
Positivity-preserving multigrid and multilevel
methods

by

c© Dawei Wang

A thesis submitted to the School of Graduate Stud-

ies in partial fulfillment of the requirements for the

degree of Master of Science.

Department of Mathematics and Statistics

Memorial University

August 2019

St. John’s, Newfoundland and Labrador, Canada

Abstract

Multigrids methods are extremely effective algorithms for solving the linear systems

that arise from discretization of many differential equations in computational math-

ematics. A multigrid method uses a hierarchy of representations of the problem to

achieve its efficiency and fast convergence. Originally inspired by a problem in adap-

tive mesh generation, this thesis focuses on the application of multigrid methods to a

range of problems where the solution is required to preserve some additional properties

during the iteration process. The major contribution of this thesis is the development

of multigrid methods with the additional feature of preserving solution positivity: We

have formulated both a multiplicative form multigrid method and a modified unigrid

algorithm with constraints that are able to preserve positivity of the approximate

solution at every iteration while maintaining convergence properties typical of normal

multigrid methods. We have applied these algorithms to the 1D adaptive mesh gen-

eration problem to guarantee mesh nonsingularity, to singularly perturbed semilinear

reaction-diffusion equations to compute unstable solutions, and to nonlinear diffusion

equations. Numerical results show that our algorithms are effective and also possess

good convergence properties.

ii

To my parents and brother

iii

Lay summary

Many real-world applications entail solving differential equations, which are usually

so complex that we cannot get an exact formula for their solutions, but have to

numerically solve for discrete approximate solutions on a computer. For example, we

might be curious how a drop of ink would diffuse in water, or how long it takes for

a cup of hot water to be cooled down to a certain temperature. These all require

solutions to differential equations and can be simulated on a computer. Sometimes

the exact solution needs to be positive so that the problem is well-posed, such as the

mass of a material, or the thickness of a film, so a good approximate solution should

not violate this property. In some solution procedures, however, the approximate

solution can easily violate this. In addition, we want to solve for the approximate

solutions quickly. One family of methods that can solve for the discrete approximate

solutions extremely quickly are called multigrid and multilevel methods. These types

of methods solve for the approximate solution iteratively on a hierarchy of levels.

Given an initial guess of the approximate solution, they update this guess at every

iteration so that the evolving approximation gets closer and closer to the true solution.

This process is performed until a pre-defined stopping criterion is reached.

We wish to achieve the goal of developing a positivity-preserving method, and

at the same time solve for the approximate solution quickly. We try to make the

solution positive at every iteration using multigrid (or multilevel) methods, so that

the approximate solution is always positive even if we stop the iterations early before

an ideal stopping criteria is reached. To do this, we change the way we update the

approximations on the hierarchy of levels so that the positivity condition is easier

to impose, and add restrictive modifications to the approximate solution during the

iterative process.

With this idea, we have developed 2 general multigrid and multilevel methods that

iv

can make sure the approximate solution is always positive. And at the same time,

these methods can solve for the approximate solution to a satisfactory accuracy very

quickly. We applied our methods to solve for the solutions of 3 different problems,

including an equidistributing mesh problem in 1D, a nonlinear diffusion problem and

a class of singularly perturbed problems. For the nonlinear diffusion problem, we also

developed a two-level method that is efficient for this specific application. Numerical

results of all these examples show the efficiency of our algorithms.

v

Acknowledgements

This thesis is an outcome of the help and support of different people. First and fore-

most, this work couldn’t be done without the advice of my two supervisors, Dr. Scott

MacLachlan and Dr. Ronald Haynes. They had the original motivation for the thesis

topics and gave me guidance in the whole process of my research and thesis writing.

They were always optimistic and gave constructive suggestions when I was making

slow progress in the project. I would also like to thank Dr. Hans De Sterck from the

University of Waterloo, who provided references on multigrid methods for Markov

chains, and Dr. Niall Madden from the National University of Ireland, Galway, who

suggested the semilinear reaction diffusion application.

vi

Statement of contribution

The work presented in this thesis is the result of collaborative research among Dawei

Wang, Dr. Scott MacLachlan and Dr. Ronald Haynes, with its intellectual property

equally co-owned by the three. The thesis itself was written by Dawei Wang with

the input and guidance of Dr. Ronald Haynes and Dr. Scott MacLachlan. Hans De

Sterck provided references on multigrid methods for Markov chains. Niall Madden

suggested the semilinear reaction diffusion application.

vii

Table of contents

Title page i

Abstract ii

Lay summary iv

Acknowledgements vi

Statement of contribution vii

Table of contents viii

List of tables xi

List of figures xiv

1 Introduction 1

2 Iterative methods for solving linear systems 5

2.1 Nonnegative matrices and M-matrices 6

2.2 Basic iterative methods . 8

2.2.1 Weighted Jacobi and Gauss-Seidel methods 10

2.2.2 A component-wise interpretation of Jacobi and Gauss-Seidel

method . 12

viii

2.3 Iterative methods for Markov chains 13

2.3.1 Discrete- and Continuous-Time Markov chain models 14

2.3.2 Basic iterative methods for Markov chains 17

2.4 Smoothing properties of basic iterative methods 18

2.5 Multigrid methods . 20

2.5.1 Restriction and interpolation operators 21

2.5.2 Galerkin property . 22

2.5.3 Multigrid algorithms . 24

2.6 Unigrid methods . 26

3 Positivity-Preserving Multilevel Methods 30

3.1 Singular systems . 30

3.1.1 Positivity preserving relaxation 31

3.1.2 Multiplicative coarse-grid correction 32

3.1.3 Positivity-preserving multigrid algorithm 34

3.2 Nonsingular systems . 36

3.2.1 Unigrid method to preserve positivity with uniform thresholding 36

3.2.2 Unigrid method to preserve positivity with local correction . . . 37

4 Application to 1D Equidistributing Meshes 40

4.1 An introduction to adaptive equidistributing meshes in 1D 41

4.2 Discretization . 43

4.3 Monotonicity of exact solutions . 44

4.4 Monotonicity preserving property of the Jacobi and Gauss-Seidel methods 45

4.5 Monotonicity preserving multigrid methods 47

4.5.1 Algorithm description . 47

4.5.2 Numerical results . 50

ix

5 Application to Nonlinear Diffusion Equations 54

5.1 Discretization . 55

5.2 Linearization . 56

5.3 A two-grid method . 57

5.3.1 Algorithm formulation . 57

5.3.2 Numerical results . 68

5.4 Numerical results using the unigrid method 71

6 Application to Singularly Perturbed Problems 74

6.1 Introduction to the problem . 74

6.2 Discretization . 75

6.3 First example problem . 76

6.3.1 Numerical results with Newton’s method 77

6.3.2 Numerical results with adaptively damped Picard iteration . . . 78

6.4 Herceg problem . 81

7 Conclusions and Future Work 85

7.1 Conclusion . 85

7.2 Future work . 86

Bibliography 88

x

List of tables

4.1 Number of iterations needed to reach ||Âd||2 < 10−9 with N + 1 mesh

points for different N . The constant R in the weighting function a(x)

is chosen to be R = 10. The labels 2G, 3G, ..., indicate the results for

2-grid algorithm, 3-grid algorithm, etc. 51

4.2 Number of iterations needed to reach ||Âd||2 < 10−9 with N + 1 mesh

points for different N . The constant R in the weighting function a(x)

is chosen to be R = 50. The labels 2G, 3G, ..., indicate the results for

2-grid algorithm, 3-grid algorithm, etc. 51

5.1 Number of inner multigrid iterations required for convergence at each

outer Picard iteration of the 2-grid algorithm using the interpolation

operator P1. The ”PIt.” means Picard iteration. 68

5.2 Number of inner multigrid iterations required for convergence at each

outer Picard iteration of the 2-grid algorithm using option 2 interpola-

tion operator P2. The ”PIt.” means Picard iteration. 68

5.3 Number of inner multigrid iterations required for convergence at each

outer Picard iteration of the 2-grid algorithm using option 3 interpola-

tion operator P3. The ”PIt.” means Picard iteration. 69

xi

5.4 Number of inner multigrid iterations required for convergence at each

outer Picard iteration of the 2-grid algorithm for N = 210 when mod-

ifying m, where m is used in Equation (5.16) for determining how far

the point in away from the origin in Figure 5.5. The ”PIt.” means

Picard iteration. A maximum of 100 inner iterations were allowed for

each Picard iteration, so the results reporte as ”100” indicate a failure

to converge. 70

5.5 Number of inner multigrid iterations required for convergence at each

outer Picard iteration of the 2-grid algorithm for N = 210 when modi-

fying q in Figure 5.5. The ”PIt.” means Picard iteration. 71

5.6 Number of inner unigrid iterations required for convergence at each

outer Picard iteration with random initial guess for different N . The

”PIt.” means Picard iteration. Algorithm 7 with uniform thresholding

is applied. 72

5.7 Number of inner unigrid iterations required for convergence at each

outer Picard iteration with random initial guess for different N . The

”PIt.” means Picard iteration. Algorithm 8 with local correction is

applied. 72

5.8 Number of inner unigrid iterations required for convergence at each

outer Picard iteration with all-ones initial guess for different N . The

”PIt.” means Picard iteration. Algorithm 7 with uniform thresholding

is applied. 73

5.9 Number of inner unigrid iterations required for convergence at each

outer Picard iteration with all-ones initial guess for different N . The

”PIt.” means Picard iteration. Algorithm 8 with local correction is

applied. 73

5.10 Number of inner multigrid iterations required for convergence at each

outer Picard iteration with random initial guess for different N . The

”PIt.” means Picard iteration. The standard V-cycle multigrid method

using Algorithm 2 is applied as the solver in the inner loop. 73

6.1 The∞-norm of the residual with respect to ε after 100 Newton iterations. 77

xii

6.2 The 2-norm and ∞-norm of the residual after 100 Picard iterations

with respect to N . 80

xiii

List of figures

2.1 Linear interpolation by Pu2h and full weighting restriction by Ruh. . . 22

2.2 Grid schedules for V-cycle, W-cycle and FMG 26

3.1 Local corrections on an example approximate solution 38

4.1 Graphs of mesh density function 1
a(x)

= 1+10(1− tanh2(10x)), and the

corresponding exact solution of Equation (4.4). 52

4.2 Positions of mesh points on the physical domain [-1,1] computed from

an uniform mesh on the computational domain [0, 1] using the mapping

x = x(u). For visual clarity, only 17 mesh points are taken. 53

4.3 Mesh evolution with respect to V-cycle iterations for 32 mesh points . . 53

5.1 Case 1: eh2 > 0, eh4 > 0. An example of the approximate solution before

and after coarse-grid correction. eh2 = e2h1 and eh4 = e2h2 are solved on

the coarse grid. δ1, δ3 and δ5 are interpolated from e2h using Pe2h.

This figure depicts the situation when eh2 > 0, eh4 > 0. 62

5.2 Case 2: eh2 < 0, eh4 < 0. An example of the approximate solution before

and after coarse-grid correction. eh2 = e2h1 and eh4 = e2h2 are solved on

the coarse grid. δ1, δ3 and δ5 are interpolated from e2h using Pe2h.

This figure depicts the situation when eh2 < 0, eh4 < 0. 62

5.3 Case 3: eh2 < 0, eh4 > 0. An example of the approximate solution before

and after coarse-grid correction. eh2 = e2h1 and eh4 = e2h2 are solved on

the coarse grid. δ1, δ3 and δ5 are interpolated from e2h using Pe2h.

This figure depicts the situation when eh2 < 0, eh4 > 0. 63

xiv

5.4 Case 4: eh2 > 0, eh4 < 0. An example of the approximate solution before

and after coarse-grid correction. eh2 = e2h1 and eh4 = e2h2 are solved on

the coarse grid. δ1, δ3 and δ5 are interpolated from e2h using Pe2h.

This figure depicts the situation when eh2 > 0, eh4 < 0. 64

5.5 The 4 cases shown in one graph. This figure draws the acceptable

regions of the 4 cases from Figure 5.2b to Figure 5.4b in one graph.

We can see that the triangle from case 2 is the common area of all 4

cases. In addition, the shaded little triangle OCD is guaranteed to be

contained by the bigger triangle OAB from case 2. 65

6.1 Convergent solution of Equation (6.5) on a mesh of size N = 212 com-

puted with Newton’s method by setting the initial guess to u(0) = −2.

The legends 2−2, 2−3, ..., indicate the values of ε for each solution. . . . 78

6.2 Computed solution of Equation (6.5) on a mesh of size N = 215 af-

ter 100 iterations using Picard iteration by setting the initial guess to

u(0) = 1. The legends 2−4, 2−6, ..., indicate values of ε for each solution. 80

6.3 Convergent solution of Equation (6.8) on a mesh of size N = 210 com-

puted with the adaptively damped Picard iteration by setting the initial

guess to u(0) = 1.5. The legends 2−2, 2−3, ..., indicate the values of ε

for each solution. 83

6.4 Convergent solution of Equation (6.8) on a mesh of size N = 210 com-

puted with the adaptively damped Picard iteration by setting the initial

guess to u(0) = −1.5. The legends 2−2, 2−3, ..., indicate the values of ε

for each solution. 84

xv

Chapter 1

Introduction

The subject of this thesis is multigrid and multilevel methods for applications where

the solution is required to be positive. This was initially inspired by a problem in

adaptive mesh generation in 1D, where the exact solution is monotonic at both the

continuous and discrete levels, and we want the approximate discrete solution to also

be monotonic so that the generated mesh is not tangled. After reformulating the

equation, this becomes a positivity-preserving constraint. Due to their efficiency,

we want to solve such problems with multigrid methods. However, the standard

multigrid methods achieve fast convergence by progressively eliminating oscillatory

error components through a hierarchical decomposition of the problem and, hence,

negative components can be introduced into the approximate solution by the coarse-

grid correction process.

To solve this problem, we utilize the multigrid idea but modify standard algorithms

and add additional constraints to form a multiplicative-error multigrid method, so that

the corrected approximate solution stays positive. We notice that the reformulated

linear system has the same properties as those that occur when solving the stationary

distribution equation for continuous-time Markov chains. Various direct and iterative

methods exist to solve this type of problems, see [19, 14] for a detailed discussion

of numerical methods for Markov chains. For the multilevel methods of interest,

the iterative aggregation-disaggregation (IAD) method pioneered in [20] provides the

framework for a two-level approach, and has since been studied extensively. While

the IAD method is normally used as a two-level method, its multilevel version and a

link to algebraic multigrid methods have also been proposed in the literature [13, 11].

2

The ideas of using the multiplicative-error multigrid method to solve this problem is

motivated by [5, 4, 6]. With this method, we are able to achieve fast convergence

that is independent of mesh size and at the same time preserve positivity. While

the multiplicative-error multigrid method for Markov chains is not a new method,

we extend its application to solve other types of problems with positivity-preserving

requirements. To our knowledge, the ability to guarantee the monotonicity of the

approximate solution to the 1D equidistributing mesh problem so that the generated

mesh is not tangled is a new result.

Since the mesh qualities in 2D are not as simple as in the 1D case, it is not easy

to derive a single monotonicity or positivity constraint that can describe nontangled

meshes. Thus, we are not able to extend our method to multidimensional equidis-

tributing meshes. Besides this application to 1D adaptive mesh generation, however,

the ability to preserve solution positivity is important in many areas of interest in

computational mathematics.

We therefore generalize the diffusion equation for equidistributing meshes, and

study nonlinear diffusion equations. For these problems, while being able to preserve

positivity of the approximate solutions is important, it turns out that directly applying

the multiplicative-error multigrid method does not give good convergence properties

for multilevel results (even though results for the two-level method are reasonable).

The reason is that the pair-wise aggregation-type interpolation operators developed

for Markov chain models are not a good fit for these problems. Instead of trying to

construct a suitable interpolation operator, we developed an efficient two-grid method

that is positivity-preserving for solving nonlinear diffusion equations. However, the

generalization of this algorithm to a multigrid method does not work well.

We, therefore, turn to unigrid methods, which are another family of multilevel

methods and are applicable to linear systems from the discretization of other types of

differential equations. First proposed by McCormick and Ruge [17], the idea of uni-

grid methods is to reflect back corrections directly to the fine-grid solution instead of

recursively correcting coarse-grid solutions (as in multigrid methods). This gives more

control of the solution during the iteration process. Moreover, unigrid methods per-

form all the operations only on the fine grid, hence the name. Coarse-grid corrections

are replaced by fine-grid relaxation on a hierarchy of directions. Since the unigrid cycle

is equivalent to multigrid provided that the multigrid formulation satisfies variational

3

properties, this algorithm has good convergence properties. With additional con-

straints developed to force the sign of the approximate solutions during the iteration

process, solution positivity is able to be preserved. Combining Picard iterations and

the positivity-preserving unigrid method, we get a new positivity-preserving multilevel

method for solving nonlinear diffusion equations. This algorithm is also applicable to

other types of nonlinear problems.

To apply this algorithm to other nonlinear problems and further motivate the

importance of sign preservation in certain applications, we next apply this algorithm

to solve singularly perturbed problems. By restricting the sign of the solution, we are

able to solve for some solutions from initial guesses that lead to failure of Newton’s

method. To the author’s knowledge, there is no previous work on positivity-preserving

linear solvers for these problems.

We will first give a brief introduction to iterative methods in Chapter 2, where we

present the (weighted) Jacobi and Gauss-Seidel relaxation methods and their smooth-

ing properties as background and then develop the idea of the multigrid methods. Next

we introduce unigrid methods, which are another family of multilevel algorithms that

give the same results as multigrid methods under certain circumstances. Iterative

methods for Markov chains will also be discussed, as the results for singular sys-

tems will be made use of in the applications in the later chapters. In Chapter 3, we

present our positivity-preserving multilevel algorithms. We give algorithms for both

singular and nonsingular systems. After introducing the ideas of the algorithms, we

apply them to solve real-world applications and give numerical results to show their

efficiency. In Chapter 4, equidistributing meshes in 1D are introduced and solved

with a multiplicative error-correction form multigrid method to guarantee that the

approximate solution gives nontangled meshes at every iteration. Numerical results

are given to show the mesh-independent convergence property. For completeness, we

also prove that the weighted Jacobi method with weighting parameter ω ≤ 1/2 and

the Gauss-Seidel method are monotonicity-preserving. In Chapter 5, we use the adap-

tively damped Picard iterations and a restricted unigrid method to solve nonlinear

diffusion problems and ensure the positivity of approximate solutions. In addition,

we introduce a new two-level method that is specific to this problem. The efficiency

of these algorithms are tested on model problems. In Chapter 6, we discuss singu-

larly perturbed problems and demonstrate the importance of sign-preservation in this

application. The positivity-preserving multilevel methods are also applicable in this

4

problem. We show that a damped Picard iteration with a sign-preserving linear solver

enables us to compute some solutions from initial guesses that lead to failure of New-

ton’s method. Finally, in Chapter 7, we conclude this thesis and give an outlook of

possible future work. In this thesis, unless otherwise specified, theorems that include

a proof are developed by the author.

Chapter 2

Iterative methods for solving linear

systems

Numerical discretization schemes such as finite-difference and finite-element methods

for solving differential equations eventually lead to a large linear system to be solved,

Au = b, (2.1)

where A is an n × n matrix, and u and b are both vectors with n components.

The system matrix A is usually very sparse. Due to the matrix size and sparse

structure, direct solvers quickly become ineffective, especially for problems in multiple

spatial dimensions. As a result, iterative methods are usually favored in real-world

applications.

In this chapter, we first talk about the properties of M-matrices that are useful

in the discussion of convergence of iterative methods. We then give a brief summary

of several basic iterative methods, including their smoothing properties, which form

the basis of multigrid methods. Following this, we introduce the famous multigrid

methods. Next we discuss unigrid algorithms, which are another class of multilevel

methods we will make use of and are equivalent to multigrid methods under certain

conditions. As a background for Chapter 4, we also give an introduction to iterative

methods for Markov chains.

6

2.1 Nonnegative matrices and M-matrices

We first list some definitions and theorems that will be useful. These definitions and

theorems are taken from references [21, 1], and the theorems are listed without proof.

Definition 2.1.1. Let A = [aij] be a real m × n matrix, we say A ≥ 0 (A > 0) if

aij ≥ 0 (aij > 0) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and call A a nonnegative (positive)

matrix. Similarly A = 0 means every entry of A is 0.

Definition 2.1.2. For n ≥ 2, an n× n matrix A is reducible if there exists an n× n
permutation matrix P such that

PAP T =

[
A11 A12

O A22

]
,

where A11 is an r × r submatrix, and A22 is an (n − r) × (n − r) submatrix with

1 ≤ r < n. If no such permutation exists, then A is irreducible. If A is a 1×1 matrix,

then A is irreducible if its single entry is nonzero, and reducible if it is zero.

Definition 2.1.3. The spectral radius of an n × n matrix A is ρ(A) = maxi{|λi|},
where the maximum is taken over all the eigenvalues, λi, of A.

Definition 2.1.4. Let A ≥ 0 be an irreducible n× n matrix, and let k be the number

of eigenvalues of A of modulus ρ(A). If k = 1, then A is primitive. If k > 1, then A

is cyclic of index k.

Theorem 2.1.1. Let A be an irreducible n×n cyclic matrix of index k, k > 1. Then,

the k eigenvalues of modulus ρ(A) are of the form

λk = ρ(A) · exp

(
i
2πj

k

)
, 0 ≤ j ≤ k − 1.

Moreover, all the eigenvalues of A have the property that rotations in the complex

plane about the origin through angles of 2π/k , but through no smaller angles, carry

the set of eigenvalues into itself. Finally, there is an n× n permutation matrix P so

7

that

PAP T =



O A12 O · · · O

O O A23 · · · O

· ·

· . . . ·

· . . . ·
O O O Ak−1,k

Ak,1 O O · · · O


.

The famous Perron-Frobenious theorem tells us some important conclusions about

irreducible nonnegative matrices.

Theorem 2.1.2. Let A ≥ 0 be an irreducible n× n matrix. Then:

1. A has a positive real eigenvalue equal to its spectral radius.

2. To ρ(A) there corresponds an eigenvector x > 0.

3. ρ(A) increases when any entry of A increases.

4. ρ(A) is a simple eigenvalue of A.

For convenience of discussion, we adopt the common notation and let Zn×n be the

set of matrices with nonpositive off-diagonal and nonnegative diagonal entries, i.e.

matrices of the form

A =



a11 −a12 −a13 · · · −a1n
−a21 a22 −a23 · · · −a2n
−a31 −a32 a33 · · · −a3n

...
...

...
. . .

...

−an1 −an2 −an3 · · · ann


,

where aij ≥ 0. An important subclass of Z-matrices are the M-matrices, defined as

follows.

Definition 2.1.5. Any n × n real matrix A of form A = sI − B, s > 0, B ≥ 0 in

which s ≥ ρ(B) is called an M-matrix.

8

In fact, M-matrices arise so often that many alternative equivalent definitions exist.

See [1] for example to get a total of 50 equivalent conditions that define a nonsingu-

lar M-matrix. We list below several important theorems regarding nonsingular and

singular M-matrices.

Theorem 2.1.3. Let n×n matrix A be an M-matrix of form A = sI−B, s > 0, B ≥
0. Then:

1. A is nonsingular and A−1 ≥ 0 iff s > ρ(B).

2. A is nonsingular and A−1 > 0 iff s > ρ(B) and A is irreducible.

3. A is singular iff s = ρ(B).

4. A is nonsingular and A−1 ≥ 0 iff I − D−1A is nonnegative and convergent,

where D is the diagonal of A.

5. A is nonsingular and A−1 > 0 iff I − D−1A is nonnegative, irreducible and

convergent, where D is the diagonal of A.

6. When A is nonsingular, it has all positive diagonal elements and is strictly

diagonally dominant.

Theorem 2.1.4. Let n× n matrix A be a singular, irreducible M-matrix. Then:

1. A has rank n− 1.

2. There exists a vector u > 0 such that Au = 0.

2.2 Basic iterative methods

Given these tools, we are now able to introduce iterative methods and discuss their

convergence properties. In contrast to direct methods for solving Au = b, such as

Gaussian elimination, iterative methods generally do not compute the exact solution

after a finite number of steps, but try to reduce the error to a certain amount that is

less than an acceptable tolerance. A good iterative method is able to reduce the error

by a large amount at every iteration and requires as little work as possible.

9

For an iterative method to be convergent to the exact solution of the linear system

in Equation (2.1), the error of the approximate solution should converge to zero. The

most basic iterative methods come naturally from a splitting of A,

A = M −N,

where M is nonsingular. From this splitting, we have Au = (M−N)u = Mu−Nu =

b, which implies u = M−1Nu +M−1b. Therefore, we can take

u(k+1) = M−1Nu(k) +M−1b (2.2)

as an iterative scheme, where u(k) for k ≥ 1 is the approximate solution at the k-th

iteration step, and u(0) is the initial approximation.

Generally, an iterative scheme

u(k+1) = Hu(k) + c, (2.3)

where H is an n×n iteration matrix, and c = (I−H)A−1b, is a convergent scheme if

the sequence, u(0),u(1), ...,u(k), ..., converge to the exact solution of the linear system

Au = b, i.e.,

lim
k→∞

u(k) = u.

This is true if and only if the iteration matrix satisfies limk→∞H
k = 0, because

e(k) = u(k) − u = H(u(k−1) − u) = Hk(u(0) − u) = Hke(0).

When H = M−1N , we have c = M−1b. It is worth noting that analyzing the exact

error directly requires the exact solution u, which, in general, we do not know. Instead,

an indirect approach is required to stop the iteration in a practical implementation,

such as the norm of the residual. We give the following definition and related theorem

from [1] regarding convergent matrices.

Definition 2.2.1. We say an n× n matrix H is a convergent matrix if

lim
k→∞

Hk = 0.

It is possible to show that the condition limk→∞H
k = 0 is equivalent to ρ(H) < 1.

10

Therefore, the iteration described in Equation (2.3) is a convergent iterative scheme if

its iteration matrix H is a convergent matrix. More importantly, we have the following

theorem.

Theorem 2.2.1. Let A be an n×n nonsingular linear system. The iteration u(k+1) =

Hu(k) + c as defined in Equation (2.3) to solve Au = b is convergent for all starting

vectors u(0) iff ρ(H) < 1.

An important class of splittings that can give convergent iteration matrices are

the regular splittings [18].

Definition 2.2.2. Let A = M − N . The pair of matrices M,N is called a regular

splitting of A if M is nonsingular and M−1 and N are nonnegative.

Theorem 2.2.2. Let M,N be a regular splitting of matrix A. Then ρ(M−1N) =

ρ(I −M−1A) < 1 if and only if A is nonsingular and A−1 is nonnegative.

2.2.1 Weighted Jacobi and Gauss-Seidel methods

Now consider a particular splitting of A as

A = D − (L+ U),

in which D is the diagonal of A, −L is the strictly lower triangular part of A, and

−U is the strictly upper triangular part of A. Following the previous notation, this

splitting gives the Jacobi method by taking

MJ = D. (2.4)

The Jacobi iteration matrix is

HJ = D−1(L+ U) = I −D−1A.

Therefore, the Jacobi iteration is

u(k+1) = D−1(L+ U)u(k) +D−1b = (I −D−1A)u(k) +D−1b = u(k) +D−1r(k),

11

where r(k) = b − Au(k) is the residual at the k-th step. From Theorem 2.2.2, we

can see that if A is a nonsingular M-matrix, the Jacobi method is guaranteed to be

convergent.

The weighted Jacobi iteration takes

Mω =
1

ω
D, (2.5)

The weighted Jacobi iteration matrix is

Hω = ωD−1
((1

ω
− 1
)
D + L+ U

)
= (I − ωD−1A).

Therefore, the weighted Jacobi iteration is

u(k+1) = (I − ωD−1A)u(k) + ωD−1b = u(k) + ωD−1r(k).

The weighted Jacobi method can also be written in the form of a weighted average

of the previous approximation and the unweighted Jacobi approximation by noticing

that

u(k+1) = (I − ωD−1A)u(k) + ωD−1b

= u(k) − ωD−1Au(k) + ωD(−1)b

= u(k) − ωD−1
(
D − (L+ U)

)
u(k) + ωD−1b

= (1− ω)u(k) + ω
[
D−1(L+ U)u(k) +D−1b

]
.

The Gauss-Seidel method takes

MGS = D − L, (2.6)

so that the iteration matrix is

HGS = (D − L)−1U = I − (D − L)−1A.

12

Therefore, the Gauss-Seidel iteration is

u(k+1) =
[
I − (D − L)−1A

]
u(k) + (D − L)−1b

= u(k) + (D − L)−1r(k).

Other choices of the nonsingular matrixM give other commonly used iterative schemes,

which we do not discuss in this thesis.

2.2.2 A component-wise interpretation of Jacobi and Gauss-

Seidel method

We take a closer look at the Jacobi and Gauss-Seidel methods in this section. The

Jacobi iterative scheme can be written component-wise as

u
(k+1)
i =

1

aii

(∑
j 6=i

aiju
(k)
j + bi

)
.

Moving all the elements to one side of the equation, we get

aiiu
(k+1)
i −

(∑
j 6=i

aiju
(k)
j + bi

)
= 0,

which is the negative of the i-th component of the residual. This iterative scheme

determines the i-th component of the next approximate solution vector by setting

the i-th component of the residual to zero, while keeping all other components of the

approximation at their old values.

Similarly, the Gauss-Seidel iterative scheme can written component-wise as

−
∑
j<i

aiju
(k+1)
j + aiiu

(k+1)
i −

∑
j>i

aiju
(k)
j − bi = 0,

which is also the negative of the i-th component of the residual. The difference from

the Jacobi iteration is that the approximate solution is updated immediately after

each new component is obtained, and this new information is incorporated into the

residual for next iteration immediately.

13

For the Gauss-Seidel iteration, the k-th step within an iteration makes the k-

th component of the residual zero, which can also be written as an orthogonality

condition,

< r(k),1k >= 0, (2.7)

where r(k) is the residual at the k-th step within the current iteration, 1k is the k-th

column of the identity matrix, and < ·, · > is the l2 inner product. Therefore, the

update rule in this interpretation is to make the residual at the k-th step be orthogonal

to 1k. In addition, writing the update at the k-th step of the iteration as

u(k) = u(k−1) + ω1k,

and substituting this into Equation (2.7), we get

< r(k−1) − ωA1k,1k >= 0,

where we can deduce that

ω =
< r(k−1),1k >

< A1k,1k >
.

Thus, the k-th step of one sweep of the Gauss-Seidel iteration can be written com-

pactly as

u← u +
< r,1k >

< A1k,1k >
1k. (2.8)

We notice that the Gauss-Seidel iteration updates one component at a time, and new

information at one grid point takes many sweeps to have an effect on points far away.

This restriction is due to the ”narrow” shape of the basis vector 1k. With this in

mind, the unigrid method discussed in Section 2.6 tries to avoid this disadvantage

by introducing broader directions on coarse levels so that new local information is

accounted for faster.

2.3 Iterative methods for Markov chains

While these basic iterative methods discussed above can be applied to solve both

singular and nonsingular systems, the convergence properties for a singular system are

different from those for a nonsingular system. For example, when solving a singular

system, the iteration matrix does not have to be a convergent matrix. Instead, a

14

semiconvergent iteration matrix, which we will define in the following, can give us a

convergent iterative scheme.

In this section, we will discuss a special application, the Markov chain problem,

and focus on the computation of stationary probability distributions, where the linear

system to be solved is singular. Both the discrete-time and continuous-time Markov

chain models will be introduced. As we will see, the continous-time model is just

an extension of the discrete-time model from discrete-time space to continuous-time

space. The discussion of iterative methods for Markov chains is important not only in

the sense that it is an important application of iterative methods for solving singular

linear systems, but our first positivity-preserving multigrid method introduced in

Chapter 3 is also inspired by this.

2.3.1 Discrete- and Continuous-Time Markov chain models

A Markov chain is a stochastic model that describes a sequence of possible states, with

the assumption that only knowledge of the current state is relevant to a prediction

of the future of the system, and past information does not matter. Discrete-time,

discrete-state space Markov processes are generally called discrete-time Markov chains

(DTMC), which move through a countable number of states. Formally, a finite DTMC

can be specified by a tuple (S,B,π), where S is the space consisting of n possible

states, B is the transition probability matrix, which is a stochastic matrix satisfying

0 ≤ Bij ≤ 1 and

1TB = 1,

and π is an initial probability distribution satisfying πi ≥ 0 and summing up to 1.

The problem of interest is to find the stationary distribution x of the model, such

that

Bx = x, xi ≥ 0, ∀i, ||x||1 = 1. (2.9)

The existence of a solution will be discussed later. We first give several important

definitions adapted from [8] here concerning the states of DTMC that will be useful

later for deciding whether the steady-state distribution exists.

Definition 2.3.1. A DTMC (S,B,π) is called irreducible if, from each state, one

can reach any other state in a finite number of steps, i.e. there exists an integer n ≥ 1

such that (Bn)ij 6= 0 for any i ∈ S\{j}.

15

Definition 2.3.2. For a DTMC, a state is said to be recurrent if the Markov chain

is guaranteed to return to that state infinitely often. A state is called transient if there

is a nonzero probability that the Markov chain will not return to that state again.

A recurrent state j is called a positive-recurrent state if the average number of steps

taken to return to state j for the first time after leaving it is finite; Otherwise, it is

called null-recurrent.

Definition 2.3.3. A state j is said to be periodic with period p, or cyclic of index

p if, on leaving state j, a return is possible only in a number of transitions that is a

multiple of integer p > 1. A state whose period is p = 1 is said to be aperiodic.

Definition 2.3.4. A state that is positive-recurrent and aperiodic is said to be ergodic.

If all the states of a Markov chain are ergodic, then the Markov chain itself is said to

be ergodic.

Now we present a theorem regarding the existence and uniqueness of a stationary

distribution of a DTMC. For a proof of this theorem, see [8, 19].

Theorem 2.3.1. In an irreducible and aperiodic DTMC (S,B,π) with positive-

recurrent states, the stationary probability distribution does exist and is unique in-

dependent of the initial probability distribution π.

When the time space is continuous, we have continuous-time, discrete-state space

Markov processes, which are generally called continuous-time Markov chains (CTMC).

This model is different from DTMC in the sense that every state is now associated

with a residence time, which complies with an exponential distribution. CTMC can be

described by a tuple (S,Q,π), with the new component Q here being the infinitesimal

generator matrix. The definition of the generator matrix has the form

[Q]ij =

qij ≥ 0, i 6= j,

−
∑

k 6=i qkj, i = j,
(2.10)

where qij is the rate of exponential distribution of residence time in state i when going

from state i to state j, and
∑

k 6=i qkj is thus the exit rate of state i. We notice that

generator matrix Q satisfies

1TQ = 0,

i.e. every column sums up to 0.

16

The transient-state probabilities in a CTMC can be described by (the details can

be found in [8])

p(t) = eQtπ. (2.11)

From the fact that

p′(t) = Qp(t),

we can compute the stationary probability x of a CTMC by solving

Qx = 0, xi ≥ 0, ∀i, ||x||1 = 1. (2.12)

If we rewrite Equation (2.9) as

(B − I)x = 0,

we can see that B − I satisfies all the properties of Q and thus can also be viewed as

a generator matrix. On the other hand, if we construct a state-transition probability

matrix B from Q by setting [B]ij = qij/|qjj| when i 6= j and [B]ii = 0, we get the

embedded DTMC corresponding to this CTMC, which provides an alternative way to

solve for its stationary distribution. For a CTMC with a finite state space, the steady

state probabilities always exist, and if the CTMC is, in addition, irreducible, then the

steady-state probability is independent of the initial state π.

Equation (2.11) is not appropriate to use for computing transient state probabili-

ties. Instead, a more efficient technique is generally used by performing a uniformiza-

tion step to get a uniformized state transition probability matrix, B, corresponding

to a DTMC. To do the uniformization step, we define the matrix

B = I +
Q

λ
, (2.13)

where λ is chosen such that

λ ≥ max
i
{|qii|}. (2.14)

With this choice of λ, the entries in matrix B are always in the interval [0, 1], and

every column of B sums up to 1. Hence it is a stochastic matrix corresponding to

a DTMC and describes the evolution of the CTMC in time-steps of mean length

1/λ. The detailed implementation of using this method to compute transient state

probabilities is not of interest in this thesis. However, it will be a useful method for

us to construct a convergent relaxation algorithm, as will be seen in Chapter 4.

17

2.3.2 Basic iterative methods for Markov chains

For large Markov chain models, iterative methods are usually applied to solve for the

stationary probability vector. Commonly used methods include the power method,

Jacobi, Gauss-Seidel and SOR methods, and many other common methods for solving

linear systems. Because we will use multigrid methods to solve the problem, we only

discuss (weighted) Jacobi and Gauss-Seidel methods as relaxation schemes.

Since Equation (2.9) for solving DTMCs is a special case of Equation (2.12) for

CTMCs, as already mentioned, we only discuss iterative methods for solving Qx =

0 where Q satisfies the properties of being a generator matrix, i.e., it satisfies the

conditions in Equation (2.10). We also write A = −Q, and try to solve Ax = 0 in the

following. We give a proof in Theorem 2.3.2 that matrix A is a singular M-matrix.

Theorem 2.3.2. Given a Zn×n matrix A with max
1≤i≤n

{aii} > 0 if, in addition, either

every row or column of A sums up to zero, then A is a singular M-matrix.

Proof. Inspired by the uniformization technique in CTMC, let α = max
1≤i≤n

{aii}, and

define

B = I − A

α
=



1− β11 β12 β13 · · · β1n

β21 1− β22 β23 · · · β2n

β31 β32 1− β33 · · · β3n
...

...
...

. . .
...

βn1 βn2 βn3 · · · 1− βnn


,

where βij =
aij
α

. Then, B is a nonnegative matrix with every row summing up to 1,

which means its spectral radius ρ(B) = 1. Since A
α

= I − B, by definition, A
α

is a

singular M-matrix, so A is a singular M-matrix.

As shown in Section 2.2, the Jacobi iteration matrix is given by

HJ = D−1(L+ U),

and Gauss-Seidel iteration matrix is given by

HGS = (D − L)−1U.

We saw in Section 2.2 that, for nonsingular systems, when the spectral radius of

18

the iteration matrix is less than 1 (e.g. ρ(HJ) < 1 or ρ(HGS < 1)), the iterative

scheme (e.g. Jacobi or Gauss-Seidel method) is convergent. However, this is not the

case when solving singular systems. Instead, we should now consider the property of

semiconvergence [1].

Definition 2.3.5. A matrix H ∈ Rn×n is said to be semiconvergent if

lim
n→0

Hn

exists.

Theorem 2.3.3 gives the properties that a matrix needs to satisfy in order to be

semiconvergent.

Theorem 2.3.3. A matrix H is semiconvergent iff all of the following conditions hold

1. ρ(H) ≤ 1;

2. If ρ(H) = 1, then all the elementary divisors associated with the unit eigenvalue

of H are linear, that is, rank(I −H)2 = rank(I −H);

3. If ρ(H) = 1, then λ ∈ σ(H) where |λ| = 1 implies λ = 1.

For the iterative scheme in Equation (2.2) to be convergent to some solution, the

iteration matrix H = M−1N has to be semiconvergent.

Theorem 2.3.4. Let A = M − N ∈ Rn×n with M nonsingular. Then, the iterative

method in Equation (2.2) converges to some solution u of Au = b for each u(0) if and

only if H = M−1N is semiconvergent.

2.4 Smoothing properties of basic iterative meth-

ods

As standalone iterative schemes, the aforementioned Jacobi and Gauss-Seidel methods

are too slow to use in many real world applications. The motivation for multigrid

methods lies in the fact that these basic iterations are very effective smoothers, i.e.,

19

they can damp out high frequency error components very quickly. As a result, they

can be used as relaxation schemes for more effective multigrid methods.

Suppose the iteration matrix H is diagonizable and has eigenvectors vi with the

corresponding eigenvalues λi for all i. That is, Hvi = λivi. And suppose the eigen-

vector expansion of the initial error is

e(0) =
∑
i

civi.

Then, the error at the k-th iteration can be expressed by

e(k) = Hke(0) =
∑
i

ciλ
k
i vi. (2.15)

A good relaxation scheme should damp out those components vi for many i.

To be more concrete, take the example (n− 1)× (n− 1) matrix

A =
1

h2


2 −1

−1 2 −1
. . . −1

−1 2


from the discretization of −u′′(x) = b(x) with boundary conditions u(0) = u(1) = 0,

where h = 1/n is the mesh size. The eigenvectors of matrix A are

(vi)j = sin

(
ijπ

n

)
, 1 ≤ j ≤ n− 1,

for 1 ≤ i ≤ n− 1, where (vi)j denotes the j-th component of the eigenvector vi, and

the corresponding eigenvalues are

λi(A) =
4

h2
sin2

(
iπ

2n

)
,

for 1 ≤ i ≤ n− 1.

Therefore, for the weighted Jacobi method, the eigenvalues of the iteration matrix

are

λi(I − ωD−1A) = 1− 2ω sin2

(
iπ

2n

)
.

20

By choosing ω = 2/3, we get

|λi(I − ωD−1A)| ≤ 1

3
,

for n/2 ≤ i ≤ n − 1. This implies that after every iteration of the weighted Jacobi

method with relaxation parameter ω = 2/3, those modes in the upper half of the

spectrum of A (in error expansion Equation (2.15)) are damped out to a third of their

magnitude from the previous iteration. Hence, we can see that the weighted Jacobi

method is very effective for eliminating high-frequency error components within only

a few iterations.

On the other hand, on the lower half of the spectrum of A, the corresponding

eigenvalues are close to 1, hence λki in Equation (2.15) is close to 1. As a result, after

damping out those oscillatory modes, the error reduction becomes very slow because

the remaining smooth modes in the error are hard to decrease. This justifies the

phenomenon that these basic iterative methods are usually slow to converge.

Similarly, for the Gauss-Seidel method, when convergence is described in terms of

the modes of A, the oscillatory modes will decay rapidly as in the weighted Jacobi

method, while smooth modes will be damped slowly [3].

2.5 Multigrid methods

In order to be able to remove smooth modes of the error quickly, a natural idea is to

apply a relaxation scheme recursively on different levels of resolution so that smooth

modes on a finer level becomes oscillatory modes on coarser levels, which forms the

basic idea of the extremely efficient family of multigrid methods: relax on a fine grid,

then restrict the problem to a coarser grid and, finally, correct the fine-grid solution.

To implement this idea, two more pieces are needed. We first need to express the fine-

grid system on a coarser level and, then, be able to reflect coarse-grid corrections on

fine-grid solutions, i.e., to construct restriction and interpolation operators to transfer

information back-and-forth between grids.

21

2.5.1 Restriction and interpolation operators

In this section, we only discuss geometric multigrid methods, where there exist phys-

ical grids for the problem we are solving. First, consider the interpolation operator,

and assume that the coarse grid has twice the grid spacing of the next finer grid.

Denote the coarse-grid space as Ω2h, and the next finer grid space as Ωh, where the

superscripts h and 2h denote grid spacings. Then as shown in Figure 2.1, solutions

on fine-grid points are interpolated from neighboring coarse-grid points by linear in-

terpolation

uh2j = u2hj ,

uh2j+1 =
1

2
(u2hj + u2hj+1),

for 1 ≤ j ≤ n/2− 1, where uh2j is the 2j-th component of the fine-grid approximation

uh, and u2hj is the j-th component of the next coarse-grid approximation u2h. In

matrix form, this defines

Pu2h =
1

2



1

2

1 1

2

1
. . .


·


u1

u2
...

un
2
−1


2h

=



u1

u2

u3

u4
...

un−1



h

= uh.

To restrict from the fine grid to the coarse grid, the value at a coarse-grid point

can simply be taken as the value at its corresponding fine-grid point, i.e.

u2hj = uh2j,

This is called injection. Another common restriction operator is full weighting, which

also takes into consideration the neighboring points on the fine grid, and computes

the value at a coarse-grid point as

u2hj =
1

4
(uh2j−1 + 2uh2j + uh2j+1).

22

In matrix form, this defines

u2h =


u1

u2
...

un
2
−1


2h

= Ruh =
1

4


1 2 1

1 2 1
. . .

 ·



u1

u2

u3

u4
...

un−1



h

.

We notice that the restriction and interpolation operators are transposes of one other

up to a constant

R =
1

2
P T . (2.16)

As we will see, dropping the constant factor generally does not influence the solution.

The relationship R = cP T is called the variational property due to the minimization

principle introduced in the next section.

0 1 2 3 4 5 6 7 8
Ωh

0 1 2 3 4

Ω2h

1
2 1

1
2

1
2 1

1
2

1
2 1

1
2

0 1 2 3 4 5 6 7 8
Ωh

0 1 2 3 4

Ω2h

1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
4

Figure 2.1: Linear interpolation by Pu2h and full weighting restriction by Ruh.

2.5.2 Galerkin property

Consider the two-grid case: given an approximate solution uh on the fine grid, and

the interpolation operator as introduced in the last section. The coarse-grid corrected

23

approximation to the solution is given by

ûh = uh + Pu2h,

for an unknown correction u2h. We want ûh to be close to the true solution u, i.e.

the error norm ||u − ûh||F to be as small as possible, where F is some appropriate

positive definite matrix, and the matrix-norm is defined by ||v||2F = vTFv.

Theorem 2.5.1. For the linear system Au = b, let A be symmetric and positive

definite. Given an approximate solution, uh, on fine grid Ωh, and coarse grid to fine

grid interpolation operator, P . Of all the vectors, u2h, on coarse grid Ω2h, the vector

u2h computed by

P TAPu2h = P T (b− Auh) (2.17)

minimizes the error norm

||u− (uh + Pu2h)||A.

That is,

(P TAP)−1P T (b− Auh) = arg min
u2h

||u− (uh + Pu2h)||A.

Proof. Compute the error norm

||u− (uh + Pu2h)||2A = ||eh − Pu2h||2A = (eh − Pu2h)TA(eh − Pu2h)

= (eh)TAeh − 2u2hP TAeh + (u2h)TP TAPu2h.

Taking the derivative with respect to u2h and setting it to zero gives

P TAPu2h − P TAeh = P TAPu2h − P T (b− Auh) = 0.

Therefore, the solution of

P TAPu2h = P T (b− Auh)

minimizes the error norm of the coarse-grid corrected solution uh + Pu2h.

When we define the coarse-grid operator as

A2h = P TAP, (2.18)

24

this is called the Galerkin condition, and the coarse-grid system to be solved is

A2hu2h = P T (b− Auh) = r2h.

As mentioned before, we can see that dropping the constant scaling in front of the

restriction operator in Equation (2.16) does not influence the solution.

2.5.3 Multigrid algorithms

Given the above formulation, it is now easy to state the algorithm pseudocode for

a general class of multigrid methods. First, consider the two-grid case given by the

following algorithm:

Algorithm 1: Two-grid Galerkin Multigrid Algorithm

MGT(A,b,uh, ν1, ν2) :

uh = Relax(A,b,uh, ν1); %Pre-relax ν1 times

Get A2h = P TAP, r2h = P T (b− Auh);

Solve: A2hu2h = r2h;

uh = uh + Pu2h; %Coarse-grid correction

uh = Relax(A,b,uh, ν2); %Post-relax ν2 times

The function ”Relax(A,b,uh, ν)” in Algorithm 1 can be any relaxation method,

such as the weighted Jacobi and Gauss-Seidel methods. Recursively implementing

this idea gives us multigrid algorithms:

25

Algorithm 2: Multigrid Algorithm

MG(A,b,uh, ν1, ν2, µ, l) :

if l == 1 then

Solve: Auh = b;

else

uh = Relax(A,b,uh, ν1); %Pre-relax ν1 times

Set r2h = P T (b− Auh),u2h = 0;

Solve u2h = MG(A2h, r2h,u2h, ν1, ν2, µ, l − 1) µ times;

uh = uh + Pu2h; %Coarse-grid correction

uh = Relax(A,b,uh, ν2); %Post-relax ν2 times

end

The parameter µ in Algorithm 2 is usually chosen to be 1 or 2. When µ = 1,

it gives the V-cycle multigrid method; when µ = 2, it gives the W-cycle multigrid

method. For Galerkin multigrid methods, the coarse-grid operator is A2h = P TAP .

Also note that operators A and P on different levels can be precomputed before the

iteration starts and stored in a dictionary data structure, so that we can directly

access them during iterations.

Another form of multigrid method that is also important is the full multigrid

algorithm, which starts iterations from an approximation on the coarsest level instead

of the finest level, and progresses to finer levels with V-cycles or W-cycles. In this way,

iterations on fine grids are started with improved initial guesses, which has a hope of

reducing iteration numbers on costly fine grids. Algorithm 3 gives the pseudocode of

the FMG algorithm, where the superscripts 2kh denote the grid spacings on grid level

k, and Ah = A is defined to be the finest-grid operator.

Algorithm 3: FMG Multigrid Algorithm

FMG:

Solve: A2lhu2lh = b2lh; %Solve on coarsest level

for k = l − 1, ..., 1, 0 do

Solve u2kh = MG(A2kh, Pu2(k+1)h, ν1, ν2, µ, l − k + 1);

end

26

Figure 2.2 shows the grid schedules of various forms of multigrid methods in com-

parison with one another on 4 levels of grids.

Ωh

Ω2h

Ω4h

Ω8h

Figure 2.2: Grid schedules for V-cycle, W-cycle and FMG

2.6 Unigrid methods

Another multilevel method that we will make use of in this thesis is the so-called

unigrid method introduced by McCormick and Ruge [17]. The basic idea is to do

iterations as seen in Equation (2.8) for the Gauss-Seidel method, but to introduce

broader directions for corrections from coarse levels, and write

uh = uh + δhj ,

where δhj is the directional correction

δhj =
< rh,d >

< Ad,d >
d,

with direction vector d, so that the resulting fine-grid residual is orthogonal to the

direction d after correction. We can also add a weighting to the correction term, i.e.,

write

uh = uh + ωδhj , (2.19)

to damp the iteration. The correction directions used in a unigrid method are generally

formed from fine-grid interpolation of unit vectors on the coarse levels, which we

27

denote by the columns of

Φk = [dk1,d
k
2, · · · ,dknk], 0 ≤ k ≤ l, (2.20)

where dki is the i-th iteration direction on level k, and nk is the total number of

iteration directions on level k, and l is the coarsest level number.

For convenience, we introduce some new notations here that will be useful in

the following discussion. Denote A(k) = A2kh as the system matrix on level k, with

A(0) = Ah = A as the finest-grid operator. Let I lk for k, l ≥ 0 denote the interpolation

operator from level k to level l if k > l, and restriction operator from level k to level l

if k < l, and I lk = I be the identity operator if k = l. Also denote uk = u2kh for k ≥ 0

to simplify the notation when necessary.

Because the interpolation operators are the same for all the direction vectors on

the same level, if the corresponding interpolation of these vectors in Equation (2.20)

to the fine grid is done by operators I0k for k = 0, 1, · · · , l, we can write

δhj =
〈b− Au, I0kd

k
j 〉

〈AI0kdkj , I0kdkj 〉
I0kd

k
j , (2.21)

for 1 ≤ j ≤ nk, where I0k = I01I
1
2 · · · Ik−1k , when k 6= 0, is the interpolation operator to

the fine grid for all vectors on level k. Equation (2.19) gives one step of the relaxation

on the fine grid. We can see that I0kΦk = [I0kd
k
1, I

0
kd

k
2, · · · , I0kdknk] forms the subspace of

corrections to the fine-grid approximation at level k for k = 0, 1, ..., l. As a summary,

Algorithm 4 gives the pseudocode of the unigrid method.

Algorithm 4: Unigrid method

UG SOLVE(A,b,u, ν, ω):
for k = 0, 1, ..., l do

for i = 1, ..., ν do
for j = 1, ..., nk do

Compute correction: δhj =
〈b−Au,I0kd

k
j 〉

〈AI0kd
k
j ,I

0
kd

k
j 〉
I0kd

k
j ;

Update approximation: u = u + ωδhj ;

end

end

end
Return u;

28

Note that we are starting the iteration from the finest level to the coarsest level in

the algorithm here. In fact, this is not necessary. We can also start from the coarsest

level and progress to the finest level or even randomly pick the next iteration direction.

An alternative interpretation is to treat unigrid method as a subspace correction

scheme, where the subspace is PΦ = [Φ0, I01Φ1, ..., I0kΦk, ..., I0l Φl], and choose the next

correction direction according to some reasonable pre-defined rules. For example, we

can greedily choose the direction with the largest (or at least relatively large) residual

norm for the next update step, which is also known as the Gauss-Southwell method,

or we can even choose the next iteration direction randomly, which can be shown to

have similar estimates for the error reduction, as discussed in [16, 7].

We now show that the unigrid method is theoretically equivalent to the multi-

grid method constructed with the variational conditions. It is worth re-writing the

variational conditions which were defined recursively before with the new notation,

A(k+1) = Ik+1
k A(k)Ikk+1, (Ik+1

k)T = Ikk+1. (2.22)

As already shown in [17], one relaxation step of the so-called immediate replacement

multigrid (MGIR) process, which is the same as MG except that each change in

the coarse-grid correction is immediately reflected in the fine-grid approximation and

is then used to update the fine-grid residual and the coarse-grid equation, can be

described by

u0
MGIR = uh + ω

〈Ik0 (b− Auh),dki 〉
〈A(k)dki ,d

k
i 〉

I0kd
k
i , (2.23)

where u0
MGIR is the corrected fine-grid approximation after one MGIR step. This

update can be understood in two steps: First, perform the coarse-grid relaxation on

grid level k such that the residual on level k is orthogonal to dki ; and, then, interpolate

this coarse-grid correction to the fine grid by the interpolation operator I0k .

The corresponding change for a standard multigrid method is

u0
MG = uh + ω

〈rk,dki 〉
〈A(k)dki ,d

k
i 〉
I0kd

k
i .

The difference here is that the multigrid residual rk on level k is different from that in

MGIR process, because it is now computed recursively instead of directly restricted

from the fine grid. Using the recursive definitions that rq = bq−A(q)ũq,bq+1 = Iq+1
q rq

29

and ūq = ũq+Iqq+1ū
q+1, where ũq is the approximate solution of level q without coarse-

grid correction (i.e. the solution immediately after relaxation on level q), and ūq is

the approximate solution on level q after coarse grid correction, we can deduce that

rk = Ik0 (b0 − A(0)ū0) +
k∑
q=1

(Ikq−1A
(q−1)Iq−1q − IkqA(q))ūq

= Ik0 (b− Auh) +
k∑
q=1

Ikq (Iqq−1A
(q−1)Iq−1q − A(q))ūq.

Therefore

u0
MG = uh + ω

〈Ik0 (b− Auh),dki 〉
〈A(k)dki ,d

k
i 〉

I0kd
k
i ,

which is the same as Equation (2.23) for MGIR. This proves that MGIR is equivalent

to MG.

For the unigrid algorithm, from Equation (2.21), one relaxation step can be ex-

pressed by

uh = uh + ω
〈b− Auh, I

0
kd

k
i 〉

〈AI0kdki , I0kdki 〉
I0kd

k
i .

Then, the variational conditions in Equation (2.22) give

u0
Uni = uh + ω

〈Ik0 (b− Auh),d
k
i 〉

〈Ik0AI0kdki ,dki 〉
I0kd

k
i = uh + ω

〈Ik0 (b− Auh),d
k
i 〉

〈A(k)dki ,d
k
i 〉

I0kd
k
i ,

which is the same as Equation (2.23) for the MGIR update. This proves that unigrid

and MGIR are also equivalent. Therefore, the unigrid method is equivalent to the

multigrid method, given the variational conditions in Equation (2.22).

Chapter 3

Positivity-Preserving Multilevel

Methods

In this chapter, we develop multilevel algorithms for solving Au = b that can preserve

solution positivity. We first deal with the situation when A is a singular, irreducible

M-matrix. With the application of a modified multiplicative-form algebraic multigrid

method (AMG) to the system, we prove that positivity can be preserved at each

iteration and every grid level. We then apply a unigrid method to solve general

nonsingular systems, and add additional constraints at every iteration such that the

approximate solution stays positive.

3.1 Singular systems

In this section, we solve for a nontrivial solution of

Au = 0,

where A is an irreducible Zn×n matrix with positive diagonals, and every column sums

to zero. That is

1TA = 0.

From Theorem 2.3.2, we know that A is a singular M-matrix. This system corresponds

to the CTMC steady-state in Equation (2.12). Note that the results in this section

31

also apply to the DTMC steady-state in Equation (2.9) as we can always write Bx = x

as (I −B)x = 0, with I −B satisfying all of the conditions here.

By the property of singular M-matrices from Theorem 2.1.4, we know that this

system has a unique solution, u, up to a constant scaling. In addition, the true

solution satisfies u > 0. We now introduce a multiplicative-error multigrid method

that is able to preserve this property given a positive initial guess.

3.1.1 Positivity preserving relaxation

To be able to do this, we first need an appropriate relaxation scheme that is positivity

preserving. It is already known that if A is a nonsingular M-matrix, then the Jacobi

iteration is guaranteed to be convergent from Theorem 2.1.3. For the current case, A

is a singular M-matrix. Although the Jacobi method is not guaranteed to be conver-

gent anymore, the following theorem [19, 1] tells us that weighted Jacobi iteration is

semiconvergent.

Theorem 3.1.1. If H is the iteration matrix arising from a regular splitting of an

irreducible singular M-matrix A, then the transformed matrix

Hα = (1− α)I + αH (3.1)

is semiconvergent for all α ∈ (0, 1).

The Jacobi iteration matrix of A is H = D−1(L + U) arising from the A =

D− (L+U), which is a regular splitting by Definition 2.2.2. Therefore, the weighted

Jacobi method with weight parameter ω ∈ (0, 1) is semiconvergent.

We now look to make sure that the weighted Jacobi method is positivity preserving,

which we prove in the following result.

Theorem 3.1.2. For the linear system Au = b, where A is an n× n M-matrix with

aii > 0, and b ≥ 0, the approximate solution given by the weighted Jacobi method with

weight parameter ω ∈ (0, 1) is always positive if the initial guess, u(0), is positive.

Proof. Because A is an M-matrix, it is also a Zn×n matrix. Therefore, it has all

positive diagonals, aii > 0, by assumption, and nonpositive off-diagonals −aij ≤ 0 for

i 6= j.

32

Therefore, given a positive approximation u(k) > 0, each intermediate Jacobi iter-

ation preserves positivity because every component update is of the form

u
(k∗)
i =

1

aii

(∑
j 6=i

aiju
(k)
j + bi

)
≥ 0.

Hence, the approximation from the next iteration,

u
(k+1)
i = (1− ω)u

(k)
i + ωu

(k∗)
i > 0,

when ω ∈ (0, 1). As a result,the weighted Jacobi approximation u(k+1) is positive.

3.1.2 Multiplicative coarse-grid correction

Having shown that, with weighted Jacobi relaxation on the system Au = 0, positivity

of the solution can be preserved in each iteration, we come to the question of preserving

positivity in the coarse-grid correction step of a multigrid method

If we use the standard multigrid method, the coarse-grid correction is of the form

uh ← uh + Pu2h. Given a positive fine-grid approximation, it is not convenient to

control the coarse-grid correction u2h so that the improved fine-grid approximation is

guaranteed to be positive after correction. This motivates us to use a multiplicative

error-correction form [5, 4], by writing the system equation on the fine grid as

A[diag(uh)]eh = 0, (3.2)

where uh is an approximation of the true solution on the fine grid, diag(u) is a diagonal

matrix with its diagonal entries being the components of vector u, i.e., [diag(u)]ii = ui,

and eh now denotes the multiplicative-form error vector of the approximate solution,

uh, namely, ui = uhi e
h
i . We note that A[diag(uh)] still satisfies the properties in

Theorem 2.3.2, so it is still a singular M-matrix. Therefore, the true solution to

Equation (3.2) is positive, eh > 0, from Theorem 2.1.4. Then by writing

eh = Pe2h,

33

where P is the interpolation operator, we have

P TA[diag(uh)]Pe2h = 0.

We leave the detailed construction of an interpolation operator P to be discussed in

specific applications later, but only give the properties it should satisfy:

P ≥ 0, and P1 = 1,

i.e. P is nonnegative and has row sums equal to 1.

Denote

Ã = A[diag(u)],

and

Ã2h = P TA[diag(u)]P = P T ÃP.

We then have coarse-grid system

Ã2he2h = 0,

with corresponding coarse-grid correction

eh = Pe2h.

The approximate solution generated by coarse-grid correction using this two-level

method is

uh ← diag(uh)eh.

This form of multiplicative error-correction gives us more control over the final solution

in terms of positivity. Now in order to guarantee that the approximate solution is

positive, we only need to make sure that the interpolated error vector, eh, is positive.

In addition, because the interpolation operation obviously preserves the sign of the

approximate solution, we only need to make sure that the coarse-grid solution e2h

is positive. We therefore want coarse-grid matrix Ã2h = P TA[diag(u)]P to be an

M-matrix, so we know that Ã2he2h will have a positive solution.

34

Note that

1TP TA[diag(u)]P = (P1)TA[diag(u)]P = 1TA[diag(u)]P = 0,

because 1TA = 0. Therefore,

1T Ãc = 0. (3.3)

In addition, we have that

P T ÃP = P T (D̃ −
(
L̃+ Ũ)

)
P = P T D̃P − (P T L̃P + P T ŨP),

where D̃,−L̃ and −Ũ are the diagonal, lower-triangular and upper-triangular matrix

of Ã respectively. We can see that P T D̃P, P T L̃P and P T ŨP are all nonnegative

matrices. If P T D̃P is diagonal and does not contribute to off-diagonals, then the

off-diagonals can only come from −(P T L̃P + P T ŨP), so the off-diagonals of P T ÃP

are nonpositive. Hence, by Equation (3.3) we are sure Ãc has nonnegative diagonals

because its columns sum to zero. Then, by Theorem 2.3.2, the coarse-grid operator Ãc

is also a singular M-matrix. However, this deduction only holds in special situations

where P T D̃P is diagonal, such as when P is the pairwise aggregation operator as we

will see in Chapter 4.

In general, P T D̃P is not diagonal, so it will contribute positive entries to the off-

diagonals of Ã2h, meaning Ã2h may have positive off-diagonal entries. Therefore, Ã2h

is not guaranteed to be a singular M-matrix. Moreover, Ã2h may lose irreducibility

due to new zero entries being introduced. This problem can be solved by introducing

a lumping method [4] to the coarse-grid operator Ã2h so that the obtained lumped

coarse-grid operator Ǎ2h is an irreducible singular M-matrix. In addition, the exact

solution is a fixed point of the V-cycle with the lumped coarse-grid error equation,

Ǎ2he2h = 0.

3.1.3 Positivity-preserving multigrid algorithm

With the tools formulated above, our relaxation scheme is positivity preserving, and

our two-grid coarse-grid correction scheme is also positivity preserving. Some details

for the implementation of the multigrid algorithm still need to be dealt with. For the

direct solve on the coarsest grid, the system is singular and of rank n − 1. Since we

35

know the true solution with a direct solve is unique up to a scaling, we can scale the

solution e(i) such that its last entry is 1 by solving

Ād =

[
Ã(1 : n− 1, :)

zT

]
d =

[
0

1

]
= z,

which has a unique positive solution, where Ã(1 : n− 1, :) denotes the first n− 1 rows

of Ã. However, in case the entries of Ã are much smaller than 1, it is better to use

Ād =

[
Ã(1 : n− 1, :)

zT

]
d =

[
0

A11

]
= z, (3.4)

so that floating point arithmetic does not lead to an effectively singular matrix, where

A11 is the entry of A in the first row and first column.

The last detail is the initial approximation that we use on the coarse grid. Be-

cause Au = Adiag(u)1 = Adiag(u)P1, relaxation on Au = 0 with initial guess u

is equivalent to relaxation on P TAdiag(u)Pe = 0 with initial guess 1. Therefore,

an appropriate choice of initial guess on coarse grids should be 1. This is similar to

standard multigrid with the choice of a zero vector 0.

Now we are able to give a multigrid algorithm that is able to preserve solution

positivity. Algorithms 5 and 6 show the pseudocode of the two-grid and multigrid

methods, respectively. The function ”Relax(A,u, ν)” means applying weighted Jacobi

relaxation. Also note that, for relaxation, normalization of the solution is needed at

either each iteration or on the final step to make the solution sum up to one.

Algorithm 5: Two-grid Positivity-preserving Method for Solving Au = 0

MGT SIN(A,u, ν1, ν2) :
u = Relax(A,u, ν1); %Pre-relax ν1 times

Ã = A[diag(u)];
Ã2h = P T ÃP ;
Replace the last row of Ã2h to get Ā2h;
Solve: Ā2he2h = z;
u = [diag(u)]Pe2h; %Coarse-grid correction

u = Relax(A,u, ν2); %Post-smoothing ν2 times

36

Algorithm 6: Positivity-preserving Multigrid Method for Solving Au = 0

MGN SIN(A,u, ν1, ν2, l) :
if l == 1 then

Replace the last row of A to get Ā;
Solve: Āu = z;

else
u = Relax(A,u, ν1); %Pre-relax ν1 times

Ã = A[diag(u)];
Ãc = P T ÃP ;
ec = MGN SIN(Ãc,1, ν1, ν2, l − 1);
u = [diag(u)]Pec; %Coarse-grid correction

u = Relax(A,u, ν2); %Post-smoothing ν2 times

end

3.2 Nonsingular systems

When system matrix A is a nonsingular matrix, the problem Au = 0 has only trivial

solution, and matrix A will not satisfy the properties required in Section 3.1 to apply

the multigrid method developed there. In this section, we make use of the unigrid

method to derive a positivity preserving multilevel method. Theorem 3.2.1 describes

the class of problems that we are interested in for the discussion in this section. We

will in this section always assume that we are in one of the two cases described.

Theorem 3.2.1. Given a nonsingular n× n M-matrix, A, and a vector b > 0, then

the solution to the system Au = b is positive. If, in addition, A is irreducible, then

for any nonzero right-hand side b ≥ 0, the solution to the system Au = b is positive.

Proof. Because matrix A is a nonsingular M-matrix, from Theorem 2.1.3, we know

A−1 ≥ 0. When b > 0, we have u = A−1b > 0.

If, in addition, A is irreducible, by Theorem 2.1.3, we have A−1 > 0. Therefore,

we only need b ≥ 0 with at least one nonzero entry to have u = A−1b > 0.

3.2.1 Unigrid method to preserve positivity with uniform

thresholding

Unlike the standard multigrid method that solves for corrections at each level, the

unigrid method introduced in Section 2.6 gives us more control over the fine-grid

37

solution itself.

In order to use a unigrid method to preserve solution positivity, we try to threshold

the relaxation correction so that negative entries in the correction do not contaminate

the positivity of the approximate solution. That is, we choose the weighting parameter

ω such that

uh ← uh + ωδhj > 0, (3.5)

for each j, where δhj is given in Equation (2.21). To achieve this, suppose, at some

stage of the iteration, if the i-th component of the correction δhj satisfies δj,i ≥ 0,

because uh is positive by assumption, we have ui + ωδj,i > 0, where ui is the i-

th component of uh; if δj,i < 0, then ui + ωδj,i > 0 gives ω < −ui/δj,i. Letting

Mj = {i | δj,i < 0}, we define m so that

− um
δj,m

= min
i∈Mj

{
− ui
δj,i

}
,

and set the damping parameter as

ω = −ε u
h
m

δhj,m
, (3.6)

where ε < 1 is some constant close to 1, e.g. ε = 0.9999. Algorithm 7 gives the

pseudocode of this positivity preserving unigrid method.

3.2.2 Unigrid method to preserve positivity with local cor-

rection

Since the uniform thresholding technique relies heavily on a single parameter, ω, and

tries to threshold all of the corrections at once (possibly forced by only a few points),

it is possible that this might hamper the convergence because of a ”bad” choice of ω.

An alternative approach to avoid this is to correct those negative components locally

by interpolation. Because we are expecting that the solution varies smoothly, it makes

sense to just locally correct those negative entries by interpolating from their positive

neighbors.

38

Algorithm 7: Unigrid Method with Uniform Threasholding

UG SOLVE(A,b,u, ν, ω):
for k = 0, 1, ..., l do

for i = 1, ..., ν do
for j = 1, ..., nk do

Compute correction: δhj =
〈b−Au,I0kd

k
j 〉

〈AI0kd
k
j ,I

0
kd

k
j 〉
I0kd

k
j ;

if min{u + δhj }≤ 0 then
Set of negative-correction positions: Mj = {i | δhj,i < 0)};
Weighting parameter: ω = εmini∈Mj

{
− uhi

δhj,i

}
;

Update approximation: u = u + ωδhj ;

else
Update approximation: u = u + δhj ;

end

end

end

end
Return u;

We use Figure 3.1 to explain this idea. This figure shows an example approximate

solution on a mesh, where, after a step of unigrid relaxation, there are two groups

of nodes that have negative approximate solutions. We first iterate through the ap-

proximate solution to find the two groups of nodes {4,5,6} and {11,12,13} that have a

nonpositive approximation. Then, for group {4,5,6}, we use their positive neighboring

nodes 3 and 7 to linearly interpolate and give their new values; for group {11,12,13},
we use their positive neighboring nodes (indexed 10 and 14) to linearly interpolate

their new values. This gives a local correction scheme for a unigrid method that is

able to preserve the positivity of the approximate solution.

(3) (7) (10) (14) 10

x

Figure 3.1: Local corrections on an example approximate solution

39

Algorithm 8: Unigrid Method with Uniform Threasholding

UG SOLVE(A,b,u, ν, ω):

for k = 0, 1, ..., l do

for i = 1, ..., ν do

for j = 1, ..., nk do

Compute correction: δhj =
〈b−Au,I0kd

k
j 〉

〈AI0kd
k
j ,I

0
kd

k
j 〉
I0kd

k
j ;

Update approximation: u = u + δhj ;

if min{u} ≤ 0 then
Find nonpositive groups in the approximate solution u;

Perform local interpolation correction for these groups;

end

end

end

end

Return u;

Chapter 4

Application to 1D Equidistributing

Meshes

This chapter applies Algorithms 5 and 6 to the problem of 1D adaptive mesh genera-

tion. This idea of solution-adapted grid generation is important when the solution of

the given equation varies rapidly in some parts of the physical region. In such cases,

it is reasonable to choose finer grids in that part of the region to reduce the error

in the numerical solution. Mesh nontangling in 1D simply requires the mesh to be

monotonic, which is true at the continuous level for standard models. We develop

an efficient multigrid method that guarantees monotonicity also at the discrete level

for the approximate solution. For completeness, we will first prove that the weighted

Jacobi method with a suitable relaxation parameter and the Gauss-Seidel method

can both preserve monotonicity of the solution at every iteration. Then, we refor-

mulate the original problem into an incremental form, transform the requirement of

monotonicity to one of positivity, and make use of the positivity preserving multigrid

Algorithms 5 and 6. Hence, we get a multigrid algorithm that can preserve solution

monotonicity. Numerical results are given to show the efficiency of this method.

41

4.1 An introduction to adaptive equidistributing

meshes in 1D

The concept of equidistribution plays an important role in adaptive mesh generation.

Let Rd denote the d-dimensional real space, and ”⊂” denote the subset relation. One

interpretation of equidistribution [10] is, given a metric space in the computational

domain Ω ⊂ Rd(d ≥ 1) with a matrix-valued function M = M(x) defined on it, we

wish to find a mesh, Jh, such that all elements have a constant volume in the defined

metric: ∫
K

ρ(x)dx =
σ

N
, ∀K ∈ Jh,

where σ is some positive constant, N is the number of elements, M(x) is called the

monitor function (or metric tensor) and ρ(x) =
√

det(M(x)) is the corresponding

mesh density function, and ”∈” is the set membership relation. A mesh satisfying

this condition is called an M-uniform mesh.

Taking the 1D case as an example, the equidistributing condition translates to:

Given an integer N > 1, and a continuous function ρ = ρ(x) > 0 on interval [θ0, θ1],

the equidistributing mesh Jh : θ0 = x0 < x1 < · · · < xN = θ1 evenly distributes the

mesh density function ρ among the subintervals determined by the mesh points such

that ∫ x1

x0

ρ(x)dx = · · · =
∫ xN

xN−1

ρ(x)dx =
σ

N
, (4.1)

where

σ =

∫ θ1

θ0

ρ(x)dx.

The geometric meaning of these identities is that the area under function ρ(x) is the

same for every subinterval. Here the monitor function is chosen as M(x) = ρ(x)2.

It can be proven that, given a fixed integer N that is large enough, under certain

conditions, there is a unique mesh that satisfies the equidistribution condition in

Equation (4.1) [10].

It is easy to see from Equation (4.1) that∫ xj

θ0

ρ(x)dx = σ
j

N
.

42

Looking at this equation, if we define a continuous mapping x = x(u) : [0, 1]→ [θ0, θ1]

that satisfies ∫ x(u)

θ0

ρ(x)dx = σu,

this mapping is called an equidistributing coordinate transformation for ρ(x). Differ-

entiating this with respect to u on both sides of this integral equation gives

ρ(x)
dx

du
= σ. (4.2)

Note that this is nonlinear. It is sometimes more useful to formulate the equidistribut-

ing condition in terms of inverse coordinate transformation u = u(x) : [θ0, θ1]→ [0, 1].

Therefore, we rewrite Equation (4.2) as

1

ρ(x)

du

dx
=

1

σ
, (4.3)

which now becomes linear. Differentiating this with respect to x on both sides of

Equation (4.3) and writing

a(x) =
1

ρ(x)
,

we get the elliptic equidistributing mesh generator in 1D with boundary conditions

d

dx

(
a(x)

du

dx

)
= 0, u(θ0) = 0, u(θ1) = 1. (4.4)

It should be noted that this equation uses inverse coordinate transformation u = u(x)

from physical domain [θ0, θ1] to computational domain [0, 1], so it does not directly

give node locations on the physical domain. Note in passing that in the multiple

dimensional case, the elliptic mesh generator generalizes to

−∇ · (a(x)∇u) = b(x), x ∈ Ω ⊂ Rd.

This is called the Winslow grid generator [22]. They can be used to construct solution-

adaptive meshes. For the determination of the weight function, the simplest is the idea

of feature-adaptive weights in which the weight function depends upon the features

of the solution such as the function itself, its gradient or second derivative.

43

4.2 Discretization

First, consider Equation (4.4) in 1D with Dirichlet boundary conditions at the bound-

aries θ0 = −1 and θ1 = 1

u(−1) = u0 = 0, u(1) = uN = 1.

Using the second-order finite-difference discretization on a uniform mesh with step

size h, we get

− d

dx

(
a(x)

du

dx

)∣∣∣∣
xj

≈ −
a(xj+1/2)u

′(xj+1/2)− a(xj−1/2)u
′(xj−1/2)

h

≈ −1

h

[
a(xj+1/2)

u(xj+1)− u(xj)

h
− a(xj−1/2)

u(xj)− u(xj−1)

h

]
=

1

h2
[
− aj−1/2u(xj−1) +

(
aj−1/2 + aj+1/2

)
u(xj)− aj+1/2u(xj+1)

]
.

where xj± 1
2

= (xj + xj±1)/2, and aj± 1
2

= a(xj± 1
2
). Therefore, the finite-difference

approximation of the differential equation in (4.4) is

1

h2
[
− aj−1/2uj−1 +

(
aj−1/2 + aj+1/2

)
uj − aj+1/2uj+1

]
= 0,

where uj is the approximation of u(xj). Therefore, the linear system to be solved is

Au = b with

A =
1

h2



a 1
2

+ a 3
2

−a 3
2

0 · · · · · · 0

−a 3
2

a 3
2

+ a 5
2
−a 5

2
0

...
.

...
...

.
...

0 −aN− 5
2

aN− 5
2

+ aN− 3
2

−aN− 3
2

0 · · · · · · 0 −aN− 3
2

aN− 3
2

+ aN− 1
2


, (4.5)

44

and

u =



u1

u2
...
...

uN−2

uN−1


, b =



a1/2u0
h2

0
...
...

0
aN−1/2uN

h2


. (4.6)

4.3 Monotonicity of exact solutions

Regarding the exact solutions of both the continuous boundary value problem (BVP)

problem in Equation (4.4) and its discretized analogue, the following results are

known.

Theorem 4.3.1. For the model BVP in Equation (4.4), when a(x) > 0 on [−1, 1],

the solution, u(x), is monotonically increasing, du
dx
> 0.

Proof. Integrating twice on both sides of this equation gives

1

ρ(x)

du

dx
=

1

σ
, u(x) =

1

σ

∫ x

−1
ρ(y)dy + c.

Substituting the boundary conditions, u(−1) = 0 and u(1) = 1, gives c = 0, σ =∫ 1

−1 ρ(x)dx. Therefore, since ρ(x) > 0, we have

du

dx
=
ρ(x)

σ
> 0.

This proves the statement.

Theorem 4.3.2. For the finite difference discretization Au = b of the model problem,

the exact solution of this linear system is monotonically increasing, i.e. uj+1 > uj for

1 ≤ j ≤ N − 1.

Proof. In the discretized linear system, we have the equations

−a(xj−1/2)uj−1 +
(
a(xj−1/2) + a(xj+1/2)

)
uj − a(xj+1/2)uj+1 = 0.

45

for 1 ≤ j ≤ N − 1. Rearranging this equation, we have

uj+1 − uj
uj − uj−1

=
a(xj−1/2)

a(xj+1/2)
> 0. (4.7)

This implies uj 6= uj+1 for all j. Given the boundary conditions

1 = u(1) = uN > u0 = u(−1) = 0,

and using proof by contradiction, if u0 > u1, then, from Equation (4.7), u1 > u2,

u2 > u3, ..., uN−1 > uN . This implies u0 > uN , which is in contradiction with the

boundary conditions. Thus, we can conclude that u1 > u0 and, uj+1 > uj, for all j.

Therefore, uj is increasing.

4.4 Monotonicity preserving property of the Ja-

cobi and Gauss-Seidel methods

These results give us the conclusion that the exact solution of Equation (4.4) is mono-

tonic at both the continuous and discrete level. However, in practice, we usually solve

for its numerical solution with iterative methods, which means we cannot get the

exact solution, but need to stop the iteration at some point where the approximate

solution is within a satisfactory accuracy. Although we can sometimes theoretically

analyze an upper bound of the error of the approximate solution, it is not clear how

accurately we need to solve the problem in order to get a monotonic approximate

solution.

Therefore, to ensure that the approximate solution of the discretized system is

monotonic even if we stop early, we try to make the approximate solution monotonic

at every iteration, given a monotonic initial guess. For completeness, we prove in

this section that the weighted Jacobi and Gauss-Seidel methods are able to preserve

solution monotonicity.

Theorem 4.4.1. Consider the discretized linear system Au = f given in Equations

(4.5) and (4.6), and a monotonically increasing initial guess. When using the weighted

Jacobi method to solve this system, the approximate solution will preserve the mono-

tonicity property in each iteration if the parameter, ω, satisfies ω ≤ 1
2
. If, in addition,

46

a(x) is also monotonic, then monotonicity is preserved for ω ≤ 2
3
.

Proof. The weighted Jacobi iterative algorithm can be expressed as

u(k+1) = (I − ωD−1A)u(k) + ωD−1b = D−1
[
(D − ωA)u(k) + ωb

]
.

and the matrix D − ωA is

D − ωA =



(1− ω)s1 ωa 3
2

0 · · · · · · 0

ωa 3
2

(1− ω)s2 ωa 5
2

0
...

.
...

0 ωaj− 1
2

(1− ω)sj ωaj+ 1
2

0
...

.
...

0 ωaN− 5
2

(1− ω)sN−2 ωaN− 3
2

0 · · · · · · 0 ωaN− 3
2

(1− ω)sN−1


,

where sj = aj− 1
2
+aj+ 1

2
. If we let dj = uj−uj−1 and using the facts that u0 = 0, uN =

1, by shift subtracting the entries of u, we can easily get

d
(k+1)
1 =

(
1− ωa1/2

s1

)
d
(k)
1 +

ωa3/2
s1

d
(k)
2 ,

d
(k+1)
j =

ωa
j− 1

2

sj
d
(k)
j−1 +

(
1− ωaj+ 1

2

(
1
sj

+ 1
sj+1

))
d
(k)
j +

ωa
j+3

2

sj+1
d
(k)
j+1, 2 ≤ j ≤ N − 1,

d
(k+1)
N =

ωa
N− 3

2

sN−1
d
(k)
N−1 +

(
1−

ωa
N− 1

2

sN−1

)
d
(k)
N .

Since

aj+ 1
2

(
1

sj
+

1

sj+1

)
=

aj+ 1
2

aj− 1
2

+ aj+ 1
2

+
aj+ 1

2

aj+ 1
2

+ aj+ 3
2

< 2,

when ω ≤ 1
2
, we have 1 − ωaj+ 1

2

(
1
sj

+ 1
sj+1

)
> 0. Given ω ≤ 1

2
, it is obvious that

1− ωa1/2
s1

> 0 and 1−
ωa

N− 1
2

sN−1
> 0. Therefore, given a monotonically increasing initial

guess, u(0), the approximate solution u(k) is also monotonically increasing for all k.

If, in addition, a(x) is not only positive but monotonically increasing, then we can

see that

aj+ 1
2

aj− 1
2

+ aj+ 1
2

+
aj+ 1

2

aj+ 1
2

+ aj+ 3
2

<
aj+ 1

2

aj+ 1
2

+
aj+ 1

2

aj+ 1
2

+ aj+ 1
2

= 1 +
1

2
=

3

2
,

47

with a similar bound for a(x) monotonically decreasing. Therefore, if a(x) is mono-

tonic, when ω ≤ 2
3
, the monotonicity of u is preserved in each iteration.

Theorem 4.4.2. Consider the discretized linear system Au = b given in Equations

(4.5) and (4.6), and a monotonically increasing initial guess. When using the Gauss-

Seidel method to solve this system, the approximate solution is always monotonically

increasing in each iteration.

Proof. The iterative scheme for the Gauss-Seidel method is given by

−aj− 1
2
u
(k+1)
j−1 + (aj− 1

2
+ aj+ 1

2
)u

(k+1)
j = aj+ 1

2
u
(k)
j+1,

for 1 ≤ j ≤ N − 1. Let dj = uj − uj−1 and using the fact that u0 = 0, uN = 1, we can

easily get (
1 +

aj+ 1
2

aj+ 3
2

)
d
(k+1)
j+1 = d

(k)
j+2 +

aj− 1
2

aj+ 1
2

d
(k+1)
j ,

for 1 ≤ j ≤ N − 2. Hence, if we can show that d
(k+1)
1 > 0 and d

(k+1)
N > 0, the

result follows. To prove d
(k+1)
1 > 0, notice that (a 1

2
+ a 3

2
)u

(k+1)
1 = a 3

2
u
(k)
2 . Because by

assumption u
(k)
j > u

(k)
0 = 0 for all j, it follows that d

(k+1)
1 = u

(k+1)
1 > 0, which again

gives d
(k+1)
j > 0 for 1 ≤ j ≤ N − 1. To prove d

(k+1)
N > 0, rearrange the last equation

−aN− 3
2
u
(k+1)
N−2 + (aN− 3

2
+ aN− 1

2
)u

(k+1)
N−1 = aN− 1

2
uN ,

and subtract (aN− 3
2

+ aN− 1
2
)uN from both sides to get

d
(k+1)
N =

aN− 3
2

aN− 1
2

d
(k+1)
N−1 ,

therefore, d
(k+1)
N > 0. This completes the proof.

4.5 Monotonicity preserving multigrid methods

4.5.1 Algorithm description

Because the Jacobi and Gauss-Seidel methods are very slow to converge in practice,

we design an efficient multigrid algorithm which has the nice property of preserving

48

monotonicity at each iteration and every grid level. We first write the original linear

system in mesh-increment form as Âd = 0, with Â given by

Â =



−a1/2 a3/2

−a3/2 a5/2
. . .

−aN−3/2 aN−1/2

a1/2 · · · · · · −aN−1/2


, (4.8)

and dj = uj − uj−1. This singular matrix Â can be seen as the generator matrix of

a CTMC. Moreover, from Theorem 2.3.2, it can be shown that −Â is an irreducible,

singular M-matrix. By Theorem 2.1.4, Âd = 0 has a unique positive solution up to a

constant scaling.

We use this concrete example to analyze carefully the necessity of Theorem 3.1.1

for a semiconvergent relaxation scheme. The Jacobi iteration matrix for Â is

HJ = I −D−1Â =



0 t1

0 t2
. . .

0 tN−1

tN · · · · · · · · · 0


,

where tj =
aj+1/2

aj−1/2
for 1 ≤ j ≤ N − 1 and tN =

a1/2
aN−1/2

. We see that HJ is a cyclic

matrix of index N . According to the properties of a cyclic matrix in Theorem 2.1.1,

all of the eigenvalues of the Jacobi iteration matrix, HJ , with magnitude equal to its

spectral radius, ρ(HJ), are

λk = ρ(HJ)e
i2πk
N .

Therefore, without even knowing the spectral radius of HJ , we can conclude that

the Jacobi iteration matrix, HJ , is not semiconvergent, because it obviously could

not satisfy the third condition of semiconvergence in Theorem 2.3.3, which requires

that it should have a simple eigenvalue with modulus equal to its spectral radius. In

fact, from numerical experiments, we find that ρ(HJ) = 1. This can again be verified

by the computation that HN
J = sI with s = t1t2 · · · tN =

a3/2
a1/2

a5/2
a3/2
· · · a5/2

a3/2

a1/2
aN−1/2

=

1. Therefore, we have HN
J v = v, which implies 1 is an eigenvalue of HN

J , so the

49

eigenvalues of HJ satisfy λNk = 1, hence λk = e
i2πk
N , which are the n-th roots of unity.

However, Theorem 3.1.1 tells us that the weighted Jacobi iteration matrix Hω =

(1− ω)I + ωHJ = (1− ω)I + ω(I −D−1Â) is semiconvergent for ω ∈ (0, 1), and the

iterative scheme is taken as

d(k+1) = (1− ω)d(k) + ω(I −D−1Â)d(k) = d(k) − ωD−1Âd(k),

which is obviously positivity preserving when 0 < ω < 1 (also proved in Theo-

rem 3.1.2).

Before making use of Algorithms 5 and 6, we still need to decide on the interpo-

lation operator to be used. For this application, we consider the pairwise aggregation

operator,

P =



1

1

1

1
. . .

1

1


,

and the restriction operator defined as P T . This can be understood geometrically by

noticing that

dcj = xcj − xcj−1 = x2j − x2j−2 = x2j − x2j−1 + x2j−1 − x2j−2 = d2j + d2j−1,

where the superscript c means on a coarse level.

Note that for this interpolation operator, P TDP is diagonal for any diagonal

matrix D. From the discussion in Section 3.1.2, we know that the coarse-grid operator

Âc = P T Â[diag(uh)]P is a singular M-matrix with every column summing to zero.

Therefore, we can apply the multigrid Algorithms 5 and 6 to solve this problem.

50

4.5.2 Numerical results

To test the performance of this algorithm, we record the number of iterations needed

to reach a fixed tolerance for the system residual, using 2 pre- and post- weighted

Jacobi iterations, and a pairwise aggregation operator, P T . For the test case with

mesh density function
1

a(x)
= 1 +R

(
1− tanh2(Rx)

)
,

defined on the domain x ∈ [−1, 1], we can find that the exact solution to Equation (4.4)

is

u(x) =
1 + x+ tanh(Rx)− tanh(−R)

2 + tanh(R)− tanh(−R)
.

We show the graphs of mesh density function, 1
a(x)

, and solution, u(x), for comparison

in Figure 4.1 when R = 10. We can see that the solution varies rapidly in the

middle of the domain, and this corresponds to a rapid increase of the mesh density

function. According to the equidistributing principle, the generated mesh will have a

higher density in the region where the mesh density function is larger. Therefore, the

resulting mesh will have a higher density in the middle of the domain and is better

able to resolve the rapid change of the solution, which is just what we want.

Now we compute the solution for the model problem with our positivity-preserving

multigrid method using Algorithm 6. Tables 4.1 and 4.2 show the number of iterations

required to reach convergence, ||Âd||2 < 10−9, when we choose R = 10 and R = 50

respectively. We can see that this algorithm gives mesh independent convergence,

and that the convergence observed is typical of a normal multigrid algorithm for a

diffusion equation. Also note that the number of iterations decreases with increasing

N , as a result of the decrease in mesh size and the residual-norm stopping criteria

we have chosen. It is important to note here that the computed solution u = u(x)

does not give node locations on the physical domain because we are using the inverse

transformation. To show that the solution behaviour is correct, we plot the inverse

function x = x(u) from the solution u = u(x) that we have computed using N = 1024.

We can see from Figure 4.2 that a uniform mesh on the computational domain gives

an adaptive mesh on the physical domain, where mesh points are concentrated in the

region where the mesh density function is large. Figure 4.3 depicts the evolution of

the mesh during the first 6 V-cycles on a mesh with 32 grid points for the case when

R = 10. We can see that the mesh points quickly concentrate in the middle.

51

N 32 64 128 256 512 1024 2048
2G 14 11 8 6 4 3 3
3G 16 15 13 9 6 4 3
4G 17 16 16 14 9 6 4
5G 17 16 15 13 9 6
6G 16 15 14 12 8
7G 15 14 13 11
8G 14 13 12
9G 13 12

Table 4.1: Number of iterations needed to reach ||Âd||2 < 10−9 with N + 1 mesh
points for different N . The constant R in the weighting function a(x) is chosen to
be R = 10. The labels 2G, 3G, ..., indicate the results for 2-grid algorithm, 3-grid
algorithm, etc.

N 32 64 128 256 512 1024 2048
2G 13 13 13 11 11 5 4
3G 15 15 15 15 15 9 6
4G 16 15 15 15 15 13 9
5G 15 15 15 15 14 12
6G 15 15 15 14 13
7G 15 15 14 13
8G 15 14 13
9G 14 13

Table 4.2: Number of iterations needed to reach ||Âd||2 < 10−9 with N + 1 mesh
points for different N . The constant R in the weighting function a(x) is chosen to
be R = 50. The labels 2G, 3G, ..., indicate the results for 2-grid algorithm, 3-grid
algorithm, etc.

52

(a) Mesh density function 1
a(x)

(b) Solution u(x)

Figure 4.1: Graphs of mesh density function 1
a(x)

= 1 + 10(1 − tanh2(10x)), and the

corresponding exact solution of Equation (4.4).

53

Figure 4.2: Positions of mesh points on the physical domain [-1,1] computed from an
uniform mesh on the computational domain [0, 1] using the mapping x = x(u). For
visual clarity, only 17 mesh points are taken.

Figure 4.3: Mesh evolution with respect to V-cycle iterations for 32 mesh points

Chapter 5

Application to Nonlinear Diffusion

Equations

In this chapter we discuss the application of positivity-preserving multigrid methods

to nonlinear diffusion equations, which is a nonlinear generalization of the elliptic

mesh generator we saw in the last chapter. We will only look at the steady state case

in 1D:

− d

dx

(
a(u)

du

dx

)
= f(x, u),

with Dirichlet boundary conditions

u(0) = g0, u(1) = g1,

where u = u(x), a(u) > 0, f(u) ≥ 0, and g0, g1 ≥ 0 are some constant numbers.

The non-negative restriction on f(x, u) and g0, g1 is to ensure that the solution, u(x),

is pointwise positive. Such equations arise in a wide range of applications, such as

heat transfer, biological processes, chemical reactions, porous media and ground water

modelling.

The model boundary value problem that we will use in the numerical results is

− d

dx

(
(1 + u2)

du

dx

)
= 1, x ∈ (0, 1), (5.1)

with a(u) = 1 + u2 and f(u) = 1. Suppose the Dirichlet boundary conditions are

55

homogeneous

u(0) = u(1) = 0,

so that the exact solution satisfies u + 1
3
u3 = 1

2
(x − x2). The analytical solution of

this model problem is positive.

5.1 Discretization

As in the linear case, the centered finite-difference method on a uniform mesh gives

− d

dx

(
a(u)

du

dx

)
j

≈ 1

h2

(
− a(uj−1/2)uj−1 +

(
a(uj−1/2) + a(uj+1/2)

)
uj − a(uj+1/2)uj+1

)
,

where uj = u(xj) and so on. The coefficient values can be approximated by [15]

a(uj−1/2) = a
(
(uj−1 + uj)/2

)
, a(uj+1/2) = a

(
(uj + uj+1)/2

)
.

Then, we end up with a nonlinear algebraic system A(u)u− f(u) = 0. The discretiza-

tion with homogeneous Dirichlet boundary conditions on both sides gives the system

matrix

A(u) =

1

h2



a1/2 + a3/2 −a3/2 0 · · · 0

−a3/2 a3/2 + a5/2 −a5/2
. . .

...

0
. 0

...
. . . −an−5/2 an−5/2 + an−3/2 −an−3/2

0 · · · 0 −an−3/2 an−3/2 + an−1/2


.

(5.2)

where aj−1/2 = a
(
(uj−1 + uj)/2

)
for 1 ≤ j ≤ n,

u = [u1, u2, ..., un−1]
T , f(u) = [f(u1), f(u2), ..., f(un−1)]

T .

56

5.2 Linearization

Several possible approaches can be used for the linearization, including a Picard iter-

ation or Newton’s method. If we use Newton’s method and write

F(u) = A(u)u− f(u) = 0,

the Newton’s iteration with initial guess u(0) is given by

u(k+1) = u(k) + s(k), where F′(u(k))s(k) = F(u(k)),

where F′(u(k)) is the Jacobian matrix, which not only depends on the system matrix

A(u), but also the the right hand side f(u) and the derivative of a(u). Therefore, it

is not guaranteed to be a Z-matrix. In addition, it is not easy to control the sequence

of steps s(k) such that u(k) + s(k) is positive given an initial approximation u(0).

Thus, to have a chance at a positivity-preserving method, it seems more appropri-

ate to use a Picard iteration for linearization, which means to replace the unknown u

in A(u) and f(u) with values from the previous iteration, i.e.,

A(u(k−1))u(k) = f(u(k−1)) = b(k−1). (5.3)

Note that A(u(k−1)) is a nonsingular irreducible M-matrix, so the iteration is well-

posed. From Theorem 3.2.1, we can see that the exact solution is positive when the

nonzero right-hand side satisfies b(k−1) ≥ 0.

For our test problem, the forcing function f is simply a vector of all ones. That

is, the system we are trying to solve at every Picard iteration is

A(u(k−1))u(k) = 1. (5.4)

Therefore, we can apply the unigrid Algorithms 7 and 8 developed in Chapter 3 to

solve the linearized system at each Picard iteration and ensure that the resulting

approximate solution is always positive.

Algorithm 9 gives the pseudocode for a Picard iteration, in which the solution

step inside the while loop is the main topic of discussion in this chapter. We will

call the Picard iteration the outer loop, and the loop to solve for the next iterative

57

approximation u1 the inner loop.

Algorithm 9: Picard Iteration

PICARD(A,u0, f) :

while ||A(u0)u0 − f(u0)|| > τ do
Solve for u1: A(u0)u1 = f(u0);

Relaxation: u1 = ωu1 + (1− ω)u0;

Update: u0 = u1;

end

Return u1;

5.3 A two-grid method

Before we give our numerical results using the unigrid Algorithms 7 and 8, it is

worth to give a separate discussion of a two-grid method that we discovered from

the special structure of the system matrix A(u). We show a situation where the

two-grid algorithm always gives the exact solution on the coarse-grid points. From

this, we construct the interpolation operators that will give a positive approximate

solution. We will first introduce the detailed formulation of the method, and then

provide numerical results for the model problem.

5.3.1 Algorithm formulation

In this section, we introduce an approach that is effective as a two-grid method. The

generalization of this algorithm to a V-cycle over more grids is not in the scope of

this thesis and is left to be studied in the future. A two-grid algorithm consists of a

coarse-grid solve and a correction step:

A2he2h = R(b− Auh),

uh = uh + Pe2h,

along with one or more relaxation steps. When using a coarse-grid correction, we can

see that

RA(uh + Pe2h) = Rb,

58

and the resulting approximate solution is in the solution space of RAx = Rb, because

x = u +N(RA),

where N(RA) is the nullspace of RA, and u is the true solution, i.e., Au = b.

We now choose a restriction operator and look to understand the corresponding

nullspace of RA. For the variable-coefficient diffusion equation we are considering, the

system matrix is given by Equation (5.2). We choose the standard operator-induced

restriction operator,

R =



q1

1

p3 q3

1

p5 q5

1

p7
. . .
. . .
. . . qN−3

1

pN−1



T

=



a 3
2

a 1
2
+a 3

2

1
a 5
2

a 5
2
+a 7

2

a 7
2

a 5
2
+a 7

2

1
a 9
2

a 9
2
+a 11

2

a 11
2

a 9
2
+a 11

2

1
a 13

2

a 13
2
+a 15

2

. . .

. . .

. . .
a
N− 5

2

a
N− 7

2
+a

N− 5
2

1
a
N− 3

2

a
N− 3

2
+a

N− 1
2



T

,

(5.5)

with pj =
a
j− 1

2

a
j− 1

2
+a

j+1
2

, qj =
a
j+1

2

a
j− 1

2
+a

j+1
2

. From these, we get that

RAh =


0 t1 + t3 0 −t3 0

0 −t3 0 t3 + t5 0 −t5 0
. . .

 ,
where tj =

aj−1/2aj+1/2

aj−1/2+aj+1/2
. This gives the nullspace of RA as

N(RA) =
{

[v1, 0, v3, 0, · · · , 0, v2j−1, 0, · · ·]T | v2j−1 ∈ R for 1 ≤ j ≤ N/2
}

(5.6)

59

.

Because

uh + Pe2h = u− E, E ∈ N(RAh), (5.7)

we see that E is the error in the resulting approximate solution and, as long as the true

solution is positive (which is reasonable because we want positive approximations of a

positive true solution), we can easily choose the vector E to guarantee the positivity

of the multigrid approximation uh+Pe2h. Also notice that the above equation is also

equivalent to requiring

Pe2h = eh − E, E ∈ N(RAh). (5.8)

We see that E is, in fact, also the discrepancy of the interpolated error with the exact

error. For example, if E = 0, we want to use P such that the error interpolation is

exact, i.e., Pe2h = eh, so that the corrected solution is also the exact solution. Of

course this ideal case is not achievable in practice.

Therefore, we wish to find an interpolation operator P such that Pe2h is a good

approximation of eh and, at the same time, uh + Pe2h is positive given a positive

approximation uh. To construct such an operator P , we start by assuming that P

has the form

P =



β1

1

α1 β2

1

α2 β3

1

α3

. . .


, (5.9)

where αj, βj ≥ 0 for all j.

Theorem 5.3.1. The solution, e2h, on the coarse grid of a two-level multigrid method

for our model problem gives the exact error of the initial guess at coarse-grid points,

i.e. e2hj = eh2j.

Proof. This is easy to see by substituting P from Equation (5.9) to Equation (5.8)

and comparing the left- and right-hand sides.

60

Theorem 5.3.2. A two-level multigrid method for our model problem with interpo-

lation operator P given by Equation (5.9) and restriction operator R given by Equa-

tion (5.5) always gives the exact solution on coarse-grid points.

Proof. By Equation (5.7), we have

uh + Pe2h =



uh1

uh2

uh3

uh4

uh5
...


+



β1e
2h
1

e2h1

α1e
2h
1 + β2e

2h
2

e2h2

α2e
2h
2 + β3e

2h
3

...


=



uh1 + δ1

uh2 + e2h1

uh3 + δ3

uh4 + e2h2

uh5 + δ5
...


=



u1 − Eh
1

u2

u3 − Eh
3

u4

u5 − Eh
5

...


.

From this, we see that uh2j + e2hj = u2j, consistent with Theorem 5.3.1. In addition,

we see that the corrected multigrid solution is

uh + Pe2h =



uh1 + δ1

u2

uh3 + δ3

u4

uh5 + δ5
...


.

This proves the theorem.

In order to guarantee the positivity of the multigrid solution, we only need to

make sure that the approximate solution on the fine-grid points is positive. That is,

we want

uh2j−1 + δ2j−1 > 0, (5.10)

where
δ1 = β1e

h
2 ,

δ2j−1 = αj−1e
h
2j−2 + βje

h
2j, j = 2, · · · , N − 1,

δ2N−1 = αN−1e
h
2N−2.

(5.11)

Trivially, if we take δ1 = δ3 = · · · = δ2N−1 = 0, namely choose αj = βj = 0, then the

61

interpolation operator becomes

P =



0

1

0 0

1

0 0

1

0
. . .


.

and

uh + Pe2h =
[
uh1 u2 uh3 u4 uh5 · · ·

]T
> 0,

given any positive initial approximation. The injection interpolation operator is, how-

ever, well-known to be too simplistic to yield the best-possible performance from a

multigrid method.

Hence, we try to construct an interpolation operator of the form given in Equa-

tion (5.9) using the constraint condition in Equation (5.10). Because uh is given, the

sign of uh2j−1 is dependent on the values eh2j−2 and eh2j for the general case. It is easier

for analysis if we know the signs of eh2j−2 and eh2j. Therefore, we consider 4 cases

below, taking N = 6 for simplicity of discussion.

• Case 1: eh2 > 0, eh4 > 0. Then, for any αj, βj > 0

δ1 = β1e
h
2 > 0, δ3 = α1e

h
2 + β2e

h
4 > 0, δ5 = α2e

h
4 > 0.

Therefore, fine-grid solutions are always all positive after correction,

uh1 + δ1 > 0, uh2 + δ2 > 0, uh3 + δ3 > 0.

Thus, no violation of positivity can occur in this case.

• Case 2: eh2 < 0, eh4 < 0. Then,

δ1 = β1e
h
2 < 0, δ3 = α1e

h
2 + β2e

h
4 < 0, δ5 = α2e

h
4 < 0.

62

0 1 2 3 4 5 6

uh1
uh2

uh3
uh4 uh5

δ1
eh2

δ3
eh4 δ5

Figure 5.1: Case 1: eh2 > 0, eh4 > 0. An example of the approximate solution before
and after coarse-grid correction. eh2 = e2h1 and eh4 = e2h2 are solved on the coarse grid.
δ1, δ3 and δ5 are interpolated from e2h using Pe2h. This figure depicts the situation
when eh2 > 0, eh4 > 0.

For now, ignore the boundary points at 1 and 5. For point 3, the extreme

situation occurs when uh3 + δ3 = 0, i.e.

uh3 + α1e
h
2 + β2e

h
4 = 0. (5.12)

As shown in Figure 5.2b, treating α1 and β2 as variables, then Equation (5.12)

forms a line in the plane and all the points below this line are suitable pairs of

parameters such that uh3 + δ3 > 0. For points 1 and 5, uh1 + β1e
h
2 and uh5 + α2e

h
4

are guaranteed to be positive in the shaded region. Therefore, the resulting

corrected solution is positive when α1 and β2 are chosen to be in the shaded

region in Figure 5.2b.

0 1 2 3 4 5 6

uh1
uh2

uh3
uh4 uh5

|δ1|
−eh2

|δ3| −eh4 |δ5|

(a) Solution before and after correction

δ3 + uh3 = 0

−uh3
eh4

0 −uh3
eh2

α1

β2

uh3 + δ3 > 0

(b) Suitable range of α1, β2 pair

Figure 5.2: Case 2: eh2 < 0, eh4 < 0. An example of the approximate solution before
and after coarse-grid correction. eh2 = e2h1 and eh4 = e2h2 are solved on the coarse grid.
δ1, δ3 and δ5 are interpolated from e2h using Pe2h. This figure depicts the situation
when eh2 < 0, eh4 < 0.

63

0 1 2 3 4 5 6

uh1
uh2

uh3

uh4 uh5|δ1|
−eh2

|δ3| eh4
δ5

(a) Solution before and after correction

0 −uh3
eh2

uh3 + δ3 > 0

α1

β2

(b) Suitable range of α, β pair

Figure 5.3: Case 3: eh2 < 0, eh4 > 0. An example of the approximate solution before
and after coarse-grid correction. eh2 = e2h1 and eh4 = e2h2 are solved on the coarse grid.
δ1, δ3 and δ5 are interpolated from e2h using Pe2h. This figure depicts the situation
when eh2 < 0, eh4 > 0.

• Case 3: eh2 < 0, eh4 > 0. Then the sign of δ3 = α1e
h
2 + β2e

h
4 is indefinite, but the

extreme case is still when

uh3 + δ3 = uh3 + α1e
h
2 + β2e

h
4 = 0,

which is indicated in Figure 5.3b by an open circle. Taking β2 = 0 gives α1 =

−uh3
eh2

. If β2 > 0 then, as long as α1 < −uh3
eh2

, we can ensure that uh3+δ3 > 0. Hence,

the shaded region in Figure 5.3b depicts the acceptable α1, β2 pairs, which also

ensures that uh1 + β1e
h
2 and uh5 +α2e

h
4 are positive for points 1 and 5. Therefore,

the resulting corrected solution is guaranteed to be positive.

• Case 4: eh2 > 0, eh4 < 0. Similar to case 3, we have the acceptable region as

shaded in Figure 5.4b.

64

0 1 2 3 4 5 6

uh1
uh2

uh3
uh4 uh5

δ1
eh2
|δ3|

−eh4 −δ5

(a) Solution before and after correction

0

−uh3
eh4

uh3 + δ3 > 0

α1

β2

(b) Suitable range of α, β pair

Figure 5.4: Case 4: eh2 > 0, eh4 < 0. An example of the approximate solution before
and after coarse-grid correction. eh2 = e2h1 and eh4 = e2h2 are solved on the coarse grid.
δ1, δ3 and δ5 are interpolated from e2h using Pe2h. This figure depicts the situation
when eh2 > 0, eh4 < 0.

The above analysis gives all possible cases of the coarse-grid solution and the cor-

responding range of αj−1 and βj that we can use to make sure the resulting corrected

fine-grid solution is positive. However, we do not know the signs of eh2j = e2hj because

they are what we are trying to solve for on the coarse grid, and we cannot even know

the coarse-grid system to be solved without giving the interpolation operator whose

entries are αj−1 and βj.

Luckily, by drawing the shaded region of the 4 cases in one picture as shown in

Figure 5.5, we see that the triangle region in case 2 is contained in the acceptable

region of all 4 cases. This means that we can use points in this triangle without

discriminating between the 4 cases. In order to avoid dependency on the coarse-grid

solution e2h, suppose eh2j < 0, note that since

uh2j + eh2j = u2j > 0,

we have eh2j > −uh2j. Hence

−u2j−1
e2j

>
u2j−1
u2j

.

And similarly

−u2j−1
e2j−2

>
u2j−1
u2j−2

,

when e2j−2 < 0. Therefore, as shown in Figure 5.5, we can get a smaller triangular

region (the shaded triangle OCD) that satisfies the conditions for all the 4 cases based

65

−u2j−1

e2j−2

u2j−1

u2j−2

−u2j−1

e2j

u2j−1

u2j

This line exists only when e2j < 0

T
h
is

li
n
e
ex

is
ts

o
n
ly

w
h
en

e 2
j
−
2
<

0

αj−1

βj

O

A

B

C

D

Figure 5.5: The 4 cases shown in one graph. This figure draws the acceptable regions
of the 4 cases from Figure 5.2b to Figure 5.4b in one graph. We can see that the
triangle from case 2 is the common area of all 4 cases. In addition, the shaded little
triangle OCD is guaranteed to be contained by the bigger triangle OAB from case 2.

only on approximation values uh known before coarse-grid correction.

Therefore, obvious possibilities for the weights would be to choose points on the

line

βj = − 1

u2j
(u2j−2αj−1 − u2j−1).

Possible examples are to take αj−1 = 0, βj =
uh2j−1

uh2j
(option 1 below), or αj−1 =

uh2j−1

uh2j−2
, βj = 0 (option 2), or αj−1 = βj =

uh2j−1

uh2j−2+u
h
2j

(option 3). Option 1, αj−1 = 0, βj =

uh2j−1

uh2j
gives the first entry of P to be zero, so eh1 would not get corrected; however, to

avoid this, we can choose P11 =
uh1
uh2

. Similarly for option 2, αj−1 =
uh2j−1

uh2j−2
, βj = 0, the

last entry is nominally zero, so ehN−1 would not get corrected. Again, we can choose

this to be
uhN−1

uhN−2
. More concretely, the option 1 interpolation operator is given by

66

P1 =



uh1
uh2

1

0
uh3
uh4

1

0
uh5
uh6

1

0
. . .

uhN−3

uhN−2

1
uhN−1

uhN−2



, (5.13)

the option 2 interpolation operator is given by

P2 =



uh1
uh2

1
uh3
uh4

0

1
uh5
uh4

0

1
uh7
uh6

. . .

0

1
uhN−1

uhN−2



, (5.14)

67

and the option 3 interpolation operator is given by

P3 =



uh1
uh2

1
uh3

uh2+u
h
4

uh3
uh2+u

h
4

1
uh5

uh4+u
h
6

uh5
uh4+u

h
6

1
uh7

uh6+u
h
8

. . .
uhN−3

uhN−4+u
h
N−2

1
uhN−1

uhN−2



. (5.15)

Therefore, we get the desired nontrivial interpolation operators that are guaranteed to

give a positive approximate solution using a two-grid method. It is interesting to note

that these interpolation operators try to predict the behavior of the error according

to the approximation. Taking P1 for example,

δh2j−1 =
uh2j−1
uh2j

e2hj =
uh2j−1
uh2j

eh2j,

where eh2j are the exact errors of the approximate solution at the coarse-grid points,

and δh2j−1 are the interpolated corrections at the fine-grid points, this gives

δh2j−1
eh2j

=
uh2j−1
uh2j

.

When uh2j−1 is much bigger than uh2j, then the interpolated correction δh2j−1 would also

be much bigger than the exact error eh2j, and vice versa. However, we do not know the

error behaviour beforehand. Therefore, it seems more appropriate to use a random

initial approximation when performing this algorithm, so as to avoid systematic biases

in the initial corrections.

68

5.3.2 Numerical results

In this section, we show the numerical results of solving our model problem using

Algorithm 1 with the restriction operators from Equation (5.5) and interpolation

operators P1, P2 and P3 formulated above.

In the numerical experiments, we chose a randomly generated initial guess, per-

form 2 pre- and post-relaxations using the weighted Jacobi method with weight

parameter ω = 1/3. The stopping criterion for the inner loop of Algorithm 9 is

||b − A(u(k))u(k+1)||2 < 10−8, and for the outer loop, the stopping criterion is ||b −
A(u(k+1))u(k+1)||2 < 10−8. The number of iterations required for the convergence of

the method with different mesh sizes are recorded in Tables 5.1 to 5.3.

N 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt.
210 24 19 11 5 4
29 23 18 11 5 3
28 22 17 11 5 3
27 20 17 10 5 3
26 19 15 10 5 3

Table 5.1: Number of inner multigrid iterations required for convergence at each
outer Picard iteration of the 2-grid algorithm using the interpolation operator P1.
The ”PIt.” means Picard iteration.

N 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt.
210 24 19 11 5 4
29 23 18 11 5 3
28 22 17 11 5 3
27 20 16 10 5 3
26 19 15 10 5 3

Table 5.2: Number of inner multigrid iterations required for convergence at each outer
Picard iteration of the 2-grid algorithm using option 2 interpolation operator P2. The
”PIt.” means Picard iteration.

Note that P1 and P2 give the same convergence, while P3 has slightly better con-

vergence results in comparison, which is expected as it uses the information from both

neighboring points. Note also that the number of iterations required for convergence

does not increase dramatically when we double the size of the problem. A smaller

69

N 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt.
210 20 16 9 4 2
29 19 15 9 4 2
28 18 15 8 3 2
27 17 14 9 3 2
26 16 13 8 3 2

Table 5.3: Number of inner multigrid iterations required for convergence at each outer
Picard iteration of the 2-grid algorithm using option 3 interpolation operator P3. The
”PIt.” means Picard iteration.

number of iterations are required at later Picard iterations, because a better initial

guess is achieved for the inner two-grid solver of later Picard iterations.

To test the performance of the algorithm with P constructed from other points

in the shaded triangle OCD in Figure 5.5, we did further numerical experiments by

choosing points on the βj = αj−1 line, which can be achieved by letting

βj = αj−1 =
muh2j−1

uh2j−2 + uh2j
, (5.16)

where m determines how far-away the point is from the origin. We can see when

m is between 0.8 and 1.2, the algorithm is generally convergent (when m > 1.0, the

algorithm is convergent but not positivity preserving) as shown in Table 5.4. The

best convergence is achieved when m = 1, which is at the middle point of line CD in

Figure 5.5.

Moreover, if we change the position of points on the bounding line CD in Figure 5.5

by letting

αj−1 =
u2j−1

u2j−2 + qu2j
, βj =

qu2j−1
u2j−2 + qu2j

, (5.17)

and varying the value of q, the numerical results in Table 5.5 show that the convergence

does not change dramatically for different q. The best result is still at the middle point.

From these results, we can see that the two-grid algorithm developed above is

effective. However, naively applying the algorithm recursively to form a multilevel

method does not give us good convergence properties. This can be understood by

recognizing that the solution at every coarse level gives the error in the approximation

on their finer levels. Take a problem with 17 grid points, 0, 1, ..., 16, for example. For

the two-grid method, the coarse-grid solution gives the exact error in the approximate

70

m 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt.
0.80 100 100 100 52 61
0.825 44 37 64 29 100
0.85 69 46 96 14 42
0.86 100 25 18 22 27
0.87 24 67 13 20 43
0.88 23 34 20 11 21
0.89 48 38 27 23 13
0.90 22 28 11 23 15
0.95 23 16 10 6 7
1.00 20 16 9 4 2
1.05 21 22 12 12 8
1.08 55 27 12 12 9
1.10 100 59 52 63 100
1.12 23 24 25 44 13
1.15 23 19 81 12 34
1.20 100 59 52 63 100
1.30 100 100 53 100 100
1.40 100 100 100 100 100

Table 5.4: Number of inner multigrid iterations required for convergence at each outer
Picard iteration of the 2-grid algorithm for N = 210 when modifying m, where m is
used in Equation (5.16) for determining how far the point in away from the origin in
Figure 5.5. The ”PIt.” means Picard iteration. A maximum of 100 inner iterations
were allowed for each Picard iteration, so the results reporte as ”100” indicate a failure
to converge.

solution of the fine level at coarse-grid points 2, 4, .., 14, while the error at fine-grid

points 1, 3, ..., 15 are only interpolated approximately. If we add a third level, then

the second level only gives the exact error at grid points 4, 8, because the error at grid

points 2, 6, 12 are interpolated from the third level. Therefore, if the interpolation

operator does not reflect the error distribution well, the convergence performance will

suffer. Moreover, the explicit parameterization of N(RA) given here is only generally

known for simple matrices, A, so the technique is not readily generalizable to more

settings.

71

q 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt.
100 24 19 11 5 4
50 23 18 11 5 4
2 20 16 9 5 3
1 20 16 9 4 2

0.5 20 16 9 5 3
0.01 24 19 11 5 4
0.001 24 19 11 5 4

Table 5.5: Number of inner multigrid iterations required for convergence at each outer
Picard iteration of the 2-grid algorithm for N = 210 when modifying q in Figure 5.5.
The ”PIt.” means Picard iteration.

5.4 Numerical results using the unigrid method

Due to the reasons discussed above, we are not able to generalize the previous two-

grid method to a multigrid method. To be able to implement a positivity-preserving

multigrid method, we apply the unigrid Algorithms 7 and 8 and provide numerical

results in this section.

As before, the stopping criterion for the inner loop of Algorithm 9 using the unigrid

method as the solver is ||b − A(u(k))u(k+1)||2 < 10−8, and for the outer loop, the

stopping criterion is ||b − A(u(k+1))u(k+1)||2 < 10−8. Two sweeps of relaxation are

performed at each level of the unigrid solver. We first implement Algorithm 7 with

uniform thresholding as the solver in the inner loop of Algorithm 9, and get the

convergence performance shown in Table 5.6 for solving our model nonlinear diffusion

equation. We can see that the number of iterations required for convergence does

not increase dramatically when we double the size of the problem. A smaller number

of iterations are required at later Picard iterations, because a better initial guess is

available for the inner unigrid solver of the later Picard iterations. Table 5.7 gives the

numerical results when using Algorithm 8 with local correction as the solver in the

inner loop. We can see the iterations required for convergence are exactly the same

as in Table 5.6.

To further test this algorithm, we provide more numerical results by starting the

iteration with an all-ones initial guess. Tables 5.8 and 5.9 show the number of unigrid

iterations required for convergence at each Picard iteration. We can see a similar

convergence as seen in Tables 5.6 and 5.7 where a random initial guess was used.

72

Again, the local correction scheme gives exactly the same results as the uniform

thresholding scheme.

To explain the similar behaviour of the two correction schemes, one reasonable

conjecture is that the additional correction step we add into the unigrid method to

ensure the solution positivity does not have a big influence on the unigrid method

itself. To test this idea, we applied the standard V-cycle multigrid method with 2

pre- and post-relaxations using Gauss-Seidel method in the inner loop as the solver,

and give the numerical results in Table 5.10. We can see that this gives exactly the

same convergence seen in Table 5.6 which showed results from the modified unigrid

method, Algorithm 7. This verifies our conjecture. Therefore, we can conclude that

our algorithms are effective methods that achieve the goal of positivity preserving.

N 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt. 6th.PIt.

210 19 15 13 10 7 4

29 18 14 12 9 6 3

28 17 14 11 9 6 3

27 16 13 11 8 5

26 15 12 10 7 4

Table 5.6: Number of inner unigrid iterations required for convergence at each outer
Picard iteration with random initial guess for different N . The ”PIt.” means Picard
iteration. Algorithm 7 with uniform thresholding is applied.

N 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt. 6th.PIt.

210 19 15 13 10 7 4

29 18 14 12 9 6 3

28 17 14 11 9 6 3

27 16 13 11 8 5

26 15 12 10 7 4

Table 5.7: Number of inner unigrid iterations required for convergence at each outer
Picard iteration with random initial guess for different N . The ”PIt.” means Picard
iteration. Algorithm 8 with local correction is applied.

73

N 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt. 6th.PIt.

210 18 15 13 10 7 4

29 17 15 12 10 7 4

28 17 14 12 9 6 3

27 16 14 11 8 6 2

26 15 13 10 8 5 2

Table 5.8: Number of inner unigrid iterations required for convergence at each outer
Picard iteration with all-ones initial guess for different N . The ”PIt.” means Picard
iteration. Algorithm 7 with uniform thresholding is applied.

N 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt. 6th.PIt.

210 18 15 13 10 7 4

29 17 15 12 10 7 4

28 17 14 12 9 6 3

27 16 14 11 8 6 2

26 15 13 10 8 5 2

Table 5.9: Number of inner unigrid iterations required for convergence at each outer
Picard iteration with all-ones initial guess for different N . The ”PIt.” means Picard
iteration. Algorithm 8 with local correction is applied.

N 1st. PIt. 2nd. PIt. 3rd. PIt. 4th. PIt. 5th. PIt. 6th.PIt.

210 19 15 13 10 7 4

29 18 14 12 9 6 3

28 17 14 11 9 6 3

27 16 13 11 8 5

26 15 12 10 7 4

Table 5.10: Number of inner multigrid iterations required for convergence at each
outer Picard iteration with random initial guess for different N . The ”PIt.” means
Picard iteration. The standard V-cycle multigrid method using Algorithm 2 is applied
as the solver in the inner loop.

Chapter 6

Application to Singularly

Perturbed Problems

In this chapter, we study the solution of singularly perturbed problems that fur-

ther motivates the importance of sign preservation in certain applications, and are a

good fit for the algorithms developed in the last chapter to solve nonlinear problems.

We show that a Picard iteration combined with the positivity-preserving multilevel

methods developed in the last chapter provides an alternative approach for nonlinear

problems, and is also a feasible way to solve for some solutions that are not easily

computed using Newton’s method.

6.1 Introduction to the problem

The second-order singularly perturbed reaction diffusion equation with boundary con-

ditions is
Fεu(x) = −ε2u′′(x) + b(x, u) = 0, x ∈ [0, 1],

u(0) = g0, u(1) = g1.
(6.1)

where ε is a small positive parameter, b ∈ C∞([0, 1]× R1), and g0, g1 are some given

constants. The solutions to Equation (6.1) usually exhibit boundary and/or interior

layers, which are narrow regions where the solutions change rapidly. The boundary

layers are often caused by the contradiction between the boundary conditions imposed

75

and the solution of the reduced problem

b(x, u) = 0, x ∈ [0, 1], (6.2)

which is obtained by setting ε = 0 in Equation (6.1). The solution of Equation (6.2)

does not in general satisfy either of the boundary conditions in Equation (6.1). Under

certain hypotheses [12] on the function b, the reduced problem in Equation (6.2) will

have at least one solution. Following [12], we call the solution, u0(x) ∈ C∞, a stable

reduced solution of Equation (6.2) if there exists a constant γ such that

bu(x, u0) > γ2 > 0, ∀x ∈ [0, 1]. (6.3)

Otherwise, it is called an unstable reduced solution. We will call the solution to

Equation (6.1) near its stable reduced solution a stable solution, and an unstable

solution otherwise, if it exists.

One common approach for solving these singularly perturbed problems is to apply

iterative methods, such as Newton’s method for nonlinear problems, and use the

solutions to the reduced problem as the initial guesses. While this method is usually

effective to solve for stable solutions to Equation (6.1), the existence and computation

of the solutions near its unstable reduced solutions are often not clear.

In the following discussion, we present several numerical examples and show that

Newton’s method predominantly converges to only stable solutions. Therefore, it is

preferable to use adaptively damped Picard iterations to directly control the behaviour

of the approximate solution.

6.2 Discretization

Because the solution of the problem often has boundary and/or interior layers, we will

perform the discretization of Equation (6.1) on a Shishkin mesh, which is a piece-wise

equidistant mesh. Suppose the mesh is defined by

0 = x0 < x1 < · · · < xN−1 < xN = 1,

76

with hj = xj − xj−1 for j = 1, 2, ..., N , and h̄j = (hj + hj+1)/2 for j = 1, 2, ..., N − 1.

Then, the standard second-order finite-difference approximation of u′′(xj) is

u′′(xj) ≈
u′(xj+1/2)− u′(xj−1/2)

h̄j
≈ 1

h̄j

(
uj+1 − uj
hj+1

− uj − uj−1
hj

)
=

1

h̄j

[
1

hj
uj−1 −

(1

hj
+

1

hj+1

)
uj +

1

hj+1

uj+1

]
,

where xj+1/2 = (xj + xj+1)/2. If we introduce the quantities

D2 = −



1
h1

+ 1
h2

− 1
h2

− 1
h2

1
h2

+ 1
h3

− 1
h3

.

− 1
hN−2

1
hN−2

+ 1
hN−1

− 1
hN−1

− 1
hN−1

1
hN−1

+ 1
hN


,

H̄ =


h̄1

h̄2
. . .

h̄N−1

 , y =


b(x1, u1)

b(x2, u2)
...

b(xN−1, uN−1)

 , bc = ε2


g0/h1

0
...

g1/hN

 ,
then, the discrete system corresponding to Equation (6.1) may be written (after rescal-

ing by H̄) as

− ε2D2u + H̄y + bc = −ε2D2u + f = 0. (6.4)

6.3 First example problem

We first study a problem with two reduced solutions, one of which is a stable reduced

solution, and the other one is an unstable reduced solution. Consider the following

differential equation with boundary conditions

− ε2u′′ − u2 − u+ 2 = 0, u(0) = u(1) = 0. (6.5)

This problem has two (constant) reduced solutions, u = −2 and u = 1. Here,

bu(x, u) = −2u − 1. From Equation (6.3), we can see that u = −2 is a stable re-

duced solution, and u = 1 is an unstable reduced solution.

77

The solution of this problem will have boundary layers. We will use Shishkin

meshes to better resolve these boundary layers. To construct the Shishkin mesh for

the equation, set

τ = min{1/4, (2.2ε/β) lnN}. (6.6)

Then, divide the intervals [0, τ], [τ , 1-τ] and [1-τ , 1] into N/4, N/2, and N/4

equidistant sub-intervals respectively. The mesh on [0, τ] and [1-τ , 1] is usually finer

due to a small τ , so that the boundary layers can be properly resolved.

6.3.1 Numerical results with Newton’s method

We show that Newton’s method can converge to the stable solution, and behaves

poorly for the unstable solution. Let

F(u) = −ε2D2u + f = 0.

Here, the j-th entry of f is fj = h̄j(−u2j −uj + 2). The Jacobian matrix of this system

is

F′(u) = −ε2D2 + diag(f),

where diag(f) is a diagonal matrix with [diag(f)]jj = fj. Newton’s method with an

initial guess u(0) computes the iterations

u(k+1) = u(k) + s(k), where F′(u(k))s(k) = F(u(k)),

until the convergence condition ||F(u(k))||∞ < 10−9 is satisfied.

By setting the initial guess of Newton’s method to u(0) = −2, and choosingN = 212

so that the boundary layers are well resolved for the values of ε that we are testing,

we can get the convergent solution of Equation (6.5) that is close to u = −2 as shown

in Figure 6.1. However, Newton’s method fails to converge when we set the initial

guess to u(0) = 1, as can be seem from Table 6.1.

ε 2−5 2−6 2−7 2−8 2−9

||F(u(100))||∞ 1.49e4 2.9e13 1.2e9 2.33e12 6.79e10

Table 6.1: The ∞-norm of the residual with respect to ε after 100 Newton iterations.

78

Figure 6.1: Convergent solution of Equation (6.5) on a mesh of size N = 212 com-
puted with Newton’s method by setting the initial guess to u(0) = −2. The legends
2−2, 2−3, ..., indicate the values of ε for each solution.

6.3.2 Numerical results with adaptively damped Picard iter-

ation

In this section, we try to solve for the unstable solution (if it exists) using an adaptively

damped Picard iteration. By writing

u(k+1) − u(k)

ω
− ε2H̄−1D2u(k+1) − u(k+1) = −2 + (u(k))2,

and thinking of this as a time-stepping, where 0 < ω < 1, we get the iterative scheme

− ε2D2u(k+1) +

(
1

ω
− 1

)
H̄u(k+1) = H̄

(
− 2 + (u(k))2 +

1

ω
u(k)

)
, (6.7)

where 0 < ω < 1 is a damping parameter chosen adaptively according to the current

approximation, and (u(k))2 means element-wise square of u(k). This gives the linear

system to be solved at each Picard iteration as Au(k+1) = b with

A = −ε2D2 +

(
1

ω
− 1

)
H̄, b = H̄

(
− 2 + (u(k))2 +

1

ω
u(k)

)
.

79

To obtain the stable solution, we only need to choose an initial guess that is close

to the reduced stable solution u = −2 with appropriate damping parameter such as

ω = 0.01, and perform the iteration until convergence.

To obtain the unstable solution, setting the initial guess close to u = 1 does

not work. Because we expect the solution to be positive, we try to restrict our

approximation at every iteration step, requiring it to be always positive. The way we

achieve this is to take advantage of the damping parameter ω in the iterative scheme.

We want to choose ω such that system matrix A is positive definite and the right

hand side b is positive. A is always positive definite for this iterative scheme because

1/ω − 1 > 0, which implies that the matrix A is an irreducibly strictly diagonal

dominant Z-matrix. Therefore, the parameter ω is adaptively chosen according to

the right-hand side b. At iteration k, if −2 + u(k)2 > 0, we pick a fixed value of ω

such as ω = 0.01 (in our implementation); otherwise, we pick

ω = γmin

{
min{u(k)}

2−min{u(k)}2
, 1

}
,

where 0 < γ < 1 is a constant chosen appropriately (γ = 0.999 in the numerical

results), guaranteeing that the right-hand side b is entry-wise positive. Then, by the

properties of M-matrices, we can guarantee that the approximate solution at iteration

k + 1 is positive. This is also where the sign-preserving property of the linear solver

is important in this application.

By setting the initial guess to u = 1 and performing this algorithm, we get the

solution after 100 iterations for different choices of ε as shown in Figure 6.2. Note,

N = 215 is chosen to be large enough to resolve the boundary layers. To measure how

accurate the solution is, we also record the norms of the residual

r(k) = −ε2D2u(k) − (u(k))2 − u(k) + 2,

with different choices of N for the case when ε = 2−12 as shown in Table 6.2. We see

that the norms of residual decrease when N increases. From the pattern in the table,

it is reasonable to argue that the norms of residual can reach a 10−8 tolerance when

N is big enough. However, this residual does not represent well the actual error in

the solution.

80

N 216 217 218 219 220

||r||2 9.8e− 4 6.9e− 4 4.8e− 4 3.3e− 4 2.3e− 4

||r||∞ 5.4e− 5 2.7e− 5 1.3e− 5 6.6e− 6 3.3e− 6

Table 6.2: The 2-norm and ∞-norm of the residual after 100 Picard iterations with
respect to N .

From Equation (6.5), we can see that

ε2u′′ = −u2 − u+ 2.

Therefore, when u < 1, we have u′′ = −u2−u+ 2 > 0, which means the true solution

u should be concave upward; When u > 1, we have u′′ = −u2 − u + 2 < 0, which

means the true solution u should be concave downward. The only inflection point is

at u = 1. The numerical results shown in Figure 6.2 do not agree with this expected

behaviour of the solution.

Due to these observations, we are led to the belief that another solution of Equa-

tion (6.5) close to its reduced unstable solution does not exist.

Figure 6.2: Computed solution of Equation (6.5) on a mesh of size N = 215 after 100
iterations using Picard iteration by setting the initial guess to u(0) = 1. The legends
2−4, 2−6, ..., indicate values of ε for each solution.

81

6.4 Herceg problem

The second problem we study is due to Herceg [9]. The differential equation and

boundary conditions for this problem are

− ε2u′′ + (u2 + u− 0.75)(u2 + u− 3.75) = 0, u(0) = u(1) = 0. (6.8)

This problem has 4 reduced solutions, u = −2.5, u = −1.5, u = 0.5 and u = 1.5,

of which u = −2.5 and u = 0.5 are unstable, and u = −1.5 and u = 1.5 are stable

reduced solutions. Six distinct solutions are found in [2] for this problem using a

deflation technique. Of all the six solutions, there are three solutions that are either

positive or negative in the whole domain [0, 1]. Using Newton’s method, by setting

the initial guess close to u = −1.5 and u = 1.5, we are able to find two distinct

stable solutions. However, Newton’s method cannot find solutions that are close to

the unstable reduced solutions. We will compare the performance of Newton’s method

and the damped Picard iteration with sign-preserving inner loop, and show that the

later algorithm is more robust to the initial guess than Newton’s method.

The implementation of Newton’s method is the same as in the previous example,

so we do not repeat the discussion here. For the damped Picard iteration, we use the

linearization

u(k+1) − u(k)

ω
− ε2H̄−1D2u(k+1) = −((u(k))2 + u(k) − 0.75)((u(k))2 + u(k) − 3.75).

This gives the linear system to be solved at each Picard iteration as Au(k+1) = b with

A = −ε2D2 +
1

ω
H̄, b = H̄

(
1

ω
u(k) − ((u(k))2 + u(k) − 0.75)((u(k))2 + u(k) − 3.75)

)
.

It is easy to see that the system matrix A is positive definite and an M-matrix.

Therefore, when solving for the negative solution, we need to make sure that the

right-hand side b is entry-wise negative; when solving for the positive solution, we

need to make sure that the right-hand side b is entry-wise positive. These conditions

are restricted through the damping parameter ω. In this way, we can guarantee that

the approximate solution at every step is sign-preserving.

82

To be more concrete, when computing the positive solution close to u = 1.5, if

−((u(k))2 + u(k) − 0.75)((u(k))2 + u(k) − 3.75) ≤ 0,

which means min{u(k)} ≥ 0.5 and max{u(k)} ≤ 1.5, then we pick a fixed value of ω

such as ω = 0.01 (in our implementation); otherwise, we pick

ω = γmin

{
min

{
up

(k)

((up
(k))2 + up

(k) − 0.75)((up
(k))2 + up

(k) − 3.75)

}
, 1

}
,

where up
(k) = u(k)(u(k) > 1.5 | u(k) < 0.5) is a vector of the entries of u(k) that are

greater 1.5 or less than 0.5, and 0 < γ < 1 is an appropriate constant (γ = 0.999

in the numerical results) and the products and quotients in the definition of ω are

interpreted entrywise. When computing the negative solution close to u = −1.5, if

−((u(k))2 + u(k) − 0.75)((u(k))2 + u(k) − 3.75) ≥ 0,

which means min{u(k)} ≥ −1.5 or max{u(k)} ≤ −2.5, then we pick a fixed value of ω

such as ω = 0.01 (in our implementation); otherwise, we pick

ω = γmin

{
min

{
un

(k)

((un
(k))2 + un

(k) − 0.75)((un
(k))2 + un

(k) − 3.75)

}
, 1

}
,

where un
(k) = u(k)(−2.5 < u(k) < −1.5) is a vector of the entries of u(k) that are

between -1.5 and -2.5, and 0 < γ < 1 is an appropriately chosen constant (γ = 0.1

in the numerical results) and the products and quotients in the definition of ω are

interpreted entrywise.

The graphs of the convergent solutions close to u = −1.5 and u = 1.5 are plotted

in Figures 6.3 and 6.4 for several choices of ε. Note that when ε = 2−2, 2−3, 2−4, the

parameter τ = 0.25 in Equation (6.6), so the Shishikin mesh is reduced to a uniform

mesh; when ε = 2−5, 2−7, we have τ < 0.25, so the mesh is denser at the boundaries.

Although we set the initial approximations equal to the reduced solution in the

computation of these two figures, this algorithm is robust to the initial guess. Nu-

merical experiments for the case when ε = 2−6 show that in the computation of the

negative solution as shown in Figure 6.4, when the initial guess is chosen to be any

negative constant vector greater than −2.5, i.e. −2.5 < u(0) < 0, this algorithm is

83

convergent. We note Newton’s method is convergent only for initial guesses between

-0.9 and -1.9. In the computation of the positive solution as shown in Figure 6.3,

when the initial guess is chosen to be any positive constant vector between 0.7 and

4, i.e. 0.7 ≤ u(0) ≤ 4.0, this algorithm is convergent. Newton’s method is conver-

gent only when the initial guess is greater than 1. Also note that in order to achieve

negativity-preservation when computing the negative solution, we need to add some

minor changes to the Algorithms 7 and 8 that were developed for positivity-preserving

algorithms. That is, we need to check negativity instead of positivity of corrected so-

lutions, and correspondingly add restrictions to ensure the corrected solutions are

negative.

In summary, we can see that this adaptively damped Picard iteration combined

with sign-preserving linear-system solver can be considered as an alternative way to

solve nonlinear systems, and can often be more robust to initial guesses compared to

Newton’s method. However, we are not able to get the fourth solution in [2] using

this algorithm. The approximation always tends to converge to the stable solution

shown in Figure 6.4 given a properly chosen negative initial guess.

Figure 6.3: Convergent solution of Equation (6.8) on a mesh of size N = 210 computed
with the adaptively damped Picard iteration by setting the initial guess to u(0) = 1.5.
The legends 2−2, 2−3, ..., indicate the values of ε for each solution.

84

Figure 6.4: Convergent solution of Equation (6.8) on a mesh of size N = 210 computed
with the adaptively damped Picard iteration by setting the initial guess to u(0) = −1.5.
The legends 2−2, 2−3, ..., indicate the values of ε for each solution.

Chapter 7

Conclusions and Future Work

7.1 Conclusion

The positivity-preserving multigrid and multilevel methods developed in this thesis

can be applied to certain types of singular and nonsingular linear systems effectively.

Originally used in applications to Markov chains, the multiplicative-error multigrid

method replaces the additive error correction in the standard multigrid methods with

multiplicative-form error correction. We extended the application of this method to

other general problems where a positivity-preserving property is required on the so-

lution. We applied this method to solve 1D equidistributing meshes and developed a

new multigrid algorithm that is monotonicity-preserving so that the generated meshes

are not tangled, and also demonstrated the mesh size-independent convergence prop-

erty applied to this problem. As we have seen, while rooted in aggregation methods

for solving Markov chain problems, the choice of the pair-wise aggregation operator

in the algorithm is reasonable in the sense that it also has a physical meaning for

that particular problem. The system matrices are singular M-matrices at all levels in

this application so the approximate solution is always positive given a positive initial

guess. In general, lumping is required for the system matrices to remain singular

M-matrices at coarse levels.

Directly applying this method to other problems requires a careful design of the

interpolation operator. To solve nonsingular linear systems, the two new algorithms

86

developed in Section 3.2, unigrid methods with uniform thresholding and local cor-

rections, give similar convergence speed (as compared to Galerkin multigrid methods)

while preserving solution positivity. The two algorithms show convergence properties

comparable to the standard V-cycle multigrid method when applied to nonlinear dif-

fusion equations. In the discussion of nonlinear diffusion equations, we also developed

a new two-grid method that is efficient for this application.

The study of singularly perturbed differential equations introduced in Chapter 6

provides another application of these positivity-preserving unigrid methods, and fur-

ther motivates the importance of sign preservation in certain problems. Combining

these algorithms with Picard iterations provides more robust approaches to find some

solutions of these nonlinear problems that Newton’s method cannot easily find. By

constraining the signs of the approximate solutions, we get better robustness to the

initial guess than Newton’s method. In addition, we have a hope of finding some un-

stable solutions, if they exist, to singularly perturbed problems, or provide evidence

that they do not exist.

7.2 Future work

Future work from this thesis includes algorithmic improvements and application exten-

sions. In terms of algorithms, this thesis considers the pair-wise aggregation operator

in the multiplicative-error multigrid method, but only provides a brief discussion of

the problems with other interpolation operators. This is also the reason we did not

apply this method to nonsingular systems. Numerical experiments show that naively

applying this method does not get us good convergence properties. The reason is that

using the pair-wise aggregation operator as an interpolation operator loses its physical

meaning here and hence does not work well. Better interpolation operators need to

be developed using ideas from algebraic multigrid methods [4].

In the positivity-preserving unigrid methods we have developed, the order we

perform relaxations is to start from the finest level to progress to the coarsest level.

While this is already efficient, such a fixed order can be replaced by other strategies.

For example, we can greedily choose the direction with the largest (or at least relatively

large) residual norm for the next update step. This is also known as the Gauss-

Southwell method. We can even choose the next iteration direction randomly, which

87

can be shown to have similar estimates for the error reduction, as discussed in [16, 7].

Further investigation of the most efficient approach to unigrid in this setting could be

interesting.

On the application side, mesh nontangling in 2D equidistributing problems is an

important topic. We have only looked at the simple 1 dimensional case, since the

condition of a nontangled mesh in 1D can be easily expressed in terms of monotonicity.

However, it is not easy to come up with a similar quantity that can be used to decide

the quality of a 2D mesh.

We also expect that our methods can be applied efficiently to 2D nonlinear diffusion

equations because the system matrix in 2D is also an M-matrix. The 2D problem

satisfies all the conditions we require for our methods to be applicable. A finite-

element discretization would be more suitable for such problems on complex domains.

In addition, Algorithm 9 applies the Picard iteration straightforwardly. A better

iterative scheme is to use the idea of nested iteration on a hierarchy of levels so as

to reduce the total amount of work required for convergence. Similarly to the nested

iteration scheme in a multigrid method, we can also combine Picard iterations with

nested iteration and start the iteration from the coarsest level, which will provide a

better initial guess for the Picard iteration on the finer levels. To be able to do this, a

good interpolation operator needs to be developed so that we can use the approximate

solution on the coarse levels to construct system matrices on finer levels. Our numer-

ical experiments show that linear interpolation is not a good choice for this problem.

Therefore, better interpolation such as quadratic or even cubic interpolations need to

be developed and tested.

Bibliography

[1] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical
sciences, volume 9 of Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of
the 1979 original.

[2] A. Birkisson and P. E. Farrell. Computing distinct solutions of singularly per-
turbed problems via deflation. Technical report, Mathematical Institute, Univer-
sity of Oxford, Oxford, UK, 2015.

[3] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Soci-
ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 2000.

[4] H. De Sterck, T. A. Manteuffel, S. F. McCormick, K. Miller, J. Ruge, and
G. Sanders. Algebraic multigrid for Markov chains. SIAM J. Sci. Comput.,
32(2):544–562, 2010.

[5] H. De Sterck, T. A. Manteuffel, S. F. McCormick, Q. Nguyen, and J. Ruge. Mul-
tilevel adaptive aggregation for Markov chains, with application to web ranking.
SIAM J. Sci. Comput., 30(5):2235–2262, 2008.

[6] H. De Sterck, K. Miller, E. Treister, and I. Yavneh. Fast multilevel methods for
Markov chains. Numer. Linear Algebra Appl., 18(6):961–980, 2011.

[7] M. Griebel and P. Oswald. Greedy and randomized versions of the multiplicative
Schwarz method. Linear Algebra Appl., 437(7):1596–1610, 2012.

[8] B. R. Haverkort et al. Performance of computer communication systems: a
model-based approach. Wiley New York, 1998.

[9] D. Herceg. Uniform fourth order difference scheme for a singular perturbation
problem. Numer. Math., 56(7):675–693, 1990.

[10] W. Huang and R. D. Russell. Adaptive moving mesh methods, volume 174 of
Applied Mathematical Sciences. Springer, New York, 2011.

89

[11] C. Isensee and G. Horton. A multi-level method for the steady state solution of
Markov chains. In SimVis, pages 191–202, 2004.

[12] N. Kopteva and M. Stynes. Numerical analysis of a singularly perturbed nonlinear
reaction-diffusion problem with multiple solutions. Appl. Numer. Math., 51(2-
3):273–288, 2004.

[13] U. R. Krieger. Numerical solution of large finite markov chains by algebraic multi-
grid techniques. In Computations with Markov chains, pages 403–424. Springer,
1995.

[14] U. R. Krieger, B. Muller-Clostermann, and M. Sczittnick. Modeling and analysis
of communication systems based on computational methods for Markov chains.
IEEE Journal on selected areas in communications, 8(9):1630–1648, 1990.

[15] H. P. Langtangen. Solving nonlinear ODE and PDE problems. Center for Biomed-
ical Computing, Simula Research Laboratory and Department of Informatics,
University of Oslo, 2016.

[16] T. A. Manteuffel, S. F. McCormick, O. Röhrle, and J. Ruge. Projection multilevel
methods for quasilinear elliptic partial differential equations: numerical results.
SIAM J. Numer. Anal., 44(1):120–138, 2006.

[17] S. F. McCormick and J. W. Ruge. Unigrid for multigrid simulation. Math. Comp.,
41(163):43–62, 1983.

[18] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, second edition, 2003.

[19] W. J. Stewart. Introduction to the numerical solution of Markov chains. Prince-
ton University Press, 1994.

[20] Y. Takahashi. A Lumping Method for Numerical Calculations of Stationary Dis-
tributions of Markov Chains. Research Report B-18, Department of Information
Sciences, Tokyo Institute of Technology, 1975.

[21] R. S. Varga. Matrix iterative analysis, volume 27 of Springer Series in Compu-
tational Mathematics. Springer-Verlag, Berlin, expanded edition, 2000.

[22] A. M. Winslow. Numerical solution of the quasilinear Poisson equation in a
nonuniform triangle mesh. Journal of computational physics, 1(2):149–172, 1966.

	Title page
	Abstract
	Lay summary
	Acknowledgements
	Statement of contribution
	Table of contents
	List of tables
	List of figures
	Introduction
	Iterative methods for solving linear systems
	Nonnegative matrices and M-matrices
	Basic iterative methods
	Weighted Jacobi and Gauss-Seidel methods
	A component-wise interpretation of Jacobi and Gauss-Seidel method

	Iterative methods for Markov chains
	Discrete- and Continuous-Time Markov chain models
	Basic iterative methods for Markov chains

	Smoothing properties of basic iterative methods
	Multigrid methods
	Restriction and interpolation operators
	Galerkin property
	Multigrid algorithms

	Unigrid methods

	Positivity-Preserving Multilevel Methods
	Singular systems
	Positivity preserving relaxation
	Multiplicative coarse-grid correction
	Positivity-preserving multigrid algorithm

	Nonsingular systems
	Unigrid method to preserve positivity with uniform thresholding
	Unigrid method to preserve positivity with local correction

	Application to 1D Equidistributing Meshes
	An introduction to adaptive equidistributing meshes in 1D
	Discretization
	Monotonicity of exact solutions
	Monotonicity preserving property of the Jacobi and Gauss-Seidel methods
	Monotonicity preserving multigrid methods
	Algorithm description
	Numerical results

	Application to Nonlinear Diffusion Equations
	Discretization
	Linearization
	A two-grid method
	Algorithm formulation
	Numerical results

	Numerical results using the unigrid method

	Application to Singularly Perturbed Problems
	Introduction to the problem
	Discretization
	First example problem
	Numerical results with Newton's method
	Numerical results with adaptively damped Picard iteration

	Herceg problem

	Conclusions and Future Work
	Conclusion
	Future work

	Bibliography

