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ABSTRACT 

 
The pore and fracture pressures are the two most important parameters required for the effective 

well design. In general, the difference between the two parameters at any given depth dictates the 

drilling window with no consideration for wellbore stability. While pore pressure prediction 

from the drilling parameters started in the mid-nineties, very few improvements have been made 

in these areas when compared to other pore pressure prediction techniques such as seismic and 

well logs. Pore pressure prediction using the d-exponent method does not consider the effect of 

bit hydraulic energy on the rate of penetration (ROP). This limits the application of the d-

exponent to mostly hard rock environments. Under downhole conditions where the bit hydraulic 

energy has a significant influence on the ROP (soft rock environments), the d-exponent method 

may produce inaccurate results. Hence, the primary goal of this research is to develop new pore 

pressure prediction models from the drilling parameters that incorporate the bit hydraulic energy, 

making them suitable for any subsurface drilling conditions. The new pore pressure prediction 

models use the concept of specific energy to predict the onset of overpressure. The concept of 

specific energy is then extended to the real-time identification of subsurface lithology. 

Furthermore, overburden pressure is an important input parameter in pore pressure 

prediction. Inaccurate prediction of overburden pressure may result in the erroneous prediction 

of pore pressure which can lead to well control and process safety incidents. In areas where 

density logs are not available, synthetically derived density logs are used for overburden pressure 

computations. In this research, an attempt is also made to improve the accuracy of pore pressure 

prediction by improving the accuracy of overburden pressure computation via improvement in 

density logs prediction. Finally, since pore and fracture pressures are closely related, an attempt 

is made to develop a new fracture pressure prediction model for the Niger Delta basin. 
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Chapter 1 

 

1.0 Introduction and Overview 

 

1.1 Formation Pore Pressure 

 

The formation pore pressure is the pressure exerted by the pore fluids on the surrounding rocks. 

The pore pressures of sedimentary rocks are extremely important in oil and gas exploration 

(Mann and Mackenzie, 1990). At the planning stage, pore pressure is required for well 

construction, equipment selection, production forecasting, and reservoir simulation. During the 

actual drilling operations, information about the formation pore pressure is required for 

improving the drill-ability of the well, maintaining primary well control, reducing the drilling 

problems and minimizing formation damage. At the completion phase, accurate knowledge of 

pore pressure is required for specifying completion fluid requirements. At the production phase, 

information about reservoir pressure is required for well performance analysis, production 

forecasting, compaction and subsidence analysis, and determination of reservoir drive 

mechanism. During the workover phase, formation pore pressure will dictate the kill fluid 

requirements. At the abandonment stage, pore pressure regimes will dictate the isolation 

requirements. The formation pore pressure and fracture pressure are considered as the most 

important parameters used in well engineering communities. From a safety point of view, it is 

necessary to know the subsurface pressure regimes that will be encountered along the well path 

before drilling into them. This will help to avoid drilling accidentally into overpressure intervals 

which can lead to catastrophic and process safety incidents. Recognizing the existence of 

subsurface overpressure conditions is an essential first step in overall well control. The 

occurrence of subsurface overpressure conditions poses major problems for safety and cost-
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effective well design (Gutierrez et al., 2006). In general, the subsurface pressure regimes that 

will be encountered while drilling will dictate the overall well cost. 

 

1.2 Formation Pore Pressure Regimes  

 

The formation pore pressure can be described as normal, subnormal and overpressure. The 

normal pore pressure can be defined as the pressure exerted by the column of seawater 

containing 80,000 ppm total solids (Dickinson, 1953). The normal pore pressure at any given 

depth is equal to the vertical height of a column of formation water extending from the surface to 

that depth. In the US Gulf Coast, the average normal pore pressure gradient is 0.465 psi/ft  

(Harkins and Baugher, 1969). In the North Sea, the average normal pore pressure gradient is 

0.452 psi/ft.  In the Niger Delta basin, the normal pore pressure gradient varies between 0.433 

psi/ft and 0.472 psi/ft. The normal pore pressure gradient is a function of the concentration of 

dissolved salts, temperature and content of dissolved gases (Serebryakov et al., 2002). Hence, 

there is a variation in the normal pore pressure gradient at different locations and depths. In ideal 

environments, pore pressure is expected to be normal from the surface to the depth of interest. 

Unfortunately, there are various geological and chemical processes that conspire to produce pore 

pressure values that are higher or lower than the normal. In subnormal pressure zones, the 

formation pore pressures are lower than the normal at the given depths. In overpressure intervals, 

the formation pore pressures are higher than the normal at the given depths. 

The origins of subsurface subnormal pressure conditions can be geologic or artificial. The 

geologic origins can be tectonic, stratigraphic or geochemical in nature while the artificial origins 

are usually related to hydrocarbons withdrawal from porous and permeable rocks. In regions 

where erosions have removed a significant amount of the overburden loads, the underlying rocks 
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may relax sufficiently to undergo an increase in pore volume, resulting in the reduction of 

formation pore pressure (Barker, 1972; Dickey & Cox, 1977; Serebryakov & Chilingar, 1994). 

Many subnormal pressure conditions are artificially induced by reservoir fluids (oil, water, and 

gas) withdrawal from subsurface reservoirs during production. For subnormal pressure 

conditions to occur, either the reservoirs are completely isolated with no communication with the 

surrounding strata or the reservoirs do not operate under active water drive (when the influx rate 

of support water is not enough to compensate for the rate of reservoir fluids withdrawal). Drilling 

through subnormal pressure intervals can cause severe drilling problems such as lost circulation, 

differential sticking and underground blowout. In extremely cases, reduction in reservoir 

pressure can lead to compaction and subsidence during production, which can lead to casing 

collapse and damage to surface structures (Sulak and Danielsen, 1988; Vudovich et al., 1988; 

Wooley and Prachner, 1988; Bickley and Curry, 1992; Bruno, 1992; Schwall et al., 1996; 

Schwall and Denney, 1994; Bruno, 2001; Nagel, 2001; Doornhof et al., 2006).  

Two conditions must exist for subsurface overpressure conditions to occur: (1) there must 

be permeability barriers and (2) there must be mechanisms that generate the overpressure. The 

permeability barriers (seals) restrict the movement of the pore fluids such that overburden loads 

are partially supported by the pore fluids. The seals are not necessarily impermeable but must be 

of low permeability with high capillary entry pressure (Pickering and Indelicato, 1985). 

Typically, the processes that generate subsurface overpressure conditions are very similar to 

processes involved in the generation, expulsion, migration, accumulation, and entrapment of 

hydrocarbons. Subsurface overpressure conditions have been encountered throughout the world 

(Fertl, 1972; Bradley, 1975; Carstens, 1978; Singh & Ford, 1982; Hunt, 1990; Kader, 1994; 

Gurevich & Chilingar, 1995; Serebryakov & Chilingar, 1995; Swarbrick, 1995; Belonin and 
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Slavin, 1998; Holm, 1998; Heppard et al., 1998; Nashaat, 1998; Wilson et al., 1998; Slavin & 

Smirnova, 1998; Schneider, 2000; O’Connor et al., 2012). Several mechanisms have been 

proposed as possible causes of overpressure generations in sedimentary basins. The five major 

overpressure generation mechanisms are: (1) compaction disequilibrium (under-compaction); (2) 

tectonic forces; (3) clay diagenesis; (4) aqua-thermal expansion; and (5) hydrocarbon generation. 

There are other minor causes of subsurface overpressure conditions. These include charging, 

artesian effects, centroid effects, and buoyancy/gravity effects. Carstens (1978) suggested that 

the overpressure conditions found in the argillaceous sediments in the Lower Tertiary of Central 

North Sea were caused by a self-sealing mechanism provided by small grain size, clay 

mineralogy, discontinuous limestone stingers and presence of gas. 

 

1.2.1 Compaction Disequilibrium (Under-compaction)  

 

Compaction disequilibrium occurs when the rate of deposition of sediments is greater than the 

rate of expulsion of interstitial fluids (usually water). The pore fluids become trapped and begin 

to support the weight of the overlying sediments (overburden loads), leading to subsurface 

overpressure conditions. Compaction disequilibrium is often considered as the chief cause of 

subsurface overpressure conditions usually found in young (tertiary) sedimentary basins where 

the favorable condition of rapid deposition of sediments containing a large quantity of clay 

minerals exists (Hart et al., 1995; Carlin and Dainelli, 1998; Law and Spencer, 1998; Katahara, 

2003; Sayers et al., 2005). In most cases, other causes of overpressure generation mechanisms 

are generally small compared to compaction disequilibrium (Burrus, 1998). If the rate of 

deposition of sediments is equal to the rate of expulsion of interstitial fluids, the excess fluid 

pressure created by the increasing overburden loads will be dissipated and normal pore pressure 
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will be maintained throughout the sediments at all depths. The greater the degree of under-

compaction, the higher the porosity, and the lower the vertical effective stresses when compared 

to normally pressured intervals at the same depths. Slavin and Smirnova (1998) reported that 

with the same magnitude of formation pore pressure, the porosity values of the overpressure 

zones caused by compaction disequilibrium are substantially higher than the porosity values of 

the overpressure zones caused by post sedimentary or fluid expansion origins 

 

1.2.2 Tectonic Activities  

 

Tectonic activities such as folding, faulting, and diapirism can cause an increase in formation 

pore pressure (Dickey et al., 1968; Harkins and Baugher, 1969; Finch, 1969; Law et al., 1998). 

Rock compaction takes place when subsurface formation is compressed (folded), leading to pore 

fluids being expelled from the formation pore spaces. If the pore fluids cannot escape during the 

compression-compaction process, the formation can become over-pressured as the pore fluids 

begin to support parts of the compressional and overburden loads. Faulting can create subsurface 

overpressure conditions in several ways. The permeable beds can be moved against the 

impermeable beds thereby preventing further fluid expulsion with compaction. Faults can create 

a leaking pathway for the migration of pore fluids from deeper overpressure intervals to 

shallower horizons thereby causing the shallower formations to be over-pressured (charging). A 

reverse fault can result in permeable formations being moved up to shallower depths resulting in 

subsurface overpressure conditions. Diapirism occurs when salt or shale becomes ductile and 

flows like a viscous plastic material under pressure and at elevated temperatures, rising through 

the entire thickness of the overlying sediments. 
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1.2.3 Clay Diagenesis 

 

During the sedimentation process, montmorillonite adsorbs water into its lattice structure. 

Further burial exposes the montmorillonite to higher temperature and pressure. Clay diagenesis 

usually occurs at a temperature between 90 – 150oC. At this temperature range, the 

montmorillonite undergoes a transformation and is converted into illite, releasing a large amount 

of water in the process (Powers, 1967; Burst, 1969; Rieke and Chilingarian, 1974; Burst, 1976; 

Freed & Peacor, 1989; Buryakovsky et al., 1995). Due to the compressive forces resulting from 

the increasing depth of burial, formation water can be squeezed and expelled from the shales into 

the adjacent porous and permeable rocks, giving rise to subsurface overpressure conditions. 

 

1.2.4 Aqua-thermal Expansion 

 

As the degree of rock compaction increases due to increasing depth of burial, the formation 

temperature will increase. This causes the expansion of pore fluids with a subsequent increase in 

formation pore pressure. If a normally pressured rock is effectively isolated and then subjected to 

a temperature increase, the reservoir fluid pressure will rise above the normal (Lewis & Rose, 

1970; Barker, 1972; Magara, 1975; Barkers & Horsfield 1982; Daines, 1982; Sharp Jr, 1983; 

Luo and Vasseur, 1992; Miller and Luk, 1993; Chen & Huang, 1996; Polutranko, 1998).  

 

1.2.5 Hydrocarbon Generation 

 

Hydrocarbon generation involves the transformation of kerogen into liquid and gaseous 

hydrocarbons. This can result in a significant increase in pore volume leading to subsurface 

overpressure conditions (Law & Dickinson, 1985; Spencer, 1987; Holm, 1998; Hunt et al., 1998; 

Guo et al., 2010; Tingay et al., 2013). It can also involve thermal cracking of liquid 
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hydrocarbons into gaseous hydrocarbons. Most subsurface overpressure conditions associated 

with petroleum source rocks are caused by hydrocarbon generation (Stainforth, 1984). 

Nevertheless, field observations have shown that the combination of the above 

overpressure generation mechanisms can create subsurface overpressure conditions within the 

same sedimentary basin (Plumley, 1980; Kadri, 1991; Luo et al., 1994; Ward et al., 1994; Law et 

al., 1998; Freire et al., 2010; Ramdhan and Goulty, 2011; Satti et al., 2015; Liu et al., 2016). 

Figure 1.1 shows the pressure profiles of a well located in the onshore region of the Niger Delta.  

 

 

Figure 1. 1 The pressure profiles of an onshore well in the Niger Delta. 
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The initial formation pore pressures in the field are normal from the surface down to 14,917 ft 

(onset of overpressure) with pore pressure gradient varying between 0.433 psi/ft and 0.472 psi/ft. 

The formation pore pressure ramps occur just below 14,917 ft. The formation pore pressure 

increases from 0.472 psi/ft at 14,917 ft to 0.828 psi/ft at 15,831 ft (pressure transition zones and 

overpressure intervals). No reservoir depletion has ever occurred below the pressure transition 

zones. However, fluids withdraw from five reservoirs have caused a reduction in formation pore 

pressures below the normal (subnormal). In the subnormal intervals, the formation pore pressure 

gradients are less than 0.433 psi/ft. It will be extremely challenging to drill the depleted and 

overpressure intervals in the same hole sections with conventional drilling techniques without the 

application of stress caging.  

 

1.3 Pore Pressure Prediction Techniques  

 

Most indirect methods of pore pressure detection techniques assume that subsurface overpressure 

conditions are associated with under-compaction/compaction disequilibrium. In young, rapidly 

subsiding basin, transiting from normal pore pressure regimes to overpressure intervals will 

cause changes in the rock geophysical properties and drilling parameters. These changes are 

generally seen as reversals in trends when the compaction-dependent geophysical properties are 

plotted against depth in a uniform lithology  (Bowers, 2002). Shale formations are the preferred 

lithology for pore pressure prediction because they are more responsive to effective stresses than 

most rock types. Most pore pressure prediction methods require a normal compaction trend 

(NCT) of the rock properties to be established. Under normal pore pressure conditions, the 

density, resistivity, compressional wave velocity, and degree of rock compaction are all expected 

to be increasing with depth while the formation porosity will exponentially decrease with depth. 
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When drilling through the overpressure zones, the rock density, resistivity and compressional 

wave velocity are expected to decrease while the formation porosity will increase. However, 

lithologic variations can create difficulty in defining the appropriate normal compaction trends 

(NCT) (Swarbrick, 2001). Variations in rock bulk and pore compressibility values have been 

used to detect the onset of abnormally high formation pressure in carbonate rocks (Atashbari and 

Tingay, 2012). Pulsed neutron capture logs can also be used to detect and quantitatively evaluate 

overpressure environments, allowing pore pressure depletion to be monitored behind the casing 

(Fertl and Chilingarian, 1987). Serebryakov et al. (1995) reported that the natural radioactivity 

values in the uniform shale layers can be used to identify the onset of abnormally-high pressured 

zones. In normally pressure conditions, gamma ray values will increase with depth. Departures 

from the normal compaction trends may signify changes in formation pore pressure regimes 

(Zoeller, 1983). Satti and Yusoff (2015) used the acoustic impedance principle to analyze the 

origin of overpressure mechanisms in the Malay Basin. Shear wave velocity can also be used to 

estimate the formation pore pressure and are more sensitive to pressure variations than the 

compressional wave velocity (Ebrom et al., 2002;  Ebrom et al., 2004). However, subsurface 

overpressure conditions have been reported to occur in rocks with low porosity and high density 

especially if the origin of the overpressure mechanism is not compaction disequilibrium. 

Carstens and Dypvik (1981) found that the Jurassic overpressure shale from the North Sea 

Viking graben was associated with low porosity and high density. Therefore, it is possible not to 

have any trend reversal between the normally compacted series and overpressure intervals when 

porosity indicators such as resistivity, compressional wave velocity and density are plotted 

against depth (Hermanrud et al., 1998; Teige et al., 1999). Most pore pressure prediction 
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techniques currently employed in the oil and gas industry may not be applicable to 

unconventional plays (Couzens-Schultz et al., 2013).  

All the pore pressure prediction techniques from geophysical and drilling parameters 

have their limitations. The formation resistivity is affected by other factors such as rock 

permeability, pore fluids, temperature and concentration of dissolved salts. Care must be taken 

when using resistivity data to estimate the formation pore pressure as the reversal in resistivity 

trend may have nothing to do with subsurface overpressure conditions (Lane and Macpherson, 

1976). The compressional wave velocity is affected by the presence of gas and 

microcracks/fractures in the formation. The effects of gas and microcracks on compressional 

wave velocity are similar to that of overpressure conditions (Gardner et al., 1974; Tatham and 

Stoffa, 1976;  Ensley, 1985; Williams, 1990; Brie et al., 1995; Hamada, 2004; Kozlowski et al., 

2017). Combining shear and compressional wave velocities will help to differentiate the gas 

effect from the overpressure effect (Dvorkin et al. 1999). The shale radioactivity values (gamma 

ray) may also be affected by the presence of other minerals in the shales which may have nothing 

to do with the overpressure conditions. The drilling parameters are affected by bit hydraulics, 

lithologies, bit wears, bit sizes, shocks, and vibrations. The seismic responses are affected by 

changes in lithology and pore fluid type. Huffman (2002) summarizes the applications and 

limitations of various geophysical methods used for pore pressure predictions. The best approach 

to pore pressure prediction is to examine the combination of all the available measured data 

(geophysical and drilling parameters) since relying on only one type of data can result in 

misinterpretations (Fertl and Timko, 1971). Even direct measurements (repeat formation tester, 

modular formation dynamics tester, reservoir characterization explorer, drill stem test, bottom-

hole pressure survey, permanent downhole gauge, and drilling kick) of formation pore pressure 
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have their own limitations. These measurements are usually made only after the well must have 

been drilled and possible overpressure zones have been penetrated. Thus, direct measurements 

have limitations in terms of real-time monitoring and predicting formation pore pressure ahead 

of the bit. A recently developed logging while drilling (LWD) tool (formation pore pressure 

while drilling tool) in the bottom-hole assembly (BHA) can measure the reservoir pressures of 

penetrated rocks while drilling. This does not still change the fact that the rocks must be 

penetrated before taking the pressure measurements since the tool sensor is placed some feet 

behind the bit. Direct pore pressure measurements using drilling kick and LWD tool may not be 

suitable for low permeability reservoirs because the time required for such reservoirs to reach the 

final pressure build up make cause the BHA to get stuck in the hole. The data used to estimate 

the formation pore pressure can be classified into three categories: (1) seismic data, (2) well log 

data and (3) drilling parameters. 

 

1.3.1 Pore Pressure Prediction from Seismic Data 

 

The seismic reflections are functions of acoustic impedance and they are affected by formation 

pore pressure. The formation interval velocity can be obtained from conventional surface 

seismic, borehole seismic and seismic while drilling (SWD). The conventional surface seismic 

method is the only method available to estimate the formation pore pressure when no drilling 

activities have occurred in a field. Pennebaker (1968) was the first to develop a methodology that 

uses seismic interval velocity for pore pressure prediction. Dutta and Ray (1997) used the 

velocity and acoustic impedance inversion of seismic reflections to obtain the formation pore 

pressure. In normally compacted series with no hydrocarbon saturation, seismic wave 

propagation velocity will increase with depth in a uniform lithology. Deviation from the 
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increasing velocities with depth to lower values can be directly related to the increase in 

formation pore pressure if the rock type and pore fluid remain constant. The quality of the 

seismic data will affect its accuracy. Seismic wave velocities can be affected by other factors that 

are not related to overpressure conditions. This can make the estimation of formation pore 

pressure from seismic sources very difficult. These factors include lithology, degree of rock 

cementation and the type of pore fluids (Scott and Thomsen, 1993).  Several applications of 

seismic data for pre-drill pore pressure predictions have been reported in the literature (Weakley, 

1989; Sayers et al., 2000; Dutta et al., 2001; Huffman, 2002; Dutta, 2002; Sayers et al., 2002; 

Soleymani & Riahi, 2012; Etminan et al., 2012; Banik et al., 2013). Once the interval velocities 

at any given depths are obtained from the seismic data, empirical relationships can be used to 

compute the formation pore pressure (Eaton, 1975; Bower, 1995). 

 

1.3.2 Pore Pressure Prediction from Well Logs 

 

Based on the modification to the porosity model proposed by Athy (1930), an exponential 

relationship was established between shale porosity and vertical effective stress. This 

relationship is given by (Rubey & Hubber, 1959; Flemings et al., 2002):  

 

∅ = ∅oe
−kσv

′  ,                                                                                                                                             (1.1) 

 

where ∅ is the formation porosity (fraction); σv
′  is the vertical effective stress (psi); ∅o 

surface/mudline clay porosity (fraction); k is the stress compaction constant. The vertical 

effective stress is defined by Terzaghi (1927) as the vertical stress minus pore pressure and is 

given by: 

 

σv
′ = σv − PP,                                                                                                                                           (1.2) 
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where σv is the vertical stress (psi); PP is the pore pressure (psi). Burrus (1998) suggested that 

the pore pressure predictions using the vertical effective stress defined by (Biot, 1941) provided 

better agreement with the field observations and is given by: 

 

σv
′ = σv − αPP,                                                                                                                                         (1.3) 

 

where α is the Biot’s coefficient. The expression for Biot’s coefficient is given by: 

 

α = 1 − 
Cg

Cb
 ,                                                                                                                                              (1.4) 

 

where Cg is the grain compressibility (psi-1); Cb is the bulk compressibility (psi-1). In normally 

compacted series, as vertical effective stress increases, shale porosity will decrease. In pressure 

transition and overpressure intervals, a decrease in effective stress will be accompanied by an 

increase in shale porosity if the origin of overpressure mechanism is mainly due to compaction 

disequilibrium. Mathematical manipulation of equation 1.1 by Hart et al. (1995) is given by: 

 

PP =  σv − [
1

k
ln [

∅o

∅
]].                                                                                                                           (1.5) 

 

Equation 1.5 implies that if shale porosities and vertical stresses at various depths are known, the 

pore pressures can be easily determined.  The formation porosities and the vertical stresses can 

be obtained from density logs. (Burrus, 1998) concluded that the compaction model based on the 

vertical effective stress – porosity relation sufficiently explained the overpressure conditions in 

rapidly subsiding basins such as Mahakam Delta, Indonesia, and Gulf Coast, U.S.A.   

  Hottmann and Johnson (1965) were the first to directly correlate well log data (resistivity 

and sonic transit time) to subsurface overpressure conditions encountered in the Miocene and 
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Oligocene shales in Upper Texas and Southern Louisiana Gulf Coast. The methodology involves 

establishing the normal compaction trend (NCT) that corresponds to the normal pore pressure 

regime when shale resistivity or sonic transit time is plotted against depth on the semi-log. The 

divergence of observed sonic transit time or resistivity from the NCT is a measure of the 

formation pore pressure (Figure 1.2).  

 

 

Figure 1. 2 The acoustic-depth and resistivity-depth plots (Hottmann and Johnson, 1965). 
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Based on the shale formation resistivity factor, Foster and Whalen (1966) established a 

relationship among pore pressure, depth, and the ratio of normal shale resistivity to observed 

shale resistivity for regions with varying salinity. Foster and Whalen’s model is given by:   

 

PP = 0.465 ∗ Z + 
0.535

log b
∗ log [

Rn

Ro
],                                                                                                    (1.6) 

 

where PP is the formation pore pressure (psi); Z is the true vertical depth (ft); Rn is the normal 

shale resistivity (ohm-m); Ro is the observed (abnormal) shale resistivity (ohm-m). The logb can 

be obtained from the slope of formation factor versus depth plot. 

Based on the data presented by Hottmann and Johnson (1965), Gardner et al. (1974) 

provided a relationship among vertical effective stress, difference between overburden and 

normal pore pressure gradients, interval travel time and depth. Gardner’s model is given by: 

  

[
σv − PP

Gob − Gnp
]

1
3

∗ Z
2
3 = A − B loge ∆t,                                                                                                      (1.7) 

 

where σv is the vertical stress (psi); PP is the pore pressure (psi); Z is the true vertical depth (ft); 

Gob is the overburden gradient (psi/ft); Gnp is the normal pore pressure gradient (psi/ft); ∆t is the 

interval travel time (μs/ft); A and B are constant parameters. The values of A and B can be 

obtained by calibration equation 1.7 to any known normally pressured intervals in the region. 

 Eaton (1975) developed a correlation that relates formation pore pressure gradient to 

overburden gradient, normal pore pressure gradient and resistivity or velocity ratio. Eaton’s 

models are given by: 
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Gpp = Gob − {Gob − Gnp} [
Ro

Rn
]
a

                                                                                                          (1.8) 

and 

Gpp = Gob − {Gob − Gnp} [
∆tn
∆to

]
b

,                                                                                                       (1.9) 

 

where Gpp is the pore pressure gradient (psi/ft); Gob is the overburden gradient (psi/ft); Gnp is the 

normal pore pressure gradient (psi/ft); Ro is the observed shale resistivity (ohm-m); Rn is the 

normal compaction trend shale resistivity (ohm-m); a is the resistivity exponent coefficient 

(usually 1.5 but can range from 1.0 – 2.0); ∆𝑡𝑛 is the normal compaction shale travel time 

(μs/ft); ∆𝑡𝑜 is the observed shale travel time (μs/ft); b is the sonic exponent coefficient (usually 

3.0 but can range from 2.0 – 4.0). The overburden gradient, formation resistivity and interval 

travel time are usually obtained from density, resistivity and sonic logs respectively. Eaton’s 

models are probably the most widely used empirical models for pore pressure prediction, 

especially in under-compacted series. 

 Eberhart-Phillips et al. (1989) developed empirical relations between measured sonic 

velocities, effective stress, porosity, and clay contents for shaly sandstone rocks after conducting 

experimental studies on 64 rock samples. Eberhart-Phillips’s models are given by:  

 

Vp = 5.77 − 6.94∅ − 1.73√C + 0.446(σv
′ − e−16.7σv

′
)                                                              (1.10)  

and 

Vs = 3.70 − 4.94∅ − 1.57√C + 0.361(σv
′ − e−16.7σv

′
),                                                              (1.11) 

 

where Vp is the compressional wave velocity (km/s); Vs is the shear wave velocity (km/s); ∅ is 

the formation porosity; C is the clay volume (fraction); 𝜎′ is the effective pressure (kbar). 
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Equations 1.10 and 1.11 can be adapted for shale by equating the value of clay volume (C) to 

one. Given the values of Vp, Vs, and porosity as a function of depth from well logs and/or 

seismic data in shale formations, the vertical effective stress (σv
′ ) can be determined. Subtracting 

the overburden stress from the calculated vertical effective stress at any given depth will give the 

corresponding value of the formation pore pressure. 

 Holbrook et al. (1995) expressed vertical effective stress as a function of formation 

porosity given by: 

 

σv
′ = A[1 − ∅]B,                                                                                                                                     (1.12)  

 

where σv
′  is the vertical effective stress (psi); ∅ is the formation porosity (fraction); A and B are 

the fitting parameters relating to the compaction resistance properties of the rocks. The values of 

A and B can be obtained by calibrating equation 1.12 to the normally pressured intervals in the 

field. The formation pore pressure at any given depth can be obtained from  

 

PP = σv − A[1 − ∅]B,                                                                                                                          (1.13)  

 

where PP is the formation pore pressure (psi); σv is the vertical stress (psi). 

Since, most pore pressure prediction techniques fail to take into account the origins of 

overpressure mechanisms, Bowers (1995) proposed new techniques of predicting the formation 

pore pressure from compressional sonic velocity based on the principle of effective stress. 

Bower’s models consider the excess pore pressure generated by both under-compaction and fluid 

expansion mechanisms. The technique involves estimating the vertical effective stress from the 

compressional sonic velocity. The pore pressure is then computed by subtracting the overburden 
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pressure from effective stress. Bower’s first relation accounts for normal pore pressure regime 

and overpressure conditions caused by under-compaction (virgin curve) and is given by:   

 

V = 5000 + Aσe
B,                                                                                                                                   (1.14) 

 

where V is the compressional sonic velocity (ft/sec); 𝜎𝑒 is the effective vertical stress (psi); A 

and B are virgin curve parameters. The values of A and B can be obtained by calibrating 

equation 1.14 to the regional data from the normally pressured intervals. The second Bower’s 

relation accounts for overpressure conditions caused by fluid expansion mechanisms (unloading 

curve) and is given by: 

 

V = 5000 + A [σmax [
σe

σmax
]

1
U
]

B

,                                                                                                        (1.15) 

 

σmax = [
Vmax − 5000

A
]

1
B
,                                                                                                                    (1.16) 

 

where σmax is the effective vertical stress at the onset of unloading (psi); Vmax is the 

compressional sonic velocity at the onset of unloading (ft/sec); U is the unloading parameter 

which is a measure of how plastic the sediment is. When U is equal to one, there is no permanent 

deformation because the unloading curve (equation 1.15) reduces to the virgin curve (equation 

1.14). The value of U is obtained by calibrating equation 1.15 to the regional offset well data in 

the overpressure intervals. Bower’s models are another widely used empirical relationships and 

the models are applicable to many sedimentary basins. However, Bower’s model has been 

reported not to be effective for 3D overpressure prediction using seismic velocity in the deep 

zones of Malay Basin, Malaysia where fluid expansion mechanism is the dominant cause of 
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overpressure generation (Satti et al., 2016). Bower’s model may also overestimate formation 

pore pressure in shallow unconsolidated formations because the velocities in such formations are 

very slow (Zhang, 2011).  

The combination of compressional and shear wave velocities can be used to estimate the 

formation pore pressure (Li et al., 2000; Walls et al., 2000; Ebrom et al., 2006; Kumar et al., 

2006; Saleh et al., 2013; Yu and Hilterman, 2013; Ebrom et al., 2006; Kumar et al., 2006). 

Prasad (2002) suggested that the velocity ratio (Vp/Vs) is very sensitive to an increase in 

formation pore pressure. Saleh et al., (2013) used the Vp/Vs to predict the pore pressure in subsalt 

environments. 

A locally calibrated velocity-dependent pore pressure prediction model was proposed by 

Shell using the Tau-effective stress concept (Gutierrez et al., 2006) and is given by:  

 

σv
′ = A [

200 − ∆𝑡

∆𝑡 − 50
]
𝐵

                                                                                                                              (1.17) 

 

where σv
′  is the vertical effective stress (psi); ∆𝑡 is the compressional transit time (μs/ft); A and 

B are fitting constants. The values of A and B can be obtained by calibrating equation 1.17 to the 

regional data from the normally pressured intervals. The formation pore pressure at any given 

depth can be obtained using: 

 

PP = σv − A [
200 − ∆𝑡

∆𝑡 − 50
]
𝐵

                                                                                                                   (1.18) 

 

where PP is the formation pore pressure (psi); σv is the vertical stress (psi).  

 Zhang (2011) proposed modified Eaton’s sonic model by using depth-dependent normal 

compaction trend equation as given by: 
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Gpp = Gob − {Gob − Gnp} [
∆tm + [∆tml−∆tm]e−CZ

∆to
]

3

,                                                               (1.19) 

 

where Gpp is the pore pressure gradient (psi/ft); Gob is the overburden gradient (psi/ft); Gnp is the 

normal pore pressure gradient (psi/ft); ∆𝑡𝑚 is the shale matrix compressional transit time with 

zero porosity (approximately 65 μs/ft); ∆𝑡𝑚𝑙 is the mudline compressional transit 

time (approximately 200 μs/ft); Z is the true vertical depth below the mudline (ft); C is the 

compaction constant; ∆to is the observed compressional transit time either from the sonic log or 

seismic velocity (μs/ft). In Zang’s model, the normal compaction trend decreases exponentially 

with depth and this is given by 

 

∆ton = ∆tm + [∆tml−∆tm]e−CZ,                                                                                                        (1.20) 

 

where ∆ton is the observed compressional transit time in the normally pressured intervals (μs/

ft). The value of C (compaction constant) can be obtained by calibrating equation 1.20 to the 

normally pressured intervals. Other modifications to the existing pore pressure prediction models 

from geophysical parameters are presented by Zhang (2011). 

For carbonate rocks, Atashbari and Tingay (2012) proposed a pore pressure prediction 

model based on compressibility attributes. The model is given by  

 

PP =  [
(1 − ∅)Cbσv

′

(1 − ∅)Cb − (∅Cp)
]

γ

,                                                                                                             (1.21) 
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where PP is the formation pore pressure (psi); ∅ is the formation porosity (fraction); Cb is the 

bulk compressibility (psi-1); Cp is the pore compressibility (psi-1); σv
′  is the vertical effective 

stress (psi); 𝛾 is the empirical constant ranging from 0.9 to 1.0. 

 Zhang (2013) proposed a pore pressure prediction model for cases without unloading 

which relates formation pore pressure to vertical stress, depth and compressional transit times. 

This model is given by 

 

 

PP = [
σv − [

σv − αNPP
CZ ] ln [

∆tml−∆tm
∆to − ∆tm

]

α
],                                                                                     (1.22) 

 

where PP is the formation pore pressure (psi); σv is the vertical stress (psi); NPP is the normal 

pore pressure (psi); Z is the true vertical depth below the mudline (ft); ∆𝑡𝑚 is the shale matrix 

compressional transit time with zero porosity;  ∆𝑡𝑚𝑙 is the mudline compressional transit time; C 

is the compaction constant; ∆to is the observed compressional transit time either from the sonic 

log or seismic velocity (μs/ft); α is the Biot’s coefficient. A similar model for unloading 

conditions is also available (Zhang, 2013). 

 

1.3.3 Pore Pressure Prediction from Drilling Parameters 

 

This method has the advantage of predicting the formation pore pressure at the bit rather than 

behind the bit. Under normal pressure conditions, the rate of penetration (ROP) will gradually 

decrease as we drill deeper into the sedimentary basin due to greater rock compaction and 

increase in vertical effective stress. In overpressure intervals, the ROP will most likely increase 

due to higher rock porosity and decrease in the vertical effective stress from increasing pore 
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pressure. An increase in the formation pore pressure for a given mud weight will cause the ROP 

to increase due to reduced back pressure on the formations (Cunningham & Eenink, 1959; 

Combs, 1968; Wardlaw. 1969). The results of the experimental studies conducted by Garnier and 

Lingen (1959) on permeable rocks of varying strength and permeability showed a reduction in 

the drilling rate of penetration due to an increase in rock strength governed by the differential 

pressure between the bottom-hole pressure and the formation pore pressure. Black et al. (1985) 

conducted experimental studies on four water-saturated sandstone samples using water-based 

mud and concluded that increase in the differential pressure across the mud filter cake on the 

bottom of the hole will dramatically reduce the penetration rates.  From Black’s observations, the 

rate of penetration decreased by roughly a factor of 3 as the differential pressure across the filter 

cake increased from 0 to 1,000 psi for the specific muds, rock, bit, and conditions tested. Several 

other researchers have also reached the same conclusion that the  rate of penetration decreases 

with an increase in differential pressure between the bottom-hole pressure and formation pore 

pressure (Murray & Cunningham, 1955; Lingen, 1962; Maurer, 1965; Vidrine & Benit, 1968; 

Wardlaw, 1969; Cheatham et al., 1985). In general, the ROP increases exponentially with a 

decrease in differential pressure between the bottom-hole hole pressure and formation pore 

pressure. Therefore, the plot of rate of penetration versus depth will most likely follow an ever-

decreasing trend in the normally pressured intervals, and the trend will reverse when entering 

into the overpressure zones. Forgotson (1969) suggested that a minimum increase of 200% in the 

rate of penetration is required for overpressure detection in shales. However, excessive 

overbalance may not show any substantial increase in ROP even with a significant increase in 

differential pressure. ROP can also be influenced by many other factors than the differential 

pressure. These factors include lithology, formation compaction, weight on bit (WOB), rotary 
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speed, bit size, bit type, hydraulics and bit wear (Bourgoyne and Young, 1973). A sudden 

increase in ROP may not necessarily signify drilling into abnormally high-pressured zones. 

Therefore, the use of ROP for pore pressure prediction my prove difficult due to several 

limitations on its application (Rasmus and Stephens, 1995). Combs (1968) proposed a 

mathematical model that relates ROP in shales to differential pressure, WOB, rotary speed, flow 

rate, hole size, and bit wear index. Contrary to must publications, Detournay and Atkinson 

(2000) suggested that the drilling specific energy does not depend on the virgin formation 

pressure in low-permeability formations such as shales. Laboratory drilling studies conducted by 

Gray-Stephens et al. (1994) also suggested that differential pressure did not have any strong 

influence on the drilling response in hard shales. Bingham (1965) developed a mathematical 

relationship between the rate of penetration, weight on bit, rotary speed and the bit diameter 

based on the laboratory and field data. Bingham’s model is given by 

 

ROP

N
=  a [

WOB

Db
]
d

,                                                                                                                                 (1.23) 

 

where ROP is the rate of penetration (ft/min); N is the rotary speed in revolution per minute 

(RPM); WOB is the weight on bit (lbs); Db is the bit diameter (in); a is the matrix strength 

constant; d is the formation drill-ability constant. Jorden and Shirley (1966) normalized the 

Bingham’s model by correcting for the effects of WOB, rotary speed and hole size on the rate of 

penetration resulting in the development of the d-exponent concept. The d-exponent is given by 

 

d − exponent =  
log [

ROP
60N]

log [
12WOB
106D

]
.                                                                                                         (1.24) 
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where ROP is the rate of penetration (ft/hr); N is the rotary speed (rpm); WOB is the weight on 

bit (lbs); Db is the bit diameter (in). However, the d-exponent proposed by Jorden and Shirley 

(1966) did not take into account the hydraulic parameters, mud properties, bit type, bit wear, and 

most importantly the effect of mud weight changes. Harper (1969) modified the d-exponent 

equation to include the effect of changes in the mud weight/bottom-hole pressure and is given by 

 

dc − exponent = d − exponent [
Gnp

ECD
],                                                                                          (1.25) 

 

where dc − exponent is the corrected d - exponent; Gnp is the normal pore pressure gradient 

(psi/ft or ppg); ECD is the equivalent circulating density (psi/ft or ppg). In the normally 

pressured intervals, the plot of the dc - exponent versus depth will show an increasing trend in a 

constant lithology. Upon penetrating the transition and overpressure zones, the dc - exponent 

values will deviate from the normal trend to lower values due to decrease in rock compaction and 

differential pressure. Provided a uniform lithology (100% of clay formation) is being drilled and 

the differential pressure is not excessive, the plot of dc - exponent versus depth can be used to 

identify the onset of overpressure. The dc - exponent versus depth graph is displayed on the semi-

log to prevent significant variation of dc - exponent with location and geological age. The 

vertical axis represents the depth on the linear scale and the horizontal axis represents dc - 

exponent on the logarithmic scale (Zamora, 1972). The formation pore pressure can be estimated 

from the dc – exponent using Eaton’s model as given by  

 

Gpp = Gob − {Gob − Gnp} [
dco

dcn
]
c

,                                                                                                     (1.26) 
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where Gpp is the pore pressure gradient (psi/ft); Gob is the overburden gradient (psi/ft); Gnp is the 

normal pore pressure gradient (psi/ft); 𝑑𝑐𝑜 is the calculated 𝑑𝑐  from measured data; 𝑑𝑐𝑛 is the 

𝑑𝑐  from normal trend line; c is the coefficient (usually 1.2 but can range from 1.0 to 2.0). 

The applications of the d-exponent method in the field for pore pressure predictions have 

produced mixed results. The major drawback to the application of d – exponent concept to pore 

pressure prediction is that it does not consider the effect of bit hydraulic energy on the rate of 

penetration (ROP). This greatly limits its application to hard rock environments where bit 

hydraulic energy has little or no effect on rock breakage. In hard rock environments, the major 

function of the bit hydraulic energy is to clean the bit face and throw the drill cuttings beneath 

the bit face into the annulus stream. The bit hydraulic energy becomes important in soft 

formations where jetting will make a large contribution to the rate of penetration. Whenever the 

bit hydraulic energy changes (due to changes in flow rate, mud weight, and nozzle sizes), or 

there is a change in the susceptibility of the formation to jetting (soft rocks), the dc – exponent 

will also change. Under downhole conditions where the bit hydraulic energy has a significant 

influence on the rate of penetration (unconsolidated sediments), the d – exponent method may 

produce inaccurate estimates of formation pore pressure unless the flow rate, mud weight, and jet 

velocity can be maintained constant while drilling the transition and overpressure zones. 

However, maintaining these parameters constant during drilling operations may not be possible. 

 Cardona (2011) was the first to apply the mechanical specific energy (MSE) concept to 

predict the formation pore pressure in the sub-salt formations in the GOM based on the 

adaptation of  Eaton (1975) model to include the MSE terms.  Teale (1965) defined MSE as the 

amount of energy (axial + rotary loads) required to remove a unit volume of rock and is given by 
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MSE =  
WOB

Ab
+ 

120 ∗ π ∗ N ∗ T

Ab ∗ ROP
,                                                                                                      (1.27) 

 

where MSE is the mechanical specific energy (psi); WOB is the downhole weight on bit (lbs); Ab 

is the bit area (in2); N is the rotary speed (rpm); T is the torque on bit (lb-ft); ROP is the rate of 

penetration (ft/hr). The modified Eaton’s model using MSE parameters is given by 

 

Gpp = Gob − {Gob − Gnp} [
MSEo

MSEn
]
c

,                                                                                                (1.28) 

 

where Gpp is the pore pressure gradient (psi/ft); Gob is the overburden gradient (psi/ft); Gnp is the 

normal pore pressure gradient (psi/ft); MSEo is the actual MSE calculated using equation 1.28; 

MSEn is the hypothetical value of MSE from the normal compaction trend; c is the MSE 

coefficient (usually ≤ 1.0). 

 Akbari et al. (2014) experimentally showed the dependency of MSE on formation pore 

pressure. They established a relationship between MSE, differential pressure, and confining 

pressure (equation 1.29): 

 

MSE = UCS + [a + b
∆P
Pc ] ln

Pc

Patm
,                                                                                                       (1.29) 

 

where MSE is the mechanical specific energy (psi); UCS is the uniaxial compressive strength 

(psi); ∆𝑃 is the differential pressure between confining pressure and pore pressure (psi); 𝑃𝑐 is the 

confining pressure (psi); 𝑃𝑎𝑡𝑚 is the atmospheric pressure (psi); 𝑎 is the coefficient that is 

dependent on rock internal friction angle; 𝑏 is the coefficient that is dependent on rock 

permeability, porosity, fluid viscosity, fluid compressibility, rotary speed and depth of the cut.  

 The last major improvement to pore pressure prediction Majidi et al. (2016) proposed the 
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concept of drilling efficiency and MSE to estimate the formation pore pressure in a sub-salt 

deepwater well in the Gulf of Mexico. Majidi’s model involves the application of downhole 

drilling parameters and in-situ rock properties. Majidi’s model is given by: 

 

PP = ECD − [(DEtrend x  MSE) − UCS] [
1 − sin θ

1 + sin θ
],                                                                   (1.30) 

 

DEtrend = a∅n
b,                                                                                                                                        (1.31)  

 

USC = 0.43Vp
3.2,                                                                                                                                      (1.32) 

 

θ = 1.532Vp
0.5148,                                                                                                                                   (1.33) 

 

where PP is the pore pressure (psi); ECD is the equivalent circulating density (psi); MSE is the 

mechanical specific energy (psi); UCS is the uniaxial compressive strength (psi); 𝜃 is the angle 

of internal friction; ∅ is the formation porosity; Vp is the compressional sonic velocity (ft/sec); a 

is the coefficient of drilling efficiency trend-line from porosity trend-line; b is the exponent of 

drilling efficiency trend-line from porosity trend-line. 

While the recent advancement in pore pressure prediction from the drilling parameters 

uses the MSE concept (Cardona, 2011; Majidi et al., 2016), the MSE has similar limitations to d 

– exponent method because the MSE technique does not consider the effect of bit hydraulic 

energy on the ROP. This will certainly make the MSE method to produce erroneous results under 

certain drilling conditions where bit hydraulic energy has an effect on ROP. For example, if the 

driller decides to increase the flow rate to clean the hole or reduce the flow rate to minimize the 

equivalent circulating density while drilling the pressure transition zones in unconsolidated 

formations, the MSE may produce inaccurate estimates of formation pore pressure. 
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 1.4 Research Objectives 

 

1. To develop a new pore pressure prediction technique from drilling parameters that 

incorporates the bit hydraulic energy term based on the concept of total energy consumed 

while drilling using downhole measurements. 

2. To develop a new pore pressure prediction technique from drilling parameters that 

incorporates the bit hydraulic energy term based on the concept of total energy consumed 

while drilling using only surface measurements.  

3. To improve the accuracy of pore pressure prediction by improving the accuracy of 

overburden pressure computation via improvement in density logs prediction. 

4. To extend the application of total energy concept to real-time lithology identification.  

5. To develop a new fracture pressure prediction model that can be applied to normal and 

overpressure intervals in the Niger Delta. 

 

1.5 Connectivity among the Research Papers 

 

The primary objective of this research is to develop hydraulic-dependent pore pressure prediction 

models from the drilling parameters using the concept of specific energy. The application of 

specific energy to drilling operations is further extended to real-time lithology identification. 

Accurate knowledge of overburden pressure is required for pore pressure prediction. Inaccurate 

prediction of overburden pressure may lead to erroneous pore pressure estimates. Usually, 

overburden pressure is computed from density logs. However, in areas where density logs are not 

available, synthetically derived density logs are used. In this research, new formation bulk 

density prediction models that can be applied to a wide range of lithologies in siliciclastic 
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environments are proposed. Finally, since pore and fracture pressures are closely related, an 

attempt is also made to develop a new fracture pressure prediction model that can be applied to 

normal and overpressure intervals in the Niger Delta basin.  

Figure 1.3 shows the connectivity among the research papers. The research papers are 

highly connected. The pressure-depth and lithology-depth plots form the basis of well design. 

Specific energy is required for lithology and pore pressure predictions. Overburden and pore 

pressures are required for fracture pressure determination. Formation of bulk density and 

overburden pressure are required for pore pressure prediction. Formation bulk density is required 

for overburden pressure computation. 

 

 

 
Figure 1. 3 The connectivity among the research papers. 
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1.6 Organization of the Thesis 

 

The thesis is prepared in manuscript style and consists of six main chapters. The outlines of the 

chapters (research papers) are presented below: 

1. Chapter 2 presents an innovative pore pressure prediction technique from drilling 

parameters based on the concept of hydro-rotary specific energy using downhole 

measurements. This chapter is published in the Journal of Natural Gas Science and 

Engineering. 

2. Chapter 3 presents a pore pressure prediction method from drilling parameters based on 

the hydro-mechanical specific energy concept using only surface measurements. This 

chapter is published in the Journal of Petroleum Science and Engineering. 

3. Chapter 4 presents the new formation bulk density prediction models that can be applied 

to a wide range of lithologies in siliciclastic environments. This chapter is published in 

the Journal of Petroleum Science and Engineering. 

4. Chapter 5 presents a new fracture pressure prediction model that can be applied to normal 

and overpressure intervals in the Niger Delta. This chapter is submitted to the Journal of 

Environmental Earth Sciences. 

5. Chapter 6 presents a new method of identifying subsurface lithology using specific 

energy concept. This chapter is published in the Journal of Petroleum Science and 

Engineering. 
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Chapter 2 

 

2.0 Overpressure Prediction Using the Hydro-Rotary Specific Energy Concept 
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Abstract  

 

Pore pressure predictions from the drilling parameters have experienced little improvement since 

the inception of the d-exponent concept. Applications of the d-exponent method to pore pressure 

predictions have produced mixed results, especially in deviated wells and under drilling 

conditions where bit hydraulic energy has a significant influence on the rate of penetration 

(ROP). In this paper, a new energy-based pore pressure prediction technique using the concept of 

hydro-rotary specific energy (HRSE) is presented. The HRSE approximates the total energy 

required to break and remove a unit volume of rock. Overpressure prediction using the HRSE 

method is based on the principle that overpressure intervals with lower effective stress will 
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require less energy to drill than the normally pressured intervals at the same depth. The new 

technique is tested using a recently drilled deep vertical exploratory gas well in the Tertiary 

Deltaic System in the central swamp region of the Niger Delta in Nigeria. The pore pressure 

estimates from the HRSE concept are compared to: (1) the pore pressure estimates derived from 

the d-exponent and shale compressional velocity, (2) the actual pore pressure measurements 

taken in the reservoir sands of interest. An excellent agreement is observed in magnitude and 

trend between the pore pressure estimates derived from the HRSE concept and the actual pore 

pressure measurements. This clearly demonstrates the applicability of the HRSE concept in 

predicting the onset of overpressure and estimating the formation pore pressure. The HRSE 

method of overpressure prediction has the potential to be more accurate in some drilling 

environments where the d-exponent method may have produced erroneous results. 

 

Keywords: Pore pressure; Overpressure; Mechanical Specific Energy; Hydro-rotary Specific 

Energy, d-exponent; Normal Compaction Trend 

 

2.1 Introduction  

 

The formation pore pressure is of great importance in the oil and gas industry.  It provides the 

necessary energy required to drive liquid and gaseous hydrocarbons to the surface. It also 

represents a potential hazard during drilling, completion, and production if not properly 

managed. Accurate knowledge of the formation pore pressure is very useful in all stages of oil 

and gas exploration and production. Exploration engineers use pore pressure data to determine 

subsurface trap integrity. The occurrence of hydrocarbons in some sedimentary basins is also 

believed to be related to the subsurface pore pressure regime (Belonin & Slavin, 1998). 
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Information about the formation pressure helps the reservoir engineers in reservoir modeling. 

Production engineers use pore pressure data for well performance analysis. Drilling engineers 

use pore pressure data to optimize rig selection, casing depths determination, drilling, and 

completion fluid design, wellheads design, casing and tubing design, cement design and material 

selection. Facility engineers also use pore pressure data for surface installation designs. From a 

business perspective, subsurface pressure regimes will dictate the overall well cost.  

The formation pore pressure can be normal (hydrostatic), subnormal or overpressure. It is 

normal if it is able to support a continuous column of static formation water from the surface to 

the reservoir depth of interest (Swarbrick & Osborne, 1998). The normal pore pressure gradient 

varies between 0.433 – 0.515 psi/ft depending on the location, concentration of dissolved salts, 

pore fluid type, and temperature. Formations with pore pressure gradient lower than normal pore 

pressure gradients are termed subnormal. Overpressure intervals have a pore pressure gradient 

greater than the normal pore pressure gradient. Subsurface overpressure conditions and their 

origins have been reported in nearly all the hydrocarbon-bearing sedimentary basins around the 

world (Plumley, 1980; Spencer, 1987; Hunt, 1990; Swarbrick, 1995; Yassir et al., 1996; Nashaat, 

1998; Polutranko, 1998; Slavin & Smirnova, 1998; Holm, 1998; Kumar et al., 2016). The 

Normal, subnormal and overpressure conditions can co-exist in a sedimentary basin provided 

they are separated by permeability barriers. Conventionally, pore pressure predictions have been 

carried out using seismic, drilling and well log data. However, the best approach to pore pressure 

prediction is to examine the combination of all the available data. Relying on only one type of 

data can lead to misinterpretations. For example, under poor borehole conditions such as 

breakouts or washouts, the well log data may produce inaccurate estimates of pore pressure. The 

same poor borehole conditions may have little or no effect on the drilling parameters. 
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Table 2. 1 Merits and limitations of pore pressure prediction methods. 

 

Method Merits Limitations 

Seismic 

Data 

The conventional seismic data can provide pre-

drill pore pressure predictions for well planning 

purposes, especially in exploration drilling. 

Formation pressure can be predicted real-time 

ahead of the bit (seismic while drilling). 

The seismic responses can be affected by 

changes in lithology and pore fluid type. The 

pore pressure prediction accuracy from the 

seismic data can be very low. The geology of 

the application basin must be known. 

Well log 

data 

Real-time pore pressure prediction using 

logging while drilling (LWD) data. Under 

suitable conditions, pore pressure estimates 

from the well log data provide the most 

accurate results when compared to other 

methods of pore pressure prediction. 

 

Well logs can be affected by borehole 

conditions. Formation pressure is predicted a 

few feet behind the bit for real-time 

applications. They cannot be acquired before 

the well is drilled. For LWD measurements, 

data quality may be affected by the drilling 

rate. Rock properties can be affected by other 

factors than the formation pore pressure. 

Drilling 

parameters 

Formation pressure can be estimated real-time 

at the bit. May provide good pore pressure 

estimates under suitable conditions. It is 

relatively inexpensive. Drilling parameter data 

are readily available. 

Not suitable for pre-drill pore pressure 

predictions along the well path. Data 

qualities are affected by shocks/vibrations. 

Drilling parameters are affected by lithology, 

rock strength, bit type, bit wear, BHA 

sticking and excessive overbalance. 

 

This can make the pore pressure estimates from the drilling parameters to be more accurate than 

pore pressure estimates from well logs under such conditions. Similarly, pore pressure estimates 

from well log data under excessive bit wear conditions are more likely to be more accurate than 
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the pore pressure estimates derived from the drilling parameters. Table 2.1 summarizes the 

merits and limitations of each method. 

 Hottmann & Johnson (1965) proposed a method for predicting the onset of overpressure 

from the resistivity and sonic logs by correlating the amount of deviation from the normal 

compaction trend (NCT) at a given depth to the observed pressure in adjacent reservoir 

formations. Foster & Whalen (1966) developed a pore pressure prediction model based on the 

concept of the shale formation resistivity factor for regions with varying salinity. Pennebaker 

(1968) provided a methodology for estimating the formation pore pressure from the seismic data. 

Seismic data (velocity and acoustic impedance) have been used in several sedimentary basins for 

pre-drill pore pressure predictions (Sayers et al., 2002; Soleymani & Riahi, 2012; Brahma et al., 

2013; El-Werr et al., 2017). Gardner et al. (1974) developed an empirical correlation among 

vertical effective stress, depth of burial and interval travel time.  

 Eaton (1975) proposed three sets of empirical relations based on resistivity, sonic and d-

exponent data. Eaton’s models are given by:  

 

Gpp = Gob − {Gob − Gnp} [
Ro

Rn
]
1.2

,                                                                                                      (2.1) 

 

Gpp = Gob − {Gob − Gnp} [
Vo

Vn
]
3

 ,                                                                                                        (2.2) 

 

Gpp = Gob − {Gob − Gnp} [
dco

dcn
]
1.2

,                                                                                                     (2.3) 

 

where Gpp is the pore pressure gradient (psi/ft); Gob is the overburden gradient (psi/ft); Gnp is the 

normal pore pressure gradient (psi/ft); Ro is the observed shale resistivity (ohm-m); Rn is the 

normal compaction trend shale resistivity (ohm-m); Vn is the normal compaction shale 
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compressional velocity (m/s); Vo is the observed shale compressional velocity (m/s); 𝑑𝑐𝑜 is the 

calculated 𝑑𝑐  from measured data; 𝑑𝑐𝑛 is the 𝑑𝑐  from the normal trend line. Eaton’s models are 

the most widely used pore pressure prediction methods for loading conditions where the main 

origin of overpressure mechanism is compaction disequilibrium, especially in young tertiary 

sediments. 

 Bowers (1995) proposed empirical relations between effective stress and compressional 

sonic velocity to predict the degree of overpressure generated by compaction disequilibrium and 

fluid expansion mechanisms. Bower’s method is applicable to loading and unloading conditions. 

Bowers' method is also applicable to many sedimentary basins. However, Bower’s method may 

over-predict the formation pore pressure in shallow unconsolidated formations due primarily to 

very slow compression sonic velocity in such formations (Zhang, 2011). Zhang (2011) adapted 

the Eaton's model for the resistivity and sonic transit time data using depth-dependent normal 

compaction equations. Zhang (2013) proposed a theoretical model to estimate the effective stress 

and formation pore pressure using porosity and compressional sonic velocity data. Rock 

properties such as bulk and pore compressibility (Atashbari & Tingay, 2012), natural 

radioactivity (Serebryakov et al., 1995), acoustic impedance (Satti & Yusoff, 2015) and the ratio 

of compressional to shear velocities (Li et al., 2000; Walls et al., 2000; Ebrom et al., 2006; Saleh 

et al., 2013) have also been used to predict the onset of overpressure and to estimate the 

formation pore pressure.  

From the field and laboratory observations, the dependency of the ROP on the differential 

pressure between the bottom-hole pressure and the formation pore pressure has long been 

established (Murray & Cunningham, 1955; Cunningham & Eenink, 1959; Garnier & Lingen, 

1959; Vidrine & Benit, 1968; Combs, 1968, Wardlaw, 1969;  Black et al., 1985; Cheatham et al., 
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1985). An increase in the formation pore pressure for a given mud weight will cause the drilling 

rate to increase due to reduced back pressure on the formations. This is the main reason why the 

driller must stop the drilling operations and perform a flow check any time a positive drilling 

break is being observed at the well site and more importantly when drilling exploratory wells. 

The d-exponent method was the first empirical method of estimating formation pore pressure 

from drilling parameters (Jorden & Shirley, 1966; Harper, 1969; Rehm & Mcclendon, 1971). 

The empirical model that relates dc – exponent to drilling parameters is given by: 

 

dc − exponent =  
log [

ROP
60N]

log [
12WOB
106Db

]
∗ [

Gnp

ECD
],                                                                                          (2.4) 

 

where dc − exponent is the corrected d – exponent; ROP is the rate of penetration (ft/hr); N is 

the rotary speed in revolution per minute (rpm); WOB is the weight on bit (lbs); Db is the bit 

diameter (in); Gnp is the normal pore pressure gradient (psi/ft or ppg); ECD is the equivalent 

circulating density (psi/ft or ppg). The values of the dc – exponent computed over a uniform 

lithological column (100% shale) are plotted against depth on the semi-log. Under normal 

pressure conditions, the dc – exponent will increase with depth. In overpressure intervals, the dc – 

exponent will undergo a trend reversal and the amount of deviation from the normal compaction 

trend (NCT) at any given depth is directly related to the magnitude of overpressure. However, 

the d – exponent technique does not consider the effect of hydraulic parameters on the ROP. This 

can lead to inaccurate estimates of formation pore pressure under certain drilling conditions (soft 

rock environments/unconsolidated formations). The driller can decide to increase the flow rate to 

clean the hole or reduce the flow rate to minimize the equivalent circulating density (ECD) while 
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drilling the pressure transition zones. Under these conditions of altering the bit hydraulic energy, 

the d – exponent method may fail to detect the onset of overpressure.  

The mechanical specific energy (MSE) is the energy required to remove a unit volume of 

rock (Teale, 1965). The MSE combines the axial and torsional loads. The MSE is given by: 

 

MSE =  
WOB

Ab
+ 

120π ∗ N ∗ T

AbROP
,                                                                                                             (2.5) 

 

where MSE is the mechanical specific energy (psi); WOB is the weight on bit (lbs); Ab is the bit 

area (in2); N is the rotary speed (rpm); T is the torque on bit (lb-ft); ROP is the rate of penetration 

(ft/hr). In the absence of reliable downhole torque measurements, Pessier & Fear (1992) 

expressed the downhole torque as a function of WOB, bit diameter and a bit specific coefficient 

of sliding friction to eliminate the torque on bit requirement (equation 2.6): 

 

MSE =  
WOB

Ab
+ 

13.33μ ∗ N ∗ WOB

DbROP
 ,                                                                                                 (2.6) 

 

where MSE is the mechanical specific energy (psi); WOB is the downhole weight on bit (lbs); Ab 

is the bit area (in2); N is the rotary speed (rpm); Db is the bit diameter (in); ROP is the rate of 

penetration (ft/hr); μ is the bit specific coefficient of sliding friction. For field applications, the 

value of bit coefficient of sliding friction is usually assumed to be 0.25 for roller cone bits and 

0.5 for PDC bits (Armenta, 2008). However, the bit coefficient of sliding friction will depend on 

lithology, rock confined compressive strength, mud weight, bit wear, and depth of cut (Caicedo 

et al., 2005). Therefore, using a constant value of bit coefficient of sliding friction for a particular 

bit over the entire drilled section may produce erroneous results. Armenta (2008) showed the 

importance of bit hydraulic energy on the MSE. Zhou et al. (2017) established a relationship 
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between MSE and depth of cut. Most works on the applications of specific energy to drilling 

operations have focused on drilling optimization and identification of downhole drilling 

problems such as bit balling, bottom hole balling, bit wear, vibration and hole cleaning issues 

(Waughman et al., 2003; Dupriest & Koederitz, 2005; Dupriest, 2006;  Bevilacqua et al., 2013; 

Abbas et al., 2014; Pinto & Lima, 2016).  

The results of the experimental studies performed by Rafatian et al. (2010) on 

impermeable and permeable rock samples using a single PDC cutter showed that the MSE 

increases with the confining pressure.  Similar experimental works by Akbari et al. (2013) on the 

Torrey Buff rock samples concluded that the MSE at the underbalanced conditions were 

considerably lower than the MSE at the balance conditions. Akbari et al. (2014) established an 

empirical relationship among MSE, uniaxial compressive strength (UCS), differential pressure 

and confining pressure. Akbari et al. (2014) then concluded that the effect of pore pressure on 

MSE is similar to that of confining pressure but to a lesser degree and in the opposite direction. 

Attempts have been made in recent times to estimate the formation pore pressure from the 

mechanical specific energy (MSE) concept using the field data (Cardona, 2011; Majidi et al., 

2017). However, the applications of the MSE to pore pressure predictions have the same 

limitations as the d – exponent method because the MSE approach does not consider the effect of 

hydraulic parameters on the ROP. To overcome these limitations, this paper presents a new pore 

pressure prediction technique based on the concept of hydro-rotary specific energy (HRSE). It 

approximates the total energy required to break and remove a unit volume of rock. 

 

2.2 Theoretical Background  

 

The MSE proposed by  (Teale, 1965) does not necessarily represent the total energy expended in 
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breaking and removing a unit volume of rock because it excludes the downhole (bit) hydraulic 

energy component. The bit hydraulic energy weakens the formation ahead of the bit (especially 

in medium to soft rock environments) and removes the cuttings from the bit face. The hydro-

mechanical specific energy (HMSE) is the actual total energy required to break and remove a 

unit volume of rock (Mohan et al. 2015; Wei et al. 2016; Chen et al., 2016). The HMSE 

combines the axial, rotary and hydraulic energy (equation 2.7): 

 

HMSE =  MSE +
Hydraulic Energy

Rock Volume Drilled
.                                                                                            (2.7) 

 

Ideally, not all the jet energy at the bit is available for rock penetration and cuttings removal. 

Due to the accelerated fluid entrainment below the bit nozzles, only a fraction of the available jet 

energy will reach the bottom of the hole. Therefore, a hydraulic energy reduction factor is 

introduced into the hydraulics energy term (equation 2.8): 

 

HMSE =  
WOB

Ab
+ 

120πNT

AbROP
+ 

1154η∆PbQ

AbROP
,                                                                                     (2.8) 

 

where HMSE is the hydro-mechanical specific energy (psi); WOB is the weight on bit (lbs); Ab 

is the bit area (in2); N is the rotary speed (rpm); T is the torque on bit (lb-ft); ROP is the rate of 

penetration (ft/hr); η is the hydraulic energy reduction factor; ∆Pb is the bit pressure drop (psi); Q 

is the flow rate (gpm). The bit pressure drop can be expressed as a function of mud weight, flow 

rate and nozzle total flow area (equation 2.9): 

 

∆Pb = 
MW Q2

10858 TFA2
 ,                                                                                                                               (2.9) 

 

where ∆Pb is the bit pressure drop (psi); MW is the mud weight (ppg); Q is the flow rate (gpm); 
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TFA is the total flow area (in2). The value of η ranges from 25 – 40 % (Warren, 1987). 

According to Warren (1987), the actual value of η depends on the ratio of jet velocity to return 

fluid velocity (equation 2.10): 

 

η =  1 − [
Jet Velocity

Return Bit Velocity at Bit Face
]
−0.122

.                                                                         (2.10) 

 

However, η can also be expressed as a ratio of bit return flow area to nozzle total flow area since 

the flow rate is the same everywhere along the fluid flow path (equation 2.11): 

 

η =  1 − [
Bit Return Flow Area

TFA
]
−0.122

.                                                                                          (2.11) 

 
For roller cone bits, the bit return flow area is about 15 % of the bit area (in2) (equation 2.12): 

 

ηRoller Cone Bit =  1 − [
0.15 Bit Area

TFA
]
−0.122

 .                                                                                 (2.12) 

 

For PDC bits, the bit area available for fluid return is equal to the junk slot area (equation 2.13): 

 

ηPDC Bit =  1 − [
JSA

TFA
]
−0.122

,                                                                                                               (2.13) 

 
where JSA is the junk slot area (in2); TFA is the total flow area (in2). Equation 2.13 implies that 

the amount of PDC bit hydraulic energy that is available at the bottom of the hole will increase 

with increasing JSA and decreasing TFA for a given bit size. Therefore, for the roller cone bits, 

the HMSE can be obtained by combining equations 2.8, 2.9 and 2.12 (equation 2.14): 

 

HMSE =  
WOB

Ab
+ 

120πNT

AbROP
+ 

0.10628 MW Q3 [1 − [
0.15 Bit Area

TFA ]
−0.122

]

AbROP TFA2
.                       (2.14) 
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Similarly, the HMSE for PDC bits is obtained from equations 2.8, 2.9 and 2.13 (equation 2.15): 

 

HMSE =  
WOB

Ab
+ 

120πNT

AbROP
+ 

0.10628 MW Q3 [1 − [
JSA
TFA]

−0.122

]

AbROP TFA2
,                                        (2.15) 

 
In this study, the HMSE for PDC bits is considered as the reference case. Changes in the mud 

weight/equivalent circulating density (ECD) will result in changes in the values of HMSE. 

Excessive overbalance increases the strength of the surrounding rocks and the chip hold down 

pressure at the bottom of the hole. This can cause the ROP to reduce and the HMSE to increase 

when drilling through the pressure transition and overpressure zones. Hence, the HMSE must be 

corrected for the effect of changes in the bottom-hole pressure (equation 2.16): 

 

HMSE =  

[
 
 
 WOB

Ab
+ 

120πNT

AbROP
+ 

0.10628 MW Q3  [1 − [
JSA
TFA]

−0.122

]

Ab ROP TFA2

]
 
 
 
∗ [

Gnp

ECD
],                    (2.16) 

 
where Gnp is the normal pore pressure gradient (psi/ft or ppg) and ECD is the equivalent 

circulating density (psi/ft or ppg). The contribution of the axial energy due to WOB to the total 

energy is less than 1% (Menand & Mills, 2017). The rotary and hydraulic energies make up over 

99% of the HMSE term. Also, the rotary energy term in the HMSE equation has indirectly 

accounted for the axial energy term because the downhole torque responds in direct proportion to 

the WOB (Pessier & Fear, 1992). Hence, the axial energy term in the HMSE equation can be 

neglected, leading to the concept of hydro-rotary specific energy (HRSE). The HRSE contains 

only the rotary and hydraulic terms (equation 2.17): 
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HRSE =  

[
 
 
 
 
120πNT

AbROP
+ 

0.10628 MW Q3  [1 − [
JSA
TFA]

−0.122

]

Ab ROP TFA2

]
 
 
 
∗ [

Gnp

ECD
].                                     (2.17) 

 
In normally pressured compacted series, rock density and degree of rock compaction will 

increase with depth as pore fluids are being expelled gradually from the underlying sediments. 

Under these conditions, rock porosity will decrease and grain – to – grain contact force will 

increase with depth due to an increase in effective stress. Hence, the energy (HRSE) required to 

remove a unit volume of rock will increase with depth. However, subsurface overpressure 

conditions will cause a reversal in the HRSE trend as effective stress decreases. For overpressure 

conditions associated with under-compaction, rock density and degree of rock compaction will 

decrease as the formation water becomes trapped and begins to support the weights of the 

overlying sediments. This will cause the rock porosity to increase and the grain – to – grain 

contact force to decrease with a decrease in effective stress. The HRSE can also be applicable to 

overpressure conditions caused by fluid expansion mechanisms because the ease of rock removal 

is directly related to the differential pressure between the mud pressure and the pore pressure.  

For accurate pore pressure prediction, downhole measurements data (torque and rotary 

speed) from the measurement while drilling sensor (MWD) sensors should be used to compute 

the HRSE. If surface measurements data are used instead, the HRSE will be grossly 

overestimated, especially in deviated wells where there can be a significant amount of friction 

between the drill string and the borehole walls along the well path. In a vertical well, it may be 

possible to use the surface measurements data to compute HRSE because the friction between 

the drill string and the borehole walls along the well path is negligible, provided there is no 

excessive vibration of the bottom-hole assembly (BHA) and bit while drilling. There are various 

ways in which downhole torque can be determined from the surface measurements if the 
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downhole sensors data are not available. The torque on bit (TOB) can be determined from the 

difference between the on-bottom and off-bottom torque while drilling in rotary mode. The TOB 

can be determined from the WOB value if the coefficient of sliding friction between the bit 

cutters and the formation is known (Pessier & Fear, 1992). When drilling with the steerable 

system (mud motor), the TOB can be computed from the differential pressure across the mud 

motor. The TOB can also be calculated at any given depth using torque and drag (T & D) models 

by subtracting the estimated drill string torque from the measured surface torque while drilling.  

 

2.3 Methodology  

 

Below are the steps required to estimate the formation pore pressure using HRSE concept. Figure 

2.2 provides a simple workflow for the proposed methodology. 

1. Compute the HRSE at various depths from the drilling, bit and well parameters using 

equation 2.17. It is recommended that the HRSE be computed over the clean shale 

intervals. This will eliminate any lithological effects on the HRSE. However, the HRSE 

can also be computed over the entire lithological column that consists of several 

stratigraphic units if the effect of lithology on the HRSE is not pronounced (i.e. no wide 

variations in HRSE values due to different stratigraphic units being penetrated).  

2. Plot the HRSE values against depth on a semi-log (Figure 2.1). Establish the normal 

compaction trend (NCT) through the known normally pressured intervals. Under normal 

pressure conditions, the HRSE will increase with depth. When the overpressure intervals 

are penetrated, the HRSE will start to diminish. The amount of divergence of a given 

point from the established NCT is proportional to the magnitude of the overpressure. 

Figure 2.1 illustrates the application of the HRSE concept to overpressure prediction. 
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From 8,000 ft-TVD to 13,000 ft-TVD, the HRSE values exhibit a normal compaction 

trend. However, deviation in HRSE values from the normal compaction trend below 

13,000 ft-TVD signifies the onset of overpressure. 

 
 

       
 

     Figure 2. 1 Illustration of the HRSE method for pore pressure prediction. 

 

3. Compute the pore pressure at a given depth using the modified Eaton’s model given by: 

 

Gpp = G𝑜𝑏 − {Gob − Gnp} ∗ [
HRSEo

HRSEn
]
m

,                                                                           (2.18) 

 
where Gpp is the pore pressure gradient (psi/ft); Gob is the overburden gradient (psi/ft); 

Gnp is the normal pore pressure gradient (NPPG) in psi/ft; HRSEo is the actual HRSE 
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calculated using equation 2.17; HRSEn is the hypothetical value of HRSE from the 

normal compaction trend; m is the HRSE exponent. The value of the HRSE exponent 

will vary from region to region. The HRSE exponent can be derived by calibrating 

equation 2.18 to any known overpressure intervals in the offset wells. It can also be 

determined in the well being drilled by calibrating equation 2.18 to any overpressure 

intervals predicted by the well log data (shale compressional sonic velocity and 

resistivity) preferably while drilling the pressure transition zones. 

 

 
 

Figure 2. 2 The work flow for the proposed methodology. 
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2.4 Field Example 

 

To demonstrate the application of the HRSE concept to pore pressure prediction, a recently 

drilled deep vertical exploratory gas well (well A) is considered as the case study. The well is 

located about 80 km North-West of Port Harcourt in the Tertiary Deltaic System in the central 

swamp region of the Niger Delta in Nigeria (Figure 2.3).  

 

 
 

Figure 2. 3 Location map for well A. 
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The Niger Delta Basin is an extensional rift basin that consists of Tertiary clastic sediments up to 

12 km thick. The Niger Delta sequence stratigraphy consists of three types of formations in 

descending order: (1) Benin formations – consist of mainly continental sands, (2) Agbada 

formations – consist of alternating sequence of sands and shales, and (3) Akata formations – 

consist of marine shales (Short & Stauble 1967; Avbovbo 1978; Adewole et al. 2016). Well A 

only penetrates Benin and Agbada formations. The hydrocarbons trapping mechanisms in the 

Niger Delta are mainly growth faults associated with rollover structures. The primary cause of 

the subsurface overpressure conditions in the Niger Delta is under-compaction (Daukoru 1975; 

Ugwu & Nwankwo 2014). The Niger Delta sands have good porosity and permeability. Sands 

with more than 25% porosity and permeability in the range of 1 – 5 Darcy are not uncommon.  

In this paper, all depths are with respect to the true vertical depth (TVD) below the rotary table 

(RT). Table 2.2 and Figure 2.4 provide information about the well configuration, mud type, BHA 

type, bit type and the formations that were penetrated.  

 

Table 2. 2 The well data summary. 

 
Hole Size 

(inches) 

Casing Size 

(inches) 

Casing Depth 

(feet) 
Lithology 

Mud 

Type 
BHA Bit Type 

Piled 30 307 Loose sands N/A N/A N/A 

22 18 5/8 4,259 Continental sands WBM Steerable Roller cone 

16 13 3/8 10,092 Sand - Shale WBM Steerable Roller cone 

12 ¼ 9 7/8 15, 224 Sand - Shale SOBM 
RSS & 

Steerable 
PDC 

8 ½ N/A N/A Sand - Shale SOBM RSS PDC 
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Figure 2. 4 The well configuration and lithology. 
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The 30’’ conductor pipe was driven to refusal at 307 ft. After cleaning the conductor pipe, the 

22’’ hole was drilled from 307 ft to 4,269 ft. The 18 5/8’’ surface casing was run and cemented 

to surface with the shoe at 4,259 ft. The 16’’ hole was drilled from 4,269 ft to 10,099 ft. The 13 

3/8’’ intermediate casing was run to 10,092 ft and cemented in place. The 12 ¼’’ hole section 

was drilled from 10,099 ft to 15,241 ft. The 9 5/8’’ production casing was run and cemented with 

the shoe deep into the pressure transition shale at 15,224 ft to provide the required kick tolerance 

to drill the 8 ½’’ hole overpressure intervals. The 8 ½’’ hole section was drilled from 15,241 ft to 

15,567 ft and the well was suspended. Table 2.3 provides information about the bits used to drill 

the hole sections of interest (12 ¼’’ and 8 ½’’). All the bits used were new bits prior to running 

in hole except the 12 ¼’’, HCC, QD 507 FHX, M323 bit that was run as a re-run bit. There was no bit 

grading for the last bit because it was lost in hole due to a pipe stuck incident that followed well 

killing operations after taking a gas kick from the bottom of the well.  

 

Table 2. 3 The bit data summary. 

 

Bit Data 
Drilled Intervals 

(ft-TVD) 

TFA 

(in2) 

JSA 

(in2) 
Bit Dull Grade Out 

12 ¼’’, HCC, Q 506 F, M323 10099 - 15080 1.2824 31.48 2-5-WT-G-X-1-CT-BHA 

12 ¼’’, HCC, QD 507 FHX, M323 15080 - 15241 1.2962 21.28 1-2-CT-S-X-1-NO-TD 

8 ½’’, HCC, DPD 506, M223 15241 - 16159 0.7777 13.94 1-2-WT-A-X-1-NO-DTF 

8 ½’’, HCC, QD 408 FHX, M433 16159 - 16567 0.7823 10.97 N/A 

 
 

The top-hole sections (22’’ & 16’’) are excluded from the analysis because data acquisitions in 

these sections were limited and the sections consist of predominantly unconsolidated sands with 

no hydrocarbon-bearing or overpressure intervals. The data analysis is focused on the deeper 12 

¼’’ and 8 ½’’ hole sections drilled with mostly rotary steerable system (RSS) assemblies and 
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polycrystalline diamond compact (PDC) bits. These sections consist of hydrocarbon bearing 

intervals, normally pressured compacted series, pressure transition zones and overpressure 

intervals. The drilling parameters were acquired every 1 ft and out of range (unrealistic) data 

were filtered out. Figure 2.5 shows the plots of the actual drilling parameters acquired while 

drilling well A. The TOB values were computed from the difference between the measured on-

bottom and off-bottom torque (dark-blue colour) and were validated with the TOB values 

estimated from the T & D model (pink colour).  

The overburden pressure (Sv) can be obtained by integrating the formation bulk density 

from the surface to the depth of interest and it is given by:  

 

Sv

= 0.433∫ ρbdz  ,                                                                                                                               (2.19)
z

0

 

 

ρb = 0.9526 Z0.101,                                                                                                                               (2.20) 

 

where  ρb is the formation bulk density as a function of depth (g/cc); Z is the depth of interest 

(ft). In well A, the density log was only acquired in the 12 ¼’’ hole. To obtain the overburden 

pressure at each depth of interest, the density log in the 12 ¼’’ hole section of this well was 

integrated with the offset well density log to produce the equation of best fit (equation 2.20). The 

equation of best fit was then used to compute the formation bulk density values in the intervals 

where the density log data were not available. The overburden gradient (Gob) was obtained by 

dividing the overburden pressure by the true vertical depth. Figure 2.6 shows the plots of 

formation bulk density, overburden pressure and overburden gradient versus depth for well A. 
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Figure 2. 5 The plots of drilling parameters versus depth for well A.  
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Figure 2. 6 The plots of formation bulk densities, overburden pressure and overburden gradient versus depth for well A. 
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2.5 Discussion 

 

The plot of HRSE versus depth is shown in Figure 2.7. The HRSE values are computed across 

the sand and shale intervals because the effect of lithology on the HRSE is not pronounced in 

this well and the normal compaction trend can be clearly identified. From 11,600 ft to 15,060 ft, 

the HRSE increases with depth due to an increase in vertical effective stress. These depth 

intervals correspond to the normally pressured compacted series in the field with a pore pressure 

gradient of 0.45 psi/ft and they are used to establish the NCT. Below the 15,060 ft (top of 

overpressure), the HRSE begins to undergo a departure from the NCT to lower values due to the 

presence of subsurface overpressure conditions. As the formation pore pressure increases in the 

under-compacted series (decrease in vertical effective stress), the degree of rock compaction 

decreases. Under these conditions, the energy required to remove a unit volume of rock (HRSE) 

decreases. Hence, the reversal in the HRSE trend can be used to identify the overpressure 

intervals. From Figure 2.7, the HRSE clearly identifies the top of overpressure (15,060 ft), the 

pressure transition intervals (15,060 – 15,400 ft) and the overpressure zones (>15,400 ft).  

Figure 2.7 also shows the plots of dc – exponent, gamma ray (GR) and shale 

compressional sonic velocity versus depth. The dc – exponent values are computed using 

equation 2.4. In the intervals that correspond to the normally pressured zones, the dc – exponent 

and shale compressional sonic velocity increase with depth (similar in trend to HRSE). Below 

the top of overpressure at 15,060 ft, the dc – exponent, and shale compressional sonic velocity 

start to deviate from the NCT to lower values in the same manner as HRSE. Increase in 

formation pore pressure (decrease in vertical effective stress) causes a reversal in the dc – 

exponent and shale compressional velocity trends. 
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Figure 2. 7 The plots of HRSE, dc – exponent, gamma ray, and shale compressional sonic velocity versus depth for well A.
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It is relatively easy to attribute the reversal in the HRSE trend in the 12 ¼’’ hole to a new bit 

change. A critical review of the well information suggests otherwise. The first bit (12 ¼’’, HCC, 

Q 506 F, M323) penetrated about 20 ft into the pressure transition zones before being pulled out 

of hole. The bit was pulled out of hole to change the BHA configuration so that the logging 

while drilling (LWD) sensors for pore pressure predictions (GR, sonic and resistivity) could be 

placed closer to the bit. The gradual (not sudden) decrease in the HRSE, with the corresponding 

decrease in the dc – exponent and shale compressional sonic velocity below 15,060 ft in the 12 

¼’’ hole section suggests that the reversal in HRSE trend is most likely due to the presence of 

subsurface overpressure conditions rather than the bit change. Finally, a drill bit change that 

occurred in the 8 ½’' hole section at 16,159 ft did not produce any corresponding shift in HRSE 

and dc – exponent trends. It should be noted that efficient/improved drilling conditions can also 

result in the reversal of the HRSE trend. Hence, any reversal in the HRSE trend while drilling 

should be investigated especially while drilling the exploratory wells. The gradual reversal in the 

HRSE trend, with corresponding reversal in the shale petrophysical properties (compressional 

sonic velocity, density and resistivity) will most likely indicate the presence of overpressure. The 

sudden reversal in the HRSE trend with no corresponding reversal in the shale petrophysical 

properties will most likely indicate efficient/improved downhole drilling conditions.  

Figure 2.8 compares the pore pressure estimates derived from the HRSE, dc – exponent, 

and shale compressional velocity to the actual pore pressure measurements taken in the reservoir 

sands of interest. The actual pore pressure measurements were obtained from the combination of 

formation pressure while drilling tool (Tes-Trak), wireline pressure sampling tool (RCX - 

reservoir characterization explorer) and gas kick data. The pore pressure estimates from the shale 

compressional velocity and dc – exponent are derived from Eaton’s models (equations 2.2 and 
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2.3 respectively). The pore pressure estimates from the HRSE are derived from equation 2.18 

with the value of the HRSE exponent (m) equal to 0.32. The HRSE exponent is obtained by 

calibrating equation 2.18 to the pore pressure estimates derived from the sonic log data in the 

upper sections of the pressure transition zones (15,060 – 15,300 ft). A single constant value of 

8.66 ppg (0.45 psi/ft) average equivalent density is used for the normal pore pressure gradient 

(NPPG) based on the formation water density/salinity in the region. From Figure 2.8, The HRSE 

predicts the formation pore pressure gradient to be normal down to 15,060 ft with an average 

value of 0.45 psi/ft. In the transition zones, the HRSE predicts a gradual shift from the normal 

pore pressure regime to overpressure regime (the formation pore pressure gradient increases 

from 0.45 psi/ft to 0.68 psi/ft). In the overpressure intervals, the formation pore pressure gradient 

predicted by HRSE increases further from 0.68 psi/ft at 15,400 ft to 0.81 psi/ft at 16,250 ft. The 

formation pore pressure gradient then remains relatively constant at 0.81 psi/ft from 16,250 ft to 

the well total depth. There is an excellent agreement in magnitude and trend between the pore 

pressure estimates derived from the HRSE concept and the actual pore pressure measurements.  

The shale compressional sonic velocity also provides good estimates of the formation pore 

pressure.  However, the shale compressional sonic velocity is unable to provide the pore pressure 

estimates at the well TD because of the offset between the bit and the acoustic sensors. The d – 

exponent method provides good estimates in the deeper sections of the well but over-predicts the 

formation pore pressure in the intervals immediately below the pressure transition zones, 

reaching a formation pore pressure of 0.81 psi/ft just below 15,400 ft. From the drilling 

optimization perspective, using the pore pressure estimates derived from the d – exponent 

method to design the mud weight (MW) required to drill through the intervals just below the 

transition zones with an average actual formation pore pressure of 0.72 psi/ft will create an 
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excessive overbalance, which can result in ROP reduction. If the next casing depth or total depth 

is to be called off before drilling through the intervals with formation pore pressure of 0.81 psi/ft, 

using the pore pressure estimates derived from the d – exponent method to design the mud 

weight may also result in lost circulation and pipe sticking incidents. Although the d – exponent 

method over-predicts the formation pore pressures in some overpressure intervals, it is relatively 

accurate in this well (in the deeper sections) because the downhole drilling conditions are 

suitable to its applications. The well is vertical, the bit hydraulic energy is relatively constant in 

each hole section and the rocks are consolidated (shale compressional sonic velocity is greater 

than 3,387 m/s above the overpressure intervals). Table 2.4 summarizes the main differences 

between HRSE and d – exponent.  

 

Table 2. 4 Main differences between HRSE and d – exponent. 

 

 HRSE d – exponent 

1 Exclude the WOB term Include WOB term 

2 Include the torque term Exclude torque term 

3 

Include the bit hydraulic energy term. Consider 

variations in bit hydraulic energy. 

Excluded the bit hydraulic energy term. 

Does not consider variations in bit 

hydraulic energy  

4 

Can be applicable to hard and soft rock 

environments. Soft rocks are more response to 

rotary speed and bit hydraulics than WOB. 

Mostly suitable for hard rock 

environments. Hard rocks are more 

response to WOB. 
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Figure 2. 8 Measured and estimated pore pressure profiles for Well A.
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2.6 Conclusions 

 

A new pore pressure prediction technique based on the amount of energy expended while drilling 

is being proposed. This is based on the principle that overpressure intervals with lower effective 

stress will require less energy to drill than the normally pressured intervals at the same depth. 

Under normal pressure conditions, the HRSE will increase with depth as rock compaction and 

effective stress increase. Drilling through the overpressure zones will cause a reversal in the 

HRSE trend. The field example presented in this paper demonstrates the applicability of the 

HRSE method in predicting the onset of overpressure and estimating the formation pore 

pressure. An excellent agreement is observed in magnitude and trend between the pore pressure 

estimates derived from the HRSE concept and the actual pore pressure measurements. The 

formation pore pressure prediction accuracy from the HRSE concept is also comparable to 

compressional sonic velocity. Unlike the d-exponent method, the HRSE method includes the bit 

hydraulic energy term, thereby extending its application to some drilling environments (soft rock 

environments/unconsolidated formations, varying jet hydraulic energy, etc.) where the d-

exponent method may not work.  

However, the ability of the HRSE method to predict the onset of overpressure and its 

magnitude will depend greatly on the quality of the input data. TOB measurements from the 

bit/BHA subjected to vibrations (axial, torsional/stick-slip, whirl) will produce erroneous results. 

Computed TOB from the surface data will produce inaccurate results if the BHA is subjected to 

downhole buckling conditions. Excessive bit wear and bit balling can also mask the reversal in 

the HRSE trend when drilling through the pressure transition zones. To improve the quality of 

the input data, downhole sensors should be properly calibrated before run in hole. Noise should 

be minimized in the data transmission system. Shocks and vibrations should be minimized while 
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drilling (optimize BHA design, bit selection, shock sub application for axial vibration, drilling 

parameters optimization).  Multiple sources of measurements should be made for comparison 

purposes. For example, the TOB from the downhole sensors should be compared to surface 

derived TOB. If possible, avoid changing from the bit type in the same hole interval (e.g. from 

roller cone bit to PDC bit). Compute the HRSE over clean shale intervals only if the effect of 

lithology is noticed on the HRSE. 
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Chapter 3 

 

3.0 Energy-based Formation Pressure Prediction 

 

Preface 

 

A version of this chapter has been published in the Journal of Petroleum Science and 

Engineering, 2019. I am the primary author. Co-author Dr. Stephen Butt reviewed the 

manuscript and provided technical assistance in the development of the concept. I formulated the 

initial concept and carried out most of the data analysis. I prepared the first draft of the 

manuscript and revised the manuscript based on the feedback from the co-author and peer 

review process. The co-author also helped to refine the concept. 

 

Abstract   

  

Conventionally, pore pressure predictions from the drilling parameters have the advantage of 

estimating the formation pressure at the bit at relatively low cost. The limitations on the 

application of the d-exponent concept to pore pressure prediction have long been established. 

Recent developments in pore pressure prediction from the drilling parameters use the concept of 

mechanical specific energy (MSE) and hydro-rotary specific energy (HRSE). These energies are 

usually computed from the downhole measurements. However, the majority of readily available 

field data in older (offset) and present-day wells are in the form of surface measurements. In this 

paper, a new pore pressure prediction technique based on the concept of hydro-mechanical 

specific energy (HMSE) is being proposed. The HMSE is the combination of axial, rotary and 

hydraulic energies required to break and remove a unit volume of rock. The new technique uses 

drilling parameters that are obtained only from surface measurements. Pore pressure prediction 

using the concept of HMSE is based on the theory that total energy consumed in breaking and 
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removing a unit volume of rock beneath the bit is a function of effective stress: the higher the 

effective stress, the greater the total energy required to break and remove a unit volume of rocks. 

Abnormally high formation pressure intervals with lower effective stress will require less energy 

to drill than the normally compacted series at the same depth. The new technique is tested using 

a recently drilled near-vertical deep High-Pressure High-Temperature (HPHT) exploratory well 

in the Tertiary Deltaic System of the Niger Delta basin where the main cause of overpressure 

mechanism is under-compaction. The well drilled to a total depth of more than 17,000 ft-TVD, 

covers the normally compacted series, pressure transition zones and overpressure intervals. Pore 

pressure estimates derived from the HMSE concept are then compared to the actual pore pressure 

measurements taken from the formations of interest. There is an excellent agreement between the 

predicted and measured formation pore pressure. The new technique can provide a reliable 

means of estimating the formation pore pressure from the drilling parameters in the absence of 

reliable downhole measurements at relatively low cost. 

 

Keywords: Pore pressure, Effective Stress, Hydro-mechanical Specific Energy, Mechanical 

Specific Energy, Normal Compaction Trend.  

 

3.1 Introduction  

 

Pore pressure is the pressure of the formation fluids contained in the pore spaces of rocks. 

Accurate knowledge of formation pore pressure is required at all stages of the field development 

plan. It is perhaps the single most important input parameter used for well planning and design. 

From a well construction point of view, pore pressure data are used for rig sizing, casing depths 

determination, cement design, drilling and completion fluid design, wellheads/christmas tree 

design, casing and tubing design, and equipment selection. Having accurate knowledge of the 
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formation pore pressure will help to optimize drilling rate, prevent well control incidents 

(kicks/blowout), reduce the risk of differential sticking of pipes and minimize formation damage. 

Pore pressure data are also used for production forecast/well performance analysis, reservoir 

modeling, subsurface trap integrity determination, and geo-mechanical analysis. Pore pressure 

prediction is very important to exploration, drilling, and production of oil and gas since 

hydrocarbons distribution around the world is directly related to the subsurface pressure and 

temperature conditions. 

The formation pore pressure is normal if it is able to support a continuous column of 

static formation water from surface to formation depth of interest without any losses or excess 

surface pressure (Swarbrick and Osborne, 1998). Louden (1972) defined the normal pore 

pressure gradient as the lithological gradient for a saltwater basin. The value of the normal pore 

pressure gradient varies from region to region depending on pore fluid type, formation 

temperature and concentration of dissolved salts in the formation water. Even within the same 

geological basin, normal pore pressure gradient may vary from one depth to the other. Generally, 

normal pore pressure gradient varies between 0.433 – 0.515 psi/ft. For the North Sea, the average 

normal pore pressure gradient is 0.45 psi/ft (Holm, 1998). In the Gulf Coast, the average normal 

pore pressure gradient is 0.465 psi/ft (Harkins & Baugher, 1969; Parker, 1973). In the Rocky 

Mountain regions in Canada and USA, it is approximately 0.433 psi/ft (Finch, 1969). Intervals 

with pore pressure gradient higher or lower than the normal pore pressure gradient are termed 

abnormally high (overpressure) or abnormally low (subnormal) respectively.  

Subnormal pressure regimes can result from geological and production conditions. The 

geological conditions can be tectonic, stratigraphic or geochemical in nature. The production 

condition relates to reservoir depletion that results from fluids withdrawal from a rock where the 
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rate of fluid influx into the rock is significantly less than the rate of formation fluids withdrawal. 

Barker (1972) suggested that if a reservoir under normal pressure conditions becomes isolated 

with permeability barriers and is then subjected to a temperature decrease, the reservoir pressure 

will fall below the normal hydrostatic pressure causing subnormal pressure conditions. These 

conditions can occur during sediments erosion and upliftment whereby sediments from the 

deeper zones are moved to shallower depths. Subnormal pressure conditions have been reported 

in some sedimentary basins around the world (Serebryakov & Chilingar, 1994; Bachu & 

Underschultz, 1995; Dickey & Cox, 1977). The presence of subnormal pressure conditions in the 

subsurface formations can cause drilling problems such as lost circulation, differential sticking, 

underground blowout, and a potential surface blowout.  

There are five main mechanisms of overpressure generation (Yassir et al., 1996). The 

first mechanism is compaction disequilibrium - this occurs when the rate of deposition of 

sediments is greater than the rate of expulsion and migration of interstitial fluids (usually water). 

The water becomes trapped and begins to support the weights of the overlying sediments since 

there is no enough time for the water to escape. This usually occurs when rapid sedimentation 

involves large quantities of clay materials (Carlin and Dainelli, 1998). In young sedimentary 

basins with thick terrigenous rocks, compaction disequilibrium is the dominant cause of 

abnormally high formation pressure (Law and Spencer, 1998; Tingay et al., 2009). Other causes 

of overpressure mechanisms are generally small compared to compaction disequilibrium 

(Burrus, 1998). Most shallow water flows arising from the overpressure conditions near the mud 

line in the offshore Gulf of Mexico (GOM) were attributed to compaction disequilibrium (Sayers 

et al., 2005). The second mechanism is tectonic activities – tectonic events such as folding, 

faulting and diapirism can result in subsurface overpressure conditions (Law et al., 1998). The 
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third mechanism is clay diagenesis – between 90 – 150oC, montmorillonite undergoes a 

transformation and is converted into illite, releasing a large amount of water in the process 

(Powers, 1967; Burst, 1969; Burst, 1976, Freed & Peacor, 1989; Buryakovsky et al., 1995). The 

threshold temperature requires for clay diagenesis to occur varies from region to region. It ranges 

from about 71 °C for Mississippi River sediments in the US to more than 150°C for the Niger 

Delta sediments in Nigeria (Bruce, 1984). The fourth mechanism is aqua-thermal expansion – 

formation temperature increases as the depth of burial of sediments increases. This causes fluid 

expansion with subsequent increase in the formation pore (Barker, 1972; Chen & Huang, 1996; 

Barkers & Horsfield, 1982; Sharp, 1983; Polutranko, 1998; Lewis & Rose, 1970). The last major 

overpressure mechanism is hydrocarbon generation – thermal cracking of kerogen into liquid and 

gaseous hydrocarbons can result in a significant increase in pore volume leading to overpressure 

conditions by (Law & Dickinson, 1985; Spencer, 1987; Holm, 1998; Hunt et al., 1998). This is 

also applicable to thermal cracking of liquid hydrocarbons into gaseous hydrocarbons. Other 

causes of subsurface overpressure conditions include oil and gas occurrence, artesian effect, 

centroid effects and charging from other zones. Overpressure generation due to buoyancy effect 

can also occur in thick gas-filled reservoirs (Swarbrick and Osborne, 1998; Aadnoy, 2010). The 

amount of overpressure within the gas accumulation is a function of the gas gradient and the 

height of the gas column. 

It should be noted that combination of the above mechanisms can create subsurface 

overpressure conditions within the same sedimentary basin (Plumley, 1980; Kadri, 1991; Freire 

et al., 2010; Satti et al., 2015; Satti et al., 2016). For example, in a deltaic environment where 

sedimentation rate is high, compaction disequilibrium may initially be the cause of abnormally 

high formation pressures. As the formation temperature increases from the increasing depth of 
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burial, hydrocarbon generation, clay diagenesis, and aqua-thermal expansion may compliment 

compaction disequilibrium as the main cause of overpressure mechanisms. Drilling into 

abnormally high formation pressure intervals unexpectedly can lead to catastrophic and process 

safety incidents such as surface blowouts. This can result in costly drilling expenses, loss of lives 

and properties, loss of reputations and damage to environments. To minimize the risks of a well 

blowout, it is therefore extremely important to be able to detect overpressure intervals before 

drilling into them. The best approach for the detection and evaluation of overpressure intervals is 

to compare the pore pressure estimates derived from various independent sources (seismic, well 

logs and drilling parameters) since relying on any single technique can result in 

misinterpretations especially when drilling exploratory wells (Fertl & Timko, 1971). 

Most pore pressure prediction techniques rely on the hypothesis that overpressure 

intervals have higher porosity than normally pressured intervals for any given depth.  However, 

it is also possible not to have any trend reversal between the normal pressure and overpressure 

intervals when porosity indicators (resistivity, compressional sonic velocity, and density) are 

plotted against depth (Carstens & Dypvik, 1981; Hermanrud et al., 1998; Teige et al., 1999). In 

most cases, pore pressure prediction techniques require a normal compaction trend (NCT) of the 

shale petrophysical properties to be established. Deviation from the normal compaction trend 

will likely indicate the onset of abnormally high formation pressure. Formation pore pressures 

are estimated in shale formations due to distinct variations in the petrophysical properties of 

shales with respect to pore pressure. In addition, pore pressure prediction in shale formations will 

give early warning of abnormally high formation pressure in the underlying reservoir rocks prior 

to drilling into them. Hottmann & Johnson (1965) proposed a method for predicting the onset of 

abnormally high formation pressure from petrophysical data (resistivity and compressional sonic 
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travel time) acquired in the Miocene and Oligocene shales in Upper Texas and Southern 

Louisiana Gulf Coast. They observed that the plots of shale resistivity and sonic transit time 

against depth in zones with normal pore pressures exhibited a distinctive trend called normal 

compaction trend (NCT). Reversals in the shale resistivity and sonic transit time were correlated 

to the onset of overpressure.  

Foster and Whalen (1966) developed an empirical relationship between formation pore 

pressure, depth of burial and the ratio of normal shale resistivity to abnormal shale resistivity for 

regions with varying salinity (equation 3.1): 

 

PP = 0.465 ∗ Z + 
0.535

log b
∗ log [

Rn

Ro
],                                                                                                    (3.1) 

 
where PP is the formation pore pressure (psi); Z is the true vertical depth (ft); Rn is the normal 

shale resistivity (ohm-m); Ro is the observed (abnormal) shale resistivity (ohm-m). The logb can 

be obtained from the slope of formation factor versus depth plot. Gardner et al. (1974) proposed 

an empirical relationship among vertical effective stress, sonic travel time and depth of burial 

based on the data presented by Hottmann and Johnson (1965). Gardner’s model is given by: 

 

[
σv − PP

Gob − Gnp
]

1
3

∗ Z
2
3 = A − B loge ∆t                                                                                                      (3.2) 

 

where σv is the vertical stress (psi); PP is the pore pressure (psi); Z is the true vertical depth (ft); 

Gob is the overburden gradient (psi/ft); Gnp is the normal pore pressure gradient (psi/ft); ∆t is the 

interval travel time (μs/ft); A and B are constant parameters. The values of A and B can be 

obtained by calibration equation 3.2 to any known normally pressured intervals in the region. 

 Eaton (1975) proposed three sets of pore pressure prediction models based on resistivity 
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measurements, acoustic measurements, and corrected d-exponent computed from drilling 

parameters. Eaton’s models are given by: 

 

Gpp = Gob − {Gob − Gnp} [
Ro

Rn
]
1.2

,                                                                                                      (3.3) 

 

Gpp = Gob − {Gob − Gnp} [
∆tn
∆to

]
3

,                                                                                                       (3.4) 

 

Gpp = Gob − {Gob − Gnp} [
dco

dcn
]
1.2

,                                                                                                     (3.5) 

 

where Gpp is the pore pressure gradient (psi/ft); Gob is the overburden gradient (psi/ft); Gnp is the 

normal pore pressure gradient (psi/ft); Ro is the observed shale resistivity (ohm-m); Rn is the 

normal compaction trend shale resistivity (ohm-m); ∆𝑡𝑛 is the normal compaction shale travel 

time (μs/ft); ∆𝑡𝑜 is the observed shale travel time (μs/ft); 𝑑𝑐𝑜 is the calculated 𝑑𝑐  from 

measured data; 𝑑𝑐𝑛 is the 𝑑𝑐  from the normal trend line. Eaton’s models are among the most 

widely used pore pressure prediction methods. These models are particularly suitable for 

overpressure conditions caused by compaction disequilibrium. Eaton’s models can also be 

applicable to other forms of overpressure mechanisms caused by unloading conditions with a 

higher exponent coefficient (Satti et al., 2015).  

 Bowers (1995) proposed pore pressure prediction models based on the principle of 

effective stress to predict the degree of overpressure generated by compaction disequilibrium and 

fluid expansion mechanisms using the virgin and unloading curves concept. The virgin curve 

model for normal pressure and overpressure generated by compaction disequilibrium is given by: 

 

V = 5000 + Aσe
B,                                                                                                                                      (3.6) 
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where V is the compressional sonic velocity (ft/sec); 𝜎𝑒 is the effective vertical stress (psi); A 

and B are virgin curve parameters. The values of A and B can be obtained by calibrating 

equation 3.6 to the normally compacted series in the same well or offset wells. The unloading 

curve model for overpressure generated by fluid expansion mechanisms is given by 

 

V = 5000 + A [σmax [
σe

σmax
]

1
U
]

B

,                                                                                                          (3.7) 

 

σmax = [
Vmax − 5000

A
]

1
B
,                                                                                                                       (3.8) 

 

where σmax is the effective vertical stress at the onset of unloading (psi); Vmax is the 

compressional sonic velocity at the onset of unloading (ft/sec); U is the unloading parameter 

which measures how plastic the sediment is. The value of U is obtained by fitting equation 3.7 to 

the regional offset wells. Under normal and overpressure conditions caused by compaction 

disequilibrium, the plot of compressional sonic velocity against effective stress will follow the 

virgin curve (equation 3.6). However, subsurface overpressure conditions caused by fluid 

expansion mechanisms will trail the unloading curve (equation 3.7). 

Most current pore pressure prediction models are not applicable to non-clastic rocks. 

Carbonate rocks are stiffer than shales and their porosity related properties may not be affected 

by overpressure environments. Atashbari & Tingay ( 2012) proposed a pore pressure prediction 

model based on bulk and pore compressibilities for carbonate rocks (equation 3.9): 

 

PP =  [
(1 − ∅)Cbσv

′

(1 − ∅)Cb − (∅Cp)
]

γ

,                                                                                                               (3.9) 



 

88 
 

 
where PP is the formation pore pressure (psi); ∅ is the formation porosity (fraction); Cb is the 

bulk compressibility (psi-1); Cp is the pore compressibility (psi-1); σv
′  is the vertical effective 

stress (psi); 𝛾 is the empirical constant ranging from 0.9 to 1.0. There are other popular pore 

pressure prediction models that have been developed but these are based mostly on the 

modifications to the previous models (Zhang, 2011;  Zhang, 2013).  

Early application of drilling parameters to pore pressure prediction used the rate of 

penetration (ROP) as a principal indicator of subsurface overpressure conditions in a uniform 

lithology (Forgotson, 1969). Field and laboratory observations have shown an inverse 

relationship between the ROP and differential pressure ( Cunningham & Eenink, 1959; Vidrine 

& Benit, 1968;  Wardlaw, 1969; Black et al., 1985; Cheatham et al., 1985). In overpressure 

formations, the ROP will most likely increase (positive drilling break) due to lower degree of 

rock compaction, higher porosity and decrease in vertical effective stress especially if the 

primary cause of overpressure mechanism is compaction disequilibrium. However, ROP is 

affected by many factors other than the differential pressure. These factors include lithology, 

degree of compaction, weight on bit (WOB), rotary speed, bit size, bit type, hydraulics excessive 

overbalance and bit wear (Bourgoyne & Young, 1973). From the operational point of view, it is 

not always possible to maintain the above factors constant while drilling a well. Hence, a sudden 

increase in ROP may not necessarily signify drilling into abnormally pressured zones. 

Normalization of ROP for the effects of WOB, rotary speed and bit size led to the development 

of d-exponent concept (Jorden &Shirley 1966; Harper 1969; Rehm & McClendon 1971). The dc 

– exponent model is given by: 
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dc − exponent =  
log [

ROP
60N]

log [
12WOB
106Db

]
∗ [

Gnp

ECD
],                                                                                       (3.10) 

 

where dc − exponent is the corrected d – exponent; ROP is the rate of penetration (ft/hr); N is 

the rotary speed in revolution per minute (rpm); WOB is the weight on bit (lbs); Db is the bit 

diameter (in); Gnp is the normal pore pressure gradient (psi/ft or ppg); ECD is the equivalent 

circulating density (psi/ft or ppg). The corrected d-exponent (equation 3.10) versus depth graph 

is displayed on the semi-log to prevent significant variation of d-exponent with location and 

geological age. In normal pressure environments, the corrected d-exponent will show an 

increasing trend with depth. In overpressure shales, the corrected d-exponent will deviate from 

the normal compaction trend (NCT) to lower values. The amount of deviation from the NCT at a 

given depth is correlated to the magnitude of overpressure. One of the major drawbacks to the 

application of d – exponent concept to pore pressure prediction is that it does not consider the 

effect of bit hydraulic energy on the ROP. This limits its application to hard rock environments.  

Traditionally, most works on the applications of specific energy to drilling operations 

have been directed at improving the drilling efficiency (drilling optimization) and identification 

of abnormal/inefficient drilling conditions (Rabia, 1985; Waughman et al., 2003;  Dupriest & 

Koederitz, 2005; Koederitz & Weis, 2005;  Dupriest, 2006; Armenta, 2008; Amadi & Iyalla, 

2012; Bevilacqua et al., 2013; Abbas et al., 2014; Mohan et al., 2015; Pinto & Lima, 2016; Wei 

et al., 2016; Zhou et al., 2017). While the results of experimental investigations on rock samples 

have shown the dependency of specific energy on confining/differential pressure (Rafatian et al., 

2010; Akbari et al., 2013; Akbari et al., 2014), only few (three) attempts have been made to 

apply energy-based concept to pore pressure prediction using field data. Cardona (2011) was the 

first to use mechanical specific energy (MSE) concept to estimate the formation pore pressure 
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from the field data. Just like the d-exponent concept, Cardona’s model does not contain the 

hydraulic energy term, making it suitable to only hard rock environments. Majidi et al. (2017) 

then proposed a methodology to determine the formation pore pressure from the combination of 

downhole drilling parameters and in-situ rock properties using the concept of drilling efficiency 

and mechanical specific energy (DE-MSE). The formation pressure was expressed as a function 

of equivalent circulating density, MSE, uniaxial compressive strength and angle of internal 

friction.  The Majidi’s model is given by: 

 

PP = ECD − [(DEtrend x  MSE) − UCS] [
1 − sin θ

1 + sin θ
],                                                                   (3.11) 

DEtrend = a∅n
b ,                                                                                                                                       (3.12)  

USC = 0.43Vp
3.2 ,                                                                                                                                     (3.13) 

θ = 1.532Vp
0.5148 ,                                                                                                                                  (3.14) 

 
where PP is the pore pressure (psi); ECD is the equivalent circulating density (psi); MSE is the 

mechanical specific energy (psi); UCS is the uniaxial compressive strength (psi); 𝜃 is the angle 

of internal friction; ∅ is the formation porosity; Vp is the compressional sonic velocity (ft/sec); a 

is the coefficient of drilling efficiency trend-line from porosity trend-line; b is the exponent of 

drilling efficiency trend-line from porosity trend-line. The major drawback to Majidi’s model is 

that there are so many variables to be considered including the rock petrophysical properties. The 

empirical equations (equations 3.13 and 3.14) that relate uniaxial compressive strength (UCS) 

and angle of internal friction to compressional sonic velocity must be validated with core data in 

the region of application. More so, Majidi’s model does not provide an independent means of 

estimating the formation pore pressure since the compressional sonic velocity which is used to 

estimate the UCS and angle of internal friction is also a function of the formation pore pressure. 
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Lastly, Majidi’s model ignores the effect of bit hydraulic energy on the ROP. 

 Oloruntobi et al. (2018) developed a methodology to estimate the formation pore pressure 

using the concept of hydro-rotary specific energy (HRSE). This model is given by: 

 

HRSE =  

[
 
 
 
 
120πNT

AbROP
+ 

0.10628 MW Q3  [1 − [
JSA
TFA]

−0.122

]

Ab ROP TFA2

]
 
 
 
∗ [

Gnp

ECD
],                                     (3.15) 

 

where HRSE is the hydro-rotary specific energy (psi); Ab is the bit area (in2); N is the rotary 

speed (rpm); T is the torque on bit (lb-ft); ROP is the rate of penetration (ft/hr); Q is the flow rate 

(gpm); MW is the mud weight (ppg); JSA is the junk slot area (in2); TFA is the total flow area 

(in2); Gnp is the normal pore pressure gradient (psi/ft or ppg) and ECD is the equivalent 

circulating density (psi/ft or ppg). Oloruntobi’s model was derived from the combination of 

rotary and hydraulic energies with the axial energy being neglected (equation 3.15). While the 

model can be applied to consolidated (hard) and unconsolidated (soft) sediments due to the 

inclusion of bit hydraulic energy term, accurate knowledge of torque on bit (TOB) is required. 

TOB is usually subjected to a lot of fluctuations during drilling and it is perhaps the major source 

of errors in the computation of specific energies. 

Since most readily available field data in older (offset) and present-day wells are in the 

form of surface measurements especially for marginal field operators, there is a need to develop 

a pore pressure prediction technique from drilling parameters based on this reality. In this paper, 

a new energy-based pore pressure prediction model that uses only surface measurements is being 

proposed based on the concept of hydro-mechanical specific energy (HMSE). The HMSE is the 

combination of axial, torsional and hydraulic energies required to break and remove a unit 

volume of rock. The new technique can provide an excellent means of estimating the formation 
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pore pressure from the drilling parameters in the absence of reliable downhole measurements at 

relatively low cost. 

 

3.2 Model Development 

 

Teale (1965) defined mechanical specific energy (MSE) as the amount of energy required to 

remove a unit volume of rock. It amounts to the combination of energies due to axial and 

torsional loads (equation 3.16): 

 

MSE =  
WOB

Ab
+ 

120 ∗ π ∗ N ∗ T

Ab ∗ ROP
 ,                                                                                                     (3.16) 

 

where MSE is the mechanical specific energy (psi); WOB is the downhole weight on bit (lbs); Ab 

is the bit area (in2); N is the rotary speed (rpm); T is the torque on bit (lb-ft); ROP is the rate of 

penetration (ft/hr). However, the MSE does not necessarily represent the total energy consumed 

in breaking and removing the rock fragments beneath the bit as the bit hydraulic energy term is 

omitted in the model. The hydro-mechanical specific energy (HMSE) is the combination of 

axial, torsional and hydraulic energies (Mohan et al., 2015; Chen et al., 2016;  Wei et al., 2016).  

 

HMSE =  
Axial Energy

Rock Volume Drilled
  +

Torsional Energy

Rock Volume Drilled
    +

Hydraulic Energy

Rock Volume Drilled
,        (3.17) 

 

The hydro-mechanical specific energy (HMSE) in the expanded form is given by: 

 

HMSE =  
WOB

Ab
+ 

120 ∗ π ∗ N ∗ T

Ab ∗ ROP
+ 

1154 ∗ ∆Pb ∗ Q

Ab ∗ ROP
 ,                                                               (3.18) 

 

where WOB is the downhole weight on bit (lbs); Ab is the bit area (in2); N is the rotary speed 

(rpm); T is the torque on bit (lb-ft); ROP is the rate of penetration (ft/hr); ∆Pb is the bit pressure 
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drop (psi); Q is the flow rate (gpm). Pessier and Fear (1992) expressed the downhole torque (T) 

as a function of weight on bit (WOB), bit specific coefficient of sliding friction (μ) and bit 

diameter (Db) as given by: 

 

T =  
μ ∗ Db ∗ WOB

36
.                                                                                                                               (3.19) 

 
Combination of equations 3.18 and 3.19 will lead to equation 3.20: 

 

HMSE = 
WOB

Ab
+ 

13.33 ∗ μ ∗ N ∗ WOB

Db ∗ ROP
+ 

1154 ∗ ∆Pb ∗ Q

Ab ∗ ROP
 ,                                                     (3.20) 

 

Excessive overbalance conditions will increase the confinement of rock and cuttings at the bit 

face. This can lead to a reduction in ROP and an increase in the amount of energy required to 

remove a unit volume of rock. Therefore, the HMSE needs to be corrected for changes in 

bottom-hole pressure (equation 3.21): 

 

HMSE = [
WOB

Ab
+ 

13.33 ∗ μ ∗ N ∗ WOB

Db ∗ ROP
+ 

1154 ∗ ∆Pb ∗ Q

Ab ∗ ROP
] ∗ [

Gnp

ECD
],                                   (3.21) 

 

where all parameters are as previously defined. This correction follows a similar correction for 

the effect of mud weight/equivalent circulating density on d-exponent (Rehm & McClendon 

1971). Due to accelerated fluid entrainment immediately below the bit nozzles, not all the 

available hydraulic energy at the bit will reach the bottom of the hole. Therefore, the bit 

hydraulic energy is converted into the bottom-hole hydraulic energy by introducing a hydraulic 

energy reduction factor (η) into the bit hydraulic energy (equation 3.22): 

 

HMSE =  [
WOB

Ab
+ 

13.33 ∗ μ ∗ N ∗ WOB

Db ∗ ROP
+ 

1154 ∗ η ∗ ∆Pb ∗ Q

Ab ∗ ROP
] ∗ [

Gnp

ECD
].                            (3.22) 
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Due to jet impact of the drilling fluid on the formation, an equal and opposite (pump-off) force is 

exerted on the bit, leading to a reduction in WOB (equation 3.23): 

 

HMSE =  [
WOBe

Ab
+ 

13.33 ∗ μ ∗ N ∗ WOBe

Db ∗ ROP
+ 

1154 ∗ η ∗ ∆Pb ∗ Q

Ab ∗ ROP
] ∗ [

Gnp

ECD
],                        (3.23) 

 

where WOBe is the effective weight on bit (lbs); all other parameters are as previously defined. 

The effective weight on bit (WOBe) is the surface WOB minus the component of jet impact force 

that reaches the bottom of the hole (equation 3.24): 

 

WOBe = WOB −  η ∗ Fj,                                                                                                                       (3.24) 

 

where WOB is the surface weight on bit (lbs); (η) is the hydraulic energy reduction factor; Fj is 

the bit jet impact force (lbs). Equation 3.25 is obtained by combining equations 3.23 and 3.24:  

 

HMSE =  [
[WOB −  ηFj]

Ab
+ 

13.33μN[WOB −  ηFj]

DbROP
+ 

1154η∆PbQ

AbROP
] ∗ [

Gnp

ECD
].                      (3.25) 

 

The bit jet impact force is given by:  

 

Fj = 0.000516 ∗ MW ∗ Q ∗ Vj ,                                                                                                           (3.26) 

 

where MW is the mud weight (ppg); Q is the flow rate (gpm); Vj is the jet velocity (ft/sec). The 

jet velocity is given by: 

 

Vj =
0.32 ∗ Q

TFA
,                                                                                                                                         (3.27) 

 

where Q is the flow rate (gpm); TFA is the total flow area (in2).  For PDC bits, the hydraulic 
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energy reduction factor (η) is expressed as a function of junk slot area and total flow area 

(Oloruntobi et al., 2018) and this is given by: 

 

ηPDC Bit =  1 − [
JSA

TFA
]
−0.122

,                                                                                                                (3.28) 

 

where JSA is the junk slot area (in2); TFA is the total flow area (in2). For roller cone bits, the 

model proposed by Warren (1987) provides good estimates and this is given by: 

 

ηRoller Cone Bit =  1 − [
0.15 Bit Area

TFA
]
−0.122

.                                                                                   (3.29) 

 
The hydraulic energy reduction factor model proposed by Rabia (1989) is more complex and 

may not be suitable for applications where there are variations in nozzle sizes within the same 

bit. The pressure drop across the bit is given by:  

 

∆Pb = 
MW Q2

10858 TFA2
,                                                                                                                             (3.30) 

 

where ∆Pb is the bit pressure drop (psi); MW is the mud weight (ppg); Q is the flow rate (gpm); 

TFA is the total flow area (in2). For fixed cutter bits, the value of bit specific coefficient of 

sliding friction (μ)  will depend on lithology, rock strength, mud weight, blade count, bit wear 

and cutter sizes (Caicedo et al. 2005; Guerrero & Kull 2007). However, from field observations, 

the value of μ often stays within a narrow range: 0.18 – 0.24 for roller cone bits and 0.5 – 0.8 for 

PDC bits under different operating conditions (Wei et al. 2016). To minimize the errors in the 

computation of HMSE, it is reasonable to assume average values of 0.21 and 0.65 for roller cone 

and PDC bit respectively.  

As the depth of burial increases in normally compacted series, the energy (HMSE) 
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required to break and remove a unit volume of rock will also increase. However, subsurface 

overpressure intervals with lower vertical effective stress will require less energy to drill than the 

normally compacted series at the same depth, leading to the reversal in the HMSE trend. 

 

3.3 Methodology  

 

1. Compute the HMSE at the depth of interest using equations 3.25 – 3.30.  If there are wide 

variations/fluctuations in HMSE values due to different lithologies being penetrated, the 

HMSE should be estimated over clean shale intervals only to remove any lithological 

effects on HMSE.  

2. Display the plot of HMSE against depth on a semi-log and establish the normal 

compaction trend (NCT) over the entire interval. 

3. Estimate the formation pore pressure gradient at any given depth using the energy-based 

Eaton’s model given as:  

 

Gpp = Gob − {Gob − Gnp} ∗ [
HMSEo

HMSEn
]
m

,                                                                           (3.31) 

 
where Gpp is the pore pressure gradient (psi/ft); Gob is the overburden gradient (psi/ft); 

Gnp is the normal pore pressure gradient (NPPG) in psi/ft; HMSEo is the actual HMSE 

calculated using equations 3.25 – 3.30; HMSEn is the hypothetical value of HMSE from 

the normal compaction trend; m is the HMSE exponent. The value of the specific energy 

ratio exponent (m) will vary from one region to another. It can be obtained by calibrating 

equation 3.31 to any known overpressure intervals in the offset or current wells. If the 

current well being drilled is used as the calibration well, equation 3.30 should be 

preferably calibrated to the pressure transition zones where kick intensity is reduced. 
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3.4 Field Example 

 

To demonstrate the applicability of the new pore pressure prediction technique, a recently drilled 

High-Pressure High-Temperature exploratory well (Well A) in the tertiary deltaic system of the 

Niger Delta is considered as the case study. Well A is located approximately 80 km northwest of 

Port Harcourt in the central region of the basin (Figure 3.1).  

 

 
 

Figure 3. 1 Location map for Well A. 
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The well is a near-vertical sidetrack well drilled to a total depth of 17,265 ft with a maximum 

inclination of 6.8 degrees. The Niger Delta is an extensional rift basin that consists of the 

regressive clastic sequence up 12 km in thickness and covers about 75,000 km2 (Evamy et al., 

1978). The detailed geology of the basin can be obtained from the literature (Short and Stauble, 

1967; Avbovbo, 1978; Doust and Omatsola, 1990; Reijers, 2011). The growth and development 

of the structural and depositional systems in the basin involves a complex interaction of 

subsidence, contraction, and extension (Hooper et al., 2002). The structural geology of the area is 

characterized by growth faults associated with rollover structures (Daukoru, 1975; Weber, 1987). 

The primary mechanism for overpressure generation in the Niger Delta is under-compaction 

(Daukoru, 1975; Ugwu & Nwankwo, 2014). In this paper, all depths are referenced to true 

vertical depth (TVD) below the rotary table (RT)  

 

Table 3. 1 The well and bit data summary. 
 
 

Hole Size Bit Data 
BHA 

Type 

Intervals 

(ft) 

TFA 

(in2) 

JSA 

(in2) 
Bit Dull Grade 

12 ¼’’ 

 

PDC Bit 

(HCC, Q 506 F) 
RSS 10099 - 15080 1.2824 31.48 2-5-WT-G-X-I-CT-BHA 

12 ¼’’ 

 

PDC Bit 

(HCC, QD 507 FHX) 
Steerable 15080 - 15193 1.2962 21.28 1-2-CT-S-X-I-NO-TD 

8 ½’’ 

 

PDC Bit 

(HCC, DP 506 F) 
RSS 15193 - 15601 0.8399 15.55 1-1-WT-S-X-I-NO-DTF 

8 ½’’ 

 

PDC Bit 

(HCC, DP 506 F) 
RSS 15601 - 16556 1.0301 15.55 2-2-BU-A-X-I-PN-TD 

5 5/8’’ 

 

PDC Bit 

(HCC, QD 406 FHX) 
Steerable 16556 - 17265 0.8437 4.295 N/A 

 

 

Table 3.1 provides information about the type of bit and bottom-hole assembly (BHA) used to 

drill the hole sections of interest. The dull grade for the bit used to drill the 5 5/8’’ hole was not 

available because the bit was lost in hole due to a pipe stuck incident following a well killing 

operation. Only the 12 ¼’’, 8 ½’’ and 5 5/8’’ hole sections are under considerations in this paper. 

These intervals contain the normally compacted series, pressure transition zones and 
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overpressure formations. The top/big hole sections have been excluded from the analysis because 

of limited data acquisitions and the sections contain loose continental sands with no overpressure 

or hydrocarbon-bearing intervals. Figure 3.2 displays the plots of the recorded drilling 

parameters from surface measurements while drilling the well. Where the bottom hole assembly 

(BHA) contains mud motor (steerable), the total rotary speed is obtained using equation 3.32:  

 

Total rotary speed = Surface string rotation + [Q ∗ Motor STFR],                                      (3.32) 

 

where Q is the flow rate (gpm); STFR is the speed to flow ratio (rpm/gpm).  

To determine the overburden pressure, the formation bulk density data from the offset 

wells were combined with the formation bulk density data from the current well (Well A) to 

produce the equation of best fit. The equation of best fit was used to estimate the formation bulk 

density values in intervals where formation bulk density logs were not acquired. The formation 

bulk density equation of best fit is given by:  

 

ρb = 1.136 Z0.0833 ,                                                                                                                               (3.33) 

 

where  ρb is the formation bulk density as a function of depth (g/cc); Z is the depth of interest 

(ft). By integrating the bulk density data, the overburden pressure was computed using:  

  

Sv = 0.433 ∫ ρbdz,                                                                                                                               (3.33)
z

0

 

 

where Sv is the overburden pressure (psi); ρb is the formation bulk density as a function of depth 

(g/cc); Z is the depth of interest (ft). The equation of best fit was further constrained by the leak-

off test (LOT) data in the field since the Niger Delta basin operates under normal faulting regime 

such that overburden pressure is the maximum principal stress ( Sv > σH > σh).  
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Figure 3. 2 The plots of drilling parameters against depth for Well A.  
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Figure 3. 3 The formation bulk density and overburden pressure/gradient profiles for Well A. 
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The overburden gradient (Gob) was obtained by dividing the overburden pressure at the depth of 

interest by the true vertical depth. The plots of formation bulk density, overburden 

pressure/gradient and equation of best fit are displayed in Figure 3.3. Equation 3.33 is an 

improvement to the formation bulk density prediction model presented by Oloruntobi et al. 

(2018) for the central region of the Niger Delta based on a new set of offset well data. 

 

3.5 Discussion 

 

Figure 3.4A shows the plot of HMSE versus depth for Well A. Since the lithological effect on 

the HMSE is minimal in this well, the HMSE values are estimated across the various 

stratigraphic units from 10,997 ft to 17,265 ft. From the plot, the normal compaction trend 

(NCT) can be visibly identified from 10,997 ft to 15,060 ft. In these intervals, the total energy 

required to break and remove a unit volume of rock beneath the bit (HMSE) increases with depth 

due to a decrease in rock porosity and an increase in effective stress. Depth intervals that lie on 

the NCT correspond to the normally compacted series in the field. Based on the salinity of the 

formation waters in the region, the average normal pore pressure in the intervals that lie on the 

NCT is 8.66 ppg (0.45 psi/ft). In the intervals just below the 15,060 ft (top of pressure transition 

zones), subsurface overpressure conditions cause the HMSE to depart from the NCT to lower 

values. The overpressure intervals with lower effective stress consumed less energy to drill than 

the normally compacted series at the same depth. The magnitude of overpressure is directly 

correlated to the amount of deviation from the NCT.  

Figure 3.4B shows the comparison between pore pressure estimates derived from HMSE 

concept (equation 3.31) and actual pore pressure measurements. A close agreement exists 

between the predicted and measured formation pore pressure.  
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Figure 3. 4 The HMSE and pore pressure profile for well A 

 

 

The actual pore pressure measurements were obtained from the wireline pressure sampling tool 

and drilling kick data at the formations/depths of interest. Since the actual formation pore 

pressure in the field is known up to 16,567 ft (from offset wells) prior to drilling the current well, 

equation 3.31 is calibrated to these intervals to determine the value of the specific energy ratio 

exponent (m). The value of the specific energy ratio exponent (m) is 0.28. The predicted 

formation pore pressure is normal from 10,997 ft to 15,060 ft with an average value of 0.45 

psi/ft. At the depth just below 15,060 ft (onset of overpressure), the formation pore pressure 
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increases from 0.45 psi/ft to 0.72 psi/ft at 15,630 ft. The formation pore pressure then increases 

further from 0.72 psi/ft at 15,630 ft to 0.9 psi/ft at the bottom of the well. The actual formation 

pore pressure at the bottom of the well was obtained from a gas kick data. While drilling with a 

mud weight (MW) of 0.87 psi/ft at the bottom of the well (17,265 ft), a gas kick was taken with 

stabilized shut-in drill pipe pressure (SIDPP) of 530 psi. This results in formation pore pressure 

of 0.9 psi/ft. Table 3.2 summarizes the main differences between pore pressure prediction 

technique based on HMSE concept and other pore pressure prediction models derived from 

drilling parameters.  

 

Table 3. 2 Comparison of pore pressure prediction models from drilling parameters.  

 

Author Concept 
Input Drilling 

Parameters 
Remarks 

Jorden &Shirley 

(1966) 
d – exponent 

WOB, N, and 

ROP 

Empirically derived. It excludes the bit hydraulic 

energy term. Suitable mostly to hard rocks.  

Cardona  

(2011) 
MSE 

WOB, N, T, 

and ROP 

Derived from specific energy concept based on the 

combination of axial and rotary energies. It excludes 

the bit hydraulic energy term. Suitable mostly to 

hard rock. 

Majidi et al. 

(2017) 
DE-MSE 

WOB, N, T, 

and ROP 

The same as Cardona (2011). It also requires in-situ 

rock properties to be known. 

Oloruntobi et al. 

(2018) 
HRSE 

N, T, Q, and 

ROP 

Derived from specific energy concept based on the 

combination of rotary and hydraulic energies. It 

includes the bit hydraulic energy term. Suitable to 

soft and hard rocks. It excludes WOB term. 

New Method HMSE 
WOB, N, Q, 

and ROP 

Derived from specific energy concept based on the 

combination of axial, rotary and hydraulic energies. 

It includes the bit hydraulic energy term. Suitable to 

soft and hard rocks. It excludes torque term. 
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3.6 Conclusions 

 

A new methodology to estimate the formation pore pressure from the drilling parameters is being 

proposed. The new methodology is based on the concept of total energy (axial, rotary and 

hydraulic) required to remove a unit volume of rock using only surface measurements. Since 

downhole measurements are not routinely measured as part of normal drilling parameters, the 

proposed methodology can provide a reliable means of estimating the formation pore pressure 

from the drilling parameters at relatively low cost. The HMSE computed from surface 

measurements can provide a reliable means of identifying the onset of overpressure in low 

inclination well (inclination < 30 degrees) where there is a good transfer of WOB to the bottom 

of the hole. In a high angle well (inclination > 30 degrees), hole drag due to friction loss along 

the wellbore may prevent effective transfer of WOB to the bottom of the hole, especially during 

sliding operations. In a high angle well, downhole parameters should be used to compute HMSE. 

Even if downhole measurements are available, a comparison of HMSE computed from downhole 

measurements with HMSE computed from surface measurements along with the compressional 

sonic velocity can be useful in identifying the source of a drilling problem. For instance, an 

increase in HMSE computed from both surface and downhole measurements with a 

corresponding increase in compressional sonic velocity may indicate drilling into a hard 

formation for a normal drilling operation. Increase in HMSE computed from both surface and 

downhole measurements with no corresponding increase in compressional sonic velocity may 

indicate bit related problems for a normal drilling operation. Increase in HMSE computed from 

surface measurements with no corresponding increase in HMSE computed from downhole 

measurements may indicate wellbore related problems such as stabilizer hanging up and cuttings 

accumulation in the annulus (hole inclination > 30 degrees). However, the proposed 
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methodology should be applied with care under excessive bit wear, bit balling conditions, 

excessive vibration and mud motor stalling conditions. The above conditions can mask 

subsurface overpressure conditions when drilling through the pressure transition zones. 
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Chapter 4 

 

4.0 The New Formation Bulk Density Predictions for Siliciclastic Rocks 

 

Preface 

 

A version of this chapter has been published in the Journal of Petroleum Science and 

Engineering, 2019. I am the primary author. Co-author Dr. Stephen Butt reviewed the 

manuscript and provided technical assistance in the development of the concept. I formulated the 

initial concept and carried out most of the data analysis. I prepared the first draft of the 

manuscript and revised the manuscript based on the feedback from the co-author and peer 

review process. The co-author also helped to refine the concept. 

 

Abstract  

 

Accurate determination of the overburden pressure obtained by integrating the formation bulk 

densities from surface to the depth of interest is very critical to pore pressure prediction. When 

information about the formation bulk density is not available, the current practice is to estimate 

the formation bulk density from compressional wave velocity using empirical relationships. 

There is no single formation bulk density prediction model that considers lithologic variation in 

siliciclastic settings. This imposes severe limitations on the application of the existing empirical 

relationships to any lithological column that consists of several stratigraphic units and/or non-

clean intervals. In this paper, attempt is made to develop the new formation bulk density 

prediction models that can be applied to a wide range of lithologies in siliciclastic environments. 

The new models are validated using wireline log data acquired from two wells in the tertiary 

deltaic system of the Niger Delta basin. In the new models, formation bulk density is expressed 
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as a function of compressional wave velocity and shale volume factor. The accuracy of the new 

models is quantified using statistical analysis. When compared to the existing models, the new 

models outperform the most widely used empirical relationships. The new models produce the 

lowest root mean square errors (5 - 6%), excellent error distributions and lowest residual values. 

Unlike any of the existing empirical relationships, the new formation bulk density prediction 

models can be applied to clean sands, clean shales and formations that contain a mixture of sands 

and shales in any proportion. In general, the applications of the new models show an excellent 

agreement between the predicted and measured formation bulk density. 

 

Keywords: Formation bulk density, Compressional velocity, Empirical relationship, Lithology. 

 

4.1 Introduction 

 

Accurate determination of the rock mechanical properties is very essential for reducing the risks 

associated with drilling, completion and production operations (Onalo et al., 2018). In addition to 

compressional and shear wave velocity data, formation bulk density is an important input 

parameter required to estimate the rock mechanical properties (Tixier et al., 1975; Coates and 

Denoo, 1980; Onyia, 1988; Potter and Foltinek, 1997; Ohen, 2003; Chang et al., 2006; Fjar et al., 

2008; Ameen et al., 2009; Khair et al., 2015; Xu et al., 2016; Najibi et al., 2015; Feng et al., 

2019). These properties are required for geo-mechanical analyses such as compaction and 

subsidence, wellbore stability prediction, perforation strategy, hydraulic fracturing, sand 

production prediction and reservoir characterization. Formation bulk density data are also 

required for porosity estimation, lithology determination, pore fluid identification and 

overburden pressure prediction. Information about the formation bulk density and its derivative 
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in clean shales can be very useful in estimating the formation pore pressure and predicting the 

origin of overpressure (Burrus, 1998; Bowers, 2001; Swarbrick, 2001; Zhang, 2011; Zhang, 

2013; Hoesni, 2004; Satti et al., 2015). In seismic reflection analysis, information about the 

formation bulk density is required in determining the elastic impedance of an interface.  

Although density logs are among the common well logs acquired while drilling a well or 

after the well has been drilled, there are several occasions when formation bulk density 

predictions from other well log data may be required. First and foremost, density logs are usually 

not run in all the intervals from surface/seabed to well total depth (Zoback, 2010). In most cases, 

these logs (density) are run only in the intervals of interest (such as intervals that contain 

hydrocarbon-bearing sands) for a selected number of wells in a certain field. Furthermore, 

density logs are usually not run in the top/big hole sections (greater than 16 inches) because of 

the difficulty of acquiring such logs in large diameter boreholes that are prone to excessive 

washout and the fact that these sections do not normally contain hydrocarbon-bearing sands. 

Even if density logs are run in a well, comparison with its prediction from other well logs can be 

a useful quality control tool, especially in a rugose wellbore. More so, it is possible that density 

tool may fail while drilling or logging at great depth (greater than 17,000 feet) in an offshore 

environment with a floating rig. Under this condition of extremely high operating cost, operators 

will not likely pull out of hole to re-run the density tool if other well logs that can be used to 

accurately predict formation bulk density are available. Finally, accurate determination of 

overburden pressure for pre-drill pore/fracture pressure predictions and wellbore stability 

analyses requires information about the formation bulk density over the entire penetrated 

intervals from surface to the depth of interest. Since density logs are not usually acquired over 

the entire drilled intervals from surface to the depth of interest, prediction of this property is 
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highly required in the intervals that do not contain density logs. In general, lack of continuous 

formation bulk density measurements along the well path necessitates its prediction for 

overburden pressure estimation. Other possible reasons for the absence of density logs in most 

wells/intervals may include economic reasons (especially marginal operators) and the risk of 

losing a radioactive source in the well. In formations/intervals where density logs are not 

acquired, empirical relationships have been developed to estimate the formation bulk density 

from the compressional wave velocity. Equations of best fit through the intervals that do not 

contain formation bulk density data should be used with caution and only if formation bulk 

density values cannot be predicted due to unavailability of other well log data. In this paper, 

unless otherwise stated, the compressional velocity and formation bulk density are expressed in 

kilometers per second (km/s) and grams per cubic centimeter (g/cm3 or g/cc) respectively.  

The relationship between the formation bulk density and compressional wave velocity 

has long been established. In non-fractured rocks, the formation bulk density is a function of 

compressional wave velocity (Lobkovsky et al., 1996). Birch (1961) established a linear 

relationship between the formation bulk density (ρb) and compressional wave velocity (Vp) for 

igneous and metamorphic rocks based on laboratory measurements. The empirical model 

proposed by Birch (1961) is given by:    

 

ρb = AVp + B,                                                                                                                                            (4.1) 

 

where A and B are empirical constants. Anderson (1967) then extended and modified Birch’s 

model to be in accordance with theoretical predictions. For most volcanic and granitic rocks, 

Carroll (1969) concluded that the relationship between formation bulk density and compressional 

wave velocity is also linear. Based on a large number of laboratory and field observations of 
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different brine-saturated rock types (excluding evaporites) from a wide variety of basins and 

depths, Gardner et al. (1974) proposed the most widely used exponential relationship between 

the formation bulk density (ρb) and compressional velocity (Vp). Gardner’s relation is given by:    

 

ρb = 1.74[𝑉𝑝]
0.25

.                                                                                                                                     (4.2) 

 

Gardner’s model is one of the most important empirical relationships used in seismic prospecting 

(Castagna and Backus, 1993). The model is most reliable when the rocks are well consolidated, 

water-saturated and under substantial effective stress. Gardner’s model and its modifications 

have been applied to several sedimentary basins around the world (Dey and Stewart, 1997; Potter 

and Stewart, 1998; Potter, 1999; Quijada and Stewart, 2007; Ojha and Sain, 2014; Nwozor et al., 

2017; Akhter et al., 2018). In most cases, Gardner’s model tends to overestimate formation bulk 

density in sandstones and underestimate formation bulk density in shales (Wang, 2001). Lindseth 

(1979) established an empirical relationship between acoustic impedance (ρbVp) and 

compressional velocity (Vp) based on Gardner et al. (1974) data set (equation 4.3): 

 

Vp = 0.308ρbVp + 3460,                                                                                                                        (4.3) 

 

where the compressional wave velocity is expressed in feet per second (ft/s). Although 

Christensen and Mooney (1995) proposed both linear and nonlinear relationships between 

formation bulk density (ρb) and compressional wave velocity (Vp) for crystalline rocks, they 

concluded that the nonlinear relationship provides the best correlation. The non-linear model 

proposed by Christensen and Mooney (1995) is given by:    

 

ρb = G +
K

Vp
,                                                                                                                                              (4.4) 
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where G and K are empirical constants that depend on the depth at which the rocks are found. 

Brocher (2005) proposed a nonlinear (polynomial) relationship between formation bulk density 

(ρb)  and compressional velocity (Vp) based on the data provided by Ludwig et al. (1970) for all 

rock types except mafic crustal and calcium-rich rocks. The model is valid for compressional 

velocity between 1.5 km/s and 8.5 km/sec (Brocher  2008). Brocher’s model is another widely 

used empirical relationship given by: 

 

ρb = 1.6612Vp − 0.4721Vp
2 + 0.0671Vp

3 − 0.0043Vp
4 + 0.000106Vp

5.                              (4.5) 

 

Khandelwal (2013) presented another linear relationship between formation bulk density (ρb) 

and compressional wave velocity (Vp) for representative rock mass samples of igneous, 

sedimentary, and metamorphic rocks. Khandelwal’s correlation is given by:   

 

ρb = 0.202Vp − 1794.7,                                                                                                                         (4.6) 

 

where the compressional wave velocity and formation bulk density are expressed in m/s and 

kg/m3 respectively. Attempts have also been made to estimate the formation bulk density from 

the combination of compressional and shear wave velocities (Ursenbach,  2001; Ursenbach, 

2002a; Ursenbach, 2002b).  

Most of the existing empirical relationships between the formation bulk density and 

compressional wave velocity were developed mainly for clean formations and they do not 

consider variations in lithology. Empirical relationships that work very well for clean sandstone 

formations may perform poorly in clean shale/shaly-sandstone formations and vice versa. In fact, 

the most recent formation bulk density prediction models proposed by Akhter et al. (2018) are 

still limited to clean formations containing less than 10 % shale by volume. Based on the 
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experimental data presented by Han et al. (1986) at 40 MPa differential pressure, Miller & 

Stewart (1991) determined that the relationships between compressional wave velocity and 

formation bulk density were scattered for rocks that contain a mixture of sand and shale. 

However, they observed that the relationships improved significantly when the data were 

categorized by clay content based on Vernik & Nur (1992) classification. This is the basis of the 

new formation bulk density predictions. In this paper, an attempt is made to develop new 

formation density prediction models that can be applied to a wide range of lithologies in 

siliciclastic environments. The new models intend to consider lithologic variation by 

incorporating a shale volume factor term. The addition of the shale volume term will normalize 

the new models for lithology effects. 

 

4.2 Methodology 

 

Laboratory investigations have shown that compressional wave velocity (Vp) can be expressed as 

functions of effective porosity (∅) and clay volume (Vsh) (Tosaya 1982; Tosaya and Nur 1982; 

Kowallis et al., 1984; Castagna et al. 1985; Han et al. 1986). This relationship is given by:  

 

VP = A − B∅ − CVsh,                                                                                                                                (4.7) 

 

where A, B and C are regression coefficients. For liquid-filled non-clean formations in 

siliciclastic settings, effective porosity (∅) can be expressed as functions of formation bulk 

density (ρb), sand matrix density (ρma), shale matrix density (ρsh), saturating fluid density (ρfl) 

and shale volume fraction (Vsh) as given by: 

 

∅ = [
ρma

ρma − ρfl
] − [

1

ρma − ρfl
] ρb − [

ρma − ρsh

ρma − ρfl
] Vsh.                                                                   (4.8) 
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To a large extent, the quantities in the parentheses in equation 4.8 are approximately constant for 

liquid-filled porous rocks. The saturating fluid density (ρfl) is usually approximated as the 

density of mud filtrate. Hence, equation 4.8 will reduce to equation 4.9: 

 

∅ =  M − Nρb − XVsh,                                                                                                                           (4.9)  

 

where M, X and N are constant parameters. Combination of equations 7 and 9 will lead to:  

 

ρb = QVp + ZVsh + P,                                                                                                                           (4.10) 

 

where Q, Z and P are the new coefficients. When applied over clean formations where shale 

volume factor is zero, equation 4.10 will reduce to Birch’s model (equation 4.1). Hence, equation 

4.10 is referred to as modified Birch’s model. Since Gardner’s model is the most widely used 

empirical relationship, a shale volume factor term is also added to Gardner’s model to account 

for variations in lithology. The modified Gardner’s model is given by: 

 

ρb = k[𝑉𝑝 + GVsh]
𝑚

,                                                                                                                              (4.11) 

 

where k, G and m are constant parameters. To determine the values of the constant parameters Q, 

Z, P, G, k and m, equations 4.10 and 4.11 are calibrated to the experimental data provided by 

Han et al. (1986). Han et al. (1986) conducted laboratory ultrasonic experiments on brine 

saturated sandstone cores obtained from quarries in USA and Gulf of Mexico wells. Han’s data 

are selected for calibration because the laboratory experiments were conducted on both clean and 

non-clean formations with the volume of shale in the core samples ranging from 0 to 51%. By 

calibrating equations 4.10 and 4.11 to the compressional wave velocity, formation bulk density 

and shale volume data provided by Han et al. (1986) for the entire 75 samples  at 40 MPa 
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differential pressure, the  values of the constant parameters Q, Z, P, G, k and m are determined to 

be 0.222, 0.361, 1.431, 1.650, 1.351 and 0.390  respectively. Hence, the new formation bulk 

density prediction model (Model I) based on equation 4.10 is given by:  

 

ρb = 0.222Vp + 0.361Vsh + 1.431.                                                                                                  (4.12) 

 

Likewise, the new density prediction (Model II) based on equation 4.11 is given by: 

 

ρb = 1.350[𝑉𝑝 + 1.651Vsh]
0.390

.                                                                                                        (4.13) 

 

4.3 Field Examples 

 

To demonstrate the applicability of the new bulk density prediction models, two wells from the 

tertiary deltaic system in the Niger Delta basin are considered as the case studies. The Niger 

Delta is an extensional rift basin system that consists of clastic sediments up to 12 km in 

thickness and covers an area of about 75,000 km2 (Doust and Omatsola, 1990; Evamy et al., 

1978). The Tertiary Niger Delta consists of three types of formations that represent the pro-

grading depositional facies of sands and shales. These formations in descending order are: Benin 

formation, Agbada formation and Akata formation (Short and Stauble, 1967; Ejedawe et al., 

1984; Avbovbo, 1978; Matava et al., 2003; Adewole et al., 2016). The Benin formation consists 

mainly of continental loose sands. The Agbada formation consists of alternating sands and 

shales. The hydrocarbon accumulations of the Niger Delta basin are generally confined to 

various levels of the Agbada formation (Ejedawe, 1981). The Akata formation at the base of the 

delta consists of thick marine shales (potential source rock), turbidite sand (potential reservoirs in 

deep water environments), and minor amounts of clay and silt (Abbey et al., 2018).  
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Figure 4. 1 The location map for Wells A and B. 

 

 

The primary trapping mechanisms in the basin are growth faults associated with rollover 

structures (Daukoru, 1975; Weber, 1987). At depth shallower than 12,000 ft, the Niger Delta 

sands have good porosity and permeability (porosity in excess of 20% and permeability in the 

darcy range). The detailed geology and hydrocarbon system of the Tertiary Niger Delta is 

presented by Evamy et al. (1978). Figure 4.1 shows the location map of the two wells. Well A is 

an onshore appraisal well located about 71 km northwest of Port Harcourt. Well B is a shallow 

offshore exploratory well located about 94 km southeast of Port Harcourt in 215 ft water depth. 
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Wells A and B only penetrated the Benin and Agbada formations. In this paper, all depths are 

referenced to true vertical depth below the mean sea level.  

 

 

Figure 4. 2 The well logs for Well A showing the petrophysical properties of penetrated rocks.  
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Figure 4. 3 The well logs for Well B showing the petrophysical properties of penetrated rocks. 

 

Figures 4.2 and 4.3 display the wireline log data acquired in the two wells. The measured 

data include gamma ray, compressional wave velocity, formation bulk density, caliper, neutron 

porosity, and deep resistivity. Although all the necessary environmental corrections (borehole 
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size, tool stand-off, mud cake thickness, mud type, mud weight, borehole salinity, pressure, 

temperature, etc.) have been applied to the log data, the inclusion of the caliper logs will help to 

identify the likely regions of poor borehole conditions which may result in poor data acquisition. 

The caliper logs indicate that data acquisitions were carried out in good borehole conditions. 

Further quality checks on the log data were performed using the compression velocity of 

seawater (1.61 km/s), compressional velocity of sandstone matrix (5.49 km/s) and shale matrix 

density in the Niger Delta (2.68 g/cc). The well log data cover a wide range of lithologies (clean 

sands, clean shales, and a mixture of sands and shales) in siliciclastic environments.  

 

4.4 Results and discussions 

 

Figures 4.4 and 4.5 show the comparison of predicted and measured formation bulk density for 

the two wells under consideration. The formation bulk density values are computed using 

equation 4.12 (new model I), equation 4.13 (new model II), equation 4.2 (Gardner’s model) and 

equation 4.5 (Brocher’s model). Since Gardner’s and Brocher’s models are the most widely used 

empirical relationships developed for a wide range of lithologies, formation bulk density values 

are also computed using these models for comparison purposes. For tertiary clastic sediments in 

the Niger Delta basin, field observations have shown that shale volume (Vsh) is linearly related to 

gamma ray index (IGR). Hence, shale volume (in fraction) is computed using equation 4.14: 

 

Vsh = IGR =
GRlog − GRmin

GRmax − GRmin
,                                                                                                             (4.14) 

 

where GRlog is the gamma ray reading at any given depth; GRmin is the sand line gamma ray 

reading; GRmax is the shale line gamma ray reading. However, there are other non-linear 
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empirical responses between shale volume and gamma ray index depending on the geographic 

area or formation age (Larionov, 1969; Stieber, 1970; Clavier et al., 1971; Assaad, 2008).  

Figures 4.4 and 4.5 clearly highlight the limitations in applying any empirical relationship 

that is based solely on compressional wave velocity to estimate the formation bulk density. For 

both wells, the newly developed models (model I and model II) provide accurate estimates of 

formation bulk density across various stratigraphic units. Reasonable estimates are obtained in 

clean sands, clean shales, and formations that contain a mixture of sands and shales in any 

proportion. The addition of the shale volume factor normalizes the new models for lithology 

effects. Unlike the new models, Gardner’s and Brocher’s models fail to provide good estimates 

across all the stratigraphic units. Gardner’s model slightly overestimates formation bulk density 

in clean sands and underestimates formation bulk density in clean shales. Gardner’s model 

provides formation bulk density estimates that fall between the clean sands and clean shales. 

Gardner’s model slightly overestimates bulk density in clean sands because the relationship is 

basically an average of the fits for sandstones, shales, and carbonates. It also underestimates 

formation bulk density in clean shales due to lack of shaliness term in the model. While the 

Brocher’s model provides reasonable estimates in clean sand intervals, it underestimates 

formation bulk density in intervals that contain clean shales due to lack of shaliness term in the 

model. In clean sands, the accuracy of Brocher’s model is higher than that of Gardner’s, while in 

clean shales, the opposite is the case. When applied over a lithological column that consists of 

several stratigraphic units in siliciclastic environments, any empirical relationship that expresses 

formation bulk density as a function of only compressional velocity will most likely produce 

inaccurate estimates in some intervals. 
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Figure 4. 4 The comparison of predicted and measured formation bulk density for various models under consideration (Well A).
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Figure 4. 5 The comparison of predicted and measured formation bulk density for various models under consideration (Well B). 
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Figure 4. 6 The residual-depth plots for Wells A and B showing the error profiles. 

 

 

In order to compare the accuracy of various methods under consideration, the residual-depth 

plots are shown in Figure 4.6. The residual value is computed from the difference between 

measured and predicted value. For all lithologies, the values of residual obtained from the new 
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models stay close to zero (dotted red line). However, the Gardner’s and Brocher’s models 

produce larger residual values especially in clean shale formations. To properly show the error 

distributions associated with various estimation techniques, the histograms of the residuals are 

displayed in Figures 4.7 and 4.8. The histograms show that the new models produce lower 

maximum deviations and better error distributions than the Gardner’s and Brocher’s models. In 

Well A, over 92% of the data points fall between the residual range of -0.1g/cc and +0.1g/cc 

using the new models, whereas less than 22% of the data points fall between the same residual 

range when Gardner’s and Brocher’s models are used. In Well B, over 95% of the data points 

fall between the residual range of -0.1g/cc and +0.1g/cc using the new models, whereas less than 

45% of the data points fall between the same residual range when Gardner’s and Brocher’s 

models are used.  

 

Table 4. 1 The comparison of RMSEs for models under consideration 

 

Model Well A Well B 

New model I 5% 6% 

New model II 6% 6% 

Gardner et al. 1974 16% 15% 

Brocher 2005 21% 17% 

 

 

Table 4.1 shows the comparison of root mean square errors (RMSE) obtained from various 

models. The new models produce lower RMSE than the most widely used empirical 

relationships. The statistical analysis clearly shows that the performance of the new models is 

superior to Gardner’s and Brocher’s models. The addition of shale volume improves the 

accuracy of the prediction. 

 



 

132 
 

 

Figure 4. 7 The histograms of the residuals showing the error distributions for various models 

under consideration (Well A). 
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Figure 4. 8 The histograms of the residuals showing the error distributions for various models 

under consideration (Well B). 

 

If density logs are not available, one has to use synthetically derived formation bulk densities for 

overburden pressure computation (Kenda et al., 1999; Aminzadeh et al., 2002). Since the 
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magnitude of overburden pressure is obtained by integrating the formation bulk density values 

from surface to the depth of interest along the well path (Christman, 1973; Zoback et al., 2003; 

Aadnoy, 2010; Oloruntobi et al., 2018; Oloruntobi and Butt, 2019), care should be taken in using 

any model that estimates formation bulk density based solely on  compressional wave velocity 

for overburden pressure computation in areas where the density logs are not available. The 

knowledge of the overburden pressure is very critical to effective well design. Inaccurate 

prediction of overburden pressure may result in erroneous prediction of pore pressure, fracture 

pressure and vertical stress. This in turn can lead to well control, lost circulation and wellbore 

stability incidents during actual drilling operations especially in very deep wells. To demonstrate 

the effect of various estimation techniques on overburden gradient computation, Well A is 

considered as the case study. To estimate the overburden gradient for Well A, a reasonable 

assumption needs to be made about the average formation bulk density value from surface to the 

depth where the well log data start (5,627 ft). Based on the overburden gradient curve provided 

by Oloruntobi et al. (2018) for the onshore region of the Niger Delta, an average sediment bulk 

density value of 2.08 g/cc is assumed between the ground level and the start of well log data. The 

overburden pressure (Sv) is computed using: 

 

Sv = 0.433 ∫ ρbdz,                                                                                                                               (4.15)
z

0

 

 
where  ρb is the formation bulk density as a function of depth (g/cc); Z is the depth of interest 

(ft). The overburden gradient at the depth of interest is obtained by dividing the overburden 

pressure at any given depth by the true vertical depth. Figures 4.9 and 4.10 compare predicted 

and measured overburden gradient profiles for the well under consideration along with gamma 

ray logs. The plots clearly show the limitation of using Gardner’s and Brocher’s models to 
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compute formation bulk density values for overburden gradient prediction. While the outputs 

from the new models provide good estimates of overburden gradient across the entire intervals, 

the outputs from the Gardner’s and Brocher’s models underpredict the overburden gradient at the 

well total depth.  

 

 

Figure 4. 9  The overburden gradient profiles using formation bulk density outputs from the new 

models for Well A. 
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Figure 4. 10 The overburden gradient profiles using formation bulk density outputs from the 

Gardner’s and Brocher’s models for Well A. 

 

Between 6,627ft and 6,250ft, the outputs from Brocher’s model provide accurate estimates of 

overburden gradient because the lithologies in these intervals are mostly sands. Below 6,250ft 

where most lithologies are shales, the outputs from Brocher’s model grossly underestimate the 

overburden gradient. Between 6,627ft and 7,260ft, the outputs from Gardner’s model provide 

reasonable estimates of overburden gradient because the amount of overprediction in sand 
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intervals negates the amount of underprediction in shale intervals. Below 7,260ft, the outputs 

from Gardner’s model underpredict the overburden gradient because there are no enough sand 

intervals to negate the massive shale intervals. The accuracy of Gardner’s model to estimate 

formation bulk density for overburden gradient prediction will depend on the shale-to-sand ratio. 

Outputs from Gardner’s model will underpredict the overburden gradient in sedimentary basins 

that have a very high shale-to-sand ratio. For depositional environments with very low shale-to-

sand ratio, outputs from Gardner’s model will overpredict the overburden gradient.  

 

4.5 Conclusions 

 

Core samples and well logs from different basins (Gulf of Mexico and Niger Delta) have been 

used to develop and validate the new formation bulk density prediction models. The new models 

incorporate the shale volume term, making it suitable for clean and non-clean formations. The 

application of the new models clearly demonstrates that the existing empirical relationships are 

simply inadequate for accurate prediction of formation bulk density over a lithological column 

that consists of several stratigraphic units. For petrophysical evaluations, both Gardner’s and 

Brocher’s models are not suitable for formation bulk density prediction. Application of 

Brocher’s model should be limited only to clean sand intervals. Gardner’s model provides 

formation bulk density estimates that fall between the clean sands and clean shales. The outputs 

from Brocher’s model should not be used for overburden gradient computation except the entire 

lithological column is sand. The outputs from Gardner’s model should not be used for 

overburden gradient computation in sedimentary basins where shale-to-sand ratio is very high or 

very low. However, the outputs from Gardner’s model will provide reasonable estimates of 
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overburden gradient in sedimentary basins where shale-to-sand ratio approaches unity because 

the amount of overprediction in sands may negate the amount of underprediction in shales. 

Just like all the existing empirical relationships, the new models may not be applicable to 

gas-filled formations or rocks that contain microcracks/fractures. In consolidated formations that 

contain microcracks, changes in effective stress will cause substantial changes in compressional 

wave velocity with little or no changes in formation bulk density until all the microcracks are 

closed. To be applicable to gas-filled rocks, the generalized forms of the new models are 

calibrated to any known gas intervals in the regional/field. Although the new models should be 

applicable to siliciclastic rocks in most sedimentary basins, it will be prudent to calibrate the 

generalized forms of these models (modified Birch’s – equation 4.10 and modified Gardner’s – 

equation 4.11) to regional/field data. In general, a close agreement exists between the predicted 

and measured formation bulk density using the new models. When compared to the most widely 

used empirical relationships, the new models produce lower RMSEs, lower residuals, and better 

error distributions.  

The new models are developed primarily for liquid-saturated siliciclastic rocks which 

include sandstones, siltstones, shales and formations that contain a mixture of sands and shales in 

any proportion. The models do not cover carbonate and evaporite environments. However, the 

generalized forms of the new models can be calibrated to carbonate and evaporite rocks to obtain 

the new set of models for these environments. 
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Chapter 5 

 

5.0 A New Fracture Pressure Prediction Model for The Niger Delta Basin 
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Abstract    

 

Accurate knowledge of formation fracture pressure is very essential to optimizing well design at 

all stages of the field development. However, erroneous prediction of formation fracture pressure 

can lead to process safety incidents such as surface and underground blowouts. While fracture 

pressure prediction models have been developed for some sedimentary basins, it is difficult to 

transfer these models to areas beyond the regions of study. In the Niger Delta basin, few fracture 

pressure prediction models have been developed.  However, these models were developed 

primarily from leak-off test data acquired from the normally pressured intervals. Basically, the 

existing Niger Delta fracture pressure prediction models lack the leak-off test measurements in 
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the overpressure intervals because such data are not available. In this paper, a new fracture 

pressure prediction model that can be applied to normally pressured intervals and overpressure 

zones is being proposed. Model development is based on establishing a relationship between 

fracture pressure, true vertical depth, and magnitude of overpressure using several leak-off test 

data acquired from over 100 wells in various fields scattered across the basin. Unlike the 

previous models, the newly developed model incorporates leak-off test measurements from the 

overpressure intervals in the basin. In general, the newly proposed model can be used with a high 

degree of confidence to predict the formation fracture pressure required for safe and economical 

well planning across the entire basin.  

 

Keywords: Pore pressure, Fracture pressure, Normally pressured, Overpressure, Leak-off test. 

 

5.1 Introduction  

 

Fracture pressure is the pressure required to initiate a crack in a formation. The fracture pressure 

and pore pressure data are the most important input parameters required for well planning and 

design. The difference between formation fracture pressure and pore pressure (drilling window) 

will dictate the overall drilling and completion strategies for the field. Fracture pressure 

determinations are usually performed as part of pre-drill and wellsite tasks. Pre-drill fracture 

pressure predictions are very essential for well planning purposes at the ‘’select’’ and ‘’define’’ 

phases of a field development plan. Wellsite fracture pressure determinations are very important 

for operational decisions. The operational decisions at the wellsite following a formation 

integrity test (leak-off test, formation break-down test or limit test) may include: (1) performing 

squeeze cementing jobs; (2) optimizing the flow rate to minimize the annular pressure loss; (3) 
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reducing the rate of penetration (ROP) to minimize cuttings concentration in the annulus; (4) 

optimizing tripping in strategy to minimize surge pressure; (5) determining the maximum 

permissible drilling depth based on the amount of influx (kick tolerance) that can be taken in the 

open hole sections for a specific kick intensity and circulated out with a Driller’s method of well 

control without fracturing the weakest formations. Decisions can also be made to apply wellbore 

strengthening/stress caging techniques following a formation integrity test at the wellsite 

(Alberty & McLean 2004; Aston et al. 2004; Song & Rojas 2006; Bybee 2008; Wang et al. 2009; 

Kumar et al. 2010; Contreras et al. 2014; Savari et al. 2014; Chellappah et al. 2015; Zhang et al. 

2016; Feng & Gray 2017; Chellappah et al. 2018). From well engineering point of view, 

information about the formation fracture pressures can be used to: (1) determine the maximum 

allowable equivalent circulating density (ECD) required to drill a well; (2) establish the bottom-

hole pressure required for squeeze jobs and hydraulic fracturing; (3) establish the injection 

pressure required for casing design and equipment selection; (4) select optimum mud properties 

and additives; and (5) determine the maximum allowable annular surface pressure (MAASP) 

required to prevent formation breakdown in the event of a kick; (6) establish the bottom-hole 

pressure required for cuttings reinjection (CRI). From an exploration standpoint, formation 

fracture pressure data are used for subsurface trap integrity analysis, prospect evaluation and 

hydrocarbon migration analysis. In intervals where formation pore pressures are greater than the 

fracture pressures, subsurface traps are likely to leak. Failure to accurately predict the formation 

fracture pressure can lead to lost circulation and well control incidents (surface and underground 

blowouts). In general, information about the magnitude of formation fracture pressure is very 

vital to achieving the overall well objective, especially when drilling into high pressured zones.  
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To geomechanics specialists, formation fracture pressure is referred to as the minimum 

principal stress. In well engineering community,  formation fracture pressure is referred to as the 

bottom-hole leak-off pressure (LOP): the bottom-hole pressure at which drilling fluid starts to 

invade the formation and the relation between mud pressure and volume starts to deviate from 

linearity (Edwards et al., 1998;  Altun et al., 2001; Couzens-Schultz and Chan, 2010). The leak-

off test measurements can be conventional or dynamic. Conventional leak-off tests are usually 

conducted after drilling a few feet of the new formation below the casing shoe. Dynamic leak-off 

tests can be performed at any depth in the open hole by determining the equivalent circulating 

density (ECD) required to leak off drilling mud into the formation using the pressure while 

drilling (PWD) sensors. During the dynamic leak-off tests, bottom-hole pressure (BHP) can be 

increased either by increasing the flow rate to increase the annular pressure loss or by increasing 

the annular backpressure while drilling in managed pressure drilling (MPD) mode. However, the 

magnitude of the minimum principal stress (usually horizontal in the normal faulting regime) can 

only be determined from micro-fracturing/mini-fracturing/extended leak-off test/lost circulation 

incidents (Daneshy et al., 1986; De Bree and Walters, 1989; Kunze and Steiger, 1992; Thiercelin 

et al., 1996;  Raaen et al., 2006; Li et al., 2009; Li et al., 2009; Wang et al., 2011;  Chan et al., 

2015; Feng and Gray, 2016). From field observations, comparison of LOT and hydraulic 

fracturing (micro-frac/mini-frac/extended leak-off test) data for non-fractured rocks have shown 

that vast majority of leak-off pressures exceed the minimum principal stresses by an average of 

10 - 15%. In this paper, fracture pressure is referred to as the bottom-hole leak-off pressure 

(pressure at which the pressure versus volume curve starts to deviate from a straight line). The 

formation fracture pressure is dependent on several factors including formation type, rock 

strength, permeability, magnitude of the principal stresses, formation pore pressure, wellbore 



 

148 
 

inclination and azimuth, orientation of the plane of weakness and formation temperature. In most 

cases, fracture pressures in shale formations are generally higher than that of sand formations. 

Field experience has shown that increasing water depth reduces the overburden pressure (vertical 

stress) which can lead to a reduction in apparent fracture pressure (Christman, 1973). Although 

not in the same proportion, an increase in pore pressure will result in an increase in fracture 

pressure and a decrease in pore pressure will lead to a decrease in fracture pressure (Salz, 1977; 

Engelder and Fischer, 1994; Yassir et al., 1998). The magnitude of fracture pressure is affected 

by wellbore inclination and azimuth (Rai et al., 2014). Generally, fracture pressure reduces as 

wellbore inclination increases (Aadnoy and Chenevert, 1987). Heating a formation above its 

undisturbed value (bottom-hole static temperature) will result in higher formation fracture 

pressure and cooling a formation below its undisturbed temperature will cause a decrease in 

formation fracture pressure (Perkins & Gonzalez 1984; Gonzalez et al. 2004; Hettema et al. 

2004; van Oort & Vargo 2008; Zoback, 2010). The effects of anisotropic elasticity parameters on 

formation fracture pressure are usually very small Aadnoy, (1988). 

When drilling in areas where there are limited or no LOT data (especially rank wildcat) 

theoretical and empirical relationships have been developed to estimate the formation fracture 

pressure. Hubbert & Willis (1957) proposed an approximate expression for the minimum 

injection pressure required to extend a fracture under normal-faulting stress regime (equation 

5.1): 

 

IPmin =
1

3
[σv − PP] + PP,                                                                                                                     (5.1)  

 

where IPmin is the Minimum injection pressure (psi); σv is the vertical stress (psi); PP is the pore 

pressure (psi). By solving popular Kirch’s equation for vertical well at the wellbore wall with no 
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consideration for temperature effect, Haimson & Fairhurst (1967) suggested that the wellbore 

pressure required to initiate a fracture in elastic rocks with smooth wellbore wall for non-

penetrating wellbore fluid (impermeable case) is a function of the two horizontal principal 

stresses, the rock tensile strength and the formation pore pressure and it is given by: 

 

FP = 3σh − σH − PP + To,                                                                                                                    (5.2)  

 

where FP is the fracture pressure (psi); σh is the minimum horizontal stress (psi); σH is the 

maximum horizontal stress (psi); PP is the pore pressure (psi); To is the tensile strength (psi). For 

porous and permeable rocks, Haimson & Fairhurst (1967) then introduced poroelastic constants 

into the formation breakdown pressure model to account for the wellbore fluid pressure 

penetration effect (equation 5.3): 

 

FP = [
3σh − σH + To

2 − α (
1 − 2v
1 − v )

] − PP,                                                                                                                (5.3) 

 

where FP is the fracture pressure (psi); σh is the minimum horizontal stress (psi); σH is the 

maximum horizontal stress (psi); PP is the pore pressure (psi); To is the tensile strength (psi); v is 

the Poisson’s ratio; α is the Biot’s coefficient. When a formation breaks down, the fractures 

created will propagate in the direction perpendicular to the least principal stress. While 

theoretical models are helpful, they are difficult to apply in the field (Taylor and Smith, 1970). 

Matthews and Kelly (1967) proposed a correlation that incorporated a depth-dependent matrix 

stress coefficient to estimate the fracture pressure of sedimentary formations (equation 5.4). 

 

FP = Ki [
σv − PP

Z
] +

PP

Z
,                                                                                                                        (5.4) 
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where FP is the fracture pressure (psi); σv is the vertical stress (psi); Ki is the matrix stress 

coefficient; PP is the pore pressure (psi); Z is the true vertical depth (ft). Pennebaker (1968) 

expressed formation fracture gradient as a function of overburden gradient, pore pressure 

gradient and effective stress ratio for formations in the US Gulf Coast (Equation 5.5): 

 

GFP = Ko[GOB − GPP] + GPP,                                                                                                                (5.5) 

 

where GFP is the fracture pressure gradient (psi/ft); GOB is the overburden gradient (psi/ft); GPP is 

the pore pressure gradient (psi/ft); Ko is the effective stress ratio. While Pennebaker (1968) 

recognized the dependency of effective stress ratio on the elastic constant of the rock (Poisson’s 

ratio), effective stress ratio was expressed as a function of depth. The value of effective stress 

ratio can also be obtained by calibrating equation 5.5 to actual fracture pressure and pore 

pressure measurements in the field/region. Eaton (1969) modified Hubbert and Willis’s model by 

incorporating the Poisson’s ratio. Eaton’s model is given by:  

 

GFP =
v

1 − v
[GOB − GPP] + GPP ,                                                                                                          (5.6) 

 

where GFP is the fracture pressure gradient (psi/ft); GOB is the overburden gradient (psi/ft); GPP is 

the pore pressure gradient (psi/ft); v is the Poisson’s ratio. Although initially developed for the 

US Gulf Coast area, Eaton’s model is the most widely used empirical correlation to estimate the 

formation pressure (Parriag, 1976). Eaton’s model allows the effect of lithology to be considered 

on formation fracture pressure. The Poisson’s Ratio is usually back-calculated from the 

fracture/LOT data from the offset wells. Anderson et al. (1973) expressed formation fracture 

pressure as a function of overburden pressure (vertical stress), pore pressure, Poisson’s ratio and 

Biot’s constant for US Gulf Coast sands (equation 5.7): 
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FP = [
2v

1 − v
] [σv − αPP] + αPP,                                                                                                          (5.7) 

 

where FP is the fracture pressure (psi); σv is the vertical stress (psi); PP is the pore pressure (psi); 

v is the Poisson’s ratio; α is the Biot’s coefficient. Salz (1977) proposed an exponential 

relationship between fracture propagation gradient and pore pressure gradient based on 

instantaneous shut-in pressure data obtained during hydraulic fracture treatments performed on 

partially depleted and overpressure intervals for the Vicksburg formation in South Texas. Salz’s 

model is given by: 

 

GFP = 0.75e(0.57Gpp).                                                                                                                               (3.8) 

 

Daines (1982) introduced a superposed horizontal tectonic stress term into the fracture pressure 

prediction model proposed by Eaton (equation 5.9): 

 

FP = σt + [
v

1 − v
] [σv − PP] + PP,                                                                                                      (5.9) 

 

where FP is the fracture pressure (psi); σv is the vertical stress (psi); PP is the pore pressure (psi); 

v is the Poisson’s ratio; σt is the horizontal tectonic stress term (psi). Using hydraulic fracturing 

data from various sedimentary basins, Breckels & Van Eekelen (1982) proposed empirical 

relationships between minimum horizontal stress and depth for US Gulf Coast (equation 5.10: 

for D < 11,500 ft and equation 5.11 for D > 11,500 ft), Venezuela (equation 5.12: for 5,900 ft < 

D < 9,200 ft) and Brunei (equation 5.13 for D < 10,000 ft). These models are given by: 

 

σh = 0.197Z1.145 + 0.46[OP],                                                                                                            (5.10) 
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σh = 1.167Z − 4596 + 0.46[OP],                                                                                                     (5.11) 

 

σh = 0.210Z1.145 + 0.56[OP],                                                                                                            (5.12) 

 

σh = 0.227Z1.145 + 0.49[OP],                                                                                                            (5.13) 

 

where σh is the minimum horizontal stress (psi); OP is the overpressure (psi). Overpressure is the 

difference between the formation pore pressure and the normal pore pressure. The normal pore 

pressure gradient can vary between 0.433 – 0.515 psi/ft depending on pore fluid type, formation 

temperature and concentration of dissolved salts in the formation water (Oloruntobi et al., 2018; 

Oloruntobi and Butt, 2019). The normal pore pressure corresponds to a gradient of 0.452 psi/ft  

in the North Sea (Holm, 1998). In the US Gulf Coast, the normal pore pressure corresponds to a 

gradient of 0.465 psi/ft (Harkins and Baugher, 1969). The normal pore pressure gradient is 

approximately 0.433 psi/ft in the Rocky Mountain regions in Canada and USA (Finch, 1969). A 

formation is said to be overpressure if it has a pore pressure gradient higher than the normal pore 

pressure gradient. Several Mechanisms that generate subsurface overpressure conditions have 

been reported in the literature ( Dickey 1976; Swarbrick 1995, Swarbrick & Osborne 1998). 

Constant & Bourgoyne (1988) extended Eaton's work to deepwater settings by exponentially 

fitting effective stress ratio to depth for formations in the US Gulf Coast (equation 5.14): 

 

FP = [1 − Ae(B∗Z)][σv − PP] + PP,                                                                                                   (5.14) 

 

where FP is the fracture pressure (psi); σv is the vertical stress (psi); PP is the pore pressure (psi); 

Z is the true vertical depth (ft); A and B are constant parameters. Avasthi et al. (2000) then 
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introduced Biot’s poroelastic constant into the fracture pressure model proposed by Eaton (1969) 

using the concept of uniaxial strain model (equation 5.15): 

 

FP = [
v

1 − v
] [σv − αPP] + αPP,                                                                                                        (5.15) 

 

where FP is the fracture pressure (psi); σv is the vertical stress (psi); PP is the pore pressure (psi); 

v is the Poisson’s ratio; α is the Biot’s coefficient. Zhang and Zhang (2017) modified Avasthi’s 

model to include minimum stress coefficient based on the generalized Hooke's law with coupling 

stresses and pore pressure (equation 5.16): 

 

FP = [
v

1 − v
] [σv − αPP] + αPP + [

c

1 − v
] σv ,                                                                             (5.16) 

 

where FP is the fracture pressure (psi); σv is the vertical stress (psi); PP is the pore pressure (psi); 

v is the Poisson’s ratio; α is the Biot’s coefficient; c is the minimum stress coefficient. The 

minimum stress coefficient (c) can be obtained by calibrating equation 5.16 to the in-situ 

measured fracture/LOT data from the correlating offset wells.  Zhang & Yin (2017) developed a 

fracture gradient model based on LOT data obtained from offshore wells in several sedimentary 

basins (equation 5.17): 

 

GFP = [A +
B

eZ/C
] [GOB − GPP] + GPP,                                                                                               (5.17) 

 

where GFP is the fracture pressure gradient (psi/ft); GOB is the overburden gradient (psi/ft); GPP is 

the pore pressure gradient (psi/ft); Z is the true vertical depth (ft). The model incorporates a 

depth-dependent effective stress ratio and the variables A, B and C can be obtained by 

calibrating equation 5.17 to the fracture/LOT data obtained from the offset wells. There are other 
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popular fracture pressure prediction models in the literature that are not specific to the Niger 

Delta basin (Berry and Macpherson, 1972; Althaus, 1977; Brennan and Annis, 1984;  Holbrook, 

1989; Vuckovic, 1989; Schmitt and Zoback, 1989; Aadnoy and Larson, 1989;  Akinbinu, 2010; 

Zhang, 2011). 

 Lowrey and Ottesen (1995) proposed an empirical correlation to estimate the in-situ 

minimum horizontal stress for offshore Niger Delta based on fracture closure pressures obtained 

from extended leak-off tests (equation 5.18): 

 

FP = 0.1779Z1.1586 ,                                                                                                                             (5.18) 

 
where FP is the fracture pressure (psi); Z is the true vertical depth (ft). Equation 5.18 is limited to 

normally pressured intervals and does not account for the effect of overpressure on fracture 

pressure. Ajienka and Nwokeji (1988) proposed a fracture gradient correlation for the onshore 

region of the Niger Delta basin based on 135 LOT measurements acquired from 93 onshore well 

covering a depth range of 2,159 ft to 13,070 ft (equation 5.19): 

 
GFP = 14.57595 + 0.0002193[Z] − 16.16777[GOB] − 0.270395[Ki] + 0.6665068[GPP],             (5.19) 

 

Ki = 0.135726 + 0.0000366[Z],                                                                                                       (5.20) 

 

where GFP is the fracture pressure gradient (psi/ft); GOB is the overburden gradient (psi/ft); GPP is 

the pore pressure gradient (psi/ft); Z is the true vertical depth (ft); Ki is the stress ratio. The stress 

ratio (Ki) is expressed as a function of depth (Ajienka et al. 2009). Considering that Niger Delta 

basin operates under normal faulting regime where Sv > σH > σh, Ajienka and Nwokeji’s model 

is fundamentally flawed because they suggested that formation fracture pressure decreases as 

overburden pressure increases. Hence, this model should not be used in predicting the formation 
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fracture pressure in the Niger Delta basin. Reginald-Ugwuadu et al. (2014) proposed the most 

calibrated fracture pressure prediction model for the Niger Delta sediments based on combined 

LOT data obtained from onshore, swamp and shallow offshore wells (equation 5.21): 

 

FP = 0.000029[𝑍2] + 0.46Z,                                                                                                              (5.21) 

 

where FP is the fracture pressure (psi); Z is the true vertical depth (ft). However, the model fails 

to capture the effect of overpressure on fracture pressure. This limits its application to normally 

pressured intervals. Reginald-Ugwuadu’s model was built from LOT measurements acquired at 

various wellbore inclinations and azimuths. 

While few empirical models have been developed for the Niger Delta basin, none of the 

models were developed to work in High-Pressure High-Temperature (HPHT) environments. In 

fact, no fracture pressure prediction model exists in the Niger Delta that incorporates LOT 

measurements from the hard overpressure environments (pore pressure gradient > 0.70 psi/ft). 

The existing models were developed primarily from LOT measurements acquired from the 

normally and mildly pressured intervals. In this paper, an attempt is made to develop a new 

fracture pressure prediction model that can be applied to normal and overpressure intervals in the 

onshore, swamp and shallow offshore regions of the Niger Delta basin.  

 

5.2 Field Data 

 

The Niger Delta basin is an extensional rift basin located in the Niger Delta and the Gulf of 

Guinea along the west of central Africa. The basin covers an area of about 75,000 km2 and 

consists of clastic sediments up to 12 km thick (Doust and Omatsola 1990; Evamy et al. 1978). 

The basin consists of three types of formations in descending order: Benin formations, Agbada 
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formations and Akata formations (Short and Stauble 1967; Avbovbo 1978a; Adewole et al. 

2016). The Benin formations consist primarily of continental loose sands. The Agbada 

formations consist of an alternating sequence of sands and shales. The Akata formations consist 

of thick marine overpressure shales. The geothermal gradient varies across the Niger Delta basin 

between 1.2 – 3.0oF per 100 feet (Avbovbo, 1978b). The structural trapping mechanisms in the 

basin are growth faults associated with rollover structures and the basin operates under normal 

faulting regime (Daukoru 1975; Weber 1987). The primary mechanism of subsurface 

overpressure conditions in the Niger Delta basin is compaction disequilibrium (Ugwu and 

Nwankwo, 2014; Oloruntobi et al., 2018; Oloruntobi and Butt, 2019). 

For data analysis, all depths and pressures are referenced to a true vertical depth below 

the mean sea level. Figure 5.1 shows the location map for most of the wells used to build the new 

fracture pressure prediction model. Due to a large number of wells involved (> 100 wells), only 

53 wells are displayed on the location map just to show the area extent of the LOT data. All other 

wells not shown on the map are scattered across the basin. Table 5.2 in the appendix provides a 

well data summary. A total of 141 LOT measurements from 109 wells were used to develop the 

new model. The well data cover the land, swamp and shallow offshore regions of the basin. The 

shallow offshore regions of the basin are limited to 500 ft water depth. The LOT data also cover 

a wide range of depth between 885 ft and 16,478 ft. The formation pore pressure gradient ranges 

between 0.433 psi/ft and 0.826 psi/ft. No existing fracture pressure prediction model in the Niger 

Delta covers this pore pressure range. Note that the normal pore pressure gradient in the Niger 

Delta ranges between 0.433 psi/ft to 0.472 psi/ft.  In Table 5.2, any pore pressure value 

designated as ‘’normal’’ will have a pore pressure gradient in this range. The fracture gradient 

ranges between 0.479 psi/ft and 1.018 psi/ft. Unexpectedly, the LOT measurements in the deep 
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overpressure zones have shown that fracture gradient can exceed 1.0 psi/ft in the Niger Delta. 

Most of the LOT data at depths shallower than 5000 ft were acquired in continental sands while 

LOT measurements at depths deeper than 5000 ft were mostly acquired in shale formations.  

 

 

Figure 5 1: Location map for some wells used in model development.  

 

 

To elimination/minimize the effect of well inclination and azimuth on formation fracture 

pressure, only LOT measurements acquired in mostly vertical wells are considered with only few 
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slightly deviated wells. In the few slightly deviated wells, the wellbore inclinations at which 

LOT measurements were acquired are less than 18 degrees, thereby making the effect of well 

inclination and azimuth on formation fracture pressure insignificant in these wells. It should be 

noted that limit-test measurements across the Niger Delta basin are excluded from the data used 

to develop the new fracture pressure prediction model because they do not really provide any 

quantitative information about the formation strength 

 

5.3 Model Development 

 

To develop a single equation that can be used to describe the formation fracture pressure in 

normal and overpressure intervals, the LOT measurements acquired in overpressure intervals 

must be normalized for the effect of pore pressure. The procedures used to derive the new model 

are highlighted below. 

 
• Measured fracture pressure data were plotted against depth. 

• Trends corresponding to normal and overpressure intervals were identified. 

• A model was fitted through the fracture pressure data acquired in normally pressured 

intervals. This is called normally pressured trendline model. 

• Fracture pressure differentials were obtained across the overpressure intervals by 

computing the difference between the actual fracture pressure measurements and fracture 

pressure values estimated from the normally pressured trendline model. 

• Pore pressure differentials were obtained across the overpressure intervals by computing 

the difference between the actual pore pressure and normal pore pressure.  

• Fracture pressure differentials were plotted against the pore pressure differentials in the 

overpressure intervals to generate the new fracture pressure prediction model. 
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Figure 5.2 shows the plot of fracture pressure against depth using the LOT data presented in 

Table 5.2. While the pressure data are reported in gradient equivalent, pore and fracture pressure 

values are obtained by multiplying the pressure gradients by the corresponding vertical depth.  

 

 

Figure 5 2: The plot of formation fracture pressure against depth 

 

Although two distinct trends can be clearly identified from the plot (Figure 5.2), remarkable non-

scattered trends are observed for each pressure regime despite the LOT measurements being 

acquired from various fields across the basin. A power law trend is observed between fracture 

pressure and depth for normally pressured intervals while a linear trend is observed for the 

overpressure intervals. As expected, formation fracture pressure values are higher in 
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overpressure intervals than the normally pressured intervals at the same depth. For instance, at 

the depth of 11,890 ft, the fracture pressure values in normally pressured and overpressure 

intervals are 9,854 psi and 10,986 psi respectively. This is an increase of 1,132 psi in formation 

fracture pressure when pore pressure increases by 2,378 psi from the normal. Likewise, at the 

depth of 14,122 ft, the formation fracture pressure values in normally pressured and overpressure 

intervals are 12,252 psi and 13,908 psi respectively. This is an increase of 1,657 psi in formation 

fracture pressure when pore pressure increases by 4,053 psi from the normal. These data indicate 

that formation fracture pressure increases at a rate proportional to but less than the rate of pore 

pressure increase. From Figure 5.2, at pore pressure value corresponding to a gradient of 0.515 

psi/ft, the formation fracture pressure values for the normally pressured and overpressure 

intervals almost overlap. For non-depleting formations, overpressure has little effect on 

formation fracture pressure when pore pressure gradient falls below 0.515 psi/ft. A normally 

pressured trendline (NPT) is obtained by fitting a power-law model through the fracture pressure 

data acquired in the normally pressured intervals (equation 5.22). The formation fracture 

pressure in equation 5.22 is only a function of depth with no pore pressure term. 

 

FPNPT = 0.06817[D]1.2662                                                                                                                   (5.22) 

 

Figure 5.3 shows the plot of fracture pressure differential (measured fracture pressure minus the 

corresponding fracture pressure computed from equation 5.22) versus the pore pressure 

differential (actual pore pressure (PPa) minus normal pore pressure (PPn)) in the overpressure 

intervals. Note that for all the normally pressured intervals, pore pressure differential will be 

zero. A normal pore pressure (PPn) value with a gradient of 0.433 psi/ft with respect to mean sea 

level is used to derive the new model. From Figure 5.3, a polynomial relationship exists between 
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the fracture pressure differential and pore pressure differential (equation 5.23). The plot shows a 

good trend despite the overpressure LOT measurements were obtained from different fields. 

 

 

Figure 5 3: Fracture pressure differential versus pore pressure differential.  

 

By rearranging equation 5.23 and substituting for the normally pressured trendline fracture 

pressure (equation 5.22), a new fracture pressure prediction model for the Niger Delta is obtained 

(equation 5.25). When operating in normally pressured intervals, the overpressure/pore pressure 

differential (PPa − PPn) term will go to zero and equation 5.25 will reduce to equation 5.22. 

 

∆FP = 0.6051[∆PP] − 0.0000486[∆PP]2                                                                                       (5.23) 

 

y = -0.0000486x2 + 0.6050968x
R² = 0.9892827
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FP − FPNPT = 0.6051[PPa − PPn] − 0.0000486[PPa − PPn]
2                                                   (5.24) 

 

FP = 0.06817[D]1.2662 + 0.6051[PPa − PPn] − 0.0000486[PPa − PPn]
2                              (5.25) 

 

PPn = 0.433[𝐷]                                                                                                                                      (5.26) 

 

5.4 Model Validation 

 

To demonstrate the applicability of the new fracture pressure prediction technique, a recently 

drilled high-pressure high-temperature (HPHT) exploratory gas well (W 110) is considered as 

the case study. The well is located approximately 82 km northwest of Port Harcourt in the central 

region of the basin. The well is a slightly deviated well drilled to a total depth of 16,809 ft with a 

maximum inclination of 14.56°. The formation integrity tests were conducted at the 13 

3/8’’casing, 9 5/8’’ casing and 7’’ liner shoes. The 13 3/8’’casing, 9 5/8’’ casing and 7’’ liner 

shoes were set at 9,382 ft, 15,087 ft and 16,404 ft respectively. The wellbore inclinations at the 

13 3/8’’casing, 9 5/8’’ casing and 7’’ liner shoes are 11o, 12o and 3o respectively. The types of 

formation integrity test performed at the 13 3/8’’ and 9 5/8’’ casing shoes were limit tests (no 

leak-off). The type of formation integrity test performed at the 7’’ liner shoe was the leak-off 

test.  Although limit test measurements are not considered in the new model because they will 

not provide any quantitative information about the formation strength, they are included in this 

well to serve as control/calibrating data. The bottom-hole limit test pressure gradient at the 13 

3/8’’ and 9 5/8’’ casing shoes are 0.717 psi/ft and 0.917 psi/ft respectively. The formation 

fracture gradient (bottom-hole leak-off pressure gradient) at the 7’’ liner shoe is 1.009 psi/ft. 

Table 5.1 shows the pore pressure data for the W 110 well. The formation pore pressures were 

obtained from the combination of formation pressure while drilling tool, wireline pressure 
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sampling tool, sonic logs and drilling kick data. The formation pore pressure is normal from 

9,200 ft to 14,805 ft (onset of overpressure). The formation pore pressure gradient then increases 

gradually from 0.471 psi/ft at 14,805 ft to 0.856 psi/ft at 16,445 ft. Therefore, from 9,200 ft to 

14,805 ft (normally pressured intervals), equation 5.25 will be used to estimate the formation 

fracture pressures with the overpressure/pore pressure differential (PPa − PPn) term being equal 

to zero. From 14,805 ft to 16,445 ft (overpressure intervals), full components of Equation 5.25 

will be used to estimate the formation fracture pressure. Note that pore and fracture pressure 

terms are calculated by multiplying pressure gradient by depth.  

 

Table 5. 1 The pore pressure data for the W 110 well. 

 

S/N 
Depth 

(ft) 
PP 

(psi/ft) 
S/N 

Depth 
(ft) 

PP 
(psi/ft) 

S/N 
Depth 

(ft) 
PP 

(psi/ft) 
S/N 

Depth 
(ft) 

PP 
(psi/ft) 

1 9200 0.432 7 10600 0.433 13 14235 0.462 19 15867 0.797 

2 9382 0.432 8 11200 0.432 14 14546 0.470 20 15930 0.812 

3 9562 0.432 9 12115 0.464 15 14805 0.471 21 16105 0.812 

4 9722 0.432 10 12309 0.463 16 15087 0.610 22 16181 0.849 

5 9943 0.435 11 12947 0.463 17 15122 0.665 23 16404 0.852 

6 9988 0.433 12 13658 0.462 18 15407 0.722 24 16445 0.856 

 

 

 

Figure 5.4 shows the comparison of predicted and measured fracture pressures for well W 110 

using the new model and the most calibrated existing model for the Niger Delta basin (equation 

5.21). At the 7’’ liner shoe (16,404 ft) where the actual leak-off test was conducted, a good 

agreement exists between the predicted and measured fracture pressure in overpressure interval. 

The newly proposed model predicts the formation fracture pressure within an accuracy of ±125 

psi which is typically less than the trip margin (200 psi) normally applied to formation fracture 

pressure as a safety factor. At the 13 3/8’’ and 9 5/8’’ casing shoes where limit tests were 
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conducted, the new model predicts fracture pressure values higher than the bottom-hole limit test 

pressures because limit tests are usually stopped prior to reaching the point where drilling fluid 

starts to invade the formation (leak-off point).  

 

 

Figure 5 4: Comparison of predicted and measured fracture pressure for well W110 

 

By using Reginald-Ugwuadu’s model (equation 5.21), fairly accurate estimates of formation 

fracture pressures are observed in the normally pressured intervals (9,200 – 14,805 ft).  However, 

in the transition and overpressure intervals, the model completely breaks down and underpredicts 
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the formation fracture pressures. At the 7’’ liner shoe, Reginald-Ugwuadu’s model underpredicts 

the formation fracture pressure by 1,199 psi. Even at the 9 5/8’’ casing shoe, Reginald-

Ugwuadu’s model wrongly predicts the fracture pressure value that is less than the bottom-hole 

limit test pressure. Using such only depth-dependent model for pre-drill fracture pressure 

predictions in overpressure intervals will lead to expensive drilling campaign (more casing 

strings may be required than necessary).  

 

5.5 Conclusion 

 

A new robust fracture pressure prediction model that can be applied to a wide range of depths 

and subsurface pressure regimes (normal to very hard overpressure) has been developed. The 

new model establishes a relationship between fracture pressure, depth, and overpressure. The 

model covers land, swamp and shallow offshore sections of the Niger Delta basin. It is the first 

model to incorporate LOT measurements acquired in overpressure environments in the Niger 

Delta. The proposed model can form the new Niger Delta guideline for: (1) performing the limit 

tests at the wellsite during the actual drilling operations; (2) determining the pre-dill formation 

fracture pressure for well planning and design; and (3) establishing the injection pressure 

required for hydraulic fracturing. Although only one operator is currently drilling HPHT wells in 

the Niger Delta, the new model will find a useful application as more operating companies plan 

to embark on exploration drilling campaigns into the deeper HPHT sections of the basin. 

 

 

 

 



 

166 
 

5.6 Appendix 

 

Table 5. 2 Well data summary 

 

Well Location 
Depth 

(ft) 
FP 

(psi/ft) 
PP 

(psi/ft) 

 

Well Location 
Depth 

(ft) 
FP 

(psi/ft) 
PP 

(psi/ft) 

W 1 Land 4395 0.560 Normal 
W 27 Swamp 

3951 0.607 Normal 

W 2 Land 4398 0.532 Normal 10641 0.804 Normal 

W 3 Land 

1988 0.527 Normal W 28 Offshore 3183 0.566 Normal 

7275 0.615 Normal W 29 Offshore 2334 0.598 Normal 

11339 0.879 0.560 W 30 Offshore 2202 0.610 Normal 

13614 0.972 0.690 W 31 Land 3353 0.614 Normal 

W 4 Land 4378 0.691 Normal W 32 Land 9849 0.732 Normal 

W 5 Land 4945 0.538 Normal W 33 Swamp 4448 0.570 Normal 

W 6 Swamp 4952 0.524 Normal W 34 Swamp 3942 0.522 Normal 

W 7 Swamp 4946 0.635 Normal 

W 35 Swamp 

4692 0.501 Normal 

W 8 Land 4958 0.561 Normal 7406 0.614 Normal 

W 9 Swamp 4741 0.718 Normal 11557 0.786 Normal 

W 10 Swamp 5741 0.556 Normal 13957 0.833 Normal 

W 11 Swamp 2452 0.622 Normal 
W 36 Swamp 

5261 0.580 Normal 

W 12 Land 

1982 0.495 Normal 10962 0.763 Normal 

7947 0.798 0.515 W 37 Swamp 8433 0.757 Normal 

10489 0.894 0.620 W 38 Land 3861 0.698 Normal 

W 13 Land 9934 0.786 Normal 
W 39 Land 

6214 0.683 Normal 

W 14 Swamp 11950 0.776 Normal 11741 0.784 Normal 

W 15 Swamp 5947 0.575 Normal W 40 Land 7709 0.794 Normal 

W 16 Swamp 6448 0.597 Normal W 41 Land 16478 1.018 0.828 

W 17 Swamp 5921 0.581 Normal 
W 42 Land 

12183 0.804 Normal 

W 18 Swamp 5943 0.598 Normal 14890 0.904 Normal 

W 19 Swamp 
1962 0.575 Normal     6743 0.613 Normal 

5963 0.590 Normal W 44 Offshore 1912 0.548 Normal 

W 20 Swamp 
4940 0.582 Normal W 45 Offshore 1156 0.666 Normal 

8504 0.677 Normal W 46 Offshore 1400 0.740 Normal 

W 21 Swamp 3941 0.640 Normal W 47 Land 3924 0.530 Normal 

W 22 Swamp 9965 0.709 Normal 
W 48 Land 

3065 0.626 Normal 

W 23 Swamp 8255 0.760 Normal 5101 0.687 Normal 

W 24 Swamp 10940 0.778 Normal W 49 Land 8165 0.786 Normal 

W 25 Offshore 
2409 0.631 Normal  W 50 Offshore 902 0.745 Normal 

5542 0.715 Normal  W 51 Offshore 2412 0.539 Normal 

W 26 Land 1954 0.560 Normal  W 52 Offshore 1433 0.548 Normal 
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Well Location 
Depth 

(ft) 
FP 

(psi/ft) 
PP 

(psi/ft) 

  

Well Location 
Depth 

(ft) 
FP 

(psi/ft) 
PP 

(psi/ft) 

W 53 Offshore 
2681 0.549 Normal W 83 Swamp 10943 0.733 Normal 

5340 0.593 Normal W 84 Swamp 3955 0.576 Normal 

W 54 Offshore 4999 0.771 Normal W 85 Land 4793 0.532 Normal 

W 55 Land 
6022 0.607 Normal W 86 Land 4922 0.570 Normal 

11826 0.836 Normal 

W 87 Land 

7951 0.669 Normal 

W 56 Land 14122 0.985 0.720 10004 0.813 Normal 

W 57 Land 

4585 0.518 Normal 10912 0.928 0.660 

10341 0.832 Normal W 88 Land 4430 0.545 Normal 

11890 0.924 0.633 W 89 Offshore 980 0.662 Normal 

W 58 Offshore 10786 0.816 Normal 

W 90 Offshore 

1542 0.648 Normal 

W 59 Offshore 
5931 0.645 Normal 6430 0.738 Normal 

11670 0.789 Normal 11867 0.823 Normal 

W 60 Swamp 5955 0.610 Normal W 91 Offshore 885 0.670 Normal 

W 61 Swamp 5970 0.632 Normal W 92 Swamp 4446 0.500 Normal 

W 62 Land 9531 0.744 Normal W 93 Land 10051 0.754 Normal 

W 63 Land 5754 0.603 Normal W 94 Offshore 6440 0.677 Normal 

W 64 Land 10580 0.799 Normal W 95 Land 7833 0.714 Normal 

W 65 Land 1926 0.560 Normal W 96 Land 7046 0.705 Normal 

W 66 Land 4439 0.694 Normal W 97 Land 10970 0.760 Normal 

W 67 Land 5746 0.608 Normal W 98 Land 3876 0.589 Normal 

W 68 Land 5752 0.628 Normal W 99 Land 4872 0.674 Normal 

W 69 Swamp 3946 0.577 Normal 

W 100 Swamp 

3023 0.479 Normal 

W 70 Swamp 3945 0.600 Normal 7451 0.645 Normal 

W 71 Swamp 4491 0.617 Normal 12988 0.824 Normal 

W 72 Swamp 3948 0.524 Normal W 101 Swamp 10352 0.761 Normal 

W 73 Swamp 5739 0.616 Normal 
W 102 Swamp 

9452 0.724 Normal 

W 74 Land 10810 0.739 Normal 4447 0.566 Normal 

W 75 Land 4908 0.557 Normal 
W 103 Swamp 

5932 0.571 Normal 

W 76 Land 4990 0.596 Normal 11967 0.790 Normal 

W 77 Land 5981 0.592 Normal W 104 Offshore 6925 0.769 Normal 

W 78 Land 14945 0.860 Normal W 105 Land 7951 0.760 Normal 

W 79 Land 4324 0.641 Normal 
W 106 Offshore 

1501 0.600 Normal 

W 80 Land 5259 0.751 Normal 5605 0.768 Normal 

W 81 Land 4184 0.526 Normal W 107 Swamp 8109 0.763 Normal 

W 82 Land 4690 0.530 Normal W 109 Land 5510 0.585 Normal 
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Chapter 6 

 

6.0 Real-time Lithology Prediction Using Hydromechanical Specific Energy 

 

Preface 

 

A version of this chapter has been published in the Journal of Petroleum Science and 

Engineering, 2019. I am the primary author. Co-author Dr. Stephen Butt reviewed the 

manuscript and provided technical assistance in the development of the concept. I formulated the 

initial concept and carried out most of the data analysis. I prepared the first draft of the 

manuscript and revised the manuscript based on the feedback from the co-author.  

 

Abstract   

  

The previous applications of specific energy to drilling operations have focused mainly on 

drilling optimization and identification of inefficient drilling conditions. Recent advances in 

specific energy extend its applications to overpressure detection and pore pressure prediction. In 

this paper, an attempt is made to further extend the application of specific energy to real-time 

identification of subsurface lithology. The concept is based on the principle that the total energy 

required to break and remove a unit volume of rock is a function of lithology. The proposed 

methodology is tested using a recently drilled exploratory gas well in the tertiary deltaic system 

of the Niger Delta basin. In general, an excellent agreement is observed in trend between the 

traditional lithology identifiers (gamma ray and sonic velocity ratio) and the total energy 

consumed in breaking and removing the penetrated rocks. Unlike the logging while drilling 

(LWD) technique commonly employed in the industry (including the application of near bit 

sensors placed few feet behind the bit), the proposed methodology can provide a reliable means 
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of picking formation tops and identifying subsurface lithology at the bit with no extra cost since 

drilling parameters are routinely recorded at the wellsite during the drilling of a well. The 

proposed methodology will assist the drilling engineers and geologists in determining the casing 

setting depths and coring points without having to drill too deep into the formation of interest. 

 

Keywords: Hydromechanical specific energy, Lithology, Rate of penetration, Drilling, Bit. 

 

6.1 Introduction  

 

Traditionally, real-time detection of lithological boundary and identification of lithology is 

performed at the wellsite during the drilling of a well using the logging while drilling (LWD) 

tools. However, there are some critical subsurface drilling conditions where the application of 

conventional LWD may prove inadequate. For instance, using the conventional LWD tools to 

determine the coring point of a thin reservoir. Under this condition, a large proportion of the 

reservoir thickness may be unknowingly penetrated before the conventional LWD is able to 

identify the formation top of interest, thereby jeopardizing the entire coring operations. The 

application of near bit LWD allows lithology identification a few feet behind the bit at an 

extremely high cost. In most cases, the high cost of the near bit sensors may be prohibitive to 

operating companies, especially the marginal operators. Moreover, while drilling at a great depth 

in an offshore environment with a floating rig, there is a possibility that the LWD tools may fail 

when approaching the casing setting depth or coring point with only a few feet remaining to be 

drilled before calling off the current operations. Under this prohibitive condition of extremely 

high operating cost, the drilling engineers and geologists will not likely pull out of hole to 

replace the LWD tools if subsurface lithology can be predicted from readily recorded drilling 

parameters except for the purpose of reservoir evaluation other than lithology identification. The 
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applications of cutting descriptions by mud loggers for lithology identification also have their 

limitations. The associated lag time required to move the drill cuttings from the bottom of the 

hole to surface and the possibility that the drill cuttings obtained at the shale shakers may not be 

coming from the bottom of the hole but rather somewhere higher up in the well (especially in 

unstable wellbore) can make the cutting descriptions unsuitable for determining the casing 

setting depths and coring points. At best, cutting descriptions are mostly used in conjunction with 

LWD for confirmation purposes.  

Previous attempts to use drilling-related parameters (ROP and d-exponent) to identify 

subsurface lithology have produced mixed results. The ROP is influenced by several factors 

which include: the degree of rock compaction, lithology, rotary speed, bit type, weight on bit 

(WOB), bit size, bit wear, torque, bit hydraulics energy and differential pressure (Bourgoyne and 

Young, 1973). From an operational point of view, it may not always be possible to maintain the 

above factors constant during the drilling of a well (Oloruntobi and Butt, 2019a). Therefore, 

changes in ROP may not necessarily signify changes in subsurface lithology. Although the d-

exponent is normalized for the effects of rotary speed, WOB and bit diameter on the ROP 

(Jorden and Shirley, 1966), one of its major limitations is that the model does not consider the 

effect of bit hydraulic energy on the ROP. This limits the application of d-exponent to hard rocks 

and makes it unsuitable to most unconsolidated sediments where the bit hydraulic energy assists 

in breaking the rock ahead of the bit. There are also instances when the driller decides to increase 

the flow rate for hole cleaning, reduces the flow rate to minimize loss circulation incidents, 

change the nozzle sizes for drilling optimization purposes or change the mud weight for well 

control and wellbore stability purposes. Under such circumstances of fluctuating bit hydraulic 

energy, the use of d-exponent for lithology identification may lead to wrong interpretation. 
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The mechanical specific energy was first defined by Teale (1965) as the amount of 

energy required to remove a unit volume of rock (the sum of axial and rotary energies):  

 

MSE =  
WOB

Ab
+ 

120πNT

AbROP
                                                                                                                      (6.1) 

 

where MSE is the mechanical specific energy (psi); WOB is the downhole weight on bit (lbs); Ab 

is the bit area (in2); N is the rotary speed (rpm); T is the torque on bit (lb-ft); ROP is the rate of 

penetration (ft/hr). Because the majority of the field data are recorded by the surface sensors 

under normal circumstances, Pessier and Fear (1992) proposed a relationship among the 

downhole torque, bit diameter (Db) and WOB: 

 

T = 
μ ∗ Db ∗ WOB

36
,                                                                                                                                  (6.2) 

 

where T is the downhole torque (lb-ft); Db is the bit diameter (in); WOB is the weight on bit 

(lbs); μ is the bit specific coefficient of sliding friction. The bit coefficient of sliding friction 

depends on several factors which include rock confined compressive strength, lithology, depth of 

cut, mud weight, cutter density/blade count (for PDC bits), cutter sizes and bit wear (Caicedo et 

al. 2005; Guerrero & Kull 2007). Pessier and Fear combined equations 6.1 and 6.2 to produce 

equation 6.3: 

 

MSE =  
WOB

Ab
+ 

13.33μNWOB

DbROP
.                                                                                                           (6.3) 

 

The real-time application of MSE is a valuable tool for both drillers and drilling engineers 

(Koederitz and Weis, 2005). The MSE surveillance has proved to be an effective tool in 

identifying downhole drilling problems and optimizing drilling operations (Dupriest et al., 2005; 
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Dupriest, 2006;  Amadi & Iyalla, 2012; Bevilacqua et al., 2013; Pinto & Lima, 2016). Rabia 

(1985) used the concept of modified specific energy for bit selection. Waughman et al. (2003) 

also used the specific energy concept to determine when to pull worn poly polycrystalline 

diamond compact (PDC) bit in oil-based mud. To improve the usefulness of MSE surveillance in 

field operations, the original mechanical specific energy equation as derived by Teale (1965) was 

adjusted to include a mechanical drilling efficiency factor (Dupriest & Koederitz, 2005). 

Armenta (2008) showed the importance of including the bit hydraulic energy term into the MSE 

model. The results of extensive experimental studies conducted by Rajabov et al. (2012) on three 

different rock types (Carthage marble, Mancos shale, and Torrey Buff sandstone) showed that 

the mechanical specific energy of PDC cutters increases with increasing back rake angle at both 

atmospheric and confining pressure conditions. Abbas et al. (2014) combined the bit dullness 

model (dimensionless torque and dimensionless rate of penetration) and MSE to determine the 

downhole drill bit conditions where torque data is unavailable. Abbott (2015) used the 

mechanical specific energy ratio (MSER) to optimize real-time drilling performance for under-

reaming operations. Menand and Mills (2017) used the combination of MSE and MSE-DS 

(drilling strength) ratio to detect vibration, bit balling, and bit wear. Wei et al. (2016) used the 

MSE plus hydraulic energy to identify abnormal conditions for pulsed-jet drilling.  Zhou et al. 

(2017) proposed a model that relates MSE to the depth of cut for a circular cutter. Laboratory 

investigations have shown the dependency of MSE on differential/confining pressure (Rafatian 

et al. 2010; Akbari et al. 2013).  Akbari et al. (2014) established a relationship among MSE, 

uniaxial compressive strength, differential pressure, and confining pressure: 

 

MSE = UCS + [a + b
∆P
Pc ] ln

Pc

Patm
,                                                                                                         (6.4) 
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where MSE is the mechanical specific energy (psi); UCS is the uniaxial compressive strength 

(psi); ∆𝑃 is the differential pressure between confining pressure and pore pressure (psi); 𝑃𝑐 is the 

confining pressure (psi); 𝑃𝑎𝑡𝑚 is the atmospheric pressure (psi); 𝑎 is the coefficient that is 

dependent on rock internal friction angle; 𝑏 is the coefficient that is dependent on rock 

permeability, porosity, fluid viscosity, fluid compressibility, rotary speed and depth of the cut. 

The dependency of specific energy on differential pressure has been explored for pore 

pressure predictions (Cardona, 2011; Majidi et al., 2017; Oloruntobi et al., 2018). 

Currently, the applications of specific energy to drilling operations can be classified into 

three categories: (1) drilling optimization; (2) identification of drilling problems; (3) pore 

pressure prediction. In this paper, an attempt is made to extend the application of specific energy 

to real-time detection of lithological boundaries and identification of subsurface lithology. 

 

6.2 Methodology 

 

The mechanical drilling efficiency factor (MDEF) is defined as the ratio between the rock’s 

confined compressive strength (CCS) and the MSE: 

 

MDEF = 
CCS

MSE
                                                                                                                                           (6.5) 

 
The value of MDEF is typically between 0.3 and 0.4 for most drilling conditions (Dupriest & 

Koederitz, 2005). Based on the Mohr-Coulomb criterion, the CCS is given by: 

 

CCS = UCS + ∆P [
1 − sin θ

1 + sin θ
]                                                                                                                (6.6) 

 

where UCS is the unconfined compressive strength (psi); ∆P is the differential pressure between 
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the bottom-hole pressure and formation pore pressure (psi); θ is the angle of internal friction 

(degrees). Equations 6.5 and 6.6 can be combined to obtain equation 6.7: 

 

MSE =  
1

MDEF
 [UCS + ∆P [

1 − sin θ

1 + sin θ
]]                                                                                             (6.7) 

 

Equation 6.7 clearly demonstrates that the drilling response (specific energy) is a function of 

rock properties (UCS and θ) which are lithology dependent, differential pressure (∆P) and bit 

conditions (MDEF). Therefore, changes in specific energy can be used to identify changes in 

lithology if the drilling environment is known or changes in lithological boundary if the drilling 

environment is not known. Note that changes in lithological boundary will also indicate variation 

in the stratigraphic unit. Moreover, changes in specific energy can also be used to identify 

downhole bit conditions and subsurface pressure regimes. 

However, the MSE does not necessarily represent the total energy consumed in removing 

a unit volume of rock because it excludes the bit hydraulic energy (Oloruntobi et al., 2018).  In 

soft rock environments, the bit hydraulic energy contributes to the total energy required to 

remove a unit volume of rock by weakening the rocks ahead of the bit. The hydromechanical 

specific energy (HMSE) is the total energy consumed during the drilling of a well (Mohan et al. 

2015; Chen et al. 2016;  Wei et al., 2016; Oloruntobi and Butt, 2019). The HMSE is the 

combination of the axial, rotary, and hydraulic energies (equation 6.8): 

 
HMSE = Axial Energy + Rotary Energy + Hydraulic Energy                                                    (6.8) 

 

HMSE = MSE + Hydraulic Energy                                                                                                     (6.9) 

 
In the expanded form, the hydromechanical specific energy is given by: 
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HMSE =  
WOB

Ab
+ 

120πNT

AbROP
+ 

1154η∆PbQ

AbROP
                                                                                    (6.10) 

 

where WOB is the downhole weight on bit (lbs); Ab is the bit area (in2); N is the rotary speed 

(rpm); T is the torque on bit (lb-ft); ROP is the rate of penetration (ft/hr); ∆Pb is the bit pressure 

drop (psi); Q is the flow rate (gpm); η is the hydraulic energy reduction factor. Due to 

accelerated fluid entrainment immediately below the jet nozzles during drilling, only a portion 

(25 – 40%) of the available bit hydraulic energy actually reaches the bottom of the hole (Warren, 

1987). The hydraulic energy reduction factor converts the jet hydraulic energy into the bottom-

hole hydraulic energy. For polycrystalline diamond compact (PDC) bits, the hydraulic energy 

reduction factor (ηPDC Bit) can be expressed as a function of the junk slot area and total flow area 

(Oloruntobi et al., 2018): 

 

ηPDC Bit =  1 − [
JSA

TFA
]
−0.122

                                                                                                                (6.11) 

 
 
where JSA is the junk slot area (in2); TFA is the total flow area (in2). For roller cone bits (RCB), 

the hydraulic energy reduction factor is expressed as a function of bit area and total flow area 

Warren (1987): 

 

ηRCB =  1 − [
0.15 Bit Area

TFA
]
−0.122

                                                                                                    (6.12) 

 
The pressure drop at the bit nozzle is expressed as a function of circulating fluid density, 

volumetric flow rate, and nozzle total flow area: 

 

∆Pb = 
MW Q2

10858 TFA2
,                                                                                                                             (6.13) 
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where ∆Pb is the bit pressure drop (psi); MW is the mud weight (ppg); Q is the flow rate (gpm); 

TFA is the total flow area (in2). The hydromechanical specific energy consumed while drilling 

with PDC bits can be obtained by combining equations 6.10, 6.11 and 6.13:  

 

HMSEPDC = 
WOB

Ab
+ 

120πNT

AbROP
+ 

1154 MW Q3 [1 − [
JSA
TFA]

−0.122

]

10858 AbROP TFA2
                                         (6.14) 

 
The hydromechanical specific energy consumed while drilling with roller cone bits can be 

obtained by combining equations 6.10, 6.12 and 6.13: 

 

HMSERCB = 
WOB

Ab
+ 

120πNT

AbROP
+ 

1154 MW Q3 [1 − [
0.15 Bit Area

TFA ]
−0.122

]

10858 AbROP TFA2
                       (6.15) 

 
It is acknowledged that the HMSE may be affected by several factors other than subsurface 

lithology. These factors include rock compaction, bit wear, bit type and the differential pressure 

between the bottom-hole pressure (dictated by equivalent circulating density: ECD) and the 

formation pore pressure. In normally pressured intervals, rock compaction typically increases 

with depth due to an increase in effective stress. Hence, the energy required to break and remove 

a unit volume of rock will also increase with depth. Generally, bit wear will cause an increase in 

the HMSE due to reduction in the rate of penetration. The application of different bit type in the 

same hole section will produce different HMSE signature due to variation in cutting structure. 

An increase in the strength of the surrounding rocks due to an increase in the downhole 

differential pressure will result in an increase in the HMSE. The effect of differential pressure on 

the ROP (hence, HMSE) is more pronounced at low values of overbalance than at high values of 

overbalance (Vidrine and Benit, 1968; Black et al. 1985; Bourgoyne et al., 1986). Although 

lithology is the major factor controlling the HMSE changes, if the effects of other factors on the 
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HMSE can be minimized, changes in the HMSE can be directly attributed to lithological changes 

due to changes in drillability corresponding to different rocks types.  

Based on Athy (1930) porosity compaction model (equation 6.16), the HMSE can be 

normalized for rock compaction effect (equations 6.16 and 6.17): 

 

∅ = ∅oe
−k𝑍                                                                                                                                             (6.16) 

 

HMSEPDC = 

[
 
 
 WOB

Ab
+ 

120πNT

AbROP
+ 

1154 MW Q3 [1 − [
JSA
TFA]

−0.122

]

10858 AbROP TFA2

]
 
 
 
 ∅oe

−k𝑍                      (6.17) 

 

HMSERCB = 

[
 
 
 
 
WOB

Ab
+ 

120πNT

AbROP
+ 

1154 MW Q3 [1 − [
0.15 Bit Area

TFA ]
−0.122

]

10858 AbROP TFA2

]
 
 
 
 

 ∅oe
−k𝑍     (6.18) 

 
where ∅o is the surface/mudline porosity (fraction); Z is the true vertical depth (ft); k is the 

compaction coefficient (1/ft). The value of ∅o ranges between 0.40 and 0.70, depending on the 

lithology and environment of deposition (Meade, 1966; Burrus, 1998; Swarbrick and Osborne, 

1998; Zoback, 2010). It is widely known that different lithologies will compact at different rates 

and from contrasting surface/mudline porosities (Swarbrick, 2001). Therefore, a line of best fit 

through an offset well data that consists of several stratigraphic units can be used to calibrate the 

compaction coefficient and surface/mudline porosity. 

For practical purposes, the effects of bit wear and bit type on the HMSE can be 

minimized by analyzing the HMSE over short intervals drilled with a single bit. The short 

intervals will ensure that the bit dulling is within tolerable range and the single bit will ensure the 

effect of bit type on the HMSE is eliminated. Interval of analysis to minimize bit wear effect 

should be obtained from the offset data. Therefore, over the intervals where the bit dulling is 
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within an acceptable range, any changes in the HMSE trend will either indicate changes in 

lithology or changes in differential pressure. The changes caused by differential pressure are 

more gradual: gradual decrease in the HMSE may indicate drilling through the pressure 

transition zones as formation pore pressure increases while the gradual increase in the HMSE 

may indicate the amount of overbalance is becoming excessive. However, the changes caused by 

lithology are typically abrupt and easily identified. Since lithology identification is the objective; 

any sudden changes in the HMSE trend will indicate changes in lithology. When plotted against 

depth on semi-log, the HMSE computed using equation 6.17 or 6.18 should be able to identify 

the various stratigraphic units being penetrated.  

If available, downhole measurements of torque and WOB from the measurement while 

drilling (MWD) tools should be used to estimate the HMSE. Using the drilling parameters 

obtained from surface measurements to estimate the HMSE can introduce significant errors 

especially in moderately to highly deviated wells (> 20o inclination) due to the presence of 

friction between the drill string and the borehole walls. The application of drilling data obtained 

from surface measurements to compute the HMSE is possible in vertical wells since the friction 

between the drill string and the walls of the borehole is usually negligible.  

 

6.3 Field Example 

 

To demonstrate the usefulness of the proposed methodology, an exploratory gas well (Well A) 

located approximately 83 km northwest of Port Harcourt in the central swamp region of the 

Niger Delta basin is considered as the case study. Well A is a slightly deviated well with a 

maximum inclination of 14.6o. Figure 6.1 shows the location of the well under consideration. 

The Niger Delta is an extensional rift basin system that consists of three types of formations in 
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descending order: (1) Benin formation – this formation consists of mostly continental loose 

sands, (2) Agbada formation – this formation consists of alternating sequence of sands and shales 

where commercial accumulation of hydrocarbons are found, and (3) Akata formation – this 

formation consists of thick marine shales. (Oloruntobi and Butt, 2019b; Oloruntobi et al., 2019; 

Yusuf et al., 2019). The detailed geology and hydrocarbon system of the basin can be obtained 

from the literature (Short and Stauble, 1967; Burke, 1972; Daukoru 1975; Avbovbo, 1978; 

Evamy et al., 1978; Nwachukwu and Chukwura, 1986; Weber 1987; Doust, 1990; Doust and 

Omatsola, 1990; Reijers 2011). 

  

 
 

Figure 6 1: The location map for Well A. 
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Figure 6 2: The plots of drilling parameters and wellbore pressures versus depth for Well A (Interval 1).  
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Figure 6 3: The plots of drilling parameters and wellbore pressures versus depth for Well A (Interval 2).
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Figures 6.2 and 6.3 display the recorded drilling parameters and wellbore pressures for 

two separate intervals in Well A. The recorded data include torque, rotary speed, flow rate, rate 

of penetration (ROP), weight on bit (WOB), equivalent circulating density (ECD), mud weight 

(MW) and pore pressure (PP). The bottom-hole pressure (BHP) is obtained from the ECD. The 

recorded drilling parameters were obtained from surface measurements. These data were then 

checked for identification and elimination of outliers. The errors associated with using the 

drilling data obtained from surface measurements to compute the HMSE in this well may be 

negligible because the well maximum inclination is low (< 15o), the intervals under consideration 

are short (≤ 2000 ft), the kick-off point is deep (7,878 ft) and the dogleg severities (DLS) do not 

exceed 1.50/100 ft anywhere across the intervals. Over short intervals in low inclination wells at 

low DLS, changes in friction forces between the drill string and the borehole walls can be 

negligible.  

In interval 1 (Figure 6.2), the recorded drilling parameters were acquired in the 16’’ hole 

section drilled with a single roller cone (milled tooth) bit from 8,695 ft to 9,420 ft. The interval 

was drilled with water-based mud and the total flow area (TFA) of the roller cone bit is 1.1689 

in2. The formation pore pressure is normal across all the penetrated rocks with an average 

gradient of 0.435 psi/ft. In interval 2 (Figure 6.3), the recorded drilling parameters were acquired 

in the 12 ¼’’ hole section drilled with a single PDC bit from 9,690 ft to 11,690 ft. The total flow 

area (TFA) of the PDC bit is 1.2003 in2 and its junk slot area (JSA) is 21.28 in2. The interval was 

drilled with oil-based mud and the formation pore pressure varies across the penetrated rocks 

between 0.254 psi/ft and 0.455 psi/ft. This interval consists of both normally pressured zones and 

two depleted sands.  
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Figure 6 4: The offset well data used to calibrate ∅o and k. 

 

To obtain the rock compaction coefficient (k) and the surface porosity (∅o), equation 6.16 

is calibrated to an offset well in the basin. Figure 6.4B shows the plot of porosity against depth. 
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The red dotted line corresponds to the shale compaction trend (equation 6.19). The yellow dotted 

line corresponds to the sand compaction trend (equation 6.20). The black dotted line corresponds 

to a line of best fit through the various stratigraphic units (equation 6.21).  

 

∅ = 0.60e−0.00018∗Z                                                                                                                               (6.19) 

 

∅ = 0.448e−0.00004∗𝑍                                                                                                                             (6.20) 

 

∅ = 0.54e−0.0001∗Z                                                                                                                                 (6.21) 

 

In this paper, equation 6.21 is used to normalize the HMSE for rock compaction effect for all the 

lithologies with the rock compaction coefficient and the surface porosity being 0.0001 1/ft and 

0.54 (fraction) respectively. Using equation 6.21 to normalize the HMSE for all the lithologies 

will only introduce small error which can be acceptable. The formation porosity (∅) is estimated 

using equation 6.22: 

 

∅ = [
ρma

ρma − ρfl
] − [

1

ρma − ρfl
] ρb − [

ρma − ρsh

ρma − ρfl
] Vsh                                                                 (6.22) 

 

where ∅ is the formation porosity (fraction); ρma is the sand matrix density (g/cc); ρsh is the 

shale matrix density (g/cc); ρfl is the saturating fluid density which is typically assumed to be 

1.00 g/cc; ρb is the measured formation bulk density (g/cc)  Vsh is the shale volume (fraction). In 

the Niger Delta, the values of sand matrix density and shale matrix density are 2.65 g/cc and 2.68 

g/cc respectively. For the Niger Delta sediments, field observations have shown that a linear 

relationship exists between shale volume and gamma ray index (IGR). Therefore, shale volume is 

obtained using equation 6.23: 
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Vsh = IGR =
GRlog − GRmin

GRmax − GRmin
                                                                                                              (6.23) 

 

where GRlog is the gamma ray reading at any given depth; GRmin is the sand line gamma ray 

reading; GRmax is the shale line gamma ray reading. However, other non-linear empirical 

responses between shale volume and gamma ray index exist depending on the formation age and 

geographic area (Larionov, 1969; Stieber, 1970; Clavier et al., 1971; Assaad, 2008). 

 

 

6.4 Discussion 

 

Figure 6.5A shows the GR-depth and HMSE-depth plots for interval 1. The HMSE is computed 

using equation 6.18 because the interval was drilled with a roller cone bit. An excellent 

agreement in trend is observed between the gamma ray (GR) and the HMSE. This clearly 

demonstrates the applicability of the HMSE to lithology identification. Abrupt changes in the 

HMSE trend indicate lithological changes. In shale formations as indicated by high GR, higher 

specific energy is consumed in removing the rocks. However, in sand formations as indicated by 

low GR, lower specific energy is consumed in removing the rocks. A shale baseline drawn 

through the interval indicates that the shale formation between 8,695 ft and 8,826 ft required 

lower energy to drilled than the remaining deeper shale formations. This is probably due to bit 

dulling effects on the HMSE.  

Figure 6.5B shows the GR-depth, velocity ratio-depth and HMSE-depth plots for interval 

2. The velocity ratio is derived from the ratio of compressional to shear velocities. Note that the 

display unit of velocity ratio is in 1/100 for ease of interpretation.  
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Figure 6 5: The GR-depth, VR-depth and HMSE-depth plots for Well A. 
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The HMSE is computed using equation 6.17 because the interval was drilled with PDC bit. A 

good agreement exists between the conventional lithology identifiers and the HMSE. In shale 

formations as indicated by high GR and high velocity ratio, lower specific energy is consumed in 

breaking the rocks. In sand formations as indicated by low GR and low velocity ratio, higher 

specific energy is consumed in breaking the rocks The formation tops are clearly visible with 

abrupt changes in the HMSE. Remarkably, the HMSE is able to identify the very tiny sands 

(minor reservoirs), confirming the accuracy of the proposed methodology. The HMSE values in 

the shale intervals trail the shale baseline except at depths greater than 11,600 ft where the 

HMSE values in the bottom shale interval begin to shift from the shale baseline possibly due to 

bit dulling effects. If the longer interval of analysis is considered, the effects of bit dulling on the 

HMSE may be more pronounced, making evaluations more complex and difficult. The 

conflicting responses of roller cone and PDC bits in the same lithology are mainly due to their 

cutting actions. Each bit type drills hole in a different manner. The roller cone bit crushes the 

formations while the PDC bit shears the formations. The abrupt changes in the HMSE at the 

formation tops indicate that the effect of lithology on the HMSE dominates the drilling process. 

 

6.5 Conclusions 

 

In addition to drilling optimization and identification of drilling problems, the applications of 

HMSE have been extended to real-time identification of lithology. Lithology identification using 

the HMSE concept is based on observing trend changes. Any abrupt change in the HMSE trend 

can be directly attributed to lithological change. The proposed methodology can provide a 

reliable means of picking formation tops and identifying the various stratigraphic units being 

penetrated at a relatively low cost. The proposed methodology can serve as an excellent 
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correlation tool in wells where petrophysical data are either not available or poorly acquired. To 

ease interpretation, the drill bit responses (HMSE signatures) in different lithologies may be 

predicted in advance by applying the HMSE concept to the offset data. Since PDC and roller 

cone bits produce different HMSE responses, intervals drilled with two different types of bits 

should not be analyzed together. The HMSE-depth plot for each bit run should be entirely 

separated from the other bit runs. 

The ability of the proposed methodology to be able to accurately identify subsurface 

lithology will depend on the quality of the input data. Computation of HMSE using drilling 

parameters that are subjected to severe vibrations will produce inaccurate results. The quality of 

the input data can be improved in several ways: (1) measured parameters should be compared to 

model parameters; (2) surface/downhole sensors should be calibrated before use; (3) If possible, 

measurements should be taken using different sensors for comparison purposes; (4) Noise in the 

data transmission system should be minimized; (5) Shocks and vibrations can be controlled by 

incorporating the shock sub into the bottom-hole assembly (BHA), optimizing drilling 

parameters (weight on bit and rotary speed) and selecting the right bit/BHA.  
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Chapter 7 

 

7.0 Summary and Recommendations 
 

7.1 Summary  

 

The works presented in this manuscript have demonstrated the application of specific energies 

(HRSE and HMSE) to pore pressure prediction. The new techniques allow the formation pore 

pressure to be reliably predicted at the bit at relatively low cost. The field data required for the 

computation of these energies allow the formation pore pressure to be monitored real-time. 

Unlike the previous pore pressure prediction models from the drilling parameters, the inclusion 

of the bit hydraulic energy term in the new models allows accurate prediction of formation pore 

pressure under any subsurface drilling conditions (soft and hard rock environments). Pore 

pressure prediction from the new methods is based on the concept that overpressure intervals 

with lower effective stress will require less energy to drill than the normally pressured intervals 

at the same depth.  In normally pressured intervals, the values of the specific energy computed 

over a uniform stratigraphic unit will increase with depth due to an increase in rock density and 

degree of rock compaction. In overpressure intervals, the specific energy values start to gradually 

deviate from the normal compaction trend to lesser values. The amount of deviation from the 

normal compaction trend at any given depth is generally related to the magnitude of 

overpressure. The higher the deviation, the greater the formation pore pressure. The concept of 

specific energy has also been extended to real-time identification of subsurface lithology. The 

accuracy of formation pore pressure prediction can be improved by improving the accuracy of 

overburden pressure computation via improvement in formation bulk density prediction. This 

thesis also presents a novel, simple and accurate techniques of estimating the formation bulk 
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density in areas where density logs are unavailable or unreliable. The new bulk density prediction 

models can be applied to a wide range of lithologies in siliciclastic environments. Finally, since 

pore and fracture pressures are closely related, this thesis presents a new fracture pressure 

prediction model that can be applied to normal and overpressure intervals in the Niger Delta 

basin. The main contributions of this thesis are highlighted below:   

1. The development of a new pore pressure prediction technique from drilling parameters 

that incorporates the bit hydraulic energy term based on the concept of total energy 

consumed while drilling using downhole measurements. 

2. The development of a new pore prediction technique from drilling parameters that 

incorporates the bit hydraulic energy term based on the concept of total energy consumed 

while drilling using only surface measurements.  

3. The development of the new bulk density prediction models for siliciclastic rocks. 

6. The application of specific energy concept to real-time lithology identification.  

7. The development of a new fracture pressure prediction model for the Niger Delta. 

 

 

7.2 Recommendations 

 

Although the works in this thesis present new techniques of predicting pore pressure, fracture 

pressure (Niger Delta), bulk density and lithology, many knowledge gaps still exist, and future 

works can be used to address some of these gaps. These include but not limited to: 

1. Excessive bit wear can mask the reversal in the specific trend when drilling through the 

overpressure and pressure transition zones. Therefore, specific energy models that 

incorporate wear factor term can be developed. 
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2. Just like the previous empirical relationships, the newly proposed formation bulk density 

prediction models in this thesis may not be applicable to rocks that contain 

microcracks/fractures. In consolidated formations that contain microcracks, changes in 

effective stress will cause substantial changes in compressional wave velocity with little 

or no changes in formation bulk density until all the microcracks are closed. The newly 

proposed models should be extended to rocks that contain microcracks/fractures by 

incorporating an additional parameter (shear sonic velocity) that will negate the effect of 

microcracks/fractures on compressional sonic velocity. 

3. The newly proposed formation bulk density prediction models do not cover carbonate 

and evaporite environments. Similar models should be developed for these environments. 

  

 


