

vitamin D3 (1,000 and 10,000 ng/ml) decreased the growth rate of A. salmonicida. 
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Moreover, I determined that 100,000 ng/ml of vitamin D2 and 10,000 ng/ml decreased the 

viability of Atlantic salmon primary macrophages after 24 and 48 h. These results suggest 

that high doses of D2 and D3 are toxic for the bacterial and the eukaryotic cells.  

 Pre-treatment with 100 ng/ml of either vitamin D2 or D3 did not have altered primary 

macrophages viability. Nevertheless, one of the remarkable findings of our study was that 

pre-treatment with vitamin D3 reduced A. salmonicida attachment, meanwhile, pre-

treatment with vitamin D2 increased attachment, and as a consequence also increased 

bacterial invasion. 

 Gene expression of il-1b, il-8, tnf-α, and stlr5 was up-regulated during A. 

salmonicida infection, agreeing with a canonical non-specific immune response. However, 

our results showed that A. salmonicida was able to suppress the expression of lect-2, a gene 

involved in neutrophil recruitment, key in the fight against pathogen clearance. After the 

addition of vitamin D2, no variation in the transcriptional expression of this gene was 

observed. However, cells pre-treated with vitamin D3 and then inoculated with live A. 

salmonicida, showed an up-regulation of lect-2, suggesting that vitamin D3 can be useful 

to counteract the suppression triggered by the pathogen. 

 Altogether, our results show that vitamin D3 seems to be a good candidate to be 

used as an immunostimulant in Atlantic salmon against A. salmonicida infection. In 

contrast, vitamin D2 did not show to have an effect in the modulation of the immune system 

of Atlantic salmon, suggesting that vitamin D2 does not play an important role in fish non-

specific immunity. 
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4. SUMMARY 

 In this thesis, the main objective was to evaluate the impact of Aeromonas 

salmonicida subsp. salmonicida, the causative agent of furunculosis, on the innate immune 

response of Atlantic cod and Atlantic salmon primary macrophages. Additionally, this 

study determined the role of vitamin D2 and D3 as immunostimulants in the aquaculture of 

Atlantic salmon. 

 In chapter II, the findings provided for first time, to our knowledge, the mechanisms 

utilized by A. salmonicida subsp. salmonicida during the infection of Atlantic cod utilizing 

in vitro experiments. I observed that this Gram-negative bacterium is able to suppress the 

gene expression of transcripts related with the canonical immune response in fish such as 

AMPs and the production of ROS. Additionally, it was found that A. salmonicida, similar 

to other pathogens (i.e., Neisseria meningitides, Escherichia coli, Vibrio spp., Brucella 

spp.), is able to secrete OMVs, capable of neutralizing the production of AMPs to avoid 

lysis. Moreover, ROS results obtained in this thesis, correlate with previous findings 

showing that Atlantic cod has a basal ROS production in non-infected and infected cells. 

Altogether, these results suggest that Atlantic cod primary macrophages are able to 

recognize and trigger the immune response against A. salmonicida, nonetheless, the 

mechanisms utilized by the bacterial pathogen have the ability to avoid the host defense, 

prevent clearance, and invade the primary macrophages during the early infection. 

 Chapter III of this thesis showed that A. salmonicida utilized a different strategy to 

develop an infection. Results obtained represent a novel evidence that the main mechanism 

used by A. salmonicida during the infection of Atlantic salmon primary macrophages is to 



 

110 
 

immunosuppress the expression of lect-2, an important gene related with the recruitment 

of neutrophils. In addition, here I evaluate the immunostimulant properties of Vitamin D2 

and D3 during pre-treatments of 24 h in Atlantic salmon primary macrophages. Vitamin D 

has been shown to play an important role in mineral metabolism, cell growth, and tissue 

differentiation. Also, it has been observed in mammals that vitamin D can enhance the 

antibacterial immune response. Nevertheless, even when vitamin D is an essential nutrient 

in aquafeeds, its influence in fish immune response is not understood. The results of this 

study show for first time, that 24 h pre-treatments with a biological concentration of vitamin 

D3 (100 ng/ml), can decrease the infection with A. salmonicida. Interestingly, I found that 

24 h pre-treatment with vitamin D3 can also counteract the immunosuppression of lect-2 

produced by A. salmonicida. In contrast, results obtained show that vitamin D2, obtained 

by plant sources, does not produced a similar effect in infected Atlantic salmon primary 

macrophages, suggesting that should not be utilized as an immunostimulant in Atlantic 

salmon aquaculture. 

In conclusion, I have provided novel information about the mechanisms of A. salmonicida 

during the early infection of Atlantic cod and Atlantic salmon primary macrophages, as 

well as, the role of vitamin D3 as an immunostimulant during the infection of Atlantic 

salmon primary macrophages with A. salmonicida. Since vitamin D3 can be obtained in the 

market at a low-price, from an industrial and an economical point of view, the results 

obtained in chapter III provides an environmentally friendly and accessible alternative to 

the antibiotics in the aquaculture industry. Also, we develop a model to understand bacterial 

infection mechanisms in fish macrophages.  
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5. APPENDICES 

Appendix I. Ct values Atlantic cod reference gene evaluation after live or formalin-killed 

A. salmonicida inoculation. 

Treatment Fish EF-1α Β-actin 18S Eif3 60S 

Control 

 

 

 

1 19.905 22.737 10.707 28.288 22.231 

2 19.634 22.177 10.443 28.450 20.122 

3 19.923 20.152 12.632 29.816 23.232 

1 h post 

infection 

live A. 

salmonicida 

1 19.749 23.261 10.932 28.177 22.509 

2 19.741 22.781 11.556 29.256 22.349 

3 19.614 20.569 13.036 30.889 21.359 

2 h post 

infection 

live A. 

salmonicida 

1 19.931 20.379 13.739 31.145 20.234 

2 19.750 20.454 11.559 27.890 22.163 

3 19.626 22.328 10.408 28.798 23.054 

6 h post 

infection 

live A. 

salmonicida 

1 19.640 23.561 11.511 27.839 21.445 

2 19.591 21.368 12.849 29.609 19.352 

3 19.677 19.400 14.910 30.732 19.543 

1 h post 

inoculation 

formalin 

killed A. 

salmonicida 

1 19.996 22.001 10.098 31.350 19.123 

2 19.691 21.833 12.936 32.590 21.961 

3 19.827 21.987 9.911   18.932 

1 19.675 19.843 9.886 32.896 18.953 
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2 h post 

inoculation 

formalin 

killed A. 

salmonicida 

2 19.549 20.802 10.794 30.432 20.150 

3 19.768 21.018 8.894 31.192 18.034 

6 h post 

inoculation 

formalin 

killed A. 

salmonicida 

1 19.655 24.400 8.497 29.268 17.589 

2 19.751 22.957 12.092 33.135 21.163 

3 19.648 23.715 10.145 30.989 21.267 

*Each value represents the mean of technical replicates (n=3). 

**geNorm M values were: 0.102 (EF-1α), 0.112 (Eif3), 0.138 (60S), 0.147 (β-actin), 

0.190 (18S); M < 0.15 for most stable genes. 

***BestKeeper values were: 0.101 (EF-1α), 1 (Efi3), 1.124 (60S), 1.175 (18S), 1.21 (β-

actin); M < 1 for most stable genes. 
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Appendix II.  

 

Gentamicin exclusion assay in Atlantic salmon macrophages infected with Aeromonas 

salmonicida subsp. salmonicida. The figures show the number of live cells (a) and the 

percentage of viability (b), after 1, 2, 3 and 4 h post-infection. The figure also shows the 

colony forming unit (c) recovered from cells during each time post-infection. Each value is 

the mean ± S.E.M (n=3). Symbol (*) indicate statistical differences between each time post 

infection. Percentage show above bars indicate the total % of attach (1 h post infection) and 

invasion (2, 3 and 4 h post invasion) of A. salmonicida to Atlantic salmon macrophages, P 

< 0.005. 


