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Abstract

The Hubbard model (HM) and the Falicov-Kimball model (FKM), which are two stan-

dard models of strongly correlated electrons, provide an interesting benchmark for the

physics of locally correlated systems. We study the intermediate model, mass-imbalanced

Hubbard model at half-filling on a 2D square lattice which connects continuously the HM to

the FKM. We employ dynamical mean field theory (DMFT) and dynamical cluster approx-

imation (DCA) using continuous-time auxiliary field method (CT-AUX) as self-consistent

impurity solver to study the single particle spectral function and self-energy allowing us to

map-out the phase diagram of the system. Solutions to the mass-imbalanced model cannot

enforce paramagnetic self-consistency and therefore at low temperature result in param-

agnetic (PM) to antiferromagnetic (AFM) transition. In addition, in the PM state and at

finite temperature, we observed a spin dependent crossover from Fermi liquid (FL) regime

to non-Fermi liquid (nFL) regime in which the FL regime is destroyed, monotonically, in-

duced not only by the interaction but also by the mass imbalance. We present the results

for small cluster DCA and explore its dependency on cluster size as well.
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Chapter 1

Introduction

1.1 Strongly Correlated Systems

All natural sciences including physics have to find methods to determine the characteristics

of the systems they study. Generally speaking, they are putting the system in interaction

with some external probe and measure the response of the system. If the particles consti-

tuting the system weakly interact with this external probe or with each other, the response

of the system will be a linear function of the interaction strength. From this point of view,

this situation is one electron picture in solid state physics that has many useful results [1].

However, there are very important systems for which interactions between constituent

particles with the external probe or with each other are strong. These strong interactions

play a key role in determining the properties of these systems. Conventional superconduc-

tors, high-temperature superconductors, magnetic systems, quantum Hall systems, one-

dimensional electron systems and the insulating state of bosonic atoms in a periodic poten-

tial are very well known examples for strongly correlated systems.
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A theoretical model is necessary to provide a deeper understanding of various properties

of these kind of systems. One really good model is the Hubbard model (HM), which was

originally proposed in 1963, independently by Martin Gutzwiller [2], Junjiro Kanamori [3]

and, of course, John Hubbard [4] to describe electrons in solids. Originally, the model was

introduced to explain the metal-insulator (MI) transition which was one of the interesting

topics around the middle of last century. After publishing his model in 1963, Hubbard

continued to improve it and in the next year he introduced his Hubbard-III approxima-

tion which became especially important in the MI transition area [5]. In 1969, Mott used

Hubbard-III approximation and the properties of particle correlations in introducing his

very well known Mott (Mott-Hubbard) MI transition [6]. Mott transition is a type of MI

transition even for an odd number of electrons per site (i.e. MI transition in the half fill-

ing). This interesting feature could not be understood in terms of conventional band theory

stating that a half-filled band always leads to a conducting state.

1.2 Tight Binding and Hubbard Models

Tight binding has been used for many years as a convenient and transparent model for

describing the electronic structure in solids wherein electrons can hop between lattice sites

without feeling each other. In this model, the hopping can only happen between nearest-

neighbour sites, and all hopping processes have the same kinetic energy, −t. The tight-

binding model has played a key role in the emergence of an electronic band structure which

also was important in the development of the semiconductor technology [7].

The Hubbard model is an extension of the tight-binding model in which the Hamil-

tonian features an additional term representing an effective Coulomb repulsion U . This

2



energy amount which is for each pair of electrons occupying the same lattice site, is also

called on site or local interaction. In HM like tight binding model, the wave function of an

electron is centered on the lattice site of an ion and any electron can hop one lattice spacing

at a time (Fig. 1.1). Therefore, the Hamiltonian of the HM consists of the kinetic term H0

U

t

t

t

Figure 1.1 – A schematic figure of the Hubbard model on a 2D square lattice, where t is the hopping

term and U is the onsite repulsive energy. The green circles represent the lattice sites of ions where the

spin-up and spin-down electrons are centered on.

and interaction term HI [1]:

H = H0 +HI (1.1)

where,

H0 = ∑
i, j

∑
µ,ν

T µ,ν
i, j ĉ†

i,µ ĉ j,ν (1.2)

In Eq. (1.2), T µ,ν
i, j is the hopping amplitude and is :

T µ,ν
i, j =

∫
d3xφ

∗
µ(x−Ri)φν(x−R j)× [− h̄2

2m
∇

2 +V (x)] (1.3)

3



where V (x) is the crystal ion potential felt by a single electron and φµ and φν are atomic

orbitals in an atom at lattice sites i and j respectively. The interaction term in Eq. (1.1) is:

HI =
1
2 ∑

i, j,k,l
∑

µ,ν ,στ

〈i,µ, j,ν | 1
r
|k,σ , l,τ〉 ĉ†

i,µ ĉ†
j,ν ĉk,σ ĉl,τ (1.4)

where 〈i,µ, j,ν | 1
r |k,σ , l,τ〉 is matrix elements of the Coulomb interaction between elec-

trons on different lattice sites. Hubbard simplified Eq. (1.4) and since the interaction

between electrons in orbitals on the same site (ions) is the most important one, he only

considered the matrix elements in which i = j = k = l and supposed the existence of only

one orbital. Therefore, after these assumptions and simplifications, Eq. (1.4) takes the

form:

HI =U ∑
i

ni,↑ni,↓ (1.5)

where

U = 〈ii| 1
r
|ii〉 (1.6)

represents the Coulomb repulsion on the same site. The kinetic term is [1]:

T µ,ν
i, j = T0δ

µν
δi j + tµν

i j (1.7)

Considering only the nearest neighbor hopping, the first term in Eq. (1.7) is zero and the

second term is non zero. So, the Hamiltonian of a one-band Hubbard model takes the

following form:

H =−t ∑
〈i j〉,σ

(ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ )+U ∑
i

n̂i↑n̂i↓ (1.8)

where ĉ†
iσ and ĉiσ create and annihilate, respectively, one of the two electrons with spin σ ,

while n̂iσ = ĉ†
iσ ĉiσ is the occupancy operator at the site i. U > 0 denotes the on-site repul-

4



sive interaction of different species and 〈i j〉 denotes two nearest-neighbor sites belonging

to different sublattices [1, 4].

In spite of its simple form, Hubbard Hamiltonian has so far only been exactly solved

for the one-dimensional case in which the Hamiltonian is [8]:

H =−t ∑
i,σ
(ĉ†

i+1σ
ĉiσ + ĉ†

iσ ĉi+1σ )+U ∑
i

n̂i↑n̂i↓ (1.9)

It worth mentioning that the results obtained for one-dimensional systems are very sus-

ceptible to the details of the problem. For instance, considering hopping between only

nearest neighbours and adding the next nearest neighbours give rise to unmagnetized and

ferromagnetic properties respectively [9, 10].

Therefore, the Hubbard Hamiltonian is only apparently simple, because when it is writ-

ten down, not only it is a hard problem mathematically but also its physics is too com-

plicated and very sensitive to the details. However, nowadays thanks to computer power,

numerical simulations of the model are achievable. Let us mention here that the known nu-

merical methods are approximate solutions, however, for the 2D Hubbard model numerical

methods have been shown to converge to the same results [11].

1.3 Falicov-Kimball Model

While the Hubbard-III was the first satisfactory modeling of Mott transition with one elec-

tron per lattice site, it already reveals the principal components of the Falicov-Kimball

model (FKM) [12]. FKM is a simple model that was originally proposed for a semicon-

ductor to metal transition, based on the existence of both localized and itinerant interacting

quasiparticle states. In this model, there are two species of electrons with different effec-
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tive masses: one species has infinite mass so the electrons do not move, while the second

species represents itinerant electrons which have hopping term as their kinetic energy.

FKM can be seen as a simplification of the Hubbard model achieved by neglecting

the kinetic (hopping) energy of the spin-up or spin-down particles which are infinitely

massive [13]. In another interpretation, FKM is a model for crystallization in which heavy

particles are considered as ions [14]. These two species of electrons are coupled through

an on-site interaction U . The Hamiltonian of the model is:

H =− ∑
i, j∈Λ

ti jĉ
†
i ĉ j +U ∑

i∈Λ

W (i)n̂i (1.10)

where Λ⊂ Z is usually taken to be a square lattice and ti j = 1 if i and j are nearest neigh-

bour and zero otherwise. In Eq. (1.10) ĉ†
i , ĉi denote creation, annihilation operators of an

electron at site i, n̂i = ĉ†
i ĉi and W (i) = 0,1 is the number of localized or heavy electrons at

site i [14].

1.4 Fermi Liquid and Non-Fermi Liquid States

While the Fermi liquid (FL) state shows strong metallic behavior, the non-Fermi liquid

(nFL) are classified as unconventional metals1. Since they have shown strong quantum

fluctuations near Fermi surfaces, their physical properties qualitatively deviate from those

of non-interacting fermions. Due to a lack of theoretical methods and in the absence of

well-defined quasiparticles, it has been difficult to understand the universal physics of nFL;

however, the universal physics of nFL is captured by interacting field theories which replace

Landau Fermi liquid theory [16].

1The nFL state is called bad metallic state in the literature [15].
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A fundamental difference between the FKM and the HM is that while the metallic state

in the HM was described by a Fermi liquid (FL), the metallic state in the FKM is a non-

Fermi liquid (nFL) with no quasiparticles. In the FKM limit due to the random distributions

of the immobile electrons on the lattice, the translational symmetry is broken, which leads

to this exotic state [17, 18].

1.5 Objective

HM and FKM have a long history. These two models together are the most studied models

to describe correlation effects in interacting fermion systems. However, the region be-

tween these two limits is still unknown for different lattices. We believe that, the evolution

between these two situations is far from trivial; consequently, we tune our model continu-

ously from the FKM to the HM allowing us to study this intermediate model which is called

mass-imbalanced Hubbard model 2. We investigate this region by increasing the hopping

amplitude of the localized heavy electrons from zero to the same amplitude as itinerant

light electrons. Here, the term mass imbalance refers to different hopping amplitudes for

spin-up and spin-down electrons.

The mass-imbalanced HM in the solid state is difficult to realize; however, with the

emerging of cold atom systems such mass imbalances in a two-component system can be

realized readily. This realization which can be done either by different atomic species [21]

or by having a spin-dependent hopping [22], have been the subjects of intensive research

[19, 20, 23–29]. Phase diagram of the ground state of the mass-imbalanced HM in the

context of two component fermionic mixture in 3D optical lattice has been studied before

2In the literature, it is also called asymmetric Hubbard model [17, 19, 20].

7



by dynamical mean field theory (DMFT) [15, 17, 30, 31]. Magnetic phase diagram of such

a two species of repulsively interacting fermionic cold atom in optical latices (cubic lattice)

has been investigated by DMFT; and, the same magnetic phase behaviour has been expected

for a 2D system with square lattice geometry, which is the topic of the present thesis [32].

We are interested to investigate the magnetic phase diagram of the mass-imbalanced HM

on a 2D square lattice using DMFT.

Since the metallic state in the HM is a Fermi liquid and in the FKM, it is a non-Fermi

liquid with no quasiparticles, we are interested to study the metallic state in the mass imbal-

anced HM and we expect that in our system the Fermi liquid to non-Fermi liquid crossover

can occur. We also would like to study the spectral function in real frequency, double

occupancy and mass renormalization which help us to have a better understanding of the

model.

In chapter 2 we introduce the model and the method employed: DMFT and dynamical

cluster approximation (DCA) using continuous time auxiliary field (CT-AUX) simulations

as an impurity solver. In chapter 3 we present the calculated phase diagram of the mass-

imbalanced HM, the self-energy, Green’s function, spectral function, double occupancy,

and mass renormalization. Finally, in chapter 4 we summarize our results and discuss the

underlying physics of the phase transition and the results for physical quantities.
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Chapter 2

Model and Methods of Calculation

2.1 Model

In the mass-imbalanced Hubbard model, the spin symmetry (SU(2) symmetry) and the

time-reversal symmetry are both broken, nonetheless, this system can be readily imple-

mented in an optical lattice by loading a mixture of two ultracold fermionic atomic species

with different masses [23]. In general, as mentioned in section (1.5), mass-imbalance can

be obtained either by having two different species with two different orbitals or by generat-

ing spin-dependent hopping within one orbital. In the present work, we adopt the notation

of two spin projections ↑ and ↓; hence, the Hamiltonian of the mass-imbalanced HM for

one orbital takes the following form:

H =− ∑
σ∈{↑,↓}

tσ ∑
〈i j〉

(ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ )+U ∑
i

n̂i↑n̂i↓ (2.1)

where t↑(↓) is the hopping amplitude of the spin-up (-down) particles and indicates the

main deference between the Hamiltonian of the HM and the mass-imbalanced one. While

hopping amplitude in the Hamiltonian of the HM was independent of the σ (Eq. 1.8), in
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the mass-imbalanced HM it depends on σ . Thus, in the mass-imbalanced case the hopping

amplitude is different for the spin-up and spin-down t↑ 6= t↓. In Eq. (2.1), U > 0 is the

on-site repulsive interaction between the two spin species 1. Let us mention here again

that in the Hamiltonian (2.1), the chemical potential is µ = 0 which means we restrict

ourselves to the interesting case of half filling such that the total number of electrons per

site n↑+n↓ = 1. So, this Hamiltonian corresponds to the single-band approximation. If we

rewrite the Hamiltonian (2.1), we will have:

H =−t↑∑
〈i j〉

(ĉ†
i↑ĉ j↑+ ĉ†

j↑ĉi↑)− t↓∑
〈i j〉

(ĉ†
i↓ĉ j↓+ ĉ†

j↓ĉi↓)+U ∑
i

n̂i↑n̂i↓ (2.2)

We suppose the hopping parameters t↑ and t↓ refer to light ↑ and heavy ↓ electrons, respec-

tively, so that t↑ > t↓ > 0. By dividing both sides of Eq. (2.2) by t↑, the mass-imbalanced

Hamiltonian takes the following form:

H
t↑

=−∑
〈i j〉

(ĉ†
i↑ĉ j↑+ ĉ†

j↑ĉi↑)−
t↓
t↑

∑
〈i j〉

(ĉ†
i↓ĉ j↓+ ĉ†

j↓ĉi↓)+
U
t↑

∑
i

n̂i↑n̂i↓ (2.3)

Henceforth, we set t↑ ≡ 1 as our unit of energy and do the calculations for different values

of the mass imbalance parameter2 which we define as t f ≡
t↓
t↑

, a quantity which goes from

1 (mass-balanced HM) to 0 (Falicov-Kimball limit with the maximum mass-imbalance).

Therefore, in the half filling and FKM case when the down spins become infinitely heavy,

the model is now a field of light up spins, moving on a static background of down spins

which are stationary. Similarly, as t f → 1 the down spins move just as well and we recover

the standard Hubbard model. Thus, by decreasing the t f , indeed we increase the mass-

imbalance.
1Physics of U < 0 case at half filling, is related by a particle hole transformation [23].
2There is a different convention to define the mass-imbalance parameter. For instance, [30] defines the

mass-imbalance as z≡ t↑−t↓
t↓+t↓
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Note that the Hamiltonian (2.1), in the strong-coupling limit U � t↑, t↓ and near half

filling, can be mapped onto an effective spin Hamiltonian 3 [32–34]:

He f f = J‖∑
〈i j〉

Ŝz
i Ŝ

z
j + J⊥∑

〈i j〉
(Ŝx

i Ŝx
j + Ŝy

i Ŝy
j) (2.4)

where longitudinal coupling constant J‖ is:

J‖ =
2(t2
↑ + t2

↓)

U
(2.5)

transverse coupling constant J⊥:

J⊥ =
4t↑t↓
U

(2.6)

and the spin-1/2 operator [23]:

Ŝα
i =

1
2 ∑

µν

ĉ†
iµσ

α
µν ĉiν (2.7)

where σα are the Pauli matrices. In the presence of mass-imbalance, i.e., t↑ 6= t↓, the

longitudinal coupling (antiferromagnetic coupling in Z direction) is always greater than

the transverse coupling (J‖ > J⊥) and the Hamiltonian (2.4) is the anisotropic Heisenberg

model. In the limit of large hopping imbalance (t↑� t↓), J‖� J⊥; therefore, the second

term in the Hamiltonian (2.4) is considered as a perturbation, and we arrive at the Ising

model [32]. Note that mapping the Hamiltonian (2.1) to the effective spin Hamiltonian

(2.4) is presented in order to have a better physical understanding of the mass-imbalanced

system. Naturally, for quantitative theoretical predictions, particularly, in the intermediate

coupling region (tα ∼U), it is necessary to use non-perturbative numerical methods.

3or spin-1/2 XXZ model [23].
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2.2 Background Information and Methods

We first introduce some parameters and notation that will be used frequently in our results

section. We start to give a brief review of imaginary time Green’s functions and self-

energy. We then also review important aspects of the mass renormalization. There are

numerous excellent textbooks relevant to condensed matter physics where more details can

be found [35]. After reviewing the background materials, we will discuss the methods

employed.

2.2.1 Green’s Function and Self-Energy

The thermal average of any operator Ô is:

〈Ô〉th =
1
Z

Tr
(

e−β (H−µN)Ô
)

(2.8)

where β and µ are the inverse temperature and chemichal potential, respectively. Z is the

grand partition function and is equal to:

Z= Tr
(

e−β (H−µN)
)

(2.9)

By introducing the imaginary-time Heisenberg operator:

cα(τ) = eτKcαe−τK (2.10)

in which K = H−µN, the imaginary time Green function would be:

Gα,β (τ) =−〈T cα(τ)c
†
β
〉th =−θ(τ)〈cα(τ)c

†
β
〉th +θ(−τ)〈c†

β
cα(τ)〉th

=
1
Z

(
−θ(τ)∑

i j
e−β (Ei−µNi)eτ(Ei−E j+µ)〈i|cα | j〉〈 j|c†

β
|i〉

+θ(−τ)∑
i j

e−β (Ei−µNi)eτ(E j−Ei+µ)〈i|c†
β
| j〉〈 j|cα |i〉

)
(2.11)
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In Eq. (2.11), α,β denote some set of quantum numbers. |i〉 are the eigenstates of the

system with energies Ei and particle number Ni, and T is imaginary time ordering. From Eq.

(2.11) G is well-defined only when τ ∈ [−β ,β ] and that for τ ∈ [−β ,0] one has G(τ +β ) =

−G(τ). By using the Fourier transform,

G(τ) =
1
β

∞

∑
n=−∞

e−iωnτG(iωn) (2.12)

or equivalently,

G(iωn) =
∫

∞

0
dτeiωnτG(τ) (2.13)

the Matsubara Greens function takes the following form,

Gαβ (iωn) =
1
Z

∑
i j

e−β (Ei−µNi)+ e−β (E j−µN j)

iωn +µ− (E j−Ei)
〈i|cα | j〉〈 j|c†

β
|i〉 (2.14)

Eq. (2.14) is the Lehmann representation of the Green function. We concentrate on a single

band and assume that the z-component of the spin is a good quantum number so that the

Green function is a scalar and α = β = (k,σ). Therefore, the bare Matsubara Green’s

function would be:

G0(k, iωn) =
1

iωn− ε(k)+µ
(2.15)

where µ is chemical potential and iωn are the (Fermionic) Matsubara frequencies and is:

iωn =
(2n+1)π

β
(2.16)

G(iωn) and G(τ) are related to a real frequency Green’s function G(ω) through,

G(iωn) =
−1
π

∫
∞

−∞

dωIm[G(ω)]

iωn−ω
(2.17)

G(τn) =
1
π

∫
∞

−∞

dωIm[G(ω)]e−τnω

1+ e−βω
(2.18)
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where the imaginary part of the real frequency Green’s function, Im[G(ω)], in the above

equations defines the spectral function in real frequency:

A(ω) =− 1
π

Im[G(ω)] (2.19)

We use the maximum entropy method (MAXENT) [36] to obtain the spectral functions

A(ω) in real frequency.

For the interaction case, we have a full Green’s function which is the sum over all

connected Feynmann diagrams (whereas such an expansion is not possible for the real-

time Green function at finite temperature) [35]. The full Green’s function is compactly

written with Dysons equation as:

G(k, iωn) = G0(k, iωn)+G0(k, iωn)Σ(k, iωn)G(k, iωn) (2.20)

Therefore, the self-energy Σ is the sum of all one particle irreducible Feynmann diagrams

with two open legs. Dysons equation then generates all diagrams of the interacting Green’s

function.

2.2.2 Effective Mass

In very general terms, the main effect of the interaction U is to reduce the mobility of the

electrons. This phenomenon, which eventually leads to the insulator localization, is mea-

sured by the effective (or renormalized) mass of the carriers m∗ given by the self-energy

Σ. Within DMFT, at low frequencies Σ(iωn) ≈ (1− 1/Z)iωn where Z is the quasiparticle

weight or renormalization factor. The effective mass m∗ ∝ 1/Z, and for a noninteracting

system Z = 1, while the localization is associated to vanishing Z (Z → 0) which is corre-

sponding to an infinite effective mass m∗ → ∞. A small value of Z is the signature of a
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highly correlated nFL phase. Therefor, within DMFT at low frequencies:

m∗/m = Z−1
σ = 1− ImΣσ (iω0)/(iω0) (2.21)

where m denotes the electron’s bare mass. In the mass-imbalanced HM, because the two

species have different bare masses and hoppings, a different renormalization is expected

[15, 23, 31].

2.2.3 Dynamical Mean Field Theory (DMFT)

DMFT is one of the most popular modern theoretical approaches to investigate strongly

correlated electrons [37]. It has been shown that in the limit of large coordination number

the HM can be mapped exactly to the Anderson impurity model (AIM) [38, 39]. DMFT

is a time dependent variant of the mean-field theory so that it is able to capture the fre-

quency dependent properties. This method can be applied numerically in the context of

real materials, and this has played a key role in the success of the theory. DMFT has

provided an important contribution to the understanding and approximate solution of the

HM. This point relies on the fact that the DMFT maps the HM to a local AIM. There is a

plethora of numerical methods for solving the AIM that can be applied right away to treat

the DMFT equations. Examples are the continuous-time Quantum Monte Carlo (CT-QMC)

solvers [40, 41], Hirsch-Fye quantum Monte Carlo [42, 43], exact diagonalization [44, 45],

and renormalization group approaches [46].

2.2.3.1 Derivation of the DMFT Equations - Effective Anderson Impurity Model

The first derivation of DMFT was done in the limit of infinite dimensions [39]. Nonethe-

less, infinite dimensions is not the best way to introduce DMFT as an approximation for
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a lattice in finite dimensions. A standard derivation of the DMFT in finite dimensions is

the cavity construction [37]. In this approach, a representative site is separated from the

rest of the lattice which these two parts are coupled to each other via a retarded hybridiza-

tion function. This local effective medium description, which is equivalent to the AIM,

is an exact solution in the limit of large coordination number. Bethe lattice is a very well

known example for lattices with a large coordination number. In the cavity method, the

representative site (or impurity site) is shown by i (usually by convention set to i = 0), and

an integral is taking over all other degrees of freedom for the lattice site. At the end, an

effective dynamical “Weiss field” in which the lattice site i is embedded is obtained (see

Fig. 2.1).

i i

Figure 2.1 – Illustration of the cavity method in the derivation of the DMFT equations. The idea of this

method is focusing on a representative site i and separating of the total action S into a sum of the actions

arising from the site i, S0, the hybridization between the site and the lattice ∆S, and the action S(0) lattice

without the site i.

For the derivation of the DMFT equations we will formulate the effective action of the

HM and then identify it with the action of the AIM to obtain the hybridization and the

effective field. For this purpose we are starting with the partition function Z in the grand
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canonical ensemble which is sufficient to describe a thermodynamic system:

Z=
∫

∏
i

Dc∗iσ Dciσ e−S (2.22)

where c∗iσ , ciσ are anti commuting Grassmann variables [47], and the action S [48] for the

HM is:

S =
∫

β

0
dτ

(
∑
iσ

c∗iσ (τ)

[
∂

∂τ
−µ

]
ciσ (τ)−∑

i jσ
ti jc∗iσ (τ)ciσ (τ)

+U ∑
i

c∗i↑(τ)ci↑(τ)c∗i↓(τ)ci↓(τ)

)
(2.23)

Now, as it was described in Fig. 2.1, we divide the lattice into three parts: the impurity

site i = 0, the lattice without site i = 0, and the part that connects the two. The action

correspondingly would be:

S = S0 +∆S+S(0) (2.24)

where S0 which is the action only on site i = 0 equal to:

S0 =
∫

β

0
dτ

(
∑
σ

c∗0σ (τ)

[
∂

∂τ
−µ

]
c0σ (τ)+Uc∗0↑(τ)c0↑(τ)c∗0↓(τ)c0↓(τ)

)
. (2.25)

The hybridization between site i = 0 and the rest is:

∆S =−∑
iσ

ti0c∗iσ (τ)c0σ (τ)+ t0ic∗0σ (τ)ciσ (τ). (2.26)

The action of the lattice without te site i = 0:

S(0) =
∫

β

0
dτ

(
∑

i 6=0,σ
c∗iσ (τ)

[
∂

∂τ
−µ

]
ciσ (τ)− ∑

i j 6=0,σ
ti jc∗iσ (τ)ciσ (τ)

+U ∑
i6=0

c∗i↑(τ)ci↑(τ)c∗i↓(τ)ci↓(τ)

)
(2.27)
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We now define the thermodynamic average which is the trace over the system with the

impurity removed, as below:

〈A〉(0) =
1

Z(0)

∫
∏

i6=0,σ
Dc∗iσ Dciσ Ae−S(0) (2.28)

where Z(0) is the partition function of the impurity removed lattice. Thus, the full partition

function Z with respect to ∆S is:

Z= Z(0)
∫

∏
σ

Dc∗0σ Dc0σ e−S0

(
1−

∫
β

0
〈∆S(τ)〉(0)dτ

+
1
2!

∫
β

0

∫
β

0
〈∆S(τ1)∆S(τ2)〉(0)dτ2dτ1 + ...

)
(2.29)

where ∆S =
∫ β

0 dτ∆S(τ). In the fermionic system only the correlation functions 〈∆S(τ1)...

∆S(τn)〉(0) with equal number of c and c∗ are non-zero [49]. The second order term in Eq.

(2.29) can be written as:

+
1
2!

∫
β

0

∫
β

0
〈∆S(τ1)∆S(τ2)〉(0)dτ2dτ1 =

1
2!

∫
β

0

∫
β

0
∑
σ

∑
j,k 6=0

[
t j0t0k〈c∗jσ (τ1)ckσ (τ2)〉(0)c0σ (τ1)c∗0σ (τ2)

+ t0 jtk0〈c jσ (τ1)c∗kσ (τ2)〉(0)c0σ (τ1)
∗c0σ (τ2)

]
dτ2dτ1 (2.30)

The above expression can be rewritten with the use of a one-particle correlation function,

namely the Green’s function of the lattice without the site 0

G(0)
jkσ

(τ1− τ2) = 〈Tτc jσ (τ1)c∗kσ (τ2)〉(0) (2.31)

and takes the following form:

+
1
2!

∫
β

0

∫
β

0
〈∆S(τ1)∆S(τ2)〉(0)dτ2dτ1 =

−
∫

β

0

∫
β

0
∑
σ

∑
j,k 6=0

t j0tk0G(0)
jkσ

(τ1− τ2)c∗0σ (τ1)c0σ (τ2)dτ2dτ1 (2.32)
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Higher-order terms can be obtained similarly with the use of n-particle correlation func-

tions. Note that in the expansion of partition function Z in Eq. (2.29) the terms of n-th

order contain n factors of hopping amplitudes, and the non-trivial limit d→ ∞ is obtained

by rescaling the hopping amplitudes. Finally, the effective local DMFT action would be:

Sloc =
∫

β

0
dτ

(
∑
σ

c∗0σ (τ)

[
∂

∂τ
−µ

]
c0σ (τ)+Uc∗0↑(τ)c0↑(τ)c∗0↓(τ)c0↓(τ)

)

+
∫

β

0

∫
β

0
∑
σ

∑
j,k 6=0

t∗j0t∗k0G(0)
jkσ

(τ1− τ2)c∗0σ (τ1)c0σ (τ2)dτ2dτ1 (2.33)

where the rescaled hopping amplitudes are denoted by t∗. We introduce the hybridization

function:

∆σ (τ1− τ2) = ∑
i, j 6=0

t∗i0t∗j0G(0)
i jσ (τ1− τ2) (2.34)

and define the so-called effective “Weiss field” Gσ for the HM as:

G−1
σ (τ1− τ2) =−

[
∂

∂τ
−µ

]
δ (τ1− τ2)−∆σ (τ1− τ2) (2.35)

which allows us to express the DMFT local action in the following form (here the site i = 0

is omitted for readability):

Sloc =−
∫

β

0

∫
β

0
∑
σ

c∗σ (τ1)G
−1
σ (τ1− τ2)cσ (τ2)dτ2dτ1

+U
∫

β

0
dτc∗↑(τ)c↑(τ)c

∗
↓(τ)c↓(τ) (2.36)

Eq. (2.36) shows that the action of the HM is identical to the action of a single site embed-

ded in an effective field G−1
σ plus the local Coulomb interaction on this site U . On the other

hand, the effective Weiss field in Eq. (2.35) defines the full partition function and thus all

information of the system, and G(0)
i jσ the Green’s function of the original HM with one site

removed. In addition, Eq. (2.36) creates a self-consistent relation, since the calculation
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of the partition function Z now requires the knowledge of the Green’s function and vice

versa [49].

By applying the Fourier transform on Eq. (2.35), the Weiss field G−1
σ takes a slightly

simpler form:

G−1
σ (iωn) =−iωn +µ−∆σ (iωn), (2.37)

where

∆σ (iωn) = ∑
i, j 6=0

t∗i0t∗j0G(0)
i jσ (iωn) (2.38)

Now we need the relation between the G(0)
i jσ the Green function with the site 0 removed and

the full original lattice Green function Gi jσ , which is [49]:

G(0)
i jσ = Gi jσ −Gi0σ G−1

00σ
G0 jσ (2.39)

This relation enables us to express the local Green’s function G00σ = Gσ by the dynamical

Weiss mean field G−1
σ in the form of a Dyson equation:

G−1
σ (iωn) = G−1

σ (iωn)−Σσ (iωn) = iωn +µ−∆σ (iωn)−Σσ (iωn) (2.40)

Then the original momentum-dependent lattice Green function Gσ (k, iωn) is given by:

Gσ (k, iωn) =
1

iωn +µ− εk−Σσ (iωn)
(2.41)

and the local Green function:

Gσ (iωn) =
1
N ∑

k
Gσ (k, iωn) =

1
N ∑

k

1
iωn +µ− εk−Σσ (iωn)

, (2.42)

where N is the number of points of the lattice. Finally,

G−1
σ (iωn) = Σσ (iωn)+G−1

σ (iωn) (2.43)
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the effective Weiss mean field equation is obtained [49].

It is very important to note that the interacting Green’s function of the original lattice

in Eq. (2.42) is still a momentum-dependent quantity which depends on the momentum

through the dispersion εk of the non-interacting electrons. However, the DMFT corre-

sponds to an effectively local problem in which the self-energy Σσ is a local quantity,

equivalently, is a k-independent quantity.

The equations (2.36), (2.37), (2.40) and (2.43) form a set of self-consistent equations

that can be solved iteratively. In order to find the interacting lattice Green’s function, one

starts with an initial guess for Σσ (iωn), which is usually zero, then using Eq. (2.43) one

can obtain the Weiss field G−1
σ and solve the corresponding local problem defined by the

action Sloc in Eq. (2.36). Consequently, a new self-energy from the Dyson equation in

Eq. (2.40) can be obtained. After convergence, one finds the correct Weiss field G−1
σ , that

parametrizes the effective field surrounding a lattice site of the HM in d → ∞, with the

corresponding interacting Green’s function Gσ and self-energy Σσ . At the end, the local

interacting Green’s function is equal to the momentum-averaged interacting lattice Green’s

function. Nevertheless, solving the local system is still complicated and in general cannot

be performed analytically [49].

Having solved the DMFT equations and the local problem, we now ready to compare

them to the AIM. The AIM consists of an impurity site embedded in a non-interacting

bath, from which electrons can hop into the impurity site, interact via the local Coulomb

repulsion and then hop back into the bath. In general, the Hamiltonian of the quantum

impurity is consisting of three basic terms:

HQI = Hloc +Hhyb +Hbath (2.44)
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where Hloc describes the impurity, where two electrons interact with the Coulomb potential.

This local impurity Hamiltonian may be represented as a set of single-particle fermionic

states labeled by quantum numbers a = 1, ...,N (including both spatial and spin degrees of

freedom):

Hloc = H0
loc +HI

loc (2.45)

H0
loc = ∑

ab
Eabc†

acb (2.46)

HI
loc = ∑

pqrs
Ipqrsc†

pc†
qcrcs + ... (2.47)

where the matrix Eab denotes the bare energy level structure and I denotes electron-electron

interactions. Hbath which describes the non-correlated electronic state, may be described

as bands of itinerant electrons, each labeled by a one-dimensional momentum k or band

energy εk and an index α (spin and orbital). So,

Hbath = ∑
kα

εkαa†
kα

akα (2.48)

and Hhyb describes the hybridization (coupling) between the impurity and the bath. This

mixing term which is characterized by a hybridization matrix V is equal to:

Hhyb = ∑
kαb

V αb
k
(
a†

kα
cb + c†

bakα

)
(2.49)

although exchange couplings also arises:

Hexchange
hyb = ∑

k1k2abcd
Jabcd

k1K2

(
a†

k1aak2b + c†
ccd
)

(2.50)

like a spin exchange coupled to a bath of conduction electrons in the “Kondo problem” [50].

The paradigmatic quantum impurity model is the single-impurity Anderson model [38].
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Since in this model, Hloc describes a single orbital, so the label a is spin-up (down), Eab is

a level energy ε0, and the interaction term collapses to Uc†
↑c↑c

†
↓c↓. Thus,

HAIM = ∑
σ

ε0c†
σ cσ +Uc†

↑c↑c
†
↓c↓+∑

kσ

Vk

(
a†

kσ
cσ + c†

σ akσ

)
+∑

kσ

εka†
kσ

akσ (2.51)

where a†
kσ
,akσ are the annihilation and creation operators for electrons in the bath. c†

kσ
,ckσ

are the annihilation and creation operators for the electrons on the impurity site. Vk which

couples the impurity with the bath, corresponds to the annihilation of one electron in the

bath and creation of one electron on the impurity site, and vice versa. U denotes the the

Coulomb interaction on the impurity [41].

It was shown in [37] that AIM generates exactly the same effective action SAIM as the

Hubbard model in Eq. (2.36)

SAIM =−
∫

β

0

∫
β

0
∑
σ

c∗σ (τ1)G
−1
σ (τ1− τ2)cσ (τ2)dτ2dτ1

+U
∫

β

0
dτc∗↑(τ)c↑(τ)c

∗
↓(τ)c↓(τ) (2.52)

which the Weiss field is given by:

G−1
σ (τ1− τ2) =−

[
∂

∂τ
−µ

]
+∑

k
|VK|2

[
θ(τ1− τ2)−nF(ε̃k)

]
(2.53)

The Fourier transform of the Weiss field in Eq. (2.53) is:

G−1
σ (iωn) =−iωn + µ̃−∑

k

|VK|2

iωn− ε̃k
(2.54)

Since the action SAIM and Sloc are equivalent, we conclude that indeed the solution of the

HM can be obtained by solving an AIM with the special choice of the Weiss field given by

Eq. (2.43) [37].

Therefore, the lattice problem is mapping onto an embedded impurity problem self-

consistently. The DMFT algorithm, as explained before, starts with a guess for the local
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self energy Σσ (iωn) (usually zero). Then, the local lattice Green function Gσ (iωn) is cal-

culated by using Eq. (2.42). Next, Gσ (iωn) is computed which includes self-energy at all

lattice sites except at the impurity site i, G−1
σ (iωn) = Σσ (iωn)+G−1

σ (iωn). This quantity

defines the site excluded bare Green function of a generalized AIM. We solve the impu-

rity problem with some numerical technique, e.g., Continuous-Time Auxiliary (CT-AUX)

field method, which produces Gimp(iωn), the Green function of the generalized AIM. Then

using Σσ (iωn) = G−1
σ (iωn)−G−1

imp(iωn), the new local self-energy is obtained which can

be used in Eq. (2.42) to produce the new local Green’s function (see Fig. 2.2). The itera-

tion is continued until Gσ (iωn) = Gimp(iωn) and the self-energy converges to the desired

accuracy [51].

Figure 2.2 – Sketch of the DMFT algorithm.

In general, we derived the DMFT equations and described the ways to solve them by

relating the effective field in d→ ∞ to the bath of an AIM. This method can be applied to

all kinds of lattice systems for the HM for which the non-interacting dispersion or density

of states is known. The DMFT itself is non-perturbative treatment of local interactions

which is valid for the complete range of U and temperature T . It only relies on the ap-
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proximation that 1/Z is small (Z is coordination number), which we assume is quite a good

approximation for realistic systems.

2.2.4 Dynamical Cluster Approximation (DCA)

DMFT can be obtained by assuming a purely local self-energy even in finite dimensions.

Although it has been shown that this approximation captures many key features of strongly

correlated systems even in a finite-dimensional context, the DMFT has some obvious and

significant restrictions. For instance, the only dynamical correlations present are those that

are treated on a single site. Therefore, there are no nonlocal dynamical correlations. These

are necessary, for example, to describe phases with explicitly nonlocal order parameters.

But even phases with local order parameters (e.g., commensurate magnetism) will certainly

be affected by the nonlocal dynamical correlations which are neglected by the DMFT.

Besides, it was shown that the DMFT is not a conserving approximation [51].

An acceptable theory is needed which systematically incorporates nonlocal corrections

to the DMFT. It must be able to responsible for fluctuations in the local environment self-

consistently. It must be formulated in the way that becomes exact in the limit of large

cluster sizes, and recover the DMFT when the cluster size equals to one. Also, it must

be easily implementable numerically and preserve the translational and point-group sym-

metries of the lattice. There have been several efforts to formulate theories which satisfy

these criteria. Among them, the dynamical cluster approximation (DCA) was proposed as

an extension to the DMFT. In the DCA, the infinite lattice problem is reduced to a finite-

sized cluster impurity (instead of a single impurity as in the DMFT) with periodic boundary

conditions which are embedded into a self-consistent mean-field. [52].
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In general, the DCA is constructed in analogy with the DMFT. Both of these two ap-

proximations can be interpreted as a coarse graining procedure of the Greens function

and self energy. In the DMFT, as illustrated in Fig. (2.3) for a two-dimensional lattice,

mapping the original lattice problem to a self-consistent impurity problem is equivalent

to averaging the Green functions, which are used to calculate the self-energy, over the

points in the Brillouin zone. An important consequence of this averaging is leading to local

(momentum-independent) self-energy and the irreducible vertices of the lattice [52]. This

kyky

N
kx

First BZ

kx

First BZ

Figure 2.3 – Illustration of coarse graining in the DMFT. Left: all lattice propagators are averaged over

the points in the first Brillouin zone. Right: mapping the lattice problem to a single point in reciprocal

space. Since the real space and reciprocal space are equivalent, this maps the lattice problem to an

impurity embedded within a host.

coarse-graining is exact in the limit of infinite dimensions. For Hubbard like models, the

Laue function ∆ which expresses the momentum conservation at each vertex characterizes

the properties of a bare vertex. In a conventional diagrammatic approach:

∆(k1,k2,k3,k4) = ∑
r

e[ir.(k1+k2−k3−k4)] = Nδk1+k2,k3+k4 (2.55)
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where k1, k2 are the momenta entering and k3, k4 are the momenta leaving each vertex

through its legs of G. However, in the limit of infinite-dimensions D→∞ the Laue function

reduces to [53]:

∆D→∞(k1,k2,k3,k4) = 1+O(1/D) (2.56)

The DMFT supposes the Laue function ∆DMFT (k1,k2,k3,k4) = 1, even in the finite dimen-

sions. Thus, DMFT neglects conservation of momentum at internal vertices. Therefore we

can freely sum over the internal momentum labels of each Green function leg. In other

words, the momentum-dependent contributions is collapsed, and only local terms remain.

On the other hand, in the DCA, momentum conservation and nonlocal corrections are re-

stored systematically; thus, in the DCA, the reciprocal space of the lattice (Fig. 2.4) which

contains N points is divided into Nc cells of identical linear size ∆k. In the coarse-graining

ky

kx

N

First BZ

ky

kx

First BZ

NC

∆k

Figure 2.4 – Illustration of the coarse graining in the DCA. Left: all lattice propagators are averaged

over the points within each cell in the first Brillouin zone. Right: mapping the lattice problem to a small

cluster defined by the centers of the cells embedded within a host.

transformation, the Green’s function is averaged within each cell. In the Nc = 1 case, the
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lattice problem is mapped to an impurity problem (DMFT), and in Nc > 1, the nonlocal

correction length ≈ π/∆k to the DMFT is introduced [52].

2.2.4.1 Diagrammatic Derivation of DCA

A microscopic diagrammatic derivation of the DCA can illustrate the coarse-graining pro-

cedure and the relationship of the DCA to the DMFT. In DCA, the momentum conservation

is systematically restored at internal vertices which is relinquished by the DMFT. First the

Brillouin zone is divided into Nc cells of size ∆k (with Nc = LD and ∆k = 2π/L), then

each cell is centered on a cluster momentum K (see Fig. 2.5). Momentum is conserved

kx

(π,π)

yk

(π,0)

K
k

k

Figure 2.5 – Illustration of coarse graining cells for Nc = 8 that divide the first Brillouin Zone. Each cell

is centered on a cluster momentum K , and a generic momentum in the zone such as k is mapped to the

nearest cluster momentum K = M(k) so that k̃ = k−K remains in the cell around K.

for momentum transfers between cells, i.e., for momentum transfers larger than ∆k, but

momentum conservation is neglected for momentum transfers inside a cell, i.e., less than
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∆k. This condition can be obtained by using the Laue function [51]:

∆DCA(k1,k2,k3,k4) = NcδM(k1)+M(k2),M(k3)+M(k4) (2.57)

where M(k) is a function which maps k into the cluster momentum K of the cell containing

k (see Fig. 2.5). Note that with this choice for the Laue function, the exact result, Eq.

(2.55), and the DMFT result, Eq. (2.56) is recovered when Nc→N and Nc = 1 respectively.

Also, with this choice of the Laue function, the summation of momentum over the cell can

give the momenta of each internal leg, so that each internal leg G(k) is replaced by the

coarse-grained Green’s function Ḡ[M(k)] which is defined by:

Ḡ(K, iωn) =
Nc

N ∑
k̃

G(K+ k̃, iωn) (2.58)

where N denotes the number of points of the lattice, Nc is the number of cluster K points,

and the k̃ summation runs over the momenta of the cell about the cluster momentum K

(see Fig. 2.5). In DCA, the cluster self-energy Σc(K, iωn) is assumed to give the real

lattice self-energy for values of the lattice momenta inside the cells around the cluster

momenta Σc(K, iωn) ≈ Σ(K+ k̃, iωn). This assumption is justified if the momentum de-

pendence of the self-energy of the real system is sufficiently weak, which means that

Σ(K+ k̃, iωn) ≈ Σ(K, iωn). Therefore, the lattice self-energy is well approximated by the

cluster self-energy. Next, using the same approximation, the cluster self-energies can be

equated with the coarse-grained averages of the lattice self-energies over these momentum

cells around the cluster momenta. Thus, for the self-energy,

Σc(K, iωn) = Σ̄(K, iωn) =
Nc

N ∑
k̃

Σ(K+ k̃, iωn) (2.59)
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the corresponding cluster Green’s function Gc(K, iωn) is given by the coarse grained aver-

age of the real lattice Green’s function,

Gc(K, iωn) = Ḡ(K, iωn) =
Nc

N ∑
k̃

1
iωn− εk +µ−Σc(K, iωn)

(2.60)

where εk is the dispersion for the non interacting lattice problem and µ is the chemical

potential [51].

The bare Green’s function or cluster-excluded Green’s function which is the coarse-

grained Green’s function with correlations on the cluster excluded is determined by the

Dyson equation on the cluster:

G−1(K, iωn) = Ḡ−1(K, iωn)+Σc(K, iωn) (2.61)

Since Σc(K, iωn) is unknown, it must be determined self-consistently, starting from an ini-

Figure 2.6 – Sketch of the DCA algorithm.

tial guess, usually zero. This guess is used to calculate the coarse-grained Green’s function

Ḡ(K, iωn) using Eq. (2.60). The bare Green’s function G(K, iωn) is then calculated by Eq.

(2.61), and used to initialize the cluster problem solver calculation. The solver produces
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the cluster Green’s function Gc(K, iωn) through which the cluster self-energy is calculated:

Σc(K, iωn) = G−1(K, iωn)−G−1
c (K, iωn) (2.62)

Again by using Eq. (2.60), the new Ḡ(K, iωn) is calculated, and the iteration is continued

until Ḡ(K, iωn) = Gc(K, iωn) and the self-energy converges to the desired accuracy. The

self-consistency loop for the DCA is shown in Fig. 2.6.

2.2.5 Impurity Solver-Continuous Time Quantum Monte Carlo

As explained in Sec. 2.2.3.1, since the Hamiltonian of the impurity model (Eq. 2.51) does

not carry spatial dependency, it may look simple. Nonetheless, this model is still believed to

be analytically intractable due to the presence of a kinetic and a non-separable two-particle

interaction terms. There is a plethora of state-of-the-art numerical methods for solving

the Anderson model at finite temperature including continuous-time quantum Monte Carlo

(CT-QMC) methods and second-order approximation. We showed that at high temperature

and weak interaction, the Green’s function obtained by both methods are in good agreement

with each other. However, by increasing the interaction strength the Green’s functions start

to differ. The second-order approximation as impurity solver is fully explained in Appendix

A.

Prior to the development of CT-QMC methods, the Hirsch-Fye quantum Monte Carlo

method [42] was the principal impurity solver. Hirsch-Fye method discretizes the interval

[0,β ) in the imaginary-time functional integral into M equally spaced time slices so that

∆τ = β/M. Then the method applies a discrete Hubbard-Stratonovich transformation on

each time slice i. The Hubbard-Stratonovich transformation, which is required to decouple
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the interactions, for the single Anderson model is:

e−∆τU [n↑n↓−(
n↑+n↓

2 )] =
1
2 ∑

si=±1
eλ si(n↑−n↓) (2.63)

where λ = arcosh[exp(1
2∆τU)] and {si} are Ising variables. The problem, finally, becomes

the sampling of the trace over the 2M-dimensional space of the si. Besides the difficulty

of choosing the equally spaced time discretization, the most fundamental difficulty which

limits the Hirsch-Fye method power is that for interactions other than the simple one-orbital

Hubbard model the Hubbard-Stratonovich fields proliferate and even can be complex so

sampling the space of auxiliary fields becomes prohibitively hard. Since the discretization

errors are large, a very small ∆τ and a precise extrapolation of the results to ∆τ = 0 are

required. Hence, methods which do not involve an explicit time discretization would be

needed [41].

The Hamiltonian in the CT-QMC methods is split into two parts labeled by a and b, H =

Ha +Hb, and the partition function Z = e−βH in the interaction representation is written

with respect to Ha and is expanded in powers of Hb, thus:

Z= TrTτe−βHaexp
[
−
∫

β

0
dτHb(τ)

]
= ∑

k
(−1)k

∫
β

0
dτ1...

∫
β

τk−1

dτk

×Tr[e−βHaHb(τk)Hb(τk−1)...Hb(τ1)] (2.64)

where Tτ is the time ordering operator. The sampling over all orders k, all topologies of the

paths and diagrams, and all times τ1, ...,τk in the calculation, is done using diagrammatic

Monte Carlo methods [54] and the trace evaluates to a number. Since the method is based

on continuous time, time-discretization errors do not have to be controlled. Besides, from

the spectrum of the perturbation term bounded from above, the contributions of large orders

are decreased by the factor 1/k!; therefore, the sampling process does not run off to infinite
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order, and the diagram order does not need to be truncated.

Therefore, in general, CT-QMC is based on expanding the partition function. There

are four types of expansion in the impurity-model context: CT-HYB (hybridization ex-

pansion), CT-INT (interaction expansion), CT-AUX (auxiliary field expansion), and CT-J

(expansion for Kondo-like problems). CT-INT and CT-AUX are both variations of an “in-

teraction expansion” and these two methods are most suited to Hubbard-like models with a

single local density-density interaction. They are sometimes referred to as weak-coupling

expansions because they are restricted to weak interactions. In CT-INT and CT-AUX much

larger systems can be treated because the scaling with the number of impurity orbitals is

not exponential [41].

2.2.5.1 Monte Carlo basics: Sampling, Markov Chains, and the Metropolis Algo-

rithm

In the CT-QMC methods, we are facing with the issue of evaluating sums over phase spaces

or configuration spaces denoted by C which is typically of a very high dimension. The

partition function Z is written as an integral over configurations x ∈ C with weight p(x):

Z=
∫
C

dxp(x) (2.65)

x in the quantum problems represents a particular term in a diagrammatic partition function

expansion. The expectation value of a quantity A is given by the distribution ρ(x) and

weight p(x):

〈A〉=
〈A(p/ρ)〉ρ
〈p/ρ〉ρ

(2.66)

Multi-dimensional integrals with general distributions such as Eqs. (2.65) and (2.66) are

properly sampled by generating configurations using a “Markov process” which is fully
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characterized by a transition matrix Wxy. The matrix Wxy determines the probability going

from state x to state y in one step of the process. Markov process starts with an arbitrary

distribution and converges exponentially to a stationary distribution p(x) if the following

two conditions are satisfied:

• Ergodicity: any configuration x can be obtained from any other configuration y in a

finite number of Markov steps.

• Balance: Stationarity requires that the distribution p(x) fulfills the balance condition,∫
C

dxp(x)Wxy = p(y) (2.67)

where p(x) is a left eigenvector of Wxy. Usually a sufficient but not necessary detailed

balance condition is used instead of the balance condition,

Wxy

Wyx
=

p(y)
p(x)

(2.68)

The “Metropolis-Hastings” algorithm [55, 56] is the first and still most widely used algo-

rithm that satisfies detailed balance. By introducing the proposed probability W prop
xy and

the accepted probability W acc
xy which show the update from a configuration x to a new con-

figuration y, the transition matrix gets the following form:

Wxy =W prop
xy W acc

xy (2.69)

By using the Metropolis-Hastings acceptance rate which is:

W acc
xy = min[1,Rxy] (2.70)

the detailed balance condition (Eq. 2.68) is satisfied. Rxy in Eq. (2.70) is the acceptance

ratio and is given by:

Rxy =
p(y)W prop

yx

p(x)W prop
xy

(2.71)
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and Ryx = 1/Rxy [41].

2.2.5.2 Diagrammatic Monte Carlo Method: The Sampling of Path Integrals

Diagrammatic expansion of partition function as a sum of integrals in the general form:

Z= ∑
k=0

∑
γ∈Γk

∫
β

0
dτ1...

∫
β

τk−1

dτkw(k,γ,τ1, ...,τk) (2.72)

has the form of Eq. (2.65) where the individual configurations x is:

x = (k,γ,(τ1, ...,τk)) (2.73)

and the weight:

p(x) = w(k,γ,τ1, ...,τk)dτ1...dτk (2.74)

Here k is the expansion order, γ ∈ Γk contains the discrete variables, such as the topology

of the diagram, orbital, lattice site, and auxiliary spin indices associated with the inter-

action vertices, and τ1, ...,τk ∈ [0,β ) are the times of the k vertices in the configuration.

To illustrate the sampling of the Monte Carlo in such continuous-time partition function

expansions, the partition function in simple form is being considered:

Z= ∑
k=0

∫
β

0
dτ1

∫
β

0
dτ2...

∫
β

τk−1

dτkw(k) (2.75)

The probability distribution of an expansion order k with vertices at times {τ j} is:

p(k,(τ1, ...,τk)) = w(k)
k

∏
i=1

dτi (2.76)

In diagrammatic Monte Carlo, “updates” realize transitions between configurations x and

y. Updates in diagrammatic Monte Carlo codes typically involve:

(i) updates that increase the order k: inserting an additional vertex at a time τ .
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Figure 2.7 – Sketch of the continuous-time quantum Monte Carlo algorithm.

(ii) updates that decrease the order k: removing a vertex τ j.

Ergodicity requires these insertion and removal updates. By removing all the existing ver-

tices and then inserting new ones any configuration from another one can be reached. The

general scheme of diagrammatic Monte Carlo algorithms is shown in Fig. 2.7 [41].

2.2.5.3 Continuous-Time Auxiliary Field CT-AUX

CT-AUX method presented here is a formulation applicable to both single and cluster im-

purity problems [41, 57]. CT-AUX algorithm is based on an interaction expansion accom-
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panied with an auxiliary-field decomposition of the interaction vertices. CT-AUX may

be viewed as an optimal Hirsch-Fye algorithm with the advantages of a continuous-time

method. It was shown that this method in the case of the single-band Hubbard model is

equivalent to the weak-coupling algorithm [58] and is the method of choice for large clus-

ter simulations [41].

As is mentioned before, continuous-time solvers are starting with the expanding of the

partition function. The partition function is Z= Tre−β (H0+HU ) and a nonzero constant K is

added to HU :

HU =U
Nc

∑
i

(
ni↑ni↓−

ni↑+ni↓
2

)
− K

β
(2.77)

H0 = HAIM−HU +K/β (2.78)

Note that Nc is a cluster sites in a cluster impurity problem. Thus, the partition function:

Z= Tr
[
e−βH0Tre

∫
dτ{K/β−U ∑

Nc
i [ni↑ni↓−(ni↑+ni↓)/2]}

]
(2.79)

If the exponential is expanded in powers of HU and the auxiliary-field decomposition is

applied [59]:

1− βU
K

Nc

∑
i

(
ni↑ni↓−

ni↑+ni↓
2

)
=

1
2Nc

∑
i,si=±1

eγsi(ni↑−ni↓) (2.80)

cosh(γ) = 1+
UβNc

2K
(2.81)

the partition function gets the following form:

Z=
∞

∑
k=0

∑
s1,...,sk=±1

∫
β

0
dτ1...

∫
β

τk−1

dτk

( K
2βNc

)k
Zk({sk,τk,xk}) (2.82)
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where,

Zk({si,τi,xi})≡ Tr
1

∏
i=k

e−∆τiH0esiγ(nxi↑−nxi↓) (2.83)

with ∆τi ≡ τi+1− τi for i < k and ∆τk ≡ β − τk + τ1. Finally, following the derivation done

in [57], we obtain:

Zk({si,τi,xi})
Z0

= ∏
σ=↑,↓

detN−1
σ ({si,τi,xi}) (2.84)

where Z0 = Tre−βH0 and,

N−1
σ ({si,τi,xi})≡ eV {si}

σ −G{τi,xi}
0σ

(
eV {si}

σ −1
)

(2.85)

eV {si}
σ ≡

(
eγ(−1)σ s1, ...,eγ(−1)σ sk

)
(2.86)

with (−1)↑ ≡ 1, (−1)↓ ≡ −1 and (G{τi,xi}
0σ

)i j = G0
xiX j,σ

(τi− τ j) for i 6= j, (G{τi,xi}
0σ

)i j =

G0
xiX j,σ

(0+). Therefore, the algorithm is formulated in terms of a matrix Nσ instead of

G [41, 57].

The partition function Eq. (2.82) in the CT-AUX algorithm includes a sum over ex-

pansion orders k up to infinity, discrete sum over auxiliary fields spins s and sites x, and

a k-dimensional time-ordered integral in the interval [0,β ), so we can use the sampling

scheme of Sec. 2.2.5.2. Note that, in addition to the imaginary-time locations of the in-

teraction vertices, the auxiliary spins s j associated with each vertex are sampled. So, the

configuration space C in Eq. (2.65) is given by:

C= {{},{(s1,τ1)},{(s1,τ1),(s2,τ2)}, ...,{(s1,τ1), ...,(sk,τk), ...} (2.87)

where the s j = ±1 are auxiliary Ising spins, k is the expansion or diagram order, and

τ1 < τ2 < ... < τk are continuous variables between 0 and β . Fiq. 2.8, which is for orders

38



τ2

τ1

τ1 τ2 τ3 β0

β00 β

β0
τ1

a) b)

c) d)

Figure 2.8 – Pictorial representation of configurations {(s j,τ j)} ∈ C that occur within the CT-AUX

algorithm. Diagrams for orders zero through three. The circles represent imaginary times at which the

interactions take place. In CT-AUX algorithm, an auxiliary spin s j(represented here by the arrows) needs

to be sampled in addition to the imaginary time location τ j of a vertex.

zero through three, shows the configurations {(s j,τ j)} ∈ C that occur within the CT-AUX

algorithm. Each configuration contributes some value to the whole partition function. Up-

dates starts with spin-flip updates at constant order which are fast to compute:

[(s1,τ1), ...,(s j,τ j), ...,(sk,τk)]⇒ [(s1,τ1), ...,(−s j,τ j), ...,(sk,τk)] (2.88)

and then insertion and removal updates is used as is described in Sec. 2.2.5.2. Fig. 2.9

shows an insertion and removal update within the CT-AUX. Using Eq. (2.84), the proba-

τ1 τ2 τ2τ1β0 β0
τ3

insert

remove

Figure 2.9 – Pictorial representation of an insertion and removal update within the CT-AUX algorithm.
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bility density ratios of the two configurations:

R =
P(y)
P(x)

=
∏
σ

detN−1
σ ({s′i,τ

′
i ,x
′
i})

∏
σ

detN−1
σ ({si,τi,xi})

(2.89)

For ergodicity it is sufficient for vertex insertion updates from configuration x=({si,τi,xi})

to configuration y = ({s′i,τ
′
i ,x
′
i}) to be balanced by removal updates. By picking a random

time in the interval [0,β ), a random site, and a random direction for spin, the proposal

probability would be:

W prop
xy =

1
2Nc

dτ

β
(2.90)

and the proposal probability of removing a spin,

W prop
yx =

1
k+1

(2.91)

Therefore, following Eq. (2.71), the probability density ratios gets the below form [41].

Rxy =
K

k+1
detN↑(y)+detN↓(y)
detN↑(x)+detN↓(x)

(2.92)

Measurement of the Green’s function Gpq,σ (τ,τ
′) for cluster sites p and q and spin

σ , starts with adding two additional noninteracting spins s = s′ = 0 to Eq. (2.83) at any

arbitrary time τ and τ ′. Thus, the Green’s function is obtained (the corresponding matrices

of size n+2 is denoted with a tilde)

Gpq,σ (τ,τ
′) =

1
Z

∑
k≥0

( K
2βNc

)k
∑

si=±1,1≤i≤k

∫
β

0
dτ1...

∫
β

τk−1

dτk

×Zk({si,τi,xi})G̃{si,τi,xi}
pq,σ (τ,τ ′) (2.93)

where G̃{si,τi,xi}
pq,σ = Ñσ ,pr({si,τi,xi})G̃{τi}

0,rq,σ . Since s = s′ = 0:

G̃{si,τi,xi}
pq,σ (τ,τ ′) = G0

pq,σ (τ,τ
′)+

k

∑
l,m=1

G0
pxl ,σ

(τ,τl)MlmG
0
xmq,σ (τm,τ

′) (2.94)
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Mlm = [(eV {si}
σ −1)Nσ ({si,τi,xi})]lm (2.95)

Finally, by applying Fourier transform to the above expression, a measurement formula in

frequency space is obtained [41]:

G̃pq(iωn) = G0
pq(iωn)−∑

lm

G0
pl(iωn)G

0
mq(iωn)

β
eiωnτl Mlme−iωnτm (2.96)

2.3 Numerical Calculation

2.3.1 ALPSCore

The DMFT, DCA and the CT-AUX codes described in Sec. 2.2 are built on an updated

version of the core libraries of ALPS (Algorithms and Libraries for Physics Simulations)

also known as ALPSCore libraries [60,61]. The ALPS project is an C++ open source effort

aiming at providing a collection of physics libraries and applications with high-end simula-

tion codes for lattice models and strongly correlated electron systems. The ALPS libraries

by reducing the users time and effort to develop and testing complex scientific applications,

provide the well-documented components for numerical simulations of condensed matter

systems, the applications, and computational algorithms to a non-expert community.

In this work we used the main ALPS Libraries known as ALPSCore libraries which pro-

vide physical insights into many subfields of condensed matter including nonequilibrium

dynamics [62], CT-QMC [57, 63], LDA+DMFT materials simulations [64], and cuprate

superconductivity [65]. Later versions of the code is available from the main site, http:

//alpscore.org, together with tutorials, and examples. Development versions of the li-

brary are available from the public Git repository at https://github.com/ALPSCore/

ALPSCore.
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2.3.2 Compute Canada

Compute Canada and their regional partner organizations including ACENET, Compute

Ontario, Calcul Québec, and WestGrid, by deploying cutting-edge advanced research com-

puting (ARC) systems, storage and software solutions, accelerate the research and inno-

vation. They provide necessary ARC services and infrastructure for Canadian researchers

and their collaborators in academia and industry. Also, Compute Canada’s world-class ex-

perts in universities and research institutions across the country provide direct support to

research teams. Compute Canada is an ambassador for Canadian excellence in advanced

research computing nationally and internationally.

The present work done using resources provided by Calcul Québec organization. We

used servers “Mp2” and “Mp2b” which are the sub-system of “Mammouth Parallel 2” clus-

ter. Let us here to mention that the Mp2b is re-configured following Compute Canada stan-

dards. A detailed information about Calcul Québec and the Mp2 is available at https://

wiki.calculquebec.ca/w/Connecting_and_transferring_files#tab=tab7, and the

Mp2b at https://wiki.ccs.usherbrooke.ca/Mammouth-Mp2b.
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Chapter 3

Results

Since we aim to find the phase diagram of the system, we do our calculations for 1 6U 6

11, 26 β 6 10 both with the step of 0.5, and 0.06 t f 6 1.0 with the step of 0.1. In addition,

in the results relevant to DCA, we increase the system size N from 1 to 8 and 16. Since

CPU usage necessary to receive well converged, statistically sound results scales as U3, β 3

and N3, our numerical investigation from the point of view of the computational efforts is

expensive.

3.1 Green’s Function and Self-Energy Using DMFT

In DMFT, a set of self-consistency equations are iteratively used until the lattice Green’s

function and self-energy converge to a desired accuracy. The output of the calculations is

the momentum-independent converged Green’s function G(ω) and self-energy Σ(ω) which

contain all relevant system information. Therefore, for the first step of our work we focused

mainly on the convergence of the Green’s function and self-energy as a function of inverse

temperature β , interaction strength U, mass-imbalance t f , and chemical potential µ which
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in half filling is equal to zero.
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Figure 3.1 – Results as a function of DMFT iteration for: left columns, imaginary part of the Green’s

function; right columns, imaginary part of the self energy at given parameters. Data shown for µ = 0.

The imaginary part of the Green’s function and imaginary part of the self-energy at the

first Matsubara frequency (iω0) as a function of iteration order are shown in the left and

right panels of Fig. 3.1, respectively. We show this iteration process at some exemplary

U and β values for the HM, mass-imbalanced, and FKM cases. The upper two panels in
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Fig. 3.1 show the iterations at the FKM where t f = 0. The middle two panels in Fig. 3.1

show the iterations at mass-imbalanced case which in this example t f = 0.6, and the lower

two panels in in Fig. 3.1 show the iterations at the HM case where t f = 1. We use the last

iteration as converged Green’s function and self-energy and perform our calculation based

on them. Imaginary part of the Green’s function and the self-energy at some parameters as

an example are presented in Fig. 3.2.
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Figure 3.2 – Converged DMFT results for: left, imaginary part of the Green’s function and right, the

imaginary part of the self energy. Data is for µ = 0.

3.2 Paramagnetic to Antiferromagnetic Transition Using

DMFT

For the strong interactions and low temperatures, we observed the second-order paramag-

netic (PM) to antiferromagnetic (AFM) transition also known as Néel ordering [66]. Near

to the PM to AFM phase transition, the Green’s function and the self-energy have the con-
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vergence problem. Fig. 3.3 shows the iteration process of the imaginary part of the Green’s

function and imaginary part of the self-energy for exemplary U, β and t f values. Here we

only show the iterations for mass-imbalanced case of t f = 0.6, 0.8. It seems the Green’s

function and the self-energy are about to converge, but at the end they do not. We used this

as our first indication of second order phase transition.
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Figure 3.3 – Results as a function of DMFT iteration for: left columns, imaginary part of the Green’s

function, and right columns, imaginary part of the self-energy. Data for parameters which can not

converge.

Fig. 3.4 shows the variation of Sz as a function of temperature T at some exemplary

U and t f values. Sz in the left panel of Fig. 3.4, at T=0.22 , which is marked by arrow, is
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non-zero. Similarly, in the right panel of Fig. 3.4, at T=0.25, marked by arrow, Sz 6= 0. We

use these points as onset of the AFM state.

Note that we are solving the DMFT with only one impurity site, and the assumption

that the bath is paramagnetic. When Sz '< n↑−n↓ >6= 0 this assumption breaks down and

we refer to this boundary as the AFM state, since it is known from DCA studies.
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Figure 3.4 – Sz as a function of temperature: left, at T=0.222 (β = 4.5) and right, at T=0.25 (β = 4.0)

are two points in which Sz 6= 0. Data is for µ = 0 using DMFT.

The corresponding phase diagram obtained by DMFT for the square lattice is depicted

in Fig. 3.5. The two points in Fig. 3.4 at which the system is in AFM state are marked

by arrows in Fig. 3.5. We can conclude that the mass imbalance results in a relative

increase of the critical temperature. The critical temperature in Néel ordering is called

Néel temperature 1. We obtain max[Tc(t f = 1)]≈0.28 and max[Tc(t f = 0)]≈0.33.

We would like to emphasize here that, as described in Sec. 2.1, based on the discussion

in [32], for the mass-imbalanced case where J‖ > J⊥, long range Z-antiferromagnetic order

is permitted, and the Mermin-Wagner theorem [67], which prevents long-range order at

1Above this temperature, an antiferromagnetic material becomes paramagnetic.
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Figure 3.5 – Critical temperature for Néel ordering of the half filled Hubbard model at different values

of the mass-imbalance parameter in a square lattice, obtained within DMFT.

finite temperature in low dimensions (D ≤ 2), is applicable only to the rotation symmetry

of the Hamiltonian (2.4) in the XY plane. Nonetheless, Mermin-Wagner theorem works

only for infinite system size with continuous symmetries, and we believe since our system

is finite, we capture the second order PM-AFM phase transition.

3.3 Fermi Liquid to Non-Fermi Liquid Crossover Using

DMFT

The interaction-driven metal-to-insulator (MI) transition has been for many years one of the

most interesting topics in the field of strongly-correlated electron systems. Understanding

of the MI transition, particularly in the two-dimensional systems, has been challenging.

In this section, we were also interested in investigating this MI transition; however, the
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recent work [68] using Self-energy Determinantal Diagrammatic Monte Carlo and DCA

(for infinite system size) methods has indicated that the low temperature crossover from

the metallic Fermi liquid (FL) to the quasi-AFM insulator preempts and precludes the MI

transition, and there is a state called non-Fermi liquid (nFL) between FM and quasi-AFM

insulating states. Consequently, we aim to study the FL to nFL crossover in our system.

In order to proceed our investigation, we focus on PM state and study the destruction

of the FL as a function of interaction, inverse temperature, and mass-imbalance. To obtain

the FL-nFL crossover, we discriminate between FL and nFL solution by means of the

imaginary part of the self-energy Σ(iωn). The FL and nFL solutions are characterized by a

negative and positive slope for self-energy respectively, when ωn→ 0 [68]. We take this as

the criterion for discriminating FL and nFL solutions. Fig. 3.6 shows this imaginary part of

the self-energy for exemplary U values at β = 4 and mass-imbalance t f = 0.6 in half-filling.
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Figure 3.6 – Imaginary part of the self-energy at given parameters as an indicator for a FL and nFL

solution obtained within DMFT. left: both spin-up and spin-down are in FL solution, middle spin-up in

FL and spin-down in nFL solutions, and right both spin-up and spin-down are in nFL solution.

Considering above explanation, we use ∆Σ as our measure in the FL-nFL crossover
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which is defined as:

∆Σ = ImΣ(iω0)− ImΣ(iω1) (3.1)

If ∆Σ > 0 the state is a metallic FL; when the reverse is true and ∆Σ < 0, the state is nFL.

We draw ∆Σ versus U, t f and β and if ∆Σ changes its sign, it marks the crossover values

which we denote with U∗, t∗f and β ∗. The crossover values are then used in obtaining

the FL-nFL diagram. In the following we show how DMFT results produce the crossover

values (U∗, t∗f , β ∗). All ∆Σ figures for different mass-imbalance t f , inverse temperatures β ,

and interaction U are shown in Appendix B.

Fig. 3.7 shows how crossover interactions U∗, which are marked by a black circle, are

obtained. This figure in general shows that by increasing the interaction, FL-nFL crossover

happens. In Fig. 3.7 which is the variation of ∆Σ versus U, all ∆Σ are small towards U→ 0,

and for intermediate values of U and β , ∆Σ is always positive which means the system

is in the FL regime. For the large values of U, ∆Σ going to negative sides which shows

the system crossing to nFL regime. At high temperature (β = 2), ∆Σ is negative which

means the system is always in nFL regime. In addition, at lower temperature (β > 5) the

system is magnetized and is in AFM state. Note that at β = 5, while for spin-up electrons

FL-nFL crossover happens, for spin-down one, the system going to AFM state. Here we

show the results only for t f = 0.8. Data for other mass imbalance parameters can be found

in Appendix B. Measured crossover interactions are presented in Table 3.1.

Fig. 3.8 ilustrates how the crossover mass-imbalance t∗f is produced. Generally, Fig.

3.8 which is the variation of ∆Σ as a function of t f , shows that by increasing the mass

imbalance (decreasing the t f ) FL-nFL crossover happens. All ∆Σ for spin-up electrons

are approaching almost same value towards t f → 0, and we have FL-nFL crossover for all
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Table 3.1 – Crossover interactions U∗ for spin-up and spin-down electrons at t f = 0.8 and different

values of inverse temperatures.

β 3 4 5

U∗↑ 4.70 6.61 7.41

U∗↓ 5.44 6.85 -
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Figure 3.7 – DMFT results for ∆Σ as a function of interaction U at different inverse temperatures β and

mass-imbalance t f = 0.8. left: is for spin-up, and right: is for spin-down.

values of β . However, for spin-down electrons, we see the different behavior and FL-nFL

crossover exist only for β = 3, 4 and 5. For spin-down electrons and at lower temperature,

the system is always in FL regime. Here we only show the results for U=3. Data for other

interaction values can be found in Appendix B. Measured crossover mass imbalance are

presented in Table 3.2.

Finally, in Fig. 3.9 we show how DMFT results produce crossover inverse temperatures

β ∗. Fig. 3.9, which is the variation of ∆Σ as a function of β , shows that by increasing the

temperature FL-nFL crossover happens. At t f = 0, ∆Σ for spin-up electrons are always
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Table 3.2 – Crossover mass imbalance parameters t∗f for spin-up and spin-down electrons at U=3 and

different values of inverse temperatures.

β 3 4 5 6 7 8 9 10

t∗f↑ 0.69 0.47 0.35 0.28 0.23 0.19 0.17 0.16

t∗f↓ 0.49 0.22 0.08 - - - - -
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Figure 3.8 – DMFT results for ∆Σ as a function of mass-imbalance t f at different inverse temperatures

β and interaction U = 3.0. left: is for spin-up, and right: is for spin-down.

negative which means the system is always in nFL regime. However, for spin-down elec-

trons, FL-nFL crossover exists for all values of mass-imbalance parameters. Here we only

show the results for U=2. Data for other interaction values U can be found in Appendix B.

Measured crossover inverse temperatures are presented in Table 3.3.

Using the crossover values from ∆Σ figures (3.7, 3.8 and 3.9), crossover diagrams ,

Fig. 3.10, Fig. 3.11 and Fig. 3.12 are obtained. Fig. 3.10 is a spin dependent FL-nFL

crossover as a function of interaction strength U and mass imbalance parameter t f in which

the FL regime is destroyed not only by increasing the interaction, but also by increasing the
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Table 3.3 – Crossover inverse temperatures β ∗ for spin-up and spin-down electrons at U=2 and different

values of mass imbalance parameters.

t f 1.0 0.8 0.6 0.4 0.2 0.0

β ∗↑ 2.32 2.68 3.21 4.25 7.08 -

β ∗↓ 2.32 2.51 2.74 3.06 3.74 4.60

2 3 4 5 6 7 8 9 10

β
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Figure 3.9 – DMFT results for ∆Σ as a function of inverse temperatures β at different mass-imbalance

t f and interaction U = 2.0. left: is for spin-up, and right: is for spin-down.

mass-imbalance. As we see in Fig. 3.10 for example at β = 5, the strength of the crossover

interaction for both spin-up and spin-down, U∗↑ and U∗↓ , decreases monotonically as the

mass imbalance grows (t f decreases) so that the minimum U∗↓ is realized when one of the

species is localized where we reach the FKM limit (t f = 0). By increasing β (lowering

the temperature) the AFM state emerges which suppresses the PM states including FL/nFL

regimes. As we go to lower temperatures the nFL regime shrinks so that this regime is

completely collapsed for spin-down at β = 9. At β = 10, a small part of the nFL regime

survives only for spin-up. Upon decreasing the temperature, AFM state is increasing; con-
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sequently, we expect that at β → ∞ the AFM state would be the dominant state in any U

interaction.

Fig. 3.11 is also a spin dependent FL-nFL crossover as a function of inverse tempera-

ture β and mass imbalance t f in which the FL(nFL) regime is increasing (decreasing) by

increasing β .The crossover inverse temperature for spin-up and spin-down, β ∗↑ and β ∗↓ , in-

creases monotonically as the mass imbalance increases or t f decreases. As we see in Fig.

3.11 at U=1, 2 and 3, the maximum β ∗↓ is obtained when we are in the FKM limit where

t f = 0. In Fig. 3.11 at U=4 and low temperatures, the AFM emerges which is expected

here also at zero temperature, the AFM would be the dominant state in our system.

As in the Hubbard case (t f = 1), the Fermi-liquid state seen in the mass-imbalanced

HM exists below a certain coherence temperature Tcoh
2. Above Tcoh, the thermal disorder

is too strong for the quasiparticles to survive and the good metallic FL behavior is gradu-

ally lost. Let us here mention that we use ∆Σ in determining the coherence temperature.

Thus, coherence temperatures are the temperatures at which FL-nFL crossover happens.

Our results for Tcoh, obtained within DMFT, are plotted in Fig. 3.12. As we see, Tcoh is

decreasing by increasing interaction and mass imbalance so that this decrease is faster to

spin-up electrons. As one increases the temperature above Tcoh, the solution has a rapid

crossover toward a new bad metallic state, i.e., the nFL state. We obtained Tcoh for the HM

case, 0.25≤ Tcoh(t f = 1)≤ 0.43 and for the FKM case, 0.11≤ Tcoh(↓)(t f = 0)≤ 0.22. Note

that Tcoh(↑) is vanished for the FKM which means at t f = 0, spin-up electrons are in nFL

regime.

The phase diagram of the half-filled mass imbalanced Hubbard model at different mass-

2The Tcoh, experimentally, is characterized by a specific heat that has linear dependence to temperature

[15].
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Figure 3.10 – Crossover diagram of the FL/nFL/AFM states as a function of interaction strength U and

mass-imbalance t f at β = 3,4,5,6,7,8,9,10 and µ = 0 obtained within DMFT.
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obtained within DMFT.
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imbalance t f and temperature 0.5≤ T ≤ 0.1 is depicted in Fig. 3.13. Brown areas show the

FL state for both spin-up and spin-down electrons, and white areas show only FL state for

spin-down electrons. At temperature T ≤ 0.33, we observe the AFM state whose domain

increases as mass-imbalance increases (t f decreases). At temperatures 0.11 / T / 0.28

there is a FL-nFL-AFM transition which is different for spin-up and spin-down electrons.

At sufficiently low temperature (T=0.1), we do not observe the nFL regime and there is a

direct FL to AFM transition. Note that the FL↓, which is included in the white and brown

areas, is always bigger than FL↑, which is only brown area. As the mass-imbalance grows

and we approach the FKM (t f = 0), the FL↑ decreases and is completely lost at t f = 0. This

means that spin-up electrons are more affected by the interactions.

3.4 Spectral Function

In the previous section we have plotted a phase diagram in the imbalance-correlation plane

which highlights how the FL/nFL states turn into an AFM. We now extend our analysis

to the spectral functions, which is a key quantity to characterize the nature of the metallic

states and the approach to the insulating state. Most interestingly, spectral functions are ex-

perimentally accessible through trapped cold atomic systems, radio spectroscopy or Raman

spectroscopy.

Since for lower temperatures the AFM is dominant state, we prefer to do the analysis

for β = 6.5 and interaction strength U = 4 which is considered as strong-coupling regime.

As shown in Fig. 3.11 for U=4 at β = 6.5, it is below the AFM transition point for any

value of t f . Therefore we will always be in a PM state, even if decreasing t f will drive the

system close to an AFM transition. In order to investigate how the effect of correlations
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Figure 3.13 – Phase diagram of the half-filled 2D mass-imbalanced Hubbard model as a function of

interaction U and temperature T at mass-imbalance t f =1.0, 0.8, 0.6, 0.4, 0.2, 0.0, obtained by DMFT.

increases when t f gets smaller, we choose t f from balanced one to very large imbalance.

Fig. 3.14 presents the spectral densities of the spin-up electrons and spin-down electrons

for different values of the mass imbalance t f = 0.0, 0.4, 0.8, 1.0. For U = 4, as representation

of large values of U, the behavior of these spectral functions strongly depends on the mass

imbalance t f . The evolution of the electron spin species as a function of t f at ω = 0 show the
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crossover from the FL with central quasiparticle peak to the nFL without the quasiparticle

peak, even if the driving parameter is not the interaction. At high energy ω ∼ 2U, the

physics of both electron species is dominated by the interaction that induces the formation

of Hubbard bands with incoherent excitations around ω =±U3. As we see in Fig. 3.14, the

spectral densities of spin-down electrons at ω = 0, which shows the density at the Fermi

level, are always bigger than for spin-up electrons at any values of mass-imbalance.
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Figure 3.14 – Spectral functions of the left spin-up and right spin-down for U = 4, µ = 0, β=6.5 and t f =

0.0, 0.4, 0.8, 1.0.

We now focus our analysis on the spectral density at ω = 0 which is denoted by A(0).

Fig. 3.15 shows the A(0) as a function of mass-imbalance t f at different temperatures and

interaction strengths. We are, in fact, moving along a vertical line pointing toward the FL to

nFL transition at β = 5, 7, 10 and specified U values in the crossover diagram of Fig. 3.10.

Considering the spin-up, when we are crossing from the nFL regime to the FL regime, the

A(0) is increasing, monotonically, for any t f values and temperatures, even if the increase

3At typical Mott-Hubbard metal-insulator transition, the separated Hubbard bands are formed at ω =

±U/2.
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Figure 3.15 – Spectral densities at ω = 0 as a function of t f of the left spin-up and right spin-down at

β = 5,7,10, µ = 0, and different interaction strength.

is much more pronounced for large interactions. However, most interestingly, this trend is

quite different for spin-down electrons. As we see at β = 5, for U=1, and 2, the system is

in the FL regime and the A(0) is decreasing by increasing the t f ; nonetheless, for U=3, 4,

and 5, the A(0), corresponding to the nFL in the crossover diagram (Fig. 3.10), initially

increases and reaches its highest values (highlighted with the yellow circle) in the FL-nFL

crossover, and then starts to decrease in the FL regime. We see the same trend for β = 7 in
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which at U=1, 2, and 3, the A(0) in the FL regime decreases by increasing the t f , but for

U=4 follows the same trend as we had for β = 5 at U=3, 4 and 5. For β = 10, the system

is always in the FL at any t f so that the A(0) decreases as t f increases.

3.5 Mass Renormalization

In this section we investigate the main effect of interaction measured by the effective (or

renormalized) mass m∗. To do so we use Eq. (2.21) and plot variation of quasiparticle

weight Z as a function of interaction U. The left panel in Fig. 3.16 shows the Z of both

species for three different mass imbalance factors t f = 0.4, 0.8, 1.0. We choose the inter-

mediate temperature β = 4 which is above the minimum coherence temperature for any t f

values to see the FL/nFL crossover without entering the AFM state. At all three t f values

the quasiparticle weight is decreasing as interaction increases which means that FL-nFL

crossover can happen. For the t f = 1.0, Z is bigger and is almost linear in interaction which

shows that in the HM case the electrons are less affected by the interactions compared to

the mass-imbalanced HM where t f 6= 1. For the imbalance t f = 0.8 and 0.4, spin-up (light)

electrons have a smaller Z (Z↑ < Z↓) which means they are more renormalized compared

to their spin-down (heavy) partners, even if the effect is much more pronounced for t f =

0.4. These results show that the spin-up (light) species with smaller bare mass are more

affected by correlations than the spin-down (heavy) ones. Our solution actually shows that

when two species with different mobilities are mixed, the interactions tend to balance their

properties.

The right panel in Fig. 3.16 shows the variation of ∆Z ≡ Z↓−Z↑ as a function of U. For

weak and intermediate interaction strengths (1≤U ≤4) the maximum difference between
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Figure 3.16 – DMFT results of left: quasiparticle weight Z, right: ∆Z as a function of the interaction

strength U at β = 4, µ = 0, for various values of the mass-imbalance factor t f .

spin-down quasiparticles and spin-up quasiparticles happens at t f = 0. However, this trend

changes for strong interaction strengthss (U≥ 4). For U = 5 the maximum ∆Z is at t f = 0.2,

for U = 6, 7, the maximum ∆Z is at t f = 0.4, and for U = 7 the maximum ∆Z happens at

t f = 0.6.

3.6 Double Occupation

We compute the double occupation 〈n↑n↓〉, another physical observable accessible in cold

atom system which can be used to establish a link between the model and the experiments.

The results are shown in Fig. 3.17 for various values of U and t f at finite temperature

β = 4. We observe a lower double occupation in the nFL regime which implies that most

probably each site is almost singly occupied. In contrast, when one approaches the metallic

FL state upon decreasing U, the higher kinetic energy and lower potential energy together

lead to a strong increase in the number of doubly occupied sites. At smaller values of t f

there is a sharper transition from the metallic FL to nFL state. The metallic FL state is
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characterized by linear decrease of the double occupation with increasing interaction U.

However, in the FL-nFL crossover points (marked with arrows in the inset of Fig. 3.17),

the linear dependence is lost, and at larger values of the interaction, the double occupation

remains low and weakly U-dependent. At smaller values of t f , when the system is more

imbalanced, due to the reduced values of the crossover interaction U∗, there is a sharper

crossover from the metallic FL to nFL state. However, at large values of t f , when the

system is less imbalanced, because of the larger U∗, thus we observe a rather slow FL-nFL

crossover.
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Figure 3.17 – DMFT results of double occupancy as a function of U at β = 4, µ = 0, for different values

of t f . The inset shows the spin-down crossover interactions U∗↓ where both spin species are in nFL state.
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3.7 Fermi Liquid to Non-Fermi Liquid Crossover Using

DCA

As discussed earlier, in order to have an exact results, we use the DCA in which we increase

the number of cluster N. However, computational cost, which scales with N3 and β 3, makes

it hard to solve problem with large scale clusters. Therefore, in this section we investigate

the FL-nFL crossover with small-scale cluster (8-site and 16-site) at only one temperature

(β = 4).

As described in Sec. 2.2.4, DCA is an extension of the DMFT in which the nonlocal

dynamical correlation is also considered. Therefore, the Green’s function and the self-

energy as main output of our calculations, are momentum-dependent. Here, we start with

an 8-site cluster and then expand the cluster to 16-site. In the 8-site cluster, the eight k

points on the Fermi surface (FS) are: k1 = (π/2,π/2), k2 = (−π/2,−π/2), k3 = (0,0),

k4 = (π,π), k5 = (−π/2,π/2), k6 = (π/2,−π/2), k7 = (0,π), and k8 = (π,0).

Our main result is summarised in Fig. 3.18 which shows the FL-nFL crossover of the

half-filled mass-imbalanced Hubbard model as a function of interaction strength U and

mass imbalance t f at β = 4. The left panel of Fig. 3.18 shows the 8-site DCA result

and the right panel of the Fig. 3.18 shows the 8-site DCA and DMFT results to have a

better comparison between two methods. In generating this crossover diagram we take the

average of the self-energy at the aforementioned eight k points to produce the localized

self-enegy, and then we use ∆Σ to obtain the crossover values as we had in the DMFT

method. As we see in the right panel on Fig. 3.18, for the large values of the interaction,

the crossover interactions for both spin-up and spin-down, U∗↑ , U∗↓ , are reduced in 8-site

cluster DCA. In contrast, for the weak values of the interaction, the crossover interactions
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U∗↑ , U∗↓ , are almost the same for both methods.
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Figure 3.18 – FL-nFL crossover diagram as a function of interaction strength U and mass imbalance t f

at β = 4, µ = 0 obtained within left: localized 8-site DCA, right: localized 8-site DCA and DMFT.

The left panel of Fig. 3.19 shows the same FL-nFL crossover using 8-site cluster DCA

at the anti-nodal point kan = (π,0) and the nodal point kn = (π/2,π/2). The FL-nFL

crossover first appears at the anti-nodal point and then at the nodal point. Most interestingly,

as we see in the right panel of Fig. 3.19, the crossover for nodal point and the localized

8-site DCA almost coincide with each other with a little deviation at large values of t f .

In order to increase our results’ accuracy and obtain the exact results, we increase the

cluster size and do our analysis to 16-site cluster. The left panel of Fig. 3.20 shows the

FL-nFL crossover as a function of interaction strength U and mass imbalance parameter

t f using 16-site cluster DCA. In order to have a good comparison between 16-site and 8-

site cluster DCA with DMFT results, we draw them in same frame (see right panel of Fig.

3.20). By increasing the cluster size, the crossover interaction U∗ is reduced which this

reduction is more at large values of the interaction. At weak interaction, t∗f↑ in 16-site DCA

deviates from 8-site DCA and DMFT. However, t∗f↓ is almost the same with 8-site DCA and
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DMFT results. Note that at large values of the interaction, the difference between DMFT

and 8-site DCA is more than the difference between the 16-site and 8-site DCA. Thus, we

believe this difference is not getting much bigger for large scale cluster size.
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Chapter 4

Discussion and Conclusion

We have analyzed the half-filled mass-imbalanced Hubbard model on a 2D square lattice

at finite temperature. In the first part of the thesis, we investigated the PM-AFM transition

by the DMFT. Our phase diagram, Fig. 3.5, at large values of interaction strength and low

temperatures, shows a second order phase transition, i.e. Néel ordering, at all values of

mass imbalance. Critical Néel temperature increases with the mass imbalance which is

in good agreement with the DMFT study of mass-imbalanced ultracold atoms in optical

lattice [32]. As we go to lower temperatures and increase the mass imbalance, the AFM

is the dominant state so that we expect the ground state of the mass-imbalanced Hubbard

model like that of the balanced Hubbard model on the square lattice at half filling to be the

AFM state for any on-site interaction.

In the second part of the thesis, as our most important part in terms of effort and time

spent, we analyzed the FL-nFL crossover of the model within the paramagnetic phase by

DMFT and small cluster DCA methods. Our main result is summarised in Fig. 3.13 which

shows the spin dependent metallic FL to nFL state including Néel ordering for different
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values of the mass imbalance t f . Above certain coherence temperature, due to the strong

thermal disorder, the quasiparticles can not survive; therefore, the metallic FL behavior is

lost and we enter the nFL state. This good-metal behavior is dependent on two other factor

as well: the interaction strength U and the mass imbalance parameter t f . We conclude

that the FL to nFL crossover happens not only by increasing the interaction, but also by

increasing the mass imbalance. The metallic FL for spin-up electrons is gradually lost as

the mass imbalance increases so that at the FKM limit where t f = 0, most interestingly, the

FL for spin-up electrons (light electrons) is completely lost. This means that spin-up (light)

electrons are more affected by the interaction than their spin-down (heavy) partners.

The behaviour of the spectral densities is strongly dependent on the mass imbalance

t f , and the spectral density of spin-down (heavy) electrons at ω = 0, denoted by A(0), are

always bigger than spin-up electrons at any values of the mass imbalance (Fig. 3.14). The

variation of A(0) is completely different for spin-up and spin-down electrons. For the spin-

up electron, A(0) increases, monotonically, while we are crossing from nFL to FL regime;

however, for the spin-down, we observed a small peaks for A(0) at the nFL to FL crossover

points (Fig. 3.15).

The variation of quasiparticle weight with interaction for both spin species shows us that

the spin-up electrons (light species) is more renormalized than the spin-down (heavy) one,

which implies spin-up (light) electrons is more affected by interaction than the spin-down

(heavy) one. This is in good agreement with the results of [15, 31]. The important discus-

sion about this behaviour is that in the case of two bands in a solid, both bands filled with

up and down electrons, it is natural that the heavy-electron band with smaller hopping t is

more affected and more renormalized by the interaction than the light-electron band. This

increases the possibility of the orbital-selective Mott transition in which the more renormal-
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ized heavy-band hopping approaches zero, while the light one remains metallic [31]. But

in our case another effect competes with this universally expectation about the behavior of

the renormalization factors. When the system is at half-filling and the correlation is strong

enough, there is essentially one electron on each lattice site. In this situation, based on Pauli

principle, if the light electron attempts to move, it has to move to a site which is already

populated by a heavy one and the heavy one has to move to a site previously occupied by

the light electron. This means that, if the light electrons attempt to move, the heavy ones

are forced to move as well. When we are in this regime, we expect the renormalization

factors Z to compensate the hopping imbalance. In other words we expect Zlight < Zheavy,

and this is what we observed in the left panel of Fig. 3.16.

When the system is in the FL regime, because of the higher kinetic energy and lower

potential energy, the double occupation is more likely. In contrast, when we are moving

to the nFL regime by increasing the interaction, since the double occupancy is decreasing,

we believe that a big portion of the sites are singly occupied. When we increase the mass

imbalance, the double occupancy is decreasing sharply. We also observed a small change

in the slope of the linear decrease of the double occupancy at the FL-nFL crossover points.

We have shown the dependence of the crossover value of the interaction U∗ for the

FL-nFL crossover on the mass imbalance t f via DMFT (Fig. 3.10) and small cluster DCA

(Fig. 3.18 and Fig. 3.20) methods. In both methods, the crossover interaction U∗ decreases

as the mass imbalance grows. DCA reduces the U∗ so that this reduction is the highest

at large values of the interaction. At weak values of the interaction, for 8-site cluster, two

methods almost coincide with each other; however, for 16-site cluster, this trend deviates

for spin-up electrons and t∗f↑ is smaller than 8-site cluster and single-site DMFT results. For

8-site cluster, we investigate the FL-nFL crossover at the anti-nodal point kan = (π,0) and
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nodal point kn = (π/2,π/2) which are two important k points on the FS. Fig. 3.19 shows

that the FL-nFL crossover happens at the anti-nodal point kan = (π,0) earlier than at the

nodal point kn = (π/2,π/2). Most interestingly, the crossover at the nodal point coincides

with the localized DCA result which implies the nodal point is the most important point at

the FL-nFL crossover.
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[20] Pavol Farkašovský. Phase diagram of the asymmetric Hubbard model. Phys. Rev. B,

77:085110, Feb 2008.

[21] M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann. Quantum
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Appendix A

Second Order Approximation as

Impurity Solver

In this section, we aim to show the coding procedure of the second-order perturbation the-

ory for the one band lattice model, which can be used to solve the quantum impurity. Since

the self-energy is momentum-independent, we are working in the local approximation. In

the case where self-energy is purely local, the DMFT allows one to compute such local

self-energy and local Green’s function exactly by solving an auxiliary (quantum impurity)

problem.

Let us start with the simplest one band Hubbard model:

H = ∑
k

εkĉ†
kσ

ĉkσ +U ∑
i

n̂i↑n̂i↓ (A.1)

Here, U is the onsite Coulomb interaction, and ĉ†
kσ
(ĉkσ ) creates (annihilates) an electron

with spin σ and momentum k: n̂iσ = ĉ†
iσ ĉiσ . Dispersion energy εk is:

εk =−2t[cos(kx)+ cos(ky)] (A.2)
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where t denotes the hopping amplitude between nearest neighbors.

The second order term of the self-energy, as Feynman diagram shows in Fig. A.1,

is [69]:

Σ(ν ,k) =
−U2

β 2 ∑
ν ′,ω

∑
k,k′,k′′

G(ν ′,k)G(ν ′+ω,k′+ k′′)G(ν +ω,k′+ k′′) (A.3)

where ν is external fermionic Mastubara frequency, ν ′ is also fermionic and ω is bosonic

Figure A.1 – Feynman diagram of second order term of the self energy.

Mastubara frequency (ν = iν , ν ′ = iν ′, ω = iω). Since we are using the local approxima-

tion, the self-energy is momentum independent, i.e., Σ(ν ,k) ≈ Σloc(ν). In order to have

purely local self-energy, we need to replace the momentum dependent Gk in the Feynman

diagram with the purely local counterpart Gloc. We will show later that the local Green’s

function is computed by an appropriate impurity problem. If we can solve the impurity

problem exactly, we have the exact local Green’s function.

The first step is evaluating a non-interaction Green’s function which is defined as:

G0(k,νn) =
1

νn− εk
(A.4)
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By using the Fourier transform at r ≡ 0 we get the local non-interacting Green’s function:

G0
loc(νn) =

1
Nk

∑
k

1
νn− εk

(A.5)

where Nk = 1/2π2 is the normalization factor and εk is obtained by using Eq. (A.2). Thus,

in the same way we can calculate three non-interacting local Green’s function G0
loc(ν

′),

G0
loc(ν

′+ω), and G0
loc(ν +ω), which leads to local self energy at specific U and β :

Σ(ν) =
−U2

β 2 ∑
ν ′,ω

G0
loc(ν

′)G0
loc(ν

′+ω)G0
loc(ν +ω) (A.6)

Note that for finding ν ′n = (2n+ 1)π/β and ωn = (2n)π/β , we defined a cut off values

which can be any finite values (should be big enough to have a precise value).

Next, the full Green’s function is defined as:

G(k,νn) =
1

νn− εk−Σ(νn)
(A.7)

again using the Fourier transform at r ≡ 0, the impurity Green’s function is:

Gimp(νn) =
1

Nk
∑
k

1
νn− εk−Σ(νn)

(A.8)

which gives the new self energy:

Σ(ν) =
−U2

β 2 ∑
ν ′,ω

Gimp(ν
′)Gimp(ν

′+ω)Gimp(ν +ω) (A.9)

As Fig. 2.2 shows in the DMFT loop, we repeat the procedure until self-consistency is

achieved, which in the final solution, Gimp = Gloc.

A.1 Results

In this section, we plot the local Green’s function obtained by second-order approximation

and compare them by the Green’s function obtained by CT-AUX. It was shown that at
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high temperature (β = 1) and low interaction (U=1), both methods are in good agreement

with each other. However, by increasing the interaction (U=4), they differ, specially when

iωn→ 0 in their Green’s function (see Fig. A.2).
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Figure A.2 – Green’s function obtained by second-order and CT-AUX methods at β = 1 for HM when

t f = 1 . left: U=0.5 and right: U=4
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Appendix B

Figures to Obtain FL-nFL Crossover

In this section we illustrate how crossover diagrams Fig. 3.10 and Fig. 3.11 was ob-

tained. We include all ∆Σ figures as a function of interaction U (Fig. B.1, Fig. B.2),

mass-imbalance t f (Fig. B.3, Fig. B.4) and inverse temperature β (Fig. B.5, Fig. B.6)

which give us the crossover interaction U∗, mass-imbalance t∗f and inverse temperature β ∗.

As described in Sec. 3.3, these figures show the variation of of ImΣ(iω0) and ImΣ(iω1)

with U, t f and β (ReΣ=0 at the Fermi surface).

Fig. B.1 and Fig. B.2 show the ∆Σ as a function of interaction U at different mass-

imbalance and inverse temperatures. As we see in Fig. B.1 at t f =0 for spin-down at U=2.0

and β = 5, the values of ImΣ at ω0 are higher that ω1, (∆Σ > 0), which is typical for a FL.

As U is increasing, ∆Σ shows a trend towards nFL behavior by changing its sign. We mark

this point as the onset of the nFL behavior in the crossover diagram Fig. 3.10. For spin-up

at t f = 0, we are in the nFL regime at any inverse temperature β and interaction strength

U. Fig. B.3 and Fig. B.4 follow the same trends which give us crossover mass-imbalance

at different interaction and inverse temperature. As mass-imbalance grows (t f decreases),
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there is a FL to nFL crossover. The crossover points obtained with these figures are used

in both crossover diagrams Fig. 3.10 and Fig. 3.11. Finally, Fig. B.5 and Fig. B.6 show

the ∆Σ as a function of inverse temperature at different mass-imbalance and interaction

through which the crossover inverse temperatures are obtained. Here also we see that as

temperature increases, there is a FL to nFL crossover. As we see in Fig. B.5 and Fig. B.6,

∆Σ↑ at t f =0 and any interaction and temperature is in nFL regime; however, for spin-down,

there is a FL-nFL crossover at t f =0. Let us here mention that since at U=3.5 and U=4 and

t f =0 we enter the AFM state, we are missing the t f =0 curve. The crossover points obtained

are used in crossover diagram Fig. 3.11.
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Figure B.1 – DMFT results for ∆Σ as a function of interaction at different inverse temperatures and

t f = 0.0,0.2,0.4.
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Figure B.3 – DMFT results for ∆Σ as a function of mass-imbalance at different inverse temperatures

and U = 1.0,1.5,2.0.
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Figure B.4 – DMFT results for ∆Σ as a function of mass-imbalance at different inverse temperatures

and U = 2.5,3.0,3.5,4.0.
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Figure B.5 – DMFT results for ∆Σ as a function of inverse temperatures at different mass-imbalance

and U = 1.0,1.5,2.0.
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Figure B.6 – DMFT results for ∆Σ as a function of inverse temperatures at different mass-imbalance

and U = 2.5,3.0,3.5,4.0.
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