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Abstract

We use ray methods for seismological investigations that allow us to address a variety

of problems by applying several mathematical tools.

With the assumption of elliptical anisotropy and linear inhomogeneity, it results in

simplifications of the equations; thereby, it allows us to obtain analytic expressions

for the trajectories of seismic signals, as well as their traveltimes. Traveltimes are

essential for processing and velocity determination from VSP surveys.

To solve the inverse problem, we minimize the difference between the traveltimes

calculated from the model and traveltimes from the dataset. We ensure that for a

single medium, the inverse is stable and gives unique solutions. For the more complex

problems with many parameters, we examine the stability of the inversion.

Herein, we investigate one particular case of eight symmetry classes that material

described by a Hookean solid can possess. We consider a particular case of the trans-

versely isotropic (TI) medium. An accurate enough analogy of a seismic performance

with a model of a TI Hookean solid is consistent with parallel layers that serve as an

analogy for the behaviour of waves in a sedimentary basin.

For such medium, we use the Backus average of a stack of isotropic layers that results

in a TI medium.

We investigate whether we may encounter the issue with numerical considerations of

the Backus (1962) product approximation. For isotropic media, despite the stability

conditions, it may lead to an issue within the Backus average. In the context of global

seismology, we examine whether this issue may occur.

Furthermore, we discuss several physical constraints imposed on elasticity parameters

of a TI tensor. Using the assumption of the equal level of increasing velocity of P -

and S-waves and the same anisotropy from abχ model and TI medium, we obtain two

ii



out of five elasticity parameters of a TI tensor.

For different elasticity parameters, we show several numerical examples to examine

how these restrictions affect a TI tensor with known values of certain elasticity con-

stants that are acquired from the vertical or horizontal measurements.

Keywords: VSP, Metropolis-Hastings, Inversion, Matlab, Backus average, TI ten-

sor
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Chapter 1

Introduction

Using ray methods, we are equipped to apply the equations for seismological studies.

In the context of ray theory, we can achieve the trajectories of seismic signals and

their traveltimes.

Herein, we study a particular case of a ray traveling in the medium with both an ellip-

tical velocity dependence with direction and a linear velocity dependence with depth.

These assumptions allow us to obtain analytic expressions for rays and traveltimes.

Traveltimes are essential for processing and velocity determination from vertical seis-

mic profiling (VSP) (Slawinski et al., 2004).

More specifically, parameters a and b describe a change of velocity with depth, and

χ describes the anisotropy. To obtain a, b, and χ, we perform the inversion to match

the traveltimes from the dataset. In the first case, for a single-medium model, we use

the Metropolis-Hastings algorithm (Hastings, 1970), based on Monte Carlo methods.

In the second case, we use the minimization function, fminsearch, in Matlab for

multi-layer media.

In this thesis, we examine the two cases of the dataset: the predicted and field data.



The predicted data are obtained from the established model of a, b, and χ; the field

data are obtained from Kaderali (2009). Additionally, in the case of predicted data, for

both methods, we ensure the correctness of the method and also investigate different

noise levels added to the traveltimes.

For the case with fminsearch function (Lagarias et al., 1998), we present the cases

of one, two, three, and four parallel layers, where we determine a, b, and χ for each

layer. The more information about the algorithm one can find in Mathews and Frank

(2004).

We set the depths of the layers. The inversion involves optimization of the ray paths,

based on the velocity model; their shape is elliptical. The fourth layer case is added

to examine the extent to which the number of layers affects the estimate, including its

uniqueness and stability. Also, in each case, we interpret the accuracy of the results

using computed residuals. As the two inversions are based on the same dataset, we

compare the results and confirm the correctness of the two methods.

We also investigate the materials that possess certain symmetries (Bos et al., 2004).

In the context of our studies, this means that we can measure a property of a material

in several different orientations of the coordinate system and obtain the same result

each time. In an accurately chosen coordinate system, the form of the elasticity

matrix allows us to recognize the symmetry of this continuum. Herein, we consider a

particular case of the transversely isotropic medium, which is consistent with parallel

layers.

We consider a model used in applied seismology as a stack of parallel layers. Each

layer possesses elastic properties. For the averaging purposes and to obtain one set

of parameters for a single equivalent medium, we use Backus (1962) average that is

commonly used in applied seismology. The behavior of such a medium is analogous to
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the response of a stack of layers to a signal whose wavelength is much greater than the

thickness of individual layers (Bos et al., 2017a). For isotropic thin layers, the thick

layer is transversely isotropic (Postma, 1955). Such single think layer can be good

representation of the whole medium and allows us to compare results from previous

search with a, b, and χ.

As a consequence of averaging, the anisotropy might serve as an accurate-enough

analogy within the realm of continuum mechanics. Thus, for example, the same

continuum with its anisotropy might serve as an analogy for the behaviour of waves

in a sedimentary basin (Helbig, 1994).

Bos et al. (2017a) examine the mathematical foundations of the Backus approach such

as the approximation of the average of a product as the product of the averages, which

underlies the averaging process. We estimate the difference between them and find

whether the possibility of the issue with product approximation may occur. Using the

stability conditions of the isotropic stress-strain relations, we investigate the physical

possibility of the issue with approximation to arise.

Applying the Preliminary Reference Earth Model (PREM) of Dziewoński and Ander-

son (1981), we examine whether Backus average fails within the context of seismology

at a regional scale. Including density, ρ, P - and S- wave speeds, we compute Lamé

and elasticity parameters and determine the relative error of the Backus average.

In Section 9.2, we consider transversely isotropic (TI) elasticity tensor with a sym-

metry axis that coincides with a vertical x3-axis of a coordinate system that refers

to depth. A TI tensor has five independent elasticity parameters; determining their

values via seismic measurements may be challenging. For example, one may perform

vertical seismic profiling at offsets close to zero, to obtain vertical speeds of quasi-P

and quasi-S waves. This way, five unknown parameters are reduced to only three.

3



Most often, we do not have an opportunity of knowing the values of all five parame-

ters, but we still might want to use a TI tensor to describe the properties of a medium.

Consequently, it is useful to restrict the range of the possible values of the remaining

elasticity parameters that are unknown. In other words, putting several restrictions

on these parameters enables us to predict better or estimate their values.

We apply formulae, derived by Sayed and Stanoev (2019), to calculate the two elas-

ticity parameters of a TI elasticity tensor using the values of a, b, and χ. It is possible

with parameterization of a TI medium resulting from the Backus average of thin,

homogeneous, isotropic layers and also with assumption that the medium is linearly

inhomogeneous, which means that the velocity changes linearly with depth and b is

the level of such change. Consequently, we put more specific constraints on the other

three elasticity parameters. It is possible with the assumption of the equal parameter

b, for P - and S-waves. Derived relations allow us to compare results from different

measurements and computational methods. We assume that the level of anisotropy,

from the abχ model and anisotropy from TI medium with the assumption of the same

b parameter, χTI,b, are equal. We make such assumptions, to be able to compute P -

and S- waves speeds and then to compare their ratio with
√

3.

Additionally, in Chapter 13, we show numerical examples based on four distinct TI

tensors with the values of elasticity parameters from the Green-river shale obtained

from Thomsen (1986). In each case, we know the values of a different set of elasticity

parameters. Their known values might correspond to the real cases of acquiring the

data from, respectively: vertical and horizontal seismic measurements of the quasi-P

(qP ) wave, vertical measurements of quasi-P and quasi-S (qS) waves, horizontal mea-

surements of quasi-P and quasi-S waves, and vertical and horizontal measurements

of quasi-P and quasi-S waves.

4



Chapter 2

Velocity model

1 We restrict ourselves to a study of a particular case of wave propagation that is cor-

related with both an elliptical velocity dependence with direction and a linear velocity

dependence with depth. This assumption enables to achieve analytic expressions for

rays and traveltimes (Slawinski, 2015). We wish to show the limitations of one

traveltime expression with the explanation and present an alternative more complex

one. To characterize this, we define a velocity model in which the signal propagates in

linearly inhomogeneous and elliptically anisotropic medium (Slawinski et al., 2004),

v(θ, Z) = (a+ bZ)

√
1 + 2χ

1 + 2χ cos2 θ
, (2.1)

where

χ =
v2
h − v2

v

2v2
v

,

with vh and vv being magnitudes of horizontal and vertical velocities, respectively. θ is

the ray angle measured with respect to the vertical axis. χ is a dimensionless quantity;

1Chapters 2-8 are the results of the work with Ayiaz Kaderali on unpublished papers Kaderali
and Kudela (2019a) and Kaderali and Kudela (2019b).



if vh and vv are equal, then χ = 0 and the medium is isotropic. In expression (2.1),

parameter a is the velocity of the signal at the surface in m
s

, Z is depth and b is

the velocity gradient in 1
s
. The rays in such a medium are arcs of ellipses (Epstein

and Slawinski, 1999). The traveltime of a signal between a source and a receiver is

(Slawinski et al., 2004)

t =
1

b
ln

(
a+ bZ

a

1 +
√

1− a2p2(1 + 2χ)

1 +
√

1− (a+ bZ)2p2(1 + 2χ)

)
, (2.2)

where

p =
2X√

(X2 + (1 + 2χ)Z2)[(2a+ bZ)2(1 + 2χ) + b2X2]
.

The source is located at (0, 0) and the receiver at (X,Z); p is a ray parameter that is

constant along the ray, due to lateral homogeneity.

Expression (2.2) is valid for a downgoing ray only. For such a study, we aim to know

the point for which the signal starts to reach the receiver on its way up. The location

of the last source at which the signal reaches the receiver from above is (Slawinski,

2015, p. 537)

Xc =

√
1 + 2χ

b
(2a+ bZ)Z . (2.3)

In expression (2.2) the traveltime corresponding to the part where the signal travels

upward is subtracted due to the prior integration along the z-axis performed to obtain

traveltime. To avoid this, we use the traveltime expression as given by Rogister and

Slawinski (2005),

t =
tanh−1

[
pbX −

√
1− p2a2(1 + 2χ)

]
+ tanh−1

[√
1− p2a2(1 + 2χ)

]
b

. (2.4)

The traveltime from expression (2.4) is valid for the entire ray, the downgoing and

6



upgoing segments, due to traveltime integral between the source at (0, 0) and the

receiver at (X,Z) with respect to Z-axis.
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Chapter 3

Methods

3.1 Metropolis-Hastings method

We use the Metropolis-Hastings algorithm—based on Metropolis and Ulam (1949)

and Hastings (1970)—works to generate a sequence of values of a, b, and χ in such a

way that each set of these three parameters aims to achieve a smaller misfit between

traveltimes from calculation and the dataset.

The algorithm is based on Markov-Chain Monte Carlo method. It generates a random

set of samples that we use to obtain the numerical results; thus, we consider it a Monte

Carlo sequence. These sets of samples are produced iteratively; the distribution of the

next samples is dependent only on the current set of samples, which is a property of a

Markov-Chain. Specifically, at each iteration, the algorithm picks candidates for the

next set of samples based on the current set, comparing their probabilities, namely,

P (an+1, bn+1, χn+1|an, bn, χn) ,



where

P = exp

(
−
∥∥∥∥tabχ − tσ

∥∥∥∥2
)
,

and where t stands for the traveltimes obtained from the dataset, tabχ represents trav-

eltimes obtained using expression (2.4); σ is a limit of the acceptable misfit between

the samples; ‖‖ stands for norm.

Either candidates are accepted—in which case the candidate values are used in the

next iteration, or candidates are rejected—so that the candidate values are discarded

and the new candidate is sampled for the next iteration.

Herein, we present pseudocode to illustrate used algorithm:

Define number of iterations n, standard deviation σ

Draw initial a, b, χ–random numbers from the set range

Compute t0 and Pi

Draw new a, b, χ with the set step

Compute ti+1 and Pi+1

start loop for i = 2 : n

if [0, 1] < min
(
1, Pi+1(tn)

Pi(ti−1)

)
ti = ti+1

else

ti = ti−1

end loop

Examples of the codes are show in Appendices B–D.

Initially, the algorithm draws a random set of samples from the range, a ∈ [1000; 5000],

b ∈ [0; 1], and χ ∈ [0; 0.1]. The step for each parameter for the next iteration is random

from the range a ∈ [−10; 10], b ∈ [−0.01; 0.01] and χ ∈ [−0.001; 0.001]. Figure 3.1

shows the results of a single chain for parameter a. Whether we execute the algorithm

9



multiple times, each time first 10% of the samples are far from the values accepted at

further iterations. The goal is to present data as histograms and read from one peak

the result. For imaging purposes, we wish to show only the values that are close to

the result. As we draw the samples from a sufficiently wide range for each parameter,

the values from the first iterations are far from the correct results. After running the

code and observing the results, we decide to save the results from the iteration and

cut only first 10% of samples.

Figure 3.1: The value of the calculated parameter a at each iteration; a = 1500. To
eliminate the influence of the starting values, we cut the first 10% of the iterations. The
number of the iterations on the horizontal axis is multiplied by 104.

If we present the values of a, b, and χ, which meet the conditions of the Metropolis-

Hastings algorithm (Raushan, 2011), on histograms, we are able to read the results

from these plots. The highest peak of each histogram indicates the most probable

value for each parameter.
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3.2 fminsearch

For multi-layer media, the method of finding the parameters has two parts. Firstly,

we find the points where the signal crosses the boundaries. As the model is elliptically

anisotropic, seismic rays are elliptic-shaped curves. Herein, we use Fermat’s princi-

ple, which is that the path taken between two points by a ray is the path that can be

traversed in the stationary time (Bona and Slawinski, 2003). To find the coordinates

of the points where ray crosses boundaries, we minimize traveltime for each ray sepa-

rately. Commonly depths of the layers may be determined by well-log interpretation.

As a consequence, we set the boundaries of the layers, also to reduce the number

of unknowns in the algorithm. Secondly, the optimization of the velocity model is

performed for all sources together to obtain one set of parameters for the entire layer.

Along with the entire offsets, we encounter almost vertical rays that consist of infor-

mation only about vertical velocity, which is insufficient for determination of χ. As

the values for each parameter may differ significantly for each separate ray, we make

the whole computation along the source line. The objective function is the sum of

the squared differences between the measured (tm) and calculated (tabχ) traveltimes,

n∑
i=1

(tim − tiabχ)2 → min ,

where n is a number of traveltimes.

For the inversion purposes, to obtain the traveltime, we use expression (2.4) in all

calculations. Both minimizations are carried out with fminsearch; a built-in op-

timization function in Matlab. fminsearch attempts to find a local minimum of

the target function. The optimization function uses the Nelder-Mead algorithm—

described thoroughly in Lagarias et al. (1998)—which requires the startup values.

11



For a single-medium case, the results are unique and after proceeding with greater

amount of layers we are able to propose and then set startup values for further compu-

tations. With the knowledge about common values for each parameter, after running

code with chosen values, we get an insight from the results about startup values for

the final computation.
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Chapter 4

Synthetic data tests

We conduct synthetic data tests to ensure the correctness of the algorithms with

simple models and also to examine the effect of the noise added to the traveltimes in

both cases.

4.1 Dataset

Herein, the dataset consists of predicted traveltimes. To obtain such traveltimes,

we calculate the traveltime of a signal between a source and a receiver propagating

through a single medium using expression (2.2), with a = 1500, b = 0.8, χ = 0.02. The

resulting traveltime with respect to offset is illustrated in Figure 4.1. The geometry

is based on VSP measurements. The source line consists of two-hundred and fifty

locations with an interval of 20 m; the maximum offset is 5000 m, whereas the depth

of the one receiver is 2500 m. With such geometry, having a dataset with two-hundred

and fifty traveltimes, even with one receiver, we possess enough data to determine

desired parameters accurately.



For far offsets in such geometry, we find the last source for which the signal reaches

the receiver on its way down. The location of this source is calculated from expres-

sion (2.3). In our model, Xc = 4031 m, which corresponds to the cusp from Figure 4.1.

After the cusp, the receiver is reached by an upgoing signal. Due to the change of the

direction, the traveltime beyond the cusp is calculated with the opposite sign than

the traveltime before the cusp. As a consequence, traveltime starts to decrease.

To model the actual traveltime, as opposed to using expression (2.2) along the entire

source line, it is necessary to use expression (2.4). The dashed line illustrates such a

result in Figure 4.1. Both expressions (2.2) and (2.4) are convenient for the inversion

purposes, as it is mathematical curve fitting.

Figure 4.1: Traveltimes with respect to the offset X. The solid line stands for traveltime
obtained from expression (2.2). The dashed line stands for the traveltime from expres-
sion (2.4).
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4.2 Metropolis-Hastings

To examine the stability of the inverse problem we added normally distributed random

noise of ±2 ms and ±5 ms to the traveltime. To avoid the cusp, shown in Figure 4.1,

and for the purpose of inversion, we use expression (2.4), for all subsequent calcula-

tions.

One of the goal of this thesis is also to examine the correctness and applicability

of Metropolis-Hastings method. Other, less complicated methods like curve-fitting

might be enough to obtain satisfactory results, but Monte Carlo methods allow us

also to examine the effect of noise added to the data and ambiguity of some results.

The algorithm searches for the optimal values of the parameters to obtain the smallest

misfit between the predicted and calculated traveltimes. The results are presented in

Figures 4.2–4.7. We show two variations of added noise to discuss the influence of

its magnitude on calculated parameters. The vertical lines on histograms indicate

the values of a, b, and χ used to obtain the dataset. The horizontal axes on the

plots show the value of the parameter and the vertical axes represent the number of

accepted samples. In other words, the result of each parameter corresponds to the

value that is most frequently accepted by the algorithm. The obtained distribution

are close to Gaussian. Thanks to that we are able to uniquely read the results from

the histograms and also we see that other results from iteration are evenly distributed

around the peak.

The values of a, b, and χ chosen to match the predicted traveltimes with ±2 ms noise

are shown in Figures 4.2–4.4.

We read from the histograms the most probable values which are approximately a =

1500, b = 0.8 and χ = 0.02. The standard deviation of the distributions is 5 ms and is
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greater than the noise added to the traveltimes and the accuracy of the measurement,

which is also 2 ms. In spite of the noise, the results of the search match the values

from the model.
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Figure 4.2: Distribution of parameter a for ±2 ms noise. The values on the vertical axis
are multiplied by 104.
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Figure 4.3: Distribution of parameter b for ±2 ms noise. The values on the vertical axis
are multiplied by 104.
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Figure 4.4: Distribution of parameter χ for ±2 ms noise. The values on the vertical axis
are multiplied by 104.

The results for the predicted traveltimes with larger noise of ±5 ms are shown in

Figures 4.5–4.7. The vertical line does not coincide with the peak of the histogram,

as more values that were accepted by the algorithm are slightly smaller than the

values from the model and the bin does not contain that wide range of numbers. The

approximate values of the calculated parameters are also consistent with the values

from the dataset. The advantage of using Metropolis-Hastings algorithm, over some

other minimization methods, is the opportunity to examine the influence of noise in

the data. It is also possible with linear methods as the data presented as histograms

reveal Gaussian distribution. Greater noise does not significantly affect the results of

inversion; the histograms still show nearly exact results of the search. However, the

histograms are broader, because we increase the value of σ which is the acceptable

difference between calculated and measured traveltimes. As for the noise traveltimes

it is possible that this difference may increase, to move to the next iteration, the

acceptable misfit needs to raise.
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For that case, the standard deviation is 10 ms that is greater than the noise and also

the accuracy of the measurement. As a consequence, the algorithm accepts more

samples.
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Figure 4.5: Distribution of parameter a for ±5 ms noise. The values on the vertical axis
are multiplied by 104.
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Figure 4.6: Distribution of parameter b for ±5 ms noise. The values on the vertical axis
are multiplied by 104.
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Figure 4.7: Distribution of parameter χ for ±5 ms noise. The values on the vertical axis
are multiplied by 104.

Each time the algorithm is executed, despite random initialization of used seed val-

ues and noise, the resultant values of a , b , and χ are the same. However, at a new

execution, the shape of the histograms is not the same, yet the highest peak corre-

sponds to the same values of a , b , and χ. The distributions suggest that we find

the global minimum as the histogram consists of only one peak. The single-mode

distributions of a, b, and χ suggest a uniqueness of the solution. The advantage of

the Metropolis-Hastings algorithm is that it does not require any information about

the target distributions, and the results do not depend on the startup values.
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4.3 fminsearch

We conduct synthetic tests to show the reliability of the results based on measured

traveltimes in three model variations and also examine the influence of noise added

to the traveltimes. The predicted traveltimes are modelled from the values presented

in Section 4.1.

4.3.1 The impact of white noise

We conduct the synthetic data test by adding random noise to the traveltimes to

examine the effect of the perturbation on the resultant traveltimes. We show four

examples of different noise levels; ±0.01 ms, ±2 ms, ±5 ms, ±10 ms. The case of

±0.01 ms is added to ensure the correctness of the method. For each of the cases,

we run the algorithm one-hundred times to examine the impact of the noise added

to the traveltimes. As the random noise is added from a uniform distribution, it

is enough to obtain a satisfactory examination of the noise from only one-hundred

runs. The number of the runs does not need to be as big as the number of the

runs for Metropolis-Hastings algorithm. We calculate the standard deviation for each

parameter to investigate how the parameters change at each run.

We present two cases: first with a single-medium model and second with three-layer

medium; the boundaries of the layers are 700 m and 1400 m. The values of corre-

sponding a, b, and χ are given in Table 4.1 and 4.2.

We obtain synthetic traveltimes, tm, from expression (2.4) for given a, b, and χ.

Consequently, we add uniformly distributed random noise, ε, scaled by some number

in each case. We conduct the inversion on tem and obtain a, b, and χ. Therefore, we
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calculate traveltime, tabχ, based on the resultant parameters.

tm
+ε−→tem

inverse (a, b, χ)−−−−−−−−→tabχ

In Table 4.1 and 4.2 we show the results of examination for single-medium model and

three-layer medium, respectively. We present results for a, b, and χ with the different

noise levels, where ε̄ is the difference between traveltime from the model, tm, and

traveltime based on the parameters from the inversion, tabχ. Residuals are the average

differences between perturbed traveltimes, tem, and the resultant traveltimes, tabχ.

Average noise is the difference between traveltime without noise tm and perturbed

traveltimes tem.

ε̄ = tm − tabχ,

Residuals= tem − tabχ,

Average noise= tm − tem.
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The noise, ε, is sampled from the uniform distribution, the average noise is around

twice smaller than ε. To examine the effect of noise on the traveltimes, we compare

the level of noise, ε, or the average noise with ε̄. As the value of ε̄ is smaller than

ε, we conclude that the effect of the noise does not have a significant impact on the

traveltimes, although the values of parameters a, b, and χ are gradually different from

the model with greater noise.

Herein, we present the example of the search with ±5 ms of added noise for a single-

medium model as histograms to compare with the results from Section 4.2. The

histograms show that the results do not present the dominant value around the values

that are set in the model as it is for the Metropolis-Hastings method.
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Figure 4.8: Distribution of parameter a for ±5 ms noise.
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Figure 4.9: Distribution of parameter b for ±5 ms noise.
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Figure 4.10: Distribution of parameter χ for ±5 ms noise.

As shown in Chapter 7, the small change in traveltime affects the value of χ most.

In other words, the value of χ changes significantly, but it does not affect the travel-

time. In the case with 10 ms noise in a single medium, χ has a very low value, but

the residuals are still in the range of acceptance. Consequently, the perturbation in

traveltime has the least impact on a as it changes minimally. Additionally, we show
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that the residuals are also smaller than the average noise.

4.3.2 Single-medium case

In this section we show a case of a single medium for the traveltimes obtained from

the values for a, b, and χ from Section 4.1. The model, startup values, and results

are shown in Table 4.3.

Model Startup values Results

a = 1500 a = 2000 a = 1500

b = 0.8 b = 0.1 b = 0.8

χ = 0.02 χ = 0.001 χ = 0.02

Table 4.3: a, b, and χ after optimization for a single medium.

For a single-medium case the results do not depend on startup values. Whether the

startup values are different the results remain the same. The results confirm the

uniqueness of the solution for a three parameter model. The calculation carried out

on the synthetic data shows that the method of velocity model optimization gives

results consistent with the expected model.

4.3.3 Two-layer case

We show the nonuniqueness of the problem for the medium divided into two layers.

Section 4.1 presents the geometry of the medium. The boundary of the layer is at

1000 m. In Table 4.4 we show the case with the startup values and layer of the

boundary being the same as values from the model. The results are consistent with

the values from the model.
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Model Startup values Results

a1 = 1500 a1 = 1500 a1 = 1500

b1 = 0.5 b1 = 0.5 b1 = 0.5

χ1 = 0.04 χ1 = 0.04 χ1 = 0.04

a2 = 1800 a2 = 1800 a2 = 1800

b2 = 0.3 b2 = 0.3 b2 = 0.3

χ2 = 0.015 χ2 = 0.015 χ2 = 0.015

Table 4.4: a, b, and χ after optimization. Startup values are the same as the values
from the model.

As in the case with field data, the values of the parameters are not known, in Table 4.5

we show the case with the startup values that are different from the model.

Model Startup values Results

a1 = 1500 a1 = 1400 a1 = 1384.29

b1 = 0.5 b1 = 0.6 b1 = 0.7274

χ1 = 0.04 χ1 = 0.014 χ1 = 0.04264

a2 = 1800 a2 = 2000 a2 = 1767.37

b2 = 0.3 b2 = 0.1 b2 = 0.3884

χ2 = 0.015 χ2 = 0.05 χ2 = 0.00664

Table 4.5: a, b, and χ after optimization with different startup values.

The average residuals are 0.024 ms and the standard deviation is 0.028 ms. The results

do not match with the model values, but the averaged residuals and the standard

deviation are satisfactory. The low residuals suggest that the resultant values give

the traveltime that is very similar to the traveltime from the model.
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4.3.4 Three-layer case

We show the inexactness of the problem for the medium divided into three layers.

The boundaries of the first and second layer is at 700 m and 1400 m, respectively.

In Table 4.6 we show the case with the startup values and the depth of the boundaries

being the same as the values from the model. The results are exactly the same.

Model Startup values Results

a1 = 1500 a1 = 1500 a1 = 1500

b1 = 0.4 b1 = 0.4 b1 = 0.4

χ1 = 0.01 χ1 = 0.01 χ1 = 0.01

a2 = 1800 a2 = 1800 a2 = 1800

b2 = 0.3 b2 = 0.3 b2 = 0.3

χ2 = 0.015 χ2 = 0.015 χ2 = 0.015

a3 = 2000 a3 = 2000 a3 = 2000

b3 = 0.2 b3 = 0.2 b3 = 0.2

χ3 = 0.035 χ3 = 0.035 χ3 = 0.035

Table 4.6: a, b, and χ after optimization. The layers in the calculations are exactly
the same as layers from the model. The startup values are equal to the values from
the model.

Table 4.7 presents the case with different startup values.
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Model Startup values Results

a1 = 1500 a1 = 1400 a1 = 1486.99

b1 = 0.4 b1 = 0.3 b1 = 0.3238

χ1 = 0.01 χ1 = 0.02 χ1 = 0.03740

a2 = 1800 a2 = 2000 a2 = 1835.71

b2 = 0.3 b2 = 0.25 b2 = 0.2629

χ2 = 0.015 χ2 = 0.01 χ2 = 0.01314

a3 = 2000 a3 = 2200 a3 = 2039.39

b3 = 0.2 b3 = 0.1 b3 = 0.1704

χ3 = 0.035 χ3 = 0.05 χ3 = 0.02681

Table 4.7: a, b, and χ after optimization with different startup values.

The average residuals are 2.6 ms and the standard deviation is 1.8 ms.

The introduction of the third layer confirms the instability of the problem. The

synthetic tests confirm that the more parameters we provide, the more unreliable the

results are.

The tests of the inverse performed on the synthetic dataset ensure that the inverse

is stable and gives the solutions that match the predicted data. In the case of the

Metropolis-Hastings method, we have shown that the different levels of noise added to

the predicted traveltimes neither affect its stability, nor change the solutions, but affect

the shape of the histograms. In the case of fminsearch method, with the increasing

noise, the results are gradually different from the values from the model. However,

the resultant traveltimes perform the residuals lower than the averaged noise. Both

tests confirm the correctness of the method.
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Chapter 5

Field data

5.1 Geometry

The field data traveltimes and the geometry are obtained from Kaderali (2009). A

walkaway VSP was acquired over a five-level array of receivers. The receiver array

covered a vertical depth range from 1973 m to 2013 m with 10 m separation between

receivers. The source line was positioned to be centred over the receiver array depth

range. The source line consisted of two-hundred source locations with an interval

between sources of approximately 25 m, with maximum source-receiver offsets from

the centre of the receiver array of 4000 m and 1000 m, in opposite directions.

Herein, we wish to find the location of the last source at which the signal reaches the

receiver from above. We calculate the Xc from expression (2.3) and find the furthest

source for which the signal travels on its way down. Firstly, we conduct the calculation

for a single-medium model, which contains only one layer, based on all traveltimes;

the results are following: a = 1347, b = 0.89 and χ = 0.057. Secondly, we calculate

Xc from expression (2.3) for each receiver. The results are shown in Table 5.1.



Receiver Xc [m]

1 3317

2 3328

3 3340

4 3351

5 3363

Table 5.1: The furthest offset for each receiver for which the signal travels only downward.

For the inversion purposes and to avoid the cusp shown in Figure 4.1, we use expres-

sion (2.4) for all subsequent calculations. The last twenty-one traveltimes from the

first and second receiver are noisy, so to increase the accuracy of inversion, we truncate

them from the dataset. The dataset consists of the traveltimes from one-hundred and

seventy-nine sources from each of the first and second receiver, two-hundred sources

from each of the last three receivers. The optimization is based on nine-hundred and

fifty-eight traveltimes.
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5.2 Metropolis-Hastings

In this section, for the purpose of inversion, we consider the entire dataset that con-

sists of nine-hundred and fifty-eight traveltimes. The offsets are far enough so that

the traveltimes are obtained from various incident angles. As the rays are not only

vertical, we are able to uniquely determine the level of anisotropy, χ. As the value of χ

determines the difference between vertical and horizontal velocity, we expect to have a

wide range of offsets in the data to have information also from horizontal components.

In Section 6.1.1, we show that for almost vertical rays the value of χ is nonunique.

Herein, we present the results of the inversion using the Metropolis-Hastings method.

Figures 5.1–5.3 present the histograms with the results of the inversion for each pa-

rameter.

Figure 5.1: Distribution of parameter a for all dataset. The values on the vertical axis
are multiplied by 104.
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Figure 5.2: Distribution of parameter b for all dataset. The values on the vertical axis
are multiplied by 104.

Figure 5.3: Distribution of parameter χ for all dataset. The values on the vertical axis
are multiplied by 104.

33



To determine the exact value for each parameter, we decide to choose the middle value

of the highest bin in each histogram. The other possible way of determining the exact

value is to calculate the average or the mode of the values that the bin consists of. We

read from the histograms the most optimal values, which are a = 1342.4, b = 0.897,

and χ = 0.0606. The averaged residuals are 1.72 ms. Each time we execute the

algorithm, the shape of the histogram is slightly different. Furthermore, the location

of the highest bin can differ. In Table 5.2, we present the middle value of the highest

bin, five runs for each parameter.

Run a b χ Residuals [ms]

1 1342.5 0.897 0.0604 1.72

2 1342.5 0.893 0.0606 1.90

3 1342.5 0.896 0.0608 1.64

4 1342.5 0.897 0.0606 1.72

5 1342.5 0.896 0.0604 1.62

Table 5.2: The values for each parameter after five runs with the corresponding residuals.

As the above table shows, the results do not reveal significant differences. Unsurpris-

ingly, the residuals are very similar to the values for each parameter do not change

rapidly.

We notice an essential feature of the Metropolis-Hastings method—that for a single

medium, the solution does not depend on the values of the set of initial samples. They

are generated randomly, and at each run, the calculated most probable values of a,

b, and χ are almost the same. Moreover, the single-mode distributions of a, b, and

χ allow us to infer that for a single medium, the local minimum is also the global

minimum.
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5.3 fminsearch

In this section, we present the results of the inversion using fminsearch method. We

consider four cases of different model variations; a single medium, two-layer, three-

layer, and four-layer medium. We calculate a set of a, b, and χ for each of the layer.

We examine whether the greater number of the layers affects the stability of the

calculation.

5.3.1 Single-medium case

Herein, we consider a single-medium model that consists of only three parameters a,

b, and χ. Figure 5.4 presents the examples of the elliptical shape of the rays that

travel through the single-medium from the source to the receiver.
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Figure 5.4: The examples of the rays that travel through the single-medium from the
sources to the receivers.

To obtain a, b, and χ we minimize the difference between traveltimes from the mea-

surements and the traveltimes from calculations. The results of the inversion are

presented in Table 5.3.
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Results

a1 = 1342.7

b1 = 0.895

χ1 = 0.0604

Table 5.3: Resultant a, b, and χ for a single-medium model.

The average residuals are up to 1.62 ms and the standard deviation is 1.19 ms. Fig-

ure 5.5a shows the residuum for each traveltime from the entire dataset. Figure 5.5b

presents the histogram of residuals.
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(b) Histogram of residuals

Figure 5.5: Differences in traveltimes for each source and receiver in a single-medium
case.

The results do not depend on startup values. It suggests that for a single-medium

model with three parameters, we find the global minimum. A single-medium model,

due to its large thickness of 2013 m is a significant generalization. To find a better

fit and smaller residuals, we divide the medium into more layers. Consequently, we

aim to find the different set of parameters for each layer, which—however—results in

certain differences and limitations of the inverse process, to be discussed below.
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5.3.2 Two-layer case

Herein, we consider the medium devided into two layers that consists of six param-

eters, including a set of a, b, and χ for each layer. The boundary of the layer is

at 1000 m. The points, where the ray paths cross subsequent boundaries, are calcu-

lated for each pair of sources and receivers, conserving Fermat’s principle. Figure 5.6

presents the examples of the rays that travel through the two-layer medium from the

source to the receiver.
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Figure 5.6: The examples of the rays that travel through the two-layer medium from the
source to the receiver. The depth of the boundary is 1000 m

The parameters corresponding to the least difference between measured and modelled

traveltimes are presented in Table 5.4. To show the dependence of each parameter on

the startup values we perform two sets of calculations.
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First case Second case

Startup values Results Startup values Results

a1 = 1400 a1 = 1100.99 a1 = 1100 a1 = 942.05

b1 = 0.8 b1 = 1.4933 b1 = 1 b1 = 1.6224

χ1 = 0.05 χ1 = 0.0021 χ1 = 0.01 χ1 = 0.0009

a2 = 2100 a2 = 2422.22 a2 = 2400 a2 = 3015.97

b2 = 0.6 b2 = 0.5481 b2 = 0.5 b2 = 0.0673

χ2 = 0.01 χ2 = 0.0993 χ2 = 0.01 χ2 = 0.0039

Average residuals 1.1 ms Average residuals 0.8 ms

Standard deviation 1.4 ms Standard deviation 1 ms

Table 5.4: a, b, and χ of two layers and their dependence on startup values.

Figure 5.7 presents the differences between the modelled and measured traveltimes

for both cases. Figure 5.8 shows the histograms of residuals.
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Figure 5.7: Differences in traveltimes for each source and receiver in two cases.

In two-layer case, the results of the inversion with six unknowns depend on startup

values. Table 5.4 shows that the change of the startup values affects the results, but
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Figure 5.8: Histograms of residuals.

does not affect the residuals significantly.

In Chapter 7, we show how the change of values of a, b, and χ affects the modelled

traveltimes. For the two-layered case with six parameters the problem is nonunique.

This means that we find various local minima and there are many combinations of a, b,

and χ that allow us to fit the measured traveltimes with low residuals. The empirical

accuracy is excellent if the purpose of the inversion is imaging the traveltimes; however,

if we aim to define the mechanical properties of rocks, it is not reliable.

5.3.3 Three-layer case

In this section, we consider three-layer velocity model. In terms of the previous

considerations, we add one more layer and examine the stability. We divide the

medium into three layers. The boundaries of the first and second layer are 500 m and

1000 m, respectively. Figure 5.9 shows the examples of the rays that travel through

the three-layer medium from the source to the receiver. As the results of the inversion,

we obtain nine parameters, consisting of a, b, and χ for each layer.
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Figure 5.9: The examples of the rays that travel through the three-layer medium from
the source to the receiver.

To show the dependance of parameters on the startup values, we perform two cases

of different seed values for each parameter. The resultant values of a, b, and χ are

presented in Table 5.5.
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First case Second case

Startup values Results Startup values Results

a1 = 1400 a1 = 1088.97 a1 = 1000 a1 = 1329.65

b1 = 0.8 b1 = 1.5078 b1 = 1.2 b1 = 0.0836

χ1 = 0.05 χ1 = 0.0032 χ1 = 0.01 χ1 = 0.0247

a2 = 1800 a2 = 2308.38 a2 = 2000 a2 = 2934.07

b2 = 0.6 b2 = 0.7159 b2 = 1 b2 = 1.1897

χ2 = 0.01 χ2 = 0.0002 χ2 = 0.01 χ2 = 0.0040

a3 = 2200 a3 = 2696.54 a3 = 3000 a3 = 2756.11

b3 = 0.3 b3 = 0.0069 b3 = 0.3 b3 = 0.0376

χ3 = 0.05 χ3 = 0.1903 χ3 = 0.05 χ3 = 0.1606

Average residuals 0.9 ms Average residuals 0.8 ms

Standard deviation 1.2 ms Standard deviation 1.1 ms

Table 5.5: a, b, and χ of three layers and their dependence on startup values.

Figure 5.13 presents the values of the differences between modelled and measured

traveltimes for both cases. Figure 5.14 shows the histograms of residuals.
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Figure 5.10: Differences in traveltimes for each source and receiver.

41



-5 0 5
Residuum [ms]

0

20

40

60

80

100

120

C
ou

nt
s

(a) First case

-4 -2 0 2 4
Residuum [ms]

0

50

100

150

C
ou

nt
s

(b) Second case

Figure 5.11: Histograms of residuals.

For a three-layer model with nine parameters, the values depend on startup values;

each time the startup values change the results are different. The division into more

layers results in the lower residuals, but does not necessarily provide the real geo-

logical properties of the medium. Lower residuals confirm that the division of the

medium into more layers allows us to fit traveltimes with better accuracy. However,

the unreliability of each parameter is greater as the change of the startup value of one

parameter can change the results significantly. In the first case, we notice that, for

the first and second layer, the results suggest the weak anisotropy of the medium as

the value of χ is very low. Additionally, for the third layer, low parameter b indicates

the homogeneity of this layer.

5.3.4 Four-layer case

In this section, we consider four-layer velocity model. In terms of the previous consid-

erations, we add one more layer and examine the stability. We divide the medium into

four layers. The boundaries of the first, second, and third layer are 500 m, 1000 m, and

1500 m, respectively. Figure 5.12 shows the examples of the rays that travel through
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the four-layer medium from the source to the receiver. We obtain twelve parameters,

consisting of a, b, and χ for each layer.
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Figure 5.12: The examples of the rays that travel through the four-layer medium from
the source to the receiver.

To show the dependance of parameters on the startup values, we perform two cases

of different seed values for each parameter. The resultant values of a, b, and χ are

presented in Table 5.6.
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First case Second case

Startup values Results Startup values Results

a1 = 1000 a1 = 1185.23 a1 = 1100 a1 = 941.23

b1 = 1 b1 = 0.6659 b1 = 1.2 b1 = 1.0861

χ1 = 0.01 χ1 = 0.0063 χ1 = 0.01 χ1 = 0.0010

a2 = 1400 a2 = 1984.08 a2 = 1400 a2 = 2601.68

b2 = 0.8 b2 = 1.3216 b2 = 0.9 b2 = 0.4816

χ2 = 0.01 χ2 = 0.00001 χ2 = 0.01 χ2 = 0.0059

a3 = 1800 a3 = 2505.73 a3 = 1900 a3 = 2507.14

b3 = 0.6 b3 = 0.5956 b3 = 0.5 b3 = 1.4573

χ3 = 0.01 χ3 = 0.0288 χ3 = 0.01 χ3 = 0.0007

a4 = 2400 a4 = 2956.12 a4 = 2300 a4 = 2989.22

b4 = 0.3 b4 = 0.0986 b4 = 0.2 b4 = 0.0138

χ4 = 0.01 χ4 = 0.0681 χ4 = 0.05 χ4 = 0.0496

Average residuals 0.9 ms Average residuals 0.8 ms

Standard deviation 1.2 ms Standard deviation 1 ms

Table 5.6: a, b, and χ of four layers and their dependence on startup values.

Figure 5.13 presents the values of the differences between modelled and measured

traveltimes for both cases. Figure 5.14 shows the histograms of residuals.
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Figure 5.13: Differences in traveltimes for each source and receiver.
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Figure 5.14: Histograms of residuals.

For a four-layer model with twelve parameters, the values also depend on startup

values. For each of four models, the residuals suggest that the model is too simple

and do not provide the significantly better residuals. Additionally, as the accuracy

of the measurement is around 2 ms, from the plots that show the differences between

traveltimes, we notice that standard deviation is smaller than 2 ms. It means that

we are not able to find a satisfying fit with more reliable results as the residuals are

smaller than the precision of the data acquisition.
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However, the unreliability of each parameter is greater as the change of the startup

value of one parameter can change the results significantly. We notice that, for the

first and second layer, the results suggest the weak anisotropy of the medium as the

value of χ is very low.

The method is error-laden because it numerically searches for the values that present

the least-square difference between the traveltimes. If the medium is divided into

more layers, we obtain more unknowns in the target function. Consequently, we

achieve a better fit. Even if the residuals of this search are satisfactory, the respective

values differ from each other. Since it is a mathematical curve fitting, the algorithm

finds the best match, but the results do not necessarily represent the mechanical

properties that describe the medium. We obtain unique results only in a single-

medium model—however, a model of 2000 m depth with only three parameters is a

significant generalization. For the two-, three-, and four-layer cases, we encounter the

instability problem; the function that requires the startup values, the results depend

on their values performing similarly low residuals.
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5.4 Comparison of two methods

In this section, we compare the results from the Metropolis-Hastings algorithm and

fminsearch method for a single-medium case. For the comparison purposes, both

methods perform an investigation on the entire dataset, described in Section 5.1.

The comparison of the parameters obtained from Metropolis-Hastings and from fmin-

search function is shown in Table 5.7.

Metropolis-Hastings fminsearch

a = 1342 a = 1343

b = 0.9 b = 0.9

χ = 0.0606 χ = 0.0604

Residuals= 2.27 ms Residuals= 2.62 ms

Table 5.7: The comparison of a, b, and χ using two different methods for a single-
medium model.

The Metropolis-Hastings algorithm does not provide the optimal results, but we ob-

tain the distribution of each parameter. Although the two methods are different, the

peak values from histograms from Section 5.2 and the results from Section 5.3.1 match

and suggest the correctness of both methods. Also, the results do not depend on the

initial values.

In conclusion, the results of the two different methods does not reveal the great

differences. The same values of the parameters also confirm that in the problem of a

single medium we are able to find the unique solutions.

47



Chapter 6

Different cases of determining

anisotropy and inhomogeneity

parameters

In this section, we present the investigation of the level of increasing velocity with

depth (a + bz) using the rays that reach the receiver with the incident angle smaller

than 10◦ and also with the assumption of isotropy. Moreover, fixing the values of a

and b from the previous search, we obtain the anisotropy parameter, χ, for the entire

dataset.



6.1 Metropolis-Hastings

6.1.1 Low-incident angle

Herein, for the purpose of the inversion, we consider only part of the dataset, namely,

the traveltimes obtained from the rays that reach the receiver with the small incident

angle. We calculate the incident angles for all walkaway data to obtain traveltimes

from rays that go nearly vertically. The dataset consists of one-hundred and forty

traveltimes from walkaway for the rays that travel to the receiver with the incident

angle smaller than 10◦ which are twenty-eight traveltimes from each of receiver.

For the short-offset data, it is impossible to obtain information about anisotropy since

all rays are nearly parallel to each other (Danek and Slawinski, 2012). We confirm

that χ can have any value in near offsets as the algorithm accepts each sampled value

for χ. Each time we execute the algorithm, the shape of the histogram is different

and does not present the major peak with the same value.

The results of the Metropolis-Hastings algorithm are presented in Figures 6.1–6.3.
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Figure 6.1: Distribution of parameter a for the case of low incident angle. The values on
the vertical axis are multiplied by 104.

Figure 6.2: Distribution of parameter b for the case of low incident angle. The values on
the vertical axis are multiplied by 104.
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Figure 6.3: Distribution of parameter χ for the case of low incident angle. The values on
the vertical axis are multiplied by 104.

From histograms we read the most probable values of a = 1680 and b = 0.47; the

value of χ is nonunique. In Figure 6.3, we notice the flattened and broader histogram

with a wide range of values for χ. Additionally, each time we run the code, the shape

of the histogram for χ is different. We also encounter the cases of the negative values

of χ accepted by the algorithm. Danek and Slawinski (2012) state that negative value

of χ is physically acceptable, since it obeys the conservation of energy, which requires

the elasticity tensor to be positive-definite and entails χ ∈ (−0.5;∞). Even though

the near-offset data are insufficient to consider the effects of anisotropy, they provide

the information about a and b. In turn, the fixed values of a and b may be used in

the far-offset case to better estimate the anisotropy parameter χ. Such an example is

shown in Section 6.1.3.
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6.1.2 Low-incident angle and isotropic case

For the rays that travel almost vertically, the elliptical anisotropy is hard to justify.

Using the same dataset as in Section 6.1.1, we consider the isotropic medium (χ = 0)

and evaluate only the level of inhomogeneity. The results of the inversion are shown

in Figures 6.4 and 6.5.

Figure 6.4: Distribution of parameter a for low incident angle and isotropic case. The
values on the vertical axis are multiplied by 104.
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Figure 6.5: Distribution of parameter b for low incident angle and isotropic case. The
values on the vertical axis are multiplied by 104.

The most probable values of the parameters are: a = 1655.5, b = 0.51. The aver-

aged residuals range up to 2.9 ms. The results of the search match the results from

Section 6.1.1.

6.1.3 Entire dataset with a and b fixed

For the entire dataset consisting of all one-thousand-six traveltimes, we calculate the

value of χ with the values of a = 1655, b = 0.5, taken from Section 6.1.2, which are

fixed. Herein, we examine the level of anisotropy for far offsets. The result of the

inversion is presented in Figure 6.6.
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Figure 6.6: Distribution of parameter χ for all data for a = 1655 and b = 0.5. The values
on the vertical axis are multiplied by 104.

The value of χ = 0.121, while the averaged residuals are up to 6.8 ms. Larger residuals

indicate the fact that values of a and b are fixed and taken from the near–offset data.

In this case, the resultant value of χ suggests a high level of anisotropy in the entire

medium.

The study conducted on the data that consists of only the traveltimes obtained from

the incident angle lower than 10◦ ensure the inability of finding the level of anisotropy

as the rays are vertical and nearly parallel to each other. χ represents the difference

in horizontal and vertical velocities. If we possess information only from vertical rays

that carry any information about vertical velocity, the horizontal velocity is missing,

and as a consequence χ is unconstrained. We notice that for the case of near and far

offsets, the histograms do not contain the case of χ = 0, which indicated the anisotropy

of the medium. By analogous argument, the case of b = 0 is also rejected. In other

words, the algorithm never accepts the case of the medium being homogeneous or

isotropic.
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6.2 fminsearch

In this section, we calculate linear inhomogeneity parameters for the case of low-

incident angles with the assumption of isotropy for the whole medium. Consequently,

with the values of a and b fixed from previous calculation, we obtain the level of

anisotropy from the entire dataset.

6.2.1 Single-medium case

For the case with low-incident angle and without the assumption of isotropy we obtain

a very low level of anisotropy. The resultant value of χ is different with a new run.

As shown in Section 6.1.1, we cannot infer the elliptical anisotropy from vertical rays.

Therefore, we proceed with the calculation directly with the assumption of isotropy.

6.2.1.1.0 Low-incident angle and isotropic case

Herein, for the purpose of the inversion, we consider only part of the dataset, namely,

the traveltimes obtained from the rays that reach the receiver with 10◦ incident angle.

We consider the isotropic medium, where χ = 0 and calculate a and b. The least

misfit between the calculated and measured traveltimes is presented in Table 6.1.

Results

a1 = 1658.08

b1 = 0.4988

χ1 = 0

Table 6.1: a and b for a single-medium model—low-incident angle and isotropic case.
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The average residuals are up to 0.34 ms and the value of standard deviation is 0.23 ms.

Figure 6.7a shows the residuals and Figure 6.7b presents the histogram with value of

each difference between measured and calculated traveltime.
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Figure 6.7: Difference in traveltimes for each source and receiver.

6.2.1.2.0 Determining anisotropy

We fix the values of a = 1658 and b = 0.5 from Section 6.2.1.1 and calculate χ for the

whole dataset. χ = 0.1178 gives the least misfit between the measured and modelled

traveltimes. The average residuals are up to 7.5 ms and the standard deviation is

4.9 ms. Figure 6.8a shows the value of difference between the calculated and measured

traveltimes and Figure 6.8b presents the histogram of the residuals.
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Figure 6.8: Difference in traveltimes for each source and receiver.

The high residuals indicate the fact that the values of a and b are from the different

medium of the offset around 350 m. From the plots that show residuals, we notice that

the further the receiver, the higher the misfit between the traveltimes. We conclude

that the values obtained from the search are more applicable for near offset rather

than far offsets.

6.2.2 Two-layer case

6.2.2.1.0 Low-incident angle and isotropic case

Herein, we divide a medium into two layers. The depth of the boundary is 1000 m.

The dataset consists of the traveltimes of the rays that are nearly parallel to each

other. The calculation is based on one-hundred and forty traveltimes, twenty-eight

from each receiver. We achieve four parameters, a and b for each of the two isotropic

(χ = 0) layers. The results of the inverse are in Table 6.2.
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Startup values Results

a1 = 1100 a1 = 1420.82

b1 = 1 b1 = 0.7651

χ1 = 0

a2 = 2400 a2 = 2591.71

b2 = 0.5 b2 = 0.0604

χ2 = 0

Table 6.2: a and b for each of the two isotropic layers with startup values—low-
incident angle.

The average residuals are up to 0.3 ms and the standard deviation is 0.3 ms. Fig-

ure 6.9a shows the difference between calculated and measured traveltimes and Fig-

ure 6.9b presents the histogram of the residuals.
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Figure 6.9: Difference in traveltimes for each source and receiver.

The results depend on startup values. Low residuals show that the introduction of

two more parameters allows to obtain a better fit to the traveltimes. Nevertheless,

we obtain an unstable problem with unreliable results.
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6.2.2.2.0 Determining anisotropy

We fix the values of a and b from Section 6.2.2.1 and determine the level of anisotropy

for the entire dataset. The results are presented in Table 6.3.

Startup values Results

a1 = 1421

b1 = 0.77

χ1 = 0.01 χ1 = 1× 10−9

a2 = 2592

b2 = 0.06

χ2 = 0.01 χ2 = 0.1248

Table 6.3: χ for each layer with startup values. a and b are fixed from Section 6.2.2.1

The average residuals are up to 3.8 ms and the standard deviation is 3.7 ms. Fig-

ure 6.10a shows the residuals and Figure 6.10b presents the histogram with the values

of each difference between measured and calculated traveltime.
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Figure 6.10: Difference in traveltimes for each source and receiver.
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6.2.3 Three-layer case

6.2.3.1.0 Low-incident angle and isotropic case

We divide the medium into three isotropic layers. The boundaries of layers are the

following: 500 m and 1000 m. Herein, we consider only the rays that travel from the

source to the receiver with less than 10◦ incident angle. The calculation is based

on one-hundred and forty traveltimes from five receivers. The results are shown in

Table 6.4.

Startup values Results

a1 = 1400 a1 = 1390.47

b1 = 0.8 b1 = 0.0343

χ1 = 0

a2 = 1800 a2 = 2296.54

b2 = 0.6 b2 = 0.4679

χ2 = 0

a3 = 2200 a3 = 2618.16

b3 = 0.4 b3 = 0.0296

χ3 = 0

Table 6.4: a and b for each layer with startup values—low-incident angle and
isotropic case.

The average residuals are up to 0.28 ms and the value of standard deviation is 0.36 ms.

Figure 6.11a shows the residuals for each traveltime and Figure 6.11b presents the

histogram of residuals.
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Figure 6.11: Difference in traveltimes for each source and receiver.

6.2.3.2.0 Determining anisotropy

For the entire dataset consisting of all nine-hundred and eight traveltimes, we deter-

mine the anisotropy. We fix the values of a and b from Section 6.2.3.1 and calculate

only χ for each layer from the entire dataset. The results are presented in Table 6.5.
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Startup values Results

a1 = 1390

b1 = 0.03

χ1 = 0.01 χ1 = 1× 10−10

a2 = 2297

b2 = 0.47

χ2 = 0.01 χ2 = 0.186

a3 = 2618

b3 = 0.03

χ3 = 0.01 χ3 = 1× 10−10

Table 6.5: The values of χ for each layer with startup values. a and b are fixed from
Section 6.2.3.1

The average residuals are up to 3.1 ms and the value of standard deviation is 3.6 ms.

Figure 6.12a shows the residuals for each traveltime and Figure 6.12b shows the his-

togram with the value of each difference between measured and calculated traveltime.

The results suggest the isotropy of the first and the third layer.
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Figure 6.12: Difference in traveltimes for each source and receiver.
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6.3 Comparison of two methods

Herein, in Table 6.6, we compare the results of the search for the case with 10◦ of the

incident angle in isotropic medium.

Metropolis-Hastings fminsearch

a = 1658 a = 1655

b = 0.5 b = 0.5

Table 6.6: The comparison of a, b in the isotropic case for low incident angle using
two different methods.

The results are also in agreement with one another.

Moreover, in Table 6.7, we compare the results of the search of the level of anisotropy

for the entire dataset. The values of χ are not significantly different. The little

difference is caused by the slightly different values of a and b being fixed for both

methods. If the values of a and b are the same for both calculations, the results are

consistent with one another.

Metropolis-Hastings fminsearch

χ = 0.121 χ = 0.118

Table 6.7: The comparison of χ for the entire dataset with a and b fixed, using two
different methods.
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Chapter 7

Change of traveltimes with respect

to each parameter

To examine the reliability of a, b, and χ, we show the change of the traveltime with

respect to the change of each parameter.

Figure 7.1 presents the traveltimes calculated for a single medium with a ∈ [1000, 3000],

b = 0.6, and χ = 0.01. Figure 7.2 presents the traveltimes calculated for a = 2000,

b ∈ [0, 1], and χ = 0.01. Figure 7.3 presents the traveltimes calculated for a = 2000,

b = 0.6, and χ ∈ [0, 0.5]. The depth of the receiver is 2500m and the offset is 3000m.



Figure 7.1: Traveltime with respect to parameter a

Figure 7.2: Traveltime with respect to parameter b
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Figure 7.3: Traveltime with respect to parameter χ

The plots indicate how the change of a parameter affects the traveltime, ceteris

paribus. We conclude that the change of a affects the traveltime most. The change of

χ has weak impact on traveltime. This means that small perturbations in traveltime

change significantly the value of χ. The resultant values of χ can vary and still fit the

traveltime with low residuals. We cannot infer physical properties from χ and gain

information about the anisotropy from the optimization, but the introduction of this

parameter into the model enables us to fit the curve of traveltime more accurately.

To examine the change of each parameter with respect to the offset, we evaluate

partial derivative of traveltime from expression (2.2) and (2.4) with respect to each

parameter,

∂t

∂a

∣∣∣
a,b,χ,Z,X

,
∂t

∂b

∣∣∣
a,b,χ,Z,X

,
∂t

∂χ

∣∣∣
a,b,χ,Z,X

.

To present the numerical example of derivations, we choose the typical values for the

parameters and the constant depth. We calculate the equations numerically for such

parameters where a = 2000, b = 0.6, χ = 0.01, and Z = 2500. Figure 7.4 shows the

values of derivatives for each parameter with respect to offset.
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Figure 7.4: The values of partial derivatives for each parameter; dotted line represents
parameter a, dashed line parameter b, solid line parameter χ.

The derivatives of expressions (2.2) and (2.4) give the same results. We conclude that

χ is the most sensitive to a change of startup values as the slope of the function is the

largest with increasing depth. Since χ changes the most, it is the least reliable. The

value of the partial derivative of traveltime with respect to a does not change rapidly

with the change of the startup values.

We show that as the values of χ change significantly, giving the same low residuals,

we do not infer the level of anisotropy from this model. However, the introduction

of this parameter enables to obtain the better fit the traveltime from the measure-

ments; a and b are more reliable than χ and do not change rapidly with the change

of traveltime. Also, a small perturbation in traveltime changes a value of χ most

significantly. If we aim to find the information about lithology, we only consider the

level of inhomogeneity.
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Chapter 8

Change of depth of boundary

Herein, we consider three cases of two-layer media with different depth of the boundary

between the layers. To investigate the cases above, we choose the same set of starting

values for the first layer. For the calculations, we use the fminseach method. Each

second layer, however, has different startup values. Specifically, the initial values of

a differ, while initial values of b and χ remain the same. The results are shown in

Table 8.1.

As the value of a changes with depth, to compare them we need to calculate the

parameter for the common depths. We project the value of a from each case to the

surface. For the depth of 800. m, we get a = 2911.81. For the depth of 1000 m, we

get a = 2948.67. For the depth of 1200 m, we get a = 2686.06.

In varying the interface depth, it is better to compare parameter b, than a, since

the latter corresponds to the value at the interface, which changes. In Figures 8.1—

8.3, we present the linear increase of velocity with depth for each of three cases. As

parameter b is the vertical gradient, in the plot, we notice that the slope of the parts

that correspond to the second layer are different.
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Figure 8.1: The linear increase of velocity with depth, the depth of the layer is 800 m

Figure 8.2: The linear increase of velocity with depth, the depth of the layer is 1000 m
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Figure 8.3: The linear increase of velocity with depth, the depth of the layer is 1200 m

The projected values of a to the common surface differ from each other, because

the resultant values of b, which is the velocity gradient, are not consistent with one

another. The change of the depth of the layer for the inversion affects the results

significantly.
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Chapter 9

Linear elasticity

2 In this section, we introduce the notion of the elasticity tensor. We use the com-

ponents of the aforementioned tensor in Chapters 10-13. Specifically, we consider the

isotropic and transversely isotropic elasticity tensors. They are necessary for the de-

velopment of Chapters 10 and 11. Further, we invoke the physical restrictions imposed

on these tensors. The restrictions are essential for Chapters 12 and 13, respectively.

The forces applied to a single point are, in the theory of linear elasticity, expressed in

terms of a stress tensor and their resultant deformations in terms of a strain tensor.

The strain tensor for infinitesimal displacements in three dimensions, by the definition,

is

εij :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
i, j = 1, 2, 3 , (9.1)

where, subscripts i and j, denote Cartesian coordinates, and ui are the components of

the displacement vector describing the deformations in the i-th direction. The Hooke’s

2Chapters 9-10 are the modified versions of the work with Theodore Stanoev (Kudela and Stanoev,
2018)



law provides the constitutive equation that relates stresses and strains, namely,

σij =
3∑

k=1

3∑
`=1

cijk`εk` i, j = 1, 2, 3 , (9.2)

which states that the applied load at a point is linearly related to the deformation by

elasticity tensor, cijk` . Equation (9.2) is the fundamental equation of linear elasticity;

solids that obey this equation are called Hookean solids. The Hooke’s law for the

general anisotropy in matrix notation is



σ11

σ22

σ33

σ23

σ13

σ12


=



c1111 c1122 c1133 c1123 c1113 c1112

c2211 c2222 c2233 c2223 c2213 c2212

c3311 c3322 c3333 c3323 c3313 c3312

c2311 c2322 c2333 c2323 c2313 c2312

c1311 c1322 c1333 c1323 c1313 c1312

c1211 c1222 c1233 c1223 c1213 c1212





ε11

ε22

ε33

2ε23

2ε13

2ε12


.

The elasticity tensor for general anisotropy contains 36 different components.

For an isotropic medium, Hooke’s law may be rewritten conveniently in a matrix

notation as

σ11

σ22

σ33

σ23

σ13

σ12


=



c1111 c1111 − 2c2323 c1111 − 2c2323 0 0 0

c1111 − 2c2323 c1111 c1111 − 2c2323 0 0 0

c1111 − 2c2323 c1111 − 2c2323 c1111 0 0 0

0 0 0 c2323 0 0

0 0 0 0 c2323 0

0 0 0 0 0 c2323





ε11

ε22

ε33

2ε23

2ε13

2ε12


,
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which also may be expressed in terms of Lamé parameters


λ := c1111 − 2c2323

µ := c2323

.

In isotropy the elasticity tensor contains only two independent components, c1111 and

c2323.

Herein, we consider the TI medium—a medium composed of parallel isotropic layers,

whose rotation symmetry axis coincides with x3-axis, that is normal to a plane of

isotropy. The plane of each layer is the plane of isotropy, and the vertical axis is the

axis of symmetry. This transverse plane has infinite planes of symmetry, and thus,

within this plane, the material properties are the same in all directions. Transverse

isotropy is observed in sedimentary rocks, for example, shales or schists. Each layer

has the same properties in-plane, but properties through the thickness are different.

The components of the TI tensor remain unchanged with the rotation about any angle

along the symmetry axis. The TI tensor may be expressed in a matrix form using

Kelvin’s notation as

CTI =



c1111 c1122 c1133 0 0 0

c1122 c1111 c1133 0 0 0

c1133 c1133 c3333 0 0 0

0 0 0 2c2323 0 0

0 0 0 0 2c2323 0

0 0 0 0 0 2c1212


, (9.3)

where c1122 = c1111 − 2c1212. The TI tensor contains five independent components.
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9.1 Stability conditions—Isotropic case

Fundamental physical restrictions imposed on a elasticity tensor are the stability

conditions. They express the fact that it is necessary to expend energy to deform

a material (e.g. Slawinski, 2015, Section 4.3). These conditions mean that every

elasticity tensor must be positive-definite, wherein a tensor is positive-definite if and

only if all eigenvalues of its symmetric-matrix representation are positive. For any

isotropic elasticity tensor, the inequalities

c1111 ≥ 4
3
c2323 ≥ 0 ,

or, in a different notation, using Lamé parameters,

λ ≥ −2
3
µ and µ ≥ 0

ensure that all eigenvalues are positive, thus the stability conditions are satisfied.

9.2 Stability conditions—Transversely isotropic case

3 Herein, we consider the transversely isotropic elasticity tensor and aim to find the

stability conditions for all components. The elasticity tensor from expression (9.3)

has five independent parameters. Its eigenvalues are

λ1 = λ2 = 2c1212 , λ3 = λ4 = 2c2323 ,

3Section 9.2 and Chapter 13 are based on the work with Filip Adamus (Adamus and Kudela,
2019).
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λ5 =
1

2

(
2c1111 − 2c1212 + c3333 +

√
(2c1111 − 2c1212 − c3333)2 + 8(c1133)2

)
,

λ6 =
1

2

(
2c1111 − 2c1212 + c3333 −

√
(2c1111 − 2c1212 − c3333)2 + 8(c1133)2

)
.

To satisfy the stability conditions the eigenvalues must be positive, after algebraic

manipulation, we obtain

c1212 > 0 , c2323 > 0 , c3333 > 0 , c1111 − c1212 > 0 ,

(c1111 − c1212) c3333 > (c1133)2 ,

(9.4)

which are the fundamental constraints imposed on a TI tensor.

9.2.1 Common considerations

Let us consider the speeds of qP , quasi-transverse (SV ), and transverse (SH) waves

in a TI medium in both vertical (vrt) and horizontal (hor) directions of propagation.

VqP (vrt) =

√
c3333

ρ
, VSV (vrt) =

√
c2323

ρ
, VSH(vrt) =

√
c2323

ρ
,

VqP (hor) =

√
c1111

ρ
, VSV (hor) =

√
c2323

ρ
, VSH(hor) =

√
c1212

ρ
,

where ρ denotes density. Commonly, seismic waves propagate faster in the horizontal

direction than vertical one. Thus, we may introduce two constraints,

c1111 > c3333 and c1212 > c2323 , (9.5)

which come from the speeds of qP and SH waves, respectively. Another assumption

we can make is that qP wave propagates faster than SV or SH wave, if they propagate
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in the horizontal or in the vertical direction. Hence, we obtain

c3333 > c2323 , c1111 > c2323 , and c1111 > c1212 . (9.6)

We notice that the last constraint, coming from the assumption that VqP (hor) >

VSH(hor), is included in the stability conditions from expression (9.4).

Some of the constraints from both expressions (9.5) and (9.6) are related to each

other. To show this, let us use the relation c1122 = c1111 − 2c1212, and rewrite the last

inequality of expression (9.6), c1111 > c1212, as,

c1122 + c1212 > 0 . (9.7)

Then, we rewrite middle inequality of expression (9.6), c1111 > c2323, as,

c1122 + c1212 + c1212 > c2323 ,

and from inequality (9.7), we see that the sum of the first two terms on the left-

hand side is a positive quantity and two other terms represent the last inequality of

expression (9.5). In other words, a constraint c1111 > c2323 ⇔ |a| + c1212 > c2323, is

obvious from constraint c1212 > c2323.

To summarize, apart from fundamental constraints, we may add three independent

and commonly considered assumptions, namely,

c1111 − c3333 > 0 , c1212 − c2323 > 0 , and c3333 − c2323 > 0 . (9.8)
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Chapter 10

Backus average

As shown by Backus (1962), a medium composed of parallel isotropic layers, whose

individual thicknesses are much smaller than the wavelength, respond—to the wave

propagation—as a single, homogeneous, transversely isotropic medium.

The elasticity parameters of such a medium are

cTI
1111 =

(
λ

λ+ 2µ

)2(
1

λ+ 2µ

)−1

+

(
4(λ+ µ)µ

λ+ 2µ

)
, (10.1)

cTI
1122 =

(
λ

λ+ 2µ

)2(
1

λ+ 2µ

)−1

+

(
2λµ

λ+ 2µ

)
, (10.2)

cTI
1133 =

(
λ

λ+ 2µ

)(
1

λ+ 2µ

)−1

, (10.3)

cTI
3333 =

(
1

λ+ 2µ

)−1

, (10.4)



cTI
2323 =

(
1

µ

)−1

, (10.5)

cTI
1212 = µ , (10.6)

where λ := c1111−2c2323 and µ := c2323 are the Lamé parameters for each layer and the

overbar denotes the weighted average. The average is weighted by the layer thickness;

herein, since all layers have the same thickness, we use an arithmetic average. A TI

medium, whose rotation symmetry axis is parallel to the x3-axis, is

cTI =



cTI
1111 cTI

1122 cTI
1133 0 0 0

cTI
1122 cTI

1111 cTI
1133 0 0 0

cTI
1133 cTI

1133 cTI
3333 0 0 0

0 0 0 cTI
2323 0 0

0 0 0 0 cTI
2323 0

0 0 0 0 0 cTI
1212


, (10.7)

where cTI
1122 = cTI

1111 − 2cTI
1212. Consequently, expressions (10.1)–(10.6) consist of five

independent parameters.
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10.1 Product approximation

Let us consider the product approximation of Backus (1962), which states that

[t]he only approximation that [he makes] in the present paper is the fol-

lowing: if f(x3) is nearly constant when x3 changes by no more than `′ ,

while g(x3) may vary by a large fraction of this distance, then, approxi-

mately,

f g ≈ f g . (10.8)

Using the formulation of Bos et al. (2017b), which states that

the difference between the average of the product and the product of the

averages is

E (f , g) := f g − f g , (10.9)

where, for any vector x ∈ Rn , [they] set

x :=
n∑
k=1

wk xk

with w as a weight and x as any vector.

The relative error is

R (f , g) =
E (f , g)

f g
× 100% . (10.10)

It follows that if g = 0 then R (f , g) = 100% . To examine the consequences of g =

0 , in the context of layers composed of isotropic Hookean solids, expressions for f

and g may be obtained from the isotropic stress-strain relations (Bos et al., 2017b,

Section 3.6). f corresponds to lateral-strain-tensor components that are assumed to
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be nearly constant, whereas

g =
c1111 − 2 c2323

c1111

(10.11)

corresponds to elasticity parameters that rapidly vary from layer to layer (Slawinski,

2018) .

By applying the stability conditions from Section 9.1 to expression (10.11), we deduce

that g is positive when c1111 > 2 c2323 and that g is negative when 4
3
c2323 < c1111 <

2 c2323 ; the range of g is illustrated in Figure 10.1.

g

-3
2 -1 -1

2 0
1
2 1

3
2

Figure 10.1: The value of g approaches a maximum of 1 when c2323 is at a minimum.
Conversely, the value of g approaches a minimum of −1

2 when c2323 is at a maximum;
thus, g ∈

(
−1

2 , 1
)

.

Since g can be either negative or positive, and the elasticity parameters—by the

stability conditions—are continuous and positive, we conclude that it is possible for g

to equal zero.

Considering Slawinski (2018, Exercise 5.13), we might obtain Poisson’s ratio in terms

of the Lamé parameters,

ν =
λ

2 (λ+ µ)
, (10.12)

which is the desired expression. Alternatively, we might obtain expression (10.12) by

using the relations among Poisson’s ratio, Young’s modulus and the Lamé parame-

ters (see e.g. Slawinski, 2015, Remark 5.14.7).

For a two-dimensional case, expression (10.12) becomes

ν =
λ

λ+ 2µ
, (10.13)
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which is equivalent to expression (10.11). Notably, the properties of a transversely

isotropic medium are captured by two-dimensional model that contains the rotation-

symmetry axis. Expression (10.13) might be useful considering the fact that the

Backus average produces a homogeneous transversely isotropic medium that is long-

wave equivalent to a stack of thin isotropic layers.

The range of possible values of ν in expression (10.12) are determined by the stability

conditions, which are determined from the eigenvalues of the positive-definite elasticity

tensor used therein. Thus, the stability conditions for isotropy, in terms of λ and µ ,

are

λ > −2

3
µ and µ > 0 . (10.14)

ν

-3
2 -1 -1

2 0
1
2 1

3
2

Figure 10.2: The value of ν approaches a maximum of 1
2 when µ is at a minimum.

Conversely, the value of ν approaches a minimum of −1 when µ is at a maximum; thus, ν ∈(
−1 , 1

2

)
.

Considering the ranges of values of expressions (10.11) and (10.12), we reckon that if

(a) g > 0 then ν > 0 ,

(b) g = 0 then ν = 0 ,

(c) g < 0 then ν < 0 .

For naturally occurring solids, ν > 0 ; the ratio being positive means that the di-

minishing of a cylinder’s length is being accompanied by the extension of its ra-

dius (e.g. Slawinski, 2015, p. 203). Hence, the range illustrated in Figure 10.2 reduces

to ν ∈
(
0 , 1

2

)
.
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10.2 Preliminary Reference Earth Model

To gain insight into whether or not we might encounter g = 0 , let us consider a

seismological example.

The Preliminary Reference Earth Model (PREM) of Dziewoński and Anderson (1981)

is a one-dimensional model that presents the properties of the Earth as a function

of depth. The PREM is a mathematical analogy that serves as a background model

for the planet as a whole; it assumes spherical symmetry in order to subdivide the

interior of the Earth into nine principal regions. This model establishes Earth-specific

properties that include density, ρ , and P - and S-wave speeds, which are

vP =

√
λ+ 2µ

ρ
and vS =

√
µ

ρ
. (10.15)

These nine principal regions are distinguished from one another by a rapid change in

speeds of P - and S-waves along interfaces, which indicates a diverse range of elastic

properties within the medium. The speeds of the irrotational and equivoluminal waves

are functions of the different elasticity parameters and, hence, propagate at different

speeds within the model.

Let us consider data from Bormann (2012, Table 1), which lists 84 samples of—

among other parameters—vP , vS , and ρ as functions of depth ranging from 0 km

to 6371 km for an isotropic PREM. In view of the relationship between Lamé and

elasticity parameters, we may compute

c1111 = ρ v2
P and c2323 = ρ v2

S (10.16)
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for each of the 84 samples. Using expressions (10.16), we plot the values of expres-

sion (10.11) as a function of depth in Figure 10.3. Therein, the resultant points

of discontinuity arise from the rapid change in speed of P - and S-waves across the

interfaces of the principal regions.

Figure 10.3: g as a function of depth (km)

For samples between 2891 km and 5150 km, vS = 0 . Recalling that S-waves do not

propagate in liquids, as their resistance to change of shape vanishes (see e.g. Slawinski,

2015, p. 217), we interpret this range of samples to correspond to the outer core. Since

the S-wave speed equals zero, c2323 = 0 ; consequently, expression (10.11) equals 1.

From Figure 10.3, we observe that g > 0 throughout and, thus, deduce that g cannot

equal zero. Therefore, following the conclusions of Section 10.1, our results support

that g > 0 for naturally occurring solids within an isotropic PREM. Hence, we may

conclude that it is improbable for the relative error of the Backus average approxi-

mation to equal 100% for such a model.
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Chapter 11

Relation between anisotropy and

inhomogeneity

An analytical relation of inhomogeneity and anisotropy parameters is shown in Adamus

et al. (2018) for an isotropic medium. Sayed and Stanoev (2019) derive an analytical

relation between anisotropy parameter, χTI,b, of the Backus model, and linear inho-

mogeneity parameter, b, of the abχ model for many layers. Further, we assume that

our abχ model is for isotropic layers and, hence, we recall P - and S-wave velocities:

vP = aP + bPZ and vS = aS + bSZ.

Anisotropy of the Backus medium, where

vh =

√
cTI

1111 and vv =

√
cTI

3333 ,

is:



χTI,b :=
cTI

1111 − cTI
3333

2 cTI
3333

.

The expressions of following elasticity parameters in terms of increasing velocity and

anisotropy are presented by Sayed and Stanoev (2019), namely,

cTI
3333 =

(
1

c1111

)−1

=

(
1

v2
P

)−1

= (aP + bP h1) (aP + bP h2) (11.1)

and

cTI
1111 =

(
c1111 − 2 c2323

c1111

) 2 (
1

c1111

)−1

+

(
4 (c1111 − c2323) c2323

c1111

)
=

(
1− 2 I1

h2 − h1

)2

cTI
3333 +

4 I2

h2 − h1

− 4 I3

h2 − h1

, (11.2)

where

I1 =
h2 bS

2

bP
2 −

h1 bS
2

bP
2

+
ln (aP + h1 bP )

(
2 aP bS

2 − 2 aS bP bS
)

bP
3 −

ln (aP + h2 bP )
(
2 aP bS

2 − 2 aS bP bS
)

bP
3

+
aP

2 bS
2 − 2 aP aS bP bS + aS

2 bP
2

bP
(
h1 bP

3 + ap bP
2
) − aP

2 bS
2 − 2 aP aS bP bS + aS

2 bP
2

bP
(
h2 bP

3 + aP bP
2
) ,

I2 = −h1
3 bS

2

3
− h1

2 aS bS − h1 aS
2 +

h2
3 bS

2

3
+ h2

2 aS bS + h2 aS
2 ,
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I3 = h2


2 aP

(
2 aP bS

4

bP
3 − 4 aS bS

3

bP
2

)
bP

− aP
2 bS

4

bP
4 +

6 aS
2 bS

2

bP
2



− h1


2 aP

(
2 aP bS

4

bP
3 − 4 aS bS

3

bP
2

)
bP

− aP
2 bS

4

bP
4 +

6 aS
2 bS

2

bP
2


+ h1

2

(
aP bS

4

bP
3 − 2 aS bS

3

bP
2

)
− h2

2

(
aP bS

4

bP
3 − 2 aS bS

3

bP
2

)
+

ln (aP + h1 bP )
(
4 aP

3 bS
4 − 12 aP

2 aS bP bS
3 + 12 aP aS

2 bP
2 bS

2 − 4 aS
3 bP

3 bS
)

bP
5

−
ln (aP + h2 bP )

(
4 aP

3 bS
4 − 12 aP

2 aS bP bS
3 + 12 aP aS

2 bP
2 bS

2 − 4 aS
3 bP

3 bS
)

bP
5

− h1
3 bS

4

3 bP
2 +

h2
3 bS

4

3 bP
2

+
aP

4 bS
4 − 4 aP

3 aS bP bS
3 + 6 aP

2 aS
2 bP

2 bS
2 − 4 aP aS

3 bP
3 bS + aS

4 bP
4

bP
(
h1 bP

5 + aP bP
4
)

− aP
4 bS

4 − 4 aP
3 aS bP bS

3 + 6 aP
2 aS

2 bP
2 bS

2 − 4 aP aS
3 bP

3 bS + aS
4 bP

4

bP
(
h2 bP

5 + aP bP
4
) .

We assume that with increasing depth, the measure of inhomogeneity changes equally

for P - and S-waves, i.e.,

bP = bS = b.

As the values of a and b that are calculated in Section 5.4 are obtained from the least

traveltime, we consider them as the values of aP and bP , respectively.

To calculate the values of cTI
1111 and cTI

3333, we assume that the level of anisotropy,

from the abχ model and χTI,b are equal. As cTI
3333 depends only on vP , from the fact

that χTI,b is known, we calculate the value of cTI
1111. Generally, parameter a is the

representation of the velocity on the surface. Herein, we aim to find the parameter

aS to examine the ratio of aP
aS

. From seismological properties, the ratio of P - and
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S-velocities is approximately
√

3. With the assumptions that we made, we expect the

value of aS as
√

3 times smaller than the values of aP .

For all calculation, we use the values from Section 5.4 for a single medium, where

aP = 1343, b = 0.9, and χabχ = 0.06; h1 = 0 m, h2 = 2013 m.

With the assumptions of equal level of inhomogeneity and anisotropy for P - and

S-waves, we simplify the equations (11.1)-(11.2), namely,

cTI
3333 = aP (aP + b h2) (11.3)

and

cTI
1111 =

(
1− 2 I1

h2

)2

cTI
3333 +

4 I2 − 4 I3

h2

− , (11.4)

where

I1 = h2 +
2 ln (aP ) (aP − aS)

b
− 2 ln (aP + h2 b) (aP − aS)

b

+
(aP − aS)2

b aP
− (aP − aS)2

b (h2 b+ aP )
,

I2 =
h2

3 b2

3
+ h2

2 aS b+ h2 aS
2 ,

I3 = h2

(
3a2

P − 8aS aP + 6a2
S

)
− h2

2 (aP b− 2 aS b)

+
4 ln (aP ) (aP − aS)3

b
− 4 ln (aP + h2 b) (aP − aS)3

b

+
h2

3 b2

3
+

(aP − aS)4

b aP
− (aP − aS)4

b (h2 b+ aP )
.

As we assume that χTI,b = χabχ = 0.06, we obtain cTI
1111 = 4.74 and cTI

3333 = 4.23. After
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the calculations, we achieve aS = 1051. The ratio:

aP
aS

=
1343

1051
= 1.2781 <

√
3 . (11.5)

The value of the ratio from expression (11.5) is smaller than
√

3 which means that the

assumptions that we made about anisotropy and inhomogeneity are not necessarily

relevant. χTI,b and χabχ represent a different medium and it is possible for the values

to vary. Also, the values of bP and bS are not equivalent. Nevertheless, with such

postulates, we can determine the values of two TI elasticity parameters and constrain

the other three in the subsequent section.
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Chapter 12

Constraints on field data

Mostly, we are not able to have all five parameters to describe the properties of the

medium using TI tensor. We put fundamental constraints on the elastic parameters

to estimate their values.

In Chapter 11 we obtain the values of c1111 = 4.74 [GPa] and c3333 = 4.23 [GPa],

where GPa is gigapascal. We wish to find the constraints on the three parameters of

a transversely isotropic elasticity tensor. With the stability conditions and common

constraints from Section 9.2, we calculate the range of the values of the parameters.

Firstly, we calculate the eigenvalues of the TI tensor which are:

λ1 = λ2 = 2c1212 , λ3 = λ4 = 2c2323 ,

λ5 = 6.85− c1212 +
1

2

√
(2c1212 − 5.25)2 + 8(c1133)2 ,

λ6 = 6.85− c1212 −
1

2

√
(2c1212 − 5.25)2 + 8(c1133)2 ,



and its corresponding fundamental constraints from expression (9.4) are

0 < c1212 < 4.74 , c2323 > 0 , c1212 < 4.74− (c1133)2

4.23
,

where c1133 ∈ (−4.48 , 4.48). Imposing the common constraints from expression (9.8),

we obtain

c2323 < 4.23 , and c1212 − c2323 > 0 .

The effect of imposing the common constraints, as an additional restriction to the

fundamental one, is illustrated in Figures 12.1a and 12.1b.

-4.48 -3 0 3 4.48
c1133

0

4.74

c 1
21
2

(a) no influence of common constraints

0 4.23
c2323

0

4.74
c 1
21
2

(b) common constraints restrict the area

Figure 12.1: The area of all possible values of unknown elasticity parameters restricted
by the fundamental constraints is shown by the light grey colour. The dark grey area is the
intersection of both restricted areas that come from the common and from the fundamental
constraints.
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Chapter 13

Numerical examples with

Green-river shale elasticity

parameters

In this section, we study the fundamental and common constraints—shown in Sec-

tion 9.2—imposed on four examples of a TI medium. In the first case, we examine a

TI tensor with the known values of c1111 and c3333. In the second case, the values of

c2323 and c3333 are known, in the third, the values of c1111, c2323, and c1212, and in the

last one, the values of c1111, c3333, c2323, and c1212. The values of the elasticity parame-

ters are based on the Green-river shale, as shown by Thomsen (1986) and exemplified

by Slawinski (2015, Exercise 9.3). The values are following:

c1111 = 3.13 [GPa],

c1133 = 0.34 [GPa],



c3333 = 2.25 [GPa],

c2323 = 0.65 [GPa],

c1212 = 0.88 [GPa].

From Section 10.1, we know that the condition of c1111 6= c2323 must be conserved,

where the values from the Green-river shale obey the restriction.

13.1 TI tensor based on qP -wave information

Let us consider a TI tensor with given two elasticity parameters, c1111 = 31.3 [GPa]

and c3333 = 22.5 [GPa]. This case may be relevant to the studies of a TI medium

based on qP -wave information. Its eigenvalues are

λ1 = λ2 = 2c1212 , λ3 = λ4 = 2c2323 ,

λ5 = 42.55− c1212 +
1

2

√
(2c1212 − 40.1)2 + 8(c1133)2 ,

λ6 = 42.55− c1212 −
1

2

√
(2c1212 − 40.1)2 + 8(c1133)2 ,

and its corresponding fundamental constraints from expression (9.4) are

0 < c1212 < 31.3 , c2323 > 0 , 22.5 > 0 , c1212 < 31.3− (c1133)2

22.5
,

where c1133 ∈ (−26.54 , 26.54). Imposing the common constraints from expression (9.8),

we obtain

8.8 > 0 , c2323 < 22.5 , and c1212 − c2323 > 0 .
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The effect of imposing the common constraints, as an additional restriction to the

fundamental one, is illustrated in Figures 13.1a and 13.1b.

-26.54 -15 0 15 26.54
c1133

0

15

31.3

c 1
21
2

(a) no influence of common constraints

0 22.5
c2323

0

31.3

c 1
21
2

(b) common constraints restrict the area

Figure 13.1: The area of all possible values of unknown elasticity parameters restricted
by the fundamental constraints is shown by the light grey colour. The dark grey area is the
intersection of both restricted areas that come from the common and from the fundamental
constraints.

The additional constraints significantly limit the possible values of the remaining three

parameters.

13.2 TI tensor based on information along symme-

try axis

Let us consider a TI tensor with given two elasticity parameters, c2323 = 6.5 [GPa] and

c3333 = 22.5 [GPa]. This case may be relevant to the studies of a TI medium based on

measurements of qP and quasi-S waves along the symmetry axis. Its eigenvalues are

λ1 = λ2 = 13 , λ3 = λ4 = 2c1212 ,

λ5 = c1111 − c1212 + 11.25 +
1

2

√
(2c1212 − 2c1111 + 22.5)2 + 8(c1133)2
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λ6 = c1111 − c1212 + 11.25− 1

2

√
(2c1212 − 2c1111 + 22.5)2 + 8(c1133)2

and its corresponding fundamental constraints are

c1212 > 0 , 6.5 > 0 , 22.5 > 0 , c1111−c1212 > 0 , (c1111−c1212)22.5 > (c1133)2 .

Imposing the common constraints from expression (9.8), we obtain

c1111 > 22.5 , 16 > 0 , and c1212 > 6.5 .

The effect of imposing the common constraints, as an additional restriction to the

fundamental one, is illustrated in Figure 13.2.

0 15 22.5
c1111

0

6.5

15

30

c 1
21
2

Figure 13.2: ϕ versus ε

13.3 TI tensor based on information along hori-

zontal axis

Let us consider a TI tensor with given three elasticity parameters, c1212 = 8.8 [GPa], c2323 =

6.5 [GPa] and c3333 = 22.5 [GPa]. This case may be relevant to the studies of a TI
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medium based on measurements of qP , SV , and SH waves along the horizontal axis.

Its eigenvalues are

λ1 = λ2 = 13 , λ3 = λ4 = 17.6 ,

λ5 = c1111 + 2.45 +
1

2

√
(40.1− 2c1111)2 + 8(c1133)2 ,

λ6 = c1111 + 2.45− 1

2

√
(40.1− 2c1111)2 + 8(c1133)2 ,

and its corresponding fundamental constraints are

8.8 > 0 , 6.5 > 0 , 22.5 > 0 , c1111 > 8.8 , (c1111 − 8.8)22.5 > (c1133)2 .

Imposing the common constraints from expression (9.8), we obtain

c1111 > 22.5 , 16 > 0 , and 2.3 > 0 .

The effect of imposing the common constraints, as an additional restriction to the

fundamental one, is illustrated in Figure 13.3.

-17.557 0 17.557
c1133

8.8

22.5c 1
11
1

Figure 13.3: ϕ versus ε

96



13.4 TI tensor based on information along symme-

try and horizontal axes

Let us consider a TI tensor with given four elasticity parameters, c1212 = 8.8 [GPa], c2323 =

6.5 [GPa], c1111 = 31.3 [GPa] and c3333 = 22.5 [GPa]. This case may be relevant to the

studies of a TI medium based on measurements of qP , SV , and SH waves along both

the symmetry and horizontal axes. Its eigenvalues are

λ1 = λ2 = 13 , λ3 = λ4 = 17.6 ,

λ5 = 33.75 +
1

2

√
8(c1133)2 + 506.25 ,

λ6 = 33.75− 1

2

√
8(c1133)2 + 506.25 ,

and its corresponding fundamental constraints are

8.8 > 0 , 6.5 > 0 , 22.5 > 0 , 22.5 > 0 , 506.25 > (c1133)2 .

Imposing the common constraints from expression (9.8), we obtain

8.8 > 0 , 16 > 0 , and 2.3 > 0 .

The common constraints do not additionally limit the possible values of c1133. In this

case, only the stability conditions are valuable.

In three out of four examples of a TI tensor, the common constraints limit the pos-

sible values of the unknown elasticity parameters of these tensors. That limitation

occurs not to be entirely overlapping with the limitation caused by the fundamental
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constraints, that is, by the stability conditions. Thus, the study of both the common

and fundamental constraints is helpful, for example, in the prediction or estimation

of the unknown parameters.

We notice that the fewer parameters of a TI tensor are known, the more useful the

common constraints are.

The common constraints are the most useful if we know the values of c1111 and c3333,

than the values of c2323 and c3333.

98



Chapter 14

Conclusions

Ray methods develop an essential theoretical platform for seismological investigations.

They enable us to form problems by applying many mathematical tools. Nevertheless,

given this being an approximate solution, we must be aware of its limitations.

By applying the assumption of linear inhomogeneity and elliptical anisotropy of the

medium it results in the equations, thereby enabling us to achieve solutions with fewer

unknowns.

Traveltimes from VSP surveys are essential for processing and velocity determination.

The proposed two different methods of the inversion of traveltime with the velocity

model of elliptical anisotropy and linear inhomogeneity, discussed in Chapter 2, allow

us to obtain the required parameters.

We notice that in the Metropolis-Hastings method, the single-mode distributions of

a, b, and χ allow us to infer that for a single medium, the local minimum is also the

global minimum.

Section 5.3 presents the results from the fminsearch method. The method is error-

laden because it numerically searches for the values that present the least-square



difference between the traveltimes. The minimization is local, which means that the

results obtained after the optimization depend on the startup values. If the medium

is divided into more layers, we obtain more unknowns in the target function. Since

it is a mathematical curve fitting, the algorithm finds the best match, but the results

do not necessarily represent the mechanical properties that describe the medium. We

obtain unique results only in a single-medium model—however, a model of 2000 m

depth with only three parameters is a significant generalization. For the two-, three-,

and four-layer cases, we encounter the instability problem.

In Section 5.4, we confirm the accuracy of the results obtained from the Metropolis-

Hastings algorithm by comparing them to the results acquired from the fminsearch

method.

Furthermore, we examine Hookean solids that possess certain symmetries. The choice

of the coordinate system of which axes coincide with the symmetry axes of materials is

particularly useful. It allows us to represent these symmetries by an elasticity matrix

in a simplified form having zero entries.

For thicknesses of individual layers that are much less than the wavelength, waves

traveling through parallel isotropic layers behave as if they were traveling through a

single transversely isotropic medium.

Backus average is a mathematical tool that allows us to obtain such transversely

isotropic medium from parallel isotropic layers. In geological terms, the transversely

isotropic medium may be a good analogy for thin sedimentary layers, unfractured

shales or schists.

Let us emphasize that the analogy between the anisotropy and layers relies on the

assumption that the thicknesses of parallel layers or the separations between parallel

fractures are much smaller than the wavelength used for their examination.
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We continue the work of Bos et al. (2017b) to investigate the sole mathematical

approximation made by Backus (1962). The samples from Bormann (2012) result in

g > 0 , even if it is mathematically feasible to obtain a relative error of 100% for the

Backus product approximation.

As the PREM describes the Earth at a regional scale, the potential issues with the

approximation are unlikely to happen. However, it is possible to encounter such

issues in the shallow-data acquisition, i.e., within the upper lithosphere. To verify the

likeliness of the issue to occur, we require the wellbore data. Moreover, we suppose

that the Backus average might encounter concerns when used on synthetic materials

with, say, ν ≈ 0 or ν < 0 .

We use the derivation of an analytical relation between anisotropy parameter, χTI,b,

of the Backus model, and linear inhomogeneity parameter, b, of the abχ model for

many layers by Sayed and Stanoev (2019). With the assumptions of the equal level

of anisotropy from the abχ model and χTI,b and the same level of inhomogeneity from

P - and S-waves, we obtain two elasticity parameters c1111 and c3333 and parameter

aS. Consequently, we find the more strict constraints on the other three elasticity

parameters of the transversely isotropic tensor.

The concern with the common constraints investigated in this thesis is that, in some

specific situations, they might be irrelevant to the actual behaviour of seismic waves.

If it is not the case, it might be useful to impose the restrictions mentioned above along

with the stability conditions to better estimate the unknown elasticity parameters of

a TI tensor.
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Appendix A

Elliptical shape of wavefronts

To illustrate the kind of anisotropy that we use in this thesis in this section we explain

the elliptical velocity in more details. The elliptical velocity dependence refers to the

fact that the wavefronts generated by a point source are elliptical. In an elliptically

anisotropic medium, if we change the direction of the propagation, the velocity varies

in an elliptical fashion. In this section, we show the elliptical shape of the wavefront

in the single medium using the values of a, b, and χ from Section 5.4.

We calculate vv and vh, which are the vertical and horizontal velocities, respectively,

vv = a+ bZ ,

vh = (a+ bZ)
√

2χ+ 1 .

In our velocity model, the wavefront velocity depends on the depth and the direction

of propagation in a vertical plane but does not depend on the lateral location. The

value of χ indicates the difference in the vertical and horizontal velocities. It is not



intuitive to try to conceptualize the anisotropy parameter χ with respect to the ve-

locity anisotropy. However, χ can be used to calculate the percent difference between

the horizontal and vertical ray velocities. The percent difference between the vertical

and horizontal ray velocities can be expressed as:

vh − vv
vh

× 100% . (A.1)

Using a numerical example to illustrate this, if χ is given a value of 0.0606 this implies

that the difference between vertical and horizontal ray velocities 5.6%.

The resulting ellipses are shown in Figure A.1 are nearly circular because the anisotropy

is weak. The velocities are the semi-axes of the ellipses.
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Figure A.1: Elliptical wavefronts in the interval of 300 m.
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Appendix B

Example of code of

Metropolis-Hastings algorithm

1 %% Data load

2 X1=x l s r e ad ( ’ data ’ , ’D10 : D188 ’ ) ;

3 X2=x l s r e ad ( ’ data ’ , ’ I10 : I188 ’ ) ;

4 X3=x l s r e ad ( ’ data ’ , ’N10 : N209 ’ ) ;

5 X4=x l s r e ad ( ’ data ’ , ’ S10 : S209 ’ ) ;

6 X5=x l s r e ad ( ’ data ’ , ’X10 : X209 ’ ) ; %O f f s e t s

7 Z1= 1973 .923 ;

8 Z2= 1983 .809 ;

9 Z3= 1993 .699 ;

10 Z4= 2003 .758 ;

11 Z5= 2013 .927 ; % Depths o f r e c e i v e r s

12 T1=0.001∗ x l s r e ad ( ’ data ’ , ’C10 : C188 ’ ) ;

13 T2=0.001∗ x l s r e ad ( ’ data ’ , ’H10 : H188 ’ ) ;

14 T3=0.001∗ x l s r e ad ( ’ data ’ , ’M10 : M209 ’ ) ;



15 T4=0.001∗ x l s r e ad ( ’ data ’ , ’R10 : R209 ’ ) ;

16 T5=0.001∗ x l s r e ad ( ’ data ’ , ’W10:W209 ’ ) ; % Trave l t imes

17 T=[T1 ; T2 ; T3 ; T4 ; T5 ] ;

18 n=500000; % Number o f i t e r a t i o n s

19 k=0;

20 sigma =0.005; %Standard dev i a t i on

21

22 % Sample f i r s t accepted va lues

23 whi le 1

24 DATA=[ randi ( [ 1 0 0 0 , 2 0 0 0 ] ) , 0 .001∗ randi ( [ 0 , 1 5 0 0 ] ) , 0 .00001∗

randi ( [ 1 0 0 0 , 5 0 0 0 ] ) ] ; % Sample random nauber f o r each

parameter

25 A=DATA(1 ,1 ) ;

26 B=DATA(1 ,2 ) ;

27 CHI=DATA(1 ,3 ) ;

28

29 time1= time new (X1 , Z1 ,A,B, CHI) ;

30 time2= time new (X2 , Z2 ,A,B, CHI) ;

31 time3= time new (X3 , Z3 ,A,B, CHI) ;

32 time4= time new (X4 , Z4 ,A,B, CHI) ;

33 time5= time new (X5 , Z5 ,A,B, CHI) ; % Calcu la t e t r ave l t ime

34

35 time=[ time1 ; time2 ; time3 ; time4 ; time5 ] ;

36

37 prob prev=exp(−(norm ( ( time−T) /sigma ) ) . ˆ 2 ) ; %Compare

t r a v e l t i m e s
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38

39 i f prob prev>0 break ; end

40 end

41

42 a (1 )=DATA(1) ;

43 b (1)=DATA(2) ;

44 Chi (1 )=DATA(3) ;

45

46 f o r i =2:n

47 DATA next=[DATA(1) +10∗randn , DATA(2) +0.01∗ randn , DATA(3)

+0.001∗ randn ] ; % Sample next value f o r each parameter

48

49 A=DATA next (1 , 1 ) ;

50 B=DATA next (1 , 2 ) ;

51 CHI=DATA next (1 , 3 ) ;

52

53 time1= time new (X1 , Z1 ,A,B, CHI) ;

54 time2= time new (X2 , Z2 ,A,B, CHI) ;

55 time3= time new (X3 , Z3 ,A,B, CHI) ;

56 time4= time new (X4 , Z4 ,A,B, CHI) ;

57 time5= time new (X5 , Z5 ,A,B, CHI) ;

58 time=[ time1 ; time2 ; time3 ; time4 ; time5 ] ;

59

60 prob next = exp(−(norm ( ( time−T) /sigma ) ) . ˆ 2 ) ;

61

62 %% Metropol i s−Hast ings cond i t i on
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63 i f rand < min (1 , prob next / prob prev )

64 k=k+1;

65 a ( i )=DATA next (1 ) ;

66 b( i )=DATA next (2 ) ;

67 Chi ( i )=DATA next (3 ) ;

68 prob prev = prob next ;

69 DATA = DATA next ;

70 e l s e

71 a ( i )=a ( i −1) ;

72 b( i )=b( i −1) ;

73 Chi ( i )=Chi ( i −1) ;

74 end

75

76 end

77 %% Display histograms

78

79 nbins =30;

80 cut =0.1∗n ;

81

82 histogram ( a ( cut : n ) , nbins ) , hold on

83 histogram (b( cut : n ) , nbins ) , hold on

84 histogram ( Chi ( cut : n ) , nbins ) , hold on

1

2

3
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4 f unc t i on time= time ( X source1 , Z rec , a1 , b1 , ch i1 )

5

6 p11 =2.∗( X source1 ) . / ( s q r t ( ( ( X source1 ) . ˆ2 + (1+2∗ ch i1 ) . ∗ (

Z rec ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z rec ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1 . ˆ2∗ (

X source1 ) . ˆ 2 ) ) ) ;

7

8 time=(1/b1 ) . ∗ ( atanh ( p11 .∗ b1 .∗ X source1 − s q r t (1−(p11 .ˆ2 .∗ a1

.ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p11 .ˆ2 .∗ a1 .ˆ2 .∗ (1+2∗

ch i1 ) ) ) ) ) ;

9

10 end
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Appendix C

Example of code of fminsearch

algorithm for single medium

1 %% Data load

2 X1=x l s r e ad ( ’ data ’ , ’D10 : D188 ’ ) ;

3 X2=x l s r e ad ( ’ data ’ , ’ I10 : I188 ’ ) ;

4 X3=x l s r e ad ( ’ data ’ , ’N10 : N209 ’ ) ;

5 X4=x l s r e ad ( ’ data ’ , ’ S10 : S209 ’ ) ;

6 X5=x l s r e ad ( ’ data ’ , ’X10 : X209 ’ ) ; % O f f s e t s

7 Z1= 1973 .923 ;

8 Z2= 1983 .809 ;

9 Z3= 1993 .699 ;

10 Z4= 2003 .758 ;

11 Z5= 2013 .927 ; % Depths o f the r e c e i v e r s

12 T1=0.001∗ x l s r e ad ( ’ data ’ , ’C10 : C188 ’ ) ;

13 T2=0.001∗ x l s r e ad ( ’ data ’ , ’H10 : H188 ’ ) ;

14 T3=0.001∗ x l s r e ad ( ’ data ’ , ’M10 : M209 ’ ) ;



15 T4=0.001∗ x l s r e ad ( ’ data ’ , ’R10 : R209 ’ ) ;

16 T5=0.001∗ x l s r e ad ( ’ data ’ , ’W10:W209 ’ ) ; % Trave l t imes

17

18 %% I n i t i a l va lue s

19 a prop =1300;

20 b prop =0.9 ;

21 ch i prop =0.1 ;

22

23 %% Proper minimizat ion

24

25 x0 = [ a prop , b prop , ch i prop ] ;

26

27 fun1 = @(X) mini1 (X1 , X2 , X3 , X4 , X5 , Z1 , Z2 , Z3 , Z4 , Z5 , . . .

28 X(1) ,X(2) ,X(3) ,T1 , T2 , T3 , T4 , T5) ; %Target func t i on

29

30 y= fminsearch ( fun1 , x0 ) ; % Minimize the func t i on

31

32

33 %% Resu l t s

34 a=y (1) ;

35 b=y (2) ;

36 ch i=y (3) ;

1
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2 f unc t i on [ e r r o r ]= mini1 ( X source1 , X source2 , X source3 ,

X source4 , X source5 , Z rec1 , Z rec2 , Z rec3 , Z rec4 , Z rec5 , a1 ,

b1 , chi1 , T1 , T2 , T3 , T4 , T5)

3

4

5 p11 =2.∗( X source1 ) . / ( s q r t ( ( ( X source1 ) . ˆ2 + (1+2∗ ch i1 ) . ∗ (

Z rec1 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z rec1 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1 . ˆ2∗ (

X source1 ) . ˆ 2 ) ) ) ;

6 time11 =(1/b1 ) . ∗ ( atanh ( p11 .∗ b1 .∗ X source1 − s q r t (1−(p11 .ˆ2 .∗

a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p11 .ˆ2 .∗ a1 .ˆ2 .∗

(1+2∗ ch i1 ) ) ) ) ) ;

7

8 p22 =2.∗( X source2 ) . / ( s q r t ( ( ( X source2 ) . ˆ2 + (1+2∗ ch i1 ) . ∗ (

Z rec2 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z rec2 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1 . ˆ2∗ (

X source2 ) . ˆ 2 ) ) ) ;

9 time22 =(1/b1 ) . ∗ ( atanh ( p22 .∗ b1 .∗ X source2 − s q r t (1−(p22 .ˆ2 .∗

a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p22 .ˆ2 .∗ a1 .ˆ2 .∗

(1+2∗ ch i1 ) ) ) ) ) ;

10

11 p33 =2.∗( X source3 ) . / ( s q r t ( ( ( X source3 ) . ˆ2 + (1+2∗ ch i1 ) . ∗ (

Z rec3 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z rec3 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1 . ˆ2∗ (

X source3 ) . ˆ 2 ) ) ) ;

12 time33 =(1/b1 ) . ∗ ( atanh ( p33 .∗ b1 .∗ X source3 − s q r t (1−(p33 .ˆ2 .∗

a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p33 .ˆ2 .∗ a1 .ˆ2 .∗

(1+2∗ ch i1 ) ) ) ) ) ;

13
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14 p44 =2.∗( X source4 ) . / ( s q r t ( ( ( X source4 ) . ˆ2 + (1+2∗ ch i1 ) . ∗ (

Z rec4 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z rec4 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1 . ˆ2∗ (

X source4 ) . ˆ 2 ) ) ) ;

15 time44 =(1/b1 ) . ∗ ( atanh ( p44 .∗ b1 .∗ X source4 − s q r t (1−(p44 .ˆ2 .∗

a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p44 .ˆ2 .∗ a1 .ˆ2 .∗

(1+2∗ ch i1 ) ) ) ) ) ;

16

17 p55 =2.∗( X source5 ) . / ( s q r t ( ( ( X source5 ) . ˆ2 + (1+2∗ ch i1 ) . ∗ (

Z rec5 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z rec5 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1 . ˆ2∗ (

X source5 ) . ˆ 2 ) ) ) ;

18 time55 =(1/b1 ) . ∗ ( atanh ( p55 .∗ b1 .∗ X source5 − s q r t (1−(p55 .ˆ2 .∗

a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p55 .ˆ2 .∗ a1 .ˆ2 .∗

(1+2∗ ch i1 ) ) ) ) ) ;

19

20 e r r o r 1=abs ( time11−T1) . ˆ 2 ;

21 e r r o r 2=abs ( time22−T2) . ˆ 2 ;

22 e r r o r 3=abs ( time33−T3) . ˆ 2 ;

23 e r r o r 4=abs ( time44−T4) . ˆ 2 ;

24 e r r o r 5=abs ( time55−T5) . ˆ 2 ;

25

26

27 e r r o r=sum( e r r o r 1 )+sum( e r r o r 2 )+sum( e r r o r 3 )+sum( e r r o r 4 )+sum(

e r r o r 5 ) ;

28

29 end
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Appendix D

Example of code of fminsearch

algorithm for two layers

1 c l o s e a l l ; c l e a r a l l ; c l c

2 %% Data

3 n=179;

4 m=200;

5 X1=x l s r e ad ( ’ data ’ , ’D10 : D188 ’ ) ;

6 X2=x l s r e ad ( ’ data ’ , ’ I10 : I188 ’ ) ;

7 X3=x l s r e ad ( ’ data ’ , ’N10 : N209 ’ ) ;

8 X4=x l s r e ad ( ’ data ’ , ’ S10 : S209 ’ ) ;

9 X5=x l s r e ad ( ’ data ’ , ’X10 : X209 ’ ) ; % O f f s e t s

10 Z1= 1973 .923 ;

11 Z2= 1983 .809 ;

12 Z3= 1993 .699 ;

13 Z4= 2003 .758 ;

14 Z5= 2013 .927 ; % Depths o f the r e c e i v e r s



15 T1=0.001∗ x l s r e ad ( ’ data ’ , ’C10 : C188 ’ ) ;

16 T2=0.001∗ x l s r e ad ( ’ data ’ , ’H10 : H188 ’ ) ;

17 T3=0.001∗ x l s r e ad ( ’ data ’ , ’M10 : M209 ’ ) ;

18 T4=0.001∗ x l s r e ad ( ’ data ’ , ’R10 : R209 ’ ) ;

19 T5=0.001∗ x l s r e ad ( ’ data ’ , ’W10:W209 ’ ) ; % Trave l t imes

20 Z laye r1 =1000; % Depth o f the l a y e r

21 %% I n i t i a l va lue s

22

23 a prop1 =1100;

24 b prop1 =1;

25 ch i prop1 =0.01;

26

27 a prop2 =2400;

28 b prop2 =0.5 ;

29 ch i prop2 =0.01;

30

31 %% Fermat ’ s P r i n c i p l e −−− Finding the po int where the ray

c r o s s e s the boundary

32 t t =0.6 ;

33 LB = [ 0 ] ;

34 f o r i =1:n

35 fun = @(X) fermat2 (X(1) ,X1( i ) ,Z1 , Z layer1 , a prop1 , b prop1 ,

ch i prop1 , a prop2 , b prop2 , ch i prop2 ) ;

36 x0 = [ X1( i )∗ t t ] ;

37 UB = [ X1( i ) ] ;

38 x1 ( : , i ) = fminsearchbnd ( fun , x0 ,LB,UB) ;
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39 end

40 X cross1=x1 ’ ;

41 f o r i =1:n

42 fun = @(X) fermat2 (X(1) ,X2( i ) ,Z2 , Z layer1 , a prop1 , b prop1 ,

ch i prop1 , a prop2 , b prop2 , ch i prop2 ) ;

43 x0 = [ X2( i )∗ t t ] ;

44 UB = [ X2( i ) ] ;

45 x2 ( : , i ) = fminsearchbnd ( fun , x0 ,LB,UB) ;

46 end

47 X cross2=x2 ’ ;

48 f o r i =1:m

49 fun = @(X) fermat2 (X(1) ,X3( i ) ,Z3 , Z layer1 , a prop1 , b prop1 ,

ch i prop1 , a prop2 , b prop2 , ch i prop2 ) ;

50 x0 = [ X3( i )∗ t t ] ;

51 UB = [ X3( i ) ] ;

52 x3 ( : , i ) = fminsearchbnd ( fun , x0 ,LB,UB) ;

53 end

54 X cross3=x3 ’ ;

55 f o r i =1:m

56 fun = @(X) fermat2 (X(1) ,X4( i ) ,Z4 , Z layer1 , a prop1 , b prop1 ,

ch i prop1 , a prop2 , b prop2 , ch i prop2 ) ;

57 x0 = [ X4( i )∗ t t ] ;

58 UB = [ X4( i ) ] ;

59 x4 ( : , i ) = fminsearchbnd ( fun , x0 ,LB,UB) ;

60 end

61 X cross4=x4 ’ ;
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62 f o r i =1:m

63 fun = @(X) fermat2 (X(1) ,X5( i ) ,Z5 , Z layer1 , a prop1 , b prop1 ,

ch i prop1 , a prop2 , b prop2 , ch i prop2 ) ;

64 x0 = [ X5( i )∗ t t ] ;

65 UB = [ X5( i ) ] ;

66 x5 ( : , i ) = fminsearchbnd ( fun , x0 ,LB,UB) ;

67 end

68 X cross5=x5 ’ ;

69

70

71 %% Proper minimizat ion

72

73 x0 = [ a prop1 , b prop1 , chi prop1 , a prop2 , b prop2 , ch i prop2 ] ;

74 fun1 = @(X) mini2 ( X cross1 , X cross2 , X cross3 , X cross4 , X cross5

, . . .

75 X1 , X2 , X3 , X4 , X5 , Z1 , Z2 , Z3 , Z4 , Z5 , Z layer1 , . . .

76 X(1) ,X(2) ,X(3) , X(4) ,X(5) ,X(6) ,T1 , T2 , T3 , T4 , T5) ; %Target

func t i on

77

78

79 y= fminsearch ( fun1 , x0 ) ; % Minimize the func t i on

80

81 %% Resu l t s

82 a1=y (1) ;

83 b1=y (2) ;

84 ch i1=y (3) ;
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85 a2=y (4) ;

86 b2=y (5) ;

87 ch i2=y (6) ;

1

2 f unc t i on [ e r r o r ]= mini2 ( X cross1 , X cross2 , X cross3 , X cross4 ,

X cross5 , X source1 , X source2 , X source3 , X source4 , X source5

, Z rec1 , Z rec2 , Z rec3 , Z rec4 , Z rec5 , Z1 , a1 , b1 , chi1 , a2 , b2 ,

chi2 , T1 , T2 , T3 , T4 , T5)

3

4

5 p11 =2.∗( X source1−X cross1 ) . / ( s q r t ( ( ( X source1−X cross1 ) . ˆ2 +

(1+2∗ ch i1 ) . ∗ ( Z1 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z1 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1

. ˆ2∗ ( X source1−X cross1 ) . ˆ 2 ) ) ) ;

6 p21 =2.∗( X cross1 ) . / ( s q r t ( ( ( X cross1 ) . ˆ2 + (1+2∗ ch i2 ) . ∗ ( Z rec1

−Z1) . ˆ 2 ) .∗ ( ( 2∗ a2+b2 . ∗ ( Z rec1−Z1) ) .ˆ2 .∗(1+2∗ ch i2 )+b2 . ˆ2∗ (

X cross1 ) . ˆ 2 ) ) ) ;

7

8 time11 =(1/b1 ) . ∗ ( atanh ( p11 .∗ b1 . ∗ ( X source1−X cross1 ) − s q r t

(1−(p11 .ˆ2 .∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p11 .ˆ2

.∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) ) ) ;

9 time21 =(1/b2 ) . ∗ ( atanh ( p21 .∗ b2 .∗ X cross1 − s q r t (1−(p21 .ˆ2 .∗ a2

.ˆ2 .∗ (1+2∗ ch i2 ) ) ) )+atanh ( s q r t (1−(p21 .ˆ2 .∗ a2 .ˆ2 .∗ (1+2∗

ch i2 ) ) ) ) ) ;

10
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11 p12 =2.∗( X source2−X cross2 ) . / ( s q r t ( ( ( X source2−X cross2 ) . ˆ2 +

(1+2∗ ch i1 ) . ∗ ( Z1 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z1 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1

. ˆ2∗ ( X source2−X cross2 ) . ˆ 2 ) ) ) ;

12 p22 =2.∗( X cross2 ) . / ( s q r t ( ( ( X cross2 ) . ˆ2 + (1+2∗ ch i2 ) . ∗ ( Z rec2

−Z1) . ˆ 2 ) .∗ ( ( 2∗ a2+b2 . ∗ ( Z rec2−Z1) ) .ˆ2 .∗(1+2∗ ch i2 )+b2 . ˆ2∗ (

X cross2 ) . ˆ 2 ) ) ) ;

13

14 time12 =(1/b1 ) . ∗ ( atanh ( p12 .∗ b1 . ∗ ( X source2−X cross2 ) − s q r t

(1−(p12 .ˆ2 .∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p12 .ˆ2

.∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) ) ) ;

15 time22 =(1/b2 ) . ∗ ( atanh ( p22 .∗ b2 .∗ X cross2 − s q r t (1−(p22 .ˆ2 .∗ a2

.ˆ2 .∗ (1+2∗ ch i2 ) ) ) )+atanh ( s q r t (1−(p22 .ˆ2 .∗ a2 .ˆ2 .∗ (1+2∗

ch i2 ) ) ) ) ) ;

16

17

18 p13 =2.∗( X source3−X cross3 ) . / ( s q r t ( ( ( X source3−X cross3 ) . ˆ2 +

(1+2∗ ch i1 ) . ∗ ( Z1 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z1 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1

. ˆ2∗ ( X source3−X cross3 ) . ˆ 2 ) ) ) ;

19 p23 =2.∗( X cross3 ) . / ( s q r t ( ( ( X cross3 ) . ˆ2 + (1+2∗ ch i2 ) . ∗ ( Z rec3

−Z1) . ˆ 2 ) .∗ ( ( 2∗ a2+b2 . ∗ ( Z rec3−Z1) ) .ˆ2 .∗(1+2∗ ch i2 )+b2 . ˆ2∗ (

X cross3 ) . ˆ 2 ) ) ) ;

20

21 time13 =(1/b1 ) . ∗ ( atanh ( p13 .∗ b1 . ∗ ( X source3−X cross3 ) − s q r t

(1−(p13 .ˆ2 .∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p13 .ˆ2

.∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) ) ) ;
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22 time23 =(1/b2 ) . ∗ ( atanh ( p23 .∗ b2 .∗ X cross3 − s q r t (1−(p23 .ˆ2 .∗ a2

.ˆ2 .∗ (1+2∗ ch i2 ) ) ) )+atanh ( s q r t (1−(p23 .ˆ2 .∗ a2 .ˆ2 .∗ (1+2∗

ch i2 ) ) ) ) ) ;

23

24

25 p14 =2.∗( X source4−X cross4 ) . / ( s q r t ( ( ( X source4−X cross4 ) . ˆ2 +

(1+2∗ ch i1 ) . ∗ ( Z1 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z1 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1

. ˆ2∗ ( X source4−X cross4 ) . ˆ 2 ) ) ) ;

26 p24 =2.∗( X cross4 ) . / ( s q r t ( ( ( X cross4 ) . ˆ2 + (1+2∗ ch i2 ) . ∗ ( Z rec4

−Z1) . ˆ 2 ) .∗ ( ( 2∗ a2+b2 . ∗ ( Z rec4−Z1) ) .ˆ2 .∗(1+2∗ ch i2 )+b2 . ˆ2∗ (

X cross4 ) . ˆ 2 ) ) ) ;

27

28 time14 =(1/b1 ) . ∗ ( atanh ( p14 .∗ b1 . ∗ ( X source4−X cross4 ) − s q r t

(1−(p14 .ˆ2 .∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p14 .ˆ2

.∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) ) ) ;

29 time24 =(1/b2 ) . ∗ ( atanh ( p24 .∗ b2 .∗ X cross4 − s q r t (1−(p24 .ˆ2 .∗ a2

.ˆ2 .∗ (1+2∗ ch i2 ) ) ) )+atanh ( s q r t (1−(p24 .ˆ2 .∗ a2 .ˆ2 .∗ (1+2∗

ch i2 ) ) ) ) ) ;

30

31 p15 =2.∗( X source5−X cross5 ) . / ( s q r t ( ( ( X source5−X cross5 ) . ˆ2 +

(1+2∗ ch i1 ) . ∗ ( Z1 ) . ˆ 2 ) .∗ ( ( 2∗ a1+b1 . ∗ ( Z1 ) ) .ˆ2 .∗(1+2∗ ch i1 )+b1

. ˆ2∗ ( X source5−X cross5 ) . ˆ 2 ) ) ) ;

32 p25 =2.∗( X cross5 ) . / ( s q r t ( ( ( X cross5 ) . ˆ2 + (1+2∗ ch i2 ) . ∗ ( Z rec5

−Z1) . ˆ 2 ) .∗ ( ( 2∗ a2+b2 . ∗ ( Z rec5−Z1) ) .ˆ2 .∗(1+2∗ ch i2 )+b2 . ˆ2∗ (

X cross5 ) . ˆ 2 ) ) ) ;

33
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34 time15 =(1/b1 ) . ∗ ( atanh ( p15 .∗ b1 . ∗ ( X source5−X cross5 ) − s q r t

(1−(p15 .ˆ2 .∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) )+atanh ( s q r t (1−(p15 .ˆ2

.∗ a1 .ˆ2 .∗ (1+2∗ ch i1 ) ) ) ) ) ;

35 time25 =(1/b2 ) . ∗ ( atanh ( p25 .∗ b2 .∗ X cross5 − s q r t (1−(p25 .ˆ2 .∗ a2

.ˆ2 .∗ (1+2∗ ch i2 ) ) ) )+atanh ( s q r t (1−(p25 .ˆ2 .∗ a2 .ˆ2 .∗ (1+2∗

ch i2 ) ) ) ) ) ;

36

37

38 T calc1=time11+time21 ;

39 T calc2=time12+time22 ;

40 T calc3=time13+time23 ;

41 T calc4=time14+time24 ;

42 T calc5=time15+time25 ;

43

44

45 e r r o r 1=abs ( T calc1−T1) . ˆ 2 ;

46 e r r o r 2=abs ( T calc2−T2) . ˆ 2 ;

47 e r r o r 3=abs ( T calc3−T3) . ˆ 2 ;

48 e r r o r 4=abs ( T calc4−T4) . ˆ 2 ;

49 e r r o r 5=abs ( T calc5−T5) . ˆ 2 ;

50 e r r o r=sum( e r r o r 1 )+sum( e r r o r 2 )+sum( e r r o r 3 )+sum( e r r o r 4 )+sum(

e r r o r 5 ) ;

51

52 end

124



Appendix E

Table with values of Preliminary

Reference Earth Model

Depth Radius Vp Vs Density Depth Radius Vp Vs Density
[km] [km] [km/s] [km/s] [g/cm3] [km] [km] [km/s] [km/s] [g/cm3]

0 63 71 1 45 0 1 . 2 2741 3630 13.68 7.27 5.49
3 6368 1.45 0 1.02 2771 3600 13.69 7.27 5.51
3 6368 5.8 3.2 2.6 2871 3500 13.71 7.26 5.56
15 6356 5.8 3.2 2.6 2891 3480 13.72 7.26 5.57
15 6356 6.8 3.9 2.9 2891 3480 8.06 0 9.9

24.4 6346 0.6 6.8 3.9 2.9 2971 3400 8.2 0 10.03
24.4 6346 0.6 8.11 4.49 3.38 3071 3300 8.36 0 10.18
71 6300 8.08 4.47 3.38 3171 3200 8.51 0 10.33
80 6291 0.9 8.08 4.47 3.37 3271 3100 8.66 0 10.47
80 6291 8.08 4.47 3.37 3371 3000 8.8 0 10.6
171 6200 8.02 4.44 3.36 3471 2900 8.93 0 10.73
220 6151 7.99 4.42 3.36 3571 2800 9.05 0 10.85
220 6151 8.56 4.62 3.44 3671 2700 9.17 0 10.97
271 6100 8.66 4.68 3.47 3771 2600 9.28 0 11.08
371 6000 8.85 4.75 3.53 3871 2500 9.38 0 11.19
400 5971 8.91 4.77 3.54 3971 2400 9.48 0 11.29
400 5971 9.13 4.93 3.72 4071 2300 9.58 0 11.39
471 5900 9.5 5.14 3.81 4171 2200 9.67 0 11.48
571 5800 10.01 5.43 3.94 4271 2100 9.75 0 11.57
600 5771 10.16 5.52 3.98 4371 2000 9.84 0 11.65
600 5771 10.16 5.52 3.98 4471 1900 9.91 0 11.73
670 5701 10.27 5.57 3.99 4571 1800 9.99 0 11.81
670 5701 10.75 5.95 4.38 4671 1700 10.06 0 11.88
771 5600 11.07 6.24 4.44 4771 1600 10.12 0 11.95
871 5500 11.24 6.31 4.5 4871 1500 10.19 0 12.01
971 5400 11.42 6.38 4.56 4971 1400 10.25 0 12.07
1071 5300 11.58 6.44 4.62 5071 1300 10.31 0 12.12
1171 5200 11.78 6.5 4.68 5149 0.5 122 1.5 10. 36 0 12.17
1271 5100 11.88 6.56 4.73 5149 0.5 122 1.5 11. 3 3.5 12.76
1371 5000 12.02 6.62 4.79 5171 1200 11.04 3.51 12.77



1471 4900 12.16 6.67 4.84 5271 1100 11.07 3.54 12.82
1571 4800 12.29 6.73 4.9 5371 1000 11.11 3.56 12.87
1671 4700 12.42 6.78 4.95 5471 900 11.14 3.58 12.91
1771 4600 12.54 6.83 5 5571 800 11.16 3.6 12.95
1871 4500 12.67 6.87 5.05 5671 700 11.19 3.61 12.98
1971 4400 12.78 6.92 5.11 5771 600 11.21 3.63 13.01
2071 4300 12.9 6.97 5.16 5871 500 11.22 3.64 13.03
2171 4200 13.02 7.01 5.21 5971 400 11.24 3.65 13.05
2271 4100 13.13 7.06 5.26 6071 300 11.25 3.66 13.07
2371 4000 13.25 7.1 5.31 6171 200 11.26 3.66 13.08
2471 3900 13.36 7.14 5.36 6271 100 11.26 3.67 13.09
2571 3800 13.48 7.19 5.41 6371 0 11.26 3.67 13.09
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Appendix F

Table with traveltimes and offsets

from VSP measurements

Data are obtained from Kaderali (2009).

Receiver 1973.923 m Receiver 1983.809 m
Source N.o. Traveltime [ms] Offset [m] Source N.o. Traveltime [ms] Offset [m]

1 1036.432 1014.078 201 1038.840 1008.351
2 1031.409 989.797 202 1033.122 984.043
3 1027.439 966.288 203 1029.148 960.508
4 1023.055 941.466 204 1025.027 935.676
5 1018.204 915.969 205 1021.168 910.130
6 1014.435 889.718 206 1017.319 883.891
7 1010.473 864.303 207 1013.209 858.483
8 1005.947 841.107 208 1008.312 835.240
9 1002.145 816.118 209 1004.878 810.244
10 998.318 788.795 210 1001.203 782.892
11 994.844 765.793 211 997.567 759.852
12 991.292 740.308 212 994.381 734.346
13 987.772 716.162 213 990.638 710.170
14 985.218 694.514 214 988.177 688.527
15 980.535 663.944 215 983.886 657.899
16 977.875 642.565 216 981.287 636.545
17 975.246 617.231 217 977.982 611.188
18 971.165 591.674 218 974.139 585.598
19 968.847 568.580 219 971.586 562.487
20 966.045 538.050 220 968.724 531.796
21 963.125 515.799 221 966.093 509.525
22 960.062 489.340 222 963.084 483.059
23 958.225 469.040 223 961.095 462.703
24 955.686 444.262 224 958.631 437.891
25 953.700 418.215 225 956.849 411.844
26 951.439 394.946 226 954.877 388.454
27 949.506 373.059 227 953.134 366.440
28 948.215 344.072 228 951.426 337.400



29 946.461 324.116 229 949.415 317.048
30 944.746 297.101 230 947.845 289.835
31 943.693 275.418 231 946.987 267.858
32 941.976 246.708 232 945.197 239.050
33 940.090 225.285 233 943.625 217.478
34 938.334 201.211 234 942.345 193.088
35 937.775 182.634 235 941.309 174.105
36 937.281 151.037 236 940.727 142.494
37 936.890 136.395 237 940.937 126.875
38 936.139 119.615 238 939.762 109.503
39 935.931 94.406 239 939.623 83.743
40 935.126 82.931 240 938.903 71.966
41 935.534 76.916 241 939.149 66.459
42 935.336 74.741 242 939.227 66.310
43 935.707 84.530 243 939.528 78.328
44 935.612 93.234 244 939.563 89.803
45 936.244 112.705 245 940.394 111.608
46 936.110 130.648 246 940.091 130.642
47 937.377 152.613 247 941.688 153.154
48 938.209 176.332 248 942.350 177.687
49 939.183 200.664 249 943.109 202.354
50 940.566 222.033 250 944.924 224.320
51 941.458 244.406 251 945.205 247.111
52 942.481 270.447 252 946.367 273.339
53 944.033 293.032 253 947.988 296.045
54 945.562 317.805 254 949.649 321.033
55 947.720 343.415 255 952.137 346.827
56 949.464 369.719 256 953.549 373.160
57 952.038 393.092 257 955.886 396.718
58 953.379 417.457 258 957.665 421.107
59 956.346 443.392 259 960.745 447.157
60 958.015 465.151 260 962.260 469.001
61 960.078 493.184 261 964.153 497.013
62 963.346 515.711 262 967.471 519.641
63 965.572 541.511 263 969.745 545.499
64 968.150 566.218 264 972.201 570.228
65 971.846 594.084 265 975.986 598.156
66 974.437 616.525 266 978.617 620.641
67 977.709 640.390 267 981.874 644.580
68 980.848 666.096 268 985.060 670.325
69 983.892 686.674 269 988.157 691.031
70 987.625 714.131 270 991.753 718.482
71 990.735 734.065 271 994.879 738.482
72 994.462 763.765 272 998.693 768.171
73 998.943 790.341 273 1002.989 794.790
74 1002.359 818.537 274 1006.748 822.941
75 1006.107 838.613 275 1010.184 843.036
76 1009.904 864.183 276 1013.894 868.614
77 1015.459 889.644 277 1019.595 894.119
78 1018.333 916.870 278 1022.321 921.307
79 1022.636 938.114 279 1027.050 942.569
80 1028.093 967.871 280 1032.722 972.347
81 1032.088 984.094 281 1036.735 988.598
82 1035.925 1014.404 282 1040.235 1018.913
83 1041.995 1043.220 283 1045.885 1047.728
84 1046.384 1065.184 284 1050.348 1069.727
85 1050.471 1088.895 285 1054.671 1093.448
86 1055.210 1115.015 286 1059.151 1119.573
87 1060.235 1140.098 287 1064.439 1144.664
88 1065.256 1165.295 288 1069.724 1169.907
89 1070.389 1187.085 289 1074.964 1191.722
90 1075.694 1214.352 290 1080.203 1219.006
91 1080.502 1238.248 291 1084.769 1242.914
92 1085.769 1262.578 292 1090.486 1267.262
93 1092.119 1288.093 293 1096.443 1292.784
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94 1097.591 1312.260 294 1101.800 1316.929
95 1102.887 1337.566 295 1107.092 1342.261
96 1110.075 1366.579 296 1113.786 1371.339
97 1113.877 1386.806 297 1118.027 1391.577
98 1120.171 1413.235 298 1124.079 1418.030
99 1125.078 1434.249 299 1129.362 1439.032
100 1129.865 1457.820 300 1134.666 1462.608
101 1136.798 1485.368 301 1140.644 1490.113
102 1143.508 1513.211 302 1147.233 1517.949
103 1149.417 1539.303 303 1153.155 1544.086
104 1154.933 1565.130 304 1158.895 1569.900
105 1160.874 1588.644 305 1164.270 1593.404
106 1167.062 1612.475 306 1170.602 1617.242
107 1173.549 1638.883 307 1177.444 1643.658
108 1178.955 1663.079 308 1182.653 1667.848
109 1185.425 1689.771 309 1189.136 1694.537
110 1191.324 1711.871 310 1194.793 1716.647
111 1197.521 1739.048 311 1201.199 1743.842
112 1203.817 1763.081 312 1207.696 1767.872
113 1210.837 1789.370 313 1214.073 1794.159
114 1217.784 1814.387 314 1220.868 1819.208
115 1223.474 1836.461 315 1226.550 1841.269
116 1231.080 1863.985 316 1233.862 1868.805
117 1235.614 1888.688 317 1240.130 1893.512
118 1242.405 1912.386 318 1246.604 1917.232
119 1250.340 1936.696 319 1253.548 1941.535
120 1255.989 1962.993 320 1259.847 1967.839
121 1262.363 1986.236 321 1265.565 1991.090
122 1269.025 2011.513 322 1273.312 2016.374
123 1276.389 2038.012 323 1280.025 2042.866
124 1281.452 2058.654 324 1285.407 2063.524
125 1291.095 2089.406 325 1294.071 2094.281
126 1297.340 2113.127 326 1299.952 2117.996
127 1304.095 2137.010 327 1307.700 2141.883
128 1308.005 2162.001 328 1310.301 2166.886
129 1318.307 2190.353 329 1323.274 2195.224
130 1324.103 2208.538 330 1327.841 2213.413
131 1332.692 2240.131 331 1336.037 2245.016
132 1340.505 2262.848 332 1343.859 2267.713
133 1346.629 2285.069 333 1348.996 2289.923
134 1354.231 2313.522 334 1357.301 2318.389
135 1361.689 2338.818 335 1365.345 2343.698
136 1368.898 2364.031 336 1372.069 2368.914
137 1376.166 2387.757 337 1379.635 2392.644
138 1384.134 2414.140 338 1386.817 2419.031
139 1389.482 2438.493 339 1392.626 2443.401
140 1396.500 2462.794 340 1400.358 2467.697
141 1404.673 2487.398 341 1408.040 2492.313
142 1412.021 2515.010 342 1415.364 2519.922
143 1420.411 2538.668 343 1422.726 2543.581
144 1425.506 2561.908 344 1429.279 2566.833
145 1432.678 2586.946 345 1436.051 2591.883
146 1439.409 2611.466 346 1443.447 2616.403
147 1447.930 2634.472 347 1451.370 2639.425
148 1457.009 2664.740 348 1459.092 2669.654
149 1465.913 2693.145 349 1468.384 2698.020
150 1471.688 2713.475 350 1472.716 2718.334
151 1478.316 2737.504 351 1481.698 2742.351
152 1486.156 2763.498 352 1489.435 2768.347
153 1492.776 2790.900 353 1496.836 2795.751
154 1501.544 2818.515 354 1504.003 2823.373
155 1509.010 2840.130 355 1510.775 2845.001
156 1516.612 2867.558 356 1517.430 2872.444
157 1522.475 2891.097 357 1527.097 2895.995
158 1527.969 2913.083 358 1531.993 2917.992
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159 1537.739 2936.480 359 1540.569 2941.398
160 1544.497 2963.685 360 1546.735 2968.622
161 1551.710 2985.984 361 1553.385 2990.918
162 1560.112 3013.154 362 1561.528 3018.090
163 1566.471 3037.280 363 1568.398 3042.218
164 1575.806 3062.143 364 1576.207 3067.084
165 1582.710 3087.867 365 1585.550 3092.811
166 1587.800 3113.355 366 1590.731 3118.302
167 1597.852 3137.870 367 1600.101 3142.820
168 1605.218 3163.910 368 1608.303 3168.861
169 1614.170 3187.722 369 1615.857 3192.675
170 1620.041 3214.578 370 1622.663 3219.534
171 1627.195 3236.351 371 1631.572 3241.315
172 1634.435 3259.675 372 1638.071 3264.630
173 1645.422 3288.287 373 1647.669 3293.246
174 1651.273 3312.831 374 1653.441 3317.799
175 1660.710 3338.804 375 1662.421 3343.766
176 1665.429 3361.215 376 1667.257 3366.177
177 1674.863 3387.640 377 1675.520 3392.607
178 1681.033 3405.836 378 1681.964 3410.802
179 1690.683 3438.279 379 1691.929 3443.246
180 1698.660 3462.882 380 1710.587 3467.846
181 1706.745 3488.647 381 1709.635 3493.613
182 1712.753 3512.857 382 1713.031 3517.821
183 1720.417 3539.715 383 1722.879 3544.681
184 1742.573 3562.825 384 1741.318 3567.794
185 1738.627 3586.331 385 1736.081 3591.299
186 1743.987 3614.704 386 1747.966 3619.680
187 1750.378 3639.544 387 1752.301 3644.514
188 1773.884 3664.411 388 1778.166 3669.383
189 1767.780 3686.858 389 1770.612 3691.832
190 1773.923 3715.162 390 1775.954 3720.138
191 1782.683 3738.511 391 1783.222 3743.487
192 1802.645 3763.146 392 1791.143 3768.123
193 1796.954 3787.190 393 1802.154 3792.172
194 1807.817 3813.895 394 1808.063 3818.878
195 1825.078 3837.164 395 1812.050 3842.148
196 1823.494 3863.906 396 1834.522 3868.893
197 1820.780 3889.009 397 1832.293 3893.998
198 1833.245 3914.736 398 1841.510 3919.728
199 1860.562 3937.224 399 1849.791 3942.218
200 1870.558 3964.125 400 1856.989 3969.119

Receiver 1993.699 m Receiver 2003.758 m
Source N.o. Traveltime [ms] Offset [m] Source N.o. Traveltime [ms] Offset [m]

401 1040.296 1002.711 601 1042.833 997.086
402 1034.723 978.378 602 1037.513 972.731
403 1031.448 954.820 603 1033.673 949.152
404 1027.611 929.979 604 1029.444 924.305
405 1023.126 904.386 605 1025.462 898.668
406 1019.032 878.162 606 1021.558 872.462
407 1015.012 852.764 607 1017.731 847.076
408 1010.589 829.477 608 1012.982 823.748
409 1007.059 804.476 609 1009.341 798.746
410 1003.557 777.100 610 1005.985 771.348
411 999.276 754.023 611 1002.028 748.238
412 996.141 728.501 612 999.005 722.703
413 992.892 704.297 613 995.761 698.475
414 990.319 682.665 614 993.036 676.858
415 986.067 651.983 615 988.844 646.129
416 982.786 630.660 616 985.924 624.840
417 980.150 605.282 617 983.380 599.449
418 976.420 579.666 618 979.481 573.811
419 974.146 556.544 619 977.140 550.684

130



420 971.431 525.697 620 974.557 519.689
421 968.550 503.412 621 971.818 497.397
422 965.518 476.947 622 969.121 470.942
423 963.432 456.543 623 966.698 450.496
424 961.216 431.704 624 964.633 425.642
425 959.313 405.669 625 962.887 399.631
426 957.363 382.167 626 960.981 376.026
427 955.795 360.032 627 959.268 353.782
428 953.984 330.958 628 957.854 324.691
429 952.081 310.206 629 955.870 303.545
430 950.759 282.808 630 954.239 275.979
431 949.642 260.541 631 953.240 253.431
432 948.256 231.657 632 952.059 224.502
433 946.459 209.954 633 950.595 202.690
434 945.197 185.259 634 949.141 177.711
435 944.430 165.862 635 948.403 157.906
436 943.874 134.304 636 948.019 126.487
437 943.475 117.607 637 947.600 108.628
438 942.953 99.571 638 947.095 89.868
439 942.483 73.169 639 946.545 62.742
440 941.891 61.000 640 945.980 50.086
441 942.147 56.197 641 946.538 46.358
442 942.353 58.722 642 946.447 52.469
443 942.618 73.252 643 946.954 69.671
444 942.868 87.620 644 947.101 86.893
445 943.735 111.582 645 947.711 112.734
446 943.171 131.554 646 947.722 133.464
447 945.169 154.473 647 949.129 156.651
448 945.881 179.703 648 949.660 182.453
449 946.732 204.619 649 950.746 207.535
450 948.627 227.115 650 952.851 230.490
451 949.125 250.268 651 953.203 253.949
452 950.369 276.636 652 954.468 280.412
453 952.101 299.430 653 956.100 303.261
454 953.662 324.600 654 957.547 328.581
455 955.781 350.549 655 959.877 354.657
456 957.374 376.889 656 961.524 380.983
457 960.273 400.611 657 964.467 404.849
458 961.745 425.009 658 965.664 429.240
459 964.632 451.156 659 968.875 455.469
460 966.243 473.074 660 970.314 477.448
461 968.510 501.052 661 972.350 505.381
462 971.570 523.771 662 975.954 528.180
463 973.782 549.677 663 977.649 554.124
464 976.722 574.419 664 980.507 578.871
465 980.039 602.401 665 984.222 606.897
466 982.692 624.922 666 987.011 629.448
467 985.882 648.928 667 990.246 653.514
468 988.900 674.706 668 993.458 679.317
469 992.308 695.534 669 996.693 700.261
470 995.547 722.973 670 1000.173 727.683
471 998.774 743.035 671 1003.167 747.801
472 1002.640 772.708 672 1006.854 777.454
473 1007.501 799.365 673 1011.369 804.143
474 1010.404 827.466 674 1015.020 832.193
475 1014.153 847.578 675 1018.689 852.318
476 1017.853 873.161 676 1022.437 877.902
477 1023.541 898.705 677 1027.936 903.481
478 1026.076 925.852 678 1030.703 930.585
479 1030.365 947.130 679 1035.000 951.877
480 1036.107 976.925 680 1040.677 981.685
481 1040.563 993.203 681 1045.077 997.988
482 1044.037 1023.519 682 1048.441 1028.302
483 1049.905 1052.331 683 1054.518 1057.108
484 1054.403 1074.363 684 1058.712 1079.172
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485 1058.814 1098.092 685 1063.161 1102.905
486 1063.483 1124.219 686 1067.551 1129.033
487 1068.660 1149.317 687 1072.604 1154.135
488 1073.632 1174.603 688 1077.918 1179.462
489 1078.861 1196.443 689 1083.181 1201.324
490 1084.101 1223.741 690 1088.640 1228.635
491 1088.584 1247.658 691 1092.830 1252.559
492 1094.326 1272.022 692 1098.534 1276.939
493 1100.294 1297.550 693 1104.879 1302.470
494 1105.547 1321.672 694 1109.972 1326.568
495 1110.953 1347.028 695 1115.153 1351.947
496 1117.626 1376.170 696 1121.642 1381.150
497 1121.891 1396.418 697 1126.247 1401.407
498 1128.178 1422.895 698 1132.330 1427.905
499 1132.653 1443.884 699 1136.977 1448.880
500 1138.044 1467.463 700 1142.246 1472.461
501 1144.481 1494.924 701 1148.672 1499.879
502 1151.295 1522.751 702 1155.408 1527.695
503 1156.979 1548.932 703 1161.119 1553.918
504 1162.905 1574.732 704 1167.420 1579.704
505 1168.160 1598.225 705 1172.206 1603.186
506 1174.337 1622.070 706 1178.204 1627.036
507 1180.674 1648.491 707 1184.507 1653.462
508 1186.362 1672.676 708 1190.805 1677.641
509 1192.925 1699.359 709 1197.292 1704.318
510 1198.836 1721.478 710 1203.018 1726.445
511 1204.910 1748.692 711 1209.147 1753.676
512 1211.548 1772.717 712 1215.748 1777.695
513 1217.934 1799.002 713 1221.607 1803.977
514 1224.612 1824.082 714 1228.617 1829.087
515 1230.545 1846.130 715 1234.195 1851.122
516 1237.567 1873.676 716 1241.198 1878.678
517 1244.110 1898.386 717 1247.676 1903.390
518 1250.350 1922.128 718 1254.113 1927.153
519 1256.844 1946.425 719 1260.869 1951.442
520 1263.463 1972.733 720 1267.338 1977.755
521 1269.489 1995.992 721 1273.069 2001.021
522 1276.605 2021.284 722 1280.433 2026.319
523 1283.477 2047.768 723 1287.490 2052.794
524 1289.092 2068.441 724 1293.358 2073.482
525 1297.742 2099.202 725 1301.024 2104.247
526 1304.563 2122.910 726 1308.343 2127.948
527 1310.749 2146.801 727 1314.503 2151.842
528 1314.782 2171.815 728 1318.469 2176.867
529 1325.703 2200.140 729 1329.099 2205.177
530 1331.626 2218.331 730 1334.982 2223.370
531 1339.540 2249.944 731 1342.631 2254.993
532 1346.336 2272.620 732 1350.118 2277.647
533 1352.489 2294.818 733 1357.171 2299.834
534 1360.202 2323.298 734 1364.622 2328.326
535 1368.284 2348.619 735 1371.613 2353.659
536 1375.471 2373.838 736 1379.627 2378.880
537 1382.493 2397.572 737 1386.764 2402.618
538 1389.803 2423.962 738 1393.956 2429.010
539 1396.371 2448.348 739 1400.834 2453.412
540 1403.782 2472.638 740 1407.589 2477.697
541 1411.481 2497.266 741 1415.158 2502.335
542 1418.757 2524.872 742 1422.226 2529.938
543 1425.434 2548.532 743 1429.520 2553.598
544 1432.337 2571.795 744 1436.827 2576.873
545 1439.589 2596.858 745 1443.173 2601.946
546 1446.632 2621.377 746 1450.736 2626.465
547 1453.807 2644.413 747 1458.285 2649.516
548 1462.258 2674.605 748 1465.704 2679.669
549 1470.753 2702.929 749 1474.176 2707.953
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550 1476.894 2723.228 750 1480.744 2728.236
551 1483.652 2747.233 751 1487.699 2752.229
552 1491.746 2773.232 752 1494.594 2778.230
553 1498.916 2800.637 753 1502.098 2805.637
554 1506.587 2828.265 754 1508.771 2833.270
555 1514.083 2849.906 755 1516.733 2854.923
556 1521.606 2877.363 756 1525.492 2882.394
557 1528.903 2900.926 757 1531.940 2905.969
558 1535.242 2922.933 758 1539.600 2927.986
559 1542.711 2946.349 759 1546.765 2951.411
560 1550.466 2973.590 760 1554.718 2978.669
561 1557.133 2995.885 761 1561.351 3000.961
562 1565.767 3023.058 762 1568.134 3028.136
563 1573.079 3047.187 763 1577.714 3052.265
564 1580.030 3072.056 764 1582.686 3077.138
565 1588.145 3097.786 765 1590.615 3102.869
566 1595.589 3123.280 766 1599.738 3128.367
567 1603.017 3147.799 767 1606.000 3152.887
568 1610.568 3173.841 768 1613.464 3178.930
569 1618.286 3197.658 769 1619.519 3202.748
570 1625.947 3224.520 770 1630.294 3229.613
571 1633.840 3246.308 771 1636.149 3251.407
572 1641.181 3269.615 772 1643.357 3274.706
573 1648.665 3298.234 773 1649.475 3303.329
574 1656.675 3322.795 774 1657.560 3327.898
575 1664.216 3348.757 775 1664.552 3353.854
576 1670.785 3371.168 776 1675.352 3376.264
577 1678.696 3397.601 777 1680.203 3402.702
578 1685.196 3415.795 778 1687.718 3420.895
579 1694.415 3448.241 779 1698.745 3453.340
580 1701.577 3472.837 780 1705.403 3477.933
581 1710.192 3498.606 781 1711.605 3503.704
582 1717.371 3522.813 782 1720.754 3527.909
583 1725.993 3549.675 783 1729.231 3554.773
584 1733.222 3572.790 784 1735.458 3577.890
585 1739.830 3596.293 785 1744.448 3601.391
586 1748.377 3624.682 786 1751.149 3629.788
587 1756.174 3649.510 787 1760.526 3654.610
588 1763.768 3674.382 788 1768.197 3679.484
589 1770.490 3696.833 789 1775.120 3701.937
590 1779.702 3725.141 790 1782.591 3730.246
591 1786.963 3748.488 791 1790.948 3753.592
592 1794.582 3773.125 792 1798.312 3778.230
593 1802.597 3797.180 793 1804.984 3802.290
594 1810.145 3823.886 794 1813.300 3828.996
595 1817.675 3847.157 795 1823.626 3852.268
596 1825.487 3873.904 796 1828.743 3879.018
597 1833.940 3899.011 797 1835.432 3904.126
598 1841.541 3924.745 798 1845.600 3929.863
599 1849.245 3947.236 799 1852.445 3952.356
600 1857.089 3974.137 800 1857.067 3979.256

Receiver 2013.927 m
Source N.o. Traveltime [ms] Offset [m] Source N.o. Traveltime [ms] Offset [m]

801 1044.546 991.550 901 1152.406 1504.896
802 1039.433 967.175 902 1159.518 1532.702
803 1035.737 943.576 903 1164.752 1558.966
804 1031.620 918.726 904 1170.728 1584.736
805 1027.395 893.046 905 1176.191 1608.206
806 1023.883 866.861 906 1182.031 1632.059
807 1019.800 841.491 907 1188.399 1658.491
808 1015.300 818.125 908 1193.896 1682.662
809 1011.754 793.125 909 1200.831 1709.332
810 1008.324 765.709 910 1206.627 1731.466
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811 1004.757 742.569 911 1212.206 1758.713
812 1001.513 717.025 912 1218.930 1782.727
813 998.272 692.777 913 1224.991 1809.004
814 995.647 671.179 914 1232.119 1834.144
815 991.688 640.407 915 1237.956 1856.165
816 988.858 619.158 916 1244.659 1883.729
817 986.490 593.758 917 1250.987 1908.443
818 982.274 568.106 918 1257.720 1932.226
819 980.074 544.979 919 1264.184 1956.508
820 977.187 513.842 920 1270.513 1982.824
821 974.652 491.551 921 1276.609 2006.097
822 971.956 465.116 922 1283.866 2031.400
823 970.103 444.635 923 1290.939 2057.867
824 967.793 419.775 924 1296.333 2078.568
825 966.024 393.803 925 1305.118 2109.336
826 963.975 370.105 926 1311.261 2133.030
827 962.375 347.762 927 1317.697 2156.926
828 960.815 318.675 928 1322.426 2181.962
829 959.260 297.136 929 1332.953 2210.257
830 957.826 269.418 930 1338.401 2228.452
831 956.764 246.599 931 1346.712 2260.084
832 955.323 217.658 932 1353.271 2282.716
833 953.803 195.765 933 1359.676 2304.890
834 952.296 170.528 934 1367.060 2333.394
835 951.830 150.322 935 1375.573 2358.739
836 951.246 119.158 936 1382.318 2383.962
837 951.140 100.035 937 1389.120 2407.702
838 950.595 80.477 938 1396.500 2434.097
839 950.060 52.512 939 1403.233 2458.515
840 949.748 39.174 940 1410.509 2482.793
841 949.931 37.125 941 1418.106 2507.442
842 949.852 47.917 942 1425.056 2535.041
843 950.437 67.679 943 1432.211 2558.701
844 950.647 87.531 944 1439.055 2581.986
845 951.544 114.917 945 1445.480 2607.071
846 951.374 136.226 946 1452.599 2631.588
847 953.025 159.548 947 1459.835 2654.653
848 953.865 185.804 948 1469.199 2684.768
849 954.950 210.975 949 1477.709 2713.012
850 956.605 234.325 950 1482.503 2733.279
851 957.373 258.040 951 1489.196 2757.260
852 958.386 284.557 952 1497.292 2783.262
853 960.111 307.433 953 1504.319 2810.670
854 961.630 332.872 954 1512.353 2838.309
855 963.944 359.049 955 1519.220 2859.972
856 965.418 385.343 956 1526.834 2887.458
857 968.447 409.334 957 1534.916 2911.043
858 969.921 433.705 958 1540.726 2933.070
859 972.838 460.001 959 1548.725 2956.504
860 974.457 482.029 960 1555.046 2983.778
861 976.609 509.907 961 1562.470 3006.069
862 979.967 532.777 962 1570.417 3033.245
863 981.933 558.748 963 1578.054 3057.374
864 985.107 583.493 964 1585.655 3082.250
865 988.531 611.554 965 1593.522 3107.982
866 991.086 634.129 966 1600.080 3133.483
867 994.422 658.248 967 1608.654 3158.005
868 997.434 684.072 968 1615.445 3184.048
869 1000.876 705.124 969 1623.756 3207.868
870 1004.018 732.526 970 1630.595 3234.734
871 1007.432 752.696 971 1639.147 3256.536
872 1011.254 782.323 972 1646.444 3279.827
873 1015.565 809.041 973 1654.579 3308.451
874 1019.073 837.034 974 1662.212 3333.029
875 1022.852 857.170 975 1669.892 3358.978
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876 1026.294 882.753 976 1674.585 3381.389
877 1031.885 908.363 977 1683.330 3407.830
878 1034.363 935.422 978 1689.103 3426.021
879 1038.713 956.725 979 1699.251 3458.467
880 1044.700 986.543 980 1707.174 3483.057
881 1049.014 1002.868 981 1714.270 3508.829
882 1052.495 1033.179 982 1721.476 3533.031
883 1058.421 1061.975 983 1730.402 3559.898
884 1062.677 1084.068 984 1738.836 3583.016
885 1066.960 1107.805 985 1744.451 3606.516
886 1071.377 1133.931 986 1752.517 3634.919
887 1076.518 1159.036 987 1760.693 3659.735
888 1081.816 1184.402 988 1767.779 3684.612
889 1087.232 1206.284 989 1774.926 3707.066
890 1092.486 1233.606 990 1785.556 3735.376
891 1096.881 1257.536 991 1792.247 3758.721
892 1102.535 1281.929 992 1799.150 3783.360
893 1108.661 1307.463 993 1805.479 3807.424
894 1113.833 1331.536 994 1814.840 3834.131
895 1119.047 1356.935 995 1823.009 3857.404
896 1125.490 1386.199 996 1829.612 3884.155
897 1130.003 1406.463 997 1837.849 3909.264
898 1136.112 1432.981 998 1845.303 3935.005
899 1141.041 1453.941 999 1852.544 3957.499
900 1145.902 1477.524 1000 1860.716 3984.399
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