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Abstract 

The southeastern margin of Laurentia preserves evidence for a long episode of 

juvenile crustal growth and recycling extending from the late Paleoproterozoic and 

throughout the Mesoproterozoic (~1.9–1.2 Ga). This was terminated by the onset of the 

Grenvillian continental collision (~1.1–0.98 Ga), forming a large, hot, long-duration 

orogen (LHO), comparable in scale to the modern day Himalayan-Tibet LHO. The 

Grenvillian LHO has been subdivided into the ca. 1090-1020 Ma Ottawan phase for 

which evidence is preserved in allochthonous rocks in the orogenic hinterland, and the 

ca. 1005-980 Ma Rigolet phase for which evidence is mainly preserved in the 

parautochthonous foreland (Rivers et al. 2012). 

Mesoproterozoic to early Neoproterozoic metamorphosed mafic and 

unmetamorphosed potassic to ultrapotassic rocks from the Canyon domain, part of the 

polycyclic allochthonous, medium-pressure (aMP) belt of the Grenville Orogen in the 

Manicouagan area, central Grenville Province, were investigated using integrated 

petrographic, geochronological, isotopic, and geochemical methods. The principal 

results of the thesis, presented as three Chapters (2 - 4), are summarized below. 

In Chapter 2, U-Pb TIMS geochronology of zircon, and whole-rock 

geochemical and Sm-Nd isotopic analyses of two granulite-facies mafic tholeiitic 

suites, provide constraints on: (i) the emplacement of crust-contaminated, depleted to 

enriched MORB-type, high Fe-Ti-P mafic sills at 1439 −68+76  Ma within a ca. 1.5 Ga 

supracrustal sequence that was under limited extension at that time, probably in a back-

arc setting; and (ii) emplacement of a crust-contaminated, enriched MORB to arc-type 

mafic intrusive suite, previously dated at 1410 ± 16 Ma, in a transitional back-arc to arc 
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setting. Integrated with published information, these results support the existing model 

of a long-lived continental margin arc on the southeastern margin of Laurentia, with 

intermittent back-arc opening and closure during Geons 15-14. 

In Chapter 3, U-Pb TIMS geochronology of zircon from two suites of granulite-

facies mafic rocks has yielded ages of 1007.7 ± 2.0 Ma for the syn-metamorphic 

emplacement of dykes, and 997.0 ± 3.8 Ma for the emplacement of sills. Whole-rock 

geochemical and Sr-Nd isotopic compositions of the mafic rocks, coupled with 

petrogenetic modelling, indicate that they are tholeiitic intraplate basalts derived from 

~4-10% decompression melting of upwelled asthenosphere, followed by ~4-20% 

contamination by crust or subcontinental lithospheric mantle (SCLM). Combined with 

published data, these results provide evidence for late-orogenic (post-Ottawan) 

lithospheric extension, which led to melting of Proterozoic SCLM, decompression 

melting of upwelling asthenosphere, and granulite-facies metamorphism in the crust.  

In Chapter 4, whole-rock geochemical and isotopic (Sr, Nd, Pb, and O) data for 

a suite of ca. 980 Ma, late- to post-tectonic, potassic to ultrapotassic dykes suggest two 

geochemically distinct groups, which formed by melting of spinel and garnet peridotite 

that were metasomatized by MARID-type vein assemblages containing amphibole, 

phlogopite, and accessory Fe-Ti-P phases. Their enriched EM I-type mantle sources 

were metasomatized by ancient subduction of carbonate, phosphate, and pelagic 

sediments. The late-tectonic group was derived from Proterozoic SCLM, whereas the 

post-tectonic group was derived from depleted late-Archean SCLM that had undergone 

early Paleoproterozoic metasomatism. Moreover, both the sources experienced an early 

Neoproterozoic metasomatism that is mainly attributed to late-Grenvillian continental 

subduction and asthenospheric upwelling. These data suggest that the terminal Rigolet 
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phase convergence of the Grenvillian orogeny was intracontinental, characterized by 

foreland subduction, where progressively older components of SCLM underwent 

partial melting. Hence, with continued subduction, SCLM, initially of Proterozoic age 

and eventually of late-Archean age, became transported beneath the orogenic core, with 

the Archean Superior lithosphere being situated beneath the Grenvillian hinterland by 

ca. 980 Ma.  

The late-Grenvillian mafic rocks (Chapter 3) and potassic to ultrapotassic rocks 

(Chapter 4), together with published structural, geochronological and metamorphic data 

from the nearby Parautochthonous Belt, suggest that post-Ottawan lithospheric 

extension was followed by Rigolet intracontinental subduction beginning at ca. 1005 

Ma, which in turn led to termination of the long-duration Grenvillian LHO by ca. 980 

Ma.  
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1. Introduction 

1.1 Overview and scope of study 

Convergent plate boundaries, such as active margins and continental collision 

belts, are major sites of the formation, preservation, and recycling of Earth’s crust 

(Percival et al., 2001; Cawood et al., 2009; Scholl and Huene, 2007; Condie, 2013). 

The Grenville Province (fig. 1.1), the focus of this study, was part of a Himalaya-Tibet-

scale large hot long-duration orogen (LHO; Beaumont et al., 2006) that developed on 

crust formed in the long-lived (~1.7-1.2 Ga), Paleo- to Mesoproterozoic active margin 

of southeastern Laurentia, termed the Great Proterozoic Accretionary Orogen (GPAO; 

Condie, 2013). Continental growth along the active margin of the GPAO started during 

the late Paleoproterozoic, with several spatially and temporally distinct periods of 

accretionary orogenesis (e.g., Penokean, Makkovikian, and Labradorian orogenies; ca. 

1.90-1.62 Ga; Hoffman, 1988), followed by the development of early-Pinwarian (>1.5 

Ga) supracrustal sequences (e.g., Wakeham Group in the eastern Grenville Province 

and Plus Value Complex in the central Grenville Province) that were deposited on the 

southeastern Laurentian margin in a setting variably interpreted as a passive margin 

(Gower, 1996; Gower and Krogh, 2002), or an active margin intra-arc or back-arc 

setting (Rivers and Corrigan, 2000; Wodicka et al., 2003; Corriveau et al., 2007; Rivers 

et al., 2012; Augland et al., 2015). Prolonged, extensive, and widespread early- to mid-

Mesoproterozoic (ca. 1.5-1.3 Ga) juvenile crust formation, island arc accretion (e.g., 

Montauban arc; Sappin et al., 2009; Escoumins supracrustal belt; Groulier et al., 2018a) 

and reworking is inferred to have involved distinct phases of continental arc and back-

arc activity along the entire length of the Laurentian margin, and was followed in the 
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southwest Grenville Province by the ca. 1.28-1.23 Ga Elzevirian and 1.19-1.12 Ga 

Shawinigan arc-accretionary phases (van Breemen and Davidson, 1988; Gower et al., 

1990; Gower and Tucker, 1994; Tucker and Gower, 1994; Nadeau and van Breemen, 

1994; Gower, 1996; Rivers, 1997; Rivers and Corrigan, 2000; Gower and Krogh, 2002; 

Slagstad et al., 2004, 2009; Bonnet et al., 2005; van Breemen and Corriveau, 2005; 

Whitmeyer and Karlstrom, 2007; Hynes and Rivers, 2010; Rivers et al., 2012; McNutt 

and Dickin, 2012; and references therein).  

The terminal continental collision (the Grenvillian Orogeny sensu stricto from 

1.09-0.98 Ga; Rivers, 2008), leading to formation of the large hot long-duration 

Grenville Orogen, has been empirically subdivided into the Ottawan (1090-1020 Ma) 

and the Rigolet (1005-980 Ma) phases (Rivers, 2008). The Ottawan phase is 

characterized by continental collision leading to lithospheric thickening, followed by 

slab break-off, delamination, or convective thinning of the lithospheric mantle, which 

may have resulted in asthenospheric upwelling and formation of an orogenic plateau 

(e.g., Groulier et al., 2018b). The plateau is inferred to have collapsed ~1060-1030 Ma 

in the central Grenville Province (Indares and Dunning, 2004; Groulier et al., 2018a), 

due to melt-weakening and associated channel flow of the hot and ductile middle crust, 

resulting in rapid extrusion of deep crustal levels (Indares et al., 1998), which were 

juxtaposed with mid- and upper-crustal levels along first reverse- and then normal-

sense shear zones (Rivers, 2008, 2012). In this part of the orogen, the latest phase of 

collapse was recorded ca. 1017-1007 Ma along normal-sense shear zones that run 

between (previously extruded) high-pressure (HP) units and medium- to low-pressure 

(M-LP) units and at the base of the orogenic suprastructure (Indares et al., 1998; Indares 

and Dunning, 2004). The ensuing Rigolet orogenic phase is inferred to have been a time 
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of renewed crustal shortening and thickening in the northern margin of the province as 

the Grenville Orogen propagated towards the foreland within the Parautochthonous 

Belt. The period between the Ottawan and Rigolet orogenic phases, lacking a record of 

tectonothermal activity in the hinterland, was referred to as a “hiatus” (Rivers, 2008). 

Therefore, the relations between the Ottawan and Rigolet phases, and the processes 

leading to the transition between them, are unclear. 

This thesis is primarily concerned with using mantle-derived intrusions as 

probes of their magma sources, magmatic processes, and tectonic settings – and, more 

specifically, it involves determination, interpretation, and evaluation of the 

crystallization ages, metamorphism, and geochemical and isotopic characterization of 

four suites of metamafic rocks and one suite of potassic to ultrapotassic rocks. These 

data are used to provide an improved understanding of three distinct periods in the 

evolution of the Laurentian margin: (i) the Geon 14 evolution of the active margin of 

Laurentia; (ii) the post-Ottawan tectonic and metamorphic evolution of the orogenic 

hinterland; and (iii) the characteristics of the Rigolet phase in the hinterland and its 

relation to the evolution of the foreland in the Parautochthonous Belt. Mafic and 

potassic to ultrapotassic rocks were chosen for this study because of their geochemical 

and isotopic sensitivity to their tectonic settings of formation and the nature of their 

mantle sources. Moreover, the metamorphic mineral assemblages developed in 

metamafic rocks are diagnostic of metamorphic facies and the P-T conditions of their 

formation. Therefore, this study has the potential to provide insights into the changing 

mantle sources in an evolving orogen, the tectonic settings of formation of the 

investigated suites, and the metamorphic evolution of metamafic rocks during the 

Grenvillian orogeny.  
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1.2 Regional geology 

The first-order division of the orogenic architecture of the Grenville Province, 

into the Parautochthonous Belt in the north and the structurally overlying 

Allochthonous Belt in the south (fig. 1.1; Rivers et al., 1989), is exposed in the 

Manicouagan area, where high-grade gneiss complexes in both of these first-order belts 

can be observed. In the central Grenville Province, the Parautochthonous Belt is 

represented by the Gagnon terrane, which consists of a Paleoproterozoic continental 

margin sequence that overlies the Archean basement. Both were metamorphosed and 

deformed during the Rigolet phase (~1005- 980 Ma) of the Grenvillian Orogeny, with 

the grade of metamorphism ranging from greenschist-facies near the Grenville Front, 

to high-pressure granulite- and eclogite-facies conditions in the south (Rivers, 2008, 

and references therein). 

The Gagnon terrane is tectonically overlain by the Allochthonous Belt (AB), 

which in the central Grenville Province comprises the Manicouagan Imbricate Zone 

(MIZ; Indares et al., 1998). The MIZ is mainly composed of Labradorian (~1.65 Ga) 

anorthosite-mangerite-charnockite-granite (AMCG) rocks and Pinwarian (~1.45 Ga) 

granitoids. The MIZ is part of the Allochthonous high-pressure (aHP) belt that was 

metamorphosed at ~750- 920 °C and 1700-1900 MPa from ca. 1060-1040 Ma (Indares, 

1997, 2003; Indares et al., 1998; Cox and Indares, 1999a, b; Cox et al., 1998; Yang and 

Indares, 2005), during the Ottawan phase of the Grenvillian Orogeny (Rivers, 2008; 

Rivers et al., 2012).  

To the south and southeast of the MIZ, the late Paleoproterozoic to mid-

Mesoproterozoic supracrustal and plutonic rocks comprising the Island domain, 
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Canyon domain, Gabriel Complex, and Banded Complex (Hynes et al., 2000; Indares 

and Dunning, 2004; Dunning and Indares, 2010) were subjected to Ottawan granulite-

facies metamorphism at 800-900 °C and 600-1100 MPa conditions from ca. 1080-1040 

Ma (Indares and Dunning, 2004; Dunning and Indares, 2010; Lasalle et al., 2013; 

Lasalle et al., 2014; Lasalle and Indares, 2014; Patrick and Indares, 2017), and belong 

to the Allochthonous medium-pressure (aMP) belt of Rivers (2008). In addition, the 

Hart Jaune terrane to the southeast of the MIZ consists of 1.47 Ga mafic granulites 

(Hynes et al., 2000) that lack evidence for high-grade Ottawan metamorphism (Indares 

and Dunning, 2004), and therefore the terrane represents part of the Ottawan Orogenic 

Lid (OOL) of Rivers (2008).  

1.2.1 Geology of the study area: Canyon domain 

The Canyon domain, first defined by Hynes et al. (2000), is situated in the 

southern Manicouagan Reservoir area (fig. 1.2) and structurally overlies Labradorian 

units to the north that were metamorphosed to Ottawan M-HP conditions (Indares et 

al., 2000; Dunning and Indares, 2010). Following regional mapping by the Ministère 

de l'Énergie et des Ressources naturelles du Québec (MERNQ; see Moukhsil et al., 

2012), detailed field investigations led to recognition of distinct lithologic units in the 

Canyon domain (Indares and Moukhsil, 2013), which are described briefly below, in 

geochronological order.    

The oldest unit from the southern part of the Canyon domain is the widespread, 

supracrustal Plus Value Complex (PLV), a granulite-facies, predominantly metaclastic 

unit that is inferred to have been deposited in an early Pinwarian (~1.5 Ga) active-

margin, intra-arc or back-arc setting (Moukhsil et al., 2012; Lasalle et al., 2013; 

Augland et al., 2015), and that was subsequently intruded by several orthogneissic 
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plutons of felsic to intermediate composition between ca. 1497-1015 Ma (Gobeil et al., 

2002, 2005; Moukhsil et al., 2012, 2013; Augland et al., 2015). In the central part of 

the domain, a more restricted suite of mafic to intermediate rocks that structurally 

underlies the PLV, consists of 1416 ± 10 Ma (Dunning and Indares, 2010) plutons 

inferred to have formed in an island arc (Dunning and Indares, 2010) or a mature 

continental arc setting (Valverde Cardenas et al., 2012). The northern part of the 

Canyon domain consists of the supracrustal Quartzofeldspathic Unit (QFU) of 

undetermined origin and depositional age, but inferred to be ~1.4 Ga based on the 

presence of transposed felsic pegmatites within it and also in the >1.4 Ga units to the 

south, but which are absent in <1.3 Ga units to the north (Indares and Mouksil, 2013). 

The units to the north include the undated Vein Complex (VC), which exhibits an 

intricate anastomosing “vein-like” pattern of felsic and mafic layers inferred to have 

resulted from ca. 1.2 Ga felsic intrusion into the ca. 1.4 Ga mafic units (Indares and 

Moukhsil, 2013). The ca. 1.24 Ga (Lasalle et al., 2013) supracrustal Layered Bimodal 

Suite (LBS), composed of felsic and mafic layers and interpreted to have formed in an 

extensional setting (Valverde Cardenas et al., 2012; Indares and Moukhsil, 2013; 

Hindemith et al., 2017; Moukhsil and Solgadi, 2017), underwent Ottawan MP 

granulite-facies metamorphism ca. 1080-1050 Ma (Lasalle and Indares, 2014). The VC 

and LBS also include several massive and variably deformed mafic layers, rafts, and 

attenuated dykes, some of which occur in the LBS and cross-cut the QFU and VC 

(Indares and Mouksil, 2013). Finally, the older units in the Canyon domain are intruded 

by a suite of undeformed, leucocratic, late-Grenvillian pegmatitic granite dykes that 

have yielded crystallization ages of ca. 1005-995 Ma (Dunning and Indares, 2010; 

Turlin et al., 2017, 2019), and a suite of variably deformed and recrystallized, potassic 
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to ultrapotassic dykes (PUD), one of which has yielded a U-Pb zircon (TIMS) 

crystallization age of ca. 980 Ma (Dunning and Indares, 2010; Valverde et al., 2012). 

1.3 Objectives of this study 

In spite of many recent studies in the Manicouagan area of the central Grenville 

Province, several aspects of the tectonic evolution of this part of the Province remain 

poorly constrained. This thesis builds on the lithological, geochronological, 

geochemical, and tectonometamorphic information in the Manicouagan area and its 

vicinity that was available at the time the project was designed and started, to 

investigate the ages, sources, and tectonic settings of the suites of mafic tholeiitic and 

potassic to ultrapotassic rocks that span ~450 M.y interval from the Mesoproterozoic 

to the earliest Neoproterozoic, and to integrate the new information into the current 

understanding of the Grenville Orogen. More specifically, the main objectives of the 

thesis were as follows: 

1. Protolith characterization of a suite of meta-mafic rocks to test the hypothesis 

that an inferred ca. 1.4 Ga Laurentian margin arc and outboard island arc 

system was eventually accreted to the continental margin. 

Based on a preliminary geochronological study (U-Pb of zircon, monazite, and 

titanite in TIMS; Dunning and Indares, 2010), ca. 1.4 Ga mafic rocks in the Canyon 

domain were inferred to represent remnants of an accreted island arc terrane (Dunning 

and Indares, 2010), which was compared to the Montauban Group of similar age farther 

southwest (Sappin et al., 2009), and ca. 1.2 Ga mafic rocks were interpreted to be 

remnants of an intracontinental rift that subsequently developed within the accreted are 

terrane (Dunning and Indares, 2010). The ca. 1.4 Ga mafic rocks exposed at the type 
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outcrop was thought to be part of a layered supracrustal sequence (Dunning and Indares, 

2010), although subsequent fieldwork in 2011 at the extension of the same outcrop 

revealed a more diverse range of lithologies, including magmatically interlayered mafic 

rocks with light to intermediate grey, and dark grey colour indices. Based on field 

relations and geochemical evidence, it was subsequently suggested that the ca. 1.4 Ga 

light grey rocks in the Canyon domain were formed in a mature continental arc setting, 

and that these were intruded, in an extensional setting, by the ca. 1.2 Ga mafic rocks 

(Valverde Cardenas, 2009; Valverde Cardenas et al., 2012). Given the differeing 

interpretations, a more detailed investigation was required to more fully characterize 

the relationship between, and origins of, the 1.4 and 1.2 Ga units. To this end, the first 

part of this thesis is an investigation of the geochemical (whole-rock major and trace 

elements and Nd isotopes) signature of the light to intermediate and dark grey samples 

from the ca. 1.4 Ga mafic suite, in order to better constrain the Geon 14 tectonic 

evolution of the Canyon domain. 

2. Characterization of the age and tectonic setting of a suite of mafic layers within 

the ca. 1.5 Ga volcano-sedimentary Plus Value Complex. 

Mafic layers in the high-grade supracrustal Plus Value Complex (PLV; 

Moukhsil et al., 2012) yielded an inherited monazite age of 1467 ± 5 Ma (Dunning and 

Indares, 2010), suggesting the presence of an older crustal component in the Complex. 

Based on a detrital zircon study, the PLV was later constrained to have been deposited 

shortly before ca. 1.5 Ga (Lasalle et al., 2013). Hence, on the basis of these data, the 

mafic layers within PLV could be either in situ supracrustal layers within the paragneiss 

sequence, or intrusive sills emplaced during later (i.e., 1.4-1.2 Ga) events. Samples of 

the mafic layers collected from within the PLV were investigated for their 
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geochronology (U-Pb TIMS in zircon) and geochemical signature (whole-rock major 

and trace element and Nd isotope) in order to constrain their age of formation and 

possible tectonic setting. 

3. Characterization of the age and tectonic setting of mafic rocks within the 

undated Vein Complex (VC) and the ca. 1.2 Ga Layered Bimodal Suite (LBS). 

The mafic rocks within the Vein Complex (VC) and the Layered Bimodal Suite 

(LBS) were originally inferred to have been emplaced during a ca. 1.2 Ga extensional 

event (Dunning and Indares, 2010; Valverde Cardenas et al., 2012; Indares and 

Moukhsil, 2013). However, subsequent re-evaluation of their field relations by the 

present author, and recognition of their less intense structural overprint compared to the 

country rocks (this study), suggest they could plausibly be late-orogenic intrusions. U-

Pb TIMS dating of zircon revealed their post-Ottawan age (this study), making them 

attractive candidates to better characterize the poorly understood, post-Ottawan 

evolution of the Canyon domain by means of investigating their petrographic, 

geochemical, and isotopic features, and tectonic settings of emplacement.  

4. Geochemical and isotopic investigation of the ca. 980 Ma potassic to 

ultrapotassic dykes (PUDs) to identify the depletion and enrichment events of 

their mantle sources, the nature of mantle metasomatism, and to characterize 

the tectonic setting of Rigolet phase of the Grenville Orogeny. 

The geological significance of Rigolet phase in the hinterland of the Grenville 

Province is rather poorly documented. However, it is known to include a variety of 

small-volume intrusions, and in the Canyon domain it includes sporadic occurrences of 

ca. 995 Ma granite pegmatite dykes and a suite of ca. 980 Ma PUDs (Dunning and 
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Indares, 2010; Valverde Cardenas et al., 2012). On the basis of a geochemical and 

isotopic study of the PUD suite, it was suggested that late-orogenic extension led to 

upwelling of hot asthenosphere that caused melting in ancient, metasomatized Archean 

subcontinental lithospheric mantle that was introduced beneath the Grenville hinterland 

as a result of northwest-directed thrusting of the latter over its Archean foreland 

(Valverde Cardenas et al., 2012). On the other hand, based on age, metamorphism, and 

structural features, the Rigolet phase in the Gagnon terrane (foreland) has been 

interpreted to have resulted either from propagation of the orogen over its foreland (van 

Gool et al., 2008; Hynes and Rivers, 2010; Rivers et al., 2012; Rivers, 2015), or from 

underthrusting of the foreland beneath the hinterland (Jordan et al., 2006), in both cases 

leading to extrusion of the parautochthonous rocks from progressively deeper crustal 

levels along the hanging wall of the Grenville Front (van Gool et al., 2008). Although 

kinematically equivalent in terms of relative crust and mantle motions, these 

interpretations differ in their implications for mantle melting and involvement in the 

evolution of the orogenic hinterland during the Rigolet phase. Therefore, additional 

isotopic investigations of the potassic to ultrapotassic rocks were undertaken in order 

to further characterize their mantle sources and to clarify the Rigolet plate tectonic 

setting.  

5. Tectonic synthesis: integration of new data with the published literature to 

produce revised tectonic models for the evolution of the Mesoproterozoic 

Laurentian margin, and for the transition from the post-Ottawan to the 

Rigolet phases of the Grenvillian Orogeny.     

The first part of this study was designed to provide further constraints on the 

Geon 14 tectonic setting of the Laurentian margin as preserved in the Canyon domain, 
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especially with respect to the continental margin arc and the timing of emplacement of 

mafic layers as sills within the PLV supracrustal sequence, and was successful in this 

regard. For the second part of the study, integrating the results for the late-orogenic 

mafic rocks (now known to be post-Ottawan) with those for the Rigolet potassic to 

ultrapotassic dykes was expected to provide a better understanding of the tectonic 

processes involved, which in turn would shed light on the late-Grenvillian evolution of 

the orogenic hinterland. With respect to this latter goal, research discoveries made 

during the course of this study have provided opportunity and an incentive to 

substantially broaden its purview, especially with respect to the significance of the 

hiatus period separating the Ottawan and Rigolet phases, and its connection with the 

Rigolet convergence in the Parautochthonous Belt.  

1.4 Methods of study 

A combination of analytical tools was used in this research to constrain the age 

of emplacement, the style of metamorphism and alteration history, the nature of mantle 

sources and mantle metasomatism, and the tectonic settings of emplacement of the 

mafic tholeiitic and potassic to ultrapotassic rocks. The analyses were performed on 

samples previously collected by Dr. Aphrodite Indares in 2004 and 2011 during 

regional mapping campaigns led by the Ministère de l'Énergie et des Ressources 

naturelles du Québec (MERNQ) in the Manicouagan area (see Moukhsil et al. 2012). 

Hand samples, outcrop photographs and field notes provided the first sources 

of information, followed by a detailed petrographic study of selected polished thin 

sections using an optical microscope. Next, a subset of thin sections was chosen for 

electron imaging and mineralogical mapping using a Quanta 650 field emission gun 
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scanning electron microscope (FEG-SEM) at the Micro Analysis Facility (MAF-IIC) 

in the Bruneau Centre for Research and Innovation at Memorial University of 

Newfoundland and Labrador (MUN). The Energy Dispersive X-Ray Spectroscopy 

(EDS) system in the SEM was used to semi-quantitatively identify and calculate modal 

abundances of mineral phases. Analyses were carried out under a 25 keV acceleration 

potential and a 10 nA beam current condition to obtain back-scattered electron (BSE) 

images and EDS analyses. False colour mineralogical maps, showing the distribution 

of, and relationships among the phases, were produced by post-processing the BSE and 

EDS data using Mineral Liberation Analysis software. 

For geochronological analyses, the fresh interiors of selected samples were 

crushed in a steel-plated jaw crusher and disk mill so that the majority of material 

processed was less than 500 μm and larger than 63 μm, followed by powdering in an 

agate ball mill, with all equipment carefully cleaned before use. A portion of the 

powdered samples was selected for zircon separation using standard techniques 

(Wilfley Table, manual separation of the magnetic fraction, heavy liquid separation, 

and a Frantz magnetic separator), followed by handpicking of different morphological 

groups (e.g., prisms and ‘soccer balls’). Representative grains from each morphological 

group were mounted for cathodoluminescence (CL) imaging, which was carried out 

using a CL detector attached to a FEI Quanta 400 SEM, operating with a 15 keV 

acceleration potential and a 10 nA beam current. U-Pb geochronology was performed 

on selected single- and multi-grain fractions using chemical abrasion thermal ionization 

mass spectrometry (CA-TIMS) at MUN, using the standard laboratory methodology 

(Sparkes and Dunning, 2014).  
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For whole-rock analyses, selected splits of samples previously crushed using 

the jaw crusher and disc mill were then pulverized for whole-rock major and trace 

element analyses, performed at the Activation Laboratories Ltd., Ancaster, Ontario, 

using the fusion–inductively coupled plasma–mass spectrometry (FUS-ICP-MS) 

technique. Selected whole-rock samples were prepared for tracer radiogenic isotope 

(Sr, Nd, and Pb) analyses by a multi-collector Finnigan Mat 262 thermal ionization 

mass spectrometry (TIMS) at MUN. Stable isotope (O) ratios were measured on 

selected whole-rock samples using a dual-inlet, triple-collecting Thermo Scientific 

Delta Plus XL isotope ratio mass spectrometer (IRMS) at Western University, London, 

Ontario. 

1.5 Structure of thesis 

Following this introduction (Chapter 1), which provides an overview of the 

research project, geological background, objectives, and methods used, the principal 

results of this work are presented in three core Chapters (2 - 4), each representing a 

stand-alone manuscript either published, submitted, or in preparation for submission in 

peer-reviewed journals.  

Chapter 2 is entitled “The Geon 14 arc-related mafic rocks from the central 

Grenville Province”, co-authored by Barun Maity and Aphrodite Indares. The 

manuscript has been published in the Canadian Journal of Earth Sciences, 55, 545-570, 

2018. In this chapter, field and petrographic observations, major and trace element 

chemistry, Sm-Nd isotopes, and CA-TIMS U-Pb geochronology of two contrasting 

suites of ca. 1.4 Ga mafic rocks are presented, which collectively provide improved 

understanding of the Geon 14 tectonic setting of the central Grenville Province. 
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Integrated with published information, the new data support a model of a long-lived 

continental-margin arc and intermittent back-arc development on southeast Laurentia 

in the mid-Mesoproterozoic (ca. 1.5-1.4 Ga), during which repeated short periods of 

extension and crustal thinning in the back-arc or intra-arc regions were followed by 

compression and crustal thickening. 

Chapter 3 is entitled “Late-orogenic mafic magmatism in the hinterland, central 

Grenville Province: lithospheric extension in the evolution of a large hot orogen”, co-

authored by Barun Maity and Aphrodite Indares, and is in preparation for resubmission 

to Precambrian Research. In this chapter, the petrography, major and trace element 

geochemistry, Sr-Nd isotopes, and CA-TIMS U-Pb ages of two suites of late-orogenic, 

metamafic rocks from the VC and LBS are presented. This study provides the first 

recorded evidence for the post-Ottawan amphibolite- to granulite-facies metamorphism 

in the hinterland – and relates it to late-orogenic lithospheric extension, thinning and 

melting in the SCLM, and decompression melting of upwelled asthenosphere. Recent 

published studies on late-orogenic, within-plate-type, alkalic mafic to felsic plutons 

elsewhere have suggested an origin by melting of suprasubduction zone mantle and 

orogenic lower crust, in a continental margin arc to back-arc followed by slab break-

off or retreat. Our study suggests that these post-Ottawan tholeiitic and alkalic rocks in 

the Canyon domain were derived from asthenospheric and subcontinental lithospheric 

mantle sources, respectively, as a result of lithospheric extension in a late-orogenic 

setting. 

Chapter 4 is entitled “Late-orogenic potassic to ultrapotassic dykes from the 

central Grenvillian hinterland: trace element and Sr-Nd-Pb-O isotopic perspectives”, 

co-authored by Barun Maity, Graham Layne, and Fred Longstaffe, and a manuscript is 
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under preparation for submission to a peer-reviewed journal. This paper presents new 

radiogenic and stable isotope data for a suite of late-orogenic potassic to ultrapotassic 

dykes that, in combination with previously published geochemical data on the same 

suite, are used to present new insights on the involvement of different SCLM sources, 

and their distinct incompatible element depletion and metasomatic enrichment 

processes and ages ranging from late-Archean to Proterozoic. Combined with recently 

published metamorphic, structural, geochronological, and geophysical data from the 

study area, it is proposed that the late-orogenic evolution of the Grenville Province was 

characterized by intracontinental subduction of the Superior foreland lithosphere 

beneath the Grenvillian hinterland.     

Chapter 5 summarizes the findings of the three main chapters and places them 

in a larger context. Specifically, the findings of Chapter 2 are presented in the context 

of understanding of the mid-Mesoproterozoic evolution of the Laurentian margin. On 

the other hand, the conclusions of the Chapters 3 and 4 are placed in the context of the 

late-orogenic evolution of a large hot orogen that was characterized by lithospheric 

extension followed by final termination of the orogen during continental subduction.     

1.6 Co-authorship statement 

The manuscript in Chapter 2 entitled “The Geon 14 arc-related mafic rocks from 

the central Grenville Province” is published in the Canadian Journal of Earth Sciences 

(vol. 55, p. 545-570, 2018), and is co-authored by Barun Maity and Aphrodite Indares. 

As first author, Barun Maity formulated the specific research questions, undertook 

literature review, data collection (for Sm-Nd isotopes), data analyses, interpretation, 

and conclusions. Dr. Aphrodite Indares was responsible for formulation of the general 
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research topic, and provided helpful comments and feedback on sections related to field 

relations, petrography, metamorphic petrology, and the significance of geochronology 

data. The manuscript was written and submitted by Barun Maity.    

The manuscript in Chapter 3 entitled “Late-orogenic mafic magmatism in the 

hinterland, central Grenville Province: lithospheric extension in the evolution of a 

large hot orogen” is co-authored by Barun Maity and Aphrodite Indares, and is in 

preparation for resubmission to Precambrian Research. As first author, Barun Maity 

formulated the specific research questions, undertook literature review, data collection 

(Sm-Nd isotopes), data analysis, interpretation, and formulation of the conclusions. Dr. 

Aphrodite Indares again proposed the general topic, and provided helpful comments 

and feedback on sections related to field relations, petrography, metamorphic 

petrology, and the significance of geochronological data. The manuscript was written 

and will be re-submitted by Barun Maity.   

The manuscript in Chapter 4 entitled “Late-orogenic potassic to ultrapotassic 

dykes from the central Grenvillian hinterland: trace element and Sr-Nd-Pb-O isotopic 

perspective” is co-authored by Barun Maity, Graham Layne, and Fred Longstaffe, and 

is in preparation for submission to a peer-reviewed journal. As first author, Barun Maity 

formulated the specific research questions, undertook literature review, data analyses, 

interpretation, and formulation of the conclusions. The Sr, Nd, and Pb analyses for this 

study were performed by Sherri Strong, CREAIT labs, MUN, and the oxygen analyses 

were carried out by Dr. Fred Longstaffe in his laboratory at the Western University, 

London, Ontario. Dr. Longstaffe also provided comments on interpretation of the O 

data, and Dr. Graham Layne provided comments on interpreting the Pb data and on 
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overall interpretations. The manuscript was written and will be submitted by Barun 

Maity. 
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Figure 1.1. (A) Simplified geological map of the Manicouagan area showing the general tectonic boundaries (modified from Indares and 
Dunning, 2004; Rivers et al., 2012; Maity and Indares, 2018); (B-C) cross-sections along A-A’ and B-B’ (modified from Hynes et al., 2000). 
AB, Allochthon Boundary; MIZ, Manicouagan Imbricate Zone; MIU, Mafic to Intermediate Unit; QFU, quartzofeldspathic unit; LBS, 
layered bimodal suite; VC, Vein Complex; GT, Gagnon terrane; SWSZ, southwest shear zone; HWSZ, Highway Shear Zone; including zones 
of hydrothermal alteration; PLV, Complexe de la Plus Value; GHSZ, Gabriel high-strain shear zone.   
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2 The Geon 14 Arc-Related Mafic Rocks from the Central 

Grenville Province     

2.1 Abstract 

The late Paleoproterozoic to Mesoproterozoic (~1.7-1.2 Ga) evolution of the 

active southeastern margin of Laurentia terminated with the Grenvillian continental 

collision and the development of a large, hot, long-duration orogen at ~1.09-0.98 Ga. 

As a result, much of the hinterland of the Grenville Province consists of Paleo- and 

Mesoproterozoic rocks, mostly preserved as an imbricate stack of high-grade gneisses, 

that represent a potential repository of active-margin processes. This study presents 

geochronologic, geochemical, and isotopic analyses of two granulite-facies suites of ca. 

1.45-1.40 Ga mafic tholeiites from the Canyon domain (Manicouagan area, central 

Grenville Province). One suite consists of 1439 −68+76 Ma high-Fe-Ti mafic sills with εNd 

values of -0.4 (TDM 2.57-2.72 Ga), indicating derivation from variably depleted to 

enriched MORB-type mantle sources, probably in an extensional back-arc setting, 

before intrusion in a ca. 1.5 Ga supracrustal metasedimentary sequence. The other, 

previously dated, 1410 ± 16 Ma Mafic to Intermediate Unit exhibits εNd values of 0.0 

to +0.9 (TDM 2.02-2.25 Ga), and variably enriched MORB to arc geochemical 

signatures, for which formation in a transitional back-arc to arc setting is suggested.  

Integrated with published information, the new data support a model of a long-

lived continental-margin arc and intermittent back-arc development on southeast 

Laurentia during the mid-Mesoproterozoic (ca. 1.5-1.4 Ga), in which repeated short 

periods of extension and crustal thinning in the back-arc or intra-arc regions were 

followed by compression and crustal thickening.  
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2.2 Introduction 

Convergent plate boundary zones are major sites of formation, consumption, 

and recycling of Earth’s continental crust (Clift and Vannucchi, 2004; Cawood et al., 

2009), so the study of magmatic processes in such zones can provide crucial 

understanding on the evolution of continental crust through time. This study is 

concerned with crust of Mesoproterozoic age preserved within the Grenville Province, 

part of the late Mesoproterozoic to early Neoproterozoic Grenville Orogen that is 

exposed on the southeast margin of the Canadian Shield and beyond. The Grenville 

Province (fig. 2.1a) has been modelled as a part of a large hot long-duration orogen 

(LHO; Jamieson et al., 2002; Beaumont et al., 2006; Rivers, 2008; Rivers et al., 2012) 

that incorporated and reworked the long-lived Paleo- to Mesoproterozoic active margin 

of southeastern Laurentia (Rivers and Corrigan, 2000). Continental outgrowth along 

the active margin started during late Paleoproterozoic accretionary orogenesis (e.g., 

Penokean, Makkovikian, and Labradorian orogenies; ca. 1.90-1.62 Ga; Hoffman, 

1988). In the eastern Grenville Province, it was followed by the development of early-

Pinwarian (> 1.5 Ga) supracrustal sequences (e.g., Wakeham Group) deposited on the 

southeastern Laurentian margin in a setting variably interpreted as a passive margin 

(Gower, 1996; Gower and Krogh, 2002) or an active margin intra-arc or back-arc 

setting (Rivers and Corrigan, 2000; Wodicka et al., 2003; Corriveau et al., 2007; Rivers 

et al., 2012). Prolonged, extensive and widespread Mesoproterozoic (1.5-1.23 Ga) 

juvenile crust formation (and reworking), is inferred to have involved distinct phases 

of arc and back-arc activity along the entire stretch of the Laurentian continental 

margin, with 1.28-1.23 Ga accretionary activity limited to the southwestern Grenville 

Province. This was followed by the final continental collision during the Grenvillian 
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Orogeny (1.09-0.98 Ga; sensu stricto of Rivers, 2008) (van Breemen and Davidson, 

1988; Gower et al., 1990; Gower and Tucker, 1994; Tucker and Gower, 1994; Nadeau 

and van Breemen, 1994;  Gower, 1996; Rivers, 1997; Rivers and Corrigan, 2000; 

Gower and Krogh, 2002; Slagstad et al., 2004, 2009; Bonnet et al., 2005; van Breemen 

and Corriveau, 2005; Whitmeyer and Karlstrom, 2007; Hynes and Rivers, 2010; Rivers 

et al., 2012; and references therein). As a result, it is reasonable to assume that the 

Grenville Province contains a record of crustal addition, loss, and recycling in rocks 

that were formed and accreted to the south-eastern margin of Laurentia from 1.9-1.1 

Ga. An outline of the orogen-wide development of active-margin arcs and back-arcs, 

outboard island arcs, oceanic back-arc basins, and accretion of arc terranes was reported 

previously (Rivers and Corrigan, 2000), but at the time details were sparse, especially 

from the central Grenville Province.  

A major issue confronting any study of the high-grade gneissic rocks in the 

hinterland of the Grenville Province is that many primary characteristics of the 

protoliths may be obscured by high-grade metamorphism and deformation related to 

subsequent arc formation, accretionary orogenesis, and finally by the Grenvillian 

continental collision. High-grade metamorphism also has the potential to modify the 

isotopic and geochemical compositions of these rocks, which are presently mostly 

preserved in upper amphibolite to granulite-facies gneiss complexes. Given the low 

strain and good preservation of primary features in the study area, described in more 

detail below, we assume that their geochemical and isotopic signatures are preserved, 

and hence their study has the potential to provide insights on the processes operating 

on the ancient active continental margin of southeastern Laurentia. This assumption is 

evaluated in the course of the analysis. 
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Geon 14 mafic magmatism in the central Grenville Province constitutes an 

important part of the pre-Grenvillian evolution of the southeastern Laurentian margin, 

as revealed by recent studies by several workers. In particular, there is now good 

evidence for the deposition of a large widespread Mesoproterozoic supracrustal 

sequence (the Complexe de la Plus Value or PLV; Moukhsil et al., 2012, 2013a) before 

ca. 1.5 Ga (Lasalle et al., 2013), and the development of a continental margin volcanic 

arc on the southeastern Laurentian margin during Geon 14 (Dunning and Indares, 2010; 

Valverde Cardenas et al., 2012; Augland et al., 2015), all of which are of special interest 

in this study. In this paper, we have examined two contrasting suites of ca. 1.4 Ga mafic 

rocks, one occurring as sills in the recently recognized ca. 1.5 Ga supracrustal sequence 

of the PLV, and the other from the ca. 1.4 Ga Mafic to Intermediate Unit, both occurring 

in the Canyon domain of the central Grenville Province. Here we report the field and 

petrographic observations, major and trace element chemistry, Sm-Nd isotopes, and 

CA-TIMS U-Pb geochronology for these mafic rocks in order to characterize their age 

and tectonic setting.  

2.3 Geological Context 

2.3.1 The central Grenville Province: Manicouagan area 

The first-order orogenic architecture of the Grenville Province is divided into 

the Parautochthonous Belt in the north and the structurally overlying Allochthonous 

Belt in the south (fig. 2.1a; Rivers et al., 1989), and the Manicouagan area exposes 

high-grade gneiss complexes in which these first-order divisions can be observed. The 

Parautochthonous Belt is represented by the Gagnon terrane, a Paleoproterozoic 

continental margin sequence that overlies an Archean basement, and both were 
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metamorphosed and deformed during the Rigolet phase (~1005- 980 Ma) of the 

Grenvillian Orogeny, with the grade of metamorphism ranging from greenschist-facies 

(near the Grenville Front) to high-pressure granulite- and eclogite-facies conditions to 

the south (Rivers, 2008, and references therein). 

The Gagnon terrane is tectonically overlain by the allochthonous terranes of the 

Manicouagan Imbricate Zone (MIZ; Indares et al., 1998), which mainly consists of 

Labradorian (~1.65 Ga) anorthosite-mangerite-charnockite-granite (AMCG) rocks and 

Pinwarian (~1.45 Ga) granitoids. The MIZ, part of the Allochthonous high-pressure 

belt, was metamorphosed at 750- 920 °C and 1700-1900 MPa conditions from ca. 1060-

1040 Ma (Indares, 1997, 2003; Indares et al., 1998; Cox and Indares, 1999a, b; Cox et 

al., 1998; Yang and Indares, 2005) during the Ottawan phase of the Grenvillian 

Orogeny (Rivers, 2008; Rivers et al., 2012). To the southeast of the MIZ, the late 

Paleoproterozoic to mid-Mesoproterozoic supracrustal and plutonic rocks comprising 

the Island domain, Canyon domain, Gabriel Complex, and Banded Complex (Hynes et 

al., 2000; Indares and Dunning, 2004; Dunning and Indares, 2010) were subjected to 

Ottawan mid-pressure granulite-facies metamorphism at 800-900 °C and 600-1100 

MPa conditions from ca. 1080-1040 Ma (Dunning and Indares, 2010; Lasalle et al., 

2013; Lasalle et al., 2014; Lasalle and Indares, 2014; Patrick and Indares, 2017), and 

belong to the mid-pressure belt of Rivers (2008). In addition, the Hart Jaune terrane to 

the southeast of MIZ consists of 1.47 Ga mafic granulites (Hynes et al., 2000) that lack 

evidence for high-grade Ottawan metamorphism (Indares and Dunning, 2004) and 

therefore, the terrane represents part of the Ottawan Orogenic Lid (OOL) of Rivers 

(2008).  
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On the basis of numerous Nd model ages, the Manicouagan area in the central 

Grenville Province has also been identified by Dickin and co-workers to be a junction 

of several crustal domains or terranes (fig. 2.1b; Dickin and Higgins, 1992; Dickin, 

2000; Martin and Dickin, 2005; Thomson et al., 2011). The most recent work by these 

authors shows four crustal terranes with distinct ages of formation: Archean (~2.7 Ga, 

restricted to the Parautochthonous Belt), Makkovikia (2.0-1.7 Ga), Labradoria (1.75 

Ga), and Quebecia (1.55 Ga). Labradoria and Quebecia were interpreted as juvenile arc 

terranes accreted to the Laurentian margin at around 1.65 and 1.45 Ga, respectively. In 

this study, we re-examine this interpretation in the light of the currently available 

detrital zircon data from the central and eastern Grenville Province. 

The rocks for this study come from the mid-pressure Canyon domain (Hynes et 

al., 2000; Dunning and Indares, 2010), which is described in more detail below. 

2.3.2 Geology of the study area: Canyon domain 

The Canyon domain, first defined by Hynes et al. (2000), is situated in the 

southern Manicouagan Reservoir area (fig. 2.2) and structurally overlies mid-pressure 

and high- pressure Labradorian units to the north (Indares et al., 2000; Dunning and 

Indares, 2010). ‘Canyon domain’ is a working term, used here to characterize a thrust 

package of supracrustal units and associated plutonic rocks (Dunning and Indares, 

2010; Indares and Moukhsil, 2013) with distinct boundaries in the east (Berthé 

anorthosite) and in the west (Tétépiska anorthosite), but a poorly defined boundary in 

the south with the intrusive Bardoux and Castoréum Plutonic Suites. Following a 

regional mapping campaign led by the Ministère de l'Énergie et des Ressources 

naturelles du Québec (MERNQ; see Moukhsil et al., 2012), detailed field investigations 
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have led to characterization of the domain into distinct lithologic units (see Indares and 

Moukhsil, 2013), which are described briefly below in their geochronological order.  

2.3.2.1 The Complexe de la Plus Value (PLV) 

The oldest unit is a supracrustal sequence formally named the Complexe de la 

Plus Value (PLV) by Moukhsil et al. (2012) in the Lac du Milieu area located east of 

fig. 2.2. In the study area the PLV occurs in the southern part of the Canyon domain 

near the Manic 5 reservoir, and consists of a layered sequence of granulite-facies 

gneissic rocks with inferred protoliths of greywacke, pelite, quartzite, calc-silicate, and 

mafic compositions. The upper age limit for the deposition of the PLV was initially 

determined to be 1482 ± 21 Ma (U-Pb igneous zircon crystallization age of granite from 

the Bardoux Plutonic Suite intruding the PLV in the Lac du Milieu area, Moukhsil et 

al., 2012), but has recently been more precisely constrained by Augland et al. (2015) to 

be 1497 ± 5 Ma based on TIMS U-Pb zircon dating of an augen granite with arc 

signature from the Bardoux Plutonic Suite in the Lac Okaopéo area south of our study 

area. The upper limit of deposition of the PLV has been constrained by detrital zircons 

studies (Lasalle et al., 2013) of two aluminous paragneisses from the Canyon domain, 

in which igneous cores of the youngest detrital zircon are ~1500 Ma, and the 

metamorphic grains and rims yield ages ranging between ~1450 and 1000 Ma, 

suggesting that the PLV was deposited at ~1.5 Ga, and underwent Pinwarian and 

Grenvillian metamorphisms. In addition, the core of a metamorphic monazite from an 

aluminous paragneiss in the PLV has yielded an age of 1445 ± 27 Ma (Lasalle et al., 

2014).  
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The PLV is intruded by several plutonic suites in which it occurs as enclaves, 

e.g., granite and charnockite of the Bardoux Plutonic Suite (1497 Ma; Augland et al., 

2015), felsic orthogneisses (including both older and younger tonalites of the Hulot 

Complex; ~1370-1440 Ma; Gobeil et al., 2002, 2005; Augland et al., 2015), granite, 

monzonite, and tonalite of the Castoréum Plutonic Suite (1393 ± 8 Ma, Moukhsil et al., 

2013b; Augland et al., 2015), and undeformed mangerite of the Okaopéo Plutonic Suite 

(1014.6 ± 2.1 Ma; Augland et al., 2015). Furthermore, the PLV has been intruded by 

numerous younger dykes including those of gabbronorite composition (1383.4 ± 1.1 

Ma; Augland et al., 2015) in the Hulot Complex and many discordant felsic pegmatites 

and ultrapotassic dykes of late Grenvillian age (~980-990 Ma; Dunning and Indares, 

2010) in the Canyon domain.  

The PLV in the Canyon domain has a high-grade metamorphic signature as 

revealed by the dominant metamorphic assemblage of Grt+Sill+Kfs±Bt+Liq 

(abbreviations after Whitney and Evans, 2010) in aluminous rocks that were 

metamorphosed under the peak metamorphic conditions of 600-1100 MPa and 800-900 

°C (Lasalle and Indares, 2014; Patrick and Indares, 2017) during the Ottawan phase of 

the Grenvillian Orogeny as indicated by monazite ages of ~1081-1038 Ma and 

metamorphic zircon ages of ~1076-1044 Ma (Dunning and Indares, 2010; Lasalle et 

al., 2013, 2014).  

2.3.2.2 The Mafic to Intermediate Unit (MIU) 

The Mafic to Intermediate Unit (MIU) was first described from the type location 

(#395), near its boundary with the PLV, as an exposure of dark and light grey layers 

with the latter dated at 1410 ± 16 Ma (fig. 4a in Dunning and Indares, 2010). At that 
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location, the layers are massive, medium-grained, and lack coarse plutonic texture, and 

the layering was interpreted as an original feature indicative of a supracrustal 

volcaniclastic origin, with the rocks being meta-tuffs. The dark grey layers were also 

observed to contain leucocratic melts with Grt ± Opx, and to occur as lenses or rafts 

within the light grey components. On the basis of lithology and age, Dunning and 

Indares (2010) tentatively correlated this unit with the Montauban Group to the 

southwest, which consists of remnants of an island arc accreted to the Laurentian 

margin (Nadeau and van Breemen, 1994; Sappin et al., 2009). Later geochemical and 

isotopic data from a sample collected from the light grey layer of the unit was 

interpreted to indicate an origin in a mature continental arc setting (Valverde Cardenas 

et al., 2012). Subsequently, another exposure of the same belt to the north was 

discovered to consist of relict plutonic textures and original compositional layering (fig. 

2a in Indares and Moukhsil, 2013), which were interpreted as part of the MIU formed 

as a shallow-depth layered intrusion. Based on pronounced compositional layering 

between different mafic parts and from the overall association of the unit, Indares and 

Moukhsil (2013) named it as the Layered Mafic Suite (LMS). This name was not 

intended to imply that the whole unit consisted of layered intrusions in the classical 

sense, and both the names have been alternatively used in recent literatures (e.g., Lasalle 

et al., 2013, 2014; Patrick and Indares, 2017). This unit at the type location has been 

pervasively cross-cut by late Grenvillian granite pegmatities dated at 995 ± 3.5 Ma 

(Dunning and Indares, 2010).  

2.3.2.3 The Quartzofeldspathic unit 

The MIU is in local contact with a supracrustal sequence named the 

Quartzofeldspathic unit (QFU; Indares and Moukhsil, 2013). Although of uncertain 
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origin, the QFU contains (i) mafic rafts that exhibit a geochemical signature similar to 

modern mature continental arcs (Valverde Cardenas et al., 2012), (ii) patches of a 

bimodal hydrothermally altered volcanic sequence (Hindemith and Indares, 2017; 

Patrick and Indares, 2017) named the Layered Bimodal Suite (LBS) that formed at 1238 

± 13 Ma (Indares and Moukhsil, 2013; Lasalle et al., 2013), and (iii) an apparently 

younger magmatic complex named the Vein Complex (VC), which was thought to have 

formed due to felsic intrusion within the MIU (Indares and Moukhsil, 2013). The age 

of the QFU and the mafic rafts within it were inferred by these authors to be ~1.4 Ga 

based on the presence of transposed felsic pegmatites in the unit that also occur in the 

PLV and MIU, but are absent from the LBS. Together these five units, the PLV, MIU, 

QFU, LBS, and VC constitute the major units exposed in the central and northern part 

of the Canyon domain (fig. 2.2).  

2.3.2.4 Previous interpretations on tectonic evolution 

Based on the inferred depositional age of the PLV at > 1500 Ma, and the 

intrusion of Bardoux suite at ca. 1497 Ma in an arc setting, the PLV was compared with 

the Wakeham Group farther east by Augland et al. (2015), who proposed that the former 

was deposited in a back-arc or intra-arc setting, consistent with previous interpretations 

(Larbi et al., 2003; Corriveau and Bonnet, 2005; Bonnet et al., 2005; Corriveau et al., 

2007). A recent seismic study has revealed that the Wakeham Group continues to the 

southeast under Paleozoic cover on Anticosti Island (fig. 2.1; Pinet, 2016), considerably 

enlarging the known extent of this unit.  

On the basis of geochemical and Hf isotope data, the tectonic settings of the 

central Grenville Province have been inferred to have evolved from a ca. 1500 Ma 

continental margin arc to a ca. 1434 −11+7  Ma distal-arc or microcontinent-arc setting, 
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followed by crustal shortening due to terrane accretion and subsequent arc formation at 

ca. 1413 Ma (Augland et al., 2015). Additionally, the voluminous metaluminous 

Renwick mangerite with a within-plate signature was emplaced at 1402 ± 72 Ma and is 

in thrust contact with the PLV (Moukhsil et al., 2012, 2013a). An age of 1403 −25+32 Ma, 

was obtained by Indares and Dunning (2004) from a granodiorite body in the 

northeastern part of the Canyon domain near the Banded Complex, and is apparently 

also part of the Renwick mangerite. 

2.3.3 Field Relations of the mafic rocks 

The mafic samples in the PLV come from concordant layers up to a few tens of 

centimeters thick that show sharp contacts with the layering in the paragneiss (fig. 2.3a). 

There is no evidence of intrusive or tectonic contact between the mafic layers and the 

PLV paragneiss, and therefore, the layers could be interpreted to be in situ. 

Alternatively, they could have intruded the paragneiss sequence as concordant sills. The 

mafic gneisses commonly contain thin leucocratic films or veins parallel to or 

crosscutting the layering (fig. 2.3b), and in places leucocratic pods enclose clusters of 

coarse-grained ferromagnesian minerals. These features are consistent with derivation 

by partial melting, either of the mafic layers, or of the host paragneiss, or both, and in 

the latter case raising the possibility of felsic melt injection within the mafic sills. Our 

samples for this study were collected from well preserved homogeneous regions within 

the mafic layers that lacked leucocratic veins (fig. 2.3c), and hence are most likely to 

represent the original compositions.  

As described above, the MIU at the type outcrop #395 was initially interpreted 

to be supracrustal in origin (Dunning and Indares, 2010), but following recognition at 
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a different location (#210) farther north that the unit also included components of 

shallow mafic intrusions that gave it a ‘layered’ appearance, it was renamed the Layered 

Mafic Suite (LMS; Indares and Moukhsil, 2013). Follow-up fieldwork in 2011 at the 

extension of the type outcrop for the unit (#395) led to the identification of a wider 

range of lithologic types, varying from dark through intermediate to light grey in colour 

(D, I, and L, respectively; fig. 2.3d), which are documented in more detail in this study. 

The dark grey components are locally observed to be intruded by the light grey 

components, and feature sharp to diffuse, cuspate and lobate contacts (fig. 2.3e). 

Elsewhere the dark and intermediate grey components are enclosed within the light 

grey components and exhibit evidence for partial disintegration, brecciation, and 

rounded to sub-rounded margins (fig. 2.3d, f). Moreover, the dark and intermediate grey 

components are commonly associated with thin leucocratic films or pods, in the absence 

of which the contacts range from sharp to diffuse. These contact relationships, together 

with the variable colour (and hence composition) of the mafic components ranging from 

dark grey through intermediate to light grey (fig. 2.3d), along with the contained 

leucocratic films and pods, are indicative of multiple injections of different magma 

batches, magma mingling, and possible mixing in a sub-volcanic or shallow plutonic 

settings, such as has been documented in many intrusive complexes elsewhere (e.g., 

Vernon et al., 1988; Sutcliffe, 1989; Sutcliffe et al., 1989; Castro et al., 1990; Lindline 

et al., 2004; Barbarin, 2005). However, in addition to the original igneous complexity, 

dark grey components contain occasional garnet- and pyroxene-bearing leucocratic 

veins (Dunning and Indares, 2010) that are inferred to be the result of localized 

dehydration melting along the margins of dark and light grey (hornblende-rich) rocks 

(fig. 2.3d and e). Such melts are mostly small-volume and in-situ. As such, these mafic 
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rocks are not similar to the migmatites reported from the amphibolitized margins of Fe-

Ti gabbros from the Baie du Nord segment of the MIZ (fig. 3c in Cox et al., 1998), and 

from the mafic migmatites in the Kapuskasing Structural Zone (fig. 2 in Hartel and 

Pattison, 1996). The samples collected for this study are massive and come from parts 

of the exposures free from leucocratic veins and visible hydrothermal alteration (fig. 

2.3e). 

Ideally, an appropriate informal name for this ca. 1.41 Ga unit should take into 

consideration its compositional range, intrusive mode of occurrence, and shallow 

plutonic origin. The name Layered Mafic Suite is no longer appropriate due to the lack 

of layering in the type outcrop and its unintended link with classical layered mafic 

intrusions. The original name, Mafic to Intermediate Unit, although coined to describe 

rocks that were inferred to be of volcaniclastic origin, is permissive of either a 

volcaniclastic or plutonic origin and sufficiently general to accommodate the observed 

major features of the unit described herein, and so is retained in this study pending more 

detailed evaluation of the unit as a whole. Thus henceforth in this paper we extend the 

original meaning of the term ‘Mafic to Intermediate Unit’ (MIU), for which an age of 

ca. 1.41 Ga has been determined for a mafic light grey component (Dunning and 

Indares, 2010), to include rocks of a somewhat wider range of compositions that are 

deduced to be part of a shallow plutonic, mixed intrusive unit. At the extension of 

outcrop #395 from which the samples in this study come, there are no known rocks of 

supracrustal origin. 
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2.4 Sampling and Analytical techniques 

The rocks in our study area in the central Grenville Province have undergone 

relatively low-strain mid-pressure granulite-facies metamorphism. In order to minimize 

the effects of metamorphism, we have taken special care to collect samples from the 

most lithologically coherent and unmelted parts of representative units in large 

exposures. For analytical purposes, we have only sampled rocks that were free of 

leucosomes and cross-cutting veins, and all samples were cut to remove weathered 

portions before proceeding to standard thin section preparation and crushing to produce 

powders for analysis.  

Detailed petrographic study was carried out on 7 selected polished thin sections 

using an optical microscope and 5 samples were chosen for SEM mineralogical 

mapping using a Quanta 650 FEG-SEM. The Energy Dispersive Scanning (EDS) 

system in the SEM was used to semi-quantitatively identify and calculate modal 

abundances of mineral phases. Analyses were carried out under 25 keV acceleration 

potential and 10 nA beam current condition to obtain BSE images and EDS analyses. 

False colour mineralogical maps (fig. 2.4) showing the relationships and the 

distribution of the phases were produced by post-processing the BSE and EDS data 

using Mineral Liberation Analysis software on the SEM. 

Fresh interiors of selected samples were used for standard crushing in a steel-

plated jaw crusher and powdering in an agate ball mill. A portion of the powdered 

samples was selected for separation of zircon and CL imaging and U-Pb 

geochronology. CL imaging (fig. 2.5) of selected zircon grains was carried out using a 

CL detector attached to the FEI Quanta 400 SEM using a 15 keV acceleration potential 
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and a 10 nA beam current. The procedure followed for U-Pb chemical abrasion thermal 

ionization mass spectrometry (CA-TIMS) analyses is given in appendix A. 

Selected whole rock samples were crushed using standard jaw crusher and disk 

mill techniques, followed by further pulverization for analysis of major and trace 

element geochemistry and radiogenic tracer isotopes. Sm and Nd were separated from 

pulverized whole-rock powders of four samples following an in-house protocol at 

MUN, and Sm-Nd isotope ratio analyses were determined using a multi-collector 

Finnigan Mat 262 TIMS mass spectrometer at MUN. Details of trace isotope analytical 

methods are described in appendix A. For major and trace elements, pulverized whole-

rock powders of six samples were analyzed at the Actlabs, Ancaster, Ontario 

(www.actlabs.com). The detection limits for the analyses are typically in the range of 

0.01-0.001 % for major elements and 1-30 ppm for trace elements.   

2.5 Results 

2.5.1 Petrography 

The mafic gneissic layers in the PLV are coarse-grained, heterogeneous, and 

display two different textural types. Type-I (#11-383c and M5-383E1; fig. 2.4a) is 

composed of Grt + Pl + Cpx + Opx + Qtz + Bt + Ilm ± Hbl. Garnet porphyroblasts are 

extensively corroded and partially replaced by Pl + Cpx + Bt ± Hbl ± Opx. The matrix 

is composed of subgranoblastic Pl + Cpx + Opx + Qtz + Bt + Ilm ± Hbl, with trace 

amounts of rutile, apatite, titanite, magnetite, sulphides, zircon, K-feldspar, allanite, 

monazite, and barite. K-feldspar is commonly associated with plagioclase, hornblende, 

and biotite. The samples with this textural type contain large, partly resorbed quartz 

grains (fig. 2.4b) of various shapes (sub-rounded to stretched ribbons) and sizes (up to 

http://www.actlabs.com/
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3.6 mm long ribbons) mantled by plagioclase, clino-, and orthopyroxene. Quartz grains 

in some of the PLV samples with Type-I texture are large and highly corroded 

indicating chemical disequilibrium with the matrix composition. Such large partially 

resorbed quartz grains in mafic rocks are generally interpreted to be xenocrystic (e.g., 

Kuno, 1950; Sato, 1975; Koyaguchi, 1986), and may provide a substrate in a hybrid 

melt to nucleate pyroxenes (e.g., Hibbard, 1981; Vernon, 1990; Lindline et al., 2004). 

Their occurrences in mafic magmas may be indicative of mingling with felsic melts 

that were either produced during emplacement and stagnation of mafic magma in a 

crustal magma chamber, or they may have been derived by wall-rock assimilation 

during the ascent of mafic magma through continental crust. The preservation of quartz 

xenocrysts in the mafic sills indicates that homogenization of the contaminant with the 

mafic melt was incomplete (Hibbard, 1981; Vernon, 1990; Lindline et al., 2004). Type-

II (#11-383e1; fig. 2.4c) is composed of large garnet porphyroblasts embedded in a 

matrix of Pl + Cpx + Opx + Hbl + Bt + Ilm. Garnet is variably corroded and replaced 

by Hbl + Cpx + Pl + Opx with the relict shape still preserved in some cases. This type 

does not have large quartz grains as observed in type-I, and contains allanite as an 

accessory phase. The mineral assemblage for the peak metamorphic stage in both the 

textural types in the PLV comprises Grt + Pl + Cpx + Opx, which was retrogressed 

under hydrous conditions forming hornblende and biotite replacing garnet.  

The main lithological components of the MIU analyzed in this study come from 

the dark, intermediate, and light grey components, which are Grt-Cpx-rich (fig. 2.4d), 

Hbl-Grt-Cpx-rich (fig. 2.4e), and Pl-Hbl-rich (fig. 2.4f), respectively. The dark grey 

component is characterized by granoblastic idiomorphic garnet (1–5.5 mm) and 

clinopyroxene, along with orthopyroxene, ilmenite, hornblende, and minor plagioclase. 
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Large apatite crystals, present both as inclusions (in garnet and clinopyroxene) as well 

as in the matrix, form a characteristic accessory phase in these samples. The 

intermediate grey component is composed of porphyroblastic garnet (0.8–3.7 mm) and 

clinopyroxene embedded in a matrix of Hbl + Pl + Opx + Ilm. Biotite constitutes an 

important minor phase. The light grey component contains large sub-idiomorphic 

garnet porphyroblasts embedded in an overall coarse, crudely foliated matrix composed 

of subgranoblastic Hbl + Pl + Bt + Ap + Ilm + Ttn. The large garnet poikiloblasts in a 

pyroxene-bearing matrix indicate their formation was favoured by vapour-absent 

dehydration reactions under upper amphibolite to granulite-facies conditions (e.g., 

Hartel and Pattison, 1996; Pattison, 2003; Pattison et al., 2003). Clinopyroxene is 

extremely rare in the matrix in the investigated sample and occurs as very small grains 

at two locations. Thin rims of Pl ± Hbl ± Bt wrap around large (6-15 mm) corroded 

poikiloblastic garnet, which contains inclusions of Plg + Cpx + Ilm + Ttn + Ap. 

Titanites in the matrix are less abundant and smaller in size than those within garnet. 

All the samples in the MIU contain accessory allanite, magnetite, and zircon. The 

petrographic evidence in the mafic rocks from the MIU is suggestive of different 

basaltic bulk compositions, and supports the field interpretation of mingling between 

heterogeneously sourced magmatic components. 

All the mafic rocks in our study have the mineral assemblage Grt + Pl + Hbl ± 

Cpx ± Opx that is indicative of mid-pressure granulite-facies metamorphism (e.g., 

Pattison, 2003), which is consistent with the estimated P-T range for the peak 

metamorphism determined from the host paragneiss samples in the PLV mentioned 

earlier. The peak AFM mineral assemblage for dark grey samples comprises Grt + Cpx 

+ Opx, whereas textures and abundance of hornblende in intermediate and light grey 
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samples indicate hornblende could have been part of peak assemblage in these samples. 

Both the PLV and the MIU were retrogressed under variably hydrous conditions 

leading to the development of rims of hornblende and biotite around garnet 

porphyroblasts and pyroxenes, and in the matrix. Moreover, modal estimation of 

minerals in SEM-MLA provides evidence for variable amounts of chlorite-sericite-

magnetite-carbonate-sulphides that are suggestive of hydrothermal alteration. The 

abundances of carbonates, magnetite, and sulphides (total ~1.5 %) is highest in the dark 

grey rocks in the MIU, whereas sericite and chlorite (total ~5%) are most commonly 

developed after plagioclase and garnet in the light grey rocks. 

2.5.2 U-Pb isotope analyses 

One sample (#11-383C) from the mafic layers in the PLV was chosen for zircon 

U-Pb analysis. Zircons in this sample display three different morphologies– prisms, 

round to sub-round grains, and flat grains. The prisms show complex internal CL 

structures (fig. 2.5) e.g., relict prisms, xenocrystic and composite cores, sector zoning, 

local internal dissolution indicated by dark convolute structures, bright areas of 

recrystallization, and thin but well developed metamorphic rims. A few prisms are 

much larger than average (not shown in the figure) and are thought to be xenocrystic. 

The round to sub-round zircon have internal convolute structures in dark zones with 

low CL response that indicate dissolution, and bright areas with high CL response 

indicating local recrystallization, relict prisms, radial fractures, and sector zoning. 

These round to sub-round zircon grains are interpreted to be corroded and recrystallized 

prisms. The flat grains also show complex internal structures with well-developed 

metamorphic rims. We carried out five analyses of the euhedral clear prisms, 

comprising three single-grain analyses and two multigrain analyses composed of 3-4 
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grains each. The data are presented in table 2.1 and plotted on a Concordia diagram 

(fig. 2.5). The data points defined a discordia line that intersects the Concordia at an 

upper intercept of 1439 −68+76 Ma, interpreted as the crystallization age, and a lower 

intercept of 1029 −47+33 Ma, interpreted as the age of growth of metamorphic rims.   

2.5.3 Sm-Nd isotopes 

Four samples were selected for Nd isotope analyses (table 2.2; fig. 2.6), two 

from the mafic layers in the PLV (#RS383E, 11-383c) and two from the representative 

dark grey rocks in the MIU (#11-395dx, 11-395d1). The samples from the PLV possess 

initial Nd isotopic ratios (143Nd/144Nd)ini of 0.510807 and 0.510805, yield εNd1.4 Ga 

values of -0.4, and TDM model ages of 2.57 and 2.72 Ga, respectively. The samples 

from the dark grey rocks possess initial Nd isotope ratios of 0.510637 and 0.510595, 

and yield εNd1.4 Ga values of -3.7 and -4.6, respectively. These two samples have yielded 

anomalously old model ages, which are not considered to be meaningful.  

The high Sm/Nd ratios (> 30), shallow slopes, and anomalously old Archean 

model ages (> 3.7 Ga) in the dark grey rocks suggest that their Sm-Nd isotope 

systematics have been modified, possibly by hydrothermal processes unrelated to 

regional high-grade orogenic metamorphism. For instance, Rosing (1990) showed that 

even a small change in the Sm/Nd ratio due to fluid-rock interaction may result in 

significant deviation of the calculated initial 143Nd/144Nd ratio and model age, and that 

such deviation may be modified exponentially by the time interval between 

crystallization and secondary disturbance leading to anomalously old model ages. The 

effect of secondary alteration on Sm-Nd isotopes similar to the dark grey rocks has also 

been demonstrated on Na- and K-metasomatized igneous clasts from the 
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Paleoproterozoic Bonnetia volcanic arc terrane in Yukon (Nielsen et al., 2013; their 

figs. 11 and 12). 

2.5.4 Geochemistry 

Both the PLV and the MIU have been subjected to Grenvillian mid-pressure 

granulite-facies metamorphism, and both the suites record evidence for partial melting 

and low-grade hydrothermal alteration. Therefore, it is necessary to assess the effects 

of partial melting and hydrothermal alteration on the major and trace element 

composition of the mafic rocks.  

2.5.4.1 Effects of metamorphism and hydrothermal alteration 

Effects on major elements 

The mafic rocks in our study exhibit alteration indices [A.I = 100 X (MgO + 

K2O)/ (MgO + K2O + Na2O + CaO)] (Ishikawa et al., 1976) between 33-48 (median 

value 37) and peraluminous indices (P.I = Al2O3/ (CaO + Na2O + K2O)mol.) between 

0.56-0.89 (median value 0.62) (table 2.3), which are similar to fresh MORB and arc-

related mafic volcanic rocks (A.I = 36 ± 8 and 34 ± 10, respectively, and P.I = 0.8 ± 

0.2; Laflèche et al., 1992). However, the mafic rocks from the PLV and the dark and 

intermediate grey rocks from the MIU exhibit Al2O3/Na2O > 10 suggesting Na-loss 

(Spitz and Darling, 1978), and high chlorite-carbonate-pyrite index or CCPI > 90 

suggesting carbonate-sericite-chlorite-sulphide alteration [CCPI = 100 × (MgO + 

FeOt)/ (MgO + FeOt + K2O + Na2O)] (Large et al., 2001). However, caution should be 

taken with the CCPI index as it is strongly correlated with magmatic fractionation and 

primary compositional variations in mafic rocks (Large et al., 2001). The alteration 

index K/Na in the mafic rocks varies between 0.2-0.9, suggesting they are mostly 

unaltered (K/Na = 2.0-0.5) with four samples being moderately Na-altered (K/Na = 0.5-
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0.1) (Nielsen et al., 2013). Overall, the major element data suggest that the mafic rocks 

in our study are mostly unaltered except for mobility in alkalis.  

Effects on trace elements 

One mafic sample from the PLV (RS383E1) exhibits depletions in LREE 

relative to MREE [(La/Sm)CN ≤ 1; subscript ‘CN’ stands for chondrite-normalized], 

strong negative Eu anomalies (Eu/Eu* = 0.38; Eu* refers to the value obtained by linear 

interpolation between adjacent elements), high Ti/Eu (~11000), strong depletions in Zr 

and Hf, enrichments in Nb and Ta compared to La, and strong fractionation in Zr/Hf 

ratio (26). Two dark grey samples from the MIU also exhibit evidence for LREE 

depletions, strong negative Eu anomalies (Eu/Eu* = 0.30-0.32), high Ti/Eu (> 11,000), 

and disturbance in Nd isotopic systematics due to fluid-rock interaction. These three 

samples are moderately altered with low K/Na and high CCPI values, as is the sample 

RS209-1 from QFU. The potential mobility in HFSE, REE, and Eu2+ in these samples 

depends on the pH, chemistry, pressure-temperature, and redox condition of 

hydrothermal fluids (Jiang et al., 2005). Recently, argillic and carbonate alteration of 

various degrees by high-temperature CO2-rich fluids have been shown to have affected 

the ca. 1.24 Ga andesitic volcanic rocks from the LBS in the study area (Hindemith et 

al., 2017). Despite the widely accepted notion that the REE and HFSE are 

‘conservative’ elements (Pearce, 1983; Tatsumi et al., 1986; Pearce and Peat, 1995), 

several recent studies have shown that these elements can be mobile in magmatic, 

metamorphic, and submarine-hydrothermal environments (e.g., Ludden et al., 1982; 

Sorensen and Grossman, 1989; Rubin et al., 1993; Jenner, 1996; Woodhead et al., 2001; 

Kamber et al., 2002). 



 45 

The presence of negative Eu anomalies (Eu/Eu* < 1) in the remaining samples 

indicates that they have not been subjected to partial melting and melt loss, as mafic 

restitic compositions would show positive Eu anomalies, or decrease in original 

negative anomalies inherited from their protoliths (Rudnick, 1992). The K/Rb ratios 

(150-775) in the mafic rocks mostly fall within the range of the igneous fractionation 

trend (fig. 2.7a; Shaw, 1968; Rudnick et al., 1985), which along with their Eu/Eu* < 1 

(fig. 2.7b) suggest that most of these samples have not been modified by partial melting 

or alteration. The increasing K/Rb ratios at K2O < 1 wt% in the altered mafic samples 

from the PLV and the dark grey rocks from the MIU indicate Rb loss (Rudnick, 1992). 

However, LILE and LFSE are well known to be fluid-mobile under low-grade 

conditions, and hence will not be used in our study.  

Thorium, although stable below amphibolite-facies conditions, can be mobile 

during high-grade metamorphism in a water-dominated system (Jenner, 1996). In Th/U 

vs. La/Th diagram, the moderately altered samples plot within the field of igneous rocks 

because of loss in La, as suggested by their low LREE contents. Some of the least 

altered mafic samples exhibit La/Th ratios (25-52; fig. 2.7c) higher than common 

igneous rocks (La/Th ≤ 21; Rudnick et al., 1985; Sun and McDonough, 1989) 

suggesting Th mobility relative to La. However, their La/Th ratios do not correlate with 

any of the alteration indices; and moreover, the mafic samples in our study plot well 

within the permissible range of other least altered mafic granulites (e.g., Blein et al., 

2003; Bonnet et al., 2005; Montreuil and Constantin, 2010), for which Th has been 

successfully used as a tool in petrotectonic discrimination (e.g., Montreuil and 

Constantin, 2010). High La/Th (> 20) is common in many modern back-arc basin 

basalts e.g., the East Scotia and the Lau Basin Spreading Centres (Taylor and Martinez, 
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2003; and references therein). Therefore, variability in Th in the least altered mafic 

rocks in our study is considered to be a source characteristic and a result of the processes 

involved in the magma genesis (Valverde Cardenas et al., 2012). 

Dehydration melting in mafic migmatites has been shown to produce 

leucosomes that are not significantly different in composition than their original 

protoliths (Sawyer, 1991), and many recent studies have shown that such process have 

only minor effect on immobile element remobilization in mafic gneisses (e.g., Smith et 

al., 2001; Blein et al., 2003). Although the large leucosomes were not sampled for this 

study, field observations suggest that the small-volume in-situ melts are locally 

restricted in a way suggestive of the overall preservation of bulk rock compositions 

(e.g., Vielzeuf et al., 1990). Another more proximal example comes from the 

poikiloblastic, garnet-bearing mafic migmatites in the marginal gabbro, Baie du Nord 

segment of the MIZ, which were shown have broadly retained their protolith 

compositions identical to the main unaltered Fe-Ti gabbro (Cox et al., 1998). Several 

recent studies of high-grade gneisses in the Grenville Province have demonstrated that 

high-grade metamorphism and hydrothermal alteration can be effectively isochemical 

for immobile-incompatible major and trace elements e.g., HFSE and REE (Blein et al., 

2003; Bonnet et al., 2005; Dickin and McNutt, 2007; Sappin et al., 2009; Yardley, 2012; 

Corriveau and Spry, 2014).  

In summary, since the mafic samples analyzed in this study were selected from 

the most homogeneous and least altered parts of outcrops in which no visible signs of 

partial melting or hydrothermal alteration were recognized, they are inferred to 

represent original protolith chemistry. This is also supported by lack of evidence for 

partial melting in hand specimens and in the thin-sections. Combined mineralogical, 
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isotopic, and geochemical evidence suggests that the mafic samples are mostly 

unaltered to moderately altered in few cases, and that their immobile major and trace 

element contents are largely unaffected by metamorphic or hydrothermal processes.   

2.5.4.2 Major and trace element geochemistry  

The major and trace element geochemistry of the mafic rocks from the PLV and 

the MIU is listed in table 2.3. All the oxide values are reported as weight percentages 

and the trace element concentrations are reported in ppm. 

All the mafic samples from the PLV have fairly restricted major element 

compositions with low SiO2 (44-46 wt%), high TiO2 (2.64-3.44 wt%) and FeO(total) (17-

19 wt%) characterizing them as ‘ferro-basalt’ or ‘Fe-Ti basalt’ (fig. 2.8a) according to 

the classification of Byerly et al. (1976). They also display average Al2O3 (12.7-14 

wt%), low MgO (~6 wt%), Mg# (0.37-0.40), Ni (40-70 ppm), Cr (50-70 ppm), and high 

Sc (~55 ppm) and V (435-742 ppm). Based on the immobile major and trace elements 

they are classified as tholeiitic (fig. 2.8b) sub-alkaline (fig. 2.8c) basalt. Note that the 

moderately altered sample RS383E1 has shifted to higher TiO2 and lower Zr/TiO2 side 

compared to the other samples. 

The dark, intermediate, and light grey rocks from the MIU have distinct major 

elements concentrations. The dark grey rocks have very low SiO2 (~40 wt%) along with 

high TiO2 (~3.5-4.1 wt%) and FeO(total) (19.8-22.9 wt%) characterizing them as high 

Fe-Ti basalt (fig. 2.8a) of Byerly et al. (1976). These samples also have average Al2O3 

(12.3-14.1 wt%), low MgO (~6 wt%), Mg# (0.32-0.35), and high Sc (~60-66 ppm) and 

V (470-620 ppm). The intermediate grey sample is also a high Fe-Ti basalt and it 

exhibits low SiO2 (42.6 wt%), high TiO2 (3.0 wt%), FeO(total) (19.7 wt%), average Al2O3 
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(12.5 wt%), and relatively higher MgO (7 wt%), Mg# (0.39), Sc (60 ppm), and V (803 

ppm). The light grey rocks have relatively higher SiO2 (46-47 wt%) and Al2O3 (18.0-

20.3 wt%), along with lower TiO2 (~1.8 wt%), FeO (total) (~12 wt%), MgO (3.56-4.64 

wt%), Mg# (0.35-0.42), Sc (19-34 ppm), and V (134-302 ppm). The Ni and Cr contents 

are below the detection limit of ICP-MS for the dark and light grey rocks. All the three 

components are classified as tholeiitic (fig. 2.8b) sub-alkaline (fig. 2.8c) basalt to 

basaltic andesite.  

In the chondrite-normalized REE diagrams, the samples from the PLV show 

low to moderate REE fractionation (fig. 2.9a) as indicated by (La/Yb)CN = 2.0-2.6, and 

strong negative Eu anomalies [Eu/Eu* = 0.67-0.86; Eu* refers to the value obtained by 

linear interpolation between adjacent elements]. Their overall REE patterns are very 

similar to E-MORB (although exhibiting much higher abundances than E-MORB) 

except for the –ve Eu* anomalies. The moderately altered sample #RS383E1, however, 

is slightly depleted in LREE [(La/Sm)CN = 0.8] and relatively enriched in MREE 

[(Gd/Yb)CN = 2.0] with strong negative Eu anomaly (Eu/Eu* = 0.38). In the MIU, the 

dark grey rocks are moderately fractionated in REE [(La/Yb)CN = 1.9-3.5] with flat 

LREE [(La/Sm)CN = 0.8-1.3], slightly enriched MREE [(Gd/Yb)CN = 1.6-1.9] (fig. 

2.9b), and strong negative Eu anomalies (Eu/Eu* = 0.30-0.58). Note that the two 

moderately altered samples (11-395dx and d1) are similar to #RS383E1 in the PLV. 

The intermediate grey sample is moderately fractionated in REE [(La/Yb)CN = 3.6] with 

enrichment in both LREE [(La/Sm)CN = 1.7] and MREE [(Gd/Yb)CN = 1.6], and a 

weaker negative Eu anomaly (Eu/Eu* = 0.89) compared to the dark grey rocks (fig. 

2.9c). The light grey rocks are the most fractionated in REE [(La/Yb)CN = 5-7] with 

enrichment in both LREE [(La/Sm)CN = 1.7-2.3] and MREE [(Gd/Yb)CN = 1.6-2.1], 
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weak negative Eu anomalies (Eu/Eu* = 0.83-0.85), and similar REE patterns to the 

intermediate grey sample (fig. 2.9c).  

In the primitive mantle-normalized multi-element diagram, the least altered 

mafic samples from the PLV and the dark grey rocks from the MIU display distinct but 

small depletions in Th, Nb, Zr, and Ti (fig. 2.9d and e), and variable depletion in P (not 

shown). The moderately altered dark grey rocks in the MIU show patterns similar to 

the PLV sample #RS383E1, such as depletion in Zr, Hf, Ti, P, and variable enrichment 

in Nb (fig. 2.9d and e). Despite negative anomalies, the samples in PLV and the dark 

grey rocks have high Fe, Ti, and P contents. The intermediate and light grey samples in 

the MIU exhibit depletion in all HFSE and are variably depleted or enriched in Th (fig. 

2.9f). Their multi-element patterns match well with two mafic samples from the ~1.4 

Ga QFU (Valverde Cardenas et al., 2012) and the average composition of the Andean 

arcs (Kelemen et al., 2004).  

2.6 Discussion 

2.6.1 Significance of the U-Pb isotope data 

The age data obtained in this study along with other recent studies from the 

Canyon domain are presented in fig. 2.10. In this study, sample #11-383c from the PLV 

has yielded an imprecise upper intercept age of 1439 −68+76 Ma (fig. 2.5). Considering 

the lower limit of uncertainty, there is a small overlap of about 11 Ma between the upper 

age bracket for PLV deposition of ~1.5 Ga and the age of emplacement of the dated 

mafic layer. However, our preferred interpretation, which is consistent with the 

interpreted field relationships, is that the mafic layers in the PLV are younger than the 

paragneiss sequence, and intruded the PLV at 1439 −68+76 Ma as concordant sills. Despite 
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large uncertainties, this age is comparable with the age of emplacement of the ‘older 

tonalites’ in the Lac Okaopéo area farther south at 1434 −11+7  Ma (Augland et al., 2015), 

and with the age of the core of a metamorphic monazite at 1445 ± 27 Ma (Lasalle et al., 

2014).  

The crystallization age of the MIU has been previously determined to be 1410 

± 16 Ma based on CA-TIMS U-Pb dating of zircon from a light grey layer (#04-395z; 

Dunning and Indares, 2010). This correlates well with the age bracket of a pre-

Grenvillian metamorphic event in the PLV between 1408 ± 24 Ma and 1391 ± 33 

(Lasalle et al., 2013) determined from zircon rims in two metapelite samples. This post-

Pinwarian metamorphic event (including uncertainties) in the PLV was previously 

attributed to the emplacement of the mafic rocks in the adjacent MIU (Indares and 

Moukhsil, 2013; Lasalle et al., 2013), but can now also be related to the intrusion of the 

mafic sills in the PLV (this study), as the ages of the two units overlap, within 

uncertainties. 

The PLV was metamorphosed during the Ottawan phase of the Grenvillian 

Orogeny, as revealed by: (i) monazite ages between ca. 1081-1038 Ma determined by 

TIMS (Dunning and Indares, 2010); (ii) ages of BSE-dark grains or cores of monazites 

between ca. 1082-1059 Ma determined by LA-ICP-MS analyses (Lasalle et al., 2014); 

and (iii) metamorphic zircon ages between ca. 1076-1044 Ma determined by LA-ICP-

MS analyses (Lasalle et al., 2013). Modelling of P-T paths for several paragneiss 

samples in the PLV has provided an estimated peak Ottawan metamorphic conditions 

of 600-1100 MPa and 800-900 °C, with retrograde conditions of 600-800 MPa and 800-

865 °C (Lasalle and Indares, 2014; Patrick and Indares, 2017). 
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The PLV was also affected by the Rigolet phase as supported by: (i) one 

concordant TIMS analysis of metamorphic monazite at 1001 ± 3 Ma (Dunning and 

Indares, 2010); and (ii) the ages between ca. 1014-980 Ma obtained from BSE-bright 

metamorphic rims of monazites from the matrix of aluminous paragneiss samples 

(Lasalle et al., 2014). In this study, the CL images of zircon from the mafic sills in the 

PLV (fig. 2.5, i and ii) reveal multiple metamorphic rims around prismatic igneous 

cores. Our data yield a lower intercept metamorphic age of 1029 −47+33 Ma, overlapping 

within uncertainties with the previous results, but also allowing for the possibility that 

the PLV could have been affected by Rigolet metamorphism. In the Lac Okaopéo area 

to the south, a similar metamorphic age of 1027 ± 25 Ma for the main Pb-loss event in 

zircon was recorded from the ca. 1497 Ma Bardoux pluton, and a metamorphic zircon 

from the 1383.4 Ma metagabbronorite yielded an age of 1002 ± 2 Ma (Augland et al., 

2015). The age of intrusion of the unmetamorphic Okaopéo plutonic suite at 1014.6 ± 

2.1 Ma within the PLV was interpreted to provide a minimum age for the 

metamorphism of the PLV in the Lac Okaopéo area (Augland et al., 2015).  

The late-Grenvillian ages documented in the PLV and metagabbronorite were 

ascribed to the thermal and/or fluid effects of several small granitic pegmatite intrusions 

and/or fluid-assisted greenschist-facies metamorphism during the Rigolet phase 

(Lasalle et al., 2014; Augland et al., 2015). However, the ca. 996.7-1005.4 Ma 

magmatic monazite in REE-rich pegmatitic granite dykes derived from partial melting 

of Knob Lake Group paragneiss units at depth (Turlin et al., 2017) suggest that the 

Canyon domain and the Lac Okaopéo area were subjected to short-lived, high-grade 

Rigolet metamorphism, which could have overprinted the peak Ottawan 

metamorphism.  
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2.6.2 Significance of the Sm-Nd isotope data 

The mafic sills emplaced into the PLV have low εNd1.4Ga values (-0.4) that are 

just below the CHUR evolution line (fig. 2.6), which could indicate derivation from an 

undepleted primitive mantle source. However, there is no evidence for such a mantle 

source at this time in rocks preserved in the Grenville Province. Therefore, depleted 

mantle modified by crustal components, or enriched mantle, seems a more plausible 

explanation for the observed isotopic compositions of the mafic sills. From ca. 1.65-

1.13 Ga, magmas derived from the subcontinental lithospheric mantle (SCLM) to the 

southeast of the Superior Province were shown to be depleted suggesting the 

involvement of relatively young depleted mantle and crust with very short crustal 

residence time (Emslie and Hegner, 1993). Such depleted mantle-derived melts could 

have interacted with enriched crustal components to produce the observed isotopic 

composition in the mafic sills. In this context, it is noteworthy that Emslie et al. (1997) 

postulated a role for either melting of, or contamination by, depleted Labradorian 

SCLM to explain the source characteristics of the Michael Gabbro (1426 ± 6 Ma; 

Schärer et al., 1986) and the Shabogamo Gabbro (1445 ± 4 Ma; Krogh, 1993), which 

were subsequently interpreted to have been emplaced in a back-arc setting inboard 

from, and parallel to, the Laurentian margin (Rivers and Corrigan, 2000). Although 

comparable in terms of TDM ages, these gabbroic dykes exhibit more negative εNd 

values (-4.0 to -6.0) than the mafic sills in the PLV (εNd -0.4). 

Two other analyses, one from the light grey sample dated at 1.41 Ga from the 

MIU and a mafic sample from the QFU, yielded εNd values of +0.0 to +0.9 at 1.4 Ga 

with model TDM ages of 2.02-2.25 Ga (fig. 2.6; table 2.3) that were interpreted to 
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indicate derivation from depleted mantle followed by crustal contamination (Valverde 

Cardenas et al., 2012). 

The study area in the Manicouagan lies immediately to the north of the Quebecia 

terrane (fig. 2.1b; Nd model age of 1.55 Ga; Dickin and Higgins, 1992; Dickin, 2000), 

and is located within their Makkovikian model-age crust (Nd model ages range from 

1.7-2.0 Ga), which was suggested to have been reworked during the Labradorian 

Orogeny in a continental margin arc setting (Thomson et al., 2011; Vautour, 2015). The 

Nd data of the mafic rocks in our study correlate well with the data from the 

Makkovikian and older model-age crust (Dickin and Higgins, 1992; Thomson et al., 

2011; Vautour, 2015), supporting the interpretation of Thomson et al. (2011) that the 

Geon 14 arc-related rocks in the Canyon domain were formed on older crust that had 

Laurentian affinity, and that they are not part of an accreted terrane (Quebecia?) such 

as the Montauban arc located farther southwest in Portneuf – St. Maurice domain 

(Corrigan and van Breemen, 1997; Sappin et al., 2009). 

2.6.3 Petrogenesis 

It is necessary to assess the possible effects of magmatic petrogenetic processes 

such as fractional crystallization, Fe-Ti enrichment, and degrees of crustal 

contamination before discussing the likely petrotectonic affinities of the mafic rocks in 

our study. The operating premise of this part of the study is that critical use of isotope, 

major, and trace element (REE, and HFSE) data from the samples in the PLV and MIU 

that are inferred to be least altered and most closely represent their original protolith 

chemistry can provide insights into the petrogenetic processes, origin, and tectonic 

setting of the mafic units. 
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2.6.3.1 Fractional crystallization and Fe-Ti-P enrichment 

The high-grade mafic rocks of both the PLV and MIU have major and trace 

elements suggesting their protoliths were tholeiitic basalt. They exhibit low MgO, Mg#, 

Ni, Cr, and –ve Eu anomalies that are indicative of derivation from evolved magmas 

after early fractional crystallization of olivine, clinopyroxene, and plagioclase at source. 

The least altered mafic rocks in the PLV and the dark and intermediate grey rocks in 

the MIU display high TiO2, FeO(total), and P2O5 at very low contents of SiO2, 

characterizing them as high Fe-Ti (and -P) mafic tholeiites, formally known as 

“ferrobasalt” or “high Fe-Ti basalt” (Byerly et al., 1976), which in the terrestrial record 

is now well-known to be spatially restricted to extensional tectonic settings in both 

oceanic and continental environments. Peng et al. (2013) discussed the different 

processes suggested by various authors to be responsible for the enrichment of Fe-Ti 

content in mantle-derived mafic magmas. In both oceanic and continental extensional 

settings, the mechanism of Fe-Ti-P enrichment in tholeiitic basalt has been explained 

by a combination of high degrees (up to 74%) of plagioclase, clinopyroxene, and olivine 

fractionation and accumulation of Fe-Ti oxides and apatite in a closed system under 

low oxygen fugacity (fO2) conditions, suggesting generation of such basalt in a shallow 

level (spinel-peridotite) extensional setting (Clague and Bunch, 1976; Byerly et al., 

1976; Brooks and Nielsen, 1978; Sinton et al., 1983; Juster et al., 1989; Brooks et al., 

1991). The high Fe-Ti-P mafic rocks in our study indicate early olivine, clinopyroxene, 

and plagioclase fractionation with decreasing MgO along a tholeiitic trend. They are 

rich in Fe-, Ti-, and P-bearing phases such as ilmenite, titanite, and apatite. Moreover, 

they exhibit high REE contents with marked negative Eu anomalies, features 

characteristic of ferrobasalts that have experienced up to 90% fractional crystallization 
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in the Lau Basin back-arc spreading centres (Pearce et al., 1994). In summary, we 

postulate that the mafic rocks in this study have experienced significant early olivine, 

clinopyroxene, and plagioclase fractionation coupled with Fe-Ti oxide and apatite 

saturation following the “Fenner” trend under low fO2 conditions (Morse, 1980) in a 

shallow level closed-system magma chamber. This is compatible with the generation 

of high Fe-Ti-P mafic rocks in an extensional setting.  

In modern oceanic environments, high Fe-Ti-P basalts have been documented 

at the propagating tips of spreading centres along many mid-ocean ridges e.g., 

Galapagos spreading centre (Byerly et al., 1976; Juster et al., 1989) and East Pacific 

Rise (Clague and Bunch, 1976; Pearce et al., 1986), in oceanic back-arc basins e.g., 

Lau Basin (Pearce et al., 1994), and along spreading centres propagating into an island 

arc crust e.g., Josephine Ophiolite (Harper, 2003). In continental settings, such magmas 

are documented in modern continental rifts e.g., Afar Rift (Barberi et al., 1974) and the 

Red Sea (Cocherie et al., 1994), ancient plume-related continental rifts e.g., the 

Mesoproterozoic high Fe-Ti-P rocks of western Shandon in the North China Craton 

(Peng et al., 2013), in ancient intra-cratonic rifts e.g., Broken Hill Block of Australia 

(Rutherford et al., 2006; Raveggi et al., 2007), and in almost all major Proterozoic 

anorthosites or AMCG complexes worldwide (Ashwal, 1978, 1982; Philpotts, 1981; 

also for examples relevant to SE Laurentian margin see Duchesne, 1990; Owens and 

Dymek, 1992; McLelland et al., 1994; Dymek and Owens, 2001; Hébert et al., 2005; 

Charlier et al., 2006, 2008). Considering the active continental margin setting at 1.4 Ga 

along the southeastern margin of Laurentia, we infer that the high Fe-Ti-P mafic rocks 

in our study were formed in a continental margin back-arc or intra-arc extensional 

setting as has also been suggested for the Renzy terrane in the western Grenville 
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Province that has an inferred minimum age of ca. 1.40 Ga (Montreuil and Constantin, 

2010).  

2.6.3.2 Crustal contamination 

In the PLV, the mafic sills exhibit major and trace element compositions, e.g., 

HFSE depletion relative to REE (fig. 2.9), low to moderate LREE enrichment, and 

relatively higher SiO2 compared to other Fe-Ti-P metabasalts from the study area, and 

slightly negative εNd values, all of which suggest that their source was variably 

modified by crustal components, either in a subduction-related process or by crustal 

assimilation. Th is considered to be a reliable indicator of crustal input when compared 

with other incompatible elements such as Nb (Pearce and Peat, 1995; Pearce, 2008). 

On the Th/Yb vs. Nb/Yb diagram (fig. 2.11a; Pearce and Peat, 1995; Pearce, 2008), the 

mafic sills from the PLV plot on the mantle array between N-MORB and E-MORB 

precluding significant input from felsic upper crust or substantial melting of subducted 

sediments in an arc source. Therefore, their mantle source could have been modified by 

minor input from subduction-related fluids possibly derived from Th-depleted detritus 

causing the low Th and variable enrichments in the LILE (e.g., Woodhead et al., 2001). 

Melts derived from such fluid-metasomatized mantle were probably subjected to 

contamination by old mafic granulitic lower crust during ascent through attenuated 

continental crust prior to emplacement within the PLV sequence. The low Th in these 

samples and the presence of xenocrystic zircon also support the involvement of 

attenuated continental lower mafic crust (e.g., Peng et al., 2013). 

The least altered dark and intermediate grey rocks from the MIU exhibit very 

low SiO2 and low to moderate LREE enrichment, precluding significant contamination 

by upper crust or subduction components (Zheng and Hermann, 2014; Dai et al. 2015). 
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Their chondrite-normalized REE patterns and small –ve Nb anomalies suggest an 

enriched E-MORB-type source similar to the source for the PLV samples. Although 

the light grey rocks display a higher proportion of SiO2 and LREE enrichment at low 

positive εNd values, assimilation and fractional crystallization (AFC; DePaolo, 1981a) 

processes involving upper crust would significantly increase SiO2 content and decrease 

εNd values, which is not the case for these rocks. Therefore, a Paleoproterozoic juvenile 

mafic crust is probably a more suitable candidate as a potential contaminant of the mafic 

rocks in the MIU, as suggested by several authors for other mafic rocks of this age 

elsewhere in the Grenville Province (e.g., Dickin and Higgins, 1992; Sappin et al., 

2009). The mafic samples from the QFU, however, exhibit higher SiO2 contents (~53%) 

at εNd of 0.0. Moreover, their variably enriched Th contents (in table 2.3 and fig. 2.9f) 

suggest increased crustal input through subduction-processes and/or crustal 

contamination. All these mafic samples from the MIU and QFU exhibit variable SiO2 

contents, depletions in HFSE compared to REE, and variably depleted to enriched Th 

contents in the primitive mantle-normalized multi-element plots (fig. 2.9), and exhibit 

a trend from an enriched MORB-like mantle towards continental arc or lower crust (fig. 

2.11a). These observations suggest variable degrees of addition of subduction 

components and/or contamination by juvenile mafic crust in their mantle sources. As 

such, the mingling of mafic magmas derived from heterogeneous mantle sources in a 

shallow magma chamber, while undergoing variable degrees of contamination by 

heterogeneous crustal components, is considered to be the most plausible interpretation 

for the mixed intrusive nature of the MIU.   
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2.6.4 Tectonic setting 

The least altered mafic rocks from the PLV and the dark grey samples from the 

MIU exhibit values of Zr/Y (2-3), Zr/Yb (21-30), Zr/Hf (34-38), Ti/Y (245-297), and 

Ti/Zr (93-129) (table 2.3) that are comparable to those of average N-MORB (2.6, 24, 

36, 272 and 103, respectively; average N-MORB values from Sun and McDonough, 

1989). The intermediate grey sample exhibits somewhat higher values in Ti/Y (457) 

and Ti/Zr (187). The light grey rocks (except RS395A2) from the MIU and the mafic 

rocks from QFU exhibit a slightly wider range of values in Zr/Y (2-5), Zr/Yb (19-46), 

Zr/Hf (29-39), Ti/Y (201-314), and lower Ti/Zr (47-99).  

On the Th/Yb–Nb/Yb diagram (fig. 2.11a) of Pearce (2008), the samples from 

the PLV and the dark and intermediate grey sample from the MIU plot along the mantle 

array, whereas the light grey rocks show a trend of increasing Th/Yb towards 

continental arc or crust. When considered together, the mafic components (dark, 

intermediate and light grey) from the MIU, along with the mafic rocks from QFU, 

exhibit a trend (grey shaded area in fig. 2.11a) from ocean floor basalt to continental 

margin arc basalt, suggesting a range of melt sources present at this time. In order to 

further constrain the tectonic setting(s) of their formation, the mafic samples in our 

study have been plotted on several REE- and HFSE-based tectonic discrimination 

diagrams (fig. 2.11 b-d), in which the mafic sills intruding the PLV straddle the depleted 

to enriched MORB fields with a weak trend towards arc, whereas the mafic rocks from 

the MIU and QFU define a clear trend from MORB to calc-alkaline arc basalt, a result 

of variable enrichment from crustal components. The moderately altered samples are 

slightly scattered due to alteration biases for the elements used in these diagrams, which 

shift the positions of the samples away from the Hf and Zr corners with a slight bias 
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towards the Nb, Y, and Th corners; however, this has not affected the plots significantly 

and less weight is given to these moderately altered samples. 

Therefore, we infer that the high Fe-Ti-P mafic sills in the PLV exhibit evidence 

for a variably depleted to enriched MORB source that formed in an extensional setting 

on an active continental margin, with minor input from subduction components and 

contamination by older mafic granulitic lower crust. Considered collectively with the 

geochronological data, this is most compatible with continental intra-arc or back-arc 

rifting at or before 1439 −68+76 Ma.  

In the MIU, the mafic rocks formed at ca. 1410 Ma, and the mafic rocks in the 

QFU with an inferred age of 1.4 Ga, were both derived from mantle sources with a 

range of tectonic affinities from enriched MORB to continental arc, and were further 

variably modified by subduction and/or crustal contamination by Paleoproterozoic 

juvenile mafic crust. Such diverse geochemical signatures are characteristic of many 

modern and ancient active continental margin back-arc basins, and have recently been 

reported for post-Pinwarian mafic rocks in the western Grenville Province (e.g., Renzy 

terrane with an inferred minimum age of 1.40 Ga; Montreuil and Constantin, 2010). 

The increasing influence of arc or crustal components in the MIU and QFU suggests 

that the margin evolved from continental intra-arc or back-arc extension to crustal 

shortening before ca. 1410 Ma, resulting in increasing proximity of the back-arc source 

to the arc itself.  

2.6.5 Tectonic Model and Implications  

Recent studies by several workers in the central Grenville Province have led to 

the availability of a large amount of high-quality data enabling a refinement of the 
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Mesoproterozoic tectonic evolution of the study area. Of particular importance are the 

following observations:  

1. The ages obtained from the fragmental igneous cores of detrital zircon in the 

aluminous paragneisses and quartzite of the PLV range between ~1.5-2.7 Ga, with 

the dominant peak at ~1.7-1.9 Ga, and subsidiary peaks at ~1.5 Ga and ~2.5-2.7 

Ga, indicating the major supply of the detritus was derived from the nearby 

Labradorian and Makkovikian crust (Lasalle et al., 2013; Moukhsil et al., 2013a). 

This age distribution is very similar to that of the eastern part of the Wakeham 

Group (WG; Wodicka et al., 2003; van Breemen and Corriveau, 2005), suggesting 

that the provenance of detritus in both basins was from the Laurentian margin. 

This is difficult to reconcile with the accretion model of the Labradoria terrane at 

1.65 Ga and the Quebecia terrane at 1.45 Ga (Dickin and Higgins, 1992; Martin 

and Dickin, 2005), because the older model age of the WG do not correlate with 

the younger detrital zircon ages derived from it.  

2. The similar ages of detrital clastic sources in the PLV and WG, together with their 

similar depositional ages of ≥ 1.5 Ga, support the previously proposed back-arc or 

intra-arc settings for the WG related to an early phase of the accretionary 

Pinwarian Orogeny (Rivers and Corrigan, 2000; van Breemen and Corriveau, 

2005; Corriveau and Bonnet, 2005; Rivers et al., 2012; Lasalle et al., 2013; 

Augland et al., 2015).  

3. The presence of ~1500 Ma detrital zircon in both the PLV and the WG suggests 

that part of the detritus in both basins was derived from early-Pinwarian crust of 

felsic composition, which was most probably part of the continental-margin arc. 

Intra-arc volcanism of that age has been well documented farther east in both the 
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Musquaro sector of the Wakeham Group and in the La Romaine supracrustal belt, 

a southeastern extension of the Wakeham Group (fig. 2.1a; Corriveau and Bonnet, 

2005; Bonnet et al., 2005). 

4. The PLV and its proposed correlatives have been recognized over a large area in 

the central Grenville Province (Manicouagan area) and extend accross the 

Makkovikia, and Quebecia terranes, whereas the WG is restricted to the 

Labradoria terrane in the east (fig. 2.1).  

5. The Bardoux Plutonic Suite, emplaced at ca. 1497 Ma within the PLV, also covers 

a wide area stitching the Makkovikia and the Quebecia Nd model-age terranes, 

and is suggested to have formed in a continental margin arc setting (Augland et 

al., 2015). The documentation of several felsic to mafic metavolcanic rocks, 

subvolcanic plutons, and pillow lavas in the western WG with evolved 

geochemical signatures (Martignole et al., 1994), together with evidence for 

associated syn-volcanic hydrothermal activity, suggests development of a 

continental back-arc to intra-arc basin related to the early Pinwarian arc 

(Corriveau and Bonnet, 2005). Metavolcanic rocks of comparable age to the 

Bardoux Plutonic Suite have also been reported from the eastern WG (Lac 

Musquaro area; fig. 2.1a), for which a depositional age between ca. 1.52-1.50 Ga 

has been determined (van Breemen and Corriveau, 2005). These metavolcanic 

rocks formed between 1511 ± 13 and 1491 ± 7 Ma (van Breemen and Corriveau, 

2005), and were approximately coeval with several granitic orthogneisses 

emplaced between 1505 ± 12 and 1494 ± 12 Ma (SHRIMP U-Pb zircon; O. van 

Breemen and L. Corriveau, unpublished, cited in Corriveau and Bonnet, 2005) 

that exhibit evolving geochemical signatures suggestive of within-plate to 
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continental margin arc settings (Corriveau and Bonnet, 2005). Moreover, the 

earlier 1.53 Ga tonalitic intrusions (SHRIMP U-Pb zircon; O. van Breemen and L. 

Corriveau, unpublished, cited in Corriveau et al., 2003) that have volcanic arc 

granite or syn-collisional granite geochemical signatures were interpreted to be 

representative of an early Pinwarian intra-arc setting in the La Romaine 

supracrustal belt (Corriveau and Bonnet, 2005; Bonnet et al., 2005) farther east 

(fig. 2.1a).  

The above observations suggest that there is compelling temporal and tectonic 

correlation between the PLV in the central Grenville Province and the WG in the 

eastern Grenville Province. As suggested previously by Augland et al. (2015) for the 

Lake Okaopéo area immediately south of the Manic 5 reservoir, it is reasonable to 

interpret that the PLV formed in an early Pinwarian active margin arc/back-arc setting 

similar to that of the WG, and that these terranes were not accreted to the continental 

margin. Indeed, although preserved as physically separate entities over ~200 km apart 

and lying on substrates with different model ages, both the PLV and WG are extensive 

units (figs. 2.1 and 2.2), and it appears feasible that they may be remnants of a single 

elongate back-arc basin or two coeval back-arc basins. Therefore, based on the above 

observations and integrating our results with those of Augland et al. (2015) from the 

nearby Lac Okaopéo area located immediately south of the Manic 5 reservoir, and also 

taking into account the conclusions of Schellart (2008a, b) on back-arc extension and 

trench migration in active arc systems, the following evolution of the study area in the 

central Grenville Province is proposed: 

1. Ca. 1500 Ma: The early-Pinwarian (> 1500 Ma) continental-margin arc undergoes 

back-arc or intra-arc extension, forming a short-lived basin in which the PLV was 
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deposited within a short time interval at ca. 1500 Ma (fig. 2.12a; Lasalle et al., 

2013). Back-arc extension gives way to compression and possible inversion (?) of 

the back-arc basin (fig. 2.12b), leading to intrusion of the Bardoux Plutonic Suite 

within the PLV at 1497 ± 5 Ma (Augland et al., 2015). The dominantly volcanic 

arc to subordinate within-plate type geochemical signatures and positive εHf 

values (4.7-2.3) of the granitoids composing this suite have been interpreted to 

indicate contamination of juvenile mantle-derived felsic magma with older 

Makkovikian model-age crust, as indicated by their TDM model ages (1.9-2.05 Ga; 

Augland et al., 2015). Although we do not see any direct evidence of an early-

Pinwarian arc in the study area, remnants of it have been reported from farther 

east in the Grenville Province in Labrador and Québec (Tucker and Gower, 1994; 

Gower and Krogh, 2002; Corriveau and Bonnet, 2005; Wodicka et al., 2003). 

Furthermore, the close temporal (fig. 2.10) and spatial relationships between the 

youngest age of deposition of the PLV and the intrusion of the arc-related 

Bardoux granitoids into the PLV supports the interpretation that the PLV was 

deposited in an arc-related setting. We further suggest that the within-plate 

character and juvenile mantle signature exhibited by some samples from the 

Bardoux Plutonic Suite provide cryptic evidence of earlier extension within the 

early-Pinwarian (> 1.5 Ga) arc through which the granitoid magmas were 

intruded. These geochemical features are widespread in the Wakeham group, 

where an evolution of geochemical signatures from within-plate to continental 

margin arc has been reported (Corriveau and Bonnet, 2005). 

2. Ca. 1440-1430 Ma: Limited back-arc extension coeval with Geon 14 arc 

formation was postulated to have occurred along much of the length of the 
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Grenville Province by Rivers and Corrigan (2000). This is compatible with our 

data from the central Grenville Province in which the 1439 −68+76 Ma high Fe-Ti-P 

mafic sills in the PLV with variably depleted to enriched MORB signatures were 

contaminated by minor subduction components and old mafic granulitic lower 

crust as they intruded the sequence in an extensional back-arc rift setting (fig. 

2.12c). The source for these mafic rocks must have evolved in a shallow magma 

chamber before being emplaced within the PLV. This interpretation is compatible 

with the geochemical signature of the coeval ‘older tonalites’ of the Hulot 

Complex, which intruded the PLV at 1434 −11+7  Ma farther south in Lac Okaopéo 

area, (Augland et al., 2015). These were interpreted to have been derived from 

juvenile mantle-derived magma (εHf = +8 to +10) contaminated by Labradorian 

(~1.6 Ga) crust in a distal arc or microcontinent-arc setting (Augland et al., 2015). 

Some of their samples of the ‘older tonalites’ plot in the within-plate field in the 

Rb-(Ta+Yb) diagram (fig. 2.3 in Augland et al., 2015; Moukhsil et al., 2013b) and 

show a trend towards peralkaline granite (Lars Augland, personal communication, 

2016), which suggest the influence of an extensional setting farther inboard, 

possibly related to thinning of the Labradorian arc crust. Rims of detrital zircon in 

the PLV dated at ~1450 Ma (Lasalle et al., 2013) and the cores of metamorphic 

monazite in the PLV dated at ~1445 Ma (Lasalle et al., 2014) may record these 

igneous events.   

3. Ca. 1410 Ma: The mafic rocks from the MIU emplaced at 1410 ± 16 Ma 

(Valverde Cardenas et al., 2012) and the inferred ca. 1.4 Ga mafic rocks from the 

QFU, both of which indicate enriched MORB and arc sources that developed in an 

inboard back-arc environment and were variably modified by subduction 
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components and/or contamination by Paleoproterozoic crust (fig. 2.12d). The 

geochemical and isotopic characters displayed by the arc to transitional-arc and 

non-arc compositions of these rocks support the presence of multiple sources that 

are typical of a back-arc setting developed inboard from, but in close proximity to, 

the continental-margin arc. Farther south from the Canyon domain in the Lac 

Okaopeó area, the ‘younger tonalites’ of the Hulot Complex, dated at 1413 ± 12 

Ma and exhibiting more radiogenic Hf isotopic signatures (εHf = +6.27 to +8.04), 

were inferred to have formed in an arc setting as a result of increased proximity of 

the arc source due to shortening (and thickening?) of the Laurentian margin 

(Augland et al., 2015). Therefore, considering the ages with their uncertainties, 

and the probable proximity of the MIU and the ‘younger tonalites’, a tectonic 

setting possibly reflecting processes such as roll-forward (slab advance) of the 

subducting slab, or shortening of the proximal (outboard) part of the back-arc 

basin, and coeval extension within the distal part of the basin seems most 

plausible. Both this igneous activity and the associated inferred tectonic activity 

could explain the growth of zircon in the PLV as metamorphic grains and rims 

between ~1391-1408 Ma (Lasalle et al., 2013). This outboard shortening of the 

active margin could be temporally related to the post-Pinwarian island arc/back-

arc accretion (e.g., the ca. 1.45-1.39 Ga Montauban Group and La Bostonnais 

complex; Nadeau and van Breemen, 1994; Sappin et al., 2009), and arc/back-arc 

development on the thin Laurentian margin (e.g., the ca. 1.40-1.35 Ga Bondy 

Gneiss Complex; Blein et al., 2003).   

The end of the Pinwarian orogeny (1.52-1.46 Ga) in southeastern Laurentia was 

characterized by anorthosite-mangerite-charnockite-granite (AMCG) magmatism 
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(Gower and Krogh, 2002), with the granodiorite in the Banded Complex (1403 −25+32 Ma; 

Indares and Dunning, 2004) and the Renwick mangerite (1402 ± 72 Ma; Moukhsil et 

al., 2012, 2013a) possibly being local representatives of this suite. Both the mantle and 

crustal signatures of the component parts of these complexes are interpreted to have 

formed in a continental back-arc setting (Rivers and Corrigan, 2000; Rivers et al., 

2012).   

Most of the post-Pinwarian interval up to the onset of the Grenvillian Orogeny 

was characterized by short-lived compressional arc to extensional intra-arc or back-arc 

settings, involving both continental and oceanic arcs, and marginal basin settings. In 

the study area, we have documented two important magmatic events during Geon 14 

that characterize the evolution from an extension to compression in a back-arc and 

related compressional arc developed on attenuated Laurentian margin. Such an 

oscillating structural evolution between extension and compression in continental 

margin arcs over time scales of a few 10s of Ma, and the associated isotopic 'pull-up' 

and 'pull-down' of εNd values, is typical of modern continental arcs (e.g., DeCelles et 

al., 2009).   

An important feature of the Geon 14 magmatism in the central Grenville 

Province was the emplacement of mantle-derived high Fe-Ti-P mafic tholeiites that 

were variably contaminated by crustal sources. The repetitive intrusion of small 

volumes of high Fe-Ti-P magma is compatible with limited extension in a long-lived 

arc/back-arc regime (e.g., Montreuil and Constantin, 2010). Back-arc or intra-arc 

extension appears to have played an important role in the subduction-related processes 

on the southeastern margin of Laurentia during and after the Pinwarian Orogeny (e.g., 

Blein et al., 2003; Slagstad et al., 2004, 2009; Corriveau and Bonnet, 2005; Sappin et 
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al., 2009; Montreuil and Constantin, 2010), suggesting that a large part of the margin 

would have been dominated by thin, thermally weak, and rheologically soft crust that 

underwent repetitive arc formation and accretion followed by intra-arc or back-arc 

extension. This process of repetitive arc formation and accretion followed by intra-arc 

or back-arc extension appears to have continued throughout the remainder of the 

Mesoproterozoic up to the beginning of the Grenvillian Orogeny (Rivers and Corrigan, 

2000).  

2.7 Conclusions 

The tectonomagmatic and related metamorphic events during Geon 14 in the 

central Grenville Province constitute an important part of the pre-Grenvillian evolution 

of the southeastern margin of Laurentia. In the last decade significant efforts have been 

directed to deciphering the details of these events that have been obscured by later high-

grade metamorphism and associated deformation during the Grenvillian Orogeny. This 

study represents an attempt to see through this Grenvillian veil and interpret the 

geochemistry and tectonic significance of two suites of mafic rocks presently preserved 

as mid-pressure granulites. Specifically, analysis of the suite of mafic sills emplaced 

into the metasedimentary Complexe de la Plus Value (PLV), and of the mafic intrusive 

rocks comprising the Mafic to Intermediate Unit (MIU) has provided more detailed 

information about the pre-orogenic magmatism and hence the inferred architecture of 

this part of the Laurentian margin during Geon 14, and its possible implications for the 

pre-Grenvillian and Grenvillian orogenic evolution of SE Laurentia. The main 

conclusions of the study are:  
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1. The 1439 −68+76 Ma mafic sills intruded the PLV supracrustal sequence (> 1500 Ma) 

during limited extension of arc/back-arc crust, resulting in thinning of the 

Laurentian continental margin. These mafic sills were derived from variably 

depleted to enriched MORB-type mantle and were modified by minor subduction 

components and contamination by old mafic granulitic lower crust.  

2. The mafic intrusive rocks in the MIU, characterized as arc to transitional-arc and 

non-arc types, were formed at ca. 1410 Ma in a back-arc setting where shortening 

of the Laurentian crust increased the proximity of the back-arc to the more 

outboard arc source as suggested by increased crustal input from subduction 

components and/or contamination. The various magmatic components in the unit 

were mingled in a shallow closed magma chamber before their final emplacement.  

3. Repetitive intrusion of the high Fe-Ti-P mafic rocks during Geon 14 in the central 

Grenville Province suggests that arc/back-arc extension was an important process 

in an overall compressional arc regime on SE Laurentia during the 

Mesoproterozoic. Such a tectonic setting resulted in prolonged but limited 

extension of thin, hot, and ductile crust. 

These conclusions are compatible with both the general model of an active 

margin on SE Laurentia during the Mesoproterozoic, suggested previously by others, 

and with more recent work in the central Grenville Province, but provide significant 

new details and refinements for the region.  
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Table 2.1. U-Pb data for the mafic samples in Complexe de la Plus Value, Canyon domain. 

U 
(ppm)

Pb rad 
(ppm)b

Total 
common 
Pb (pg) 206Pb/204Pb 208Pb/ 206Pb 206Pb/ 238U 2𝜎𝜎 ± 207Pb/ 235U 2𝜎𝜎 ± 207Pb/ 206Pb 2𝜎𝜎 ± 206Pb/238U 207Pb/235U 207Pb/206Pb

Fraction
Z1 1 euh prm 0.002 303 57.4 5.6 996 0.0573 0.1938 78 2.1362 120 0.07994 36 1142 1161 1196
Z2 1 best prm 0.002 273 52.2 9.3 559 0.0536 0.1961 152 2.1664 202 0.08012 54 1154 1170 1200
Z3 1 euh prm 0.002 202 45.2 9.7 449 0.098 0.2196 140 2.5749 236 0.08504 66 1280 1294 1316
Z4 4 best euh prm 0.006 47 9.2 5.6 653 0.0589 0.1999 90 2.2271 184 0.08079 56 1175 1190 1216
Z5 3 clr euh prm 0.004 49 8.7 2.1 1228 0.0473 0.1838 100 1.9325 170 0.07628 58 1087 1092 1102

Note:

a . Weights of grains were estimated, with potential uncertainties of 50% for these small samples. 
b . Radiogenic lead

Weight 
(mg)a

All zircon grains were chemically abraded (Mattinson, 2005) prior to dissolution. Z, zircon; 2, 4, number of grains in analysis; prm, prism; sml, small; euh, euhedral; clr, clear. 

c . Atomic ratios corrected for fractionation, spike, laboratory blank of 1-2 picograms (pg) common lead, and initial common lead at the age of the sample were calculated 
from the model of Stacey and Kramers (1975), and 0.3 pg U blank. Two sigma uncertainties are reported after the ratios and refer to the final digits.

Sample 
#383c

Age [Ma]Concentration Measured Corrected atomic ratiosc
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Table 2.2. Sm-Nd data for the mafic rocks in Canyon domain.  

Sample Geol. 
Domain

Nd (ppm) Sm (ppm) Sm/Nd
147Sm/ 

144Ndcalc

143Nd/ 
144Ndmeas

2𝜎𝜎
143Nd/ 
144Ndini

εNd 0 εNd 1.4 Ga TDM
TDM  

(DePaolo)
TCHUR

RS383E++ PLV 34.13 9.25 0.27 0.1638 0.512314 8 0.510807 -6.2 -0.4 2573 2206 1495
383c PLV 30.64 8.58 0.28 0.1693 0.512362 7 0.510805 -5.2 -0.4 2723 2318 1526

395-d1 MIU 56.22 16.86 0.30 0.1813 0.512304 7 0.510637 -6.4 -3.7 3668
395-dx MIU 52.70 16.81 0.32 0.1928 0.512368 7 0.510595 -5.1 -4.6

RS395a2
+ MIU 44.38 9.856 0.22 0.1342 0.512106 3 0.510871 -10.2 0.9 2015 1777 1292

RS209-1+ QFU 20.99 5.15 0.25 0.1482 0.512191 6 0.510828 -8.6 0.0 2247 1961 1399

Note:
1. calc = calculated, meas = measured, ini = initial, TDM = depleted mantle model age.

3. TDM = 1/λ × ln[1+{(143Nd/144Nd)sample - 0.513160}/{(147Sm/144Nd)sample - 0.2137}]

5. (147Sm/144Nd) calc = Sm/Nd × [0.53151+0.14252 (143Nd/144Nd) meas]
6. The results of isotopic measurements for Nd reference material JNdi-1 (Nd) = 512098 ± 6 (2𝜎𝜎, n = 15).

9. Sm and Nd concentrations were obtained by FUS-MS and have detection limits of 0.1 ppm.

2. TDM values are calculated based on present day (147Sm/144Nd)DM = 0.2137 and (143Nd/144Nd)DM = 0.513160 (Goldstein et al., 1984) of depleted 
mantle based on the assumption that this mantle was separated from the CHUR at 4.55 Ga with a linear evolution, and present day εNd value of +10. 
TDM (DePaolo) is calculated after DePaolo (1981a).

4. εNd and TCHURvalues are calculated based on chondrite uniform reservoir (CHUR) values of 147Sm/144Nd = 0.1960 ± 4 and 143Nd/144Nd = 

0.512630 ± 11 (2

𝜎𝜎

) (Bouvier et al., 2008), and λ 147Sm = 6.539 (± 0.061) x 10-12 Yr-1 (Begemann et al., 2001). 2

𝜎𝜎

 = 2 standard error of the mean x 
10-6.

7. Samples with superscript + are from Valverde Cardenas et al. (2012); superscript ++ indicates previously analyzed samples published here; all 
samples recalculated based on the values of CHUR and DM used here.

8. All model ages and εNd values are calculated using U-Pb crystallization ages (t) determined for the mafic sill in PLV (this study), the light grey rock in 
MIU (Dunning and Indares, 2010), and an estimated age of 1.4 Ga for the QFU (Valverde Cardenas et al., 2012; Indares and Moukhsil, 2013).  
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Table 2.3. Major and trace element data for the mafic rocks in Canyon domain.  
Suite PLV PLV PLV PLV MIU MIU MIU MIU MIU MIU MIU QFU QFU 
Sample 11-383c RS383E++ RS399++ RS383E1++ 11-395dx 11-395d1 11-395d4 RS395A1 11-395 11-395g2 RS395A2+ RS206C1+ RS 209-1+

SiO2 46.21 45.03 43.76 44.36 40.55 40.36 40.38 42.58 46.55 46.54 46.08 53.38 52.95
Al2O3 13.35 13.14 14.01 12.69 13.53 12.30 14.07 12.56 19.05 20.34 18.09 14.55 15.83
Fe2O3 (T) 19.44 20.30 19.75 20.72 23.75 25.44 22.01 21.85 13.26 13.06 13.35 14.34 12.83
MnO 0.30 0.30 0.28 0.32 0.41 0.45 0.33 0.27 0.18 0.16 0.19 0.22 0.19
MgO 5.72 6.03 6.53 6.6 5.86 6.04 5.96 7.08 4.64 3.56 4.82 4.73 8.13
CaO 9.60 10.05 10.27 10.08 10.63 11.49 10.71 10.72 8.83 8.56 9.08 8.15 8.15
Na2O 1.66 1.17 1.00 1.54 0.95 0.59 1.32 1.14 3.01 3.00 3.02 0.78 0.74
K2O 0.89 0.90 0.67 0.59 0.40 0.13 0.84 0.89 1.91 2.06 1.83 0.77 0.23
TiO2 2.65 2.84 2.64 3.44 3.70 4.05 3.52 2.99 1.78 1.83 1.82 2.12 0.94
P2O5 0.48 0.49 0.44 0.32 0.45 0.70 0.45 0.27 0.52 0.78 0.50 0.45 0.07
LOI -0.64 -0.87 -0.28 -0.6 -0.67 -0.96 -0.55 < 0.01 0.87 0.13 0.45 < 0.01 -0.02
Total 99.66 99.38 99.07 100.06 99.56 100.59 99.04 100.35 100.6 100.02 99.23 99.49 100.04
FeOt 17.49 18.27 17.77 18.64 21.37 22.89 19.8 19.66 11.93 11.75 12.01 12.9 11.54
#Mg 0.37 0.37 0.40 0.39 0.33 0.32 0.35 0.39 0.41 0.35 0.42 0.40 0.56
Sc 50 52 50 58 63 66 60 60 29 19 34 43 37
V 460 446 435 742 616 470 623 803 282 134 302 260 229
Cr 50 52 71 –– < 20 < 20 < 20 60 < 20 < 20 < 20 40 288
Co 130 233 177 203 189 148 171 278 66 53 158 297 168
Ni 40 50 64 70 < 20 < 20 < 20 100 < 20 < 20 < 20 30 81
Cu 80 26 45 35 20 20 20 70 20 < 10 < 10 10 34
Zn 130 158 133 209 130 170 180 210 90 140 190 180 161
Y 58 57 49 70 91 104 86 39 34 31 43 60 28
Zr 170 183 154 50 152 216 164 96 112 425 135 272 57
Hf 4.5 5.1 4.5 2.0 4.1 5.2 4.8 2.9 3.1 8.5 4.0 6.9 2.0
Ga 19 19 23 18 18 15 28 21 24 25 25 21 21
Ge 2 –– –– –– 4 3 3 2 2 2 1 2 ––
Nb 14 13 9 27 34 27 27 9 9 10 11 14 4
Ta 2.0 1.0 0.5 1.5 3.7 2.5 3.4 0.8 1.0 1.0 0.5 0.9 0.3
Rb 48 40 17 9 11 2 9 29 64 62 101 40 10
Ba 310 269 141 198 111 22 115 147 1000 1085 614 556 63
Sr 134 122 221 156 110 73 163 149 897 949 606 212 132
Pb < 5 –– –– –– < 5 < 5 < 5 7 < 5 7 21 8 ––
Th 0.5 0.6 0.4 1.0 1.1 1.1 2.4 0.6 1.0 2.8 1.6 3.2 3.2
U 0.5 0.5 0.3 0.7 0.6 0.6 1.2 0.3 0.4 0.6 0.7 1.3 1.6
Cs 0.6 –– –– –– < 0.5 < 0.5 < 0.5 0.4 0.5 0.6 1.3 0.4 ––
La 16.7 17.4 19.1 16.0 23.2 27.1 39.2 19.3 25.2 32.5 29.4 41.3 12.6
Ce 45.4 49.1 51.2 48.8 68.0 75.8 112.0 54.5 60.7 78.0 73.4 91.5 34.2
Pr 6.8 7.1 6.9 7.9 11.1 11.6 16.8 7.5 8.6 9.7 10.2 11.8 4.7
Nd 32.8 33.1 32.0 41.6 55.6 57.9 76.1 31.7 40.3 42.7 45.3 49.7 20.8
Sm 9.3 9.2 8.5 13.7 18.4 18.1 19.1 7.5 9.4 9.0 10.2 10.9 5.4
Eu 2.08 2.28 2.48 1.78 1.90 1.95 3.47 2.19 2.33 2.41 2.85 2.71 1.10
Gd 9.6 10.1 9.1 14.8 20.5 19.6 17.4 7.6 7.9 8.3 9.6 10.7 5.4
Tb 1.7 1.9 1.7 2.7 3.3 3.3 2.7 1.3 1.2 1.3 1.5 1.9 1.0
Dy 10.7 10.8 9.5 14.5 18.4 19.3 15.3 7.0 6.8 6.8 7.7 10.6 5.5
Ho 2.2 2.2 1.9 2.6 3.5 3.8 3.0 1.3 1.4 1.3 1.4 2.0 1.1
Er 6.3 6.7 5.8 7.4 9.9 10.9 8.8 3.9 3.8 3.6 4.2 6.2 3.3
Tm 0.93 1.02 0.87 1.05 1.42 1.61 1.28 0.61 0.55 0.54 0.62 0.94 0.50
Yb 5.9 6.2 5.4 6.2 8.9 10.3 8.0 3.8 3.6 3.3 3.8 5.9 3.0
Lu 0.97 0.88 0.79 0.84 1.36 1.59 1.26 0.56 0.55 0.53 0.55 0.85 0.40
∑REE 151.4 158.0 155.2 179.9 245.5 262.9 324.4 148.9 172.4 200.0 200.8 247.0 98.9
Eu/Eu* 0.67 0.72 0.86 0.38 0.30 0.32 0.58 0.89 0.83 0.85 0.88 0.77 0.62
Ti/Eu 7638 7467 6382 11586 11674 12451 6081 8185 4580 4552 3828 4690 5123
Zr/Hf 38 36 34 26 37 42 34 33 36 50 34 39 29
Ti/Y 274 297 321 293 244 233 245 457 314 354 251 210 201
Zr/Y 3 3 3 1 2 2 2 2 3 14 3 5 2
Ti/Zr 93 93 103 412 146 112 129 187 95 26 81 47 99
Zr/Yb 29 30 29 8 17 21 21 25 31 129 35 46 19
(La/Nb)PM 1.2 1.3 2.2 0.6 0.7 1.0 1.5 2.3 2.9 3.4 2.7 3.1 3.5
(Nb/Th)PM 3.3 2.7 2.9 3.2 3.7 2.9 1.3 1.9 1.1 0.4 0.8 0.5 0.1
(La/Yb)CN 2.0 2.0 2.6 1.8 1.9 1.9 3.5 3.6 5.0 7.1 5.5 5.1 3.0
(Gd/Yb)CN 1.3 1.3 1.4 2.0 1.9 1.6 1.8 1.6 1.8 2.1 2.1 1.5 1.5
(La/Sm)CN 1.2 1.2 1.4 0.8 0.8 1.0 1.3 1.7 1.7 2.3 1.9 2.4 1.5
A.I 37.0 38.0 39.0 38.0 35.0 34.0 36.0 40.0 36.0 33.0 35.0 38.0 48.0
CCPI 91 93 94 93 96 98 93 93 78 77 79 92 96
P.I 0.63 0.62 0.67 0.59 0.63 0.56 0.62 0.56 0..83 0.89 0.77 0.52 0.57
K2O/Na2O 0.5 0.8 0.7 0.4 0.4 0.2 0.6 0.8 0.6 0.7 0.6 1.0 0.3
Al2O3/Na2O 8.0 11.2 14.0 8.2 14.2 20.8 10.7 11.0 6.3 6.8 6.0 18.7 21.4

Note: 
1.     The oxide concentrations are reported in wt%, whereas trace element concentrations are reported in ppm. 
2.     The deviation of Eu from the rest of the REE can be expressed as Eu anomaly (Eu/Eu*), where Eu* refers to the value obtained by linear interpolation between adjacent elements. 
3.     FeOt = 0.8998 × Fe2O3; Ti = 5995 × TiO2

4.     #Mg is calculated as #Mg = MgO/(MgO + Fe2O3 total) in moles. 

6.     Superscript ++ indicates previously analyzed unpublished data. 
7.     Subscript 'PM' indicates primitive mantle-normalized and ‘CN’ indicates chondrite-normalized values of Sun and McDonough (1989).
8.  A.I, alteration index; P.I, peraluminous index; CCPI, chlorite-carbonate-pyrite index; see text for details.

5.     Superscript + indicates 1.41 Ga arc rocks from Valverde Cardenas et al. (2012). QFU, Quartzofeldspathic unit (see Indares and Moukhsil, 2013 for definitions).
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Figure 2.1. (a) Schematic map of the Grenville Province showing principal crustal age 
(U-Pb) domains in the pre-Grenvillian Laurentian crust (simplified from Rivers et al., 
2012), with the southern continuation of the Wakeham Group under Paleozoic rocks on 
Anticosti Island after Pinet (2016); (b) Schematic map of the Grenville Province 
showing principal crustal domains or terranes based on crustal formation ages (Nd 
model ages; modified from Thomson et al., 2011 and Vautour, 2015). A, Anticosti 
Island; AB, Allochthon Boundary; BG, Bondy Gneiss Complex; B, Bardoux Plutonic 
Suite; LJ, Lac Joseph allochthon, largely composed of metasedimentary rocks with a 
Makkovikian model age; M, Manicouagan Impact Crater; Mo, Montauban; Mq, Lac 
Masquaro; R, Musquaro-La Romaine extension; TLB, Trans-Labrador batholith; W, 
Wakeham Group. 
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Figure 2.2. Simplified geological map of the study area in the Canyon domain located 
to the south of Manicouagan Impact Crater (compiled after Indares and Dunning, 2004; 
Dunning and Indares, 2010; Moukhsil et al., 2013a, b; and Augland et al., 2015). Note 
that the boundaries of the Banded Complex, Canyon domain, and the Island domain 
(Dunning and Indares, 2010) are not well defined.  AB, Allochthon Boundary; H, Hulot 
Complex; SWSZ, Southwest Shear Zone. 
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Figure 2.3. Field photographs of the mafic rocks in the Complexe de la Plus Value 
(PLV; a-c) and the intrusive rocks of the Mafic to Intermediate Unit (MIU; d-f). (a) A 
typical outcrop (#11-383c) of PLV showing mafic layers interpreted as intrusive sills 
within the paragneiss; (b) Close up of a mafic sill in the PLV showing contact with 
layered paragneiss and injection of leucocratic veins (partial melts from the paragneiss 
indicated by arrows) that are oriented parallel and transverse to paragneiss layering; (c) 
Outcrop of a homogeneous mafic sill interlayered with paragneiss but mostly free from 
injected leucocratic veins; (d) Outcrop of MIU showing different mafic components 
ranging from dark (D) to intermediate (I) to light grey (L) along with leucocratic films 
and pods; (e) Light grey component intruding and mingling with the dark grey 
component within the MIU showing a sharp to diffuse cuspate-lobate contact between 
them, and some parts of the dark grey component are partially disaggregated within the 
light grey component indicating contemporaneity of, and mingling between, the two 
phases; (f) Disintegration of rounded to sub-rounded fragments of the more mafic dark 
and intermediate grey components within the less mafic light grey component, 
indicative of the effects of magma mingling. 
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Figure 2.4. SEM-MLA mineralogical maps and photomicrograph of mafic rocks in the 
Complexe de la Plus Value (PLV; a-c) and the intrusive rocks of the Mafic to 
Intermediate Unit (MIU; d-f) from the Canyon domain. (a) Type-I texture in sample 
#11-383c in the PLV showing poikiloblastic garnet in a heterogeneous matrix 
composed of plagioclase, orthopyroxene, clinopyroxene, biotite, ilmenite, and quartz. 
Note the presence of large quartz grains and their association with orthopyroxene in the 
matrix; (b) Photomicrograph in plane-polarized light showing large ribbon shaped 
quartz xenocryst partially mantled partially by pyroxenes and plagioclase observed in 
Type-I; (c) Type-II texture in sample #11-383E1 in the PLV showing large garnet 
porphyroblasts in a matrix of plagioclase, hornblende, clinopyroxene, ilmenite and 
minor biotite (note the abundance of hornblende, larger garnet, and absence of large 
quartz grains in this sample); (d) Dark grey component  of MIU (#11-395d1) with large 
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subidiomorphic  garnet and clinopyroxene with ubiquitous ilmenite, apatite, 
orthopyroxene, and minor hornblende and plagioclase; (e) Intermediate grey 
component of MIU (#11-395a1) with medium grained garnet porphyroblasts in a matrix 
of hornblende, plagioclase, clinopyroxene, orthopyroxene, biotite and ilmenite; (f) 
Light grey component of MIU (#11-395) showing large poikiloblastic garnet 
porphyroblasts rimmed by plagioclase with subordinate amount of hornblende and 
biotite; matrix composed of plagioclase, hornblende, and biotite that wraps around 
garnet. Each MLA map is ~4cm in length (standard size of a thin section). 

 
 

 

Figure 2.5. U-Pb concordia diagram with CL images of representative prismatic zircon 
from mafic sill #11-383c in the Complexe de la Plus Value (PLV). 

 

Upper intercept at 1439 −68+76 Ma 
Lower intercept at 1029 −47+33 Ma 
MSWD = 2.2 
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Figure 2.6. εNd vs. time plot showing the mafic sills in the Complexe de la Plus Value 
(PLV) and the intrusive rocks of the Mafic to Intermediate Unit (MIU) in the Canyon 
domain (this study) plotted at 1.4 Ga. Data for the mafic rocks from the QFU with an 
inferred ~1.4 Ga age are from Valverde Cardenas et al. (2012); evolution lines and 
fields for Quebecia, Makkovikia, and the Gagnon terrane are from Thomson et al. 
(2011); depleted mantle evolution line after DePaolo (1981b).

CHUR 
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Figure 2.7. (a) K2O vs. Rb plot (modified after Rudnick et al., 1985); (b) Eu/Eu* vs. 
K/Rb plot (modified after Rudnick, 1992) and (c) Th/U vs. La/Th plot (modified after 
Rudnick et al., 1985); for the mafic rocks from the Complexe de la Plus Value (PLV) 
and the intrusive rocks of the Mafic to Intermediate Unit (MIU) in the Canyon domain. 
Data for the mafic gneisses from the Bondy gneiss complex (Blein et al., 2003), mafic 
rocks from the QFU (Valverde Cardenas et al., 2012), and the Renzy terrane 
amphibolites (Montreuil and Constantin, 2010), all with a known or inferred age of ~1.4 
Ga are also shown.  
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Figure 2.8. Rock-type classification diagrams for mafic samples from the Complexe de 
la Plus Value (PLV) and the intrusive rocks of the Mafic to Intermediate Unit (MIU) in 
the Canyon domain. (a) FeOt vs. TiO2 diagram showing high Fe-Ti basalt fields (after 
Byerly et al., 1976); (b) Al- Fetot+Ti- Mg diagram (after Jensen and Pyke, 1982); (c) 
Zr/TiO2 vs. Nb/Y diagram (after Winchester and Floyed, 1976; modified by Pearce, 
1996). 
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Figure 2.9. Chondrite-normalized REE (a-c) and primitive mantle-normalized REE and 
HFSE (d-f) patterns for the mafic samples in the Complexe de la Plus Value (PLV) and 
for the intrusive rocks in the Mafic to Intermediate Unit (MIU). (a) Mafic sills in the 
PLV; (b) Dark grey rocks, and (c) Intermediate and light grey rocks in the MIU. Multi-
element (REE and HFSE) diagrams for the mafic rocks in (d) PLV; (e) Dark grey rocks, 
and (f) Intermediate and light grey rocks in the MIU. Normalizing values for chondrite 
and primitive mantle are from Sun and McDonough (1989). Also shown for comparison 
the patterns of N-MORB and E-MORB (Sun and McDonough, 1989), average Andean 
arc (Kelemen et al., 2014), and the inferred ~1.4 Ga mafic rocks from the QFU 
(Valverde Cardenas et al., 2012). 
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Figure 2.10. Summary of U-Pb ages from the Canyon domain and the Lac Okaopéo 
area. Data points are colour coded and sources are mentioned on the figure. Vertical 
error bars indicate uncertainties associated with ages; the upper age limit of detrital 
zircon from the PLV is ~1500 Ma and the downward-pointing arrow indicates the oldest 
detrital grain at ~2700 Ma (from Lasalle et al., 2013).  



 95 

 

 

 
Figure 2.11. (a) Th/Yb vs. Nb/Yb (after Pearce 2008); (b) La/10–Y/15–Nb/8 (after 
Cabanis and Lecolle, 1989); (c) Th–Hf/3–Nb/16 (after Wood, 1980); and (d) Zr/4–
Nb*2–Y (after Meschede, 1986) diagrams showing data plots for the mafic sills in the 
Complexe de la Plus Value (PLV) and the intrusive rocks of the Mafic to Intermediate 
Unit (MIU) in the Canyon domain. Data for the average lower and upper continental 
crust (LCC and UCC) after (Rudnick and Gao, 2014), remaining data sources and 
symbols are as in fig. 2.7 and 2.9. Vectors at bottom right in (a) indicate trends of 
subduction zone enrichment (S), crustal contamination (C), within-plate enrichment 
(W), and fractional crystallization (f).   
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Figure 2.12. Schematic cross-sections illustrating the proposed tectonic model for the 
Geon 14 evolution of the southeastern Laurentian margin in the Canyon domain of the 
central Grenville Province (modified from Hanmer et al., 2000; Blein et al., 2003). Data 
compiled from Dunning and Indares (2010); Moukhsil et al. (2012, 2013a, b); Lasalle 
et al. (2013); and Augland et al. (2015). 
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3 Late-orogenic mafic magmatism in the hinterland, central 

Grenville Province: lithospheric extension in the evolution of a 

large hot orogen  

3.1 Abstract: 

Geochronological, geochemical and isotopic data for two late-orogenic suites 

of metamorphosed mafic dykes and sills provide new constraints on the nature of 

mantle sources and the tectonic evolution during the waning stages of the Grenvillian 

Orogeny (ca. 1090-980 Ma), which is divided into the Ottawan (~1090-1020 Ma), post-

Ottawan (~1020-1005 Ma), and Rigolet (~1005-980 Ma) orogenic phases. U-Pb dating 

of zircon of the two suites of mafic granulites in the hinterland of the central Grenville 

Province has yielded ages of 1007.7 ± 2.0 Ma for the syn-metamorphic emplacement 

of dykes in the Vein Complex (VC), and of 997.0 ± 3.8 Ma for the emplacement of the 

sills in the Layered Bimodal Suite (LBS). The major and trace element chemistry and 

Sr-Nd isotopic compositions of the two tholeiitic suites indicate they are intraplate 

basalts derived from ~4-10% melting of asthenospheric mantle, followed by ~4-20% 

contamination by crust or SCLM and low-pressure fractionation-differentiation.  

Previous studies have reported the post-Ottawan emplacement of several within 

plate-type, alkalic mafic to felsic plutons and anorthosite-mangerite-charnockite-

granite (AMCG) suites followed by Rigolet emplacement of crust-derived pegmatite 

granite dykes in the study area. Taken together with the results of this study, the post-

Ottawan tectonic setting is proposed to have involved a brief phase of lithospheric 

extension followed by the Rigolet convergence. Lithospheric extension gave rise to 
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asthenospheric upwelling resulting in melting of the extended SCLM and lower crust, 

thereby producing the wide range of small-volume, alkaline syenite-granite intrusions 

and AMCG suites. Continued extension and local lithospheric thinning led to 

decompression-melting of rising asthenosphere at shallow depth, and production of the 

earlier batches of small-volume tholeiitic intraplate mafic dykes and sills of the VC and 

LBS at ca. 1008 Ma. The younger ca. 997 Ma mafic sills in the LBS were derived from 

relatively deeper melting of asthenosphere within the transitional garnet-spinel-

peridotite field, during the compressive Rigolet phase. It is thus suggested that there 

were two distinct episodes and styles of orogenic collapse associated with the 

Grenvillian Orogeny: the syn-Ottawan phase at ~1060-1040 Ma proposed by others, 

driven by delamination of the base of the overthickened lithosphere; and the post-

Ottawan phase from ~1020-1005 Ma, driven by the extension of the previously thinned 

lithosphere.   

3.2 Introduction 

Mantle-derived rocks can provide crucial information about both the nature of 

the underlying mantle during orogeny and the petrogenetic processes in their formation 

(e.g., Bonin, 2004; Zhao et al., 2005). In modern large and hot long-duration collisional 

orogens (LHOs), such as the Himalaya-Tibet Orogen (Beaumont et al., 2006), mantle-

derived magmatism is diverse in volume, distribution, timing, and composition, 

signifying its derivation from a variety of sources such as upwelling asthenospheric 

mantle, subcontinental lithospheric mantle (SCLM) that may have been 

metasomatically enriched in incompatible elements during previous subduction events, 

and mixing of melts from different sources, including inputs from the crust (Bonin, 

2004; Dai et al., 2015). In post-collisional settings, these diverse magmatic expressions 



 99 

have been ascribed to a variety of tectonic processes including thinning of the 

overthickened crust and lithospheric mantle root by delamination (Bird, 1979; Kay and 

Kay, 1993); convective thinning of the lithosphere (Houseman et al., 1981; England 

and Houseman, 1988, 1989); or post-collisional slab break-off (Davies and von 

Blanckenburg, 1995).  

The Grenville Orogen (ca. 1090-980 Ma; sensu stricto of Rivers et al., 2008), 

part of which is preserved within the Grenville Province in North America (fig. 3.1), is 

widely considered to be an ancient analogue of the modern Himalaya-Tibet Orogen 

(e.g., Carr et al., 2000; Jamieson et al., 2007; Rivers, 2008; Rivers et al., 2012). The 

Grenvillian Orogeny has been empirically subdivided into two phases: the ca. 1090-

1020 Ma Ottawan phase for which evidence is preserved in allochthonous rocks in the 

orogenic hinterland; and the ca. 1005-980 Ma Rigolet phase for which evidence is 

mainly preserved in the parautochthonous foreland (Rivers et al. 2012). Recent work in 

the Grenville Province has documented the distribution and compositional diversity of 

post-collisional suites with mantle signatures, as deduced from their trace element and 

isotopic characteristics, that include: (i) within-plate tholeiitic and alkaline mafic 

intrusions ascribed to asthenospheric mantle with variable degrees of contamination by 

orogenic crust and/or lithospheric mantle (e.g., McLelland and Chiarenzelli, 1990; 

Gower et al., 1994; Corriveau et al., 2003; Indares and Dunning, 2004; Heaman et al., 

2004; Augland et al., 2015, 2017); and (ii)  small-volume, alkaline intrusions with arc 

to within-plate signatures that originated from melting of metasomatized SCLM (e.g., 

Corriveau et al., 1990; Corriveau and Gorton, 1993; Corrigan and Hanmer, 1997; 

Owens and Tomascak, 2002; Morin et al., 2005; Valverde Cardenas et al., 2012; 

Augland et al., 2017; Côté et al., 2018).  
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In the late-orogenic setting (<1020 Ma; i.e., post-Ottawan phase) of the 

Grenville Orogen, the topic of this contribution, the thermal core of the orogenic 

hinterland, termed the Interior Magmatic Belt (IMB; Owen and Erdmer, 1990; Gower 

et al., 1991; fig. 3.2), was intruded by a variety of dispersed, post-collisional, crust- and 

mantle-derived, alkalic mafic to felsic plutons and the AMCG suites with arc- to within 

plate-type geochemical signatures between ca. 1020-1005 Ma that were attributed to 

melting in the SCLM and orogenic lower crust in an extensional setting (Owens et al., 

1994; Gower et al., 1994; Higgins and van Breemen, 1996; Icenhower et al., 1998; 

Indares et al., 1998; Gower and Krogh, 2002; Gobeil et al., 2002; Owens and Tomascak, 

2002; Corriveau et al., 2003; Indares and Dunning, 2004; Hébert et al., 2005, 2009; 

Bédard, 2009; Moukhsil et al., 2009, 2014; Owens and Dymek, 2016; Augland et al., 

2015, 2017; Turlin et al., 2017, 2019; Côté et al., 2018). In the central Grenville 

Province, this period was also coeval with the gravitational collapse and crustal 

extension of the hinterland at ca. 1017-1007 Ma (Indares et al., 1998). However, some 

recently proposed tectonic models for the Grenville Province suggest the derivation of 

late-orogenic alkalic mafic-syenitic-AMCG suites from supra-subduction zone mantle, 

which was interpreted to have evolved from the Ottawan continental margin 

accretionary arc and back-arc setting to a post-Ottawan extension, which was related to 

slab break-off or retreat (Augland et al., 2015, 2017; Côté et al., 2018; Turlin et al., 

2019). Subsequent renewed convergence during the Rigolet phase (~1005-980 Ma; 

Rivers, 2008) was inferred to be the propagation of the orogenic front from hinterland 

into the foreland of the Grenville Province (Rivers et al., 2012), although recent studies 

from the central Grenville Province presented evidence in favour of the kinematically 
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equivalent interpretation involving underthrusting of the orogenic foreland beneath the 

hinterland at ca. 1008-1002 Ma (Jannin et al., 2018a, b; Turlin et al., 2019).  

This paper presents the petrography, major and trace element geochemistry, Sr-

Nd isotopes, and CA-TIMS U-Pb ages of two suites of late-orogenic, meta-mafic rocks 

from the Canyon domain in the hinterland of the central Grenville Province in Quebec, 

in order to investigate their sources and tectonic setting, and evaluate their significance 

for the late-orogenic evolution. Combined with recently published data, these two mafic 

suites allow us to: (i) identify the evidence for a post-Ottawan amphibolite- to granulite-

facies metamorphism in the hinterland; and (ii) constrain the late-orogenic lithospheric 

extension that resulted in local thinning and melting in the SCLM prior to the Rigolet 

compression and crustal thickening.   

3.3 Geological setting 

The Manicouagan area (fig. 3.3) in the central Grenville Province exposes two 

of the first-order tectonic divisions of the Grenville Orogen, the Parautochthonous Belt 

in the north separated by the gently SE-dipping Allochthon Boundary (AB; which 

recorded both reverse- and normal-sense movements) from the structurally overlying 

Allochthonous Belt in the south (fig. 3.1). In this area, the Parautochthonous Belt is 

represented by the Gagnon terrane, a polydeformed and metamorphosed early 

Paleoproterozoic continental-margin sequence and its underlying Archaean basement. 

Both the supracrustal sequence and its basement were deformed into a metamorphic 

fold-thrust belt during the terminal Rigolet phase of the Grenvillian Orogeny at ca. 

1005-980 Ma, with the grade of metamorphism increasing from greenschist-facies near 

the Grenville Front to amphibolite-, high-pressure (HP) granulite-, and eclogite-facies 
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conditions farther southeast (peak conditions of 1250-1300 MPa, 815-830 °C) (Rivers 

1983a, 1983b; Indares, 1995; Jordan et al., 2006; van Gool et al., 2008; Indares et al., 

2008; Dunning and Indares, 2010; Jannin et al., 2018a, b).  

In the central Grenville Province, the Gagnon terrane is tectonically overlain by 

the Manicouagan Imbricate Zone (MIZ; Indares et al., 1998; Cox et al., 1998; located 

to the north of the area in fig. 3.3), which mainly consists of remnants of a Labradorian 

(~1.65 Ga) AMCG suite, Pinwarian (~1.52-1.46 Ga; Tucker and Gower, 1994; Gower 

and Krogh, 2002) granitoid plutons, Shawinigan (ca. 1170 Ma) gabbro sills (Cox et al., 

1998), and several Ottawan gabbroic stocks and dykes emplaced between ca. 1026-

1038 Ma (Indares et al., 1998; Indares and Dunning, 2004). The MIZ was 

metamorphosed under eclogite- to HP granulite-facies conditions of 750–920 ºC and 

1700–1900 MPa during the Ottawan phase of the Grenvillian Orogeny at ~1060–1030 

Ma (Cox and Indares, 1999a, 1999b; Indares and Dunning, 2001; Indares, 2003; Yang 

and Indares, 2005; Indares et al., 2008) and is part of the Allochthonous HP belt (aHP 

Belt) of Rivers (2008). In the MIZ, the syn-Ottawan Gabriel dykes (undated), the high 

Fe-Ti gabbroic Themines dykes (>1026 Ma; Dunning and Indares, 2010), the 1039 ± 2 

Ma gabbroic stocks (Indares and Dunning, 2004), and the slightly younger fine-grained 

gabbroic dykes (undated) were interpreted to have been derived by decompression 

melting of upwelling asthenosphere following partial or complete removal of SCLM 

by convective thinning or delamination (Indares and Dunning, 2004).  

In contrast, the large area to the south, southeast and east of the MIZ, known as 

Berthé terrane (Hynes et al., 2000) was metamorphosed under Ottawan medium-P 

(MP) granulite-facies conditions (Indares and Dunning, 2004; Dunning and Indares, 

2010; Lasalle et al., 2014), and is part of the Allochthonous MP belt (aMP Belt) of 
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Rivers (2008). This belt is composed of tectonically imbricated domains, with different 

protoliths and ages, including gabbro, anorthosite, and megacrystic granitoids of 

Labradorian age (ca. 1694 Ma gabbro; Dunning and Indares, 2010) in the Island 

domain; felsic migmatites of unknown age in the Gabriel Complex (which yielded 

inherited monazite age of ca. 1478 Ma; Indares and Dunning, 2004); Pinwarian to post-

Pinwarian (ca. 1.5-1.4 Ga) intrusions in the Canyon domain in the south (Dunning and 

Indares, 2010; Lasalle et al., 2014; Maity and Indares, 2018); and Elzevirian granite 

(ca. 1238-1202 Ma; Indares and Dunning, 2004) in the Banded Complex and the mafic 

Toulnustouk sills (ca. 1228 Ma; Indares and Dunning, 2004) in the Hart Jaune Terrane. 

Additionally, the mafic granulites of the Hart Jaune terrane (HJT), which have yielded 

a Pinwarian (ca. 1470 Ma; Hynes et al., 2000) age of metamorphism, escaped the 

Ottawan high-grade events and represent a high-level crustal segment, the Ottawan 

Orogenic Lid (Rivers, 2012), preserved between the antiforms of the aHP MIZ and the 

aMP Gabriel Complex. The study area for this research is part of the Canyon domain, 

which is described in more detail below.     

3.3.1 Geology of the study area- The Canyon domain 

The Canyon Domain (fig. 3.3), first defined in the vicinity of the Manicouagan 

Reservoir by Hynes et al. (2000), structurally overlies aMP and aHP units of 

Labradorian age in the Island domain to the northwest and the MIZ to the north, 

respectively (Indares et al. 2000; Dunning and Indares 2010), and is characterized by a 

package of supracrustal units and associated plutonic rocks metamorphosed under MP 

granulite-facies conditions (Dunning and Indares, 2010; Indares and Moukhsil, 2012; 

Lasalle and Indares, 2014). In this study, the Canyon domain is informally divided into 

northern and southern parts located on opposite sides of the prominent thrust-sense 
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shear zone with an overall east-west-trend. In the hanging wall of this thrust, the oldest 

unit in the southern Canyon domain is the ca. 1.5 Ga paragneiss sequence of the 

Complexe de la Plus Value (PLV; Lasalle et al., 2013), which was deposited in a back-

arc setting (Augland et al., 2015; Maity and Indares, 2018), and was intruded by 

1439 −68+76 Ma high Fe-Ti-P mafic sills in a period of limited extension within the arc or 

back-arc (Maity and Indares, 2018).   

In the footwall to the north of this thrust, large parts of the Canyon domain 

(Canyon Complex of Moukhsil et al., 2013a) consist of: (i) the 1416 ± 10 Ma Mafic to 

Intermediate Unit (MIU) formed in a mature continental arc (Valverde Cardenas et al., 

2012), or a compressional back-arc to arc setting (Maity and Indares, 2018); (ii) the 

supracrustal Quartzofeldspathic Unit (QFU), inferred to have been deposited in the 

Geon 14 arc setting (Indares and Moukhsil, 2013); (iii) remnants of a volcanic belt 

termed the Layered Bimodal Suite (LBS; Indares and Mouksil, 2013), formed at 1238 

± 13 Ma (Lasalle et al., 2013) in an extensional setting (Dunning and Indates, 2010; 

Indares and Mouksil, 2013; Hindemith et al., 2017); and (iv) the Vein Complex (VC; 

Indares and Mouksil, 2013) of unknown age and tectonic setting. In low-strain outcrops, 

the VC exhibits an intricate anastomosing “vein-like” pattern of felsic and mafic layers 

(fig. 2c in Indares & Moukhsil, 2013) that grade into more strained layering that locally 

forms “straight gneisses” (figs. 2c and 2e, respectively, in Indares and Moukhsil, 2013), 

indicative of high-strain ductile deformation. This suite also contains coherent, 

homogeneous metagabbroic layers that lack visible evidence for high-strain ductile 

deformation, and variably strained mafic dykes, boudins and rafts (fig. 3.4a & b), that 

are analyzed further in this study. The metagabbroic layers exhibit sharp to diffuse 

boundaries, but their original relationship to the surrounding felsic gneisses is unclear. 
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The hydrothermally altered, supracrustal Layered Bimodal Suite (LBS) consists 

of alternating felsic and mafic layers (fig. 3 in Indares and Moukhsil, 2013), with the 

former comprising fine-grained pink or white gneiss (including nodular aluminous 

gneiss, garnetite and impure quartzite) with thin compositional layering devoid of 

ferromagnesian minerals, and the latter ranging from homogeneous to heterogeneous 

composition (Indares and Dunning, 2010; Indares and Moukhsil, 2013; Hindemith and 

Indares, 2013; Hindemith et al., 2017). Quartzofeldspathic veins of anatectic origin 

occur within the felsic and mafic units suggesting they have undergone deformation 

under high-grade metamorphic conditions. The LBS was initially interpreted to have 

formed in an intracontinental rift setting (Dunning and Indares, 2010; Valverde 

Cardenas et al., 2012; Indares and Moukhsil, 2013), but the predominantly arc to 

subordinate within plate geochemical signatures in the ca. 1238-1202 Ma mafic and 

granitic intrusions (Indares and Dunning, 2004; Valverde et al., 2012; Moukhsil et al., 

2014; Hindemith et al., 2017; Moukhsil and Solgadi, 2017), coupled with the lack of 

coarse clastics and alkaline mafic magmas, suggest that the LBS was most likely 

formed in a subduction setting, related to an extensional back-arc or intra-arc 

comparable to the Elzivirian back-arc in the western Grenville Province (Rivers and 

Corrigan, 2000). The LBS also includes several massive and variably deformed mafic 

layers, rafts, and attenuated dykes (fig. 3.4c & d) that also cross-cut the QFU and VC 

in the northern Canyon domain (Indares and Mouksil, 2013).    

The Canyon domain is cross-cut by several felsic intrusions including: (i) the 

1004.2 ± 2.3 to 1001.9 ± 3.9 Ma rare-earth element (REE)-rich, pegmatitic granite 

dykes (PGDs) in the PLV in the southern Canyon domain (Turlin et al., 2017); (ii) the 

995 ± 3.5 Ma undeformed granite pegmatites (Dunning and Indares, 2010); and (iii) the  



 106 

986 ± 0.5 Ma pink leucogranite dyke swarms in the northern Canyon domain (Jannin 

et al., 2018b). The older PGDs and the younger dyke swarms were inferred to have 

been derived from partial melting of paragneiss in the Paleoproterozoic Knob Lake 

Group (KLG) in the Gagnon terrane as a result of its underthrusting beneath the 

hinterland during the Rigolet convergence (Jannin et al., 2018b; Turlin et al., 2019). 

Finally, the central and southern parts of the Canyon domain are intruded by a 

suite of 980 ± 3 Ma potassic to ultrapotassic dykes that are undeformed to variably 

deformed and recrystallized (Dunning and Indares, 2010; Valverde Cardenas et al., 

2012). 

3.3.2 Metamorphism in Canyon domain 

All rocks in the Canyon domain except the Rigolet pegmatites and potassic to 

ultrapotassic dykes noted above have a high-grade metamorphic signature, and the 

dominant metamorphic sub-assemblages are Pl + Grt + Cpx + Opx + Hbl in mafic rocks 

and Grt + Sill + Kfs ± Bt + Liq (mineral abbreviations from Whitney and Evans, 2010) 

in aluminous quartzofeldspathic rocks, indicative of Ottawan (ca. 1080-1050 Ma, see 

below) MP granulite-facies metamorphism (Dunning and Indares, 2010; Lasalle and 

Indares, 2014). The Ottawan metamorphic evolution in the PLV, as determined from 

sillimanite-bearing paragneiss samples from the southern Canyon domain and from the 

Lac du Milieu area to the southeast of fig. 3.3, followed a prograde P-T path with a 

moderate dP/dT and an elevated temperature gradient at pressures below the kyanite-

sillimanite boundary, reaching peak suprasolidus conditions of ~800-1100 MPa and 

840-965 °C, followed by moderate decompression and re-crossing of the solidus at 

~600-820 MPa and 820-840 °C (Lasalle and Indares, 2014; Patrick and Indares, 2017). 

For the LBS in the northern Canyon domain, the Ottawan P-T evolution was broadly 
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similar, with a moderate prograde dP/dT and attainment of suprasolidus metamorphic 

conditions at ~780-1100 MPa and 830-875 °C, followed by retrograde decompression 

and cooling to the solidus at 650-800 MPa and 825-857 °C (Lasalle and Indares, 2014; 

Patrick and Indares, 2017). The moderate dP/dT of the prograde P-T paths yielded by 

these MP rocks in the Grenvillian hinterland are compatible with an elevated thermal 

regime beneath a long-duration orogenic plateau. More recent work has revealed 

evidence for retrograde cooling of the LBS from peak-Ottawan suprasolidus 

metamorphic conditions in the kyanite stability field (i.e., at higher pressure) following 

NW-directed thrusting (Da1 of Jannin et al., 2018b).  

Most metamorphic rims on zircon from the PLV and LBS in the Canyon domain 

have yielded ages between 1081 ± 5 Ma and 1044 ± 15 Ma (TIMS; Dunning and 

Indares, 2010; LA-ICP-MS; Lasalle et al., 2013), which were inferred by these authors 

to represent the time of the peak-Ottawan MP granulite-facies conditions. This 

interpretation was supported by metamorphic monazite ages between 1080-1020 Ma, 

with a significant cluster between 1070-1050 Ma (TIMS; Dunning and Indares, 2010; 

LA-ICP-MS; Lasalle et al., 2014). These age ranges, coupled with P-T modelling 

suggest a protracted thermal evolution in the Grenvillian hinterland during the Ottawan 

phase. However, some younger, post-Ottawan ages have also been determined, 

including monazite ages of 1020 ± 2 Ma and 1001 ± 3 Ma for two samples from the 

LBS (TIMS; Dunning and Indares, 2010), and an imprecise U-Pb zircon age of 1002 ± 

42 Ma determined from a wide (~20-80 µm), homogeneous, low-U metamorphic rim 

from the same sample (LA-ICP-MS; Lasalle et al., 2014). In addition, BSE-bright, Th-

enriched rims of matrix monazite grains from the PLV and LBS have yielded ages of 

988 ± 28 Ma and 1014 ± 31 to 980 ± 31 Ma, respectively (LA-ICP-MS; Lasalle et al., 
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2014). The latter authors tentatively associated these late Grenvillian ages with a fluid 

influx that caused a greenschist- to sub-greenschist-facies metamorphic overprint, 

and/or with the late intrusions of granitic pegmatites and ultrapotassic dykes between 

ca. 995-980 Ma. However, based on field relations of the ca. 1004-1002 Ma REE-rich 

PGDs with their host PLV, Turlin et al. (2017, 2018) proposed that the PLV was near 

its wet solidus temperature during the emplacement of the PGDs. Recently, Jannin et 

al. (2018b) showed that the LBS was metamorphosed under lower-pressure 

suprasolidus conditions in the field of sillimanite stability during a Rigolet SE-directed, 

normal-sense, shearing event (their D2), the timing of which was constrained by the 

age of syn-D2 pink leucogranite dyke swarms at 986 ± 2 Ma.  

3.4 Field Relations and Petrography 

The mafic rocks in the VC are fine- to coarse-grained, dark grey, massive, 

metagabbros that range from continuous coherent layers parallel to the regional 

gneissosity (fig. 3.4a) to attenuated dykes with evidence for stretching and boudinage 

on the meter scale (fig. 3.4b). These latter features provide clear evidence that the mafic 

rocks are intrusive, and that they are deformed, but they lack the pervasive ductile 

fabrics of the country rocks, suggesting they were intruded into previously deformed 

rocks as sills and dykes. Overall, the field relations in the VC suggest that the generally 

well preserved mafic sills and dykes were subjected to relatively lower strain conditions 

than their hosts, and that they intruded into the gneisses after formation of the ductile 

high-strain gneissic layering, but before complete cessation of deformation and 

metamorphism. Most of the mafic rocks from the VC are crudely foliated to non-

foliated, and display fine- to medium-grained, granoblastic assemblages consisting of 
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Pl + Hbl + Cpx + Grt ± Opx ± Ttn ± Bt ± Ilm (fig. 3.5a) attesting to recrystallization 

under granulite-facies conditions (e.g., Pattison, 2003).  

The mafic rocks in the LBS range from dark to light grey, homogeneous to 

heterogeneous, medium- to coarse-grained layers that are either massive or locally 

deformed into boudins and pinch and swell structures (fig. 3.4c and d). The mafic layers 

in the LBS are distinct from those in the VC in that they exhibit significant 

compositional and textural variations, including: (i) granoblastic Hbl + Pl (fig. 3.5b); 

(ii) large garnet porphyroblasts in a matrix composed of Pl + Hbl + Bt + Opx, in which 

garnet is variably replaced at its margins by hornblende, biotite, plagioclase, 

orthopyroxene, and quartz (fig. 3.5c); and (iii) garnet porphyroblasts in a matrix rich in 

Pl + Opx + Cpx + Bt ± Hbl (fig. 3.5d), in which garnet is partially replaced by 

symplectic Opx + Pl coronas. Additionally, trace amounts of zircon, allanite, thorite, 

barite, monazite and sulphides have been documented. The peak assemblage of Hbl + 

Pl in one sample is indicative of amphibolite-facies conditions, whereas the breakdown 

of garnet to Pl + Hbl + Bt in most samples suggests retrogression or decompression. 

The general assemblage of Grt + Pl + Hbl + Bt + Opx is indicative of LP granulite-

facies conditions, and some of these samples exhibit the development of Pl + Opx 

coronas around garnet, suggesting heating or decompression under LP granulite-facies 

conditions (Pattison, 2003), prior to variable, post-peak retrogression under hydrous 

conditions (formation of hornblende and biotite at the expense of clinopyroxene and 

garnet). In the samples with corona texture, clinopyroxene is restricted to the matrix 

and rare alteration zones, and is associated with quartz, hornblende, biotite, and opaque 

phases. The large, irregular, partially resorbed, quartz grains present in some samples 

are xenocrystic and rimmed by pyroxene, biotite, and an opaque phase (fig. 3.5e). The 
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microstructural domains of hydrothermal alteration contain variable proportions of 

secondary sericite and chlorite with the sample 11-331b being the most altered. In 

addition, sample 11-317a contains a thin vein composed of K-feldspar and biotite. 

In summary, the mafic rocks from the VC exhibit metamorphic textures and 

mineral assemblages suggestive of peak granulite-facies metamorphism, whereas those 

from the LBS are suggestive of decompression or heating to peak LP granulite-facies 

conditions before partial post-peak retrogression to amphibolite-facies assemblages.  

3.5 Analytical Methods 

Six samples from the VC and five samples from the LBS were taken from the 

least altered and freshest parts of outcrops of the dykes and sills in the study area for 

whole-rock major and trace element analysis. Selected samples were crushed and 

powdered using standard clean laboratory protocols at Memorial University of 

Newfoundland (MUN), and were analyzed for whole-rock major and trace element 

concentrations at the Activation Laboratories (Actlabs) Ltd. in Ontario, Canada. The 

standard analytical protocol involved fusing a measured weight of rock powder with 

lithium metaborate/ tetraborate to produce homogeneous glass beads that were analyzed 

using combination of simultaneous/sequential Thermo Jarrell-Ash ENVIRO II or a 

Varian Vista 735 inductively coupled plasma (ICP) for all major elements and selected 

trace elements (Ba, Be, Sc, Sr, V, Y, Zr), and by using Perkin Elmer Sciex ELAN 6000, 

6100, or 9000 fusion inductively coupled plasma mass spectrometry (FUS-ICP/MS) for 

the remaining trace elements (appendix A). The details of their analytical protocols can 

be found on the Actlabs website (www.actlabs.com). The detection limits for the 

analyses are typically in the range of 0.01-0.001 % for major elements and 1-30 ppm 

http://www.actlabs.com/


 111 

for trace elements. For tracer isotopes of two samples each from the VC and LBS, Sr 

was separated followed by Sm and Nd from whole-rock powders following an in-house 

protocol at MUN, and isotope ratios were measured using a multi-collector Finnigan 

Mat 262 mass spectrometer in static and dynamic modes. U-Pb zircon dating for two 

samples from the VC and LBS was carried out by chemical abrasion thermal ion mass 

spectrometry (CA-TIMS) using a Finnigan Mat 262 mass spectrometer at MUN 

following the procedure described in Sparkes and Dunning (2014). Details of all the 

isotope analytical procedures are described in appendix A. 

3.6 Results 

3.6.1 U-Pb Geochronology   

One sample from the VC and one from the LBS were chosen for U-Pb zircon 

dating by CA-TIMS to determine the timing of crystallization and metamorphism of 

the mafic rocks. Zircon were extracted from both samples using standard crushing and 

separation techniques. Zircon grains from both samples are clear, colourless to 

yellowish, with a few exhibiting inclusions and fractures. The grains mainly consisted 

of two morphological types: euhedral to subhedral prisms that are interpreted to have 

formed during igneous crystallization, and rounded, multi-faceted ‘soccer ball’ grains 

inferred to have formed during high-grade metamorphism (see Corfu et al., 2003; and 

references therein). The isotopic data are presented in table 3.1 and plotted on a 

Concordia diagram in fig. 3.6 using Isoplot 3.0 (Ludwig, 2003). 

Sample #11-208 is from a homogeneous metagabbroic dyke in the Vein 

Complex. Of the prisms, one single-grain (Z1) and two multi-grain analyses (Z3, 4) are 

concordant and yield a weighted average age of 1007.1 ± 3.0 Ma (MSWD = 0.36) (fig. 
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3.6a). The prism fraction Z2 yields a significantly older age of 1021.9 ± 4.9 Ma (MSWD 

= 0.92), and possibly represents a xenocryst or mixing with a xenocrystic core. Three 

multi-grain analyses (Z5, 6, 7) of small, clear, round grains yield a weighted average 

age of 1008.0 ± 2.5 Ma (MSWD = 0.22), which overlaps within uncertainty with the 

weighted average age of the three prisms. Several interpretations of the data are 

possible, but considering that the prisms and round grains overlap with each other rather 

than defining a chord, a weighted average age 1007.7 ± 2.0 Ma (MSWD = 0.0018), 

calculated for all the concordant grains (except Z2), is interpreted to be the best estimate 

for the age of syn-metamorphic emplacement of this sample.  

 Sample #11-331b comes from a homogeneous mafic layer in the Layered 

Bimodal Suite. Two populations of zircon were recovered: euhedral to subhedral clear 

prisms with medium (1:2) to high (1:4) aspect ratios, and more rounded stubby grains 

with low (~1:1) aspect ratios, which are interpreted to be relict prisms modified during 

granulite-facies metamorphism (e.g., Corfu et al., 2003). Four fractions of the best 

zircon prisms were analyzed. Z1 is a multigrain fraction consisting of two euhedral 

grains, whereas Z2, Z3, and Z4 are analyses of single euhedral grains, all of which are 

concordant and overlap with a weighted average age of 997.0 ± 3.8 Ma (MSWD = 0.96) 

(fig. 3.6b). There is no spread of ages on the Concordia diagram, as would be expected 

for prisms with older xenocrystic cores, or for igneous grains overprinted by a younger 

granulite-facies event, suggesting this is the zircon crystallization age of the mafic sill 

in the LBS. The zircon could have been metamorphosed either during their 

emplacement at ca. 997 Ma since there is evidence for a high thermal gradient at this 

time in the structurally overlying PLV to the south (e.g., Turlin et al., 2017, 2018), or 

during a younger suprasolidus metamorphic condition at ca. 990 Ma related to mid-
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crustal channel flow in the northern Canyon domain (Jannin et al., 2018b). The 

concordant and overlapping data in fig. 3.6b suggests that either the dated prisms in our 

study did not record younger metamorphic event(s), or their metamorphic rims were 

removed during the chemical abrasion procedure. A more detailed study is required to 

unambiguously link zircon growth events to late-Grenvillian metamorphism. 

3.6.2 Major and trace element Geochemistry  

The major and trace element geochemistry for the mafic rocks in VC and LBS 

is presented in table 3.2. Six additional samples that were previously thought to be 

related to ~1.2 Ga crustal extension (Valverde Cardenas et al., 2012), but are now 

recognized to be part of these two suites, are also included in the table.  

Both the VC and LBS suites experienced late-Grenvillian granulite-facies 

metamorphism and low-grade hydrothermal alteration (Hindemith and Indares, 2013; 

Hindemith et al., 2017), which could have affected their major and trace element 

compositions. Therefore, the mafic rocks in our study were tested for element mobility 

by using appropriate geochemical screening methods (appendix B), before their major 

and trace element compositions were used to study their petrogenesis and tectonic 

setting. The screening process yielded evidence for hydrothermal alteration in a few 

samples, but most exhibit major and trace element features suggesting their protolith 

chemistry is largely preserved. As such, they are not restites and hydrothermal 

alteration has not changed their whole-rock immobile incompatible element 

concentrations and ratios, which are used in this study.  

The mafic samples from the dykes and sills in both suites exhibit overlapping 

compositional ranges in SiO2 (45-49 wt%), MgO (5.5-8.8 wt%), Al2O3 (12-17 wt%), 
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TiO2 (0.9-3.8 wt%), and Fe2O3(tot) (11.6-18.9 wt%). They are subalkaline tholeiitic 

basalt to basaltic andesite in composition (fig. 3.7), and exhibit variable Mg# (39-61) 

together with variable Ni and Cr (720 and 490 ppm to below detection limit, 

respectively) (fig. 3.8a and b). On plots against Zr as fractionation index, they exhibit 

positive correlations with Fe2O3(tot) (not shown), TiO2 (fig. 3.8c), P2O5 (fig. 8d), and Y 

(fig. 3.8e), and negative correlations with CaO/Al2O3 and TiO2/P2O5 (not shown), 

Al2O3/TiO2 (fig. 3.8f), and Sc/Yb (fig. 3.8g). Their Eu* anomalies (Eu/Eu* = 

EuCN/√(SmCN × GdCN); CN, chondrite normalized) (fig. 3.8h) are restricted to a narrow 

range between 0.8-1.2. 

The mafic samples from both suites exhibit a range of trace element 

concentrations, and can be subdivided based on their normalized REE patterns and 

ratios, and the presence or absence of a negative Nb anomaly relative to both La and 

Th (fig. 3.9; table 3.3). Among the three groups in the VC, the samples in VC1 have 

moderate LREE enrichment (fig. 3.9a), low La/Nb, no Th enrichment relative to La or 

Nb, and no negative Nb anomaly (fig. 3.9f). Those in VC2 exhibit moderate LREE 

enrichment similar to VC1 (fig. 3.9b), but higher La/Nb, stronger Th enrichment 

relative to Nb [(Th/La)PM ≅ 1; PM, primitive mantle], and a symmetrical negative Nb 

anomaly (Whalen et al., 2006; fig. 3.9g). The samples in VC3 have the strongest LREE 

enrichment (fig. 3.9c), highest La/Nb, Th enrichment similar to those in VC2 [but 

(Th/La)PM < 1], and an asymmetrical negative Nb anomaly (fig. 3.9h). The samples in 

VC3 also exhibit the strongest depletions in Zr, Hf, and Ti compared to the two other 

groups, and all the three groups have low MREE/HREE ratios [(Dy/Yb)CN = 1.1-1.3] 

(fig. 3.9a-c). 
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The mafic samples in the LBS can be grouped into LBS1 with moderate LREE 

enrichment and low MREE/HREE ratios (fig. 3.9d), variable La/Nb, no Th enrichment 

relative to La or Nb, and no negative Nb anomaly (fig. 3.9i). In comparison, the samples 

in LBS2 exhibit stronger LREE enrichment and higher MREE/HREE ratios (fig. 3.9e), 

high La/Nb, variable Th enrichment relative to Nb [but (Th/La)PM < 1], and no negative 

Nb anomaly except in sample 11-317b (fig. 3.9j). All the samples in the LBS exhibit 

variable to no depletion in Zr and Hf but a distinct positive anomaly in Ti. 

In various tectonic discrimination diagrams (fig. 3.10 a-c), the mafic samples 

from both suites with non-arc signature (fig. 3.10d) plot in the ocean-floor or mid-ocean 

ridge basalt (OFB or MORB) to within-plate or ocean island basalt (WPB or OIB) 

fields, whereas those with arc signatures exhibit a trend from ocean-floor basalt to arc, 

variations that are consistent with their negative Nb anomalies and variable Th 

enrichments (fig. 3.10d). However, all the mafic rocks exhibit high Ti, Zr, and P 

contents and relatively higher Zr/Y (2.5 - 10) and Ti/V (21 - 96) ratios compared to arc 

rocks. In Zr/Y-Zr (fig. 3.10e) and Ti-V (fig. 3.10f) diagrams, two samples plot near the 

boundary between arc and MORB fields whereas the remaining samples exhibit MORB 

or back-arc basalt (BAB) to OIB signatures.  

3.6.3 Whole rock Sm-Nd and Rb-Sr isotopes  

Four samples, two each from the VC and LBS, were selected for whole-rock 

Sm-Nd and Rb-Sr isotopic analysis. The isotope analytical data including published 

data for three samples (one in VC and two in LBS) from Valverde Cardenas et al. (2012) 

are presented in table 3.3, and plotted in fig. 3.11. The initial isotope ratios are 

calculated at 1 Ga.  
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The samples from the VC yield εNd1 Ga values between +2.8 and -3.6, with 

corresponding depleted mantle Nd model ages (TDM, DePaolo, 1981a) between 1.46 

and 1.92 Ga. They have low initial Sr [ISr = (87Sr/86Sr)initial] isotopic ratios of 0.70394 

and 0.70465, with induced errors less than 0.00010 suggesting insignificant element 

mobility (Jahn, 2004; see footnotes of table 3.3). 

The samples from the LBS yield Nd1 Ga values between -1.1 and +5.2, with 

corresponding depleted mantle TDM model ages between 1.71 and 1.08 Ga. Two of 

these samples have relatively high ISr ratios of 0.70682 and 0.70973 with induced errors 

between 0.00013 to 0.00031. The higher error value in sample 11-331b is significantly 

above the accepted value of 0.00010 (table 3.3), suggesting variable mobility of Rb and 

increase in Rb/Sr ratio. This sample (11-331b) exhibits evidence for strong 

sericitization and chloritization suggesting low-grade hydrothermal alteration may have 

affected its Rb/Sr ratio. Alternatively, variable degrees of mixing with crustal melt or 

fluid could also have increased the ISr ratios and Rb contents.  

3.7 Petrogenesis of the mafic rocks 

The mafic rocks in our study display sub-alkaline tholeiitic composition and 

immobile major and trace element ratios that span arc to intraplate settings in several 

tectonic discrimination diagrams (fig. 3.10). The observed REE and HFSE patterns (fig. 

3.9), Nb/Th ratios (fig. 3.10d), and the ranges of εNd and ISr values (fig. 3.11-3.13) 

suggest the potential involvement of multiple sources, including: (i) a depleted 

asthenospheric mantle source; (ii) a supra-subduction zone mantle (SSZM) or arc 

source; (iii) a subduction-modified subcontinental lithospheric mantle (SCLM) source; 

and (iv) an enrichment process such as a low degree of partial melting, fractional 
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crystallization (FC), and/or crustal assimilation and fractional crystallization (AFC; 

DePaolo, 1981b).  

3.7.1 Fractional crystallization  

Despite evidence for high-grade metamorphism and minor hydrothermal 

alteration in some samples, which may have altered the concentrations of some mobile 

elements, the compositions of the mafic rocks in both suites exhibit consistent 

variations in major and trace elements, and element ratios, suggestive of fractional 

crystallization (fig. 3.8). In particular, olivine, clinopyroxene, and plagioclase 

fractionation are suggested by the variable MgO (9.4-5.5 wt%), Mg# (39-61), Cr (<20-

320 ppm), and Ni (<20-210 ppm) concentrations, and negative Eu anomaly (Eu/Eu* = 

0.81-1.15). The positive covariation of Ni (fig. 3.8a) and Cr (fig. 3.8b) with MgO, and 

the negative covariation of Sc/Yb (fig. 3.8g) and TiO2 (fig. 3.8c) with the fractionation 

index Zr, suggest variable degrees of olivine, clinopyroxene, and plagioclase 

fractionation (e.g., Pearce and Norry, 1979). The sample RS431 from LBS1 has much 

higher Cr (490 ppm) and Ni (720 ppm) at comparable MgO (~6 wt%) and Mg# (44) 

than other samples, indicating a different mantle source, or much higher Ni and Cr in 

the parental melt, or this sample possibly being a cumulate. The variation of Eu 

anomaly (Eu/Eu*) from slightly positive to negative values with increasing Zr (fig. 

3.8h) (or decreasing MgO) suggests that plagioclase was an accumulating phase for the 

most primitive samples, but became a fractionating phase during the later stage of 

magmatic evolution. The systematic increase in Fe2O3 and TiO2 (fig. 3.8c) and a sharp 

decrease in Al2O3/TiO2 (fig. 3.8f) with fractionation preclude significant Fe-Ti oxide 

separation, and are thus indicative of low oxygen fugacity (fO2) conditions. The increase 

in P2O5 and Y (figs. 3.8d and e) and decrease in TiO2/P2O5 with Zr (not shown) suggest 
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apatite accumulation. At comparable Zr, four samples of the LBS comprise a high P2O5 

cluster, suggesting either a different source or a different path of fractionation for these 

samples.  

The differentiation of tholeiitic magma resulting in fractionation of early-

formed olivine and clinopyroxene, plagioclase, and accumulation of Fe-Ti oxides (e.g., 

ilmenite, rutile, titanite) and apatite under low fO2 conditions is typical of low-pressure 

fractional crystallization of modern ferrobasalts in oceanic and continental rift 

environments (Barberi et al., 1975; Byerly et al., 1976). However, the mafic tholeiites 

exhibit variable degrees of LREE enrichment and HFSE depletion relative to the 

adjacent REE (fig. 3.9). Although the LREE enrichment can be explained by partial 

melting of a mantle peridotite source, the highly variable incompatible element ratios, 

depletions in HFSE and the range of εNd and ISr ratios observed in the mafic rocks 

cannot be explained by any combination of partial melting and fractionation-

accumulation processes. Rather, these trace element and isotopic features must be 

inherited source features (e.g., an arc or SCLM source), or alternatively, be related to 

contamination of mantle melts by an incompatible element-enriched lithospheric 

source, e.g., the continental crust or SCLM. 

3.7.2 Arc vs. lithospheric contamination 

Although a depleted asthenospheric mantle source is obvious for the least 

contaminated samples with high Nb/Th (Nb/Th > 7 indicating a non-arc source; 

Swinden et al., 1989), the pronounced depletions in HFSE with low Nb/Th (< 5), and 

enrichments in LREE (and LILE), are characteristics of both arc rocks produced in 

supra-subduction zones (i.e., SSZM) and mantle-derived melts contaminated by 



 119 

continental crust or a subduction-metasomatized SCLM (e.g., Whalen et al., 1996; 

Whalen et al., 2006).    

The mafic samples with a negative Nb anomaly and Nb/Th < 7 (fig. 3.10d) plot 

in the volcanic arc or transitional field in tectonic discrimination diagrams involving 

Th, Nb, Zr, and Ti (fig. 3.10a-d). Two of these samples (11-349 and RS314) – with 

high MgO, low Nb/Th, low Y, and low HFSE abundances (fig. 3.9g and h) – plot near 

the boundary between arc and MORB fields on the Zr-Zr/Y and Ti-V discrimination 

diagrams (fig. 3.10e-f), suggesting a depleted arc-type signature (e.g., Tatsumi and 

Eggins, 1995; Ewart et al., 1998). The remaining samples have overall HFSE contents 

higher than volcanic arc basalts (fig. 3.9f-j), and they plot in the MORB or BAB to OIB 

fields on the Zr-Zr/Y and Ti-V diagrams (fig. 3.10e-f). In discriminating between arc 

and contaminated continental tholeiites, several authors have pointed out the high 

abundances of trace elements in the latter compared to those in the arc-related tholeiitic 

and calc-alkaline rocks (e.g., Xu et al., 2008; Xia et al., 2014; Xu et al., 2017; Xia and 

Li, 2019).  

Typical arc tholeiites exhibit low Nb/Th, but over a range of positive εNd values 

that can range from depleted mantle to CHUR (~0.0 to +5.0 at ca. 1 Ga; fig. 3.12a) 

(e.g., Whalen et al., 1996, 2006; Swinden et al., 1997). In comparison, continental 

tholeiites contaminated by crust or SCLM exhibit a wider range of εNd, varying from 

positive (non-arc source) to highly negative (continental crust or SCLM) (e.g., Swinden 

et al., 1997). In the mafic rocks in LBS, εNd varies from +5.2 (close to the depleted 

mantle at ca. 1 Ga; DePaolo, 1981a) to -1.0 (TDM 1.08-1.71 Ga), and in the VC from 

+2.9 to -3.6 (TDM 1.46-1.92 Ga) (fig. 3.11a; table 3.3). In both VC and LBS, εNd 

correlates positively with Nb/Th, Nb/La, and Sm/Nd, and negatively with (La/Yb)CN, 
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SiO2, and K/Zr (fig. 3.12b-f), features that are characteristic of continental tholeiites 

contaminated by crust or subduction-metasomatized SCLM. However, as discussed 

above, a small number of samples with arc-type signature were likely to have been 

derived from a subduction-metasomatized SCLM.   

3.7.3 Role of lithospheric contamination 

For a quantitative evaluation of crustal components in the mafic rocks, 

calculations of AFC (DePaolo, 1981b; appendix C) involving depleted asthenospheric 

mantle-derived melt and Labradorian crust (ca. 1.65 Ga; Schärer, 1991; Kerr, 1989; 

Thomson et al., 2011) and Archean crust (ca. 2.65 Ga; Weaver and Tarney, 1984; Kerr 

et al., 1995; Thomson et al., 2011) as end members were performed using Nd and Sr 

isotope data (table 3.4; figs. 3.13a-c). The ratio of assimilation to crystallization rate 

(R) required to fit the data is high (0.7), which is consistent with the high temperature 

of mafic magmas (~1100-1200 °C) and the high thermal gradient of crust undergoing 

extension and high-grade metamorphism. Lower R values (e.g., 0.2) produce flatter 

curves and much higher degrees of fractionation before the required degree of 

contamination is reached (e.g., curve Ib), thereby resulting in more felsic melt 

compositions (e.g., Chen et al., 1994). The AFC calculations suggest that the sample 

from VC2 requires ~4% assimilation of an Rb-rich crustal melt (curve I), whereas the 

sample in VC3 can be modelled using ~15% assimilation of an Sr-rich crustal melt 

(curve II).    

The AFC calculations for the sample 11-331a from LBS1 require ~10% 

assimilation of crustal melts derived from an Rb-rich granite or granodiorite (curve I; 

figs. 3.13a & b). The sample 11-331b from LBS2 exhibits an even higher ISr ratio that, 

coupled with its high 143Nd/144Nd, cannot be modelled with any value of R in the AFC 
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calculation (e.g., curves Ia and b in fig. 3.13a-c). The closest match is obtained by the 

curve Ib, which requires a very high degree of fractional crystallization (~90%) before 

the required degree of contamination is reached. Although an upper crustal 

contamination is obvious for the sample, as indicated by the presence of large 

xenocrystic quartz grains, late hydrothermal alteration has also affected it, as indicated 

by the presence of abundant sericite and chlorite. This latter process could have 

increased its Rb content resulting in very high ISr, and a high induced error in the ISr 

calculation, without necessarily affecting its Nd isotopic composition (table 3.3).  

The AFC calculations suggest that ~15% or less contamination by an Archean 

crust (Weaver and Tarney, 1984) or underlying SCLM could also produce the observed 

Sr-Nd isotopic signatures of the mafic rocks, (curve III, fig. 3.13a and d, table 3.4). 

However, an Archean lithospheric contaminant produces much steeper AFC curves, 

resulting in lower Nd contents, and thus requiring much higher degrees (~60%) of 

fractional crystallization to reach the required level of Nd in the sample 11-351 in VC3 

(fig. 3.13c). Further, for the modelled composition of the Archean crust (Weaver and 

Tarney, 1984), more than 30% contamination is required to reach the Sr content and Sr 

isotopic ratio for sample 11-351 (fig. 3.13c). Although a higher Sr content in the 

Archean contaminant would lower the required contamination level, the Sr values used 

in the modelled Archean crust (Sr = 350-580 ppm; Weaver and Tarney, 1984) is 

appropriate and comparable to that of the Archean crust from the Ashuanipi Complex 

(Sr = 318-758 ppm; Percival et al., 2003). Overall, our mafic dataset is best fit with 

AFC models using Proterozoic crust (or SCLM) as contaminants.   

The calculated degrees of AFC in the mafic rocks cannot, however, explain the 

observed Nd contents (Nd = 18.7-40.6 ppm; fig. 3.13c), which are higher than the 
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relatively low Nd contents in the contaminant Labradorian or Archean crust (table 3.4). 

The high Nd coupled with high Zr, Ti, and moderate to low MgO and Mg# suggest that 

most of the contaminated samples in the VC and LBS were also variably fractionally 

crystallized. This is further supported by the observation that the contaminated samples 

with high Zr (~100-260 ppm) are generally more differentiated, with higher REE 

contents and negative Eu anomalies, but without significant increase in La/Yb ratios 

(fig. 3.13d), indicating the role of crystal fractionation (especially plagioclase) in a 

shallow magma chamber. These observations imply that the parental melts of the mafic 

rocks could have been contaminated before differentiation in an intermediate to 

shallow-level chamber, from which both the primitive and differentiated magmas with 

variable degrees of contamination were released and intruded the crust in the form of 

dykes and sills (e.g., Nykänen et al., 1994).  

3.7.4 Depths of melting 

The partition coefficients of REEs vary markedly with the mantle source 

mineralogy, i.e., MREEs show moderate and HREEs high compatibility in garnet but 

are incompatible in spinel (e.g., Halliday et al., 1995). As a result, the LREE/MREE 

and MREE/HREE ratios can be elevated in small-degree melts derived from garnet-

peridotite, whereas melts of spinel-peridotite will produce MREE/HREE ratios similar 

to the mantle source and LREE/MREE ratios will increase with decreasing degree of 

melting (McKenzie and O'nions, 1991; Aldanmaz et al., 2000) or increasing source 

enrichment. Moreover, garnet is a stable phase in the mantle above ~80 km whereas 

spinel is stable below ~60 km and the depth between 60-80 km is considered to be 

transitional where both garnet and spinel can coexist (Ellam, 1992; Robinson and 

Wood, 1998). Therefore, the REE data that are strongly dependent on the spinel- vs. 



 123 

garnet-peridotite can offer a sensitive means to infer the nature of source, degree of 

partial melting, and the depth of melt generation in the mantle source region.    

The relatively high SiO2 and low Fe2O3-TiO2 contents in the least contaminated 

tholeiitic samples with highest MgO suggest that they were derived from partial melting 

of mantle peridotite at shallow depth (e.g., Klein and Langmuir, 1987). A shallow depth 

is also supported by the flat to slightly fractionated HREE patterns (fig. 3.9a-d) and 

HREE contents (~10-20 times chondritic) of the most primitive samples in VC and 

LBS1 – indicating partial melting took place mostly at shallow depth. Those in LBS2 

exhibit greater fractionation in HREE (fig. 3.9e) and high Ti/Y, which is suggestive of 

greater depth of melt generation for these samples. The depth of melt generation can be 

semi-qualitatively assessed using (Tb/Yb)PM ratios as a proxy (Wang et al., 2002). In 

the (Tb/Yb)PM vs. (La/Sm)PM diagram (fig. 3.14a), most of the mafic rocks plot within 

the spinel-peridotite field corresponding to < 2.8 GPa or < 85 km depth. At comparable 

(La/Sm)PM ratios, two samples from LBS2 (11-317b, 11-331b) exhibit higher 

(Tb/Yb)PM, which crosses the spinel-garnet boundary, indicating a higher proportion of 

garnet in their source, whereas the third sample (11-216c) exhibits much higher 

(La/Sm)PM ratio comparable to those from VC3. Increasing La/Sm in the mafic samples 

indicates increasing degree of crustal contamination, as discussed above. In the Ce/Sm 

vs. Sm/Yb diagram (fig. 3.14b), the modelled (non-modal batch melting, appendix C) 

partial melting curves for a primitive mantle composition within the shallow spinel-

peridotite and deeper garnet-peridotite are shown. The least contaminated mafic 

samples with Nb/Th > 5 and MgO > 5 wt% indicate between ~4-10% melting of 

peridotite, and garnet: spinel-peridotite ratios of up to ~40:60. The sample in LBS2 

exhibits ~5% melting and garnet: spinel peridotite ratios of ~70:30.  
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In summarizing the petrogenesis of the mafic rocks, their geochemical and 

isotopic features are best explained by partial melting of a predominantly depleted 

asthenospheric source contaminated by Paleoproterozoic crust or SCLM, and a 

subordinate arc-type SCLM source. The least contaminated samples suggest derivation 

from 4-10% partial melting of peridotite with a maximum garnet: spinel peridotite ratio 

of ~40:60 for the samples in VC and LBS1, and ~5% partial melting of mantle peridotite 

with garnet: spinel peridotite ratio of ~70:30 for the samples in LBS2. The degree of 

crustal contamination was relatively greater for the VC (~4-20%) compared to that in 

the LBS (~4-10%), which is compatible with the MORB to arc-type signatures of the 

former, and the MORB to WPB-type signatures of the latter (fig. 3.10). Parental melts 

of the mafic rocks were contaminated before differentiation in an intermediate to 

shallow level chamber, where both primitive and differentiated magmas with variable 

degrees of contamination evolved together. Fractionation of early-formed olivine and 

clinopyroxene, plagioclase, and accumulation of Fe-Ti oxides (e.g., ilmenite, rutile, 

titanite) and apatite took place under low fO2 condition, suggesting low-pressure 

fractional crystallization.     

3.8 Discussion 

3.8.1 Late-orogenic magmatic events in the hinterland  

The available age data for late-Grenvillian (ca. 1020-980 Ma) igneous and 

metamorphic events in the Canyon domain, Grenville hinterland, are summarized in 

fig. 3.15. The emplacement ages for the mafic rocks in the VC and LBS at 1007.7 ± 2.0 

Ma and 997 ± 3.8 Ma, respectively, span the post-Ottawan to early-Rigolet phases of 

the Grenvillian orogeny. This part of the central Grenville Province also records several 
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post-Ottawan to early-Rigolet intrusions: (i) ca. 1017-1015 Ma Sabot and Okaopéo 

plutonic suite consisting mangerite and gabbronorite (Gobeil et al., 2002; Moukhsil et 

al., 2013b, 2014; Augland et al., 2015); (ii) the ca. 1017-1007 Ma granite veins and 

sheets (e.g., 1015 Ma Hart Jaune granite; Indares et al., 1998) in the in aHP MIZ; (iii) 

the ca. 1004-1002 Ma REE-rich pegmatite granite dykes (PGDs) in the southern 

Canyon domain and in the Lac Okaopéo area (Turlin et al., 2017, 2019); (iv) the ca. 

995 Ma undeformed pegmatite granite dyke in the Canyon domain (Dunning and 

Indares, 2010); and (v) the syn-tectonic (syn-D2) pegmatite granite dykes and coeval 

ca. 986 Ma pink leucogranite dyke swarm in the northern Canyon domain (Jannin et 

al., 2018).  

Elsewhere in the southwestern Grenville Province, several post-Ottawan alkalic 

syenite to granite and AMCG suites have been reported, e.g., the ca. 1020.6 Ma 

Wemotaci and ca. 1019 Ma Rheaume syenites (Côté et al., 2018); the ca. 1014 Ma Core 

and ca. 1009 Ma Bouvreuil syenite (Augland et al., 2017); and the ca. 1020-1008 Ma 

Valin Anorthositic suite (Emslie and Hunt, 1990; Owens et al., 1994; Higgins and van 

Breemen, 1996; Hébert et al., 2005).  

Among these, the post-Ottawan magmatic intrusions (ca. 1020-1005 Ma) are 

interpreted by the above authors to have been derived from melting of upwelling 

asthenosphere, lithospheric mantle, and lower crust, and emplaced in an extensional 

setting.  They provide important geochemical, tectonic, and temporal constraints on the 

post-Ottawan evolution of the Grenville hinterland that are discussed in section 3.8.4. 

On the other hand, the Rigolet pegmatitic granite intrusions (ca. 1005-986 Ma) are 

interpreted to have been derived from partial melting of allochthonous PLV paragneiss 

and/or parautochthonous paragneiss from the Gagnon terrane at depth, which was 
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interpreted to have been underthrust beneath the hinterland in the beginning of Rigolet 

convergence (Turlin et al., 2017, 2019; Jannin et al., 2018b). 

3.8.2 Late-orogenic metamorphism in the hinterland 

3.8.2.1 Zircon and monazite ages 

On the hanging wall (southeast) side of the AB, the post-Ottawan thermal 

events in aMP and aHP domains in the central Grenville Province are constrained by 

metamorphic zircon and monazite ages. The metamorphic zircon age of ca. 1008 Ma 

for the mafic dyke in the VC and the inferred ≤ 997 Ma age of metamorphism for mafic 

sills in the LBS in northern Canyon domain (this study) correlate with other post-

Ottawan zircon ages in the aMP belt in the study area that range from ca. 1013-996 Ma 

(Indares et al., 1998; Cox et al., 2002; Indares and Dunning, 2004; Dunning and Indares, 

2010; Lasalle et al., 2013; Augland et al., 2015), and a relatively wider range of 

monazite ages between ca. 1020-980 Ma, determined from aluminous paragneiss 

samples in the LBS and PLV (Dunning and Indares, 2010; Lasalle et al., 2014). As 

noted previously, these zircon and monazite ages were collectively interpreted to 

represent one or more thermal pulses related to late-tectonic igneous intrusions (i.e., of 

the granite pegmatites and ultrapotassic dykes), and/or to zircon and monazite growth 

during a fluid-present, greenschist-facies metamorphic overprint (Indares and Dunning, 

2004; Dunning and Indares, 2010; Lasalle et al., 2013, 2014).     

In the aHP MIZ, the post-Ottawan metamorphic zircon (~1026-1007 Ma; Cox 

et al., 2002) and monazite ages (~1020-1006 Ma; Indares and Dunning, 2001; Lasalle 

et al., 2014) were correlated with northwest-directed tectonic extrusion of deep crustal 

levels either followed by, or coeval with, southeast-directed extension at the structural 
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top (Indares et al., 1998; Indares, et al., 2000; Cox et al., 2002). The extension in the 

Boundary Zone (structural top of the MIZ) was constrained by several granite intrusions 

between ca. 1017-1007 Ma (Indares et al., 1998) along steeply southeast-dipping shear 

zones to the north of Hart Jaune terrane (HJT; orogenic lid). A distinctly younger 

metamorphic monazite age of 989 ± 2 Ma (Scott and Hynes, 1994) at the base of the 

HJT was inferred to indicate Rigolet crustal thickening and lower amphibolite-facies 

metamorphism in the overlying MIZ (Hynes et al., 2000; Indares et al., 2000). 

On the footwall (northwest) side of the AB, zircon ages come from the early 

Paleoproterozoic KLG metapelites in the Gagnon terrane that recorded zircon growth 

episodes between ca. 1002 and 961 Ma (Jannin et al. 2018a, b), and metamorphic 

monazite development at ca. 995 Ma and ca. 988-985 Ma (Jordan et al., 2006). These 

zircon and monazite ages were correlated with multiple stages of reverse and normal 

shearing and high-grade metamorphism (in both the kyanite and sillimanite fields) 

during underthrusting of the footwall Gagnon terrane in the Parautochthonous Belt 

beneath the hinterland during the Rigolet orogenic phase (Jordan et al., 2006; Indares 

et al., 2008; Jannin et al., 2018a, b). Among these, the ca. 993-986 Ma normal-sense 

shear zones developed in the allochthonous and underlying parautochthonous rocks 

were interpreted as parts of a crustal-scale channel named the Thachic Shear Zone 

(Jannin et al., 2018b).    

3.8.2.2 Titanite ages 

In the aMP belt, the range of titanite ages in the Canyon domain and the Banded 

Complex to the northeast is essentially identical (ca. 995-987 Ma and ca. 993-987 Ma, 

respectively; Indares and Dunning, 2004), and were interpreted to indicate post-
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deformation thermal disturbances related to pegmatite intrusion coeval with localized 

shearing (Indares and Dunning, 2010).    

In the MIZ, the post-Ottawan titanite ages between ca. 1007-989 Ma were 

interpreted to indicate retrograde amphibolite-facies metamorphism and Rigolet crustal 

shortening (Indares et al., 1998; Indares et al., 2000).     

3.8.3 Summary and tectonic context of igneous and metamorphic ages     

i. The post-Ottawan crustal extension and amphibolite-facies metamorphism 

between ca. 1020-1007 Ma in the aHP MIZ are broadly coeval with the high-

grade metamorphism at ca. 1020-1000 Ma in the structurally overlying aMP 

Canyon domain. These ages also overlap with the crystallization ages of the 

alkalic arc to intraplate type  Sabot and Okaopéo AMCG suites at ca. 1017-1015 

Ma, and that of the intrusion of arc to intraplate type  mafic tholeiitic dykes of 

VC at ca. 1008 Ma, collectively suggesting that large areas of the hinterland 

comprising different Ottawan pressure domains were under extension at this 

time (fig. 3.16a, b).   

ii. The post-Ottawan metamorphic zircon (~1013-996 Ma) and monazite ages 

(~1020-980 Ma) in the aM-LP belt in the hinterland were collectively 

interpreted to represent thermal pulses related to late-tectonic igneous intrusions 

and greenschist-facies metamorphism (Indares and Dunning, 2004; Dunning 

and Indares, 2010; Lasalle et al., 2013, 2014). However, the ca. 1004-1002 Ma 

REE-rich PGDs, with igneous monazite ages formed between ca. 1005-997 Ma, 

were interpreted to have been derived by partial melting of parautochthonous 

paragneiss units deeper in orogenic crust, (Turlin et al., 2017, 2018, 2019; see 
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Côté et al., 2018 for an alternative interpretation). These data suggest high-grade 

metamorphism and partial melting in the deep parautochthonous crust as a result 

of its underthrusting beneath the hinterland at this time. Moreover, based on 

field evidence, these PGDs were inferred to have intruded the migmatitic 

paragneisses of the PLV when the latter was close to their wet solidus condition 

(Turlin et al., 2018), implying the aMP crust was at higher temperature in the 

post-Ottawan than previously interpreted.     

iii. Post-Ottawan high-grade metamorphism in the aMP belt is further supported by 

the petrographic evidence of granulite- to amphibolite-facies assemblages in the 

mafic rocks, for which an age of ca. 1008 Ma in the VC and ≤ 997 Ma in the 

LBS are determined (this study).     

iv. The REE-rich PGDs in the southern Canyon domain and in Lac Okaopéo area 

were interpreted to have been derived from partial melting of the underlying 

parautochthonous KLG paragneiss, as a result of underthrusting of Gagnon 

terrane beneath the southern Canyon domain (fig. 3.16c). However, the PGDs 

have not been reported from the northern Canyon domain where the ca. 1008-

997 Ma mafic dykes and sills of VC and LBS occur (fig. 3.3). This may indicate 

that the southern Canyon domain and the Lac Okaopéo area were more proximal 

to the AB and the underlying parautochthonous crust compared to the northern 

Canyon domain at the beginning of the Rigolet orogenic phase (fig. 3.16c; 

discussed further below).    

v. Rigolet underthrusting of the Gagnon terrane led to the development of ca. 990 

Ma mid-crustal channel along the newly recognized Thachic Shear Zone (TSZ) 
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in the northern Canyon domain and adjacent Gagnon terrane (Jannin et al., 

2018b).    

vi. A younger age limit for high-grade metamorphism in the northern Canyon 

domain is constrained by the ca. 986 Ma pink leucogranite dyke swarm and syn-

kinematic pegmatites that intruded during the normal-sense shearing along the 

TSZ in the northern Canyon domain, which was in the immediate hanging wall 

of AB at that time (Da2 of Jannin et al., 2018b). The leucogranite dyke swarm 

was inferred to have been derived by partial melting of paragneiss in the 

parautochthonous Gagnon terrane that was transported beneath the study area 

by Rigolet underthrusting (during Dp1 of Jannin et al., 2018a, 2018b). The 

inference implies that the parautochthonous crust was below the northern 

Canyon domain by ca. 986 Ma, and strongly suggests that the northern Canyon 

domain was extruded along the AB between ca. 997-990 Ma (fig. 3.16d), and 

was subsequently incorporated into the ca. 990 Ma TSZ channel (fig. 3.16e).    

vii. The Rigolet amphibolite-facies metamorphism and deformation in the TSZ and 

the development of the ca. 990 Ma channel in the northern Canyon domain were 

coeval with metamorphism and related pegmatite intrusions between ca. 995-

987 Ma (U-Pb titanite ages; Dunning and Indares, 2010) in the MIU and PLV 

in the hanging wall of the TSZ (subdomains 3a and 3b of Jannin et al., 2018b; 

fig. 3.3b). Moreover, the formation of the Rigolet channel was also coeval with 

the ca. 989 Ma LP amphibolite-facies metamorphism at the base of HJT during 

assembly of the aM-LP units (Banded and Gabriel Complexes to the north of 

Canyon domain) into a Rigolet fold-thrust stack that was thrust over the aHP 
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MIZ (Scott and Hynes, 1994; Hynes et al., 2000; Indares et al., 2000; Indares 

and Dunning, 2004).     

3.8.4 Late-orogenic tectonic setting of the hinterland: geochemical constraints  

The post-Ottawan to early Rigolet (ca. 1020-995 Ma) record of mantle-derived 

intrusions in the interior magmatic belt (orogenic core) in the Grenvillian hinterland is 

relatively sparse (fig. 3.2), and hence not much has been known about its tectonic 

setting (Rivers, 2015). However, several recently reported magmatic suites, including 

the alkaline syenitic to gabbroic complexes, granitic pegmatites, and mangerite suites, 

noted previously, together with the previously known AMCG complexes and the 

tholeiitic mafic dykes and sills in our study, provide the basis for an improved 

understanding.  

In the central Grenville Province, the metaluminous ca. 1017-1015 Ma Okaopéo 

and Sabot mangerite suite exhibit an A-type geochemical signature, whereas their mafic 

tholeiitic, Fe-Ti-P oxide-rich gabbronoritic components exhibit a tholeiitic intraplate 

character (Gobeil et al., 2002; Moukhsil et al., 2013b, 2014; Augland et al., 2015). The 

Okaopéo mangerite has an alkalic arc granitoid signature with low negative zircon εHf 

values (-1.01 to -1.73) and Makkovikian model ages (~1.9 Ga) (Moukhsil et al., 2014; 

Augland et al., 2015). These authors suggested that both the Okaopéo and Sabot suites 

were components of late-orogenic AMCG suites, and compared them to other, mostly 

small-volume, late-Grenvillian AMCG suites, such as the ca. 1020-1008 Ma Valin suite 

(part of the CRUML belt; Owens et al. 1994; Hébert et al., 2009), and the undated 

Berthé anorthosite (inferred to be ca. 1 Ga; Moukhsil et al., 2013a) (figs. 3.2 and 3.3).  
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Many of the syn-Grenvillian andesine anorthosites are small, highly alkalic 

bodies (e.g., Owens et al., 1994; Icenhower et al., 1998; Owens and Dymek, 2001), 

thereby contrasting with the much larger pre-Grenvillian sub-alkaline labradorite 

anorthosite suites in the Grenville Province, suggesting they were derived from 

different source(s). For example, the ca. 1010-1008 Ma alkalic Labrieville anorthosite, 

part of the Valin AMCG suite, exhibits low ISr (~0.7032-0.7034), low positive εNd 

values (+0.8 to +2.5), a young model age (TDM 1.26-1.36 Ga), and contains high Ba and 

Sr (Owens et al., 1994). These late-orogenic AMCG suites were interpreted to have 

been derived from melting of a young lower crustal component, with the heat source 

supplied by rising asthenosphere associated with an upwelling mantle plume, or as a 

result of lithospheric delamination, in a manner similar to that envisaged for other 

Grenvillian AMCG suites (e.g., Owens et al., 1994; Higgins and van Breemen, 1994). 

However, trace element modelling on the late-Grenvillian alkalic AMCG suites is 

suggestive of their derivation from an incompatible element-enriched and subduction-

metasomatized lithospheric mantle source (Greenough and Owen, 1995; Owens and 

Tomascak, 2002; Bédard, 2009), similar to that proposed for the ca. 1060 Ma Saint 

Urbain suite (Icenhower et al., 1998). Similarly, the Okaopéo mangerite suite with high 

Ba and Sr contents and an A-type volcanic arc granitoid signature with homogeneous 

Hf isotope composition also suggests a subduction-modified, incompatible element-

enriched, lithospheric mantle source, possibly mixed with melts of Paleoproterozoic 

lower crust (Augland et al., 2015). The intraplate-type mafic components of the 

Okaopéo suite suggest asthenospheric melt contaminated by SCLM and/or crust. On an 

orogen-scale, the late- to post-Ottawan alkalic AMCG suites were interpreted to have 

been emplaced in an extensional setting following Ottawan crustal thickening (Owens 
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and Dymek, 2016), and this extensional setting with thinned orogenic lithosphere has 

been compared with the Basin and Range Province (Greenough and Owen, 1995; 

Rivers, 2015). 

Elsewhere in the western Grenville Province, post-Ottawan alkalic suites from 

the Haut-Saint-Maurice area include several small-volume, arc to within-plate-type, 

syenodiorite to granite suites that were emplaced between ca. 1021-1009 Ma (Augland 

et al., 2017; Côté et al., 2018). Among these, the Core syenite (ca. 1014 Ma) exhibits 

low positive εHf values (+1.4 to +3.0) and a post-Pinwarian model age (ca. 1.4 Ga), 

whereas the Bouvreuil syenite (1009 Ma) exhibits high negative εHf values (-2.0 to -

3.1) and a Labradorian model age (ca. 1.6 Ga) (Augland et al., 2017). In a recently 

proposed tectonic model, the mid- to post-Ottawan alkalic mafic to felsic suites were 

interpreted to have been derived from supra-subduction zone mantle that evolved from 

a ca. 1040-1015 Ma accretionary arc and associated back-arc to a ca. 1015-1000 Ma 

extensional setting related to slab break-off or retreat (Augland et al., 2017; Côté et al., 

2018), which they correlated with late-Grenvillian orogenic collapse in the crust. In this 

model, the Ottawan phase was compared with an Andean accretionary orogeny 

(Augland et al., 2017; Côté et al., 2018). However, the lack of tholeiitic to calc-alkaline 

basalt-andesites and calcic to calc-alkalic to alkali-calcic arc granitoids (Gill, 1981; 

Brown et al., 1984; Tatsumi et al., 1986; Kelemen et al., 2014), derived from 

subduction-modified depleted mantle, followed by their differentiation under high PH2O 

and high fO2 conditions, typical of modern arc settings (Ballhaus et al., 1990; Arculus, 

1994), are inconsistent with this model. The absence of evidence for a rapid progression 

of high-volume magmatism from an early arc-type to non-arc-type mafic and then WPG 

and VAG magmatism along a linear belt, typical of slab break-off model (e.g., Turner 
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et al., 1999; Whalen et al., 2006; Xu et al., 2008), argues against the post-Ottawan slab 

break-off model. LILE- and HFSE-enriched alkalic suites with arc geochemical 

signatures, although characteristic of modern, metasomatized SSZM (e.g., Varne and 

Foden, 1986; Stolz et al., 1998), are also well known to occur in many post-collisional 

suites derived from previously metasomatized SCLM (e.g., Brown et al., 1984; 

DeCelles et al., 2002; Chung et al., 2005; Jiang et al., 2012; and references therein), but 

their characteristic Nd or Hf isotopic signatures are very different (e.g., the Kohistan 

arc vs. the French Massif Central; Moyen et al., 2017). For example, the modern day 

Andean Cordillera exhibits isotopic “pull-ups” and “pull-downs” (DeCelles et al., 

2009), which are comparable to its ancient analogue, the southeastern margin of 

Laurentia during the Mesoproterozoic (Augland et al., 2015; Maity and Indares, 2018; 

Groulier et al., 2018a), but not to the Grenvillian Orogen, for which enriched Nd 

isotopic signatures of orogenic mantle-derived suites are linked with its enriched 

lithospheric mantle sources (fig. 3.11b) that were metasomatized during the long-lived 

Paleoproterozoic to Mesoproterozoic subduction events along the SE margin of 

Laurentia. On the other hand, incompatible element-enrichment in SCLM-derived post-

collisional intrusions in the Variscan (Gutiérrez-Alonso et al., 2011; Dostal et al., 2019) 

or Himalaya-Tibet Orogen (Jiang et al., 2012; Liu et al., 2014) is widely interpreted to 

be largely a result of pre- to syn-collisional subduction events, which could have 

predated the timing of magmatism by several 10s to 100s of million years. In the case 

of Grenville Province, the radiogenic isotope data available from the Ottawan and post-

Ottawan magmatic suites support older SCLM and asthenospheric sources in a 

collisional setting, rather than a continental margin accretionary arc and back-arc 

setting. The Grenvillian incompatible element-enriched SCLM could have developed 
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during the long-lived Mesoproterozoic subduction-related events along the 

southeastern Laurentian margin preceding the Grenvillian Orogeny (Rivers and 

Corrigan, 2000; Chiarenzelli et al., 2010).  

On the other hand, the ensuing Rigolet phase (ca. 1005-980 Ma) is mostly 

recognized as a renewed phase of continental convergence, when the orogenic front 

moved from the Grenvillian hinterland to the foreland in the Parautochthonous Belt 

(Rivers, 2008; 2015 Rivers et al., 2012). As noted, the ca. 1004-1002 Ma REE-rich 

PGDs and the ca. 984 Ma pink leucogranite dyke swarms, intrusive within the aMP 

belt, were interpreted to have been derived from partial melting of Paleoproterozoic 

(KLG) and/or Archean paragneiss in the Gagnon terrane that was underthrust beneath 

the hinterland during the onset of the Rigolet phase at ca. 1005 Ma (Jannin et al., 2018a, 

b; Turlin et al., 2017, 2019). The ca. 980 Ma ultrapotassic dykes in the Canyon domain 

(Dunning and Indares, 2010) were also interpreted to have been derived from an 

Archean SCLM (Valverde Cardenas et al., 2012). These data strongly suggest that the 

post-Ottawan extensional setting was followed by early-Rigolet convergence and 

underthrusting of the Parautochthonous Belt beneath the Allochthonous Belt. The 

tectonic significance of the ultrapotassic dykes in relation to the Rigolet orogenic phase 

is discussed in Chapter 4. 

3.8.5 Tectonic setting of the mafic rocks in the study area 

Based on the discussion in the preceding section, we propose that a short-lived, 

lithospheric-scale extension took place during the post-Ottawan period in the hinterland 

in the central Grenville Province. Lithospheric extension, even with a small stretching 

factor, can cause melting in the SCLM under a potential mantle temperature as low as 

ca. 1280 °C and a lithospheric thickness of 80-100 km or less (e.g., McKenzie and 
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Bickle, 1988; Gallagher and Hawkesworth, 1992). Hence, lithospheric extension at the 

beginning of the post-Ottawan period (fig. 3.16a) could have caused melting in the 

previously-metasomatized SCLM to produce the mafic alkaline plutons and AMCG 

suites with arc to within plate geochemical signatures that were emplaced between ca. 

1017-1015 Ma in the study area and between ca. 1021-1000 Ma in the western Grenville 

Province.  

Continued extension would have allowed asthenospheric upwelling to relatively 

shallow levels, where decompression melting produced the mafic tholeiitic magmas 

with arc to MORB and WPB-type geochemical signatures that intruded the VC at ca. 

1008 Ma (fig. 3.16b). The samples from LBS1 with a MORB-type signature could also 

have been emplaced at this time. The combined trace element and isotopic data for the 

VC and LBS1 (figs. 3.11-3.13) indicate mainly spinel-facies (<80 km depth) melting 

of the depleted asthenospheric mantle followed by crustal contamination. Melting of 

spinel-peridotite also provides an approximate estimate of the decreased lithospheric 

thickness under continental extension at this time compared to that of the early- and 

mid-Ottawan period reported from the western Grenville Province (based on mineral 

geothermobarometry data; Corriveau and Morin, 2000; Côté et al., 2018). The LBS2 

samples exhibit MORB (or BAB) to OIB-type signatures and one sample yields high 

positive εNd value, implying melting had progressed to deeper levels of the upwelling 

asthenosphere, within the garnet-stability field, by ca. 997 Ma. This indicates 

lithospheric thickening at this time, which is compatible with Rigolet crustal shortening 

in the study area.    

However, given the coeval emplacement of the mafic tholeiites in the northern 

Canyon domain and the REE-rich PGDs of Turlin et al. (2017, 2019) in the southern 
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Canyon domain/Lac Okaopéo area, the contrasting deductions of melting of an 

upwelled asthenospheric mantle in an extensional setting, and melting of the PLV and 

KLG paragneisses in a compressional setting, respectively, yield an apparent 

contradiction regarding the post-Ottawan tectonic setting. Moreover, the REE-rich 

PGDs do not occur in the northern Canyon domain, where the coeval mafic rocks of 

the VC and the LBC and the younger ca. 986 Ma pink leucogranite dyke swarms are 

pervasive. These observations suggest that before ca. 1005 Ma the structurally lower 

northern Canyon domain (subdomains 2a and 3a of Jannin et al., 2018b; fig. 3.3b) was 

in a more distal (southeasterly) location with respect to the AB such that it had access 

to upwelling asthenospheric melts in the hinterland (fig. 3.16b); whereas the 

structurally higher PLV in the southern Canyon domain (subdomain 3b of Jannin et al., 

2018b) and the Lac Okaopéo area were in a more proximal (northwesterly) location 

with respect to the AB and the underlying parautochthonous Gagnon terrane in the 

foreland, and to melts derived from it (fig. 3.16b-c). In this setting, perhaps a thin sliver 

of previously upwelled asthenosphere was sandwiched between the underthrust 

Archean lithosphere and the overlying Grenvillian hinterland. The ca. 1005-1002 Ma 

REE-rich PGDs, derived from underthrust Paleoproterozoic (KLG) to Archean 

paragneiss of the Gagnon terrane, were intruded in the PLV and in the Lac Okaopéo 

area, whereas the ca. 1008-997 Ma mafic dykes and sills, derived from asthenospheric 

mantle, were emplaced within the VC and LBS in the structurally lower crustal panel 

of the northern Canyon domain. This arrangement was then followed by ductile 

extrusion of the northern Canyon domain to the northwest along the AB (fig. 3.16d), 

such that its original position relative to the southern Canyon domain and Lac Okaopéo 
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area was reversed, after which it became incorporated into the ca. 990 Ma channel flow 

regime within the TSZ as described by Jannin et al. (2018b) (their domain 2a; fig. 3.3b).     

This scenario is compatible with two independent observations. Firstly, it is 

compatible with intrusion of the ca. 986 Ma pink leucogranite dyke swarm in the 

northern Canyon domain, but the absence of the ca. 1005-1002 Ma REE-rich PGDs, 

both presumably being derived from the underlying parautochthonous crust (Jannin et 

al., 2018b; Turlin et al., 2019). Secondly, it provides a metamorphic context for the 

petrographic evidence for decompression and/or heating in the mafic samples from the 

LBS, and for the interpretation that the dykes and sills in the VC and LBS were 

emplaced into high-grade metamorphic rocks.   

In conclusion, the mafic rocks of this study were intruded within the aMP crust 

in a tectonic setting that progressed from post-Ottawan extensional to Rigolet 

compressional regimes. Overall, the tectonic setting of the Grenville Orogen evolved 

from a large, hot, long-duration continental collisional phase in the Ottawan to a short-

duration, post-Ottawan lithospheric extensional phase that was shortly followed by the 

Rigolet phase of renewed convergence. The interval between the Ottawan and Rigolet 

phases, previously referred to as a “hiatus”, is now well constrained as a period of 

lithospheric extension and resulting orogenic collapse, which is distinct from the 

Ottawan orogenic collapse that resulted from lithospheric delamination of the 

overthickened orogenic root.    
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3.9 Summary and conclusions 

Based on field observations, petrography, major and trace element 

geochemistry, Sr-Nd isotopes, and U-Pb zircon geochronology, the following 

conclusions are reached:  

i. The mafic dykes and sills in the VC and in the LBS, both with amphibolite- to 

granulite-facies mineral assemblages, were emplaced during the post-Ottawan 

period, with the age of syn-metamorphic emplacement of the former being 

constrained at ca. 1008 Ma and an emplacement age of ca. 997 Ma for the latter.    

ii. The dykes in the VC record evidence for granulite-facies metamorphism 

(assemblage Grt + Opx + Cpx + Pl + Hbl) at ca. 1008 Ma, whereas the sills in 

the LBS record decompression and/or heating to LP amphibolite- and granulite-

facies assemblages (Grt + Pl + Opx ± Hbl ± Bt) at ≤ 997 Ma. This implies that 

this part of the orogenic hinterland experienced two regional high-grade 

metamorphisms during the Grenvillian Orogeny: an earlier, high-strain, MP 

granulite-facies event in the early- to mid-Ottawan (~1080-1040 Ma) that was 

associated with crustal thickening and widespread partial melting; and a later, 

short-duration, lower-strain, post-Ottawan amphibolite- to granulite-facies 

event from ca. 1008 to ≤ 997 Ma that was driven by lithospheric extension and 

crustal thinning followed by Rigolet convergence, for which evidence is best 

preserved in the northern Canyon domain. This late-orogenic high-grade 

metamorphism is only readily recognized in small post-Ottawan units that were 

emplaced after the earlier Ottawan high-grade metamorphism, and its extent 

remains poorly constrained in the Allochthonous Belt.     
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iii. The dykes and sills in the VC and LBS are small-volume, mafic tholeiites that 

were emplaced in a transitional setting varying from extensional to 

compressional tectonic regimes. They were derived predominantly from an 

isotopically depleted asthenospheric mantle source with REE composition 

broadly similar to the primitive mantle. The most primitive samples from VC 

and LBS1 indicate ~4-10% melting of a spinel-peridotite source at shallow 

depth (<80 km), with a maximum garnet: spinel peridotite ratio of ~40:60, but 

samples in the LBS2 also indicate melting in a slightly deeper transitional 

garnet-spinel-peridotite source (~60-100 km depth), or mixing between melts 

derived from garnet- and spinel-peridotite, which is consistent with higher 

garnet: spinel peridotite ratio of ~70:30.    

iv. Melts thus derived were subjected to variable degrees of contamination by 

lithospheric melts in intermediate to shallow magma chambers, and 

simultaneous low-pressure fractional crystallization of olivine-clinopyroxene-

plagioclase and accumulation of Fe-Ti oxides and apatite under low fO2 

conditions. The AFC calculations suggest that the degree of mixing with crustal 

melts was between ~4-20% in the VC and ~4-10% in the LBS.    

v. When integrated with other studies, the results of this study suggest that the 

post-Ottawan lithospheric extension and asthenospheric upwelling gave rise to 

melting in the extended SCLM and lower crust, thereby producing a wide range 

of alkaline syenite-granite bodies, alkalic AMCG suites, and granite pegmatite 

intrusions. Continued extension allowed decompression-melting of rising 

asthenosphere at shallow depth (≤60 km), thereby producing the small-volume 

tholeiitic intraplate mafic dykes and sills of the VC and LBS. A small number 
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of samples in the LBS2 were derived from relatively deeper (≥65 km) melting 

within the asthenosphere during the early-Rigolet phase of shortening and 

crustal thickening, which also resulted in underthrusting of the orogenic 

foreland beneath the hinterland.      

vi. The presence of several post-Ottawan to early-Rigolet leucogranite bodies in 

the Grenville hinterland, presumably derived from lower levels of 

allochthonous crust and the underthrust parautochthonous crust, indicates that 

crustal melting was important during this interval. Their widespread distribution 

over hundreds of km2 implies the existence of an elevated regional geotherm, 

which is compatible with the evidence for a second high-grade metamorphic 

event in the aMP crust at this time. Moreover, an elevated geotherm may also 

explain the well-known signature of very slow cooling of the high-grade 

hinterland after the Ottawan metamorphic peak, recorded in many 40Ar/39Ar 

hornblende and biotite dating studies (Rivers, 2012).     

vii. During the post-Ottawan period, the northern Canyon domain was in a more 

distal position with respect to the Allochthon Boundary and the 

Parautochthonous Belt, and was laterally extruded to the northwest along the 

base of the Allochthon Boundary before being incorporated into the Rigolet 

mid-crustal channel.    

In conclusion, the magmatic products derived from melting of orogenic crust 

and its underlying heterogeneous mantle sources provide unique constraints on the 

multi-stage tectonic evolution of the ancient Grenvillian LHO, permitting significant 

refinement to existing tectonic models and offering an opportunity for comparison with 

tectonic processes in modern LHOs.  
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Table 3.1. U-Pb isotope data for the Vein Complex and the Layered Bimodal Suite. 

Fraction Description
Weight (a) 

(mg)
U  

(ppm)
Pb 

(ppm)(b)

Total 
common 
Pb (pg) 206Pb/204Pb 208Pb/ 206Pb 206Pb/ 238U 2  ± 207Pb/ 235U 2  ± 207Pb/ 206Pb 2  ± Rho(d) 206Pb/ 238U 2  ± 207Pb/ 235U 2  ± 207Pb/ 206Pb 2  ±

11-208
Z1 1 large prism 0.002 508 88.6 4.6 1780 0.1295 0.16858 112 1.6883 124 0.07264 28 0.85 1004.3 6.2 1004.1 4.7 1003.9 9.3 -0.02
Z2 1 large prism 0.002 286 51.8 2.6 1784 0.1493 0.17205 98 1.7331 134 0.07306 40 0.71 1023.4 5.4 1020.9 5.0 1015.6 12.1 -0.24
Z3 2 large prism 0.003 302 52.8 2.4 4060 0.1302 0.16892 104 1.6967 104 0.07285 20 0.90 1006.2 5.7 1007.3 3.9 1009.8 7.4 0.11
Z4 2 large prism 0.003 387 67.2 5.2 2400 0.1190 0.16956 156 1.7054 160 0.07295 34 0.87 1009.7 8.6 1010.6 5.8 1012.6 10.7 0.09
Z5 3 small clear round balls 0.003 202 35.0 2.9 2284 0.1115 0.16969 68 1.7043 88 0.07284 26 0.72 1010.4 3.7 1010.1 3.3 1009.5 8.8 -0.03
Z6 3 small clear round balls 0.003 165 28.1 4 1339 0.0977 0.16869 84 1.6900 100 0.07266 32 0.69 1004.9 4.6 1004.8 3.8 1004.5 10.2 -0.01
Z7 2 small clear round balls 0.002 48 8.3 1.5 678 0.1195 0.16980 138 1.6930 202 0.07231 78 0.47 1011.0 7.6 1005.9 7.6 994.7 22.5 -0.51
11-331b
Z1 2 prism 0.003 115 18.4 2.9 1280 0.0426 0.16684 94 1.6577 96 0.07206 36 0.62 994.7 5.2 992.5 3.7 987.6 11.3 -0.22
Z2 1 prism 0.002 337 53.9 3.6 1482 0.0398 0.16730 76 1.6744 82 0.07259 28 0.65 997.2 4.2 998.9 3.0 1002.5 9.3 0.16
Z3 1 prism 0.002 1946 310.7 18 1682 0.0397 0.16691 124 1.6724 134 0.07267 24 0.91 995.1 6.8 998.1 5.1 1004.8 8.3 0.30
Z4 1 prism 0.003 160 25.7 30 186 0.0423 0.16772 104 1.6739 232 0.07238 90 0.44 999.5 5.7 998.7 8.8 996.6 25.7 -0.09

Notes:
All zircon was chemically abraded (Mattinson, 2005) prior to dissolution. Z, zircon; 2, 4 number of grains in analysis.
(a) Weights of grains were estimated, with potential uncertainties of 50% for these small samples.  
(b) Radiogenic lead  

(d) Rho valuea were calculated after Schmitz & Schoene, 2007.
(e) Discordance =  [((207Pb/235U)/(206Pb/238U))-1] × 100 
Two sigma uncertainties are reported after the ratios and refer to the final digits.

(c) Atomic ratios corrected for fractionation, spike, laboratory blank of 1- 2 picograms (pg) common lead, and initial common lead at the age of the sample calculated from the model of Stacey & Kramers (1975), and 0.3 pg U blank.

Concentration Measured Corrected Atomic Ratios(c) Age [Ma]

Disc % (e)
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Table 3.2. Major and trace element geochemistry of mafic rocks from the Vein Complex and Layered Bimodal Suite. 
Sample no RS430+ RS431+ 11-317a 11-331a 11-317b 11-331b 11-216-2c RS314+ 11-208 11-356-1 RS356+ 11-215-1 11-215-5 RS457+ 11-349 11-351 RS207b+

Layer type mafic layer mafic layer mafic layer mafic layer mafic layer mafic layer mafic layer mafic dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic body
Geol. Domain
Group
SiO2 47.01 45.26 45.21 48.81 44.67 47.89 46.77 47.42 45.71 47.72 46.25 47.13 47.32 45.80 46.97 48.80 50.34
TiO2 1.29 2.21 2.45 2.16 2.36 3.79 1.741 0.859 2.74 2.32 2.89 1.57 1.43 3.14 1.10 2.12 1.33
Al2O3 16.79 14.43 17.26 15.89 16.23 16.63 16.61 14.57 15.97 14.94 12.02 17.35 16.42 15.40 15.67 14.32 14.95
Fe2O3 11.75 16.1 15.45 13.14 14.12 15.47 13.51 11.78 16.79 16.54 18.89 12.41 12.28 17.16 11.55 14.28 11.79
MnO 0.172 0.248 0.264 0.216 0.187 0.231 0.217 0.171 0.227 0.23 0.213 0.172 0.167 0.224 0.19 0.227 0.18
MgO 8.80 6.34 7.86 6.29 7.65 5.63 6.79 9.4 6.20 6.02 6.52 8.32 8.07 5.54 7.47 5.51 6.89
CaO 10.81 8.02 8.11 7.41 8.75 5.22 8.82 9.29 8.59 9.15 9.37 10.28 10.30 7.70 11.59 8.42 9.29
Na2O 2.35 3.12 1.34 2.51 2.84 2.06 3.81 3.21 2.97 2.54 0.43 2.56 2.55 3.07 2.8 3.15 2.73
K2O 0.25 1.14 0.75 1.37 1.34 1.5 1.49 0.56 0.76 0.79 1.04 0.40 0.37 1.02 1.18 0.94 1.31
P2O5 0.13 0.50 0.46 0.43 0.51 0.40 0.21 0.05 0.34 0.22 0.31 0.16 0.14 0.52 0.09 0.20 0.34
LOI 0.6 1.47 -0.04 0.29 0.39 0.08 0.41 1.77 0.41 0.05 1.67 -0.02 0.18 0.29 0.66 0.91 0.24
Total 99.94 98.84 99.11 98.51 99.05 98.92 100.4 99.09 100.7 100.5 99.61 100.3 99.23 99.88 99.29 98.88 99.38
#Mg 0.60 0.44 0.50 0.49 0.52 0.42 0.50 0.61 0.42 0.42 0.41 0.57 0.57 0.39 0.56 0.43 0.54
FeOt 10.57 14.49 13.90 11.82 12.71 13.92 12.16 10.60 15.11 14.88 17.00 11.17 11.05 15.44 10.39 12.85 10.61
Sc 34 33 30 26 27 26 27 31 31 39 55 26 31 29 41 37 34
V 212 254 301 270 248 276 284 209 248 332 815 220 231 195 278 306 205
Cr 180 490 70 70 60 80 40 320 90 140 10 70 160 70 260 130 140
Co 131 101 139 119 75 127 79 93 91 101 318 93 92 211 109 86 118
Ni 170 720 150 90 70 10 60 210 70 60 120 140 160 10 100 40 40
Cu 50 30 30 5 5 5 50 60 50 70 60 30 30 40 140 40 10
Zn 70 160 160 90 110 120 140 110 120 110 290 50 50 160 60 120 110
Ga 18 21 18 19 18 24 22 19 24 23 28 19 19 22 18 23 18
Rb 5 26 33 44 34 72 29 9 19 10 82 8 10 18 21 8 39
Cs 0.25 1.5 0.8 0.25 3.9 0.6 0.25 0.25 0.25 0.25 1.3 0.25 0.25 0.25 0.25 0.25 0.6
Sr 231 351 228 288 295 193 544 245 218 183 63 310 227 275 402 724 314
Ba 72 518 176 212 240 548 368 147 253 180 233 113 94 423 227 406 427
Ti 7746 13225 14670 12937 14166 22733 10437 5150 16432 13914 17350 9436 8567 18806 6618 12685 7943
Zr 77 110 127 113 113 261 103 49 206 159 167 87 108 222 56 158 182
Hf 2.2 3.1 3.1 3 3.1 6.1 2.7 1.4 5.3 4.4 4.5 2.2 2.8 6 1.7 4.5 4.6
Nb 6.12 8.4 6 7 7 14 8 3 8 5 7.1 8 9 16.44 3 8 8.2
Ta 0.4 0.3 1.1 1.6 1.0 2.8 0.8 0.1 1.1 1.2 0.57 1.3 1.5 1.1 1.5 1.1 0.44
Th 0.60 0.90 0.70 0.60 1.30 0.70 0.80 0.6 1.50 1.70 1.97 0.80 1.10 1.50 0.90 1.20 1.85
U 0.2 0.4 0.4 0.5 0.6 1.1 0.3 0.2 0.6 0.5 1.71 0.3 0.4 0.4 0.3 0.6 0.61
Pb 5 11 6 8 10 2.5 9 2.5 8 5 2.5 2.5 2.5 2.5 8 11 11
Y 20 34 31 27 25 26 20 20 41 42 50.4 18 23 48 21 47 37.6
La 5.5 10.3 14.8 15.3 15.9 17.8 26.4 5.5 14.7 14.1 20.5 8.4 9.8 20.5 18.8 31.7 27.9
Ce 14.1 27.1 33.1 34 38.4 46.7 56.7 12.3 35.1 32.3 51.4 19.2 22.2 49.6 34.2 70.5 60
Pr 2 4.07 4.55 4.48 5.02 6.81 6.64 1.68 5.12 4.49 6.93 2.71 2.95 6.81 4.09 9.44 7.24
Nd 9.6 18.7 21.7 21.1 23 31.9 27.4 8.1 25.4 21.8 29.8 13 14.1 29.6 16.9 40.6 29.2
Sm 2.7 5.2 5.3 4.9 5.9 7.9 5.7 2.4 7.1 6.5 7.4 3.4 3.8 7.6 3.9 9.3 6.18
Eu 1.10 2.01 1.71 1.80 1.89 2.13 1.90 1.02 2.13 1.98 2.32 1.21 1.21 2.66 1.24 2.39 1.95
Gd 3.20 5.70 5.50 4.90 5.70 7.10 5.0 3.1 7.60 7.30 8.23 3.4 4.0 8.4 3.8 8.7 6.41
Tb 0.60 1.00 0.90 0.80 0.90 1.10 0.70 0.6 1.3 1.3 1.4 0.6 0.7 1.4 0.7 1.5 1.1
Dy 3.40 5.80 5.90 5.20 5.00 5.90 4.30 3.4 7.80 8.20 8.32 3.5 4.3 8.3 4.1 9.3 6.51
Ho 0.70 1.20 1.20 1.10 0.90 1.10 0.80 0.7 1.60 1.60 1.66 0.7 0.9 1.7 0.8 1.8 1.31
Er 2.0 3.40 3.40 3.30 2.60 2.90 2.20 2 4.70 4.70 4.99 1.9 2.6 4.8 2.5 5.3 3.88
Tm 0.29 0.50 0.50 0.51 0.35 0.38 0.32 0.3 0.68 0.72 0.76 0.28 0.40 0.70 0.37 0.79 0.591
Yb 1.90 3.20 3.30 3.40 2.30 2.40 2.10 1.9 4.50 4.60 4.74 1.80 2.60 4.40 2.40 5.10 3.72
Lu 0.28 0.48 0.53 0.57 0.37 0.36 0.31 0.26 0.70 0.76 0.69 0.28 0.41 0.69 0.38 0.81 0.547

Notes: 
1. The oxide concentrations are reported in weight percentages (wt%), whereas trace element concentrations are reported in parts per million (ppm). 
2. The deviation of Eu from the rest of REE can be expressed as Eu anomaly (Eu/Eu*) where * refers to the value obtained by linear interpolation between adjacent elements. 
3. FeOt = 0.8998 × Fe2O3; Ti = 5995 × TiO2

4. #Mg = MgO/(MgO+Fe2O3 total) in moles. 
5. + sign indicates samples from Valverde Cardenas et al., 2012.

VC3
Layered Bimodal Suite (ca. 997 Ma)

VC1 VC2LBS1 LBS2
Vein Complex (ca. 1008 Ma)
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Table 3.3. Whole-rock Sr and Nd isotopic data of the mafic rocks from the Vein Complex and Layered Bimodal Suite.  

Sample
Geological 

suites
Nd 

(ppm)
Sm 

(ppm) Sm/Nd
(147Sm/ 

144Nd)calc

(143Nd/ 
144Nd)meas 2s

(143Nd/ 
144Nd)ini

εNd 
0.0 εNd1.0 TCR TDM

Rb 
(ppm)

Sr 
(ppm) (87Sr/ 86Sr)meas. 2 (87Rb/ 86Sr)calc. (87Sr/ 86Sr) ini

Induced 
error in 

(87Sr/86Sr)ini

RS457+ VC1 31.71 7.90 0.25 0.1506 0.512410 7 0.511422 -4.3 1.5 1807 1503
11-208 VC2 23.08 6.42 0.28 0.1682 0.512596 7 0.511493 -0.7 2.9 1883 1459 19 218 0.707573 11 0.25225 0.70397 0.00007
11-351 VC3 36.71 8.24 0.22 0.1357 0.512050 7 0.511160 -11.3 -3.6 2161 1921 8 724 0.705110 10 0.03197 0.70465 0.00001
RS430+ LBS1 10.26 2.88 0.28 0.1697 0.512723 5 0.511610 1.8 5.2 1512 1082
RS431+ LBS1 27.30 5.35 0.20 0.1184 0.512248 4 0.511471 -7.5 2.5 1458 1258
11-331-a LBS1 19.29 4.50 0.23 0.1410 0.512217 7 0.511292 -8.1 -1.0 1971 1709 44 288 0.713150 34 0.44242 0.70682 0.00013

[0.712921] [10] [0.442424] [0.706594] [0.00013]
11-331-b LBS2 29.48 7.15 0.24 0.1466 0.512545 7 0.511583 -1.7 4.7 1396 1114 72 193 0.725198 14 1.08160 0.70973 0.00031

[0.725208] 26 [1.0816] [0.709740] [0.00031]

Note: 
1. Rb, Sr, Sm and Nd concentrations were obtained by ICP-MS and have precision less than ± 2%.
2. calc = calculated, meas = measured, ini = initial; replicate analyses are within parentheses [].

5. (147Sm/144Nd) calc = Sm/Nd × [0.53151 + 0.14252 (143Nd/144Nd) meas].
6. λ 87Rb = 1.42 × 10-11  Yr-1 (Begemann et al., 2001).
7. (87Rb/86Sr)calc = Rb/Sr × [2.6939 + 0.2832(87Sr/86Sr)meas].
8.  Induced error in (87Sr/86Sr) initial = 87Rb/86Sr × (% error assigned) × (eλt-1)  (Jahn 2004).
9. The results of isotopic measurements for Sr and Nd reference materials are: NBS-987 (Sr) = 0.710245 ± 19 (2𝜎𝜎). JNdi-1 (Nd) = 512098 ± 6 (2𝜎𝜎).
10. All model ages and εNd values are calculated at 1 Ga. 

3. Crustal residence ages (TCR) are calculated based on the present day 147Sm/144Nd = 0.2137 and 143Nd/144Nd = 0.51316 of depleted mantle with εNd value of +10, assuming a linear evolution from 4 Ga 
to the present (Goldstein et al., 1994); depleted mantle model ages (TDM) are calculated based on the quadratic equation by DePaolo (1981a).
4. εNd values are calculated based on Chondrite uniform reservoir (CHUR) values of 147Sm/144Nd = 0.1960 ± 4 and 143Nd/144Nd = 0.512613 ± 11 (2

𝜎𝜎

) (Bouvier et al., 2008), and λ 147Sm = 6.539 (± 

0.061) × 10-12 Yr-1 (Begemann et al., 2001). 2  = 2 standard error of the mean × 10-6.
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Table 3.4. Parameters used for assimilation-fractional crystallization (AFC) calculations.  

AFC Curve 
No. Sample No. Rock type Nd (ppm) Sm (ppm) Sr (ppm) 143Nd/144Nd 87Sr/86Sr DSr DNd R

I CG-554 Granodiorite 25.2 4.86 218 0.510974 0.723492 0.4 0.12 0.7
Ia 1.5 0.12 0.7
Ib 1.5 0.12 0.1
II CG-172A Quartz-diorite 28.9 6.78 1391 0.510753 0.703897 0.4 0.12 0.7
III ALC Archean lower crust 18.5 3.30 569 0.510416 0.705000 0.4 0.12 0.7

Note: Labradorian crust (CG-554 and CG-172A; Schärer, 1991); ALC (Weaver and Tarney, 1984), Sr isotope ratio estimated 
from Lewisian lower crust (Kerr et al., 1995); Nd isotope ratios from average of Gagnon terrane orthogneiss (Thomson et al., 
2011). DSr value of 1.5 for the curves Ia and Ib are assumed; for remaining D values see fig. 3.13.  
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Figure 3.1. Schematic map showing tectonic division of the Grenville Province into 
belts on the basis of timing and pressure of peak metamorphism and tectonic character 
(simplified from Rivers et al., 2012). AB: Allochthon Boundary; aHP, allochthon high 
pressure; aMP, allochthon medium pressure; aLP, allochthon low pressure; pHP, 
parautochthonous high pressure; pMP; parautochthonous medium pressure; OOL, 
Ottawan orogenic lid; NQ, New Quebec Orogen; T, Torngat Orogen; M, Makkovik 
Orogen; P, Penokean Orogen; ML, Molson Lake Terrane; square box shows the 
location of the study area in fig. 3.3. Inset figure shows the extent of the Grenville 
orogenic belt in North America, modified after Tollo et al. (2004). 
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Figure 3.2. Simplified sketch map of the Grenville Orogen (after Rivers et al., 2012) 
showing locations and compositions of post-Ottawan (1020-980 Ma) magmatism with 
respect to the Interior Magmatic Belt. Uncertainties in crystallization ages are either 
indicated or are < 5 Ma. Data source: Rivers et al. (2012), with additional data on 
Okaopéo plutonic suite (Augland et al., 2015); Bourguet, Bouvreuil, and Core syenite 
(Augland et al., 2017); Rheaume and Wematoci syenites (Côté et al., 2018); Lesueur 
alkaline suite (Davis and Nantel, 2016), and Labrieville lamprophyres (Owens & 
Tomascak, 2002); CRUML, Château-Richer, St-Urban, Mattawa, and Labrieville 
AMCG complexes (Hébert et al., 2009); VC, Vein Complex, LBS, Layered Bimodal 
Suite (this study). 
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Figure 3.3. (a) Geological map of the study area in the Canyon domain located to the 
south of the Manicouagan Impact Crater (modified from Maity and Indares, 2018); (b) 
Close-up of the study area showing locations of the mafic samples from the VC and 
LBS, along with structural domains and shear zones from Jannin et al. (2018b). Sample 
location 333 from Lasalle et al. (2013, 2014).  

 

 

Figure 3.4. Field photographs of the mafic rocks, (a-b) dykes in the VC, (c-d) sills in 
the LBS. (a) Mafic dyke cross-cutting the VC; (b) mafic dykes in the VC deformed into 
isolated boudins; (c) mafic sill within felsic gneiss in the LBS, with sills showing pinch-
and-swell and boudinage structure; (d) heterogeneous light and dark grey mafic sills in 
the LBS. 
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Figure 3.5. Photomicrographs of (a) mafic dykes in the VC, (b-e) mafic sills in the LBS. 
(a) granoblastic hornblende, clinopyroxene, orthopyroxene, plagioclase, and garnet 
indicative of MP granulite-facies metamorphism; (b) plagioclase and hornblende in 
amphibolite; (c) garnet porphyroblast corroded by plagioclase and hornblende; (d) 
garnet porphyroblast corroded by plagioclase + orthopyroxene corona and biotite; (e) 
large quartz xenocryst rimmed by pyroxene and pyroxene + ilmenite symplectite. 
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Figure 3.6. U-Pb (zircon) Concordia diagrams for: (a) mafic dyke (#11-208) in the VC; 
(b) mafic sill (#11-331b) in the LBS. All analyses are plotted with 2σ absolute errors 
and the reported ages include decay constant errors. Analysis numbers are given in table 
3.1 and are indicated next to the corresponding error ellipses on the Concordia diagram. 
Black ellipses are igneous prisms, red ellipses are metamorphic soccer balls, thick black 
ellipses are weighted averages. 

 

 

        

Figure 3.7. Rock-type classification diagrams for the mafic samples from the VC and 
the LBS. (a) Zr/Ti vs. Nb/Y diagram (Pearce, 1996); (b) Al-(Fet+Ti)-Mg cation plot 
(Jensen and Pyke, 1982). 
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Figure 3.8. Plots of (a) Cr (ppm); and (b) Ni (ppm) vs. MgO (wt. %); (c) TiO2 (ppm); 
(d) P2O5 (ppm); (e) Y (ppm); (f) Al2O3/TiO2; (g) Sc/Yb; (h) Eu/Eu* vs. Zr (ppm) for 
the mafic rocks from the VC and LBS. Eu/Eu* = EuCN /√(SmCN × GdCN); CN, chondrite 
normalized. The dashed curves indicate fractional crystallization from the high MgO 
sample RS314, small dots on the curves and the numbers in italics indicate the value of 
F = remaining melt fraction after crystal fractionation; partition coefficients are after 
Rollinson (1993), Villemant et al. (1981), and Pearce and Parkinson (1993). 
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Figure 3.9. (a-e) Chondrite-normalized REE patterns, and (f-j) primitive mantle-
normalized trace element patterns for the mafic rocks in the VC and LBS. Normalizing 
values are from Sun and McDonough (1989), LCC, lower continental crust, and UCC, 
upper continental crust (Rudnick and Gao, 2014); arc basalts (Kelemen et al., 2014). 
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Figure 3.10. Tectonic discrimination diagrams (a) Th-Zr/117-Nb/16 (Wood, 1980); (b) 
Zr-Ti/100-Y*3 (Pearce & Cann, 1973); (c) Ti/50-50*Sm-V (Vermeesch, 2006); (d) 
Nb/Th vs. Y (Swinden et al., 1989); (e) Zr/Y-Y (Pearce and Norry, 1979) ; (f) Ti-V 
(Shervais, 1982; modified by Rollinson, 1993) showing plots for the mafic rocks of the 
VC and LBS. 



 169 

 

Figure 3.11. Plots for εNd vs. time (Ga). εNd values are calculated at 1 Ga. Data source: 
Mesoproterozoic orthogneisses from the Canyon domain, Island domain, Banded 
Complex (thin black diagonal lines), the Labradorian crust in MIZ (light yellow), and 
Archean Gagnon terrane (grey) (Thomson et al., 2011); Adirondack crust (light red; 
derived from Grenvillian SCLM; Chiarenzelli et al., 2010; and references therein); 
Quebecia (light blue; Dickin, 2000; Dickin and Higgins, 1992), Labrieville (LBV) 
massif anorthosite (Owens et al., 1994); Labrieville lamprophyre dykes (Owens and 
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Tomascak, 2002); Monzonite (Groulier et al., 2018b); Rivard minette dyke (Corriveau 
et al., 1996); Kensington-Schoottamatta plutons (K-S) (Corriveau and Amelin, 1994); 
εNd values for the pegmatite granite dyke (PGD; Turlin et al., 2019), Okaopéo 
mangerite (Augland et al., 2015), syenite plutons from Bourguet, Bouvreuil, and Core 
(Augland et al., 2017) are estimated from their zircon εHf values following Vervoort 
and Blichert-Toft; 1999); DM, depleted mantle (DePaolo, 1981a); CHUR, chondritic 
uniform reservoir (Bouvier et al., 2008).   

 

 

Figure 3.12. Plots for εNd vs. (a) Nb/Th; (b) Nb/La; (c) Sm/Nd; (d) (La/Yb)CN; (e) SiO2; 
and (f) K/Zr. Black points bound by black solid line indicates Labradorian crust (Kerr, 
1989; Schärer, 1991); Okaopéo mangerite is shown for comparison with its εNd value 
estimated from the published zircon εHf value (Augland et al., 2015) following 
Vervoort and Blichert-Toft (1999). Arc vs. non-arc fields shown by the horizontal light 
brown bar (Whalen et al., 2006); IAT, Island arc tholeiite derived from supra-
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subduction zone mantle (SSZM; Whalen et al., 2006); E-MORB, enriched MORB 
mantle (Sun and McDonough, 1989). 

 

 

 
Figure 3.13. (a) 143Nd/144Nd vs. 87Sr/86Sr; (b) 87Sr/86Sr vs. Sr (ppm); (c) 143Nd/144Nd vs. 
Nd (ppm); and (d) La/Yb vs. Zr (ppm) diagrams for LBS and VC. The AFC curves 
between RS430 and different crustal components are labeled with specific parameters 
given in table 3.4; black solid curves (I-II) indicate AFC for Labradorian crust and blue 
curves (III) for Archean crust; each small dot on the AFC curves indicate percentage of 
crustal assimilation as indicated by the numbers in italics; D values (table 3.4) were 
calculated assuming fractional crystallization of 20% olivine, 45% clinopyroxene, and 
20% plagioclase; using the same partition coefficients as in fig. 3.8; for the curves Ia 
and b, higher DSr values were assumed; horizontal dashed blue line from the curve III 
indicates 70% pure fractional crystallization after 15% AFC with an Archean crust; 
simple mixing line between upper crust and asthenospheric melt with each dot 
indicating 20% mixing. Data source: Labradorian crust (Kerr, 1989; Schärer, 1991); 
UCC, Upper continental crust (Rudnick and Gao, 2014); ALC, Archean lower crust 
(Weaver and Tarney, 1984; Kerr et al., 1995; Thomson et al., 2011); The initian Sr 
isotope value for RS430 is recalculated from that of the E-DMM (Workman and Hart, 
2005). 
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Figure 3.14. Plots for (a) (Tb/Yb)PM vs. (La/Sm)PM (modified after Konopelko & 
Klemd, 2016) diagram with the dashed horizontal line indicating the spinel-garnet 
melting boundary at (Tb/Yb)PM = 1.8 corresponding to 2.8 GPa (Wang et al., 2002); 
curve indicating 20% AFC of upper crust in N-MORB and vector indicating 40% 
closed-system fractional crystallization are shown; E-MORB, N-MORB, OIB (Sun and 
McDonough, 1989); upper and lower continental crust (UCC, LCC) (Rudnick and Gao, 
2014); (b) Sm/Yb vs Ce/Sm diagram; partial melting curves (black thick solid lines) for 
model spinel- and garnet-peridotite of primitive mantle composition (PM; Sun and 
McDonough, 1989) using non-modal batch melting (Shaw, 1970) of spinel-peridotite 
(Ol0.53 + Opx0.27 + Cpx0.17 + Sp0.03) that melts in the proportions (Ol0.06 + Opx0.28 + 
Cpx0.67 + Sp0.11) (Kinzler, 1997), and garnet peridotite (Ol0.60 + Opx0.20 + Cpx0.10 + 
Gt0.10) that melts in the proportions (Ol0.03 + Opx0.16 + Cpx0.88 + Gt0.09) (Walter, 1998); 
numbers on curves indicate degrees of melting in percentage; dashed lines indicate 
mixing between spinel- and garnet-peridotite; mineral partition coefficients are from 
Halliday et al. (1995). 
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Figure 3.15. Plot of rock units vs. ages of igneous and metamorphic events in the 
Canyon domain and part of the Lac Okaopéo area to the south, arranged from left to 
right according to their field occurrence from south to north, with tentative division 
between the southern and northern Canyon domains at the contact between the PLV 
and MIU (see fig. 3.3). Light yellow boxes indicate durations of granulite-facies 
metamorphism in VC and LBS; diagonal striped box indicates main Ottawan granulite-
facies metamorphism (Dunning & Indares, 2010; Lasalle et al., 2013, 2014); the 
durations of Ottawan and Rigolet phases of the Grenvillian Orogeny indicated in grey 
are from Rivers et al., 2012. Gr Peg, granitic pegmatite dyke, and M5 Gr, Granite in 
Manic 5 area in the southern Canyon domain (Dunning & Indares, 2010); LO, Lac 
Okaopéo mangerite, MGN, metagabbronorite (Augland et al., 2015); MIU, Mafic to 
Intermediate Unit, and PLV, Complexe de la Plus Value (Maity & Indares, 2018); REE-
Peg, REE-rich pegmatitic granite dykes (Turlin et al., 2017, 2019); PUD, potassic to 
ultrapotassic dykes (Valverde Cardenas et al., 2012); VC, Vein Complex; and LBS, 
Layered Bimodal Suite (this study, indicated by + signs). LA-ICP-MS analyses (in red) 
are from Lasalle et al. (2013, 2014); TIMS ages (in blue) are from Dunning & Indares 
(2010), Jannin et al. (2018b), and Turlin et al. (2017, 2019).  
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Figure 3.16. Schematic diagram showing the post-Ottawan tectonic evolution of the 
Grenvillian hinterland in the Canyon domain; inspired by Rivers (2008, 2012) and 
Jannin et al. (2018b). (a) Lithospheric extension, normal-sense displacement on AB, 
and orogenic collapse of the structural top in the hinterland at ca. 1020-1010 Ma 
(Indares et al., 1998), partial melting of stretched SCLM resulting in the coeval 
emplacement of the Okaopéo plutonic suite (Augland et al., 2015); note the thin 
Proterozoic SCLM under extension; (b) continued extension in the lower and mid-crust, 
whereas the upper parts of the mid-crust containing the Okaopéo suite are extruded to 
the northwest; asthenospheric upwelling and decompression melting at shallow depth, 
and the emplacement of mafic dykes in the VC in northern Canyon domain (in yellow) 
at ca. 1008 Ma; (c) Rigolet underthrusting of foreland beneath hinterland (Jannin et al., 
2018a, 2018b), emplacement of the REE-rich granite pegmatite dykes (PGD) in the 
southern Canyon domain and in Lac Okaopéo area (Turlin et al., 2017, 2019), and 
coeval intrusion of mafic sills in the LBS in the northern Canyon domain (this study); 
(d) thrusting or extrusion of the northern Canyon domain along the Allochthon 
Boundary; (e) development of Rigolet crustal channel and the normal-sense Thachic 
Shear Zone (Jannin et al., 2018a, 2018b).    
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4 Late-orogenic potassic to ultrapotassic dykes from the central 

Grenvillian hinterland: trace element and Sr-Nd-Pb-O isotopic 

perspective  

4.1 Abstract 

New whole-rock Sr-Nd-Pb-O isotope data, combined with previously published 

data are used to examine the origins of a group of ca. 980 Ma potassic to ultrapotassic 

dykes (PUD) from the Canyon domain, central Grenville Province. The PUD suite can 

be divided into two groups that are geochemically distinct, and exhibit characteristic 

source mineralogy, depth of partial melting, and multi-stage metasomatism of 

heterogeneous sources within the Laurentian subcontinental lithospheric mantle. Major 

and trace element data suggest involvement of both fertile and depleted peridotite 

sources, whereas trace element and isotope data indicate long-term LREE and LILE 

enrichment and HFSE depletion in a subduction setting. Low time-integrated Rb/Sr, 

Sm/Nd, and U/Pb ratios suggest late-Archean and Paleoproterozoic, enriched EM-I 

mantle sources (Superior and Proterozoic SCLM, respectively), metasomatized by late-

Archean to Proterozoic subduction of carbonate, phosphate, and pelagic sediments. Sr-

O isotope correlation further indicates a latest phase of fluid metasomatism that is 

attributed to a combination of asthenospheric upwelling related to lithospheric 

extension and late-Grenvillian continental subduction.  

The tectonic setting of the Rigolet phase is proposed to have been characterized 

by shallow-angle or flat subduction of the Superior lithosphere beneath the Grenvillian 
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hinterland. The intracontinental subduction was short-lived and probably terminated 

because of the inability to subduct buoyant and refractory Archean lithospheric mantle. 

4.2 Introduction 

Recent work in the Grenville Province has led to significant advances in 

understanding the evolution of the Grenvillian Orogeny, and to recognize it as a 

remnant of a large hot long-duration orogen (LHO; Beaumont et al., 2006; Jamieson et 

al., 2011; Rivers, 2008; Rivers et al., 2012; and references therein), comparable in scale 

and tectonic styles to its ancient analogue such as the Paleoproterozoic Trans-Hudson 

Orogen (Darbyshire et al., 2017), or its modern analogue such as the Himalaya-Tibet 

Orogen (Carr et al., 2000; Jamieson et al., 2007; Rivers, 2008, 2009; Rivers et al., 

2012).  

The Grenvillian Orogeny has been empirically subdivided into two orogenic 

phases, the ca. 1090-1020 Ma Ottawan phase for which evidence is preserved in 

allochthonous rocks in the orogenic hinterland, and the ca. 1005-980 Ma Rigolet phase 

for which evidence is mainly preserved in the parautochthonous foreland (Rivers et al. 

2012). The Rigolet phase and the formation of the Parautochthonous Belt situated in 

the hanging wall of the Grenville Front (GF) (Rivers, 2008), has been interpreted to 

have resulted either from propagation of the orogen over its foreland (van Gool et al., 

2008; Hynes and Rivers, 2010; Rivers, 2015; Rivers et al., 2012), or from 

underthrusting of the foreland beneath the hinterland (Jordan et al., 2006), in both cases 

leading to extrusion of the parautochthonous rocks from progressively deep crustal 

levels along the hanging wall of the GF (van Gool et al., 2008). Although kinematically 
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equivalent, these interpretations of the Rigolet phase differ in their implications for the 

petrogenetic involvement of crustal and mantle sources, as discussed herein.  

Seismic reflection imaging in the western Grenville Province has shown that 

the GF there forms the base of a wide (9~30 km), moderately SE-dipping, crustal-scale 

shear zone that extends at progressively greater depth beneath much of the exposed 

Grenville Province (Green et al., 1988; Culshaw et al., 1997; Rivers, 1997). On the 

other hand, in the central and eastern parts of the province, metamorphic, 

geochronological, and structural features documented within the Parautochthonous 

Belt, especially in the Gagnon terrane in the eastern Quebec and western Labrador 

(Rivers, 1983a, 1983b; Jordan et al., 2006; van Gool et al., 2008), provide convincing 

geological evidence that an orogenic wedge, composed of foreland-derived crust (van 

Gool et al., 2008), developed during intracontinental subduction during the Rigolet 

phase. This latter setting is similar to the recently reported ca. 980 Ma underthrusting 

of the Eastern Segment, composed of Baltica crust, beneath the western 

Sveconorwegian terranes (Möller and Andersson, 2018), or to the underthrusting of the 

Indian mantle lithosphere beneath the southern Tibetan plateau (DeCelles et al., 2002; 

Chung et al., 2005). Such interpretations in the Grenville Province are corroborated by 

geophysical evidence supporting the presence of imbricated foreland crust and its 

underlying subcontinental lithospheric mantle (SCLM) along the southeastern margin 

of the Superior craton that extends up to ~250 km beneath the hinterland (Hynes et al., 

2000; Adetunji et al., 2014; Boyce et al., 2016; Petrescu et al., 2016). However, the 

magmatic, geochemical, and isotopic signatures of a perceived late-Grenvillian 

intracontinental subduction event that extended under the Grenvillian hinterland remain 

little investigated and poorly understood. 
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Potassic and ultrapotassic rocks have long been considered to offer significant 

insights into the nature and composition of the mantle lithosphere beneath the modern 

LHOs (e.g., Miller et al., 1999; Prelević et al., 2012). Occurrences of such rock types 

in the Grenville Province are volumetrically small compared to sub-alkaline rocks 

during early- to mid- and post-Ottawan periods (ca. 1089-980 Ma) (Corriveau, 1990; 

Corriveau et al., 1990; Corriveau and Gorton, 1993; Owens and Tomascak, 2002; 

Gower and Krogh, 2002; Morin et al., 2005; Augland et al., 2015, 2017; Côté et al., 

2018). However, unlike most of the Ottawan and post-Ottawan suites, the Rigolet 

lamprophyric and potassic to ultrapotassic dykes (PUD) were shown to exhibit 

geochemical and isotopic signatures that suggest long-term mantle enrichment - either 

during ancient long-lived subduction events or from ancient low-density melts that had 

migrated from the asthenosphere and metasomatized the lithospheric mantle (Owens 

and Tomascak, 2002; Valverde Cardenas et al., 2012). Valverde Cardenas et al. (2012) 

suggested that upwelling hot asthenosphere caused melting in an old, metasomatized 

Archean subcontinental lithospheric mantle (SCLM), which was introduced beneath 

the Grenville hinterland as a result of northwest-directed thrusting of the latter over its 

Archean foreland.  

This paper presents new whole-rock Sr-Nd-Pb-O isotope data, which has been 

integrated with lithogeochemical and Sr-Nd isotope data from Valverde Cardenas et al. 

(2012) to show that the two types of PUDs were derived from both Proterozoic and 

Archean SCLM - with distinct depletion and multi-stage metasomatic enrichment 

histories – which, coupled with their syn-tectonic vs. post-tectonic characters, are used 

to develop a tectonic model for the Rigolet period of the Grenvillian orogeny. 

Integrating these results for units intruded into the orogenic hinterland with published 



 180 

structural and geochronological data from subjacent parautochthonous foreland 

terranes (e.g., the Gagnon terrane; Jordan et al., 2006; van Gool et al., 2008; Jannin et 

al., 2018a; Turlin et al., 2019), it is inferred that gently SE-dipping or flat subduction 

beginning at ca. 1005 Ma brought the southeastern margin of the Superior craton and 

its Paleoproterozoic cover in the orogenic foreland beneath the study area in the 

hinterland. This late-orogenic intracontinental flat subduction event appears to have 

been comparable in many ways to other modern (DeCelles et al., 2002; Chung et al., 

2005) and ancient (Cousens et al., 2001; Darbyshire et al., 2017; Möller and Andersson, 

2018) LHOs - further suggesting that subduction of continental lithosphere has 

remained an important tectonic process in crustal evolution since at least the late 

Paleoproterozoic. 

4.3 Geology of the study area 

The Grenville Province consists of two distinct tectonometamorphic belts 

(Rivers et al., 1989): the Allochthonous Belt in the hinterland largely composed of the 

late-Paleoproterozoic to Mesoproterozoic pericratonic domains derived from the 

Laurentian-margin arc, back-arc, and accreted terranes; and the Parautochthonous Belt 

in the foreland, principally composed of the Archean Superior Province basement and 

its Paleoproterozoic cover sequences developed on the Laurentian continental margin 

(fig. 4.1). The Allochthonous and Parautochthonous Belts are separated by the 

Allochthon Boundary (AB), a southeast-dipping high-grade shear zone that locally 

records both thrust-sense and normal-sense displacements (Rivers, 2008). The 

Parautochthonous Belt is separated from the interior, reworked part of the Superior 

craton by the Grenville Front (GF), a moderately southeast-dipping crustal-scale shear 
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zone with compressional and transpressional structures that marks the northern limit of 

the penetrative Grenville deformation (Rivers, 2008). 

4.3.1 Parautochthonous Belt units 

In the northwestern part of the study area (fig. 4.2), this belt is represented by 

the Gagnon terrane, comprising the Archean Ulamen Complex (Moukhsil et al., 2013) 

and the Paleoproterozoic Knob Lake Group (KLG; Rivers, 1980; Gagnon Group of 

Clarke 1977). The Ulamen Complex consists of late-Archean basement tonalitic gneiss 

(ca. 2681-2685 Ma; Jordan et al., 2006; Davis and Dion, 2012 a, b; Moukhsil et al., 

2013), dioritic gneiss (ca. 2693 Ma; Jordan et al., 2006), gneissic granite and gabbro, 

whereas the overlying Paleoproterozoic KLG, a ca. 1900 Ma continental margin 

sequence consists of metapelite, quartzite, marble, and iron formations that are 

continuous into the New Quebec Orogen to the northeast (Rivers, 1983a).  

Both the Archean basement and its cover sequences in the Grenville Province 

were intensely metamorphosed and deformed during the Rigolet orogenic phase 

thereby obliterating most pre-existing structures (Jannin et al., 2018a). The grade of 

metamorphism in the Gagnon terrane ranges from greenschist-facies near the GF to 

high-P granulite- and eclogite-facies near the Allochthon Boundary (Jordan et al., 2006; 

Rivers, 2008). A kyanite-bearing paragneiss in the southern part of the Gagnon Group 

records a clockwise hair-pin shaped P-T path with peak conditions in the range of 1250-

1300 MPa and 815-830 °C (Indares et al., 2008), the deepest and hottest conditions 

recorded within the orogenic wedge. U-Pb zircon crystallization ages of leucosomes 

comprising part of the high-grade assemblage related to the peak metamorphic 

conditions are ca. 995-985 Ma, whereas U-Pb titanite cooling ages are ca. 961-956 Ma 

(Jordan et al., 2006). These age ranges are compatible with the two-stage thrusting 
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documented in the Gagnon terrane (Jannin et al., 2018a). Their study reported an earlier 

set of SSE-trending lineations related to Rigolet phase D1 that formed the inner 

overgrowths on zircon (in syn-D2 leucosome) dated at 1002 ± 2 Ma (ID-TIMS), and 

the second stage of SSW-trending lineations related to D2 that formed the outer 

overgrowths in zircon (in syn-D2 leucosome) dated at ca. 986 ± 4 Ma (ID-TIMS). Other 

ages (by LA-ICP-MS) related to D2 include an older age of 995 ± 21 Ma from the outer 

overgrowths in zircon (in syn-D2 leucosome) and a younger age of 961 ± 22 Ma in a 

late-D2 pegmatite, although these ages overlap within uncertainties.  

4.3.2 Allochthonous Belt units 

This Belt structurally overlies the Gagnon terrane along the AB, and mainly 

consists of Paleoproterozoic to Mesoproterozoic rocks that were metamorphosed 

during the peak Ottawan high-grade event between ca. 1080-1040 Ma (Dunning and 

Indares, 2010). The HP Manicouagan Imbricate Zone (MIZ) north of the study area 

consists of a Labradorian (~1.65 Ga) anorthosite-mangerite-charnockite-granite 

complex and Pinwarian (~1.45 Ga) granitoids that have yielded peak metamorphic 

conditions of 1700-1900 MPa and 750-920 ˚C followed by strong decompression with 

high pressure gradient over short temperature interval (Cox and Indares, 1999a, 1999b; 

Cox, 1999; Cox et al., 1998; Indares, 1997; Indares et al., 1998; Yang and Indares, 

2005). The peak metamorphic conditions are of comparable intensity to, but ~50 M.y 

older than, those recorded in the underlying Parautochthonous Belt in the foreland (see 

above), which coupled with the difference in their P-T-t path suggest a different 

evolution pattern for the MIZ versus the underlying Gagnon terrane. 

The medium-pressure (MP) units of the Island domain, Canyon domain, Gabriel 

Complex, and Banded Complex consist of the late-Paleoproterozoic to mid-
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Mesoproterozoic supracrustal and plutonic rocks that were metamorphosed at 800-900 

°C and 600-1100 MPa from ca. 1080-1040 Ma (Indares and Dunning, 2004; Dunning 

and Indares, 2010; Lasalle et al., 2014; Lasalle and Indares, 2014; Patrick and Indares, 

2017), and were subsequently affected by a short period of post-Ottawan (ca. 1008-997 

Ma) upper amphibolite to granulite-facies metamorphism (Maity, in prep.). In addition, 

the Hart Jaune terrane to the southeast of the MIZ consists of ca. 1.47 Ga mafic 

granulites (Scott and Hynes, 1994; Hynes et al., 2000) that lack the evidence for 

penetrative Ottawan metamorphism (Indares and Dunning 2004), and constitutes part 

of the Ottawan Orogenic Lid (OOL; Rivers, 2008) in the study area. 

4.3.3 The Canyon domain 

The Canyon domain consists of Mesoproterozoic supracrustal rocks, plutonic 

units, and several dyke and sill complexes that were emplaced along the Laurentian 

margin between ca. 1.5 -1.2 Ga in continental arc to intermittent back-arc setting 

(Hynes et al., 2000; Gobeil et al., 2002, 2005; Dunning and Indares, 2010; Indares and 

Moukhsil, 2013; Moukhsil et al., 2012, 2013; Maity and Indares, 2018). The oldest unit 

from the southern part of the domain is the supracrustal Plus Value Complex (PLV), a 

predominantly metaclastic unit inferred to have been deposited in an active margin arc 

to back-arc setting at ~1.5 Ga ( Moukhsil et al., 2012; Lasalle et al., 2013; Augland et 

al., 2015), and was subsequently intruded by several plutons (orthogneisses) of felsic 

to intermediate composition and mafic dykes and sill between ca. 1497-1015 Ma 

(Gobeil et al., 2005, 2002; Moukhsil et al., 2012, 2013; Augland et al., 2015; Maity and 

Indares, 2018).  

The Mafic to Intermediate Unit (MIU) in the central part of the domain consists 

of 1410 ± 16 Ma plutonic rocks that were formed in a transitional arc to a back-arc 
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setting (Dunning and Indares, 2010; Maity and Indares, 2018). The northern part of the 

Canyon domain consists of – (i) the Quartzofeldspathic Unit, a supracrustal sequence 

inferred to have been deposited at ~1.4 Ga (Indares and Moukhsil, 2013) and intruded 

by ca. 1.4 Ga mafic rocks correlative with the MIU (Valverde Cardenas et al., 2012; 

Maity and Indares, 2018); (ii) the 1238±13 Ma supracrustal Layered Bimodal Sequence 

(LBS) formed in an extensional setting (Indares and Moukhsil, 2013; Lasalle et al., 

2013); and (iii) an apparently younger magmatic suite of the Vein Complex of unknown 

age and origin. The LBS has been intruded by MORB to OIB-type mafic sills (ca. 1008-

997 Ma; Maity, in prep.) and the Vein Complex by arc to MORB-type mafic dykes and 

sills (ca. 1008 Ma; op. cit.) during the post-Ottawan (ca. 1020-1005 Ma) lithospheric 

extension and orogenic collapse in the study area (op. cit.). 

Finally, the Canyon domain has been intruded by several ca. 1005-995 Ma 

granitic pegmatite dykes (Dunning and Indares, 2010; Turlin et al., 2017) and the 980 

± 3.5 Ma potassic to ultrapotassic dykes (Dunning and Indares, 2010; Valverde 

Cardenas et al., 2012) during the younger Rigolet orogenic phase. They are the focus 

of this study. 

4.3.4 The potassic to ultrapotassic dykes (PUD) 

The field relations and petrography of the PUD in the Canyon domain have been 

described in detail previously (Valverde Cardenas, 2009; Valverde Cardenas et al., 

2012), and only brief descriptions are given here. The dykes intrude the structures and 

compositional layering of their gneissic hosts at high angles. Based on their degree of 

deformation, the dykes in the PUD suite are subdivided into – a) foliated, and b) mildly 

foliated to non-foliated groups. The foliated dykes are ~10-20 cm wide and are 

commonly associated with a rim of felsic pegmatite. They contain large clinopyroxene 
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megacrysts or aggregates and occasional K-feldspar megacrysts with quartz inclusions, 

and the foliations in the matrix are defined by the preferred orientation of biotite along 

with plagioclase ± K-feldspar ± quartz ± hornblende. Feldspar is commonly sericitized, 

and clinopyroxene is generally corroded by hornblende. The mildly foliated to non-

foliated dykes are mainly composed of biotite + K-feldspar + quartz ± amphibole 

defining a porphyritic texture, contain only minor to trace plagioclase, and lack 

pyroxene, except the massive textured sample 408 that contains both orthopyroxene 

and clinopyroxene. All the dykes are rich in biotite and apatite. Accessory phases 

include allanite, monazite, zircon, titanite, rutile, Fe-Ti oxides, and calcite. 

4.4 Analytical Methods 

Selected samples were crushed and powdered using standard clean laboratory 

protocols at Memorial University of Newfoundland (MUN). Whole-rock major and 

trace element concentrations were measured at the Activation Laboratories (Actlabs) 

Ltd. in Ontario, Canada. Their standard analytical protocols are available from Actlabs 

website (www.actlabs.com) and are briefly described in appendix A. For radiogenic 

tracer isotopes, Sr followed by Sm and Nd were separated from whole-rock powders 

following an in-house protocol at MUN, and isotope compositions were measures by 

Finnigan Mat 262 mass spectrometer in static and dynamic modes. Pb was separated 

from whole-rock powders and isotope compositions were measured in Finnigan Mat 

262 mass spectrometer in static mode at MUN. Whole-rock oxygen isotope 

measurements were conducted using a dual-inlet, triple-collecting Thermo Scientific 

Delta Plus XL IRMS at the Western University, Ontario, Canada. All the isotope 

analytical procedures, uncertainties, precision and accuracy of data are reported in 

appendix A.  

http://www.actlabs.com/
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4.5 Results 

4.5.1 Whole-rock major and trace elements 

The whole-rock major and trace elements and Sr-Nd-Pb-O isotope ratios are 

presented in table 4.1. Based on major elements, the PUD samples are divided into 

PUD1 group, which includes all strongly foliated and one massive sample (408), and 

PUD2 group, which includes massive to mildly foliated samples (PUD1a and PUD1b 

subdivisions are based on Pb isotopes, see below). The PUD1 has a lower range in SiO2, 

K2O, P2O5, and Mg# and a higher range in Al2O3, Fe2O3, MnO, CaO, and Na2O 

compared to the PUD2 group. In the total alkalis vs. silica diagram (fig. 4.3a), the PUD1 

samples range from basalt to basaltic andesite and trachy-andesite, whereas PUD2 

samples range from basaltic trachy-andesite to trachyte. In the K2O vs. Na2O diagram 

(fig. 4.3b), the three samples from PUD1 with highest Na2O fall in the non-potassic to 

potassic or shoshonitic fields, whereas the remaining PUD1 samples, and all PUD2 

samples, fall in the ultrapotassic field. In K2O vs. SiO2 diagram (not shown) all samples 

plot in the shoshonitic field except one (11-416) that plots in the high-K calc-alkaline 

field. According to the classification of Foley et al. (1987), the seven samples from the 

PUD with K2O/Na2O > 2 and MgO and K2O > 3 wt% are ultrapotassic, and in the 

discrimination diagrams for ultrapotassic rocks they plot between the fields for Group 

I (lamproitic) and Group III (orogenic, lamprophyric) (fig. 4.3c, d).  

Differences between the two groups of PUD also exist for other trace elements, 

e.g., the PUD1 samples are higher than PUD2 in Sc (14-22 vs. 4-11 ppm) and V (121-

193 vs. 34-65 ppm), and lower in Rb (65-216 vs. 193-263 ppm), Sr (936-4301vs. 2701-

6521 ppm), Th (2.1-6.1 vs. 10.8-16.2 ppm), and U (0.8-3.4 vs. 2.5-5.2 ppm) (table 4.1). 
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The PUD2 samples exhibit higher Ni (82-139 ppm) and Cr (151-270 ppm), whereas in 

PUD1 these elements are highly variable, with sample 398A (high MgO) exhibiting the 

highest values (230 and 638 ppm, respectively) compared to the remaining samples, 

which exhibit the lowest ranges (below detection limit to 102 ppm and 145 ppm, 

respectively). The two groups exhibit very high and overlapping concentrations in Ba 

(2098-7621 ppm) and Zr (191-911 ppm). 

All the PUD samples are strongly enriched in LREE (La 200-1100 times 

chondrite) with no significant Eu anomalies and are relatively depleted in HREE (8-25 

times chondrite) (fig. 4.4a-c). Sample 403 in PUD2 exhibit a distinct concave upward 

HREE pattern (fig. 4.4c). In the primitive mantle-normalized multi-element diagram 

(fig. 4.4e-g), PUD samples show strong negative anomalies in Nb and Ta, and variable 

anomalies in Ti and P. PUD1 samples also exhibit distinct patterns between its 

subgroups PUD1a and PUD1b. For example, Zr and Hf are less depleted in PUD1a 

compared to PUD1b and are variably depleted in PUD2. Ti and P are less depleted in 

PUD1a compared to PUD1b, whereas Ti is strongly depleted in PUD2 without 

depletion in P. Rb is depleted relative to Ba in all samples, and K is variable compared 

to La. PUD2 exhibits highest abundances in Rb and Sr whereas PUD1b has the highest 

Ba abundance. Th exhibits a negative anomaly compared to adjacent Ba and U in 

PUD1a, whereas it is variable relative to Ba and U in the two other groups with PUD2 

having the highest Th and U abundances. Only two samples in PUD1a, for which Pb 

concentrations were measured, exhibit a positive Pb anomaly. The overall incompatible 

element abundances increase from PUD1a to PUD2. 
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4.5.2 Sr-Nd isotopes 

The Sr-Nd isotope data are reported in table 4.1 and plotted in fig. 4.5a-c. The 

PUD1a samples exhibit relatively less unradiogenic Nd isotopic signatures and younger 

depleted mantle model ages (εNd = -2.8 to -5.1) compared to PUD1b (εNd = -4.5 to -

7.1) and the strongly unradiogenic PUD2 samples (εNd = -12.1 to -14.4). The samples 

from the PUD1 exhibit Paleoproterozoic to Mesoproterozoic Nd model ages (TDM 1.55-

1.78 Ga, DePaolo, 1981; TCR 1.70-1.97 Ga, Goldstein et al., 1984), and they plot 

slightly above, but parallel to, the regression lines for the other Proterozoic crust 

groupings in the study area (e.g., parallel to the MIZ, Island and Canyon domains, 

Banded complex, and below the Quebecia crust; Thompson et al., 2011; fig. 5a-b). The 

PUD1 yields intial εNd values older than the ca. 1.7-1.9 Ga K-rich suites from the 

western Grenville Province (e.g., the Kensington-Scoottamatta and the Rivard minette 

dykes; Corriveau and Amelin, 1994; Amelin et al., 1994; Corriveau et al., 1996), 

although they overlap with the calculated intial εNd values of the post-Ottawan K-rich 

suites (e.g., the ca. 1014-1009 Ma Core and Bouvreuil syenite plutons, the ca. 1000 Ma 

Labrieville lamprophyre dykes; Owens and Tomascak, 2002; Augland et al., 2017; fig. 

5b). The PUD2 samples exhibit early Paleoproterozoic Nd model ages (TDM 2.2-2.3 Ga, 

DePaolo, 1981; TCR 2.35-2.47 Ga, Goldstein et al., 1984), and plot within the field for 

the early Paleoproterozoic to Archean crust from the study area (Thompson et al., 2011; 

fig. 5a-b). 

All the PUD samples have low radiogenic initial 87Sr/86Sr ratios, with those 

from PUD1a (0.70393-0.70505) exhibiting slightly more radiogenic values compared 

to those in PUD1b (0.70384-0.70411) and PUD2 (0.70393-0.70428); all these values 

are slightly higher than the Bulk Silicate Earth (BSE) value at 1 Ga (0.703255; 
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Workman and Hart, 2005). All the PUD samples exhibit higher initial Sr-isotope ratios 

compared to the Labrieville dykes and anorthosite massif (table 4.1). The Sr-Nd 

isotopic signatures in PUD1 and PUD2 are indicative of enriched EM I-type mantle 

source (fig. 4.5a-b), and comparable to those of the anorogenic lamproites from the 

Leucite Hills (Mirnejad and Bell, 2006) and Sisimiut (Nelson, 1989), and minettes from 

the Elkhead Mountains (Thompson et al., 1990). The Sr errorchron age of 996 ± 180 

Ma (Valverde Cardenas et al., 2012) is close to the U-Pb zircon crystallization age of 

980 ± 3 Ma (Dunning and Indares, 2010), determined from an undeformed PUD2 dyke 

from the southern part of the domain. However, the scatter of data points in the isochron 

plot of measured 87Sr/86Sr ratios indicates that either the samples were not of the same 

age, or they were derived from heterogeneous sources, or both (Valverde Cardenas et 

al., 2012).  

The Sr-Nd isotopic signatures in PUD1 and PUD2 (fig. 5c) are comparable to 

those of the Mesoproterozoic anorogenic lamproites Aillik Bay in eastern Labrador 

(Tappe et al., 2007) and Sisimiut in west Greenland (Nelson, 1989), and the younger 

lamproites from the Leucite Hills (Mirnejad and Bell, 2006), Smokey Butte, Prairie 

Creek (Fraser et al., 1985; Fraser, 1987), and minettes from the Elkhead Mountains 

(Thompson et al., 1990). The unradiogenic Sr-Nd isotopic signatures of these suites 

represent the ancient Laurentian SCLM of Tappe et al. (2007) and indicate an enriched 

EM I-type mantle source.  

4.5.3 Pb isotopes 

The PUD samples exhibit a wide range of Pb isotopic ratios that are distinct for 

the PUD1 and PUD2 groups, and are shown on fig. 4.6. The Pb data also permit 

subdivision of the PUD1 group into subgroups PUD1a and b. For the PUD1 group, five 
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samples in PUD1a subgroup exhibit significantly higher isotopic ratios (206Pb/204Pb: 

16.87 to 18.07, 207Pb/204Pb: 15.37-15.43, 208Pb/204Pb: 36.12-36.50) than the remaining 

three samples in PUD1b (206Pb/204Pb: 16.25 to 16.53, 207Pb/204Pb: 15.29-15.33, 

208Pb/204Pb: 36.15-36.77). The PUD1a samples are the most radiogenic and plot farther 

to the right side of 4.57-0.98 Ga geochron. Four samples from this subgroup yield 

Stacey and Kramers (1975) model ages between 0.57-0.92 Ga, whereas the sample 11-

416 exhibits significantly more radiogenic lead and plots to the right side of the 

Geochron (fig. 4.6a). This is consistent with this sample being strongly foliated, with 

the highest Sr isotope ratio. Two unaltered samples with mild or no foliation (RS351 

and 408) give model ages (0.91-0.92 Ga) closest to the zircon U-Pb crystallization age 

of ca. 980 Ma for the PUD interpreted from Dunning and Indares (2010). In the 

208Pb/204Pb vs. 206Pb/204Pb space (fig. 4.6b), the PUD1a samples exhibit a negative trend 

from the mantle towards lower crustal evolution line of Zartman and Doe (1981), and 

exhibit the highest thorogenic and uranogenic lead.  

The PUD1b samples plot below the average crust evolution curve of Stacey and 

Kramers (1975), close to the 0.98 Ga geochron (fig. 4.6a), and yield Stacey and 

Kramers (1975) model ages of 1.06-1.23 Ga (table 4.1). In the 208Pb/204Pb vs. 

206Pb/204Pb space (fig. 4.6b), the PUD1b samples plot above the average crust curve 

and exhibit a positive trend towards lower crustal evolution line of Zartman and Doe 

(1981). Overall, the samples in PUD1 are variably deformed, foliated, and show 

evidence of late-stage alteration in feldspar, features that indicate excess radiogenic Pb 

could have been acquired by contamination. Alternatively, this could be a consequence 

of a multi-stage history for Pb in these rocks (e.g., Ayer and Dostal, 2000). 
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In fig. 4.6a-b, the PUD1 samples overlap with a range of whole-rock and 

feldspar data from the Grenville anorthosites (Emslie and Hegner, 1993; Owens et al., 

1994), Proterozoic orthogneisses from the Grenville Province and eastern Labrador 

(Ashwal et al., 1986; Schärer, 1991; DeWolf and Mezger, 1994; Loewy et al., 2003; 

Arcuri and Dickin, 2018; Mumblow et al., 2018), clinopyroxene and paragonite in the 

Rivard dykes (Corriveau et al., 1996), and with clinopyroxene in xenoliths recovered 

from the dykes (Corriveau et al., 1996; Amelin et al., 1994). These Mesoproterozoic 

rocks from the Grenvillian hinterland were derived mainly from Mesoproterozoic 

mantle sources and involved reworked Proterozoic crust having short crustal residence 

time (Ashwal et al., 1986; Schärer, 1991; Emslie and Hegner, 1993; Owens et al., 1994). 

The K-rich plutonic suites from the Central Metasedimentary Belt (“K-S suite” in fig. 

4.6) exhibit initial Pb isotope compositions intermediate between the two subgroups of 

PUD1 (Corriveau and Amelin, 1994). In fig. 4.6c-d, PUD1 samples plot within the field 

for ancient Laurentian lamproites (Fraser et al., 1985; Thompson et al., 1990; Peterson 

et al., 1994; Tappe et al., 2007).  

The samples in PUD2 yield the most unradiogenic Pb isotopic compositions, 

exhibiting high 206Pb/204Pb at distinctly lower 207Pb/204Pb ratios compared to the PUD1 

group, and plot to the right side of 0.98 Ga isochron (fig. 4.6a). All the three samples 

yield two-stage Stacey and Kramers (1975) model ages (0.45-0.84 Ga) significantly 

younger than their emplacement age. Two of these samples (403 and 462z) are massive 

and not foliated, whereas sample 338z is weakly foliated, and exhibits no visible sign 

of late-stage hydrothermal alteration. Several studies on Archean komatiites and 

sulphides have revealed that although hydrothermal alteration can increase U/Pb ratios, 

their Th/U and Sm/Nd systematics remain largely unaffected (e.g., Dupré et al., 1984; 
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Brévart et al., 1986; Dupré and Arndt, 1990). In 208Pb/204Pb vs. 206Pb/204Pb space (fig. 

4.6b), samples 338z and 462z plot above the average crust curve, whereas sample 403 

deviates slightly towards higher 206Pb/204Pb.  

In fig. 4.6a-b, the PUD2 samples are compared with the rocks from the Superior 

and Grenville Province with a known Archean source for Pb. The high 206Pb/204Pb may 

have caused the PUD2 samples to deviate from the fields for the late-Archean to 

Proterozoic gneisses (Gariépy and Allègre, 1985; Gariépy et al., 1990; Schärer, 1991; 

DeWolf and Mezger, 1994; Dickin, 1998a) and Aillik Bay galena deposits form the 

Central Mineral Belt in eastern Labrador (Wilton, 1991). Instead, they plot within the 

field defined by a range of komatiite, basalt, and magmatic and exhalative sulphide 

samples from the Abitibi Greenstone Belt in Ontario (Tilton, 1983; Dupré et al., 1984; 

Brévart et al., 1986; Carignan et al., 1995; Dupré and Arndt, 1990). In fig. 4.6 c-d, 

PUD2 samples plot below the field for ancient Laurentian lampriotes (Freaser et al., 

1985; Peterson et al., 1994; Tappe et al., 2007), and broadly overlap with the Aillik Bay 

lamproites (Tappe et al., 2007) and the clinopyroxene Pb data (protolith model age of 

~2.7 Ga) from the ca. 632 Ma Renard kimberlite in the southeastern Superior Province 

(Hunt et al., 2012). Whereas large variations in 206Pb/204Pb ratios in many of the Abitibi 

volcanics were attributed to Pb gain due to hydrothermal alteration shortly after their 

emplacement (mainly samples from thin komatiite layers), or due to later 

metamorphism (samples from thick basalt layers) (Dupré and Arndt, 1990), others have 

contested this idea based on the collinearity of the mafic-ultramafic samples with 

primary magmatic Pb in sulphides and argued for a heterogeneous late-Archean mantle 

beneath the Superior Province (Carignan et al., 1995). In the present study, the distinct 

Pb isotopes in PUD2 samples suggest hydrothermal alteration immediately before final 
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magma crystallization in the late-Rigolet orogenic setting, or they may indicate 

derivation from a mantle source that has been modified by hydrothermally altered 

sediments or crust (our preferred interpretation).     

4.5.4 O isotopes 

Whole-rock oxygen isotopes (δ18OVSMOW) exhibit a wide range of values for the 

three groups. Samples from PUD1a yield values from 6.2-9.2‰ whereas those from 

PUD1b exhibit values from 7.7-9.3‰. The samples in PUD2 yield values that range 

from 3.8‰ to 8.2‰. The range of values in PUD samples exceeds the range for typical 

mantle-derived mafic rocks (δ18OWR = 5.5-7.4‰; Taylor, 1968), MORB (5.6-6.0‰; 

Eiler, 2001), and lower crust (6-7‰; op. cit.). 

There are no previously published O-isotope data on ultrapotassic rocks from 

the Grenville Province, but a large number of datasets exist on the Proterozoic AMCG 

rocks, which have yielded δ18OWR values of 7-11‰ (Peck and Valley, 2000; Peck et 

al., 2010). The young (~1 M.y) ultrapotassic rocks from the Roman province in Italy 

exhibit δ18OWR values of 5.6-10‰ (Taylor et al., 1979). Primitive basalts with high Mg# 

were reported from diverse tectonic settings to have δ18OWR values of 3.6 to 8.7‰ 

(Harmon and Hoefs, 1995). Archean lamprophyres from the Superior Province yielded 

high δ18OWR values of 6.7-11.1‰, and δ18Oclinopyroxene values of 6.1-6.3‰ (Kyser, 1990; 

Wyman and Kerrich, 1993). Five samples of the Leucite Hills lamproites exhibit whole-

rock values of 8.8-12‰ and a phlogopite phenocryst value of 8.8‰ (Kuehner, 1980), 

which are comparable to the δ18OWR values of 8.21-8.90‰ reported by Mirnejad and 

Bell (2006) for these same rocks. In all these examples, higher than mantle values were 

interpreted to indicate crustal addition either at source and/or during magma ascent 

through crust (e.g., Eiler, 2001). 
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4.6 Discussion 

4.6.1 Fractional crystallization and crustal contamination 

The negative correlation of Rb/Sr vs. Sr (fig. 4.7a) suggests biotite (phlogopite) 

and amphibole (K-richterite) fractionation, whereas the lack of distinct anomalies in 

Eu, Sr, and Ba (fig. 4.4) indicate that plagioclase was not a major fractionating phase. 

The positive covariations between Mg# (MgO) and Cr (fig. 4.7b) and Ni (fig. 4.7c) in 

our dataset suggest strong effects of fractional crystallization of clinopyroxene and 

olivine, respectively. It is evident in fig. 4.7b-c that the samples in PUD2 have a 

different evolutionary path and they also exhibit lower Al, Fe, and Sc and V compared 

to those in PUD1 (fig. 4.7d-e; table 4.1). Their low Fe and V suggest the role of 

amphibole or Fe-Ti oxide as also indicated in the Ni vs. V diagram (fig. 4.7e). The high 

Mg# of the PUD2 samples imply that such fractionation must have occurred at source. 

PUD1 samples have low Ti/V values (74 - 119) that exhibit a slight decrease with 

differentiation, whereas PUD2 samples have much higher Ti/V values (198 - 264) that 

exhibit no correlation with Mg#. P2O5 is the highest in PUD2, and exhibits an overall 

decrease in both groups with decreasing Mg#, suggesting the role of apatite. Their 

HFSE, REE, Ba, and Sr contents are high and variable but exhibit no particular 

correlation with Mg#, although Th and U decrease with differentiation.  

The overall high abundances in incompatible elements of the PUD samples 

cannot be produced by fractionation of apatite, Fe-Ti oxides, or amphibole, suggesting 

they are not related to mineral fractionation. The positive correlation between La and 

La/Yb indicate that their REE compositions are mainly related by partial melting of an 

LREE-enriched source (fig. 4.7f). However, the PUD samples form three different 
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groups, exhibiting distinct radiogenic isotopic compositions that cannot be related to 

simple fractional crystallization or partial melting, and therefore, require alternative 

processes such as crustal contamination and/or source heterogeneity. 

In general, crustal contamination in potassic and ultrapotassic rocks is difficult 

to assess due to their extreme enrichment in incompatible LILE and LREE, which can 

only be diluted by less enriched crust (Conticelli, 1998). Nonetheless, simple mass 

balance (Conticelli, 1998) and mixing calculations (Mirnejad and Bell, 2006) show that 

extensive upper crustal contamination can increase SiO2, Al2O3, MnO and Na2O 

contents and decrease TiO2, MgO, K2O, and P2O5 contents in contaminated 

ultrapotassic to lamproitic magmas. With respect to the high enrichments in 

incompatible major and trace elements (e.g., K2O, LREE, Rb, Ba, Sr) and Sr-Nd 

isotopic values in the late-Grenvillian ultrapotassic and lamprophyric rocks in general 

(figs. 4.3-4.5), it has been proposed that their parental magmas were derived by partial 

melting of enriched SCLM, possibly mixed with small volume asthenospheric melts, 

without significant contribution from continental crust (Owens and Tomascak, 2002; 

Valverde Cardenas et al., 2012). The PUD samples exhibit extremely coherent trace 

element patterns in the primitive mantle normalized diagrams (fig. 4.4), which coupled 

with their overall high concentrations of incompatible elements argue against shallow-

level contamination by heterogeneous crust. Therefore, the major and trace elements 

and isotopic variations of the PUD samples are interpreted to indicate their source 

heterogeneity, and that crustal contamination in their petrogenesis would have been of 

secondary importance except only in the most evolved samples with the lowest MgO, 

Mg#, Ni, and Cr contents.  
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4.6.2 Source composition and mineralogy 

Major elements can provide important clues about primary processes reflecting 

the composition of mantle sources, whereas incompatible trace element abundances, 

ratios, and patterns provide information about the nature of metasomatic enrichments 

or depletions that took place after separation from mantle sources, irrespective of the 

relative timing of such enrichment or depletion events. The various radiogenic isotope 

tracers can further provide constraints on the timing of such specific events, which in 

combination with their major and trace elements can be used to decipher a more 

complete picture of complex evolutionary history in the ultrapotassic rocks.  

Although magmatic differentiation has taken place during petrogenesis of the 

PUD suite, many of the samples still retain high MgO, Mg#, and relatively high Ni and 

Cr values, suggesting they represent compositions close to their parental melts. The two 

groups in PUD exhibit characteristic major and trace element compositions that indicate 

distinct sources were involved in their respective petrogenesis. Recalculating their 

major element oxides to a standard MgO value of 6 wt% (following Turner and 

Hawkesworth, 1995; Williams et al., 2004) still exhibits the compositional differences 

that we believe to be related to their source characteristics. The PUD1 samples exhibit 

a wide range in SiO2 (47 - 57 wt%) and Mg# < 44 - 65 with variable Ni and Cr, high 

Al2O3, TiO2, Fe2O3, Sc and V, and their major element oxide compositions are similar 

to the experimental melts derived from fertile peridotites (Falloon et al., 1988; Falloon 

and Green, 1988; Hirose and Kushiro, 1993), suggesting their derivation from such a 

fertile source. In contrast, the PUD2 samples exhibit higher SiO2 (53-59 wt%) and Mg# 

> 69 - 75 with higher Ni and Cr, and lower Al2O3, Fe2O3, Sc and V indicating their 

derivation from a relatively depleted source, which coupled with the absence of 
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clinopyroxene in these samples supports clinopyroxene-poor depleted peridotite 

source. Depleted peridotite has been suggested as the source for many ultrapotassic 

rocks on the basis of phase equilibria studies on lamproites and experimental studies at 

high-pressures on synthetic systems (Edgar and Mitchell, 1997; Foley et al., 1986). It 

is noteworthy that many group-I and II lamproitic and ultrapotassic rocks exhibit high 

TiO2 and low Fe2O3 (e.g., Foley et al., 1986; Wyman and Kerrich, 1993; Mirnejad and 

Bell, 2006) suggesting such features could be inherently related to their source 

composition. 

The REEs can offer significant insights into the source mineralogy and depth of 

melting, since garnet and spinel have different preferences for HREE versus MREE and 

LREE. Partial melting in either the spinel or garnet peridotite fields can enrich melt in 

LREE, but residual garnet can additionally retain HREE and Y, thereby producing 

strongly fractionated LREE/HREE and MREE/HREE ratios. The PUD1a samples have 

a broader range of Dy/Yb (1.71 - 3.39), indicating both garnet and spinel in their source 

regions, and thereby implicating garnet- and spinel-lherzolite mantle sources. In 

contrast, PUD1b samples exhibit high Dy/Yb (2.90 - 3.44) that suggest their parental 

melts were in equilibrium with residual garnet, implying a garnet-lherzolite source. For 

PUD2, the variable Dy/Yb (2.32 - 4.15), coupled with a concave upward HREE pattern 

in sample #403, indicate both residual garnet and amphibole, implying a depleted 

amphibole-garnet peridotite (harzburgite or depleted lherzolite) source. However, they 

also exhibit high K/Yb (5,800-33,000), K2O and K2O/Na2O that are too high to be 

derived from four-phase mantle peridotite (Foley, 1992; Sun and McDonough, 1989), 

and suggest the presence of K-bearing phases, e.g., phlogopite or amphibole, most 

likely located in mica-clinopyroxenitic vein assemblages in the source region (Foley, 
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1992; Foley et al., 1999). Based on trace element modeling, Duggen et al. (2005) 

showed that vein assemblages alone with variable proportions of garnet and apatite (0-

10%) can produce very high K/Yb (>100,000), but always at low Dy/Yb ratios (< 2.5), 

whereas dilution of vein melt by garnet-peridotite melt in a vein plus peridotite wall-

rock melting model (Foley, 1992; Foley et al., 1999) can produce relatively low K/Yb 

(~5000-60,000) at high Dy/Yb (2.8-3.8), as observed in the Spanish lamproites. The 

PUD samples exhibit a range of K/Yb (PUD1a: 6300-19800; PUD1b: 5,800-28,000; 

PUD2: 14,400-33,000) and Dy/Yb ratios suggesting that a vein plus peridotite wall-

rock model (instead of vein assemblage only) would be most applicable for the late-

Grenvillian PUD rocks.  

Experiments on the high-pressure stability of pargasite and K-richterite suggest 

that under fluorine-rich conditions these phases (and phlogopite and apatite) can be 

stable as refractory vein assemblages coexisting with lherzolite (for pargasite) and 

harzburgite (for K-richterite) over much greater P-T ranges (~50 kb, 1300 ºC) than their 

hydroxy-counterparts (Foley, 1991, 1992). Upon reaching the peridotite solidus, these 

vein assemblages can melt to impart strong influence on the REE and incompatible 

element budgets on primitive ultrapotassic melts. Although whole-rock F contents are 

not available, mineral chemical data for the PUDs (Valverde Cardenas, 2009) exhibit 

high F contents in apatite (1.54-6.46 wt%), biotite (0.58-3.67 wt%), and amphibole 

(0.23-3.16 wt%), with the highest F contents in minerals present in PUD2 samples. 

Experimental studies have shown that high F content under high H2O/CO2 conditions 

in mantle produce silica-rich ultrapotassic melts (Foley et al., 1986).  

In comparison to K, Rb has a lower partition coefficient for amphibole (K-

richterite) than for fluid (amph-fluidKD(Rb-K) = 0.08; Melzer et al., 1998), so amphibole 
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formed from metasomatic fluids or melts will be Rb-poor and K-rich. On the other 

hand, Rb prefers to partition into phlogopite rather than coexisting fluid (phl-fluidKD(Rb-K) 

= 1.28; Melzer et al., 1998). Moreover, Ba is highly compatible in phlogopite but 

moderately compatible in amphibole (Adam et al., 1993; LaTourrette et al., 1995). 

Consequently, partial melting of a metasomatized lithospheric mantle source in 

equilibrium with amphibole will produce melts with low Rb/Sr (<0.1), high Ba/Rb 

(>20) and high K/Rb. In contrast, those in equilibrium with phlogopite have higher 

Rb/Sr (> 0.1), and lower Ba/Rb (< 20) and K/Rb (Furman and Graham, 1999; Melzer 

et al., 1998). In the Ba/Rb vs. Rb/Sr diagram (fig. 4.8a), the PUD1a samples exhibit 

high Rb/Sr, which decreases with increasing Ba/Rb, suggesting a competing role of 

phlogopite and amphibole in their source regions. The PUD1b samples, on the other 

hand, show high Ba/Rb at low Rb/Sr (< 0.10), suggesting a predominance of amphibole 

over phlogopite in their source regions. The PUD2 samples exhibit highest Rb and very 

high Ba and Sr at low Rb/Sr and Ba/Rb, indicating phlogopite melting at source, 

possibly in combination with K-richterite. The K/Rb (194-390) ratios in PUDs are low 

and somewhat overlap between the PUD groups, although they exhibit a negative 

correlation with Rb/Sr (fig. 4.8b) suggesting phlogopite and amphibole control on both 

Ba and K (Melzer et al., 1998; Melzer and Wunder, 2001).  

The lack of a correlation between TiO2 and SiO2, coupled with the negative 

anomalies in Nb, Ta, and Ti in the primitive mantle-normalized multi-element 

diagrams, is consistent with the presence of a Ti-bearing mineral phase such as rutile, 

phlogopite, and amphibole in the source region (Foley and Wheller, 1990; Foley et al., 

1999). Accessory phases such as apatite and monazite can exert a strong control on the 

REE, P, Sr, and Th contents of ultrapotassic melts during mantle melting. Such phases, 
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if present in trace amounts in the mantle, can change the fluid/rock partitioning behavior 

of the system, especially with respect to REEs (Rudnick et al., 1993). However, their 

high LREE, Ti, P, and Sr contents imply that the PUD samples were derived from a 

mantle source where these elements were incompatible during melting. This is 

supported by the experiment on Ti solubility that indicates that Ti-rich accessory phases 

are not residual in mafic melt system (Ryerson and Watson, 1987). Apatite has also 

been shown to be soluble in mafic alkalic liquids at high pressure mantle conditions 

(Watson, 1980; Baker and Wyllie, 1992), suggesting such accessory phases most 

probably melted completely in the source regions of PUD.  

In summary, their major and trace element signatures suggest that the two 

groups of PUD were derived from partial melting of sources that were distinct in terms 

of their composition and mineralogy. Among the first group of PUD1, the PUD1a 

samples were derived from fertile garnet- and spinel-peridotite, whereas those in 

PUD1b were derived from a fertile garnet-peridotite source. The PUD2 samples were 

derived from a relatively depleted garnet-peridotite source. The peridotite sources for 

both the PUD1 and PUD2 groups were variably metasomatized at source by melts and 

fluids derived from vein assemblages containing amphibole, phlogopite, Fe-Ti 

accessory phases such as rutile and ilmenite, and phosphates such as apatite and 

monazite. The stability of amphibole at a depth coexisting with garnet peridotite may 

also suggest F-rich conditions at source. The presence of such minor and accessory 

phases in EM-I type SCLM source indicate MARID-type metasomatism that has also 

been suggested for other lamproitic and ultrapotassic rocks derived from the ancient 

Laurentian SCLM (Tappe et al., 2008). The high solubility of accessory phases during 

parental ultrapotassic melt genesis indicates that such phases would melt completely 
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without any significant residue left in the source region, producing the incompatible 

element depletions and enrichments observed in the PUD samples. Thus, the trace 

element patterns for the PUD appear to be directly inherited from their source regions. 

4.6.3 Orogenic vs. anorogenic characters 

It has been shown that potassic and ultrapotassic rocks occur both in orogenic 

and anorogenic environments, which are related to active subduction zones and stable 

continental intraplate settings, respectively (Nelson, 1992), although subduction-

related processes play an important role in the petrogenesis of such rocks emplaced in 

both environments (Vollmer, 1989; Lustrino et al., 2016). Based on major elements 

Al2O3 and TiO2 (fig. 4.9a, b), the PUDs plot in the orogenic field with Al2O3/TiO2 ≥ 4 

(Lustrino et al., 2016), although they exhibit a trend towards anorogenic field. However, 

in Th/Zr vs. Nb/Zr (fig. 4.9c; Wilson and Bianchini, 1999) and Th-Hf-Nb/2 diagrams 

(fig. 4.9d; Krmíček et al., 2011), the PUDs straddle between the orogenic and 

anorogenic fields, with PUD1 samples showing a strong anorogenic signature 

compared to PUD2 with a strong orogenic signature. The mixed orogenic-anorogenic 

character in PUDs suggest subduction-metasomatized SCLM sources modified by 

asthenospheric melts or fluids.  

4.6.4 Mantle source metasomatism: trace element constraints 

In order to produce primitive potassic to ultrapotassic magmas extremely 

enriched in incompatible elements (e.g., LREE and LILE), the mantle source must be 

fertilized by metasomatic fluids or melts of hydrous, alkalic silicate, or carbonatitic 

composition (Laflèche et al., 1998). Such fluids or melts may be derived from deep 
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asthenosphere (e.g., Rudnick et al., 1993), or from subduction zones (e.g., Menzies and 

Hawkesworth, 1987; Hawkesworth et al., 1990), or a combination of both.  

4.6.4.1 Subduction–related metasomatism 

The role of subduction in the source of the PUD can be readily assessed with 

reference to their strong depletions in HFSE (e.g., Nb, Ta, P, Ti, Zr, and Hf) relative to 

enrichments in LREE and LILE (fig. 4.4; Thirlwall et al., 1994), and their low Ti/Zr 

ratios. The trace element contribution from subduction zones can take place through 

fluids or melts derived from subducted sediments. Any input from subducted sediment-

derived fluids increases Ba/La relative to Th/Yb ratio in the mantle wedge because of 

the higher solubility of the LILE than the HFSE and REE in fluids compared to melts 

(Woodhead et al., 2001). In the Th/Yb vs. Ba/La diagram (fig. 4.10a), samples from 

PUD1 exhibit high Ba/La indicative of metasomatic enrichment from slab-derived 

fluids, whereas high Th/Yb in those from PUD2 suggests the enrichment was from slab-

derived melts.  

Partial melting and mantle enrichment processes by hydrous fluids or silicate 

melts in subduction zones do not significantly deplete HFSE compared to REE (i.e., 

yielding sub-chondritic Hf/Sm), nor do they result in super-chondritic Nb/Ta ratios as 

these elements have similar geochemical behavior (McDonough, 1990). Carbonatitic 

fluids and melts, on the other hand, can deplete HFSE (e.g., Zr, Hf, Nb, Ta, Ti) 

compared to REE, and can also effectively fractionate HFSE ratios (e.g., Zr/Hf) from 

chondritic or primitive mantle values due to their higher preference for HFSE over 

REE, and for Zr over Hf (Laflèche et al., 1992; Rudnick et al., 1993; Ionov et al., 1993). 

The variable Zr/Sm (4.0-29.1), Zr/Hf (30.8-47.2), and Hf/Sm (0.13-0.70), and low 

Ti/Eu (769-3930) ratios in PUD samples are variably fractionated from chondritic 



 203 

values (25.3, 36.3, 0.70, and 7672, respectively; Sun and McDonough, 1989) (fig. 

4.10b-d). Moreover, carbonatitic fluids/melts can fractionate Nb from Ta, resulting in 

super-chondritic Nb/Ta ratios in some of the PUD samples ( Ionov et al., 1993; Rudnick 

et al., 1993; Aulbach et al., 2008; Pfänder et al., 2012). In contrast to Nb enrichment, 

typical of asthenosphere-derived carbonatite melts or fluids, sub-chondritic Nb/La at 

variable Zr/Hf and low Hf/Sm ratios (fig. 4.10c and e) in the PUD1b and PUD2 are 

consistent with subduction-related pelagic and carbonate sediment metasomatism in 

their mantle source(s) (e.g. Hoernle et al., 2002), rather than terrigenous sediments 

(terrigenous sources are rich in zircon, yielding high Hf/Sm ratios; Prelević et al., 2012). 

In contrast, the samples in PUD1a exhibit HF/Sm and Zr/Hf compositions close to 

chondritic or primitive mantle values at low Nb/La following subduction-related 

hydrous metasomatism. It is noteworthy that low Hf/Sm ratios are common to many 

Archean as well as Phanerozoic orogenic alkaline and lamprophyric rocks (e.g., 

Laflèche et al., 1991; Wyman and Kerrich, 1993). Moreover, the distinct difference in 

Zr/Hf ratios between the early Ottawan Kensington-Skootamatta suite from the western 

Grenville Province and the Rigolet PUD suite in the study area is indicative of 

heterogeneity of their sources, or of different styles of carbonatitic metasomatism. It is 

noteworthy that a wide range of  Zr/Hf ratios were reported from carbonatite 

metasomatized mantle peridotite from Western Australia (Zr/Hf = 35-102; Yaxley et 

al., 1991) and Tanzania (25-104; Rudnick et al., 1993). 

In summary, the samples from the PUD1a exhibit evidence for hydrous fluid 

metasomatism, most probably derived from subducted upper crust or terrigenous 

sediment. In comparison, the source regions for PUD1b and PUD2 were metasomatized 

by pelagic and carbonatitic fluids and melts, respectively, in subduction-related 



 204 

environments. Carbonatitic metasomatism is considered to be an essential contributor 

to the refertilization of lithospheric mantle with LREE and other mobile incompatible 

elements (Rudnick et al., 1993; Hoernle et al., 2002; and references therein). The 

source(s) for such complex metasomatism could have been pelagic or chemical marine 

sediments (such as carbonate and phosphate) that were probably introduced into the 

lithospheric mantle wedge during long-lived subduction-related processes, as has also 

been inferred for the lithospheric mantle beneath the northern Tibetan plateau (e.g., Sun 

et al., 2014). However, the relative timing of metasomatism in the mantle source regions 

remains unresolved and are addressed through isotopic constraints as discussed below.  

4.6.4.2 Asthenosphere-related metasomatism 

 Evidence for metasomatism by asthenospheric fluids or melts is not 

directly recorded in the late-Grenvillian PUD rocks. However, two recently 

investigated ca. 1008-997 Ma suites of mafic tholeiitic rocks from the study area were 

interpreted to have been derived from asthenospheric upwelling as a result of post-

Ottawan lithospheric extension (Maity, in prep.). Moreover, one hornblende-

lamprophyre from the suite of ca. 1000 Ma. Labrieville dykes (Owens and Tomascak, 

2002) exhibit positive anomalies in Nb and Ta (fig. 4h), high Nb/La (fig. 10e), high 

Th/Yb, and low Zr/Nb. The hornblende-lamprophyre and all three biotite-lamprophyre 

samples from the Labrieville suite exhibit high Nb/U (41-69), suggesting possible 

contribution of asthenospheric melts, which is compatible with a post-Ottawan 

lithospheric extension model. Asthenospheric upwelling may have released a small 

volume of fluids and melts elevated in incompatible elements that could have migrated 

upward to metasomatize lithospheric mantle (McKenzie, 1989).   
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4.6.5 Mantle source metasomatism: isotopic constraints 

In deciphering the nature and timing of enrichment of the source(s) of post-

collisional shoshonitic volcanism on the Tibetan plateau, Turner et al. (1996) 

demonstrated that depleted mantle Nd and Pb model ages spanning over the Archean 

to Mesoproterozoic provide primary constraints on the age of the Tibetan lithospheric 

mantle source(s) and their multi-stage enrichment history. Similarly, based on major 

and trace elements and Sr-Nd-Pb-O isotopic data for the Leucite Hills lamproites, 

Mirnejad and Bell (2006) found evidence indicative of ancient (late-Archean) mantle 

depletion followed by mid-Proterozoic as well as recent metasomatism of the Wyoming 

Province lithospheric mantle. The enrichment in incompatible elements, depletion in 

Nb and Ta, and unradiogenic Nd isotopes in these lamproites were interpreted to 

indicate ancient subduction-related processes that metasomatized a previously depleted 

mantle source, and their observed low time-integrated Sr-Nd-Pb isotopic compositions 

to suggest fractionation of U/Pb, Sm/Nd, and Rb/Sr ratios that were attributed by the 

authors to high O2 fugacity and geochemical heterogeneity of subducted sediment 

containing carbonate and phosphate. Carbonates have inherently high Th and Pb and 

low U (resulting high Th/U and low U/Pb), and phosphate-rich sediment or phosphate-

bearing phases such as monazite have low Sm/Nd and high Th/U (Ben Othman et al., 

1989; Plank and Langmuir, 1998; Murphy et al., 2002). Fluids and melts derived from 

such subducted source materials, with correspondingly wide geochemical and isotopic 

variations, have been shown to metasomatize the lithospheric mantle wedge above 

subducting slabs (e.g., Ben Othman et al., 1989; Plank and Langmuir, 1998) to produce 

EM I-like Sr-Nd-Pb isotopic compositions, as observed in many modern oceanic and 
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continental carbonatites (e.g., Hoernle et al., 2002), lamproites (e.g., Mirnejad and Bell, 

2006), and ultrapotassic rocks (Sun et al., 2014). 

The PUD rocks exhibit a wide range of Sr-Nd-Pb-O isotopic compositions that, 

along with other compositional systematics, clearly indicate source heterogeneity and 

multi-stage enrichment within their lithospheric mantle sources.  

4.6.5.1 Sr-Nd isotopes 

The samples from the PUD1 exhibit Paleoproterozoic to Mesoproterozoic Nd 

model ages (TDM 1.55-1.78 Ga, DePaolo, 1981; TCR 1.70-1.97 Ga, Goldstein et al., 

1984), and they plot slightly above, but parallel to, the regression lines for the other 

Proterozoic crust groupings in the study area (e.g., parallel to the MIZ, Island and 

Canyon domains, Banded complex, and below the Quebecia crust; fig. 4.5a). The model 

ages of PUD1 may thus provide a minimum temporal constraint for metasomatic 

enrichment of their mantle source(s), followed by evolution of metasomatic agents in 

the SCLM over a period of ~500-800 M.y duration, before their final emplacement at 

ca. 980 Ma. 

Evidence for mantle source depletion for the PUD2 samples has been presented 

above. Based on their early Paleoproterozoic Nd model ages (TDM 2.2-2.3 Ga, DePaolo, 

1981; TCR 2.35-2.47 Ga, Goldstein et al., 1984), it is inferred that this mantle depletion 

process took place during the extensive late-Archean melt extraction and crust 

formation events documented in the southeastern margin of the Superior Province. 

Subsequent subduction-metasomatic re-fertilization of the depleted SCLM, resulting in 

LREE enrichment, could have taken place during arc-accretionary orogenesis in the 

late-Archean to Paleoproterozoic (Percival et al., 2012; and references therein). 
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Following this, metasomatic agents evolved isotopically over a period of >1 B.y, before 

final emplacement of PUD2 dykes at ca. 980 Ma.  

The initial 87Sr/86Sr ratios are low for PUD samples, although PUD1a samples 

exhibit slightly higher values that may indicate source heterogeneity. Overall low time-

integrated Rb/Sr ratios suggest that the metasomatic agents for PUD1b and PUD2 were 

low in Rb, whereas those for PUD1a contained more variable amounts of Rb. 

4.6.5.2 Pb isotopes 

Pb isotope data may provide more detailed information about depletion and 

enrichment processes in the source of the late Grenvillian PUD rocks, since the coupled 

decay of the two U isotopes with greatly different half-lives are more divergent than 

the Sr-Nd isotope systematics. The 235U has a short half-life (~0.7 Ga), which resulted 

in formation of ~83% of radiogenic 207Pb by 1.65 Ga and it was largely extinct by the 

Mesoproterozoic (Tilton, 1983). The 207Pb/204Pb ratio is thus least likely to be disturbed 

by late Grenvillian events, and is strongly indicative of U/Pb differentiation processes 

that occurred in Archean to early Paleoproterozoic time. Conversely, the half-life of 

~4.5 Ga for 238U resulted in the 206Pb/204Pb ratio evolving more continuously through 

time. As a result, the hyperbolic Pb evolution curves for both mantle and crust (Zartman 

and Doe, 1981) exhibit increasing 206Pb/204Pb over 207Pb/204Pb ratios in younger mantle 

and crust.  

If Pb in most of the PUD samples was not modified by late-stage alteration, or 

by shallow-level crustal contamination, then they are likely to reflect multi-stage 

evolution in a heterogeneously enriched mantle. All the PUD samples plot below the 

Stacey and Kramers (1975) average crustal evolution line (similar to the orogen 
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evolution line of Zartman and Doe, 1981) implying a U-depleted mantle source. Based 

on two-stage Sr-Nd-Pb isotope modelling, Corriveau and Amelin (1994) suggested that 

the K-rich plutons from the Central Metasedimentary Belt (“K-S suite” in fig. 4.6) were 

derived from a ca. 1.08 Ga mantle source metasomatized by subducted sediment, and 

the protoliths of sediment were derived from a depleted Mesoproterozoic mantle with 

µ = 8.0 at ca. 1.45 Ga. Similar evolution models of Proterozoic depleted mantle-derived 

materials, with different initial μ (238U/204Pb) and κ (232Th/238U) values, would fit the 

heterogeneous Pb isotopic characters of the PUD1a and PUD1b samples. Moreover, 

the highly uranogenic and thorogenic Pb in PUD1a samples suggests that their source 

was enriched in U and Th at some stage of their metasomatic evolution. 

PUD2 samples exhibit low 207Pb/204Pb ratios compared to those fall within the 

field for ancient Laurentian lamproites (fig. 4.6c-d); the Smokey Butte lamproites were 

shown to have a two-stage Pb evolution where metasomatic agents were initially 

separated from Archean depleted mantle at 2.5 Ga with a μ1 of 8.3, followed by 

significant reduction in  μ2 to 4.1 (Fraser et al., 1985). A large number of Pb analyses 

from the late-Archean (~2.72 Ga) mafic-ultramafic rocks (e.g., Abitibi volcanic rocks, 

fig. 4.6a-b), associated sulphides, and felsic plutonic suites within the Canadian Shield 

suggest late-Archean mantle sources with lower μ values (7.5-7.8) (Kwon et al., 1989; 

Gariépy et al., 1990; and references therein). The low 207Pb/204Pb ratios in PUD2 

samples suggest an ancient mantle source, e.g., late-Archean depleted mantle with low 

μ and a history of at least two-stage Pb evolution during the Proterozoic with further 

reduction in µ. This is further supported by the overlap of PUD2 data with those from 

the Aillik Bay lamproites and clinopyroxene from Renard kimberlites (fig. 4.6c-d), for 
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which early-Paleoproterozoic to late-Archean sources were inferred (Tappe et al., 2007; 

Hunt et al., 2012).  

However, depletion in U and Th and lowering of µ values probably did not 

accompany other LILE (e.g., K) and LREE enrichment, as their geochemical 

behaviours are similar. It is most likely that depletion events lowering U and Th in the 

mantle sources of PUD2 samples took place prior to enrichment events that increased 

LILE and LREE contents, and that these subsequent enrichment events did not 

accompany U and Th addition, as has been suggested for Leucite Hills, Smoky Butte, 

and Prairie Creek lamproites (Fraser et al., 1985; Mitchell and Bergman, 1991). 

4.6.5.3 O isotopes  

O isotopes provide constraints on the nature and timing of metasomatism for 

the sources of PUD samples. The δ18O values in the PUD (3.8-9.2‰) span +5.4‰, a 

dispersion that cannot be produced exclusively by fractional crystallization of olivine 

and clinopyroxene (an effect predicted to be <1‰; Baker et al., 2000). With the 

exception of the lowest value (sample 403; δ18OWR = 3.8‰), the remaining data 

(δ18OWR = 6.2-9.2‰) range from those corresponding to values for mantle-derived 

mafic rocks (δ18OWR = 5.5-7.4‰; Taylor, 1968) to higher values, indicating 

(weathered?) crustal source(s). In the δ18O vs. 87Sr/86Sr diagram (fig. 4.11a), the PUD 

samples exhibit an increase in δ18O compared to only minor or no increase in 87Sr/86Sr 

ratios. Such variations are generally ascribed to crustal contamination rather than source 

mixing (James, 1981). In the δ18O vs. Mg# diagram (fig. 4.11b), the most primitive 

ultrapotassic samples in PUD1b and PUD2 (Mg# ≥ 65) exhibit elevated δ18O values of 

7.6-8.2‰, indicating an 18O-enriched, primitive, ultrapotassic melt source, most likely 

located within lithospheric mantle. Samples 408 (PUD1a) and 209-2 (PUD1b) exhibit 
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elevated δ18O values (9.0-9.2‰) at Mg# < 47 wt%, suggesting these samples could 

have been contaminated by upper crust or sediment. Conversely, sample RS351 

(PUD1a) has low δ18O (6.2 ‰) at Mg# of only 44, implying a lithospheric mantle 

source, or contamination at source by lower crust. 

Sample 403 from PUD2 exhibits a very low δ18O value (3.8‰) at very high 

Mg# (75). Low δ18O, below the upper mantle value, has been reported from many 

oceanic and continental basalts (Eiler, 2001) and Precambrian anorthosites (Peck et al., 

2010), which have been interpreted by these authors to be related to either – (i) 

assimilation of hydrothermally altered low δ18O oceanic crust; (ii) post-crystallization, 

low-temperature alteration by meteoric water; or (iii) original mantle source features. 

Assimilation of oceanic crust is not considered an alternative here because of the highly 

unradiogenic εNd(980 Ma) value of sample 403. Consequently, sample 403 may reflect 

either low-temperature alteration by meteoric water, or a source feature within the 

heterogeneous ancient SCLM. 

Quantitative modelling shows that crustal contamination can produce large 

variations in δ18O values with relatively small changes in Sr-isotope ratios, which 

define hyperbolic convex upward mixing curves (James, 1981). Conversely, source 

metasomatism by 18O-enriched fluids and melts derived from subducted sediment and 

crust produces small changes in δ18O values at very large variations in Sr-isotope ratios, 

which define convex downward mixing curves (James, 1981). The δ18O vs. 87Sr/86Sr 

correlation (fig. 4.11a) suggests at least two stages of enrichment of lithospheric mantle 

sources for the PUD. The first stage most likely involved source metasomatism in an 

ancient subduction setting, when lithospheric mantle wedge was enriched in LILE, 

LREE, and Sr, but with low Rb, most likely by fluids and melts derived from subducted 
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carbonate and phosphate sediment (e.g., Ben Othman et al., 1989; Plank and Langmuir, 

1998). Source metasomatism with low Rb/Sr ratio resulted in low radiogenic 87Sr/86Sr 

and a relatively small increase in δ18O values in metasomatized lithospheric mantle. In 

the second stage, ultrapotassic melts derived from these previously metasomatized 

mantle sources interacted with crustal fluids or melts, resulting in a significant increase 

in δ18O, with or without increasing their 87Sr/86Sr ratios. A similar model was proposed 

for Neogene K-rich volcanic rocks from SE Spain (Benito et al., 1999).  

It is difficult to constrain the timing of this second stage of metasomatic activity 

based on isotopic correlations alone. High δ18O values from Leucite Hills lamproites 

were interpreted by Mirnejad and Bell (2006) to be related to recent metasomatism 

(<100 M.y) by hydrous fluid or melt at source. They argued for this based on a lack of 

correlation between εNd and K2O, suggesting K2O enrichment was not related to long-

term LREE enrichment (e.g., Feeley, 2003) and hence correlates with recent 

metasomatic activity at the source for the lamproites. The PUD1 samples exhibit no 

distinguishable correlation between εNd and K2O (fig. 4.10f), suggesting the second 

stage of metasomatism could have taken place shortly before their emplacement. PUD2 

samples exhibit a weak negative correlation, but more importantly, their lowest εNd 

values at the highest K2O (and K2O/Na2O) strongly suggest that metasomatic agents 

added to their mantle source during the second stage were more ancient compared to 

those for the PUD1, and likely similar in composition in terms of incompatible elements 

to those of the ultrapotassic melts.  

4.6.6 Mantle source components: isotopic constraints 

The Sr-Nd-Pb isotopes of the PUD samples suggest three hypothetical source 

components within the mantle (fig. 4.11c-f) from which PUD rocks were derived: (i) 
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component C1 contained unradiogenic Nd, moderately radiogenic Sr, and highly 

radiogenic Pb; (ii) component C2 contained unradiogenic Nd, low radiogenic Sr, and 

low radiogenic Pb; and (iii) component C3 contained highly unradiogenic Nd, low 

radiogenic Sr, and highly unradiogenic Pb.  

The PUD1a samples exhibit a positive correlation between εNd and 87Sr/86Sr 

(fig. 4.5b) in a sub-horizontal trend, indicating their derivation from mixing between 

C1 and C2. This is also evident from their highly radiogenic Pb that correlates positively 

in the 87Sr/86Sr vs. 207Pb/204Pb (fig. 4.11c, d) and 143Nd/144Nd vs. 207Pb/204Pb (fig. 4.11e, 

f) diagrams. Moreover, these same samples exhibit positive correlation of δ18O vs. 

87Sr/86Sr (fig. 4.11a), suggesting C1 was a Proterozoic lithospheric mantle source that 

contained high δ18O materials such as subducted sediment and/or upper crust. The 

PUD1b samples, with low radiogenic Sr, unradiogenic Nd, and low radiogenic Pb, plot 

close to C2 (figs. 4.5b and 4.11c-f), indicating an EM I-type Proterozoic lithospheric 

mantle source. The 18O-enrichment in PUD1b samples, coupled with both their 

primitive and evolved compositions suggest they were modified by subducted 

sediment-derived fluids at source. However, crustal contamination during ascent for the 

most evolved PUD1 samples is plausible. 

Based on the Sr-Nd-Pb-O isotopic constraints presented here, it is inferred that 

the PUD1 samples were derived from the Proterozoic lithospheric mantle without any 

involvement of Archean crust or lithospheric mantle. With few exceptions (e.g., the 

Atikonak River granite; Emslie et al., 1997), the many published geochemical and 

isotopic data from the Mesoproterozoic mantle-derived rocks emplaced before ca. 1005 

Ma in the Grenville hinterland exhibit Paleoproterozoic to Mesoproterozoic Nd model 

ages, and suggest their derivation from juvenile asthenospheric and depleted 
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lithospheric mantle sources, modified by Mesoproterozoic subduction along the 

Laurentian margin, and reworking of Mesoproterozoic to Paleoproterozoic crust with 

short crustal residence times (Ashwal et al., 1986; Ashwal and Wooden, 1983; Amelin 

et al., 1994; Corriveau and Amelin, 1994; Owens et al., 1994; Corriveau et al., 1996; 

Chiarenzelli et al., 2010; Emslie and Hegner, 1993; Thomson et al., 2011; Valverde et 

al., 2012; Augland et al., 2015, 2017; Maity and Indares, 2018; Maity, in prep.).  

The PUD2 samples with low radiogenic Sr and the most unradiogenic Nd 

isotope ratios are similar to C3, indicating an older, late-Archean to early 

Paleoproterozoic EM I-type mantle source. Their highly unradiogenic 207Pb/206Pb ratios 

also suggest an ancient, strongly U-depleted source similar to ancient lower crust or its 

attached lithospheric mantle. In the Sr-Nd-Pb isotopes correlation diagrams (fig. 4.11c, 

e), the PUD2 samples with unradiogenic Nd-Pb and low radiogenic Sr isotopic 

compositions point towards the field for the Archean Superior crust. The possibility for 

high-level crustal contamination has been discounted for PUD2 samples, based on their 

very high incompatible elements along with high Mg#, Ni and Cr. Therefore, 

component C3 is best explained as a late-Archean to early-Paleoproterozoic 

lithospheric mantle beneath the Superior margin (S-SCLM), modified at source by late-

Archean lower crust and/or Paleoproterozoic cover sequence. The S-SCLM was 

depleted as a result of extensive melt extraction in the late-Archean (Percival et al., 

2012) and subsequently metasomatized during Paleoproterozoic arc-accretionary 

orogenesis, e.g., Makkovikian and Penokean Orogenies that took place along the 

southern and southeastern margin of the Superior Province (e.g., Dickin, 1998a, 1998b; 

Dickin and McNutt, 1989). Paleoproterozoic reworking of the Gagnon terrane has been 

documented by the ca. 1.70-1.75 Ga granitic magmatism (Dunning and Indares, 2010) 
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and the ca. 1.74-1.72 Ga metamorphic monazite formed in the KLG paragneiss (Jordan 

et al., 2006). 

Based on trace element and isotopic studies on veined, metasomatic, and 

MARID xenoliths from South Africa, it has been suggested that Pb partitions into K-

richterite more preferentially than into phlogopite (Kramers et al., 1983; Smith, 1983), 

whereas the opposite is the case for Rb (Schmidt et al., 1999; Tiepolo et al., 2000). 

Therefore, K-richterite in a metasomatized mantle source (and/or vein assemblages) 

will produce low U/Pb and Rb/Sr ratios and a negative correlation in Sr-Pb isotopes, 

whereas phlogopite in this source type will produce high U/Pb and Rb/Sr and a positive 

correlation between 87Sr/86Sr and 207Pb/206Pb. The C1 component, with high Rb/Sr and 

U/Pb, implies phlogopite in the source, and therefore the positive correlation between 

87Sr/86Sr and 207Pb/206Pb defined by the PUD1a samples reflects the competing role of 

phlogopite and K-richterite in their source (e.g., Ionov et al., 1997). These 

interpretations are consistent with the PUD1a trace element data discussed before (fig. 

4.8). The C2 and C3 components have low Rb/Sr and U/Pb, suggesting amphibole in 

the source, which is also implied by the negative correlations between 87Sr/86Sr and 

207Pb/206Pb exhibited by PUD1b and PUD2 samples (Kramers et al., 1983), although 

the range of isotope ratios are very restricted.     

In summary, the combined Sr-Nd-Pb-O isotope systematics indicate an 

unambiguous difference between the source regions for PUD1 and PUD2. The trace 

elements and isotope correlation diagrams support involvement of three distinct 

sources: (i) a Proterozoic, fertile phlogopite-spinel lherzolite source metasomatized by 

hydrous fluids from upper crustal materials or subducted sediments (C1); (ii) a 

Proterozoic, fertile, amphibole-garnet lherzolite source metasomatized by carbonatitic 
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fluids (C2); and (iii) a late-Archean, depleted phlogopite-amphibole-garnet lherzolite 

source (S-SCLM) most likely metasomatized by carbonatitic melts (C3). All the three 

components also exhibit geochemical signatures of heterogeneous MARID-type 

metasomatism previously reported from other K-rich rocks derived from the Laurnetian 

SCLM. 

Below we discuss the possible tectonic setting of the Rigolet orogenic phase in 

the hinterland to permit the formation of PUD1 and PUD2 from distinct lithospheric 

mantle sources. 

4.6.7 Tectonic setting  

Any tectonic model for the Rigolet PUD samples should explain both their 

temporally and spatially restricted distinct sources, and their characteristic depletion 

and multi-stage metasomatic enrichment processes. Previously, the renewed 

convergence during the Rigolet phase has been proposed to have resulted in one of two 

kinematically equivalent tectonic movements: thrust propagation of the orogenic 

hinterland over the Archean foreland (van Gool et al., 2008; Valverde Cardenas et al., 

2012); or underthrusting of the rheologically stronger Archean foreland beneath the 

hinterland (Jordan et al., 2006; Jannin et al., 2018a, 2018b; Turlin et al., 2019). Based 

on the results obtained in this study, coupled with recent data from the study area, we 

proposed an intracontinental subduction model for the Rigolet phase as discussed 

below. 

In explaining the source of recent metasomatism in the Leucite Hills lamproites, 

Mirnejad and Bell (2006) suggested that metasomatic fluids/melts could have been 

derived from a plume source such as the Yellowstone hotspot, or more likely from 
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asthenospheric upwelling during back-arc extension and lithospheric thinning related 

to the Farallon plate subduction. The latter is similar to a model that has been proposed 

for the Crazy Mountains volcanic rocks by Dudás (1991). In the case of PUDs, 

fluids/melts that metasomatized SCLM sources prior to their emplacement could have 

been derived from subducted crust and/or sediment, or from upwelled asthenosphere. 

Asthenospheric upwelling during the post-Ottawan lithospheric extension has been 

previously proposed for the central Grenville Province (fig. 4.12a; Maity, in prep.). 

However, we postulate that the ultimate source of high K2O and other incompatible 

elements was the SCLM. Moreover, the PUDs do not exhibit evidence for high-grade 

metamorphism, suggesting their emplacement after the post-Ottawan to early-Rigolet 

high-grade metamorphism in the study area. Therefore, metasomatic hydrous fluids, 

responsible for enriching 18O, could have been derived from sediment introduced at the 

source of the PUD1 samples, i.e., within the Proterozoic SCLM, in a compressional 

setting via the Rigolet intracontinental subduction (fig. 4.12a). In this model, the 

foreland lithosphere was subducted beneath the Grenville hinterland along the 

Grenville Front (Culshaw et al., 1997; Green et al., 1988). This is also compatible with 

the recent studies from central Grenville Province that suggest underthrusting of the 

foreland Gagnon terrane beneath the hinterland at the beginning of the Rigolet orogenic 

phase (Jannin et al., 2018a, 2018b; Turlin et al., 2019). 

Although a large portion of sediment (crust) on a downgoing slab may accrete 

to the base of the over-riding plate, nonetheless, some sediment is still dragged into the 

mantle wedge by the downgoing slab (Clift and Vannucchi, 2004; Spencer et al., 2015) 

- where 18O-enriched melts or fluids can be released to metasomatize the SCLM wedge 

or mix with primitive peridotite melts (e.g., Liu et al., 2014). The isotopic and 
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geochemical signatures of such metasomatic agents are dependent on the nature of the 

subducted sediment. The earliest phase of Rigolet subduction could have brought the 

Paleoproterozoic KLG cover sequences (Rivers, 1983a, 1983b; comparable to the ca. 

1.84 Ga Sokoman Formation of western Labrador having εNdt = 1.2 ± 0.8; Fryer, 1972; 

Jacobsen and Pimentel-Klose, 1988) beneath the hinterland, leading to metasomatism 

and melting in the Proterozoic SCLM - from which PUD1 samples were derived and 

subsequently intruded the Canyon domain (fig. 4.12b-c). 

The PUD1a samples have a positive correlation in Dy/Yb vs. La/Yb (not shown) 

suggesting mixing between low-degree partial melts of amphibole-garnet lherzolite and 

relatively high-degree partial melts of shallow phlogopite-spinel lherzolite. The PUD1b 

samples with high Dy/Yb suggest their derivation from amphibole-garnet lherzolite. 

Based on the foliated texture and lack of high-grade metamorphism in the PUD1 

samples, it is inferred that they were syn-tectonically emplaced after ca. 997 Ma (i.e., 

younger than the maximum age of granulite-facies metamorphism in the study area; 

Maity, in prep.), and before ca. 986 Ma (i.e., the age of the D2 deformation in the 

foreland Gagnon terrane; Jannin et al., 2018a, 2018b), most likely during the Rigolet 

channel formation in the study area (Jannin et al., 2018a, 2018b). The geochemical and 

isotopic contrasts between the PUD1a and PUD1b samples may imply their source 

heterogeneity and/or slightly different times of emplacement.     

Continued subduction brought the currently exposed parts of the Archean 

Gagnon terrane along the footwall of Allochthon Boundary thereby juxtaposing it with 

the aMP crust on the hanging wall side, whereas the underlying S-SCLM was 

decoupled from overlying crust, and subducted further down beneath the hinterland 

towards the orogenic core (fig. 4.12d). Limited crustal extension, lithospheric 
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relaxation, and far-field stress adjustments towards the end of Rigolet orogeny allowed 

melting of the most LILE-enriched parts of the S-SCLM at ca. 980 Ma, when the PUD2 

samples, with moderate to high Dy/Yb, were derived from previously melt-

metasomatized, Archean garnet-peridotite, and were emplaced in a post-tectonic 

setting. From buoyancy considerations, the subducted S-SCLM would have displaced 

the asthenosphere beneath it, thereby depressing the asthenospheric thermal boundary 

layer (T ≈ 1330 °C) to a greater depth, which could have led to conductive heating of 

the overlying cold S-SCLM as the two bodies equilibrated thermally. One massive 

sample from PUD1a (408) was most likely emplaced during this period, suggesting its 

derivation from a sliver of younger Proterozoic SCLM overlying the subducted S-

SCLM. 

In general, it is well established that the Archean SCLM beneath cratonic 

interiors is cooler, thicker (up to 250 km or more), more refractory, less hydrous, less 

dense, and less likely to lose buoyancy relative to the younger Phanerozoic SCLM, 

which is warmer, thinner (<100 km), more enriched, more hydrous, and denser (Griffin 

et al., 2009). Subduction-related metasomatism along craton margins has the potential 

to change the density and buoyancy of the underlying SCLM, as happened along the 

southern margin of the S-SCLM (Card, 1990; Percival et al., 2012). However, most 

Proterozoic to Archean SCLM is considered unlikely to have delaminated or melted 

extensively (Griffin et al., 2009) and so, if subducted, its positive buoyancy compared 

to the asthenosphere would not have permitted it to sink. Such a situation would, 

therefore, have led to shallow (low-angle) or flat subduction beneath the base of the 

orogenic crust in the hinterland, with ongoing convergence eventually displacing the 

asthenosphere from beneath a large part of the orogenic hinterland.  
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Several authors have postulated, on the basis of surface mapping and deep 

seismic imaging studies, that the reworked crust of the Archean Superior Province 

continues ~300 km to the southeast of the Grenville Front, beneath the hinterland in the 

central Grenville Province (e.g., Hynes et al., 2000; Rivers, 1997). This architecture is 

also supported elsewhere in the Grenville Province by geophysical data (e.g., Faure et 

al., 2011; Aktas and Eaton, 2006; Boyce et al., 2016; Adetunji et al., 2014, 2015). A 

recent geophysical study based on resistivity data (Adetunji et al., 2014; their figs. 8, 

11, and 17) showed that a highly resistive, relict slab of the Archean Superior craton 

lithosphere above the GF projects at shallow depth (< 150 km; Adetunji et al., 2015), 

dipping towards southeast and reaching into the middle of the Central Metasedimentary 

Belt. This distinct resistive layer is restricted on its footwall side by the ca. 1000 Ma 

GF, which was interpreted by these same authors to indicate the youngest age limit of 

the event that caused the perturbation of lithospheric resistivity across the GF. Hence, 

both the geological and geophysical evidence, robust and well established from several 

datasets, supports the presence of a gently SE-dipping lithospheric slab extending from 

the margin of the Superior Province into the subsurface beneath the Grenvillian 

hinterland, towards the orogenic core. Recent studies from the central Grenville 

Province provide a further time constraint, based on geochronological and isotopic data, 

that the Archean lithosphere could have entered beneath the orogenic core in the 

Grenvillian hinterland as a result of Rigolet continental flat subduction. 

4.6.8 Implications  

The tectonic setting proposed above is compatible with several other 

observations. First, we propose that flat subduction of the Archean lithosphere resulted 

in diminishing depleted mantle-derived magmatism in the hinterland between ca. 1000 
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and 980 Ma. This is analogous to the termination of asthenospheric magmatism ~13 

M.y. after underthrusting of the Indian lithosphere beneath southern Tibet (Chen et al., 

2017), or to underthrusting of the Eurasian continental lithosphere beneath northern 

Tibet (DeCelles et al., 2002; Chung et al., 2005; Chen et al., 2012). Continental 

subduction has also been proposed to have taken place at ca. 980 Ma between the 

Eastern Segment, composed of the Baltica crust, that was underthrust beneath the 

western Sveconorwegian terranes (Möller and Andersson, 2018). 

Second, the ~30-50 m.y gap in the age of peak high-grade metamorphism, with 

distinct P-T-t paths for the allochthonous versus the parautochthonous crust (Indares et 

al., 1998; Indares et al., 2000; Indares and Dunning, 2004; Jordan et al., 2006), and the 

distinct gaps in Nd model ages and U-Pb zircon ages between the two adjacent crustal 

domains on either side of the Allochthon Boundary (Dunning and Indares, 2010; 

Thomson et al., 2011), suggest that a large part of the early-Paleoproterozoic crust in 

the foreland was either subducted into the mantle underneath the hinterland during 

Rigolet continental subduction, or extruded from deep crustal levels through a Rigolet 

orogenic wedge (e.g., van Gool et al., 2008).  

Specifically, it is inferred that the subducted crust on the Superior plate, after 

detachment from its underlying mantle at depth, was extruded back towards the 

northwest from crustal depths of ≤ 65 km, forming a metamorphosed orogenic wedge 

or channel in the footwall of the Allochthon Boundary Thrust (Hynes et al., 2000; 

Jannin et al., 2018a, 2018b). This subducted crust has been mapped at the surface as 

the crustal-scale Rigolet thrust-stack in the Gagnon terrane with its classic inverted 

metamorphic sequence (Rivers, 1983a, 1983b; van Gool et al., 2008). Both structural 

and geophysical data confirm the presence of a wedge-shaped sliver of Archean crust, 
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forming the basement of the Superior Province in the Parautochthonous Belt (i.e. the 

Gagnon terrane; fig. 4.2; Jordan et al., 2006; van Gool et al., 2008), extends in the 

subsurface beneath the Allochthonous Belt (Rivers et al., 1993; Rivers, 1997; Hynes et 

al., 2000; Hynes and Rivers, 2010).  

Fourth, coeval with and outlasting the Rigolet crustal shortening in the 

Parautochthonous Belt, there is evidence within the overlying Allochthonous Belt for 

widespread and dispersed intrusions of small-volume, mantle- and(or) crust(?)-derived, 

alkaline mafic dykes, Fe-Ti-P-rich jotunitic gabbro bodies, and syenitic to granitic 

plutons, suggesting derivation from multiple mantle sources, including the subducted 

cratonic S-SCLM, the overlying remnant of previously thinned Proterozoic SCLM, and 

possibly a thin asthenospheric wedge sandwiched between them. These 

unmetamorphosed intrusions occur throughout the central to western Grenville 

hinterland, e.g., the ca. 1000 Ma LBV lamprophyre dykes, the ca. 1000±6 Ma Lesueur 

alkaline suite (Davis and Nantel, 2016), the ca. 988 Ma Vénus de Milot syenite (Higgins 

et al., 2002), the ca. 987 Ma Touladi granite (Hébert et al., 2009), and the ca. 957.5 ± 

2.9 Ma Crevier alkaline intrusion (Solgadi et al., 2015). The late- to post-Grenvillian 

intrusions are especially abundant in the eastern Grenville Province (fig. 4.1; Gower 

and Krogh, 2002; Greenough and Owen, 1995), where they cluster in two age groups: 

a weakly foliated to non-foliated ‘early post-tectonic’ group consisting of anorthosite-

alkalic-mafic bodies emplaced between ~985-975 Ma, and an undeformed ‘late post-

tectonic’ group composed of monzonite-syenite-granite bodies emplaced between 

~975-955 Ma (Gower and Krogh, 2002).  

Fifth, based on paleomagnetic evidence, a crustal shortening of ~4000 ± 1000 

km was inferred to have taken place between ca. 1040-1020 and 980 Ma along the 
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southeastern margin of Laurentia (Halls, 2015). A significant portion of this inferred 

crustal shortening can be accommodated by the Rigolet flat subduction proposed here.  

Sixth, we infer that buoyancy of the late-Archean S-SCLM may have eventually 

inhibited the progress of subduction, thereby resulting in cessation of the Rigolet phase 

of continental collision by ca. 980 Ma, although deformation in the parautochthonous 

belt could have continued as late as ca. 960 Ma (Jannin et al., 2018a). The flat 

subduction of the cold, refractory S-SCLM also led to an overall decrease in both 

mantle and crustal melting.  

Finally, it is not needed to invoke another episode of extensive delamination or 

convective thinning of the old S-SCLM (e.g., Ludden and Hynes, 2000). The 

Parautochthonous Belt does not record either an orogen-wide occurrence of late (i.e., 

post-Rigolet) granulite-facies metamorphism or a significant volume of asthenospheric 

magmatism, features that characterized lithospheric thinning in the hinterland during 

the Ottawan and post-Ottawan orogenic phases. Various modes of geophysical imaging 

suggest that the subducted S-SCLM remained largely intact beneath the Grenvillian 

hinterland and eventually contributed to the formation of the lithospheric keel beneath 

the Grenville Province (e.g., Boyce et al., 2016). However, local thinning or 

delamination of the S-SCLM as a result of orogenic relaxation following Rigolet 

convergence is possible and could have played a role in late- to post-Rigolet 

magmatism. 

In concluding this section, it is noted that our model is incompatible with the 

numerical modelling of the Rigolet phase as a result of gravitationally-driven orogenic 

collapse (Jamieson et al., 2010, 2011). However, it fits well with many of the generic 

features of orogenic evolution discussed by Vanderhaeghe (2011), although in detail, 
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the Rigolet phase is different in that it involves flat subduction of ancient 

metasomatized cratonic S-SCLM, which was not considered in his study. We also note 

that the data and interpretations in this current study permit the qualitative refinement 

of numerical models and may provide constraints useful in future experiments. 

4.7 Conclusions 

Based on the intensity of deformation, major and trace element geochemistry, 

and Sr-Nd-Pb-O isotopes, the late-Grenvillian (Rigolet phase) potassic to ultrapotassic 

dykes (PUD) in the hinterland in central Grenville Province can be subdivided into two 

groups: (i) an older syn-tectonic group PUD1 (1a and 1b) inferred to have been 

emplaced before ca. 986 Ma; and (ii) a younger late- to post-tectonic group (PUD2) 

dated at ca. 980 Ma. Their trace element and isotopic compositions suggest that both 

groups were derived from EM I-type sources within the Laurentian subcontinental 

lithospheric mantle that contained MARID-type metasomes derived from ancient 

subduction-related processes.  

The PUD1b samples were derived by partial melting of an unradiogenic fertile 

garnet lherzolite source with low Sm/Nd, Rb/Sr, and U/Pb. This source was 

metasomatized by fluids derived from subducted carbonate and phosphate sediments. 

On the other hand, PUD1a samples were derived by mixing of partial melts from an 

unradiogenic garnet-lherzolite source similar to that for PUD1b, with that from a more 

radiogenic spinel-lherzolite source relatively higher in Sm/Nd, Rb/Sr, and U/Pb. This 

more radiogenic mantle source was metasomatized by hydrous fluids from subducted 

sediment and/or crust shortly before the emplacement of these syn-tectonic dykes. 

Overall, the PUD1 group was derived from fertile Proterozoic SCLM that was 
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previously metasomatized during the late-Paleoproterozoic to Mesoproterozoic 

subduction-accretionary events along the Laurentian margin, and subsequently by a 

latest metasomatic event shortly before their emplacement. The latest phase of 

metasomatism most likely occurred because of Rigolet continental subduction and/or 

upwelling of small-volume asthenospheric fluids related to post-Ottawan lithospheric 

extension. Shallow level crustal contamination could have affected only the most 

evolved PUD1samples. 

The highly ultrapotassic PUD2 samples were derived by partial melting of a 

highly unradiogenic, depleted garnet-lherzolite source, low in Sm/Nd, Rb/Sr, and U/Pb, 

and this source was metasomatized by melts derived from subducted carbonate, 

phosphate, and pelagic sediments. This group was derived from melting within the 

Superior SCLM that was previously depleted as a result of late-Archean crust formation 

events and was subsequently metasomatized during Paleoproterozoic subduction-

accretionary events along the southeastern margin of the Superior Province. The source 

for PUD2 was also metasomatized by ancient subduction-related sediments and/or 

lower crust prior to their generation and emplacement.  

The tectonic setting for the Rigolet phase at ca. 1005-980 Ma is proposed to be 

characterized by compressional tectonics driven by flat subduction of the foreland 

lithosphere under the Grenville hinterland.  

4.8 Acknowledgements 

This research is part of the Ph.D. project of B.M. and was financially supported 

for Pb analyses from a NSERC Grant to G.D.L. Sherri Strong (MUN) and Kim Law 

(Western University) are acknowledged for carrying out Pb and O isotope analyses, 



 225 

respectively. Aphrodite Indares has kindly provided sample powders for isotope 

analyses. Toby Rivers is gratefully acknowledged for encouragement and thought-

provoking reviews of the manuscript.  



 226 

4.9 References 

Adam, J., Green, T.H., and Sie, S.. 1993. Proton microprobe determined partitioning of 
Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and 
silicate melts with variable F content. Chemical Geology, 109: 29–49. 
doi:10.1016/0009-2541(93)90060-V. 

Adetunji, A.Q., Ferguson, I.J., and Jones, A.G. 2014. Crustal and lithospheric scale 
structures of the Precambrian Superior–Grenville margin. Tectonophysics, 614: 
146–169. doi:10.1016/J.TECTO.2013.12.008. 

Adetunji, A.Q., Ferguson, I.J., and Jones, A.G. 2015. Reexamination of magnetotelluric 
responses and electrical anisotropy of the lithospheric mantle in the Grenville 
Province, Canada. Journal of Geophysical Research: Solid Earth, 120: 1890–
1908. doi:10.1002/2014JB011713. 

Aktas, K., and Eaton, D.W. 2006. Upper-mantle velocity structure of the lower Great 
Lakes region. Tectonophysics, 420: 267–281. doi:10.1016/j.tecto.2006.01.020. 

Amelin, Y., Corriveau, L., and Morin, D. 1994. Constraints on the evolution of 
Grenvillian lithosphere from Nd–Sr–Pb cpx and garnet and U–Pb zircon study of 
pyroxenitic and mafic granulite xenoliths. In Abstracts of the Eighth International 
Conference on Geochronology, Cosmochronology and Isotope Geology. Edited 
by M.A. Lanphere, G.B. Dalrymple, and B.D. Turrin. pp. 5. Available from 
https://pubs.usgs.gov/circ/1994/1107/report.pdf.  

Anderson, A.T. 1966. Mineralogy of the Labrieville anorthosite, Quebec. The 
American Mineralogist, 51: 1671–1711. Available 
at: https://pubs.geoscienceworld.org/msa/ammin/article/51/11-
12/1671/540380/mineralogy-of-the-labrieville-anorthosite-quebec.  

Arcuri, G., and Dickin, A. 2018. Pb Isotope mapping of Paleoproterozoic gneisses in 
the SW Grenville Province: evidence for a cryptic continental suture. 
Geosciences, 8: 247. doi:10.3390/geosciences8070247. 

Ashwal, L.D., and Wooden, J.L. 1983. Isotopic evidence from the eastern Canadian 
shield for geochemical discontinuity in the Proterozoic mantle. Nature, 306: 679–
680. doi:10.1038/306679a0. 

Ashwal, L.D., Wooden, J.L., and Emslie, R.F. 1986. Sr, Nd and Pb isotopes in 
Proterozoic intrusives astride the Grenville Front in Labrador: implications for 
crustal contamination and basement mapping. Geochimica et Cosmochimica 
Acta, 50: 2571–2585. doi:10.1016/0016-7037(86)90211-5. 

Augland, L.E., Moukhsil, A., Solgadi, F. 2017. Mantle influence of syn- to late-
Grenvillian alkaline magmatism in the Grenville Province: causes and 
implications. Canadian Journal of Earth Sciences, 15: 1–15. 
doi:dx.doi.org/10.1139/cjes-2016-0135 

Augland, L.E., Moukhsil, A., Solgadi, F., and Indares, A. 2015. Pinwarian to 
Grenvillian magmatic evolution in the central Grenville Province: new 
constraints from ID–TIMS U–Pb ages and coupled Lu–Hf S–MC–ICP–MS data. 
Canadian Journal of Earth Sciences, 52: 701–721. doi:10.1139/cjes-2014-0232. 

Aulbach, S., O’Reilly, S.Y., Griffin, W.L., and Pearson, N.J. 2008. Subcontinental 
lithospheric mantle origin of high niobium/tantalum ratios in eclogites. Nature 
Geoscience, 1: 468–472. doi:10.1038/ngeo226. 

Ayer, J.A., and Dostal, J. 2000. Nd and Pb isotopes from the Lake of the Woods 
greenstone belt, northwestern Ontario: implications for mantle evolution and the 

https://linkinghub.elsevier.com/retrieve/pii/000925419390060V
https://doi.org/10.1016/j.tecto.2013.12.008
https://doi.org/10.1002/2014JB011713
https://doi.org/10.1016/j.tecto.2006.01.020
https://pubs.usgs.gov/circ/1994/1107/report.pdf
https://pubs.geoscienceworld.org/msa/ammin/article/51/11-12/1671/540380/mineralogy-of-the-labrieville-anorthosite-quebec
https://pubs.geoscienceworld.org/msa/ammin/article/51/11-12/1671/540380/mineralogy-of-the-labrieville-anorthosite-quebec
http://www.mdpi.com/2076-3263/8/7/247
https://www.nature.com/articles/306679a0
https://doi.org/10.1016/0016-7037(86)90211-5
https://doi.org/10.1139/cjes-2016-0135
https://doi.org/10.1139/cjes-2014-0232
http://www.nature.com/articles/ngeo226


 227 

formation of crust in the southern Superior Province. Canadian Journal of Earth 
Sciences, 37: 1677–1689. doi:10.1139/e00-067. 

Baker, J.A., Macpherson, C.G., Menzies, M.A., Thirlwall, M.F., Al-Kadasi, M., and 
Mattey, D.P. 2000. Resolving crustal and mantle contributions to continental 
flood volcanism, Yemen; constraints from mineral oxygen isotope data. Journal 
of Petrology, 41: 1805–1820. doi:10.1093/petrology/41.12.1805. 

Baker, M.B., and Wyllie, P.J. 1992. High-pressure apatite solubility in carbonate-rich 
liquids: Implications for mantle metasomatism. Geochimica et Cosmochimica 
Acta, 56: 3409–3422. Pergamon. doi:10.1016/0016-7037(92)90388-Y. 

Beaumont, C., Nguyen, M.H., Jamieson, R. A., Ellis, S. 2006. Crustal flow modes in 
large hot orogens. Geological Society London Special Publication, 268: 91–145. 
doi:10.1144/GSL.SP.2006.268.01.05 

Bell, K., Blenkinsop, J. 1987. Archean depleted mantle: evidence from Nd and Sr initial 
isotopic ratios of carbonatites. Geochimica et Cosmochimica Acta, 51: 291–298. 
doi:10.1016/0016-7037(87)90241-9. 

Ben Othman, D., White, W.M., Patchett, J. 1989. The geochemistry of marine 
sediments, island arc magma genesis, and crust-mantle recycling. Earth and 
Planetary Science Letters, 94: 1–21. doi:10.1016/0012-821X(89)90079-4. 

Benito, R., López-Ruiz, J., Cebriá, J.M., Hertogen, J., Doblas, M., Oyarzun, R., and 
Demaiffe, D. 1999. Sr and O isotope constraints on source and crustal 
contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks 
of SE Spain. Lithos, 46: 773–802. doi:10.1016/S0024-4937(99)00003-1. 

Bouvier, A., Vervoort, J.D., Patchett, P.J. 2008. The Lu–Hf and Sm–Nd isotopic 
composition of CHUR: constraints from unequilibrated chondrites and 
implications for the bulk composition of terrestrial planets. Earth and Planetary 
Science Letters, 273: 48–57. doi:10.1016/j.epsl.2008.06.010. 

Boyce, A., Bastow, I.D., Darbyshire, F.A., Ellwood, A.G., Gilligan, A., Levin, V., 
Menke, W. 2016. Subduction beneath Laurentia modified the eastern North 
American cratonic edge: evidence from P wave and S wave tomography. Journal 
of Geophysical Research: Solid Earth, 121: 5013–5030. 
doi:10.1002/2016JB012838. 

Brévart, O., Dupré, B., and Allègre, C.J. 1986. Lead-lead age of komatiitic lavas and 
limitations on the structure and evolution of the Precambrian mantle. Earth and 
Planetary Science Letters, 77: 293–302. doi:10.1016/0012-821X(86)90141-X. 

Card, K.D. 1990. A review of the Superior Province of the Canadian Shield, a product 
of Archean accretion. Precambrian Research, 48: 99–156. doi:10.1016/0301-
9268(90)90059-Y. 

Carignan, J., Machado, N., Gariépy, C. 1995. Initial lead isotopic composition of 
silicate minerals from the Mulcahy layered intrusion: implications for the nature 
of the Archean mantle and the evolution of greenstone belts in the Superior 
Province, Canada. Geochimica et Cosmochimica Acta, 59: 97–105. 
doi:10.1016/0016-7037(94)00375-V. 

Carr, S.D., Easton, R.M., Jamieson, R.A., and Culshaw, N.G. 2000. Geologic transect 
across the Grenville orogen of Ontario and New York. Canadian Journal of Earth 
Sciences, 37: 193–216. doi:10.1139/e99-074. 

Chen, J.-L., Xu, J.-F., Wang, B.-D., Kang, Z.-Q. 2012. Cenozoic Mg-rich potassic rocks 
in the Tibetan Plateau: geochemical variations, heterogeneity of subcontinental 

http://www.nrcresearchpress.com/doi/10.1139/e00-067
https://linkinghub.elsevier.com/retrieve/pii/0301926891900142
https://www.sciencedirect.com/science/article/pii/001670379290388Y
https://doi.org/10.1144/GSL.SP.2006.268.01.05
https://doi.org/10.1016/0016-7037(87)90241-9
https://doi.org/10.1016/0012-821X(89)90079-4
https://linkinghub.elsevier.com/retrieve/pii/S0024493799000031
https://doi.org/10.1016/j.epsl.2008.06.010
https://doi.org/10.1002/2016JB012838
https://doi.org/10.1016/0012-821X(86)90141-X
https://doi.org/10.1016/0301-9268(90)90059-Y
https://doi.org/10.1016/0301-9268(90)90059-Y
https://doi.org/10.1016/0016-7037(94)00375-V
http://www.nrcresearchpress.com/doi/10.1139/e99-074


 228 

lithospheric mantle and tectonic implications. Journal of Asian Earth Sciences, 
53: 115–130. doi:10.1016/j.jseaes.2012.03.003. 

Chen, M., Niu, F., Tromp, J., Lenardic, A., Lee, C.-T.A., Cao, W., Ribeiro, J. 2017. 
Lithospheric foundering and underthrusting imaged beneath Tibet. Nature 
Communications, 8: 15659. doi:10.1038/ncomms15659. 

Chiarenzelli, J., Lupulescu, M., Cousens, B., Thern, E., Coffin, L., Regan, S. 2010. 
Enriched Grenvillian lithospheric mantle as a consequence of long-lived 
subduction beneath Laurentia. Geology, 38: 151–154. doi:10.1130/G30342.1. 

Chung, S.L., Chu, M.F., Zhang, Y., Xie, Y., Lo, C.H., Lee, T.Y., Lan, C.Y., Li, X., 
Zhang, Q., Wang, Y. 2005. Tibetan tectonic evolution inferred from spatial and 
temporal variations in post-collisional magmatism. Earth-Science Reviews, 68: 
173–196. doi:10.1016/j.earscirev.2004.05.001. 

Clarke, P.J. 1977. Région de Gagnon. Québec. Ministère des Richesses Naturelles, RG 
178. 

Clift, P., and Vannucchi, P. 2004. Controls on tectonic accretion versus erosion in 
subduction zones: implications for the origin and recycling of the continental 
crust. Reviews of Geophysics, 42, RG2001: 1–31. doi:10.1029/2003RG000127. 

Conticelli, S. 1998. The effect of crustal contamination on ultrapotassic magmas with 
lamproitic affinity: mineralogical, geochemical and isotope data from the Torre 
Alfina lavas and xenoliths, central Italy. Chemical Geology, 149: 51–81. 
doi:10.1016/S0009-2541(98)00038-2. 

Corriveau, L. 1990. Proterozoic subduction and terrane amalgamation in the 
southwestern Grenville province, Canada: Evidence from ultrapotassic to 
shoshonitic plutonism. Geology, 18: 614–617. doi:10.1130/0091-
7613(1990)018<0614:PSATAI>2.3.CO;2. 

Corriveau, L., Amelin, Y. 1994. Sources of Proterozoic K-rich alkaline and shoshonitic 
magmatism in the SW Grenville Province, Quebec: Nd-Sr-Pb isotopic study. In 
Abstracts of the Eighth International Conference on Geochronology, 
Cosmochronology and Isotope Geology. Edited by M.A. Lanphere, G.B. 
Dalrymple, and B.D. Turrin. pp. 68. Available from: 
https://pubs.usgs.gov/circ/1994/1107/report.pdf. 

Corriveau, L., Gorton, M.P. 1993. Coexisting K-rich alkaline and shoshonitic 
magmatism of arc affinities in the Proterozoic: a reassessment of syenitic stocks 
in the southwestern Grenville Province. Contributions to Mineralogy and 
Petrology, 113: 262–279. doi:10.1007/BF00283233. 

Corriveau, L., Heaman, L.M., Marcantonio, F., van Breemen, O. 1990. 1.1 Ga K-rich 
alkaline plutonism in the SW Grenville Province. Contributions to Mineralogy 
and Petrology, 105: 473–485. doi:10.1007/BF00286834. 

Corriveau, L., Tellier, M.L., Morin, D., Amelin, Y., van Breemen, O. 1996. Le dyke de 
minette de Rivard et le complexe gneissique cuprifére de Bondy; implications 
tectoniques et métallogéniques pour la région de Mont-Laurier, province de 
Grenville, Québec. Commission Géologique du Canada Dossier Public 3078, pp. 
73. Available from: https://doi.org/10.4095/207905.  

Côté, G., Moukhsil, A., Constantin, M., David, J. 2018. Geochemical characterization, 
geochronology, and geodynamic implications of Grenville rare earths bearing 
syenites, Haut-Saint-Maurice, QC, Canada. Minerals, 8: 336. 
doi:10.3390/min8080336 

https://doi.org/10.1016/j.jseaes.2012.03.003
https://www.nature.com/articles/ncomms15659
https://doi.org/10.1130/G30342.1
https://doi.org/10.1016/j.earscirev.2004.05.001
https://doi.org/10.1029/2003RG000127
https://doi.org/10.1016/S0009-2541(98)00038-2
https://doi.org/10.1130/0091-7613(1990)018%3C0614:PSATAI%3E2.3.CO;2
https://doi.org/10.1130/0091-7613(1990)018%3C0614:PSATAI%3E2.3.CO;2
https://pubs.usgs.gov/circ/1994/1107/report.pdf
https://link.springer.com/article/10.1007/BF00283233
https://link.springer.com/article/10.1007/BF00286834
https://doi.org/10.4095/207905
https://doi.org/10.3390/min8080336


 229 

Cousens, B.L., Aspler, L.B., Chiarenzelli, J.R., Donaldson, J.A., Sandeman, H., 
Peterson, T.D., and LeCheminant, A.N. 2001. Enriched Archean lithospheric 
mantle beneath western Churchill Province tapped during Paleoproterozoic 
orogenesis. Geology, 29: 827. doi:10.1130/0091-
7613(2001)029<0827:EALMBW>2.0.CO;2. 

Cox, R., Indares, A. 1999a. High-pressure and high-temperature metamorphism of the 
mafic and ultramafic Lac Espadon suite, Manicouagan Imbricate Zone, eastern 
Grenville Province, Quebec. Canadian Mineralogist, 37: 335–357. 

Cox, R., Indares, A. 1999b. Transformation of Fe-Ti gabbro to coronite, eclogite and 
amphibolite in the Baie du Nord segment, Manicouagan Imbricate Zone, eastern 
Grenville Province. Journal of Metamorphic Geology, 17: 537–555. 
doi:10.1046/j.1525-1314.1999.00216.x. 

Cox, R.A. 1999. Eclogite facies metamorphism of mafic and ultramafic rocks in the 
Tshenukutish Terrane, Manicouagan Imbricate Zone, eastern Grenville Province. 
Ph.D Thesis. Memorial University of Newfoundland. Available from: 
https://research.library.mun.ca/6539/.  

Cox, R.A., Dunning, G.R., Indares, A.D. 1998. Petrology and U–Pb geochronology of 
mafic, high-pressure, metamorphic coronites from the Tshenukutish domain, 
eastern Grenville Province. Precambrian Research, 90: 59–83. 
doi:10.1016/S0301-9268(98)00033-3. 

Culshaw, N.G., Jamieson, R.A., Ketchum, J.W.F., Wodicka, N., Corrigan, D., 
Reynolds, P.H. 1997. Transect across the northwestern Grenville orogen, 
Georgian Bay, Ontario: polystage convergence and extension in the lower 
orogenic crust. Tectonics, 16: 966–982. doi:10.1029/97TC02285. 

Darbyshire, F.A., Bastow, I.D., Petrescu, L., Gilligan, A., and Thompson, D.A. 2017. 
A tale of two orogens: Crustal processes in the Proterozoic Trans-Hudson and 
Grenville Orogens, eastern Canada. Tectonics, 36: 1633–1659. 
doi:10.1002/2017TC004479. 

Davis, D.W., and Dion, C. 2012a. Datations LA-ICPMS d’échantillons recueillis en 
2011-2012 par Géologie Québec. Ministère des Ressources Naturelles et de la 
Faune, Québec, MB 2012-09. Available from: 
http://gq.mines.gouv.qc.ca/documents/EXAMINE/MB201209/MB201209.pdf  

Davis, D.W., and Dion, C. 2012b. Datations ID-TIMS d’échantillons recueillis en 
2011-2012 par Géologie Québec. Ministère des Ressources Naturelles et de la 
Faune, Québec, MB 2012-07. Available from: 
http://gq.mines.gouv.qc.ca/documents/EXAMINE/MB201207/MB201207.pdf.  

Davis, W.D., and Nantel, S. 2016. Datations U-Pb dans la partie nord de la Ceinture 
centrale des métasédiments, Province de Grenville, région de Mont-Laurier. 
Ministère de l’Énergie et des Ressources naturelles, Québec, MB 2016-04: 52. 
Available from:  

DeCelles, P.G., Robinson, D.M., Zandt, G. 2002. Implications of shortening in the 
Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 21: 12-1-
12–25. doi:10.1029/2001TC001322. 

DePaolo, D.J. 1981. Neodymium isotopes in the Colorado Front Range and crust-
mantle evolution in the Proterozoic. Nature, 291: 193–196. 
doi:10.1038/291193a0 

https://pubs.geoscienceworld.org/geology/article/29/9/827-830/191829
https://pubs.geoscienceworld.org/geology/article/29/9/827-830/191829
http://archives.datapages.com/data/atlantic-geology-journal/data/036/036002_3/pdfs/168b.pdf
https://research.library.mun.ca/6539/
https://doi.org/10.1016/S0301-9268(98)00033-3
https://doi.org/10.1029/97TC02285
http://doi.wiley.com/10.1002/2017TC004479
http://gq.mines.gouv.qc.ca/documents/EXAMINE/MB201209/MB201209.pdf
http://gq.mines.gouv.qc.ca/documents/EXAMINE/MB201207/MB201207.pdf
https://doi.org/10.1029/2001TC001322
https://www.nature.com/articles/291193a0


 230 

DeWolf, C.P., Mezger, K. 1994. Lead isotope analyses of leached feldspars: constraints 
on the early crustal history of the Grenville Orogen. Geochimica et 
Cosmochimica Acta, 58: 5537–5550. doi:10.1016/0016-7037(94)90248-8. 

Dickin, A.P. 1998a. Pb isotope mapping of differentially uplifted Archean basement: a 
case study from the Grenville Province, Ontario. Precambrian Research, 91: 445–
454. doi:10.1016/S0301-9268(98)00069-2. 

Dickin, A.P. 1998b. Nd isotope mapping of a cryptic continental suture, Grenville 
Province of Ontario. Precambrian Research, 91: 433–444. doi:10.1016/S0301-
9268(98)00062-X. 

Dickin, A.P. 2000. Crustal formation in the Grenville Province: Nd-isotope evidence. 
Canadian Journal of Earth Sciences, 37: 165–181. doi:10.1139/e99-039. 

Dickin, A.P., Higgins, M.D. 1992. Sm/Nd evidence for a major 1.5 Ga crust-forming 
event in the central Grenville province. Geology, 20: 137–140. doi:10.1130/0091-
7613(1992)020<0137:SNEFAM>2.3.CO;2. 

Dickin, A.P., McNutt, R.H. 1989. Nd model age mapping of the southeast margin of 
the Archean foreland in the Grenville province of Ontario. Geology, 17: 299. 
doi:10.1130/0091-7613(1989)017<0299:NMAMOT>2.3.CO;2. 

Dudás, F.Ö. 1991. Geochemistry of igneous rocks from the Crazy Mountains, Montana, 
and tectonic models for the Montana Alkalic Province. Journal of Geophysical 
Research: Solid Earth, 96: 13,261-13,277. doi:10.1029/91JB00246. 

Duggen, S., Hoernle, K., van den Bogaard, P., and Garbe-Schönberg, D. 2005. Post-
Collisional Transition from Subduction- to Intraplate-type Magmatism in the 
Westernmost Mediterranean: Evidence for Continental-Edge Delamination of 
Subcontinental Lithosphere. Journal of Petrology, 46: 1155–1201. 
doi:10.1093/petrology/egi013. 

Dunning, G., Indares, A. 2010. New insights on the 1.7–1.0 Ga crustal evolution of the 
central Grenville Province from the Manicouagan – Baie Comeau transect. 
Precambrian Research, 180: 204–226. doi:10.1016/j.precamres.2010.04.005. 

Dupré, B., Arndt, N.T. 1990. Pb isotopic compositions of Archean komatiites and 
sulfides. Chemical Geology, 85: 35–56. doi:10.1016/0009-2541(90)90122-N. 

Dupré, B., Chauvel, C., Arndt, N.T. 1984. Pb and Nd isotopic study of two Archean 
komatiitic flows from Alexo, Ontario. Geochimica et Cosmochimica Acta, 48: 
1965–1972. doi:10.1016/0016-7037(84)90378-8. 

Edgar, A.D., Mitchell, R.H. 1997. Ultra high pressure-temperature melting experiments 
on an SiO2-rich lamproite from Smoky Butte, Montana: derivation of siliceous 
lamproite magmas from enriched sources deep in the continental mantle. Journal 
of Petrology, 38: 457–477. doi:10.1093/petroj/38.4.457. 

Eiler, J.M. 2001. Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle 
Rocks. Reviews in Mineralogy and Geochemistry, 43: 319–364. 
doi:10.2138/gsrmg.43.1.319. 

Emslie, R.F., Hamilton, M.A., Gower, C.F. 1997. The Michael Gabbro and other 
Mesoproterozoic lithospheric probes in southern and central Labrador. Canadian 
Journal of Earth Sciences, 34: 1566–1580. doi:10.1139/e17-127. 

Emslie, R.F., Hamilton, M.A., Theriault, R.J. 1994. Petrogenesis of a Mid-Proterozoic 
anorthosite-mangerite-charnockite-granite (AMCG) complex: isotopic and 
chemical evidence from the Nain Plutonic Suite. The Journal of Geology, 102: 
539–558. doi:10.1086/629697. 

https://doi.org/10.1016/0016-7037(94)90248-8
https://doi.org/10.1016/S0301-9268(98)00069-2
https://doi.org/10.1016/S0301-9268(98)00062-X
https://doi.org/10.1016/S0301-9268(98)00062-X
https://doi.org/10.1139/e99-039
https://doi.org/10.1130/0091-7613(1992)020%3C0137:SNEFAM%3E2.3.CO;2
https://doi.org/10.1130/0091-7613(1992)020%3C0137:SNEFAM%3E2.3.CO;2
https://doi.org/10.1130/0091-7613(1989)017%3C0299:NMAMOT%3E2.3.CO;2
http://doi.wiley.com/10.1029/91JB00246
http://academic.oup.com/petrology/article/46/6/1155/1485435/PostCollisional-Transition-from-Subduction-to
http://dx.doi.org/10.1016/j.precamres.2010.04.005
https://doi.org/10.1016/0009-2541(90)90122-N
https://doi.org/10.1016/0016-7037(84)90378-8
https://doi.org/10.1093/petroj/38.4.457
https://doi.org/10.2138/gsrmg.43.1.319
https://doi.org/10.1139/e17-127
https://doi.org/10.1086/629697


 231 

Emslie, R.F., Hegner, E. 1993. Reconnaissance isotopic geochemistry of anorthosite-
mangerite-charnockite-granite (AMCG) complexes, Grenville Province, Canada. 
Chemical Geology, 106: 279–298. doi:10.1016/0009-2541(93)90032-E. 

Falloon, B.J., Green, D.H., Hatton, C.J., Harris, A.K.L. 1988. Anhydrous partial 
melting of a fertile and depleted peridotite from 2 to 30 kb and application to 
basalt petrogenesis. Journal of Petrology, 29: 1257–1282. 
doi:10.1093/petrology/29.6.1257 

Falloon, T.J., Green, D.H. 1988. Anhydrous partial melting of peridotite from 8 to 35 
kb and the petrogenesis of MORB. Journal of Petrology, Special Volume, 1: 379–
414. doi:10.1093/petrology/Special_Volume.1.379. 

Faure, S., Godey, S., Fallara, F., Trepanier, S. 2011. Seismic architecture of the Archean 
North American mantle and its relationship to diamondiferous kimberlite fields. 
Economic Geology, 106: 223–240. doi:10.2113/econgeo.106.2.223. 

Feeley, T.C. 2003. Origin and tectonic implications of across-strike geochemical 
variations in the Eocene Absaroka Volcanic Province, United States. The Journal 
of Geology, 111: 329–346. doi:10.1086/373972 

Foley, S. 1991. High-pressure stability of the fluor- and hydroxy-endmembers of 
pargasite and K-richterite. Geochimica et Cosmochimica Acta, 55: 2689–2694. 
doi:10.1016/0016-7037(91)90386-J. 

Foley, S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the 
origin of potassic alkaline magmas. Lithos, 28: 435–453. doi:10.1016/0024-
4937(92)90018-T. 

Foley, S.F., Musselwhite, D.S., der Laan, S.R. 1999. Melt compositions from 
ultramafic vein assemblages in the lithospheric mantle: a comparison of cratonic 
and non-cratonic settings. In Proceedings of the VIIth international kimberlite 
conference, Cape Town. pp. 238–246. 

Foley, S.F., Taylor, W.R., Green, D.H. 1986. The role of fluorine and oxygen fugacity 
in the genesis of the ultrapotassic rocks. Contributions to Mineralogy and 
Petrology, 94: 183–192. doi:10.1007/BF00592935. 

Foley, S.F., Venturelli, G., Green, D.H., Toscani, L. 1987. The ultrapotassic rocks: 
characteristics, classification, and constraints for petrogenetic models. Earth-
Science Reviews, 24: 81–134. doi:10.1016/0012-8252(87)90001-8. 

Foley, S.F., Wheller, G.E. 1990. Parallels in the origin of the geochemical signatures 
of island arc volcanics and continental potassic igneous rocks: the role of residual 
titanates. Chemical Geology, 85:1-18. doi:10.1016/0009-2541(90)90120-V. 

Fraser, K.J. 1987. Petrogenesis of kimberlites from South Africa and lamproites from 
Western Australia and North America. PhD thesis. The Open University, UK. 
Available from: http://oro.open.ac.uk/54611/ 

Fraser, K.J.J., Hawkesworth, C.J.J., Erlank, A.J.J., Mitchell, R.H.H., Scott-Smith, 
B.H.H. 1985. Sr, Nd and Pb isotope and minor element geochemistry of 
lamproites and kimberlites. Earth and Planetary Science Letters, 76: 57–70. 
doi:10.1016/0012-821X(85)90148-7. 

Fryer, B.J. 1972. Age determinations in the circum – Ungava geosyncline and the 
evolution of Precambrian banded iron-formations. Canadian Journal of Earth 
Sciences, 9: 652–663. doi:10.1139/e72-055. 

Furman, T. 1995. Melting of metasomatized subcontinental lithosphere: undersaturated 
mafic lavas from Rungwe, Tanzania. Contributions to Mineralogy and Petrology, 
122: 97–115. doi:10.1007/s004100050115. 

https://doi.org/10.1016/0009-2541(93)90032-E
https://doi.org/10.1093/petrology/29.6.1257
https://doi.org/10.1093/petrology/Special_Volume.1.379
https://doi.org/10.2113/econgeo.106.2.223
https://doi.org/10.1086/373972
https://www.sciencedirect.com/science/article/pii/001670379190386J
https://linkinghub.elsevier.com/retrieve/pii/002449379290018T
https://linkinghub.elsevier.com/retrieve/pii/002449379290018T
http://link.springer.com/10.1007/BF00592935
https://doi.org/10.1016/0012-8252(87)90001-8
https://doi.org/10.1016/0009-2541(90)90120-V
http://oro.open.ac.uk/54611/
https://doi.org/10.1016/0012-821X(85)90148-7
https://doi.org/10.1139/e72-055
https://doi.org/10.1007/s004100050115


 232 

Furman, T., Graham, D. 1999. Erosion of lithospheric mantle beneath the East African 
Rift system: geochemical evidence from the Kivu volcanic province. Lithos, 
48:237–262. doi:10.1016/S0024-4937(99)00031-6 . 

Gariépy, C., Allègre, C.J. 1985. The lead isotope geochemistry and geochronology of 
late-kinematic intrusives from the Abitibi greenstone belt, and the implications 
for late Archaean crustal evolution. Geochimica et Cosmochimica Acta, 49: 
2371–2383. doi:10.1016/0016-7037(85)90237-6. 

Gariépy, C., Verner, D., Doig, R. 1990. Dating Archean metamorphic minerals 
southeast of the Grenville front, western Quebec, using Pb isotopes. Geology, 18: 
1078. doi:10.1130/0091-7613(1990)018<1078:DAMMSO>2.3.CO;2. 

Gobeil, A., Hébert, C., Clark, C., Beaumier, M., Perreault, S. 2002. Géologie de la 
région du lac De La Blache (22K03/22K04). Ministère des Ressources naturelles 
du Québec, Québec, RG2002-01.  

Gobeil, A., Hébert, C., Clark, T., David, J., Davis, D. 2005. Nouvelles données 
géochronologiques dans l’est du Grenville: précisions sur l’évolution 
magmatique. In Ministère Des Ressources naturelles du Québec, Résumé Des 
Conférences et de L’exposition Géoscientifique. Congrès de Québec Exploration. 
pp. 2003–2005. 

Goldstein, S.L., O’Nions, R.K., Hamilton, P.J. 1984. A Sm-Nd isotopic study of 
atmospheric dusts and particulates from major river systems. Earth and Planetary 
Science Letters, 70: 221–236. doi:10.1016/0012-821X(84)90007-4 

Gower, C.F., Krogh, T.E. 2002. A U-Pb geochronological review of the Proterozoic 
history of the eastern Grenville Province. Canadian Journal of Earth Sciences, 39: 
795. doi:10.1139/e01-090. 

Green, A.G., Milkereit, B., Davidson, A., Spencer, C., Hutchinson, D.R., Cannon, 
W.F., Lee, M.W., Agena, W.F., Behrendt, J.C., and Hinze, W.J. 1988. Crustal 
structure of the Grenville front and adjacent terranes. Geology, 16: 788. 
doi:10.1130/0091-7613(1988)016<0788:CSOTGF>2.3.CO;2. 

Greenough, J.D., Owen, J. V. 1995. The role of subcontinental lithospheric mantle in 
massif-type petrogenesis: evidence from the Red Bay pluton, Labrador. 
Schweizerische Mineralogische und Petrographische Mitteilungen, 75: 1–15. 
Available from: http://dx.doi.org/10.5169/seals-57141. 

Griffin, W.L., O’Reilly, S.Y., Afonso, J.C., Begg, G.C. 2009. The composition and 
evolution of lithospheric mantle: a re-evaluation and its tectonic implications. 
Journal of Petrology, 50: 1185–1204. doi:10.1093/petrology/egn033. 

Halls, H.C. 2015. Paleomagnetic evidence for ∼4000 km of crustal shortening across 
the 1 Ga Grenville orogen of North America. Geology, G37188.1. 
doi:10.1130/G37188.1. 

Harmon, R.S., and Hoefs, J. 1995. Oxygen isotope heterogeneity of the mantle deduced 
from global 18O systematics of basalts from different geotectonic settings. 
Contributions to Mineralogy and Petrology, 120: 95–114. 
doi:10.1007/BF00311010. 

Hauer, K.L. 1995. Protoliths, diagenesis, and depositional history of the upper marble, 
Adirondack Lowlands, New York. Ph.D Thesis. Miami University (Oxford, 
Ohio). 

Hawkesworth, C.J., Kempton, P.D., Rogers, N.W., Ellam, R.M., van Calsteren, P.W. 
1990. Continental mantle lithosphere, and shallow level enrichment processes in 

https://doi.org/10.1016/S0024-4937(99)00031-6
https://doi.org/10.1016/0016-7037(85)90237-6
https://doi.org/10.1130/0091-7613(1990)018%3C1078:DAMMSO%3E2.3.CO;2
https://doi.org/10.1016/0012-821X(84)90007-4
https://doi.org/10.1139/e01-090
https://doi.org/10.1130/0091-7613(1988)016%3C0788:CSOTGF%3E2.3.CO;2
http://dx.doi.org/10.5169/seals-57141
https://doi.org/10.1093/petrology/egn033
https://doi.org/10.1130/G37188.1
http://link.springer.com/10.1007/BF00311010


 233 

the Earth’s mantle. Earth and Planetary Science Letters, 96: 256–268. 
doi:10.1016/0012-821X(90)90006-J. 

Hébert, C., Van Breemen, O., Cadieux, A.-M. 2009. Région du réservoir Pipmuacan, 
(SNRC 22E) : synthèse géologique. Ministére des Ressources naturelles et de la 
Faune, Quebec, RG 2009-01: 1–56. Available from: 
http://collections.banq.qc.ca/ark:/52327/bs1940773. 

Higgins, M.D., Ider, M., and Breemen, O. van. 2002. U-Pb ages of plutonism, 
wollastonite formation, and deformation in the central part of the Lac-Saint-Jean 
anorthosite suite. Canadian Journal of Earth Sciences, 39: 1093–1105. 
doi:10.1139/e02-033. 

Hirose, K., Kushiro, I. 1993. Partial melting of dry peridotites at high pressures: 
determination of compositions of melts segregated from peridotite using 
aggregates of diamond. Earth and Planetary Science Letters, 114(4): 477-489. 
doi:10.1016/0012-821X(93)90077-M. 

Hoernle, K., Tilton, G., Le Bas, M.J., Duggen, S., and Garbe-Schönberg, D. 2002. 
Geochemistry of oceanic carbonatites compared with continental carbonatites: 
mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and 
Petrology, 142: 520–542. doi:10.1007/s004100100308. 
http://gq.mines.gouv.qc.ca/documents/EXAMINE/MB201604/MB201604.pdf. 

Hunt, L., Stachel, T., Grutter, H., Armstrong, J., McCandless, T.E., Simonetti, A., and 
Tappe, S. 2012. Small mantle fragments from the Renard Kimberlites, Quebec: 
powerful recorders of mantle lithosphere formation and modification beneath the 
Eastern Superior Craton. Journal of Petrology, 53: 1597–1635. 
doi:10.1093/petrology/egs027. 

Hynes, A., Indares, A., Rivers, T., Gobeil, A. 2000. Lithoprobe line 55: integration of 
out-of-plane seismic results with surface structure, metamorphism, and 
geochronology, and the tectonic evolution of the eastern Grenville Province. 
Canadian Journal of Earth Sciences, 37: 341–358. doi:10.1139/e99-076. 

Hynes, A., Rivers, T. 2010. Protracted continental collision – evidence from the 
Grenville Orogen. Canadian Journal of Earth Sciences, 47: 591–620. 
doi:10.1139/E10-003. 

Indares, A. 1997. Garnet-kyanite clinopyroxenites and garnet-kyanite restites from the 
Manicouagan Imbricate Zone: a case of high-P - High-T metamorphism in the 
Grenville Province. Canadian Mineralogist, 35: 1161–1171. 

Indares, A., Dunning, G. 2004. Crustal architecture above the high-pressure belt of the 
Grenville Province in the Manicouagan area: new structural, petrologic and U-Pb 
age constraints. Precambrian Research, 130: 199–228. 
doi:10.1016/j.precamres.2003.11.005 

Indares, A., Dunning, G., and Cox, R. 2000. Tectono-thermal evolution of deep crust 
in a Mesoproterozoic continental collision setting: the Manicouagan example. 
Canadian Journal of Earth Sciences, 37: 325–340. doi:10.1139/cjes-37-2-3-325. 

Indares, A., Dunning, G., Cox, R., Gale, D., Connelly, J. 1998. High-pressure, high-
temperature rocks from the base of thick continental crust: geology and age 
constraints from the Manicouagan Imbricate Zone, eastern Grenville Province. 
Tectonics, 17: 426–440. doi:10.1029/98TC00373; doi:10.1029/9.  

Indares, A., Moukhsil, A. 2013. Geon 12 crustal extension in the central Grenville 
Province, implications for the orogenic architecture, and potential influence on 

https://doi.org/10.1016/0012-821X(90)90006-J
http://collections.banq.qc.ca/ark:/52327/bs1940773
https://doi.org/10.1139/e02-033
https://doi.org/10.1016/0012-821X(93)90077-M
https://doi.org/10.1007/s004100100308
http://gq.mines.gouv.qc.ca/documents/EXAMINE/MB201604/MB201604.pdf
https://doi.org/10.1093/petrology/egs027
https://doi.org/10.1139/e99-076
https://doi.org/10.1139/E10-003
https://doi.org/10.1016/j.precamres.2003.11.005
http://www.nrc.ca/cgi-bin/cisti/journals/rp/rp2_abst_e?cjes_e99-069_37_ns_nf_cjes37-00
https://doi.org/10.1029/98TC00373


 234 

the emplacement of anorthosites. Canadian Journal of Earth Sciences, 50: 955–
966. NRC Research Press. doi:10.1139/cjes-2012-0161. 

Indares, A., White, R.W., Powell, R. 2008. Phase equilibria modelling of kyanite-
bearing anatectic paragneisses from the central Grenville Province. Journal of 
Metamorphic Geology, 26: 815–836. doi:10.1111/j.1525-1314.2008.00788.x. 

Ionov, D.A., Dupuy, C., O’reilly, S.Y., Kopylova, M.G., Genshaft, Y.S. 1993. 
Carbonated peridotite xenoliths from Spitsbergen: implications for trace element 
signature of mantle carbonate metasomatism. Earth and Planetary Science 
Letters, 119: 283–297. doi:10.1016/0012-821X(93)90139-Z 

Ionov, D.A., Griffin, W.L., O’Reilly, S.Y. 1997. Volatile-bearing minerals and 
lithophile trace elements in the upper mantle. Chemical Geology, 141:153-184. 
doi:10.1016/S0009-2541(97)00061-2. 

Jacobsen, S.B., Pimentel-Klose, M.R. 1988. Nd isotopic variations in Precambrian 
banded iron formations. Geophysical Research Letters, 15: 393–396. Wiley-
Blackwell. doi:10.1029/GL015i004p00393. 

James, D.E. 1981. The combined use of oxygen and radiogenic isotopes as indicators 
of crustal contamination. Annual Review of Earth and Planetary Sciences, 9: 
311–344. doi:10.1146/annurev.ea.09.050181.001523. 

Jamieson, R.A., and Beaumont, C. 2011. Coeval thrusting and extension during lower 
crustal ductile flow - implications for exhumation of high-grade metamorphic 
rocks. Journal of Metamorphic Geology, 29: 33–51. doi:10.1111/j.1525-
1314.2010.00908.x. 

Jamieson, R.A., Beaumont, C., Nguyen, M.H., Culshaw, N.G. 2007. Synconvergent 
ductile flow in variable-strength continental crust: numerical models with 
application to the western Grenville orogen. Tectonics, 26: 1–23. 
doi:10.1029/2006TC002036 

Jamieson, R.A., Beaumont, C., Warren, C.J., and Nguyen, M.H. 2010. The Grenville 
Orogen explained? Applications and limitations of integrating numerical models 
with geological and geophysical data. Canadian Journal of Earth Sciences, 47: 
517–539. doi:10.1139/E09-070. 

Jannin, S., Gervais, F., Moukhsil, A., Augland, L.E. 2018a. Late-Grenvillian channel 
flow in the central Grenville Province (Manicouagan Reservoir area): new 
constraints from a structural and geochronological study of the Allochthon 
Boundary Thrust. Journal of Structural Geology, 115: 132–151. 
doi:10.1016/j.jsg.2018.07.019. 

Jannin, S., Gervais, F., Moukhsil, A., Augland, L.E., Crowley, J.L. 2018b. 
Déformations tardi-grenvilliennes dans la ceinture parautochtone (Province de 
Grenville centrale) : contraintes géochronologiques par couplage de méthodes U–
Pb de haute résolution spatiale et de haute précision. Canadian Journal of Earth 
Sciences, 55: 406–435. doi:10.1139/cjes-2017-0129. 

Jordan, S.L., Indares, A., Dunning, G. 2006. Partial melting of metapelites in the 
Gagnon terrane below the high-pressure belt in the Manicouagan area (Grenville 
Province): pressure–temperature (P–T) and U–Pb age constraints and 
implications. Canadian Journal of Earth Sciences, 43: 1309–1329. 
doi:10.1139/e06-038. 

Kerr, A.C., Kempton, P.D., and Thompson, R.N. 1995. Crustal assimilation during 
turbulent magma ascent (ATA); new isotopic evidence from the Mull Tertiary 

https://doi.org/10.1139/cjes-2012-0161
https://doi.org/10.1111/j.1525-1314.2008.00788.x
https://doi.org/10.1016/0012-821X(93)90139-Z
https://doi.org/10.1016/S0009-2541(97)00061-2
https://doi.org/10.1029/GL015i004p00393
https://doi.org/10.1146/annurev.ea.09.050181.001523
https://doi.org/10.1111/j.1525-1314.2010.00908.x
https://doi.org/10.1111/j.1525-1314.2010.00908.x
https://doi.org/10.1029/2006TC002036
https://doi.org/10.1139/E09-070
https://doi.org/10.1016/j.jsg.2018.07.019
https://doi.org/10.1139/cjes-2017-0129
https://doi.org/10.1139/e06-038


 235 

lava succession, N. W. Scotland. Contributions to Mineralogy and Petrology, 
119: 142–154. doi:10.1007/BF00307277. 

Kramers, J.D., Roddick, J.C.M., Dawson, J.B. 1983. Trace element and isotope studies 
on veined, metasomatic and “MARID” xenoliths from Bultfontein, South Africa. 
Earth and Planetary Science Letters, 65: 90–106. Elsevier. doi:10.1016/0012-
821X(83)90192-9. 

Krmíček, L., Cempírek, J., Havlín, A., Přichystal, A., Houzar, S., Krmíčková, M., 
Gadas, P. 2011. Mineralogy and petrogenesis of a Ba–Ti–Zr-rich peralkaline 
dyke from Šebkovice (Czech Republic): recognition of the most lamproitic 
Variscan intrusion. Lithos, 121: 74–86. doi:10.1016/J.LITHOS.2010.10.005. 

Kuehner, S.M. 1980. Petrogenesis of ultrapotassic rocks, Leucite Hills, Wyoming. 
MSc. Thesis. University of Western Ontario, London, Ontario. 

Kwon, S.T., Tilton, G.R., Griinenfelder, M.H. 1989. Pb isotope relationships in 
carbonatites and alkalic complexes: an overview. In Carbonatites - Genesis and 
Evolution. Edited by K. Bell. Unwin-Hyman, London. pp. 360–387. 

Kyser, T.K. 1990. Stable isotopes in the continental lithospheric mantle. In Continental 
Mantle. Edited by M.A. Menzies. Oxford monographs on geology and 
geophysics. pp. 127–156. 

Laflèche, M.R., Camiré, G., Jenner, G.A. 1998. Geochemistry of post-Acadian, 
Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen 
Islands, Quebec, Canadá. Chemical Geology, 148: 115–136. doi:10.1016/S0009-
2541(98)00002-3. 

Laflèche, M.R., Dupuy, C., and Bougault, H. 1992. Geochemistry and petrogenesis of 
Archean mafic volcanic rocks of the southern Abitibi Belt, Québec. Precambrian 
Research, 57: 207–241. doi:10.1016/0301-9268(92)90003-7. 

Laflèche, M.R.R., Dupuy, C., and Dostal, J. 1991. Archaean orogenic ultrapotassic 
magmatism: an example from the southern Abitibi greenstone belt. Precambrian 
Research, 52: 71–96. Elsevier. doi:10.1016/0301-9268(91)90014-2. 

Lasalle, S., Dunning, G., Indares, A., McFarlane, C. 2014. In situ LA–ICP–MS dating 
of monazite from aluminous gneisses: insights on the tectono-metamorphic 
history of a granulite-facies domain in the central Grenville Province. Canadian 
Journal of Earth Sciences, 51: 558–572. doi:10.1139/cjes-2013-0170 

Lasalle, S., Fisher, C.M., Indares, A., Dunning, G. 2013. Contrasting types of 
Grenvillian granulite facies aluminous gneisses: insights on protoliths and 
metamorphic events from zircon morphologies and ages. Precambrian Research, 
228: 117–130. doi:10.1016/j.precamres.2013.01.014 

Lasalle, S., Indares, A. 2014. Anatectic record and contrasting P–T paths of aluminous 
gneisses from the central Grenville Province. Journal of Metamorphic Geology, 
32: 627–646. doi:10.1111/jmg.12083 

LaTourrette, T., Hervig, R.L., Holloway, J.R. 1995. Trace element partitioning between 
amphibole, phlogopite, and basanite melt. Earth and Planetary Science Letters, 
135:13-30. doi:10.1016/0012-821X(95)00146-4. 

Le Bas, M.J., Maitre, R.W.L., Streckeisen, A., Zanettin, B. 1986. A chemical 
classification of volcanic rocks based on the total alkali-silica diagram. Journal 
of Petrology, 27: 745–750. doi:10.1093/petrology/27.3.745. 

Liu, D., Zhao, Z., Zhu, D.-C., Niu, Y., DePaolo, D.J., Harrison, T.M., Mo, X., Dong, 
G., Zhou, S., Sun, C., Zhang, Z., and Liu, J. 2014. Postcollisional potassic and 
ultrapotassic rocks in southern Tibet: mantle and crustal origins in response to 

https://doi.org/10.1007/BF00307277
https://doi.org/10.1016/0012-821X(83)90192-9
https://doi.org/10.1016/0012-821X(83)90192-9
https://doi.org/10.1016/j.lithos.2010.10.005
https://doi.org/10.1016/S0009-2541(98)00002-3
https://doi.org/10.1016/S0009-2541(98)00002-3
https://doi.org/10.1016/0301-9268(92)90003-7
https://linkinghub.elsevier.com/retrieve/pii/0301926891900142
https://doi.org/10.1139/cjes-2013-0170
https://doi.org/10.1016/j.precamres.2013.01.014
https://doi.org/10.1111/jmg.12083
https://doi.org/10.1016/0012-821X(95)00146-4
https://doi.org/10.1093/petrology/27.3.745


 236 

India–Asia collision and convergence. Geochimica et Cosmochimica Acta, 143: 
207–231. doi:10.1016/j.gca.2014.03.031. 

Loewy, S.L., Connelly, J.N., Dalziel, I.W., and Gower, C.F. 2003. Eastern Laurentia in 
Rodinia: constraints from whole-rock Pb and U/Pb geochronology. 
Tectonophysics, 375: 169–197. doi:10.1016/S0040-1951(03)00338-X. 

Ludden, J., and Hynes, A. 2000. The Lithoprobe Abitibi-Grenville transect: two billion 
years of crust formation and recycling in the Precambrian Shield of Canada. 
Canadian Journal of Earth Sciences, 37: 2-3. doi:10.1139/e99-120. 

Lustrino, M., Agostini, S., Chalal, Y., Fedele, L., Stagno, V., Colombi, F., and 
Bouguerra, A. 2016. Exotic lamproites or normal ultrapotassic rocks? The Late 
Miocene volcanic rocks from Kef Hahouner, NE Algeria, in the frame of the 
circum-Mediterranean lamproites. Journal of Volcanology and Geothermal 
Research, 327: 539–553. doi:10.1016/J.JVOLGEORES.2016.09.021. 

Maity, B., and Indares, A. 2018. The Geon 14 arc-related mafic rocks from the central 
Grenville Province. Canadian Journal of Earth Sciences, 55: 545–570. 
doi:10.1139/cjes-2017-0197. 

Mattey, D., Lowry, D., and Macpherson, C. 1994. Oxygen isotope composition of 
mantle peridotite. Earth and Planetary Science Letters, 128: 231–241. 
doi:10.1016/0012-821X(94)90147-3. 

McCulloch, M.T., and Wasserburg, G.J. 1978. Sm-Nd and Rb-Sr Chronology of 
Continental Crust Formation. Science, 200: 1003–1011. 
doi:10.1126/science.200.4345.1003. 

McDonough, W.F. 1990. Constraints on the composition of the continental lithospheric 
mantle. Earth and Planetary Science Letters, 101: 1–18. doi:10.1016/0012-
821X(90)90119-I. 

McKenzie, D. 1989. Some remarks on the movement of small melt fractions in the 
mantle. Earth and Planetary Science Letters, 95: 53–72. doi:10.1016/0012-
821X(89)90167-2. 

McLennan, S., Taylor, S., McCulloch, M., and Maynard, J. 1990. Geochemical and Nd-
Sr isotopic composition of deep-sea turbidites: crustal evolution and plate 
tectonic associations. Geochimica et Cosmochimica Acta, 54: 2015–2050. 
doi:10.1016/0016-7037(90)90269-Q. 

Melzer, S., Gottschalk, M., Heinrich, W. 1998. Experimentally determined partitioning 
of Rb between richterites and aqueous (Na, K)-chloride solutions. Contributions 
to Mineralogy and Petrology, 133: 315–328. doi:10.1007/s004100050455. 

Melzer, S., Wunder, B. 2001. K–Rb–Cs partitioning between phlogopite and fluid: 
experiments and consequences for the LILE signatures of island arc basalts. 
Lithos, 59: 69–90. doi:10.1016/S0024-4937(01)00061-5 

Menzies, M.A., Hawkesworth, C.J. 1987. Upper mantle processes and composition. In 
Mantle Xenolith. Edited by P.H. Nixon. John Wiley and Sons, Chichester, pp. 
725-738. 

Miller, C., Schuster, R., Klötzli, U., Frank, W., Purtscheller, F. 1999. Post-collisional 
potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-
O isotopic constraints for mantle source characteristics and petrogenesis. Journal 
of Petrology, 40: 1399–1424. doi:10.1093/petroj/40.9.1399. 

Mirnejad, H., Bell, K. 2006. Origin and source evolution of the Leucite Hills 
lamproites: evidence from Sr-Nd-Pb-O isotopic compositions. Journal of 
Petrology, 47: 2463–2489. doi:10.1093/petrology/egl051. 

https://linkinghub.elsevier.com/retrieve/pii/S0016703714002105
https://linkinghub.elsevier.com/retrieve/pii/S004019510300338X
https://doi.org/10.1139/e99-120
https://doi.org/10.1016/j.jvolgeores.2016.09.021
https://doi.org/10.1139/cjes-2017-0197
https://doi.org/10.1016/0012-821X(94)90147-3
https://science.sciencemag.org/content/200/4345/1003
https://doi.org/10.1016/0012-821X(90)90119-I
https://doi.org/10.1016/0012-821X(90)90119-I
https://linkinghub.elsevier.com/retrieve/pii/0301926891900142
https://linkinghub.elsevier.com/retrieve/pii/0301926891900142
https://doi.org/10.1016/0016-7037(90)90269-Q
https://doi.org/10.1007/s004100050455
https://doi.org/10.1016/S0024-4937(01)00061-5
https://doi.org/10.1093/petroj/40.9.1399
https://doi.org/10.1093/petrology/egl051


 237 

Möller, C., and Andersson, J. 2018. Metamorphic zoning and behaviour of an 
underthrusting continental plate. Journal of Metamorphic Geology, 36: 567–589. 
doi:10.1111/jmg.12304. 

Morin, D., Hébert, R., Corriveau, L. 2005. Mesoproterozoic deep K-magmatism 
recorded in a megacryst- and xenolith-bearing minette dyke, western Grenville 
Province. Canadian Journal of Earth Sciences, 42: 1881–1906. doi:10.1139/e05-
083. 

Moukhsil, A., Solgadi, F., Lacoste, P., Gagnon, M., David, J. 2012. Géologie de la 
région du lac du Milieu (SNRC 22O03, 22O04, 22O06, 22J13 et 22J14), RG 
2012-01. Available from: http://collections.banq.qc.ca/ark:/52327/bs2108637.  

Moukhsil, A., Solgadi, F., Thomas, C., Séverine, B., Indares, A., Davis, D.W. 2013. 
Géologie du nord-ouest de la région du barrage Daniel-Johnson (Manic 5), Côte-
Nord. Available from: http://collections.banq.qc.ca/ark:/52327/bs2272082.  

Moumblow, R.M., Arcuri, G.A., Dickin, A.P., and Gower, C.F. 2019. Nd and Pb 
isotope mapping of crustal domains within the Makkovik Province, Labrador. 
Geological Magazine, 156: 833–848. doi:10.1017/S0016756818000195. 

Murphy, D.T., Collerson, K.D., Kamber, B.S. 2002. Lamproites from Gaussberg, 
Antarctica: possible transition zone melts of Archaean subducted sediments. 
Journal of Petrology, 43: 981–1001. doi:10.1093/petrology/43.6.981. 

Nelson, D.R. 1989. Isotopic characteristics and petrogenesis of the lamproites and 
kimberlites of central west Greenland. Lithos, 22: 265–274. doi:10.1016/0024-
4937(89)90029-7. 

Nelson, D.R. 1992. Isotopic characteristics of potassic rocks: evidence for the 
involvement of subducted sediments in magma genesis. Lithos, 28: 403–420. 
doi:10.1016/0024-4937(92)90016-R. 

Owens, B.E., Dymek, R.F., Tucker, R.D., Brannon, J.C., Podosek, F.A. 1994. Age and 
radiogenic isotopic composition of a late- to post-tectonic anorthosite in the 
Grenville Province: the Labrieville massif, Quebec. Lithos, 31: 189–206. 
doi:10.1016/0024-4937(94)90009-4. 

Owens, B.E., Tomascak, P.B. 2002. Mesoproterozoic lamprophyres in the Labrieville 
Massif, Quebec: clues to the origin of alkalic anorthosites? Canadian Journal of 
Earth Sciences, 39: 983–997. doi:10.1139/e02-010. 

Patrick, M.E., Indares, A. 2017. Petrography and phase equilibria modeling of mid-P 
aluminous gneisses derived from hydrothermally altered protoliths, Grenville 
Province, Canada. Canadian Journal of Earth Sciences, 54: 1103–1118. 
doi:10.1139/cjes-2016-0162. 

Pearce, J.A., and Parkinson, I.J. 1993. Trace element models for mantle melting: 
application to volcanic arc petrogenesis. Geological Society, London, Special 
Publications, 76: 373–403. doi:10.1144/GSL.SP.1993.076.01.19. 

Peck, W.H., Clechenko, C.C., Hamilton, M.A., and Valley, J.W. 2010. Oxygen isotopes 
in the Grenville and Nain AMCG suites: regional aspects of the crustal 
component in massif anorthosites. The Canadian Mineralogist, 48: 763–786. 
doi:10.3749/canmin.48.4.763. 

Peck, W.H., Valley, J.W. 2000. Large crustal input to high δ18O anorthosite massifs of 
the southern Grenville Province: new evidence from the Morin Complex, 
Quebec. Contributions to Mineralogy and Petrology, 139: 402–417. 
doi:10.1007/s004100000149. 

http://doi.wiley.com/10.1111/jmg.12304
https://doi.org/10.1139/e05-083
https://doi.org/10.1139/e05-083
http://collections.banq.qc.ca/ark:/52327/bs2108637
http://collections.banq.qc.ca/ark:/52327/bs2272082
https://doi.org/10.1017/S0016756818000195
https://doi.org/10.1093/petrology/43.6.981
https://doi.org/10.1016/0024-4937(89)90029-7
https://doi.org/10.1016/0024-4937(89)90029-7
https://doi.org/10.1016/0024-4937(92)90016-R
https://doi.org/10.1016/0024-4937(94)90009-4
https://doi.org/10.1139/e02-010
https://doi.org/10.1139/cjes-2016-0162
http://sp.lyellcollection.org/cgi/doi/10.1144/GSL.SP.1993.076.01.19
https://doi.org/10.3749/canmin.48.4.763
https://doi.org/10.1007/s004100000149


 238 

Percival, J.A., Skulski, T., Sanborn-Barrie, M., Stott, G.M., Leclair, A.D., Corkery, 
M.T., Boily, M. 2012. Geology and tectonic evolution of the Superior Province, 
Canada. Chapter 6 In Tectonic Styles in Canada: The Lithoprobe Perspective. 
Edited by J.A. Percival, F.A. Cook, and R.M. Clowes. Geological Association of 
Canada, Special Paper 49, pp. 321–378. 

Peterson, T.D., Esperança, S., and LeCheminant, A.N. 1994. Geochemistry and origin 
of the Proterozoic ultrapotassic rocks of the Churchill Province, Canada. 
Mineralogy and Petrology, 51: 251–276. doi:10.1007/BF01159732. 

Petrescu, L., Bastow, I.D., Darbyshire, F.A., Gilligan, A., Bodin, T., Menke, W., and 
Levin, V. 2016. Three billion years of crustal evolution in eastern Canada: 
Constraints from receiver functions. Journal of Geophysical Research: Solid 
Earth, 121: 788–811. doi:10.1002/2015JB012348. 

Pfänder, J.A., Jung, S., Münker, C., Stracke, A., Mezger, K. 2012. A possible high 
Nb/Ta reservoir in the continental lithospheric mantle and consequences on the 
global Nb budget – evidence from continental basalts from Central Germany. 
Geochimica et Cosmochimica Acta, 77: 232–251. 
doi:10.1016/J.GCA.2011.11.017. 

Plank, T., Langmuir, C.H. 1998. The chemical composition of subducting sediment and 
its consequences for the crust and mantle. Chemical Geology, 145: 325–394. 
doi:10.1016/S0009-2541(97)00150-2  

Prelević, D., Akal, C., Foley, S.F., Romer, R.L., Stracke, A., Van den Bogaard, P. 2012. 
Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics 
of orogenic lithospheric mantle: the case of Southwestern Anatolia, Turkey. 
Journal of Petrology, 53: 1019–1055. doi:10.1093/petrology/egs008. 

Rivers, T. 1980. Revised stratigraphic nomenclature for Aphebian and other rock units, 
southern Labrador Trough, Grenville Province. Canadian Journal of Earth 
Sciences, 17: 668–670.  NRC Research Press Ottawa, Canada. doi:10.1139/e80-
062. 

Rivers, T. 1983a. The northern margin of the Grenville Province in western Labrador 
– anatomy of an ancient orogenic front. Precambrian Research, 22: 41–73. 
doi:10.1016/0301-9268(83)90058-X 

Rivers, T. 1983b. Progressive metamorphism of pelitic and quartzofeldspathic rocks in 
the Grenville Province of western Labrador – tectonic implications of bathozone 
6 assemblages. Canadian Journal of Earth Sciences, 20: 1791–1804. 
doi:10.1139/e83-171 

Rivers, T. 1997. Lithotectonic elements of the Grenville Province: review and tectonic 
implications. Precambrian Research, 86: 117–154. doi:10.1016/S0301-
9268(97)00038-7 

Rivers, T. 2008. Assembly and preservation of lower, mid, and upper orogenic crust in 
the Grenville Province—implications for the evolution of large hot long-duration 
orogens. Precambrian Research, 167: 237–259. 
doi:10.1016/j.precamres.2008.08.005. 

Rivers, T. 2009. The Grenville Province as a large hot long-duration collisional orogen 
- insights from the spatial and thermal evolution of its orogenic fronts. Geological 
Society, London, Special Publications, 327: 405–444. doi:10.1144/SP327.17. 

Rivers, T. 2015. Tectonic Setting and Evolution of the Grenville Orogen: An 
Assessment of Progress Over the Last 40 Years. Geoscience Canada, 42: 77–124. 
doi:10.12789/geocanj.2014.41.057. 

http://link.springer.com/10.1007/BF01159732
http://doi.wiley.com/10.1002/2015JB012348
https://doi.org/10.1016/j.gca.2011.11.017
https://doi.org/10.1016/S0009-2541(97)00150-2
https://doi.org/10.1093/petrology/egs008
http://www.nrcresearchpress.com/doi/10.1139/e80-062
http://www.nrcresearchpress.com/doi/10.1139/e80-062
https://doi.org/10.1016/0301-9268(83)90058-X
https://doi.org/10.1139/e83-171
https://doi.org/10.1016/S0301-9268(97)00038-7
https://doi.org/10.1016/S0301-9268(97)00038-7
https://doi.org/10.1016/j.precamres.2008.08.005
http://sp.lyellcollection.org/lookup/doi/10.1144/SP327.17
https://journals.lib.unb.ca/index.php/GC/article/view/21437


 239 

Rivers, T., Culshaw, N., Hynes, A., Indares, A., Jamieson, R., Martignole, J. 2012. The 
Grenville Orogen–a post-Lithoprobe perspective. In Tectonic Styles in Canada: 
the Lithoprobe perspective. Edited by J.A. Percival, F.A. Cook, and R.M. Clowes. 
Geological Association of Canada, Special Paper. pp. 97–236. 

Rivers, T., Gool, J.A.M. van, Connelly, J.N. 1993. Contrasting tectonic styles in the 
northern Grenville province: implications for the dynamics of orogenic fronts. 
Geology, 21: 1127. doi:10.1130/0091-7613(1993)021<1127:CTSITN>2.3.CO;2 

Rivers, T., Martignole, J., Gower, C.F., and Davidson, A. 1989. New tectonic divisions 
of the Grenville Province, Southeast Canadian Shield. Tectonics, 8: 63–84. 
doi:10.1029/TC008i001p00063. 

Rudnick, R.L., Gao, S. 2014. 4.1 – Composition of the Continental Crust. In Treatise 
on Geochemistry (2nd ed.), 4:1–51. doi:10.1016/B978-0-08-095975-7.00301-6. 

Rudnick, R.L., McDonough, W.F., Chappell, B.W. 1993. Carbonatite metasomatism in 
the northern Tanzanian mantle: petrographic and geochemical characteristics. 
Earth and Planetary Science Letters, 114: 463–475. doi:10.1016/0012-
821X(93)90076-L. 

Ryerson, F.J., and Watson, E.B. 1987. Rutile saturation in magmas: implications for 
Ti-Nb-Ta depletion in island-arc basalts. Earth and Planetary Science Letters, 86: 
225–239. doi:10.1016/0012-821X(87)90223-8. 

Schärer, U. 1991. Rapid continental crust formation at 1.7 Ga from a reservoir with 
chondritic isotope signatures, eastern Labrador. Earth and Planetary Science 
Letters, 102: 110–133. doi:10.1016/0012-821X(91)90002-Y. 

Schmidt, K.H., Bottazzi, P., Vannucci, R., and Mengel, K. 1999. Trace element 
partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth 
and Planetary Science Letters, 168: 287–299. doi:10.1016/S0012-
821X(99)00056-4. 

Scott, D.J., Hynes, A. 1994. U-Pb geochronology along the Manicouagan corridor, 
preliminary results: evidence for ca. 1.47 Ga metamorphism. Lithoprobe Abitibi-
Grenville Transect. Lithoprobe Report, 41: 109–110. 

Shieh, Y.-N., Schwarcz, H.P. 1978. The oxygen isotope composition of the surface 
crystalline rocks of the Canadian Shield. Canadian Journal of Earth Sciences, 15: 
1773–1782. doi:10.1139/e78-185. 

Smith, C.B. 1983. Pb, Sr and Nd isotopic evidence for sources of southern African 
Cretaceous kimberlites. Nature, 304: 51–54. doi:10.1038/304051a0. 

Solgadi, F., Groulier, P.-A., Moukhsil, A., Ohnenstetter, D., André-Mayer, A.-S., and 
Zeh, A., 2015. Nb-Ta-REE mineralization associated with the Crevier alkaline 
intrusion. In Symposium on Strategic and Critical Materials Proceedings, Edited 
by Simandl, G.J. and Neetz, M. November 13-14, 2015, Victoria, British 
Columbia. British Columbia Ministry of Energy and Mines, British Columbia 
Geological Survey Paper 2015-3, pp. 69-74. 

Spencer, C.J., Cawood, P. a., Hawkesworth, C.J., Prave, A.R., Roberts, N.M.W., 
Horstwood, M.S. a., and Whitehouse, M.J. 2015. Generation and preservation of 
continental crust in the Grenville Orogeny. Geoscience Frontiers, 6: 357–372. 
doi:10.1016/j.gsf.2014.12.001. 

Stacey, J.S., Kramers, J.D. 1975. Approximation of terrestrial lead isotope evolution by 
a two-stage model. Earth and Planetary Science Letters, 26: 207–221. 
doi:10.1016/0012-821X(75)90088-6. 

https://doi.org/10.1130/0091-7613(1993)021%3C1127:CTSITN%3E2.3.CO;2
http://doi.wiley.com/10.1029/TC008i001p00063
https://doi.org/10.1016/B978-0-08-095975-7.00301-6
https://doi.org/10.1016/0012-821X(93)90076-L
https://doi.org/10.1016/0012-821X(93)90076-L
https://www.sciencedirect.com/science/article/pii/0012821X87902238
https://doi.org/10.1016/0012-821X(91)90002-Y
https://doi.org/10.1016/S0012-821X(99)00056-4
https://doi.org/10.1016/S0012-821X(99)00056-4
https://doi.org/10.1139/e78-185
https://www.nature.com/articles/304051a0
https://linkinghub.elsevier.com/retrieve/pii/S1674987114001583
https://doi.org/10.1016/0012-821X(75)90088-6


 240 

Stevenson, R., Henry, P., Gariépy, C. 1999. Assimilation–fractional crystallization 
origin of Archean sanukitoid suites: western Superior Province, Canada. 
Precambrian Research, 96: 83–99. doi:10.1016/S0301-9268(99)00009-1. 

Sun, S. -s., McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic 
basalts: implications for mantle composition and processes. Geological Society, 
London, Special Publications, 42: 313–345. 
doi:10.1144/GSL.SP.1989.042.01.19. 

Sun, Y., Ying, J., Zhou, X., An Shao, J., Chu, Z., Su, B. 2014. Geochemistry of 
ultrapotassic volcanic rocks in Xiaogulihe NE China: implications for the role of 
ancient subducted sediments. Lithos, 208–209: 53-66. 
doi:10.1016/j.lithos.2014.08.026. 

Tappe, S., Foley, S.F., Stracke, A., Romer, R.L., Kjarsgaard, B.A., Heaman, L.M., and 
Joyce, N. 2007. Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age 
and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. 
Earth and Planetary Science Letters, 256: 433–454. 
doi:10.1016/J.EPSL.2007.01.036. 

Tatsumoto, M., Knight, R.J., Allegre, C.J. 1973. Time differences in the formation of 
meteorites as determined from the ratio of Lead-207 to Lead-206. Science, 180: 
1279–1283. doi:10.1126/science.180.4092.1279. 

Taylor, H.P. 1968. The oxygen isotope geochemistry of igneous rocks. Contributions 
to Mineralogy and Petrology, 19: 1–71. doi:10.1007/BF00371729. 

Taylor, H.P., Giannetti, B., and Turi, B. 1979. Oxygen isotope geochemistry of the 
potassic igneous rocks from the Roccamonfina volcano, Roman comagmatic 
region, Italy. Earth and Planetary Science Letters, 46: 81–106. doi:10.1016/0012-
821X(79)90067-0. 

Thirlwall, M.F., Upton, B.G.J., Jenkins, C. 1994. Interaction between continental 
lithosphere and the Iceland plume – Sr-Nd-Pb isotope geochemistry of Tertiary 
basalts, NE Greenland. Journal of Petrology, 35: 839–879. 
doi:10.1093/petrology/35.3.839. 

Thompson, R., Leat, P., Dickin, A.P., Morrison, M., Hendry, G., Gibson, S. 1990. 
Strongly potassic mafic magmas from lithospheric mantle sources during 
continental extension and heating: evidence from Miocene minettes of northwest 
Colorado, U.S.A. Earth and Planetary Science Letters, 98: 139–153. 
doi:10.1016/0012-821X(90)90055-3. 

Thomson, S.D., Dickin, A.P., Spray, J.G. 2011. Nd isotope mapping of Grenvillian 
crustal terranes in the vicinity of the Manicouagan Impact Structure. Precambrian 
Research, 191: 184–193. doi:10.1016/j.precamres.2011.08.006. 

Tiepolo, M., Vannucci, R., Bottazzi, P., Oberti, R., Zanetti, A., and Foley, S. 2000. 
Partitioning of rare earth elements, Y, Th, U, and Pb between pargasite, 
kaersutite, and basanite to trachyte melts: implications for percolated and veined 
mantle. Geochemistry, Geophysics, Geosystems, 1. doi:10.1029/2000GC000064. 

Tilton, G.R. 1983. Evolution of depleted mantle: the lead perspective. Geochimica et 
Cosmochimica Acta, 47: 1191–1197. doi:10.1016/0016-7037(83)90061-3. 

Tilton, G.R., Bell, K. 1994. Sr-Nd-Pb isotope relationships in Late Archean 
carbonatites and alkaline complexes: applications to the geochemical evolution 
of Archean mantle. Geochimica et Cosmochimica Acta, 58: 3145–3154. 
doi:10.1016/0016-7037(94)90042-6.  

https://doi.org/10.1016/S0301-9268(99)00009-1
https://doi.org/10.1144/GSL.SP.1989.042.01.19
https://doi.org/10.1016/j.lithos.2014.08.026
https://www.sciencedirect.com/science/article/pii/S0012821X07000635
https://science.sciencemag.org/content/180/4092/1279
http://link.springer.com/10.1007/BF00371729
https://doi.org/10.1016/0012-821X(79)90067-0
https://doi.org/10.1016/0012-821X(79)90067-0
https://doi.org/10.1093/petrology/35.3.839
https://doi.org/10.1016/0012-821X(90)90055-3
https://doi.org/10.1016/j.precamres.2011.08.006
http://doi.wiley.com/10.1029/2000GC000064
https://doi.org/10.1016/0016-7037(83)90061-3
https://doi.org/10.1016/0016-7037(94)90042-6


 241 

Tollo, R., Corriveau, L., McLelland, J., Bartholomew, M. 2004. Proterozoic tectonic 
evolution of the Grenville orogen in North America: an introduction. In 
Proterozoic tectonic evolution of the Grenville Orogen in North America. Edited 
by R.P. Tollo, L. Corriveau, J. McLelland, and M.J. Bartholomew. GSA 
Memoirs, 197(03): 1-18. 

Turlin, F., André-Mayer, A.-S., Moukhsil, A., Vanderhaeghe, O., Gervais, F., Solgadi, 
F., Groulier, P.-A., Poujol, M. 2017. Unusual LREE-rich, peraluminous, 
monazite- or allanite-bearing pegmatitic granite in the central Grenville Province, 
Québec. Ore Geology Reviews, 89: 627–667. 
doi:10.1016/j.oregeorev.2017.04.019 

Turlin, F., Vanderhaeghe, O., Gervais, F., André-Mayer, A.-S., Moukhsil, A., Zeh, A., 
Solgadi, F., I.P.T.N. 2019. Petrogenesis of LREE-rich pegmatitic granite dykes 
in the central Grenville Province by partial melting of Paleoproterozoic-Archean 
metasedimentary rocks: evidence from zircon U-Pb-Hf-O isotope and trace 
element analyses. Precambrian Research, 327: 327-360. 
doi:10.1016/j.precamres.2019.02.009. 

Turner, S., and Hawkesworth, C. 1995. The nature of the sub-continental mantle: 
constraints from the major-element composition of continental flood basalts. 
Chemical Geology, 120: 295–314. doi:10.1016/0009-2541(94)00143-V. 

Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., 
Van Calsteren, P., Deng, W. 1996. Post-collision, shoshonitic volcanism on the 
Tibetan Plateau: implications for convective thinning of the lithosphere and the 
source of Ocean Island Basalts. Journal of Petrology, 37: 45–71. 
doi:10.1093/petrology/37.1.45. 

Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, 
M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., 
Sinha, A.K., Wei, C.S. 2005. 4.4 billion years of crustal maturation: oxygen 
isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 
150: 561–580. doi:10.1007/s00410-005-0025-8. 

Valverde Cardenas, C. 2009. Geochemical constraints on the origin of mafic and 
ultrapotassic dykes from the southern Manicouagan area, Grenville Province. 
Memorial University of Newfoundland. Available from: 
http://collections.mun.ca/PDFs/theses/Cardenas_CarolinaValverde.pdf. 

Valverde Cardenas, C., Indares, A., Jenner, G. 2012. Mafic and ultrapotassic rocks from 
the Canyon domain (central Grenville Province): geochemistry and tectonic 
implications. Canadian Journal of Earth Sciences, 49: 412–433. doi:10.1139/e11-
065. 

van Gool, J.A.M., Rivers, T., Calon, T. 2008. Grenville Front zone, Gagnon terrane, 
southwestern Labrador: configuration of a midcrustal foreland fold-thrust belt. 
Tectonics, 27: 1–35. doi:10.1029/2006TC002095. 

Vanderhaeghe, O. 2011. The thermal–mechanical evolution of crustal orogenic belts at 
convergent plate boundaries: a reappraisal of the orogenic cycle. Journal of 
Geodynamics, 56–57: 124–145. doi:10.1016/j.jog.2011.10.004. 

Veizer, J., Compston, W. 1976. 87Sr/86Sr in Precambrian carbonates as an index of 
crustal evolution. Geochimica et Cosmochimica Acta, 40: 905–914. 
doi:10.1016/0016-7037(76)90139-3. 

https://doi.org/10.1016/j.oregeorev.2017.04.019
https://doi.org/10.1016/j.precamres.2019.02.009
https://doi.org/10.1016/0009-2541(94)00143-V
https://doi.org/10.1093/petrology/37.1.45
https://doi.org/10.1007/s00410-005-0025-8
http://collections.mun.ca/PDFs/theses/Cardenas_CarolinaValverde.pdf
https://doi.org/10.1139/e11-065
https://doi.org/10.1139/e11-065
https://doi.org/10.1029/2006TC002095
https://doi.org/10.1016/j.jog.2011.10.004
https://doi.org/10.1016/0016-7037(76)90139-3


 242 

Veizer, J., Hoefs, J. 1976. The nature of O18/O16 and C13/C12 secular trends in 
sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, 40: 1387–
1395. doi:10.1016/0016-7037(76)90129-0. 

Veizer, J., Hoefs, J., Lowe, D.R., Thurston, P.C. 1989. Geochemistry of Precambrian 
carbonates: II. Archean greenstone belts and Archean sea water. Geochimica et 
Cosmochimica Acta, 53: 859–871. doi:10.1016/0016-7037(89)90031-8. 

Vervoort, J.D., and Blichert-Toft, J. 1999. Evolution of the depleted mantle: Hf isotope 
evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 
63: 533–556. doi:10.1016/S0016-7037(98)00274-9. 

Vollmer, R. 1989. On the origin of the Italian potassic magmas: 1. A discussion 
contribution. Chemical Geology, 74: 229–239. doi:10.1016/0009-
2541(89)90034-X. 

Watson, E.B. 1980. Apatite and phosphorus in mantle source regions: an experimental 
study of apatite/melt equilibria at pressures to 25 kbar. Earth and Planetary 
Science Letters, 51: 322–335. doi:10.1016/0012-821X(80)90214-9. 

Whalen, J.B., Percival, J.A., McNicoll, V.J., Longstaffe, F.J. 2002. A mainly crustal 
origin for tonalitic granitoid rocks, Superior Province, Canada: implications for 
late Archean tectonomagmatic processes. Journal of Petrology, 43: 1551–1570. 
doi:10.1093/petrology/43.8.1551. 

Williams, H.M. 2004. Nature of the source regions for post-collisional, potassic 
magmatism in southern and northern Tibet from geochemical variations and 
inverse trace element modelling. Journal of Petrology, 45: 555–607. 
doi:10.1093/petrology/egg094. 

Wilson, M., Bianchini, G. 1999. Tertiary-Quaternary magmatism within the 
Mediterranean and surrounding regions. In The Mediterranean Basins: Tertiary 
extension within the Alpine Orogen. Edited by B. Durand, L. Jolivet, F. Horváth, 
and M. Séranne. The Geological Society London, Geological Society Special 
Publication No. 156. pp. 141–168. Available from: 
https://sp.lyellcollection.org/content/specpubgsl/156/1/141.full.pdf. 

Wilton, D.H.C. 1991. Metallogenic and tectonic implications of Pb isotope data for 
galena separates from the Labrador Central mineral belt. Economic Geology, 86: 
1721–1736. doi:10.2113/gsecongeo.86.8.1721. 

Woodhead, J.D., Hergt, J.M., Davidson, J.P., Eggins, S.M. 2001. Hafnium isotope 
evidence for ‘conservative’ element mobility during subduction zone processes. 
Earth and Planetary Science Letters, 192: 331–346. doi:10.1016/S0012-
821X(01)00453-8. 

Workman, R.K., and Hart, S.R. 2005. Major and trace element composition of the 
depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231: 53–
72. doi:10.1016/J.EPSL.2004.12.005. 

Wyman, D.A., and Kerrich, R. 1993. Archean shoshonitic lamprophyres of the Abitibi 
Subprovince, Canada: petrogenesis, age, and tectonic setting. Journal of 
Petrology, 34: 1067–1109. doi:10.1093/petrology/34.6.1067. 

Yang, P., and Indares, A.D. 2005. Mineral zoning, phase relations, and P-T evolution 
of high-pressure granulites from the Lelukuau terrane, northeastern Grenville 
Province, Quebec. The Canadian Mineralogist, 43: 443–462. 
doi:10.2113/gscanmin.43.1.443. 

Yaxley, G.M., Crawford, A.J., and Green, D.H. 1991. Evidence for carbonatite 
metasomatism in spinel peridotite xenoliths from western Victoria, Australia. 

https://doi.org/10.1016/0016-7037(76)90129-0
https://doi.org/10.1016/0016-7037(89)90031-8
https://doi.org/10.1016/S0016-7037(98)00274-9
https://doi.org/10.1016/0009-2541(89)90034-X
https://doi.org/10.1016/0009-2541(89)90034-X
https://www.sciencedirect.com/science/article/pii/0012821X80902149
https://doi.org/10.1093/petrology/43.8.1551
https://doi.org/10.1093/petrology/egg094
https://sp.lyellcollection.org/content/specpubgsl/156/1/141.full.pdf
http://pubs.geoscienceworld.org/economicgeology/article/86/8/1721/20990/Metallogenic-and-tectonic-implications-of-Pb
https://doi.org/10.1016/S0012-821X(01)00453-8
https://doi.org/10.1016/S0012-821X(01)00453-8
https://doi.org/10.1016/j.epsl.2004.12.005
https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/34.6.1067
https://doi.org/10.2113/gscanmin.43.1.443


 243 

Earth and Planetary Science Letters, 107: 305–317. doi:10.1016/0012-
821X(91)90078-V. 

Zartman, R.E., and Doe, B.R. 1981. Plumbotectonics—the model. Tectonophysics, 75: 
135–162. doi:10.1016/0040-1951(81)90213-4. 

 

https://doi.org/10.1016/0012-821X(91)90078-V
https://doi.org/10.1016/0012-821X(91)90078-V
https://doi.org/10.1016/0040-1951(81)90213-4


 244 

Table 4.1. Major and trace element and Sr-Nd-Pb-O isotope data for potassic to 
ultrapotassic dykes, Canyon domain. 
Sample no RS351* 408 404 361-z 11-416* 209-2 398A 361 403(3) 462-z 338-z
Geol. Domain Canyon Canyon Canyon Canyon Canyon Canyon Canyon Canyon Canyon Canyon Canyon
Groups PUD1a PUD1a PUD1a PUD1a PUD1a PUD1b PUD1b PUD1b PUD2 PUD2 PUD2
SiO2 54.10 49.41 47.36 50.19 47.32 54.07 50.24 57.28 53.50 59.39 53.95
TiO2 2.14 2.36 3.25 1.98 2.05 2.59 2.05 2.42 2.49 2.05 1.50
Al2O3 15.23 16.85 12.78 14.36 15.86 15.38 12.92 15.15 10.79 12.73 11.96
Fe2O3 9.02 11.54 11.46 10.58 10.33 12.51 11.52 10.48 4.42 4.01 5.66
FeO* 8.12 10.38 10.31 9.52 9.29 11.26 10.37 9.43 3.98 3.61 5.09
MnO 0.11 0.14 0.13 0.10 0.15 0.22 0.15 0.15 0.08 0.06 0.09
MgO 3.55 5.02 7.45 6.05 5.64 5.37 10.99 3.18 6.80 4.84 6.42
CaO 6.62 7.20 9.07 5.92 6.52 7.76 7.37 5.52 6.42 3.86 6.49
Na2O 2.83 2.69 0.29 1.30 2.99 0.63 0.99 1.41 0.19 0.90 0.56
K2O 3.28 2.21 3.54 5.73 4.01 2.73 4.93 4.84 8.32 9.11 5.74
P2O5 0.84 0.89 2.30 1.15 1.17 1.99 1.45 1.48 4.80 2.34 4.07
LOI 1.34 1.22 1.57 1.25 1.09 1.92 1.46 1.81 1.13 0.92 2.21
Total 99.06 98.38 98.05 97.55 98.86 103.91 102.91 103.29 98.49 99.81 98.08
Na2O+K2O 6.11 4.90 3.83 7.03 7.00 3.36 5.92 6.25 8.51 10.01 6.30
K2O/Na2O 1.16 0.82 12.21 4.41 1.34 4.33 4.98 3.43 43.79 10.12 10.25
#Mg 44 46 56 53 52 46 65 38 75 71 69
Sc 14.0 21.0 22.0 17.0 20.0 20.0 20.0 14.0 7.0 11.0 4.0
V 121 142 164 169 193 143 166 136 65 62 34
Cr 30 98 145 80 64 638 52 270 169 151
Co 171 127 160 110 53 121 107 146 166 145 194
Ni 10 25 45 102 30 21 230 0 139 115 82
Cu 100 50 43
Zn 130 110 213
Ga 21 20 23
Rb 104 65 97 216 152 77 153 103 193 263 245
Cs 0.25 0.9
Sr 1727 1091 2456 1415 936 4301 1918 2618 6521 2889 2701
Ba 2999 2098 4771 5208 2650 7621 9017 6156 7117 3642 4960
Ti 12829 14148 19484 11870 12296 15527 12290 14508 14928 12290 8993
K 27227 18345 29386 47565 33287 22662 40924 40177 69064 75622 47648
Al 80597 89170 67632 75993 83931 81391 68373 80174 57101 67367 63292
Zr 245.0 355.0 709.0 408.0 369.0 391.0 348.0 330.0 911.0 382.0 191.0
Hf 6.8 8.8 10.2 8.5 9.0 8.8 7.9 19.3 12.1 6.2
Nb 11.0 18.0 29.0 23.0 23.0 20.2 16.7 20.9 28.0 38.0 13.0
Ta 0.70 0.80 1.20 1.30 2.00 1.06 0.84 1.15 1.00 2.10 0.90
Nb/Ta 15.7 22.5 24.2 17.7 11.5 19.0 19.9 18.2 28.0 18.1 14.4
Th 2.10 3.40 6.10 5.10 3.90 6.06 2.62 3.04 16.20 10.80 11.60
U 0.8 0.9 1.7 1.5 3.4 1.28 0.73 0.94 5.2 2.8 2.5
Pb 9 13
Y 23 32.7 40.2 26.7 37 56 24 31 39 31.6 54
La 51.60 95.60 220.00 92.50 55.20 256.00 79.50 115.00 245.00 137.00 252.00
Ce 115 187 441 196 121 500 177 253 526 285 511
Pr 14.7 21.3 52.4 22.6 15.7 66.5 22.6 31.6 62.4 33.3 61.7
Nd 58.6 80.7 199 89 66.6 244 88.5 120 240 124 249
Sm 10.7 13.5 30.6 14.6 12.7 36.8 15 18.7 36.6 19.3 47.3
Eu 3.56 3.6 7.67 3.97 3.27 9.93 4.53 5.96 9.04 4.4 11.7
Gd 8.3 10.2 19.6 9.8 9.1 26.1 10.67 12.9 22.0 12.6 32.1
Tb 1.00 1.50 2.20 1.30 1.20 2.76 1.15 1.36 2.20 1.50 3.60
Dy 4.6 7.1 9.5 5.6 6.5 11.48 5.02 6.07 8.6 6.8 13.7
Ho 0.8 1.2 1.4 0.9 1.3 1.91 0.84 1.05 1.3 1.1 1.9
Er 2 3.5 3.5 2.7 3.8 4.78 1.99 2.62 3.7 3 4.6
Tm 0.27 0.47 0.45 0.37 0.57 0.63 0.25 0.35 0.52 0.39 0.54
Yb 1.6 2.9 2.8 2.4 3.8 3.93 1.46 2.09 3.7 2.3 3.3
Lu 0.23 0.4 0.37 0.35 0.57 0.57 0.2 0.29 0.65 0.3 0.46
ΣREE 273 429 990 442 301 1165 409 571 1162 631 1193
U-Pb (Ma) 980
147Sm/144Sm 0.1051 0.0973 0.1120 0.0857 0.0965 0.0912 0.0876 0.0887 0.1087
143Nd/144Nd 0.511785 0.511853 0.511844 0.511560 0.511763 0.511672 0.511183 0.511224 0.511450
143Nd/144Nd (t) 0.511109 0.511227 0.511124 0.511009 0.511143 0.511086 0.510620 0.510654 0.510751
εNd(t) -5.1 -2.8 -4.8 -7.1 -4.5 -5.6 -14.7 -14 -12.1
TDM 1753 1546 1783 1755 1652 1694 2243 2212 2309
TCR 1924 1708 1966 1900 1812 1846 2379 2350 2472
87Sr/86Sr(t) 0.70394 0.704742 0.704844 0.704471 0.705053 0.703897 0.703839 0.704113 0.704283 0.704272 0.703925
εSr(t) 8 20 21 16 24 8 7 11 13 13 8
206Pb/204Pb 16.8704 17.006 17.1722 17.401 18.067 16.526 16.406 16.2840 16.768 16.5306 16.419
2σ 0.0005 0.001 0.0005 0.001 0.001 0.001 0.001 0.0005 0.001 0.0003 0.001
207Pb/204Pb 15.3759 15.438 15.4281 15.418 15.4211 15.3097 15.331 15.2976 15.125 15.1421 15.160
2σ 0.0005 0.002 0.0005 0.001 0.0004 0.0004 0.001 0.0005 0.001 0.0003 0.001
208Pb/204Pb 37.368 37.267 37.175 37.127 37.503 36.774 36.487 36.155 36.250 36.705 36.389
2σ 0.001 0.005 0.001 0.003 0.001 0.001 0.002 0.001 0.001 0.001 0.004
SK75 Age (207/206) 0.903 0.915 0.766 0.565 0.032 1.056 1.194 1.232 0.452 0.705 0.844
δ18O (VSMOW ‰) 6.219 9.001 9.210 7.691 3.790 8.184 7.578

Note:
* indicates new samples, remaining data from Valverde Cardenas et al. (2012).
TDM is calculated following DePaolo, 1981; TCR is calculated following Goldstein et al. (1984).
 SK 75, Stacey and Kramers (1975).  
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Figure 4.1. Major tectonic divisions of the Grenville Province (modified after Rivers et 
al., 2012). The orogen is composed of belts defined on the basis of tectonic 
characteristics, and belts are subdivided into terranes and domains. AB, allochthonous 
boundary, which worked both as thrust and normal fault; NQ, New Quebec Orogen; P, 
Penokean Orogen; M, Makkovik Orogen; and T, Torngat Orogen. Inset, Grenville 
Province in North America (Tollo et al., 2004). 
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Figure 4.2. Geological map of the study area in the Canyon domain located to the south of the Manicouagan Impact Crater (modified from 
Maity and Indares, 2018); structural subdomains and the Thachic Shear Zone are shown (Jannin et al., 2018a, b); REE-PGD, REE-rich 
pegmatite granite dykes (Turlin et al., 2017, 2019).
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Figure 4.3. Rock types classification diagrams for the potassic to ultrapotassic dykes 
(PUD) from Canyon domain. (a) SiO2 vs. Na2O + K2O (Le Bas et al., 1986); (b) K2O 
vs. Na2O; (c) CaO vs. Al2O3; (d) CaO vs. SiO2 (Foley et al., 1987). Data source: WA, 
Western Australia; LH, Leucite Hills; GSB, Gaussberg; SB, Smoky Butte (Fraser et al., 
1985; Fraser, 1987); K-S, Kensington-Scoottamatta suite and Rivard minette dykes 
(Corriveau, 1990; Corriveau et al., 1990, 1996; Corriveau and Gorton, 1993; Morin et 
al., 2005); LBV, Labrieville dykes (Owens and Tomascak, 2002).  

Ultrapotassic 

Shoshonitic 
+ 

high-K calc-
alkaline 

Calc-alkaline 
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Figure 4.4. (a-d) Chondrite-normalized; and (e-h) Primitive mantle-normalized multi-
element diagrams for the PUD. Normalization values are from Sun and McDonough 
(1989). The Labrieville dykes (LBV) (Owens and Tomascak, 2002), Rivard 
lamprophyre dyke (Corriveau et al., 1996; Morin et al., 2005), and Kensington-
Schoottamatta suite (K-S) (Corriveau et al., 1990; Corriveau and Gorton, 1993) are 
shown for comparison. 
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Figure 4.5. Sr-Nd-Pb isotopes for the PUD. (a) 143Nd/144Nd vs. 147Sm/144Nd; (b) εNd (t) 
vs. Time (Ga); (c) εNd vs. 87Sr/86Sr diagrams. Data source: Gagnon terrane, 
Manicouagan Imbricate Zone (MIZ), Island domain, Canyon domain, Banded 
Complex, Canyon domain orthogneiss, and Archean orthogneiss in Gagnon terrane 
(Thomson et al., 2011); Labradoria and reworked Makkovikia (Schärer, 1991; 
Thomson et al., 2011); Adirondack crust (Chiarenzelli et al., 2010; and references 
therein); Quebecia (Dickin, 2000; Dickin and Higgins, 1992), Labrieville (LBV) massif 
anorthosite (Owens et al., 1994); Labrieville lamprophyre dykes (Owens and 
Tomascak, 2002); Okaopéo mangerite, syenite plutons from Bourguet, Bouvreuil, and 
Core (Augland et al., 2015, 2017; εNd values estimated from zircon εHf value  
following Vervoort and Blichert-Toft; 1999); Vein Complex (VC) and Layered 
bimodal suite (LBS) (Maity, in prep.); Rivard minette dyke (Corriveau et al., 1996); 
Kensington-Schoottamatta suite (K-S) (Corriveau and Amelin, 1994); Elkhead 
Mountains (Thompson et al., 1990); Sisimiut (Nelson, 1989); Smokey Butte, Prairie 
Creek, Leucite Hills (Mirnejad and Bell, 2006); Churchill Province (Peterson et al., 
1994); depleted mantle (DePaolo, 1981); CHUR, chondrite uniform reservoir (Bouvier 
et al., 2008). 



 251 



 252 

 
 
Figure 4.6. Pb-Pb isotope ratios for the PUD compared with (a-b) Archean 
orthogneisses (n = 46), galena deposits (n = 34), Abitibi volcanic rocks (n = 54), and 
Proterozoic orthogneisses (n = 232); data source mentioned on the diagram; (c-d) 
Laurentian lamproites and ultrapotassic rocks (n = 46), and kimberlite clinopyroxene 
(n = 15) data from the Superior Province. Data source: Renard kimberlite clinopyroxene 
(Hunt et al., 2012); ancient Laurentian SCLM (Tappe et al., 2007); Superior lower crust 
(Gariépy et al., 1990; Stevenson et al., 1999); Lewisian crust (Kerr et al., 1995); SK 
1975, average crust (Stacey and Kramers, 1975); remaining data source as in fig. 4.5. 
Pb evolution line for lower crust (Zartman and Doe, 1981) and average crust (Stacey 
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and Kramers, 1979), 0.98 Ga geochron is drawn for T = 4.55 Ga (age of the Earth) and 
primeval lead data for Canyon Diablo Troilite (Tatsumoto et al., 1973); the 1.74 Ga and 
2.96 Ga reference lines are for a mantle source with µ = 8.0 (Arcuri and Dickin, 2018). 

 

 

Figure 4.7. (a) Rb/Sr vs. Sr (ppm); (b) Cr (ppm); (c) Ni (ppm); and (d) Sc (ppm) vs. 
Mg#; (e) V vs. Ni (ppm); and (f) La/Yb vs. La diagrams for the PUD. Data from 
Labrieville (LBV) lamprophyre dykes (Owens and Tomascak, 2002), K-S suite and 
Rivard dykes (Corriveau et al., 1996) are shown for comparison. Crystal fractionation 
vectors are shown using partition coefficients from Pearce and Parkinson (1993). Data 
for OIB and MORB (Sun and McDonough, 1989), and for upper and lower crust 
(Rudnick and Gao, 2014).   
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Figure 4.8. (a) Rb/Sr vs. Ba/Rb (Furman, 1995; Furman and Graham, 1999); and (b) 
Rb/Sr vs. K/Rb diagram for the PUD. The downward pointing arrow in (b) indicates 
phlogopite fractionation at source. PM, primitive mantle (Sun and McDonough, 1989). 
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Figure 4.9. (a) Al2O3 vs. TiO2; (b) K2O/TiO2 vs. Al2O3/TiO2 (Lustrino et al., 2016); (c) 
100*Th/Zr vs. 100*Nb/Zr (modified after Wilson and Bianchini, 1999); and (d) Th-Hf-
Nb/2 (Krmíček et al., 2011) diagrams showing mixed orogenic-anorogenic character of 
PUDs, with the fields for worldwide orogenic and anorogenic lamproites (Lustrino et 
al., 2016) shown for comparison. Remaining data source as in figs. 4.5 and 4.7. 
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Figure 4.10. (a) Th/Yb vs. Ba/La; (b) Zr/Sm vs. Hf/Sm; (c) Hf/Sm vs. Zr/Hf; (d) Ti/Eu 
vs. Zr/Hf; (e) (Hf/Sm)PM vs. (Nb/La)PM (modified after Laflèche et al., 1998; Prelević 
et al., 2012); and (f) εNd vs. K2O (wt%) for the PUD. Data source: carbonatite 
metasomatized xenoliths (Rudnick et al., 1993), turbidites (McLennan et al., 1990), 
pelagic sediments (Ben Othman et al., 1989), remaining data source as in fig. 4.5. 
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Figure 4.11. Whole-rock Sr-Nd-Pb-O isotopes and Mg# for PUD. (a) δ18OVSMOW vs. 
87Sr/86Sr (1Ga); (b) δ18OVSMOW vs. #Mg; (c) 87Sr/86Sr (1Ga) vs. 207Pb/204Pb; (d) close up 
of (c);  (e) 143Nd/144Nd vs. 207Pb/204Pb; and (f) close up of (e). Small numbers below 
data symbols in (d) and (f) indicate δ18O values from table 4.1. Data source: New 
Quebec composite (McCulloch and Wasserburg, 1978; Shieh and Schwarcz, 1978), 
Archean carbonate (Shieh and Schwarcz, 1978; Veizer et al., 1989; Veizer and 
Compston, 1976; Veizer and Hoefs, 1976), Archean Superior crust (Ashwal et al., 1986; 
Gariépy et al., 1990; Emslie et al., 1994; Stevenson et al., 1999; Valley et al., 2005; 
Whalen et al., 2002; Thomson et al., 2011), Lewisian crust (Kerr et al., 1995); Archean 
mantle at 2.7 Ga (Bell and Blenkinsop, 1987; Tilton and Bell, 1994), Grenville 
anorthosite and Labrieville (LBV) massif (Anderson, 1966; Owens et al., 1994; Peck 
et al., 2010; Peck and Valley, 2000), Grenville paragneiss (Schärer, 1991; Peck and 
Valley, 2000; Thomson et al., 2011), Adirondack carbonate (Hauer, 1995; Shieh and 
Schwarcz, 1978), MORB and mantle (Eiler, 2001; Mattey et al., 1994; Workman and 
Hart, 2005), CHUR (Bouvier et al., 2008); Bulk earth evolution curve (Kwon et al., 
1989); Laurentian lamproites and ultrapotassic rocks as in fig. 4.5. 
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Figure 4.12. Cartoon illustrating proposed tectonic model (inspired by Rivers et al., 
2012; Jannin et al., 2018a, 2018b) for the evolution of Rigolet phase in the Grenville 
hinterland. (a) Initiation of intracontinental subduction and crustal thickening at ca. 
1005 Ma, intrusion of PGDs; (b) thrusting or extrusion of northern Canyon domain 
between ca. 997-993 Ma, and possible derivation of syn-tectonic PUD1 from 
Proterozoic SCLM; (c) development of Rigolet channel and the normal-sense Thachic 
Shear Zone (TSZ) at ca. 990 Ma and intrusion of syn-tectonic PUD1 from Proterozoic 
SCLM ≤ 986 Ma; (d) intrusion of late- to post-tectonic PUD2 from late-Archean S-
SCLM at ca. 980 Ma. UC, upper crust; MC middle crust; LC, lower crust.   
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5 Summary and Conclusions 

The main objectives of this thesis were: (i) to constrain the age, petrogenesis 

and tectonic setting of the mafic rocks from the MIU and PLV to provide information 

on the Mesoproterozoic evolution of the Laurentian continental margin; (ii) to constrain 

the age, petrogenesis, and tectonic setting of the mafic rocks in the VC and LBS to 

characterize the late-orogenic evolution of the Grenvillian hinterland; and (iii) to 

characterize the nature and multi-stage metasomatism of lithospheric mantle sources 

for the PUDs, and to better constrain the tectonic evolution of the Rigolet phase in the 

Grenvillian LHO. As summarized below, the combined results of petrography, U-Pb 

geochronology, major and trace element geochemistry, and radiogenic and stable 

isotope geochemistry of mafic and potassic to ultrapotassic rocks, integrated with 

published data, provide fundamental constraints about the Mesoproterozoic arc-

accretionary evolution of the active Laurentian margin, as well as its late-orogenic 

intracontinental subduction evolution as part of the large hot long-duration Grenville 

Orogen. The results presented here also provide evidence that the Grenville Province 

preserves all the three types of orogens of Cawood et al., (2009): accretionary, 

collisional, and intracratonic orogens.   

5.1 Summary of the thesis  

5.1.1 Mesoproterozoic evolution of the Laurentian margin 

The magmatic and metamorphic events during Geon 14 in the central Grenville 

Province constitute a significant part of the pre-Grenvillian tectonic evolution of the 

southeastern margin of Laurentia. The two suites of mid-pressure mafic granulites from 

the MIU and PLV have provided more detailed information about the pre-orogenic 
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magmatism and hence the inferred architecture of this part of the Laurentian margin 

during Geon 14 and its implications for the pre-Grenvillian evolution of SE Laurentia. 

The 1439 −68+76 Ma high Fe-Ti-P, tholeiitic, mafic sills were derived from variably 

depleted to enriched MORB-type mantle modified by minor subduction components 

and crustal contamination. They intruded the >1500 Ma PLV supracrustal sequence 

during limited extension of arc/back-arc crust that resulted in thinning of the Laurentian 

continental margin. The 1410 ± 16 Ma mafic intrusive rocks in the MIU and the mafic 

samples from QFU (inferred to be ca. 1.4 Ga) have depleted to enriched MORB- and 

arc-type geochemical signatures. They were formed in a compressional back-arc setting 

in which shortening of the Laurentian crust decreased the distance between the back-

arc to the more outboard arc source, as suggested by increased crustal input from 

subduction components and/or crustal contamination. The various magmatic 

components in the MIU were mingled in a shallow closed-system magma chamber 

before their final emplacement. When considered collectively with published literature 

from the area, the repetitive intrusion of the high Fe-Ti-P mafic rocks during Geon 14 

in the central Grenville Province suggests that arc/back-arc extension was an 

intermittent process in an overall compressional arc regime on southeast Laurentia 

during the Mesoproterozoic.     

5.1.2 Late-orogenic evolution of the Grenvillian LHO  

  Combining the results from the ca. 1008-997 Ma mafic dykes and sills in the 

Vein Complex (VC) and Layered Bimodal Suite (LBS) with other recently published 

data, the late-orogenic tectonic setting in the central Grenville Province is proposed to 

have involved the late- to post-Ottawan lithospheric extension, which resulted in 

melting of the subduction-metasomatized SCLM, decompression melting of upwelling 
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asthenosphere, and high-grade metamorphism and crustal melting. During this 

extension, previously thinned lithospheric mantle underwent partial melting resulting 

in emplacement of alkaline plutonic suites and AMCG complexes. Continued extension 

caused shallow spinel-facies melting of upwelled asthenosphere, and melts thus derived 

were variably contaminated by overlying lithosphere before being emplaced within the 

orogenic mid-crust.  

Subsequent Rigolet crustal shortening resulted in underthrusting of foreland 

beneath the Grenville hinterland. Partial melting of parautochthonous crust at depth 

produced the ca. 1004-1002 Ma REE-rich pegmatitic granite dykes (PGDs) that 

intruded the PLV in the southern Canyon domain and Lac Okaopéo area (Turlin et al., 

2017, 2019), and the ca. 984 Ma pink leucogranite dyke swarm in the northern Canyon 

domain (Jannin et al., 2018b). However, the apparent absence of REE-rich PGDs in the 

northern Canyon domain, which was intruded by coeval mafic rocks of the VC and 

LBS (this study), and later by the pink leucogranite dykes, suggests a more complex 

tectonic setting for the Canyon domain during the post-Ottawan period. It is proposed 

that during this period, the structurally lower northern Canyon domain was situated in 

a more distal location with respect to the AB than the structurally higher southern 

Canyon domain and the Lac Okaopéo area; and that during the early-Rigolet 

compression the northern Canyon domain was extruded from beneath the southern 

Canyon domain and Lac Okaopéo area such that their relative positions were reversed. 

Subsequent normal faulting along the Thachic shear zone and the development of a 

mid-Rigolet crustal channel (Jannin et al., 2018a, 2018b) affected the structurally lower 

parts of the aMP belt, including the northern Canyon domain.  



 262 

5.1.3 Rigolet orogenic evolution of the Grenvillian LHO   

A suite of previously reported ca. 980 Ma potassic to ultrapotassic dykes in the 

Canyon domain was studied to further characterize the geochemical evolution of the 

subcontinental lithospheric mantle beneath the Grenville Orogen in the central 

Grenville Province, and to constrain the tectonic evolution during the Rigolet phase. 

Based on Sr-Nd-Pb-O isotopic constraints, it is inferred that the group of syn-tectonic 

PUD1 dykes were derived from fertile Proterozoic subcontinental lithospheric mantle, 

contaminated at source by crustal fluids. In contrast, the late- to post-tectonic PUD2 

samples were derived from the depleted, late-Archean to early-Paleoproterozoic, 

subcontinental lithospheric mantle that was metasomatized by carbonatitic and pelagic 

sediment-derived melt in an ancient subduction setting beneath the southeastern margin 

of the Superior Province. The evidence for δ18O-enrichment above mantle value also 

indicates contamination at source by 18O-rich fluids and melts derived from subducted 

crust or sediment, although contamination during magma ascent through crust cannot 

be excluded for a small number of highly fractionated samples.  

Consequent to the above findings, an intracontinental subduction model is 

invoked for the Rigolet tectonic evolution of the central Grenville Province. In this 

scenario, the syn-tectonic PUD1 samples were derived from thickened Proterozoic 

SCLM and were emplaced in the Canyon domain before ca. 986 Ma. Continued 

underthrusting resulted in flat subduction of the refractory, metasomatically enriched, 

and buoyant late-Archean SCLM beneath the hinterland in PLV in southern Canyon 

domain by late-Rigolet time. We propose that subsequent orogenic relaxation, possibly 

coupled with local delamination of the thickened Rigolet lithosphere, induced melting 
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in the most incompatible element-enriched parts of the late-Archean SCLM to produce 

the PUD2 dykes that intruded the Canyon domain at ca. 980 Ma.  

Finally, the Rigolet flat subduction of Laurentian SCLM beneath the 

Grenvillian hinterland during the Rigolet phase could also have resulted in the intrusion 

of several late- to post-tectonic alkalic mafic and syenitic rocks, and crust-derived felsic 

suites reported by others. Moreover,  underthrusting of the SCLM largely diminished 

asthenospheric magmatism and high-grade metamorphism in the hinterland.   

5.2 Outlook and suggestion for future research   

The research described in the second chapter of this thesis highlights the 

underlying challenges in studying Precambrian high-grade gneisses and in unravelling 

the petrotectonic evolution of ancient crustal terranes. By employing multiple robust, 

immobile-incompatible-element-based geochemical tools, we have been able to screen 

out altered samples and constrain the tectonic settings of formation of the protoliths of 

the two suites of mafic, Geon 14 granulite-facies gneisses emplaced in the PLV and 

MIU. This research shows that the central Grenville Province in Geon 14 evolved as an 

active margin arc and intermittent back-arc setting. The early Geon 13 intrusions in the 

Hulot Complex farther south exhibited similar arc and back-arc geochemical signatures 

to those of the Geon 14 rocks in the study area (Augland et al., 2015). The Geon 12 

mafic and felsic rocks in the study area exhibit predominantly arc to minor within-plate 

geochemical signatures (Indares and Dunning, 2004; Valverde Cardenas et al., 2012; 

Hindemith et al., 2017; Moukhsil and Solgadi, 2017), that are probably indicative of 

arc magmatism related to back-arc closure, comparable to the Elzevirian Orogeny in 

the southwestern Grenville Province (Rivers and Corrigan, 2000). These results 
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collectively suggest that the ca. 1.24 Ga supracrustal sequence comprising the Layered 

Bimodal Suite was deposited in an arc setting, possibly related to back-arc closure, 

rather than an intracontinental extensional setting. It would be beneficial to investigate 

further the age and depositional setting of the Quartzofeldspathic Unit, for which a ca. 

1.4 Ga depositional age was inferred, and to constrain whether it is a part of the PLV, 

or was deposited as a separate lithologic unit. Moreover, if the northern Canyon domain 

represents Geon 12 crust accreted to, and/or developed on a Geon 14 continental 

margin, it was feasible that this crustal section was emplaced beneath the PLV in the 

hanging wall of the AB as a result of the Grenvillian thrust tectonics.    

A robust conclusion of this study, coupled with the results of other recent 

publications (Augland et al., 2015, 2017; Turlin et al., 2017, 2018, 2019; Jannin et al., 

2017, 2018a, b), is that the post-Ottawan to pre-Rigolet “hiatus” in tectonic activity in 

the Grenville Province can now be defined as a period of lithospheric extension, 

tholeiitic and alkaline magmatism, high-grade metamorphism and crustal melting. In 

this research, we have designated this “hiatus” as a distinct ‘post-Ottawan’ phase 

separating the longer duration Ottawan orogenic phase from the shorter duration 

Rigolet phase. However, several studies (e.g., Jamieson et al., 2010; Jannin, 2017; 

Jannin et al., 2018b) have considered the tectonometamorphic evolution of the 

Grenvillian hinterland to have been continuous from the Ottawan through to the post-

Ottawan period (~1090-1005 Ma). Moreover, contrary to the conventional wisdom of 

metamorphism and deformation during the Ottawan phase being largely restricted to 

the hinterland, and those of the Rigolet to the foreland (Rivers, 2008, 2015; Rivers et 

al., 2012), recent studies in the central Grenville Province have shown that the northern 

parts of the hinterland and the adjacent Allochthonous Boundary were overprinted by 
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the Rigolet compressional phase (Jannin et al., 2018b; this study), as the orogen 

advanced from the hinterland to the foreland.    

The emplacement of the mafic dykes and sills in the northern Canyon domain 

(this study), and coeval emplacement of the REE-rich PGDs in the southern Canyon 

domain and the Lac Okaopéo area, coupled with the detailed structural, geophysical, 

geochronological, and metamorphic studies by others in the Canyon domain, have 

established the complex evolution of the northern Canyon domain during the post-

Ottawan to Rigolet period. Most importantly, underthrusting of the footwall Gagnon 

terrane beneath the Canyon domain in the early Rigolet phase was closely followed by 

extrusion of the northern Canyon domain along the hanging wall of the Allochthonous 

Boundary from relatively deeper parts of orogenic mid-crust in the hinterland. This 

early-Rigolet extrusion event, which was not adequately described or constrained in 

previous studies, most likely took place by the mechanism of orogenic wedge 

propagation due to Rigolet intracontinental flat subduction, as the Rigolet channel was 

established only by ca. 990 Ma (Jannin et al., 2018b). If this was the case, then the 

channel developed within a larger orogenic wedge similar to that in the eastern 

Labrador (van Gool et al., 2008). More research is required to constrain the timing and 

mechanism of extrusion of this mid-crustal section at the beginning of the Rigolet 

phase, and its relationship to the overlying crustal section. Moreover, unlike the aHP 

MIZ to the north of the Manicouagan Reservoir, the absence of a lower crustal ramp-

flat structure beneath the aMP area to the south, as evident from geophysical and 

structural studies (Hynes et al., 2000; Jannin, 2017; Jannin et al., 2018b), could have 

been crucial in controlling the extrusion of crustal slices during the Grenvillian orogeny.  
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The potassic to ultrapotassic dykes provide important constraints on the nature 

of the SCLM beneath the late-Grenvillian orogenic hinterland. However, U-Pb dating 

of zircon from PUD1 samples would undoubtedly provide more robust constraints on 

the timing of their emplacement. Future studies might also focus on radiogenic and 

stable isotopes in minerals, to further characterize the sources of the potassic to 

ultrapotassic dykes, and to compare them with apparently similar K-rich intrusions 

elsewhere in the Grenville Province. Delineating the extent and timing of flat 

subduction of the late-Archean SCLM beneath the orogenic core, and performing 

similar studies throughout the orogen would provide significant improvement in 

characterizing the Rigolet orogenic evolution, as well as establishing the Grenvillian 

LHO as a doubly-vergent orogen comparable in magnitude to the modern Himalaya-

Tibet Orogen (Toby Rivers, personal communication).   

Several recent tectonic models proposed for the evolution of the Grenvillian 

Orogeny have involved mid-Ottawan arc-accretionary orogenesis followed by post-

Ottawan to early-Rigolet slab break-off or retreat (Augland et al., 2015, 2017; Côté et 

al., 2018; Turlin et al., 2019). However, to be robust such models require more detailed 

geochemical studies to demonstrate the presence of tholeiitic to calc-alkaline basalt and 

arc andesites, calcic to calc-alkaline to alkaline arc granitoids, and the characteristic 

isotopic “pull-ups” and “pull-downs” that are typical of modern arc-accretionary 

orogens (DeCelles et al., 2009; Moyen et al., 2017). In the absence of such evidence, 

and respecting decades of work by numerous researchers, we have maintained in this 

thesis that the Grenville Orogen is an eroded, ancient analogue of a classic continental 

collisional large hot long-duration orogen, similar in scale and magnitude to the 

Himalaya-Tibet Orogen.       
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6 Appendices 

6.1 Appendix A 

6.1.1 Analytical techniques 

6.1.1.1 CA-TIMS U-Pb in zircon (after Sparkes and Dunning, 2014) 

The zircon grains analyzed in sample 11-383c, 11-331b, and 11-208 were hand-

picked using tweezers from mineral concentrates under a binocular microscope 

according to the criteria of clarity, similarity of crystal form and lack of inclusions. All 

grains were chemically abraded using the Mattinson (2005) chemical abrasion thermal 

ionization mass spectrometry (CA-TIMS) technique. The selected crystals of zircon 

were annealed at 900o C for 36 hours prior to etching in concentrated HF acid in a 

pressure bomb at 200o C for a few hours. This procedure is designed to remove any 

altered domains from the crystal that may have undergone lead loss. It is a remarkably 

effective and simple procedure and has now largely replaced physical abrasion (Krogh, 

1982) for zircon analysis.  

Single grains or a small number of zircon grains were grouped into fractions of 

like morphology to allow precise measurement of all Pb masses on the mass 

spectrometer. At an age of ca. 1000 Ma, for clear high quality zircon, this amounts to 

2-5 grains of zircon per fraction. These etched zircon fractions were washed in distilled 

HNO3, then doubly distilled H2O, prior to loading in Krogh-type TEFLON dissolution 

bombs. A mixed 205Pb/235U tracer was added in proportion to the sample weight, along 

with ca. 15 drops of distilled HF, then the bomb was sealed and placed in an oven at 

210o C for 5 days. Ion exchange chemistry was carried out according to the procedure 
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of Krogh (1973), with modified columns and reagent volumes scaled down to one tenth 

of those reported in 1973. The purified Pb and U were collected in a clean beaker in a 

single drop of ultrapure H3PO4. 

Lead and uranium were loaded together on outgassed single Re filaments with 

silica gel and dilute H3PO4. Mass spectrometry was carried out using a multi-collector 

MAT 262. The Faraday cups were calibrated with NBS 981 lead standard and the ion-

counting secondary electron multiplier (SEM) detector was calibrated against the 

Faraday cups by measurement of known lead isotopic ratios. The small amounts of Pb 

were measured by peak jumping on the SEM, with measurement times weighted 

according to the amounts of each mass present. U was measured by peak jumping on 

the SEM. A series of sets of data were measured in the temperature range 1400 to 1550o 

C for Pb and 1550 to 1640o C for U, and the best sets combined to produce a mean value 

for each ratio. The measured ratios were corrected for Pb and U fractionation of 0.1% 

/amu and 0.03%/amu respectively as determined from repeat measurements of NBS 

standards. The ratios were also corrected for laboratory procedure blanks (1-2 

picograms - Pb, 0.3 picogram - U) and for common lead above the laboratory blank 

with lead of the composition predicted by the two-stage model of Stacey and Kramers 

(1975) for the age of the sample. Ages are calculated using the decay constants 

recommended by Jaffey et al. (1971). 

The uncertainties on the isotopic ratios and ages were calculated using an 

unpublished program and are reported at the two sigma (σ) level. Ages are reported as 

the weighted average of the 206Pb/238U ages calculated using ISOPLOT (Ludwig, 2003), 

and are reported at the 95% confidence interval. 
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As a check on the accuracy of the entire laboratory procedure, nine U-Pb 

analyses of the TEMORA zircon standard (Black et al., 2003) were carried out 

overlapping in time with the measurement of these samples, using the same detector 

and measurement conditions. These were reported by Sparkes and Dunning (2014). 

Eight of nine analyses overlap and yielded a weighted average 206Pb/238U age of 416.84 

Ma (MSWD = 0.18), in close agreement with the published value (416.75 Ma, Black 

et al., 2003). 

6.1.1.2 Whole rock major and trace elements 

Selected samples were crushed and powdered using standard clean laboratory 

protocols at MUN. These samples were then sent to the Activation Laboratories where 

they were mixed with a flux of lithium metaborate and lithium tetraborate and fused in 

an induction furnace. The melt was immediately poured into a solution of 5% nitric 

acid containing an internal standard, and mixed continuously until completely dissolved 

(~30 minutes). The samples were then run for major oxides and selected trace elements 

(Ba, Be, Sc, Sr, V, Y, Zr; Code 4B) on a combination of simultaneous/sequential 

Thermo Jarrell-Ash ENVIRO II ICP or a Varian Vista 735 ICP. Calibration was 

performed using 7 prepared USGS and CANMET certified reference materials. One of 

the 7 standards was used during the analysis for every group of ten samples. Totals are 

expected to be between 98.5% and 101%. For lower results, samples were scanned for 

base metals as low results may indicate sulphate or other elements like Li, which are 

normally not scanned for. Samples with low totals were re-fused and reanalyzed. For 

the remaining trace elements (code 4B2-STD), samples were diluted and analyzed by 

Perkin Elmer Sciex ELAN (6000, 6100, or 9000 series) inductively coupled plasma 

mass spectrometer (FUS-MS). Three blanks and five controls (three before the samples 

http://www.actlabs.com/page.aspx?page=514&app=226&cat1=549&tp=12&lk=no&menu=64
http://www.actlabs.com/page.aspx?page=515&app=226&cat1=549&tp=12&lk=no&menu=64&print=yes
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group and two after) were analyzed per group of samples; duplicates were fused and 

analyzed for every 15 samples; and the instrument was recalibrated after every 40 

samples analyses. Typical precision and accuracy for these analyses (excluding those 

close to their detection limit) is 3%–5% for the major elements and 5%–20% for the 

trace elements. All the elements and detection limits for both analyses are listed below.  

Analyte 
Symbol 

Unit 
Symbol 

Detection 
Limit 

Analysis 
Method  

Analyte 
Symbol 

Unit 
Symbol 

Detection 
Limit 

Analysis 
Method 

SiO2 % 0.01 FUS-ICP  Nb ppm 1 FUS-MS 

Al2O3 % 0.01 FUS-ICP  Mo ppm 2 FUS-MS 

Fe2O3(T) % 0.01 FUS-ICP  Ag ppm 0.5 FUS-MS 

MnO % 0.001 FUS-ICP  In ppm 0.2 FUS-MS 

MgO % 0.01 FUS-ICP  Sn ppm 1 FUS-MS 

CaO % 0.01 FUS-ICP  Sb ppm 0.5 FUS-MS 

Na2O % 0.01 FUS-ICP  Cs ppm 0.5 FUS-MS 

K2O % 0.01 FUS-ICP  La ppm 0.1 FUS-MS 

TiO2 % 0.001 FUS-ICP  Ce ppm 0.1 FUS-MS 

P2O5 % 0.01 FUS-ICP  Pr ppm 0.05 FUS-MS 

LOI %  FUS-ICP  Nd ppm 0.1 FUS-MS 

Total % 0.01 FUS-ICP  Sm ppm 0.1 FUS-MS 

Sc ppm 1 FUS-ICP  Eu ppm 0.05 FUS-MS 

Be ppm 1 FUS-ICP  Gd ppm 0.1 FUS-MS 

V ppm 5 FUS-ICP  Tb ppm 0.1 FUS-MS 

Ba ppm 3 FUS-ICP  Dy ppm 0.1 FUS-MS 

Sr ppm 2 FUS-ICP  Ho ppm 0.1 FUS-MS 

Y ppm 2 FUS-ICP  Er ppm 0.1 FUS-MS 

Zr ppm 4 FUS-ICP  Tm ppm 0.05 FUS-MS 

Cr ppm 20 FUS-MS  Yb ppm 0.1 FUS-MS 

Co ppm 1 FUS-MS  Lu ppm 0.04 FUS-MS 

Ni ppm 20 FUS-MS  Hf ppm 0.2 FUS-MS 

Cu ppm 10 FUS-MS  Ta ppm 0.1 FUS-MS 

Zn ppm 30 FUS-MS  W ppm 1 FUS-MS 

Ga ppm 1 FUS-MS  Tl ppm 0.1 FUS-MS 

Ge ppm 1 FUS-MS  Pb ppm 5 FUS-MS 

As ppm 5 FUS-MS  Bi ppm 0.4 FUS-MS 

Rb ppm 2 FUS-MS  Th ppm 0.1 FUS-MS 

Nb ppm 1 FUS-MS  U ppm 0.1 FUS-MS 
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6.1.1.3 Whole-rock Rb-Sr and Sm-Nd isotope analysis 

In order to carry out whole rock Sm-Nd isotope ratio analyses of selected 

samples by thermal ionization mass spectrometer (TIMS), whole rock powders were 

dissolved in Savillex© Teflon beakers using an 8 ml (4:1) mixture of 29 M HF – 15 M 

HNO3. Prior to acid digestion, a mixed 150Nd/149Sm spike was added to each sample 

with both sample and spike being weighed on a high-precision balance. After five days 

of digestion, the solution was evaporated to dryness and then redissolved in 6 M HCl 

for 2-3 days. The sample was dried down and then re-dissolved in 1.0 ml of 2.5 M HCL. 

Samples were then loaded into a column containing cation exchange resin AG-50W-

X8, H+ form, 200-400 mesh where a Sr fraction could be isolated followed by collection 

of bulk rare earth elements (REE). This solution was then dried and taken up in 0.18 M 

HCl and loaded on a second column containing Eichrom© Ln resin (50-100 mesh) to 

isolate Sm and Nd separately from the other REEs. Sm and Nd concentrations and the 

Nd isotopic compositions were determined using a multi-collector Finnigan Mat 262 

mass spectrometer in static mode for concentration determination, and dynamic mode 

for isotopic composition determination. Sm and Nd were loaded onto a double rhenium 

filament assembly and instrumental mass fractionation of Sm and Nd isotopes was 

corrected using a Raleigh law relationship relative to 146Nd/144Nd = 0.7219 and 

152Sm/147Sm = 1.783. The measured values were adjusted to the JNdi-1 standard 

(143Nd/144Nd = 0.512115, Tanaka et al., 2000). Our current measurement of JNdi-1 at 

the time of this study yielded a mean 143Nd/144Nd = 0.512098 ± 6 (2σ, n = 15). We also 

analyzed USGS whole rock reference material BCR-2 with each analysis comprising a 

separate dissolution, providing the best estimate of the reproducibility of an individual 

whole-rock analysis. The mean values of BCR-2 are as follows, where the relative two 
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standard deviations of the mean (n = 11) are given in parentheses in percent; 

143Nd/144Nd = 0.512636 (0.0021%); 147Sm/144Nd = 0.1383 (0.389%); Nd ppm = 27.7 

(0.7%); Sm = 6.33 (0.6%). These results are in agreement with the results reported by 

Raczek et al. (2003). For Sr, the measured chemical blank is below 0.7 ng and is 

considered negligible. The Sr isotopic ratios were normalized to 88Sr/86Sr = 8.375209. 

The reported values were adjusted to the National Bureau of Standards-987 Sr standard 

(87Sr/ 86Sr = 0.710240), for which the mean value measured at MUN was 0.710245 ± 

19 (2σ, n = 20). 

6.1.1.4 Whole-rock Pb isotope analyses 

For the Pb isotope analysis, approximately 0.2 g of whole-rock powder was 

dissolved in Savilex© Teflon beakers using a mixture of HF – HNO3 acids. After five 

days of digestion, the solution was evaporated to dryness and then taken up in 6 N HCl 

acid for two days. The solution was then evaporated again and taken up in HBr. Pb 

elution was achieved using the standard anionic HBr – HCl chromatography. All 

reagents were purified by sub-boiling in order to minimize contamination. Isotopic 

ratios were obtained using a multicollector Finnigan Mat 262 mass spectrometer in 

static mode. The reported Pb isotopic ratios are corrected for mass fractionation by a 

factor of 0.126% per amu, which was obtained by measuring the deviation from 

repeated (n = 11) analyses of the NBS 981 standard. In-run precisions on all isotopic 

ratios are given at 95% confidence level.  

6.1.1.5 Whole-rock oxygen isotope analyses 

For the oxygen isotope analysis, performed at the Western University, Ontario, 

Canada, whole-rock powders of about 8 mg of each sample are placed in spring-loaded 
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sample holders, and heated while pumping in vacuo overnight at 150 °C to remove 

sorbed water. The samples were then loaded into Ni-reaction vessels under dry nitrogen 

and heated while pumping under vacuum at 300°C for an additional three hours to 

eliminate any remaining water from the system. Structural oxygen was then liberated 

using chlorine trifluoride, and the oxygen was then reacted with incandescent carbon to 

produce carbon dioxide gas, following Clayton & Mayeda (1963), as modified by 

Borthwick & Harmon (1982). The oxygen isotope measurements were conducted using 

a dual-inlet, triple-collecting Thermo Scientific Delta Plus XL IRMS. All results are 

reported in the standard δ-notation in parts per thousand (‰) relative to Vienna 

Standard Mean Ocean Water (VSMOW) on the VSMOW-SLAP scale, to which 

internal laboratory standards have been calibrated following the protocol of Coplen 

(1996). The target reproducibility of duplicate analyses of samples is ± 0.2‰. 
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6.2 Appendix B 

6.2.1 Effects of high-grade metamorphism and hydrothermal alteration 

Chemical mobility in hydrothermally altered rocks can be assessed by using 

geochemical indices that have the potential to indicate changes in major element 

compositions resulting from the formation of sericite, chlorite, pyrite, and carbonates 

during hydrothermal alteration. The mafic rocks from both the VC and LBS suites 

exhibit negligible carbonate, but contain variable proportions of sericite and minor 

chlorite, with the LBS sample 11-331b exhibiting the highest proportions (0.10%, 18%, 

and 0.24%, respectively). LBS sample 11-317a has a thin K-feldspar vein that cuts 

across the entire thin section. For whole-rock analysis, these alteration zones were 

removed as much as possible and only fresh-looking parts were analyzed. The mafic 

rocks in our study exhibit an alteration index (A.I = [(MgO + K2O)/ (MgO + K2O + 

Na2O + CaO)] × 100; Ishikawa et al., 1976) between 36-49, and a peraluminous index 

(PI = Al2O3/ (CaO + Na2O + K2O)mol.) (Hashiguchi et al., 1983) between 0.56-0.86 

(except samples 11-317a and 11-331b having P.Is of 0.97 and 1.15, respectively). These 

ranges are similar to fresh MORB and arc-related mafic volcanic rocks (A.I = 36 ± 8 

and 34 ± 10, respectively, and P.I = 0.8 ± 0.2; Laflèche et al., 1992), suggesting no 

significant mobility in major elements, except for alkalis compared to aluminium in the 

two samples. All the samples exhibit low loss on ignition (table 3.2).  

The values of chlorite-carbonate-pyrite index (CCPI = 100 × (MgO + FeOt)/ 

(MgO + FeOt + Na2O + K2O) (Large et al., 2001) plotted against AI show a trend from 

the field for least altered basalt and andesite towards dolomite/ankerite extending 

outside the least altered box (fig. 6.1a). This trend is interpreted to be a result of Na loss 
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compared to Fe-Mg, as the samples contain minor chlorite, sericite and K-feldspar 

veins. This is further supported in the K2O + Na2O vs. 100 × K2O/(K2O+Na2O) diagram 

(fig. 6.1b; Hughes, 1972), where most of the samples plot within the igneous spectrum, 

but three exhibit a trend towards increasing K2O suggestive of K-metasomatism or 

relative Na-loss. The alteration index Al2O3/Na2O plotted against Na2O (fig. 6.1c; Spitz 

and Darling, 1978) shows that most of the mafic samples fall within the field for fresh 

to weakly altered rocks with two exhibiting relative Na-loss. The effect of sericite 

alteration is probably reflected in the low CaO value in the sample (11-331b) exhibiting 

the highest sericite content. Fe2O3 is fluid-mobile under reducing conditions and hence 

can be lost, whereas TiO2 and P2O5 are immobile and remain unchanged during 

hydrothermal alteration (Rollinson, 1993). The positive correlation between Fe2O3, 

TiO2, and P2O5 with Zr (fig. 3.8) in the mafic rocks suggests magmatic differentiation 

rather than alteration was the main process determining their major element 

characteristics. Extreme Fe-Ti enrichment in mafic tholeiites can also increase the CCPI 

values, but the major element compositions of most of the mafic samples in our study 

are interpreted to have been largely unaffected by hydrothermal alteration and 

granulite-facies metamorphism, except for mobility of alkalis in three samples and CaO 

in one sample.  

Thorium is generally considered to be immobile below amphibolite-facies 

conditions, although it can be mobilized during high-grade metamorphism in a water-

dominated system (Jenner, 1996). Th mobility can be assessed in the La/Th vs. Th/U 

diagram (fig. 6.1d) where four mafic samples exhibit La/Th ratios higher than common 

igneous rocks (La/Th ≤ 21; Rudnick et al., 1985; Sun and McDonough, 1989) 

suggesting minor Th and/or U mobility. However, low Th and La/Th ratios in many 
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granulites are considered as original features (Rudnick et al., 1985; Rudnick, 1992), 

and Th and U have been shown to be isochemically redistributed in mafic and calc-

alkaline rocks following the breakdown of accessory phases and dehydration reactions 

during granulite-facies metamorphism (Bingen et al., 1996; Bea and Montero, 1999; 

Bea et al., 1999). Our data exhibit comparable ratios for these elements to other least 

altered mafic granulites from the Grenville Province (e.g., Blein et al., 2003; Bonnet et 

al., 2005; Montreuil and Constantin, 2010), suggesting their La/Th ratios are original 

features.  

The K/Rb ratios (<500) in the mafic rocks from the LBS mostly fall within the 

range of the igneous fractionation trend (fig. 6.1e; Shaw, 1968; Rudnick et al., 1985), 

whereas the samples from the VC exhibit highly variable K/Rb ratios that do not 

correlate with their K2O contents. Overall, the samples from the LBS have higher Rb 

and K2O at relatively low K/Rb, possibly related to their higher modal proportions of 

biotite. The samples from the VC, with lower modal biotite, exhibit increase in K/Rb 

at K2O < 1 wt%, possibly suggesting these samples lost Rb because of biotite 

breakdown (Shaw, 1968; Rudnick et al., 1985).  

Partial melting and melt loss during metamorphism in mafic rocks would result 

in restitic compositions exhibiting LREE depletion along with either positive Eu 

anomalies or a decrease in original negative anomalies inherited from their protoliths 

(Rudnick, 1992). Samples from both the mafic suites exhibit a narrow range in Eu/Eu* 

(fig. 6.1f), suggesting that they have not been modified by partial melting. In N-MORB-

normalized REE and HFSE diagrams (fig. 6.1g-h), the HFSE and REE patterns of the 

most altered mafic samples from both suites are similar to the least altered samples 
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except 11-331b, which exhibits slight but noticeable depletion in LREE compared to 

the OIB pattern.   

Dehydration melting in mafic migmatites has been shown to produce 

leucosomes that are not significantly different than their original protolith compositions 

(Sawyer, 1991), and many subsequent studies have shown that such process may have 

only minor effect on immobile element remobilization in mafic gneisses (e.g., Blein et 

al., 2003). For example, poikiloblastic garnet-bearing mafic migmatites in the marginal 

gabbro from the Baie du Nord segment in the MIZ (north of the study area) were shown 

to have broadly retained their protolith compositions inasmuch as they are identical to 

samples from the main unaltered Fe-Ti gabbro body (Cox et al., 1998). Several studies 

of high-grade gneisses in the Grenville Province and elsewhere have demonstrated that 

high-grade metamorphism can be effectively isochemical for immobile-incompatible 

major and trace elements e.g., HFSE and REE (Ludden et al., 1982; Blein et al., 2003; 

Bonnet et al., 2005; Dickin and McNutt, 2007; Sappin et al., 2009; Yardley, 2012; 

Corriveau and Spry, 2014).  

The screening process indicates minor hydrothermal alteration in a few samples, 

but most exhibit major and trace element features indicating they are not restites and 

that hydrothermal alteration has not significantly changed their whole-rock immobile 

incompatible element concentrations and ratios. This conclusion is supported by other 

studies that suggest the incompatible element concentrations remain largely unchanged 

in tholeiitic rocks during high-grade metamorphism and hydrothermal alteration (e.g., 

Laflèche et al., 1992, 1998; Blein et al., 2003; Bonnet et al., 2005; Corriveau and 

Bonnet, 2005; Sappin et al., 2009; Yardley et al., 2012; Corriveau and Spry, 2014). 
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Figure 6.1. Plots the data for the mafic rocks from VC and LBS to assess the effects 
post-magmatic alteration. (a) CCPI vs. AI (alteration box plot; Large et al., 2001); (b) 
K2O + Na2O vs (100 × K2O)/ (K2O + Na2O) (Hughes et al., 1972); (c) Al2O3/Na2O vs. 
Na2O (modified after Spitz and Darling, 1978); (d) Th/U vs. La/Th plot (modified 
after Rudnick et al., 1985); (e) K2O vs. Rb plot (modified after Rudnick et al., 1985); 
(f) Eu/Eu* vs. K/Rb plot (modified after Rudnick, 1992); N-MORB normalized REE, 
Th, Nb, Zr, and Ti plots for the mafic rocks from the (g) LBS and (h) VC. N-MORB 
normalization values from Sun and McDonough (1989).    
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6.3 Appendix C 

6.3.1 Isotope and trace element modelling 

6.3.1.1 The assimilation fractional crystallization model (AFC) 

The assimilation fractional crystallization (AFC) model is based on a strict 

relationship between the amount of material assimilated and the amount of material 

crystallized during cooling of the magma. The AFC is expressed by the following 

equations (DePaolo, 1981): 

For an element: 

𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐶𝐶0[𝐹𝐹−𝑍𝑍 + �
𝑟𝑟

𝑟𝑟 − 1
�
𝐶𝐶𝑎𝑎
𝑍𝑍𝐶𝐶0

(1 − 𝐹𝐹𝑍𝑍)] 

For an isotopic ratio: 

𝐼𝐼𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴 =
� 𝑟𝑟
𝑟𝑟 − 1� �

𝐶𝐶𝑎𝑎
𝑍𝑍 � (1 − 𝐹𝐹−𝑍𝑍)𝐼𝐼𝐶𝐶𝑎𝑎 + 𝐶𝐶0𝐹𝐹−𝑍𝑍𝐼𝐼𝐶𝐶0

� 𝑟𝑟
𝑟𝑟 − 1� �

𝐶𝐶𝑎𝑎
𝑍𝑍 � (1 − 𝐹𝐹−𝑍𝑍) + 𝐶𝐶0𝐹𝐹−𝑍𝑍

 

where 𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴 , 𝐶𝐶0, and 𝐶𝐶𝑎𝑎 are the concentrations of an element in the resulting 

magma, parental magma and assimilating material (wall-rock), respectively. 𝐼𝐼𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴 , 

𝐼𝐼𝐶𝐶0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐶𝐶𝑎𝑎 are isotopic ratios in the magma undergoing AFC process, in the parental 

magma, and isotopic ratios in the assimilating material (wall-rock), respectively. F is 

the fraction of melt during cooling of the magma. The r value describes the relative 

ratio of assimilated material to crystallized material, and it is expressed by 𝑟𝑟 = 𝑚𝑚𝑎𝑎
𝑚𝑚𝑐𝑐

, 

where ma is the amount of assimilated material and mc is the amount of crystallized 

material. The z value in AFC equations are expressed by z = 𝑟𝑟+𝐷𝐷−1
𝑟𝑟−1

 

where D is the bulk partition coefficient calculated by: 
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 D = 𝛴𝛴𝑖𝑖𝑛𝑛 𝑥𝑥𝑖𝑖𝑘𝑘𝑎𝑎𝑖𝑖 = 𝑥𝑥𝑎𝑎𝑘𝑘𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑟𝑟𝑎𝑎𝑙𝑙 𝑎𝑎 + 𝑥𝑥𝑏𝑏𝑘𝑘𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑟𝑟𝑎𝑎𝑙𝑙 𝑏𝑏 + ⋯+ 𝑥𝑥𝑛𝑛𝑘𝑘𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑟𝑟𝑎𝑎𝑙𝑙 𝑛𝑛 

where x is the weight fraction of the mineral phase i in the fractionation 

assemblage, and kd is the partition coefficient of an element (i.e., Sr and Nd) for each 

mineral phase in the fractionation assemblages. 

6.3.1.2 Bulk mixing  

Concentration of an element in a magma resulted from simple mixing of two 

different magmas is expressed by the following equations (Powell 1984): 

For an element: 𝐶𝐶𝑚𝑚 = 𝑋𝑋(𝐶𝐶𝑎𝑎 − 𝐶𝐶𝑏𝑏) + 𝐶𝐶𝑏𝑏 

For isotopic ratio: 𝐼𝐼𝐶𝐶𝑚𝑚 = 𝐼𝐼𝐶𝐶𝑎𝑎 �
𝐴𝐴𝑎𝑎𝑋𝑋
𝐴𝐴𝑚𝑚
� + 𝐼𝐼𝐶𝐶𝑏𝑏 (𝐴𝐴𝑏𝑏(1−𝑥𝑥)

𝐴𝐴𝑚𝑚
) 

where Ca, Cb, and Cm are the concentrations of an element in the assimilating 

material a (e.g., wall-rock), in the parental magma b, and in mixed magma m resulted 

from mixing of a and b, respectively. 𝐼𝐼𝐶𝐶𝑎𝑎, 𝐼𝐼𝐶𝐶𝑏𝑏 , 𝐼𝐼𝐶𝐶𝑚𝑚 are the isotopic ratios in the 

assimilating material, in the parental magma, and in the mixed magma resulting from 

bulk mixing of a and b, respectively. X is the degree of mixing. 

6.3.1.3 Non-modal batch melting 

For a mass of solid 𝑀𝑀𝑜𝑜 with concentration of some element as 𝐶𝐶𝑠𝑠𝑜𝑜, if partial 

melting produces melt of volume L with concentration of the element as 𝐶𝐶𝑙𝑙 and in the 

residual solid 𝐶𝐶𝑠𝑠 with mass as M, then batch melting assumes that total melt fraction 

attains equilibrium with the solid, and only then the melt is extracted fully. From mass 

balance consideration we get the following relationship:  

M0 = M + L, and 𝐶𝐶𝑠𝑠𝑜𝑜𝑀𝑀𝑜𝑜 =  𝐶𝐶𝑙𝑙𝐿𝐿 +  𝐶𝐶𝑆𝑆𝑀𝑀, which gives us 𝐶𝐶𝑠𝑠𝑜𝑜 = 𝐹𝐹𝐶𝐶𝑙𝑙 + (1 − 𝐹𝐹)𝐶𝐶𝑠𝑠 

where melt fraction 𝐹𝐹 =  𝐿𝐿
𝑀𝑀𝑜𝑜

 , and partition coefficient 𝐷𝐷 = 𝐴𝐴𝑠𝑠
𝐴𝐴𝑙𝑙

 . 
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For non-modal batch melting, proportions of mineral phases entering melt 𝑝𝑝𝑖𝑖 

differ from those in the residual solid so that at any point during melting 𝐷𝐷 = 𝐷𝐷𝑜𝑜−𝐴𝐴𝐹𝐹
1−𝐴𝐴

 , 

where the original value of bulk partition 𝐷𝐷𝑜𝑜 = ∑ 𝑋𝑋𝑖𝑖𝑜𝑜𝐷𝐷𝑖𝑖𝑖𝑖  and the bulk partition 

coefficient of phases melting to form liquid is 𝑃𝑃 = ∑ 𝑝𝑝𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖 . The equation for non-modal 

batch melting given by Shaw (1970) is 𝐴𝐴𝑙𝑙
𝐴𝐴𝑠𝑠𝑜𝑜

= 1
𝐷𝐷𝑜𝑜+𝐴𝐴(1−𝐹𝐹)

 .  
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Table 2.1: U-Pb data for the mafic sample in the Complexe de la Plus Value (PLV), Canyon domain.


U 
(ppm)


Pb rad 
(ppm)b


Total 
common 
Pb (pg) 206Pb/204Pb 208Pb/ 206Pb 206Pb/ 238U 2𝜎𝜎 ± 207Pb/ 235U 2𝜎𝜎 ± 207Pb/ 206Pb 2𝜎𝜎 ± 206Pb/238U 207Pb/235U 207Pb/206Pb


Fraction
Z1 1 euh prm 0.002 303 57.4 5.6 996 0.0573 0.1938 78 2.1362 120 0.07994 36 1142 1161 1196
Z2 1 best prm 0.002 273 52.2 9.3 559 0.0536 0.1961 152 2.1664 202 0.08012 54 1154 1170 1200
Z3 1 euh prm 0.002 202 45.2 9.7 449 0.098 0.2196 140 2.5749 236 0.08504 66 1280 1294 1316
Z4 4 best euh prm 0.006 47 9.2 5.6 653 0.0589 0.1999 90 2.2271 184 0.08079 56 1175 1190 1216
Z5 3 clr euh prm 0.004 49 8.7 2.1 1228 0.0473 0.1838 100 1.9325 170 0.07628 58 1087 1092 1102


Note:


a . Weights of grains were estimated, with potential uncertainties of 50% for these small samples. 
b . Radiogenic lead


Weight 
(mg)a


All zircon grains were chemically abraded (Mattinson, 2005) prior to dissolution. Z, zircon; 2, 4, number of grains in analysis; prm, prism; sml, small; euh, euhedral; clr, 
clear. 


c . Atomic ratios corrected for fractionation, spike, laboratory blank of 1-2 picograms (pg) common lead, and initial common lead at the age of the sample were 
calculated from the model of Stacey and Kramers (1975), and 0.3 pg U blank. Two sigma uncertainties are reported after the ratios and refer to the final digits.


Sample 
#383c


Age [Ma]Concentration Measured Corrected atomic ratiosc





		Table 1 (U-Pb)






Sample Geol. 
Domain Nd (ppm) Sm (ppm) Sm/Nd


147Sm/ 
144Ndcalc


143Nd/ 
144Ndmeas


2𝜎𝜎
143Nd/ 
144Ndini


εNd 0 εNd 1.4 Ga TDM
TDM  


(DePaolo)
TCHUR


RS383E++ PLV 34.13 9.25 0.27 0.1638 0.512314 8 0.510807 -6.2 -0.4 2573 2206 1495
383c PLV 30.64 8.58 0.28 0.1693 0.512362 7 0.510805 -5.2 -0.4 2723 2318 1526


395-d1 MIU 56.22 16.86 0.30 0.1813 0.512304 7 0.510637 -6.4 -3.7 3668
395-dx MIU 52.70 16.81 0.32 0.1928 0.512368 7 0.510595 -5.1 -4.6


RS395a2
+ MIU 44.38 9.856 0.22 0.1342 0.512106 3 0.510871 -10.2 0.9 2015 1777 1292


RS209-1+ QFU 20.99 5.15 0.25 0.1482 0.512191 6 0.510828 -8.6 0.0 2247 1961 1399


Note:
1. calc = calculated, meas = measured, ini = initial, TDM = depleted mantle model age.


3. TDM = 1/λ × ln[1+{(143Nd/144Nd)sample - 0.513160}/{(147Sm/144Nd)sample - 0.2137}]


5. (147Sm/144Nd) calc = Sm/Nd × [0.53151+0.14252 (143Nd/144Nd) meas]
6. The results of isotopic measurements for Nd reference material JNdi-1 (Nd) = 512098 ± 6 (2𝜎𝜎, n = 15).


9. Sm and Nd concentrations were obtained by FUS-MS and have detection limits of 0.1 ppm.


2. TDM values are calculated based on present day (147Sm/144Nd)DM = 0.2137 and (143Nd/144Nd)DM = 0.513160 (Goldstein et al., 1984) of 
depleted mantle based on the assumption that this mantle was separated from the CHUR at 4.55 Ga with a linear evolution, and present day εNd 
value of +10. TDM (DePaolo) is calculated after DePaolo (1981a).


4. εNd and TCHURvalues are calculated based on chondrite uniform reservoir (CHUR) values of 147Sm/144Nd = 0.1960 ± 4 and 143Nd/144Nd = 
0.512630 ± 11 (2


𝜎𝜎


) (Bouvier et al., 2008), and λ 147Sm = 6.539 (± 0.061) x 10-12 Yr-1 (Begemann et al., 2001). 2


𝜎𝜎


 = 2 standard error of the 
mean x 10-6.


Table 2.2: Sm-Nd data for the mafic rocks in the Canyon domain.


7. Samples with superscript + are from Valverde Cardenas et al. (2012); superscript ++ indicates previously analyzed samples published here; 
all samples recalculated based on the values of CHUR and DM used here.
8. All model ages and εNd values are calculated using U-Pb crystallization ages (t) determined for the mafic sill in PLV (this study), the light 
grey rock in MIU (Dunning and Indares, 2010), and an estimated age of 1.4 Ga for the QFU (Valverde Cardenas et al., 2012; Indares and 
Moukhsil, 2013).  
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Table 2.3: Major and trace element data for the mafic rocks from the PLV, MIU, and QFU, Canyon domain.


Suite PLV PLV PLV PLV MIU MIU MIU MIU MIU MIU MIU QFU QFU 
Sample 11-383c RS383E++ RS399++ RS383E1++ 11-395dx 11-395d1 11-395d4 RS395A1 11-395 11-395g2 RS395A2+ RS206C1+ RS 209-1+


SiO2 46.21 45.03 43.76 44.36 40.55 40.36 40.38 42.58 46.55 46.54 46.08 53.38 52.95
Al2O3 13.35 13.14 14.01 12.69 13.53 12.30 14.07 12.56 19.05 20.34 18.09 14.55 15.83
Fe2O3 (T) 19.44 20.30 19.75 20.72 23.75 25.44 22.01 21.85 13.26 13.06 13.35 14.34 12.83
MnO 0.30 0.30 0.28 0.32 0.41 0.45 0.33 0.27 0.18 0.16 0.19 0.22 0.19
MgO 5.72 6.03 6.53 6.6 5.86 6.04 5.96 7.08 4.64 3.56 4.82 4.73 8.13
CaO 9.60 10.05 10.27 10.08 10.63 11.49 10.71 10.72 8.83 8.56 9.08 8.15 8.15
Na2O 1.66 1.17 1.00 1.54 0.95 0.59 1.32 1.14 3.01 3.00 3.02 0.78 0.74
K2O 0.89 0.90 0.67 0.59 0.40 0.13 0.84 0.89 1.91 2.06 1.83 0.77 0.23
TiO2 2.65 2.84 2.64 3.44 3.70 4.05 3.52 2.99 1.78 1.83 1.82 2.12 0.94
P2O5 0.48 0.49 0.44 0.32 0.45 0.70 0.45 0.27 0.52 0.78 0.50 0.45 0.07
LOI -0.64 -0.87 -0.28 -0.6 -0.67 -0.96 -0.55 < 0.01 0.87 0.13 0.45 < 0.01 -0.02
Total 99.66 99.38 99.07 100.06 99.56 100.59 99.04 100.35 100.6 100.02 99.23 99.49 100.04
FeOt 17.49 18.27 17.77 18.64 21.37 22.89 19.8 19.66 11.93 11.75 12.01 12.9 11.54
#Mg 0.37 0.37 0.40 0.39 0.33 0.32 0.35 0.39 0.41 0.35 0.42 0.40 0.56
Sc 50 52 50 58 63 66 60 60 29 19 34 43 37
V 460 446 435 742 616 470 623 803 282 134 302 260 229
Cr 50 52 71 –– < 20 < 20 < 20 60 < 20 < 20 < 20 40 288
Co 130 233 177 203 189 148 171 278 66 53 158 297 168
Ni 40 50 64 70 < 20 < 20 < 20 100 < 20 < 20 < 20 30 81
Cu 80 26 45 35 20 20 20 70 20 < 10 < 10 10 34
Zn 130 158 133 209 130 170 180 210 90 140 190 180 161
Y 58 57 49 70 91 104 86 39 34 31 43 60 28
Zr 170 183 154 50 152 216 164 96 112 425 135 272 57
Hf 4.5 5.1 4.5 2.0 4.1 5.2 4.8 2.9 3.1 8.5 4.0 6.9 2.0
Ga 19 19 23 18 18 15 28 21 24 25 25 21 21
Ge 2 –– –– –– 4 3 3 2 2 2 1 2 ––
Nb 14 13 9 27 34 27 27 9 9 10 11 14 4
Ta 2.0 1.0 0.5 1.5 3.7 2.5 3.4 0.8 1.0 1.0 0.5 0.9 0.3
Rb 48 40 17 9 11 2 9 29 64 62 101 40 10
Ba 310 269 141 198 111 22 115 147 1000 1085 614 556 63
Sr 134 122 221 156 110 73 163 149 897 949 606 212 132
Pb < 5 –– –– –– < 5 < 5 < 5 7 < 5 7 21 8 ––
Th 0.5 0.6 0.4 1.0 1.1 1.1 2.4 0.6 1.0 2.8 1.6 3.2 3.2
U 0.5 0.5 0.3 0.7 0.6 0.6 1.2 0.3 0.4 0.6 0.7 1.3 1.6
Cs 0.6 –– –– –– < 0.5 < 0.5 < 0.5 0.4 0.5 0.6 1.3 0.4 ––
La 16.7 17.4 19.1 16.0 23.2 27.1 39.2 19.3 25.2 32.5 29.4 41.3 12.6
Ce 45.4 49.1 51.2 48.8 68.0 75.8 112.0 54.5 60.7 78.0 73.4 91.5 34.2
Pr 6.8 7.1 6.9 7.9 11.1 11.6 16.8 7.5 8.6 9.7 10.2 11.8 4.7
Nd 32.8 33.1 32.0 41.6 55.6 57.9 76.1 31.7 40.3 42.7 45.3 49.7 20.8
Sm 9.3 9.2 8.5 13.7 18.4 18.1 19.1 7.5 9.4 9.0 10.2 10.9 5.4
Eu 2.08 2.28 2.48 1.78 1.90 1.95 3.47 2.19 2.33 2.41 2.85 2.71 1.10
Gd 9.6 10.1 9.1 14.8 20.5 19.6 17.4 7.6 7.9 8.3 9.6 10.7 5.4
Tb 1.7 1.9 1.7 2.7 3.3 3.3 2.7 1.3 1.2 1.3 1.5 1.9 1.0
Dy 10.7 10.8 9.5 14.5 18.4 19.3 15.3 7.0 6.8 6.8 7.7 10.6 5.5
Ho 2.2 2.2 1.9 2.6 3.5 3.8 3.0 1.3 1.4 1.3 1.4 2.0 1.1
Er 6.3 6.7 5.8 7.4 9.9 10.9 8.8 3.9 3.8 3.6 4.2 6.2 3.3
Tm 0.93 1.02 0.87 1.05 1.42 1.61 1.28 0.61 0.55 0.54 0.62 0.94 0.50
Yb 5.9 6.2 5.4 6.2 8.9 10.3 8.0 3.8 3.6 3.3 3.8 5.9 3.0
Lu 0.97 0.88 0.79 0.84 1.36 1.59 1.26 0.56 0.55 0.53 0.55 0.85 0.40
∑REE 151.4 158.0 155.2 179.9 245.5 262.9 324.4 148.9 172.4 200.0 200.8 247.0 98.9
Eu/Eu* 0.67 0.72 0.86 0.38 0.30 0.32 0.58 0.89 0.83 0.85 0.88 0.77 0.62
Ti/Eu 7638 7467 6382 11586 11674 12451 6081 8185 4580 4552 3828 4690 5123
Zr/Hf 38 36 34 26 37 42 34 33 36 50 34 39 29
Ti/Y 274 297 321 293 244 233 245 457 314 354 251 210 201
Zr/Y 3 3 3 1 2 2 2 2 3 14 3 5 2
Ti/Zr 93 93 103 412 146 112 129 187 95 26 81 47 99
Zr/Yb 29 30 29 8 17 21 21 25 31 129 35 46 19
(La/Nb)PM 1.2 1.3 2.2 0.6 0.7 1.0 1.5 2.3 2.9 3.4 2.7 3.1 3.5
(Nb/Th)PM 3.3 2.7 2.9 3.2 3.7 2.9 1.3 1.9 1.1 0.4 0.8 0.5 0.1
(La/Yb)CN 2.0 2.0 2.6 1.8 1.9 1.9 3.5 3.6 5.0 7.1 5.5 5.1 3.0
(Gd/Yb)CN 1.3 1.3 1.4 2.0 1.9 1.6 1.8 1.6 1.8 2.1 2.1 1.5 1.5
(La/Sm)CN 1.2 1.2 1.4 0.8 0.8 1.0 1.3 1.7 1.7 2.3 1.9 2.4 1.5
A.I 37.0 38.0 39.0 38.0 35.0 34.0 36.0 40.0 36.0 33.0 35.0 38.0 48.0
CCPI 91 93 94 93 96 98 93 93 78 77 79 92 96
P.I 0.63 0.62 0.67 0.59 0.63 0.56 0.62 0.56 0..83 0.89 0.77 0.52 0.57
K2O/Na2O 0.5 0.8 0.7 0.4 0.4 0.2 0.6 0.8 0.6 0.7 0.6 1.0 0.3
Al2O3/Na2O 8.0 11.2 14.0 8.2 14.2 20.8 10.7 11.0 6.3 6.8 6.0 18.7 21.4


Note: 
1.     The oxide concentrations are reported in wt%, whereas trace element concentrations are reported in ppm. 
2.     The deviation of Eu from the rest of the REE can be expressed as Eu anomaly (Eu/Eu*), where Eu* refers to the value obtained by linear interpolation between adjacent elements. 
3.     FeOt = 0.8998 × Fe2O3; Ti = 5995 × TiO2


4.     #Mg is calculated as #Mg = MgO/(MgO + Fe2O3 total) in moles. 


6.     Superscript ++ indicates previously analyzed unpublished data. 
7.     Subscript 'PM' indicates primitive mantle-normalized and ‘CN’ indicates chondrite-normalized values of Sun and McDonough (1989).
8.  A.I, alteration index; P.I, peraluminous index; CCPI, chlorite-carbonate-pyrite index; see text for details.


5.     Superscript + indicates 1.41 Ga arc rocks from Valverde Cardenas et al. (2012). QFU, Quartzofeldspathic unit (see Indares and Moukhsil, 2013 for definitions).
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Table 3.1: U-Pb isotope data for the Vein Complex and the Layered Bimodal Suite, Canyon domain.


Fraction Description
Weight (a) 


(mg)
U  


(ppm)
Pb 


(ppm)(b)


Total 
common 
 Pb (pg) 206Pb/204Pb 208Pb/ 206Pb 206Pb/ 238U 2  ± 207Pb/ 235U 2  ± 207Pb/ 206Pb 2  ± Rho(d) 206Pb/ 238U


11-208
Z1 1 large prism 0.002 508 88.6 4.6 1780 0.1295 0.16858 112 1.6883 124 0.07264 28 0.85 1004.3
Z2 1 large prism 0.002 286 51.8 2.6 1784 0.1493 0.17205 98 1.7331 134 0.07306 40 0.71 1023.4
Z3 2 large prism 0.003 302 52.8 2.4 4060 0.1302 0.16892 104 1.6967 104 0.07285 20 0.90 1006.2
Z4 2 large prism 0.003 387 67.2 5.2 2400 0.1190 0.16956 156 1.7054 160 0.07295 34 0.87 1009.7
Z5 3 small clear round balls 0.003 202 35.0 2.9 2284 0.1115 0.16969 68 1.7043 88 0.07284 26 0.72 1010.4
Z6 3 small clear round balls 0.003 165 28.1 4 1339 0.0977 0.16869 84 1.6900 100 0.07266 32 0.69 1004.9
Z7 2 small clear round balls 0.002 48 8.3 1.5 678 0.1195 0.16980 138 1.6930 202 0.07231 78 0.47 1011.0
11-331b
Z1 2 prism 0.003 115 18.4 2.9 1280 0.0426 0.16684 94 1.6577 96 0.07206 36 0.62 994.7
Z2 1 prism 0.002 337 53.9 3.6 1482 0.0398 0.16730 76 1.6744 82 0.07259 28 0.65 997.2
Z3 1 prism 0.002 1946 310.7 18 1682 0.0397 0.16691 124 1.6724 134 0.07267 24 0.91 995.1
Z4 1 prism 0.003 160 25.7 30 186 0.0423 0.16772 104 1.6739 232 0.07238 90 0.44 999.5


Notes:
All zircon was chemically abraded (Mattinson, 2005) prior to dissolution. Z, zircon; 2, 4 number of grains in analysis.
(a) Weights of grains were estimated, with potential uncertainties of 50% for these small samples.  
(b) Radiogenic lead  


(d) Rho valuea were calculated after Schmitz & Schoene, 2007.
(e) Discordance =  [((207Pb/235U)/(206Pb/238U))-1] × 100 
Two sigma uncertainties are reported after the ratios and refer to the final digits.


(c) Atomic ratios corrected for fractionation, spike, laboratory blank of 1- 2 picograms (pg) common lead, and initial common lead at the age of the sample calculated from the model of Stace         


Concentration Measured Corrected Atomic Ratios(c)  







2  ± 207Pb/ 235U 2  ± 207Pb/ 206Pb 2  ±


6.2 1004.1 4.7 1003.9 9.3 -0.02
5.4 1020.9 5.0 1015.6 12.1 -0.24
5.7 1007.3 3.9 1009.8 7.4 0.11
8.6 1010.6 5.8 1012.6 10.7 0.09
3.7 1010.1 3.3 1009.5 8.8 -0.03
4.6 1004.8 3.8 1004.5 10.2 -0.01
7.6 1005.9 7.6 994.7 22.5 -0.51


5.2 992.5 3.7 987.6 11.3 -0.22
4.2 998.9 3.0 1002.5 9.3 0.16
6.8 998.1 5.1 1004.8 8.3 0.30
5.7 998.7 8.8 996.6 25.7 -0.09


                               ey & Kramers (1975), and 0.3 pg U blank.


Age [Ma]


Disc % (e)





		U-Pb data










Table 3.2: Major and trace element geochemistry of mafic and potassic dykes from the Vein Complex (VC) and the mafic sills from the Layered Bimodal Suite (LBS), Canyon dmoain.
Sample no RS430+ RS431+ 11-317a 11-331a 11-317b 11-331b 11-216-2c RS314+ 11-208 11-356-1 RS356+ 11-215-1 11-215-5 RS457+ 11-349 11-351 RS207b+


Layer type mafic layer mafic layer mafic layer mafic layer mafic layer mafic layer mafic layer mafic dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic  dyke mafic body
Geol. Domain
Group
SiO2 47.01 45.26 45.21 48.81 44.67 47.89 46.77 47.42 45.71 47.72 46.25 47.13 47.32 45.80 46.97 48.80 50.34
TiO2 1.29 2.21 2.45 2.16 2.36 3.79 1.741 0.859 2.74 2.32 2.89 1.57 1.43 3.14 1.10 2.12 1.33
Al2O3 16.79 14.43 17.26 15.89 16.23 16.63 16.61 14.57 15.97 14.94 12.02 17.35 16.42 15.40 15.67 14.32 14.95
Fe2O3 11.75 16.1 15.45 13.14 14.12 15.47 13.51 11.78 16.79 16.54 18.89 12.41 12.28 17.16 11.55 14.28 11.79
MnO 0.172 0.248 0.264 0.216 0.187 0.231 0.217 0.171 0.227 0.23 0.213 0.172 0.167 0.224 0.19 0.227 0.18
MgO 8.80 6.34 7.86 6.29 7.65 5.63 6.79 9.4 6.20 6.02 6.52 8.32 8.07 5.54 7.47 5.51 6.89
CaO 10.81 8.02 8.11 7.41 8.75 5.22 8.82 9.29 8.59 9.15 9.37 10.28 10.30 7.70 11.59 8.42 9.29
Na2O 2.35 3.12 1.34 2.51 2.84 2.06 3.81 3.21 2.97 2.54 0.43 2.56 2.55 3.07 2.8 3.15 2.73
K2O 0.25 1.14 0.75 1.37 1.34 1.5 1.49 0.56 0.76 0.79 1.04 0.40 0.37 1.02 1.18 0.94 1.31
P2O5 0.13 0.50 0.46 0.43 0.51 0.40 0.21 0.05 0.34 0.22 0.31 0.16 0.14 0.52 0.09 0.20 0.34
LOI 0.6 1.47 -0.04 0.29 0.39 0.08 0.41 1.77 0.41 0.05 1.67 -0.02 0.18 0.29 0.66 0.91 0.24
Total 99.94 98.84 99.11 98.51 99.05 98.92 100.4 99.09 100.7 100.5 99.61 100.3 99.23 99.88 99.29 98.88 99.38
#Mg 0.60 0.44 0.50 0.49 0.52 0.42 0.50 0.61 0.42 0.42 0.41 0.57 0.57 0.39 0.56 0.43 0.54
FeOt 10.57 14.49 13.90 11.82 12.71 13.92 12.16 10.60 15.11 14.88 17.00 11.17 11.05 15.44 10.39 12.85 10.61
Sc 34 33 30 26 27 26 27 31 31 39 55 26 31 29 41 37 34
V 212 254 301 270 248 276 284 209 248 332 815 220 231 195 278 306 205
Cr 180 490 70 70 60 80 40 320 90 140 10 70 160 70 260 130 140
Co 131 101 139 119 75 127 79 93 91 101 318 93 92 211 109 86 118
Ni 170 720 150 90 70 10 60 210 70 60 120 140 160 10 100 40 40
Cu 50 30 30 5 5 5 50 60 50 70 60 30 30 40 140 40 10
Zn 70 160 160 90 110 120 140 110 120 110 290 50 50 160 60 120 110
Ga 18 21 18 19 18 24 22 19 24 23 28 19 19 22 18 23 18
Rb 5 26 33 44 34 72 29 9 19 10 82 8 10 18 21 8 39
Cs 0.25 1.5 0.8 0.25 3.9 0.6 0.25 0.25 0.25 0.25 1.3 0.25 0.25 0.25 0.25 0.25 0.6
Sr 231 351 228 288 295 193 544 245 218 183 63 310 227 275 402 724 314
Ba 72 518 176 212 240 548 368 147 253 180 233 113 94 423 227 406 427
Ti 7746 13225 14670 12937 14166 22733 10437 5150 16432 13914 17350 9436 8567 18806 6618 12685 7943
Zr 77 110 127 113 113 261 103 49 206 159 167 87 108 222 56 158 182
Hf 2.2 3.1 3.1 3 3.1 6.1 2.7 1.4 5.3 4.4 4.5 2.2 2.8 6 1.7 4.5 4.6
Nb 6.12 8.4 6 7 7 14 8 3 8 5 7.1 8 9 16.44 3 8 8.2
Ta 0.4 0.3 1.1 1.6 1.0 2.8 0.8 0.1 1.1 1.2 0.57 1.3 1.5 1.1 1.5 1.1 0.44
Th 0.60 0.90 0.70 0.60 1.30 0.70 0.80 0.6 1.50 1.70 1.97 0.80 1.10 1.50 0.90 1.20 1.85
U 0.2 0.4 0.4 0.5 0.6 1.1 0.3 0.2 0.6 0.5 1.71 0.3 0.4 0.4 0.3 0.6 0.61
Pb 5 11 6 8 10 2.5 9 2.5 8 5 2.5 2.5 2.5 2.5 8 11 11
Y 20 34 31 27 25 26 20 20 41 42 50.4 18 23 48 21 47 37.6
La 5.5 10.3 14.8 15.3 15.9 17.8 26.4 5.5 14.7 14.1 20.5 8.4 9.8 20.5 18.8 31.7 27.9
Ce 14.1 27.1 33.1 34 38.4 46.7 56.7 12.3 35.1 32.3 51.4 19.2 22.2 49.6 34.2 70.5 60
Pr 2 4.07 4.55 4.48 5.02 6.81 6.64 1.68 5.12 4.49 6.93 2.71 2.95 6.81 4.09 9.44 7.24
Nd 9.6 18.7 21.7 21.1 23 31.9 27.4 8.1 25.4 21.8 29.8 13 14.1 29.6 16.9 40.6 29.2
Sm 2.7 5.2 5.3 4.9 5.9 7.9 5.7 2.4 7.1 6.5 7.4 3.4 3.8 7.6 3.9 9.3 6.18
Eu 1.10 2.01 1.71 1.80 1.89 2.13 1.90 1.02 2.13 1.98 2.32 1.21 1.21 2.66 1.24 2.39 1.95
Gd 3.20 5.70 5.50 4.90 5.70 7.10 5.0 3.1 7.60 7.30 8.23 3.4 4.0 8.4 3.8 8.7 6.41
Tb 0.60 1.00 0.90 0.80 0.90 1.10 0.70 0.6 1.3 1.3 1.4 0.6 0.7 1.4 0.7 1.5 1.1
Dy 3.40 5.80 5.90 5.20 5.00 5.90 4.30 3.4 7.80 8.20 8.32 3.5 4.3 8.3 4.1 9.3 6.51
Ho 0.70 1.20 1.20 1.10 0.90 1.10 0.80 0.7 1.60 1.60 1.66 0.7 0.9 1.7 0.8 1.8 1.31
Er 2.0 3.40 3.40 3.30 2.60 2.90 2.20 2 4.70 4.70 4.99 1.9 2.6 4.8 2.5 5.3 3.88
Tm 0.29 0.50 0.50 0.51 0.35 0.38 0.32 0.3 0.68 0.72 0.76 0.28 0.40 0.70 0.37 0.79 0.591
Yb 1.90 3.20 3.30 3.40 2.30 2.40 2.10 1.9 4.50 4.60 4.74 1.80 2.60 4.40 2.40 5.10 3.72
Lu 0.28 0.48 0.53 0.57 0.37 0.36 0.31 0.26 0.70 0.76 0.69 0.28 0.41 0.69 0.38 0.81 0.547


Notes: 
1. The oxide concentrations are reported in weight percentages (wt%), whereas trace element concentrations are reported in parts per million (ppm). 
2. The deviation of Eu from the rest of REE can be expressed as Eu anomaly (Eu/Eu*) where * refers to the value obtained by linear interpolation between adjacent elements. 
3. FeOt = 0.8998 × Fe2O3; Ti = 5995 × TiO2


4. #Mg = MgO/(MgO+Fe2O3 total) in moles. 
5. + sign indicates samples from Valverde Cardenas et al., 2012.
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Table 3.3: Whole rock Nd and Sr isotopic data of the mafic rocks from the Vein Complex and the Layered Bimodal Suite, Canyon domain.


Sample
Geological 


suites
Nd 


(ppm)
Sm 


(ppm) Sm/Nd
(147Sm/ 


144Nd)calc


(143Nd/ 
144Nd)meas 2s


(143Nd/ 
144Nd)ini εNd 0.0 εNd1.0 TCR TDM


Rb 
(ppm)


Sr 
(ppm) (87Sr/ 86Sr)meas. 2 (87Rb/ 86Sr)calc. (87Sr/ 86Sr) ini


Induced 
error in 


(87Sr/86Sr)ini


RS457+ VC1 31.71 7.90 0.25 0.1506 0.512410 7 0.511422 -4.3 1.5 1807 1503
11-208 VC2 23.08 6.42 0.28 0.1682 0.512596 7 0.511493 -0.7 2.9 1883 1459 19 218 0.707573 11 0.25225 0.70397 0.00007
11-351 VC3 36.71 8.24 0.22 0.1357 0.512050 7 0.511160 -11.3 -3.6 2161 1921 8 724 0.705110 10 0.03197 0.70465 0.00001
RS430+ LBS1 10.26 2.88 0.28 0.1697 0.512723 5 0.511610 1.8 5.2 1512 1082
RS431+ LBS1 27.30 5.35 0.20 0.1184 0.512248 4 0.511471 -7.5 2.5 1458 1258
11-331-a LBS1 19.29 4.50 0.23 0.1410 0.512217 7 0.511292 -8.1 -1.0 1971 1709 44 288 0.713150 34 0.44242 0.70682 0.00013


[0.712921] [10] [0.442424] [0.706594] [0.00013]
11-331-b LBS2 29.48 7.15 0.24 0.1466 0.512545 7 0.511583 -1.7 4.7 1396 1114 72 193 0.725198 14 1.08160 0.70973 0.00031


[0.725208] 26 [1.0816] [0.709740] [0.00031]


Note: 
1. Rb, Sr, Sm and Nd concentrations were obtained by ICP-MS and have precision less than ± 2%.
2. calc = calculated, meas = measured, ini = initial; replicate analyses are within parentheses [].


5. (147Sm/144Nd) calc = Sm/Nd × [0.53151 + 0.14252 (143Nd/144Nd) meas].
6. λ 87Rb = 1.42 × 10-11  Yr-1 (Begemann et al., 2001).
7. (87Rb/86Sr)calc = Rb/Sr × [2.6939 + 0.2832(87Sr/86Sr)meas].
8.  Induced error in (87Sr/86Sr) initial = 87Rb/86Sr × (% error assigned) × (eλt-1)  (Jahn 2004).
9. The results of isotopic measurements for Sr and Nd reference materials are: NBS-987 (Sr) = 0.710245 ± 19 (2𝜎𝜎). JNdi-1 (Nd) = 512098 ± 6 (2𝜎𝜎).
10. All model ages and εNd values are calculated at 1 Ga. 


3. Crustal residence ages (TCR) are calculated based on the present day 147Sm/144Nd = 0.2137 and 143Nd/144Nd = 0.51316 of depleted mantle with εNd value of +10, assuming a linear evolution from 4 
Ga to the present (Goldstein et al., 1994); depleted mantle model ages (TDM) are calculated based on the quadratic equation by DePaolo (1981a).


4. εNd values are calculated based on Chondrite uniform reservoir (CHUR) values of 147Sm/144Nd = 0.1960 ± 4 and 143Nd/144Nd = 0.512613 ± 11 (2


𝜎𝜎


) (Bouvier et al., 2008), and λ 147Sm = 6.539 (± 
0.061) × 10-12 Yr-1 (Begemann et al., 2001). 2  = 2 standard error of the mean × 10-6.
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Table 3.4: Parameters used for assiilation-fractional crystallization (AFC) calculations.
AFC Curve 


No. Sample No. Rock type Nd (ppm) Sm (ppm) Sr (ppm)
143Nd/144Nd 87Sr/86Sr DSr DNd R


I CG-554 Granodiorite 25.2 4.86 218 0.510974 0.723492 0.4 0.12 0.7
Ia 1.5 0.12 0.7
Ib 1.5 0.12 0.1
II CG-172A Quartz-diorite 28.9 6.78 1391 0.510753 0.703897 0.4 0.12 0.7
III ALC Archean lower crust 18.5 3.30 569 0.510416 0.705000 0.4 0.12 0.7


Note: Labradorian crust (CG-554 and CG-172A; Schärer, 1991); ALC (Weaver and Tarney, 1984), Sr isotope ratio 
estimated from Lewisian lower crust (Kerr et al., 1995); Nd isotope ratios from average of Gagnon terrane orthogneiss 
(Thomson et al., 2011). DSr value of 1.5 for the curves Ia and Ib are assumed; for remaining D values see fig. 3.13. 
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Table 4.1: Major and trace elements and Sr-Nd-Pb-O isotopes for the potassic to ultrapotassic rocks, Canyon domain.
Sample no RS351* 408 404 361-z 11-416* 209-2 398A 361 403(3) 462-z 338-z
Geol. Domain Canyon Canyon Canyon Canyon Canyon Canyon Canyon Canyon Canyon Canyon Canyon
Groups PUD1a PUD1a PUD1a PUD1a PUD1a PUD1b PUD1b PUD1b PUD2 PUD2 PUD2
SiO2 54.10 49.41 47.36 50.19 47.32 54.07 50.24 57.28 53.50 59.39 53.95
TiO2 2.14 2.36 3.25 1.98 2.05 2.59 2.05 2.42 2.49 2.05 1.50
Al2O3 15.23 16.85 12.78 14.36 15.86 15.38 12.92 15.15 10.79 12.73 11.96
Fe2O3 9.02 11.54 11.46 10.58 10.33 12.51 11.52 10.48 4.42 4.01 5.66
FeO* 8.12 10.38 10.31 9.52 9.29 11.26 10.37 9.43 3.98 3.61 5.09
MnO 0.11 0.14 0.13 0.10 0.15 0.22 0.15 0.15 0.08 0.06 0.09
MgO 3.55 5.02 7.45 6.05 5.64 5.37 10.99 3.18 6.80 4.84 6.42
CaO 6.62 7.20 9.07 5.92 6.52 7.76 7.37 5.52 6.42 3.86 6.49
Na2O 2.83 2.69 0.29 1.30 2.99 0.63 0.99 1.41 0.19 0.90 0.56
K2O 3.28 2.21 3.54 5.73 4.01 2.73 4.93 4.84 8.32 9.11 5.74
P2O5 0.84 0.89 2.30 1.15 1.17 1.99 1.45 1.48 4.80 2.34 4.07
LOI 1.34 1.22 1.57 1.25 1.09 1.92 1.46 1.81 1.13 0.92 2.21
Total 99.06 98.38 98.05 97.55 98.86 103.91 102.91 103.29 98.49 99.81 98.08
Na2O+K2O 6.11 4.90 3.83 7.03 7.00 3.36 5.92 6.25 8.51 10.01 6.30
K2O/Na2O 1.16 0.82 12.21 4.41 1.34 4.33 4.98 3.43 43.79 10.12 10.25
#Mg 44 46 56 53 52 46 65 38 75 71 69
Sc 14.0 21.0 22.0 17.0 20.0 20.0 20.0 14.0 7.0 11.0 4.0
V 121 142 164 169 193 143 166 136 65 62 34
Cr 30 98 145 80 64 638 52 270 169 151
Co 171 127 160 110 53 121 107 146 166 145 194
Ni 10 25 45 102 30 21 230 0 139 115 82
Cu 100 50 43
Zn 130 110 213
Ga 21 20 23
Rb 104 65 97 216 152 77 153 103 193 263 245
Cs 0.25 0.9
Sr 1727 1091 2456 1415 936 4301 1918 2618 6521 2889 2701
Ba 2999 2098 4771 5208 2650 7621 9017 6156 7117 3642 4960
Ti 12829 14148 19484 11870 12296 15527 12290 14508 14928 12290 8993
K 27227 18345 29386 47565 33287 22662 40924 40177 69064 75622 47648
Al 80597 89170 67632 75993 83931 81391 68373 80174 57101 67367 63292
Zr 245.0 355.0 709.0 408.0 369.0 391.0 348.0 330.0 911.0 382.0 191.0
Hf 6.8 8.8 10.2 8.5 9.0 8.8 7.9 19.3 12.1 6.2
Nb 11.0 18.0 29.0 23.0 23.0 20.2 16.7 20.9 28.0 38.0 13.0
Ta 0.70 0.80 1.20 1.30 2.00 1.06 0.84 1.15 1.00 2.10 0.90
Nb/Ta 15.7 22.5 24.2 17.7 11.5 19.0 19.9 18.2 28.0 18.1 14.4
Th 2.10 3.40 6.10 5.10 3.90 6.06 2.62 3.04 16.20 10.80 11.60
U 0.8 0.9 1.7 1.5 3.4 1.28 0.73 0.94 5.2 2.8 2.5
Pb 9 13
Y 23 32.7 40.2 26.7 37 56 24 31 39 31.6 54
La 51.60 95.60 220.00 92.50 55.20 256.00 79.50 115.00 245.00 137.00 252.00
Ce 115 187 441 196 121 500 177 253 526 285 511
Pr 14.7 21.3 52.4 22.6 15.7 66.5 22.6 31.6 62.4 33.3 61.7
Nd 58.6 80.7 199 89 66.6 244 88.5 120 240 124 249
Sm 10.7 13.5 30.6 14.6 12.7 36.8 15 18.7 36.6 19.3 47.3
Eu 3.56 3.6 7.67 3.97 3.27 9.93 4.53 5.96 9.04 4.4 11.7
Gd 8.3 10.2 19.6 9.8 9.1 26.1 10.67 12.9 22.0 12.6 32.1
Tb 1.00 1.50 2.20 1.30 1.20 2.76 1.15 1.36 2.20 1.50 3.60
Dy 4.6 7.1 9.5 5.6 6.5 11.48 5.02 6.07 8.6 6.8 13.7
Ho 0.8 1.2 1.4 0.9 1.3 1.91 0.84 1.05 1.3 1.1 1.9
Er 2 3.5 3.5 2.7 3.8 4.78 1.99 2.62 3.7 3 4.6
Tm 0.27 0.47 0.45 0.37 0.57 0.63 0.25 0.35 0.52 0.39 0.54
Yb 1.6 2.9 2.8 2.4 3.8 3.93 1.46 2.09 3.7 2.3 3.3
Lu 0.23 0.4 0.37 0.35 0.57 0.57 0.2 0.29 0.65 0.3 0.46
ΣREE 273 429 990 442 301 1165 409 571 1162 631 1193
U-Pb (Ma) 980
147Sm/144Sm 0.1051 0.0973 0.1120 0.0857 0.0965 0.0912 0.0876 0.0887 0.1087
143Nd/144Nd 0.511785 0.511853 0.511844 0.511560 0.511763 0.511672 0.511183 0.511224 0.511450
143Nd/144Nd (t) 0.511109 0.511227 0.511124 0.511009 0.511143 0.511086 0.510620 0.510654 0.510751
εNd(t) -5.1 -2.8 -4.8 -7.1 -4.5 -5.6 -14.7 -14 -12.1
TDM 1753 1546 1783 1755 1652 1694 2243 2212 2309
TCR 1924 1708 1966 1900 1812 1846 2379 2350 2472
87Sr/86Sr(t) 0.70394 0.704742 0.704844 0.704471 0.705053 0.703897 0.703839 0.704113 0.704283 0.704272 0.703925
εSr(t) 8 20 21 16 24 8 7 11 13 13 8
206Pb/204Pb 16.8704 17.006 17.1722 17.401 18.067 16.526 16.406 16.2840 16.768 16.5306 16.419
2σ 0.0005 0.001 0.0005 0.001 0.001 0.001 0.001 0.0005 0.001 0.0003 0.001
207Pb/204Pb 15.3759 15.438 15.4281 15.418 15.4211 15.3097 15.331 15.2976 15.125 15.1421 15.160
2σ 0.0005 0.002 0.0005 0.001 0.0004 0.0004 0.001 0.0005 0.001 0.0003 0.001
208Pb/204Pb 37.368 37.267 37.175 37.127 37.503 36.774 36.487 36.155 36.250 36.705 36.389
2σ 0.001 0.005 0.001 0.003 0.001 0.001 0.002 0.001 0.001 0.001 0.004
SK75 Age (207/206) 0.903 0.915 0.766 0.565 0.032 1.056 1.194 1.232 0.452 0.705 0.844
δ18O (VSMOW ‰) 6.219 9.001 9.210 7.691 3.790 8.184 7.578


Note:
* indicates new samples, remaining data from Valverde Cardenas et al. (2012).
TDM is calculated following DePaolo, 1981; TCR is calculated following Goldstein et al. (1984).
 SK 75, Stacey and Kramers (1975).
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