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Abstract 
 

Friction is a complex phenomenon that involves interaction between microsized asperities 

on the surfaces of two bodies in contact. Friction force microscopy allows investigating 

friction forces that arise at the level of a single asperity, which is the tip of an atomic 

force microscope (AFM). In this thesis, the Prandtl-Tomlinson model of single-asperity 

friction is developed that fully incorporates the three-dimensional character of the 

problem. An algorithm is derived that allows integrating the resulting equations of 

motion. Special care is taken to select the model parameters close to the values that can 

be deduced from the experimental results published in the literature. The effect of 

periodic actuation of the AFM cantilever on the resulting friction forces is studied within 

this model. Three actuation modes are considered: transverse, normal, and lateral. 

Transverse actuation has no effect whatsoever on the friction force, whereas the effect of 

normal actuation is somewhat weaker than the effect of lateral actuation. Due to the finite 

mass of the cantilever, its motion may proceed in many different regimes which depend 

on the actuation amplitude and frequency. Hence, the dependence of friction force on 

actuation frequency at fixed amplitude and on the actuation amplitude at fixed frequency 

is obtained numerically. Both dependences are not simple and consist of a series of 

irregular peaks. Those peaks are more pronounced at zero temperature than at room 

temperature. Finally, the limitations of the model are discussed. It is suggested that two 

effects must be incorporated into the model in order to provide a more realistic picture of 

the nanoscale friction: the finite elasticity of the apex of the cantilever tip and the aging of 

the tip-sample contact. 
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Chapter I  

Introduction 

 

1.1 Historical background 
If relative motion of bodies is part of a process, friction is a necessary component of it, no 

matter if the surfaces involved are the surface of an ocean and a ship or a violin bow and 

a string. It is not an exaggeration to say that friction is essential in our everyday life. It 

would be impossible to ride a bicycle, drive a car, or even walk without friction. Many 

industrial activities crucially depend on friction, both in a positive or negative ways. 
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Figure1.1: Sketches from da Vinci’s notebook, ca. 1480, demonstrating some of his 

notable friction experiments [Pit14]. 

 

Tribology is a science of friction. The first documentation in tribology was produced by 

Leonardo da Vinci in the late 15th century. Some sketches from his notebook, shown in 

Figure1.1, give an idea how he measured friction between two objects. Da Vinci’s 

original statements are: 

1. The friction made by blocks of the same weight is independent of the contact area. 

2.  Friction produces double the amount of effort if the weight be doubled. 

These two statements would later become the first two laws of friction, attributed to 

Guillaume Amontons. 

 

Da Vinci did his experiment about two centuries prior to the introduction of the concept 

of force by Isaac Newton in his Principia in 1678. After Newton’s ground-breaking work, 

Charles Coulomb performed a more quantitative research on sliding friction. He 

systematically investigated the effect of different factors, such as the nature of the 

materials in contact, the normal pressure, the size of the surface of contact and the 

ambient conditions. He summarized many of his results in the statement that friction is 

proportional to load and that the coefficient of proportionality, the friction coefficient, is 

usually almost independent of the load, the sliding velocity, and the area of contact. He 

also made a distinction between the static and kinetic friction coefficients, which are the 
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proportionality coefficients between the normal load and the minimal force necessary to 

initiate motion (static friction) and to maintain motion (kinetic friction). 

 

The microscopic foundations of these laws started to be uncovered only in the middle of 

the 20th century. These studies were initiated by the works of Bowden and Tabor, who 

summarized their results in the classic textbook, which was originally published in 1950 

and is of importance even today [Bow01].  

 

The basic idea behind the Bowden-Tabor theory is that the contact between two 

apparently flat surfaces actually consists of many point-like contacts formed by 

microsized asperities. Hence, one should distinguish between the apparent contact area, 𝐴, and the real contact area, 𝐴𝑟𝑒𝑎𝑙, which is many orders of magnitude smaller than 𝐴. For 

simplicity, let us consider the friction force that arises when two pieces of the same 

material are pressed against each other. In contrast to the fixed apparent contact area, the 

real contact area is proportional to the normal load as 𝜎𝐴𝑟𝑒𝑎𝑙 = 𝐹𝑁, where the parameter 𝜎 is called the penetration hardness of the material. The physical meaning behind this 

relation is simple: as two surfaces are pressed against each other, the contact asperities 

deform, thereby increasing𝐴𝑟𝑒𝑎𝑙, until they are able to support the normal load. At the 

points of contact, the asperities belonging to the opposite surfaces form cold-welded 

junctions. In order to start motion, one needs to break those junctions by applying a 

shearing force. This force is proportional to the total junction area, 𝐴𝑟𝑒𝑎𝑙, with the 

proportionality constant being the yield stress against shear, denoted as 𝜏. Thus, static 

friction 𝐹𝑆 = 𝜏𝐴𝑟𝑒𝑎𝑙 = 𝜏𝐹𝑁/𝜎 = 𝜇𝑆𝐹𝑁 is proportional to normal load and independent of 

the apparent contact area. The static friction coefficient is given by the ratio 𝜇𝑆 = 𝜏/𝜎, 

which turns out to be in reasonably good agreement with the experiment. 

 

This simple reasoning explains a lot about static friction. However, it does not give the 

complete picture of friction, as the following argument due to Archard [Arc57] 

demonstrates. Let us consider what happens at the contact between two asperities. We 

may view the two asperities as spheres. It follows from the contact theory by Hertz, 
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developed in 1880’s and reviewed, e.g., in Chapter 15.5 of [Isr11], that when two spheres 

are pressed against each other by a force 𝐹, then the radius of their contact region will 

scale as 𝐹1/3, and the contact area will scale, therefore, as 𝐹2/3. If we combine this 

observation with Bowden-Tabor theory, we would have to conclude that the static friction 

force should increase as 𝐹𝑁2/3
, in disagreement with the Amonton’s law. The way out of 

this difficulty is to take into account that not only the real contact area, but also the 

number of microscopic contacts increases with the normal load 

 

At present, there is no fundamental theory that covers friction both in the macro and 

nanoscale. One of the reasons why friction is such a complex phenomenon is because it 

involves processes on many different length scales, from the macroscopic lengths of 

centimeters, to the micrometer size of the asperities, to the nanometer size of the contact 

between asperities, down to the size of single atoms. Due to the development of 

instrumentation and computational tools, it is now possible to better understand the 

fundamental mechanisms of friction, as we can observe microscale asperities with these 

techniques. 

 

1.2 Basic experimental approaches 
There are three instruments that play key role in nanometer scale friction experiments that 

will be presented shortly here. 

 

1.2.1 Atomic force microscope (AFM)/friction force microscope (FFM) 

The Atomic force microscope (AFM) was invented by Gerd Binnig et al in 1986 [Bin86] 

and applied to study nanofriction a year later by Mate et al [Mat87]. Tribological 

application of AFM is usually referred to as friction force microscopy (FFM). A 

schematic illustration of an AFM/FFM experiment is shown in Figure 1.2. An FFM has 

an atomically sharp tip that is brought in contact with the surface of a material and 

scanned over it. As a result of interactions between the cantilever tip and the surface, the 

cantilever beam will twist from equilibrium. This deflection can be measured optically. 
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The resulting instantaneous friction force can be deduced from the knowledge of the 

cantilever is elastic properties. In this way, FFM is focused on the friction studies at a 

single-asperity level and will be of main interest in this thesis. 

 

Figure1.2: Schematics of an atomic force microscope used for nanofriction 

measurements. 

 

The typical length of the cantilever tip is in the micrometer range, and the typical radius 

of curvature of its apex, 𝑅𝑎𝑝𝑒𝑥, is of the order of 10 nm. Even though the tip is sometimes 

referred to as “atomically sharp”, the tip-substrate contact actually consists of many 

atoms, as the following estimate shows. Let us define the contact atoms as those atoms on 

the tip apex that are closer to the surface than a few lattice constant, say, within the 

distance d = 1 nm. Note that 𝑅𝑎𝑝𝑒𝑥 ≫ 𝑑. Then, the lower bound for the contact area can 

be found from elementary geometry and/or dimensional analysis to be 𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡~𝑅𝑎𝑝𝑒𝑥𝑑, 

and the number of contact atoms is estimated to be 𝑁𝑐𝑜𝑛𝑡𝑎𝑐𝑡~ 𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑎2 . Assuming 𝑅𝑎𝑝𝑒𝑥 = 

10 nm and the lattice constant a = 0.3 nm, we obtain conservative estimates 𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ~ 10 nm2 and 𝑁𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ~ 100. The tip-substrate contact is formed by a few 

hundred atoms. 
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1.2.2 Quartz crystal microbalance (QCM) 

The quartz crystal microbalance (QCM) technique employs the sensitivity of a quartz 

crystal oscillation frequency and quality factor to the atoms that are absorbed on its 

surface. This technique has been first adapted for nanofriction studies by Jacqueline Krim 

et al in 1991 [Kri91]. It measures the friction force at the level of single atoms. 

Interestingly, the results of these measurements indicate that friction force acting between 

single atoms is proportional to their velocity, 𝐹~𝑣 [Kri13], in sharp contrast to Coulomb 

law for velocity-independent macroscopic friction. This linear dependence of the 

dissipative force between an atom and the surface follows directly from the linear-

response theoretic arguments [Evs10, Evs19]. 

 

1.2.3 Surface force apparatus (SFA) 

The surface force apparatus was invented by David Tabor and R.H.S. Winterton in 1969 

[Tab69]. At the heart of a surface force apparatus are two crossed cylinders, usually made 

of mica, in contact with each other [Tia13]. The cylinders are pressed against each other 

by adhesion and an external load. They can be set in relative motion by means of a piezo 

element, and the resulting friction force can be measured. The radius of curvature of the 

cylinders ranges between a few millimeters to a few centimeters. Then, employing the 

estimate from Section 2.1 for the contact area, we obtain, assuming the cylinder radius R 

= 1 mm and taking the same parameters d = 1 nm, a = 0.3 nm as in Section 2.1: 𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡~106 nm2 and 𝑁𝑐𝑜𝑛𝑡𝑎𝑐𝑡~107. This is five orders of magnitude higher than the 

AFM contact area. 

 

3. Structure of this thesis 

In this work, we focus on FFM nanofriction from Section 1.2.1. The standard theoretical 

model to describe these experiments is the one-dimensional Prandtl-Tomlinson model 

[Rie03, Evs13]. As the name suggests, it does not take into consideration the full three-

dimensional character of the experiment, see Figure 1.2. Relatively recently, a three-

dimensional extension of this model has been made in [Wie11], but as will be explained 
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later in the end of Chapter II, the model from [Wie11] works only when the tip is in 

contact with the substrate. Our main goal is to generalize the model to be able to treat 

arbitrary distances between the tip and the substrate, and to apply it to study the effect of 

cantilever actuation on friction forces. 

 

In this thesis, a three-dimensional model of FFM single-asperity friction is developed in 

Chapter II. In Chapter III, a numerical algorithm is derived that allows integrating the 

equations of motion of this model. Chapter IV is central in this thesis, as it presents the 

numerical results that relate the friction force to the experimental control parameters, such 

as pulling velocity, temperature, and actuation of the cantilever base. Finally, Chapter V 

summarizes our findings and also briefly discusses the limitations of our model, which 

should be taken into account in order to get a more realistic picture of nanoscale friction. 
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Chapter II  

Prandtl-Tomlinson model 

 

2.1 One-dimensional Prandtl-Tomlinson (1dPT) model 

2.1.1 Stick-slip process 

The Prandtl-Tomlinson (PT) model is one of the most commonly used models in 

nanoscale friction. It was originally introduced by Ludwig Prandtl [Pra28] (see an 

overview and an English translation of Prandtl’s original paper from German in [Pop12]) 

and George Tomlinson [Tom29]. In spite of its simplicity, the model captures all features 

of the stick-slip process generally observed in AFM friction experiments, in which the 

AFM tip is dragged along an atomically flat surface. In the stick-slip regime, the force of 
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friction, deduced from the elastic deformation of the cantilever, changes in time in a saw 

tooth-like manner see Figure 2.1. The process consists of the following phases: 

 

 

 

 

Figure 2.1: Stick-slip motion for an AFM tip 

 

(a) Initially, the tip finds itself in one of the lattice sites of the surface.  

(b) As the cantilever base moves, the elastic deformation of the cantilever increases, 

leading to a reduction of the potential barrier that separates the tip from the next 

minimum.  

(c) This barrier disappears when the elastic force in the cantilever becomes equal to the 

maximal force produced by the surface potential.  

(d) After overcoming the static friction threshold, the asperity jumps into the next 

potential minimum, at the same time dissipating its kinetic energy into the phonon and 

electron subsystems of the substrate. Eventually, the tip settles down to the next lattice 

site, and the process repeats itself. 
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2.1.2 Time scales 

It is clear from the beginning that the system, schematically depicted in Figure 2.1 and in 

Figure 2.2, is characterized by several groups of the degrees of freedom, and that each 

group has its own characteristic time scale. These groups are listed in this section in the 

order from the slowest to the fastest. 

 

 

Figure 2.2: Schematic representation of an AFM friction experiment from Figure 1. The 

square block represents cantilever base, the ball corresponds to the tip, and the arrow to 

the tip apex. 

 

 

Cantilever base. The slowest time scale is associated with the motion of the cantilever 

base, which moves with the velocity 𝑉 of the order of a few microns per second. Hence, 

the time needed for the base to cover the distance of one lattice constant is in the 

millisecond range.  

 

Torsional cantilever deformation. In nanofriction experiments, the measured quantity is 

the torsional deformation of the cantilever beam (see Figure 2.2). The typical torsional 

oscillation frequency is of the order of a few hundred kHz, implying the respective time 

scale to be in the microsecond range. 

 

Tip apex consists of at most a few hundred thousand atoms and is many orders of 

magnitude smaller than the rest of the cantilever [Rei04]. According to the estimate from 

[Kry06, Kry07], the respective time-scale associated with the tip apex oscillations is in 

the nanosecond range. 
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Atomic degrees of freedom. Finally, the time-scale that characterizes the motion of single 

atoms is of the order of inverse Debye frequency and is in the femto- to picosecond range. 

 

 

Figure 2.3: The relevant coordinates in the 1dimensinal Prandtl-Tomlinson (1dPT) model. 

 

In view of this huge time-scale separation, and because of a very large number of atoms 

involved, direct molecular dynamics simulation of the problem is severely limited with 

respect to the size of the system and the time-scales that can be probed. Hence, we will 

develop a stochastic model, which involves only the slow variables: the position of the 

cantilever base and the torsional deformation of the tip. The fast degrees of freedom 

describing the tip apex deformation and possibly other fast deformation modes of the 

cantilever, as well as the atomic degrees of freedom are taken into account implicitly in 

the form of an effective potential, dissipation, and noise [San01, Rei04, Rei05]. 

 

Thus, we have two slow variables in the 1dPT model (see Figure 2.3 showing the 

cantilever side view): 

 The cantilever base, whose coordinate is given by  𝑋 = 𝑉𝑡;          (2.1) 
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 The torsional deformation of the cantilever. In principle, it is possible to 

parametrize the torsional deformation by the corresponding deformation angle, 𝜃, 

see Figure 2.3 However, it is more convenient to adopt an equivalent picture, in 

which it is characterized by the position 𝑥 defined as 𝑋 − 𝑥 = 𝐿 sin 𝜃 ≈ 𝐿𝜃 ,       (2.2) 

where 𝐿 is the tip length. We have set sin 𝜃 ≈ 𝜃. It is an excellent approximation, 

because the typical length of an AFM tip is in the micrometer range, and the 

typical value of |𝑋 − 𝑥| is in the nanometer range, i.e. sin 𝜃 ~10−3. The 

geometric meaning of the coordinate 𝑥 is the position that the tip apex would have 

if the tip were absolutely rigid, i.e. in the absence of its elastic deformation, see 

Figure 2.3 The actual position of the tip apex differs from 𝑥 by a small amount. In 

the following, we will refer to the coordinate 𝑥 as “the tip coordinate” keeping this 

difference in mind. 

 

The remaining atomic degrees of freedom, as well as the deviation of the tip apex from 

the position 𝑥 from the last equation, and possibly other deformation modes of the 

cantilever are so fast that, at each moment of time, they can be considered to be almost in 

thermal equilibrium state at given values of 𝑥 and 𝑋. 

 

2.1.3 Energy considerations 

2.1.3.1. Elastic energy 

The elastic energy stored in the cantilever is proportional to the deviation squared of the 

tip position from the mechanical equilibrium position, which we set equal to the position 𝑋 of the cantilever base without loss of generality: 𝑈𝑒𝑙(𝑋 − 𝑥) =  𝜅(𝑋−𝑥)22  .       (2.3) 

Here, the effective spring constant 𝜅 describes the combined effect of the elastically 

deformed cantilever spring, the tip, and the surface in the contact region. Because the 

“springs” associated with each such deformation are connected in series, the effective 



13 

 

spring constant measured experimentally is given by [Lan97a, Lan97b, Col96, Car97, 

Joh98, Ben99] 1𝜅 = 1𝜅𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 + 1𝜅𝑡𝑖𝑝 + 1𝜅𝑠𝑢𝑟𝑓𝑎𝑐𝑒 .      (2.4) 

The instantaneous force of friction is equal to the elastic force generated by the spring: 𝑓 = −𝜅(𝑥 − 𝑋) .        (2.5) 

Hence, the effective stiffness can be determined from the slope 𝜅 = 𝑑𝑓𝑑𝑋 of the force-

distance curve in any stick phase, when the tip position 𝑥 is approximately constant. 

 

2.1.3.2 Surface potential 

The periodically arranged atoms of the surface create an additional potential, which is 

periodic in the relevant coordinate 𝑥. This potential is usually modeled with a 

trigonometric function of periodicity 𝑎 and the corrugation depth 𝑈0 [San01]: 𝑈𝑆(𝑥) = − 𝑈02 cos 2𝜋𝑥𝑎  .       (2.6) 

 

In mechanical equilibrium, the position of the tip at a given time 𝑡 is determined by 

setting the first derivative of 𝑈(𝑥, 𝑋) = 𝑈𝑆(𝑥) + 𝑈𝑒𝑙(𝑋 − 𝑥)       (2.7) 

with respect to 𝑥, 𝜕𝑈(𝑥,𝑡)𝜕𝑥 =  𝜋𝑈0𝑎 sin 2𝜋𝑥𝑎 + 𝜅(𝑥 − 𝑋)      (2.8) 

to zero. In order for this equation to have more than one solution, the maximal curvature 

of the surface potential must be greater than the effective stiffness 𝜅. The maximal value 

of the second derivative of the substrate potential is max𝑥 𝑑2𝑈𝑆𝑑𝑥2 = 2𝜋2𝑈0𝑎2  ,        (2.9) 

and thus the stick-slip instability occurs only when the so-called Prandtl-Tomlinson 

parameter [Soc04, Med06] exceeds 1, 𝛾𝑃𝑇 = 2𝜋2𝑈0𝜅𝑎2 > 1 .        (2.10) 
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Otherwise, the total potential of the tip is monostable, making steady sliding the only 

possible regime of motion. 

 

The tip becomes unstable and gets ready to move to the next minimum when the second 

derivative of the total potential vanishes, 
𝜕2𝑈𝑡𝑜𝑡𝜕𝑥2 = 0, giving the critical tip position 𝑥𝑐 =  𝑎2𝜋 cos−1(𝛾𝑃𝑇−1) .        (2.11) 

As a result of a slip, the elastic energy is transformed into the tip’s kinetic energy, which 

gets dissipated into thermal energy, involving the irreversible process of friction.  

 

Depending on the value of 𝛾𝑃𝑇, the total potential may have one, two, three, etc. minima, 

with the number of minima increasing with increasing 𝛾𝑃𝑇. In a multistable potential, the 

tip may jump over a multiple number of lattice spacing [Nak05]. Multiple jumps have 

been observed experimentally [Mat87, Med06, Rot10] and were interpreted as an 

indication of the tip inertia effect. An alternative interpretation [Evs13] suggests that 

these multiple jumps are actually very short-lived stick phases, whose duration is shorter 

than the experimental temporal resolution. 

 

2.1.4 Inertia, dissipation, and noise 

In order to describe energy dissipation during the slip events, we should complement the 

model by including the inertia and dissipative terms in the cantilever equation of motion. 

In the inertial term, 𝑚�̈�, the effective mass parameter 𝑚 is associated with the torsional 

deformations of the tip. The dissipative force can be described as a viscous force, which 

is proportional to the tip’s velocity relative to the surface, with the proportionality 

constant being the surface damping coefficient: 𝑓𝑆𝑑𝑖𝑠𝑠 = −𝜂𝑆�̇� .        (2.12) 

The minus sign implies that the force is directed against the velocity, ultimately leading to 

the tip’s slowing down.  
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The tip’s relative motion with respect to the cantilever base leads to an additional energy 

dissipation mechanism, with the respective dissipative force being proportional to the 

velocity of the tip relative to the cantilever base [Rei04, Rei05]: 𝑓𝐶𝑑𝑖𝑠𝑠 = −𝜂𝐶(�̇� − 𝑉)        (2.13) 

with the proportionality coefficient 𝜂𝐶  being the cantilever damping constant. 

 

The last two forces are sometimes referred to as “viscous friction” in view of their formal 

analogy with viscous friction in liquids, but this analogy is actually poor [Kry14]. Rather, 

the reason for the linear relation between the damping force and the tip velocity �̇� can be 

found in linear response arguments [Evs10, Evs19]. 

 

In addition to dissipation, the irrelevant fast degrees of freedom produce a random force 𝜉(𝑡), or noise, that affects the cantilever’s dynamics. This random force has zero mean 

value: 〈𝜉(𝑡)〉 = 0 .         (2.14) 

Because the dynamics of the irrelevant degrees of freedom is many orders of magnitude 

faster than the tip’s dynamics, we can set the autocorrelation time of this noise to zero and 

approximate its autocorrelation with Dirac delta function. Hence, the noise 

autocorrelation function is 〈𝜉(𝑡)𝜉(𝑡′)〉 = 2(𝜂𝐶 + 𝜂𝑆)𝑘𝐵𝑇𝛿(𝑡 − 𝑡′) .     (2.15) 

Here, 𝑘𝐵𝑇 is the thermal energy. The factor in front of the delta function is uniquely 

determined by the fluctuation-dissipation theorem of the second kind [Kub66]. Basically, 

the noise autocorrelation function is of the form (2.15) in order to ensure that the tip’s 

equilibrium probability distribution becomes equation of Maxwell-Boltzmann type in the 

absence of pulling [Evs10]. 

 

Collecting all forces together, we write the Langevin equation for the tip: 𝑚�̈� = − 𝑑𝑈𝑑𝑥  – 𝜂𝑆�̇� − 𝜂𝐶(𝑥 − 𝑉) − 𝜅(𝑥 − 𝑋) + 𝜉(t)  .   (2.16) 
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The 1dPT model has been studied extensively in a number of publications [San01, Rie03, 

Rei04, Rei05, Nak05, Med06, Tsh09, Evs13]. Various extensions of this basic model 

exist to include the possibility of multiple contacts [Mai05], tip lateral motion in the 

direction perpendicular to the pulling velocity [Ste09, Rot10], or in the normal direction 

[Tsh05, Hol08]. A three-dimensional treatment is presented in [Wie11].  

 

2.2 Three-dimensional Prandtl-Tomlinson (3dPT) model 

2.2.1 Equations of motion 

Here, we generalize the model of [Wie11] to incorporate the effects that are overlooked 

by it. As before, we consider the cantilever torsional deformation as the slow coordinate 

described by the position 𝑟 = (𝑥, 𝑦, 𝑧) that the tip apex would have if the tip were 

absolutely rigid. We denote as �⃗⃗� = (𝑋, 𝑌, 𝑍) that position of the cantilever tip at which 

the elastic energy is minimal. Because it is completely determined by the location of the 

cantilever base, we will refer to �⃗⃗� as “the cantilever base position”, keeping in mind that 

the actual location of the cantilever base is offset from �⃗⃗� in the vertical direction by the 

length of the cantilever tip. 

 

The motion of the tip in the normal z- or the lateral x- or y-direction is associated with 

different deformation patterns of the cantilever. To each deformation pattern corresponds 

its own portion of the cantilever that is actually moving. Furthermore, an external force 

applied to the tip in, say, the 𝑥-direction may, in principle, result in its acceleration in the 𝑦- or 𝑧-direction. Hence, the cantilever mass should be a tensor 𝒎. It must be positive 

definite, because the kinetic energy 
12 �⃗�𝑇𝒎�⃗� of the tip is positive. 

 

Next, the motion of the tip in, say, 𝑥-direction may result in an onset of the dissipative 

force in the 𝑦- or 𝑧-direction. Hence, the damping coefficient of the cantilever and the 

substrate should become tensors 𝜼𝑆 and 𝜼𝐶. Because the power produced by the 
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dissipative force is negative, we must have �⃗�𝑇𝜼𝐶,𝑆�⃗� > 0 for any velocity �⃗�, i.e. the 

dissipation tensors must be positive definite. 

 

Finally, the elastic coefficient 𝜿 should become a tensor as well. It must be positive 

definite, because the elastic energy 
12 (𝑟 − �⃗⃗�)𝑇𝜿(𝑟 − �⃗⃗�) > 0 for all deformations 𝑟 − �⃗⃗�. 

 

The equations of motion of the tip read in the most general form: 𝒎�̈� = − 𝜕𝑈𝜕𝑟 − 𝜿(𝑟 − �⃗⃗�) − 𝜼𝑆�̇� − 𝜼𝐶 (�̇� − �̇⃗⃗�) + 𝜉(𝑟, 𝑡) .   (2.17) 

Due to the fluctuation-dissipation theorem of the second kind, the noise correlation 

function is 〈𝜉(𝑟, 𝑡)𝜉𝑇(𝑟′, 𝑡′)〉 = 2𝑘𝐵𝑇 𝜼 𝛿(𝑡 − 𝑡′) ,  𝜼 =  𝜼𝑆 + 𝜼𝐶  ,   (2.18) 

where the superscript T indicates transposition. 

 

2.2.2 Elastic energy and substrate potential 

2.2.2.1. Elastic energy 

The elastic energy stored in the cantilever is given by a quadratic form 𝑈𝑒𝑙(𝑟, �⃗⃗�) = 12 (𝑟 − �⃗⃗�)𝑇𝜿(𝑟 − �⃗⃗�) .      (2.19) 

Here, the superscript T means vector transposition, and 𝜿 is a 3 × 3 matrix of elastic 

constants. To keep things simple, we assume that it is diagonal with the coefficients 𝜅𝑥𝑥 = 𝜅𝑦𝑦 = 𝜅𝐿 being the lateral stiffness and 𝜅𝑧𝑧 = 𝜅𝑁 being the normal stiffness: 

𝜿 = (𝜅𝐿 0 00 𝜅𝐿 00 0 𝜅𝑁) .        (2.20) 

The lateral friction force is then given by the projection of the elastic force on the 

direction of pulling: 𝑓𝐿(𝑡) = − �⃗⃗⃗�𝑇𝜿(𝑟−�⃗⃗⃗�𝑡)|�⃗⃗⃗�|  ,        (2.21) 
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where the pulling velocity �⃗⃗� has zero 𝑧-component, as pulling proceeds in the 𝑥𝑦-plane. 

The friction force is found as the time average < 𝑓𝐿 >= lim𝑡→∞ 1𝑡 ∫ 𝑑𝑡′𝑓𝐿(𝑡′)∞0         (2.22) 

And the normal load is found as the mean value 𝑓𝑁 = 𝜅𝑁〈(𝑧 − 𝑍)〉 = lim𝑡→∞ 𝜅𝑁𝑡 ∫ 𝑑𝑡′(𝑧(𝑡′) − 𝑍)∞0  .    (2.23) 

 

2.2.2.2. Substrate potential 

The potential of interaction between the tip and the substrate must be periodic in the 

lateral coordinates 𝑥 and 𝑦. Hence, it can be decomposed into a Fourier series with the 

Fourier coefficients depending on the normal coordinate 𝑧. We assume the following 

functional form of this potential: 𝑈𝑆(𝑥, 𝑦, 𝑧) = 𝑈0(𝑧) + 𝑈1(𝑧)𝜓(𝑥, 𝑦) .     (2.24) 

Here, 𝑈0(𝑧) is the tip-substrate interaction energy averaged with respect to the lateral 

coordinates 𝑥 and 𝑦.  

 

Assuming for simplicity that the substrate potential is periodic in 𝑥 and 𝑦 with the same 

periodicity 𝑎, the “egg-filler function” 𝜓(𝑥, 𝑦) is such that  𝜓(𝑥 + 𝑙𝑎, 𝑦 + 𝑘𝑎) = 𝜓(𝑥, 𝑦) ,      (2.25) 

with integer 𝑙 and 𝑘. Without loss of generality, we impose the requirement that 𝜓(𝑥, 𝑦) = 0 whenever (𝑥, 𝑦) = (𝑙𝑎, 𝑘𝑎) ;      𝜓(𝑥, 𝑦) = 1 whenever (𝑥, 𝑦) = ((𝑙 + 1/2)𝑎, (𝑘 + 1/2)𝑎) .   (2.26) 

We assume that 𝜓(𝑥, 𝑦) = 12 − 14 (cos (2𝜋𝑥𝑎 ) +cos (2𝜋𝑦𝑎 )) .     (2.27) 

A sample plot of the egg-filler function is shown in Figure 2.4 
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Figure 2.4: The 3d (left) and contour plot (right) representation of the egg-filler function 𝜓(𝑥, 𝑦) from Eq. (11).  

 

Returning to the first term, 𝑈0(𝑧), in Eq. (2.24), it must have an attractive and a repulsive 

part. The attractive contribution arises due to the van der Waals interaction between the 

tip and the semi-infinite substrate. After integrating the van der Waals potential 𝑈𝑣𝑑𝑊 ∝−1/𝑟6 over the tip and the substrate volume, the result is that 𝑈0(𝑧) ∝ − 1𝑧 at large 

distances [Arg96]. 

 

At short distances, the potential 𝑈0(𝑧) must be repulsive because of the elastic 

deformation of the substrate and the cantilever tip apex. The exact functional form of the 

repulsive part of the potential energy is unknown, so we choose it at short distances to 

decay with 𝑧 as 1/𝑧𝛽 with the exponent 𝛽 > 1. Combining the two asymptotic forms, we 

obtain the potential of Mie type with the equilibrium separation 𝜎 and the potential depth 𝜀: 𝑈0(𝑧) = 𝜀𝛽−1 [(𝜎𝑧)𝛽 − 𝛽 𝜎𝑧] .       (2.28) 

It is shown in Figure 2.5 
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Keeping in mind that corrugation of the potential 𝑈(𝑥, 𝑦, 𝑧) stems from the same origin as 

its repulsive part, namely, interaction between the tip and the substrate atoms in its 

immediate vicinity, we choose the same functional form for the corrugation depth 𝑈1(𝑧) 

as the repulsive part of 𝑈0(𝑧), namely 

 

Figure 2.5: The Mie potential used to model the uncorrugated part of the tip-surface 

interaction 𝑈0(𝑧) with 𝛽 = 6.  

 𝑈1(𝑧) = −ℎ 𝜀𝛽−1 (𝜎𝑧)𝛽
 .       (2.29) 

The magnitude of the corrugation parameter ℎ cannot exceed 1, because otherwise the 

total potential 𝑈(𝑟) = 𝜀𝛽−1 [(1 − ℎ [12 − 14 (cos (2𝜋𝑥𝑎 ) +cos (2𝜋𝑦𝑎 ))]) (𝜎𝑧)𝛽 − 𝛽 𝜎𝑧]  (2.30) 

will diverge to −∞ rather than to +∞ as 𝑧 → 0 at lateral coordinates (𝑥, 𝑦) equal to 

integer multiples of 𝑎. 
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2.2.3 Dissipative force and mass 

To keep the number of parameters minimal, we take the mass tensor in Eq. (2.17) to be 

diagonal: 𝒎 = 𝑚𝑰 .         (2.31) 

 

As in the 1dPT case, the dissipative force on the tip has two contributions: one arises due 

to the cantilever degrees of freedom and is proportional to the tip velocity relative to the 

cantilever base, and the other stems from the substrate atoms in contact with the tip apex 

and is proportional to the tip velocity relative to the substrate. 

 

Because we now allow for the three-dimensional motion of the tip, the cantilever 

damping force depends on all velocity components and is written, in the most general 

form, as 𝑓𝐶𝑑𝑖𝑠𝑠 = −𝜼𝐶 (�̇� − �̇⃗⃗�) ,       (2.31) 

where 𝜼𝐶 is the dissipation coefficient matrix of the cantilever. Similarly, the degrees of 

freedom of the substrate give rise to the dissipative force 𝑓𝐶𝑑𝑖𝑠𝑠 = −𝜼𝑆�̇� .        (2.32) 

For the sake of simplicity, we assume both dissipation tensors to be diagonal: 𝜼𝐶 = 𝜂𝐶𝑰 ,  𝜼𝑆 = 𝜂𝑆𝑰 ,       (2.33) 

where 𝑰 is a unit tensor. 

 

While the cantilever dissipation matrix has constant entries, the substrate counterpart 

should depend on the distance 𝑧 from the tip to the substrate, and possibly on the lateral 

coordinates 𝑥 and 𝑦. For the sake of model simplicity, we neglect its 𝑥- and 𝑦-

dependence. We assume the functional form 𝜂𝑆(𝑧) = 𝜂𝑆0 (𝜎𝑧)𝛾
 ,        (2.33) 

where 𝜂𝑆0 is a constant and the exponent 𝛾 is a model parameter. We anticipate that 

another reasonable choice of this function should not produce any qualitatively different 
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result, as long as 𝜂𝑆(𝑧) decreases with 𝑧. We also note that, depending on the normal 

load, the tip dynamics may be weakly damped or overdamped. 

 

The two main differences between our model and the one from [Wie11] are as follows:  

(i) Our model takes into account both dissipation mechanisms, one due to the 

cantilever and the other due to the substrate, whereas in [Wie11], only the 

latter dissipation channel is taken into account; 

(ii) More importantly, the substrate damping coefficient depends on the distance 

to the substrate. In contrast, in [Wie11], it is taken to be fixed at the critical 

damping value 𝜂 = 2√𝑚𝜅. It remains unclear why the cantilever elastic 

response (stiffness 𝜅) should affect the dissipation of energy into the substrate 

degrees of freedom, as the two processes are unrelated. Even worse, this 

choice is unphysical, as it predicts dissipation of cantilever energy into the 

substrate even when the cantilever is far away from the substrate. In our 

model, on the other hand, the tip damping coefficient assumes the value 𝜂𝑆(𝑧) 

close to the substrate (small 𝑧) and 𝜂𝐶  far away from it (large 𝑧). 
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Chapter III  

Numerical integration of the Langevin equation with a 

position-dependent damping coefficient 

 

3.1 Formulation of the problem 

3.1.1 Langevin equation 

We need to numerically simulate the stochastic equations of motion for a particle of mass 

tensor 𝒎 under the action of a position- and time-dependent force 𝑓(𝑟, 𝑡), subject to 

position-dependent viscous damping with the damping coefficient 𝜼(𝑟) and thermal noise 𝜉(𝑟, 𝑡): 𝒎�̇⃗� = 𝑓(𝑟, 𝑡) − 𝜼(𝑟)�⃗� + 𝜉(𝑟, 𝑡) ,  �̇� = �⃗�  .     (3.1) 

The second fluctuation-dissipation theorem [Kub66] dictates that the dissipation tensor 

should be related to the noise autocorrelation as 
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〈𝜉(𝑟(𝑡), 𝑡)𝜉𝑇(𝑟(𝑡′), 𝑡′)〉 = 2𝑇 𝜼(𝑟(𝑡)) 𝛿(𝑡 − 𝑡′) ,     (3.2) 

where the superscript “T” indicates vector transpose. 

In numerical integration of Eq. (3.1), the time is discretized into small steps,  𝑡 → 𝑡𝑛 = 𝑛Δ𝑡,         (3.3) 

and the time derivatives are approximated by the finite-difference expressions like 

                   �̇⃗� → �⃗⃗�𝑛+1−�⃗⃗�𝑛Δ𝑡  ,  �̇� → 𝑟𝑛+1−𝑟𝑛Δ𝑡 .          (3.4) 

Such approximations involve the values of the variables on the next time step, which can 

be found from the values on the previous step using the finite-difference version of the 

equations of motion (3.1). In this way, the solution of the equations of motion is 

propagated numerically by any desired time interval in small steps. 

Perhaps, the most popular algorithms to integrate Eq. (3.1) numerically in the 

nanofriction simulations [San01, Nak05, Rot10] are Ermak algorithm [Erm80, All91], 

and its descendants, such as the Ricci-Ciccotti algorithm [Ric03]. The approach that we 

are trying to develop in order to numerically integrate Eq. (3.1) should meet certain 

requirements that are specific to the problem that we are dealing with; both the Ermak 

and Ricci-Ciccotti approaches do not meet those specifications, as will be explained in the 

next section. 

 

3.1.2 Applicability in the overdamped limit 

The challenging part of our task is that the components of the position-dependent 

damping tensor 𝜼(𝑟) change in a broad range, from almost zero to arbitrarily large values, 

depending on the distance between the tip and the surface. Hence, our numerical 

procedure should be applicable both for the weakly damped dynamics and to the 

overdamped limit of (3.1), formally obtained by setting the mass of the particle to zero, 

i.e. 𝜼(𝑟)�̇� = 𝑓(𝑟, 𝑡) + 𝜉(𝑟, 𝑡) .       (3.5) 

Physically, the overdamped limit does not mean that our particle is massless (a massless 

particle should move with the speed of light). Rather, it simply means that the damping 

term in Eq. (3.1) dominates over the inertia term in the particle’s dynamics. 



25 

 

 

Both Ermak [Erm80] and Ricci-Ciccotti [Ric03] algorithms have been derived for the 

special case of position-independent damping coefficient, 𝜂(𝑥) = 𝜂. They differ in how 

the velocity gets updated on each time step, and how noise is included. In the noise-free 

case (𝑇 = 0), both algorithm update the position according to the same second-order 

expression familiar from kinematics: 𝑟𝑛+1 = 𝑟𝑛 + �⃗�𝑛Δ𝑡 + 𝑓𝑛2𝑚 Δ𝑡2 ,       (3.8) 

where 𝑓𝑛 = 𝑓(𝑟𝑛). Because the last term diverges in the overdamped limit 𝑚 → 0, we 

cannot apply these standard algorithms and must work out a different numerical method.  

 

The second difficulty with the algorithms [Erm80, Ric03] is that they were derived for 

one-dimensional motion, in which case the dissipation and mass tensors 𝜼 and 𝒎 are 

scalars. Updating the velocities according to [Erm80, Ric03] involves multiplication of 

the previous velocity values with a complicated exponential factor: 𝑣𝑛+1 = 𝑒−𝜂Δ𝑡/𝑚𝑣𝑛 

plus force-dependent terms, which also involve 𝑒−𝜂Δ𝑡/𝑚. It is clear that calculation of the 

exponential factor may be computationally challenging if both 𝒎 and 𝜼 are tensors. 

 

3.1.3 Second-order accuracy 

The time-step size Δ𝑡 should be sufficiently small in order to minimize the truncation 

error associated with the replacement (3.4) of the time derivatives with the finite-

difference expressions. On the other hand, the time step cannot be made arbitrarily small. 

The small time step Δ𝑡 means that more steps are needed to propagate the solution by a 

finite time, implying two disadvantages. First, it is the longer overall computational time. 

Second, it also means accumulation of the numerical round-off error, which is an 

inevitable side effect of using the finite-precision arithmetic to represent real numbers in 

computer simulations.  

Hence, we require that the truncation error of our numerical procedure should scale with 

the time-step size as 𝒪(Δ𝑡2), i.e. the algorithm should be second-order accurate. This 
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would allow using a longer time step Δ𝑡, implying shorter computational time and better 

round-off accuracy. 

 

As an illustration, a second-order accurate finite-difference approximation for the value of 

some function 𝑓(𝑥) at a point 𝑥 + Δ𝑥 is given by the Taylor series truncated after the 

second term, 𝑓(𝑥 + Δ𝑥) = 𝑓(𝑥) + 𝑓′(𝑥)Δ𝑥 + 12 𝑓′′(𝑥)Δ𝑥2. The finite-difference 

approximation for the derivative at a point 𝑥, 𝑓′(𝑥) = 𝑓(𝑥+Δ𝑥)−𝑓(𝑥)Δ𝑥  [cf. Eq. (3.4)] is only 

first-order accurate, because the truncation error of this expression is 
12 𝑓′′(𝑥)Δ𝑥. The 

conclusion is that the approximations (3.4) are not good approximations for the time 

derivatives �̇⃗�𝑛 and �̇�𝑛 on the time step 𝑛. 

 

3.1.4 Stability and numerical test 

3.1.4.1 The test system 

Before applying our numerical procedure to nanofriction simulation, we need to test it on 

a simpler system whose dynamics is well understood. Such a system is a one-dimensional 

noise-free damped harmonic oscillator, 𝑚�̇� = −𝜅𝑥 − 𝜂𝑣 ,  �̇� = 𝑣 .      (3.9) 

The solution of these equations depends on the relation between the natural frequency 𝜔0 

in the absence of damping and the decay constant 𝛾, 𝜔0 = √ 𝜅𝑚, 𝛾 = 𝜂2𝑚 .        (3.10) 

In the weakly damped case, 𝛾 < 𝜔0, the particle performs damped oscillations with the 

frequency 𝜔 = √𝜔02 − 𝛾2.        (3.11) 

Denoting the initial position and velocity at 𝑡 = 0 as 𝑥𝑖, 𝑣𝑖, the oscillator’s position at 𝑡 > 0 is given by 𝑥𝑒𝑥𝑎𝑐𝑡(𝑡) = (𝑥𝑖 cos(𝜔𝑡) + 𝑣𝑖+𝛾𝑥𝑖𝜔 sin (𝜔𝑡)) 𝑒−𝛾𝑡 ,     
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𝑣𝑒𝑥𝑎𝑐𝑡(𝑡) = (𝑣𝑖 cos(𝜔𝑡) − 𝛾𝑣𝑖+𝜔02𝑥𝑖𝜔 sin (𝜔𝑡)) 𝑒−𝛾𝑡    (3.12) 

 

In the opposite strongly damped regime,𝛾 ≥ 𝜔0, the particle’s coordinate decays to zero 

according to the two-exponential law  𝑥𝑒𝑥𝑎𝑐𝑡(𝑡) = 𝐴+𝑒−𝜆+𝑡 + 𝐴−𝑒−𝜆−𝑡      (3.13) 

with the decay constants and the exponential prefactors given by 𝜆± = 𝛾 ± √𝛾2 − 𝜔02 ,  𝐴± = 𝜆±𝑥𝑖+𝑣𝑖𝜆∓−𝜆±  .     (3.14) 

 

3.1.4.2 Numerical stability 

Because the test system is linear, the numerical procedure used to simulate it is linear as 

well. Combining the particle’s velocity and position on the 𝑛th time step into a single state 

vector  𝑦𝑛 = (𝑣𝑛, 𝑥𝑛) ,        (3.15) 

the next value of the state vector is obtained as 𝑦𝑛+1 = 𝑱 𝑦𝑛 ,         (3.16) 

where the 2 × 2 matrix 𝑱 depends on the numerical procedure employed to simulate (3.9) 

Let 𝑒𝑛 be the round-off error vector, i.e. the difference between the approximate solution 

obtained by propagating this numerical equation by 𝑛 steps and the result that would have 

been obtained if the computer arithmetic had been infinitely precise, i.e. if the numbers 

had been represented by infinitely many significant figures. In view of the linearity of 

(3.16), the error propagates according to the same law, 𝑒𝑛+1 = 𝑱 𝑒𝑛 .         (3.17) 

Now, the 2 × 2 matrix 𝑱 has two eigenvalues, which we denote as 𝜇1 and 𝜇2, and two 

mutually orthogonal eigenvectors, denoted as 𝑢1 and 𝑢2, such that 𝑱 𝑢𝑖 = 𝜇𝑖𝑢𝑖  and 𝑢𝑖 ∙ 𝑢𝑗 = 𝛿𝑖𝑗.      (3.18)  

Hence, the error vector on the 𝑛th step is related to the initial error 𝑒0 by 𝑒𝑛 =∑ 𝜇𝑖𝑛2𝑖=1 (𝑢𝑖𝑇𝑒0) 𝑢𝑖, as can be verified by direct substitution. The conclusion is that the 

error will grow exponentially with each time step if the matrix 𝑱 has at least one 
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eigenvalue whose real part exceeds unity in magnitude. Hence, the stability condition of a 

numerical procedure is: |𝑅𝑒(𝜇𝑖)| < 1 for all 𝑖 .       (3.19) 

 

For notational simplicity, in this chapter we will discuss the one-dimensional version of 

the equations of motion (3.1), namely, 𝑚�̇� = 𝑓(𝑥, 𝑡) − 𝜂(𝑥)𝑣 + √2𝜂(𝑥)𝑇𝜉(𝑡) ,  �̇� = 𝑣  ,   (3.20) 

where the white-noise Gaussian process 𝜉(𝑡) has the properties 〈𝜉(𝑡)〉 = 0 and 〈𝜉(𝑡)𝜉(𝑡′)〉 = 𝛿(𝑡 − 𝑡′). The algorithm obtained for the one-dimensional dynamics (3.20) 

will then be generalized to higher dimensions in the end. 

 

3.2 Leapfrog algorithm 

3.2.1 Undamped noise-free particle 

Consider the one-dimensional motion of a particle of mass 𝑚 under the action of a 

position- and time-dependent force 𝑓(𝑥, 𝑡) in the absence of noise and dissipation: 

 𝑚�̇� = 𝑓(𝑥, 𝑡) ,  �̇� = 𝑣 .      (3.21) 

A standard method to simulate these equations numerically is to use the leap-frog 

algorithm, see chap. 4.3.1 of [Fre96]. We first observe that the second ratio (3.1.4) is a 

second-order approximation for the velocity 𝑣𝑛+1/2 at the moment of time 𝑡𝑛+1/2 = (𝑛 +1/2)Δ𝑡. Indeed, considering the Taylor expansion of the coordinate, around the time 𝑡𝑛+1/2, we have: 𝑥𝑛+1 = 𝑥𝑛+1/2 + 𝑣𝑛+1/2 𝛥𝑡2 + 12 �̇�𝑛+1/2 Δ𝑡24 + 16 �̈�𝑛+1/2 Δ𝑡38 + ⋯ ,  (3.22) 𝑥𝑛 = 𝑥𝑛+1/2 − 𝑣𝑛+1/2 𝛥𝑡2 + 12 �̇�𝑛+1/2 Δ𝑡24 − 16 �̈�𝑛+1/2 Δ𝑡38 + ⋯  .  (3.23) 

Subtracting the two equations from each other and dividing by Δ𝑡, we find: 𝑣𝑛+1/2 = 𝑥𝑛+1−𝑥𝑛Δ𝑡 − �̈�𝑛+12 Δ𝑡224 + ⋯ = 𝑥𝑛+1−𝑥𝑛Δ𝑡 + 𝒪(Δ𝑡2).   (3.24) 

The leading-order term neglected in the truncated expression (3.24) is of the second 

order.  
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A similar reasoning applies to the acceleration 𝑎 = �̇�, giving for 𝑎𝑛 = 1𝑚 𝑓𝑛 the expression 𝑎𝑛 = 𝑣𝑛+1/2−𝑣𝑛−1/2Δ𝑡 − �̈�𝑛 Δ𝑡224 + ⋯ .      (3.25) 

We thus arrive at the second-order accurate discretized version of (3.21) 𝑣𝑛+1/2−𝑣𝑛−1/2Δ𝑡 = 𝑓𝑛𝑚 + 𝒪(Δ𝑡2) ,  
𝑥𝑛+1−𝑥𝑛Δ𝑡 = 𝑣𝑛+1/2 + 𝒪(Δ𝑡2) .  (3.26) 

 

In the leap-frog algorithm, the velocity and coordinate are updated sequentially. That is, 

the new velocity value is found first according to  𝑣𝑛+1/2 = 𝑣𝑛−1/2 + 𝑓𝑛 Δ𝑡𝑚 + 𝒪(Δ𝑡3) ,       (3.27) 

and then the coordinate gets updated based on this new velocity value: 𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1/2Δ𝑡 + 𝒪(Δ𝑡3) .      (3.28) 

Leapfrog is second-order accurate because, propagation of these discretized equations by 

a finite time 𝑡 consists of 𝑡/Δ𝑡 time steps; hence, the truncation error scales as     𝒪(Δ𝑡3)𝑡/Δ𝑡~𝑂(Δ𝑡2).  

 

3.2.2 Leapfrog algorithm for a damped particle 

Now, we attempt to generalize the leapfrog approach by including the damping effect into 

the equations of motion (3.21): 𝑚�̇� = 𝑓(𝑥, 𝑡) − 𝜂(𝑥)𝑣,  �̇� = 𝑣 .      (3.29) 

To preserve the second-order accuracy of the leapfrog algorithm (3.27), (3.28), the force 

in the right-hand side of the first equation (3.29) must be taken on the 𝑛th time step, 

whereas the acceleration should be approximated as (𝑣𝑛+1/2 − 𝑣𝑛−1/2)/Δ𝑡. The problem 

is that the force depends on the velocity via the dissipation term, −𝜂(𝑥)𝑣, which should 

change to −𝜂𝑛𝑣𝑛 in a finite-difference scheme, where 𝜂𝑛 = 𝜂(𝑥𝑛). But in the leapfrog 

algorithm, the velocity is evaluated on the half-integer time steps.  
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The obvious way around this difficulty is to take an average between 𝑣𝑛+1/2 and 𝑣𝑛−1/2 

in the dissipation term −𝜂𝑛𝑣𝑛. Indeed, let us express the velocities 𝑣𝑛+1/2 and 𝑣𝑛−1/2 as 

the Taylor series: 𝑣𝑛±1/2 = 𝑣𝑛 ± �̇�𝑛 Δ𝑡2 + 12 �̈�𝑛 Δ𝑡24 + ⋯ .      (3.30) 

Taking the arithmetic average between 𝑣𝑛+1/2 and 𝑣𝑛−1/2 we obtain a second-order 

accurate approximation: 𝑣𝑛 = 𝑣𝑛−1/2+𝑣𝑛+1/22 + ⋯ .       (3.31) 

The error of this approximation is −�̈�𝑛Δ𝑡2/8 in the leading order. Using this expression 

in the finite-difference representation of (3.29), we obtain: 𝑣𝑛+1/2−𝑣𝑛−1/2Δ𝑡 = 𝑓𝑛𝑚 − 𝜂𝑛 𝑣𝑛−1/2+𝑣𝑛+1/22 + 𝒪(Δ𝑡2) ,       𝑥𝑛+1−𝑥𝑛Δ𝑡 = 𝑣𝑛+1/2 + 𝒪(Δ𝑡2) .       (3.32) 

Solving the first equation for 𝑣𝑛+1/2, we derive the leapfrog algorithm for a damped 

particle in the absence of noise: 𝑣𝑛+1/2 = 2𝑚−𝜂𝑛Δ𝑡2𝑚+𝜂𝑛Δ𝑡 𝑣𝑛−1/2 + 2Δ𝑡2𝑚+𝜂𝑛Δ𝑡 𝑓𝑛 + 𝒪(Δ𝑡3) ,       𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1/2Δ𝑡 + 𝒪(Δ𝑡3) .      (3.33) 

 

The pleasant feature of the algorithm (3.33) is that it remains second-order accurate in the 

overdamped limit. Indeed, setting 𝑚 = 0, we have: 𝑣𝑛+1/2 = −𝑣𝑛−1/2 + 2𝜂𝑛 𝑓𝑛 + 𝒪(Δ𝑡3) ,        𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1/2Δ𝑡 + 𝒪(Δ𝑡3) .      (3.34) 

Combining both expressions and using the fact that 𝑣𝑛−1/2 = 𝑥𝑛−𝑥𝑛−1Δ𝑡 , we have 𝑥𝑛+1 = 𝑥𝑛−1 + 2Δ𝑡𝜂𝑛 𝑓𝑛 + 𝒪(Δ𝑡3) .      (3.35) 

This is a second-order accurate finite-difference representation of an overdamped 

equation of motion 𝜂(𝑥)�̇� = 𝑓(𝑥, 𝑡), obtained by approximating the time derivative at the 𝑛th step by �̇�𝑛 = 𝑥𝑛+1−𝑥𝑛−12∆𝑡 . 
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3.2.3 Stability test 

Let us now apply our generalized leapfrog formulas (3.33) to the test system (3.9) from 

Section 3.1.4. In the zero-damping limit, it becomes the standard leapfrog scheme 𝑣𝑛+1/2 = 𝑣𝑛−1/2 − 𝜅Δ𝑡𝑚 𝑥𝑛 ,         𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1/2Δ𝑡 = 𝑥𝑛 + (𝑣𝑛−1/2 − 𝜅Δ𝑡𝑚 𝑥𝑛) Δ𝑡 ,   (3.36) 

which can be written in the matrix form (𝑣𝑛+1/2𝑥𝑛+1 ) = 𝑱 (𝑣𝑛−1/2𝑥𝑛−1 ) = ( 1 −𝜅Δ𝑡/𝑚Δ𝑡 1 − 𝜅Δ𝑡2/𝑚) (𝑣𝑛−1/2𝑥𝑛 ) .   (3.37) 

The eigenvalues of the matrix 𝑱 are found from the secular equation det(𝑱 − 𝜇𝑰) = 0, 

where 𝑰 is a unit matrix. They are: 𝜇1,2 = 1 − 𝜔02Δ𝑡22 ± 𝜔02Δ𝑡22 √1 − 4𝜔02Δ𝑡2 ,     (3.38) 

where 𝜔0 = √𝜅/𝑚 is the natural angular frequency of oscillations (3.10). If the time step 

is small enough, namely, Δ𝑡 < 2/𝜔0 = 𝑇𝑜𝑠𝑐/𝜋 ,       (3.39) 𝑇𝑜𝑠𝑐 = 2𝜋/𝜔0 being the oscillation period, the square root becomes an imaginary number 

and both eigenvalues have the real part satisfying the inequality 0 < 𝑅𝑒(𝜇1,2) < 1 . 

The leapfrog scheme is thus stable in the undamped limit. 

 

Surprisingly, in spite of its second-order accuracy, this algorithm is numerically unstable 

in the overdamped limit. Indeed, with 𝑓𝑛 = −𝜅𝑥𝑛, equations (3.34) can be written as 𝑣𝑛+1/2 = −𝑣𝑛−1/2 − 2𝜅𝜂𝑛 𝑥𝑛 ,          𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1/2Δ𝑡 = 𝑥𝑛 − (𝑣𝑛−1/2 + 2𝜅𝜂𝑛 𝑥𝑛) Δ𝑡 .   (3.40) 

In the matrix form (3.36), this is formulated as (𝑣𝑛+1/2𝑥𝑛+1 ) = 𝑱 (𝑣𝑛−1/2𝑥𝑛−1 ) = ( −1 −2𝜅/𝜂−Δ𝑡 1 − 2𝜅Δ𝑡/𝜂) (𝑣𝑛−1/2𝑥𝑛 ) ,   (3.41) 

and the eigenvalues of 𝑱 are: 
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𝜇1,2 = − 𝜅Δ𝑡𝜂 ± √(𝜅Δ𝑡𝜂 )2 + 1 .       (3.42) 

The eigenvalue with the minus sign in front of the square root is 𝜇2 < −1, i.e. |𝜇2| > 1. 

The approximation (3.32) will therefore break down if damping is high. 

 

 

3.3 The combined algorithms 

3.3.1 LE algorithm: Combining the Leapfrog and Ermak schemes 

The root of the failure of the algorithm (3.30) considered above is in the approximation 

(3.31) for the damping force −𝜂𝑛𝑣𝑛. But the main idea of the leap-frog algorithm from 

section 3.2.1 is still valid. This idea is: 

treat the coordinate 𝑥𝑛 as constant when updating the velocity; 

treat the velocity 𝑣𝑛+1/2 as constant when updating the coordinate. 

This idea was first explicitly formulated in Ermak and Buckholtz numerical treatment of 

the Langevin equation with damping [Erm80]. 

 

Armed with this observation, we consider the equation for velocity (3.29) on the time 

interval (𝑡𝑛−1/2, 𝑡𝑛+1/2) with a constant coordinate 𝑥 = 𝑥𝑛: 𝑚�̇�(𝑡) = 𝑓𝑛 − 𝜂𝑛𝑣(𝑡)        (3.43) 

with the initial condition 𝑣(𝑡𝑛−1/2) = 𝑣𝑛−1/2. The solution reads: 𝑣(𝑡) = 𝑒−𝜂𝑛(𝑡−𝑡𝑛−1/2)/𝑚𝑣𝑛−1/2 + 𝑓𝑛𝜂𝑛 (1 − 𝑒−𝜂𝑛(𝑡−𝑡𝑛−1/2)/𝑚) .  (3.44) 

Setting 𝑡 to 𝑡𝑛+1/2, we obtain the updated velocity, whereas the coordinate gets updated 

according to the same formula (3.34): 𝑣𝑛+1/2 = 𝑒−𝜂𝑛Δ𝑡/𝑚𝑣𝑛−1/2 + 𝑓𝑛𝜂𝑛 (1 − 𝑒−𝜂𝑛Δ𝑡/𝑚) ,       𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1/2Δ𝑡.       (3.45) 

The Ermak-Buckholtz scheme [Erm80] is similar to (3.45) in that it also involves the 

factors like 𝑒−𝜂𝑛Δ𝑡/𝑚. The important difference between [Erm80] and the present 

treatment is that, in Ermak’s scheme, coordinates and velocities are evaluated on the same 
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time step. Therefore, Ermak’s scheme is formally quite different from (3.45). 

Nonetheless, because the idea first proposed in [Erm80] was used to derive (3.45), the 

scheme (3.45) will be referred to as Leapfrog- Ermak (LE) scheme hereafter. 

 

In the limit of zero damping 𝜂 → 0, this scheme reduces to the second-order accurate 

leapfrog scheme (3.27), (3.28). In the opposite limit of overdamped motion 𝑚 → 0, this 

scheme turns into the Euler scheme: 𝑣𝑛+1/2 = 𝑓𝑛𝜂𝑛 ,  𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1/2Δ𝑡 = 𝑥𝑛 + 𝑓𝑛𝜂𝑛 Δ𝑡 ,   (3.46) 

which is only a first-order accurate finite-difference representation of the dynamics 𝜂(𝑥)�̇� = 𝑓(𝑥). 

 

It comes as a slight surprise that the accuracy of the LE scheme (3.45) in the overdamped 

limit is worse than the second-order accuracy of the algorithm (3.35). After all, to obtain 

the second-order expression (3.15), an approximation (3.31) was made for the viscous 

force. On the other hand, this force was treated rigorously to derive the LE scheme (3.45).  

 

This loss of accuracy can be considered as the price paid for the stability of the algorithm 

at high damping. Focusing on the model (3.29) in the overdamped limit 𝑚 → 0, our LE 

scheme reduces to the simple Euler algorithm (3.46), that is, 𝑥𝑛+1 = 𝑥𝑛 (1 − 𝜅𝜂 Δ𝑡). It is 

stable provided that  Δ𝑡 < 𝜂/𝜅.          (3.47) 

In the undamped limit 𝜂 → 0, the LE algorithm (3.45) turns into the standard leapfrog 

scheme, which is both stable (see Section 3.2.3) and second-order accurate (see Section 

3.2.1). 

 

Stability analysis in the general case when both dissipation and inertia are present is 

tedious and is not performed here. But it is intuitively clear that the algorithm should be 

stable in this case provided that the time step is reasonably small. 

 



34 

 

3.3.2 Leapfrog (semi-)implicit (LI) algorithm 

The numerical procedure (3.45) presented above is not the only possible one which turns 

into the standard leapfrog method at zero damping and to Euler method in the 

overdamped limit. A simpler alternative can be found by following the same steps that 

have led us to the leapfrog scheme from Section 3.2.2, which turned out to be unstable in 

the overdamped limit. A simple “trick” to turn it into a stable numerical procedure is to 

use, instead of the second-order accurate approximation (3.31) for the damping term – 𝜂𝑣, 

a first-order accurate combination – 𝜂𝑛𝑣𝑛+1/2. This leads to the finite-difference version 

of Eq. (3.29): 𝑚 𝑣𝑛+1/2−𝑣𝑛−1/2Δ𝑡 = 𝑓𝑛 − 𝜂𝑛𝑣𝑛+1/2 ,         𝑥𝑛+1−𝑥𝑛Δ𝑡 = 𝑣𝑛+1/2 .        (3.48) 

which is first-order accurate, unless the damping term is zero. The right-hand side of the 

first equation depends on the “new” velocity value. A numerical procedure in which the 

new values of the system’s variables are used to update those variables is called implicit 

(see Chapter 16.6 of [Pre99]). Hence, this procedure can be termed leapfrog implicit 

(more precisely, semi-implicit) method. The algorithm is: 𝑣𝑛+1/2 = 𝑚𝑚+𝜂𝑛Δ𝑡 𝑣𝑛−1/2 + Δ𝑡𝑚+𝜂𝑛Δ𝑡 𝑓𝑛 ,        𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1/2Δ𝑡.       (3.49) 

3.3.3 Comparison between the LE and LI procedures 
At a first glance, the LE scheme (3.45), in which the damping term has been treated 

rigorously, should outperform the LI procedure (3.49), in which the damping term was 

approximated as – 𝜂𝑛𝑣𝑛+1/2. To see if this is the case, we simulate the dynamics of a 

simple harmonic oscillator (3.9). Because both algorithms agree with each other in the 

overdamped limit, it makes sense to focus on the case of weak damping (3.12). 

Consequently, we take 𝑚 = 1, 𝜅 = 1, and 𝜂 = 0.1. 

In the simulations presented below, the initial coordinate value was set to 𝑥𝑖 = 0 and the 

initial velocity 𝑣𝑖 = 1. The time step was set to Δ𝑡 = 0.01. Correspondingly, the starting 

position was 𝑥0 = 𝑥𝑖 at the moment 𝑡0 = 0. Since in both LI and LE methods the velocity 
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is evaluated at half-integer time steps, the initial velocity was set to 𝑣1/2 = 𝑣𝑒𝑥𝑎𝑐𝑡(Δ𝑡/2), 

where the exact velocity expression is provided by the second equation (3.12). 

To compare between the LI and LE methods, we look at the behavior of the energy,  𝐸(𝑡) = 𝜅𝑥2(𝑡)2 + 𝑚𝑣2(𝑡)2        (3.50) 

The exact energy is obtained with the help of Eq. (3.12). The numerical counterpart on 

the time step 𝑡𝑛 was determined as 𝐸𝑛 = 𝜅𝑥𝑛22 + 𝑚2 (𝑣𝑛−1/2+𝑣𝑛+1/22 )2
 .      (3.51) 

Presented in Figure 3.1 is the error in the energy determination according to the LE and 

LI schemes, defined as |𝐸𝑛 − 𝐸𝑒𝑥𝑎𝑐𝑡(𝑡𝑛)|. It is obvious from Figure 3.1 that both methods 

result in very similar energy values, deviating from the exact energy by about 1%. Taking 

smaller time step improves the accuracy of such calculations. 

 

Figure 3.1: Numerical error in the energy determined using the LE (red solid line) and LI 

(black dashed line) algorithms for the system described in Section 3.3.3 The blue dotted 

line shows the temporal evolution of the oscillator’s energy. For the ease of comparison, 

the energy error is magnified by a factor of 100. 
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We have performed extensive simulations for other parameter values and initial 

conditions, with the conclusion that the leapfrog-Ermak algorithm does not offer any 

accuracy improvement as compared to the leapfrog-implicit algorithm. 

 

At the same time, the LI procedure (3.49) is simpler than the LE procedure (3.45). This is 

not an important factor when the two algorithms are applied to a simple one-dimensional 

damped oscillator (3.9). However, for higher-dimensional systems, the damping 

coefficient 𝜂 becomes a tensor 𝜼. Hence, evaluation of the matrices like 𝑒−𝒎−1𝜼𝑛Δ𝑡 in Eq. 

(2.23) on each time step will become a non-trivial problem, unless the tensor 𝜼 is 

diagonal. Finding the inverse matrix (𝒎𝐼 + 𝜼𝒏𝛥𝑡)−1, as required by Eq. (3.49) of the LI 

algorithm, is in fact even not necessary in numerical simulations, see Section 3.5 below. 

Therefore, in the simulations of the Langevin equation, the leapfrog implicit method 

(3.49) is the method of choice. 

 

3.4 Including the noise 

3.4.1. Noise correlation 

Our final task is to incorporate Gaussian white noise into our numerical scheme (3.49). 

Because the noise term in (3.1) is Gaussian, white, and unbiased, we include it as a 

Gaussian random variable in (3.49): 𝑣𝑛+1/2 = 𝑚𝑚+𝜂𝑛Δ𝑡 𝑣𝑛−1/2 + Δ𝑡𝑚+𝜂𝑛Δ𝑡 (𝑓𝑛 + 𝜉𝑛) ,    𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1/2Δ𝑡.   (3.52) 

This variable enjoys the properties 〈𝜉𝑛〉 = 0 ,  〈𝜉𝑛𝜉𝑛′〉 = 〈𝜉𝑛2〉𝛿𝑛𝑛′ .      (3.53) 

Numerical generation of a Gaussian random variable 𝜉𝑛 can be accomplished, e.g., using 

the C function gasdev from Chapter 7.2 of the Numerical Recipes [Pre99]. It remains to 

determine its variance 〈𝜉𝑛2〉. 
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Noise properties should not depend on the mass of the particle and on the external 

potential in which the particle finds itself. Therefore, to establish 〈𝜉𝑛2〉, we may focus on 

the overdamped limit of (3.52) with 𝑓𝑛 = 0. Within the time interval (𝑡𝑛, 𝑡𝑛+1), we first 

replace in the overdamped Langevin equation 𝜂(𝑥) → 𝜂(𝑥𝑛) = 𝜂𝑛 and 𝜉(𝑥, 𝑡) → 𝜉(𝑡): 𝜂𝑛�̇�(𝑡) = 𝜉(𝑡)         (3.54) 

with 〈𝜉(𝑡)〉 = 0 and 〈𝜉(𝑡)𝜉(𝑡′)〉 = 2𝑇𝜂𝑛𝛿(𝑡′ − 𝑡), where both 𝑡, 𝑡′ ∈ (𝑡𝑛, 𝑡𝑛+1) . (3.55) 

Time-integration of (3.54) from 𝑡𝑛 to 𝑡𝑛+1 gives Δ𝑥𝑛+1 = 𝑥𝑛+1 − 𝑥𝑛 = 1𝜂𝑛 ∫ 𝑑𝑡 𝜉(𝑡)𝑡𝑛+1𝑡𝑛 . 

Squaring both sides and averaging over all possible noise realizations according to (3.55), 

we recover the diffusion law 〈Δ𝑥𝑛+12 〉 = 1𝜂𝑛2 ∬ 𝑑𝑡 𝑑𝑡′
 〈𝜉(𝑡)𝜉(𝑡′)〉 =𝑡𝑛+1𝑡𝑛 2𝑇𝜂𝑛 ∬ 𝑑𝑡 𝑑𝑡′

 𝛿(𝑡′ − 𝑡) =𝑡𝑛+1𝑡𝑛 2 𝑇𝜂𝑛 Δ𝑡 (3.56) 

which gives the Einstein’s relation for the diffusion coefficient 𝐷𝑛 = 𝑇/𝜂𝑛. 

Turning to the finite-difference version of Eq. (3.54), we have 𝜂𝑛 Δ𝑥𝑛+1Δ𝑡 = 𝜉𝑛 , 〈Δ𝑥𝑛+12 〉 = Δ𝑡𝜂𝑛 〈𝜉𝑛2〉 .      (3.57) 

Comparison of the last two expression yields: 〈𝜉𝑛2〉 = 〈Δ𝑥𝑛+12 〉Δ𝑡 = 2𝜂𝑛𝑇Δ𝑡  .       (3.58) 

 

The expression (3.58) was derived by considering the overdamped regime of motion. 

Hence, it may become erroneous if we go beyond the overdamped limit. To see if this is 

the case, consider the mean-squared velocity of the particle in thermal equilibrium, 〈𝑣𝑛−1/22 〉 = 〈𝑣𝑛+1/22 〉 = 〈𝑣𝑒𝑞2 〉. Assuming for simplicity zero force, 𝑓𝑛 = 0, we obtain from 

(3.52): 〈𝑣𝑒𝑞2 〉 = 𝑚2(𝑚+𝜂𝑛Δ𝑡)2 〈𝑣𝑒𝑞2 〉 + Δ𝑡2(𝑚+𝜂𝑛Δ𝑡)2 〈𝜉𝑛2〉 .     (3.59) 

Combining this with (3.58) and performing simple algebraic manipulations, we obtain: 〈𝑣𝑒𝑞2 〉 = 𝑇𝑚+𝜂𝑛Δ𝑡/2  .        (3.60) 
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This result underestimates the exact value 〈𝑣𝑒𝑞2 〉 = 𝑇𝑚  expected from the equipartition 

theorem by a factor 1 + 𝜂𝑛Δ𝑡/(2𝑚). In order for the associated error in the mean kinetic 

energy to be small, the time step must be much smaller than the value Δ𝑡 ≪ 2𝑚𝜂𝑛  .         (3.61) 

 

3.5. Generalization to higher dimensions 
We now generalize the LI algorithm (3.49) to the multidimensional Langevin equation 

(3.1), which is written in the finite-difference form as 𝒎 �⃗⃗�𝑛+1/2−�⃗⃗�𝑛+1/2Δ𝑡 = 𝑓𝑛 − 𝜼𝑛�⃗�𝑛+1/2 + 𝜉𝑛 ,  
𝑟𝑛+1−𝑟𝑛Δ𝑡 = �⃗�𝑛+1/2 .  (3.62) 

The generalization of Eq. (3.58) to higher dimensions reads 〈𝜉𝑛𝜉𝑛𝑇〉 = 2𝑇Δ𝑡 𝜼𝑛 ,        (3.63) 

where 𝜉𝑛𝑇 is the transpose of a random vector 𝜉𝑛. 

 

Rearranging the terms in the first equation (3.62), we obtain: (𝒎 + 𝜼𝑛Δ𝑡)�⃗�𝑛+1/2 = 𝒎�⃗�𝑛+1/2 + Δ𝑡(𝑓𝑛 + 𝜉𝑛) .    (3.64) 

Hence, the new velocity vector �⃗�𝑛+1/2 is found by solving a system of linear equations of 

the form 𝑨�⃗�𝑛+1/2 = �⃗⃗�, where the matrix 𝑨 = 𝒎 + 𝜼𝑛Δ𝑡 that multiplies the unknown 

vector is positive definite and symmetric.  

 

The most efficient way to solve this system is to perform a Cholesky decomposition of 

this matrix, in which the matrix is represented by a product of a lower triangular matrix 

and its transpose: 𝑨 = 𝑳𝑳𝑇 .         (3.65) 

The new velocity is found by first solving the system 𝑳𝑐 = �⃗⃗� for an auxiliary vector 𝑐 = 𝑳𝑇�⃗�𝑛+1/2, and then solving the last relation for �⃗�𝑛+1/2. In view of the fact that 𝑳 and 𝑳𝑇 are triangular matrices, these two steps are computationally simple. 
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To generate the entries of a Gaussian random vector 𝜉𝑛 with zero mean and the 

covariance (3.63), we employ a procedure first suggested by Ermak and McCammon 

[Erm78]. Namely, we first present them as a linear combination 𝜉𝑛 = 𝑪𝑛𝜁,          (3.66) 

where the entries of a random vector 𝜁 are independent Gaussian random numbers with 

zero mean and unit variance: 〈𝜁〉 = 0, 〈𝜁𝜁𝑇〉 = 𝑰.         (3.67) 

Substitution of (3.66) into (3.63) using the property (3.67) gives: 𝑪𝑛𝑪𝑛𝑇 = 2𝑇Δ𝑡 𝜼𝑛 ,         (3.68) 

i.e. the matrix 𝑪𝑛 is directly related to the Cholesky decomposition of the positive-

definite symmetric matrix 𝜼𝑛. 

 

A standard algorithm for Cholesky decomposition (3.65), (3.68) can be found in the 

literature, see e.g. Chapter 2.9 of [Pre99]. 
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Chapter IV 

Results and Discussion 

 

4.1 Parameter values 

4.1.1 Units 

To describe a physical system, it is desirable to use those units in which the numerical 

values of all the relevant parameters are not too big and not too small. In the context of 

nanofriction, the following basic units of length, force, and mass are experimentally 

convenient: 

[L] = nm, [f] = nN, [m] = ng . 

From these, the units of energy and time are derived as 
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Table 4.1: Cantilever parameters used in the calculations 

Parameter name and 

symbol 

Literature values Value used 

Normal stiffness, 𝜅𝑁 0.05 nN/nm [Soc04, Sch06]; 0.12 

nN/nm [Sch05]; 0.14 [Jan10], 0.2 

nN/nm [Evs06]; 0.35 nN/nm [Rie03] 

 

0.1 nN/nm 

Lateral stiffness, 𝜅𝐿 6 nN/nm [Sch06]; 12.7 [Jan10];  

14 nN/nm [Sch05]; 16.5 nN/nm 

[Ben99]; 19 nN/nm [Evs06]; 50 

nN/nm [Sch06];  

75 nN/nm [Rie03] 

 

10 nN/nm 

Normal mass, 𝑚𝑁 5.5 ng [Rie03]; 7.6 ng [Lan10] 6 ng 

Lateral mass, 𝑚𝐿 30 ng [Rie03, Mer15], 55 ng [Mai05] 30 ng 

Damping coefficient, 𝜂𝐶  Normal: 1.4·10-4 ng/μs [Lan10],  

5.7·10-3 [Yuy11] 

Lateral: 3·10-6 ng/μs [Mai05] 

10-3 ng/μs 

 

 

[E] = nN·nm = aJ, [t] = (ng·nm/nN)½ = μs . 

In particular, the thermal energy at 300 K is kBT = 4.14·10-3 aJ. The typical pulling 

velocity in an AFM experiment covers the range between 0.001 and 10 μm/s [Rie03], 

corresponding to the range between 10-6 and 10-2 nm/μs in the units adopted. 

 

In this section, we will not attempt to quantitatively reproduce any particular set of 

experimental results from the literature. Rather, we will focus on those parameter values 

that are typical for the majority of nanofriction experiments reported. In this way, our 

simulation results are in reasonably, although not perfect agreement with the published 

data that we are aware of. 
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4.1.2 Cantilever properties 

The properties of the cantilever adopted in this thesis are summarized in the third column 

of the Table 1. Cantilever normal and lateral masses were estimated based on the 

resonance frequency, 𝜈𝑟𝑒𝑠 = 12𝜋 √ 𝜅𝑚, and the spring constant. The resonance frequency for 

normal and lateral oscillations of a free cantilever are [Rie03] 𝜈𝑟𝑒𝑠,𝑁 = 40 kHz and 𝜈𝑟𝑒𝑠,𝐿 = 250 kHz. Using the normal and the lateral stiffness from [Rie03], namely, 𝜅𝑁 =  0.35  nN/nm and 𝜅𝐿 = 75 nN/nm, we obtain the estimates for the normal and the 

lateral masses of 5.5 ng and 30 ng, respectively. 

Table 4.2: Substrate parameters used in the calculations 

Parameter 𝑎 𝜎 𝜀 𝛽 ℎ 𝜂𝑆0 𝛾 

Value used 0.3 nm 0.3 nm 10 aJ 2 0.02 1 ng/μs 2 

 

The damping coefficient 𝜂𝐶  was deduced from the cantilever quality factor, defined as 𝑄 = 2𝜋𝑓𝑟𝑒𝑠𝜂 . In principle, we could have used different values for the normal and lateral 

damping coefficients. However, when the cantilever is in contact with the substrate, its 

energy dissipation is determined primarily by the substrate degrees of freedom. Hence, 

the torsional dissipation in the cantilever plays little role as compared to substrate 

dissipation, allowing us to set the respective damping coefficient to its normal 

counterpart. 

 

4.1.3 Substrate potential and dissipation parameters 

While the cantilever parameters can be established relatively easily from the literature, 

determination of its interaction properties with the substrate is not as unambiguous. The 

experimental parameters that are usually reported are the adhesion force, i.e. the maximal 

force generated by the tip-substrate potential, and the effective spring constant, i.e. the 

slope of the lateral force vs. cantilever base positon curve in the stick phases. At the same 
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time, we have 6 parameters in the potential (II.2.14): 𝑎, 𝜎, 𝜀, 𝛽, ℎ. These values are 

summarized in Table 4.2. 

 

The values 𝑎 = 𝜎 = 0.3 nm are typical interatomic distances in a solid. The exponent 𝛽 

is set to 2 somewhat arbitrarily, but we have verified by explicit calculations that the 

results reported below do not change qualitatively if other values of 𝛽 are chosen. 

 

The substrate-tip interaction energy is selected so as to correctly reproduce the adhesion 

force, i.e. the largest tip-substrate interaction force on the tip generated by the substrate. 

According to Eq. (II.2.12), the force generated by the substrate is − 𝑑𝑈0(𝑧)𝑑𝑧 = 𝜀𝜎 𝛽𝛽−1 (𝜎𝑧)2 [(𝜎𝑧)𝛽−1 − 1] .      (4.1) 

By finding the maximum, 𝑧𝑚𝑎𝑥, of this function, we determine the adhesion force as  𝑧𝑚𝑎𝑥 = 𝜎 (𝛽+12 )1/(𝛽−1)  ,    𝑓𝑎𝑑ℎ = 𝑑𝑈0𝑑𝑧 |𝑧=𝑧𝑚𝑎𝑥    (4.2) 

The experimental adhesion force values reported in the literature range from 0.7 nN 

[Soc04], 11 nN [Sch05], 15 nN [Ben99], to ca. 45 nN [Gos11]. The value 𝜀 = 10 aJ gives 𝑓𝑎𝑑ℎ =  9.88 nN, which is comparable to the experimental values. 

 

It remains to make a choice for the values of the corrugation parameter ℎ and the 

parameters 𝜂𝑆0 and 𝛾 of the substrate dissipation coefficient (II.2.19). We assume that the 

damping exponent has the same value as the corrugation exponent, 𝛾 = 2, because both 

damping and corrugation are produced by the atoms of the same substrate. To make a 

reasonable choice of the corrugation parameter ℎ, we note that the typical force against 

the lateral motion of the tip is of the order of 𝜀ℎ/𝑎. Setting ℎ = 0.02 makes it of the order 

of 0.7 nN, which is typical in an experiment [Sch05, Ben99]. Finally, we employ an 

experimental observation that the damping coefficient of the cantilever in contact with the 

substrate is 102-103 times as high as the free cantilever counterpart [Mai05, Soc06], 

allowing us to take 𝜂𝑆0 = 1 ng/μs. 
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4.2 Friction without cantilever actuation 

4.2.1 Stick-slip motion 

Shown in Figure 4.1 is the (a) lateral and (b) normal force developed in the cantilever as it 

is pulled along the (100) direction of the substrate at velocity 𝑉 = 10-6 nm/μs (black 

dashed line) and 10-3  nm/μs (green solid line) at temperature T=0k. In both cases, the 

force evolves in a manner typical for the stick-slip motion. At fast pulling velocity, both 

lateral and normal force exhibit the “ring-down” effect after each slip event. At slower 

pulling, the ring-down oscillations are also present, but they decay too fast to be seen in 

the friction vs. cantilever base position plot. It is seen in Figure 4.1 that at 𝑉 =10−6 nm/μs, about 20 ring-down oscillations occur as the cantilever base travels about ∆𝑋 = 0.15 nm. This corresponds to the temporal period of  1𝜈𝑟𝑖𝑛𝑔𝑑𝑜𝑤𝑛  = ∆𝑋20𝑉 = 0.15 nm20∙10−6nm/μs = 7.5 μs,  

or the frequency of 𝜈𝑟𝑖𝑛𝑔𝑑𝑜𝑤𝑛 = 133 kHz = 0.133 μs-1. This value agrees with the 

torsional resonance frequency of the cantilever, 𝜈𝐿,𝑟𝑒𝑠 = 12𝜋 √ 𝜅𝐿𝑚𝐿 = 92 kHz with the 

parameter values from Table 1. Such ring-down oscillations have been reported in at least 

one experimental paper [Fel16], although the ring-down frequency reported in [Fel16] is 

about 50 to 80 times as small as our value (𝜈𝑟𝑖𝑛𝑔𝑑𝑜𝑤𝑛 = 1.5 − 3 kHz according to 

[Fel16]).  

The normal force of the cantilever exhibits very little variation of only about 0.002% as 

the tip is pulled along the substrate. The normal force can be related to the tip base 

position 𝑍 by an approximate formula 〈𝑓𝑁〉 ≈ 𝜅𝑁(−𝑍 + 𝜎) .        (4.3) 

This relation follows with 𝑧 ≈ 𝜎 from equation  (2.23). 

The accuracy of this approximation is better than 0.1%. 
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Figure 4.1:  (a) Lateral and (b) normal force for pulling in the (100) direction at the 

pulling velocity 𝑉 = 10−6 nm/μs (black curves) and 10-3 nm/μs (green curves) at the 

cantilever base position 𝑍 = −100 nm. 

 

Figure 4.2: Lateral force for pulling in the (100) direction at the pulling velocity 𝑉 =10−6 nm/μs at the cantilever base position 𝑍 = −100 nm with data acquisition step of (a) 

0.1 ns and (b) 10 ns. 

 

It is a bit surprising that the ring-down oscillations have not been reported in the majority 

of nanofriction experimental papers, with the exception of [Fel16] and possibly very few 

others. It can be assumed that this has to do with the finite size of data acquisition 

frequency, which typically has the value of about 20 MHz [Gne09], i.e. force data are 

written into a file every 50 ns. To illustrate this point, we plot in Figure 4.2 the lateral 
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force for the same parameters as in Figure 4.1, but for 𝑇 = 300 K and for the data 

acquisition time step of 0.1 ns (a) and 10 ns (b). It is seen in Figure 4.2(a) that the force 

oscillates in the stick phases even more than at zero temperature (cf. Figure 4.1(a) and 

Figure 4.2(a)), but if the data acquisition step is increased to the more experimentally 

relevant value of 10 ns, these oscillations look like random deviations and can be easily 

interpreted as resulting from thermal and instrumental noise. 

 

4.2.2 Velocity dependence of friction 

 

Shown in Figure 4.3 is the velocity-dependent friction force at different values of the 

distance 𝑍 from the cantilever base to the substrate. At low pulling velocities, the friction 

force increases logarithmically with 𝑉𝑝𝑢𝑙𝑙, then it exhibits a maximum at 𝑉𝑚𝑎𝑥 = 0.025 

nm/μs, after which it sharply decreases and starts to increase again. 

  

 

Figure 4.3: Average friction force vs. pulling velocity at 𝑍 = 0, −50, −100, −150, −200, −250, and −300 nm (from bottom to top). The normal load is approximately 

given by −𝜅𝑁(𝑍 + 𝜎) with 𝜅𝑁 = 0.1 nN/nm and 𝜎 = 0.3 nm. Pulling proceeds along the 

x-axis, or [100] direction (left) and [110] direction (right). 
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Figure 4.4: Average friction force vs. pulling velocity from [Rie03]. 

 

The logarithmic increase of friction is consistent with the experimental observations and 

simulations [San01, Rie03]. It arises due to the fact that the average number of slip events 

per unit time is proportional to the Arrhenius factor 𝑒−∆𝑈/𝑘𝑇, where ∆𝑈 is the (free) 

energy barrier height that separates the tip from the current minimum of the combined 

potential to the next. In the lowest order, this barrier height is related to the elastic force 

in the cantilever spring as ∆𝑈 ∝ −𝑓. On the one hand, the average velocity of the 

cantilever must be the same as the pulling velocity; on the other hand, it must be 

proportional to the average number of slips per unit time. This implies that 𝑉 ∝ 𝑒−∆𝑈/𝑘𝑇; 

hence, ∆𝑈 ∝ −𝑘𝑇 ln𝑉. But because ∆𝑈 ∝ −𝑓, we conclude that the average friction 

force must increase logarithmically with pulling velocity. 
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The cantilever can be viewed as a harmonic oscillator periodically driven by the substrate 

potential. The periodicity of this driving is just the time to travel one lattice constant. 

When this time becomes comparable to the ring-down time discussed above, this 

excitation becomes resonant, and the cantilever starts to perform large-amplitude 

oscillations around the equilibrium value 𝑋. Hence, we can expect that the friction force 

should be minimal if the resonant condition 𝑉 = 𝑎𝜈𝑟𝑖𝑛𝑔𝑑𝑜𝑤𝑛        (4.4) 

is fulfilled. With 𝑎 = 0.3 nm and 𝜈𝑟𝑖𝑛𝑔𝑑𝑜𝑤𝑛 = 0.133 μs-1, this gives the friction 

minimum at the velocity 𝑉 = 0.04 nm/μs, in perfect agreement with the numerical 

results. 

 

When the pulling velocity becomes even faster, corrugation of the substrate potential 

becomes irrelevant, and the friction force starts to decrease with velocity. For very fast 

pulling, the friction is due to the “viscous drag” of the substrate with the friction force 

increasing linearly with velocity as 𝜂𝑆𝑉. 

 

We are not aware of the experimental works reporting friction minimum at fast pulling. 

The closest experimental paper is [Rie03]. For comparison, we reproduce Figure 4.1 from 

[Rie03] here, see Figure 4.4 This work reports a friction plateau at 𝑉 = 10 μm/s = 

0.01 nm/μs. According to our calculations, this “plateau” is actually the summit of the 

friction peak, after which 〈𝑓𝐿〉 should start to decrease. As seen in Figure 4.2, the position 

of this peak is found at about 𝑉 = 0.004 nm/μs, in reasonable agreement with the value 

of 0.01 nm/ms from [Rie03]. This agreement indicates that the parameter values of our 

model are well-chosen. 
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4.3 Friction reduction by cantilever actuation 

4.3.1 Including cantilever actuation into the model 

In this section, we consider the effect of cantilever base vibrations on the friction force. 

By this, we mean that the cantilever base position is given by a time-dependent vector �⃗⃗�(𝑡) = �⃗⃗�0 + �⃗⃗�𝑡 + �⃗⃗�𝑜𝑠𝑐𝐴 sin(𝜔𝑡).                                                                                (4.5) 

By default, the initial position is  �⃗⃗�0 = (0,0, 𝑍0) , 

where the parameter 𝑍0 determines the normal force according to Eq. (2.3). The pulling 

velocity has zero z-component. By default, we will consider only pulling along the x-axis, 

or [100] crystallographic direction, i.e. �⃗⃗� = (𝑉, 0,0) . 

The parameters 𝐴 and 𝜔 denote oscillation amplitude and frequency, respectively. 

Finally, the unit vector �⃗⃗�𝑜𝑠𝑐 specifies the direction of actuation. We will consider three 

cases: 

Normal actuation: �⃗⃗�𝑜𝑠𝑐 = 𝑒𝑧; 

Lateral actuation: �⃗⃗�𝑜𝑠𝑐 = �⃗⃗⃗�𝑉 ; 

Transverse actuation: �⃗⃗�𝑜𝑠𝑐 = 𝑒𝑧 × �⃗⃗⃗�𝑉. 

Here, 𝑒𝑧 is a unit vector in the z-direction. Normal and lateral actuation have been 

considered in the literature both theoretically and experimentally, whereas the transverse 

actuation in the direction perpendicular to the pulling velocity and the 𝑧-axis seem to have 

been overlooked by the researchers in the field. 

Presented in the rest of this section are the results for the following default parameters: 𝑉 = 10−4 nm/μs and 𝑍0 = −100 nm, for all actuation directions. This value of the 

normal coordinate corresponds to the normal load of about 10 nN. 

4.3.2 Transverse actuation 

As surprising as it may sound, transverse actuation has no effect on the average friction 

force and very little observable effect on the stick-slip curves. The average friction force 

remains the same for all driving amplitudes (A = 0…10 nm) and frequencies (ω = 
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0.001…10 μs-1) tested. For the parameters chosen, this value is 0.448 nN at T = 0 and 0.3 

nN at T = 300 K. Apparently, the transverse and the lateral coordinates of the cantilever 

tip are coupled to each other much less than the normal and the lateral ones. 

 

4.3.3 Normal actuation 

Figure 4.5 shows the average friction force vs. actuation frequency plot for normal 

actuation with the amplitude of (a) 10 nm and (b) 100 nm. Friction reduction at the lower 

actuation amplitude, panel (a), is relatively small, amounting to less than 10% of the 

friction force in the absence of actuation. The reason is just the small value of the normal 

cantilever stiffness used, see Section 4.1.2. At a smaller driving amplitude A = 10 nm, 

panel (a), only one friction minimum is observed at 0.52 μs-1 at T = 0. This peak shifts to 

0.75 μs-1 at T = 300 K.  

 

The normal resonance frequency of the cantilever, 𝜔𝑁 = √𝜅𝑁/𝑚𝑁 = 0.13 μs-1 is way too 

small to explain that peak. However, a better match is with the lateral frequency, 𝜔𝐿 =√𝜅𝐿/𝑚𝐿 = 0.58 μs-1, which is very close to the resonant frequency observed at T = 0 for 

small-amplitude driving, see the upper curve in panel (a). Based on this agreement, it can 

be suggested that normal actuation may result in a reduction of friction by means of 

affecting the lateral motion of the cantilever. The coupling between the normal and lateral 

cantilever coordinates is possible, because of the second term, 𝑈1(𝑧)𝜓(𝑥, 𝑦), in the 

potential (2.24). This suggestion does not explain the shifting of this peak to higher 

frequencies as the temperature increases; see the red curve in panel (a). Note that the 

friction minimum at T = 300 K is more symmetric than at 0 K. 

 

At a larger driving amplitude A = 100 nm, the structure of the friction vs. frequency curve 

becomes more complex, as seen in panel (b). The curve now has  several friction minima, 

which at T = 0 happen to be at 0.14, 0.23, 0.36, and 0.75 μs-1. Increasing the temperature 

does not affect the location of these minima much, but the lower-frequency minima 

become suppressed. 
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Figure 4.5:  Average friction force vs. driving frequency for normal actuation with the 

amplitude (a) A = 10 nm and (b) A = 100 nm. In both panels, the upper black curve 

corresponds to T = 0, and the lower red curve corresponds to T = 300 K. 
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Figure 4.6:  Lateral force vs. cantilever base position for normal actuation with the 

amplitude A = 100 nm and frequency ω = 0.75 μs-1. Panel (a) T = 0; (b) T = 300 K. In 

both panels, the red curve is the lateral force at zero temperature in the absence of 

cantilever actuation. 

 

Even at the driving frequency close to the global minimum, ω = 0.75 μs-1, the motion of 

the cantilever proceeds in a stick-slip fashion, see Figure 4.6 showing the stick-slip curves 

at (a) T = 0 and (b) T = 300 K. For comparison, the stick-slip curves obtained at T = 0 at 

no actuation are shown in the same figure in red. Focusing on the T = 0 case, in the stick 

phases, the cantilever performs driven oscillations around the local potential minimum, 

and the amplitude of those oscillations increases as the cantilever base keeps moving. 

This results in a slip event occurring earlier than in the no-driving case, cf. the black and 

the red curves in Figure 4.6(a). Interestingly, even in the absence of thermal noise, the 

stick-slip curve is not regular, i.e. it is not the same in all stick phases. Some slip events 

are immediately followed by a back-slip, and some are followed by high-amplitude 

oscillations in the next stick phase. When the thermal noise is turned on, Figure 4.6(b), 

these irregularities become overshadowed by the thermal fluctuations of the cantilever. 
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4.3.4 Lateral actuation 

The lateral actuation of the cantilever is a much better means of friction control. Already 

at the actuation amplitude of 0.01 nm the friction minimum is very pronounced, see 

Figure 4.7(a). The location of this global minimum at ω = 0.7 μs-1 at T = 0 K and 0.8 μs-1 

at T = 300 K roughly matches the lateral resonance frequency of the cantilever. Increasing 

the amplitude to 0.1 nm, Figure 4.7(b), results in the appearance of a complex multi peak 

structure of the friction vs. frequency curve, and this structure becomes less pronounced 

as the temperature is increased from 0K to 300 K. 

Figure 4.7: Average friction force vs. driving frequency for lateral actuation with the 

amplitude (a) A = 0.01 nm and (b) A = 0.1 nm. In both panels, the upper black curve 

corresponds to T = 0, and the lower red curve corresponds to T = 300 K. 

 

Note that the plots in Figure 4.7 are roughly the same as in Figure 4.5, allowing us to 

conclude that normal and lateral actuation have a similar effect on the friction force. 

Because friction force is associated with the lateral deformation of the cantilever, the 

effect of the lateral actuation is much better pronounced than the effect of the normal 

actuation. 

The friction vs. cantilever base position stick-slip curves for the driving amplitude A = 

0.01 nm are shown in Figure 4.8. It is seen that at zero temperature, lateral actuation 
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in Figure 4.8. At zero temperature, Figure 4.8 (a), the amplitude of the driven force 

oscillations increases at the end of each stick phase. This indicates that as the cantilever 

base moves relative to the substrate, the natural lateral frequency of the cantilever 

changes, becoming closer and closer to the actuation frequency. At some point, the tip 

oscillation amplitude becomes large enough to be able to overcome the barrier separating 

the tip from the next lattice site, resulting in a slip even happening earlier than without 

driving. When thermal noise is “turned on”, it cooperates with this resonant slip effect in 

such a way that the slip happens even earlier than without noise. Also, thermal noise 

acting together with actuation makes it possible for the tip to jump back into the previous 

lattice site, as can be seen in Figure 4.8(b). 

 

Presented in Figure 4.9 are the friction curves at absolute zero temperature for lateral 

driving amplitude of 0.1 nm and several frequencies from 0.001 to 2 μs-1. At the lowest 

driving frequency ω = 0.001 μs-1, the tip performs the stick-slip motion modulated by the 

external forcing. The character of this modulation is somewhat unexpected, see Figure 

4.9(a). The next lowest frequency from Figure 4.9(b), ω = 0.03 μs-1, corresponds to the 

broad friction minimum in Figure 4.7(b). It is seen in Figure 4.9(b) that in each stick 

phase, the tip performs driven oscillations with periodicity ΔX = 2πV/ω = 0.021 nm, and 

those oscillations are superimposed on the usual stick-slip curve. After a slip, the tip 

energy is not dissipated instantaneously, however. Rather, the tip moves a bit further than 

the next lattice site, thereby accumulating enough elastic energy to oscillate back into the 

previous lattice site. In this way, it performs several back-and-forth driven oscillations 

until it settles down in the next lattice site, so that a new stick phase begins. 

 

At a higher driving frequency ω = 0.22 μs-1, Figure 4.9(c), the number of those large-

amplitude oscillations increases, and the whole process becomes quite irregular. This 

irregularity is a bit surprising, given that the calculations were performed in the absence 

of thermal noise.  
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Figure 4.8: Stick-slip curve for the actuation amplitude A = 0.01 nm at (a) T = 0 K, ω = 

0.7 μs-1 and (b) T = 300 K, ω = 0.8 μs-1. In both panels, the red curve corresponds to the 

lateral force at zero temperature in the absence of actuation.  

0.0 0.5 1.0 1.5
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
(a)

 

 

f L
 [

nN
]

X [nm]

0.0 0.5 1.0 1.5
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
(b)

 

 

f L
 [

nN
]

X [nm]



56 

 

 

Figure 4.9: Friction force vs. cantilever base position at T = 0 for lateral driving amplitude 

A = 0.1 nm at the frequencies ω of (a) 0.001, (b) 0.03, (c) 0.2, (d) 0.6, (e) 1.3, (f) 2 μs-1. 

The red curves correspond to the lateral force at zero temperature in the absence of 

actuation.  
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Further increase of the driving frequency to ω = 0.5 μs-1 and 0.6 μs-1 leads to a complete 

disappearance of the stick phases, see Figures 4.9(d). Rather, the cantilever performs 

large-amplitude driven oscillations around x = X. Those oscillations are modulated with 

the lattice periodicity of 0.3 nm. 

 

Increasing the frequency results in the recovery of the stick-slip regime, because the 

cantilever’s own response time is now too slow to follow the fast temporal variations of 

the external driving. Hence, it can be expected that the friction force will be performing 

very fast oscillations around the respective undriven curve. This is indeed what happens, 

see Figure 4.9(e) and (f). Note that the stick-slip curve at the smaller actuation frequency 

of  1.3 μs-1 is somewhat irregular, but the regularity is recovered as ω is increased to 2 

μs1. 

 

The behaviour of the friction force as a function of the actuation amplitude is 

complicated, see Figure 10 showing the simulation results for (a) ω = 10-3 μs-1 and (b) ω 

= 0.2 μs-1 at T = 0 (black curve) and 300 K (red curve). At the smaller driving frequency, 

friction force monotonically decreases with the amplitude. This behaviour completely 

changes when the frequency increases to the value at which many minima and maxima 

start to be observed in Figure 4.7(b). At zero temperature, the friction force vs. amplitude 

curve is non-monotonically decreasing and consists of multiple irregular peaks initially 

(see the main plot). At higher amplitude, those peaks become much smaller in height, but 

they do not quite vanish (see inset). Interestingly, lateral oscillations of sufficiently high 

amplitude may result in the negative friction force, see inset.  
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Figure 4.10: Friction force vs. driving amplitude at the driving frequency (a) ω = 0.001 

μs-1 and (b) ω = 0.2 μs-1 at T = 0 (black curve) and 300 K (red curve). In panel (b), the 

main plot covers the range of A from 0 to 1 nm, and the inset covers the range of A 

between 1 and 5 nm. 

 

We note that such a multipeaked structure has not been observed experimentally. Rather, 

experiment shows monotonic decrease of the friction force with lateral actuation 

amplitude [Rot14], similar to Figure 4.10(a). But the experimental measurements such as 

[Rot14], are usually performed at room temperature. On the other hand, as seen in Figure 

10, the multipeaked structure becomes supressed as the temperature is elevated to 300 K. 

Therefore, it is a prediction of our model that decreasing the temperature should result in 

an onset of many maxima in the friction vs. driving amplitude curve.  
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Chapter V  

Conclusions and outlook 

 

5.1 Conclusions 
In the course of this project, we considered a three-dimensional extension of the Prandtl-

Tomlinson model of single-asperity nanoscale friction. Our model includes periodic 

modulation of the surface potential and damping coefficient, as well as the thermal noise 

effect due to the atomic degrees of freedom. It has been inspired by the model from 

[Wie11], but is more general than that model in that it includes cantilever damping 

coefficient and treats the substrate damping coefficient as position-dependent. An 

algorithm for numerical integration of the ensuing equations of motion is derived and 

shown to be optimal for the problems with position-dependent damping coefficient. 

Application of this algorithm to the 3dPT model has revealed the following features. 
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The motion of the tip in contact with a periodic crystalline surface proceeds in a stick-slip 

manner. Inertia plays an important role in the dynamics of an AFM cantilever in 

nanofriction experiments. Its role is manifested in the ring-down effect, i.e. regular 

damped oscillations of the lateral force after each slip event. However, in the experiment, 

these ring-down oscillations are rarely detected, because the frequency of data collection 

is usually much smaller than the frequency of those oscillations. Furthermore, when the 

mean friction force is measured as a function of the pulling velocity, it initially increases 

logarithmically, then develops a maximum, and then sharply drops to a minimum. The 

friction minimum occurs at such pulling velocity that the inverse time to cover one lattice 

constant matches almost exactly the ring-down frequency. 

 

A further effect of the cantilever inertia is the possibility to control friction forces by 

means of periodic actuation of the cantilever. This actuation may proceed in the normal or 

lateral direction, whereas transverse actuation of the cantilever has no detectable effect on 

the average friction force. Normal motion of the cantilever base can affect its lateral 

coordinate, whereas the transverse motion cannot.  

 

The effect of actuation on the friction force is more apparent at zero temperature than at 

room temperature. As a function of actuation frequency, the friction force exhibits 

multiple minima both for normal and lateral actuation. Those minima are more 

pronounced at the higher actuation amplitude and at the lower temperature. Likewise, 

when measured as a function of the actuation amplitude at fixed frequency, the friction 

force exhibits many irregular maxima at zero temperature; those maxima get supressed 

when the temperature is increased to 300 K. 

 

Many different dynamic regimes of the cantilever motion can be realized depending on 

the actuation parameters. When thermal noise is present, the difference between those 

regimes becomes less sharp than in the noise-free limit. 
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5.2 Future work 
The results obtained in this thesis demonstrate a richness of dynamic regimes in an 

apparently simple 3dPT model of nanoscale friction with external actuation. However, the 

3dPT model used in this thesis is oversimplified in two respects discussed below. 

 

Cantilever apex elasticity. There is plenty of experimental evidence that the cantilever 

apex cannot be treated as a rigid body, as done in our model. For example, the slope of 

the stick-slip curve in each stick phase, 𝑑𝑓/𝑑𝑋, see Fig. 4.2(a), is only slightly smaller 

than the lateral spring constant value of 10 N/m used in our calculations. The 

experimental stick-slip curves, however, exhibit a much smaller slope in the range 

between 1 and 5 N/m [Sch06, Evs06, Jan10]. This can only be explained by the fact that 

the cantilever apex is a soft object with elasticity 𝜅𝑎𝑝𝑒𝑥 = 1…5 N/m in this range. Then, 

because the cantilever beam and the tip apex represent two springs connected in series, 

and taking into account the elastic deformation of the substrate, the net elasticity 

measured as the slope of the stick-slip curve is given by 1/(𝜅𝐿−1 + 𝜅𝑎𝑝𝑒𝑥−1 + 𝜅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒−1 ). It 

is smaller that both 𝜅𝐿 and 𝜅𝑎𝑝𝑒𝑥. 

 

In principle, there is no problem to take the elasticity of the tip apex into account by 

introducing additional degrees of freedom describing the deformation of the apex. In the 

simplest extension, this deformation could be just a single number, e.g. the deformation 

angle. Unfortunately this would severely slow down the calculations, because the tip apex 

is so light that its oscillation period is in the nanosecond range [Kry06, Kry07]. This 

means that the time step would have to be of the order of 50 ps or smaller, as opposed to 

50 ns value used in our simulations. In other words, simulation time would be increased 

by at least a factor of 1000. Given that the computation time to generate a plot such as the 

one from Fig. 4.3 or 4.5 was of the order of several hours, this calculation with the apex 

elasticity would take weeks or even months. 

 

Contact aging. It has recently been established experimentally that the tip-substrate 

contact strengthens itself in the course of time [Evs06, Evs08, Evs13(a), Maz17]. The 
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origin of contact aging is not firmly established. Under the ambient conditions, this could 

be formation of capillary water bridges; in the experiments done in the ultra-high vacuum, 

contact aging must proceed via some other mechanism. The nature of that mechanism can 

only be hypothesized at present. But taking into account contact aging effect at a 

phenomenological level is possible by introducing additional internal variables into the 

model that would describe the state of the tip-substrate contact [Maz17].  

 

Proper incorporation of the apex elasticity and contact aging effects are important 

extensions of the simple 3dPT model investigated in this thesis. 
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