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Abstract

Computer simulations have become a powerful tool for studying the structure, dy-

namics, or other characteristics of a wide variety of physical systems. The goal of

coarse-grained (CG) models is to simplify the representation of the physical system

while still maintaining enough information to capture the desired properties of the

system. A main challenge in the development of CG models is determining the poten-

tial energy function, UCG, which often depends on a large number of unknown model

parameters, λ. Different methods for determining these model parameters have been

proposed, (potential of mean force, multi-scale coarse-graining), but they rely on de-

termining quantities, such as free energies, that are computationally challenging to

calculate.

Here we develop a systematic method to determine the optimal parameters for

coarse-grained models of molecular systems, using the relative entropy, Srel, as a

metric to compare a target ensemble to an ensemble generated from a CG model. The

relative entropy depends on the free energy, and a novel approach for determining the

free energy was developed, which used a generalized ensemble approach to simulate

the joint probability distribution, p(r, λ), where r is a chain conformation. The

generalized ensemble Monte Carlo simulation allowed the model parameters to be

dynamic, which means they are allowed to change during the simulation. These

simulations allow for the free energies, FCG(λ), to be obtained directly from the
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marginal probability distribution, p(λ), during the simulation. The relative entropy,

Srel(λ), was calculated and minimized with respect to the CG model parameters in

order to obtain the optimal model parameters.

The systematic method was applied to an existing CG model for protein fold-

ing that was modified to include a new potential energy term that contained either

13 or 91 unknown model parameters. The method was used to systematically de-

termined the optimal model parameters that allowed a protein to fold to its native

structure. The relative entropy was calculated for two target ensembles, the exper-

imentally determined single native structure, and the set of configurations from an

all-atom simulation. It was found that the potential energy function with 91 unknown

parameters converged to the optimal parameter set faster than the potential energy

function with 13 unknown parameters. The optimal parameter set for the 13 model

parameters was not able to fully capture the folding of the protein, while the 91 model

parameter set was able to capture the folding behaviour. Furthermore, the optimal

CG model parameter set that was found using the experimentally determined native

structure as a target for the relative entropy minimization gave better results than

the all-atom target ensemble. This is likely due to the set of configurations for the

all-atom target ensemble being dominated by the unfolded state instead of a folded

state.
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Chapter 1

Introduction

Computer simulations are increasingly being used to study the structure and dynamics

of physical systems in a variety of fields, with a significant amount of work done in

physics, biology, and chemistry to simulate various molecular systems [1]. Despite

technological advances, computer simulations are still limited by the processing power

of the computer hardware being used. To overcome this limitation, coarse-graining

methods were introduced to simplify the computer models while still maintaining

enough information to capture important properties of the physical system. Coarse-

grained simulations, as opposed to fine-grained or all-atom simulations, allow larger

or more complex molecular systems to be studied for longer time-scales.

However, one issue that can occur in coarse-grained molecular simulations is the

inability to accurately reproduce the fine-grained simulations or experimental results

under the same thermodynamic conditions. This issue arises when the chosen CG

model for representing the physical system does not contain enough detail, and thus,

is unable to capture the important properties of the system. To overcome this issue,

the correct or optimal CG model must be determined. Another common problem

for a large class of molecular systems is called the multiple-minima problem, where
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the potential energy landscape has a large number of local minima separated by high

energy barriers. This causes a problem in computer simulations because the system

can get trapped in a local minimum. However, this problem can be overcome by

applying a generalized ensemble approach to the computer simulation, which allows

the system to sample all states uniformly, regardless of the energy landscape.

The goal of this thesis was to develop a novel systematic method to determine

optimal model parameters for coarse-grained models of molecular systems. This was

accomplished by using the relative entropy and generalized ensemble methods to

allow for efficient parallel exploration of parameter space. The systematic method

was applied to an existing CG model used for studying protein folding. Using various

optimization methods, the method was able to recapture the correct values for known

model parameters. Furthermore, the CG model was modified and the systematic CG

method was applied to determine unknown model parameters for a real protein by

comparing the simulation results with the experimentally determined native structure.

1.1 Coarse-Graining

Computational simulations are used extensively to study the structure and dynamics

of a wide range of physical systems. One of the main challenges of simulating physical

systems is generating a computer model that accurately represents the physical system

of interest. This can often be accomplished by modelling systems classically, at full

atomistic detail, and determining all forces and interactions involved. These models

are called all-atom or first-principle models. However, due to the complexity of the

all-atom models, they are limited to small systems and short time scales.

Methods were developed that simplify the representation of the physical system

while still maintaining enough information to enable simulations to capture the de-
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sired system characteristics. These so called coarse-grained methods (CG) allow for

larger systems to be simulated on longer time scales. The granularity, or degree of

simplification, varies greatly depending on what characteristic of the system are being

studied. Typically, CG models are developed to either reproduce average structural

properties obtained in fine-grained, all-atom simulations (bottom-up approach), or

to match experimentally determined thermodynamic properties (top down approach)

[2, 3]. One of the main issues encountered in the development of coarse-grained mod-

els is the determination of the CG interaction potential energy, UCG. The interaction

potential energy of a CG model must be capable of reproducing the behaviour of the

“target” or first-principles model which has a known interaction potential. This is

important in CG simulations, as it provides a way to compare results from the CG

model with results from a target model (typically an all-atom simulation).

Some of the systematic approaches by which coarse-grained models are developed

[4] include a structure-based approach [5], knowledge-based statistical approach [6],

and a physics-based or force matching approach [7]. Structure-based approaches, also

called Go-type models, use specific force field approximations that only account for

interaction patterns that allow the CG model to form known structures. Knowledge-

based statistical approaches use statistical analysis of information from experimen-

tally determined structures to determine the interaction potentials for the CG model.

In physics-based methods, the goal is to derive an equation for the coarse-grained

potential energy function that enables the CG model to reproduce a target radial

distribution function (RDF) or a target force distribution [3]. In practice, a large

number of potential energy functions will allow a CG model to match a physical sys-

tem. Methods to determine the potentials include the Inverse Monte Calro (IMC)

method, which uses an iterative scheme to correct a guess potential [8], or the Force

Matching (FM) methods, which use first-principle calculations to fit the CG poten-
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tials to the atomic forces. Other methods include the iterative Boltzmann inversion

(IBI) scheme, which can determine effective potentials by using a set of correlation

functions [9].

Additional methods for determining the CG potential energy include the potential

of mean force (PMF) method [10], the Relative Entropy formalism by Shell [11], or

the Multi-Scale Coarse-Graining (MSCG) method by Izvekov and Voth [2]. In the

PMF method, the optimal CG model can be determined by calculating the potential

of mean force (PMF) of the first principles model over the CG model degrees of

freedom [10]. The Relative Entropy method is a general case of the IMC method,

where Shell used the relative entropy as a measure of the amount of information

lost due to coarse-graining. By minimizing the entropy, the optimal CG force-field

can be obtained. The MSCG method is an extension of the FM method, where

Molecular Dynamics (MD) all-atom simulations are used as reference in determining

the CG potentials [4]. This method allows for the atomistic-level forces present in

all-atom simulations to be “propagated upward” in scale to the coarse-grained level

[2]. A variety of these methods have been compiled together in the Versatile Object-

Oriented Toolkit for Coarse-graining Applications (VOTCA) software package, which

provides a way to compare CG potentials obtained by various methods [12].

By using information from all-atom simulations in the systematic development of

CG potentials, the CG model will reproduce system properties that are observed in

all-atom simulations under the same thermodynamic conditions. This is advantageous

because the CG model will allow for simulations of larger systems and longer time-

scales, while recapturing important system properties.
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1.2 Relative Entropy

The relative entropy, or Kullback-Leibler divergence, gives a statistical measure of

the difference between two probability distributions, p1(r) and p2(r). It is given by

the formula,

Srel =
∑
r∈R

p1(r) ln
p1(r)

p2(r)
(1.1)

where r is a discrete variable in the set R. The relative entropy has the important

property of always being non-negative, and Srel = 0 if and only if p1 = p2 everywhere

[13].

Shell used the relative entropy in a CG protein simulation as a method to compare

the probability distribution of a thermodynamic CG model ensemble, pM(r), and some

existing all-atom (AA) target ensemble, pT(r) [11]. In this application, the properties

of the relative entropy dictate that the function is minimized when the model ensemble

best matches the target ensemble.

One alteration must be made in order to account for the case where the model

system has fewer degrees of freedom than the target system. In this case, a mapping

function, M is required to allow for the set of coordinates of any configuration in the

target ensemble, rT, to be mapped to a set of coordinates in the model ensemble, rM.

The relationship is given as

rM =M(rT). (1.2)

However, since the model has fewer degrees of freedom, it is possible that multiple

configurations in the target ensemble will map to the same model configuration. A

measure of that degeneracy must be included when considering the probability of

generating a configuration in the model ensemble. The complexities of the mapping

can be absorbed into a single term, ⟨Smap⟩T, which is the average entropy that occurs
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from the target to model mapping. Then, the relative entropy between a CG model

ensemble and some target ensemble is given by

Srel =
∑
r

pT(r) ln
pT(r)

pM(M(r))
+ ⟨Smap⟩T (1.3)

where the summation is over all possible configurations, r, in the target ensemble.

In the canonical ensemble, the probability distribution can be written in terms of

the partition function, Z, and the potential energy, U , such that p(r) = 1
Z
e−βU(r),

which gives

Srel =
∑
r

pT(r) ln

[
ZCG

ZT

eβ(UCG−UT)

]
+ ⟨Smap⟩T. (1.4)

Using the relation between the Helmholtz free energy and the partition function,

F = −kbT lnZ, the relative entropy can be written

Srel = β
∑
i

pT(r)
(
UCG − UT) + ln

[
e−βFCG+βFT

]
×
∑
r

pT(r) + ⟨Smap⟩T. (1.5)

Simplifying further, the relative entropy equation is written as

Srel = β⟨UCG − UT⟩T − β
(
FCG − FT

)
+ ⟨Smap⟩T (1.6)

where β = 1/kBT , U is the potential energy, F is the configurational part of the

Helmholtz free energy, and the brackets ⟨⟩T indicates an average in the target ensem-

ble. The mapping entropy is independent of the properties of the model ensemble,

thus it will only affect the relative entropy by shifting the value by a constant. The

exact value of the relative entropy is not required, so the mapping term is ignored.
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1.3 Metropolis Monte Carlo Simulations

The goal of a computer simulation is to allow the model system to move and sam-

ple a variety of geometrical configurations. Computer simulations fit into one of two

categories: Molecular Dynamics (MD) or Monte Carlo (MC) [4]. In MD simulations,

the new configurations are generated by updating the position and momenta of each

atom using Newton’s equations of motion over a small time-step. Monte Carlo (MC)

method, used here, allows the system to randomly sample configurations by mak-

ing small modifications and using a probability distribution to accept or reject the

modification.

The MC method used here was developed by Metropolis et al. [14] as a general

MC method for calculating thermodynamic properties of the system. The method

generates N configurations, denoted r1, r2, . . . , rN , where the probability of finding

the system with the configuration ri is given by p(ri) ∝ e−βU(ri). The equation for

determining average system properties is given by

⟨A(r)⟩ = 1

M

M∑
i=1

A(ri) (1.7)

where A(r) is a configuration dependent property of the system, andM is the number

of moves.

The system samples different configuration by attempting to make changes to the

geometry, called trial moves, which are tested against an acceptance criteria before

being accepted. Suppose the system is in the configuration, ra, and is perturbed a

small amount such that it has a new configuration, rb. The Metropolis algorithm uses

an acceptance criteria such that the probability of sampling states is proportional to

exp[−βU(r)].
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The acceptance criteria for a trial move is based on the “detailed balance” equa-

tion. The transition probability, W (a → b), is defined as the probability that the

system will move from configuration a to configuration b. The Metropolis algorithm

states that the probability of a transition from a to b must be equal to the probability

of a transition from b to a. The detailed balance equation below gives the sufficient

but not necessary condition for satisfying the reversibility of the transition.

P (a)W (a→ b) = P (b)W (b→ a) (1.8)

where the transition probability is related to the acceptance probability by W (a →

b) = T (a→ b)Pacc(a→ b), where T (a→ b) is a symmetric proposal probability.

It follows that

W (a→ b)

W (b→ a)
=
P (b)

P (a)
= exp[−β(U(b)− U(a))] = exp[−β∆U ] (1.9)

where ∆U = U(b)− U(a).

The Metropolis method condition that satisfies Eq. 1.9 is given as

Pacc(a→ b) = min

(
1,
P (b)

P (a)

)
= min

(
1, exp[−β∆U ]

)
. (1.10)

This means if ∆U < 0, the trial move brings the system to a lower energy state, and

the move is always accepted. However, if ∆U > 0, the move is accepted with the

probability exp[−β∆U ]. In practice, this is done by generating a uniform random

number ξ ∈ [0, 1] and accepting the move only if ξ < exp[−β∆U ].
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1.4 Generalized Ensemble Techniques

Although Metropolis Monte Carlo simulations are commonly used to study molecular

systems, they often encounter a convergence problem at low temperature where the

energy landscape has a large number of local minima that have high energy barriers.

In this situation, the system will get trapped in local minimum, and only explore

configurations in a small section of the energy landscape. This will lead to inaccurate

calculations of physical quantities because the configurations will be correlated. This

issue can be alleviated with the generalized ensemble (GE) method [15], which was

derived from the standard Metropolis MC method.

The generalized ensemble approach employs a non-Boltzmann probability weight

factor to each state such that the entire energy landscape may be sampled [16]. The

goal of GE is to allow the system to sample rare or important states frequently, and

enable the system to escape high energy barrier states. Three examples using the GE

approach are the Multicanonical algorithm, 1/k sampling, and simulated tempering,

all of which perform a simulation over an ensemble that is defined such that a chosen

physical quantity obtains a uniform (noncanonical) distribution [15].

In GE simulations, the chosen quantity is called a control parameter, and is dis-

cretized into a set of evenly spaced values, An. Then, over the course of the simulation,

the control parameter is allowed to change under some criteria, which results in the

system taking on the new control parameter value. The advantage of the GE approach

is that the global minimum energy state can be determined from one simulation, as

the simulation is allowed to sample configurations at different values of the control

parameter.

The simulated tempering method, originally developed by Marinari and Parisi in

1992 [17], is a GE method in which the temperature is the control parameter. Using
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the Metropolis MC method, the simulated tempering method allows the temperature

control parameter to make a trial move, which would either increase or decrease

the temperature of the system by a small amount. The acceptance criteria must be

modified to account for the control parameter weight function, w(β, s), which depends

on the inverse temperature, β = 1/kBT and the current state, s. The Metropolis

acceptance criteria for a control parameter trial move is given as

P ((β, s) → (β′, s)) = min

(
1,
w(β′, s)

w(β, s)

)
(1.11)

where the weight function is given by

w(β, s) = exp[−βU(s) + g(β)]. (1.12)

The function g(β) is a control parameter dependent function, where the optimal choice

for this function is the free energy of the system, g(β) = βF (β) [18]. By defining

g(β) in this way, it is possible to calculate the free energy throughout a simulated

tempering simulation.

1.5 Free Energy Calculation

One of the most challenging quantities to estimate with precision in computer simu-

lations is the free energy, F , as a function of global variables, such as temperature,

T . The reason this is challenging is because the entropic factors require comprehen-

sive sampling of the system in all possible states. Thus, calculating estimates of the

free energy is often time consuming and computationally intensive. Methods, such

as simulated tempering [17] or umbrella sampling [19], can be used to obtain better

estimates for free energies by doing comprehensive sampling.
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One way to overcome the computationally intensive process was to combine the in-

formation from all of the sampled states of the system at different thermodynamic con-

ditions. Early methods to compute free energy estimates using this concept included

one-sided exponential averaging (EXP)[20], and Bennett acceptance ratio method

(BAR)[21]. Both of these gave better estimates, but did not make efficient use of all

the data. Multiple histogram reweighting techniques were developed to include data

from multiple states to calculate estimates [22]. These techniques provided signifi-

cantly improved estimates for the free energy differences, and allowed for estimates

at arbitrary thermodynamic states, which included states not sampled.

However, due to the limitations of using binned energy histograms in the multiple

histogram reweighting techniques, a method called the multistate Bennett acceptance

ratio estimator (MBAR) was developed. This method allows for the calculation of

statistically optimal estimates for the free energy differences for arbitrary thermody-

namic states using data from multiple thermodynamic states [23].

The result of interest from the MBAR method is an estimating equation for the

dimensionless free energies, which is derived for configurations that are sampled with

Boltzmann statistics. Starting with Ni uncorrelated samples from K different ther-

modynamic states, the configurations {xin}ni
n=1 from state i have the probability dis-

tribution

pi(x) = c−1qi(x) (1.13)

where qi(x) is the unnormalized density function, and ci is the normalization con-

stant. For Monte Carlo sampling, the unnormalized density function is the Boltzmann

distribution, qi(x) = exp[−Ui(x)].

Following the derivation in Appendix A, the equation for the estimated free ener-
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gies, f̂i is found to be

fi = − ln
K∑
j=1

Nj∑
n=1

e−Ui(xjn)∑K
k=1Nke(fk−Uk(xjn))

. (1.14)

This equation is a self-consistent solution for f̂i, and can be solved using an iter-

ative approach by using the current set {f̂ (n)
i }Ki=1 to produce a new set of estimates

{f̂ (n+1)
i }Ki=1. The iterative approach will guarantee convergence regardless of initial

choice of f
(0)
i . However, the choice of initial estimates will greatly affect the speed of

convergence.

1.6 Local Optimization Schemes

Optimization is a mathematical method used to determine the minimum of an arbi-

trary function regardless of the function’s landscape. Methods have been developed

to eliminate the need to evaluate the function for every possible system dependent

parameter, and instead, systematically search through the parameter space. For ex-

ample, the function could be minimized over a small subset of the parameter values.

Then, at the minimum of a give subset, the direction of the global minimum could be

determined, which would allow for better choices for subsequent parameter sets. In

this way, the entire parameter space is not explored, but the minimum can be found

using a systematic approach.

A common example of optimization in molecular simulations would be the mini-

mization of the potential energy, which could have a landscape with a high number

of local minima with potentially high energy barriers between minima. In this case,

it is necessary to have a systematic way to determine the global minimum without

getting trapped in any local minima. Two local optimization methods are presented
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here, the steepest descent method and the conjugate-gradient method.

1.6.1 Steepest Descent Minimization

The Steepest Descent technique is used to find the minimum value of some function,

f , with respect to some set of parameters, denoted λ [24]. This is done by picking a

starting value, λ0 and calculating the value of the function at that parameter value,

f(λ0). Then calculate a direction, s, in which to change λ, given by

s0 = −∇f(λ0). (1.15)

Next, compute a set of n values for λ using

λn = λ0 + nαs0 (1.16)

where α is some constant step size. By doing this calculation, the set of values runs

from λ0 until the max value λmax is reached, with evenly spaced steps of size α, in

the direction s0. Once the simulation is run for the set of values, the function f(λ)

is minimized, and the minimum value in the set, denoted λmin, becomes the new

starting value.

The next run will involve calculating the gradient of the function at the previous

minimum value, ∇f(λmin), in order to determine the direction to move. Then, a

new set of values is generated using equation 1.16 and a simulation is run to find

the minimum of the function for that set. These steps are followed until the local

minimum is found, or until the minimum of a parameter set is close within a small

uncertainty which is related to the statistical noise. The parameter set at the local

minimum is the optimal parameter set.
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1.6.2 Conjugate-Gradient Method

The Conjugate Gradient Method is formalized to solve the minimization problem for

a function that can be approximated with a quadratic form [24]

f(λ) ≈ c− b · λ+
1

2
λ ·A · λ (1.17)

where λ is some point in N -dimensions, and both the function, f(λ), and the gradient,

∇f(λ), are known or can be found.

There are two vectors that are required, denoted gi and hi, where i = 0, 1, 2, ....

The first step is to let the vector g0 be arbitrary, and let h0 = g0. The vectors are

recursively constructed as

gi+1 = gi − λiA · hi

hi+1 = gi+1 + γihi

(1.18)

where the two vectors satisfy the “orthogonality and conjugacy conditions” [24]

gi · gj = 0 hi ·A · hj = 0 gi · hj = 0 j < i

and the scalar coefficient, γi, is given by the equation

γi =
(gi+1 − gi) · gi+1

gi · gi

. (1.19)

The formalism of the conjugate gradient method used here is to start at some

point, λi and let the vector gi be given by equation gi = −∇f(λi). Then, let the

vector hi be the direction from λi that is travelled to get to the minimum along f .

Next, at the minimum point along f , denoted λi+1, calculate gi+1 = −∇f(λi+1) and
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then calculate the new direction to travel. The local minimum of the parameter set

λ is determined by iteratively applying the minimization technique.

1.7 3-Letter Protein Model

The model used for the simulations is a simplified protein model presented in the

paper by Bhattacherjee and Wallin [25]. In this model, all backbone atoms are repre-

sented explicitly (N,Cα,C’,H,O,Hα1,Hα2) and the side chain is represented as a single

larger Cβ atom. The model also simplifies the amino acid types to three; polar (p),

hydrophobic (h), and glycine (G). The polar and hydrophobic amino acids are repre-

sented by serine (S) and leucine (L) respectively.

For a protein with N amino acids, there are 2N degrees of freedom given by the

dihedral angles ϕ and ψ. Other internal degrees of freedom, such as the bond lengths,

are fixed to ideal values.

The energy function governing this model is a summation of 4 interaction energy

terms. The energy is written as E = Eexvol+Ehbond+Ehp+Elocal, which represent the

excluded volume, hydrogen bonding, hydrophobic interaction, and the local partial

charges interaction. The excluded volume energy term expands as

Eexvol = kexvol
∑
i<j

(
λijσij
rij

)12

(1.20)

where the summation is done over all pairs, ij in the sequence. Then, rij is the

distance between the pair ij, σij is the sum of the radii of atoms σi and σj where

σi = 1.75Å, 1.55Å, 1.42Å, and1.00Å for C, N, O and H atoms respectively. λij is a

scale factor, and the overall excluded-volume weight factor is kexvol = 0.1.

The local energy term accounts for interactions between partial charges on the
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backbone of the protein, and is written as

Elocal = klocal
∑
I

∑
i<j

qiqj

rij/Å
(1.21)

where the summation is over all pairs of N, H, C’, and O atoms in amino acid I which

have partial charges of qi = −0.2,+0.2,+0.42, and −0.42, respectively. The prefactor

is the strength of the interaction, which is klocal = 50.

The energy due to the hydrogen bond is written as

Ehbond = khbond
∑
ij

γij

[
5

(
σhb
rij

)12

− 6

(
σhb
rij

)10
]

×
(
cosαij sin βij

)1/2 (1.22)

where the ij summation is over all NH and CO groups, excluding nearest and next

nearest neighboring groups. The prefactor in front of the summation is the hydrogen

bond strength, khbond = 3.22, and γij is a scale factor that depends on the types

(hydrophobic, polar, or Glycine) of amino acids involved in the pair. γij = 1.0 for

hh, hp, and pp hydrogen bonds, and γij = 0.75 for GG, Gh, and Gp pairs. The

Leonard-Jones like potential has σij = 2.0Å and rij being the separation distance.

The angles αij and βij are the N-H-O and H-O-C’ angles, respectively.

The hydrophobic energy term is written as

Ehp = −khp
∑
ij

e−(rij−σhp)
2/2 (1.23)

where the sum is over all hydrophobic Cβ atoms, except nearest and next-nearest

neighbors. The exponential depends on the difference between the separation dis-

tance, rij of the pair, and the optimal distance for a hydrophobic contact, which is
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given as σij = 5.0Å. The strength of the hydrophobic interaction is khp = 0.805.
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Chapter 2

Systematic Coarse-Graining

Method for Optimizing Model

Parameters

The objective of this research was to develop a novel systematic method to determine

optimal model parameters for coarse-grained molecular simulations. The method is

based on minimizing the relative entropy between a target ensemble and an ensemble

that was generated from a coarse-grained model. In other words, the objective was to

minimize the relative entropy, Srel(λ), with respect to a set of CG model parameters,

λ, to obtain the optimal parameter set, λopt. Here the set of unknown model param-

eters is denoted as a vector λ = (λ1, . . . , λK), where λi is the ith model parameter,

and K is the total number of unknown model parameters.

The equation for the relative entropy in the canonical ensemble is given in Section

1.2 and has the form

Srel(λ) = β⟨UCG(λ)⟩T − β⟨UT⟩T − β
(
FCG(λ)− FT

)
(2.1)
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where the CG and target potential energies are UCG and UT, and the CG and target

Helmhotlz free energies are FCG and FT.

The concept of using the relative entropy for CG modeling was proposed by M. S.

Shell, and later applied to a CG model in an article by Charmichael and Shell [11, 26].

The main challenge in determining the absolute value of the relative entropy, Srel(λ),

is the calculation of the free energies, FCG(λ) and FT(λ). There are many evaluation

schemes for calculating the free energy of a molecular simulation, however, they are

all computationally intensive [27]. For this reason, the approach by Charmichael and

Shell was based on calculating gradients, ∂Srel/∂λi, in order to avoid calculating FCG

and FT. However, gradient-based methods will be local in nature and there is a

benefit in determining the absolute value of the relative entropies.

2.1 Multiparameter Simulation Method

Here, we developed a novel approach for calculating the Helmholtz free energies,

FCG(λ), called the multiparameter method. The multiparameter method is a gen-

eralized ensemble approach, similar to the simulated tempering method in Section

1.4. In simulated tempering, the temperature, T , was the control parameter that was

allowed to vary during the simulation. In contrast, in the multiparameter method,

the control parameters are chosen to be a set of CG model parameters, λ. The mul-

tiparameter simulation is carried out over a pre-selected set of parameter values that

can be sampled, λ1, . . . , λK .

The probability of being in configuration, r, with control parameter set, λ is given

by the joint probability distribution,

p(r, λ) ∝ e−βU(r,λ)+h(λ). (2.2)
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The control parameter dependent function, h(λ), is analogous to the g(β) function

in simulated tempering techniques described in Section 1.4.

2.1.1 Free Energy

The marginal distribution of the control parameters, λ, is obtained from the joint

probability distribution by summing over all configurations, r. The marginal distri-

bution is then

p(λ) ∝
∑
r

p(r, λ) ∝ e−βF (λ)+h(λ) (2.3)

where the free energy of the system is F (λ) = −1/β log
∑

r e
−βU(r,λ).

The marginal distribution will be flat when h(λ) = βF (λ). The free energy is

obtained directly from the multiparameter method during a simulation by making

an initial guess for h(λ), and “tuning” it until it gives a marginal distribution that

is roughly flat. The tuning process will directly give the optimal target function,

h̃(λ) = βF (λ) for a flat distribution, or a very good estimate, h̃(λ) ∼ βF (λ), if the

marginal distribution is only roughly flat.

Practically, the tuning process takes a target probability distribution, p̃(λ), which

depends on the target function, h̃(λ). The target distribution is defined as

p̃(λ) ∝ e−βF (λ)+h̃(λ) (2.4)

and the ratio between the two distributions is

p̃(λ)

p(λ)
∝ e−βF (λ)+h̃(λ)

e−βF (λ)+h(λ)
∝ eh̃(λ)−h(λ). (2.5)

Then, for p̃(λ) = constant, the target control parameter, h̃(λ) is found by rearranging
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the above equation to give

h̃(λ) = h(λ)− ln p(λ) + constant. (2.6)

Using the choice that h̃(λ) = βF (λ), we can obtain the CG Helmholtz free energy

by,

βF (λ) = h(λ)− ln p(λ) + constant. (2.7)

2.1.2 Acceptance Criteria

The multiparamter simulation method must have two different types of Metropolis

Monte Carlo updates: an update of the configuration (r → r′), or an update of the

control parameter value (λ→ λ
′
). Both updates use the joint probability distribution

from Eq. 2.2, and have a general acceptance probability with the form

Pacc(a→ b) = min

(
1,
p(r′, λ

′
)

p(r, λ)

)
. (2.8)

The update in the configuration, (r → r′), has an acceptance probability

Pacc(r → r′, λ) = min

(
1, exp

[
− β∆U

])
(2.9)

where the h(λ) functions cancel out, and the change in energy, ∆U = U(r′, λ) −

U(r, λ). This form is identical to the Metropolis acceptance criteria described in

Section 1.3.

The update in the control parameter, (λ→ λ
′
), has an acceptance probability of

Pacc(r, λ→ λ
′
) = min

(
1, exp

[
− β

(
U(r, λ

′
)− U(r, λ)

)
+ h(λ

′
)− h(λ)

])
. (2.10)
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The multiparameter method described here is a key part of the novel systematic

CG method, as it provides a simple method for determining the Helmholtz free energy

required for the relative entropy calculation.

2.2 The Steps of the Systematic CG Method

The novel systematic CG method to determine the optimal CG model parameters

relies on minimizing the relative entropy, Srel. The main challenge of calculating the

relative entropy was determining the Helmholtz free energy, however, this challenge is

overcome by using the novel multiparameter method described above. Therefore, the

relative entropy in the canonical ensemble can now be calculated for a CG ensemble

with a set of unknown model parameters.

The optimal CG model parameter set, λopt, is determined by coupling the relative

entropy calculation with an iterative line minimization technique to efficiently and

systematically search through parameter space. The full method for optimizing the

CG model parameters can be broken into multiple steps, which are listed below.

Find the optimal parameter set; iterative process

1. Choose an initial parameter set, λ, and initial direction, g.

2. Discretize each parameter, λj, in the set, λ, into N discrete values along a line

in parameter space. The discrete parameters are generated according to

λi = λ0 + iαg (2.11)

for i = 0, 1, . . . ,N− 1, and step size α.
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Note: The number of discrete values, N, is arbitrary, but the range must remain

small enough such that the energy difference between two adjacent parameter

sets is small. This eliminates the issue of needing to overcome large energy

barriers when moving the system from one discrete parameter set to another.

This allows the system to be able to sample all states, regardless on energy

barriers.

3. Run a multiparameter simulation with λ as the control parameter. The Monte

Carlo update in the control parameter value allows it to go from (λi → λi−1) or

(λi → λi+1).

From the simulation, obtain the CG Helmholtz free energy, FCG(λ), as described

in Sect. 2.1.1, as well as the ensemble average of the CG energy, ⟨UCG(λ)⟩.

4. Apply the self-consistent estimate equation (MBAR method) to obtain an im-

proved estimate of the CG free energy, FCG(λ).

5. Calculate the CG energy in the target ensemble, ⟨UCG(λ)⟩T, for the current

parameter set λ.

6. Calculate the λ-dependent part of the canonical ensemble relative entropy using

information from steps 3 to 5,

Srel(λ) = β⟨UCG(λ)⟩T − βFCG(λ)

7. Find the index of λj for which the relative entropy is the lowest. Let this be

the new initial parameter set, λ.

8. Calculate the gradient of the relative entropy for the new parameter set,∇Srel(λ).
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9. Pick the new direction following the steepest-descent or conjugate gradient

method.

Steepest-Descent: Let the new direction be, g = −∇Srel(λ).

Conjugate gradient: Let the new direction be g = h, which is given in Eq.

1.18.

10. Repeat steps 2 through 9 until the relative entropy reaches the local minimum

(when |∇Srel| < ϵ). Let the parameter set at the local minimum be the optimal

CG model parameter set, λopt.

It is important to note that each iteration of the systematic CG method requires a

new multiparamter simulation to be run, with a new set of model parameters, λ.

2.3 Validation of the Systematic CG Method

Two tests were done to prove the validity of the systematic CG method. Both tests

were done using the 3-letter CG protein folding model described in Section 1.7. The

target ensemble was defined as the ensemble generated by a Metropolis MC simulation

for an equilibrium set of model parameters. For the first validation test, the model

ensemble was generated from the multiparameter simulation when one of the known

model parameters from the CG model was discretized. Then, by calculating the

canonical ensemble definition of the relative entropy between the model ensemble and

the target ensemble, and using the line minimization technique, the multiparameter

method was used to recapture the target value.

The second validation test was to extend the above definition of the model ensem-

ble to be the ensemble generated by the multiparameter simulation when two known

model parameters were discretized. Similar to the first test, the relative entropy
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and line minimization techniques were used to recapture the target set of parameters

simultaneously.

2.3.1 Recapturing One Known Parameter

As a first test, we apply our systematic CG method to the 3-letter CG model described

in section 1.7 with a single free model parameter, λ = khp, where khp is the strength

of the hydrophobic interaction given in Eq. 1.23.

The model potential energy function can be simplified as

E(r, λj) = E0(r) + λjehp(r) (2.12)

where the total energy depends on the configuration, r, and the value and index of

the dynamic parameter, λj. Here, E0 is the sum of the energy terms excluding the

hydrophobic energy, and ehp = −
∑

ij e
−(rij−σhp)

2/2 is the part of the hydrophobic

energy that does not depend on khp.

The multiparameter simulation method was used here, and the single model pa-

rameter was discretized into a set of N parameters, where the correct (target) value of

of the hydrophobic interaction strength, λT = khp = 0.805, was one of the N discrete

values. Mathematically, the discrete parameter set is λ = (λ1, . . . , λT, . . . , λN), where

N = 10 here.

The relative entropy, given by Eq. 1.6, was simplified significantly using the energy

function given in Eq. 2.12. The first term of the relative entropy simplifies as

⟨UCG − UT⟩T = ⟨(E0 + λjehp − E0 − λTehp)⟩T

= (λj − λT)⟨ehp⟩T

=
(λj − λT)

λT
⟨Ehp⟩T

(2.13)
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where λj is the j-th dynamic parameter value in the model system, and λT is the target

value. ⟨Ehp⟩T is the ensemble average of the CG hydrophobic energy term calculated

in the target ensemble. The second term of the relative entropy is β(FCG−FT), where

the simulation calculates the free energy hCG = βFCG. Lastly, since the relative

entropy was being minimized, the exact value was not required to be known, and

thus, the constant mapping term was ignored.

Therefore, the simplified relative entropy is given as

Srel(λj) =
(λj − λT)

λT
⟨Ehp⟩T − (hj − hT). (2.14)

The relative entropy is minimized with respect to a target ensemble, which can

first be defined as all of the configurations for which the index, j, corresponds to the

case when λj = khp = 0.805, which is the target value. The simplified relative entropy

(Eq. 2.14) will be zero, Srel(λT) = 0, by definition when the dynamic parameter equals

the target value, λj = λT.

To determine Srel(λj) for j = 1, . . . , 10, we carried out 20 multiparameter simula-

tions each with 20 million MC cycles, which had a runtime of around 20 hours. The

disctretized set of parameters for the hydrophobic strength were chosen to be in the

range λ = [0.78, 0.825]. The results for the relative entropies, Srel(λ), calculated for

the 20 simulations are given in Fig. 2.1.
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Figure 2.1: Average Relative Entropy, Srel of 20 multiparameter simulations plotted
versus the strength of the hydrophobic interaction, khp (solid line), and the individual
relative entropy from each simulation (symbols). The standard error for the average
relative entropy is given by the error bars.

As expected, the relative entropy is zero when the dynamic parameter equals the

target value, however, the statistical errors are large here. There is a minimum at

λ = 0.81 instead of at λ = 0.805, and the range of the relative entropy at each index

is quite large, with a significant number of data points being negative.

The large spread in Srel(λj) values in Fig. 2.1 is due to the large statistical
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errors present in the values of the free energies, FCG(λj). In order to improve the

free energies, FCG(λ), we apply the MBAR estimate equation, described in section

1.5. This method is a quick calculation that uses information about the ensemble of

generated configurations from the simulation to obtain a better estimate for the free

energies. The MBAR calculation significantly improves the results, as shown in Fig.

2.2, which is identical to the previous graph, except the relative entropy is calculated

with the corrected free energy.
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Figure 2.2: Average Relative Entropy, Srel, of 20 multiparameter simulations, with
MBAR estimate of free energy, plotted versus the strength of the hydrophobic inter-
action, khp (solid line), and the individual Srel from each simulation (symbols). The
standard error for the average relative entropy is given by the error bars.

It is quite clear that the self-consistent free energy correction greatly improves the

results of the relative entropy calculation. Again, by definition, the relative entropy

is zero at the target value, but now the entropy everywhere else is greater than zero.

This is the expected result, because there should be a minimum in the entropy when

the dynamic parameter equals the target parameter value.
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The above test of the systematic CG method is flawed slightly in that the target

ensemble used to minimize the relative entropy was generated from the multiparam-

eter simulations. A more robust test of the method would involve a target ensemble

obtained from a separate simulation. This was done here, and the target energy,

⟨ECG(λ)⟩T, was obtained by running 10 independent simulations where the value of

the hydrophobic strength was fixed at khp = 0.805. Each simulation was run for 20

million MC cycles, and the average hydrophobic energy was calculated over all con-

figurations and found to be ⟨Ehp⟩T = −2.880781± 0.0007639. The target free energy

is not required for the relative entropy calculation since it will only shift the values

of the relative entropy by a constant, and not changing the location of the minimum.

However, the self-consistent MBAR free energy calculation is done to improve the CG

model free energy function. The average relative entropy with independent target is

plotted in the same way as before, given in Fig. 2.3.
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Figure 2.3: Average Relative Entropy, Srel, of 20 multiparameter simulations, with
the MBAR free energy estimate, plotted versus the strength of the hydrophobic inter-
action, khp (solid line), and the individual Srel from each simulation (symbols). The
standard error for the average relative entropy is given by the error bars. The target
ensemble here is multiple independent fixed parameter simulation

The relative entropy is even better when the target ensemble is an independent

simulation. The standard error is included on the graph, but cannot be seen because

they are extremely small. This shows that the MBAR free energy calculation and

an independent target ensemble both have a significant impact on the quality of the

relative entropy statistics.
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2.3.2 Minimization using Steepest Descent

In order to test the calculation of the gradients, ∂Srel/∂λ, and to determine the

precision with which the an unknown model parameter, λ, can be found, we tested a

minimization scheme on the above system. Carmichael and Shell [26] proposed using

either the Newton-Raphson or steepest descent minimization technique to minimize

the relative entropy. These techniques were used to iteratively step through parameter

space in the direction of the global minimum, such that each iteration brought the

CG model parameters closer to the optimum. The steepest descent technique can be

written

λk+1 = λk − α
∂Srel

∂λ
(2.15)

for some step-size, α. The derivative of the relative entropy is calculated using Eq.

B.7 for the reweighted gradient, which is found in Appendix B. The iterative process is

valid if the current parameter, λ, is close to the initial guess parameter, λ0. This is the

case if the initial guess parameter is chosen to be close to the target λ = 0.805. Thus,

choosing λ0 = 0.80 or even λ0 = 0.78 will satisfy the validity condition. Using the

configurations saved from the multiple simulations, the derivative can be calculated

and the minimum can be found using this approach.

The iterative process is repeated until the current parameter set and the next

parameter set has a difference that is less than ϵ = 1.0 × 10−8. The initial guess

parameter was chosen to be λ0 = 0.80, and the step size was varied. The results are

shown in Table 2.1.

The number of iterations rapidly increased as the step size was decreased, but the

results for the minimum parameter did get closer to the target of λ = 0.805 as the

step size was decreased.

From the minimization of the relative entropy and the minimization of the en-

32



α ⟨λmin⟩ ⟨Niterations⟩
0.05 0.80567151 56.8
0.01 0.80567130 264.15
0.001 0.80566886 2050.4
0.0001 0.80564449 14292.6

Table 2.1: Steepest Descent iterative approach to determine the minimum parameter,
λmin, as a function of step size, α.

tire parameter space using the derivative of the relative entropy, it is clear that the

target value of λ = 0.805 was very successfully obtained with a very small degree

of uncertainty. The uncertainty here is due to statistical noise, and by using the

MBAR calculation and the independent target ensemble, the noise was significantly

decreased.

2.3.3 Recapturing Two Known Parameters

The second validation test was an extension of the first test, and showed that the

method can optimize two model parameters simultaneously. The strength of the hy-

drophobic interaction remained dynamic, and the positive coefficient in the hydrogen

bond energy term, of Eq. 1.22, was also discretized. This coefficient is the strength

of the hydrogen bond interaction, and is known to be khbond = 3.22. One important

difference between this test and the previous test is that the dynamic parameter, λ,

is now a vector with two components, λ = (λ1, λ2) where λ1 = khp and λ2 = khb.

Each of the components were discretized into 10 values as, λ1 = (λ
(1)
1 , . . . , λ

(10)
1 ) and

λ2 = (λ
(1)
2 , . . . , λ

(10)
2 ). Then, during the multiparameter simulation, there was an

equal chance that either one of the components would undergo an update; (λ1 → λ′1)

or (λ2 → λ′2). In this way, the multiparameter simulation was able to sample the set

of 100 unique pairs of the two parameters.

For a multiparameter simulation of two dynamic parameters, the number of MC
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cycles must be increased to ensure sufficient sampling at every point in parameter

space. There were 10 simulations run, each with 40 million MC cycles to ensure good

sampling. The relative entropy was calculated using the free energy calculated during

the simulation, and using the MBAR calculation. Both relative entropy calculations

used the definition for the “target” ensemble to be the same independent set of

simulations as before. Thus, the target hydrogen bond interaction energy term was

⟨Ehb⟩T = −22.575294± 0.0124634, and the target hydrophobic energy was the same

as before.
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Figure 2.4: Average Relative Entropy of 10 multiparameter simulations plotted ver-
sus the strength of the hydrophobic interaction and the strength of the hydrogen
bond. The relative entropy was calculated using the free energy obtained from the
simulation.

Fig. 2.4 shows the average relative entropy at each point in the 2-dimensional

parameter space, connected together with a mesh to show the relative entropy land-

scape. The landscape is very noisy, with a minimum at (λhp, λhb) = (0.815, 3.225). It

is important to note that the relative entropy scale is very small, and thus, any amount

of statistical noise would significantly affect the landscape. This is another reason

why the self-consistent free energy calculation to get a better estimate is important.

Fig. 2.5 shows the average relative entropy landscape when the entropy is calcu-
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lated using the MBAR estimate for free energy.
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Figure 2.5: Average Relative Entropy of 10 multiparameter simulations plotted versus
the strength of the hydrophobic interaction and the strength of the hydrogen bond.
The relative entropy was calculated using the self-consistent free energy estimator
equation.

From Fig. 2.5, it is clear that the MBAR estimated free energies greatly im-

proved the entropy landscape. The relative entropy now shows a smooth landscape

with no local minima, and a very clear global minimum that occurs at (λhp, λhb) ≈

(0.805, 3.22), which is equal to the target values for the strength of the hydrophobic

and hydrogen bond interactions. The fact that the global minimum has two values

for λhp is due to the fact that by definition, the relative entropy at the target dynamic
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parameter values is exactly zero. However, the relative entropy at λhp = 0.81 is not

exactly zero, but equal to zero within the uncertainty.

Although the above results were successful in recapturing the known values for

one or two CG model parameters, these methods do not scale well with increased

number of parameters. For example, if 3 parameters were discretized, the dynamic

parameter λ would be a 3-dimensional matrix with 1000 points. The number of MC

cycles required to have good sampling at each point would be extremely large, and

any more than 3 dynamic parameters would be impossible to study.

2.3.4 Testing Line Minimization Schemes

Here, we couple the multiparameter simulation method with line minimization tech-

niques. Local minimization methods are ideal for this problem for many reasons; the

local minimum can be found in a systematic and direct way while only using a small

subset of the parameter space. Therefore, coupling the method with line minimiza-

tion schemes will allow higher dimensional parameter space to be searched through

efficiently and without a significantly higher computational cost.

2.3.4.1 Line Minimization with Steepest-Descent Method

The first minimization method used was the Steepest-Descent method, in which the

parameter λ is updated according to the equation

λk+1 = λk − α
∂Srel

∂λ
(2.16)

for some step-size, α.

To apply the steepest-descent method here, a starting point in parameter space

is chosen, (λ0hp, λ
0
hb), and an arbitrary step size, and an arbitrary initial direction.
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The initial parameter set is then generated using equation 1.16. A simulation is then

run for the given parameter set, and the relative entropy is calculated using the self-

consistent free energy estimate. The minimum of the relative entropy is found and the

gradient is calculated using Eq. B.7 from Appendix B. The next parameter set starts

at the relative entropy minimum, and goes in the direction of the negative gradient.

This process is continued until the parameters at the relative entropy minimum are

equal to the target values, within a small finite difference. Results for 4 simulations

are shown in Fig. 2.6, where the target global minimum is symbolized with a square

and denoted λtarget, while the minimum obtained from the line minimization method

is denoted λopt.
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Figure 2.6: Results for the 4 iterations required to find the optimal model parameter
set using the systematic CG method and the steepest-descent minimization method.

Unfortunately, the steepest-descent method was incapable of accurately recap-

turing the target global minimum of (λ̃hp, λ̃hb) = (0.805, 3.22). The minimum that

the method recovered was (λhp, λhb) = (0.803666, 3.224626). Although the difference

between the target global minimum and the achieved global minimum looks large in

the figure, the difference is (∆λhp,∆λhb) = (−0.001334, 0.004626). The method was

stopped at this point due to the very small difference between the relative entropy

for the 4th simulation, and any additional simulations would be greatly affected by
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statistical noise.

2.3.4.2 Line Minimization with Conjugate-Gradient Method

Due to the limitations of the Steepest-Descent method, the Conjugate-Gradient method

was used as a minimization scheme. The conjugate-gradient method was initialized

with the parameters (λ0hp, λ
0
hb) = (0.80, 3.20), and the initial gradient g0 = 1. The pa-

rameter set was generated following the conjugate-gradient method described above

in Section 1.6.2, and a simulation was run for the given parameter set. Results from

3 simulations are shown in Fig. 2.7.
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Figure 2.7: Results for the 4 iterations required to find the optimal model parameter
set using the systematic CG method and the conjugate-gradient method.

The conjugate-gradient method only required 3 simulations to find the global

minimum within a very small difference, ε ∼ 10−6. The final minimum was found to

be (λhp, λhb) = (0.805550, 3.219926), which gives a difference from the target global

minimum of (∆λhp,∆λhb) = (0.00055,−0.000074). It is clear from these results that

the conjugate-gradient method is very efficient at recapturing the global minimum

of a multiparameter simulation with 2 dynamic parameter. Very little of parameter

space was explored, and the method was able to find the minimum to within an
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extremely small range after 3 Monte Carlo simulations.

2.4 Conclusion

It has been shown that by combining multiple methods, such as relative entropy

minimization, generalized ensemble approach to simulations, MBAR free energy esti-

mates, and local optimization, it is possible to efficiently determine the target values

for CG model parameters. This systematic CG method described at the beginning

of the Chapter has successfully recaptured the value of two model parameters with

only 3 simulations. Therefore, the method should easily scale to allow the study of a

large number of model parameters. Furthermore, the method can be applied to model

parameters that are unknown, and to target systems that are not CG simulations.
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Chapter 3

Application of the Systematic CG

Method

To demonstrate the capability of the systematic CG method as an approach to de-

termine the optimal coarse-grain model parameters, the method was applied to two

different CG protein folding models with either 13 or 91 unknown model parameters.

Two different target ensembles were considered, a single experimentally determined

native structure, and a large ensemble of configurations generated from a molecular

dynamics simulation.

3.1 Protein Sequence and Target Ensembles

The systematic CG method developed here relies on the minimization of the relative

entropy in order to determine the optimal CG model parameter set. The relative

entropy is a measure of how close the CG model ensemble is to the target ensemble,

and thus, the optimal parameters are those that allow the CG model ensemble to

best match the target ensemble. Therefore, the choice of the target system is crucial
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because it determines the optimal parameter set, λopt, as well as the extent to which

the optimized CG model can be applied to other systems.

Furthermore, the choice of what protein being studied is important as well. The

CG protein folding model represents all amino acid types, and allows for the protein

to fold into its native configuration. Therefore, we selected the protein BBA as a test

case because despite its short length of 28 residues and 504 atoms total, it contains

13 of the 20 amino acid types. This protein has a very interesting native structure

consisting of two β-sheets and one α-helix, and thus contains both main types of

secondary structures. It is commonly referred to as the ββα, or BBA, protein [28].

Figure 3.1: The native solution structure of the 1FME protein from an NMR exper-
iment. The image was generated from data obtained from the RCSB Protein Data
Bank [28].

The first target ensemble used for calculating the relative entropy was the single

experimentally determined native configuration of the BBA protein. This target

ensemble was obtained from the Protein Data Bank, with PDB id 1FME, and has

the native structure from a solution NMR experiment, shown in Figure 3.1 [28].

The second target ensemble was an all-atom molecular dynamics simulation of the

BBA protein done by the D. E. Shaw research group [29]. This target ensemble was

not just the single native configuration, but rather a large ensemble of configurations
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generated over a long Molecular Dynamics (MD) simulation. The MD simulation

was 223µs, with configurations captured every 0.02µs, resulting in Nc = 111500

saved configurations.

The systematic CG method described in Chapter 2 was used to obtained the op-

timal model parameter set by minimizing the relative entropy between the generated

CG ensemble and the two different target ensembles.

3.1.1 Comparing Two Configurations

In addition to calculating the relative entropy to compare two ensembles, we also

calculated the root-mean squared deviation (RMSD) to measure the structural sim-

ilarity between two individual conformations. The RMSD is a measure of how close

the positions of the atoms in two configurations, a and b, match. This is done by

calculating the distance, δi = |r(i)a − r
(i)
b |, where r(i)a is the position of atom i in con-

figuration a, and r
(i)
b is the position of the same atom i in configuration b. This can

be done for every atom in the configuration, or just some of the atoms. Here, the

RMSD is calculated between the Cα atoms of a CG configuration and those of the

experimentally determined structure.

The RMSD is given by the equation,

RMSD = min

√ 1

N

N∑
i=1

δ2i (3.1)

where the minimum is taken over all relative rotations and translations of the two

configurations. It is clear from the equation that RMSD ≥ 0, and a low value for

RMSD means the two configurations were structurally very similar.
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Figure 3.2: Cα-RMSD for each configuration during the 223µs all-atom Molecular
Dynamics simulation from the D. E. Shaw Research group [29].

Figure 3.2 shows the RMSD as a function of time for the all-atom MD simulation

of BBA from Shaw et al. calculated with respect to the experimentally determined

structure 1FME. The lowest RMSD obtained during the MD simulation was 1.6Å

[29]. This figure shows two distinct states for the protein conformation. When the

RMSD is very low, around 2 − 4Å, the protein is in its folded native state. When

RMSD ≥ 5Å, the protein is in a configuration different from its native state, whether

it is unfolded entirely or forming some other structure. This figure shows that over

the course of the simulation, the protein folds and unfolds several times.

An alternate way to visualize the RMSD over the course of a simulation is to

generate a binned histogram for the probability of having a particular value of RMSD.

The histogram was generated by counting the number of times the RMSD is in the
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range of each bin, then plotting the probability or frequency as a function of RMSD.

This type of graph is shown in Figure 3.3, using the data from the long MD simulation

presented in Figure 3.2. This figure shows a bimodal shape, where the two peaks

correspond to the folded and unfolded states of the BBA protein respectively.
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Figure 3.3: Histogram showing the probability of having a particular value of the
Cα-RMSD from each configuration during the 223µs Molecular Dynamics simulation
from the D. E. Shaw Research group [29]. The bin size must be small, and was chosen
to be 0.05Å.
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3.2 13-parameter Side-Chain Potential Energy Func-

tion

The CG protein model described in Section 1.7 had three amino acid types, polar

(p), hydrophobic (h), and glycine (G). This was expanded to include all 20 amino

acid types, but maintain the simplified structure of representing the side chain by a

single larger Cβ atom. The hydrophobic interaction energy term was replaced with

a more general side-chain interaction energy, which has the form

Esc = −
N∑
i=1

N∑
j=i+3

M(ai, aj)ε(rij) (3.2)

where N is the total number of amino acids in the sequence, and ai denotes the amino

acid type of amino acid i, and ε(rij) = e−(σij−rij)
2/2. The double summation is over all

pairs of side chains, ij, ignoring nearest and next nearest neighbors along the chain.

The parameter M(ai, aj) determines the “strength” of the interaction between

a pair of amino acids with types, ai and aj. In principle, there are 210 parameters

M(ai, aj) determining the side-chain interactions. To decrease this number,M(ai, aj)

is defined as

M(ai, aj) = b(ai)b(aj) (3.3)

where b(ai) is the side-chain interaction strength of amino acid ai.

The exponential term is the same as the hydrophobic interaction, where rij is

the separation distance between the side chain Cβ atoms at index i and j, and

σij = σhp = 5.0Å. This terms gives a measure of the “range” of the side chain

interaction.

The side chain interaction energy as a function of configuration, rn, can be written
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in a simplified form given as

Esc(rn) = −
N∑
i<j

bibjε(rij) (3.4)

where the side chain strength bi ≡ b(ai).

The unknown parameters in this energy function are the side chain interaction

strengths for the amino acid types, bi. The set of the parameters can be written as a

vector with 20 components, one for each amino acid type,

λ = (b1, b2, . . . , b20) (3.5)

where the 7 amino acid types that are not present in the BBA protein all have

interaction strengths of zero.

The systematic CG method defined in Chapter 2 will be used to determine the

optimal set of those side chain strength parameters by minimizing the relative entropy

between the generated model ensemble and a target ensemble. The rest of this section

will organize the details behind determining the optimal parameter set. The first task

was simplifying and calculating the relative entropy and gradient for the new energy

function. This included calculating the average of the CG energy function in the

target ensembles. Then, the iterative approach was used to systematically find the

optimal set. This was done separately for the two different targets, as well as for

various optimization methods in order to determine the most efficient way to find the

optimal parameter set.
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3.2.1 Relative Entropy

The relative entropy can be simplified in a similar manner to the simplifications made

in Chapter 2. Specifically, since the function is being minimized and the exact value

of the relative entropy is not required, the equation can be simplified by lumping all

of the constant or parameter independent terms together.

The relative entropy is again given by the equation

Srel = β⟨UCG − UT⟩T − β
(
FCG − FT

)
+ ⟨Smap⟩T. (3.6)

Here, the mapping entropy and the target ensemble free energy, FT are both

independent of the parameter set, and thus will be absorbed into the constant, denoted

Sconst. The first term in Eq. 3.6 can be simplified by noting that the target ensemble

potential energy is a constant over the target ensemble if the target is independent of

the CG model ensemble. Therefore, ⟨UCG−UT⟩T ≡ ⟨UCG⟩T+C, where UT = constant,

which is independent of the parameter set as well.

Therefore, the relative entropy simplifies to

Srel = β⟨UCG⟩T − βFCG + constant (3.7)

where the constant will shift the relative entropy by some amount. The CG free

energy, FCG, is calculated during the multiparameter simulation, as described in

Chapter 2. The calculation for the CG energy averaged over the target ensemble,

⟨UCG⟩T, is given below.
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3.2.2 Efficient Calculation of ⟨UCG⟩T

The relative entropy depends on the average coarse-grained energy calculated over

every configuration in the target ensemble, ⟨UCG⟩T. The calculation required infor-

mation for every configuration of the target ensemble.

If the target is the experimentally determined native structure, then there is only

one configuration, and the average energy in the target ensemble is just Esc(rnat)

where rnat is the native conformation.

However, if the target ensemble is the Molecular Dynamics simulation of the

same protein, there are Nc configurations, and the CG energy must be calculated

for each configuration. In order speed up the calculation of the ensemble average

CG energy for either target ensemble, ⟨UCG(λ)⟩T, we generated histograms of the

separation distances, r, for each interaction pair, ij. The histograms were generated

as a function of the two sequence indices, i and j, and was denoted Hij(rk). Each

histogram corresponds to the number of times the separation distance between the

cα atoms at index i and j had a value in the range [r, r+ b], where b is the histogram

bin size.

The bin size was chosen to be, b = 0.001, which was the degree of precision

given in the raw data for the atom coordinates. Thus, the binned histograms did not

significantly alter or compress the information.

The CG side chain interaction energy can be calculated from the histograms by

summing over all interaction pairs, ij, and summing over each bin in the histograms,

given as

⟨Esc⟩T =
1

Nc

∑
i<j

bibj

Nbins∑
k

Hij(rk)εsc(rk) (3.8)

where all of the terms are defined above. Using Eq. 3.8 avoids averaging over all

conformations in the target ensemble, which speeds up the calculation of ⟨ECG⟩T.

51



3.2.3 Gradient of the Relative Entropy

The optimization schemes used here require the gradient of the relative entropy to be

determined. The gradient of the relative entropy is written as,

∇bSrel =
∂

∂b
Srel =

(∂Srel

∂b1
, . . . ,

∂Srel

∂b20

)
. (3.9)

The gradient of the relative entropy with respect to the set of all CG parameters,

λi, was found by Carmichael and Shell to be [26]

∂Srel

∂λ
= β

⟨
∂UCG

∂λ

⟩
AA

− β

⟨
∂UCG

∂λ

⟩
CG

(3.10)

which can be simplified for the energy function given in Eq. 3.4 by noting that the

gradient of the CG energy as a function of one of the amino-acid types, p, is

∂UCG

∂λ
=
∂Esc(rn)

∂bp
= − ∂

∂bp

∑
i<j

bibjεsc(rij) (3.11)

which can be solved to give

∂Esc(rn)

∂bp
= −

∑
i<j

δipbjεsc(rpj)−
∑
i<j

δpjbiεsc(rip) (3.12)

where the delta function, δip, means that only the side-chain interactions that involve

the p-th amino-acid type are included in the energy calculation for the gradient with

respect to the p-th amino-acid type.

It is important to note that for a function, f , that depends linearly on some system

dependent property, λ, the gradient is ∇f(λ) = constant. This is the case here for

the potential energy function, and thus, the relative entropy. The second derivative
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Hessian matrix for a linear function is zero or positive, which means that the function,

f , will have a basin shaped landscape with only one minimum. Therefore, determining

the local minimum of the relative entropy via line minimization techniques should also

determine the global minimum of the relative entropy.

3.2.4 Results for Target 1: Single Native Structure

As a first test, we applied our systematic CG method, as described in section 2.2, to

determine the optimal model parameter set for the 13-parameter side-chain potential

energy function. The relative entropy was minimized for Target 1, which was the

experimentally determined native structure of the protein BBA. The line minimiza-

tion procedure requires an initial parameter set and direction, which was chosen in

the following way: the initial parameter set was a randomly generated guess, and the

initial gradients were calculated from a fixed temperature simulation. Each multi-

parameter simulation (corresponding to one iteration of the method) was run for 4

million Monte Carlo cycles, saving every 100th configuration. The parameter set was

discretized with 10 dynamic indices, and the steepest-descent method with a step size

α = 0.01 was used to generate the line in parameter space.

A simple way to visualize how the parameter set changed throughout the iterative

process is to plot the value of each parameter for each iteration, as shown in Fig. 3.4.

There are 13 model parameters that are changing, one for each of the 13 different

amino acid types present in the protein BBA.

In principle, the theoretical converged parameter set would be the one for which

the gradient of the relative entropy is zero for all parameters in the set. In practice,

it is not expected that the gradient will ever be zero due to statistical fluctuations.

Therefore, the converged parameter set is defined as the set for which the gradient of
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the relative entropy is sufficiently small, i.e |g| < ϵ.
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Figure 3.4: The value of each model parameter plotted versus the number of itera-
tions. This graph shows how each of the model parameters changed throughout the
simulations following the systematic coarse-grained method to determine the optimal
parameter set.

The optimal parameter set, λopt, is taken to be the parameter set at the final

iteration in Fig. 3.4. We then determined the thermodynamic properties of the CG

model with λ = λopt. This was done by carrying out additional conventional fixed

temperature simulations and then calculating the RMSD between the generated CG

ensemble and the experimentally determined native structure, 1FME [28].

To visualize how the RMSD differs between the initial and converged sets, a

histogram is generated to show the probability that a CG ensemble has a RMSD in

a small binned range. This gives a probability distribution, P (RMSD), of having a

given RMSD value for each parameter set. This is shown in Figure 3.5.
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Figure 3.5: A histogram of the number of times a CG configuration has a RSMD
value within a small binned range. The CG ensemble contained 40000 configurations,
and the RMSD bin size was 0.05. The black curve is for the initial guess parameter
set, λinit, and the blue curve is for the final optimal parameter set, λopt.

Figure 3.5 shows a shift in the distribution towards lower values of RMSD. The

probability distributions, P (RMSD), were obtained using the CG model with either

the initial parameter set (black), or the optimized (blue) model parameter set. Due

to the nature of coarse-graining, it was not expected that the RMSD would be zero,

but it was expected that the converged parameter set should have a smaller RMSD if

it properly captured the folded conformation. The figure above shows the converged

set has two peaks, at 3.325Å and 6.875Å, while the initial parameter set has one peak

at 7.865Å. The two peaks of the converged parameter set RMSD implies that there
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were a number of configurations that were folded into a configuration resembling the

native state, but with a slightly larger RMSD around 3Å.

3.2.5 Results for Target 2: Molecular Dynamics Ensemble

In the second test, we applied our systematic method to the target ensemble from

the Molecular Dynamics simulation described in section 3.1. The initial value for

the parameter was chosen to be b0(ai) = 0.3 for all ai, and the initial gradients were

determined from a fixed temperature simulation.

For each iteration of the systematic CG method, we carried out four simulations

with 8 million Monte Carlo cycles each. The gradients for the four simulations were

averaged, and the average gradient was used as the direction for the steepest-descent

method when setting up the next simulation.

The results for the optimal CG model parameters when using the MD simula-

tion ensemble as the target are shown in Figure 3.6. The parameters converged to

a parameter set different to that found when using the experimentally determined

structure as the target, and the convergence was faster (fewer iterations).
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Figure 3.6: The value of each model parameter, λi, plotted versus the number of
iterations required for the systematic CG method to find an optimal parameter set.
These results are for the set of simulations that used the ensemble generated from
the long MD simulation as the target for the relative entropy minimization.

As shown in Figure 3.7, the P (RMSD) obtained using the converged CG parameter

set, λopt, does not match the results for P (RMSD) for the MD simulation target. In

fact, the converged parameter set does not show a second peak in the RMSD, which

implies the CG ensemble did not sample folded and unfolded states like the MD

simulation did. It does, however, match the target ensemble at higher values of

RMSD ≥ 9Å.
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Figure 3.7: A histogram of the number of times a CG configuration has a RSMD
value within a small binned range. The CG ensemble contained 320000 configurations,
and the RMSD bin size was 0.05. The black curve is for the initial guess parameter
set and the blue curve is for the final converged data set. The red curve is for the
RMSD probability histogram for the MD simulation ensemble.

3.2.6 Optimal Choice of Step-Size α

Figure 3.6 showed that there were many times when multiple iterations were required

before a minimum was found along a given direction. This occurs when the discretized

set of parameters does not extend far enough into parameter space to include the

minimum. The systematic CG method used here would be more efficient if a minimum

was found after each iteration, which would occur if the length of the line in parameter

space was sufficiently long.
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The systematic CG method allows the parameter set to be discretized according

to

λi = λ0 + iαg for i = 0, 1, . . . , K − 1 (3.13)

where λ0 is the initial parameter, and g is the direction, and α is the step-size. It is

clear from this equation that changing α or K will change the range of the line in

parameter space.

Increasing the number of discrete values would require longer simulations in order

to sample each discrete state the same number of times (obtain the same statistics).

However, increasing the step size when generating the discrete parameter sets does

not change the number of times each state is sampled, and thus does not affect the

number of MC cycles required. Increasing the step size could affect the ability of the

multiparameter simulation to visit each discrete state equally. This issue is overcome

by tuning the initial control parameter dependent function, h(λ). Since this function

is used in the acceptance criteria for the multiparameter simulation, it directly affects

how probable it is to sample each state. Therefore, by making a better guess for that

function, the simulation can be set up to evenly sample every state.

In Figure 3.6, the step size was too small for the discretized parameter set to

sample the state corresponding to the relative entropy minimum. In other words, the

parameter set λK−1 comes before the optimal parameter set, λopt, in the direction g.

In order to determine what the optimal step size was, two separate tests were run for

different step sizes.

The first test was for α = 0.05, which is a factor of 5 larger than the previous step

size. This was done based on the fact that for the previous results, some iterations

required up to 4 simulations before finding a minimum. The results for how the values

of the parameter set changed for each iteration are shown in Figure 3.8, where the
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iteration number corresponds to a single simulation. This iterative approach using a

step size of α = 0.05 was labelled as “efficient” since each iteration required only one

simulation, and the converged parameter set was obtained in only 15 iterations.
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Figure 3.8: The value of each model parameter, λi, plotted versus the number of
iterations required for the systematic CG method to find an optimal parameter set.
These results are for the set of simulations that used the “efficient” step size choice
of α = 0.05. The target for the relative entropy minimization was the ensemble
generated from the long MD simulation.

It is also important to note that the initial parameter set, λ0 = 0.5 for all param-

eters. Again, the initial gradients were determined from a separate fixed temperature

simulation. All other simulation parameters were kept the same as those used to

obtain Fig. 3.6. Thus, the converged parameter set for the two runs could be directly

compared. The two graphs, Fig. 3.6 and Fig. 3.8, show that the step size and the

initial guess do not affect the converged parameter set, as the two graphs both con-
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verged to the same values. The choice of step size does obviously affect the efficiency

of the iterative approach, as demonstrated. However, it is not expected that the ini-

tial guess for the parameter set will have a significant affect on the efficiency of the

process, as the method of finding the minimum relative entropy is largely controlled

by the magnitude of the gradient.

The Cα-RMSD for the “efficient” step size choice was generated, but gave results

almost identical to those in Fig. 3.7, since the converged parameter set was almost

identical.

A final set of simulations were run with the goal of giving an indication that the

above results did not converge to a local minimum instead of the global minimum.

Since the optimization was done using steepest-descent method, which is a local line

minimization technique, the converged set could be a local minimum. To demonstrate

that the converged set was not stuck in a local minimum, the step size was increased

again to α = 0.10, which was 10 times larger than the initial step size, and twice as

large as the “efficient” step size. This was done such that the process of discretizing

the parameters covered a larger range of parameter space for each simulation.

The results for the iterative approach with α = 0.1 for the parameter values as a

function of number of iterations are shown in Figure 3.9. The converged parameter

set was found after 17 iterations, and all parameters converged to the same results

as above. Therefore, this shows that the converged parameter set is most likely in a

global relative entropy minimum, and the choice of step size does affect the efficiency

of the method, but a step size of α = 0.05 is a good choice.
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Figure 3.9: The value of each model parameter, λi, plotted versus the number of
iterations required for the systematic CG method to find an optimal parameter set.
These results are for the set of simulations that used the larger step size choice of
α = 0.1. The target for the relative entropy minimization was again the ensemble
generated from the long MD simulation.

3.2.7 Comparing Optimal Model Parameters

Next we investigate how the λopt parameter sets for target 1 and target 2 compare.

To do this, the final values for all of the 13 parameters are plotted on the same graph,

in Figure 3.10. If the 13 parameters converged to the same results for either target

ensemble, they would fall on the line y = x, which is plotted as reference.
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Figure 3.10: The optimal CG model parameters found using the systematic method
for each of the two target ensembles are plotted here. The line y = x shows where
the values would lie if the optimal parameters were the same for the two targets.
The single experimentally determined native structure target is on the y-axis, and
the target from the ensemble from the MD simulation is on the x-axis.

Clearly, the converged set with the target being the single experimentally deter-

mined structure is not the same as when the target is a MD simulation ensemble.

However, assuming there is one correct optimal CG parameter set, the systematic

method should find the optimal parameter set regardless of the choice of the target

ensemble.
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3.2.8 Conclusion

The results presented above show that the systematic coarse-grained method for de-

termining the optimal model parameter set, λopt works to some extent. The method

was able to systematically converge to a parameter set from some initial guess param-

eter set. In the case with the experimentally determined single native structure as the

target, the convergence was very slow, taking over 60 iterations, but the converged set

showed better RMSD results. Figure 3.5 showed a shift in the peak to a lower RMSD

value, and a second weaker peak in the RMSD histogram at 3.32Å for the converged

parameter set. This means that the converged parameter set was a better match to

the target ensemble, and although the ensemble sampled a majority of states with

an RMSD between 6 and 7 Å’s, there were a number of configurations with structure

similar to the target native state.

However, the results for the simulations using the ensemble generated from the D.

E. Shaw Molecular Dynamics simulation as the target were not able to find a good

optimal parameter set. The optimal parameter set was found multiple different ways,

using different step sizes or initial guesses, but the converged parameter set was not

able to match the results, such as P (RMSD), for the experimental or MD target. The

method did allow for a systematic approach to finding some converged parameter set,

and it was found that the size of step used in discretizing the parameter set allowed

for faster, more efficient convergence. Further, it was determined that the initial guess

parameter appears to have little affect on the rate of convergence, and the method is

able to find the optimal parameter set regardless of handful of initial condition used

here.

Therefore, the systematic CG method for determining the optimal model param-

eter set was shown to be an efficient and systematic way to determine the optimal

64



parameters through minimizing the relative entropy between a CG ensemble and a

target ensemble. However, the issue here was that the converged parameter set was

not able to exactly match the experimental or all-atom simulation results in terms

of folding properly, as shown in the RMSD histograms. One explanation for this

issue is that the energy function used for the side-chain interaction was too simple.

The systematic method was able to obtain the best possible converged parameter set,

but since the functional form of the interaction energy had a very simple form, the

optimal parameter set was still not enough to capture all the details of the side-chain

interaction.

3.3 91-parameter Side-Chain Potential Energy Func-

tion

To test the prediction that the side-chain interaction energy above was not sufficient

to capture the details of the side-chain interaction, we propose a better interaction

energy term with more parameters. Here, we propose a 20 by 20 matrix M(ai, aj),

where the indices represent amino acid types, ai and aj. The model parameter set will

be the elements of this matrix, where the elements represent an interaction strength

between amino acid type ai and aj. SinceM is symmetric (i.e. M(ai, aj) =M(aj, ai))

the number of unique matrix elements is N(N − 1)/2 + N , so there are 210 unique

parameters for N = 20 amino acid types.

However, since there are only 13 amino acid types present in the BBA protein

being studies, the number of model parameters is less. The parameter set can be

represented by a 13 by 13 matrix, which will have 91 unique elements. Therefore, the

model parameter set that is being optimized is a vector with 91 components given
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as λ = M(ai, aj) for i, j = 1, . . . , 13 and i ≥ j. The side-chain interaction energy for

configuration, r and parameter set, λ, was given in Eq. 3.2.

Targets 1 and 2 defined above are used here as well, and the systematic CG method

as described in Chapter 2 is followed here.

3.3.1 Results for Target 1: Single Native Structure

The initial parameter set was chosen to be λ0 = 0.3 for all 91 elements of the ma-

trix, M(ai, aj), and the initial gradients were determined from a fixed temperature

simulation. The multiparameter simulation was then run 4 times with 8 million MC

cycles each, and every 100th configuration was saved. The efficient step size α = 0.05

that was determined earlier was used here as well.

Figure 3.11 shows that the majority of the parameters converge within the first

15 iterations, while some parameters take longer to converge. The interaction pairs

with a value λ ≥ 2 are T-T, F-G, F-L, and L-G (strongly attractive), the interaction

pairs with a value λ ≤ −2 are R-G, R-I, and Y-T (strongly repulsive).
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Figure 3.11: The value of each model parameter, λi, plotted versus the number
of iterations required for the systematic CG method applied to the 91-parameter
side-chain potential energy and with target 1, the experimentally determined native
structure.

As before, the optimal parameter set was used to generate an ensemble of configu-

rations from a fixed temperature simulation in order to obtain the RMSD distribution,

P (RMSD). Unlike the simulations shown above with the 13-parameter side-chain in-

teraction energy, the optimal set of 91 model parameters gives RMSD results that are

much closer to the expected results. Shown in Figure 3.12, the converged parameter

set has a larger probability of being in a configuration with RMSD between 2− 4Å,

and the peak in the RMSD histogram occurs at 2.575Å. This result means that the

optimal parameter set, λopt, found by minimizing the relative entropy between the CG

ensemble and the experimentally determined structure, prefers to be in a folded state

very close to the true native state. Therefore, from a random initial guess for the 91
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CG model parameters, the optimal parameter set obtained is capable of recapturing

properties of the physical system. This was the goal of the systematic coarse-grained

method, and it is shown here that the method works as expected for this choice of

potential energy function and target ensemble.
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Figure 3.12: A histogram of the number of times a CG configuration with the matrix
parameter set has a RSMD value within a small binned range. The CG ensemble
contained 320000 configurations, and the RMSD bin size was 0.05. The black curve
is for the initial guess parameter set and the blue curve is for the final converged data
set.

3.3.2 Results for Target 2: Molecular Dynamics ensemble

The next set of simulations were done to test how well the optimal parameter set

could be found when using the ensemble generated from the Molecular Dynamics
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simulation as the target for the relative entropy minimization. Again, 4 multiparam-

eter simulations with 8 million MC cycles were run and the iterative approach was

followed. The step size was decreased to α = 0.03 instead of α = 0.05. The initial

parameter set was chosen to be λ0 = 0.0 and the initial gradients, g0, were found

from a fixed temperature simulation.

Figure 3.13 shows that the majority of the model parameters converged in fewer

than 10 iterations, and the optimal model parameter set, λopt was taken from the

20th iteration.
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Figure 3.13: The value of λi versus the number of iterations for the set of simulations
that used the new side-chain interaction energy with a matrix for the parameter set.
The MD ensemble was the target for the relative entropy minimization, and steepest-
descent minimization method was used to determine successive parameter set.

Again, the optimal parameter set was used to generate an ensemble of configura-

tions from a set of 4 fixed temperature simulation, and the probability distribution,
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P (RMSD), was calculated for the optimal set, λopt. The RMSD distribution for the

optimal set of 91 parameters is compared to the target ensemble distribution obtained

from the all-atom MD simulation, which is given in Fig. 3.3. The two distributions

were also compared to the distribution for the initial guess parameter set. The results

for the RMSD distributions are shown in Fig. 3.14.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  2  4  6  8  10  12  14

Pr
ob

ab
ili

ty

RMSD (Å)

λinit
λopt

λtarget

Figure 3.14: The RMSD histogram for the CG configuration with the matrix pa-
rameter set. Target ensemble was the MD simulation ensemble, and steepest-descent
line minimization was used to find successive parameter sets. The black curve is for
the initial guess parameter set and the blue curve is for the final converged data set.

Figure 3.14 shows that the optimal parameter set (blue line) does not capture the

bimodal behaviour of the target distribution (red line), corresponding to the folded

and unfolded regimes. The optimal parameter set is able to capture RMSD distribu-
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tion for the unfolded states between 6 − 12Å, but there are very few configurations

that are in a folded state close to the native structure. The inability to recreate the

peak corresponding to the folded state, ∼ 3Å, could be due to the fact that the all-

atom simulation is dominated by configurations in the unfolded state, or the optimal

parameter set is not in a global minimum of the relative entropy, Srel. Here, the

systematic CG method found a parameter set that was optimized to the unfolded

region of the all-atom target. This result leads to the important conclusion that the

ability of the systematic CG method to determine the correct optimal parameter set

depends on the choice of the target ensemble.

3.3.2.1 Testing Line Minimization Schemes

The systematic CG method relies on a line minimization technique to determine the

directions to travel in parameter space. The two different minimization techniques

looked at here are steepest-descent and conjugate-gradient, and results for both were

shown in the validation of the method in Chapter 2. Conjugate gradient method is

expected to be more efficient at searching through parameter space when the land-

scape is smooth and parabolic in shape. For the case of the protein folding problem

explored here, the relative entropy landscape appears smooth in the sense that it

does not contain multiple minima. Therefore, the conjugate gradient minimization

technique should be a more efficient way to search through parameter space and find

the optimal parameter set. This was tested by applying the systematic CG method

to same initial conditions that were used to create Fig. 3.13, but using the conjugate

gradient method to determined the direction for each new line.

Figure 3.15 shows the model parameter convergence when the conjugate-gradient

method was used to determine the direction to travel for successive parameter sets. In

contrast to Fig. 3.13, the convergence appears much smoother, which represents the
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fact that each new direction calculated using the conjugate gradient method is moving

the model parameters directly in the direction of the optimal set. Furthermore, the

convergence occurs in just 13 iterations, as opposed to the 20 iterations that were

required for the case of the steepest descent minimization.
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Figure 3.15: The value of λi versus the number of iterations for the set of simulations
that used the new side-chain interaction energy with a matrix for the parameter set.
The MD ensemble was the target for the relative entropy minimization, and conjugate-
gradient minimization method was used to determine successive parameter set.

It is clear by comparing Figures 3.13 and 3.15 that the conjugate gradient method

is more efficient in determining the optimal parameter set. However, both minimiza-

tion schemes converge to the same parameter set within a small uncertainty, which

means that the issue of the RMSD distribution not matching the target distribution

is still relevant here. The RMSD distribution graph for the conjugate gradient case

is not shown here because it is the same as Fig. 3.14 above.
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3.3.3 Comparing Optimal Model Parameter

The scatter plot showing how the optimal parameter sets for the two targets compare

to each other is shown in Fig. 3.16. The range of the interaction strengths for the

experimental target (y-axis) is b(ai) ∈ [−5, 5], which is a larger spread (more attractive

or repulsive) than the 13-parameter potential energy function. While some of the

parameter values fall close to the line y = x, a significant number of the parameters

are far from that line. The disagreement in the optimal parameter sets for the two

target ensembles can be understood by considering the unfolded state in the MD

target ensemble since the behavior of the unfolded state can be recreated without

many strong interactions. It is this disagreement that gives rise to the difference in

the RMSD distribution graphs (Fig. 3.12 and 3.14).
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Figure 3.16: The optimal CG model parameters found using the systematic method
for each of the two target ensembles are plotted here for the case of the 91-parameter
potential energy function. The line y = x shows where the values would lie if the
optimal parameters were the same for the two targets.

3.3.4 Conclusion

The 91-parameter potential energy function studied here was better than the 13-

parameter function in two ways: The optimal parameter set was found in fewer

iterations for both targets, and the optimal parameter set for the experimentally

determined single structure target allowed the protein to sample the folded state the

majority of the time.
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All of the results shown so far, for both potential energy functions and both target

ensembles, show that the systematic CG method described in Chapter 2 is capable

of determining the optimal parameter set. However, the degree to which the optimal

parameter set allows the CG ensemble to match the physical system directly depends

on the choice of the parameter set and target function. A parameter set with more free

parameters, and a very precise target ensemble give the best results for the systematic

CG method.

3.4 Global Optimization Approach

The iterative approach used for the systematic CG method for determining the opti-

mal CG model parameter set described in Chapter 2 has one main drawback, which

is that the method is based on consecutive line minimizations. This means that the

entire iterative approach cannot be described as a global optimization in parameter

space, and thus the optimal parameter set could potentially be stuck in a local mini-

mum. In the above iterative approach, if the relative entropy landscape is rough over

the parameter space, there could be many local minima and one global minimum.

This could cause the iterative line minimizations to find a minimum that is not the

global minimum.

Many global optimization methods have already been developed for common po-

tential energy functions in molecular simulations [30]. Here, we propose a global

approach that relies on two observations from the above results. First, while the

systematic CG method has been applied to a discrete set of points, λi, along a line

in parameter space, this is not required. In fact, simulations of the probability distri-

bution in Eq. 2.2 can, in principle, be done for any set of points λ. Second, we note
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that by making the choice h(λ) = β⟨UCG⟩T, the marginal distribution becomes

p(λ) ∝ e−βF (λ)+β⟨U(r,λ)⟩T ∝ eSrel(λ). (3.14)

The marginal distribution is proportional to the exponential of the relative en-

tropy, which means the most probable states will be those with the highest relative

entropy. However, the relative entropy was a measure of the difference between two

probability distributions, and a large relative entropy means the two distributions

do not match. Practically, that means that the parameter set that corresponds to a

higher Srel(λ) is further from the optimal, λopt. Therefore, simulating the marginal

distribution given in Eq. 3.14 will tend to sample the worst parameter sets.

The method here is to run a multiparameter simulation with the marginal dis-

tribution described here and systematically remove parameter sets that are sampled

frequently during the simulation (i.e. parameter sets with large Srel(λ)). This process

will lead to one of two outcomes: only one parameter set, λopt, remains after all of the

highest probable states are removed, or a few parameter sets remain with a roughly

uniform probability distribution. If it is the second of the two outcomes, a single

multiparameter simulation can be done like before for the remaining parameters, and

the relative entropy can be calculated and the optimal parameter set will be obtained.

This process eliminates the need to have an initial guess for the control function,

h(λ), as it will be initially equal to the ensemble average of the CG energy function

calculated in the target ensemble, h(λ) = β⟨U(r, λ)⟩T. Furthermore, this method can

be expanded to be an iterative process while still remaining a global optimization

approach.
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3.4.1 Iterative Approach using Global Optimization

One possible iterative approach to determine the optimal parameter set, λopt, using

the global optimization scheme described above is as follows:

1. Choose initial parameter set, λ0

2. Generate N different parameter points, λi, in parameter space

3. Run the multiparameter simulation with h(λ) = β⟨UCG⟩T. Record p(λ) ∝

eSrel(λ) and successively remove λi’s with highest p(λ) to find the best parameter

set, λbest (last remaining set)

4. Repeat steps 2 and 3, where each new set of parameters relies on λbest, until

λopt is found

3.4.2 Testing the Iterative Global Optimization Approach

The iterative approach for the global optimization scheme was tested with the 91-

parameter potential energy function, using the single experimentally determined na-

tive structure as a target for the calculation of h(λ) = β⟨U(r, λ)⟩T.

The initial N parameter points are generated using the Box-Muller transformation

method, which generates random numbers that satisfy a Gaussian distribution from

another random number generator that samples a uniform distribution. The Box-

Muller method takes two uniformly distributed random numbers, R1 and R2, and

generates two Gaussian distributed random numbers centred at zero with a variance

of 1 [31]. The Box-Muller transformation equations are,

Z1 =
√

−2 lnR1 cos (2πR2)

Z2 =
√
−2 lnR1 sin (2πR2)
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Now, a random number with a Gaussian distribution centred at µ with standard

deviation, σ, can be generated using

X = Z1σ + µ. (3.15)

Figure 3.17 shows the distribution of two parameters using the Box-Muller trans-

formation to generate a Gaussian distribution with a given center point and standard

deviation, σ.
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Figure 3.17: The parameter sets, λ1 and λ2, have a Gaussian distribution centred
at the solid black circle, and spread in parameter space with a standard deviation,
σ = 0.25, which is represented by a circle of radius r = σ.
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The N = 100 parameter points were centred around the optimal parameter set,

λopt, that was found from the systematic CG method for the same potential energy

and target (Fig. 3.11). The standard deviation was chosen to be σ = 0.25 such

that the subset of parameter space was large, but the difference in energy between

the center and the outermost parameter sets was not enormous. The multiparameter

simulation was run for 10 million MC cycles, and the most frequently sampled state

was removed every 100,000 MC cycles, therefore, one parameter set would remain

after the simulation.

Figure 3.18 shows how the index of the parameter changes throughout the mul-

tiparameter simulation. For roughly the first 1 million MC cycles, the system gets

stuck in particular states, and does not fluctuate (represented by a small horizontal

line). The sharp vertical lines represent the system being kicked out of a given state

due to that parameter set being removed. When that happens, the system randomly

jumps to another state that has not been removed, and samples the remaining states.
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Figure 3.18: The change in parameter index over the course of the multiparameter
simulation that is sampling the highest relative entropy states more frequently. Every
100,000 MC cycles, the most sampled index is removed, and the system is kicked from
that state. The x-axis is in millions of Monte Carlo cycles, as denoted in the label.

After the first iteration, the final parameter set remaining became the center of a

Gaussian distribution, and another N = 100 parameter sets were generated, and the

process was repeated. The third and fourth iterations reduced the range in parameter

space by letting σ = 0.1, and the final parameter set from the fourth iteration was

determined to be the optimal parameter set, λopt.

A fixed temperature simulation was run for the optimal parameter set, λopt, and

the RMSD distribution was calculated as before. Figure 3.19 shows the distribution
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of the RMSD (black) and the P (RMSD) for the MD simulation target ensemble,

λMD target, for reference.
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Figure 3.19: The RMSD histogram for the optimal parameter set, λopt, found after
4 iterations of the global optimization method. The RMSD distribution from the
target MD simulation ensemble is plotted in red for reference.

The MD ensemble target RMSD was added to highlight the bimodal shape ex-

pected for two distinct regions, folded and unfolded. Although the optimal parameter

RMSD distribution does not show the bimodal shape, it does show a shift in the

RMSD to lower values. Furthermore, there is a number of configurations that fold

into a structure similar to the native structure, RMSD ≤ 4Å.
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3.4.3 Conclusion

The results shown above that use a global optimization method for determining the

optimal parameter set are simple results used as a proof of concept that global op-

timization techniques can be used in addition to line minimization methods. The

example provided here is one of the many different methods that could be used to

carry out global searches in parameter space. Global optimization techniques are

important in the case of a rough energy landscape that contained multiple minima,

as they provide a way to escape local mimima regardless of energy barriers. Further-

more, the simple results here hint at the possibility of finding a more efficient method

to systematically determine optimal CG model parameters than what was proposed

in Chapter 2.
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Chapter 4

Summary and Outlook

Coarse-grained computer models have become a powerful tool in studying certain

properties of physical systems using computer simulations. The CG models give a

simplified representation of the physical system of interest, and the degree of simpli-

fication depends on what physical properties are being studied. Many different CG

models have been developed to study a large range of physical systems, and a variety

of different ways to design the CG models have been developed. One of the main chal-

lenges in developing CG models is determining a potential energy function, ECG, that

allows the model to match the physical system. Often the potential energy function

includes a number of unknown parameters, denoted λ, which must be determined.

The current methods to determine these unknown parameters, such as potential of

mean force or multi-scale coarse-graining, rely on quantities that are computationally

difficult to calculate.

Here, we developed a method to systematically determine the optimal model pa-

rameters for a CG model by minimizing the relative entropy, Srel(λ). The relative

entropy gives a statistical measure of the difference between two probability distribu-

tions, and for a molecular system, it is used to compare a CG ensemble of states and

83



some target ensemble. The relative entropy depends on the difference in the CG and

target potential energies, ⟨UCG − UT⟩, as well as the difference in the free energies,

FCG−FT. A novel simulation method was developed which was based on a generalized

ensemble Metropolis Monte Carla algorithm, and was used to directly determine the

coarse-grained free energies, FCG(λ). The systematic method minimized the relative

entropy between the target ensemble and a CG ensemble generated for a set of CG

model parameters.

The systematic method was applied to an existing coarse-grained model for protein

folding. This was done by modifying the potential energy function of the CG model to

include either 13 or 91 unknown model parameters. Then, the method systematically

found the optimal parameter set for both cases by minimizing the relative entropy

with respect to two different target ensembles: the single experimentally determined

native structure [28], and an ensemble of configurations from an all-atom molecular

dynamics simulation by the D. E. Shaw group [29]. It was shown that the optimal

parameter set obtained for the potential energy function with 91 unknown parameters

with the native structure as a target gave the best results. In this case, the majority

of the configurations were in a folded state that closely matched the target native

structure. Further results showed that the optimal parameter set found for the 91

parameter potential energy function gave better results than the 13 parameter set.

Additionally, the all-atom ensemble target gave a poor optimal parameter set that

did not fold into a native structure. This could be due to the fact that the all-atom

ensemble was dominated by configurations in an unfolded state.

All in all, the systematic method for determining optimal CG model parameter

sets was shown to be successful in determining the optimal parameters for a given set

of unknown CG parameters. However, the degree to which the method determines an

optimal parameter set greatly depends on the choice of the potential energy function
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and number of unknown parameters. Here, it was found that a more complex potential

energy function with more model parameters was better able to capture the properties

of the physical system. Furthermore, the validity of the optimal parameter set also

depends on the choice of the target ensemble, and it was shown that to achieve proper

folding of the protein sequence, the single experimentally determined native structure

was the best choice for a target when minimizing the relative entropy.

Future work on this project could be to compare the optimal parameter sets pre-

sented in the results above to other protein sequences to see if the parameters are

sequence independent and allow other sequences to fold to their individual native

states. This would be of interest for developing a general CG protein folding model

that would allow many given sequences to fold properly. If the optimal parameters

found above are not general to any sequence, the systematic CG method could be

modified to incorporate multiple target ensembles when minimizing the relative en-

tropy. This modification might lead the method to determine the optimal model

parameter set that could work for any protein sequence. This could be accomplished

by running the method in parallel such that separate multiparameter simulations

could be run on different sequences but with the same parameter set, and the relative

entropy could be minimized and the information about the minima from all of the

runs could be used to determine the next parameter set.

Another idea for future work is to extend the test on global optimization schemes,

and determine the most efficient algorithm is for a global parameter space search.

Global optimization would be very useful in the case where the energy landscape is

not smooth, but instead contains many minima. The line minimization techniques

applied in this project can be used any time the energy landscape is not excessively

rough, since the generalized ensemble approach to the simulation allows for uniform

sampling of states as long as the energy barrier is not large. However, if the landscape
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contained multiple minima and they were far apart in parameter space, or had high

energy barriers, the line minimization techniques used here could get stuck in a local

minima and not be able to escape.

Lastly, it is very important to highlight the fact that the systematic coarse-graining

method for optimizing model parameters developed here is completely general to any

coarse-grained model, with any potential energy function and unknown parameter set.

Although the method was applied to a protein folding CG model, it could also be used

to determine the optimal model parameters for CG models of other molecular systems,

or even generally, any coarse-grained representations of any statistical-mechanical

system.
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Appendix A

Derivation of MBAR Free Energy

The difference in the dimensionless free energies is given by

∆fij = fj − fi = − ln
ci
cj

(A.1)

where the ratio of the normalization constants must be solved to determine the esti-

mating equations for the dimensionless free energies.

The method uses the identity

ci⟨αijqi⟩i = cj⟨αijqi⟩j (A.2)

which holds for arbitrary functions αij, with the condition that ci is non-zero, and

the empirical estimator for the expectation value of g,

⟨g⟩i = N−1
i

Ni∑
n=1

g(xi). (A.3)

91



Combining these two equations and summing over the index j gives

K∑
j=1

ĉi
Ni

Ni∑
n=1

αijqj(xin) =
K∑
j=1

ĉj
Nj

Nj∑
n=1

αijqi(xjn) (A.4)

where i = 1, 2, . . . , K. Estimates of ci from all of the sampled data are obtained from

the solution to the set of equations for all ĉi. Note, Eq. A.4 is known as extended

bridge sampling [32], as it gives a set of estimators that depend on the choice of

function αij.

A choice for αij can be made such that the estimator obtained from A.4 is one

that has been proven to be optimal (has the lowest variance for a large set of choices

for αij). This choice is given by

αij(x) = Nj ĉ
−1
j

/
K∑
k=1

Nkĉ
−1
k qk(x). (A.5)

Combining Eq. A.4 and Eq. A.5, gives

K∑
j=1

ĉi
Ni

Ni∑
n=1

Nj ĉ
−1
j qj(xin)∑K

k=1Nkĉ
−1
k qk(xjn)

=
K∑
j=1

ĉj
Nj

Nj∑
n=1

Nj ĉ
−1
j qi(xjn)∑K

k=1Nkĉ
−1
k qk(xjn)

(A.6)

where the left hand side can be rearranged and simplified. First, note that there is

no summation over i, and the only term that depends on the summation over j is the

numerator of the n summation. Therefore, the equation becomes

ĉi
Ni

Ni∑
n=1

∑K
j=1Nj ĉ

−1
j qj(xin)∑K

k=1Nkĉ
−1
k qk(xin)

=
ĉi
Ni

Ni∑
n=1

1 = ĉi. (A.7)
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The right hand side simplifies to

K∑
j=1

Nj∑
n=1

qi(xjn)∑K
k=1Nkĉ

−1
k qk(xjn)

(A.8)

where the ĉj/Nj terms cancelled.

Noting that the normalization constants can be written in terms of the dimen-

sionless free energies as fi = − ln ci, or ci = efi , Eq. A.6 becomes

f̂i = − ln
K∑
j=1

Nj∑
n=1

qi(xjn)∑K
k=1Nkef̂kqk(x)

. (A.9)

Replacing the unnormalized density function with the Boltzmann distribution,

qi(x) = e−Ui(x), the equation for the estimated free energies is

f̂i = − ln
K∑
j=1

Nj∑
n=1

eUi(xjn)∑K
k=1Nkef̂k−Uk(xjn)

(A.10)

as given in Eq. 1.14.
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Appendix B

Gradient of the Relative Entropy

The gradient of the relative entropy with respect to the set of all CG parameters, λi,

was found by Carmichael and Shell to be [26]

∂Srel

∂λ
= β

⟨
∂UCG

∂λ

⟩
AA

− β

⟨
∂UCG

∂λ

⟩
CG

(B.1)

where the derivative of the CG potential energy with respect to the set of parameters

is averaged over the CG ensemble and the AA ensemble separately.

Let the CG potential energy, which depends on the configuration, r, and the

parameter λ, have the form

ECG(r, λ) = E0(r) + λε(r) (B.2)

where E0(r) and ε(r) are energy terms that are independent of the parameter, λ. If

the parameter is dynamic, then a subscript j is used to denote the current index.

Using the above form for the energy and taking the derivative, the second term
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in Eq. 3.10 becomes

β

⟨
∂UCG

∂λ

⟩
CG

= βZ−1
λ

∑
r

ε(r)e−βECG(r,λ) (B.3)

where the canonical ensemble is used, with Z =
∑

r e
−βE(r).

Note, the probability of the system being in configuration r with the dynamic

parameter λj, is P (r, λj) = Z−1
λj

∑
r e

−βECG(r,λj). Multiplying and dividing by the

probability gives

β

⟨
∂UCG

∂λ

⟩
CG

= β
Zλj

Zλ

1

Zλj

∑
r

ε(r)e−βECG(r,λj)e+β
(
ECG(r,λj)−ECG(r,λ)

)
. (B.4)

Now, defining w as

w = eβ
(
ECG(r,λj)−ECG(r,λ)

)
= eβ∆E (B.5)

and by the canonical definition of the partition function and the ensemble average,

the ratio of the partition functions becomes

Zλ

Zλj

=
1

Zλj

∑
r

e−βECG(r,λj)w = ⟨w⟩λj
. (B.6)

Now, taking Eq. B.5, B.6 and the energy with the form given in Eq. B.2 and

substituting into Eq. B.4, we obtain an equation for the gradient of the relative

entropy,

∂Srel

∂λ
= β

⟨
∂UCG

∂λ

⟩
AA

− β

⟨
ε(r)w

⟩
CG,λj

⟨w⟩CG,λj

. (B.7)

To use this equation practically, the ensemble average is rewritten as a sum from 1
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to Mj, which is the number of configurations for the i-th parameter value. So,

⟨ehpw⟩λj
=

1

Mj

Mj∑
i=1

ehp(ri)e
β(λj−λ)ehp(ri) (B.8)

and

⟨w⟩λj
=

1

Mj

Mj∑
i=1

eβ(λj−λ)ehp(ri) (B.9)
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