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Abstract

Rare-earth pyrochlores are materials with chemical formula A2B2O7, where A is the

rare-earth ion and B is a transition metal. At low temperature, these systems host

various magnetic states such as spin ice, spin liquid state, ferromagnetic ordering, all

in-all out, and anti-ferromagnetic ordering. For each rare-earth ion with total angular

momentum J , the 2J + 1 fold degeneracy splits into singlets and doublets due to the

crystal electric field. However, the crystal electric field ground state for most of the

magnetic ions is a doublet that comes into three different varieties, labeled as Γ3,

Γ4, and Γ5,6. This work focuses only on systems in which the ground state doublet

is well-separated from the first excited state so that we end up with effective two-

state systems, referred to as quantum rare-earth pyrochlores. The low temperature

excitations of interacting spins have a wave nature and are referred to as spin waves

or magnons, where the energy of these waves is quantized. To study these magnons,

we apply the Holstein-Primakoff transformation on the effective spin Hamiltonian

to construct a bosonic Hamiltonian that describes magnons. In this study, we limit

ourselves to the linear spin-wave approximation in which we diagonalize the magnonic

Hamiltonian analytically and numerically for various systems of interest. In particular,

we study magnons in Nd2Zr2O7 which orders in an all in-all out state near 0.285 K, in

Er2Ti2O7 with a antiferromagnetic state below 1.2 K, and finally the Yb2Ti2O7 which

orders ferromagnetically near 0.2 K.
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Chapter 1

Introduction

Rare earth (RE) pyrochlore oxides are compounds with chemical formula A2B2O7,

where A+3 is a rare earth ion which can be any choice of the total of 17 well-known ions

such as neodymium (Nd), erbium (Er), and ytterbium (Yb), while B+4 is a transition

metal which can be titanium (Ti), tin (Sn), zirconium (Zr), etc. A wide range of

physical phenomena are observed in these compounds within the low temperature

regime. For instance, the quantum spin liquid (QSL) state where the spins at the RE

sites avoid any type of long-range magnetic ordering due to quantum spin fluctuations.

A candidate of a RE compound that has a QSL state is Tb2Ti2O7 [1, 2, 3], which

shows no type of ordering even at low temperature [4]. Generally, quantum spin

liquids are materials which do not order even at very low temperatures. Another

QSL candidate is Yb2Ti2O7 due to the existence of strong quantum fluctuations as

reported in different experiments [5].

Another ordered state realized in some pyrochlores is spin ice (SI), which is a state

of matter in which the magnetic moments of the RE ions follow the “ice rule” for which

two spins pointing into and two out of each tetrahedron [6]. In SI systems, disorder

exists even at temperatures approaching absolute zero, which is reflected in the non-

zero residual entropy in those materials which is similar to the entropy of water ice

[6]. The discovery of spin ice materials happened almost forty years after it was

postulated by Anderson [7], and found first in Ho2Ti2O7 [8, 9] and Dy2Ti2O7 [10, 11].

Also, specific heat measurements reported the existence of a state called Kagome spin

ice in Dy2Ti2O7 with residual entropy for an applied magnetic field along the [111]

direction [12, 13]. An important feature of SI materials is that they were the first
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to support the existence of magnetic monopoles as quasi-particle excitations arising

from violating the ice rule in these materials [6, 14].

Magnetic ordering happens in some of the RE pyrochlores with ferromagnetic

(FM) ordering as is the case in Yb2Ti2O7 [5, 15, 16], or anti-ferromagnetic (AFM)

ordering due to quantum order by disorder in Er2Ti2O7 [17, 18, 19]. Very recently,

Han Yan et al. [20] have developed a theory that describes magnetic ordering in three

compounds, Er2Ti2O7, Er2Sn2O7, and Yb2Ti2O7. According to their findings, the

magnetic ordering in Er2Ti2O7 and Yb2Ti2O7 plus the lack of ordering in Er2Sn2O7

can be explained by the competition between different magnetic phases which are

a FM phase, a noncolinear FM phase (ψ4), known as Palmer-Chalker (PC) phase,

and coplanar and noncoplanar AFM phases (ψ3 and ψ2). These materials are under-

stood as being at the boundary between different competing magnetic phases, which

altogether explains the appearance of a FM phase in Yb2Ti2O7, AFM ordering in

Er2Ti2O7, and suppression of the magnetic ordering in Er2Sn2O7.

Spin waves exist in materials with spin exchange interactions where the energy of

those waves is quantized and the quantum of energy is called a magnon [21]. Fluctu-

ations around the ground state can be associated with the appearance of magnons as

reported in SI systems. In SI compounds, fluctuations are reflected in the appearance

of different ordering such as “three in-one out” that coexists together with the overall

spin ice ordering, i.e. the “two in-two out” (2I2O) state [10, 11].

Magnetic moment fragmentation (MMF) occurs in some of the rare earth py-

rochlore compounds (generally in SI) [14]. In this scenario, the magnetic moment at

each site is fragmented into two parts in which one is responsible for the appearance of

a spin liquid phase and the other is an ordered phase. Classically, this fragmentation

is due to Helmholtz decomposition of the magnetization field ~M as ~M = ~∇Ψ + ~∇× ~A

in which the first term is “divergence full” and the second term is “divergence free”.

A very well known example of a RE oxide that shows this phenomenon is Nd2Zr2O7

as shown experimentally in [22], and a quantum picture of the MMF in this material

was given in [23]. Very recently, a neutron scattering experiment on a single crystal of

Sm2Ti2O7 shows that it also supports the MMF picture [24]. Consequently, RE py-

rochlore oxides are of interest to both experimentalists and theoreticians for a better

understanding of the unifying theories that govern these materials.

In this thesis, we aim to calculate the energy dispersion of magnons analytically
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and numerically. We will perform calculations for different magnetically ordered states

such as the “all-in-all-out” (AIAO) state in Nd2Zr2O7, FM ordering in Yb2Ti2O7, and

AFM ordering in Er2Ti2O7. These systems have been studied before with the energy

dispersions have been found numerically for each case [5, 22, 25]. In this work we pay

more attention to the analytic calculations of the energy dispersions and, whenever

possible, the normal modes as well. We have also reproduced the numerical results

for comparison.

1.1 Rare Earth Pyrochlore Crystal

The actual lattice of the pyrochlore crystal is very complicated, as shown in Figure 1.1.

The chemical formula of the RE pyrochlore is A2B2O7, where each of the rare earth

ions (A) and the transition metal (B) form a corner-sharing tetrahedral network. RE

pyrochlores belong to the space group Fd3̄m which has a FCC lattice with the RE

ions located on the 16d Wyckoff positions.

Figure 1.1: A schematic plot of the pyrochlore oxides unit cell showing the RE ions
(red spheres), the transition metal ions (green spheres), and the rest are oxygen atoms.
This picture was drawn by S. H. Curnoe.

Considering only the rare earth ions, the primitive unit cell is a single tetrahe-

dron with four basis ions residing on the positions a(5/8, 5/8, 5/8), a(3/8, 3/8, 5/8),

a(3/8, 5/8, 3/8), and a(5/8, 3/8, 3/8) which are numbered from 1 to 4, respectively,

where a is the length of the cubic cell. One can map the whole rare earth lattice

by using the FCC lattice translations which are ~u1 = a
2
(1, 1, 0), ~u2 = a

2
(1, 0, 1), and
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~u3 = a
2
(0, 1, 1), forming a corner-sharing tetrahedral network of those ions. In Figure

1.2, we show a schematic diagram of the RE lattice.

Figure 1.2: The tetrahedral network of the RE ions within a cubic cell. The four
tetrahedra are labeled as n, n′, n′′, and n′′′. The four basis ions have been labeled
with numbers 1-4. This figure was taken from [26] with permission. Copyright by the
American Physical Society.

We are also interested in the reciprocal space of the FCC lattice and its symmetry

points. The positions of the high symmetry points in k-space are given in Table 1.1.

1.2 The Crystal Electric Field

The treatment of all the RE pyrochlores is based on the nearly free magnetic ion model

in which the effect of the other ions in the lattice is included in the crystal electric

field (CEF). The free space isotropy is destroyed in the presence of the CEF which

results in reducing the dimensionality to that of the irreducible representation of the

associated point group D3d, the symmetry of the CEF at the RE site. Consequently,

the degeneracies are lifted [27]. In our case, if the RE ion A+3 has a total angular

momentum J , the 2J+1 fold degeneracy will split into singlets and doublets due to the
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Table 1.1: High symmetry points of the FCC reciprocal lattice.

Symmetry Point Reciprocal Position
Γ (0,0,0)
X 2π

a
(0,1,0)

W π
a
(1,2,0)

L π
a
(1,1,1)

K 3π
2a

(1,1,0)
U π

2a
(1,4,1)

CEF [28]. Generally, the ground state for most of the quantum rare-earth pyrochlores

(QREPs) is a doublet except for Thulium (Tm) which has a singlet ground state

[29, 30]. Classically, the CEF Hamiltonian is a Coulomb potential V (x, y, z) with D3d

symmetry. The next step is to do Taylor expansion of the potential V (x, y, z) where

only certain terms will appear in the expansion due to symmetry. It was shown that

only the first six terms in the series are relevant and the inclusion of higher order

terms will not provide new physics to the problem [27, 30], i.e. higher order terms are

very small. To quantize the CEF Hamiltonian, we use Wigner-Eckart theorem that

allows the replacement of the position operators {x, y, z} with the angular momentum

operators {Jx, Jy, Jz} giving the following CEF Hamiltonian [30]

HCEF = B0
2O0

2 +B0
4O0

4 +B3
4O3

4 +B0
6O0

6 +B3
6O3

6 +B6
6O6

6, (1.1)

where Bq
p are constant parameters that vary for different materials, andOqp are Stevens

operators which are polynomials in {Jz, J±} with degree p, with q being the power of

J±, i.e. O0
p is a polynomial of degree p in Jz [33]. The explicit forms of the six Steven

operators Oqp are listed in Appendix A. The determination of the parameters Bq
p have

been done by different groups using neutron scattering experiments and experimental

data fitting [30]. In the Table 1.2 below, we list the given values of the parameters

Bq
p for several of RE titinate pyrochlores [24, 30].

Thus, using the values of the CEF parameters given in the Table 1.2 together

with Stevens operators given in Appendix A, one can easily find the CEF energies for

each of the RE titinates by expressing the CEF Hamiltonian in certain basis which is

usually taken to be the |mJ〉, where mJ = −J,−J + 1, .., J − 1, J , then diagonalizing

HCEF will give the energies of the singlet and the doublet states. The eigenstates of

HCEF belong to different irreducible representation of the point group D′3 as given in
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Table 1.2: The values of Bq
p (in meV) for a series of rare earth titinates R2Ti2O7 found

by neutron scattering experiments [24, 30].

R B0
2 B0

4 B3
4 B0

6 B3
6 B6

6

Tb -0.34 4.9× 10−3 4.3× 10−2 −7.9× 10−6 1.3× 10−4 −1.08× 10−4

Dy -0.20 −2.2× 10−3 −1.9× 10−2 6.6× 10−6 −1.09× 10−4 9.0× 10−5

Ho −6.8× 10−2 −1.13× 103 −1.01× 10−2 −7.4× 10−6 1.23× 10−4 −1.01× 10−4

Er 7.5× 10−2 1.41× 10−3 1.25× 10−2 1.09× 10−5 −1.8× 10−4 1.5× 10−4

Yb 0.87 −4.2× 10−2 −0.43 6.6× 10−4 −1.09× 10−2 8.9× 10−3

Sm 3.397 0.123 8.28× 10−8 — — —

Table 1.3. For integral J , the eigenstates of the CEF Hamiltonian belong to three

different representations which are two singlets Γ1 and Γ2 and a non-Kramers doublet

Γ3. On the other hand, for half-integral J there are two types of Kramer doublets

denoted by Γ4 and Γ5,6. Considering the CEF ground state doublets (GSD), we are

interested in cases for which the separation between this doublet and the first excited

state is of the order 100 K [28]. These systems are therefore considered as effective

spin-1/2 systems, i.e. quantum systems. We have tabulated the energy gap to the

first excited state for different rare-earth ions in Table 1.4.

Table 1.3: The character table of the double group D′3 [28]. The characters are the
traces of matrices representing each operation in the group. The top row lists the
elements of the group divided into classes. R is a rotation by 2π, C3 is a rotation by
2π/3 and C2 is a rotation by π. The first column lists the representations.

D′3 E R 2C3 2RC3 3C2 3RC2

Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1
Γ3 2 2 −1 −1 0 0
Γ4 2 −2 1 −1 0 0

Γ5,6 1 −1 −1 1 i −i
1 −1 −1 1 −i i

1.3 Frustrated Systems

A spin system is frustrated when there is no configuration which simultaneously min-

imizes the interaction energy between all pairs of spins. This typically leads to degen-

erate ground states. The isotropic Heisenberg interaction between spins is governed
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Table 1.4: The values of the total angular momentum and the types of GSDs for
different RE ions. Here ∆ denotes the energy gap to the first excited state [28, 30]

RE ion J GSD ∆(meV) Representation

Tb 6 Γ3 1.50 Γ3

Dy 15
2 Γ5,6 30.9 Γ5,6

Ho 8 Γ3 20.7 Γ3

Er 15
2 Γ4 6.30 Γ4

Yb 7
2 Γ4 53.4 Γ4

by the Hamiltonian

H = J
∑
〈ij〉

~Si · ~Sj. (1.2)

with J < 0 for ferromagnetic systems, and J > 0 for anti-ferromagnetic spin exchange.

The simplest frustrated system is the triangular lattice where at each triangle there are

different choices of the spin orientations that minimize the energy of H for the AFM

interaction. For illustration, Figure 1.3 below shows two different spin orientations on

the equilateral triangle each with the same energy Etri = −2JS2. The total number

of possible configurations that give the same minimum energy is 6.

Figure 1.3: Example of degenerate ground states on a triangular lattice within the
Ising model. On each triangle, two spins are fixed either up (blue spheres) or down
(red spheres).

Going to three dimensions, the pyrochlore lattice is a good example of a highly

frustrated system on which there are more possible configurations that give rise to

the same lowest energy and thus are considered as highly degenerate systems. Con-

sequently, these systems accommodate various low temperature magnetic states.
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1.4 Thesis Outline

The flow of the work goes as follows. In Chapter 2, we introduce the nearest-neighbor

exchange interaction and come across the exchange Hamiltonian for each type of the

ground state doublets, then we discuss interactions with magnetic fields through the

inclusion of the Zeeman Hamiltonian which will be represented in local and global

coordinates. Secondly, in Chapter 3, we discuss spin waves and how to construct the

magnon Hamiltonian for the three doublets using the Holstein-Primakoff transforma-

tion, and we end the chapter with three examples of RE pyrochlore each of which

the quadratic magnonic Hamiltonian was constructed. Furthermore, we discuss the

diagonalization of the magnon Hamiltonian in Chapter 4, and then present our an-

alytic results for three RE pyrochlore materials which are Nd2Zr2O7, Er2Ti2O7, and

Yb2Ti2O7 in their ordered states and in the presence of an external magnetic field.

Finally, we conclude our work in Chapter 5.



Chapter 2

Exchange and Zeeman interactions

in the RE pyrochlores

The spin-spin interactions between magnetic ions on the pyrochlore lattice, to a good

approximation, are written in bilinear terms of the individual spins as [28]

HS =
∑
〈ij〉

~STi Jij ~Sj +
1

2
Da3

∑
ij

[
~Si · ~Sj
|~Rij|3

− 3
(~Si · ~Rij)(~Sj · ~Rij)

|~Rij|5

]
, (2.1)

where 〈ij〉 denotes that the sum is over the nearest neighbour sites {i, j}, ~Sj =

(Sjx, Sjy, Sjz), Jij is a 3 × 3 matrix containing the short-range exchange parameters,

D is the strength of the dipole-dipole term (the second term above) to be included in

the case of long-range interactions, a is the nearest neighbour (NN) distance (or the

edge length of the tetrahedron), and ~Rij is the distance vector between the interacting

spins. In this work, we limit ourselves to the NN interactions which results in the

Hamiltonian

HS =
∑
〈ij〉

~STi Jij ~Sj. (2.2)

where the NN contribution of the second term of Eq. (2.1) has been absorbed in

the effective exchange parameters matrix Jij in Eq. (2.2) above. The NN exchange

Hamiltonian for the rare earth ions in the pyrochlore lattice takes the following general

form [28]
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Hex =
4∑
i=1

JiXi, (2.3)

where {Ji}4
i=1 are the exchange parameters, and the four independent terms {Xi} are

[28]

X1 = −1

3

∑
〈ij〉

SizSjz, (2.4)

X2 = −
√

2

3

∑
〈ij〉

[
Λij(SizSj+ + SjzSi+) + Λ∗ij(SizSj− + SjzSi−)

]
, (2.5)

X3 =
1

3

∑
〈ij〉

[
Λ∗ijSi+Sj+ + ΛijSi−Sj−

]
, (2.6)

X4 = −1

6

∑
〈ij〉

(Si+Sj− + Si−Sj+), (2.7)

where Sj± = Sjx ± iSjy and

Λ =


0 1 ε ε∗

1 0 ε∗ ε

ε ε∗ 0 1

ε∗ ε 1 0

 , (2.8)

with ε = exp(i2π/3). Aside from being independent terms, each of the {Xi} terms

above is invariant under group rotations and time reversal and their sum is isotropic,

i.e.
∑4

i=1 Xi =
∑
〈ij〉

~Si · ~Sj [28]. In the above expressions the local coordinate system

(see Appendix B) has been used. We now express this Hamiltonian in a form which

will be useful in our discussions later [28],

Hex =
∑
〈ij〉

Hij, (2.9)

where

Hij = JzzSizSjz − J±(Si+Sj− + Si−Sj+) + J±±(Λ∗ijSi+Sj+ + ΛijSi−Sj−)

− Jz±
[
Λij(SizSj+ + SjzSi+) + Λ∗ij(SizSj− + SjzSi−)

]
, (2.10)
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with {Jzz, J±, J±±, Jz±} being the renormalized exchange parameters. Note that Eq.

(2.9) is equivalent to Eq. (2.2), with the exchange matrix Jij in the form

Jij = 2

 −J± + UijJ±± VijJ±± −UijJz±
VijJ±± −J± − UijJ±± VijJz±
−UijJz± VijJz± Jzz/2

 , (2.11)

where

Uij = Re[Λij],Vij = Im[Λij]. (2.12)

Thus, we have discussed the most general NN exchange Hamiltonian which will be

used to study different rare-earth pyrochlore systems with an effective crystal electric

field ground state doublet. In the next sections, we will review the properties of spin-

1/2 systems and we will discuss three classes of RE pyrochlores with their properties

and the exchange Hamiltonian in each case. At the end, we will come across the

Zeeman interaction in each of these class of materials.

2.1 Spin-1/2 Systems

Spin operators are one of the most important observables in quantum mechanics es-

pecially when it comes to describing magnetic interactions and ions in magnetic fields,

for example in the Zeeman interaction. These operators satisfy special commutation

relations,

[Sαj , S
β
l ] = ih̄εαβγδjlS

γ
j , (2.13)

where Sαj denotes the α-component of the spin operator at the jth site, δjl is the Kro-

necker delta function, and εαβγ is the Levi-Civita symbol [34]. We generally represent

the spins in the |{si}, {mi}〉 basis (generally known as Zeeman basis), where si is the

total spin of the ion at the ith, mi = −si,−si + 1, .., si − 1, si is the spin quantum

number. Thus, the eigenvalue equations are

S2
j |{si}, {mi}〉 = h̄2sj(sj+1 + 1)|{si}, {mi}〉, (2.14)

Sjz|{si}, {mi}〉 = h̄mj|{si}, {mi}〉, (2.15)
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where S2
j = S2

jx + S2
jy + S2

jz. We define the raising (+) and the lowering (-) operators

as follows

Sj± = Sjx ± iSjy. (2.16)

Note that |{si}, {mi}〉 is not an eigenvector of Sj±, instead the action of these opera-

tors on the basis ket is given below [34]

Sj±|{si}, {mi}〉 = h̄
√
sj(sj + 1)−mj(mj ± 1)|{si}, {m1, ...,mj ± 1, ...,mN}〉. (2.17)

We will now consider the interesting two-states system with s = 1
2
. The basis states

for this system are denoted by |±〉 = |1
2
,±1

2
〉. Moreover, the spin components are

represented in a matrix form in the above basis as

Siα =
h̄

2
σiα, (2.18)

where α = x, y, z, and σiα are Pauli matrices which are given below

σix =

(
0 1

1 0

)
, σiy =

(
0 -i

i 0

)
, σiz =

(
1 0

0 -1

)
. (2.19)

In addition to the matrix representation of the spin, we would like to mention the

following expression of Siα in terms of the basis kets and bras:

Six = |+〉〈−|+ |−〉〈+|, Siy = −i|+〉〈−|+ i|−〉〈+|, Siz = |+〉〈+|− |−〉〈−|. (2.20)

We can define the pseudo-spin operators of the same form for the three classes

of doublets using the ground state doublet (GSD) wavefunctions given in Table A.1,

where we generally use the replacement |±〉 → |ψ±0 〉 in Eq. (2.20), where |ψ±0 〉 is the

GSD wavefunction.

2.2 The Γ4 Exchange Hamiltonian

As we have discussed in Section 2.1, the pseudo-spin operators are defined in terms

of the GSD given in Table A.1, which is analogous to Eq. (2.20). In this class, the

Γ4 doublet, the pseudo-spin operators are exact spinors, i.e. they transform like as
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the real spin-1
2

operators. Under C3 rotations about the local z-axis, the operator Siz

remains unaffected while the operator Si± picks a phase of e±
2πi
3 . On the other hand,

under the C2 rotation about the local x-axis, the z-component of the spin operator

changes sign while Si+ transforms to Si− and vice versa. Finally, the spin components

all change sign under time reversal. Thus, the exchange Hamiltonian suitable for

this class is the one given in Eq. (2.9) with si = 1
2

and the exchange constants are

renormalized by the numbers j = 2〈ψ+
0 |Sz|ψ+

0 〉 and t = 〈ψ+
0 |S+|ψ−0 〉 [28]. Examples

of quantum rare-earth pyrochlore (QREP) that belong to this class are Yb2Ti2O7 ,

Yb2Sn2O7 , Er2Ti2O7 , and Er2Sn2O7 . One can easily use the data provided in Table

A.1 together with Eq. (2.20) to verify the properties of the spin operators associated

with this category which requires the knowledge of how the basis kets |{si}, {mi}〉
transform under time reversal and space rotations [35].

2.3 The Γ3 Doublet

In the Γ3 class of doublets, which are non-Kramer’s doublets as they are associated

with integral spins, the spin operators obtained by Eq. (2.20) under C2 and C3 ro-

tations transform exactly the same way as the Γ4 operators. However, under time

reversal, the operators Si± don’t change sign. Thus, to keep the Hamiltonian un-

changed under time reversal, the Jz± term must vanish, giving the following general

exchange Hamiltonian for this system,

Hex =
∑
〈ij〉

[
JzzSizSjz − J±(Si+Sj− + Si−Sj+) + J±±(Λ∗ijSi+Sj+ + ΛijSi−Sj−)

]
.

(2.21)

Examples of QREP that belong to this class are Ho2Ti2O7 and Pr2Sn2O7 [28].

2.4 The Exchange Interaction in the Γ5,6 Case

The symmetry properties of the Γ5,6 type of doublets are similar to those in the Γ4

class except that under C3 operations the operators in this doublet remain unchanged.

Consequently, the phases Λij are unity and thus Eq. (2.10) becomes

Hij = JzzSizSjz − J±(Si+Sj− + Si−Sj+) + J±±(Si+Sj+ + Si−Sj−)
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− Jz± [SizSj+ + SjzSi+ + SizSj− + SjzSi−] . (2.22)

By simplifying terms, the total anistropic exchange Hamiltonian for this type of dou-

blet is

Hex =
∑
〈ij〉

[JzzSizSjz + JyySiySjy + JxxSixSjx + Jzx(SizSjx + SixSjz)] . (2.23)

We can do a “global” rotation in the xz-plane such that the fourth term in Eq.

(2.23) is eliminated. This transformation reads

Six = cos θS̃ix − sin θS̃iz, Siz = sin θS̃ix + cos θS̃iz, (2.24)

where S̃iα is the corresponding spin component in the rotated frame, and we choose

θ to satisfy

tan(2θ) =
Jzx

Jxx − Jzz
. (2.25)

Thus, the exchange Hamiltonian in this case becomes

Hex =
∑
〈ij〉

[
J̃zzS̃izS̃jz + JyySiySjy + J̃xxS̃ixS̃jx

]
, (2.26)

where

J̃xx =
Jxx + Jzz +

√
(Jxx − Jzz)2 + J2

zx

2
, J̃zz =

Jxx + Jzz −
√

(Jxx − Jzz)2 + J2
zx

2
.

(2.27)

Examples of rare earth pyrochlores with this class of doublet include Nd2Zr2O7

which is the first among the RE pyrochlores that verifies the MMF picture classi-

cally and quantum mechanically [22, 23]. Other RE pyrochlores in this category are

Nd2Ir2O7, Dy2Ti2O7, and Sm2Ti2O7 [24, 28].

To summarize the previous three sections, we present the properties of the pseudo-

spin operators in the three cases under different symmetry operations as given in Table

2.1. In the next section, we will discuss the effect of magnetic field on the rare earth

ions by including the Zeeman term in the total Hamiltonian as this is needed for some

systems in which magnons are excited in the presence of an external magnetic field

such as the case in Yb2Ti2O7.
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Table 2.1: Transformation of the pseudo-spin operators in the three ground state
doublets under rotations and time reversal [28].

GSD C2 C3 TimeReversal
Γ3 Sz → −Sz, S± → S∓ Sz → Sz,S± → ε±1S± Sz → −Sz, S± → S∓
Γ4 Sz → −Sz, S± → S∓ Sz → Sz,S± → ε±1S± Sz → −Sz, S± → −S±

Γ5,6 Sz → −Sz, S± → S∓ Sz → Sz,S± → S± Sz → −Sz, S± → −S±

2.5 RE Pyrochlore in Magnetic Field

Classically, a particle with magnetic moment ~µi when placed in external magnetic

field ~B, it will experience a torque ~τi = ~µi× ~B which causes the moment to align with

the applied field. The total energy of a system of magnetic moments in magnetic field

is

E = −
∑
i

~µi · ~B. (2.28)

The quantum version of this energy for a system of particles with spins {~Si} is

HZ = −γ
∑
i

~B · ~Si, (2.29)

where γ is the gyromagnetic ratio [34]. HZ is the Zeeman Hamiltonian, which gener-

ally written in the form

HZ = µB
∑
i

∑
α,β=x,y,z

Biαgα,βSiβ = −
∑
i

~B · ~µi, (2.30)

where µB is the Bohr magneton, and the g-tensor is a 3 × 3 matrix which is a gen-

eralized version of the gyromagnetic ratio γ mentioned above. Thus, the effective

Hamiltonian for QREP systems is

H = Hex +HZ , (2.31)

where Hex is given in Eq. (2.9). In the following sections, we will discuss the expres-

sions of the g-tensor in the local and the global reference frames, and we will also

provide numerical values of its components for different QREPs.
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2.5.1 The g-tensor in the Local Frame

In the local frame discussed in Appendix B, the g-tensor has only two components

denoted by g‖ and g⊥

g =

 g⊥ 0 0

0 g⊥ 0

0 0 g‖

 . (2.32)

Thus, the Zeeman contribution to the total Hamiltonian is

HZ = −µB
∑
i

[
g‖BizŜiz + g⊥

(
BixŜix +BiyŜiy

)]
, (2.33)

where the {Biα} are the components of the applied field with respect to the local

coordinate frame. Note that for Γ3 and Γ5,6 doublets, we have g⊥ = 0 because

〈ψ−0 |S−|ψ+
0 〉 vanishes in those doublets [28], while for the Γ4 case neither component

of the g-tensor is zero. Note that g⊥ and g‖ will be normalized by 〈ψ−0 |S−|ψ+
0 〉 and

〈ψ+
0 |Sz|ψ+

0 〉, respectively [28]. In Table 2.2, we list the components of g for several

materials [5, 24, 36, 37, 38, 39].

Table 2.2: The g-tensor components for different RE pyrochlores.

REPOs g⊥ g‖
Yb2Ti2O7 [5] 4.17 2.14
Yb2Ti2O7 [36] 4.32 1.80
Yb2Ti2O7[37] 4.09 2.06
Yb2Sn2O7[38] 4.20 1.10
Er2Ti2O7[39] 5.97 2.45
Sm2Ti2O7[24] 0 0.857

2.5.2 Global Reference Frame Representation of g

For completeness, we would like to express the g-tensor in the global references frame

defined by the crystal axes. This will require the use of Eq. (2.32) together with the

Ri matrices defined in Appendix B. This will result in a site-dependent g that takes

the form

gi = RigR
T
i , (2.34)
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where T stands for the transpose of the matrix. Thus, the four g-tensor matrices (for

the four different sites) are

g1 =


2g⊥

3
+

g‖
3

g‖
3
− g⊥

3

g‖
3
− g⊥

3
g‖
3
− g⊥

3
2g⊥

3
+

g‖
3

g‖
3
− g⊥

3
g‖
3
− g⊥

3

g‖
3
− g⊥

3
2g⊥

3
+

g‖
3

 , (2.35)

g2 =


2g⊥

3
+

g‖
3

g‖
3
− g⊥

3
g⊥
3
− g‖

3
g‖
3
− g⊥

3
2g⊥

3
+

g‖
3

g⊥
3
− g‖

3
g⊥
3
− g‖

3
g⊥
3
− g‖

3
2g⊥

3
+

g‖
3

 , (2.36)

g3 =


2g⊥

3
+

g‖
3

g⊥
3
− g‖

3

g‖
3
− g⊥

3
g⊥
3
− g‖

3
2g⊥

3
+

g‖
3

g⊥
3
− g‖

3
g‖
3
− g⊥

3
g⊥
3
− g‖

3
2g⊥

3
+

g‖
3

 , (2.37)

g4 =


2g⊥

3
+

g‖
3

g⊥
3
− g‖

3
g⊥
3
− g‖

3
g⊥
3
− g‖

3
2g⊥

3
+

g‖
3

g‖
3
− g⊥

3
g⊥
3
− g‖

3

g‖
3
− g⊥

3
2g⊥

3
+

g‖
3

 . (2.38)

Thus, we have determined the connection between the global and the local represen-

tations of the effective Hamiltonian Heff = Hex + HZ. In the next chapter, we will

use the local representation of the effective Hamiltonian to study magnons in different

QREP systems which host different types of magnetic ordering in the low temperature

regime.



Chapter 3

Spin Wave Theory and Magnetic

Ordering

The low energy excitations of interacting spins are referred to as spin waves (SW) or

magnons [21]. To study these magnons, we use the Holstein-Primakoff (HP) transfor-

mation which maps the spin operators to creation and annihilation bosonic operators

as defined below [21, 40]

Si+ =

(√
2s− a†iai

)
ai, Si− = (Si+)†, Siz = s− a†iai, (3.1)

where s is the spin which is one-half in our case, a†i and ai are the creation and the

annihilation operators of magnons, respectively, which satisfy the following commu-

tators

[ani, a
†
mj] = δijδnm and [ani, amj] = [a†ni, a

†
mj] = 0, (3.2)

where {i, j} labels the sites of the RE ions on a tetrahedron, and {n,m} refers to the

tetrahedra that contain the magnetic ions. Note that the appearance of the operator√
2s− a†iai in Eq. (3.1) makes the calculations of spin waves in the spin systems hard,

which motivates us to use some sort of approximation as follows. First, we expand

the operator
√

2s− a†iai in a Taylor series,

√
2s− a†iai =

√
2s

[
1− a†iai

4s
+ . . .

]
. (3.3)
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Considering only the first leading term in Eq. (3.3) is an approximation generally

referred to as the linear spin wave approximation (LSWA), in which the HP transfor-

mation becomes

Si+ ≈
√

2Sai, Si− ≈
√

2Sa†i , Siz = S − a†iai. (3.4)

Note that the above HP in the LSWA satisfy the following commutators (in units of

h̄ = 1)

[Si+, Si−] = 2S, [Si+, Siz] = −Si+, and [Si−, Siz] = Si−, (3.5)

with the first commutator is shifted from the actual spin commutator [Si+, Si−] = 2Siz.

This difference in the commutators can be ignored in different instances, for example

when magnon-magnon interaction is negligible. However, in some case this is not true

as was shown recently in Yb2Ti2O7 where higher order interactions are necessary for

fully describing the low energy excitations in this magnet [5]. The latter interaction

is beyond the scope of this work and we will be only dealing with the harmonic

approximation and study Hamiltonians that are quadratic in {a†i , ai}.

The starting point of constructing the magnon Hamiltonian is to choose a refer-

ence frame {x′i, y′i, z′i} such that when the system is in its zero-temperature ordered

magnetic state the spins at the local RE sites point along the local z′i direction. To do

this, let Qi be a 3×3 orthogonal matrix that relates the old reference frame {xi, yi, zi}
defined in Appendix B to the new local frame, xi

yi

zi

 = Qi

 x′i

y′i

z′i

 . (3.6)

This will be reflected in the exchange Hamiltonian by transforming the exchange

matrix Jij to J̃ij, giving

Hex =
∑
〈ij〉

S̃Ti J̃ijS̃j, (3.7)

where J̃ij = QT
i JijQj with Jij is defined in Eq. (2.11), and S̃i = QT

i Si defines the

spin in the new reference frame. This will also affect the Zeeman term giving

HZ = −
∑
i

B̃T
i g̃iS̃i, (3.8)
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where ~̃Bi = QT
i
~Bi is the applied magnetic field at site i expressed in the new reference

frame, and g̃i = QT
i gQi the g-tensor in the primed coordinates.

3.1 Magnetic Order in the RE Pyrochlores

There are different types of magnetic order that can occur in the RE pyrochlore

systems as discussed in Chapter 1. To define the different possible types of ordering,

we begin by introducing the basis vectors of the irreducible representations of the

octahedral space group [41]:

mA2 = S1z + S2z + S3z + S4z, (3.9)

mE± = S1± + S2± + S3± + S4±, (3.10)

mT1,1 =

 mT1,1,x

mT1,1,y

mT1,1,z

 =

 S1z − S2z − S3z + S4z

S1z − S2z + S3z − S4z

S1z + S2z − S3z − S4z

 , (3.11)

mT1,2 =

 mT1,2,x

mT1,2,y

mT1,2,z

 =


1
2
ε∗ (S1+ − S2+ − S3+ + S4+) + h.c.

1
2
ε (S1+ − S2+ + S3+ − S4+) + h.c.

S1x + S2x − S3x − S4x

 , (3.12)

mT2 =

 mT2,x

mT2,y

mT2,z

 =

 −
i
2
ε∗ (S1+ − S2+ − S3+ + S4+) + h.c.

− i
2
ε (S1+ − S2+ + S3+ − S4+) + h.c.

S1y + S2y − S3y − S4y

 , (3.13)

where ε = exp (2πi/3), and the spins represent the expectation values not the op-

erators for the above expressions to define the order parameters. The above order

parameters are classified as follows. The basis vectors {mT1,1 ,mT1,2} defines the col-

inear and noncolinear ferromagnetic states, respectively, while the other three order
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parameters represent different types of AFM orderings with mA2 representing the “all

in-all out”, mE± defines the noncolinear noncoplanar state (referred as ψ2 [41]) plus

the noncolinear coplanar state labeled by ψ3, and finally mT2 introduces the last type

of AFM which is known by Palmer-Chalker (PC) states [42]. For completeness, we

would like to express the anistropic exchange Hamiltonian defined in Eqs. (2.4), (2.5),

(2.6), and (2.7) in terms of the above basis vectors[41]

X1 = −1

8
m2
A2

+
1

24
m2
T1,1

, (3.14)

X2 = −
√

2

3
mT1,1 .mT1,2 , (3.15)

X3 =
1

6

(
m2
T1,2
−m2

T2

)
, (3.16)

X4 = −1

8
mE+mE− +

1

24
m2
T1,2

+
1

24
m2
T2
. (3.17)

In the next sections we will study three QREP systems with different magnetic

order.

3.2 All In-all Out State in Nd2Zr2O7

The QREP Nd2Zr2O7 has GSD that belongs to the Γ5,6 category. This magnet orders

antiferromagnetically in an all in-all out (AIAO) state below 0.285 K [22]. In addi-

tion, Nd2Zr2O7 was shown to be a magnetic moment fragmentation candidate where

the fragmentation was observed to occur below 0.7 K as verified experimentally and

explained theoretically [22, 23]. The starting point for calculating the energy disper-

sions of magnons in Nd2Zr2O7 is the effective exchange Hamiltonian defined in Eq.

(2.26). We apply the HP transformation defined in Eq. (3.4) on the spin operators

giving

HΓ5,6
ex ≈ H0 +

∑
〈ij〉

[
− J̃zz

2
(a†iai + a†jaj) + ρ+(aia

†
j + h.c.) + ρ−(aiaj + h.c.)

]
, (3.18)
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where H0 =
∑
〈ij〉

J̃zz
4

, ρ± = J̃xx±Jyy
4

, and h.c. stands for the Hermitian conjugate.

The next step is to Fourier transform the bosonic operators as follows

anj =
1√
N

∑
k

e−i
~k.~rnjaj(k), a†nj =

1√
N

∑
k

ei
~k.~rnja†j(k), (3.19)

where N is the total number of magnetic ions, n labels the tetrahedra, and ~rnj = ~rn+~rj

is the position of the jth ion located in the nth tetrahedron. The above transformations

are subject to the orthogonality relation
∑

n e
i(~k−~k′).~rn = Nδ~k,~k′ . Using the above

transformations back in Eq. (3.18), we get

HΓ5,6
ex = H̃0 +

∑
k

L†kM(k)Lk, (3.20)

where H̃0 = 1
4

∑
〈ij〉 J̃zz = 9

4
NJ̃zz,

Lk =
[
a1(k) a2(k) a3(k) a4(k) a1(−k) a2(−k) a3(−k) a4(−k)

]T
, (3.21)

and M(k) =

(
A(k) B(k)

B(k) A(k)

)
. A(k) and B(k) are 4× 4 matrices,

A(k) =

(
J̃xx + Jyy

2

)
R(k)− 3J̃zz1, B(k) =

(
J̃xx − Jyy

2

)
R(k), (3.22)

where Rij(k) = cos
[
~k.(~ri − ~rj)

]
− δij. Thus, we have constructed the quadratic

bosonic Hamiltonian in k-space for the Γ5,6 ground state doublet (GSD). In the pres-

ence of an external magnetic field, the Zeeman Hamiltonian for this case takes the

form

HΓ5,6

Z = −µB
∑
i

Bizg‖Siz = −µB
∑
i

Bizg‖

[
sin θS̃ix + cos θS̃iz

]
, (3.23)

where θ is defined in Eq. (2.25). Note that this is only true if the spins are pointing

along the local z̃ axis. However, in the case of higher magnetic fields, the spins will

deviate from their local z̃ towards the direction of the applied field [43]. In this case,

one needs to include the canting angle by performing coordinate transformation such

that the local z of the new frame points along the spin directions. In this work, we will
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only consider the AIAO state with low fields and in this case the effective quadratic

Hamiltonian will have the form of Eq. (3.20) with A given by

Aij(k) =

(
J̃xx + Jyy

2

)
Rij(k) + (∆i − 3J̃zz)δij, (3.24)

where ∆i = µBBizg‖ cos θ. If we consider the applied magnetic field in the [111]

crystallographic direction, then in the local frame of the four RE sites (defined in

Appendix B) the magnetic field is

~B1 = Bẑ1, (3.25)

~B2 = − 4B

3
√

2
x̂2 −

B

3
ẑ3, (3.26)

~B3 =

√
2B

3
x̂3 +

√
2

3
Bŷ3 −

B

3
ẑ3, (3.27)

~B4 =

√
2B

3
x̂4 −

√
2

3
Bŷ4 −

B

3
ẑ4. (3.28)

Thus, we have ∆1 = µBBg‖ cos θ, and ∆2 = ∆3 = ∆4 = −∆1

3
. The diagonalization

of the exchange Hamiltonian Eq. (3.20) is done analytically in the next chapter.

Different attempts have been carried out to determine the exchange constants and

the values of the g-tensor components for Nd2Zr2O7 as summarized in Table 3.1.

Table 3.1: Sets of values of the exchange parameters, the components of the g-tensor,
and the rotation angle θ of Nd2Zr2O7 obtained in four different studies [22, 23, 43, 44].

Ref. J̃xx(meV) Jyy(meV) J̃zz(meV) g⊥ g‖ θ(rad)
[22] -0.047 0 0.103 0 4.5 0
[23] 0.103 0 -0.047 - - 0.83
[44] 0.086 0.006 -0.043 0 4.55 1.26
[43] 0.091 0.014 -0.046 0 5.0 0.98

3.3 Anti-ferromagnetic Ordering in Er2Ti2O7

It was found that Er2Ti2O7 orders in an antiferromagnetic (AFM) state below 1.2

K [17, 18, 19]. This AFM state is due to order by quantum disorder [17, 19]. The
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exchange constants and the g-tensor components for this material are listed in Table

3.2. Considering the Ψ2 AFM state [20], the magnetic moments of the Er+3 ions in

the primitive unit cell are

~S1 =
S

2
√

6
(−2, 1, 1), ~S2 =

S

2
√

6
(2,−1, 1), (3.29)

~S3 =
S

2
√

6
(2, 1,−1), ~S4 =

S

2
√

6
(−2,−1,−1), (3.30)

where the above spins are represented with respect to the cubic (global) axes. In

the local coordinates, the four spins point along the x̂ direction. We now define a

coordinate system ~r′i in which the spins will point locally along z′i. In this simple case

the transformation matrix (Eq. (3.6)) is

Qi =

 0 0 1

1 0 0

0 1 0

 ; i ∈ {1, 2, 3, 4}. (3.31)

We first apply the above transformation on the exchange Hamiltonian and then use

the HP transformation on the operators S̃i. Keeping only quadratic terms in the

bosonic operators, we get

Hex ≈ H0 +
∑
〈ij〉

[
ρija

†
ia
†
j + ρ∗ijaiaj + σija

†
iaj + σ∗ijaia

†
j −
J̃ zz
ij

2
(a†iai + a†jaj)

]
, (3.32)

where

ρij =
1

4

[
J̃ xx

(ij) + i(J̃ xy
(ij) + J̃ yx

(ij))− J̃
yy
(ij)

]
, (3.33)

σij =
1

4

[
J̃ xx

(ij) − i(J̃
xy
(ij) − J̃

yx
(ij)) + J̃ yy

(ij)

]
, (3.34)

and J̃ij = QT
i JijQj. Using Eq. (3.19), we transform the above Hamiltonian into

k-space,

HEr
ex = H̃Er

0 +
∑
k

L†kM(k)Lk, (3.35)
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where M(k) =

(
A(k) B(k)

B∗(k) A(k)

)
. The 4× 4 matrices A and B are

Aij(k) = 2σij cos
[
~k.(~ri − ~rj)

]
−
∑
`

J̃ zz
il δij, (3.36)

Bij(k) = 2ρij cos
[
~k.(~ri − ~rj)

]
. (3.37)

In the presence of external magnetic field, one has to include the Zeeman Hamilto-

nian which will only shift the diagonal entries of M(k). In this case, we should be very

careful about the spin directions as the external field will tend to tilt the spins from

their ψ2 state towards the field direction. Depending on the strength and direction

of the field, the canting direction will be different and thus different dispersions. If

we assume that magnetic filed has been applied along [11̄0] which was high enough

to polarize the spin along its direction. In this case, the quadratic bosonic Hamil-

tonian will have the same form as Eq. (3.35) but with M(k) → M(k) + X , where

X = µBB

(
∆ 0

0 ∆

)
, and ∆ is the following 4× 4 matrix

∆ =


g⊥ 0 0 0

0 g⊥ 0 0

0 0 g⊥
3

+
2g‖
3

0

0 0 0 g⊥
3

+
2g‖
3

 . (3.38)

The process of obtaining the energy bands and the corresponding normal modes is

discussed in the next chapter in more details. In the next section, we will construct the

the quadratic bosonic Hamiltonian for the third example of a RE magnet Yb2Ti2O7.

Table 3.2: The values for the four exchange parameters and the components of the
g-tensor for Er2Ti2O7 [25].

Ref. Jzz J± J±± Jz± g⊥ g‖
[25] -0.025 0.065 0.042 -0.0088 5.97 2.45
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3.4 Ferromagnetic Ordering in Yb2Ti2O7

The RE pyrochlore magnet Yb2Ti2O7 is one of the most studied systems among the

pyrochlores [5, 15, 16, 48, 50]. This material orders ferromagnetically at temperature

near 0.2 K as verified by different experiments [5, 15, 16, 36]. Different experiments to

obtain the values of the exchange parameters are summarized in Table 3.3, however

the recent results by Thompson, et al. [5] are the most reliable as they incorporate

old and new data obtained in these experiments. Recent experiments have shown

that Yb2Ti2O7 has strong quantum fluctuations at low fields making it a potential

candidate for a quantum spin liquid (QSL). The recently obtained values of the ex-

change parameters place Yb2Ti2O7 close to the boundary between the FM state and

the anti-ferromagnetic ordering observed in Er2Ti2O7 [20], which is thought to be an

indication of the strong quantum fluctuations in this material are also reflected in the

exchange parameters, among which Jz± has the highest value according to the work

of Thompson et al. [5].

Table 3.3: Sets of values of the four exchange parameters of Yb2Ti2O7 obtained in
different experiments.

Ref. Jzz J± J±± Jz± g⊥ g‖
[36] 0.17±0.04 0.05±0.01 0.05±0.01 -0.14±0.01 4.32 1.80
[37] 0.07 0.085 0.04 -0.15 4.09 2.06
[5] 0.026±0.003 0.074±0.002 0.048±0.002 -0.159±0.002 4.17±0.02 2.14±0.03

In this work, we consider an applied field along [11̄0] with the spins at the four

basis sites aligned with the field [36]. In the local frame, the spin expectation values

for the RE sites are
~S1 =

1

2
(0,−1, 0) , ~S2 =

1

2
(0, 1, 0) , (3.39)

~S3 =
1

2

(
− 1√

3
, 0,−

√
2

3

)
, ~S4 =

1

2

(
1√
3
, 0,

√
2

3

)
. (3.40)

Thus, the Qi matrix for sites 1 and 2 are given below

Q1 =

 1 0 0

0 0 -1

0 1 0

 , (3.41)
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Q2 =

 1 0 0

0 0 1

0 -1 0

 . (3.42)

However, for sites 3 and 4 one needs to do a rotation in the local xz-plane such that

the z axis points along the spin directions (i.e. along the applied magnetic field).

Consequently, the Qi matrix for the latter sites are

Q3 =


−
√

2
3

0 − 1√
3

0 1 0

1√
3

0 −
√

2
3

 , (3.43)

Q4 =


√

2
3

0 1√
3

0 1 0

− 1√
3

0
√

2
3

 . (3.44)

Therefore, the effective quadratic Hamiltonian (exchange plus Zeeman) in this case is

HYb
eff = H̃Yb

0 +
∑
k

L†kM(k)Lk, (3.45)

where M(k) =

(
A(k) B(k)

B∗(k) A(k)

)
+ µBBM with M =

(
∆ 0

0 ∆

)
, and ∆ is the

following 4× 4 matrix

∆ =


g⊥ 0 0 0

0 g⊥ 0 0

0 0 g⊥
3

+
2g‖
3

0

0 0 0 g⊥
3

+
2g‖
3

 . (3.46)

The calculations of magnons dispersions for this case will be discussed in the next

chapter.
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3.5 Summary

We have calculated the quadratic magnon Hamiltonian for the all in-all out ordered

state in Nd2Zr2O7, the AFM (Ψ2) state in Er2Ti2O7, and the FM ordering in Yb2Ti2O7

in the presence of magnetic field. One can follow the same procedure to study systems

with any other type of magnetic ordering by performing the required transformations.

An important point one has to consider is the canting angle in the presence of external

magnetic field. The knowledge of this angle will be very important in determining

accurate energy dispersions. In the next chapter we will calculate the corresponding

energy dispersions analytically, and discuss the calculations of the normal modes and

the Bogoliubov transformation in these systems.



Chapter 4

Results and discussion: Energy

bands and normal mode

calculations

An important task in studying magnons in QREPs is to diagonalize the quadratic

Hamiltonians in Eqs. (3.20), (3.35), and (3.45), which will provide us with the energy

bands and the associated normal modes. With these, one can calculate different

physical quantities such as the thermodynamic quantities and the structure factor.

[20, 23, 47]. The starting point is to use Bogoliubov transformation to diagonalize the

8× 8 matrix M(k) giving

Hex = H0 +
∑
k

L†kM(k)Lk, (4.1)

where Lk = Z(k)Lk. Z(k) is the Bogoliubov transformation matrix, and

M(k) = Z†(k)M(k)Z(k) =

(
E 0

0 E

)
, (4.2)

where Eij = εi(~k)δij. The column vector Lk contains the transformed bosonic oper-

ators which must preserve the usual commutation relations for bosons as defined in

Eq. (3.2) which will add a constraint on the matrix Z(k). The bosonic commutation
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relation is

LkL
†
k − (L∗kL

T
k )T = G =

(
1 0

0 -1

)
, (4.3)

where L∗k stands for the column vector of the adjoint bosonic operators of Lk, and 1

is the 4×4 identity matrix. The column of operators Lk must also satisfy the relation

above which results in the following condition for the Bogoliubov matrix

Z(k)GZ†(k) = G. (4.4)

Thus, the energy dispersions and the normal modes are obtained by solving simulta-

neously Eqs. (4.2) and (4.4) for Z(k) and E(k). To calculate the energy dispersions,

we combine Eqs. (4.2) and (4.4) giving

Z−1GM(k)Z = GM(k) =

(
E 0

0 −E

)
. (4.5)

Consequently, the energy dispersions of magnons are extracted from the eigenvalues

of the non-Hermitian matrix GM(k) Eq. (4.5). Since the eigenvalues of GM(k) will

have the form ±εi(~k), the characteristic polynomial of this matrix must be quartic in

ε2(~k) and is generally written as

(ε2)4 + ξ6(k)(ε2)3 + ξ4(k)(ε2)2 + ξ2(k)ε2 + det[GM ] = 0, (4.6)

where the coefficients {ξ2(k), ξ4(k), ξ6(k)} are the coefficients of the characteristic

polynomial of GM . The latter coefficients can be found analytically and thus the

analytic form of the energy dispersions is always possible for this kind of problem and

it is

ε(~k) =

√√√√−ξ6(~k)

4
± S(~k)± 1

2

√
−4S2(~k)− 2P (~k)∓ Q(~k)

S(~k)
, (4.7)

where {S(k), P (k), Q(k)} are calculated in Appendix D. On the other hand, an ana-

lytic calculation of the Bogoliubov matrix is not always possible and thus we rely on

the numerical methods in most cases (see Appendix E). In the next section, we will

apply the above procedure to calculate the energy dispersions of magnons within the

harmonic approximation for the three QREPs mentioned in the previous chapter. We

also found that the matrix Z(k) can be calculated analytically for the Γ5,6 GSD as
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mentioned in the next section. However, for the other cases one should rely on the

numerical procedure described in Appendix E.

4.1 Exact Analytic Diagonalization of HΓ5,6
ex

In this section, we will first consider two special cases of Eq. (3.22): (1) J̃xx = 0 or

Jyy = 0, and (2) J̃yy = J̃xx. Then we will solve the general case with no constraints

on the exchange parameters. In addition to the zero field cases, we will consider the

case with magnetic field along the [111] cubic direction in the last subsection. Before

starting the four subsections, we introduce the following unitary transformation

U =
1√
2

(
1 1

−1 1

)
. (4.8)

Applying the above unitary transformation on GM(k), we get

U †GM(k)U =

(
0 A+B

A−B 0

)
. (4.9)

Since U is unitary, one can easily show that GM(k) and U †GM(k)U share the same

eigenvalues. Thus, the eigenvalue equation is∣∣∣∣∣ λ1 A+B

A−B λ1

∣∣∣∣∣ = |(A2 −B2)− λ21| = 0. (4.10)

Consequently, the problem reduces to finding the eigenvalues of the 4×4 matrix A2−
B2 which will be done for each case. Moreover, if ~Y is an eigenvector of U †GM(k)U
then U ~Y is an eigenvector of GM(k) with the same eigenvalue. The Bogoliubov matrix

Z(k) can be found analytically for each case as will be discussed next.
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4.1.1 Case I: J̃xx = 0 or Jyy = 0

Without loss of generality, let us consider the case when Jyy = 0. Using Eq. 4.10

together with Eq. (3.22), we obtain the following equation for the energy dispersion,∣∣∣∣∣R− 9J̃zz − ε2

3J̃xxJ̃zz

∣∣∣∣∣ = 0, (4.11)

where R is the 4× 4 matrix defined in Eq. (C.1). Thus, we only need the eigenvalues

of R from which we can find the corresponding energy dispersions. After lengthy

calculations of the eigenvalues of R (in Appendix C) and by using Eq. (4.11), we find

that the system has a doubly degenerate flat band with energy

ε1,2(~k) =

√
3J̃zz(3J̃zz + J̃xx), (4.12)

and two other dispersive bands,

ε3,4(~k) =

√
9J̃2

zz − 3J̃zzJ̃xxr±, (4.13)

where r± is given in Eq. C.2. This case applies to the rare-earth pyrochlore Nd2Zr2O7

with the exchange parameters extracted from [23] (see Table 3.1). The energy disper-

sions of magnons in Nd2Zr2O7 through different symmetry directions are plotted in

Figure 4.1. Note that the appearance of the doubly degenerate flat in Nd2Zr2O7 was

also verified experimentally and theoretically in different studies [22, 23, 43, 44], and

this feature is also generic for different pyrochlore systems and was also found in the

electronic band structure for the nearest-neighbor hopping model with no spin flipping

[45, 46]. On othe other hand, two other sets of exchange parameters for this mate-

rial have been extracted recently in [43, 44], with nonzero Jyy which is smaller than

the other contributions (see Table 3.1). The treatment of the latter sets of exchange

parameters is given in Section 4.1.3.

Aside from the energy dispersions, we are interested in finding the Bogoliubov

transformation matrix for this case in order to have full knowledge of the diagonalized

Hamiltonian as it might be important when calculating some physical quantities such

as the dynamical structure factor [20, 49]. Here, we follow the procedure of Appendix
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Figure 4.1: Energy bands of magnons in Nd2Zr2O7 at zero magnetic field with ex-
change constants taken from Ref. [23].

E, where we find the eigenvectors of GM(k) as follows. First, we observe that

UGMU † =

(
0 3J̃zz1

−J̃xxR + 3J̃zz1 0

)
, (4.14)

where U is given in Eq. (4.8). We assume that ~̃X is an eigenvector of UGMU †, with

eigenvalue εx, that is expressed in the following block form

~̃X =

(
~u

~v

)
. (4.15)

By simple algebra, with the use of Eq. 4.14, we have

~v =
εx

3J̃z
~u, (4.16)

[
−J̃xR + 3J̃z1

]
~u = εx~v. (4.17)
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By eliminating ~v, we have

R~u =
9J̃2

z − ε2
x

3J̃xJ̃z
~u. (4.18)

Thus, ~u is an eigenvector of R with eigenvalue 9J̃2
z−ε2x

3J̃xJ̃z
. In this way, we have

~̃X =
1√

1 +
(
εx
3J̃z

)2

(
~u
εx
3J̃z
~u

)
. (4.19)

Note that the other four eigenvectors are found by the simple replacement εx → −εx.
Consequently, we find the normalized eigenvectors of GM to be

~X = U † ~̃X =
1√

2 + 2
(
εx
3J̃z

)2

 (
1− εx

3J̃z

)
~u(

1 + εx
3J̃z

)
~u

 . (4.20)

Thus, we have obtained an analytic form of the matrix Z̃. To find the full Bogoliubov

matrix Z, we are left with finding the block diagonal matrix P such that Z = Z̃P .

Without lose of generality, we assume that the system is only degenerate in the flat

bands, i.e. the matrix GM has 6 distinct eigenvalues where two of them are doubly

degenerate, giving the total eight eigenvalues of the latter matrix. Thus, the matrix

P has six blocks where two of them are 2 × 2 and the rest are 1 × 1. Starting with

the positive energy sector of GM , the 2× 2 blocks are

W1 = −3

2

[
J̃z
ε1

+
ε1

9J̃z

]
1. (4.21)

The other two 1× 1 matrices in the positive energy sector are

W2 = −3

2

[
J̃z
ε3

+
ε3

9J̃z

]
, (4.22)

W3 = −3

2

[
J̃z
ε4

+
ε4

9J̃z

]
. (4.23)
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However, for the negative energy sector, we only use the map εi → −εi, giving

W4 =
3

2

[
J̃z
ε1

+
ε1

9J̃z

]
1, (4.24)

W5 =
3

2

[
J̃z
ε3

+
ε3

9J̃z

]
, (4.25)

W6 =
3

2

[
J̃z
ε4

+
ε4

9J̃z

]
. (4.26)

Consequently, we have

P = diag
[√

W1,
√

W2,
√

W3,
√
−W4,

√
−W5,

√
−W6

]
. (4.27)

To conclude this section, we have obtained the analytic results of the energy disper-

sions and normal modes for the case when Jyy = 0 within the LSWA. We would like

now to proceed with the other cases in the next sections and calculate the energy

bands and the Bogoliubov matrix in each case.

4.1.2 Case II: J̃xx = Jyy

In this interesting case, we have the blocks B = 0 (where 0 is the 4× 4 zero matrix).

Consequently, the eigenvalue equation for this case is

|A2 − λ21| = |A− λ1| × |A+ λ1| = 0. (4.28)

Using Eq. (3.22) together with the eigenvalues of R in Eq. (C.2), we obtain the

following energy dispersions for this case

ε1,2(~k) = |3J̃zz + J̃xx|, (4.29)

ε3,4(~k) = |J̃xxr± − 3J̃zz|. (4.30)

We plot the energy dispersions for the case with J̃xx = Jyy = −0.25 and J̃zz = −0.1

in Figure 4.2. The Bogoliubov matrix takes the following general form
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Figure 4.2: Zero-field magnon disperions for the case when J̃xx = Jyy = −0.25 and
J̃zz = −0.1. Note that these values are just mathematical and do not correspond to
any RE pyrochlore material.

Z =

(
XR 0

0 XR

)
, (4.31)

where XR is a 4× 4 matrix that contains the orthonormalized eigenvectors of R. One

can easily verify that the above formula of Z satisfies the conditions in Eqs. (4.2) and

(4.4), i.e. it is the true Bogoliubov matrix. This is the simplest possible form of Z,

however, we are not aware of any RE pyrochlore with this constraint on the exchange

parameters. In the next section we will treat the most general case within the LSWA.

4.1.3 The General Case

Following Eq. (4.10), we can simplify the eigenvalue equation in terms of a matrix R

in the form

|R2 − aR + b1| = |R− α+1| |R− α−1| = 0, (4.32)
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where

α± =
a

2
±

√(
a2

4
− b
)
, (4.33)

and

a =
3J̃zz(J̃xx + Jyy)

J̃xxJyy
, b =

(9J̃2
zz − ε2)

J̃xxJyy
. (4.34)

Consequently, if r is an eigenvalue of R, then one can easily do some algebra with the

use of the above equations to get the following relation for the energy dispersions

ε(~k) =

√
9J̃2

zz − J̃xxJyyr(a− r). (4.35)

Now, using the eigenvalues of R in Eq. (C.2) (see Appendix C), we find that the

general LSWA magnon Hamiltonian has a doubly degenerate flat band which is

ε1,2(~k) =

√
(3J̃zz + J̃xx)(3J̃zz + Jyy), (4.36)

and two dispersive bands of the form

ε3,4(~k) =

√
9J̃2

zz − r±
(

3J̃zz(J̃xx + Jyy)− J̃xxJyyr±
)
. (4.37)

Thus, the four energy bands for the AIAO state at zero magnetic field are analytically

known and written in the above compact form. A perfect example of RE pyrochlores

that fall in this category is Nd2Zr2O7 as shown very recently in [43, 44], where the

exchange parameters and the values of the g-tensor are listed in Table 3.1. The plot

of the energy dispersions for the latest sets of exchange parameters are given in Figure

4.3. We have also plotted the energy dispersions at ~B = ~0 through different symmetry

directions in Figure 4.4, to compare our results with the results obtained in Ref. [43],

see Figure 4.5. Our analytic results agree with the findings in Ref. [43] as can be

seen by comparing the vertical axis, the positions where the bands touch, and the

curvature of the bands.

Now, we proceed to find the Bogoliubov matrix Z for this general case. First, as

we have done in Section 4.1.1, we start with the matrix equation
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Figure 4.3: Plot of the zero-field energy dispersions of Nd2Zr2O7. (a) Using the
exchange parameters from [44] and (b) using the corresponding coupling constants
from Ref. [43].

UgMU † =

(
0 −JyR + 3J̃zz1

−J̃xxR + 3J̃zz1 0

)
. (4.38)

If ~̃X = (~u,~v)T is an eigenvector of UGMU †, with little algebra we find

~̃X =
1√

1 +
(
−J̃xxri+3J̃zz

εi

)2

(
~ui

−J̃xxri+3J̃zz
εi

~ui

)
, (4.39)

where ~ui is the orthonormalized eigenvector of R with an eigenvalue ri. As a result,

we find the normalized eigenvector of GM to be

~X =
1√

2 + 2
(
−J̃xxri+3J̃zz

εi

)2

 (
1− −J̃xxri+3J̃zz

εi

)
~ui(

1 + −J̃xxri+3J̃zz
εi

)
~ui

 . (4.40)

On the other hand, we follow the procedure in Section 4.1.1 and find that the Wi

blocks are

W1 = −1

2

[
3J̃zz − J̃xxr1

ε1

+
ε1

3J̃zz − J̃xxr1

]
1, (4.41)

W2 = −1

2

[
3J̃zz − J̃xxr3

ε3

+
ε3

3J̃zz − J̃xxr3

]
, (4.42)
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Figure 4.4: Plots of the exact energy dispersions at zero magnetic field for Nd2Zr2O7

using the parameters extracted from Ref. [43]. These results show good agreement
with the other findings as shown in Figure 4.5.

Figure 4.5: Magnon dispersions at zero magnetic field in Nd2Zr2O7 found using the
inelastic neutron scattering (background) [22] and the calculated energy dispersions
(dashed curves) [43]. This picture was taken from [43] with permission. Copyright by
the American Physical Society.

W3 = −1

2

[
3J̃zz − J̃xxr4

ε4

+
ε4

3J̃zz − J̃xxr4

]
. (4.43)

The other three blocks are found by symmetry, i.e. replacing εi with −εi, giving

W4 =
1

2

[
3J̃zz − J̃xxr1

ε1

+
ε1

3J̃zz − J̃xxr1

]
1, (4.44)

W5 =
1

2

[
3J̃zz − J̃xxr3

ε3

+
ε3

3J̃zz − J̃xxr3

]
, (4.45)
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W6 =
1

2

[
3J̃zz − J̃xxr4

ε4

+
ε4

3J̃zz − J̃xxr4

]
. (4.46)

Consequently, using Eq. (4.27) we find the matrix P and thus the full Bogoliubov

matrix Z for this general case. This means that we now have the exact results of

energy dispersions and normal modes of the RE pyrochlore Nd2Zr2O7 [43, 44]. This

also covers any RE pyrochlore material that has the same magnetic ordering and

follows the symmetry of the Γ5,6 ground state doublet. Therefore, we have constructed

the exact diagonalization of the magnon Hamiltonian for the AIAO state in the Γ5,6

class of ground state doublet within the LSWA.

4.1.4 Nd2Zr2O7 in the [111] Magnetic Field

In the presence of magnetic field along the [111] cubic direction, the effective NN

Hamiltonian for the RE ion is given below

HΓ5,6

eff = H̃0 +
∑
k

L†kM(k)Lk, (4.47)

where

M(k) =

(
A(k) B(k)

B(k) A(k)

)
, (4.48)

with A(k) defined in Eqs. (3.24-3.28), and B(k) =
(
J̃xx−Jyy

2

)
R(k). As mentioned

previously, the energy dispersions {εi(~k)}4
i=1 are found by calculating the eigenvalues

{λi(~k)}4
i=1 of the 4 × 4 matrix C = A2 − B2, where λi(~k) = ε2

i (
~k). In principle,

the eigenvalue equation |C − λi(~k)| = 0 results in a quartic equation in λi(~k) which

has analytic solutions (see Appendix D). Consequently, the energy dispersions are

known analytically. As an illustration, we plotted the energy dispersions at different

values of the magnetic field in Figure 4.6 in the AIAO state without considering any

possible canting of the spins due to the field. We have also added a plot of the energy

dispersions of magnons taken from [43] (see Figure 4.7). The latter figure has slight

difference from ours due to the canting angle that was considered in the same reference

but its value wasn’t mentioned in the original article [43].
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Figure 4.6: Plots of the exact energy dispersions for Nd2Zr2O7 in the [111] magnetic
field using the parameters from Ref. [43] with zero canting angle.

4.2 Magnon Dispersion in Er2Ti2O7 With Antifer-

romagnetic ψ2 State

Starting with the effective magnon Hamiltonian Eq. (3.35) in the antiferromagnetic

state (ψ2) of Er2Ti2O7, together with Eq. (4.6), we find that the analytic dispersions

are given in Eq. (D.7) with the functions {S(k), P (k), Q(k)} as defined in Appendix

D. However, unlike the Γ5,6 case, one should rely on numerical methods to find the

Bogoliubov matrix Z(k) as discussed in Appendix E. In the case of zero magnetic field,

the spins are all pointing along the local x, in this case the exact energy dispersions

are plotted in Figure 4.8 where our result agrees with what was obtained in other

studies [19? ]. Note that when ~B = 0, our results show the appearance of soft modes

in the energy spectrum, which agrees with the spectral data of Er2Ti2O7 where these

modes are also signature of the order-by-disorder mechanism observed in this material

[19, 39]. We have also calculated the energy dispersions in the case of magnetic field

applied along [11̄0] as shown in Figure 4.9. On the other hand, Ref. [25] have found the

energy dispersions in the presence of [11̄0] and [111] fields (see Figure 4.10), where

Figure 4.10 represents a plot of the relative intensities of the spin waves which is
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Figure 4.7: Plots of the neutron-scattering spectra for Nd2Zr2O7 in the [111] magnetic
field for the AIAO and the AOAI (all out-all in) states using the parameters from Ref.
[43]. The red arrows at the bottom figures indicate the location of the quasi-flat bands.
The whole figure was taken from [43] with permission. Copyright by the American
Physical Society.

slightly different from the ordinary plots of the energy dispersions given in this work

[25]. A plot of these intensity functions will require the knowledge of the Bogoliubov

coefficients and its not within the scope of this work. On the other hand, the difference

between our results and the other findings in Ref. [25] is due to the spin polarization

where in our work we considered all of the spins aligned with the applied field. It

is not clear for us what spin orientations have been considered in Ref. [25] which

concludes the sensitivity of the energy dispersions to the spin orientations.
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Figure 4.8: Plots of the zero-field energy dispersions for Er2Ti2O7. The figure on
the left is taken from previous work with permission [19]. We have considered the
exchange parameters from Table 3.2. The figure on the right represents our results
which matches the previous ones. Copyright by the American Physical Society.

4.3 Exact Dispersions of Magnons for the Ferro-

magnetic State in Yb2Ti2O7

In this section, we will follow the same procedure as in the previous section to plot

the exact energy dispersions of magnons in Yb2Ti2O7 for the FM state with all of the

spins aligned with the external magnetic field applied along the [11̄0] crystallographic

direction. Using the quadratic magnonic Hamiltonian given in Eq. (3.45) and follow-

ing the diagonalization method introduced in the beginning of this chapter, we plot

the associated values of {ε2(k), ε(k)} for different values of the magnetic field along

different symmetry directions in the Brillouin zone with the exchange constants taken

from [36]. In our model, we observe that for low magnetic fields, we get negative val-

ues in the ε2(k) curves which indicates that magnons are unstable or that our model

may not be applicable at low fields (see Figure 4.11). This result is also consistent

with the findings in Ref. [36] as the sharp magnon excitations appear at high fields.

On the other hand, for B ≥ 2T , we only observe positive values of ε2(k). We also

plotted the energy dispersions of magnons for magnetic field strengths 2T and 5T as

shown in Figures 4.12, 4.13, and 4.14. For instance, if we compare our analytic results

in Figure 4.13 vs the numerical results found in Figure 4.15 we find a good agreement

between both figures for the energy dispersions plotted through several symmetry di-

rections in the presence of 5T field [36] which is obvious by looking at the features of

the spectrum such as the appearance of quasi-flat band [36] (slightly above 1.4 meV),

energy bands crossing, and the curvature of the bands through the given symmetry
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Figure 4.9: Plot of the exact dispersions of magnons in Er2Ti2O7 for magnetic field of
strength 3T applied along [11̄0] using the exchange parameters from Table 3.2. The
spins are considered to be fully polarized with the applied field.

directions.

On the other hand, we plotted magnon dispersions when B = 2T in Figure 4.12. A

plot of the spin wave intensities for this case is given in Figure 4.16 which was adopted

from Ref. [36]. Now, by looking at the vertical axes of both figures we can tell there

are similarities especially the appearance of the top band around 1 meV, but both

figures are still different in the sense that they represent different quantities. Further

more, we have reevaluated the energy dispersions for the same case (the field applied

along the [11̄0] and the spins aligned with the field) using the fitting parameters

from Ref. [5] as shown in Figure 4.14, see Table 3.3 for the values of the exchange

parameters in both cases. Comparing Figures 4.12 and Figure 4.13 with Figure 4.14,

we find differences in each case which is due to the sensitivity of the energy dispersion

to the fitting parameters. However, the three figures still share the same features

in the spectrum such as the appearance of the quasi-flat bands at 5T field for both

sets of exchange parameters taken from references [36] and [5] (see Table 3.3). This

also raises a question on the dependence of the extracted exchange parameters on the

canting angle in different fields.
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Figure 4.10: Neutron scattering measurements of the spin wave excitations (top row)
and calculated (bottom row) dispersions of magnons in Er2Ti2O7 for magnetic field of
strength 3T . For the first five columns, the magnetic field was taken along the [11̄0]

and for the rest ~B is aligned with the [111] direction. The whole figure was taken
from Ref. [25] with permission. Copyright by the American Physical Society.

Figure 4.11: Low field plots of ε2(~k) for Yb2Ti2O7 with an external magnetic field (B)
applied parallel to the [1, 1̄, 0] for different field strengths as indicated in the legends.
The exchange parameters and the g-tensor were taken from Ref. [36](see Table 3.3).
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Figure 4.12: Magnon dispersions in Yb2Ti2O7 with an applied magnetic field of
strength 2T along the [1, 1̄, 0] direction. The exchange parameters and the g-tensor
were taken from Ref. [36] for the sake of comparison.
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Figure 4.13: Magnon dispersions in Yb2Ti2O7 with an applied magnetic field of
strength 5T along the [1, 1̄, 0] direction. The exchange parameters and the g-tensor
were taken from Ref. [36] for the sake of comparison, see Table 3.3 for more details.
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Figure 4.14: Magnon dispersions in Yb2Ti2O7 with an applied magnetic field of
strengths 5T (right column) and 2T (left column) along the [1, 1̄, 0] direction. The
exchange parameters and the g-tensor were taken from Ref. [5] (see Table 3.3) for
the sake of comparison with the dispersions obtained using the parameters from Ref.
[36].
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Figure 4.15: Energy dispersions of magnons in Yb2Ti2O7 with an applied magnetic
field of strength 5T parallel to [1, 1̄, 0]. The white curves represent LSWA fitting over
the experimental dispersions. This figure was taken from Ref. [36] with permission.
Copyright by the American Physical Society.
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Figure 4.16: Plots of the measured and calculated (calc) spin wave dispersions in
Yb2Ti2O7 for magnetic field applied along the [1, 1̄, 0] direction. The first two rows
are for the measured and the calculated dispersions at 5 T field, respectively. The
lower two rows represent the experimental and computed magnon dispersions for the
magnetic field with strength 2T, respectively. Note that r.l.u. stands for reciprocal
lattice unit. This figure was taken from [36] with permission. Copyright by the
American Physical Society.
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4.4 Summary

We would like to summarize our results as follows. For the Γ5,6 GSD, we considered

the AIAO ordered state. We present the exact analytic diagonalization of the magnon

Hamiltonian within the LSWA. This applies perfectly to Nd2Zr2O7. For the Γ4 case,

we found the exact energy dispersions of magnons in Er2Ti2O7 and Yb2Ti2O7 in their

AFM and FM states, respectively. However, the Bogoliubov matrix Z(k) is not found

analytically, as explained in Sections 4.2 and 4.3. In the next chapter we give our

conclusions and future directions.



Chapter 5

Conclusions and Future Directions

In this work we have studied a special class of rare-earth pyrochlores in which the

RE ions have a crystal electric field ground state doublet that is separated from the

first excited state by approximately 100 K or more. These materials are then consid-

ered as effective spin-1/2 systems which is why they are called quantum rare-earth

pyrochlores. Based on symmetry, the CEF ground state doublet comes into three

different varieties labeled as Γ3, Γ4, and Γ5,6. For each of these doublets, the ex-

change interactions are generally represented in terms of pseudo-spin operators and

have slightly different forms depending on the type of doublet. Only in one of these

doublets, the Γ4 doublet are the spin operators isomorphic to real spin-1/2 operators,

and so they transform the same way as physical spinors under space operations and

time reversal. However, the pseudo-spins in the other doublets transform differently

as summarized in Table 2.1. We have considered several examples of QREPs that be-

long to {Γ4,Γ5,6} doublets for which we have the experimental values of the exchange

parameters for only few of those materials. For the Γ3 doublet, we are not aware

of any example with known values of the exchange parameters; this doublet has the

same linear spin wave analysis as the Γ4 doublet, except that Jz± = 0.

For the Γ5,6 doublet, we have considered an all in-all out ordered state and we have

done the linear spin wave analysis at zero magnetic field and found the exact energy

dispersions {ε(~k)i}4
i=1 and the associated Bogoliubov matrix Z(k) for different cases

including the general case. This applies perfectly for the RE pyrochlore Nd2Zr2O7

which orders in the AIAO state near 0.285 K [22, 23, 43, 44]. The results obtained for
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this case might also be applied to another RE pyrochlore which is Sm2Ti2O7 (see Ref.

[24] for more details on this material). On the other hand, these results will be very

useful for further investigation on the limitations of the LSWA in Nd2Zr2O7 when

studying different physical quantities or thermodynamic properties which is some-

thing of interest for us.

In the Γ4 GSD, we have investigated the magnon dispersions for Er2Ti2O7 and

Yb2Ti2O7. The rare-earth pyrochlore Er2Ti2O7 orders antiferromagnetically in the

ψ2 state (all of the spins are pointing along the local x at each site) near 1.2 K. In our

calculations of the exact energy dispersions which are given in Eq. D.7, we have con-

sidered magnetic fields along the [111] and [11̄0] directions. At zero magnetic field, the

spectrum shows the appearance of soft modes which agrees with the previous results

on this material. However, at slightly higher fields, our model shows the appearance

of negative values of some of the ε2
i (
~k) curves which indicates the limitations of our

NN and LSWA approximations. On the other hand, at high fields we don’t face this

problem and all the curves in ε2
i (
~k) are positive. In addition to Er2Ti2O7, we studied

magnons in Yb2Ti2O7 which orders in a FM state near 0.2 K. In the latter material

we considered magnetic fields along the [11̄0] cubic direction with spins aligned with

the applied field. Similar to Er2Ti2O7, we found that the low fields parts of the ε2
i (
~k)

curves have some negative values along different symmetry directions. At higher fields

we always get positive values in the ε2
i (
~k) plots along the given symmetry paths. We

plotted the associated exact energy dispersions for both materials at different values

of the magnetic fields. Unlike the energy dispersions, exact analytic calculations of

Bogoliubov matrix is not possible for those two cases and one has to rely on numerical

methods following the procedure in Appendix E. Very recently, Thompson et al. [5]

showed that Yb2Ti2O7 has strong quantum fluctuations at low temperature which

requires more care in doing the spin wave calculations as some higher order magnon-

magnon interaction terms may be necessary for a better description of magnons in

this material.

Finally, in summary of our work, we have obtained the exact analytic energy dis-

persions of magnons for three materials Nd2Zr2O7, Er2Ti2O7, and Yb2Ti2O7. Our

analytic results have been tested against the numerical findings that have been ob-

tained in previous studies and showed good agreement. On top of that, we were able
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to calculate the exact analytic form of the Bogoliubov matrix Z for the zero-field

AIAO state of the Γ5,6 doublet. Consequently, within the LSWT, exact diagonaliza-

tion of the magnonic Hamiltonian for Nd2Zr2O7 has been obtained. This latter result,

up to our knowledge, have not been obtained in the literature before [22, 23, 43, 44].

However, numerical calculations magnon dispersions in Er2Ti2O7, and Yb2Ti2O7 have

been published before and we have reproduced the results and obtain also our analytic

calculations of these dispersions and we found good agreement [25, 36]. For future

work, we would like to consider modeling the magnon-magnon interactions to improve

modeling the magnonic Hamiltonian for these effective pseudo-spin 1/2 systems. We

would like also to apply our results to other rare-earth pyrochlore systems that with

a CEF ground state doublet.
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Appendix A

Stevens Operators and the CEF

Ground States

First, we begin by listing the six Steven operators given in HCEF which take the forms

[33]

O0
2 = 3J2

z − J(J + 1), (A.1)

O0
4 = 35J4

z + (25− 30J − 30J2)J2
z + 3J(J + 1)(J2 + J − 6), (A.2)

O3
4 =

1

4
{Jz, J3

+ + J3
−}, (A.3)

O0
6 =

[
105J2(J + 1)2 − 525J(J + 1)294

]
J2
z + (753− 315J − 315J2)J4

z

+ 231J6
z + 5J2(J + 1)2(8− J − J2), (A.4)

O3
6 =

1

4
{J3

+ + J3
−, 11J3

z − (59 + 3J + 3J2)Jz}, (A.5)

O6
6 =

J6
+ + J6

−

2
, (A.6)

where {A,B} denotes the anti-commutator of two operators, i.e. {A,B} = AB+BA.

For completeness, we list the ground state doublets for few of the rare earth titinates

with interest as in Table A.1 below. Thus, one can easily calculate the ground state

energies using the CEF Hamiltonian together with the supplementary data in Table

1.2 and Table A.1.
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Table A.1: The GSD of few rare earth titinates R2Ti2O7 [24, 30].

R GSD Type
Tb 0.266|±5〉 ∓ 0.133|±2〉 − 0.129|∓1〉 ∓ 0.946|∓4〉 Γ3

Dy 0.981|±15
2
〉 ± 0.190|±9

2
〉 − 0.022|±3

2
〉 ∓ 0.037|∓3

2
〉+ 0.005|∓9

2
〉 ± 0.001|∓15

2
〉 Γ5,6

Ho −0.979|±8〉 ± 0.189|±5〉 − 0.014|±2〉 ± 0.07|∓1〉 − 0.031|∓4〉 ± 0.005|∓7〉 Γ3

Er 0.471|±13
2
〉 ± 0.421|±7

2
〉 − 0.569|±1

2
〉 ∓ 0.240|∓5

2
〉+ 0.469|∓11

2
〉 Γ4

Yb 0.376|±7
2
〉+ 0.922|±1

2
〉 − 0.093|∓5

2
〉 Γ4

Sm |±3
2
〉 Γ5,6



Appendix B

The Local Coordinate System

Generally, the CEF measurements consider the local environment of the magnetic RE

ion [29, 31, 32]. Thus, it is useful to define a local reference frame in which we perform

our theoretical calculations. For convenience, we choose the local ẑi axis to be parallel

to the three-fold axis C3 at each site. Following Figure 1.2, we labeled the four basis

ions with numbers 1→ 4 with the following local positions expressed with the respect

to the global cubic axes,

x̂1 =
1√
6

(1, 1,−2), ŷ1 =
1√
2

(−1, 1, 0), ẑ1 =
1√
3

(1, 1, 1), (B.1)

x̂2 =
1√
6

(−1,−1,−2), ŷ2 =
1√
2

(1,−1, 0), ẑ2 =
1√
3

(−1,−1, 1), (B.2)

x̂3 =
1√
6

(−1, 1, 2), ŷ3 =
1√
2

(1, 1, 0), ẑ3 =
1√
3

(−1, 1,−1), (B.3)

x̂4 =
1√
6

(1,−1, 2), ŷ4 =
1√
2

(−1,−1, 0), ẑ4 =
1√
3

(1,−1,−1). (B.4)

Now, if we have a vector quantity ~vi that is is represented in the local axes at the ith

as

~vi = vixx̂i + viyŷi + viz ẑi. (B.5)
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In the global frame this quantity is expressed as ~vi = V x
i X̂ + V y

i Ŷ + V z
i Ẑ, where V x

i

V y
i

V z
i

 = Ri

 vix

viy

viz

 , (B.6)

and Ri = [x̂i; ŷi; ẑi]. For example, at site #1, we have

R1 =


1√
6

- 1√
2

1√
3

1√
6

1√
2

1√
3

- 2√
6

0 1√
3

 . (B.7)

Note that all of the Ri are orthogonal, thus R−1
i = RT

i .



Appendix C

The Eigenvalues and the

Eigenvectors of R

The matrix R which appears in Eq. 3.22 is

R =


0 cos

(
1
4
a (kx + ky)

)
cos
(

1
4
a (kx + kz)

)
cos
(

1
4
a (ky + kz)

)
cos
(

1
4
a (kx + ky)

)
0 cos

(
1
4
a (ky − kz)

)
cos
(

1
4
a (kx − kz)

)
cos
(

1
4
a (kx + kz)

)
cos
(

1
4
a (ky − kz)

)
0 cos

(
1
4
a (kx − ky)

)
cos
(

1
4
a (ky + kz)

)
cos
(

1
4
a (kx − kz)

)
cos
(

1
4
a (kx − ky)

)
0

 .

(C.1)

The four eigenvalues of R are

r1 = r2 = −1, r3,4 = r± = 1± α(kx, ky, kz), (C.2)

where the function α(kx, ky, kz) is

α(kx, ky, kz) =

√
1 + cos

(
akx
2

)[
cos

(
aky
2

)
+ cos

(
akz
2

)]
+ cos

(
aky
2

)
cos

(
akz
2

)
.

(C.3)
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For the eigenvectors of R, we start with the eigenvectors that corresponds to r1,2 = −1

which are

~u1 =


1
2

csc2
(

1
4
a (kx + ky)

) (
cos
(

1
4
a (2kx + ky − kz)

)
− cos

(
1
4
a (ky + kz)

))
1
2

csc2
(

1
4
a (kx + ky)

) (
cos
(

1
4
a (kx + 2ky + kz)

)
− cos

(
1
4
a (kx − kz)

))
0

1

 ,

(C.4)

~u2 =


1
2

csc2
(

1
4
a (kx + ky)

) (
cos
(

1
4
a (kx + 2ky − kz)

)
− cos

(
1
4
a (kx + kz)

))
1
2

csc2
(

1
4
a (kx + ky)

) (
cos
(

1
4
a (2kx + ky + kz)

)
− cos

(
1
4
a (ky − kz)

))
1

0

 .

(C.5)

Note that the above vectors are not orthogonal as they correspond to the same eigen-

value. However, they can be made orthonormal by following the Gram-Schmidt or-

thonormalization process giving

~̃u1 =
~u1

||~u1||
, ~̃u2 =

~u2 − uT1 u2
uT1 u1

~u1

||~u2 − uT1 u2
uT1 u1

~u1||
. (C.6)

For the r+ eigenvalue, the corresponding eigenvector is

~u+ =


a+

b+

c+

1

 , (C.7)

where

a+(k) =
2 sec

(
1
4
a (ky + kz)

)
σa+

λa+
, (C.8)

σa+ = cos

(
1

2
a (kx + ky)

)
(r+ + 2)+(r+−1)

(
cos

(
1

2
a (kx + kz)

)
+ cos

(
1

2
a (ky + kz)

))
+5(r+ − 1) + cos

(
1

2
a (kx − ky)

)
+ cos

(
1

2
a (kx − kz)

)
+ 3 cos

(
1

2
a (kx + kz)

)
+ cos

(
1

2
a (ky − kz)

)
+ 3 cos

(
1

2
a (ky + kz)

)
+ 4, (C.9)
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λa+ = 14−4 cos2

(
1

4
a (ky − kz)

)
+4 cos

(
aky
2

)
cos

(
akz
2

)
+4 cos

(
akx
2

)(
cos

(
aky
2

)
+ cos

(
akz
2

))

+8 (r+ − 1)+Sec

(
1

4
a (ky + kz)

){
cos

(
1

4
a (ky − 3kz)

)
+4 cos

(
1

4
a (2kx + ky − kz)

)

+ cos

(
1

4
a (3ky − kz)

)
+ 4(r+ − 1)

[
cos

(
1

4
a (kx + ky)

)
cos

(
1

4
a (kx − kz)

)

+ cos

(
1

4
a (ky − kx)

)
cos

(
1

4
a (kx + kz)

)]
+ 4 cos

(
1

4
a (2kx − ky + kz)

)}
, (C.10)

b+ =
2σb+
λb+

, (C.11)

σb+ = 2 cos

(
1

4
a (kx + ky)

)[
2−cos2

(
1

4
a (ky − kx)

)
+cos

(
aky
2

)
cos

(
akz
2

)
+cos

(
akx
2

)
×

cos

(
aky
2

)
+ cos

(
akz
2

)
+ 2(r+ − 1)

]
+ cos

(
1

4
a (ky − kz)

)
cos

(
1

4
a (kx + kz)

)
×

(1+2r+)+cos

(
1

4
a (ky + kz)

)[
cos

(
1

4
a (kx − kz)

)
(1+2r+)+cos

(
1

4
a (kx − 2ky + kz)

)]

+ cos

(
1

4
a (kx + kz)

)
cos

(
1

4
a (−2kx + ky + kz)

)
, (C.12)

λb+ = cos

(
1

4
a (2kx − 3ky − kz)

)
+6 cos

(
1

4
a (2kx − ky + kz)

)
+cos

(
1

4
a (2kx − ky − 3kz)

)

+ cos

(
1

4
a (3ky − kz)

)
+ 13 cos

(
1

4
a (ky + kz)

)
+ cos

(
1

4
a (ky − 3kz)

)

2 cos

(
1

4
a (2kx + ky − kz)

)
(2+r+)+2(r+−1)

(
cos

(
1

4
a (2kx − ky + kz)

)
+6 cos

(
1

4
a (ky + kz)

))

cos

(
1

4
a (2kx + 3ky + kz)

)
+ cos

(
1

4
a (2kx + ky + 3kz)

)
+ + cos

(
3

4
a (ky + kz)

)
,

(C.13)
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and,

c+ = −
σc+
λc+
, (C.14)

σc+ =
1

2
cos

(
aky
2
− cos

(
akx
2

))[
r+ cos

(
1

4
a (kx + ky)

)
+cos

(
1

4
a (kx − kz)

)
cos

(
1

4
a (ky + kz)

)]

− cos

(
1

4
a (ky − kx)

)
cos

(
1

4
a (ky + kz)

)
−r+ cos

(
1

4
a (kx + kz)

)
−r+ cos

(
1

4
a (ky + kz)

)
− cos

(
1

4
a (kx + ky)

)
cos

(
1

4
a (kx − kz)

)
, (C.15)

λc+ =
1

4

(
cos

(
akx
2

)
− cos

(
aky
2

))(
cos

(
akx
2

)
− cos

(
akz
2

))
+ cos

(
1

4
a (kx + ky)

)
cos

(
1

4
a (kx − kz)

)
+ r+ cos

(
1

4
a (ky + kz)

)
− cos

(
1

4
a (ky − kx)

)
cos

(
1

4
a (kx + kz)

)
− r+ cos

(
1

4
a (ky + kz)

)
. (C.16)

Finally, the last eigenvector which corresponds to the eigenvalue r− is

~u− =


a−

b−

c−

1

 , (C.17)

where

a−(k) =
2 sec

(
1
4
a (ky + kz)

)
σa−

λa−
, (C.18)

σa− = − cos

(
1

2
a (kx + ky)

)
(r− + 2)+(1−r−)

(
cos

(
1

2
a (kx + kz)

)
+ cos

(
1

2
a (ky + kz)

))
+5(1− r−)− cos

(
1

2
a (kx − ky)

)
− cos

(
1

2
a (kx − kz)

)
− 3 cos

(
1

2
a (kx + kz)

)
+ cos

(
1

2
a (ky − kz)

)
− 3 cos

(
1

2
a (ky + kz)

)
− 4, (C.19)

λa− = −6− 2 cos

(
aky
2

)
cos

(
akz
2

)
+ 6 (1− r−)− 2 cos

(
akx
2

)
×
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(r− + 1) cos

(
1

4
a (ky − kz)

)
sec

(
1

4
a (ky + kz)

)
+ cos

(
aky
2

)
+ cos

(
akz
2

)]
(C.20)

b− =
4σb−
λb−

, (C.21)

σb− = cos

(
1

4
a (kx + ky)

)[
cos

(
akx
2

)(
cos

(
aky
2

)
+ cos

(
akz
2

))
−cos2

(
1

4
a (ky − kx)

)

+ cos

(
aky
2

)
cos

(
akz
2

)
−2 (1− r−)+2

]
+

1

2
(1− 2r−) cos

(
1

4
a (kx + kz)

)
cos

(
1

4
a (ky − kz)

)
1

2

[
cos

(
1

4
a (ky + kz)

)(
(1− r−) cos

(
1

4
a (kx − kz)

)
+ cos

(
1

4
a (kx − 2ky + kz)

))

+ cos

(
1

4
a (kx + kz)

)
cos

(
1

4
a (−2kx + ky + kz)

)]
, (C.22)

λb− = cos

(
1

4
a (2kx − 3ky − kz)

)
+6 cos

(
1

4
a (2kx − ky + kz)

)
+cos

(
1

4
a (2kx − ky − 3kz)

)

+ cos

(
1

4
a (3ky − kz)

)
+ 13 cos

(
1

4
a (ky + kz)

)
+ cos

(
1

4
a (ky − 3kz)

)
+ 2×

[

(r− + 1) cos

(
1

4
a (2kx + ky − kz)

)
−(r− − 1)

(
cos

(
1

4
a (2kx − ky + kz)

)
+ 6 cos

(
1

4
a (ky + kz)

))]

+ cos

(
1

4
a (2kx + 3ky + kz)

)
+ cos

(
1

4
a (2kx + ky + 3kz)

)
+ cos

(
3

4
a (ky + kz)

)
,

(C.23)

and,

c− =
σc−
λc−
, (C.24)

σc− = −2 (r− − 1) cos

(
1

4
a (kx + kz)

)
+cos

(
1

4
a (kx + 2ky − kz)

)
+cos

(
1

4
a (kx − 2ky − kz)

)
,

(C.25)
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λc− = −2 (r− − 1) cos

(
1

4
a (ky + kz)

)
+cos

(
1

4
a (2kx + ky − kz)

)
+cos

(
1

4
a (2kx − ky + kz)

)
.

(C.26)

Thus, we have now extracted the set of eigenvalues and the corresponding eigen-

vectors of R which will be used to construct the exact energy dispersions and the

Bogoliubov matrix for the AIAO ground state in the Γ5,6 pyrochlores.



Appendix D

Analytic Solutions of the Quartic

Equation

Defining x(k) = ε2(k), Eq. (4.6) results in a quartic equation in x with real coefficients,

x4 + ξ6(k)x3 + ξ4(k)x2 + ξ2(k)x+ ξ0(k) = 0. (D.1)

The four roots of Eq. (D.1) are

x = −ξ6(k)

4
± S(k)± 1

2

√
−4S2(k)− 2P (k)∓ Q(k)

S(k)
, (D.2)

where P (k) = ξ4(k)− 3
8
ξ2

6(k), Q(k) = ξ2(k)− 1
2
ξ6(k)ξ4(k) + 1

8
ξ3

6(k), and

S(k) =
1

2

√
−2

3
P (k) +

1

3

(
T (k) +

∆0(k)

T (k)

)
, (D.3)

with ∆0(k) = ξ2
4(k)− 3ξ6(k)ξ2(k) + 12ξ0(k) and

T (k) =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
, (D.4)

,

∆1 = 2ξ3
4 − 9ξ6(k)(k)ξ4(k)ξ2(k) + 27ξ2

6(k)ξ0(k) + 27ξ2
2(k)− 72ξ4(k)ξ0(k). (D.5)
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We define the discriminant ∆ as

∆ =
4∆3

0 −∆2
1

27
. (D.6)

Acceptable physical solutions are non-negative real numbers. In this case, the energy

bands of magnons are

ε(k) =

√√√√−ξ6(k)

4
± S(k)± 1

2

√
−4S2(k)− 2P (k)∓ Q(k)

S(k)
. (D.7)



Appendix E

Calculations of the BT Matrix Z

We start by rewriting the three conditions that the BT matrix must satisfy at one

time,

Z−1GMZ =

(
E 0

0 −E

)
, (E.1)

ZGZ† = G =

(
1 0

0 -1

)
, (E.2)

Z†MZ =

(
E 0

0 E

)
. (E.3)

The procedure for finding Z is as follows. We assume that GM has q distinct eigen-

values (where q ≤ 8 in our case), each with degeneracy di were the eigenvalues of GM
are related to the energy dispersions of magnons through Eq. (E.1). We begin by

finding the normalized eigenvectors of GM and grouping them such that the eigen-

vectors belonging to the same eigenspace go together. In this case we end up with a

matrix of eigenvectors of GM which we will call Z̃. Now, finding the BT matrix Z can

be done by introducing a block diagonal transformation P such that Z = Z̃P . The

sizes of the blocks of P are di × di and the number of blocks is at most 8 in our case.

The matrix Z is basically found by some linear combinations of the eigenvectors of

GM each within the same given eigenspace, which means that Z satisfies Eq. (E.1).

For Z to satisfy Eq. (E.2), we must have

PGP † = (Z̃†GZ̃)−1. (E.4)
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Now, we come to the importance of organizing the eigenvectors. The Hermitian

matrix W = (Z̃†GZ̃)−1 will have block form with q blocks each with dimension di×di.
Considering block by block, we arrive at the following equation

± PiP †i = Wi, (E.5)

where the ± sign related to weather we are in the positive or negative energy sector

of GM . Since the block Wi is Hermitian, we can write it in terms of unitary matrix

Xi as follows [47]

Wi = XiDiX
−1
i , (E.6)

where Di is the diagonal matrix containing the eigenvalues of Wi. Consequently, the

solution of Pi is given below

Pi = Xi

√
±DiX

−1
i , (E.7)

where Pi can be found either analytically or numerically depending on the possible

analytic calculations of Xi. Thus, we have now constructed the full BT matrix Z

which satisfies Eqs. (E.1) and (E.2). Obviously, Eq. (E.3) is automatically satisfied.

Note that this procedure is suitable for all cases when no Goldstone mode appears.

This case must be treated separately as special cases. With the models we studied,

gapless excitations only appear in Er2Ti2O7 at the Γ point. In this case, the Γ point

can be studied separately. We have used Mathematica to do the diagonalization of

the various Hamiltonians and obtaining the energy dispersions for each case.
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