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Abstract 

Species’ distributions are often characterized by the species’ niche represented in 

geographic space. Species’ niches can be divided demographically, resulting in multiple 

demographic niches with unique dimensions. This approach determines which life stages 

have either the narrowest niche breadth or the least available niche space at the range 

edge, and thus act as key demographic hurdles on range expansion. We quantified 

microsites inhabited by different life stages of black spruce (Picea mariana) at subarctic 

treeline in Yukon, Canada to characterize demographic niche breadth and assess how 

available niche space changed towards the range edge. We found that restricted suitable 

emergent niche space and viable seed availability towards the range limit were the 

overwhelmingly main limiting demographic bottlenecks on northern range expansion. 

Our findings suggest that demographic niches can identify life stage specific hurdles to 

range expansion, contributing to our understanding of how species’ distributions will 

respond to climate change. 

 

Keywords: species’ distributions; treeline; demographic niches; ontogenetic niche shifts; 

seed production; seedling emergence; microsite suitability; subarctic; regeneration niche; 
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Chapter 1: Introduction and overview 

1.1 Species’ distributions in a warming world 

What shapes a species’ range? This seemingly simple question has long been asked by 

biogeographers and ecologists, unpacking a complex assemblage of factors that influence 

a species’ ability to occur in a given location (e.g., Humboldt and Bonpland 1807; 

Connell 1961; McArthur 1972). Teasing through these factors to identify those that are 

most important for a particular population remains a fundamental research challenge, 

which will allow us to accurately predict where and when ranges may shift in the future.   

 

Species’ range limits have been found to correspond with their respective niche limits 46 

- 77% of the time (Hargreaves et al. 2014; Lee-Yaw et al. 2016). A niche in this context 

refers to the range of ecological conditions a population requires to grow, survive, and 

reproduce within a given region (Grinnell 1917; Hutchinson 1957). This Hutchinson 

fundamental niche definition consists of a multidimensional hypervolume of 

environmental variables that species can maintain populations within (Hutchinson 1957). 

Discrepancies between fundamental niche limits and range limits are influenced by 

dispersal limitations and negative biotic interactions that prevent a species from 

occupying suitable niche space, and source-sink dynamics that maintain sink populations 

in unsuitable niche space (Pulliam 2000).  

 

A subset of a species’ niche, the climatic niche, is often considered the dominant driver in 

shaping species’ distributions (Pearson and Dawson 2003). For example, the upper 
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altitudinal or latitudinal limit where tree species can grow (henceforth treeline) is often 

described by a climatic boundary (Körner 2012). The treeline represents the ecotone from 

closed forest to treeless tundra, a transition that can span from a few metres to a few 

kilometres (Körner 2012). On a global scale, the treeline roughly correlates with the mean 

10°C isotherm during the warmest month (Brockmann-Jerosch 1919 from Körner 2012). 

Although low temperature extremes are not a survival issue for treeline species, limited 

productivity due to frost damage, freeze-thaw related hydraulic failure, and mechanical 

damage have been proposed as explanations for temperature constraints on tree range 

expansion into tundra ecosystems (Körner 1998).  

 

Given the importance of climate in shaping species’ ranges, contemporary climate change 

is expected to cause range shifts as species follow their climatic niche (Chen et al. 2011). 

Although many species are spatially tracking their climatic niche in response to climate 

change (Chen et al. 2011), this is not a uniform trend (e.g., Harsch et al. 2009; Freeman et 

al. 2018). Subarctic and alpine regions, where treelines occur, are experiencing some of 

the most intense warming (Chapin et al. 2005; Pepin et al. 2015). Despite acute warming, 

only 52% of treelines are estimated to be tracking their climatic niche northward or to 

higher elevations (Harsch et al. 2009). Lack of range shifts may represent a lag effect 

where species have not yet had the time to establish in newly available niche space 

(Loarie et al. 2009; Rannow 2013), particularly relevant at treeline given the slow growth 

and long life span of treeline trees (Körner 2012). However, it is generally accepted that 

climate alone does not delineate species’ ranges, particularly at local and regional scales 

(Holtmeier and Broll 2007). Several non-climatic abiotic and biotic variables have been 
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found to impact tree distributions at treeline including nutrient availability (Sullivan and 

Sveinbjörnsson 2010), topography (Resler et al. 2005), seed predation (Jameson et al. 

2015; Kambo and Danby 2017), competition (Wang et al. 2016), and facilitation 

(Germino et al. 2002; Renard et al. 2016). Many of these variables may also be indirectly 

influenced by climate (e.g., Hobbie et al. 2002; Alexander et al. 2016), further 

complicating species’ responses to climate change. 

 

At a landscape scale, these abiotic and biotic factors shape a species’ distribution. 

However, the niche space an individual directly experiences happens at a much finer 

scale: its microsite. At this scale, substrates within a region are heterogeneous (Harper 

1977), creating a wide variety of microsites in an area that may or may not provide 

suitable niche space for establishment. The abundance and ecological composition of 

suitable microsites at the treeline remain unclear (Brodersen et al. 2019); yet, for a range 

shift to occur, sufficient seed must disperse and reach suitable microsites for 

establishment. Additionally, mismatches can occur where a microsite that is suitable for 

one life stage may be unsuitable for a later life stage such as seed-seedling conflicts 

where higher seedling emergence occurs in areas of lower seedling survival (Schupp 

1995; Cranston and Hermanutz 2013).  

 

Mismatches in microsite suitability across an organism’s life cycle show that abiotic and 

biotic factors can have different impacts on an individual throughout its life history, 

causing several demographic bottlenecks that can influence range shifts. The ability for 

sufficient trees to establish and reach reproductive maturity beyond the range depends on 
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the relative intensities of these demographic bottlenecks. Limited seed availability can 

inhibit establishment (Sveinbjörnsson et al. 1996; Kroiss and HilleRisLambers 2015), and 

dispersed seed must land on a suitable substrate for germination (Dufour-Tremblay et al. 

2012; Davis and Gedalof 2018). After germination, successful seedling establishment is 

also limited to specific microsites (Batllori et al. 2009; Renard et al. 2016). When 

seedlings mature to adulthood and emerge from the sheltered shrub layer, they are 

exposed to colder open air temperatures and higher winds, which can cause mortality 

(Wilson et al. 1987; Grace et al. 2002). Once adulthood is reached, existing populations 

may be maintained by vegetative reproduction, but sexual reproduction is required for 

range expansion (Malcolm et al. 2002) and is often limited at treeline (Krebs et al. 2012; 

Brown et al. 2019). Tree populations must surpass all of these demographic bottlenecks 

for range expansion to occur and the most limiting life stages will act as rate limiting 

steps for range expansion.  

 

1.2 Demographic niches and range shifts 

Identifying the rate limiting demographic bottlenecks on species’ distributions can be 

achieved through the lens of demographic niches. Research on species’ distributions 

usually estimate the niche at the species level (Smith et al. 2019; but see Bykova et al. 

2012; Ghosh et al. 2016). Yet Grubb (1977) proposed that species have a regeneration 

niche; i.e., the range of environmental characteristics required for establishment. Indeed, a 

species’ environmental requirements can change throughout its life cycle beyond 

establishment (Eriksson 2002; Quero et al. 2008); this is defined as an ontogenetic niche 



 5 

shift (Parrish and Bazzaz 1985). Although plants cannot move to more suitable habitat, 

they can respond in different ways to changes in environmental variables throughout their 

life cycle (Quero et al. 2008; Anderson et al. 2009). Therefore, the Hutchinson niche can 

be composed of unique hypervolumes representing a species’ vital rates (e.g., fecundity, 

growth) or life stages (e.g., seedling, adult), creating multiple demographic niches 

(Maquire 1973; Pironon et al. 2018). Demographic niches further refine the relationship 

between a species’ distribution and niche, where individuals can only exist within suitable 

niche space for their respective life stage.  

 

Species can exhibit expanding, contracting, and directionally shifting niche breadths 

throughout their life cycle, and all three shift types can influence a species’ distribution. 

An ontogenetic niche expansion occurs when earlier life stages have a narrower niche 

than later life stages. For example, juveniles can be more susceptible to stress or require 

greater resources than adult life stages (Anderson et al. 2009; Arieira et al. 2016). This 

restricts plant establishment to a subset of environmental conditions that later life stages 

could otherwise occupy. An ontogenetic niche contraction occurs when requirements are 

more strict at later life stages. In this instance, later life stages may require a narrower 

breadth of nutrient, water, or light availability (Quero et al. 2008; Bertrand et al. 2011). 

Niche contractions lead to widespread mortality of individuals as they pass to the 

narrowing life stage, potentially limiting range shifts. A directional ontogenetic niche 

shift involves partially non-overlapping requirements across life stages. For example, the 

presence of neighbouring plants may facilitate emergence, but as the individual 

establishes into a seedling, this relationship may switch to resource competition (Schupp 
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1995; Pérez-Ramos et al. 2012; Cranston and Hermanutz 2013). Directional niche shifts 

can lead to mal-adaptations and mortality as individuals pass to the later life stage. 

Characterizing a species’ demographic niches can inform how that species’ distribution 

may respond to climate change (Stohlgren et al. 1998; Donohue et al. 2010).  

 

1.3 Thesis overview  

Treelines species are not uniformly tracking their climatic niches northward and to higher 

elevations (Harsch et al. 2009). Understanding what influences the rate and direction of 

future range shifts is crucial to accurately predict where, and at what abundances, tree 

species will exist in the future. The relative availability of suitable microsites throughout 

a species’ life cycle may create multiple demographic bottlenecks on establishment at the 

range limit. Using treeline black spruce (Picea mariana [Mill] BSP) populations in 

subarctic Yukon as a model system, here I show how demographic niches can aid in 

understanding the relative importance of demographic bottlenecks and microsite 

availability on species’ distributions in a rapidly changing region. In Chapter Two, I 

characterized black spruce’s demographic niches for four life stages (Box 1.1) to inform 

which life stage has the narrowest requirements, impeding range expansion. Chapter 

Three then presents how available niche space for each life stage changed across a 

gradient heading towards the range edge, highlighting key demographic constraints on 

range expansion.  
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Box 1.1 A description of the black spruce life stages assessed in this study. 

Emergent: A recently germinated individual that is less than one year old.  

Seedling: An individual ≤60cm tall. 

Non-Reproductive Adult: An individual >60cm tall without reproductive structures 

(cones). Due to harsh conditions, range-edge populations of black spruce often exhibit 

stunted growth forms (krummholz) that can be reproductively mature despite their 

small stature (<2m); therefore, I considered any individual >60cm tall an adult. 

Reproductive Adult: An individual >60cm tall with reproductive structures (cones) 

Treeless Tundra: A 50 cm x 50 cm area of tundra in which no tree is present. This 

allows for comparison of the microsite each life stage is present in to the general tundra 

substrate. 

 

In this thesis, the analytical approach used to construct demographic niches was 

ordination. Ordination provides views into high-dimensional space by reducing a large 

number of variables into fewer and easier to interpret reduced axes (McCune and Grace 

2002; Zuur et al. 2007). Specifically, non-metric multidimensional scaling (NMDS), is a 

non-parametric ordination method that works well for ecological data that violate 

parametric ordination assumptions (McCune and Grace 2002). NMDS ordinates variables 

into reduced NMDS axes, where each individual is assigned a score along each NMDS 

axis to identify its location in ordination space (i.e., niche space in this context). Using 

NMDS, I quantified the microsites inhabited by individuals of different life stages along 

transects placed across the treeline ecotone heading towards the range edge. The cluster 

of scores each life stage occupied in niche space composed black spruce’s demographic 
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niches (Chapter Two; Fig. 1.1). For Chapter Three, individual’s NMDS scores were 

plotted along this treeline gradient and compared to unoccupied microsites to identify 

changes in microsite availability towards the range edge (Fig. 1.1).  

 

 

Figure 1.1 An overview of the methodological approach taken in this thesis. A series of 

microsite variables were captured at the base of individual trees of different life stages. 

NMDS ordinations formed a multivariate characterization of the microsite individuals 

occupy. The cluster of microsites occupied by individuals of a given life stage shaped 

black spruce’s demographic niches. Then, NMDS scores of both occupied and 

unoccupied microsites were plotted along a spatial gradient to assess microsite 

availability across the treeline.   

 

1.4 Model system 

Annual average temperature in the Yukon has increased by 2°C in the past 50 years, twice 

the rate observed globally (Streicker 2016). This warming results in a rapidly changing 

region that is experiencing major landscape changes including increased forest fires, 

permafrost thaw, and species’ range shifts (Streicker 2016). My thesis research was 

conducted at three study sites located along the Dempster Highway near Eagle Plains, 

Yukon (66° 22' 12'' N, 136° 43' 48'' W; Fig. 1.2). The region is characterized by rolling 
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hills that dip above and below the treeline ecotone, thus creating a series of alpine 

treelines within the larger latitudinal treeline. Substrates are underlain with continuous 

permafrost with a seasonal thaw depth of less than 1 m (Tarnocai et al. 1993). This is a 

fire-prone landscape, with a fire return interval of ~80 - 150 years (Hu et al. 2006; 

Kasischke et al. 2010). Regular disturbances result in temporally changing available niche 

space, where fire periodically alters substrates by removing the plant community and 

organic layer, which then regenerate over time. Black spruce is the dominant tree species 

in the area and, as a fire-adapted species, will successively burn and regenerate during 

this cycle. 

 

I considered a treeline site suitable for this study if it (1) was a black spruce-dominated 

stand; (2) contained all life stages included in this study; (3) exhibited gradually 

decreasing tree density heading upslope; and (4) was road accessible. Site One, located 

north of Eagle Plains is drier than the other sites with an understory shrub community 

primarily consisting of Betula spp., Salix spp., Rhododendron spp., Vaccinium 

uliginosum, Empetrum nigrum, Vaccinium visis-idaea, with a high lichen cover (primarily 

Cladonia spp.). Sites Two and Three, south of Eagle Plains, were wetter and moss 

dominated, primarily with Sphagnum spp. and feathermoss species (e.g., Hylocomium 

spp.), and interspersed with a similar shrub community to Site One. For a study map and 

detailed description of the three study sites, see Chapter Two. 
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Figure 1.2 Range map of black spruce (Picea mariana). Green region represents the 

range. Black circle represents my study region at the northern range limit in Yukon, 

Canada (modified from United States Geological Survey).
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1.5 Model species 

Black spruce is a coniferous species that is commonly found across North American 

boreal forests (Johnston and Smith 1985). Southern populations can reach up to 20 m in 

height, while northern populations often exhibited stunted growth forms (krummholz). 

Black spruce is a long-lived tree that can potentially persist up to 370 years (Trant et al. 

2011). However, given the fire return interval of northern Yukon, trees likely never reach 

this age in our study area. Populations in the region begin producing cones when 25-30 

years old, and reliably produce cones at 85 years (Black and Bliss 1980). Reproductive 

maturity can occur in krummholz individuals despite their small stature (<2 m). Black 

spruce is a semi-serotinous species and maintains an aerial seedbank containing several 

cone cohorts that will gradually release seed in the absence of fire and massively disperse 

after a fire (Zasada et al. 1992). Cones will experience at least one winter in the aerial 

seedbank before dispersal, thus, dispersed seeds have been cold stratified and are not 

dormant (Safford 1974; Black and Bliss 1980). Seeds are dispersed by wind and 

documented to travel up to 80 m from the windward edge of a mature stand (Johnston and 

Smith 1985). Once dispersed, black spruce seed loses its viability within 10 - 16 months 

(Fraser 1976). Black spruce can also reproduce asexually by forming adventitious roots 

on lateral branches to produce clonal stems (Holtmeier 2009).  

 

1.6 Thesis objectives and significance 

The goal of this thesis is to characterize black spruce’s demographic niches to inform 

microsite suitability and demographic constraints at treeline. In Chapter Two, I quantified 
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the microsites that individuals of different demographic stages occupy to characterize and 

compare their respective demographic niches. Demographic niches were compared to 

microsite characterization of treeless tundra substrates to understand what factors may 

constrain establishment. Then, in Chapter Three, I applied this demographic niche 

concept across a spatial gradient to assess changes in suitable microsite availability 

towards the range edge.  

 

Specifically, I ask the following research questions: 

Chapter Two: 

• How does the niche space presently occupied by treeline black spruce individuals 

change throughout the life cycle in northern Yukon?  

• If niche shifts occur, what microsite variables drive these niche shifts? 

• What tundra conditions are negatively associated with black spruce colonization? 

Chapter Three: 

• How does suitable microsite availability change towards the range edge 

throughout black spruce’s life cycle? 

• How do viable seed availability and germination rates change towards the range 

edge? 

• Which life stage(s) are the main demographic bottlenecks on range expansion? 

 

This thesis informs which life stages are the limiting bottlenecks on northern black spruce 

range expansion. In turn, this will help us better understand the circumstances where 
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treeline advance will likely occur under continued climate change. Studies often associate 

seedling occurrence beyond the range as evidence of advance (e.g., Harsch et al. 2009). 

Yet, if a niche contraction occurs and conditions are unsuitable for later life stages, 

individuals will die and the range will remain unchanged (Máliš et al. 2016). 

Furthermore, if the reproduction niche is narrower than the adult survival niche, range 

forecasts that primarily focus on adult presence could overestimate suitable niche space 

and predict range shifts in unsuitable areas for reproductive maturity, forming a non-

reproductive sink population (Holt 2009; Schurr et al. 2012). Unless these sink 

populations continue to be maintained via dispersal from source populations, the 

population will go extinct (Pulliam 1988). Therefore, demographic niches provide 

valuable insights into how a species’ distribution will respond to climate change. The 

approaches outlined in this thesis can be expanded spatially across a species’ range to 

further understand demographic constraints on species’ distributions and abundances.  
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Chapter 2: Integrating demographic niches shifts and northern black spruce range 

expansion 

2.1 Abstract 

When assessing the response of species’ distributions to climate change, many studies 

estimate the niche at the species’ level. However, species’ niches can be examined 

demographically, allowing for the assessment of the unique dimensions representing 

demographic niches of different life stages. When a niche changes throughout the life 

cycle, it is known as an ontogenetic niche shift. While underused, this approach can 

identify demographic bottlenecks on climate-induced range expansion. We quantified 

microsites inhabited by four life stages of black spruce (Picea mariana) at subarctic 

treeline in Yukon to characterize demographic niches and assess how observed 

ontogenetic niche shifts may impact climate-induced changes in the distribution of this 

widespread boreal tree species. Microsite characteristics were compared to treeless tundra 

substrates to determine whether there are suitable microsites available for range 

expansion and to identify which factors limit establishment. Treelines in this region 

showed wide variation in tundra microsites available for establishment. Black spruce 

exhibited consecutive niche shifts and microsite associations from emergence to 

reproductive maturity, which were mainly driven by changes in plant community 

composition and soil moisture preferences. Overall, we found that (1) many black spruce 

seedlings at the range edge occupy unsuitable conditions for transitioning to the next life 

stage; and (2) reproductive adults have a narrow niche, limiting seed production to where 

suitable niche space is restricted. Together, our findings suggest that demographic niches 
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can highlight key hurdles to range expansion, providing a better understanding of how 

species’ distributions will respond to climate change. 

 

2.2 Introduction 

Ecological niche theory has been fundamental for understanding species' abundances and 

distributions, and how those may respond to ongoing climate change. Species’ niche 

limits often align with their range limits (Hargreaves et al. 2014; Lee-Yaw et al. 2016). A 

niche in this context refers to the Hutchinson niche defined as the n-dimensional 

hypervolume that sets the range of ecological conditions individuals can occur within 

(Hutchinson 1957). Although dispersal limitations and negative biotic interactions may 

prevent a species from occupying a suitable location (Pulliam 2000), species require 

suitable niche space to maintain reproductive populations, a key process in range 

expansion.  

 

Many studies exploring the relationship between species’ niches and distributions in a 

changing climate estimate the niche at the species level (Peterson et al. 2011; Smith et al. 

2019). Yet, the Hutchinson niche can be divided demographically, where different life 

stages have unique hypervolumes forming multiple demographic niches (Maquire 1973; 

Grubb 1977; Pironon et al. 2018). The assemblage of demographic niches results in 

changing niche breadth throughout the life cycle and is known as an ontogenetic niche 

shift (Parrish and Bazzaz 1985). Ontogenetic niche shifts have been widely explored in 

animal ecology (e.g., Olson 1996; Hou et al. 2008), but remain less understood in plant 
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species (but see Miriti 2006; Bertrand et al. 2011). Although plants cannot actively seek 

new habitat, they can respond in different ways to changes in environmental variables 

throughout their life history (Quero et al. 2008; Anderson et al. 2009). Depending on 

demographic niche composition, the range of ecological conditions that individuals can 

occupy can expand, contract, and directionally shift throughout its life history (Table 2.1). 

Demographic niches further refine the relationship between a species’ niche and its 

geographic distribution where individuals can only exist within suitable niche space for 

their respective life stage.  
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Table 2.1 Different types of ontogenetic niche shifts and their implications on plant 

species’ distributions. Images represent a two-dimensional depiction of a Hutchinson 

niche separated into demographic niches. The light and dark circles respectively represent 

the niche breadth of an early and late life stage. Arrows indicate the transition between 

life stages and an ontogenetic niche shift. 

 Niche Expansion Niche Contraction Directional Niche 
Shift 

Description 
 

Earlier stages have 
stricter requirements 

than later stages 
 

 

Requirements are 
stricter at later stages 

than earlier stages 
 

 
 

Partially non-
overlapping 

requirements across 
life stages 

 
 

 

Effects on 
species' 
ranges and 
abundance 

 

Establishment 
restricted to a subset 

of conditions that later 
life stages could 

otherwise occupy 

Wide spread mortality 
as individuals pass to 
the later stage or low 
seed availability if 

limited by the 
reproduction niche 

Maladaptations and 
mortality of 

individuals as they 
transition to the later 

life stage 

Examples Itea virginica 
seedlings grew best on 
unflooded soil while 

adults tolerated a wide 
range of flooding 

(Anderson et al. 2009) 
 

Triadica sebifera 
germination occurred 

on a much stricter 
range of soil moisture 
conditions that other 

life stages could 
occupy 

(Gabler and Siemann 
2013) 

Adult Vaccinium  

oxycoccos only found 
close to wetlands 
while juveniles 

occupied a wider 
variety of habitats 
(Eriksson 2002) 

 
Acer opalus 

germinated in all 
available microsites 
while old saplings 

preferred shrub 
canopy with increased 
access to light (Quero 

et al. 2008) 

Emergents preferred 
open areas whereas 
seedlings preferred 

dense micro-habitats 
for two Quercus 

species  
(Pérez-Ramos et al. 

2012) 
 

Optimal germination 
on scarified substrates 
while optimal seedling 
growth on undisturbed 
soils for Pinus nigra 
(Lucas-Borja et al. 

2012) 
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Considering demographic niches can strengthen our understanding of species’ 

distributions (Pironon et al. 2018). Source-sink dynamics create discrepancies between 

niche limits and range limits where non-reproductive sink populations occupy unsuitable 

niche space (Pulliam 2000). Demographic niches can reconcile these discrepancies, where 

a sink population occurs when a species has a narrower reproduction niche than adult 

survival niche and reproduction niche space is absent in a given area. Using demographic 

niches in species’ distribution models can separate sink populations from reproductive 

populations, and prevent forecasts from overestimating suitable area for that species (Holt 

2009; Schurr et al. 2012). Additionally, the presence of early life stages beyond the range 

is often considered to indicate a range expansion (Máliš et al. 2016). Yet, if the species 

exhibits a niche contraction (Table 2.1) and conditions beyond the range are unsuitable 

for later life stages, maturing individuals will die and the range will remain unchanged 

(Máliš et al. 2016). By understanding demographic niche composition, we can better 

predict the circumstances where the presence of earlier life stages indicates a range 

expansion is occurring. 

 

The influence demographic niches have on species’ distributions can, in turn, impact its 

response to climate change if the species’ sensitivity to climatic factors varies across life 

stages (Ettinger and HilleRisLambers 2013; Müller et al. 2018), particularly in northern 

latitudes which are experiencing intense climate warming (Chapin et al. 2005; 

Johannessen et al. 2016). As a result, northern regions are exhibiting major landscape 

changes involving increased forest fires, permafrost thaw, and species’ range shifts 

(Streicker 2016). This rapidly changing region creates an excellent model system to 
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understand demographic niches and their role in influencing species’ distributions. High 

latitude forest-tundra ecotones (henceforth treelines) represent the northern limit of the 

boreal forest. Currently, 52% of treelines are estimated to be tracking their climatic niche 

northward to higher elevations or latitudes (Harsch et al. 2009). Although temperature 

may be suitable for tree establishment in the tundra ecosystem beyond the treeline, many 

other non-climatic factors can create unsuitable niche space for establishment (e.g., Smith 

et al. 2003; Wheeler et al. 2011). Boreal tree range expansion potential is further 

complicated if local tree species undergo niche shifts and respond to their environment in 

different ways throughout their life history.  

 

The role of demographic niches in boreal tree range expansion remains unclear; however, 

all three ontogenetic niche shifts types (Table 2.1) have been identified in treeline taxa. 

Black spruce (Picea mariana) seedlings were found to be more sensitive to water stress 

than adults, suggesting an ontogenetic niche expansion (Black and Bliss 1980). 

Directional ontogenetic niche shifts can occur during seedling establishment and growth, 

where neighbouring plants create sheltered microsites to facilitate establishment but, as 

the seedling grows, this role shifts to detrimental resource competition (Lucas-Borja et al. 

2012; Cranston and Hermanutz 2013). Ontogenetic niche contractions post-germination 

have been identified in the Swiss Alps (Hättenschwiler and Körner 1995). Additionally, 

northern conifer populations often have limited seed production (Sveinbjörnsson et al. 

1996; Brown et al. 2019), indicating a niche contraction from adult survival to 

reproduction.  
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Although species’ distributional changes of biogeographical interest occur on a large 

scale, the niche space that an individual directly experiences happens at a much finer 

scale. At this scale, regions are heterogeneous, creating a wide variety of microsites that 

may or may not be suitable for establishment. By comparing this fine scale variability to a 

species’ demographic niches, we can identify the specific microsite conditions the species 

can inhabit. In this study, we asked: (1) How does the niche space presently occupied by 

treeline black spruce individuals change throughout the life cycle in northern Yukon? (2) 

If niche shifts occur, what microsite variables drive these niche shifts? And (3) What 

tundra conditions are negatively associated with black spruce colonization? Northern 

black spruce populations represent an excellent species to study niche shifts because 

seeds are wind dispersed, resulting in a wide spatial distribution of seeds. 

 

Since trees have a long life span, it is difficult to follow an individual throughout its entire 

life. To overcome this, we compared the microsites inhabited by individuals of different 

life stages in a single growing season (as described by Quero et al. 2008). The Yukon is a 

fire prone landscape, with a fire return interval of ~80 - 150 years (Hu et al. 2006; 

Kasischke et al. 2010). This results in temporally changing available niche space, where 

fire periodically alters the understory by removing the plant community and organic layer 

which then both regenerate over time. Here, we assess demographic niches in undisturbed 

regions and infer post-fire demographic niche space for emergence from the literature 

(e.g., Hesketh et al. 2009; Veilleux-Nolin and Payette 2012; Brown et al. 2015). We 

selected sites that had not burned for at least 70 years (Government of Yukon 2017) with 

a variety of age classes, indicating recruitment occurred within undisturbed conditions for 
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all but the oldest adults. To address our questions, we characterized demographic niches 

for four life stages of black spruce: emergents (recently germinated and <1-year-old), 

seedlings (≤60 cm tall), non-reproductive adults (>60 cm tall without cones), and 

reproductive adults (>60 cm tall with cones). Due to harsh growing conditions, northern 

black spruce populations often exhibit stunted growth forms (krummholz) that can be 

reproductively mature despite their small stature (<2 m); therefore, we considered any 

individual >60 cm an adult. Treeline ecotones are characterized by tundra substrate with 

decreasing tree density. Throughout the treeline, we also characterized microsites for 

“treeless tundra” in which no tree was present. This approach allowed us to assess the 

suitability of tundra substrates for black spruce colonization. Ultimately, our research will 

fill a fundamental gap in our understanding of the role a species’ life history plays in 

climate induced range expansion. 

 

2.3 Materials and Methods 

2.3.1 Study area and species description 

To capture the widest range of microsite conditions possible, we selected three black 

spruce dominated treeline sites near Eagle Plains, Yukon (66° 22' 12'' N, 136° 43' 48'' W) 

that were characterized by gradually decreasing tree density and having all life stages 

present (Fig. 2.1; Table 2.2). The region has continuous permafrost with a seasonal thaw 

depth of less than 1 m (Tarnocai et al. 1993). This area experiences a continental climate 

with a mean annual temperature from 1981-2010  of -8.3°C (Environment Canada 2019). 

Annual mean precipitation during this period was 278.6 mm (Environment Canada 2019). 
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Site One had a high lichen cover (primarily Cladonia spp.) with an understory shrub 

community primarily consisting of Betula spp., Salix spp., Rhododendron spp., 

Vaccinium uliginosum, Empetrum nigrum, and Vaccinium visis-idaea, and was interlaid 

with frost boils from freeze-thaw permafrost cycles. Sites Two and Three had a similar 

shrub community to Site One and were moss dominated (primarily Sphagnum spp. and 

Hylocomium spp.) 

 

Figure 2.1 A map of our study region in northern Yukon, Canada. Map produced by 

David Mercer, Memorial University Libraries. 
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Table 2.2 A description of the three studies sites included in this study. Site age estimated 

via ground level tree cores. Note: basal diameter for trees at Site Three were too narrow 

to core any trees. 

Site Location Aspect 
(°) 

Slope 
(°) 

Stand Density 
(Trees/Ha) 

Mean Adult 
Age (yrs) 

Max Adult 
Age (yrs) 

One 
66.491,  

-136.573 
80 5 158 53.6 163 

Two 
65.855,  

-137.710 
45 7 490 56.2 99 

Three 
65.784,  

-137.783 
296 7 215 N/A N/A 

 

Black spruce is a long-lived semi-serotinous coniferous tree species commonly found on 

wet organic soils across the boreal forests of North America (Johnston and Smith 1985). 

Populations in the study region begin producing cones when 25-30 years old, and reliably 

produce cones at 85 years (Black and Bliss 1980). Black spruce retains several cone 

cohorts in an aerial seed bank and gradually releases seeds in the absence of fire (Zasada 

et al. 1992). If a stand is experiencing a low reproduction year, cones from previous years 

will still be present, and our classification of reproductive adults included trees that had 

successfully produced cones in previous years. Seed production is required for a 

landscape scale range shift to occur (Malcolm et al. 2002), however, black spruce exhibits 

vegetative reproduction by layering: forming adventitious roots on lateral branches to 

produce clonal stems. Black spruce seeds are dispersed by wind and known to travel up to 

80 m from the windward edge of a mature stand (Johnston and Smith 1985). Once 

dispersed, seed loses its viability within 10 - 16 months (Fraser 1976). 
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2.3.2 Quantifying black spruce’s demographic niches 

Within each of the three sites, we established four 100 m x 10 m belt transects ~20 m 

apart and perpendicular to the treeline, heading towards the range edge (see 

Supplementary Fig. 2.1 for a diagram of study design). To select individuals close to the 

range edge, the zero marker for each transect indicated the last reproductive adult along 

the centre line of the transect. From this point, the transect extended 45 m towards the 

tundra and 55 m towards the forest. To capture the range of conditions each stage 

occupied at the northern limit, up to two each of seedlings, non-reproductive adults, 

reproductive adults, and treeless tundra substrates (measuring 50 cm x 50 cm) were 

randomly selected for demographic niche characterization every 10 m along the transect. 

We made note of any individuals that exhibited physical damage (e.g., substantial needle 

loss, brown needles). To quantify the niche for emergents, we seeded 50 cm x 50 cm 

experimental plots in 10 m increments along each transect at Sites One and Two. Site 

Three was not included in the seeding experiment due to an insufficient number of seeds. 

One hundred black spruce seeds were added to one seed plot while an adjacent plot acted 

as a non-seeded control for a total of 80 control and 80 seed plots. Seeds used for the 

seeding experiment were collected in Clear Creek, Yukon (63° 42’ N, 137° 40' W) and 

stored at the National Tree Seed Centre (Fredericton, NB; NTSC number: 9570031). The 

NTSC laboratory germination rate was 80.5%. The seeding experiment was established at 

Site One in July 2017. No emergence had occurred when plots were surveyed in June 

2018. Plots at both sites were seeded in June 2018 and emergence was recorded in August 

2018.  
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The microsite each stage inhabited was defined as the 50 cm x 50 cm seed plot for the 

emergent niche, the area within 25 cm of tree base for remaining individuals, and a 50 cm 

x 50 cm quadrat for treeless tundra. To characterize each demographic niche, we recorded 

the following variables at each microsite: active layer depth, organic layer depth, soil 

moisture, soil temperature, soil pH, light availability, microtopography, and plant 

community composition. Active layer depth was measured with a frost probe as the depth 

to permafrost or rock in peak growing season (July 2018). Organic layer depth was 

determined as the distance from the mineral soil to the base of the vegetation layer. Soil 

moisture was measured with a decagon GS3 Ruggedized Soil Moisture Sensor on a dry 

summer day. Soil temperature was measured twice during the growing season with a 

Hanna Instruments soil conductivity and temperature meter on two separate days. Soil 

temperature and moisture measurements were collected for all microsites within a site on 

the same day. For soil pH, 15 g of soil was collected and mixed with 15 mL of distilled 

water. The mixture was stirred and left for 30 min to form a slurry (Robertson et al. 

1999). The pH of the slurry was then measured with a Hanna Instruments pHep pocket-

sized pH meter. Light availability represents the proportion of light an individual receives 

relative to ambient air, measured with Extech HD450 datalogging light meter. For 

microtopography, we noted whether the individual was growing on a flat surface, 

hummock, or hollow but found that almost all microsites (96%) were flat surface and the 

variable was not used in analyses. For plant community composition, we noted the 

percent composition within the microsite of the following functional groups: moss, 

lichen, forbs, graminoids, and shrubs. Shrubs were recorded to species level and then 

grouped into three categories based on the functional height of the species: tall shrubs 
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(e.g., Betula glandulosa, Salix glauca.), medium shrubs (e.g., Rhododendron spp., 

Vaccinium uliginosum), and dwarf shrubs (e.g., Empetrum nigrum, Vaccinium visis-

idaea, Arcostaphylos uva-ursi). For the emergent niche, we noted the functional group the 

individual germinated on within the seed plot.  

 

2.3.3 Data analysis 

We performed non-metric multidimensional scaling (NMDS) to quantify black spruce’s 

demographic niches using the vegan package version 2.5.2 (Oksanen et al. 2013) in the R 

environment (R Core Team 2019). NMDS is a non-parametric ordination method that is 

well suited to ecological data that violate parametric ordination assumptions (McCune 

and Grace 2002). We used Gower distances to calculate distance matrices as it works well 

for datasets with mixed variables (i.e., plant cover and environmental variables; Legendre 

and Legendre 2012). We ran the analysis with one to six dimensions and selected the 

model that minimized both stress and dimensions (McCune and Grace 2002). An NMDS 

to compare life stages was made for each of the three sites and all sites combined. For the 

model combining all sites, variables were standardized to the site mean and standard 

deviation to analyze differences between where individuals were growing relative to what 

was present at the site. This allowed for comparison between sites that may experience 

different site-specific factors (e.g., one site may be in a wetter region but still experience 

the same relative niche shifts). If the NMDS included the emergent niche, functional 

group variables were not included as the substrate the emergent germinated on was at a 

much smaller scale (i.e., <1 cm x 1 cm) than the scale the functional groups were assessed 
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at (i.e., 50 cm x 50 cm). Light availability was also not included if the NMDS included 

the emergent niche due to equipment failure. Otherwise, all microsite variables were 

included in NMDS analyses. Ninety-five percent confidence interval ellipses were created 

around the centroid of each life stage to show each demographic niche. We identified 

microsite preferences for a given life stage with the ordiareatest function in the vegan 

package, which determined if a group was more tightly clustered than expected by chance 

(Oksanen et al. 2013). 

 

To assess the influence of each microsite variable in driving observed niche shifts, we 

used general linear mixed models (GLMMs) with a Gaussian distribution from the 

“lme4” package version 1.1-21 (Bates et al. 2015). For each model, the microsite variable 

was the response variable with life stage as the explanatory variable and transect nested 

within site as random effects. If the GLMM violated model assumptions, the statistical 

decision was confirmed using a randomization test with 5000 permutations (Manley 

2006). F-statistics from 5000 GLMMs modelled with samples of the response variable 

were calculated to obtain an assumption-free empirical distribution. The probability of the 

F-statistics obtained from the original GLMM was then determined using this empirical 

distribution. We performed Tukey honest significant difference (HSD) post-hoc tests to 

identify differences in microsite variables between life stages.   
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2.4 Results 

In total, we characterized the microsites of 165 seedlings, 97 non-reproductive adults, 122 

reproductive adults, and 240 treeless tundra substrates (see Supplementary Fig. 2.2 and 

Table 2.1 for site breakdown of sample size). Due to logistical constraints associated with 

remote field work, sample sizes differed slightly between microsite parameters. We only 

included individuals with all microsite variables for NMDS analyses, resulting in 157 

seedlings, 94 non-reproductive adults, 120 reproductive adults, and 215 treeless tundra 

substrates. Emergence of black spruce at seed addition plots was very low with emergents 

present at 4/40 and 14/40 seed addition plots at Sites One and Two, respectively (overall 

germination success rate of 0.113% and 3.125% at Sites One and Two, respectively). To 

avoid pseudo-replication, the sample unit used for the emergent niche was a seed plot; if 

multiple emergents were present in a seed plot they were considered to be growing in the 

same niche space. The emergent niche was only included in analyses for Site Two as it 

was the only site with a sufficient sample size. 

 

2.4.1 Demographic niche shifts 

NMDS ordinations revealed shifting demographic niche breadth and microsite 

associations throughout the life cycle (Fig. 2.2, 2.3). All ordinations produced an 

acceptable fit (stress ≤ 0.178; Clarke 1993) in four and three dimensions for the 

ordination with all sites and site-specific ordinations, respectively. In ordination space, 

individuals that are closer together have more similar microsite characteristics than those 
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that are farther apart. For all ordinations, treeless tundra substrates were widely 

distributed across ordination space demonstrating the variety of microsites available.  

 

At Site Two, the only site with sufficient germination for our analysis, the emergent niche 

was narrow relative to other life stages. Emergents occupied a limited subset of available 

treeless tundra substrates and were more tightly clustered than expected by chance (p = 

0.077), suggesting strict microsite preferences for this life stage (orange ellipse; Fig. 2.3). 

Seedlings had the broadest niche of all life stages but were tightly clustered (green 

ellipses; Fig. 2.2, 2.3; ordination of all sites p = 0.06; Site One p = 0.002; Site Two p = 

0.09; Site Three p = 0.001) indicating microsite preferences within the total environment. 

Transitioning from seedlings to non-reproductive adults, directional niche shifts occurred 

at all sites with partially non-overlapping 95% confidence ellipses (green to purple 

ellipses; Fig. 2.2, 2.3). When all sites were ordinated together, a niche contraction from 

seedlings to non-reproductive adults occurred with many seedlings on the periphery of 

their niche exhibiting physical damage (e.g., browning needles or substantial needle loss; 

Fig. 2.2, 2.3). The ordination combining all three sites exhibited a niche contraction from 

non-reproductive to reproductive adults (purple to blue ellipses), where reproductive 

adults were tightly clustered (p = 0.001; Fig. 2.2, 2.3) suggesting strong microsite 

associations compared to the total environment.  

 

Site-specific patterns were observed between adult groups. Sites One and Three exhibited 

a directional niche expansion and Site Two exhibited a niche contraction from non-

reproductive adults to reproductive adults (Fig. 2.3). All sites except Site Two had adults 
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occupying exclusive ordination space that no treeless tundra points were present within 

where adults likely created novel microsite characteristics that differ from the treeless 

tundra environment (Fig. 2.2, 2.3).  
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Figure 2.2 NMDS ordination of black spruce’s demographic niches for all three sites 

combined (stress = 0.159 in 4 dimensions). NMDS axes that most substantially display 

niche shifts are shown. Points represent an individual or treeless tundra substrate in 

ordination space (seedlings = green, non-reproductive adults = purple, reproductive adults 

= blue, and treeless tundra = gray). Shapes signify health, where X = an unhealthy 

individual of any life stage and circle = an individual of normal health or treeless tundra 

substrate. Ellipses are 95% confidence intervals around the centroids of each life stage, 

representing each demographic niche in ordination space. 
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Figure 2.3 NMDS ordinations of black spruce’s demographic niches for Site One (stress 

= 0.174 in 3 dimensions); Site Two (stress = 0.081 in 3 dimensions); and Site Three 

(stress = 0.178 in 3 dimensions). NMDS axes that most substantially display niche shifts 

for each ordination are shown. Points represent an individual or treeless tundra substrate 

in ordination space (emergent = orange triangles, seedlings = green squares, non-

reproductive adults = purple diamonds, reproductive adults = blue full circles, and 
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treeless tundra = gray hollow circles). Shapes correspond to the life stages. Ellipses are 

95% confidence intervals around the centroids of each life stage, representing each 

demographic niche in ordination space. 

 

2.4.2 Microsite characteristics driving niche shifts 

GLMMs and Tukey HSD post hoc tests identified many small but statistically significant 

differences in microsite variables between life stages (Fig. 2.4; Table 2.3, supplementary 

Table 2.2). Treeless tundra substrates tended to have more tall shrubs and lichen 

dominated ground cover than microsites with trees (Fig. 2.4). One hundred percent of 

emergents at Site Two germinated exclusively on moss substrates and were present in 

moister soils than other stages (F4,244 = 3.3301, p = 0.01). Seedlings received more light 

and were present within a lower graminoid cover than treeless tundra substrates (Fig. 2.4). 

Seedlings and non-reproductive adults occupied microsites with a higher cover of dwarf 

shrubs than other stages (Fig. 2.4J). Compared to all other life stages, reproductive adults 

were found on drier, warmer soils, with deeper organic layers, with fewer shrubs, and 

more moss cover (Fig. 2.4). There were no significant differences in active layer depth or 

pH between any life stages (Fig. 2.4). Randomization tests performed on GLMMs 

violating model assumptions did not change the statistical decision at the 0.05 level. 
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Figure 2.4 Boxplots depicting microsite conditions occupied by different black spruce 

life stages at all three sites for (A.) frost depth; (B.) organic layer depth; (C.) soil 

moisture; (D.) soil temperature 1; (E.) soil temperature 2 measured on a separate day; (F.) 

pH; (G.) relative light availability; (H.) % cover tall shrubs; (I.) % cover medium shrubs; 

(J.) % cover dwarf shrubs; (K) % cover graminoids; (L.) % cover moss; (M.) % cover 

lichen; and (N.) % cover forbs. The emergent niche is not shown as sufficient germination 

was only present at one site. The line in the centre of the boxes is the median of that stage 

and the grey point is the mean. The boxes encompass the 25%–75% quartiles. The 

whiskers extending beyond the boxes represent the 95% quartiles, and extreme 

observations are points beyond the whiskers. Letters above boxes indicate significant 

differences between groups. Results of GLMMs summarized in Table 2.3. 
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Table 2.3 Summary of GLMMs for Figure 2.4 comparing microsite variables between 

black spruce life stages with transect nested within site as a random factor (values not 

shown). P-value is for the entire model. The emergent niche is not included in this model 

set as sufficient germination was only present at one site; results are reported in text. Bold 

indicates p-values that are significant at the 0.05 level for the GLMM model. N indicates 

the sample size for the GLMM which varied slightly between variables due to logistical 

constraints. * indicates revised p-value from randomization test performed due to model 

assumption violations, no revised p-values change significant decision at the 0.05 level. 

Response Variable n F-Value P value 
Active Layer Depth (cm) 622 1.7145 0.1718* 
Soil Organic Layer Depth (cm) 623 3.6285 0.0129 
Soil Moisture (%) 623 4.4637 0.0052* 
Soil Temperature 1 (°C) 623 2.3886 0.0678 
Soil Temperature 2 (°C) 624 3.3688 0.0204* 
pH 622 0.2100 0.8895 
Relative Light Availability 590 83.270 <0.0001* 
Tall Shrubs (% Cover) 624 23.853 <0.0001* 
Medium Shrubs (% Cover) 624 11.856 <0.0001 
Dwarf Shrubs (% Cover) 624 8.4593 <0.0001 
Graminoids (% Cover) 624 2.8595 0.0370* 
Moss (% Cover) 624 3.8108 0.0100 
Lichen (% Cover) 624 8.2798 <0.0001* 
Forbs (% Cover) 624 4.2477 <0.0001* 
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2.5 Discussion 

Black spruce’s niche shifts throughout its life cycle, with microsite associations changing 

from emerging seedling to reproductively mature adult (Fig. 2.5). We found black spruce 

had a narrow emergent niche that expanded to a broad seedling niche. While available 

niche space for adults differed between sites, overall, adult groups had narrow niche 

breadths, with reproductive adults having a particularly narrow niche. Similar niche 

contractions, with narrowing microsite associations during the life span, have been 

observed in Scandinavian Vaccinium spp. (Eriksson 2002), Acer opalus in Spain (Quero 

et al. 2008), and several temperate European tree species (Bertrand et al. 2011). While 

these trends may be partly related to adults altering their own microsite over time, niche 

contractions can lead to widespread mortality of individuals during the transition to later 

life stages if suitable conditions are not present. Indeed, several seedlings growing at the 

periphery of the seedling niche were unhealthy (e.g., brown needles, substantial needle 

loss) suggesting they may have found themselves growing in unsuitable conditions for the 

transition to the next life stage. Overall, we provide empirical evidence that many 

seedlings at the range edge occupy unsuitable conditions for adult establishment and that 

black spruce’s narrow reproduction niche will limit seed production in the absence of 

suitable conditions. 

 

The emergent niche is the initial bottleneck for a dispersed seed to colonize novel habitat. 

Germination was very low in our seeding experiment, with successful emergence 

occurring in a narrow range of conditions. This narrow emergent niche was driven by a 

preference for wetter substrates and high moss cover, specifically Sphagnum spp. and 
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feathermoss, similar to black spruce emergence observed across its geographic 

distribution (Wheeler et al. 2011; Veilleux-Nolin and Payette 2012; Brown et al. 2015). 

Low emergence could also be attributed to seed predation which can impede 

establishment (Munier et al. 2010; Kambo and Danby 2017) and may vary spatially 

between microsites (Lambert et al. 2004). Additionally, annual variation in climate can 

change available emergent niche space. Our study represents emergence in a relatively 

average summer that was slightly wetter with normal temperatures (Environment Canada 

2019). Since more emergence occurred on moist substrates, there may be more emergent 

niche space available in wetter years.  

 

Emergent niches are often broader than post-emergent niches to allow widespread 

potential for establishment (Donohue et al. 2010). Conversely, a narrow emergent niche 

restricts spatial distribution of a species but promotes emergence under optimal 

conditions, reducing mortality for later life stages (Donohue et al. 2010). We identified a 

narrow emergent niche in an undisturbed region; however, exposed mineral soil following 

a fire is known to favour black spruce germination (Johnstone and Chapin 2006; 

Veilleux-Nolin and Payette 2012). Therefore, recently disturbed areas represent potential 

niche space that was not captured within our study but likely expands the size of the 

emergent niche. Then, over 5 - 10 years, species colonize the substrate and the organic 

layer builds up, narrowing available emergent niche space (Johnson and Fryer 1989; 

Hesketh et al. 2009; Brown and Johnstone 2012). Range expansion may then be 

facilitated by fires burning into the tundra, creating suitable niche space for emergence 

that did not exist in its undisturbed state if sufficient seed disperses beyond the range.  
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Progressing through the life cycle, we identified a directional and expanding niche shift 

during the transition from emergents to seedlings. Although seedlings can be found on a 

variety of surfaces, germination potential can differ between substrates (as reviewed in 

Zasada et al. 1992) and over time. Environmental conditions optimal for emergence can 

be detrimental for seedling survivorship (Schupp 1995; Cranston and Hermanutz 2013). 

We found seedlings to occupy microsites with a wider range of soil moisture conditions 

with a higher diversity of plant cover than where emergents occurred. Annual climate 

variation might expand the range of microsites on which germination can occur, resulting 

in seedlings occupying sites which were unsuitable for emergence during our study year.  

 

Seedlings had the broadest niche of the life stages we examined but were still limited to a 

subset of available substrates when compared to treeless tundra. In regards to plant cover, 

seedlings must deal with the balance between being protected from harsh elements by 

neighbouring plants and competing with these plants for resources (Smith et al. 2003; 

Batllori et al. 2009; Renard et al. 2016). We found that substrates with seedlings tended to 

have decreased tall shrub, lichen, and graminoid cover compared to treeless tundra 

substrates, but a higher cover of dwarf shrubs. Dwarf shrubs may be more suitable for 

seedling establishment than the other groups due to the high inhibitive density in which 

graminoids grow (Lett and Dorrepaal 2018), physiological and mechanical stressors trees 

experience when colonizing lichen mats (Houle and Filion 2003), and competitive ability 

of tall shrubs (Cranston and Hermanutz 2013; Truchon-Savard et al. 2019). Additionally, 

seedlings were present within a wider range of soil moisture conditions than emergents 
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and exhibited no soil moisture preference relative to available treeless tundra substrates. 

Furthermore, seedlings exhibited no preference for warmer soils. Although warmer 

temperatures can improve germination and seedling growth, it does not appear to impact 

seedling survival (Lett and Dorrepaal 2018), at least within the range of temperature 

conditions we measured.  

 

Between seedlings and non-reproductive adults, overall we observed a contracting and 

directional niche shift when all sites were ordinated together, indicating widespread 

seedling establishment in conditions that are unsuitable for adults. Our site-specific 

differences in niche shifts likely reflect the range of treeless tundra conditions available, 

where sites with a larger non-reproductive adult niche have more suitable niche space 

present for that group compared to other regions. Meanwhile, the ordination including all 

sites reflects the overall narrow niche space occupied by that life stage. The environment 

that a sheltered seedling experiences changes drastically when it emerges into the open 

air; this transition can act as a bottleneck due to wind stress and exposure to cooler air 

temperatures (Grace et al. 2002; Körner 2016). There were several unhealthy seedlings 

(e.g., brown needles, substantial needle loss) on the periphery of the seedling niche that 

may be experiencing the consequences of a niche contraction from occupying unsuitable 

conditions for the next demographic stage. Non-reproductive adults tended to occupy less 

competitive substrates with fewer tall shrubs and lichens than treeless tundra substrates. 

Conversely, they tended to occupy a higher cover of dwarf shrubs, which may have 

provided increased access to light, allowing adults to reach this stage.  
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Adults exhibited substantial overlapping niche space with seedlings and treeless tundra 

conditions but are also present in unique microsites. Conditions where adults overlap with 

earlier life stages likely indicate optimal conditions where seedlings are more likely to 

reach adulthood. Conversely, novel regions of niche space occupied exclusively by adults 

indicate areas where not only is the microsite changing as trees age, but it may be altered 

by the adults themselves (Holtmeier and Broll 2017). As trees use resources, create shade, 

and interact with their environment, they are altering their own microsite. At a certain 

point, we found that trees are able to create niche space unseen elsewhere in the tundra. 

For example, reproductive adults were associated with a higher moss cover, where trees 

may be creating shade and humidity that mosses such as Sphagnum spp. prefer (Campeau 

and Rochefort 1996). An adult’s current microsite is likely different from the conditions it 

established within, where past conditions might have facilitated seedling establishment 

for current adults (Boby et al. 2010), particularly in fire-driven regeneration cycles that 

occur in the western boreal forest, as described above. Additionally, the way adults alter 

microsites may facilitate further establishment. Establishing close to adults is often 

considered beneficial for seedlings as they protect from harsh weather events (Batllori et 

al. 2009; Renard et al. 2016). Our findings suggest that the higher moss substrates created 

by adults may favour emergence within these protected environments. These novel adult 

niche space conditions that are not generally found in treeless tundra substrates provide a 

glimpse into how the tundra substrate may change if tree range expansion occurs. 

 

Overall, we found a niche contraction from non-reproductive to reproductive adults when 

all sites were ordinated together, with site-specific niche shifts reflecting differences in 



 54 

available reproduction niche space. Northern conifer populations are often seed limited 

(Brown et al. 2019); our results suggest this may be related to strict microsite associations 

for seed production. Reproductive adults tended to occupy warmer, drier soils, with 

deeper organic layers with fewer shrubs and higher moss cover. The northern limit of 

black spruce in which our study is located is underlain with continuous permafrost 

(Tarnocai et al. 1993). Permafrost creates colder, wetter soils due to poor drainage (Ping 

et al. 2015), which leads to a slow nutrient release from organic matter and a low nutrient 

turnover (Hobbie et al. 2002). Reproductive adults are not just surviving in their 

microsite; they invest in seed production, an energetically costly process (Lee 1988). The 

warmer, drier soils that reproductive adults occupied may, in turn, have a higher nutrient 

turnover, increasing the nutrient availability for reproductive adults relative to their non-

reproductive counterpart. Research has identified the role of nutrient availability on 

seedling establishment at treeline (Sullivan and Sveinbjörnsson 2010; Davis et al. 2018); 

our findings suggest its role in reproductive maturity warrants further investigation. 

 

Black spruce shifts its niche and microsite preferences throughout its life cycle, as we 

have summarized in a conceptual diagram (Fig. 2.5). We found treeless tundra microsites 

to be heterogeneous across all sites. Variation at such a small scale creates select 

microrefugia suitable for establishment. For an individual to reach reproductive maturity, 

a microsite needs to temporally match with the appropriate demographic niches 

throughout a black spruce’s life. Treeless tundra substrates had higher tall shrub and 

lichen cover than any area occupied by a tree of any life stage, indicating they restrict tree 

colonization. The negative association between the presence of tall shrubs and trees 
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indicates that either tall shrubs inhibit black spruce establishment (Cranston and 

Hermanutz 2013; Truchon-Savard et al. 2019) or vice versa (Okano and Bret-Harte 

2015). Since this association was found to begin during early establishment, our results 

indicate that the former scenario may be occurring where tall shrubs inhibit early black 

spruce establishment. Black spruce’s negative association with lichen may begin early, 

where lichen negatively impacts seedling establishment (Houle and Filion 2003). Higher 

lichen cover has been found to positively influence growth of later life stages, which 

would suggest a directional niche shift (Houle and Filion 2003). We may not see this 

positive effect if lichens do not increase in abundance in areas occupied by adults.  
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Figure 2.5 Conceptual diagram of ontogenetic niche shifts throughout black spruce’s life 

cycle. Circles represent demographic niches and associated ontogenetic niche shifts as 

described in Table 2.1. The white box lists microsite variables that were significantly 

different for the later life stage from the previous life stage. The grey box lists microsite 

variables that were significantly different between that life stage and treeless tundra 

substrates present within the region. 

 
In addition to the microsite variables assessed here, other factors may also influence black 

spruce’s demographic niches, including wind (Holtmeier and Broll 2010), snow cover 

(Renard et al. 2016), and biotic interactions (Speed et al. 2010; Crofts and Brown, in 

review). The transition from a seedling growing in a closed microsite to emerging into the 

open air increases their susceptibility to high winds (Wilson et al. 1987; Holtmeier and 
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Broll 2010). Sufficient snowpack can protect early life stages from extreme winter 

conditions, yet snow cover that is too thick shortens the growing season, impeding 

establishment (Lett and Dorrepaal 2018). Particular tree life stages may be more sensitive 

to herbivory (Quero et al. 2008) or mycorrhizal fungi associations (Hewitt et al. 2016), 

increasing their vulnerability to mortality.  

 

In characterizing black spruce’s demographic niches, we identified several microsite 

variables that can constrain or facilitate establishment throughout a species’ life cycle. In 

future climate scenarios, the gradient of several of these microsite variables may shift, 

influencing tree establishment. We found all life stages to be negatively associated with 

tall shrubs, a group that has exhibited climate-induced increases in abundance and 

distributions in the Arctic (Myers-Smith et al. 2011). Substantial increases in tall shrub 

abundances may impede black spruce range expansion. Additionally, reproductive adults 

were associated with warmer soils, which may have increased nutrient turnover (Hobbie 

et al. 2002). Warmer soils under continued climate change may increase nutrient 

availability and potentially alleviate current seed availability bottlenecks (Brown et al. 

2019) due to increased cone production.  

 

2.6 Conclusion 

Understanding a species’ demographic niches provides insights into which life stage 

constrains range expansion. Whether or not climate change is creating suitable niche 

space for conifers such as black spruce in tundra ecosystems remains unclear. Northward 
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tree range expansion is often limited by viable seed availability (e.g., Brown et al. 2019). 

We found that this likely arises from reproductive adults having narrow niche 

requirements, potentially forming non-reproductive sink populations in areas were 

reproduction niche space is absent. Only considering adult occurrence when forecasting 

range shifts will not capture the complexity of the species’ demographic niches and may 

misrepresent the species response to climate change (Pironon et al. 2018). Additionally, 

we show that seedlings have the broadest demographic niche of all life stages. Therefore, 

the presence of seedlings beyond a species’ range will only result in a range expansion if 

conditions are also suitable for adults. The standard reference for treeline advance 

estimates that 52% of treelines are advancing (Harsch et al. 2009). Yet, 47% of these 

advancing treelines associate the presence of individuals <2 m tall beyond the range as 

evidence of recent treeline advance. If some of these studies include early life stages with 

broader demographic niches than adults and adult niche space is absent, the proportion of 

treelines advancing could be as low as 24.4%. Although the number is likely not this low, 

24.4% - 52% is a wide range of uncertainty and understanding demographic niches can 

help fine tune that range to provide a better understanding of where and under what 

circumstances species’ distributions will shift under continued climate change.   
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Chapter 3: Pre-seedling life stages impede northern black spruce range expansion: 

A demographic niche-based assessment of microsite availability 

3.1 Abstract 

In order for range expansion to occur, suitable microsites for establishment must be 

available beyond a given species’ range. Species can have life-stage specific requirements 

with unique niche breadths, forming multiple demographic niches. If niche space is 

limited beyond the range for a certain life stage, that stage will be a rate-limiting step for 

range expansion. Using a novel demographic niche-based approach, we characterized 

changes in suitable microsite availability towards the range limit for black spruce (Picea 

mariana) establishment in subarctic Yukon throughout its life cycle. We also quantified 

changes in viable seed availability and germination rates towards the range limit. 

Combined, these methods determine which life stages are the main limiting demographic 

bottlenecks on northern black spruce range expansion. Using non-metric 

multidimensional scaling, we compared microsites that individuals of different life stages 

occupied to unoccupied tundra substrates to assess the availability of suitable microsites 

along a spatial gradient heading towards the range edge. Microsite availability for 

seedlings and adults did not change across our treeline gradient. Meanwhile, we found the 

low availability of both viable seed and suitable germination microsites were the main 

limiting demographic hurdles on northern black spruce range expansion. This novel 

approach can further inform the role that demographics and microsite availability play on 

species’ distributions in a changing climate. 
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3.2 Introduction 

Species’ distributions are not uniformly tracking their climatic niche under continued 

climate change (e.g., Harsch et al. 2009; Freeman et al. 2018). Along with climate, the 

rate of a population’s range shift depends on the species’ life history and other non-

climatic factors (Sexton et al. 2009; Schurr et al. 2012; Brown and Vellend 2014). At the 

landscape scale, multiple abiotic and biotic factors influence plant distributions including 

topography (Resler et al. 2005), competition (Wang et al. 2016), and moisture (Moyes et 

al. 2015). From an individual’s perspective, however, establishment depends on the 

abiotic and biotic composition of their immediate microsite. At this fine scale, landscapes 

are heterogeneous, containing a variety of microsites that may or may not be suitable for 

regeneration. Suitable microsite availability is a critical hurdle that must be overcome for 

establishment (Harper 1977), particularly at the range limit where suitable microsites may 

be scarce (e.g., Batllori et al. 2009b; Dufour-Tremblay et al. 2012).  

 

The ecological composition of microsites can influence a species in different ways 

throughout its life cycle, from a seed dispersing to that same propagule reaching 

reproductive maturity (Chapter Two; Quero et al. 2008; Donohue et al. 2010; Cranston 

and Hermanutz 2013). Thus, a species’ life stages can have unique niche dimensions, 

responding differently to abiotic and biotic variables and resulting in multiple 

demographic niches (Chapter Two; Quero et al. 2008; Pironon et al. 2018). Changes in 

requirements between life stages, termed ontogenetic niche shifts, create a series of 

demographic bottlenecks (Table 3.1) that sequentially filter out potential candidates for 

establishment. The ability for a sufficient number of individuals to establish and reach 
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reproductive maturity beyond a species’ range depends on the relative intensities of the 

demographic bottlenecks that the potentially expanding population experiences. In 

particular, high mortality during early life stages make those respective demographic 

niches important in shaping the spatial distribution of a species at the range limit (Harper 

1977; Eriksson and Ehrlén 1992; Brodersen et al. 2019). Conversely, the relative 

importance of microsite composition for adult life stages and reproduction remain 

unclear, and studies often focus on larger scale factors for these groups (e.g., Grace et al. 

2002; Krebs et al. 2012; Brown et al. 2019).  

 

Identifying the most limiting life stages and their associated demographic niches will 

reveal the circumstances under which a region is primed for range expansion. Microsite 

conditions must temporally align with these demographic niches. If suitable niche space 

is restricted for certain life stages, they will become a rate-limiting step for climate-

induced range expansion. To more accurately predict range expansion, the challenge, 

then, is to reconcile a species’ demographic niche breadths with characteristics of 

available microsites at and beyond a species’ range edge. This multivariate approach will 

elucidate the role suitable microsite availability plays in range shifts throughout a species’ 

life cycle under continued climate warming. 

 

The most acute contemporary climate warming is occurring in northern latitudes and 

alpine regions (Chapin et al. 2005; Pepin et al. 2015). These rapidly changing regions are 

where the upper range limit of many boreal tree species occur, forming the forest-tundra 

ecotone (henceforth treeline). The intense warming these trees experience make treelines 
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an excellent model system to assess the importance of suitable microsite availability in 

climate-induced range shifts. The treeline is composed of tundra substrates with gradually 

decreasing tree density until the respective tree species’ range limits are reached. Despite 

acute warming, climate induced treeline advance has been both inconsistent and complex, 

involving a suite of non-climatic factors acting at different spatial and temporal scales 

(Holtmeier and Broll 2005; Harsch et al. 2009; Camarero et al. 2017).  

 

As with any plant range expansion, treeline advance requires suitable microsites for seed 

germination, seedling establishment, adult growth, and viable seed production (Table 

3.1). The frequency and ecological composition of suitable microsites are not clearly 

defined at the treeline (Brodersen et al. 2019). At treeline and other range edge 

populations, the assessment of microsite suitability often focuses on one or two life stages 

(e.g., Cranston and Hermanutz 2013; Davis and Gedalof 2018) and one or two variables 

(e.g., distance to protective elements (Germino et al. 2002; Batllori et al. 2009b), 

microtopography (Sullivan and Sveinbjörnsson 2010), or plant community composition 

(Wheeler et al. 2011; Dufour-Tremblay et al. 2012) but see Kambo and Danby 2018). 

This univariate approach is valuable for experimentally teasing apart individual 

influencing factors but does not allow for a comprehensive understanding of microsite 

availability within a variable landscape that is more complex than we have the 

technological capacity to model. 
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Table 3.1 Examples of life stage specific constraints observed in range edge treeline 

populations. 

 

Here, we present a novel multivariate approach to identify microsite availability by 

comparing black spruce’s (Picea mariana) demographic niches to changes in available 

tundra substrates along a treeline ecotone gradient at the range edge. We also quantified 

viable seed production, seed dispersal, and conducted a field-based seeding experiment to 

determine seed availability and germination limitations towards the range edge. Together, 

these objectives inform which life stage(s) are the most limiting bottlenecks on northern 

Life stage Constraints Evidence 
 

 
1. Viable seed 

disperses beyond 
range 

Seed availability is often low at 
treeline, due to low seed quantity via 
low stand density, low seed viability 

from harsh climates and reduced 
genetic diversity, and post-dispersal 

seed predation 

Caron and Powell 1989; 
O’Connell et al. 2006; 

Kroiss and 
HilleRisLambers 2015; 

Kambo and Danby 
2017 

 

 
2. Germination 

Seed must land on suitable microsites 
for germination, which can be rare at 

the range limit 

Wheeler et al. 2011; 
Dufour-Tremblay et al. 

2012; Walker et al. 
2012 

 
 

 
3. Seedling 

establishment 

Mortality is often high for seedlings 
at treeline as they are more 

susceptible to harsh conditions and 
may germinate on poor substrates for 

establishment 

Cuevas 2000; Germino 
et al. 2002; Castanho et 
al. 2012; Cranston and 

Hermanutz 2013 

 
4. Adult 

growth/survival 

Rising from the sheltered understory 
to colder open air temperatures with 
higher winds can be detrimental to 

adult establishment 

Wilson et al. 1987; 
Grace et al. 2002; 

Körner 2016 

 

        
5. Reproductive 

maturity 

Existing populations may be 
maintained through clonal growth, 
but sexual reproduction is required 

for range expansion and is often 
limited at treeline via both biotic and 

abiotic factors 

Sirois 2000; Malcolm et 
al. 2002; Krebs et al. 
2012; Jameson et al. 

2015; Brown et al. 2019 



 76 

black spruce range expansion in the Yukon (as outlined in Table 3.1). We assessed 

microsite suitability at the treeline for four life stages of black spruce: emergents (recently 

germinated and are <1-year-old), seedlings (≤60 cm tall), non-reproductive adults (>60 

cm tall without cones), and reproductive adults (>60 cm tall with cones). Treeline 

populations often exhibit stunted growth forms (krummholz) that can be reproductively 

mature despite their small stature (e.g., Trant et al. 2011); therefore, we classified any 

individual >60 cm as an adult. Based on previous findings (e.g., Batllori et al. 2009b; 

Dufour-Tremblay et al. 2012; Kroiss and HilleRisLambers 2015), we predicted that 

microsite suitability would decrease towards the range edge for all life stages, but that 

early stages (seed availability, emergence, seedling establishment) would be most 

limiting. Using a demographic niche-based approach, our multivariate assessment of 

microsite suitability throughout the entire life span allows for a more comprehensive 

understanding of life-stage specific microsite constraints across the range edge. 

 

3.3 Methods 

3.3.1 Study area and species description 

We conducted our research at three black spruce dominated treeline sites near Eagle 

Plains, Yukon (66° 22' 12'' N, 136° 43' 48'' W). Mean temperatures from 1981-2010 

ranged from 14.6°C in July to -29.2°C in January with an annual mean precipitation of 

278.6 mm (Environment Canada 2019). The area consists of rolling hills with gradually 

decreasing tree density and fine-grained loess soils over bedrock (Smith et al. 2004). All 

sites are underlain with continuous permafrost that have a seasonal thaw depth of less 
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than 1 m (Tarnocai et al. 1993). Each site represented a range edge black spruce 

population where tree density gradually decreased heading towards the range limit and all 

life stages were present. Site One had an understory shrub community primarily 

consisting of Betula spp., Salix spp., Rhododendron spp., Vaccinium uliginosum, 

Empetrum nigrum, and Vaccinium visis-idaea, with a high lichen cover (primarily 

Cladonia spp.) and was interlaid with frost boils from freeze-thaw permafrost cycles. 

Sites Two and Three were moss dominated, primarily with Sphagnum spp. and 

feathermoss species (e.g., Hylocomium spp.), and had a similar shrub community to Site 

One (see Chapter Two for further description of study sites and a map of the study 

region). 

 

Black spruce is a long-lived coniferous species commonly found on wet organic soils 

across North American boreal forests (Johnston and Smith 1985). Subarctic populations 

begin producing cones when 25-30 years old, and reliably produce cones at 85 years 

(Black and Bliss 1980). Black spruce is a semi-serotinous species and maintains an aerial 

seedbank containing several cone cohorts that will gradually release seed in the absence 

of fire and massively disperse after a fire (Zasada et al. 1992). Our classification of 

reproductive adults included trees that had successfully produced cones from previous 

years. Seeds are dispersed by wind and travel up to 80 m from the windward edge of a 

mature stand (Johnston and Smith 1985). Once dispersed, seed loses its viability within 

10 to 16 months (Fraser 1976). Black spruce can also reproduce by layering: forming 

adventitious roots on lateral branches to produce clonal stems (Holtmeier 2009).  
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3.3.2 Study design 

Within each of the three sites, four 100 m x 10 m belt transects were established 

perpendicular to the treeline, heading towards the range edge (i.e., same transects as 

Chapter Two). The transects were placed ~20 m apart with the zero marker for each 

transect indicating the last reproductive adult along the center of the transect. From this 

point, the transect extended 45 m towards the tundra and 55 m towards the forest (see 

Supplementary Fig. 2.1 for diagram of study design). All analyses assess how different 

demographic patterns and substrate limitations change along these transects (i.e., towards 

the range edge of the black spruce population), therefore all analyses describe this 

gradient as distance towards range edge from 0 to 100 m. 

 

3.3.3 Viable seed availability 

To assess whether seed dispersal impedes range expansion, we used seed traps to quantify 

naturally dispersed seed. Seed traps were installed in 10 m increments along the four 

transects at each site for a total of 120 seed traps. A seed trap consisted of a plastic garden 

tray (50 cm x 25 cm x 5.7 cm) with artificial grass attached to the bottom to prevent wind 

scouring (following Johnstone et al. 2009). Seed traps were initially deployed at Site One 

in July 2017 with seed collected in Aug 2018 for a year-round assessment of seed 

dispersal. Seed traps were installed at the remaining sites in June 2018 and collected in 

August 2018 to assess summer seed dispersal. Material from seed traps were collected in 

plastic bags and brought to the Northern EDGE Lab at Memorial University, St. John’s, 

NL to be stored at ~0°C until the contents were hand sorted to count black spruce seed.  
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To investigate if viable seed production limits range expansion, we quantified cone 

production, seed production, and seed viability at each site. We estimated the number of 

cones present on each adult tree along the transects. We then randomly selected up to 32 

trees at each site to harvest cones to estimate site level seed viability. Cone harvest trees 

were selected away from transects, beyond dispersal distance, to ensure cone harvesting 

did not interfere with seed rain data collection. We randomly harvested 20 cones from 

each tree. Since black spruce retains several annual cone cohorts, where possible, we 

exclusively selected closed brown, i.e., approximately second year, cones to ensure we 

harvested cones that were both mature and had not already released seed (Eremko et al. 

1989). If we were unable to collect sufficient closed brown cones, we collected older gray 

cones. If a tree had fewer than 20 cones, we collected all of its cones. We placed cones in 

paper bags and shipped them to the Northern EDGE Lab for seed extraction and 

germination trials. 

 

In the laboratory, seeds were extracted following established protocols (modified from 

Safford 1974; Leadem et al. 1997; Viglas et al. 2013). Cones were grouped by tree and 

soaked in deionized water for approximately 24 hours, dried at room temperature for 24-

72 hours, and then heated in an oven at 60°C for 16 hours. Following this, cones were 

agitated in a sieve shaker for 10 minutes to release the seeds. The seed extraction cycle 

was repeated three times to ensure all seeds that could potentially disperse were extracted. 

After counting the total number of seeds released per tree, we immersed seeds in a 95% 

ethanol bath to quantify the number of filled seeds. Black spruce seeds that sink in 
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ethanol have been found to contain both an embryo and megagametophyte while seeds 

that float are unfilled (Jameson et al. 2015).  

 

Up to 100 seeds that contained embryos from each tree were randomly selected for a 28-

day laboratory germination trial. Up to 50 seeds were placed on a 9 cm petri dish on filter 

paper kept moist with deionized water. Seeds experienced room temperature (~20°C) and 

16 hours of light per day (6400 K full-spectrum, T5 lamp with omni-max reflector; Jump 

start, Hydrofarm, Petaluma, CA, USA). Seeds were considered germinated if the length 

of their radicle was at least four times that of the seed coat (Leadem et al. 1997). We 

estimated site level production of viable seed using the number of seeds/cone, the 

proportion of seeds with embryos, and the proportion of all seeds that germinated for each 

tree. 

 

3.3.4 Characterizing microsite suitability 

We conducted a seed addition experiment along the treeline gradient to identify 

germination limitations (see Chapter Two for full description of seed addition 

experiment). To assess tundra suitability for black spruce establishment and how it may 

change towards the range edge, we conducted a multivariate comparison between random 

treeless tundra microsites and black spruce’s demographic niches. To capture how 

potential microsites for colonization may change towards the range edge, we compared 

how microsite associations (as described in Chapter Two) changed towards the range 

edge for emergent, seedlings, non-reproductive adults, and reproductive adults. The 
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microsite each life stage inhabits was defined as: the seed plot for the emergent niche, the 

area within 25 cm of tree base for remaining life stages, and a 50 cm x 50 cm quadrat for 

treeless tundra substrates. We recorded the following variables at each marked microsite: 

active layer depth, organic layer depth, soil moisture, soil temperature, soil pH, light 

availability, microtopography, and plant community composition. Plant community 

composition was divided into the following functional groups: moss, lichen, forbs, 

graminoids, and shrubs. Shrubs were recorded to the species level and then grouped into 

three categories based on the functional height of the species: tall shrubs (e.g., Betula 

glandulosa, Salix glauca), medium shrubs (e.g., Rhododendron spp., Vaccinium 

uliginosum), and dwarf shrubs (e.g., Empetrum nigrum, Vaccinium visis-idaea). See 

Chapter Two for a comprehensive description of microsite variable data collection.  

 

3.3.5 Data analysis 

To assess how seed dispersal and emergence in the seed addition experiment changed 

along the transect, we used generalized linear mixed models (GLMMs) from the “lme4” 

package version 1.1-21 (Bates et al. 2015) in the R environment (R Core Team 2019). 

Number of dispersed seeds in a seed trap or emergents in a seed plot were the response 

variables for each model, with distance along transect as an explanatory variable and 

transect nested within site as random effects. Both data sets exhibited a large number of 

zero observations. We used zero-altered hurdle models to account for excess zeroes (Zuur 

et al. 2009). First, the data were modelled as a presence/absence of seed in a seed trap or 

emergents in a seed plot with a binomial distribution. The abundance of seed or 
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emergents were then modelled with a truncated Poisson model (Zuur et al. 2009). For the 

seed dispersal models, we looked at summer dispersal (June - Aug 2018) across all three 

study sites and year-round dispersal (July 2017 - Aug 2018) at the site with year-round 

data (Site One). The year-round model was not zero-inflated, so we used a GLMM with a 

Poisson distribution. We removed an outlier from the emergence model that had 

extremely high germination (n = 36). None of the Poisson GLMMs were over-dispersed 

(Zuur et al. 2009).  

 

We constructed a GLMM to determine if the estimated number of cones present within 

each 10 m x 10 m increment changed towards the range edge. We used the Gaussian 

distribution for the GLMM with cone count as the response variable and distance along 

the transect as the explanatory variable with transect nested within site as random effects. 

Due to model assumption violations, we then confirmed the statistical decision at the 0.05 

level using a randomization test as follows (Manley 2006). F-values from 5000 GLMMs 

modelled with samples of the response variable were calculated to obtain an assumption-

free empirical distribution. The probability of the F-value obtained from the original 

GLMM was then determined using this empirical distribution. 

 

We used non-metric multidimensional scaling (NMDS) for a multivariate comparison 

between the characteristics of black spruce’s demographic niches (i.e., microsites) that we 

quantified and available treeless tundra substrates. To assess changes in suitable microsite 

availability along the transect, we extracted individuals’ NMDS scores from ordinations 

in Chapter Two for each of the three sites and all sites combined and plotted them against 
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distance along the transect (i.e., distance towards the range edge). In NMDS, no particular 

axis explains more variation than other axes (McCune and Grace 2002). Therefore, 

changes in any NMDS axis along the transect were considered equally. We then used a 

loess smooth curve using the geom_smooth function in the ggplot2 R package version 

3.1.1 (Wickham et al. 2016) to visually assess how NMDS scores changed for treeless 

tundra substrates and each demographic niche. We constructed 95% confidence intervals 

for NMDS scores for each life stage and treeless tundra substrates along the transect. Any 

non-overlapping confidence intervals between a life stage and treeless tundra substrates 

were considered to indicate a mismatch in substrate suitability. 

 

We ran a suite of GLMMs with a Gaussian distribution for each microsite variable to 

determine whether treeless tundra substrates changed along our treeline gradient. These 

models confirmed the potential for changing microsite availability along our study 

gradient. For each GLMM, the respective microsite variable was the response, distance 

along the transect was the explanatory variable, and transect nested within site were 

random effects. If the GLMM violated model assumptions, the statistical decision at the 

0.05 level was confirmed with a randomization test, as described above.  

 

3.4 Results 

3.4.1 Bottleneck 1: Viable seed availability 

Seed rain was low at all study sites and decreased towards the range edge (Table 3.2). 

During summer dispersal (June - Aug 2018) across all sites, 37/120 (30.8%) seed traps 
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captured dispersed seed, containing a total of 68 dispersed seeds. Meanwhile, the site with 

year-round dispersal data (July 2017 - Aug 2018) had dispersed seeds in 33/40 (82.5%) 

seed traps, containing a total of 114 seeds. In our zero-inflated hurdle model assessing 

summer dispersal at all sites, the odds of seed being present in a seed trap did not change 

towards the range limit (Table 3.2). However, seed abundance in seed traps significantly 

decreased towards the range limit during the summer 2018 dispersal period (Table 3.2). 

Similarly, the site with year-round dispersal data had significantly less seed rain towards 

the range limit (Table 3.2).  

 

Despite decreased seed dispersal, we found cone production did not change towards the 

range edge (Table 3.2). Because collecting cones along the transect would interfere with 

seed trap data collection, we were unable to assess whether the discrepancy between seed 

rain and cone production was caused by declines in seeds produced per cone along the 

transect. Viable seed was produced at all sites and site level estimations of number of 

seeds per cone ranged from 29.6 to 40.3 (Table 3.3; Fig. 3.1). We estimated that 39% - 

43.7% of those seeds contained embryos (Table 3.3; Fig. 3.1). Seed viability at the sites 

varied from 24.2% - 36.6% (Table 3.3; Fig. 3.1). 
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Table 3.2 Summary of GLMMs assessing changes in seed dispersal and germination with 

distance towards the range edge (i.e., negative values indicate the response declines 

towards the range edge). Transect nested within site were included as random effects 

(values not shown). P values significant at the 0.05 level are bolded. * indicates a revised 

p-value from a randomization test due to model assumption violations. 

Model Model Term Estimate SE z-value p-value 
Odds summer seed dispersal 
(binomial) 

Intercept -0.976 0.466 -2.095 0.036 
Distance -0.012 0.007 -1.617 0.106 

Abundance summer seed 
dispersal (truncated poisson) 

Intercept 0.451 0.149 3.028 0.002 
Distance -0.010 0.005 -2.282 0.024 

Year-round seed dispersal        
Site One only (poisson) 

Intercept 0.761 0.368 2.065 0.039 
Distance -0.011 0.003 -3.189 0.001 

Odds germination  
(binomial) 

Intercept -1.333 0.437 -3.048 0.002 
Distance 0.004 0.009 0.411 0.681 

Treatment -3.124 1.040 -3.003 0.003 
Abundance germination 
 (truncated poisson) 

Intercept 1.353 0.346 3.914 0.0001 
Distance -0.012 0.004 -3.121 0.002 

Cone estimate (gaussian) 
Intercept 371.428 281.247 1.321 0.316 
Distance -9.729 5.260 -1.850 0.193* 

 

 

Table 3.3 Number of reproductive adults present per hectare, number of cones per tree 

(mean ± standard deviation), number of seeds/cone, proportion of seeds with embryos, 

and proportion of total seeds that were viable for each study site. 

Site Reproductive 
adults/ha 

Cones per tree Seeds per 
cone 

Seeds with 
embryos (%) 

Viable seeds 
(%) 

1 80 611.54 ± 371.28 29.6 ± 13.68 41.2 ± 18.01 24.2 ± 13.72 
2 263 54.46 ± 56.93 40.3 ± 14.90 43.7 ± 20.67 36.6 ± 19.85 
3 85 14.03 ± 30.23 31.7 ± 12.95 39.0 ± 17.38 31.1 ± 16.00 
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Figure 3.1 Dynamics for the main limiting demographic bottlenecks we identify for black 

spruce from seed production to germination. Bars show estimated number of seeds or 

emergents per hectare at each study site. Seeds produced is number of reproductive adults 

per hectare x mean number of cones per tree x mean number of seeds per cone. Seeds 

dispersed is the estimated number of seeds dispersed per hectare from seed trap data. 

Viable seeds dispersed is the number of seeds dispersed per hectare x seed viability. 

Emergents is the number of viable seeds dispersed x the emergence rate of viable seeds 

from the seeding experiment. Emergents not shown for Site Three because there was no 

seeding experiment at this site.  
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3.4.2 Bottleneck 2: Germination on a suitable microsite 

If seed limitations are overcome, we found that few individuals emerged in the field-

based seeding experiment and successful emergence decreased towards the range edge 

(Table 3.2). Black spruce seed emergence occurred in 4/40 and 14/40 experimentally 

seeded plots at Sites One and Two, respectively. Emergence occurred in 1/80 non-seeded 

control plots across both sites. In total, Sites One and Two had germination success rates 

of 0.113% and 3.125%, respectively. The binomial portion of the hurdle model found that 

the odds of an emergent being present in a seed plot did not change towards the range 

edge but was significantly more likely to occur in seed addition plots rather than control 

plots, further suggesting seed availability limitations (Table 3.2). Because only one 

emergent was found in the 80 control plots, only seeded plots were assessed in the 

abundance model. In plots with successful emergence, we found abundance decreased 

towards the range edge (Table 3.2).  

 

Sufficient germination to quantify the emergent niche only occurred at Site Two (see 

Chapter Two for full NMDS plots of demographic niches). At Site Two, available tundra 

conditions diverged from emergents towards the range edge for NMDS axis 1, where 

emergents occupied unique microsites that were dissimilar from the available tundra 

substrate at the upper end of the transect (Fig. 3.2). Although emergence still occurred at 

the upper end of the transect, regions of non-overlapping 95% confidence intervals 

between the two groups indicate emergent microsites were different from the general 

tundra substrate available (Fig. 3.2).  
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Figure 3.2 Diverging NMDS axis 1 scores towards the range edge for treeless tundra 

(gray diamonds; dashed line) and emergents (orange circles; solid line) at Site Two 

(seedling age class shown in Fig. 3.3 and adults in Fig. 3.4). Each point indicates a seed 

plot with emergents present or a treeless tundra substrate. Distance towards range edge 

indicates position along the transect. Light shaded region represents 95% confidence 

intervals for microsite associations. See Supplementary Fig. 3.1 for additional NMDS 

axes. 
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3.4.3 Bottlenecks 3-5: Seedling, non-reproductive adult, and reproductive adult 

microsites 

In contrast to the restricted availability of germination microsites and low seed rain, we 

found seedlings to generally have suitable microsites available across the treeline gradient 

(Fig. 3.3). Seedling and tundra microsites overlapped for all ordinations except Site One, 

where microsites diverged for a region of two NMDS axes (Fig. 3.3; Supplementary Fig. 

3.2). Adult niche space was different from treeless tundra substrates for the ordination 

including all sites with non-overlapping 95% confidence intervals in one NMDS axis 

(Fig. 3.4). Site-specific plots show partial overlap between adults and treeless tundra 95% 

confidence intervals (Fig. 3.4). Other than short patches of non-overlapping 95% 

confidence intervals between adult groups for one NMDS axis at Sites One and Two, 

non-reproductive and reproductive adult microsites were similar to one another (Fig. 3.4).  
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Figure 3.3 Generally overlapping NMDS scores along the treeline gradient for treeless 

tundra substrates (gray diamonds; dashed line) and seedlings (green circles; solid line) for 

all three sites separately and all sites combined (note that Site One shows a region of 

divergence). NMDS axis best showing any divergence between groups shown. Each point 

indicates an individual or treeless tundra substrate (emergents shown in Fig. 3.2 and 

adults in Fig. 3.4). Distance towards range edge indicates position along the transect. 
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Light shaded region represents 95% confidence intervals for microsite associations. See 

Supplementary Fig. 3.2 for additional NMDS axes. 

 

 

Figure 3.4 Changes in NMDS scores along the treeline gradient for treeless tundra 

substrates (gray diamonds; dashed line) and adult groups (non-reproductive = purple 

circles; solid line, reproductive = blue triangles; dotdash line) for all three sites separately 
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and all sites combined. NMDS axis best showing any divergence between groups shown. 

Each point indicates an individual or treeless tundra substrate (emergents shown in Fig. 

3.2 and seedlings in Fig. 3.3). Distance towards range edge indicates position along the 

transect. Light shaded region represents 95% confidence intervals for microsite 

associations. No non-reproductive adults were observed from 43 m to 89 m along 

transects at Site One. Thus, we do not infer non-reproductive adult niche space in this 

portion of the ecotone and removed the confidence intervals. See Supplementary Fig. 3.3 

for additional NMDS axes. 

 

3.4.4 Microsite changes along the transect 

We found treeless tundra substrates to change along our treeline gradient for 5/14 of our 

microsite variables. Amongst treeless tundra substrates, we found active layer depth, 

relative light availability, and tall shrub cover decreased towards the range limit (Table 

3.4). Additionally, we identified an increase in medium and dwarf shrub cover towards 

the range limit, and no association between the gradient and the remaining microsite 

variables measured (Table 3.4).  
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Table 3.4 Summary of GLMMs comparing changes in microsite variables for tundra 

substrates with distance towards the range edge as the explanatory variable. Negative 

values indicate the response declined towards the range edge. Transect nested within site 

were included as random effects (values not shown). P values significant at the 0.05 level 

are bolded. N is the sample size for that GLMM as sample sizes varied slightly between 

microsite variables due to logistical constraints. * indicates a revised p-value from a 

randomization test due to model assumption violations. 

Response Variable N 
Parameter 
Estimate F value P value 

Soil Moisture (%) 240 0.018 0.663 0.420* 
Active Layer Depth (cm) 239 -0.082 7.530 0.007 
Soil Organic Layer Depth (cm) 240 0.015 0.908 0.341* 
pH 240 -0.0004 0.162 0.687 
Soil Temperature 1 (°C) 240 -0.0006 0.020 0.888 
Soil Temperature 2 (°C) 240 0.0006 0.061 0.806* 
Relative Light Availability 216 0.001 7.113 0.009* 
Graminoids (% Cover) 240 0.051 2.014 0.152* 
Tall Shrubs (% Cover) 240 -0.059 4.044 0.044* 
Medium Shrubs (% Cover) 240 0.088 5.950 0.015 
Dwarf Shrubs (% Cover) 240 0.086 5.902 0.016 
Moss (% Cover) 240 -0.077 2.646 0.100* 
Lichen (% Cover) 240 0.033 0.525 0.473* 
Forbs (% Cover) 240 -0.006 0.085 0.771 
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3.5 Discussion 

Range shifts require suitable conditions to be available throughout a species’ life cycle, 

from seed dispersal to those propagules forming a self-sustaining population. By 

reconciling demographic niches and changes in microsite availability towards the range 

edge, we provide empirical evidence that pre-seedling life stages are overwhelmingly the 

main limiting life stages on climate induced northern black spruce range expansion. 

Specifically, we found that seed dispersal declined and available niche space for 

germination became scarce towards the range limit (Fig. 3.1; 3.2). Even if climatic 

alleviations increase seedling and adult growth and survival, range expansion will be 

limited until there is an increase in both viable seed availability and suitable germination 

microsites. Here, we detail microsite availability and demographic patterns leading to 

early life stage bottlenecks on black spruce range expansion. 

 

3.5.1 Bottleneck 1: Viable seed availability 

Range expansion begins with viable seed dispersing beyond the range, a process that we 

found limiting for northern black spruce populations. Seed rain decreased towards the 

range edge and was low compared to forest stands (Brown and Johnstone 2012; Rossi et 

al. 2017) and other treeline populations (Kambo and Danby 2017; but see Hofgaard 

1993). Seed rain can vary annually (Roland et al. 2014; Kroiss and HilleRisLambers 

2015; Rossi et al. 2017), but higher emergence in seed addition plots than unseeded plots 

provides further evidence that establishment is limited by viable seed availability. Low 

seed availability may be related to low stand density at the range edge (Kroiss and 
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HilleRisLambers 2015; Brown et al. 2019) and associated low cone production. We found 

cone production did not change towards the range limit, but fewer trees will, inherently, 

produce less seed than a denser stand. Previous research at these treeline populations 

(Chapter Two) found black spruce to have a narrow reproduction niche, limiting seed 

production to a subset of microsites adults occupy. An increase in suitable reproduction 

niche space may overcome this hurdle and increase seed availability. 

 

Although we did not assess seed viability across the gradient, site level seed viability was 

lower than southern populations (Sirois 2000; Meunier et al. 2007), but relatively high 

compared to other treeline populations (Lloyd et al. 2008; Jameson et al. 2015; Brown et 

al. 2019). At treeline, harsh environmental conditions and low temperatures may reduce 

seed production and viability (Sveinbjörnsson et al. 2011; Roland et al. 2014; Brown et 

al. 2019). Additionally, reduced genetic diversity from both low stand density and 

vegetative reproduction at treeline can lead to self-fertilization and empty seed production 

or aborted embryos (Owens et al. 2005; O’Connell et al. 2006; Mimura and Aitken 2007). 

Embryo abortion and empty seed production create unfilled seeds, which we found to be 

the main cause of non-viable seed production via laboratory germination trials. Overall, 

our results show that despite viable seed production in our study treeline populations, 

sufficient seed is not reaching the tundra for range expansion to occur. We suggest the 

constraining factor within this region may be limited seed quantity, rather than quality. 
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3.5.2 Bottleneck 2: Germination on a suitable microsite 

If seed limitations are alleviated and viable seed successfully disperses beyond the range, 

seed must land on an appropriate microsite for germination. Low emergence and 

decreased emergent abundance towards the range edge suggests that germination is 

another key limiting step for establishment in our black spruce treeline populations. 

Suitable niche space for emergence was sparse towards the range edge, where the 

ecological composition of tundra microsites available for colonization diverged from the 

emergent niche. If sufficient seed successfully reaches these particular microsites, 

establishment can still happen, barring post-dispersal seed predation (Munier et al. 2010; 

Kambo and Danby 2017) and unfavourable weather (Zasada et al. 1992; Kullman 2014) 

which can both filter out potential candidates for establishment. Indeed, an outlier seed 

plot that exhibited the highest germination (36%) was located closer to the range limit 

along our treeline gradient. Similar low germination rates have been observed in seed 

addition experiments for other black spruce treelines (e.g., Wheeler et al. 2011; Crofts 

and Brown, in review). Additionally, decreased emergence towards and beyond the range 

edge is common (e.g., Hobbie and Chapin 1998; Cuevas 2000; Castanha et al. 2012; but 

see Frei et al. 2018) and is often limited by microsite availability (Batllori et al. 2009b; 

Dufour-Tremblay et al. 2012; Davis and Gedalof 2018). Decreased emergence may be 

related to the high ecological inertia of the tundra, where the ecosystem demonstrates a 

robust ability to resist colonization (Hofgaard and Wilmann 2002). That resistance creates 

limited niche space for black spruce emergence, which is spatially isolated to select 

microsites, at least until the inertia is broken via disturbance (e.g., permafrost thaw, fire). 
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Fires can overcome high inertia of the tundra by removing the plant community and 

organic layer, temporarily creating altered niche space that favours black spruce 

germination (e.g., Johnstone and Chapin 2006). If a fire burns across the treeline into the 

tundra, this process can potentially result in a germination pulse if previously discussed 

seed limitations are overcome. However, short fire return intervals may limit seed 

availability (Brown and Johnstone 2012) and scarified substrates at treeline can have 

increased seed predation (Crofts and Brown, in review), suggesting early life stages may 

still impede range expansion in a post-fire landscape. For pre-seedling bottlenecks to be 

overcome, annual variation in viable seed production (Sirois 2000; Brown et al. 2019), 

seed dispersal (Roland et al. 2014; Kroiss and HilleRisLambers 2015), and emergence 

(Munier et al. 2010; Kullman 2014) must favourably align. Periods of improved seed 

production and seed rain must precede a good emergence year to saturate the most 

limiting demographic hurdles we identify here.  

 

3.5.3 Bottleneck 3: Seedling establishment 

After germinating, an individual must experience suitable conditions to grow and 

establish into a seedling, a stage where mortality is high (Germino et al. 2002; Castanha 

et al. 2012). Available niche space for seedlings generally did not decrease towards the 

range limit. Suitable substrates for seedlings were available for all ordinations except Site 

One which had an unsuitable region across the gradient. Our study sites were located in 

different parts of diffuse treeline ecotone, with different stand densities. Site One was 

closest to the actual range limit with the lowest stand density and thus may be closer to 
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the seedling niche limit. At Sites Two and Three, our findings suggest that if individuals 

surpass earlier demographic bottlenecks, then seedling microsite availability does not 

appear to be a constraining factor on establishment. However, seedlings may still be more 

susceptible to harsh weather conditions than later stages (Germino et al. 2002; Holtmeier 

and Broll 2010). 

 

While we did not detect a uniform decline in niche space along the treeline gradient, we 

did find a region of unsuitable seedling microsite availability at one of our sites (Site 

One). Along our treeline gradient, active layer depth, light availability, and plant 

community composition changed, where fewer tall shrubs and more medium and dwarf 

shrubs were present towards the range limit. Decreased tree abundance has been 

associated with an increase in medium shrub cover (Trant et al. 2015), but plant 

community changes across the treeline ecotone are complex and variable (Batllori et al. 

2009a; Trant et al. 2015). Shrubs have been attributed to have positive effects on seedling 

establishment (Grace et al. 2002; Renard et al. 2016); yet, in high abundances (>72%), 

shrubs can limit seedling occurrence (Kambo and Danby 2018) and have a negative effect 

on seedling establishment (Batllori et al. 2009b). The combined effects of multiple 

microsite variables leads to regions of unsuitable tundra substrates, resulting in non-

random spatial associations of seedlings (Batllori et al. 2009b; Kambo and Danby 2018) 

as observed in Site One. Extending this gradient further towards the range limit may 

capture the limit where combined microsite variables result in completely unsuitable 

substrates for seedling establishment. 
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3.5.4 Bottleneck 4: Adult growth and survival  

An established seedling must then survive and grow many years into adulthood for a true 

range shift to occur. Adults appear to be released from microsite limitations for the 

variables we included. We observed no consistent trend in adult microsite associations, 

indicating that there were no limitations to where an adult existed across the gradient, 

from a substrate perspective. Site-specific differences likely reflect the range of tundra 

conditions available at a given site, where suitable demographic niche space changes in 

different ways along the gradient. Meanwhile, the wider range of conditions available 

were captured within the ordination including all three sites. The ordination with all sites 

showed that adults occupied different microsites from tundra substrates for one NMDS 

axis. These trends likely reflects adults’ ability to alter their microsites (Holtmeier and 

Broll 2017) by obtaining resources and creating shade. For example, an increase in shade 

and humidity created by larger adult branches may increase moss cover in adult 

microsites (Chapter Two; Campeau and Rochefort 1996). This positive feedback can 

potentially alter a tree’s microsite to conditions unique from the tundra substrate it 

initially colonized. The point at which this occurs remains unclear and would be an 

enlightening avenue to explore. Additionally, teasing apart the microsite variables that 

impact adult performance from those that are altered by adults can further elucidate the 

importance of microsite composition for adult groups. At the adult stage, survival may be 

more influenced by larger scale factors such as climate (Du et al. 2018) and extreme 

weather events (Körner 1998; Holtmeier and Broll 2010).  

 



 100 

3.5.5 Bottleneck 5: Reproductive maturity and seed production 

Once an individual emerges from the understory into the open air, sustained range 

expansion hinges on established individuals reaching reproductive maturity (Malcolm et 

al. 2002). For the microsite variables included in the ordinations we present here, non-

reproductive and reproductive adult groups occupied similar conditions across all sites. 

We found no change in reproduction niche availability towards the range edge, yet seed 

availability decreased. The seed limitations we associated with low seed quantity may be 

related to low reproductive adult abundance, as discussed above. Decreasing seed 

availability suggests that we may not have captured the critical part of the reproduction 

niche that drives viable seed production and becomes limited across the ecotone. Seed 

production is energetically costly (Lee 1988) and reproductive adults were found to have 

a narrower niche than their non-reproductive counterpart, which was attributed to a 

preference for warmer, drier soils with increased nutrient availability (Chapter Two; 

Hobbie et al. 2002). Assessing the relationship between seed production and nutrient 

availability towards the range limit may show that suitable niche space for reproduction 

becomes limited at the range edge, inhibiting range expansion. 

 

3.6 Conclusion 

Despite viable seed production at the range edge, we found seed availability to be limited 

at black spruce treeline. In the event that viable seed successfully disperses, black spruce 

emergence is limited to a subset of available microsites, which decrease in abundance 

towards the range edge. Using a multivariate, demographic niche based approach, we 
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show that potential climate induced increases in seed viability (Roland et al. 2014; Brown 

et al. 2019) and tree growth (Danby and Hik 2007; Ettinger et al. 2011 but see Mamet and 

Kershaw 2013; Nicklen et al. 2016) will not necessarily result in a range expansion due to 

stronger regeneration bottlenecks at earlier life stages. Instead, increases in seed quantity 

and suitable microsite availability for germination will likely alleviate hurdles on black 

spruce range expansion. Ultimately, expanding and then maintaining a population relies 

on viable seed reaching a suitable microsite and successively surpassing all demographic 

bottlenecks through to reproductively mature adults. During this life cycle, a species’ 

ecological requirements may vary (Pironon et al. 2018) and the relative availability of 

those requirements can change both across the range and amongst microsites within the 

heterogeneous landscape of a given population. Our technique used here allows for a 

multivariate understanding of the ecological characteristics and frequency of suitable 

microsites for establishment across a species’ life cycle. Our method can be expanded 

spatially or temporally to inform how (1) microsite availability; (2) environmental 

gradients; and (3) the relative intensities of demographic bottlenecks may change across a 

species’ range. Ultimately, this approach can improve our understanding of the role that 

microsite availability plays on changes in species’ distributions under continued climate 

change. 
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Chapter 4: Summary and conclusions 

Species are expected to shift their ranges northward or to higher elevations under 

continued climate change (Chen et al. 2011). The most intense climate warming is 

happening in northern latitudes (Chapin et al. 2005; Johannessen et al. 2016) where the 

upper range limit for many boreal tree species occurs (i.e., treeline). Therefore, treelines 

create an excellent model system to examine the relative importance of the factors that 

shape a species' range under contemporary climate change. Despite climate warming, 

species’ range shifts have been inconsistent, both globally and at treeline (e.g., Harsch et 

al. 2009; Henry et al. 2012; Freeman et al. 2018), highlighting the need to explore non-

climatic factors that alter predicted climate-induced range shifts.  

 

Throughout a species’ life cycle, demographic processes will sequentially filter out 

candidates for establishment. If suitable conditions are absent or scarce beyond the range 

for any life stage, a regeneration bottleneck will occur. Comparing constraints on range 

expansion throughout a species’ life cycle will identify which life stage(s) are most 

limiting and what environmental factors constrain those stages. This demographic view 

informs the circumstances under which a range shift will likely occur. Such life stage 

specific constraints on range expansion can be viewed through the lens of demographic 

niches. This approach divides a species’ Hutchinson niche demographically, where each 

life stage has unique niche dimensions forming multiple demographic niches (Hutchinson 

1957; Maquire 1973; Pironon et al. 2018). Changes in demographic niche breadth 

throughout the life cycle are known as ontogenetic niche shifts (Parrish and Bazzaz 

1985).  
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Life stages with either the narrowest demographic niche breadth, or the least available 

niche space at and beyond the range limit, will be a rate-limiting step for climate-induced 

range expansion. In this thesis, I presented a novel approach to understanding 

demographic hurdles on climate-induced range expansion. I characterized demographic 

niches for sub-arctic black spruce (Picea mariana) populations in the Yukon to identify 

demographic bottlenecks in both niche breadth (Chapter Two) and available niche space 

at the range edge (Chapter Three). To achieve this, I quantified individual tree microsites 

inhabited by different life stages of black spruce along a treeline gradient heading towards 

the range edge. The breadth of conditions occupied by different life stages formed black 

spruces’ demographic niches (Chapter Two). Then, I compared microsites inhabited by 

individuals with unoccupied treeless tundra substrates to assess changes in available niche 

space towards the range edge (Chapter Three). I also quantified seed availability and 

germination rates along the treeline gradient to further identify the relative importance of 

demographic processes in hindering northern range expansion (Chapter Three).  

 

4.1 Key findings and future research directions 

My results show that northern black spruce populations exhibited shifting demographic 

niches and microsite preferences throughout the life cycle. I found that demographic 

patterns changed along the treeline gradient heading towards the range edge, creating 

regeneration bottlenecks on range expansion. Here, I discuss the key demographic 
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patterns I identified throughout the life cycle and propose future research directions 

inspired by my findings.  

 

Dispersal of viable seed beyond the range is the initial demographic hurdle to overcome. I 

found viable seed was produced in my study region, but seed rain was low and decreased 

towards the range edge (Chapter Three). This suggests the area is more limited by seed 

quantity than seed quality. Thus, seed availability is a key limiting step in range 

expansion, as observed across the circumpolar treeline (Brown et al. 2019). To overcome 

this bottleneck, an increase in available reproduction niche space would increase stand 

density of reproductively mature adults and increase seed quantity (Kroiss and 

HilleRisLambers 2015).  

 

If seed limitations are overcome, dispersed seed must land on a suitable substrate for 

germination for range expansion to occur. Black spruce had a narrow emergent niche 

(Chapter Two), and available niche space became restricted towards the range edge 

(Chapter Three). My findings provide further evidence that emergence is an 

overwhelmingly limiting demographic bottleneck on treeline advance (e.g., Wheeler et al. 

2011; Dufour-Tremblay et al. 2012). An important thing to consider for regeneration is 

that systems change over time; fires will alter the substrate and change available niche 

space. As a semi-serotinous species, black spruce is known to favourably germinate on 

temporarily available post-fire niche space (e.g., Brown and Johnstone 2012; Veilleux-

Nolin and Payette 2012). Thus, the emergent bottleneck may be overcome if a fire burns 

across the treeline into the tundra, creating suitable emergent niche space that did not 
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exist in the tundra’s undisturbed state. Given rapidly changing fire regimes observed 

globally (Flannigan et al. 2009) and increasing fire activity in tundra ecosystems (Hu et 

al. 2010), considering both undisturbed and disturbed regions when characterizing 

regeneration niches will provide a more comprehensive understanding of the species’ 

response to climate change. 

 

Transitioning from emergent to seedling, I identified a shifting and expanding niche 

breadth (Chapter Two). Overall, seedlings had the broadest niche of all life stages 

(Chapter Two), and available niche space did not decrease towards the range edge 

(Chapter Three) demonstrating that seedlings may not be as limiting as earlier 

regeneration bottlenecks. Despite their broad niche, seedlings exhibited microsite 

preferences, indicating non-random spatial associations at treeline as observed elsewhere 

(e.g., Batllori et al. 2009; Kambo and Danby 2018). Seedling niche space was restricted 

for regions at Site One, which had the lowest stand density and was closest to the range 

edge. I hypothesize that the seedling niche limit lies further into the tundra ecosystem, 

which was inaccessible at my study sites. 

 

Progressing from a seedling to a non-reproductive adult, I identified a directionally 

shifting and contracting niche breadth (Chapter Two). Non-overlapping niche space 

suggests many seedlings at the range edge currently occupy unsuitable conditions for 

adulthood, forming an additional limiting bottleneck. I found adults were not limited by 

microsite availability for the variables included in this study (Chapter Three). 

Additionally, regions of niche space occupied exclusively by adult groups suggest that 
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adults alter their own microsites. This process is an example of the niche as a function 

(Elton 1927), as opposed to a species’ requirements (Grinnell 1922; Hutchinson 1957), 

where the species themselves impact microsite variables (e.g., moss cover as described in 

Chapter Two). This Eltonian niche view complicates the ability to identify suitable 

habitat for a species. Chase and Leibold (2003) proposed a unified definition where the 

niche is both the range of environmental conditions in which a species can survive and 

the effects that a species has on those environmental conditions. In turn, this revised niche 

definition can be incorporated into our understanding of species’ distributions, where the 

Hutchinson niche is separated into two classes: Grinellian variables that the species will 

not change and Eltonian variables that are impacted by the species (Soberón 2007). 

Considering Eltoninian niche theory can inform how treeline advance will, in turn, effect 

the invaded tundra ecosystem as trees alter their microsites. 

 

Between non-reproductive and reproductive adults, a niche contraction occurred (Chapter 

Two). Black spruce’s narrow reproduction niche suggests that seed production will be 

limited where suitable niche space is unavailable, forming non-reproductive sink 

populations and impeding sustained range expansion. I found no change in reproduction 

microsite availability towards the range edge (Chapter Three); however, decreasing seed 

availability towards the range edge suggests that I may not have captured crucial 

microsite variables that drive seed production and become limited across the ecotone. I 

hypothesize that low seed availability may be driven by limited nutrient availability. In 

my study region, which is characterized by wet soils and continuous permafrost, 

reproductive adults preferred warmer, drier microsites that likely have a higher nutrient 
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turnover (Chapter Two; Hobbie et al. 2002). Seed production may then require relatively 

high nutrient availability. Research has looked at nutrients and seedling establishment at 

treeline (Sullivan and Sveinbjörnsson 2010; Davis et al. 2018), but the role of nutrients in 

sexual reproduction at treeline remains unclear. Soil nutrient levels were intended to be 

included as microsite variables in niche analyses for this thesis. Regrettably, soil grabs to 

capture nutrients at the microsite level proved impractical at my sites, where organic 

matter composed most of the underlying substrate and obtaining sufficient soil was not 

feasible.  

 

4.2 Study limitations 

The main limitation of my research is the dimension of time. Microsites were measured 

for individuals in a single growing season. Space-for-time substitutions are a well-

established practice when long term monitoring is not feasible (i.e., treeline species have 

a long life span) (Pickett 1989). However, as I discuss throughout this thesis, the 

microsite an individual inhabits can change over time. I can definitively say that a given 

life stage can occur within the niche space I observed them in; however, we cannot know 

the conditions in which individuals originally established or how they will fare in their 

microsites as they age. Furthermore, annual climate variation can change the available 

niche space for early establishment. For example, we found more germination occurred 

on moist substrates. Therefore, there may be more available emergent niche space in 

wetter summers than drier summers. Long term monitoring of individuals occupying a 

range of microsites would provide a more complete understanding of ontogenetic niche 
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shifts. My approach informs what microsite variables to explicitly test in these studies 

(i.e., variables driving niche shifts as summarized in Fig. 2.5; nutrient availability as 

described above).  

 

4.3 Conclusion 

Demographic processes will sequentially eliminate candidates for establishment beyond 

the range throughout a species’ life cycle. By comparing demographic niches to available 

tundra substrates, I found that narrow emergent and reproduction niches (resulting in low 

seed availability) are the two main limiting bottlenecks for northern black spruce range 

expansion in subarctic Yukon. Niche space was generally available for seedlings and 

adults across my treeline gradient, but I found that many seedlings occupy conditions that 

are unsuitable for adults. Overall, I have demonstrated that demographic niches can 

inform how species’ range dynamics are influenced by life stage-specific requirements 

and microsite availability. This approach can be expanded to ask essential questions about 

species’ distributions across the range of a population or species. For example, 

demographic niches can reconcile discrepancies between niche limits and range limits 

caused by source-sink dynamics (Pulliam 2000) through considering non-reproductive 

and reproductive niches separately. Additionally, ontogenetic niche shifts can inform 

whether early life stages observed beyond the range occupy conditions suitable for 

adulthood, strengthening range shift predictions (Máliš et al. 2016). Ultimately, this novel 

approach can provide valuable contributions towards understanding how species’ 

distributions and abundances will respond to climate change.  
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Supplementary Materials 

 

Supplementary Figure 2.1 Diagram of site design for this study. The top portion is an 

aerial and side view of a 100 m x 10 m transect passing through treeline. Dashed lines 

represent the 10 m increments within which a pair of seed plots were established and up 

to two seedlings, non-reproductive adults, reproductive adults and treeless tundra 

substrates were marked for microsite characterization.  
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Supplementary Figure 2.2 Stacked histograms showing the distribution of individuals 

included in this study along transects for each site.  

 

Supplementary Table 2.1 Site breakdown of the number of individuals of each life stage  

Site Emergents Seedlings Non-Repro Repro 
One N/A 40 17 31 
Two 14 55 40 61 
Three N/A 70 40 30 

All N/A 165 97 122 



 129 

Supplementary Table 2.2 Tukey’s HSD Post Hoc test results identifying significant differences in group means from significantly 

different GLMMs comparing microsite variable differences between life stages with transect nested within site as a random effect 

(Table 3). TT = treeless tundra, S = seedlings, NR = Non-Reproductive Adults, R = Reproductive Adults. Emergents are not included 

because their niche was only quantified at one site; results are reported in text. Bolded values indicate statistically significant 

difference at the 0.05 level. 

 TT-S TT-NR TT-R S-NR S-R NR-R 

Variable t-ratio p t-ratio p t-ratio p t-ratio p t-ratio p t-ratio p 
Soil Organic 

Layer Depth (cm) 
-1.035 0.729 -0.411 0.976 2.457 0.068 0.429 0.973 3.153 0.009 -2.371 0.084 

Soil Moisture (%) -1.089 0.696 -0.188 0.997 -3.403 0.004 1.041 0.725 -2.25 0.111 -2.955 0.017 

Soil Temperature 

2 (°C) 
-0.632 0.923 0.359 0.984 2.671 0.039 0.840 0.835 3.011 0.014 -1.872 0.241 

Relative Light 

Availability 
3.062 0.012 11.404 <0.001 13.390 <0.001 8.349 <0.001 9.841 <0.001 -0.986 0.757 

Tall Shrubs (% 

Cover) 
-4.802 <0.001 -4.955 <0.001 -7.893 <0.001 -0.881 0.814 -3.303 0.006 2.090 0.157 

Medium Shrubs 

(% Cover) 
0.362 0.717 1.392 0.492 5.672 <0.001 1.027 0.608 4.969 <0.001 -3.416 0.002 

Dwarf Shrubs (% 

Cover) 
4.283 <0.001 3.519 0.003 0.655 0.914 -0.064 0.999 -2.980 0.016 2.572 0.051 

Graminoids (% 

Cover) 
-2.817 0.026 -0.984 0.759 -1.744 0.302 1.303 0.561 0.742 0.880 0.561 0.944 

Moss (% Cover) 0.984 0.759 1.107 0.685 3.366 0.004 0.267 0.993 2.302 0.099 -1.781 0.284 

Lichen (% Cover) -2.930 0.018 -2.451 0.069 -4.762 <0.001 0.005 0.999 -1.966 0.202 1.739 0.304 

Forbs (% Cover) 0.916 0.796 -2.366 0.085 -1.979 0.197 -2.964 0.017 -2.608 0.046 -0.467 0.966 



  

 

Supplementary Figure 3.1 Changing NMDS axes 1 and 2 scores along transects for 

treeless tundra (gray diamonds; dashed line) and emergents (orange circles; solid line) at 

Site Two. NMDS axis 1 is shown in text (Fig. 3.2). Each point indicates a seed plot with 

emergents present or a treeless tundra substrate. Distance towards range edge indicates 

position along the transect. Light shaded region represents 95% confidence intervals for 

microsite associations. 
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Supplementary Figure 3.2 Changing NMDS scores along the treeline gradient for 

treeless tundra substrates (gray diamonds; dashed line) and seedlings (green circles; solid 

line) for all three sites separately and all sites combined. NMDS axis best showing 

divergence for each site shown in text (Fig 3.3). Each point indicates an individual or 

treeless tundra substrate. Distance towards range edge indicates position along the 

transect. Light shaded region represents 95% confidence intervals for microsite 

associations. 
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Supplementary Figure 3.3 Changes in NMDS scores along the treeline gradient for 

treeless tundra substrates (gray diamonds; dashed line) and adult groups (non-

reproductive = purple circles; solid line, reproductive = blue triangles; dotdash line) for 

all three sites separately and all sites combined. NMDS axis best showing any divergence 

between groups shown in text (Fig. 3.4). Each point indicates an individual or treeless 

tundra substrate. Distance towards range edge indicates position along the transect. Light 

shaded region represents 95% confidence intervals for microsite associations.  
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