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Abstract

Sea ice types and ions are of great for ship

in or near the ice. The evaluation of ice types and properties using synthetic
aperture radar (SAR) imagery has attracted much attention in recent vears.
SAR sea ice images usually have ccnsistent textures that can be utilized for sea
ice description and classification. Therefore. methods based on texture discrim-
ination could be designed to identify ice types and evaluate ice properties by

machine without human intervention.

This thesis contributes to the ice identification problem mainly by investi-
gating the feature extraction phase in a texture classification process. A review
is given of several different approaches including Gray Level Co-occurrence Ma-
trices and Gabor filtering, while the emphasis is on those based on the wavelet
transform techniques. Comparative studies have been conducted on both the

selection of wavelet band signatures and of wavelet kernels.

A new wavelet band signature. named waelet entropy. is proposed and
applied to texture classification wirh encouraging resulis. This technique ex-
tracts features from wavelet band histograms. A promising aspect of this new

technique is that it provides estimates of probability measures of the texture



These i itics have been used in a ship navi-

gation application with interesting results presented in the thesis.

Texture orientation issues are also addressed in this thesis. Because of the
oriented structures apparent in some SAR sea ice textures. it is desirable to ex-
tract rotation invariant features. Some new work is presented that has achicved
this goal to some degree by DFT encoding on the features of different orien-
tations. obtained via the complex wavelet transform instead of the traditional

discrete wavelet transform to separate the mixed diagonal directions.




Acknowledgement

I would like to express my sincere gratitude to my supervisors. Dr. Cecilia
Moloney and Dr. F. M. Williams for their involvement. patience and insight.
\Vithout their invaluable help and support. this work would not have been pos-
sible. [ would also like to thank Dr. D. A. Clausi of the Univerisity of Waterloo
for providing me his thesis. and Dr. Nick Kingsbury of the Cambridge Univer-
sity for the Matlab code of DTCWT.

I am grateful to the School of Graduate Studies. the Faculty of Engineering.
the Associate Dean of Engineering and his office for granting me admission to
the graduate program and providing the necessary financial assistance. The
Radarsat SAR image is used with the courtesy of Canadian Ice Service. Envi-
ronment Canada and is copyright Canadian Space Agency 1997

1 also thank all my fellow graduate students for the good time and the help.
And finally. [ would like to thank my parents and my fiancée for their care.

encouragement and moral support during the two vears.



Contents

Abstract

Acknowledgement

Introduction
L1 General

12 Thesis Objectives .

13 Data Set and Software Environment

14 Organization of Thesis .

~

Application Environment

2.1 Introduction . . ... ... .........

2.2 Synthetic Aperture Radar (SAR)
SAR Basics

222 Viewing Geometry and Spatial Resolution

2.3 SAR Sea Ice Imagery . . . .
231 Parameter Dependency . . .

232 SAR Signature of Sea Ice .

=

Speckle Noise . . ... ... ...

©

Summary ... ...l



3 A Review of Texture Feature Extraction Methods

“

o

31

32 Gray Level Coocurrence Matrix (GLCM) .

33

34

Introduction

32.1 Definition of Cooccurence Matrice . . . .. ... ...

322 GLCM on SAR Sea Ice Imagery . . . .. .. ... ..

Multi-channel Filtering

331 Gabor Filtering

332 Discrete Wavelet Transform (DWT). . . .. ...

Summary

Texture Feature Extractions with Wavelet Transform

41

42

4.3 Classification with Non-dyadic DWT . .

Introduction
DWT Band Signatures

421 First Order Signatures

42.2 GLCM for Second Order Signature . . ... .......

431 Treestructured Wavelet Transform (TSW) . . . . . . . .

432 Classification with TSW
433 Comparision between TSW and DWT-GLCM classifiers

4.4 SAR Texture Classification . .

435
46

Application to Texture Segmentations . . . . . . . . . . . . ...

SURIREYL 5.0, & 0% o 810, 50 Siovk et Rt Lot s

Rotation Invariant Classification

5.1

32

IRtroduBtioni:; o o« s @ w6 W a0l SEE FEE

61
61

Invariant Texture Recognition Using Steerable Laplacian Pyramid 62

Algorithm




e

-

o

s

~

7.1 Summary of contributions and conclusions

522 Discussions
Complex Wavelet Transform

5.3.1 Definition

5.3.2 Dual-Tree Complex Wavelet Transform (DTCWT)

Rotation [nvariant Classification Using Complex Wavelet Trans-

5.4.1 Classifications with DTCWT . ... .

342 Rotation Invariant Classification with DFT Encoding on

cwT
543 Scgmentation Results

Fuzzy Classi ion and its Application to Ship

Introduction

Definition of Fuzzy Classification

Wavelet Entropy - A Fuzzy Feature

6.3.1  Wavelet Entropy Signature

632 Crisp Classification and Segmentation Results

633 Fuzzy classification with DWT entropy

Application to Ship Navigation
6.4.1 Definition of the Problem
642 Shortest Path Routing

643 Reduce the computation

Summary and Conclusions

Future work suggestions . . ... . ............

A Mixed Brodatz and SAR Images (MBS)

vii

&

67

69
69



B Pure Logarithmed SAR Images (PLS)

C Software Documentation

viii

105

107



List of Figures

oo
eg ad

By

31
32
33

34
335
36
41
42
43
44

-
o

\Microwave Spectrum (taken from 4])
SAR Basics (taken from 47}

An cxample SAR sca ice image of the Nain/Voisey’s Bay arca .

Calculation of GLCM
A tpical filtering based classification system . .

The frequency response of the dyadic bank of Gabor filters. The

axes are in normalized spatial frequencies (taken from
3-level DWT of 1-D signals .
2level DWT of images . . . B

2level DWT example .

Standard Deviation of Features
Performances of DWT classifiers of different wavelet basis . .
Classification Accuracy of Straw with Wavelets of Different Order
Curve fitting using Gaussian function for the 3 level wavelet band
histogram of bark texture

Curve fitting using the general exponential function for the 3 level
wavelet band histogram of bark texture

Performances of TSW classifiers of different wavelet basis



o

o

o

o

o

by

-

o

Correlation between DWT filtering and GLCM statistics
SAR texture classification results by DWT energy. TSW. and
DWT-GLCM classifiers. For all three experiments the 3 level

Daubechies wavelets are used

Texture segmentation using DWT encrgy. DWT-GLCM. and TSW

methods. A mosaic image of 3 textures (bark. bubble. grass.
leather. sand) is used. The window is of 64 x 64 pixels size and
shifted by 1 pixel

SAR Texture segmentation using DWT energies. Original image
pre-processed with logarithm. The window is of 128 x 128 pixels
size and shifted by 8 pixels.

SAR Texture segmentation using the TSW. Original image pre-
processed with logarithm. The window is of 128 x 128 pixels size
and shifted by 8 piels.

SAR Texture segmentation using the DWT-GLCAL. Original im-
age pre-processed with logarithm. The window is of 128 x 128

pixels size and shifted by 8 pixels. . . . .. .. ... ... ...

Oriented Laplacian Pyramid in Spatial-frequency Domain .

Components in 0°. 45°.90°. 135° of Oriented Laplacian Pyramid
Components in Horizontal.Vertical. Diagonal Direction of 1-level
Three levels of the complex wavelet transform for a real 1-D signal
. The wavelet coefficients C consist of the real and imaginary



o
o

o

o
@

6.

6.3

6.

-

Dual tree of filters for the complex wavelet transform (taken from
a0

Mean Energies of Different Orientations on Different Scales . . .
Overall classification performances with respect to rotation angle
of the input textures. The decomposition levels are all 3. The
wavelet kernel used in DTCWT and DFT-DTCWT is QShift(10).
The data set tested is MBS. e . vs
Texture segmentation using DTCWT energy and DFT-DTCWT
methods. A mosaic image of 4 textures (bark. bubble. grass.

leather(rotated). leather) isused. . . .. ... ... ...

Histogram of DWT detail bands of pack ice. The wavelet kernel
used is Daubechies(6). 'H'."\". and ‘D" represents the horizontal.
vertical. and Diagonal bands respectively. Level 1 corresponds to
the finest scale while level 3 corresponds to the coarsest
Histogram of DWT detail bands of rubble ice. The wavelet kernel
used is Daubechies(6). "H. "V". and ‘D’ represents the horizontal.
vertical. and Diagonal bands respectively. Level 1 corresponds to
the finest scale while level 3 corresponds to the coarsest.
Histogram of DWT detail bands of land. The wavelet kernel
used is Daubechies(6). 'H'. "\". and "D’ represents the horizontal.
vertical. and Diagonal bands respectively. Level 1 corresponds to
the finest scale while level 3 corresponds to the coarsest.
Texture segmentation using DWT entropy methods. A mosaic
image of 5 textures (bark. bubble. grass. leather. sand) is used .
SAR Texture segmentation using DWT entropy methods. The
original image is Figure 23. .. . .. .. ... . .......

68



6.6 Membership maps of the land, landfast ice. rubble ice. and the

&

packice ... . 89

6.7 An example optimal path

6.8 An example optimal path obtained with a 3-level multiscale model 91

Al Bark (DI2) ... .. s @ % ReE § D 101
A2 Bubble (D112) ........ B .10
A3 Canvas (D21) . . . . L T 102
Ad Grass (D9) . . . . S 8 o R B S e . 102
A5 Leather (D24) . . . . . ey 102
A6 Sand (D29) . ... . P -1
AT Stone (D30) . . . .. . J I ]
AS Straw (D13) . .. .. .. s o . 103
A9 Woolen (D19) . . ..ot s g 103
Al0Packice .. ........ .. B Lo 104
AllRubbleice . . ... ... . JE R U
Al2land . . .. s s e e % B 8 104
Bil; Patkice » o on v s v o wa v 8 sw v v s : 105
B2 Rubbleice . ... .. ... ... .. ... ... ... 108
B3 Landfast ice . . ... 106
B Ead covis s s x ? e 5 e w6 weom wa 108

107

C.1 IPL software packages - . . ... . ......

xii



List of Tables

3.

=

o

Classification System Design . . . . ... .. ...
GLCM texture statistics defined . . . . . . . ...

Classification result by 3-level Daubechies(6) DWT energy clas-
sifier (including lowest frequency band). Overall accuracy: 81.51%
Classification result by 3-level Daubechies(6) DWT energy clas-
sifier (excluding lowest frequency band). Overall accuracy: 87.5%
Classification result by 3-level Daubechies(6) DWT-GLCM Clas-
sifier. Four directions (0°.43°.90°.135°) and DIS statistics are
used here . Overall accuracy: $4.90% . . . . . . ... 5=
cl result by 3-level D TSW classifier. Over-

Al OCHEREY GLABR - o oocvsimin wiaasmimie areie, sicess wsos

Classification result by 3-level QShift(10) DTCWT classifier. Over-
all accuracy: OLA1% « < - o
Classification result by 3-level Daubechies(6) DWT Entropy clas-
sifier on MBS set. Overall accuracy: 86.4583% . . . . . . .. ..
Classification result by 3-level Daubechies(6) DWT Entropy clas-
sifier on PLS set. Overall accuracy: 80.4688% .. .. ... ...

xiii

38

48

83



6.3 Pass-through probabilities of different SAR texture types . . . . 87

xiv



Chapter 1

Introduction

1.1 General

Ship navigation in cold ocean regions is often greatly influenced by the pres-

ence of sea ice and the properties of any such ice. The evaluation of ice types

and their properties is a very ing task since onsite investigation is of-
ten impractical or expensive. and the timing for gathering and interpreting ice
information is often critical. During the last decade. much attention has been
given to utilizing Synthetic Aperture Radar (SAR) to do this job. Being an
active microwave imaging system. SAR is an efficient tool for sea ice monitoring

for the following three reasons:

® Asasatellite or aircraft mounted system. SAR can provide regular imaging

of ice fields over extended areas.

o SAR use active microwave sensors. which have the ability to obtain mea-
surements anytime regardless of time or scason. and which can penctrate

through cloud cover under most weather conditions.



« The portion of microwave energy returned is largely dependent on the tar-

get surface roughness. moisture content and electrical properties. Those

propertics are significantly different among different sea ice types.

Hence the problem arises of how to interprete SAR sea ice image accurately:
It is most desired to obtain quantitive relationships between the physical proper-
ties of ice and image pixel value patterns. However this seems almost impossible

because there are too many environmental factors and noise. Classifving the

ice types in the image and then iating them with the ing phys-
ical properties is a feasible solution. A human operator can clearly and easily
distinguish different ice types and land visually from a SAR image. based not
only on the relative texture appearance of the different ice types. but on tonal
and structral differences as well [I!. However. automatic classification of SAR
sea ice images by machine is difficult and challenging for several reasons. There
are often significant intensity variations among SAR images and even across a
single image. making analysi

More stable are those based on texture discrimination. However. no robust

techniques based on intensity values unreliable.

recognition method is available vet for textures because of their random nature.
To make it worse. the speckle noise usual in SAR images will mask or mix with
those textures. And the last. some sea ice types are more or less like each other
and often form mixture areas that have no distinct texture appearance in the

corresponding SAR image.

All these add tc the difficulties in the design of a successful SAR sea ice im-
age classification system. As mentioned earlier. textures give a more consistent
description of the ice than does intensity. so it is better to base the classification

svstem on the capability of identifying the textures of interest.

0



The design of a texture classification system typically consists of four steps
listed in Table 1.1: Feature extraction. classificr design. classifier training and

performance evaluation.

Step Function

1.Feature extraction Select texture properties that best des-
tinguish the texture types and decide
how to extract and measure these prop-
erties

2.Classifier design Design the classification algorithm to be
used to get the classifier parameters (i.e.
how to separate the feature space)

3 Classifier training Determine the classifier parameters (de-
cision boundaries. etc.) for each candi-
date type.

4P Estimate the ion accuracy.

Table 1.1: Classification System Design

The feature extraction is perhaps the most important part. It produces a set
of suitable features that represent the information needed for subsequent train-
ing or classification. In the training stage. those features belonging to the same
class are grouped and will be used as the reference for future classification. Then
in the classification stage. the same kind of features are extracted and compared
with the references obtained in the previous training stage. The performance
of the classification system therefore depends largely on how well those fea-
tures are extracted. Many different texture feature extraction approaches have
been proposed in the literature. including Gray Level Co-occurrence Matrix

(GLCM). Gabor filtering, Markov Random \Model. and Wavelet filtering. This



thesis places an emphasis on wavelet filtering approaches to texture feature ex-

tractions.

Besides those difficulties already mentioned above in designing a SAR sea
ice texture classification system. orientation is another factor which needs to be
considered very carefully. Although many tyvpes of sea ice appear to be isotropic.
some ice types. such as rubble ice. have obvious oriented structures. If featurcs
corresponding to those orientational structures are rotation variant. they will
cause significant degradation of the classification system when the training sam-
ples and the classification targets do not have the same orientation. Discarding
the anisotropic features. however. is not a good choice since the discarded fea-
tures can provide unique information for ice identification. A better solution is

1o have a rotation invariant representation of those anisotropic features.

Under circumstances where the ice types are not distinctly different or there
is no clear boundary between ice types. fuzzy classification is more appropriate
than traditional classification (i.e. crisp classification). The result should be
Dot just an answer to “what ice type is it". but “how much does it look like

2 given ice type”. Made up of a set of membership probabilities. those results

are expected to be able to provide i on the
of different ice types and hence on the physical properties.
1.2 Thesis Objectives

The goals of this thesis are to study how to efficiently extract SAR sea ice tex-

ture features for i ion: then given the ion results to evaluate




the corresponding ice physical properties: and hence to develop a simple ship

navigation application. Our particular interests are with the ice types that have
not experienced winter growth. for example new ice and young ice. These ice
tpes are in some sense alike. and are often mixed together. As mentioned car-
lier. fuzzy classfication may be more cffective here. but first crisp methods of
classification will be investigated because they are well defined and their per-

formance arc much casier to evaluate.

Since well-oriented features like leads and ridges often exist in those ices. an-
other thesis objective is to find a solution to the orieatation problem mentioned
earlier. Efforts are directed to looking for a rotation invariant representation of
the oriented features. with which the classification system will be less sensitive

to the object orientations.

1.3 Data Set and Software Environment

two data sets for the classification experiments. The first one

Our research us

consists of nine Brodatz textures {selected from the Brodatz's album
three SAR textures, as shown in Appendix A. The Brodatz's texture images
are of dimension of 512 x 512 pixels. For feature extraction. each was split
into sixty-four nonoverlapping 64 x 64 pixels regions. Half of them were used
for training and half were used for testing. The SAR texture images are areas
of perceptually uniform texture and of dimension 1024 x 1024 pixels extracted
from the large Radarsat image of Figure 2.3. They are histogram equalized
since the original SAR image is very dark with a limited effective dynamic

range. Note that histogram equalization may enhance noise and destroy subtle



sca ice texture information unpredictably. However, we first aimed at distin-
suishing different ice textures to see if there are visual differences among these
textures. Each of these SAR images was divided into sixty-four nonoverlapping
128 x 128 piels subimages. Here a larger dimension was selected to capture the
larger scale features in land and rubble ice textures. We name this composite

data set MBS (Mixed Brodatz and SAR) for future reference.

Our second data set consists of four SAR textures of Pack ice. Rubble ice.
Landfast ice. and Land. Unlike in MBS. no histogram equalization is performed
but a logarithm step is taker. the reason for which will be preseated later in
Chapter 2. Therefore we call this data set PLS (Pure Logarithmed SAR). This
set is shown in Appendix B (please note the values after the logarithm are very

small and therefore these images have been scaled for better visualization)

Most of the Brodatz textures in MBS come from the USC-SIPI image
Database 3] except the stone and canvas which are scanned from our Bro-

datz album.

Considering that and i i are usually
very time consuming, we use C+~ to implement all the algorithms used for
experiments in Chapter 4. 5. and 6. The programs are developed with Microsoft

Visual C++ under the Windows system. They are listed in Appendix C.



1.4 Organization of Thesis

The organization of this work is as follows. Chapter 2 gives an introduction to
the application environment. covering topics on SAR imaging system as well as
the backscattering characteristics of sea ice. Chapter 3 continues the literature
review with some popular texture feature extraction methods. Here methods
hased on Gray Level Cooccurrence Matrix (GLCM). Gabor filtering. and the
Wavelet Transfrom are reviewed. Following that in Chapter 4. detailed studies
are performed on feature extraction methods based on the wavelet transform.
Some previous research in the literature is experimentally repeated. and different
wavelet kernels and signatures are investigated and compared. Chapter 5 deals
with texture orientation issues. A new feature extraction method that can
partially solve the rotation invariant recognition problem is discussed. Chapter
6 proposes a new approach for fuzzy classification. which is used in a simple
application of ship navigation. A summary and recommendations for future

work comprise the final chapter (Chapter 7).



Chapter 2

Application Environment

2.1 Introduction

Modern remote sensing techniques make it possible to acquire information about
the earth surface in real time without actually being in contact with it. Synthetic
Aperture Radar (SAR). a remote sensing technology. is especially useful for our
research objective of identifving sea ice tvpes because of its active microwave
sensors. which are characterized by their all-weather and all-time operating
ability. SAR images also have high resolution relative to other non-optical
remote sensing technologies. The resolutions could be up to 3m for aircraft
mounted SAR and 10m for space craft mounted SAR. A brief introduction
of the fundamental theory of SAR

which draws heavily on {4). Then the next section deals with electrical properties

stem is presented in the following section.

and SAR signatures of sea ice. The last section of this chapter discusses the
multiplicative speckle noise that can significantly influence the performance of

a texture classification system.



2.2 Synthetic Aperture Radar (SAR)

Like other radar systems, a SAR transmits a sequence of electromagnetic pulses
and records the returned waveforms. This make it advantageous over passive
optical sensing because the microwaves used can penetrate cloud covers and
data accquisition can be performed at night. However due to the much longer
wavelength of microwaves (see Figure 2.1), it seems difficult to achieve res-
olution comparable to optical sensors with a microwave system, because the
resolution is on the order of AR/D, where X is the wavelength of the illuminat-
ing source, R is the target range, and D is the diameter of the antenna aperture
or lens [5]. This implies that a conventional radar would need an impossibly

long antenna to achieve the same level of resolution as that of an optical system.
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Figure 2.1: Microwave Spectrum (taken from [4])

By using the motion of its platform (i.e. aircraft or satellite) to synthesize
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the effect of a very long antenna. a SAR is able to overcome the antenna size
limitation. Today the resolution provided by RADARSAT (a spaceborn SAK
system) s in the range of 10m-100m. which is sufficient for the study of the

structures of sea ice.

2.2.1 SAR Basics

Figure 2.2(a) shows the basic mechanism of a side-looking SAR. The Trans-
mitter generates pulses (A) at regular intervals. The pulses are focused by the
antenna into a beam (B). which illuminates the ground surface obliquely. A
portion of the energy (C) is then backscattered and received by the antenna.
By measuring the time delay. the distance to a target and hence its location
can be determined. With the sensor platform moving forward a 2-dimensional
image can be obtained by signal processing of the pulse returns over time and

the flight path.

A
c
A
7 B
c
o
(a) Basics of SAR Imaging (b)Imaging Geometry

Figure 2.2: SAR Basics {taken from [4])



2.2.2 Viewing Geometry and Spatial Resolution

The imaging geometry of a SAR system is shown in Figure 2.2(b) in which (3)
(B). (C). (D). (E) correspond to the flight direction. nadir. swath. range.
and azimuth respectively. The range resolution is dependent on the length
of the radar pulse. while the azimuth resolution depends on the width of the
illumination and the speed of the flight. Detail explanations of the resolution

dependency can be found in [4].

It seems that fine range resolution could be achieved by using a very short
pulse length. However. this is usually not practical since the peak power may
exceed the limitation of the transmitter in providing a good signal-to-noise ra-
tio (SNR). A technique known as pulse compression is therefore used to solve
the problem. Wider pulses are transmitted instead of impulse-like waveforms
and the received signal is processed so as to compress the energy into a much

narrower pulse (5],

Determined by the width of the illumination. azimuth resolution is actually
influenced by radar beam angle and the slant range distance. The radar beam
angle is approximately 2arctan(A/2D). where A is the wavelength and D is the
antenna length. Finer azimuth resolution therefore seemingly could be achieved
by increasing the antenna length. However. the actual length of an antenna
has to be limited by the platform carrying it. To overcome this. the motion of
the platform and special signal processing of the echos are used to simulate the

effect of a very long antenna. For further details, the reader is referred to 3]



2.3 SAR Sea Ice Imagery

Our particular interest is the appearance of sea ice in SAR images. It is nflu-
enced by the SAR system parameters (wavelength. incident angle. polarization.
etc.} and by the physical properties of the sea ice types being imaged.

2.3.1 Parameter Dependency

Whether a surface will appear smooth or rough under the illumination can be
indicated by the Rayleigh criterion: h < A/(8cos()). where h is the root mean
square height of the surface. A is the signal wavelength and 6 is the angle of in-
cidence with the surface [1]. If the Rayleigh criterion holds true, the surface will
be smooth and reflect away most of the signal like a mirror, resulting in a low
returned energy. Similarly. a surface will be considered rough if the Rayleigh

criterion is false.

Since the smoothness is influenced by the incidence angle. the tone values for
areas of the same ice type will decrease as the incidence angle increases across
the image. This justifies the statement that classification and segmentation

methods based on tone alone are not stable for SAR images.

A suitable microwave band needs to be selected to capture the small scale
surface roughness while being able to penetrate well through the atmosphere.
The microwave region ranges from lum to 1m. from the shorter wavelength
near the thermal infrared region to the longer wavelengths approaching those

used for radio broadcasts. as shown in Figure 2.1. For our research, the SAR



data is obtained by RADARSAT using C-band which is suitable for sea ice

imaging. Shorter w: s are more by the atmos while

longer wavelengths are less suited to discriminating the small scale roughness

of new or young ice.

Polarization. another SAR system parameter. is also very important in in-
fluencing the appearance of objects in SAR images. In most radar systems.
microwave is transmitted in either horizontal (H) or vertical (V) planes. Simil-
iarly the antenna receives either horizontal or vertically polarized backscatters.
Thus. there are four combinations of the mode of transmitting and receiving
signals. Depending on the mode. the signals will interact with the surface and

be backscattered differently. thus greatly affecting the appearance of the surface.

2.3.2 SAR Signature of Sea Ice

Sea ice is a mixture of freshwater ice. brine and air. The SAR signature of
sea ice is influenced by the constituents’ dielectric properties. the volume frac-

ize and orientation) of brine

tion of each constituent and the geometry (shape.
pockets in the ice as well as by the surface conditions of the sea ice. As these

factors are ined by many natural variables including tem-

perature. salinity, wind condition. ocean currents and rate of freezing. studying

and utilizing the SAR signature of sea ice is really a complex task.

Before investigating the eleccrical properties of sea ice. several electromag-

netic quantities need to be defined as follows [6!:
e Relative permittivity (At frequencies lower than about 1MHz, the domi-

13



nan clectrical property is the bulk conductivity, while at higher frequen-

is used).

cies. the complex permittivit

J€
where ¢ denotes the dielectric constant and  is the loss factor giving the

electromagnetic loss in the materials.

o Propagation. absorption. and phase constant.
The intensity of the electric field at position = can be expressed as
E(z) = Epe™™
where » = a+}3. a is the absorption constant and J is the phase constant.
and = represents the depth from the surface. They are related to the
complex permittivity by

2 Im(va). 3 = B Re(ve)!

a

o Extinction and scattering cocfficient

The total loss consists of absorption loss (elec

power transformed into other forms of energy, such as heat) and scattering
loss (energy travel in directions other than that of the incident radiation)

K=K+ K,and Ko =20

Penetration depth.

When across the boundary into the medium. the penetration depth is
defined as the depth 4, at which

1" Ke(2)dz

If scattering is ignored. o does not depend on =, and € is much smaller

than €,
5oL oAV
= Rg = ImE
The returned signals of sea ice consist of contributions from both surface

14



scattering and volume scattering (scattering by lower layers inside). The sur-
face scattering is mainly influenced by the roughness of the surface. and the
volume scaticring by the complex permittivity as it determines how far the mi-

crowaves will penctrate into the ice.

Because salt increases the diclectric loss by adding free charge carriers. the
diclectric loss factor of brine is much higher than that of other constitucnts of
sea ice. In a microwave frequency range from 1GHz to 10GHz for example. the
value of loss factor ¢ is greater than 20 for brine. while for freshwater ice it is in
the order of 103, Since the dielectric constant of brine (> 10) is also fairly high
compared with that of freshwater ice which is around 3.17. the volume fraction
of brine plays an important role in determining the overall electrical properties
of sea ice. The following equations give an approximation of the relationships

between the permittivity of sea ice and relative brine volume 1 [6].

1GH:= 3.12 +0.0091}. 0.04 +0.0051}
4GHz: é=23.05+0.0072 0.02 +0.003315
10GH=z: €é=23.0+00121;. &=0.0+0.010V; 1)

Categories of different sea ice have different SAR signatures. These cate-
gories are defined by the World Metcorological Organization (WMO) [7] and

are summarized below:

New Ice: A general term for recently formed ice. These types
of ice are composed of ice crystals which are only weakly frozen
together (if at all) and have a definite form only while they are

afloat.



Grey: Young ice 10-15 cm thick.
Grey-white: Young ice 13-30 cm thick.

Thin first-year: First-vear ice of not more than one winter's
growth. 30-70 cm thick.

Medium first-year: First-year. ice 70-120 cm thick.
Thick first-year: First-year ice over 120 cm thick.

0ld Ice: Ice which has survived at least one summer melt.

Often sub-divided into either second year ice or multi-vear ice.

Since first vear ice has a high brine volume and therefore is not easily pen-
etrable by microwaves. surface scattering dominates. For first year smooth ice.
most of the signal cnergy is refiected away and only a small part is returned
in the direction of the radar. As the result the tone values of such an area are
very low. making it looks like a black silhouette. For first vear rough ice. more

returns can be obtained and the corresponding area appears brighter.

Multi-year ice has a much lower salinity. Therefore besides the surface scat-
tering. the backscatters are also determined by volume scattering, which is
influenced by particle (air bubble and ice crystal) size and density. and the ex-

tincticn coefficient.

Clausi [1] believes it is uncertain whether or not new ice can be distin-
guished from first year smooth ice. But he also argued that new ice often has
leads. which are narrow irregular cracks in the thick ice and consist of thin ice

and sometimes open water. Therefore new ice with leads can be characterized
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a boundary

by well-oriented features parallel to the lead axis or poly

Figure 2.3: An example SAR sea ice image of the Nain/Voisey’s Bay area

An example SAR sea ice image is shown in Figure 2.3. This image was
obtained via RADARSAT operating in the Standard 2 beam mode, providing a
resolution of 12.5m x 12.5m, over an area of approximately 113km x 92km. On
the left of the image (area 1) is the land area and on the right (area 2) is pack
ice containing new ice or open water. Between them are rubble ice (area 3) with
a brighter appearance and landfast ice (area 4) with a dark appearance. From
the image, orientational characteristics can clearly be observed in the rubble ice

area. Those features can provide critical information for classification




2.4 Speckle Noise

The presence of the notorious speckle noise in SAR images adds considerable
difficulty to SAR sea ice texture classification. SAR speckle noise is caused by
the coherent nature of the radar imaging system. When a medium contain-
ing many elementary sub-resolution scatterers is illuminated by a radar. the
return waves will add either constructively or destructively. forming a random.
interference patiern. It has been experimentally shown that speckle noise is

predominantly multiplicative [8]. as expressed by the following model:

yl2.7) = xie.j) - ntr.y)

where ylz.) is the intensity or amplitude of a SAR image pixel at (. ). z(i.J)
is the noise-free quantity at (1. ) and n(. ;) is the speckle noise characterized
by a distribution with a unity mean (E'n] = 1) [12]. Although some others (13
argued that this model should take into account the correlation of the speckle
as well as its overall probability distribution. in most cases this simple model is

accurate enough.

Many speckle noise filters have been devised to suppress the noise before
doing any further processirg. However for our texture analysis. such fltering
would probably break down the texture details and therefore is not adopted.
Instead. we apply a logarithm to our SAR texture images. which approximately
converts the muliplicative speckle noise to additive noise with zero mean value.

By this process the PLS data set mentioned above is obtained.



2.5 Summary

In this chapter we have reviewed topics concerning SAR imaging systems. SAR
sea ice backscattering. and speckle noise. Understanding these is important for
proper interpretation of SAR sea ice imagery. The following three chapters will

deal with texture analysis methods that can be used for sea ice classification.



Chapter 3

A Review of Texture Feature

Extraction Methods

3.1 Introduction

For SAR sea ice. intensities often provide good visual discriminations. However.
they are not very reliable for classification purposes because of intensity varia-
tions caused by numerous environmental factors. Although some previous work
such as that of Kwok (9! has shown success in using intensities for classifica-
tion. strict limitations exist in terms of the environment including the imaging
parameters and the target sites. Texture is expected to provide a more sicble
description about SAR sea ice. and hence our research uses texture information

for SAR sea ice classification.

Many different definitions exist for texture. A formal one given by the IEEE
is that texture is “an attribute representing the spatial arrangement of the gray

levels of the pixels in a region” [10]



As already introduced in the first chapter. the design of a texture classifica-

tion system consists of four stages: texture feature extraction: classifier design:
classifier training: and performance evaluation. Perhaps the most important
stage is the feature extraction. “A texture feature is a value. computed from

the image of an object. that quantifies some characteristic of the gray-level

variation within the object. Normally. a texture feature is independent of the
object’s position. orientation. size. shape and average gray level (brightness)”

{11. p.499]. The feature extraction step produces a set of features representing

the i needed for ion. Compared to the original
image. the feature vector contains much less data. but enough information to
allow the unique and correct identification of the texture type. Good features
should have significantly different values on textures belonging to different types.
but similiar values on the same type of textures. Morever the various features
should be uncorrelated with each other. to ensure that the feature vector has

been reduced to the fewest possible dimensions.

Approaches to texture feature extraction span a wide range of methods.
Most of them can be categorized as statistical. structural. and model based.
Statistical approaches attempt to characterize textures in a probabilistic sense
based on definitions such as smooth. coarse. grainy. regular. directional. etc
{1]. These characteristics can be measured either spatially or spectrally. Sim-
ple statistical measures include the standard deviation. variance, skewness, and
kurtosis of the gray levels [11]. More complex measures are those based on the

GLCM and the wavelet transform. which are presented later in this work.



The structural approach assumes that the texture is a spatial arrangement of
basic primitives. The texture feature extraction can then be done by obtaining
measurements of the primitives and their spatial arrangments. Since no pre-
dictable. consistently repeating patterns seem to exist in SAR sea ice textures.

Clausi excluded structural methods for use in sca ice discrimination (L.

The model based approaches are bascd on random fields and fractal param-
cters. They usuaily it specific models to the textures. The model parameters
thus obtained are then used for texture description. A commonly adopted model
is the Markov Random Field (MRF) '14] {15.. In a more recent work [16] Clausi
did a comparative study of the MRF approach and several statistical approaches
for their ability to interpret SAR sea ice imagery. He concluded that the MRF

results significantly lag others.

In this chapter we review previous research on statistical feature extraction
methods including those based on the GLCM. Gabor filtering, and the Discrete
Wavelet Transform. Some other related approaches are Power Spectrum (17}
and Independent Component Analysis [18]. They are less pertinent and are not
discussed in this thesis.

Strictly speaking, texture analysis by filtering cannot completely be cate-
gorized as statistical. since techniques other than statistical. for example the
Markov Random Field. can also be applied to the filtering responses to retrieve
the features. However as statistical measures are the ones most commonly

adopted. we include filtering based methods in this category.



3.2 Gray Level Coocurrence Matrix (GLCM)

3.2.1 Definition of Cooccurence Matrice

Perhaps the most popular method of feature extraction for remotely sensed sea
ice imagery is the cooccurrence matrix (GLCM). The following example illus-

trates how to calculate the GLCM.

00 Y12 0 o
g 0 0 0 212 0
T“; 0 0 /12 4/12 1/12
H 0 112 2712 0
o 00 0o o o

Figure 3.1: Calculation of GLCM

The left part in Figure 3.1 is a 4 x 4 pixel area of a texture image (i.e.
window size 4). The image has five different gray levels and the integers in
each element indexes the gray value of the corresponding pixel. Suppose we
want to calculate the GLCM C given a direction (0° in this example) and an
interpixel displacement (one pixel in this example). Then the (1. ) element of
the GLCM is the number of times the gray level pair i and j occur together
with the chosen displacement and direction. normalized by the total number
of pixel pairs. For example. the combination of gray level 1 neighboured by
gray level 3 to its right occurrs two times. therefore C(1, 3) (note the gray level
index begins with 0) is 2 divided by the total number of pixel pairs 12. The

dimension of this GLCM C is G x G. where G is the total number of gray levels.

Different GLCMs can be obtained for different combinations of the four pa-

rameters (direction 6, displacement 4. number of gray levels G, and window size
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w). Since G determines the dimension of the GLCM and since G can be large. a
quantization is often performed to reduce the computation complexity. However
tou few quantization levels may corrupt or destroy important texture charac-
tenstics. Window size is another parameter that influences feature extraction
by GLCM. The window should be large cnough to include sufficient texture
clements without incurring too high a computational burden. Like the window
size parameter. selection of interpixel displacement is also texture dependent.
A small displacement is efficient for fine textures and a large displacement is
prefered for smooth textures. Directional features can be extracted well if the di-
rection parameter is properly selected. However. those feature directions should
be consistently same in both the training samples and the target texture to be
classified. Otherwise such directional information may be a deterrent to cor-
rect classification. The average of multiple directional GLCM is often performed

for isotropic textures. or to reduce directional variations for anisotropic textures.

| Maximum Probability (MAX) maz{C,}¥(i.) |

1 Cniformity (UNI) e na N o]

i Entropy (ENT) ~£2iT8, CylogCy
Dissimilarity (DIS) T TR Culi =l

Contrast (CON) $9, £, Cyli - i)

Inverse Difference (INV) | %, 5%, ¢
Tnverse Difference Moment (IDM) | £, T2, r=bmzrCy
Correlation (COR) £¢, 58, talimmlc,

where in all cases (. 1,) and (05.0,) are means and standard
deviations of (row i, column j) respectively

Table 3.1: GLCM texture statistics defined
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For feature extraction purposes. statistical information is then generated
from the GLCM (MAX, UNL ENT. DIS. CON. INV. IDM. COR. etc). as sum-
marized in Table 3.1. which together with the following quotation is taken from

Clausi [1. p.26-: “The statistics extract three fundamental characteristics

from the cooccurence matrix. Moments about the main diagonal indicate the
degree of smoothness of the texture. The closer the entries to main diagonal.
the smoother the texture. The statistics dissimilarity (DIS). contrast (CON).
inverse difference (INV). and inverse difference moment (IDM) are statistics of

this type. Another istic of the matrix is the

uniformity of its entries. If the gray levels in the window tend to be homo-
geneous. then only a few gray level pairs represent the texture. The statistics
maximum probability (MAX). uniformity (UNI). and entropy (ENT) describe

homogeneity. The final statistic. correlation (COR). describes the correlation

between the gray level pairs”.

3.2.2 GLCM on SAR Sea Ice Imagery

Research using the GLCM for SAR sea ice texture analysis can be found in
several papers. where discriminations are made between distinct ice categories
such as first year ice and multi vear ice. In [19] Shoker investigated the GLCM
statistics and found that they are highly correlated. Thus he argued that com-
bining gray tone with only one GLCM texture statistic is a good enough choice
for SAR sea ice texture classification. Another discovery of his experiment is
that when a significant overlap in gray tone exists between two ice types. tex-
ture will not be capable of separating the two ice types. His experiments also
showed that IDM was the best statistic. followed by entropy (ENT) and unifor-

mity (UNI). In selecting GLCM parameters he tried several quantization levels.

9
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window sizes and displacements. He concluded that 16 levels is appropriate for
quantization. and with respect to both window size and interpixel displacement

the results were almost insensitive.

In 20] the authors did studies on sea ice classification with both GLCM
texture statistics and standard statistics. They investigated the issue of direc-
tionality in a sea ice GLCM and concluded that multiple GLCMs should be
averaged together to reduce the directional variance. The displacement issue
was also addressed. They found that a length of four pixels was appropriate
(the image data they used is of 16m resolution) and that the statistics were
almost invariant for length over four pixels. The emphasis of their study was
on the comparison between the performance of GLCM statistics and that of
standard statistics. The results showed that among the three top statistics are
two GLCM statistics (ENT. which describes homogeneity and IDM. which de-
scribes smoothness) and one standard statistic (range). They also found that
standard statistics have greater classification accuracy than texture statistics in
general (87% vs. T5% for their data). The combination of standard statistics
and texture statistics gives only marginally better results (by 3%) than using the
standard statistics alone. These results suggested that using standard statistics
alone is as good as any other complex combinations of statistics for the purpose

of SAR sea ice classification.

The authors of [21] also inve the direction and di param-
eters, as well as the quantization factor. They gave the same argument as [20]
for directionality issues (i.e. average matrix of different directions). For dis-

placement, unlike [20] in which the conclusion was specific to the image tested.
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the authors of (21] concluded that a single displacement value for GLCMs to
represent sea ice textural contexts is not advisable. For the quantization issue.

two conclusions were drawn: 1) Dissimilarity between two ice types varies very

little with the number of quantization levels. 2) GLCM statistics are more con-
sistent when using a higher number of quantization levels. Then the authors
did experiments on three cooccurence matrices - MDMO (the average of multi-

displacement and multi-orientation matrices). ODMO (optimal-displacement

and multi )and ODOO (optimal-di and optimal

Results showed that the MDMO approach is significantly better. Therefore they
concluded that the orientation factor is probabily not important in SAR sea ice
analysis and a range of displacement is more representative than a single dis-

placement value.

3.3 Multi-channel Filtering

Most filtering based classification approaches assume that textures can be iden-
tified by their energy distribution in the spatial frequency domain. Depicted
in Figure 3.2 is a typical filtering based classification system. The input image
passes through a series of filters and the output responses usuaily correspond
to frequency subband components. They are further processed nonlinearly to
estimate the local energies. Features vectors can then be generated with these
energies using statistical measures. In many cases. the nonlinear function per-
forms rectifying operations. transforming both negative and positive amplitude
to positive amplitude [22]. and the statistical function is just an averaging func-

tion. Some systems do not directly use the subband energies. and therefore




do not have the nonlinear processing step but use a more complex statistical

method to extract the features.

Figure 3.2: A typical filtering based classification svstem

Two early filtering approaches are the Laws filter masks 23] and Ring and
Wedge filters {24]. Laws suggested using 25 separable filters for the two dimea-
sion image. 5 in each dimension. Thus. the spatial frequency domain is almost
evenly split into 25 subbands by these filters. Coggins and Jain [24] designed
another bank of filters made up of seven dyadically spaced ring filters and four
wedge-shaped orientation filters. which extract the frequency and orientation

information separately.

Some later approaches, Gabor filtering and the wavelet transform, have at-
tracted more attentions in recent years since they agree well with research on

human visual system (HVS). It has been found that the HVS decomposes im-
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ages by several relative narrow-band filters tuned to different spatial frequency
ranges and orientations. and the filtered images are then processed by subse-
quent detectors [25]. Experiments have shown that the frequency bandwidth of
cach filter is about one octave [26] and the orientation range is not more than

30°.

Both Gabor and wavelet filter banks can be designed to be tuned to octave
frequency bands and different orientations. Although the Gabor function is not
a wavelet in a strict sense. it can be implemented in a similar manner to that of

wavelets. This section introduces the Gabor filtering and the wavelet transform.

3.3.1 Gabor Filtering

In determining how the filter should shape an input image. it is desirable that
it have high spatial resolution for object localization. and also high spatial fre-
quency resolution for object identification. Unfortunately. these are two conflict-
ing goals. The Gabor filter has the optimum joint spatial and spatial-frequency

localization. and therefore is often used to construct the filter bank.

A Gabor function is a Gaussian modulated sinusoid function. It is a band-
pass filter with impulse response

1
2ro.0,

sy
T3 sy @)

hiz.y)
where (U, V) is the center frequency of the filter. The corresponding function
in the spatial frequency domain is

H{u,v) = 2 letiel+0-17203) (32)




The values of o, and , determine both the spatial resolution and the spatial
frequency resolution of the filtered image. Low values of o, and g, give high spa-
tial resolution but low spatial frequency resolution, and vice versa. Care must
be taken in selecting (o, o,) and the center frequency (- 1") for cach filter in
the filter bank. There are two kinds of approaches to determining these filter
parameters. The first one tries to design the optimal Gabor filters adaptively
for the separation of the features of given textures {28][30]. while the second
one deals with a more general case and uses a fixed flter bank for all textures.
Unlike the first approach in which the filters may cover only a part of the spatial
frequency domain. the second one usually provides coverage of the entire spatial

frequency plane.

Motivated by the similarities between octave band decompostions and the
HVS, most of the research using the fixed filter bank idea have designed their
filters to be dyadic. Jain and Farrokhnia [27] suggest a bank of Gabor filters
tuned to five radial frequencies and four orientations, as shown in Figure 3.3.1.
Clausi [1] argued that the 45° angular bandwidth of the filters is not in agree-
ment with the HVS and selected a smaller angular bandwidth of 30° for his

filters.

The filtered image is processed nonlinearly (usually by rectification) and
smoothed. The local energies of regions surrounding each pixel in the image
can then be estimated with these responses. These energies comprise the cor-

responding feature vector for future i ion or

is required here because the rectified output often has non-negligible variations

within the same texture area. Among possible smoothing filters, the Gaussian
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Figure 3.3: The frequency response of the dyadic bank of Gabor
filters. The axes are in normalized spatial frequencies (taken

from [22])

shaped filter seems o be a good candidatc. Bovik {28] uses the Gaussian filter
that hes the same parameters as that of the corresponding Gabor filters. but
with larger spatial extent. This can reduce the speciral leakage and also pre-

serve fairly good spatial localization

references available in the literatures about using Ga-

There are not many
bor filtering for SAR sea ice image classification. Clausi [1] gives a comparative
study on Gabor filtering and the GLC\ for the SAR sea ice classification and
segmeatation. His experiments showed that “in general Gabor features are more
clusterable than the cooccurrence features™ 1. p.151]. which makes it advanta-
geous in unsupervised segmentation. He also concluded that the cooccurrence
features can capture fine boundary details well with a small window size. Since

smoothing is often required for the Gabor filtering outpur. the Gabor technique
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tends to blur texture boundaries belonging to small regions.

3.3.2 Discrete Wavelet Transform (DWT)

Waveiets are families of basis functions generated by dilations and translations
of a basic filter function. The wavelet functions construct an orthogonal basis
and the discrete wavelet transform is thus a decomposition of the original signal
in terms of these basis functions:
fr)= ¥ ¥ Crvmalz).
b=

2°™r — n) are dilations and translations of the

where the timq(r) = 2-™3{
basic filter function v(z). Unlike Fourier bases which are composed of sines
and cosines that have infinite length. wavelet basis functions are of finite dura-
tion. The discrete wavelet transform coefficients C7* are the estimation of signal
components centered at (2™n.2"™) in the Time-Frequency plane. and can be
calculated by the inner products of tmna(z) and f(z). It is obvious that the
wavelet transform is an octave frequency band decomposition of the original

signal. which agrees well with H\'S. The narrow-band signals then can be fur-

ther and provide a malti-resolution of the original

signal.

The discrete wavelet coefficients CT" can be efficiently computed with a pyra-
mid transform scheme using a pair of flters (a low-pass filter and a high-pass
filter). as depicted in Figure 3.4 [31]. As we can see from the figure. the or-
thogonal multi-resolution analysis of the DWT is characterized by a resolution

factor of 2 between two consecutive scale levels.



Figure 3.4: 3-level DWT of 1-D signals

For images which have two di the filtering and d ling steps
will be repeated in rows and columas respectively. The procedure for two levels
is shown in Figure 3.5. A sample image and its wavelet transform obtained in

this manner are shown in Figure 3.6.

Leni | Lei2

Figure 3.5: 2-level DWT of images

At each level the image can be transformed into four sub-images: LL (both
horizontal and vertical directions have low frequencies). LH (the vertical di-
rection has low frequencies and the horizontal has high frequencies). HL (the
vertical direction has high frequencies and the horizontal has low frequencies)

and HH (both horizontal and vertical directions have high frequencies).
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(a) original image () band image of 2-level  (c) bands of 2-level
DWT DWT
Figure 3.6: 2-level DWT example

Statistical information can be calculated from the resulting sub-images.
These statistics will represent the characteristics of the original image at differ-
ent resolution levels and directions. Typically, a simple energy statistic is com-
puted. More complex techniques such as histogram statistics and the GLCM
can also be applied on the wavelet bands. These are presented and discussed in

chapter 4.

3.4 Summary

In this chapter we have reviewed three kinds of approaches (GLCM, Gabor
filtering, DWT) for texture classification. They have all been categorized as
statistical methods. The GLCM usually works at the pixel level, while the

Gabor filtering and DWT can provide a multi-resolution analysis similar to what

is effectively performed by the HVS. Texture classification using the DWT is

studied in detail in the next chapter.
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Chapter 4

Texture Feature Extractions

with Wavelet Transform

4.1 Introduction

Texture features that are useful for classification usually exist at various scales

For sea-ice textures this also seems to be true as suggested by 21] in the context
of an investigation of the selection of interpixel displacements for GLCMs. A
weakness shared by many texture analysis schemes. including the GLCM and
MRF. is that the image cannot be efficiently analyzed at multiple scales. Thus.
we based our research on the Discrete Wavelet Transform (DWT). which pro-
vides an efficient way to obtain a multi-resolution representation of the texture

image.
The output of the DWT is a collection of images, each of which represents
the component of the original image at specific directions and resolutions. Sta-

tistical information can then be computed for those image bands to complete
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the feature extraction.

This chapter focuses on texture feature extraction methods related to the
Wavelet Transform. In Section 4.2. a simple comparative study is presented
on the selection of different wavelet kernel functions and different signatures.

Section 4.3 igates feature using non-dyadic wavelets. Then

applications of these classifiers on SAR textures are presented in Section 4.4.
Section 4.5 deals with texture segmentation. which provide visual evaluations

of classifiers based on these feature extraction methods.

4.2 DWT Band Signatures

4.2.1 First Order Signatures

Energies

It is typical for filtering approaches. including the DWT. to use the response
energies as the signatures. Energies can be measured by either the magnitude -
or by squaring ()% Before being used as features. the response energies have to
be averaged or smoothed within a local arca when doing texture segmentation.
or wirhin the whole image when doing texture classification. This is because
the responses often have non-negligble variations. especially for the DWT where
different downsample offsets will cause different DWT responses (known as the
shift variant property of the DWT). This variation will be significantly reduced
when averaging over a whole subband is performed. due to the random nature of
textures. And hence we use the average encrgies of the subbands as the texture

features for our classification experiments.



The classification procedure is as follows:

o Training:
Decompose the sample images in the training set with the DWT and
calculate the average energy of each band. That is. if the coefficients of a
band are C(1.j). with 1 < i < Hand 1 € j < IW". where H and I¥" are
the height and width of the band. then the energy is

s
E=mr ;I)::x Clu
This process produces a feature vector for cach image. Vectors belonging

to the same class can be further processed (averaged here) to represent

features of that class type.

o Classification:
Decompose the image to be classified with the DWT and caiculate the
feature vector as in the training step. Compare the feature vector with
that of each class type and classify the image with a minimum distance
method. Here for simplicity. the Eucliean distance is used.

Performance evaluation of the classifier is based on experiments with data set

MBS {see Appendix A). A 3-level DWT is performed. Thus the feature vector

consists of the energies of nine bands when excluding the lowest frequency band

which is sensitive to illuminations. or ten bands when including it. The con-

fusion matrices in Table 4.1 and Table 4.2 show respectively the performances

of the classifiers including and excluding the lowest frequency band, using the

6-order Daubechies [32] wavelet. The row labels correspond to the texture tvpes

of the input test samples, while the column labels indicate the classified types.
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To save space for the table. instead of printing the whole name of cach texture
only the first three charaters are used (i.e. bar, bub. can. gra. lea. san. sto. str.
wou. pac. rub. and lan representing bark. bubble, canvas. grass. leather. sand.

stotie. straw. woolen. pack ice. rubble ice. and land respectively).

[ [ar | bub | can | gra Ica | san [ sto [ str [ woo _pac [ rub | fan]
Thar | 25| 1 |
bub [ 6

1ofes| 2

[

5
ol o] e
SN
e

oo | 2
pac
rub |
Tan | 1

I

Table 4.1: Classification result by 3-level Daubechics(6) DWT energy classifier
(including lowest frequency band). Overall accuracy: 81.51%

The classifier that utilizes the lowest frequency band energy has a much
poorer overall performance. This is because textures are often more character-
ized by mid or high frequency bands. and the lowest frequency band is usually
sensitive to illumination variation. Excluding the coarsest approximation band.
however. might discard useful information corresponding to slow variations of
large scale texture features. A feasible way to avoid this problem is to include
the variance of the approximation band. In fact. variances of all subbands form
an orthogonal decompostion of the overall variance of the original signal (35).

But for simplicity. we just exclude the lowest frequency band in all our experi-

ments presented subsequently in the thesis.
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bar | bub [ can | gra | lea | san | sto | str [ woo | pac | rub [ lan
bar | 30 2
bub | 1 29 1 1
can 32
gra | 1 2413 3

sto 32

pac 29| 3
rub 517
Tan E3)

Table 4.2: Classification result by 3-level Daubechies(6) DWT energy classifier
(excluding lowest frequency band). Overall accuracy: 87.5%

R

o
e

bar bub can gra lea san sto str woo pac rub lan

Figure 4.1: Standard Deviation of Features

A troublesome Brodatz texture is that of straw, for which the classification
accuracy rate for Table 4.2 is only 59.4%. Figure 4.1 shows that the straw
feature vectors have a high variance. This is most probably because of the di-
rectional variations within and among the straw samples. Since the DWT has
some degree of directional selectivity (HL band for horizontal, LH for vertical,
and HH for diagonal), those texture directional variations will cause the energy
to be distributed among different subbands inconsistently, leading to a high

variance.
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Figure 4.2: Performances of DWT classifiers of different wavelet basis

Figure 4.2 shows the overall performances of classifiers based on different
wavelets. In selecting a wavelet basis careful consideration must be paid to
the shape of the waveform, the order of the wavelet filters, and whether it is
symmetric or not. If the waveshape of the chosen wavelet can match image com-
ponents well, the DWT will provide a very efficient and compact representation
for identification purpose. There has been some work in designing signal-similar
wavelets for specific applications, especially in defect detection [34]. However,
this kind of method seems not to be advantageous for applications involving
multiple textures, or textures that do not have regular primitives which is the
case for many natural textures (probably including SAR sea ice). The symme-
try of the wavelet filters affects the amount of phase shift in the decompostion

and thus the localization of image For image ion, where

exact localization of features is required, biorthogonal bases are preferred since
orthonormal basis functions lack the desired symmetry. But for classification
this symmetry property is not so necessary. High order wavelets usually give
better approximations to highpass filters with less spectral leakage. As a result,
high order wavelets can extract the different frequency bands of components

better than low order wavelets, and therefore are also more sensitive to direc-
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tional variations of the training and validation samples, as implied by Figure
4.3. However, two disadvantages exist for high order wavelets: they are more
involved in boundary effects and have higher computation complexities. There-
fore a trade off needs to be made and we have chosen the 6-order Daubechies

wavelet for most of our experiments.

70.00%
3 65.008
5 60.00%
< 55,008

50. 00%

Haar Daubd Daub6  Daubl0 Daubl2
Figure 4.3: Classification Accuracy of Straw with Wavelets of Different Order

Directional sensitivity can be reduced by averaging the energy of bands at
the same level. However, useful ori ion i ion is also elimi at
the same time. This information loss may cause poor classification results,

especially for textures that have significant and consistent orientation features
crucial for classification. A new method that utilizes orientation features for
rotation invariant classification will be presented later in Chapter 6.
Histogram Parameters

Mallat [31] observed experimentally that the detail histograms of many natural

texture images can be modeled by a family of exponential functions.

h(w) = Ke~ (/@) (1)
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The variance @ is proportional to the width of the histogram. while 3 models
the decreasing rate of the peak. K is a scaling factor determined by both the

total count of elements and the distribution of the histogram.

Van de Wouwer et al. (43 utilized the parameters of these histogram models
as features in their classification cxperiments and concluded that these param-
cters are bester features than the cnergics. Energy information. whether it is
measured by magnitude or variance. is only part of all the information con-
tained in histograms and therefore an accurate histogram model is expected to

characterize the texture better than energy does.

A special case of this model is the Gaussian function (J is 2). where the
squared energy signature is the square of the corresponding model parameter
a. Thus in this case the two kinds of features. energy signatures and histogram
parameter signatures. are equivalent. After comparing the curve fitting using
the Gaussian model and the general exponential function of Equation 4.1. as
shown respectively in Figure 4.4 and Figure 4.5. we can conclude that both the
Gaussian and general exponential functions give good approximations of the
wavelet band histogram. although the general exponential function may be a

slightly more accurate model

Quantization is needed to obtain the histogram. The selection of the quan-
tization bin could influence the exponential model parameters. For this consid-
eration. the Gaussian model is advantageous since its only parameter can be

simply and consistently computed by the squared energy.
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Figure 4.4: Curve fitting using Gaussian function for the 3 level

wavelet band histogram of bark texture

4.2.2 GLCM for Second Order Signature

If first order signatures do not suffice in characterizing the texture wavelet bands,
higher order signatures could be included. The GLCM is an obvious choice for

obtaining second order statistics.

Experimental results of classification using DWT-GLCM signatures are shown
in Table 4.3. Although the overall performance is lower than that of the simple
DWT energy classifier, some textures such as straw are identified more accu-
rately. Unlike the DWT wavelet which can only extract mixed diagonal (45°
and 135°) features, the GLCM can obtain separate diagonal features, and hence

can be expected to perform better for textures like straw in which the dominant
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Figure 4.5: Curve fitting using the general exponential function

for the 3 level wavelet band histogram of bark texture

energies are in the diagonal directions

Whether a first order statistic or a second order statistic is more suitable
depends on the given textures. For the textures which have higher energies in
the mid or high frequency bands, second order statistics are preferred since they
will characterize the mid or high frequency bands in more detail than first order
signatures. This is more or less like the non-dyadic wavelet transform which
will be introduced later. Also, for textures which have dominant energies in the
diagonal directions, second order signatures are better since they can further

decompose the mixed diagonal directions separately.



bar [ bub [ can [ gra | lea | san | sto [ str | woo | pac | rub | lan
bar | 31 1
bub | 3 | 23 3 1 2
can 32
gra | 2 13|58 201 |3
lea 29| 2 1
san 1 30 1
sto 32
str 1 2 1 28
woo [ 1 ¥ 2 28
pac 21| 5
rub 9 [
lan 2 30

Table 4.3: Classification result by 3-level D: i DWT-GLCM Classifier.

Four directions (0°,45°,90°,135°) and DIS statistics are used here . Overall
accuracy: 84.90%

4.3 Classification with Non-dyadic DWT

4.3.1 Tree-structured Wavelet Transform (TSW)

Chang and Kuo [33] utilized a non-dyadic Wavelet Transform for texture classi-
fication and did experiments on Brodatz textures. Unlike the traditional DWT
that keeps decomposing the band of the lowest frequency, they only decompose
those bands in which the energy is not negligible. This approach is motivated
by the observation that many natural textures have dominant frequencies in the
middle frequency bands (for SAR sea ice textures, we need to see if the argument

is still true and if the method is i Their i Igorithm is

described below and is called the Tree-structured Wavelet Transform(TSW), or
‘Wavelet Packets:

1. Decompose a given texture image with a 2-D wavelet transform into 4
subimages, which can be viewed as the four child nodes to the node rep-

45



resenting the input image. Calculate the energy of each band. using the

same formula used in previous DWT classifier.

If the energy of a subimage is significantly lower than that of others.
the decomposition for this region is terminated since it contains little
information. This step can be achieved by comparing the energy with
the largest energy value in the same scale. That is. if £ < CEpgs. stop

decomposing this region. where 0,15 is used for C as in (3.

5

If the energy of a subimage is large. the above decomposition procedure

is applied again to that subimage.

4.3.2 Classification with TSW
Textures can be identified based on the corresponding decomposition tree pat-
terns. A progressive TSW based classification scheme is detailed as follows
331
o Training:
1. Decompose the images in a training set with the TSW"
2. Each class maintains a list of all the tree patterns that have occurred.
together with the mean energy tree of each tree pattern.
o Classification:
1. Decompose the image in the testing set with the TSW.

2. Arange the bands (i.c. tree leaf nodes) in decreasing energy order.

e Z1 > > > 5, >8> 50>
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Place all possible texture types into a candidate list, and perform the
following iteration from the first feature (i.e., z,,, m = 1).

Remove texture types from the candidate list if they do not have the
same leaf node as the mth dominant channel of the unknown texture.
For the remaining texture types, calculate the distance between the
image and all candidate textures, using Euclidean distance for sim-
plicity. Let Dpn = minD;. If D; > K Dpin, where K is a constant

greater than one, remove texture type i from the list.

. If there is only one texture left, assign the unknown texture to this

texture. Otherwise, repeat from 4 the next iteration by increasing

the value of m by one.

94. 00%
92. 00%
90. 00%
88. 00%
86. 00%
84. 00%

i

Haar LeGall Daub4 Daub6 Daubl0 Daubl2

Figure 4.6: Performances of TSW classifiers of different wavelet basis

Figure 4.6 gives the performance of this TSW classifier using different wavelet
basis functions. Compared to the performance of the DWT classifiers shown in
Figure 4.2, the TSW classifiers have significantly better classification accuracy.
The improvement may be explained by either the finer frequency resolution
achieved in mid bands, or the reduction of sensitivity to orientational variation
(since the TSW scheme maintains for each texture type a list of all tree patterns

which occur, orientational variation sensitivity is reduced because the distance
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to a class is measured by distance to the several nearest neighbours in the class).
As an indication of this characteristic, the confusion matrix in Table 4.4 shows

that the TSW performs signif better for ori i rying textures like

straw and grass. However, this improvement is not robust because the training
samples have to be carefully selected to include all possible orientational varia-

tions. It is not a solution to the orientation invariant classification problem.

bar | bub | can | gra | lea [ san | sto | str | woo | pac | rub [ lan
bar [ 27 | 5
bub| 1 | 31
can 32
gra | 2 27 3
lea 1 (31
san 32

str 1|2 28 1

pac 1 30 | 1
rub 15 | 17
Tan 32

Table 4.4: Classification result by 3-level Daubechies(6) TSW classifier. Overall
accuracy: 91.15%

It appears that the Brodatz and SAR textures are quite different. Very few
SAR textures and Brodatz textures are confused with each other. Usually SAR
textures have more fine features (probably because of the speckle noise) and
thus have more energy in the mid and high frequency bands. When examining
the tree patterns of all textures obtained by the TSW, it is found that for most
of the Brodatz's textures only the lowest band at each level had been decom-
posed, whereas for all three SAR textures the trees are quite balanced. However,

SAR textures classification accuracy has not improved much even though the
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TSW has achieved a better separation in the middle and high frequency area.
A possible explanation is that the speckle noise energy in the middle and high
frequency arca has masked the real cnergy of the ice textures themselves.

One thing which should be noted is that when the TSW is applied to texture
ion the i ity could be very high. As the classifi-

cation window moves across the image. each subimage in the window area may
have different decomposition patterns. The transform can no longer be applied
to the whole image only once as in the DWT. Each pixel is involved in the TSW

computation as many times as it appears in any window.

4.3.3 Comparision between TSW and DWT-GLCM clas-
sifiers

Before comparing the TSW classifier and the DWT-GLCM classifier, we first
study the relationship between DWT energy and GLCM statistics. Figure 4.7
compares the average magnitude of one level Haar wavelet LH subband and a
GLCM statistic (DIS. 0°. and one pixel displacement) using bark. canvas and
straw textures. The resulting graph indicates very strong correlations between
DWT band energies and GLCM statistics (i.e. the DWT magnitude and the
DIS are almost linearly proportional).

Suppose we have calculated the GLCM of an image g of size M x .V pixels

with direction § = 0° and interpixel displacement 6 = 1. The Dissimilarity(D/S)
statistic. given in the formula £E, =2, C,li — j| can be rewritten as

& &= dlgim.n+1)

bis = $Y5 S

=1 y=imet nmt

(m, n) - j)
MN-1)

o

lg(m,n +1) — g(m.n)|
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Figure 4.7: Correlation between DWT filtering and GLCM statistics
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Thus the Dissimilarity of the GLCM is very close to the average magnitude
of the first level LH band of the Haar wavelet transform. Similarly, the Contrast
(CON) corresponds to the variance of Haar wavelet bands. However, there are
still some differences. For example, the GLCM of # = 0° lacks a smoothing
step in the vertical direction which is performed in obtaining the Haar wavelet
LH band. This smoothing step can reduce the amount of jitter and noise, thus
improving the feature extraction of that specific direction. Another difference

is the downsampling step in the wavelet transform. Shift variance of band en-
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ergy is introduced by downsampling. But this variance is expected to be small
because of the random spatial arrangement of primitives in textures. The last
difference is that the GLCM often has a quantization step for the original image
while DWT does not. Quantizing the image will probably remove the subtle
differences between two visually similiar textures. especially for SAR sea ice.
Therefore Clausi {1] argued that it should be much safer and more consistent to
utilize the full dvnamic range. However on the other hand. the quantizations
will also help to reduce noise. It is hard to say which effect will dominate.
We can also apply quantizations to the wavelet coefficients. There has been a
large amount of work in the literature on noise reduction using wavelet coef-
ficient thresholding. which is in some sense similar to quantizing the wavelet
coefficients. For more information on denoising with wavelet coefficients thresh-

olding. the reader is referred to [42].

Because high correlations exist among GLCM statistics as stated in [19].
it seems not to be very advantageous to combine two or more GLCM statis-
tics. Thus. the DWT classifier is comparable to that based on GLCM (for
textures that do not have dominant information in diagonal directions). even
if only a one level transform is applied. A similar comparison can be applied
to the DWT-GLCM methods and the TS\W. GLCM Disimilarity and Contrast
calculated from wavelet bands can also he approximated with energies of the
bands obtained by further decomposition. Therefore we can conclude that the
same level of performance as that of the DWT-GLCM can be achieved by a
non-dyadic wavelet energy method (like TS\W). which has a significantly lower
computational requirement than GLC)M has. Please note that the DWT-GLCM
excludes the relatively lower frequency part. while the TSW utilizes this infor-
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mation.

4.4 SAR Texture Classification

In this section we apply the three kinds of feature extractions (DWT energy,
DWT-GLCM, and TSW) to the logarithm processed SAR data set PLS (see
Appendix B), which includes pack ice, rubble ice, landfast ice, and land (la-

beled as pac, rub, Ifn, and lan respectively).

pac | rub | 1 | lan pac [rub | 1 | Tan
pac | 27 5 pac [ 30 | 2
b 4 [ 27 [ 1] | b | 1 | 31
T 1[29] 2 W] 432
Tan 37 | Tan 2 [30
(a)DWT energy. Accuracy: 89.84% (B)TSW. Accuracy: 90.63%
pac [ rub | I [lan
pac| 19| 1 [ 9
wb| 2 [ 2181
M| 7 [13[11] 1
lan 4|28
(c)DWT-GLCM. Four directions and

DIS. Accuracy: 61.72%

Figure 4.8: SAR texture classification results by DWT energy, TSW, and DWT-
GLCM classifi For all three i the 3 level D: ies wavelets are
used

Experimental results are shown in Figure 4.8. Obviously, it seems not to
be attractive to further explore spatial correlations within wavelet detail bands,
as indicated by the poorer performance of DWT-GLCM. Nor is it of much im-
provement to have higher mid frequency resolutions using TSW. A possible

explanation for these is that though SAR textures have many fine details cor-
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responding to middle and high frequency bands. these details are more likely
contributed or masked by speckle noise. A dvadic decomposition therefore seems

to be adequate for characterizing these SAR texture frequencies

It also seems that the DWT-GLCM's capability for separating mixed di-
agonal features (i.e. better directional selectivity) does not have much effect

isotropic {20] {21]. However in our
120; 21}

SAR sea ice textures are typically treated as
SAR texture image of Figure 2.3. the rubble ice has visually obvious diagonal

structures at a very large scale.

To utilize these orientational features. no matter if in the horizontal. vertical.
or diagonal directions. we have to consider carefully the effect of the orienta-
tional variations in the training and validation samples. As we have seen in our
previous experiments. the orientational variations can cause significant degra-
dation of the classification system. Discussions and solutions are presented in

Chapter 5.

4.5 Application to Texture Segmentations

Texture segmentation can be achieved by either grouping regions with simi-
lar texture features or separating regions that have significant dissimilarities.
Texture classification measures the similarities between a region and a set of
predefined textures and therefore its application to segmentation belongs to the
first kind. When utilizing the classifiers to segment textures. a window is usu-

ally slid across the image. A texture classification is performed on each window

area. and the center pixel of the window is labeled as the corresponding texture



type.

The second category of approaches determines the boundaries to segment
the image. They usually measure the texture dissimilarities between neighbour-
ing areas. Here. grav level segmentation schemes are often applied. where the

texture feature values are viewed as gra values.

It is hard to say which is better. For SAR sea ice. in cases where collisions of
ices generate obvious boundaries. the second kind of method is perhaps better.
But for mixture areas of different ice tvpe resulting only in a fuzzy boundary.
the first approach is preferred. Since our specific research interests are those
voung and new ices in different stages which are more o less alike. we apply

texture classification to achieve the segmentation task.

Figure 4.9 gives the segmentation results using DWT energy. DWT-GLCM.
and TSW feature extraction methods. An original mosaic image (see Figure

pixels. and is made up of 5 textures of

4.9(a)) has a dimension of 512 x 5.
bark. bubble. grass. leather and sand. Consistent with the classification experi-
ment. TSW is a little better than DWT energy. while the DWT-GLCM method
is much worse than the other two. Their segmentation results on the SAR image
of Figure 2.3 are shown respectively in Figure 4.10. 4.11. and 4.12. As in PLS
set. this large SAR image is pre-processed with a logarithm before segmenta-
tion. Because the SAR image is very large. the window is shifted by 8 pixels for

to ion to save both « ion time and storage space.

From the segmentation result. we can obtain the same conclusion as with the

Brodatz experiments.



The window size is an important parameter that has to be judiciously chosen.
To utilize the large scale features. like those orientational features in rubble ice.
a large window has to be selected. However. using a large window increases

the likelihood that the window contains more than one texture type. resulting

in more classification errors and poor localization of

For this reason keeping the window size as small as possible is desirable. A
possible solution to this contradiction is a coarse to fine approach. The image
is first classified pixel by pixel at the coarsest scale. making use of large scale
features. For boundary areas or clutters lacking large scale features. the pixel
classification is deferred and finer scale classification is performed. This process
is iterated until the finest scale is reached. But this kind of approach also has a
problem. Small classification errors in the coarser scales will be propagated to
finer scales. generating large blocks of errors. Unless we can guarantee that the
classifications on the coarse scales are close to one hundred percent correct. or
we do not use deterministic classifications. the problem seems to be inevitable.
Due to the difficulty inherent in the approach. further investigation is out of the

scope of the thesis and we leave it for possible future work.

4.6 Summary

In this chapter we have introduced several feature extraction methods based
on the wavelet transform. and made a comparative study of them. Among the
three approaches. the TSW is the best but is impractical because of its high
computational complexity. \We have shown that for SAR sea ice. the simple

DWT energy is a good choice as it has performance close to that of the best




coming from the TSW.

We also noticed that directional variations will cause a lot of trouble in the
design of a robust classification system. One of textures prominent in our re-
search. namely rubble ice. often exhibits obvious oriented structures. Although
the research presented so far has not explored the large scale features of rubble
ice (the experiments are carried out with 3 level wavelet transform. of which the
corresponding scales are all much smaller than that of the oriented structures).
it is ideal if we can design a rotation invariant classification system to make use
of the oriented features for the identification of rubble ice. Chapter 3 deals with

the topic of designing  rotation invariant classification




(c) Result using DWT-GLCM (d) Result using TSW
| p B Butble [ Grass
[ Leather [ smd

Figure 4.9: Texture segmentation using DWT energy. DWT-GLCM, and TSW
methods. A mosaic image of 5 textures (bark. bubble, grass, leather, sand) is

used. The window is of 64 x 64 pixels size and shifted by 1 pixel.
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Figure 4.10: SAR Texture segmentation using DWT energies. Original image
pre-processed with logarithm. The window is of 128 x 128 pixels size and shifted

by 8 pixels



-

Figure 4.11: SAR Texture segmentation using the TSW. Original image pre-
processed with logarithm. The window is of 128 x 128 pixels size and shifted

by 8 pixels



[ Landfast ice. [JLand

Figure 4.12: SAR Texture segmentation using the DWT-GLCM. Original image
pre-processed with logarithm. The window is of 128 x 128 pixels size and shifted

by 8 pixels.
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Chapter 5

Rotation Invariant Classification

5.1 Introduction

Most existing classification methods assume that the training and validation

e the ~ame orientation and scales. However

~amples are carefully selected to
these two factors. especially the orientations. are uften unpredictable and there-
fore can make the classifiers not robust at all. For our research target of SAR
~ea ice. oriented features. whose orientations are determined by the coastline.
wind. currents and other environment factors. uften exist. The ice aainst the

coast in Figure 2.3 is an example.

Rotation invariant texture classification can be obtained by eliminating the

mple. asetazing the GLCMs of different 8 are

orientation information. For
adopted by 20] and [21] in their experiment~. Using the energies of Laplacian
Pyrauid [36] bands instead of wavelet binds a~ fratures is another example. A
common drawback of these algorithms i that thie loss of orientation information

will probably cause the classifier to perform pourly when it is trving to classify
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wvriented textures.

A promising method using oriented Laplacian prramid filtering was propused
in 37 Rotation invariance features are extracted with DFT encoding of the
output of the filtering. Siace our method is motivated by this work. a brief

introduction is given in the following section on it.

5.2 Invariant Texture Recognition Using Steer-

able Laplacian Pyramid

5.2.1 Algorithm

The idea of using a Laplacian Pyramid to extract components of different spatial
frequency bands for image analysis can be found in [36]. The original image is
decomposed into sets of octave-spaced lowpass and bandpass components by
the following steps:

1. The siven image is lowpass filtered first. A handpass filtered version of the
input image can then be obtained by the subtraction of the input image
and the lowpass filtered one.

2. The lowpass filtered version of the input image is downsampled. Thus a
lower resolution image is obtained. tu which the above procedure is applied
again.

The image pyvramid formed is not orientationally tuned. In order to extract

orientational components. each level of the pyramid is modulated with a set of

oriented complex sinusoids. followed by another lowpass filtering (LPF) opera-

62



tion using a scparable filter. and then downsampling. as defined in equation 3.1

Opa=LPF :.

where O, is the oriented image at scale 7 and urientation a. L., is the Laplacian
image at scale n. 7= i+ yj (xand y are the spatial coordinates of the Lapla-

lla=Trla=1...\)

cian image). £, = 17/21icos 8,/ —siné,, /. and 6,

A feature curve (per scale) can he defined across orientation space. as the
textures” response to the oriented filters above in the 360” space. Rotation of the
input testure will cause a shift of the feature curve across the orientation axis.

Rutation invariant features can then be extracted with the Fourier Transform.

where magnitudes of the transform outputs are used as features. since the shift

on the orientation axis will only influence the phase.

It is impractical to extract image compunents of a continual set of orienta-

tions on the interval 0.271. A discrete set of orientations is used instead. In

the whole orientation space was spanuied b iaterpolations of the selected

oriented kernels. The authors proved that a set of eight orientations with 457
handwidth is sufficient to span the 360° of urientation space with more than
99% accuracy. This spanning. however. mav not be necessary if only limited
dominant orientations exist per scale fur the siven texture. For example. 4 ker-
nels spaced 457 apart i sufficient for the representation of a single dominant

orientation.
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5.2.2 Discussions

is not effi-

A problem of {37]'s method is that the oriented Laplacian prran

cient in i of different orit ions. A lot of redundancy

exists among orientation images of the same scale. This is clear if we look in
the spatial-frequency domain. Figure 3.1 shows the spatial-frequency represen-
tation of a one level Luplacian Pyramid. The bandpass filtered version of the
input image corresponds to the shaded area in (a). Suppose we want to extract

ifted down and left by 7/2 so that

components of 43°. After modulation it is s
the upper right part of the original image is now in the center as shown in (b).
and will be etracted when lowpass filtered. Therefore. the ouputs for orienta-

tion 07,45, 90° and 135° correspond to the four parts in figure 5.2. Significant

redundancy exists between neighbouring orientations. That's a possible reason

for the high uracy in spanning the orientation space with only a small dis-

crete set of oriented kernels.

. .
L
E_l - l__ § -
(a) Laplacian Pyramid in (b) Modaulation and Lowpass
Spatial-frequency Domain Filtering

Figure 5.1: Oriented Laplacian Pyramid in Spatial-frequency Domain

A more accurate orientation feature extraction method is Gabor filtering.
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Figure 3.2: Components in 0°.45%.90°. 133° of Oriented Laplacian Pvramid

but it is computationally costly. The Common DWT is incapable of this task
because orientations of 43° and 135° are mixed together as shown in figure 5.3
To extract these two orientation parts separately. the ability of separate positive
or nesative frequency filtering is required. That is. the wavelet filters have 1o be

constructed by complex coefficients instead of real coefficients. This motivated

our choice to use the complex wavelet transform for oriented feature

O
O

45,
135

Figure 5.3: Components in Horizontal Vertical. Diagonal Direction of 1-level

DWT



5.3 Complex Wavelet Transform

5.3.1 Definition

The Complex Wavelet Transform (CWT) was proposed to overcome the two

di: of real wavelet f lack of shift invariance and poor di-

rectional selectivity. which has been mentioned in the previous section. Lack
of shift invariance can be solved by designing the complex filters in such a wav
that the magnitudes of their responses vary slosly with input shift - unly the
phases vary rapidly. Good directional selectivity can be achieved if only either
the positive or negative frequencies are filtereed through. Therefore. all of the

complex filters <hould emphasise pusitive frequencies and reject negative fre-

quencies or vice-versa. Detail explanations can be found in (3

The Complex wavelet transform has the ~ame structure as that of the real
wavelet transform except that the flter cocfficients are complex instead of real.
as described in figure 5.4, The inputs of all level flters are made up of two parts
(real and imaginary ). except for the filters of the finst level whose input is the

real signal z. Since each coefficient cuntains a real and imaginary part. a 2.1

redundancy s introduced.

Like in DWT. separate filtering it totw and column directions is performed
to extend CWT to two dimensions. Tw adjacent quadrants of the spectrum
are needed to fully represent the orizinal unaze without any information loxs
{note that opposite quadrants are coujusate paits). Therefore a 4:1 redundancy
is required. which is achieved by additional hltvring with complex conjugates of

either the row or column filters. The directional selectivity therefore is oriented
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Figure 5.4: Three levels of the complex wavelet transform for a real 1-D
signal r. The wavelet coefficients C consist of the real and imaginary
parts.

at =15°. =45° and =73°. as shown in Figure 5.5. Since the human visual svstem

(HV'S) is known to be made up of a set of filters’ that have bandwidth of about
one octave and are tuned to directions no more than 30° apart [1]. the complex

wavelet transform agrees with the HV'S well.

O O
Oaes e
D -15 D %

Figure 5.5: Different Directional Components with I-level CWT

5.3.2 Dual-Tree Complex Wavelet Transform (DTCWT)

Calculating and manipulating complex data with complex filters is really a

troublesome task. A method named Dual-tree CWT (DTCWT) was proposed
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in 39 to approximate comples wavelet transform. Fizure 3.6 gives the one
dimension diagram of the algorithm. It emplovs a dual tree of wavelet flters
to obtain the real and imaginary parts of complex wavelet coefficients. The
output of the upper tree provides the real part of the complex coefficients while
the lower tree eenerates the imaginary part. For details the readers are referred

10 30

Fizure 5.6: Dual tree of filters for the complex wavelet transform (taken from

394
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5.4 Rotation Invariant Classification Using Com-

plex Wavelet Transform

5.4.1 Classifications with DTCWT

Before applving Discrete Fourier Transform (DFT) encoding on the DTCWT
output to get an rotation invariant representation for the features. we will first
do an experiment on the classification with DTCWT alone. The test was per-
formed on the MBS set. The selected wavelet kernel is the 10-order QShift filter
provided in {40]. which gives improved versions of the filters presented in {39].
Like the typical Daubechies wavelet flters. the QShift filters are orthonormal
and not symmetric. An encouraging result has been obtained. and is shown
in Table 5.1. The separation of 43° and 135° directions is the reason for the

in the overall This is clearly de d by the

impressive accuracy obtained for straw texture. which has important orienta-

tional features existing around the 43° direction.

The classification accuracies of SAR s ice have not improved. Orientation
features obvious in rubble ice image seems have not plaved a role in the process.
Those orientation features are of <o large a scale that even the coarsest of the
three decompsition levels is insufficient to capture them. Further decomposi-
tion bevond three levels is tested on a rubble ice image of a larger dimension of
512 x 512. and the result is shown in Figure 5.7(a). It seems that in the 5th and
6th decomposition levels. the energies are skewed. having maximum value in
the directions of 75 degree. Since the 73° band measures the variations in that
direction. it actually corresponds to the linear features stretching along —15°

apparent in the rubble ice image. The 3th and 6th levels represent scales be-
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bar | bub | can | gra | lea | san | sto | str | woo | pac | rub [ lan

bub 30
can 32

lea 32

lan 32

Classification result by 3-level QShift(10) DTCWT classifier. Overall
91.41%

tween 16 pixels and 32 pixels (i.e. 200m and 400m). For comparision, subband

energies of pack ice and land are presented in figure 5.7(b) and (c).

The figure also indicated that for SAR sea ice the first two decomposition
levels have relatively higher energies. This might contribute to the argument in
[20] that length of four pixels was appropriate for GLCM statistic calculation.
However for high resolution levels, the speckle noise will influence significantly

[41).

5.4.2 Rotation Invariant Classification with DFT Encod-
ing on CWT

As explained earlier when introducing the method of [37), Discrete Fourier
Transform (DFT) encoding provides a feasible way to obtain rotation invari-

ant representations for oriented features. We applied DFT encoding on the
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six complex wavelet bands per scale and we call this method DFT-DTCWT.
The magnitudes of the DFT coefficients obtained can then be used for distance
calculations. while the phases indicate the rotation angle of the input image.

Obviously. neither training nor test samples need to have the same orientation.

In our experiments the training samples are of the same orientation within

each class. but the test samples are rotated with different angles. Figure 5.3

gives of a non rotati ant classifier (DTCWT) and two
rotation-invariant classifiers (DFT-DTCWT and classifier based on the energy
of Laplacian Pyramid bands). with respect to rotation angle of the test sample
textures. The non rotation-invariant classifier (DTCWT) has a strong decline
in performance when rotation angle increases. resulting in poor performances
bevond 20°. while the rotation-invariant classifiers are much more stable over

the angle axis. For the Laplacian Pvramid classifier. the orientation features

are all merged together within a single non-oriented band per scale. Therefore.
its overall classification performance is much lower than that of DFT-DTCWT.

which utilized seperate orientation features in the feature extraction step.

Compared to the non rotation-invariant DTCWT classifier. the DFT-DTCWT
classifier is slightly worse if the input textures are not rotated. This is because

the fe by only the itude of the DFT

without phase. As suggested by [37]. this could be improved by preserving the

relative phase information across scale.

We noted that the performance curve of the DFT-DTCWT classifier reached

its minimum at 40°. The reason for that is that our extraction of different



Classcaron Parormances on Roea Testes

Figure 5.8: Overall classification performances with re-
spect to rotation angle of the input textures. The de-
composition levels are all 3. The wavelet kernel used in
DTCWT and DFT-DTCWT is QShift(10). The data
set tested is MBS.



orientation features within the same decompostion level i. strictly speaking. not

on the same scale. This is clear if we look at Figure The components namely
on the same scale do not have equal distances to the origin point. The sampling
distance of the image grid in the diagonal direction is v/2 times of that in the
horizontal and vertical directions. and thus the scale of the diagonal features
extracted are actually v times that of horizontal and vertical directions within

the same decompostion level. Possible solutions could be found in non-separable

wavelets [43]. However. considering its low i i and good

performance. DFT-DTCWT is an acceptable choice.

5.4.3 Segmentation Results

Again we apply the DTCWT and the DFT-DTCWT methods to texture seg-
mentations for a visual evaluation. This time the central circular area of the
Brodatz mosaic image is replaced with a rotated leather texture (see Figure
5.9(a)). We train the two classifiers with samples that have particular single
orientations. The orientation of the leather training samples is consistent with

that of the lower right part of the mosaic image.

Segmentation results are shown in Figure 5.9. Obviously. the DFT-DTCWT
identified the leather textures with high accuray despite the rotation. This
justifies our using DFT-DTCWT methods for rotation invariant classifications
and segmentations. Compared to the sezmentation results in Figure 4.9. both
DTCWT and DFT-DTCWT have poorer performances in locating boundaries.
which is the result of using higher order filters for the complex wavelet trans-

form.



(a) The original image

(b) Result using DTCWT energy

(c) Result using DFT-DTCWT

energy

| Bl Bubble [ Grass [ Leather

Figure 5.9: Texture segmentation using DTCWT energy and DFT-DTCWT
methods. A mosaic image of 4 textures (bark. bubble, grass, leather(rotated).

leather) is used.



Chapter 6

Fuzzy Classification and its

Application to Ship Navigation

6.1 Introduction

So far all our efforts are directed to finding a good feature extraction method

for d isti i ion (i.e. crisp cl: the task of which is to

assign class labels for classification objects. Sometimes the class labels are not

or sufficient fons. Users may want to know “how much

the object is like a given class tvpe”. Fuzzy classification has therefore been
proposed to deal with these degrees of similarities. Because our research targets
of soung and new ice are alike and continuous stages exist between the ice types.

fuzzy classification is more appropriate and is covered in this chapter.



6.2 Definition of Fuzzy Classification

Let X' be a vector in an n-dimensional real space R" (the feature space). and

let k be the total number of classes. A fuzzy classification is the mapping

where 1, € [0.1] for all 1 < i < kand T¥, 4, = 1. [46]. Obviously a crisp clas-
sification s a special case of the fuzzy classifications where for some j, , = 1

and y, = 0if i # j.

Fuzzy classification is usually more complex than crisp classification. There
. And

is often difficulty in defining and measuring the degrees of similarit;
therefore the classifier parameters are hard to estimate and the performances

are hard to evaluate.

6.3 Wavelet Entropy - A Fuzzy Feature

In this section. we propose a new feature extraction approach. The method is
also based on the wavelet transform and uses a new wavelet signature called
wavelet entropy. An interesting aspect of this method is that it can provide a

fuzzy feature set for the purpose of fuzzy classification.

6.3.1 Wavelet Entropy Signature

In Chapter 4 we have introduced work by Wouwer et al. [43] using wavelet
histogram model parameters as features. To test the validity of the exponential
model in SAR textures, we investigated the histograms of the pack ice. rubble
ice and land samples. The samples choosen are the large images that have been



split to generate the PLS set. Of course, they have been pre-processed with a
logarithm. The good fit of the exponential curves to the histograms shown in
Figure 6.1, 6.2, and 6.3 indicated that this kind of model provides an acceptable
approximation of the histograms and can be useful for characterizing the SAR

textures.

Histogram of H band of level 1 Histogram of V band of level 1 Histogram of D band of level 1
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Figure 6.1: Histogram of DWT detail bands of pack ice. The wavelet kernel
used is Daubechies(6). "H', 'V", and "D’ represents the horizontal, vertical, and
Diagonal bands respectively. Level 1 corresponds to the finest scale while level

3 corresponds to the coarsest

The exponential models work well in level 2, while for the other two levels
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Figure 6.2: Histogram of DWT detail bands of rubble ice. The wavelet kernel
used is Daubechies(6). "H’, 'V’, and "D’ represents the horizontal, vertical, and
Diagonal bands respectively. Level 1 corresponds to the finest scale while level

3 corresponds to the coarsest.
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Figure 6.3: Histogram of DWT detail bands of land. The wavelet kernel used
is Daubechies(6). "H’, "V*, and "D’ represents the horizontal, vertical, and Di-
agonal bands respectively. Level 1 corresponds to the finest scale while level 3

corresponds to the coarsest.
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errors are obvious. It is probably because level 1 is more influenced by speckle
noise and level 3 does not have a large enough number of pixels for the calcu-
lation of histograms. Comparing the histograms of pack ice and rubble ice. we
found that the most significant differences exist in level 2. Interestingly. this
agrees well with the conclusion of Nystuen [20] in their GLCM experiment that

the length of four pixels was appropriate for feature extraction.

Now consider the problem of classifving a texture image to one of the A
class types (T;. Ty ... Tx). using a wavelet band (B) obtained with the original

image. The likelihood of the image belonging to class i is given by
P(T\|B.. Bs..... By)
where .\'is the total count of pixels in B and By. By..... By are the pixel values.

According to Baves formula:

P(B..B,. ... Bx|T)P(T.)
P(B..B,..... By)

The class a priori probability p(T,) is usually unknown. so we assume they are

P(T|B,.B;.....Bx) =

equal for all classes. Therefore P(T;{B,. B:. ... By) can be easily calculated by
normalizing P(B. By. ... By|Ti).
To obtain P(B,. B;..... By|T,). we can simply use the following formula:
5
P(B\.B,.....Bx|T,) = [] P(B.IT)) (6.1)
asi

where P(B,|T,) is the corresponding normalized histogram value. Here we as-

sume B,. B,..... By are independent to each other. The computational burden

of a product can be eased by applying a logarithm to Equation 6.1. so that the

81



product is changed to sum:

log|P(By. B;..... BsIT.)] = 3 log{P(BAIT;)]

Obviously. the value of this ion is largely
upon the dimension of the image. To remove the dimension factor. we use
the average instead of the sum. Suppose G is the set of values in B after
quantization. We can get

log(P(B,. By. .. BNIT)] _ Lo, log|P(BalT))]
N v

T ol PUBWT)| Syl = Bu)
N
Fernr.
= -5 5 e gpam)

geGn=t

s
-5 toglPloiTa) 3 XEa9)
= =

Y —logiP(9IT.)|P(g) (62)
b=

When there is an infinitely large number of samples (ie. N — x) and the
quantization bin becomes infinitely small. the sum in formula (6.2) becomes the
integral

[ i —loglp(gIT.)lpig)dg
where the p(.) is the probability density function. and p(g|T;) corresponds to

the histogram model function of class type i.

The crisp classification problem can then be viewed as trying to label the
texture image with the class type whose output of formula (6.2) is minimum
and therefore closest to the entropy of the image. For this reason we can call it

the entropy signature.



Since the wavelet entropy si the in some
degree for the given scales and directions, these features can be useful in fuzzy
classification or segmentation. They can be linearly combined to obtain the

final memberships.

6.3.2 Crisp Classification and Segmentation Results

As usual, we perform the crisp classification with wavelet entropy signatures on
the two data sets: MBS and PLS. Instead of using the histogram model, we use
the raw histogram for simplicity. Wavelet entropy values of different scales and
directions are simply summed. Classification results are shown respectively in

Table 6.1 and 6.2.

bub 32
can 32

pac 30 [ 2
rub 16 | 16
lan 32

Table 6.1: Classification result by 3-level Daubechies(6) DWT Entropy classifier
on MBS set. Overall accuracy: 86.4583%

The DWT entropy features have lower performances than DWT energy fea-
tures for both of the data sets. This is probably because we have used raw

histograms which have some outliers that should have been excluded. And
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pac | rub | lfn | lan
pac| 25| 2 | 6|
b 2 | 28 [ 2 |
M| 5 | 6 |21
Tan N

Table 6.2: Classification result by 3-level Daubechies(6) DWT Entropy classifier
on PLS set. Overall accuracy: 80.4688%

compared to the energy, the entropy signatures are sensitive to the anomaly.
Therefore for textures that have high in-class variations, the performances of

the DWT entropy features can probably be worse.

Segmentation results are given in Figure 6.4 and Figure 6.5. Interestingly,
although the classification performance of DWT entropy method is a little worse

than that of DWT energy, the segmentation result seems to be the reverse. The

DWT entropy method gives more uniform regions and better boundaries.

(a) The original image (b) Result using DWT entropy
Figure 6.4: Texture segmentation using DWT entropy methods. A mosaic image

of 5 textures (bark, bubble, grass, leather, sand) is used
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.

The

Figure 6.5: SAR Texture segmentation using DWT entropy metho

original image is Figure 2.3
6.3.3 Fuzzy classification with DWT entropy

Using wavelet entropy signatures, we have obtained logarithm representations
for memberships of each scale and direction. Their weighted sum can represent
the overall memberships. To estimate the weights, the least square error method
could be used. Because of the difficulty in acquiring knowledge of the sea ice
information on the corresponding sites, we have not performed precise fuzzy

classification and segmentation experiments for SAR sea ice textures. We leave

it for future work
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6.4 Application to Ship Navigation

6.4.1 Definition of the Problem

Once we have obtained the membership maps. it is possible to calculate the op-
timal path for ships going through sea ice such that the ship has the minimum
probability of being beset. that is unable to proceed.

First. we need to define a pass-through probability model for each texture
trpe existing in Figure 2.3. as listed in Table 63. In practice. these numbers
depend on the characteristics of a particular ship. The values in Table 6.3 are
for illustration purpose only. And suppose we have obtained the membership
maps such as the examples shown in Figure 6.6. The pass-through probability

of a given pixel is calculated by the formula:

i
By(r.y) =Y Piz.y)P(i)

...4 are the mem-

where (z.y) is the position of the given pixel. P.i =
berships of the four texture types respectively. and P,(i) is the pass-through
probability of texture type &.

A pass-through probability map can hence be computed from the pass-
through probability model and membership maps. Having processed the pass-
through probability map with a logarithm. the ship navigation problem is now
transformed to a typical shortest path problem, for which the path length
between two neighbouring pixels is measured by the average of the two corre-

sponding map values.
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Pack ice 0.7
Rubble ice 0.4
Landfast ice : 0.9
Land 0

Table 6.3: Pass-through probabilities of different SAR texture types

6.4.2 Shortest Path Routing

The shortest path routing problem has been extensively explored in the data
networks field. We here use a well known routing method called Dijkstra’s

7. The algorithm maintains for each node (in our case a node is

algorithm
a pixel) its shortest distance from the source node. and also a pointer to the
previous node (for tracing the route) along the shortest path. Initially no paths
are known. so the distance values of all nodes are infinity. Then the algorithm
updates these distance values as it proceeds. from the neighbouring nodes of

the source node. The update rule is as follows:

® If a node finds that any of its neighboring nodes has an update. it will

check if itself needs an update.

@ The check compares the current distance value with the sum of the up-
dated neighbour’s distance and the path length between these two nodes.
If the current distance is smaller. no update is performed. Otherwise. the
distance of the node is updated with the sum value and the pointer is
directed to the corresponding neighbour node.

For our experiment. the update is iterated until there is no further update
for all the pixels. From the result. we can obtain the shortest path from a given

source pixel to any pixel in the image.



Figure 6.7 gives an example of ship navigation between two sites. The red.
green and blue channels of the pseudo color image are respectively the mem-
bership maps of pack ice. rubble ice and landfast ice. which have already been
shown in Figure 6.6. The path obtained has the minimum beset probability. as
we can see intuitively from the figure that the path tries to circumvent rubble

ice and select landfast ice sites wherever possible.

6.4.3 Reduce the computation

The computation complexity of the Dijkstra’s algorithm is very high. To reduce
it. we also use a multiscale model. The pass-through probability map is first
transformed to a Gaussian pyramid representation [36]. The shortest path is
calculated at the coarsest scale. Then we refine it as we proceed to finer scales.
The computation complexity of Dijkstra algorithm applied to our routings in
image is in the order of n**. where n is the total number of the pixels in
the image. Therefore, our method can dramatically reduce the computation

since only the coarsest scale (much smaller than the original image) will do

the Dijkstra routing and the of the path has negligib
compared to the Dijkstra routing. A path calculation result of a 3-level model is
given in Figure 6.8. It seems that the reduction of computations is not without
cost. Sudden changes of directions along the route are obvious. which the ship's
captain may not be glad to see. Errors may also occur for narrow straits. which

may be seen as impenetrable at coarse scales.
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(a) The land membership map (b) The landfast ice membership

map

(c) The rubble ice membership map (b) The pack ice membership map

Figure 6.6: Membership maps of the land. landfast ice, rubble ice, and the pack

ice



Figure 6.7: An example optimal path

90



Figure 6.8: An mple optimal path obtained with a 3-level multiscale model




Chapter 7

Summary and Conclusions

7.1 Summary of contributions and conclusions

o In this thesis we have presented a comparative study on feature extraction
methods using different waselet signatures. for both the Brodatz textures
and SAR sea ice textures. Unlike most previous research in literature
that focus on distinct ice tvpes such as first vear ice and old ice. our SAR
sea ice samples are ice types in voung stages. which are more difficult
to discriminate. We conclude that feature extraction methods based on
the wavelet transform have good performance because of the multiscale
nature of the wavelet transform. Results of the comparisons among dif-
ferent wavelet signatures indicate that first order signatures are sufficient
for identification of most textures (including our SAR sea ice textures).

though combining higher order sicnatures is probably slightly better.

o Directional variations of the texture features can cause significant degra-
tions of the classification system. Discarding the directional features is not

advisable since these features can help in the classification. A good solu-
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tion is to find a rotation invariant representation for these features. We
Ppropose a new rotation invariant feature extraction method that combines
DFT encoding with the Complex Wavelet Transform. The experiments
have vielded promising results and hence show the method is feasible for

the rotation invariant texture classification purpose.

o For <ome sea ice such as new and voung ice. fuzzy classification is more
appropriate. Our new approach provides a fuzzy feature set corresponding

to various scales and directions. Linear combinations of these fuzzy fea-

tures will give ions of the final memberships. By i ing the
classification with a shortest path routing module. we have implemented a
simple but novel ship navigation svstem. We have shown with the system
how SAR sea ice classification can be utilized to assist in ship navigation

in difficult ice-infested northern waters in coastal areas.

7.2 Future work suggestions

© Our fuzzy features represent the memberships of different scales and di-
rections. and their weighted sums are the final memberships. Because of
the current difficulty in accquiring the membership knowledge. we can-
not give an accurate estimation of those weights and therefore the fuzzy
classifiation is not well validated. Future work is needed to acquire the
information and perform LSE estimations of the weights.

@ We haven't utilized the oriented structure features obvious in rubble ice
during the classification experiments. Its scale is too large to make use of.
unless we use a much larger window and perform more levels of wavelet

decomposition. This also implies a loss in the accuracy of the boundary
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localization. A possible way to solve the contradiction is by a coarse-to-fine
approach. Further work can be directed to find a feasible coarse-to-fine

approach for texture segmentations.

® This research was conducted on a single SAR image. vet this image is
large and has a wide diversity of ice tvpes against an irregular coastline.
As such. this one image contains reasonable SAR sea-ice image variability

10 assist the initial lopt of ice type i i as

presented in this thesis. However. future research is recommended to

verify these results on different images.
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Appendix A

Mixed Brodatz and SAR Images

(MBS)

re A.2: Bubble (D112)

Figui

re A.1: Bark (D12)

Figu
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Figure A.3: Canvas (D21) Figure A.4: Grass (D9)
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Figure A.5: Leather (D24) Figure A.6: Sand (D29)
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Figure A.9: Woolen (D19)
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Figure A.10: Pack ice Figure A.11: Rubble ice

Figure A.12: Land
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Appendix B

Pure Logarithmed SAR Images
(PLS)

Figure B.1: Pack ice Figure B.2: Rubble ice
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Figure B.3: Landfast ice Figure B.4: Land
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Appendix C

Software Documentation

Most of our experimental work was performed with Microsoft Visual C++ under
Win95/winNT/win2000. The software package (named IPL) is adapted from
a SunO$ Unix version of IPL originally developed by Charles Robertson [4].
modified by Ying Li. Chen Ju and Dr. Cecilia Moloney. The organization of the
software packages and the corresponding disk directories are listed as follows.
[

= ) dassfy

i

i

]

Figure C.1: IPL software packages
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ImageLib(c)/src: package of image processing library functions

Classification: base classification functions

BaseClassifier.cpp Gives the base class for all kinds of classifiers.
BaseFeatures.cpp Gives the base class for all kinds of features.
BaseSegmenter.cpp Gives the base class for all kinds of segmenters.
Class.cpp Gives the class representing each texture tyvpe.

ClassifySegmenter.cpp ~ Segmenter based on sliding window classifications.

DistanceClassifier.cpp ~ Gives the base class for all classifiers that measure dis-
tances.

\MahaFeatures.cpp Mahalanobis distance features.

OtherSegmenter.cpp ~ Gives the base class for all segmenters exluding that
based on sliding window classifications.

VectorFeatures.cpp Gives the class for feature vector.

Event: events

Event.cpp Gives the base class for all events.

ProgressEvent.cpp Gives the class for progress event. It defines the inter-
face that will be used in event handling.

Format: image file format

BaselmgFmt.cpp Gives the base class for all image formats.

Bitmap.cpp Windows bitmap format.

PicDes.cpp Pic format.

Image: image objects

Image.cpp Gives the base class for all kinds of image objects.

Grayvlmage.cpp gray image object. It gives the parent class of that
in CharGravlmage.cpp. Floatlmage.cpp. and IntIm-
age.cpp-

CharGravlmage.cpp  image object uf 236 grav levels.

FloatImage.cpp image object of fluat pixel values.

IntImage.cpp image object of integer pixel values.

Colorlmage.cpp color image ohject. It gives the parent class of that in
Charlmage.cpp and TrueColorlmage.cpp

Charlmage.cpp image object of 236 colors.

TrueColorlmage.cpp  image object of true colors.



Process: miscellaneous
ProcObject.cpp
Algebra.cpp
Aluwcpp
Statistic.cpp
AdptRationOp.cpp
AnisoDiffEdge.cpp
Glem.cpp
Filter.cpp
LapPyramid.cpp
Wavelet.cpp
DualWav.cpp

QShiftWav.cpp

Util: utilities
BaselnputStream.cpp
BaseQutputStream.cpp
BitInputStream.cpp
BitOutputStream.cpp
HuffInputStream.cpp

HuffOutputStream.cpp

BaseTree.cpp
HuffTree.cpp
ImageNode.cpp
ImageTree.cpp
Quantizer.cpp
DiscreteFourier.cpp

image processing functions
Gives the base class for all kinds of processings.
Linear algebra functions.
Arithmetic and logic functions.
Statistic functions.
Adaptive rational operator for denoising.
Anisotropic diffusion.
Gray level co-occurrence matix computation.
Filter functions.
Laplacian Pyramid transform.
Discrete Wavelet Transform.
Dual-tree Complex Wavelet Transform (translated from
Kingsbury’s Matlab code).
Q-Shift Complex Wavelet Transform.

Gives the base class for all input streams.
Gives the base class for all output streams.

input stream bit by bit.

Output stream bit by bit.

input streams that have incoporate the adaptive huff-
man coding.

Output streams that have incoporate the adaptive huff-
man coding.

Gives the base class for all tree representations.
Huffman tree.

tree node with data of image object.

tree representation for image objects.

Quantizer.

Discrete Fourier transform.
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ImageLib(c)/test on ImageLib(c)): windows GUI for miscella-
neous image processings

DIBAPLcpp Windows bitmap functions.

test.cpp. windows GUI functions. It accepts user input and calls
MainFrm.cpp. functions of ImageLib(c)/stc package to do miscella-
ChildFrm.cpp. neous image processings.

testDoc.cpp.

test\'iew.cpp.

dialog.cpp

Consol on I Lib(c)): console for mi image pro-
cessings.

Consol.cpp main function for miscellaneous image processings using

ImageLib package.

Classify on ImageLib(c)): package for image
ClassifvBat cpp main function for both training and classification. It
reads a setting file. which specify the classifier tvpe and
other parameters. and then do the corresponding pro-

cess.
DwiClassifier.cpp DWT energy classifier.
GlemClassiier.cpp GLC\ classifier.

LppClassifier.cpp Laplacian Pyramid energy classifier.

DtCwtClassifier.cpp Dual-tree CWT energy classifier.
DtCwiDftClassifier.cpp DFT-DTCWT classifier.
DwiProbClassifiercpp  DWT entropy classifier.
EntropyFeatures.cpp  DWT histogram entropy features.
TswClassifier.cpp TSW classifier.
pp Tree ion of features. It gives the parent class
of that in TswFeatures.cpp.
TreeFeatureNode.cpp ~ Tree feature node. It gives the parent class of that in

TswFeatureNode.cpp.
TswFeatures.cpp TSW feature.
T Node.cpp __Tree node of TSW feature.
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segment (dependent on ImageLib(c). classify): package for texture segmen-
tations.

segment.cpp main function for texture image segmentations.
DwtSegmenter.cpp coarse-to-fine segmenter using DWT entropy feature.

sar2bmp (dependent on ImageLib(c). classify): package for sar related ap-
plications.

sar2bmp.cpp main function for extracting an area from SAR images
and store it as windows bitmap image file.

sarsegment.cpp main function for segmenting SAR texture image.

sarprob.cpp. main function for computing SAR texture membership
maps.

findpath.cpp main function for finding optimal path for ship naviga-
tion application.

findpathfunc.cpp functions for finding optimal path for ship navigation

PathDemo (d dent on I Lib(c) package for

ing the path computations.

PathDemo.cpp. windows GUI functions. It accepts user input and calls

MainFrm.cpp. functions of sar2bmp package to find the optimum path

ChildFrm.cpp. for ship navigation.

PathDemoDoc.cpp.

PathDemo\iew.cpp

Split (dependent on ImageLib(c)): package for slitting and cropping images.

split.cpp main function for splitting a big image to smaller im-
ages.

crop.cpp main function for cropping a image.
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