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Abstract

The Minkowski problem is one of the core problems in convex geometry, which aims to

characterize the surface area measures of convex bodies in Rn. Various extensions and

their dual have been introduced in recent years, among which the newly proposed dual

Minkowski problem for the qth dual curvature measure is one of the most important.

This thesis deals with the general (dual) volumes, the general dual Orlicz curvature

measure C̃G,ψ, and related Minkowski type problems.

A typical problem we investigate in this thesis is the following general dual Orlicz-

Minkowski problem: under what conditions on a given measure µ defined on the unit

sphere, a two-variable function G(·, ·) and a one-variable function ψ(·), does there

exist a convex body K such that µ equals to the general dual Orlicz curvature measure

of K up to a constant τ , i.e., µ = τC̃G,ψ(K, ·)? In particular, we will study the

existence, continuity, and uniqueness of the solutions to the above general dual Orlicz-

Minkowski problem. These will be done in Chapters 3-5, where Chapter 3 deals with

the special case of C̃G,ψ obtained from Vφ, Chapter 4 studies the case C̃G,ψ with G(t, ·)

decreasing on t, and Chapter 5 concentrates on the case C̃G,ψ with G(t, ·) increasing

on t. Techniques used in Chapters 3 and 4 are the Blaschke selection theorem and

the method of Lagrange multipliers, whereas in Chapter 5 we use the approximation

arguments from discrete measures to general measures. In Chapter 6, we investigate

the “polar” of the general dual Orlicz-Minkowski problem. This type of problem is

a typical extension of many fundamental geometric invariants, such as the Lp/Orlicz

geominimal surface areas and the Lp/Orlicz-Petty bodies. The existence, continuity,

and uniqueness of the solutions to the general dual-polar Orlicz-Minkowski problem

are provided in Chapter 6. Our techniques also follow the approximation arguments

from discrete measures to general measures.
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Lay summary

The classical Brunn-Minkowski theory centers around the relation between Minkowski

sum and Lebesgue measure in high dimensional Euclidean space. In recent decades,

the classical Brunn-Minkowski theory has been expanded considerably into the Lp

Brunn-Minkowski theory, the Orlicz-Brunn-Minkowski theory, and the dual Orlicz-

Brunn-Minkowski theory. This thesis seeks to extend the classical Minkowski problem

into its most general setting up to now, i.e., characterizing the general dual Orlicz

curvature measure C̃G,ψ of convex bodies.

For a convex body, the characterization problem for the surface area measure leads

to the classical Minkowski problem in the Brunn-Minkowski theory, which in certain

circumstance is equivalent to finding the solutions of Monge-Ampère type equations.

With the development of the Orlicz-Brunn-Minkowski theory and the dual Brunn-

Minkowski theory, a series of Minkowski problems have arisen due to the appearance

of various extensions of the surface area measures, including the Lp dual curvature

measure, the Orlicz surface area measure, etc. It is our aim to further study the dual

Orlicz-Minkowski problem.

Our work addresses several aspects. First, we introduce the background of the dual

Orlicz-Minkowski problems by proposing a series of dual Orlicz curvature measures.

To characterize these measures, we propose the corresponding dual Orlicz-Minkowski

problems. Following the method of Lagrange multipliers and variational formulas with

respect to the general dual volumes for convex bodies, the solutions to the series of

dual Orlicz-Minkowski problems are provided. This theory complements and enriches

the theory of the dual Brunn-Minkowski theory and Minkowski type problems.
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Chapter 1

Introduction

The study of Minkowski problems, initiated by Minkowski [55, 56] over a century ago,

took on a new life when Lutwak [47] introduced the Lp surface area measure and

the Lp mixed volume for p > 1. Among those fundamental objects related to the Lp

surface area measure and the Lp mixed volume, the Lp Minkowski problem (for p = 1

in [55, 56] by Minkowski and for p ∈ R in [47] by Lutwak) and the Lp affine surface

area (for p = 1 in [2] by Blaschke, for p > 1 in [48] by Lutwak and for p < 1 in [60]

by Schütt and Werner) arguably have the greatest influence.

For p ∈ R, the Lp Minkowski problem asks for the necessary and/or sufficient

conditions on a finite nonzero Borel measure µ defined on the unit sphere Sn−1 to be

the Lp surface area measure of a convex body (i.e., a convex compact set in Rn with

nonempty interior) K; that is,

dµ = h1−pK dS(K, ·),

where hK is the support function of the convex body K and S(K, ·) is the surface area

measure of K. The Lp surface area measure can be obtained via a first-order variation

of volume with respect to the Lp combination of convex bodies, see e.g. [33, 47, 51].

For example, for p > 1 and K,L ⊆ Rn [47] convex bodies containing the origin o in

their interiors, one has

∫

Sn−1

hpL(u)h
1−p
K (u) dS(K, u) = p · lim

ε→0+

V (K +p ε · L)− V (K)

ε
, (1.1)
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where V (K) stands for the volume of K and K +p ε · L is a convex body determined

by the support function hK+pε·L : Sn−1 → (0,∞): for any ε > 0, hpK+pε·L
= hpK + εhpL.

When p = 0, the Lp combination K +p ε · L is called the L0 addition or logarithmic

addition of K and L, and is obtained from, in the sense of Aleksandrov body, the

function hK+0εL = hKh
ε
L. When p = 1, it recovers the classical Minkowski sum

hK+εL = hK + εhL and the Lp Minkowski problem reduces to the classical Minkowski

problem, i.e., µ = S(K, ·)? Let µ be a measure on Sn−1 such that the Radon-Nikodym

derivative of µ with respect to the spherical measure on Sn−1 exists, i.e., dµ = fdu for

a positive function f on Sn−1. Hence, the classical Minkowski problem, if the convex

bodies involved are smooth enough, can be formulated by the following Monge-Ampère

type equation,

f(u) = det(∇̄2h(u) + h(u)I) on Sn−1, (1.2)

where det(∇̄2h(u) + h(u)I) is the reciprocal Gauss curvature on the boundary point

of a convex body whose outer normal vector is u, ∇̄2 is the Hessian matrix of h with

respect to an orthonormal frame on Sn−1, and I is the identity matrix. In this case,

finding a solution of the classical Minkowski problem requires to solve (1.2).

The Lp Minkowski problem and the Lp affine surface area were apparently devel-

oped in completely different approaches, however, they were nicely connected through

the Lp geominimal surface area and the Lp Petty bodies [48, 71, 77]. As the bridge to

connect several geometries (affine, Minkowski and relative), the Lp geominimal surface

area is crucial in convex geometry and, in particular, sharing many properties similar

to those for the Lp affine surface area. Let K n
(o) be the set of convex compact sets in

Rn with the origin o in their interiors. Finding the Lp Petty bodies of K ∈ K n
(o) for

p ∈ R \ {0,−n} requires to solve the following optimization problem (with µ being

the Lp surface area measure of K):

inf / sup

{∫

Sn−1

hpL∗(u) dµ(u) : L ∈ K n
(o) and V (L) = V (Bn)

}
, (1.3)

where Bn is the unit Euclidean ball in Rn and L∗ denotes the polar body of L ∈ K n
(o).

As explained in [44], the Lp Minkowski problem can be viewed as the “polar” of (1.3)

(in particular, for µ nice enough such as µ being even) aiming to find convex bodies

(ideally in K n
(o)) to solve the optimization problem similar to (1.3), namely with L∗

replaced by L. On the other hand, the Lp affine surface area of K ∈ K n
(o) can be

defined through a formula similar to (1.3) for µ being the Lp surface area measure of
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K, but with L ∈ K n
(o) and hL∗ replaced by L belong to star bodies about the origin

and, respectively, ρ−1
L where ρL is the radial function of L (see [48, 71, 77] for more

details).

The Lp Minkowski problem has attracted tremendous attention in different areas,

such as analysis, convex geometry, and partial differential equations (see e.g., [7, 11,

12, 26, 33, 51, 81, 83] among others). In particular, it is closely related to the far-

reaching optimal mass transportation problem via the Monge-Ampère type equations.

The case p = 0 is of particular significance because the L0 surface area measure, the

so-called cone volume measure, is affine invariant. The L0 or logarithmic Minkowski

problem is challenging and was only solved recently for even measures by Böröczky,

Lutwak, Yang, and Zhang [7] and discrete planar cases by Stancu [61, 62, 63]. More

recent contributions to the logarithmic Minkowski problem are [5, 80] and further

references and background on the Lp Minkowski problem may be found in [28, 36, 37,

42, 49, 59, 65, 66].

Various extensions of interest appear and advance towards this theory. For exam-

ple, Livshyts [41] proposed a surface area measure of K with respect to a measure µg,

where g, the density function of µg with respect to the Lebesgue measure, is contin-

uous on its support. A variational formula for µg similar to (1.1) for p = 1 was also

provided in [41], which gives a variational interpretation of the surface area measure

of K with respect to µg. The related Minkowski problem was posed and a solution to

this problem was given under certain conditions on µg (such as, µg being a measure

with positive degree of concavity and positive degree of homogeneity). An Lp exten-

sion of Livshyts’ result was obtained by Wu [66], where the Lp surface area measure

with respect to µg was proposed and related Lp Minkowski problem was solved under

certain conditions on µg.

With the qth dual volume Ṽq (see (4.5)) involved, Huang, Lutwak, Yang, and

Zhang in their seminal work [29] brought new ingredients, the qth dual curvature

measure C̃q (see (3.15)) into the family of Minkowski problems. These measures were

obtained via a first-order variation of the qth dual volume Ṽq with respect to the

L0 addition (logarithmic addition) of convex bodies (see [29, Theorem 4.5]), the case

q = n being the L0 surface area measure. The authors of [29] posed a correspond-

ing Minkowski problem—the dual Minkowski problem—of finding necessary and/or

sufficient conditions for a measure µ on Sn−1 to be the qth dual curvature measure
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C̃q of some convex body, and they provided a partial solution when µ is even. Note

that, the logarithmic Minkowski problem is a special case of this dual Minkowski

problem. Naturally, the dual Minkowski problem has become very important for the

dual Brunn-Minkowski theory introduced by Lutwak [45, 46]. Since then, progress in-

cludes a complete solution for q < 0 by Zhao [75], solutions for even µ in [6, 8, 23, 76],

and solutions via curvature flows and partial differential equations in [10, 38, 40]. An

important extension of the dual Minkowski problem was carried out by Lutwak, Yang,

and Zhang [54], who introduced the Lp dual curvature measures C̃p,q (see (4.26)) and

posed corresponding Lp dual Minkowski problems. In [54], the L0 addition in [29] is

replaced by the Lp addition, while the qth dual volume Ṽq remains unchanged. The

first contribution to the Lp dual Minkowski problem, by Huang and Zhao [30], proves

the existence of solutions for p, q ∈ R when p > 0 and q < 0, and for even µ when

pq > 0, p 6= q. Their results were augmented by Chen, Huang, and Zhao [9], who used

curvature flows to show the smoothness of solutions for even µ and pq ≥ 0. Böröczky

and Fodor [3] provide a beautiful solution to the Lp dual Minkowski problem for

general µ when p > 1 and q > 0.

The first Orlicz version of the Minkowski problem appeared in [22], at the in-

ception of the Orlicz-Brunn-Minkowski theory in 2010. Let ϕ : (0,∞) → (0,∞) be

a continuous function and µ be a nonzero finite Borel measure defined on the unit

sphere Sn−1, the Orlicz-Minkowski problem asks whether there exist a convex body

K and a constant τ > 0, such that,

dµ = τ · ϕ(hK) dS(K, ·). (1.4)

The typical case for ϕ(t) = t1−p recovers the Lp Minkowski problem. The Orlicz-

Minkowski problem was first investigated by Haberl, Lutwak, Yang and Zhang in their

seminal paper [22] for the even measure µ. Solutions to the Orlicz-Minkowski problem

for µ being a discrete and/or general (not necessarily even) measure were provided by

Huang and He [27] and Li [39]. The planar Orlicz-Minkowski problem in the L1-sense

was investigated by Sun and Long [64]. The p-capacitary Orlicz-Minkowski problem

was posed and studied in [24]. The Orlicz-Minkowski problems are central objects in

the recent but rapidly developing Orlicz-Brunn-Minkowski theory for convex bodies

[16, 43, 52, 53, 68].

Analogous to the way that the Orlicz-Minkowski problem generalizes Lp Minkowski
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one find a constant τ > 0 and a convex body K (ideally, containing o in its interior),

such that,

µ = τC̃φ,V (K, ·)?

With the method of Lagrange multipliers and the established variational formula, a

solution to the general dual Orlicz-Minkowski problem is provided. In special cases

for φ, we provide the condition for the uniqueness of the solution to the general dual

Orlicz-Minkowski problem.

In Chapter 4, a common generalization of the problems in [54, 69, 78] and Chapter

3 is proposed, in which a very general notion of dual volume denoted by ṼG is intro-

duced and, simultaneously, L0 addition (in Chapter 3) is replaced by an extension of

the Lp addition called the Orlicz addition. The two-variable function G allows ṼG to

include not only the qth dual volume Ṽq, the dual Orlicz quermassintegrals in [78] and

the general dual Orlicz quermassintegral Vφ in Chapter 3, but several other related

notions as well. By combining the general dual volume ṼG with the Orlicz addition,

a general dual Orlicz curvature measure denoted by C̃G,ψ is defined as

C̃G,ψ(K,E) =
1

n

∫

ααα∗
K(E)

ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du (1.5)

for each Borel set E ⊂ Sn−1, where K ∈ K n
(o), G : (0,∞) × Sn−1 → (0,∞) and

ψ : (0,∞) → (0,∞) are continuous. The related Minkowski problem can be stated as

follows: for which nonzero finite Borel measures µ on Sn−1 and continuous functions

G : (0,∞) × Sn−1 → (0,∞) and ψ : (0,∞) → (0,∞) do there exist τ ∈ R and a

convex body K ∈ K n
(o) such that µ = τ C̃G,ψ(K, ·)? The corresponding equivalent

Monge-Ampère type equation for this general dual Orlicz-Minkowski problem states

that for given G, ψ, and f : Sn−1 → [0,∞), an h : Sn−1 → (0,∞) and τ ∈ R,

τh

ψ ◦ h
P (∇̄h+ hι) det(∇̄2h+ hI) = f, (1.6)

where P (x) = |x|1−nGt(|x|, x̄), x̄ = x/|x|, ∇̄ and ∇̄2 are the gradient vector and

Hessian matrix of h, respectively, with respect to an orthonormal frame on Sn−1, ι is

the identity map on Sn−1, and I is the identity matrix. The problem, which requires

solving this Monge-Ampère equation, contains all previously known Minkowski prob-

lems as special cases. A solution was presented in Theorem 4.3.3 for general measures

µ, assuming that Gt = ∂G(t, u)/∂t < 0, G satisfies some growth conditions, and ψ
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satisfies (4.54) below. Some general uniqueness theorems are also demonstrated. In

our partial solution, the lack of homogeneity of G and ψ necessitates extra efforts in

the variational method we employ. In another contribution, we prove very general

Orlicz inequalities of the Minkowski and Brunn-Minkowski type which include others

in the literature, such as [54, Theorem 7.4], as special cases.

Chapter 5 aims to complement the results in Chapter 4 by dealing with the case

when Gt > 0. This requires extending ṼG and C̃G,ψ to more general functions G :

[0,∞) × Sn−1 → [0,∞) and to compact convex sets K containing the origin, but

not necessarily in their interiors. It is also necessary to show that ṼG and C̃G,ψ are

continuous (see Lemma 5.1.2 and Proposition 5.3.2 (iii)), a task necessitating a more

delicate treatment of the various maps and cones related to a compact convex set

than the one when the origin is contained in the interior.

Unlike the proof of Theorem 4.3.3 in Chapter 4, we approach the Minkowski

problem stated above when Gt > 0 by first dealing with the case when µ is discrete.

This is achieved in Theorem 5.2.4, where we establish, under certain growth conditions

on ψ, the existence of a convex polytope P with the origin in its interior, such that

µ equals C̃G,ψ(P, ·) (up to a normalization constant). If G(t, u) = tn/n, then ṼG(K)

is the volume of K, so Theorem 5.2.4 recovers the solutions to the Orlicz-Minkowski

problem for discrete measures by Huang and He [27] and Li [39]. When ψ(t) = tp for

p > 1 and G(t, u) = tqφ(u) for q > 0 and φ ∈ C+(Sn−1), Theorem 5.2.4 recovers the

solution to the Lp dual Minkowski problem for discrete measures by Böröczky and

Fodor [3, Theorem 1.1]. The techniques in these works are similar to and based on

those in [33], but some of our arguments differ from and are rather more complicated

than those in [3, 27, 39]. In particular, the general volume ṼG prohibits the use of

Minkowski’s inequality as in [27, 39], and in general the two-variable function G, and

the lack of homogeneity of G and ψ, require somewhat more delicate analysis than

the special case considered in [3]. On the other hand, we are able to avoid some

constructions in [3] by making use of the absolute continuity of C̃G,ψ with respect to

the surface area measure proved in Proposition 5.3.2 (ii).

With Theorem 5.2.4 in hand, our Minkowski problem for general measures µ can

be solved by approximation. This is accomplished in Theorem 5.4.3, where it is shown

that under certain conditions on G and ψ, including Gt > 0, a finite Borel measure

µ on Sn−1 is not concentrated on any closed hemisphere if and only if there exists a
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convex body K ∈ K n
o , i.e., the set of all nonempty compact convex sets containing o

but not necessarily in their interiors, such that

(ψ ◦ hK)µ =

(∫

Sn−1

ψ(hK(u)) dµ(u)

)
C̃G(K, ·)

C̃G(K,Sn−1)
.

Here C̃G(K, ·) equals to C̃G,ψ(K, ·) when ψ ≡ 1. Again, this result recovers (in a

slightly different form) and strengthens the solutions to the Orlicz-Minkowski problem

in [27, Theorem 1.2] and the Lp dual Minkowski problem in [3, Theorem 1.2]. In

Theorem 5.4.4, we use the same approximation techniques to prove a variant of [17,

Theorem 6.4] in the case when Gt < 0. When ψ(t) = tp, p > 0, and G(t, u) = tq, q < 0,

Theorem 5.4.4 implies [30, Theorem 3.5]. We end Section 5.4 with Theorem 5.4.5,

a uniqueness result related to Theorem 5.4.4 under some additional assumptions on

the underlying convex bodies. As far as we know, this is the first uniqueness result

for Orlicz-Minkowski problems that applies when G(t, u) = tn/n and ṼG(K) is the

volume of K. A special case of Theorem 5.4.5 contributes to [54, Problem 8.2] by

providing a counterpart to [54, Theorem 8.3] for sufficiently smooth convex bodies and

generalizing the uniqueness assertion in [30, Theorem 4.1]. The uniqueness problem

for the general dual Orlicz curvature measures still remains open.

In Section 5.5, we focus on the case when the measure µ is even, in which case

one expects the solution to be an origin-symmetric convex body. Each such body

generates a norm on Rn, and every norm on Rn arises from an origin-symmetric

convex body. This lends special significance to Minkowski problems for even measures,

particularly in applications to analysis; for example, in proving the Lp affine Sobolev

inequality [50] and the affine Moser-Trudinger and Morrey-Sobolev inequalities [13].

Corresponding to Theorems 5.4.3 and 5.4.4, we prove Theorems 5.5.1 and 5.5.2 for

the even measure µ, where it is natural to impose weaker conditions on ψ but an extra

assumption on G (i.e., that Gt(t, ·) is even in t). In our final result of this chapter,

Theorem 5.5.3, we solve our Minkowski problem under the assumption that µ is an

even measure vanishing on any great subsphere, when Gt < 0 and ψ is decreasing.

Again, if G(t, u) = tn/n, ṼG(K) is the volume of K and it recovers the solution

to the Orlicz-Minkowski problem for even measures by Haberl, Lutwak, Yang, and

Zhang [22]. Moreover, when ψ(t) = tp and G(t, u) = tq, Theorems 5.5.1 and 5.5.3

yield the results of Huang and Zhao [30, Theorem 3.9] for p, q > 0 and p 6= q and

[30, Theorem 3.11] for p, q < 0 and p 6= q, respectively. The method we employ
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both avoids the use of John ellipsoids in the proof of [30, Theorem 3.9] and provides

detailed information, not given in [30], on the polytopal solutions to our Minkowski

problem when µ is an even discrete measure.

The main purpose of Chapter 6 is to give a systematic study to the general dual-

polar Orlicz-Minkowski problem, which extends problem (1.3) in the arguably most

general way: with L, the function tp (from the integrand of the objective functional)

and V (L) in problem (1.3) replaced by L∗, a (general nonhomogeneous) continuous

function ϕ : (0,∞) → (0,∞) and ṼG(L), respectively. Namely, we pose the following

problem: under what conditions on a nonzero finite Borel measure µ defined on Sn−1,

continuous functions ϕ : (0,∞) → (0,∞) and G : (0,∞) × Sn−1 → (0,∞) can we

find a convex body K ∈ K n
(o) solving the following optimization problem:

inf / sup

{∫

Sn−1

ϕ(hL(u))dµ(u) : L ∈ K n
(o) and ṼG(L

∗) = ṼG(B
n)

}
? (1.7)

Moreover, problem (1.7) contains as a special case the recent polar Orlicz-Minkowski

problem introduced in [44] by Luo, Ye and Zhu, i.e., solving the following optimization

problem:

inf / sup

{∫

Sn−1

ϕ(hL∗(u))dµ(u) : L ∈ K n
(o) and V (L) = V (Bn)

}
. (1.8)

Note that closely related to (1.8) are the Orlicz affine and geominimal surface areas,

which were proposed in [72, 74, 77]. In fact, one can observe that (1.7) not only

generalizes (1.8), but also is “dual” to (1.8). This is one of our motivations to study

the general dual-polar Orlicz-Minkowski problem.

Another motivation for our general dual-polar Orlicz-Minkowski problem is its

close connection with the general dual Orlicz-Minkowski problems in Chapters 4 and

5. Note that, in many circumstances, solving the general dual Orlicz-Minkowski

problem requires to find solutions to the following optimization problem:

inf / sup

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ K n
(o) and ṼG(Q) = ṼG(B

n)

}
. (1.9)

In particular, if G(t, u) = tn/n, (1.9) recovers the Orlicz-Minkowski problem [22].

In view of (1.7), one sees that (1.7) is “polar” to (1.9). It is our belief that, like

the general dual Orlicz-Minkowski problem, the newly proposed general dual-polar
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the Lp Petty bodies. In Section 6.3.1, the objective functional
∫
Sn−1 ϕ(hL(u))dµ(u) in

(1.7) is replaced by the “Orlicz norm” ‖hL‖µ,ϕ. In this case, the continuity, uniqueness,

and existence of solutions are rather similar to those in Section 6.2. The second

variation, considered in Section 6.3.2, is quite different from the general dual-polar

Orlicz-Minkowski problem (1.7). It replaces the general dual volume ṼG by the general

volume formulated as follows: for K ∈ K n
(o),

VG(K) =

∫

Sn−1

G(hK(u), u) dS(K, u).

Although the geometric invariant VG has most properties required to solve the related

polar Orlicz-Minkowski problem, it lacks monotonicity in set inclusion, a key ingre-

dient in the proofs of main results in Section 6.2. With the help of the celebrated

isoperimetric inequality, we are able to find a substitution of Lemma 6.1.4 for VG and

this will be stated in Lemma 6.3.11. Consequently, the existence of solutions to the

related polar Orlicz-Minkowski problem is established in Theorem 6.3.12.



Chapter 2

Preliminaries

This chapter is dedicated to present some terminologies and basic notations in this

thesis. Readers are referred to [21, 59] for more detailed information.

2.1 Basic facts about convex geometry

Throughout this thesis, we work on the n-dimensional Euclidean space Rn with the

inner product 〈·, ·〉 and the standard Euclidean norm | · |. The origin and canonical

orthonormal basis are denoted by o and {e1, . . . , en}, respectively. Let Bn = {x ∈

Rn : |x| ≤ 1} and Sn−1 = {x ∈ Rn : |x| = 1} be the unit ball and unit sphere in Rn.

The characteristic function of a set X is signified by 1X .

If X is a set, we denote by convX, clX, intX, relintX, ∂X, and dimX the

convex hull, closure, interior, relative interior (that is, the interior with respect to the

affine hull), boundary, and dimension (that is, the dimension of the affine hull) of X,

respectively. If x ∈ Rn \ {o}, then x⊥ is the (n− 1)-dimensional subspace orthogonal

to x. We write H k for k-dimensional Hausdorff measure in Rn, where k ∈ {1, . . . , n}.

For compact sets K, we also write V (K) = H n(K) for the volume of E. The volume

of the unit ball is κn = V (Bn) and then H n−1(Sn−1) = nκn. The notation dx means

dH k(x) for the appropriate k ∈ {1, . . . , n}, unless stated otherwise. In particular,

integration on Sn−1 is usually denoted by du = dH n−1(u).

A convex body in Rn is a compact convex subset with nonempty interior. A convex

polytope is the convex hull of finitely many points. The class of nonempty compact
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convex sets in Rn is written as K n. Let K n
o ⊂ K n denote the set of all convex

bodies containing o. Let K n
(o) ⊂ K n

o be the set of all convex bodies containing o in

their interiors.

The support function of K ∈ K n, hK(u) : S
n−1 → R, is defined by

hK(u) = sup
x∈K

〈x, u〉 for each u ∈ Sn−1. (2.1)

The standard metric on K n is the Hausdorff metric δ(·, ·), which can be defined by

δ(K,L) = ‖hK − hL‖∞ = sup
u∈Sn−1

|hK(u)− hL(u)|

for K,L ∈ K n. We say that a sequence K1, K2, · · · , Ki, · · · ∈ K n converges to

K ∈ K n in the Hausdorff metric, denoted by Ki → K, if limi→∞ δ(Ki, K) = 0. The

Blaschke selection theorem provides a powerful machinery to solve Minkowski type

problems. It asserts that if Ki ∈ K n and there exists a constant R > 0 such that

Ki ⊂ RBn for all i ∈ N, then there exists a subsequence {Kij}j≥1 of {Ki}i≥1 and

K ∈ K n such that Kij → K as j → ∞ in the Hausdorff metric.

A set L ⊆ Rn is said to be a star-shaped set with respect to o, if o ∈ L and the

line segment [o, x] ⊆ L for all x ∈ L. For a star-shaped set L with respect to o, one

can define its radial function ρL : Sn−1 → [0,∞] by

ρL(u) = sup
{
λ > 0 : λu ∈ L

}
for each u ∈ Sn−1.

The function ρL is homogeneous of degree −1, that is, ρL(rx) = r−1ρL(x) for x ∈

Rn \ {o}. It can also be easily checked that ρsL = s · ρL and hsL = s ·hL for s > 0 and

L ∈ K n
o .

Denote by S the set of all star-shaped sets in Rn with respect to o whose radial

functions are measurable. Let S n be the class of star-shaped sets with respect to o

in Rn that are bounded Borel sets and whose radial functions are therefore bounded

Borel measurable functions on Sn−1. The class of L ∈ S n with ρL > 0 is denoted by

S n
+ and the class S n

c+ of compact star bodies comprises those L ∈ S n
+ such that ρL

is continuous on Sn−1. If L ∈ S n
+ , then ρL(u)u ∈ ∂L and ρL(x) = 1 for x ∈ ∂L, the

boundary of L. The natural metric on S n is the radial metric δ̃(·, ·), which can be
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defined by

δ̃(L1, L2) = ‖ρL1 − ρL2‖∞ = sup
u∈Sn−1

|ρL1(u)− ρL2(u)|,

for L1, L2 ∈ S n. Consequently, we can define convergence in S n by limj→∞ δ̃(Lj, L) =

0 for L,L1, L2, . . . ∈ S n.

It follows directly from the relations between the metrics δ and δ̃ in [20, Lemma 2.3.2]

that if K,K1, K2, . . . ∈ K n
(o), then Ki → K in the Hausdorff metric if and only if

Ki → K in the radial metric. That is, for a sequence of convex bodies {Ki}
∞
i=1 ⊆ K n

(o)

and a convex body K ∈ K n
(o),

lim
i→∞

δ(Ki, K) = lim
i→∞

‖hKi
− hK‖∞ = 0, (2.2)

is equivalent to

lim
i→∞

δ̃(Ki, K) = lim
i→∞

‖ρKi
− ρK‖∞ = 0. (2.3)

For each K ∈ K n
(o), one can define K∗, the polar body of K, by

K∗ = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K}.

Clearly K∗ ∈ K n
(o). Moreover, the bipolar theorem asserts that (K∗)∗ = K (see e.g.,

[59]) and then

ρK(x)hK∗(x) = hK(x)ρK∗(x) = 1 for x ∈ Rn \ {o}. (2.4)

The supporting hyperplane of K in direction u ∈ Sn−1 is given by

H(K, u) =
{
x ∈ Rn : 〈x, u〉 = hK(u)

}
.

The corresponding support set of K in direction u is F (K, u) = K ∩H(K, u).

The surface area measure S(K, ·) of a convex body K in Rn is defined for Borel

sets E ⊂ Sn−1 by

S(K,E) = H n−1(ν−1
K (E)), (2.5)

where ν−1
K (E) = {x ∈ ∂K : νK(x) ∈ E} is the inverse Gauss map of K. Clearly,

S(tK, u) = tn−1S(K, u) for any t > 0 and K ∈ K n
(o).
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For E ⊂ Sn−1, the reverse spherical image of E is defined as

xxxK(E) = {x ∈ ∂K : x ∈ H(K, u) for some u ∈ E},

and the radial Gauss image/map is defined by

αααK(E) = νννK
(
{ρK(u)u ∈ ∂K : u ∈ E}

)

for E ⊂ Sn−1. (Please see Figure 2.2 for the radial Gauss image.) Let σK ⊂ ∂K,

Figure 2.2: The radial Gauss image

ηK ⊂ Sn−1, and ωK ⊂ Sn−1 be the sets where νννK({x}) for x ∈ ∂K, xxxK({u}) for

u ∈ ηK , and αααK({u}) for u ∈ ωK , respectively, have two or more elements. Then

H n−1(σK) = H n−1(ηK) = H n−1(ωK) = 0. (2.8)

Elements of Sn−1 \ ηK are called regular normal vectors of K and regK = ∂K \ σK is

the set of regular boundary points of K. We write νK(x), xK(u), and αK(u) instead

of νννK({x}), xxxK({u}), and αααK({u}) if x ∈ regK, u ∈ Sn−1 \ ηK , and u ∈ Sn−1 \ ωK ,

respectively.

Next, the inverse radial Gauss image is defined by

ααα∗
K(E) = {x̄ : x ∈ ∂K ∩H(K, u) for some u ∈ E} = {x̄ : x ∈ xxxK(E)}

for E ⊂ Sn−1, where x̄ = x/|x|. In particular, one can define a continuous map

α∗
K(u) = xK(u)/|xK(u)| for u ∈ Sn−1 \ ηK . For E ⊂ Sn−1, we have ααα∗

K(E) = αααK∗(E).
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Moreover, for H n−1-almost all u ∈ Sn−1,

α∗
K(u) = αK∗(u), (2.9)

and

u ∈ ααα∗
K(E) if and only if αK(u) ∈ E. (2.10)

2.2.2 Maps and cones related to a convex body K ∈ K n
o

Some notations of maps in Section 2.2.1 such as νK , ν
−1
K , xK and αK for K ∈ K n

(o) can

be carried to K ∈ K n
o . However, when the inverse radial function is involved, such

as ααα∗
K , things become more complicated. Moreover, additional notions are needed if

K ∈ K n
o . This section is mainly used in Chapter 5.

For K ∈ K n
o , the normal cone of K at z ∈ K is defined by

N(K, z) = {y ∈ Rn : 〈y, x− z〉 ≤ 0 for all x ∈ K}.

This is a closed convex cone, and N(K, z) = {o} if z ∈ intK. In particular, if o ∈ ∂K,

then

N(K, o) = {y ∈ Rn : 〈y, x〉 ≤ 0 for all x ∈ K}. (2.11)

Let K ∈ K n
o . Then the dual cone N(K, o)∗ of N(K, o) is given by

N(K, o)∗ = {x ∈ Rn : 〈x, y〉 ≤ 0 for all y ∈ N(K, o)} = cl {λx : x ∈ K and λ ≥ 0};

(2.12)

the set on the right side is called the support cone of K at o (see [59, p. 91]). If

o ∈ intK, then N(K, o)∗ = Rn, and if o ∈ ∂K, then

H n−1(Sn−1 ∩ ∂N(K, o)∗) = 0. (2.13)

For K ∈ K n
o , let rK : Sn−1 → ∂K denote the radial map of K, defined by

rK(u) = ρK(u)u. If o ∈ ∂K, then rK need not be injective, since ρK(u)u = o for

u ∈ Sn−1 \ N(K, o)∗. The radial map also need not be continuous, but it is upper

semicontinuous and hence Borel measurable. However, the restriction of the radial
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map to Sn−1 ∩ relintN(K, o)∗ is injective and locally bi-Lipschitz. Moreover,

ρK(u)




= 0 if u ∈ Sn−1 \N(K, o)∗,

> 0 if u ∈ Sn−1 ∩ relintN(K, o)∗.
(2.14)

Here relintN(K, o)∗ is the relative interior of the dual cone N(K, o)∗. For u ∈ Sn−1 ∩

∂N(K, o)∗, we only have ρK(u) ≥ 0, but if K is a convex polytope, then

ρK(u) > 0 if and only if u ∈ Sn−1 ∩N(K, o)∗. (2.15)

We recall some terminology and facts from [29, Section 2.2] and [59, Section 2.2],

presented in a slightly different form (see also [3]). The radial projection π̃ : Rn\{o} →

Sn−1 is defined by π̃(x) = x̄ = x/|x| and π̃(A) = {x̄ : x ∈ A}.

For K ∈ K n
o and E ⊂ ∂K, the spherical image of E defined in (2.7) can be

expressed in terms of the normal cones, i.e.,

νννK(E) = Sn−1 ∩
⋃

x∈E

N(K, x).

Recall that for a Borel set E ⊂ ∂K, the spherical image νννK(E) ⊂ Sn−1 is H n−1-

measurable (see [59, Lemma 2.2.13]). Following the definition of αααK(E), if E ⊂

Sn−1∩relintN(K, o)∗ is a Borel set, then so is rK(E), and αααK(E) is H n−1-measurable.

If ∅ 6= E ⊂ Sn−1 \N(K, o)∗, then rK(E) = {o} and again αααK(E) ⊂ Sn−1 ∩N(K, o) is

H n−1-measurable. The situation for a Borel set E ⊂ Sn−1 contained in the relative

boundary of N(K, o)∗ seems to be unclear but will not be needed.

Recall in Section 2.2.1 that the set of u ∈ Sn−1 such that ννν−1
K ({u}) has at least two

elements, i.e, the set of singular normal vectors, is a Borel set of H n−1-measure zero.

Note that νννK and ννν−1
K do not necessarily map disjoint sets to disjoint sets. However,

the intersections are sets of singular normal vectors and sets of singular boundary

points, respectively, and hence have H n−1-measure zero.

For later use, we also define

ΞK = ννν−1
K

(
Sn−1 ∩N(K, o)

)
= K ∩ ∂N(K, o)∗. (2.16)

Clearly, ΞK = ∅ if o ∈ intK. Moreover, if dimK ≤ n− 1, then ΞK = K.
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Following the definition of ααα∗
K(E), if E ⊂ Sn−1 is a Borel set, then ααα∗

K(E) is

H n−1-measurable. This is shown in [29, Lemma 2.1] when o ∈ intK. To see that

it is true in general, first observe that ννν−1
K (E) ⊂ ∂K is H n−1-measurable. If A =

ννν−1
K (E) ∩ relintN(K, o)∗, then since rK is locally bi-Lipschitz on relintN(K, o)∗, it

follows that r−1
K (A) is also H n−1-measurable. Let B denote the intersection of ννν−1

K (E)

with the relative boundary of N(K, o)∗. Then r−1
K (B) ⊂ Sn−1 ∩ ∂N(K, o)∗, which is

H n−1-measurable due to (2.13). Therefore ααα∗
K(E) = r−1

K (A∪B) is H n−1-measurable.

For u ∈ Sn−1 ∩ intN(K, o)∗ \ ωK , and hence for H n−1-almost all u ∈ Sn−1 ∩

intN(K, o)∗, we have

u ∈ ααα∗
K(E) if and only if αK(u) ∈ E. (2.17)

Finally, we remark that

ααα∗
K (E) ∩ relintN(K, o)∗ ⊂ ααα∗

K (E \N(K, o)) ⊂ ααα∗
K (E) ∩N(K, o)∗.

Examples show that both inclusions can be strict, but in view of (2.13), we have

ααα∗
K (E) ∩ relintN(K, o)∗ = ααα∗

K (E \N(K, o)) = ααα∗
K (E) ∩N(K, o)∗ (2.18)

up to sets of H n−1-measure zero.

2.3 Background on functions and Orlicz linear com-

binations

As usual, C(E) denotes the class of continuous functions on a topological space E,

and we shall write C+(E) for the (strictly) positive functions in C(E). Let Ω ⊂ Sn−1

be a closed set not contained in any closed hemisphere of Sn−1. For each f ∈ C+(Ω),

one can define a convex body [f ], the Aleksandrov body (or Wulff shape) associated

to it, by setting

[f ] =
⋂

u∈Ω

{
x ∈ Rn : 〈x, u〉 ≤ f(u)

}
. (2.19)
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In particular, when Ω = Sn−1 and f = hK for K ∈ K n
(o), one has

K = [hK ] =
⋂

u∈Sn−1

{
x ∈ Rn : 〈x, u〉 ≤ hK(u)

}
.

When Ω = Sn−1 and f ∈ C+(Sn−1), the set of all positive continuous functions

defined on Sn−1, it is obvious that h[f ](u) ≤ f(u) for all u ∈ Sn−1. A less trivial fact

is that h[f ](u) = f(u) for almost all u ∈ Sn−1 with respect to the surface area measure

S([f ], ·) ([69]).

If Ω ⊂ Sn−1 is a closed set not contained in any closed hemisphere of Sn−1, and

f ∈ C+(Ω), define 〈f〉 ∈ K n
(o), the convex hull of f , by

〈f〉 = conv {f(u)u : u ∈ Ω}.

The properties of 〈f〉 are similar to those of the Aleksandrov body. In particular,

taking Ω = Sn−1, we have 〈ρK〉 = K for each K ∈ K n
(o). It can be checked (see [29,

Lemma 2.8]) that

[f ]∗ = 〈1/f〉. (2.20)

For ϕ : (0,∞) → (0,∞), denote

I = {ϕ strictly increasing with ϕ(1) = 1, ϕ(0) = 0, and ϕ(∞) = ∞},

D = {ϕ strictly decreasing with ϕ(1) = 1, ϕ(0) = ∞, and ϕ(∞) = 0},

where ϕ(0) and ϕ(∞) are considered as limits, ϕ(0) = limt→0+ ϕ(t) and ϕ(∞) =

limt→∞ ϕ(t). Note that the values of ϕ at t = 0, 1,∞ are chosen for technical reasons;

results may still hold for other values of ϕ at t = 0, 1,∞. For a ∈ R∪ {−∞}, we also

require the following class of functions ϕ : (0,∞) → (a,∞):

Ja = {ϕ is continuous and strictly monotonic, inft>0 ϕ(t) = a, and supt>0 ϕ(t) = ∞}.

(2.21)

Note that the log function belongs to J−∞ and I ∪ D ⊂ J0.

Let f0 ∈ C+(Sn−1), g ∈ C(Sn−1), and ϕ ∈ Ja for some a ∈ R ∪ {−∞}. Then

ϕ−1 : (a,∞) → (0,∞), and since Sn−1 is compact, we have 0 < c ≤ f0 ≤ C for

some 0 < c ≤ C. It is then easy to check that for ε ∈ R close to 0, one can define
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fε = fε(f0, g, ϕ) ∈ C+(Sn−1) by

fε(u) = ϕ−1 (ϕ(f0(u)) + εg(u)) . (2.22)

Note that we can apply (2.22) when f0 = hK for some K ∈ K n
(o) or when f0 = ρK

for some K ∈ S n
c+. Sometimes we will use this definition when Sn−1 is replaced

by a closed set Ω ⊂ Sn−1 not contained in any closed hemisphere of Sn−1. The left

derivative and right derivative of a real-valued function f are denoted by f ′
l and f

′
r,

respectively.

Let K,L ∈ K n
(o). For ε > 0, and either ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D , define

hε ∈ C+(Sn−1) (implicitly and uniquely) by

ϕ1

(
hK(u)

hε(u)

)
+ εϕ2

(
hL(u)

hε(u)

)
= 1 for u ∈ Sn−1. (2.23)

Note that hε = hε(K,L, ϕ1, ϕ2) may not be a support function of a convex body

unless ϕ1, ϕ2 ∈ I are convex, in which case hε = hK+ϕ,εL, where K +ϕ,ε L ∈ S n
c+ is

an Orlicz linear combination of K and L (see [16, p. 463]). However, the Aleksandrov

body [hε] of hε belongs to K n
(o).

An alternative approach to define Orlicz linear combinations is as follows. Let

K ∈ K n
(o), g ∈ C(Sn−1), ϕ ∈ Ja for some a ∈ R ∪ {−∞}, and let ĥε be defined by

(2.22) with f0 = hK . This approach goes back to Aleksandrov [1] in the case when

ϕ(t) = t. Again, the Aleksandrov body [ĥε] of ĥε belongs to K n
(o). When g = ϕ ◦ hL

and ϕ ∈ I ⊂ J0 is convex, [ĥε] = K+̂ϕ ε · L, as defined in [16, (10.4), p. 471].

Suppose that K,L ∈ K n
(o), ϕ ∈ I is convex, and K +ϕ,ε L is defined by (2.23)

with ϕ1 = ϕ2 = ϕ. Then, both K +ϕ,ε L and K+̂ϕ ε · L belong to K n
(o) and coincide

when ϕ(t) = tp for some p ≥ 1, but they differ in general (to see this, compare the

corresponding different variational formulas given by [16, (8.11) and (8.12), p. 466]

and [16, p. 471]).

It is known (see [16, Lemma 8.2], [24, p. 18], and [68, Lemma 3.2]) that hε → hK

and ĥε → hK uniformly on Sn−1 as ε→ 0 and hence, by [59, Lemma 7.5.2], both [hε]

and [ĥε] converge to K ∈ K n
(o) as ε → 0. Part (ii) of the following lemma is proved

in [24, (5.38)] for the case when ϕ ∈ I ∪ D , but the same proof applies to the more

general result stated.
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Lemma 2.3.1. Let K,L ∈ K n
(o).

(i) ([16, Lemma 8.4], [68, Lemma 5.2].) If ϕ1, ϕ2 ∈ I and (ϕ1)
′
l(1) > 0, then

lim
ε→0+

hε(u)− hK(u)

ε
=

hK(u)

(ϕ1)′l(1)
ϕ2

(
hL(u)

hK(u)

)
(2.24)

uniformly on Sn−1. For ϕ1, ϕ2 ∈ D , (2.24) holds when (ϕ1)
′
r(1) < 0, with (ϕ1)

′
l(1)

replaced by (ϕ1)
′
r(1).

(ii) (cf. [24, (5.38)].) Let a ∈ R∪{−∞}. If ϕ ∈ Ja and ϕ
′ is continuous and nonzero

on (0,∞), then for g ∈ C(Sn−1),

lim
ε→0

ĥε(u)− hK(u)

ε
=

g(u)

ϕ′ (hK(u))

uniformly on Sn−1, where ĥε is defined by (2.22) with f0 = hK.

Analogous results hold for radial functions of star bodies. Let K,L ∈ S n
c+. For

ε > 0, and either ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D , define ρε ∈ C+(Sn−1) by

ϕ1

(
ρK(u)

ρε(u)

)
+ εϕ2

(
ρL(u)

ρε(u)

)
= 1 for u ∈ Sn−1. (2.25)

Then ρε is the radial function of the radial Orlicz linear combination K+̃ϕ,εL of K

and L (see [18, (22), p. 822]).

Let a ∈ R ∪ {−∞}. For ϕ ∈ Ja, g ∈ C(Sn−1), and ε ∈ R close to 0, define

ρ̂ε ∈ C+(Sn−1) by (2.22) with f0 = ρK . The definitions of both ρε and ρ̂ε can be

extended to K,L ∈ S n
+ (or even L ∈ S n), but we shall mainly work with star

bodies and hence focus on S n
c+. It is known (see [18, Lemma 5.1], [24, p. 18] (with h

replaced by ρ), and [79, Lemma 3.5]) that ρε → ρK and ρ̂ε → ρK uniformly on Sn−1

as ε → 0. From this and the equivalence between convergence in the Hausdorff and

radial metrics for sets in K n
(o), one sees that, for each K ∈ K n

(o), both 〈ρε〉 and 〈ρ̂ε〉

converge to K in either metric.

Lemma 2.3.2. Let K,L ∈ S n
c+.



23

(i) ([18, Lemma 5.3]; see also [79, Lemma 4.1].) If ϕ1, ϕ2 ∈ I and (ϕ1)
′
l(1) > 0, then

lim
ε→0+

ρε(u)− ρK(u)

ε
=

ρK(u)

(ϕ1)′l(1)
ϕ2

(
ρL(u)

ρK(u)

)
(2.26)

uniformly on Sn−1. For ϕ1, ϕ2 ∈ D , (2.26) holds when (ϕ1)
′
r(1) > 0, with (ϕ1)

′
l(1)

replaced by (ϕ1)
′
r(1).

(ii) (cf. [24, (5.38)].) Let a ∈ R∪{−∞}. If ϕ ∈ Ja and ϕ
′ is continuous and nonzero

on (0,∞), then for g ∈ C(Sn−1),

lim
ε→0

ρ̂ε(u)− ρK(u)

ε
=

g(u)

ϕ′ (ρK(u))
(2.27)

uniformly on Sn−1, where ρ̂ε is defined by (2.22) with f0 = ρK.

The following simple observation will be frequently used in later context.

Lemma 2.3.3. Let µ, µi for each i ∈ N be nonzero finite Borel measures on Sn−1

such that µi → µ weakly. Let f, fi for each i ∈ N be continuous functions on Sn−1

such that fi → f uniformly on Sn−1. Then,

lim
i→∞

∫

Sn−1

fi dµi =

∫

Sn−1

f dµ.



Chapter 3

On the general dual

Orlicz-Minkowski problem

This chapter is based on our paper [69]. In this chapter, we investigate the general

dual Orlicz-Minkowski problem with respect to C̃φ,V : given a nonzero finite Borel

measure µ defined on Sn−1 and a continuous function φ : Rn \ {o} → (0,∞), can

one find a constant τ > 0 and a convex body K ∈ K n
(o) such that µ = τC̃φ,V (K, ·)?

Here C̃φ,V is obtained from a variational formula of Vφ based on L0 addition of convex

bodies, where Vφ is given by Vφ(K) =
∫
Rn\K

φ(x)dx.

3.1 The general dual Orlicz quermassintegral

First, we consider the general dual Orlicz quermassintegral Vφ, whose density function

with respect to the Lebesgue measure dx is a continuous function φ : Rn \ {o} →

(0,∞).

Definition 3.1.1. For a measurable subset E ⊆ Rn with o ∈ intE, define Vφ(E) by

Vφ(E) =

∫

Rn\E

φ(x) dx. (3.1)

Clearly, Vφ(·) is monotone decreasing, that is, if E ⊆ F with o ∈ intE, then
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Rn \ E ⊇ Rn \ F and hence

Vφ(E) =

∫

Rn\E

φ(x) dx ≥

∫

Rn\F

φ(x) dx = Vφ(F ),

due to the positivity of φ.

When E is a star-shaped set in Rn, Vφ(E) can be reformulated through the radial

function of E and the spherical measure du on Sn−1. Namely, for E ∈ S , Vφ(E) can

be calculated by

Vφ(E) =

∫

Rn\E

φ(x) dx =

∫

Sn−1

(∫ ∞

ρE(u)

φ(ru)rn−1 dr

)
du. (3.2)

For convenience, let

Φ(t, u) =

∫ ∞

t

φ(ru)rn−1 dr,

and hence formula (3.2) can be rewritten as

Vφ(E) =

∫

Sn−1

Φ(ρE(u), u) du. (3.3)

For each K ∈ K n
(o), one gets, by formula (3.3)

Vφ(K) =

∫

Sn−1

Φ(ρK(u), u) du =

∫

Sn−1

Φ(hK∗(u)−1, u) du. (3.4)

In later context, for each K ∈ K n
(o), Vφ(K) will be called the general dual Orlicz

quermassintegral of K.

Now we list the basic conditions for function φ:

C1) φ : Rn \ {o} → (0,∞) is a continuous function, such that, for any fixed t > 0,

the function

Φ(t, u) =

∫ ∞

t

φ(ru)rn−1 dr

is positive and continuous on Sn−1;

C2) for any fixed u0 ∈ Sn−1 and any fixed positive constant b0 ∈ (0, 1), one has

lim
a→0+

Vφ(R
n \ C (u0, a, b0)) = ∞,
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where C (u0, a, b0) is defined by

C (u0, a, b0) =
{
x ∈ Rn : 〈x̄, u0〉 ≥ b0 and |x| ≥ a

}
.

In fact, condition C1) guarantees that Vφ(K) <∞ for each K ∈ K n
(o). To see this, as

o ∈ intK, there exists a constant r0 > 0 such that r0B
n ⊆ K. By formula (3.4) and

the fact that Vφ(·) is monotone decreasing, one has,

Vφ(K) ≤ Vφ(r0B
n) =

∫

Sn−1

Φ(r0, u) du <∞.

Condition C2) is for the solution of the general dual Orlicz-Minkowski problem.

A typical function satisfying conditions C1) and C2) is a continuous function

φ : Rn \ {o} → (0,∞) such that

sup
|x|>r1

φ(x)|x|n−α1−1 ≤ C1 and inf
|x|<r1

φ(x)|x|n−α2−1 ≥ C2 (3.5)

hold for some constants 0 < r1 < ∞, C1 < ∞, C2 > 0 and −∞ < α1, α2 < −1. In

particular, if

lim
|x|→∞

φ(x)|x|n−α1−1 = C1 and lim
|x|→0

φ(x)|x|n−α2−1 = C2

for some constants 0 < C1, C2 < ∞ and −∞ < α1, α2 < −1, then such φ satisfies

(3.5) (for different constants). Now let us check that a continuous function φ satisfying

(3.5) must also satisfy conditions C1) and C2). To this end, let t > 0 and u ∈ Sn−1

be fixed. It is obvious to have Φ(t, u) > 0. Moreover

Φ(t, u) =

∫ r1

t

φ(ru)rn−1 dr +

∫ ∞

r1

φ(ru)rn−1 dr

≤
∣∣∣
∫ r1

t

φ(ru)rn−1 dr
∣∣∣+
∫ ∞

r1

φ(ru)rn−1 dr

≤
∣∣∣
∫ r1

t

φ(ru)rn−1 dr
∣∣∣+ C1

∫ ∞

r1

rα1 dr

=
∣∣∣
∫ r1

t

φ(ru)rn−1 dr
∣∣∣− C1

α1 + 1
· rα1+1

1 .

Thus Φ(t, u) < ∞ due to the continuity of φ, and Φ(t, u) is well defined. Now we
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claim that Φ(t, ·) is continuous on Sn−1. For fixed t and for an arbitrary sequence

ui → u with ui, u ∈ Sn−1, one has, for all r ≥ t, φ(rui)r
n−1 → φ(ru)rn−1 and

φ(rui)r
n−1 ≤ C1r

α1 +M

for all i ≥ 1, where, due to the continuity of φ,

M = max
{
φ(x)|x|n−1 : |x| is between t and r1

}
<∞.

It follows from the dominated convergence theorem that

lim
i→∞

Φ(t, ui) = lim
i→∞

∫ ∞

t

φ(rui)r
n−1 dr

=

∫ ∞

t

lim
i→∞

φ(rui)r
n−1 dr

=

∫ ∞

t

φ(ru)rn−1 dr

= Φ(t, u).

Hence Φ(t, u) is continuous on Sn−1 and C1) is verified. Now let us verify C2) as

follows: for any b0 ∈ (0, 1),

lim
a→0+

Vφ(R
n \ C (u0, a, b0)) = lim

a→0+

∫

{u∈Sn−1:〈u,u0〉≥b0}

∫ ∞

a

φ(ru)rn−1 dr du

≥ lim sup
a→0+

∫

{u∈Sn−1:〈u,u0〉≥b0}

∫ r1

a

φ(ru)rn−1 dr du

≥ C2 · lim sup
a→0+

∫

{u∈Sn−1:〈u,u0〉≥b0}

∫ r1

a

rα2 dr du

= C2 ·

(∫

{u∈Sn−1:〈u,u0〉≥b0}

du

)
· lim sup

a→0+

r1+α2
1 − a1+α2

1 + α2

= ∞,

where we have used (3.2), (3.5) and α2 < −1.

Now let us provide several special cases of functions satisfying conditions C1) and

C2).

Case 1: φ(x) = ψ(|x|) for all x ∈ Rn \ {o} with ψ : (0,∞) → (0,∞) a continuous
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function. In this case,

Φ(t, u) =

∫ ∞

t

φ(ru)rn−1 dr =

∫ ∞

t

ψ(r)rn−1 dr :=
1

n
· φ̂(t). (3.6)

Equivalently,

ψ(t) = −φ̂′(t)t1−n/n. (3.7)

By formula (3.4), one has, for K ∈ K n
(o),

Vφ(K) =

∫

Sn−1

Φ(ρK(u), u) du =
1

n

∫

Sn−1

φ̂(ρK(u)) du = Ṽφ̂(K),

where Ṽϕ is the dual (Lϕ) Orlicz quermassintegral proposed in [78], namely

Ṽϕ(K) =
1

n

∫

Sn−1

ϕ(ρK(u))du.

In [78], the dual Orlicz-Minkowski problem is solved under the following conditions:

A1) φ̂ : (0,∞) → (0,∞) is a strictly decreasing continuous function with

lim
t→0+

φ̂(t) = ∞ and lim
t→∞

φ̂(t) = 0;

A2) φ̂′, the derivative of φ̂, exists and is strictly negative on (0,∞);

A3) ϕ̂(t) = −φ̂′(t)t : (0,∞) → (0,∞) is continuous; hence

φ̂(t) =

∫ ∞

t

ϕ̂(s)

s
ds.

In Case 1, it is obvious that ϕ̂(t) = nψ(t)tn. Now let us check that if φ̂ and its

companion function ϕ̂ satisfy conditions A1)-A3), then φ(x) = ψ(|x|) with ψ given

by (3.7) satisfies conditions C1) and C2). In fact, condition C1) can be easily checked

by (3.6) and A1). Let us verify condition C2) as follows: for any b0 ∈ (0, 1),

lim
a→0+

Vφ
(
Rn \ C (u0, a, b0)

)
= lim

a→0+

∫

{u∈Sn−1:〈u,u0〉≥b0}

∫ ∞

a

φ(ru)rn−1 dr du

=
1

n
· lim
a→0+

φ̂(a) ·

(∫

{u∈Sn−1:〈u,u0〉≥b0}

du

)

= ∞,



29

where we have used (3.2), (3.6), and condition A1).

Case 2: φ(x) = ψ(|x|)φ2(x̄) where x̄ = x/|x|, ψ : (0,∞) → (0,∞) is a continuous

function on (0,∞), and φ2 : S
n−1 → (0,∞) is a continuous function on Sn−1. In this

case, the general dual (Lφ) Orlicz quermassintegral of K ∈ K n
(o) has the following

form:

Vφ(K) =

∫

Sn−1

∫ ∞

ρK(u)

φ(ru)rn−1 dr du

=

∫

Sn−1

(∫ ∞

ρK(u)

ψ(r)rn−1 dr

)
φ2(u) du

=
1

n

∫

Sn−1

φ̂(ρK(u))φ2(u) du, (3.8)

where φ̂ is given by (3.6). Again, if φ̂ and its companion function ϕ̂ satisfy conditions

A1)-A3), then φ(x) = ψ(|x|)φ2(x̄) with ψ give by (3.7) satisfies conditions C1) and

C2); this follows from an argument similar to the one as in Case 1. A typical example

in this case is

φ(x) = ‖x‖q−n = |x|q−n · ‖x̄‖q−n

where q < 0 is a constant and ‖ · ‖ : Rn → [0,∞) is any norm on Rn. (Note that

φ2(x̄) = ‖x̄‖q−n is always positive, due to the equivalence between the two norms ‖ · ‖

and | · |.) Indeed, when φ(x) = ‖x‖q−n = |x|q−n · ‖x̄‖q−n, then ψ(|x|) = |x|q−n. Hence

φ̂(t) = n

∫ ∞

t

ψ(r)rn−1dr = n

∫ ∞

t

rq−1 dr = −
n

q
· tq,

and ϕ̂ = ntq, which satisfy conditions A1)-A3).

Lemma 3.1.2. Assume that φ is a function satisfying condition C1). If the sequence

{Ki}
∞
i=1 ⊆ K n

(o) converges to K ∈ K n
(o) in the sense of Hausdorff metric, then

lim
i→∞

Vφ(Ki) = Vφ(K).

Proof. Let φ : Rn \ {o} → (0,∞) be a continuous function satisfying C1). It can be

checked that, for any fixed u ∈ Sn−1 and for any fixed constant t0 > 0,

lim
t→t0

Φ(t, u) = Φ(t0, u). (3.9)
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In fact, for any fixed u ∈ Sn−1, Φ(t, u) is a decreasing function on t ∈ (0,∞). Let

t → t0, and without loss of generality assume that t > t0/2. By condition C1) and

the fact that Φ(t, u) is decreasing on t, one has,

Φ(t, u) =

∫ ∞

t

φ(ru)rn−1 dr ≤

∫ ∞

t0/2

φ(ru)rn−1dr = Φ(t0/2, u) <∞.

It follows from the dominated convergence theorem that

lim
t→t0

Φ(t, u) = lim
t→t0

∫ ∞

t

φ(ru)rn−1 dr =

∫ ∞

t0

φ(ru)rn−1 dr = Φ(t0, u).

Let {Ki}
∞
i=1 ⊆ K n

(o) be a sequence of convex bodies converging to K ∈ K n
(o) in the

Hausdorff metric. Based on (2.3), ρKi
converges to ρK uniformly on Sn−1. Moreover,

as K ∈ K n
(o), one can find a constant R1 > 0, such that, for all u ∈ Sn−1 and for all

i = 1, 2, · · · ,

R1 ≤ ρKi
(u) and R1 ≤ ρK(u).

Together with the fact that Φ(t, u) is a decreasing function on t ∈ (0,∞), one has

Φ(ρKi
(u), u) ≤ Φ(R1, u) and Φ(ρK(u), u) ≤ Φ(R1, u) for all u ∈ Sn−1.

By condition C1), Φ(R1, u) is positive and continuous on Sn−1. Hence,

∫

Sn−1

Φ(R1, u) du <∞.

It follows from (3.4), (3.9) and the dominated convergence theorem that

lim
i→∞

Vφ(Ki) = lim
i→∞

∫

Sn−1

Φ(ρKi
(u), u) du

=

∫

Sn−1

lim
i→∞

Φ(ρKi
(u), u) du

=

∫

Sn−1

Φ(ρK(u), u) du

= Vφ(K).

This concludes the proof of Lemma 3.1.2.
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3.2 The general dual Orlicz curvature measure C̃φ,V

We are ready to give the definition of the general dual Orlicz curvature measure C̃φ,V .

For K ∈ K n
(o), let ΨK(u) = φ(ρK(u)u)[ρK(u)]

n for u ∈ Sn−1. In fact, for any x ∈ ∂K,

one has ΨK(x̄) = φ(x)|x|n.

Definition 3.2.1. For any K ∈ K n
(o) and for any function φ satisfying condition C1),

the general dual (Lφ) Orlicz curvature measure of K, denoted by C̃φ,V (K, ·), is given

by

C̃φ,V (K, η) =

∫

ααα∗
K(η)

ΨK(u) du

for any Borel set η ⊆ Sn−1.

Indeed, for each K ∈ K n
(o), C̃φ,V (K, ·) does define a Borel measure on Sn−1. To

this end, we only need to show that C̃φ,V (K, ·) satisfies the countable additivity, as

C̃φ,V (K, ∅) = 0 holds trivially. That is, we need to prove

C̃φ,V (K,∪
∞
i=1ηi) =

∞∑

i=1

C̃φ,V (K, ηi)

for any sequence of pairwise disjoint Borel sets η1, η2, · · · ⊆ Sn−1. Recall that ααα∗
K

(
∪∞
i=1

ηi
)
= ∪∞

i=1ααα
∗
K(ηi) by [29, Lemma 2.3], and

ααα∗
K(ηi) = π̃(xxxK(ηi)) = {x̄ : x ∈ xxxK(ηi)} ⊆ Sn−1

is spherical measurable for each i ≥ 1 by [29, Lemma 2.1], where xxxK(ηi) is the reverse

spherical image of ηi ⊆ Sn−1 given by

xxxK(ηi) =
{
x ∈ ∂K : x ∈ H(K, u) for some u ∈ ηi

}
⊆ ∂K.

Therefore,

C̃φ,V (K,∪
∞
i=1ηi) =

∫

ααα∗
K(∪∞

i=1ηi)

ΨK(u) du =

∫

∪∞
i=1ααα

∗
K(ηi)

ΨK(u) du. (3.10)

The countable additivity will follow immediately if ∪∞
i=1ααα

∗
K(ηi) is pairwise disjoint.

However, by [29, Lemma 2.4], one gets that {ααα∗
K(ηj) \ ωK}

∞
j=1 is pairwise disjoint.

Since measure of ωK turns out to be zero [29, p.339-340], then by (3.10), one can
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obtain

C̃φ,V (K,∪
∞
i=1ηi) =

∫

∪∞
i=1(ααα

∗
K(ηi)\ωK)

ΨK(u) du

=
∞∑

i=1

∫

ααα∗
K(ηi)\ωK

ΨK(u)du

=
∞∑

i=1

∫

ααα∗
K(ηi)

ΨK(u)du

=
∞∑

i=1

C̃φ,V (K, ηi).

This concludes that C̃φ,V is a Borel measure.

The following lemma provides convenient formulas to calculate integrals with

respect to the measure C̃φ,V (K, ·). Recall that ΨK(u) = φ(ρK(u)u)[ρK(u)]
n for all

u ∈ Sn−1.

Lemma 3.2.2. Let φ be a function satisfying condition C1). For each K ∈ K n
(o), the

following formulas

∫

Sn−1

g(v)dC̃φ,V (K, v) =

∫

Sn−1

g(αK(u))ΨK(u)du (3.11)

=

∫

regK

〈x, νK(x)〉g(νK(x))φ(x) dH
n−1(x) (3.12)

hold for any bounded Borel function g : Sn−1 → R.

Proof. First, we prove (3.11). Let γ(v) =
∑m

i=1 ai1ηi(v) for any v ∈ Sn−1 be an

arbitrary simple function, where ηi ⊆ Sn−1 are Borel sets and 1A denotes the indicator

function of the set A. By [29, (2.21)], one has u ∈ ααα∗
K(η) if and only if αK(u) ∈ η,

and this further yields that

∫

Sn−1

γ(αK(u))ΨK(u) du =

∫

Sn−1

m∑

i=1

ai1ηi(αK(u))ΨK(u) du

=

∫

Sn−1

m∑

i=1

ai1ααα∗
K(ηi)(u)ΨK(u) du

=
m∑

i=1

ai

∫

Sn−1

1ααα∗
K(ηi)(u)ΨK(u) du.
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Together with Definition 3.2.1, one has

∫

Sn−1

γ(αK(u))ΨK(u) du =
m∑

i=1

ai

∫

Sn−1

1ααα∗
K(ηi)(u)ΨK(u) du

=
m∑

i=1

aiC̃φ,V (K, ηi)

=
m∑

i=1

ai

∫

Sn−1

1ηi(v) dC̃φ,V (K, v)

=

∫

Sn−1

γ(v) dC̃φ,V (K, v).

That is, (3.11) holds true for simple functions. Following from a standard limit ap-

proach by simple functions, one can prove formula (3.11) for general bounded Borel

functions g : Sn−1 → R.

Next we prove (3.12). According to [29, (2.31)], for each bounded integrable

function f : Sn−1 → R, one has

∫

Sn−1

f(u)φ(ρK(u)u) du =

∫

regK

〈x, νK(x)〉f(x̄)
φ(ρK(x̄)x̄)

ρnK(x̄)
dH n−1(x)

=

∫

regK

〈x, νK(x)〉f(x̄)
φ(x)

|x|n
dH n−1(x),

where x̄ = x/|x|, ρK(x̄)x̄ = x, and ρK(x̄) = |x|. Together with (3.11) and the fact

that f = g ◦ αK is bounded integrable on Sn−1, one has

∫

Sn−1

g(v) dC̃φ,V (K, v) =

∫

Sn−1

g(αK(u))ΨK(u) du

=

∫

regK

〈x, νK(x)〉g(νK(x))φ(x) dH
n−1(x).

Hence, (3.12) holds true.

The weak convergence of the general dual Orlicz curvature measure is proved in

the following proposition.

Proposition 3.2.3. Let φ be a function satisfying condition C1). If the sequence

{Ki}
∞
i=1 ⊆ K n

(o) converges to K ∈ K n
(o) in the Hausdorff metric, then C̃φ,V (Ki, ·)

converges to C̃φ,V (K, ·) weakly.
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Proof. As {Ki}
∞
i=1 ⊆ K n

(o) converges to K ∈ K n
(o), then ρKi

converges to ρK uniformly

(see (2.3)) and hence one can find constants R1, R2 > 0, such that, for all u ∈ Sn−1

and for all i ≥ 1,

R1 ≤ ρKi
(u) ≤ R2 and R1 ≤ ρK(u) ≤ R2.

For any fixed u ∈ Sn−1 and for any function φ satisfying condition C1), it can be

checked that

ΨKi
(u) = φ(ρKi

(u)u)[ρKi
(u)]n → φ(ρK(u)u)[ρK(u)]

n = ΨK(u) uniformly on Sn−1.

(3.13)

Note that αKi
→ αK almost everywhere on Sn−1 (see [29, Lemma 2.2]). For any

continuous function g : Sn−1 → R, by (3.13), there exists a constant M > 0, such

that, for all u ∈ Sn−1 and for all i = 1, 2, · · · ,

|g(αKi
(u))ΨKi

(u)| ≤M and |g(αK(u))ΨK(u)| ≤M.

It follows from the dominated convergence theorem that

lim
i→∞

∫

Sn−1

g(αKi
(u))ΨKi

(u) du =

∫

Sn−1

lim
i→∞

g(αKi
(u))ΨKi

(u) du

=

∫

Sn−1

g(αK(u))ΨK(u) du.

Together with (3.11), then

lim
i→∞

∫

Sn−1

g(v) dC̃φ,V (Ki, v) = lim
i→∞

∫

Sn−1

g(αKi
(u))ΨKi

(u) du

=

∫

Sn−1

g(v) dC̃φ,V (K, v),

hold for any continuous function g : Sn−1 → R. In conclusion, C̃φ,V (Ki, ·) converges

weakly to C̃φ,V (K, ·) as desired.

Proposition 3.2.4. Let K ∈ K n
(o) and φ be a function satisfying condition C1). Then,

C̃φ,V (K, ·) is absolutely continuous with respect to the surface area measure S(K, ·).
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Proof. Let η ⊆ Sn−1 be a Borel set and g = 111η in (3.12). Then

C̃φ,V (K, η) =

∫

ν−1
K (η)

〈x, νK(x)〉φ(x)dH
n−1(x).

Since K ∈ K n
(o) and φ is a function satisfying condition C1), there exists a constant

T <∞, such that, 〈x, νK(x)〉φ(x) ≤ T for all x ∈ ∂K. Then

∫

ν−1
K (η)

〈x, νK(x)〉φ(x)dH
n−1(x) ≤ T

∫

ν−1
K (η)

dH n−1(x).

If η ⊆ Sn−1 is a Borel set such that S(K, η) = 0, then H n−1(ν−1
K (η)) = 0 and thus

C̃φ,V (K, η) ≤ T · H n−1(ν−1
K (η)) = 0.

As a result, C̃φ,V (K, ·) is absolutely continuous with respect to S(K, ·).

Let us discuss the measure C̃φ,V (K, ·) for K ∈ K n
(o) under Case 1 and Case 2 given

in Section 3.1. In Case 1, i.e., φ(x) = ψ(|x|), it follows from Definition 3.2.1 that for

any Borel set η ⊆ Sn−1,

C̃φ,V (K, η) =

∫

ααα∗
K(η)

φ(ρK(u)u)[ρK(u)]
n du

=

∫

ααα∗
K(η)

ψ(ρK(u))[ρK(u)]
n du

=
1

n

∫

ααα∗
K(η)

ϕ̂(ρK(u)) du, (3.14)

where ϕ̂(t) = nψ(t)tn. Recall that for K ∈ K n
(o) and ϕ : (0,∞) → (0,∞) a continuous

function, the dual Lϕ Orlicz curvature measure of K, denoted by C̃ϕ(K, ·), is defined

in [78] as follows: for each Borel set η ⊆ Sn−1,

C̃ϕ(K, η) =
1

n

∫

ααα∗
K(η)

ϕ(ρK(u))du.

Hence, (3.14) asserts that C̃φ,V (K, ·) = C̃ϕ̂(K, ·). In particular, if φ(x) = |x|q−n

n
which

leads to ϕ̂(t) = tq, then C̃φ,V (K, ·) is just the qth dual curvature measure of K [29];
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that is, for any Borel set η ⊆ Sn−1,

C̃φ,V (K, η) = C̃ϕ̂(K, η)

=
1

n

∫

ααα∗
K(η)

[ρK(u)]
q du

= C̃q(K, η). (3.15)

In Case 2, i.e., φ(x) = ψ(|x|)φ2(x̄), one has, for any Borel set η ⊆ Sn−1,

C̃φ,V (K, η) =

∫

ααα∗
K(η)

φ(ρK(u)u)[ρK(u)]
n du

=

∫

ααα∗
K(η)

ψ(ρK(u))[ρK(u)]
nφ2(u) du

=
1

n

∫

ααα∗
K(η)

ϕ̂(ρK(u))φ2(u) du. (3.16)

In this case, Lemma 3.2.2 can be rewritten as follows.

Corollary 3.2.5. Let φ(x) = ψ(|x|)φ2(x̄) satisfy condition C1). For K ∈ K n
(o), then

∫

Sn−1

g(v)dC̃φ,V (K, v) =
1

n

∫

Sn−1

g(αK(u))ϕ̂(ρK(u))φ2(u)du

=
1

n

∫

regK

〈x, νK(x)〉 · g(νK(x))
ϕ̂(|x|)φ2(x̄)

|x|n
dH n−1(x)

=

∫

regK

〈x, νK(x)〉 · g(νK(x))ψ(|x|)φ2(x̄) dH
n−1(x),

hold for each bounded Borel function g : Sn−1 → R.

3.3 A variational interpretation for the general dual

Orlicz curvature measure

The variational interpretation of L0 addition (logarithmic addition) for the general

dual Orlicz curvature measure is stated as follows.

Let Ω be a closed set of Sn−1 such that Ω is not contained in any closed hemisphere

of Sn−1. Recall the definition of general dual Orlicz quermassintegral in Section 3.1
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that if Φ(t, u) =
∫∞

t
φ(ru)rn−1 dr, then Vφ(E) =

∫
Sn−1 Φ(ρE(u), u) du.

Theorem 3.3.1. Let h0 : Ω → (0,∞) and g : Ω → R be two continuous functions.

Define ht by

log(ht(u)) = log(h0(u)) + tg(u) + o(t, u) for all u ∈ Ω, (3.17)

where o(t, ·) : Ω → R is continuous and o(t, u)/t→ 0 uniformly on Ω as t→ 0. Let φ

be a function satisfying condition C1). Then

d

dt
Vφ([ht])

∣∣∣∣
t=0

= −

∫

Ω

g(u) dC̃φ,V ([h0], u). (3.18)

Remark. An immediate consequence of (3.18) and the chain rule for derivative is

the following formula, which will be used in solving the general dual Orlicz-Minkowski

problem:

d

dt
logVφ([ht])

∣∣∣∣
t=0

= −
1

Vφ([h0])

∫

Ω

g(u) dC̃φ,V ([h0], u). (3.19)

Proof. Let ρ0 : Ω → (0,∞) be a continuous function. For δ > 0 and t ∈ (−δ, δ), let

log(ρt(u)) = log(ρ0(u)) + tg(u) + o(t, u) for all u ∈ Ω,

where o(t, ·) : Ω → R is continuous and o(t, u)/t→ 0 uniformly on Ω as t→ 0.

First of all, let us prove the following formula: for almost every u ∈ Sn−1 (with

respect to the spherical measure), since ΨK(u) = φ(ρK(u)u)[ρK(u)]
n for u ∈ Sn−1,

one has

d

dt
Φ(ρ〈ρt〉∗(u), u)

∣∣∣
t=0

=
d

dt

∫ ∞

ρ〈ρt〉∗ (u)

φ(ru)rn−1 dr
∣∣∣
t=0

= Ψ〈ρ0〉∗(u)g(α
∗
〈ρ0〉

(u)). (3.20)

In fact, it follows from the chain rule and ρ〈ρt〉∗(u) = h−1
〈ρt〉

(u) for all u ∈ Sn−1 that

d

dt
Φ(ρ〈ρt〉∗(u), u)

∣∣∣
t=0

=
d

dt

∫ ∞

e
− log h〈ρt〉

(u)
φ(ru)rn−1 dr

∣∣∣
t=0

= φ(h−1
〈ρ0〉

(u)u)h−n〈ρ0〉
(u) ·

d

dt
log h〈ρt〉(u)

∣∣∣
t=0

= Ψ〈ρ0〉∗(u) · g(α
∗
〈ρ0〉

(u)),
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where the last equality follows from [29, (4.4)], i.e.,

lim
t→0

log h〈ρt〉(v)− log h〈ρ0〉(v)

t
= g(α∗

〈ρ0〉
(v))

holds for any v ∈ Sn−1 \ η0, with η0 = η〈ρ0〉 the complement of the set of the regular

normal vectors of 〈ρ0〉. Note that the spherical measure of η0 is zero.

We shall need the following argument in order to use the dominated convergence

theorem: there exist two constants δ > 0 and M > 0, such that, for all t ∈ (−δ, δ)

and for all u ∈ Sn−1,

∣∣Φ(ρ〈ρt〉∗(u), u)− Φ(ρ〈ρ0〉∗(u), u)
∣∣ ≤M |t|. (3.21)

Note that 〈ρt〉 → 〈ρ0〉 in the Hausdorff metric; this is a direct consequence of the

Aleksandrov’s convergence lemma [1] and formula (2.3). Therefore, ρ〈ρt〉∗ → ρ〈ρ0〉∗

uniformly on Sn−1. As 〈ρ0〉
∗ ∈ K n

(o), one can find constants l1, l2, δ1 > 0, such that,

l1 < ρ〈ρt〉∗(u) < l2 holds for all u ∈ Sn−1 and for all t ∈ (−δ1, δ1). It follows from

condition C1) and the continuity of φ that

∣∣[ log Φ(e−s, u)
]′∣∣ =

∣∣φ(e−su)e−sn/Φ(e−s, u)
∣∣ ≤ L2 (3.22)

holds for some finite constant L2 independent of u ∈ Sn−1 and for s ∈ (− log l2,− log l1).

Note that log h〈ρt〉(u) ∈ (− log l2,− log l1) and log h〈ρ0〉(u) ∈ (− log l2,− log l1) for all

u ∈ Sn−1 and for all t ∈ (−δ1, δ1). By (3.22) and the mean value theorem, one has,

for all u ∈ Sn−1 and for all t ∈ (−δ, δ) (without loss of generality, we can assume that

0 < δ < δ1),

∣∣∣ log Φ(h−1
〈ρt〉

(u), u)− log Φ(h−1
〈ρ0〉

(u), u)
∣∣∣ ≤ L2

∣∣∣ log h〈ρt〉(u)− log h〈ρ0〉(u)
∣∣∣

≤ L2M1|t|, (3.23)

where the last inequality follows from [29, Lemma 4.1], i.e, there exist constants

0 < δ,M1 <∞ such that, for all u ∈ Sn−1 and for all t ∈ (−δ, δ),

∣∣∣ log h〈ρt〉(u)− log h〈ρ0〉(u)
∣∣∣ ≤M1|t|.

It follows from condition C1) that there is a constant L1 (independent of u ∈ Sn−1),
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such that, for all u ∈ Sn−1 and for all t ∈ (−δ, δ),

0 < st =
Φ(ρ〈ρt〉∗(u), u)

Φ(ρ〈ρ0〉∗(u), u)
=

Φ(h−1
〈ρt〉

(u), u)

Φ(h−1
〈ρ0〉

(u), u)
< L1.

Hence |st − 1| ≤ L1 · | log st| (see e.g., [29, p.362]). Together with inequality (3.23),

one gets, for all u ∈ Sn−1 and for all t ∈ (−δ, δ),

∣∣∣Φ(ρ〈ρt〉∗(u), u)− Φ(ρ〈ρ0〉∗(u), u)
∣∣∣

=
∣∣∣Φ(h−1

〈ρt〉
(u), u)− Φ(h−1

〈ρ0〉
(u), u)

∣∣∣

≤ Φ(h−1
〈ρ0〉

(u), u) · L1 ·
∣∣∣ log Φ(h−1

〈ρt〉
(u), u)− log Φ(h−1

〈ρ0〉
(u), u)

∣∣∣
≤ Φ(h−1

〈ρ0〉
(u), u) · L1L2M1 · |t|

≤ Φ(l1, u) · L1L2M1 · |t|.

That is, inequality (3.21) holds by letting M = L1L2M1 ·maxu∈Sn−1 Φ(l1, u) <∞.

Now we are ready to prove formula (3.18). To this end, let [ht] be the Wulff shape

associated to ht with ht given by (3.17). Consider κt = 1/ht and then

log κt = − log ht = − log h0 − tg − o(t, ·) = log κ0 − tg − o(t, ·).

Moreover, [ht] = 〈1/ht〉
∗ = 〈κt〉

∗ due to the bipolar theorem and (2.20). It follows

from (3.4), (3.20), (3.21) and the dominated convergence theorem that

d

dt
Vφ([ht])

∣∣∣
t=0

=
d

dt
Vφ(〈κt〉

∗)
∣∣∣
t=0

=
d

dt

∫

Sn−1

Φ(ρ〈κt〉∗(u), u) du
∣∣∣
t=0

=

∫

Sn−1

d

dt
Φ(ρ〈κt〉∗(u), u)

∣∣∣
t=0

du

= −

∫

Sn−1

Ψ〈κ0〉∗(u) · g(α
∗
〈κ0〉

(u)) du.

Together with (3.11) and the fact that the spherical measure of η0 is zero, one can
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prove formula (3.18) as follows:

d

dt
Vφ([ht])

∣∣∣
t=0

= −

∫

Sn−1\η0

Ψ〈κ0〉∗(u) · g(α
∗
〈κ0〉

(u)) du

= −

∫

Sn−1

(ĝ1Ω)(α〈κ0〉∗(u))Ψ〈κ0〉∗(u) du

= −

∫

Sn−1

(ĝ1Ω)(u) dC̃φ,V (〈κ0〉
∗, u)

= −

∫

Ω

g(u) dC̃φ,V ([h0], u),

where ĝ : Sn−1 → R is a continuous function, such that, for all v ∈ Sn−1 \ η0,

g(α〈ρ0〉∗(v)) = (ĝ1Ω)(α〈ρ0〉∗(v)).

The existence of such ĝ was proved in [29, p.364].

3.4 A solution to the general dual Orlicz-Minkowski

problem

In this section, we provide a solution to the following general dual Orlicz-Minkowski

problem.

The general dual Orlicz-Minkowski problem: given a nonzero finite Borel mea-

sure µ defined on Sn−1 and a continuous function φ : Rn \ {o} → (0,∞), can one find

a constant τ > 0 and a convex body K (ideally K ∈ K n
(o)), such that, µ = τC̃φ,V (K, ·)?

Clearly, if the general dual Orlicz-Minkowski problem has solutions, the constant

τ can be calculated by

|µ| =

∫

Sn−1

dµ(v) = τ

∫

Sn−1

dC̃φ,V (K, v) = τ · C̃φ,V (K,S
n−1),

and equivalently

τ =
|µ|

C̃φ,V (K,Sn−1)
. (3.24)

It is well known that, to have the various Minkowski problems solvable, the given



41

measure µ must satisfy that µ is not concentrated in any closed hemisphere (2.6), i.e.,

∫

Sn−1

〈u, v〉+ dµ(u) > 0 for all v ∈ Sn−1.

In fact, (2.6) is also a necessary condition in our setting. That is, if there exists a

convex body K ∈ K n
(o), such that,

µ

|µ|
=

C̃φ,V (K, ·)

C̃φ,V (K,Sn−1)
,

then µ satisfies (2.6).

To this end, let v ∈ Sn−1 be given. Then

∫

Sn−1

〈u, v〉+ dµ(u) =
|µ|

C̃φ,V (K,Sn−1)

∫

Sn−1

〈u, v〉+ dC̃φ,V (K, u). (3.25)

Hence, in order to show that µ satisfies (2.6), it is enough to show that

∫

Sn−1

〈u, v〉+ dC̃φ,V (K, u) > 0.

In fact, it follows from (3.12) that

∫

Sn−1

〈u, v〉+ dC̃φ,V (K, u) =

∫

regK

〈νK(x), v〉+ · 〈x, νK(x)〉φ(x) dH
n−1(x).

As K ∈ K n
(o), one can find a constant M such that 〈x, νK(x)〉φ(x) ≥ M for all

x ∈ regK. Consequently,

∫

Sn−1

〈u, v〉+ dC̃φ,V (K, u) ≥M

∫

regK

〈νK(x), v〉+ dH
n−1(x) > 0, (3.26)

as the surface area measure S(K, ·) satisfies

∫

regK

〈νK(x), v〉+ dH
n−1(x) =

∫

∂K

〈νK(x), v〉+ dH
n−1(x) =

∫

Sn−1

〈u, v〉+ dS(K, u) > 0.

The following theorem also shows that (2.6) is a sufficient condition for the general

dual Orlicz-Minkowski problem.
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Theorem 3.4.1. Let µ be a nonzero finite Borel measure on Sn−1 satisfying (2.6)

and let φ be a function satisfying conditions C1) and C2). Then there exists a convex

body K ∈ K n
(o), such that,

µ

|µ|
=

C̃φ,V (K, ·)

C̃φ,V (K,Sn−1)
.

In order to prove Theorem 3.4.1, we need the following lemma.

Lemma 3.4.2. Let µ be a nonzero finite Borel measure on Sn−1 satisfying (2.6) and

let φ be a function satisfying conditions C1) and C2). Then there exists a convex body

Q0 ∈ K n
(o) such that Vφ(Q0) = |µ| and

F (Q0) = sup
{
F (K) : Vφ(K) = |µ| and K ∈ K n

(o)

}
, (3.27)

where F : K n
(o) → R is defined by

F (K) = −
1

|µ|

∫

Sn−1

log hK(v)dµ(v). (3.28)

Proof. Let {Qi}
∞
i=1 ⊆ K n

(o) be such that Vφ(Qi) = |µ|, and

lim
i→∞

F (Qi) = sup
{

F (K) : Vφ(K) = |µ| and K ∈ K n
(o)

}
. (3.29)

First of all, we claim that the sequence {Q∗
i }

∞
i=1 is uniformly bounded. That is, we need

to prove that there exists a constant R > 0 such that Q∗
i ⊆ RBn for all i = 1, 2, · · ·

Assume not, i.e., there are no finite constants R such that Q∗
i ⊆ RBn for all i =

1, 2, · · · . Let vi ∈ Sn−1 be such that ρQ∗
i
(vi) = maxu∈Sn−1 ρQ∗

i
(u) and RQ∗

i
= ρQ∗

i
(vi).

Without loss of generality, we can assume that RQ∗
i
→ ∞ (otherwise, the sequence

{Q∗
i }

∞
i=1 is uniformly bounded) and vi → v0 (due to the compactness of Sn−1) as

i → ∞. Consequently, for any M > 0, there exists iM > 0 such that RQ∗
i
≥ M for

all i > iM . Clearly, for all i > iM , hQ∗
i
(u) ≥ 〈u, vi〉+ RQ∗

i
≥ M〈u, vi〉+. Recall that

Φ(t, u) =
∫∞

t
φ(ru)rn−1dr is decreasing on t. Then for all i > iM and for all u ∈ Sn−1,

Φ(ρQi
(u), u) = Φ(h−1

Q∗
i
(u), u) ≥ Φ([M〈u, vi〉+]

−1, u), (3.30)

where we let Φ([M〈u, vi〉+]
−1, u) = 0 if 〈u, vi〉+ = 0.
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Fatou’s lemma implies that

lim inf
i→∞

∫

Sn−1

Φ([M〈u, vi〉+]
−1, u) du

= lim inf
i→∞

∫

Sn−1

∫ ∞

[M〈u,vi〉+]−1

φ(ru)rn−1 dr du

≥

∫

Sn−1

lim inf
i→∞

∫ ∞

0

111([M〈u,vi〉+]−1,∞)φ(ru)r
n−1 dr du

≥

∫

Sn−1

∫ ∞

0

lim inf
i→∞

111([M〈u,vi〉+]−1,∞)φ(ru)r
n−1 dr du

=

∫

Sn−1

∫ ∞

[M〈u,v0〉+]−1

φ(ru)rn−1 dr du

=

∫

Sn−1

Φ([M〈u, v0〉+]
−1, u) du.

Together with (3.4) and (3.30), one has

|µ| = lim
i→∞

Vφ(Qi)

= lim
i→∞

∫

Sn−1

Φ(ρQi
(u), u) du

≥ lim inf
i→∞

∫

Sn−1

Φ([M〈u, vi〉+]
−1, u) du

≥

∫

Sn−1

Φ([M〈u, v0〉+]
−1, u) du. (3.31)

For all j ≥ 2, let

Σj(v0) :=
{
u ∈ Sn−1 : 〈u, v0〉+ > 1/j

}
.

It follows from the monotone convergence theorem and the fact Σj(v0) ⊆ Σj+1(v0) ⊆

∪∞
j=1Σj(v0) = Sn−1 \ {u ∈ Sn−1 : 〈u, v0〉 = 0} that

lim
j→∞

∫

Σj(v0)

〈u, v0〉+ du =

∫

∪∞
j=1Σj(v0)

〈u, v0〉+ du =

∫

Sn−1

〈u, v0〉+ du > 0,

where the last inequality is due to the fact that the spherical measure is not concen-

trated on any closed hemisphere. Hence, there exists j0 ≥ 2, such that,

∫

Σj0
(v0)

du ≥

∫

Σj0
(v0)

〈u, v0〉+ du ≥
1

2

∫

Sn−1

〈u, v0〉+ du > 0.
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It can be checked that [M〈u, v0〉+]
−1 ≤ j0/M for all u ∈ Σj0(v0). By (3.3) and (3.31),

one gets

|µ| ≥

∫

Sn−1

Φ([M〈u, v0〉+]
−1, u) du

≥

∫

Σj0
(v0)

Φ(j0/M, u) du

= Vφ
(
Rn \ C (v0, j0/M, 1/j0)

)
,

where for any fixed u0 ∈ Sn−1, a > 0 and b0 ∈ (0, 1),

C (u0, a, b0) =
{
x ∈ Rn : 〈x̄, u0〉 ≥ b0 and |x| ≥ a

}
.

As φ satisfies condition C2), one gets a contradiction as follows:

∞ > |µ| ≥ lim
M→∞

Vφ(R
n \ C

(
v0, j0/M, 1/j0)

)
= ∞.

Therefore, the sequence {Q∗
i }

∞
i=1 is uniformly bounded.

Without loss of generality, we assume that Q∗
i → Q (more precisely, a subsequence

of {Q∗
i }

∞
i=1) in the Hausdorff metric for some compact convex set Q ⊆ Rn, due to the

Blaschke selection theorem (see e.g., [59]). Note that Q may not be a convex body,

however, the support function of Q can be defined as in (2.1) and Q∗
i → Q in the

Hausdorff metric is defined as in (2.2).

We now show Q ∈ K n
(o) and the proof can be obtained by an argument almost

identical to those in [75, 78]. In fact, assume that Q /∈ K n
(o) and o ∈ ∂Q. Then, there

exists u0 ∈ Sn−1 such that limi→∞ hQ∗
i
(u0) = hQ(u0) = 0. Let

Σδ0(u0) = {v ∈ Sn−1 : 〈v, u0〉 > δ0}.

By (3.28), Vφ(Qi) = |µ| and Q∗
i ⊆ RBn (without loss of generality, let R > 1) for all

i, one has

F (Qi) = −
1

|µ|

∫

Sn−1

log hQi
(v) dµ(v)

=
1

|µ|

∫

Σδ0
(u0)

log ρQ∗
i
(v) dµ(v) +

1

|µ|

∫

Sn−1\Σδ0
(u0)

log ρQ∗
i
(v) dµ(v)

≤
1

|µ|

∫

Σδ0
(u0)

log ρQ∗
i
(v) dµ(v) + logR.



45

It follows from µ(Σδ0(u0)) > 0 and ρQ∗
i
→ 0 on Σδ0(u0) uniformly for some δ0 > 0

that

lim
i→∞

F (Qi) = −∞,

which is impossible. Hence, o ∈ intQ and then Q ∈ K n
(o).

Finally, let us check that Q0 = Q∗ ∈ K n
(o) satisfies Vφ(Q0) = |µ| and (3.27). In

fact, as Q∗
i → Q, one has Qi → Q∗ = Q0 due to the bipolar theorem. Then

Vφ(Q0) = lim
i→∞

Vφ(Qi) = |µ|

is an immediate consequence of Lemma 3.1.2. On the other hand, hQi
→ hQ0 uni-

formly on Sn−1 due to Qi → Q0 ∈ K n
(o) and (2.2). Moreover, there exist constants

R1, R2 ∈ (0,∞), such that, for all u ∈ Sn−1 and for all i ≥ 1,

R1 ≤ hQi
(u) ≤ R2 and R1 ≤ hQ0(u) ≤ R2.

These further imply that, for all u ∈ Sn−1 and for all i ≥ 1,

| log hQi
(u)| ≤ max{| logR1|, | logR2|} <∞.

It follows from the dominated convergence theorem that

lim
i→∞

F (Qi) = lim
i→∞

−
1

|µ|

∫

Sn−1

log hQi
(v) dµ(v)

= −
1

|µ|

∫

Sn−1

lim
i→∞

log hQi
(v) dµ(v)

= −
1

|µ|

∫

Sn−1

log hQ0(v) dµ(v)

= F (Q0).

Together with (3.29), one can easily get the desired formula (3.27).

Proof of Theorem 3.4.1. Recall that each K ∈ K n
(o) can be uniquely determined

by its support function and vice versa. Thus we can let Vφ(h[f ]) = Vφ([f ]) for all

f ∈ C+(Sn−1). On the other hand, as f ≥ h[f ] for all f ∈ C+(Sn−1), then

F (f) := −
1

|µ|

∫

Sn−1

log f(v) dµ(v) ≤ F (h[f ]). (3.32)
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Consider the following optimization problem:

sup
{

F (f) : Vφ([f ]) = |µ| for f ∈ C+(Sn−1)
}
. (3.33)

According to (3.32) and Lemma 3.4.2, the support function of convex body Q0 ∈ K n
(o)

found in Lemma 3.4.2 is an optimizer for the optimization problem (3.33).

On the other hand, the method of Lagrange multipliers can be used to find the

necessary conditions for the optimizers for the optimization problem (3.33). In fact,

for δ > 0 small enough, let ht(v) = hQ0(v)e
tg(v) for t ∈ (−δ, δ) and for v ∈ Sn−1, where

g : Sn−1 → R is an arbitrary continuous function. Let

L (t, τ) = F (ht)− τ
(
logVφ([ht])− log |µ|

)
.

As hQ0 is an optimizer to (3.33), the following equation holds:

∂

∂t
L (t, τ)

∣∣∣
t=0

= 0. (3.34)

It is easily checked that

∂

∂t
F (ht)

∣∣∣
t=0

=
∂

∂t

(
−

1

|µ|

∫

Sn−1

[log hQ0(v)+tg(v)] dµ(v)

)∣∣∣∣
t=0

= −
1

|µ|

∫

Sn−1

g(v) dµ(v).

It follows from (3.19) that

∂

∂t
logVφ([ht])

∣∣∣
t=0

= −
1

Vφ(Q0)

∫

Sn−1

g(v) dC̃φ,V (Q0, v).

Due to Vφ(Q0) = |µ|, one can rewrite (3.34) as follows:

∫

Sn−1

g(v) dµ(v) = τ

∫

Sn−1

g(v) dC̃φ,V (Q0, v)

holding for arbitrary continuous function g : Sn−1 → R. Consequently, µ = τC̃φ,V (Q0, ·)

with the constant τ given by (3.24), that is,

τ =
|µ|

C̃φ,V (Q0, Sn−1)
.

In summary, a solution to the general dual Orlicz-Minkowski problem has been found.
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The following corollary provides a solution to the general dual Orlicz-Minkowski

problem under the Case 2 in Section 3.1, i.e., φ(x) = ψ(|x|)φ2(x̄) with ψ : (0,∞) →

(0,∞) and φ2 : S
n−1 → (0,∞) continuous functions. Again, let φ̂ and ψ be given as

in (3.6) or (3.7), and ϕ̂(t) = nψ(t)tn.

Corollary 3.4.3. Let φ(x) = ψ(|x|)φ2(x̄) be a continuous function such that the con-

tinuous function φ2 is positive on Sn−1, and the functions φ̂ and ϕ̂ satisfy conditions

A1)-A3). Then the following are equivalent:

i) µ is a nonzero finite Borel measure on Sn−1 satisfying (2.6);

ii) there exists a convex body K ∈ K n
(o) such that

∫
Sn−1 g(v) dµ(v)

|µ|
=

∫
Sn−1 g(v) dC̃φ,V (K, v)∫
Sn−1 dC̃φ,V (K, v)

=

∫
Sn−1 g(αK(u))ϕ̂(ρK(u))φ2(u) du∫

Sn−1 ϕ̂(ρK(u))φ2(u) du

hold for each bounded Borel function g : Sn−1 → R.

Proof. As explained in Section 3.1, under the conditions given in Corollary 3.4.3,

φ(x) = ψ(|x|)φ2(x̄) satisfies conditions C1) and C2). The argument in ii) is equivalent

to
µ

|µ|
=

C̃φ,V (K, ·)

C̃φ,V (K,Sn−1)
.

The equivalence between i) and ii) is an immediate consequence from (3.25), (3.26),

Corollary 3.2.5 and Theorem 3.4.1.

3.5 Uniqueness of solutions to the general dual

Orlicz-Minkowski problem

It seems very difficult and maybe even impossible to obtain the uniqueness of solu-

tions of the general dual Orlicz-Minkowski problem for general φ, due to the lack of

homogeneity. In this section, the uniqueness will be proved in special cases. In order

to get this done, we need the following theorem.
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Theorem 3.5.1. Let φ be a function satisfying condition C1) and that φ(x)|x|n is

strictly radially decreasing on Rn \ {o}. If K,L ∈ K n
(o) satisfy that C̃φ,V (K, ·) =

C̃φ,V (L, ·), then K = L.

The proof of Theorem 3.5.1 follows an argument similar to those in [75, 78], and

heavily relies on [75, Lemma 5.1]. For readers’ convenience, we list [75, Lemma 5.1]

below as Lemma 3.5.2 and provide a brief sketch of the proof of Theorem 3.5.1.

Lemma 3.5.2. Suppose that K ′, L ∈ K n
(o). If the following sets

η1 =
{
v ∈ Sn−1 : hK′(v) > hL(v)

}
,

η2 =
{
v ∈ Sn−1 : hK′(v) < hL(v)

}
,

η3 =
{
v ∈ Sn−1 : hK′(v) = hL(v)

}

are nonempty, then the following statements are true:

(a) if u ∈ ααα∗
K′(η1), then ρK′(u) > ρL(u);

(b) if u ∈ ααα∗
L(η2 ∪ η3), then ρL(u) ≥ ρK′(u);

(c) ααα∗
K′(η1) ⊂ ααα∗

L(η1);

(d) H n−1(ααα∗
L(η1)) > 0 and H n−1(ααα∗

K′(η2)) > 0.

Proof of Theorem 3.5.1. Assume that K,L ∈ K n
(o) with C̃φ,V (K, ·) = C̃φ,V (L, ·) are

not dilates of each other, namely, K 6= tL for any t > 0. Hence, there exists some

constant t0 > 0 such that K ′ = t0K is a convex body with η1, η2, η3 defined in Lemma

3.5.2 being nonempty.

Recall that ΨK(u) = φ(ρK(u)u)[ρK(u)]
n for u ∈ Sn−1. Due to Lemma 3.5.2 and

the fact that φ(x)|x|n is strictly radially decreasing on Rn \ {o}, one has, for all

u ∈ ααα∗
K′(η1),

0 < ΨK′(u) = φ(ρK′(u)u)[ρK′(u)]n < φ(ρL(u)u)[ρL(u)]
n = ΨL(u). (3.35)

Now we claim that the spherical measure of ααα∗
K′(η1) is positive. In fact, this claim

follows from Definition 3.2.1 and Lemma 3.5.2 as follows:

∫

ααα∗
K(η1)

ΨK(u) du = C̃φ,V (K, η1) = C̃φ,V (L, η1) =

∫

ααα∗
L(η1)

ΨL(u) du > 0.
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Moreover, by (3.35) and Lemma 3.5.2, one has

C̃φ,V (K, η1) =

∫

ααα∗
L(η1)

ΨL(u) du

≥

∫

ααα∗
K′ (η1)

ΨL(u) du

>

∫

ααα∗
K′ (η1)

ΨK′(u) du

> 0.

Due to the easily checked fact ααα∗
K′(η1) = ααα∗

K(η1) and Definition 3.2.1, one gets

C̃φ,V (K, η1) =

∫

ααα∗
K(η1)

ΨK(u) du

=

∫

ααα∗
K′ (η1)

φ(ρK(u)u)[ρK(u)]
n du

>

∫

ααα∗
K′ (η1)

ΨK′(u) du

=

∫

ααα∗
K′ (η1)

φ(t0ρK(u)u)[t0ρK(u)]
n du > 0.

Together with the fact that φ(x)|x|n is strictly radially decreasing on Rn \ {o}, one

has t0 > 1 and moreover

φ(ρK(u)u)[ρK(u)]
n > φ(t0ρK(u)u)[t0ρK(u)]

n (3.36)

holds for all u ∈ Sn−1.

Similarly, one can check that the spherical measure of ααα∗
L(η2) is positive. It follows

from Lemma 3.5.2 that ααα∗
L(η2) ⊆ ααα∗

K′(η2) and

0 < C̃φ,V (K, η2) = C̃φ,V (L, η2) =

∫

ααα∗
L(η2)

ΨL(u) du ≤

∫

ααα∗
K′ (η2)

ΨK′(u) du = C̃φ,V (K
′, η2).

Together with (3.36), Definition 3.2.1, and ααα∗
K′(η2) = ααα∗

K(η2), one has

C̃φ,V (K, η2) ≤ C̃φ,V (K
′, η2) < C̃φ,V (K, η2).
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This is impossible, and hence K and L are dilates of each other.

Now we claim that K = L. Assume not, i.e., there exists a constant t 6= 1 such

that K = tL. Let t > 1 and hence φ(ρL(u)u)[ρL(u)]
n > φ(ρK(u)u)[ρK(u)]

n for all

u ∈ Sn−1. We can get a contradiction as follows:

C̃φ,V (K,S
n−1) = C̃φ,V (L, S

n−1)

=

∫

Sn−1

φ(ρL(u)u)[ρL(u)]
n du

>

∫

Sn−1

φ(ρK(u)u)[ρK(u)]
n du

= C̃φ,V (K,S
n−1),

where we have used the assumption that C̃φ,V (K, ·) = C̃φ,V (L, ·).

Similarly, one can show that t < 1 is not possible, and hence K = L as desired. �

Remark. When φ(x) = ψ(|x|)φ2(x̄) as stated in Case 2 in Section 3.1, φ(x)|x|n is a

strictly radially decreasing function if ϕ̂(t) = nψ(t)tn is a strictly decreasing function

on t ∈ (0,∞). For instance, if φ(x) = ‖x‖q−n for q < 0, then

φ(x)|x|n = ‖x‖q−n|x|n = |x|q‖x̄‖q−n

is a strictly radially decreasing function on Rn\{o}. On the other hand, if φ is smooth

enough, say the gradient of φ (denoted by ∇φ) exists on Rn \ {o}, a typical condition

to make φ(x)|x|n strictly radially decreasing is
〈
∇
(
φ(x)|x|n

)
, x
〉
< 0 or equivalently

〈∇φ(x), x〉+ nφ(x) < 0 for all x ∈ Rn \ {o}.

We are now ready to state our result regarding the uniqueness of solutions to the

general dual Orlicz-Minkowski problem. If φ2(u) = 1 for all u ∈ Sn−1, it goes back to

the case proved by Zhao [75].

Corollary 3.5.3. Let φ(x) = |x|q−nφ2(x̄) with q < 0 and φ2 : Sn−1 → (0,∞) a

positive continuous function. Then the following statements are equivalent:

i) µ is a nonzero finite Borel measure on Sn−1 satisfying (2.6);

ii) there exists a unique convex body K ∈ K n
(o), such that, µ = C̃φ,V (K, ·).

Proof. The argument from ii) to i) follows along the same lines as the arguments for
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(3.25) and (3.26). On the other hand, it follows from Theorem 3.4.1 that, if µ is a

nonzero finite Borel measure on Sn−1 satisfying (2.6), then there is a convex body

K̃ ∈ K n
(o) such that

µ

|µ|
=

C̃φ,V (K̃, ·)

C̃φ,V (K̃, Sn−1)
.

By Corollary 3.2.5, ααα∗
λK(η) = ααα∗

K(η) and ρλK = λρK for any constant λ > 0, and the

fact that u ∈ ααα∗
K(η) if and only if αK(u) ∈ η (see [29, (2.21)]), one has, for any λ > 0

and for any Borel set η ⊆ Sn−1,

C̃φ,V (λK, η) =

∫

ααα∗
λK(η)

[
ρλK(u)

]q
φ2(u)du

= λq
∫

ααα∗
K(η)

[
ρK(u)

]q
φ2(u)du

= λqC̃φ,V (K, η). (3.37)

Hence, C̃φ,V (λK, ·) = λqC̃φ,V (K, ·) and

µ =
|µ|

C̃φ,V (K̃, Sn−1)
C̃φ,V (K̃, ·) = C̃φ,V (K, ·),

where

K =

(
|µ|

C̃φ,V (K̃, Sn−1)

) 1
q

K̃.

Hence, K ∈ K n
(o) is a convex body such that µ = C̃φ,V (K, ·), if µ is a nonzero

finite Borel measure on Sn−1 satisfying (2.6). The uniqueness of K is an immediate

consequence of Theorem 3.5.1 and the remark after its proof.

The solution for µ being a discrete measure is stated in the following proposition.

Proposition 3.5.4. Let φ(x) = |x|q−nφ2(x̄) with q < 0 and φ2 : Sn−1 → (0,∞) a

positive continuous function. Suppose that µ =
∑m

i=1 λiδui with all λi > 0 is a discrete

measure not concentrated in any closed hemisphere (i.e., satisfying (2.6)). Then, there

exists a unique polytope P ∈ K n
(o), such that, µ = C̃φ,V (P, ·) and u1, u2, · · · , um are

the unit normal vectors of the faces of P .

Proof. It follows from Corollary 3.5.3 that there exists a unique convex body K0 ∈

K n
(o), such that, µ = C̃φ,V (K0, ·). The desired argument in this proposition follows if
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we can prove that K0 is a polytope with u1, u2, · · · , um being the unit normal vectors

of its faces. To this end, let M ∈ K n
(o) be a polytope circumscribed about K0 whose

faces have the unit normal vectors being exactly u1, u2, · · · , um. Hence K0 ⊆ M and

hM(ui) = hK0(ui) for all i = 1, 2, · · · ,m.

Suppose that K0 6=M (as otherwise, nothing to prove). In this case, there exists a

set ηM ⊆ Sn−1, such that, the spherical measure of ηM is positive and ρM(u) > ρK0(u)

on ηM . It follows from (3.8) and (3.16) that

Vφ(M) < Vφ(K0) and C̃φ,V (L, S
n−1) = −qVφ(L)

for all L ∈ K n
(o). Hence, C̃φ,V (M,Sn−1) < C̃φ,V (K0, S

n−1) = |µ|. By (3.37), there

exists a constant 0 < c < 1, such that

C̃φ,V (cM, Sn−1) = C̃φ,V (K0, S
n−1) = |µ|.

On the other hand, from Corollary 3.5.3 and the proof of Theorem 3.4.1, the convex

body (−q)1/qK0 ∈ K n
(o) is the unique convex body such that Vφ

(
(−q)1/qK0

)
= |µ| and

F
(
(−q)1/qK0

)
= sup

{
F (K) : Vφ(K) = |µ| and K ∈ K n

(o)

}
.

However, this is impossible because Vφ
(
(−q)1/qcM

)
= |µ| and

F
(
(−q)1/qcM

)
= −

1

|µ|

∫

Sn−1

[
log hM(v) + log c+ log(−q)/q

]
dµ(v)

> −
1

|µ|

∫

Sn−1

[
log hM(v) + log(−q)/q

]
dµ(v)

= −
1

|µ|
·
m∑

i=1

λi
[
log hM(ui) + log(−q)/q

]

= −
1

|µ|
·
m∑

i=1

λi
[
log hK0(ui) + log(−q)/q

]

= F ((−q)1/qK0),

where the inequality is due to 0 < c < 1. Hence M = K0 is a polytope. Moreover, it

is easy to get the relation between λi and the polytope K0. In fact,
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λi =

∫

{ui}

dµ

=

∫

{ui}

dC̃φ,V (K0, v)

=

∫

ααα∗
K0

(ui)

[
ρK0(v)

]q
φ2(v) dv

=

∫

ν−1
K0

({ui})

〈x, νK0(x)〉|x|
q−nφ2(x̄) dH

n−1(x)

=

∫

ν−1
K0

({ui})

〈x, νK0(x)〉φ(x) dH
n−1(x)

> 0,

where the third equality follows from (3.37) and the fourth equality follows from

Corollary 3.2.5. Let P = K0, and then P is the desired polytope, such that, µ =

C̃φ,V (P, ·) and u1, u2, · · · , um are the unit normal vectors of the faces of P .



Chapter 4

General volumes and Minkowski

problem for G(t, ·) decreasing

This chapter is based on our paper [17]. In this chapter, we investigate the following

general dual Orlicz-Minkowski problem: under what conditions on a given measure µ

defined on the unit sphere, a two-variable function G(·, ·) and one variable function

ψ(·), does there exist a convex body K ∈ K n
(o) such that µ equals to the general dual

Orlicz curvature measure of K ∈ K n
(o) up to a constant τ , i.e., µ = τC̃G,ψ(K, ·)?

A solution to this problem will be provided for the case that G(t, ·) is decreasing

on t. Moreover, we also investigate some important inequalities with respect to the

general dual volume, including the dual Orlicz-Brunn-Minkowski inequalities and dual

Orlicz-Minkowski inequalities.

4.1 General dual curvature measures for K n
(o)

First, to give a variational interpretation for the general dual Orlicz curvature measure

C̃G,ψ, we introduce a general dual volume ṼG which is a generalization of the general

dual Orlicz quermassintegral Vφ in Chapter 3.

Definition 4.1.1. Let G : (0,∞) × Sn−1 → (0,∞) be continuous. For K ∈ S n
+ ,

define the general dual volume ṼG(K) of K by

ṼG(K) =

∫

Sn−1

G(ρK(u), u) du. (4.1)
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Our approach will be to obtain results for this rather general set function that

yield geometrically interesting consequences for particular functions G. (Remark 4.2.6

addresses the possibility of allowing G : (0,∞)×Sn−1 → R.) Let φ : Rn\{o} → (0,∞)

be a continuous function. One special case of interest is when G = Φ, where

Φ(t, u) =

∫ ∞

t

φ(ru)rn−1 dr (4.2)

for t > 0 and u ∈ Sn−1. Then we define V φ(K) = ṼΦ(K), so that

V φ(K) =

∫

Sn−1

Φ(ρK(u), u) du

=

∫

Sn−1

∫ ∞

ρK(u)

φ(ru)rn−1 dr du

=

∫

Rn\K

φ(x) dx

= Vφ(K), (4.3)

where the integral may be infinite. It recovers the definition of the general dual Orlicz

quermassintegral in (3.1).

Similarly, taking G = Φ, where

Φ(t, u) =

∫ t

0

φ(ru)rn−1 dr

for t > 0 and u ∈ Sn−1, we define V φ(K) = ṼΦ(K), whence

V φ(K) =

∫

Sn−1

Φ(ρK(u), u) du =

∫

K

φ(x) dx, (4.4)

where again the integral may be infinite. We refer to both V φ(K) and V φ(K) as a

general dual Orlicz volume of K ∈ S n. Indeed, if q 6= 0 and φ(x) = (|q|/n)|x|q−n,

then

Ṽq(K) =
1

n

∫

Sn−1

ρK(u)
q du (4.5)

=




V φ(K), if q < 0,

V φ(K), if q > 0,
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is the qth dual volume of K; see [15, p. 410]. In particular, when q = n, we have

V φ(K) = V (K), the volume ofK. More generally, if φ(x) = (|q|/n)|x|q−nρQ(x/|x|)
n−q,

where q 6= 0 and Q ∈ S n, then

Ṽq(K,Q) =
1

n

∫

Sn−1

ρK(u)
qρQ(u)

n−q du =




V φ(K), if q < 0,

V φ(K), if q > 0,
(4.6)

is the qth dual mixed volume of K and Q; see [15, p. 410].

Other special cases of ṼG(K) of interest, the general Orlicz dual mixed volumes

Ṽφ,ϕ(K,L) and V̆φ,ϕ(K, g), are given in (4.35) and (4.36).

Lemma 4.1.2. Let G : (0,∞) × Sn−1 → (0,∞) be continuous. If Ki ∈ K n
(o), i ∈ N,

and Ki → K ∈ K n
(o) as i→ ∞, then limi→∞ ṼG(Ki) = ṼG(K).

Proof. Since Ki → K ∈ K n
(o), ρKi

→ ρK uniformly on Sn−1. By the continuity of

G, we have limi→∞G(ρKi
(u), u) = G(ρK(u), u) and sup{G(ρKi

(u), u) : i ∈ N, u ∈

Sn−1} <∞. It follows from the dominated convergence theorem that

lim
i→∞

ṼG(Ki) = lim
i→∞

∫

Sn−1

G(ρKi
(u), u) du =

∫

Sn−1

lim
i→∞

G(ρKi
(u), u) du = ṼG(K).

Next we will give the generalized definition of general dual Orlicz curvature mea-

sure for K ∈ K n
(o).

Definition 4.1.3. Let K ∈ K n
(o), ψ : (0,∞) → (0,∞) be continuous, and Gt(t, u) =

∂G(t, u)/∂t be such that u 7→ Gt(ρK(u), u) is integrable on Sn−1. Define the finite

signed Borel measure C̃G,ψ(K, ·) on S
n−1 by

C̃G,ψ(K,E) =
1

n

∫

ααα∗
K(E)

ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du (4.7)

for each Borel set E ⊂ Sn−1. If ψ ≡ 1, we often write C̃G(K, ·) instead of C̃G,ψ(K, ·).

To see that C̃G,ψ(K, ·) is indeed a finite signed Borel measure on Sn−1, note firstly

that C̃G,ψ(K, ∅) = 0. Since K ∈ K n
(o) and u 7→ Gt(ρK(u), u) is integrable, C̃G,ψ(K, ·)

is finite. Let Ei ⊂ Sn−1, i ∈ N, be disjoint Borel sets. By [29, Lemmas 2.3 and 2.4],
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ααα∗
K(∪iEi) = ∪iααα

∗
K(Ei) and the intersection of any two of these sets has H n−1-measure

zero. The dominated convergence theorem then implies that

C̃G,ψ(K,∪iEi) =
1

n

∫

∪iααα∗
K(Ei)

ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du

=
1

n

∞∑

i=1

∫

ααα∗
K(Ei)

ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du

=
∞∑

i=1

C̃G,ψ(K,Ei),

so C̃G,ψ(K, ·) is countably additive.

Integrals with respect to C̃G,ψ(K, ·) can be calculated as follows. For any bounded

Borel function g : Sn−1 → R, we have

∫

Sn−1

g(u) dC̃G,ψ(K, u) =
1

n

∫

Sn−1

g(αK(u))ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du (4.8)

=
1

n

∫

∂K

g(νK(x))〈x, νK(x)〉

ψ(〈x, νK(x)〉)
|x|1−nGt(|x|, x̄) dx, (4.9)

where x̄ = x/|x|. Relation (4.8) follows immediately from (2.10), and (4.9) follows

from the fact that the bi-Lipschitz radial projection π̃ : ∂K → Sn−1, given by π̃(x) =

x/|x|, has Jacobian Jπ̃(x) = 〈x, νK(x)〉|x|
−n for all regular boundary points, and

hence for H n−1-almost all x ∈ ∂K.

If K is strictly convex, then the gradient ∇hK(u) of hK at u ∈ Sn−1 equals the

unique xK(u) ∈ ∂K with outer unit normal vector u, and ∇hK(νK(x)) = x for H n−1-

almost all x ∈ ∂K. Using this and [54, Lemma 2.10], (4.9) yields

∫

Sn−1

g(u) dC̃G,ψ(K, u)

=
1

n

∫

Sn−1

g(u)hK(u)

ψ(hK(u))
|∇hK(u)|

1−nGt

(
|∇hK(u)|,

∇hK(u)

|∇hK(u)|

)
dS(K, u).(4.10)

The following result could be proved in the same way as [54, Lemma 5.5], using

Weil’s Approximation Lemma. Here we provide an argument which avoids the use of

this lemma.
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Theorem 4.1.4. Let K ∈ K n
(o), and G,ψ be as in Definition 4.1.3. Then the measure-

valued map K 7→ C̃G,ψ(K, ·) is a valuation on K n
(o).

Proof. Let K,L ∈ K n
(o) be such that K ∪ L ∈ K n

(o). It suffices to show that for any

bounded Borel function g : Sn−1 → R, we have

I(K ∩ L) + I(K ∪ L) = I(K) + I(L), (4.11)

where I(M) =
∫
Sn−1 g(u) dC̃G,ψ(M,u) for M ∈ K n

(o). The sets K ∩ L, K ∪ L, K, and

L can each be partitioned into three disjoint sets, as follows:

∂(K ∩ L) = (∂K ∩ intL) ∪ (∂L ∩ intK) ∪ (∂K ∩ ∂L), (4.12)

∂(K ∪ L) = (∂K \ L) ∪ (∂L \K) ∪ (∂K ∩ ∂L), (4.13)

∂K = (∂K ∩ intL) ∪ (∂K \ L) ∪ (∂K ∩ ∂L), (4.14)

∂L = (∂L ∩ intK) ∪ (∂L \K) ∪ (∂K ∩ ∂L). (4.15)

Let x̄ = x/|x|. For H n−1-almost all x ∈ ∂(K ∩ L), we have

x ∈ ∂K ∩ intL ⇒ νK∩L(x) = νK(x) and ρK∩L(x̄) = ρK(x̄), (4.16)

x ∈ ∂L ∩ intK ⇒ νK∩L(x) = νL(x) and ρK∩L(x̄) = ρL(x̄), (4.17)

x ∈ ∂K ∩ ∂L ⇒ νK∩L(x) = νK(x) = νL(x) and ρK∩L(x̄) = ρK(x̄) = ρL(x̄),

(4.18)

where the first set of equations in (4.18) hold for x ∈ reg (K ∩L)∩ regK ∩ regL since

K ∩ L ⊂ K,L. Also, for H n−1-almost all x ∈ ∂(K ∪ L), we have

x ∈ ∂K \ L ⇒ νK∪L(x) = νK(x) and ρK∪L(x̄) = ρK(x̄), (4.19)

x ∈ ∂L \K ⇒ νK∪L(x) = νL(x) and ρK∪L(x̄) = ρL(x̄), (4.20)

x ∈ ∂K ∩ ∂L ⇒ νK∪L(x) = νK(x) = νL(x) and ρK∪L(x̄) = ρK(x̄) = ρL(x̄),

(4.21)

where the first set of equations in (4.21) hold for x ∈ reg (K ∪ L) ∩ regK ∩ regL

since K,L ⊂ K ∪ L. Now (4.11) follows easily from (4.9), by first decomposing the

integrations over ∂(K ∩L) and ∂(K ∪L) into six contributions via (4.12) and (4.13),

using (4.16–4.21), and then recombining these contributions via (4.14) and (4.15).
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Some particular cases of (4.7) are worthy of mention. Firstly, with G = Φ and

general ψ, we prefer to write C̃φ,ψ(K,E) instead of C̃Φ,ψ(K,E). Then we have

C̃φ,ψ(K,E) =
1

n

∫

ααα∗
K(E)

φ(ρK(u)u)ρK(u)
n

ψ(hK(αK(u)))
du, (4.22)

and by specializing (4.8) and (4.9) we get

∫

Sn−1

g(u) dC̃φ,ψ(K, u) =
1

n

∫

Sn−1

g(νK(ρK(u)u))
φ(ρK(u)u)ρK(u)

n

ψ(hK(αK(u)))
du

=
1

n

∫

∂K

g(νK(x))
〈x, νK(x)〉

ψ(〈x, νK(x)〉)
φ(x) dx

for any bounded Borel function g : Sn−1 → R. Here we used

Gt(ρK(u), u) = φ(ρK(u)u)ρK(u)
n−1. (4.23)

If we also choose ψ = 1 and write C̃φ,V (K,E) instead of C̃Φ(K,E), we obtain

C̃φ,V (K,E) =
1

n

∫

ααα∗
K(E)

φ(ρK(u)u)ρK(u)
n du,

the general dual Orlicz curvature measure C̃φ,V introduced in Chapter 3, and in par-

ticular we see that

∫

Sn−1

g(u) dC̃φ,V (K, u) =
1

n

∫

Sn−1

g(αK(u))φ(ρK(u)u)ρK(u)
n du (4.24)

=
1

n

∫

regK

g(νK(x))φ(x) 〈x, νK(x)〉 dx,

as in (3.12).

Note that when G = Φ is given by (4.2), we have ṼG(K) = V φ(K) as in (4.3), in

which caseGt(ρK(u), u) = −φ(ρK(u)u)ρK(u)
n−1 and hence C̃Φ,ψ(K,E) = −C̃φ,ψ(K,E).

Comparing (4.7) and (4.8), and using (4.23), we see that

∫

Sn−1

g(u)

ψ(hK(u))
dC̃φ,V (K, u) =





−

∫

Sn−1

g(u) dC̃Φ,ψ(K, u) (4.25a)
∫

Sn−1

g(u) dC̃Φ,ψ(K, u). (4.25b)
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Taking φ(x) = |x|q−nρQ(x/|x|)
n−q, for some Q ∈ S n

c+ and q ∈ R, and ψ(t) = tp,

p ∈ R, from (4.22) we get C̃φ,ψ(K,E) = C̃p,q(K,Q,E), where

C̃p,q(K,Q,E) =
1

n

∫

ααα∗
K(E)

hK(αK(u))
−p ρK(u)

q ρQ(u)
n−q du (4.26)

is the (p, q)-dual curvature measure of K relative to Q introduced in [54, Defini-

tion 4.2]. The formula [54, (5.1), p. 114] or the preceding discussion shows that for

any bounded Borel function g : Sn−1 → R, we have

∫

Sn−1

g(u) dC̃p,q(K,Q, u) =
1

n

∫

Sn−1

g(αK(u))hK(αK(u))
−p ρK(u)

q ρQ(u)
n−q du.

(4.27)

4.2 Variational formulas for the general dual vol-

ume

In this section, variational interpretation in terms of Orlicz addition—variational for-

mulas for the general dual volume ṼG of convex bodies are provided.

4.2.1 General variational formulas for radial Orlicz linear com-

binations

Our main result in this section is the following variational formula for ṼG, where

Gt(t, u) = ∂G(t, u)/∂t. Recall the Orlicz combinations introduced in Section 2.3 that

for functions f0, g, hK , hL, ρK , ρL, one has

fε(u) = ϕ−1 (ϕ(f0(u)) + εg(u)) for u ∈ Sn−1, (4.28)

ϕ1

(
hK(u)

hε(u)

)
+ εϕ2

(
hL(u)

hε(u)

)
= 1 for u ∈ Sn−1, (4.29)

and

ϕ1

(
ρK(u)

ρε(u)

)
+ εϕ2

(
ρL(u)

ρε(u)

)
= 1 for u ∈ Sn−1. (4.30)
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Note that we can apply (4.28) and (4.30) when f0 = hK for some K ∈ K n
(o) or when

f0 = ρK for some K ∈ S n
c+.

Theorem 4.2.1. Let G and Gt be continuous on (0,∞)× Sn−1 and let K,L ∈ S n
c+.

(i) If ϕ1, ϕ2 ∈ I and (ϕ1)
′
l(1) > 0, then

lim
ε→0+

ṼG(Kε)− ṼG(K)

ε
=

1

(ϕ1)′l(1)

∫

Sn−1

ϕ2

(
ρL(u)

ρK(u)

)
ρK(u)Gt(ρK(u), u) du, (4.31)

where Kε = K+̃ϕ,εL ∈ S n
c+ has radial function ρε given by (4.30). For ϕ1, ϕ2 ∈ D ,

(4.31) holds when (ϕ1)
′
r(1) < 0, with (ϕ1)

′
l(1) replaced by (ϕ1)

′
r(1).

(ii) Let a ∈ R ∪ {−∞}. If ϕ ∈ Ja and ϕ′ is continuous and nonzero on (0,∞), then

for g ∈ C(Sn−1),

lim
ε→0

ṼG(K̂ε)− ṼG(K)

ε
=

∫

Sn−1

g(u)Gt(ρK(u), u)

ϕ′ (ρK(u))
du,

where K̂ε ∈ S n
c+ has radial function ρ̂ε given by (4.28) with f0 = ρK.

Proof. (i) By (4.1),

lim
ε→0+

ṼG(Kε)− ṼG(K)

ε
= lim

ε→0+

∫

Sn−1

G(ρε(u), u)−G(ρK(u), u)

ε
du. (4.32)

Also, by (2.26),

lim
ε→0+

G(ρε(u), u)−G(ρK(u), u)

ε
= Gt(ρK(u), u) lim

ε→0+

ρε(u)− ρK(u)

ε

=
1

(ϕ1)′l(1)
ϕ2

(
ρL(u)

ρK(u)

)
ρK(u)Gt(ρK(u), u),

where the previous limit is uniform on Sn−1. Therefore (4.31) will follow if we show

that the limit and integral in (4.32) can be interchanged. To this end, assume that

ϕ1, ϕ2 ∈ I and (ϕ1)
′
l(1) > 0; the proof when ϕ1, ϕ2 ∈ D and (ϕ1)

′
r(1) < 0 is similar.

If ρ1(u) = ρε(u)
∣∣
ε=1

, it is easy to see from (4.30) that ρK ≤ ρε ≤ ρ1 on Sn−1 when

ε ∈ (0, 1). Since Gt is continuous on (0,∞)× Sn−1,

sup{|Gt(t, u)| : ρK(u) ≤ t ≤ ρ1(u), u ∈ Sn−1} = m1 <∞.
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By the mean value theorem and Lemma 2.3.2 (i),

∣∣∣∣
G(ρε(u), u)−G(ρK(u), u)

ε

∣∣∣∣ ≤ m2

for 0 < ε < 1. Thus we may apply the dominated convergence theorem in (4.32) to

complete the proof.

(ii) The argument is very similar to that for (i) above. Since

lim
ε→0

ṼG(K̂ε)− ṼG(K)

ε
= lim

ε→0

∫

Sn−1

G(ρ̂ε(u), u)−G(ρK(u), u)

ε
du, (4.33)

we can use (2.27) instead of (2.26) and need only justify interchanging the limit and

integral in (4.33). To see that this is valid, suppose that ϕ ∈ Ja is strictly increasing;

the proof is similar when ϕ is strictly decreasing. Then there exists ε0 > 0 such that

for ε ∈ (−ε0, ε0) and u ∈ Sn−1, we have

0 < b1(u) = ϕ−1 (ϕ (ρK(u))− ε0m3) ≤ ρ̂ε(u) ≤ ϕ−1 (ϕ (ρK(u)) + ε0m3) = b2(u) <∞,

where m3 = supu∈Sn−1 |g(u)| < ∞ due to g ∈ C(Sn−1). Since Gt is continuous on

(0,∞)× Sn−1, then sup{|Gt(t, u)| : b1(u) ≤ t ≤ b2(u), u ∈ Sn−1} = m4 < ∞. By the

mean value theorem and Lemma 2.3.2 (ii),

∣∣∣∣
G(ρ̂ε(u), u)−G(ρK(u), u)

ε

∣∣∣∣ ≤ m5

for −ε0 < ε < ε0. Thus we may apply the dominated convergence theorem in (4.33)

to complete the proof.

Recall that V φ and V φ are defined by (4.3) and (4.4), respectively. Note that

when G = Φ or Φ, Gt(t, u) = ±φ(tu)tn−1 is continuous on (0,∞) × Sn−1 because φ

is assumed to be continuous. The following result is then a direct consequence of the

previous theorem.

Corollary 4.2.2. Let φ : Rn \ {o} → (0,∞) be a continuous function and let K,L ∈

S n
c+.
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(i) If ϕ1, ϕ2 ∈ I and (ϕ1)
′
l(1) > 0, then

∫
Sn−1 φ(ρK(u)u)ϕ2

(
ρL(u)
ρK(u)

)
ρK(u)

n du

(ϕ1)′l(1)
=





lim
ε→0+

V φ(K)− V φ(ρε)

ε
(4.34a)

lim
ε→0+

V φ(ρε)− V φ(K)

ε
, (4.34b)

where ρε is given by (4.30), provided Φ (or Φ, respectively) is continuous. For ϕ1, ϕ2 ∈

D , (4.34a) and (4.34b) hold when (ϕ1)
′
r(1) < 0, with (ϕ1)

′
l(1) replaced by (ϕ1)

′
r(1).

(ii) Let a ∈ R ∪ {−∞}. If ϕ ∈ Ja and ϕ′ is continuous and nonzero on (0,∞), then

for all g ∈ C(Sn−1),

∫

Sn−1

φ(ρK(u)u) ρK(u)
n−1

ϕ′ (ρK(u))
g(u) du =





lim
ε→0

V φ(K)− V φ(ρ̂ε)

ε

lim
ε→0

V φ(ρ̂ε)− V φ(K)

ε
,

where ρ̂ε is given by (4.28) with f0 = ρK.

Formulas (4.34a) and (4.34b) motivate the following definition of the general dual

Orlicz mixed volume Ṽφ,ϕ(K,L). For K,L ∈ S n
c+, continuous φ : Rn \ {o} → (0,∞),

and continuous ϕ : (0,∞) → (0,∞), let

Ṽφ,ϕ(K,L) =
1

n

∫

Sn−1

φ(ρK(u)u)ϕ

(
ρL(u)

ρK(u)

)
ρK(u)

n du. (4.35)

Then (4.34a) and (4.34b) become

Ṽφ,ϕ(K,L) =





(ϕ1)
′
l(1)

n
lim
ε→0+

V φ(K)− V φ(ρε)

ε

(ϕ1)
′
l(1)

n
lim
ε→0+

V φ(ρε)− V φ(K)

ε
.

The special case of (4.34a) and (4.34b) when φ ≡ 1 was proved in [18, Theorem 5.4]

(see also [79, Theorem 4.1]) and the corresponding quantity Ṽφ,ϕ(K,L) was called the

Orlicz dual mixed volume.

On the other hand, Corollary 4.2.2 (ii) suggests an alternative definition of the

general dual mixed volume. For all K ∈ S n
c+, g ∈ C(Sn−1), continuous φ : Rn \{o} →
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(0,∞), and continuous ϕ : (0,∞) → (0,∞), define

V̆φ,ϕ(K, g) =
1

n

∫

Sn−1

φ(ρK(u)u)ϕ(ρK(u)) g(u) du. (4.36)

Then the formulas in Corollary 4.2.2 (ii) can be rewritten as

V̆φ,ϕ0(K, g) =





lim
ε→0

V φ(K)− V φ(ρ̂ε)

ε

lim
ε→0

V φ(ρ̂ε)− V φ(K)

ε
,

where ϕ0(t) = ntn−1/ϕ′(t). In particular, one can define a dual Orlicz mixed volume

of K and L by letting g = ψ(ρL), where ψ : (0,∞) → (0,∞) is continuous and

L ∈ S n
c+, namely

V̆φ,ϕ,ψ(K,L) =
1

n

∫

Sn−1

φ(ρK(u)u)ϕ(ρK(u)) ψ(ρL(u)) du.

Note that both Ṽφ,ϕ(K,L) and V̆φ,ϕ(K, g) are special cases of ṼG(K), corresponding

to setting G(t, u) = 1
n
φ(tu)ϕ

(
ρL(u)
t

)
tn and G(t, u) = 1

n
φ(tu)ϕ(t) g(u), respectively.

4.2.2 General variational formulas for Orlicz linear combina-

tions

We shall assume throughout the section that Ω ⊂ Sn−1 is a closed set not contained

in any closed hemisphere of Sn−1.

Let h0, ρ0 ∈ C+(Ω) and let hε and ρε be defined by (4.28) with f0 = h0 and f0 = ρ0,

respectively. In Lemma 2.3.2 (ii), we may replace ρK by h0 or ρ0 to conclude that

hε → h0 and ρε → ρ0 uniformly on Ω. Hence [hε] → [h0] and 〈ρε〉 → 〈ρ0〉 as ε → 0.

However, in order to get a variational formula for the general dual Orlicz volume ṼG,

we shall need the following lemma. It was proved for ϕ(t) = log t in [29, Lemmas 4.1

and 4.2] and was noted for tp, p 6= 0, in the proof of [54, Theorem 6.5]. Recall from

Section 2.2 that Sn−1 \ η〈ρ0〉 is the set of regular normal vectors of 〈ρ0〉 ∈ K n
(o).

Lemma 4.2.3. Let g ∈ C(Ω), ρ0 ∈ C+(Ω), and a ∈ R ∪ {−∞}. Suppose that

ϕ ∈ Ja is continuously differentiable and such that ϕ′ is nonzero on (0,∞). For
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v ∈ Sn−1 \ η〈ρ0〉,

lim
ε→0

log h〈ρε〉(v)− log h〈ρ0〉(v)

ε
=

g(α〈ρ0〉∗(v))

ρ0(α〈ρ0〉∗(v))ϕ
′(ρ0(α〈ρ0〉∗(v)))

, (4.38)

where ρε is defined by (4.28) with f0 = ρ0. Moreover, there exist δ,m0 > 0 such that

| log h〈ρε〉(v)− log h〈ρ0〉(v)| ≤ m0|ε| (4.39)

for ε ∈ (−δ, δ) and v ∈ Sn−1.

Proof. We shall assume that ϕ ∈ Ja is strictly increasing, since the case when it is

strictly decreasing is similar. Since g ∈ C(Ω), we have m1 = supu∈Ω |g(u)| <∞. Then

there exists δ0 > 0 such that for ε ∈ [−δ0, δ0] and u ∈ Ω,

0 < ϕ−1 (ϕ (ρ0(u))− δ0m1) ≤ ρε(u) ≤ ϕ−1 (ϕ (ρ0(u)) + δ0m1) ,

and infu∈Ω |ϕ′(ρε(u))| > 0. For u ∈ Ω and ε ∈ (−δ0, δ0), let

Hu(ε) = log ρε(u) = log
(
ϕ−1(ϕ(ρ0(u)) + ε g(u))

)
,

from which we obtain

H ′
u(ε) =

g(u)

ρε(u)ϕ′(ρε(u))
.

By the mean value theorem, for all u ∈ Ω and ε ∈ (−δ0, δ0), we get

Hu(ε)−Hu(0) = εH ′
u(θ ε),

where θ = θ(u, ε) ∈ (0, 1). In other words,

log ρε(u)− log ρ0(u) = ε
g(u)

ρθ(u,ε)ε(u)ϕ′(ρθ(u,ε)ε(u))
(4.40)

for u ∈ Ω and ε ∈ (−δ0, δ0).

Let v ∈ Sn−1 \ η〈ρ0〉. If ε ∈ (−δ0, δ0), there is a uε ∈ Ω such that for u ∈ Ω,

h〈ρε〉(v) = 〈uε, v〉ρε(uε), h〈ρε〉(v) ≥ 〈u, v〉ρε(u), (4.41)

h〈ρ0〉(v) ≥ 〈uε, v〉ρ〈ρ0〉(uε), and ρ〈ρ0〉(uε) ≥ ρ0(uε).
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Moreover, 〈uε, v〉 > 0 for ε ∈ (−δ0, δ0). Hence, using the equation in (4.41), the

inequality in (4.41) with u = uε, and (4.40) for u = uε, we get

log h〈ρε〉(v)− log h〈ρ0〉(v) ≤ log ρε(uε)− log ρ0(uε)

= ε
g(uε)

ρθ(uε,ε)ε(uε)ϕ
′(ρθ(uε,ε)ε(uε))

. (4.42)

From the equation in (4.41) with ε = 0, the inequality in (4.41) with u = u0, and

from (4.40) with u = u0, we obtain

log h〈ρε〉(v)− log h〈ρ0〉(v) = log h〈ρε〉(v)− log ρ0(u0)− log〈u0, v〉

≥ log ρε(u0)− log ρ0(u0)

= ε
g(u0)

ρθ(u0,ε)ε(u0)ϕ
′(ρθ(u0,ε)ε(u0))

. (4.43)

Exactly as in [29, (4.7), (4.8)], we have u0 = α∗
〈ρ0〉

(v) = α〈ρ0〉∗(v) and limε→0 uε = u0.

Since g is continuous and uε → u0, we get g(uε) → g(u0) as ε→ 0. From θ(·) ∈ (0, 1) it

follows that θ(·)ε→ 0 as ε→ 0. Moreover, ρθ(·)ε(uε) = ϕ−1(ϕ(ρ0(uε))+ θ(·)εg(uε)) →

ρ0(u0) and, similarly, ρθ(·)ε(u0) → ρ0(u0) as ε→ 0. Thus we conclude that

lim
ε→0

log h〈ρε〉(v)− log h〈ρ0〉(v)

ε
=

g(u0)

ρ0(u0)ϕ′(ρ0(u0))
.

Substituting u0 = α∗
〈ρ0〉

(v), we obtain (4.38).

If δ0 is sufficiently small, then (4.42) and (4.43) imply that if v ∈ Sn−1 \ η〈ρ0〉 then

∣∣log h〈ρε〉(v)− log h〈ρ0〉(v)
∣∣ ≤ |ε| sup

u∈Ω, θ∈[0,1]

∣∣∣∣
g(u)

ρθε(u)ϕ′(ρθε(u))

∣∣∣∣ = m2|ε|,

say, for some m2 < ∞. From this, we see that (4.39) holds for v ∈ Sn−1 \ η〈ρ0〉 and

hence, by (2.8) and the continuity of support functions, for v ∈ Sn−1.

Lemma 4.2.4. Let g ∈ C(Ω), h0 ∈ C+(Ω), and a ∈ R∪{−∞}. Suppose that ϕ ∈ Ja

is continuously differentiable and such that ϕ′ is nonzero on (0,∞). If G and Gt are

continuous on (0,∞)× Sn−1, then

lim
ε→0

ṼG([hε])− ṼG([h0])

ε
=

∫

Sn−1\η〈κ0〉

J(0, u)
κ0(α〈κ0〉∗(u)) g(α〈κ0〉∗(u))

ϕ′(κ0(α〈κ0〉∗(u))
−1)

du, (4.44)
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where hε is given by (4.28) with f0 = h0, and for ε sufficiently close to 0, κε = 1/hε

and

J(ε, u) = ρ〈κε〉∗(u)Gt(ρ〈κε〉∗(u), u). (4.45)

Proof. Let ϕ(t) = ϕ(1/t) for all t ∈ (0,∞). Clearly ϕ ∈ Ja. Also, for t ∈ (0,∞),

we have ϕ′(t) = −t−2ϕ′(1/t). Hence ϕ satisfies the conditions for ϕ in Lemma 4.2.3.

It is easy to check that κε(u) = ϕ−1 (ϕ (κ0(u)) + εg(u)) , that is, κε is given by (4.28)

when ϕ and f0 are replaced by ϕ and κ0. By (4.38), with ρε and ϕ replaced by κε

and ϕ, respectively, for sufficiently small |ε|, we obtain, for u ∈ Sn−1 \ η〈κ0〉,

lim
ε→0

log ρ〈κε〉∗(u)− log ρ〈κ0〉∗(u)

ε
= − lim

ε→0

log h〈κε〉(u)− log h〈κ0〉(u)

ε

= −
g(α〈κ0〉∗(u))

κ0(α〈κ0〉∗(u))ϕ
′(κ0(α〈κ0〉∗(u)))

=
κ0(α〈κ0〉∗(u)) g(α〈κ0〉∗(u))

ϕ′(κ0(α〈κ0〉∗(u))
−1)

. (4.46)

Moreover, comparing (4.39), there exist δ,m0 > 0 such that for ε ∈ (−δ, δ) and

u ∈ Sn−1,

| log h〈κε〉(u)− log h〈κ0〉(u)| ≤ m0|ε|. (4.47)

Note that

dG(ρ〈κε〉∗(u), u)

dε
= Gt(ρ〈κε〉∗(u), u)

d

dε
ρ〈κε〉∗(u)

= J(ε, u)
d

dε
log ρ〈κε〉∗(u). (4.48)

By our assumptions, there exists 0 < δ1 ≤ δ and m1 > 0 such that |J(ε, u)| < m1

for ε ∈ (−δ1, δ1) and u ∈ Sn−1. It follows from (4.47), (4.48), and the mean value

theorem that, for ε ∈ (−δ1, δ1) and u ∈ Sn−1,

∣∣∣∣
G(ρ〈κε〉∗(u), u)−G(ρ〈κ0〉∗(u), u)

ε

∣∣∣∣ < m0m1.

From (2.20), we know that [hε] = 〈κε〉
∗, so 〈κε〉

∗ → 〈κ0〉
∗ as ε → 0. By the

dominated convergence theorem, (4.46), and (4.48), we obtain
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lim
ε→0

ṼG([hε])− ṼG([h0])

ε
= lim

ε→0

∫

Sn−1

G(ρ〈κε〉∗(u), u)−G(ρ〈κ0〉∗(u), u)

ε
du

=

∫

Sn−1

lim
ε→0

G(ρ〈κε〉∗(u), u)−G(ρ〈κ0〉∗(u), u)

ε
du

=

∫

Sn−1\η〈κ0〉

J(0, u)
κ0(α〈κ0〉∗(u)) g(α〈κ0〉∗(u))

ϕ′(κ0(α〈κ0〉∗(u))
−1)

du,

where we have used the fact that H n−1(η〈κ0〉) = 0 by (2.8).

The next theorem will be used in the proof of Theorem 4.3.3. It generalizes pre-

vious results of this type, which originated from [29, Theorem 4.5]; see the discussion

after Corollary 4.2.7.

Theorem 4.2.5. Let g ∈ C(Ω), h0 ∈ C+(Ω), and a ∈ R ∪ {−∞}. Suppose that

ϕ ∈ Ja is continuously differentiable and such that ϕ′ is nonzero on (0,∞). If G and

Gt are continuous on (0,∞)× Sn−1, then

lim
ε→0

ṼG([hε])− ṼG([h0])

ε
= n

∫

Ω

g(u) dC̃G,ψ([h0], u), (4.49)

where hε is given by (4.28) with f0 = h0, and ψ(t) = tϕ′(t).

Proof. It follows from [29, p. 364] that there exists a continuous function g : Sn−1 → R,

such that, for u ∈ Sn−1 \ η〈κ0〉,

g(α〈κ0〉∗(u)) = (g1Ω)(α〈κ0〉∗(u)).

Using this, κ0 = 1/h0, the relation 〈κ0〉
∗ = [h0] given by (2.9), (2.20), (4.45) with

ε = 0, H n−1(η〈κ0〉) = 0 from (2.8), and (4.8), the formula (4.44) becomes

lim
ε→0

ṼG([hε])− ṼG([h0])

ε
=

∫

Sn−1\η〈κ0〉

(g1Ω)(α[h0](u)) ρ[h0](u)Gt(ρ[h0](u), u)

h0(α[h0](u))ϕ
′(h0(α[h0](u)))

du

=

∫

Sn−1

(g1Ω)(α[h0](u)) ρ[h0](u)Gt(ρ[h0](u), u)

ψ(h0(α[h0](u)))
du

= n

∫

Ω

g(u) dC̃G,ψ([h0], u),

where we also used the fact that
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h[h0](α[h0](u)) = h0(α[h0](u)) for H n−1-almost all u ∈ Sn−1.

To see this, note that for H n−1-almost all u ∈ Sn−1, we have α[h0](u) = ν[h0](ρ[h0](u)u)

and ρ[h0](u)u is a regular boundary point of [h0]. The rest is done by the proof of

Lemma 7.5.1 in [59, p. 411], which shows that if x ∈ ∂[h0] is a regular boundary point,

then h[h0](ν[h0](x)) = h0(ν[h0](x)).

Remark 4.2.6. It is possible to extend the definition (4.1) of the general dual vol-

ume ṼG by allowing continuous functions G : (0,∞) × Sn−1 → R. In this case, of

course, ṼG may be negative, but the extended definition has the advantage of including

fundamental concepts such as the dual entropy Ẽ(K) of K. This is defined by

Ẽ(K) =
1

n

∫

Sn−1

log ρK(u) du,

corresponding to taking G(t, u) = (1/n) log t in (4.1). Definition 4.1.3 of the measure

C̃G,ψ and the integral formulas (4.8) and (4.9) remain valid for continuous functions

G : (0,∞)×Sn−1 → R, as do Theorems 4.1.4, 4.2.1, and 4.2.5, as well as Theorem 4.2.8

below.

Theorem 4.2.5 and its extended form indicated in Remark 4.2.6 may be used to

retrieve the formulas in [54, Theorem 6.5], which in turn generalize those in [29,

Corollary 4.8]. To see this, let K,L ∈ K n
(o) and let ϕ(t) = tp, p 6= 0. Setting h0 = hK

and g = hpL, we see from (4.28) with f0 = h0 that [hε] = K+̂p ε · L, the Lp linear

combination of K and L. Taking G(t, u) = (1/n)tq ρQ(u)
n−q, for some Q ∈ S n

c+ and

q 6= 0, where t > 0 and u ∈ Sn−1, we have ṼG(K) = Ṽq(K,Q) as in (4.6). With

Ω = Sn−1 and ψ(t) = tϕ′(t) = ptp, and using (4.8) and (4.27), we obtain

n

∫

Ω

g(u) dC̃G,ψ([h0], u) = n

∫

Sn−1

hL(u)
p dC̃G,ψ(K, u)

=
q

np

∫

Sn−1

(
hL(αK(u))

hK(αK(u))

)p
ρK(u)

qρQ(u)
n−q du

=
q

p

∫

Sn−1

hL(u)
p dC̃p,q(K,Q, u).

Thus (4.49) becomes

lim
ε→0

Ṽq(K+̂p ε · L,Q)− Ṽq(K,Q)

ε
=
q

p

∫

Sn−1

hL(u)
p dC̃p,q(K,Q, u),
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the formula in [54, (6.3), Theorem 6.5] (where +̂p is denoted by +p; in our usage,

the two are equivalent for p ≥ 1, when hε above is a support function). Next, we

take instead ϕ(t) = log t and g = log hL, noting from (4.28) with f0 = h0 that

[hε] = K+̂0 ε · L, the logarithmic linear combination of K and L. Then, again with

Ω = Sn−1 and ψ(t) = tϕ′(t) = 1, an argument similar to that above shows that (4.49)

becomes

lim
ε→0

Ṽq(K+̂0 ε · L,Q)− Ṽq(K,Q)

ε
= q

∫

Sn−1

log hL(u) dC̃0,q(K,Q, u),

the formula in [54, (6.4), Theorem 6.5] (where +̂0 is denoted by +0).

If instead we take G(t, u) = (1/n) log(t/ρQ(u)) ρQ(u)
n, for some Q ∈ S n

c+, where

t > 0 and u ∈ Sn−1, we have

ṼG(K) =
1

n

∫

Sn−1

log

(
ρK(u)

ρQ(u)

)
ρQ(u)

n du = Ẽ(K,Q),

the dual mixed entropy of K and Q. Then similar computations to those above show

that (4.49) (now justified via Remark 4.2.6) yield the variational formulas [54, (6.5)

and (6.6), Theorem 6.5] for Ẽ(K,Q).

The following corollary is a direct consequence of the previous theorem with G = Φ

or Φ, and (4.25a) and (4.25b) with ψ(t) = tϕ′(t). When ϕ(t) = log t, it was proved in

[69, Theorem 4.1].

Corollary 4.2.7. Let g ∈ C(Ω), h0 ∈ C+(Ω), and a ∈ R ∪ {−∞}. Suppose that

ϕ ∈ Ja is continuously differentiable and such that ϕ′ is nonzero on (0,∞). If

φ : Rn \ {o} → (0,∞) and Φ (or Φ, as appropriate) are continuous, then

n

∫

Ω

g(u)

h0(u)ϕ′(h0(u))
dC̃φ,V ([h0], u) =





lim
ε→0

V φ([h0])− V φ([hε])

ε

lim
ε→0

V φ([hε])− V φ([h0])

ε
,

(4.50)

where hε is given by (4.28) with f0 = h0.

The following version of Theorem 4.2.5 for Orlicz linear combination of the form

(4.29) can be proved in a similar fashion. We omit the proof. Recall that C̃G([h1], ·) =

C̃G,ψ([h1], ·) when ψ ≡ 1, as in Definition 4.1.3.
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Theorem 4.2.8. Let h1, h2 ∈ C+(Ω) and let ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D . Suppose that

for i = 1, 2, ϕi is continuously differentiable and such that ϕ′
i is nonzero on (0,∞).

If G and Gt are continuous on (0,∞)× Sn−1, then

lim
ε→0+

ṼG([hε])− ṼG([h1])

ε
=

n

ϕ′
1(1)

∫

Ω

ϕ2

(
h2(u)

h1(u)

)
dC̃G([h1], u),

where hε is given by (4.29) with hK and hL replaced by h1 and h2, respectively.

Again, the following corollary is a direct consequence of the previous theorem with

G = Φ or Φ.

Corollary 4.2.9. Let h1, h2 ∈ C+(Ω) and let ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D . Suppose that

for i = 1, 2, ϕi is continuously differentiable and such that ϕ′
i is nonzero on (0,∞).

If φ : Rn \ {o} → (0,∞) and Φ (or Φ, as appropriate) are continuous, then

n

ϕ′
1(1)

∫

Ω

ϕ2

(
h2(u)

h1(u)

)
dC̃φ,V ([h1], u) =





lim
ε→0+

V φ([h1])− V φ([hε])

ε

lim
ε→0+

V φ([hε])− V φ([h1])

ε
,

where hε is given by (4.29) with hK and hL replaced by h1 and h2, respectively.

4.3 Minkowski-type problems

This section is dedicated to providing a partial solution (Gt < 0) to the Orlicz-

Minkowski problem for the measure C̃G,ψ(K, ·).

Proposition 4.3.1. Let G and Gt be continuous on (0,∞)× Sn−1, let ψ : (0,∞) →

(0,∞) be continuous, and let K ∈ K n
(o). The following statements hold.

(i) The signed measure C̃G,ψ(K, ·) is absolutely continuous with respect to S(K, ·).

(ii) If Ki ∈ K n
(o), i ∈ N, and Ki → K ∈ K n

(o) as i→ ∞, then C̃G,ψ(Ki, ·) → C̃G,ψ(K, ·)

weakly.

(iii) If Gt > 0 on (0,∞) × Sn−1 (or Gt < 0 on (0,∞) × Sn−1), then C̃G,ψ(K, ·) (or

−C̃G,ψ(K, ·), respectively) is a nonzero finite Borel measure not concentrated on any

closed hemisphere.
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Proof. (i) Let E ⊂ Sn−1 be a Borel set such that S(K,E) = 0. If g = 1E, the

left-hand side of (4.8) is C̃G,ψ(K,E). This equals the expression in (4.9), in which we

observe that since K ∈ K n
(o), for x ∈ ∂K both |x| and 〈x, νK(x)〉 = hK(νK(x)) are

bounded away from zero and bounded above, and hence our assumptions imply that

sup
x∈∂K

∣∣∣∣
ρK(x̄)Gt(ρK(x̄), x̄) 〈x, νK(x)〉

ψ(〈x, νK(x)〉) |x|n

∣∣∣∣ = c <∞,

where x̄ = x/|x|. Then from (4.8) and (4.9) we conclude, using (2.5), that

∣∣∣C̃G,ψ(K,E)
∣∣∣ ≤ c

∫

∂K

1E(νK(x)) dx = cH n−1(ν−1
K (E)) = c S(K,E) = 0.

(ii) Let g : Sn−1 → R be continuous and let

IK(u) = g(αK(u))
ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))

be the integrand of the right-hand side of (4.8). Suppose that Ki ∈ K n
(o), i ∈ N,

and Ki → K ∈ K n
(o). By [29, Lemma 2.2], αKi

→ αK and hence, by the continu-

ity of Gt and the continuity of the map (K, u) 7→ hK(u) (see [59, Lemma 1.8.12]),

IKi
→ IK , H n−1-almost everywhere on Sn−1. Moreover, our assumptions clearly

yield sup{IKi
(u) : i ∈ N, u ∈ Sn−1} < ∞. It follows from (4.8) and the dominated

convergence theorem that

∫

Sn−1

g(u) dC̃G,ψ(Ki, u) →

∫

Sn−1

g(u) dC̃G,ψ(K, u)

as i→ ∞, as required.

(iii) Suppose that Gt > 0 on (0,∞)×Sn−1; the case when Gt < 0 on (0,∞)×Sn−1

is similar. Let m = minx∈∂K JK(x), where

JK(x) =
ρK(x̄)Gt(ρK(x̄), x̄) 〈x, νK(x)〉

ψ(〈x, νK(x)〉) |x|n
, x ∈ ∂K,

and x̄ = x/|x|. Since K ∈ K n
(o), our assumptions imply that m > 0. By (4.8) and

(4.9),
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∫

Sn−1

〈u, v〉+ dC̃G,ψ(K, v) =

∫

∂K

〈u, νK(x)〉+ JK(x) dx

≥ m

∫

∂K

〈u, νK(x)〉+ dx

= m

∫

Sn−1

〈u, v〉+ dS(K, v)

> 0.

This shows that C̃G,ψ(K, ·) also satisfies (2.6).

In view of Proposition 4.3.1 (iii), one can ask the following Minkowski-type problem

for the signed measure C̃G,ψ(·, ·).

Problem 4.3.2. For which nonzero finite Borel measures µ on Sn−1 and continuous

functions G : (0,∞) × Sn−1 → (0,∞) and ψ : (0,∞) → (0,∞) do there exist τ ∈ R

and K ∈ K n
(o) such that µ = τ C̃G,ψ(K, ·)?

It follows immediately from (4.10), on using [54, (2.2), p. 93 and (3.28), p. 106],

that solving Problem 4.3.2 requires finding an h : Sn−1 → (0,∞) and τ ∈ R that solve

(in the weak sense) the Monge-Ampère equation

τh

ψ ◦ h
P (∇̄h+ hι) det(∇̄2h+ hI) = f, (4.51)

where P (x) = |x|1−nGt(|x|, x̄) for x ∈ Rn. Here f plays the role of the density

function of the measure µ in Problem 4.3.2 if µ is absolutely continuous with respect

to spherical Lebesgue measure. Formally, then, Problem 4.3.2 is more difficult, since

it calls for h in (4.51) to be the support function of a convex body and also a solution

for measures that may not have a density function f . The Minkowski problem in [54,

Problem 8.1] requires finding, for given p, q ∈ R, n-dimensional Banach norm ‖ · ‖,

and f : Sn−1 → [0,∞), an h : Sn−1 → (0,∞) that solves the Monge-Ampère equation

h1−p ‖∇̄h+ hι‖q−n det(∇̄2h+ hI) = f (4.52)

on the unit sphere Sn−1, where ∇̄ and ∇̄2 are the gradient vector and Hessian matrix

of h, respectively, with respect to an orthonormal frame on Sn−1, ι is the identity map

on Sn−1, and I is the identity matrix.

To see that (4.51) is more general than (4.52), note firstly that the homogeneity
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of the left-hand side of (4.52) allows us to set τ = 1, without loss of generality (if

p 6= q, which is true in the case p > 0, q < 0 of particular interest in the present

chapter). Let p, q ∈ R and let Q ∈ S n
c+. For t > 0 and u ∈ Sn−1, we set ψ(t) = tp and

G(t, u) = (1/q)tqρQ(u)
n−q, if q 6= 0, and G(t, u) = (log t)ρQ(u)

n, otherwise. (When

q ≤ 0, we have G : (0,∞) × Sn−1 → R and Remark 4.2.6 applies.) Then, using the

fact that ρQ is homogeneous of degree −1, we have P (x) = ρQ(x)
n−q, for q ∈ R and

x ∈ Rn \ {o}. Therefore (4.51) becomes

h1−p ‖∇̄h+ hι‖q−nQ det(∇̄2h+ hI) = f,

where ‖ · ‖Q = 1/ρQ is the gauge function of Q. Note that ‖ · ‖Q is an n-dimensional

Banach norm if Q is convex and origin symmetric.

Our contribution to Problem 4.3.2 is as follows. Recall that Σε(v) = {u ∈ Sn−1 :

〈u, v〉 ≥ ε} for v ∈ Sn−1 and ε ∈ (0, 1).

Theorem 4.3.3. Let µ be a nonzero finite Borel measure on Sn−1 not concentrated on

any closed hemisphere. Let G and Gt be continuous on (0,∞)× Sn−1 and let Gt < 0

on (0,∞)× Sn−1. Let 0 < ε0 < 1 and suppose that for v ∈ Sn−1,

lim
t→0+

∫

Σε0 (v)

G(t, u) du = ∞ and lim
t→∞

∫

Sn−1

G(t, u) du = 0. (4.53)

Let ψ : (0,∞) → (0,∞) be continuous and satisfy

∫ ∞

1

ψ(s)

s
ds = ∞. (4.54)

Then there exists K ∈ K n
(o) such that

µ

|µ|
=

C̃G,ψ(K, ·)

C̃G,ψ(K,Sn−1)
. (4.55)

Proof. Note that the limits in (4.53) exist, since t 7→ G(t, u) is decreasing. Define

ϕ(t) =

∫ t

1

ψ(s)

s
ds, t > 0, (4.56)

and

a = −

∫ 1

0

ψ(s)

s
ds ∈ R ∪ {−∞}. (4.57)
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Then, by (4.54), (4.56), and (4.57), ϕ ∈ Ja is strictly increasing and continuously

differentiable with tϕ′(t) = ψ(t) for t > 0; the latter equality implies that ϕ′ is nonzero

on (0,∞). For f ∈ C+(Sn−1), let

F (f) =
1

|µ|

∫

Sn−1

ϕ(f(u)) dµ(u), (4.58)

and for K ∈ K n
(o), define F (K) = F (hK). We claim that

α = inf
{
F (K) : ṼG(K) = |µ| and K ∈ K n

(o)

}
(4.59)

is well defined with α ∈ R ∪ {−∞} because there is a K ∈ K n
(o) with ṼG(K) = |µ|.

To see this, note that

ṼG(rB
n) =

∫

Sn−1

G(r, u) du ≥

∫

Σε0 (v)

G(r, u) du

for any v ∈ Sn−1. Then (4.53) yields ṼG(rB
n) → ∞ as r → 0, and ṼG(rB

n) → 0 as

r → ∞. Since r 7→ ṼG(rB
n) is continuous, there is an r0 > 0 such that ṼG(r0B

n) = |µ|.

It follows from (4.59) that α ∈ R ∪ {−∞}.

By (4.59), there are Ki ∈ K n
(o), i ∈ N, such that ṼG(Ki) = |µ| and

lim
i→∞

F (Ki) = α. (4.60)

We aim to show that there is a K0 ∈ K n
(o) with ṼG(K0) = |µ| and F (K0) = α.

To this end, we first claim that there is an R > 0 such that K∗
i ⊂ RBn, i ∈

N. Suppose on the contrary that supi∈NRi = ∞, where Ri = maxu∈Sn−1 ρK∗
i
(u) =

ρK∗
i
(vi). By taking a subsequence, if necessary, we may suppose that vi → v0 ∈ Sn−1

and limi→∞Ri = ∞. There exists i0 ∈ N such that |vi − v0| < ε0/2 whenever i ≥ i0.

Hence, if u ∈ Σε0(v0) and i ≥ i0, then 〈u, vi〉 ≥ ε0/2. It follows that for u ∈ Σε0(v0)

and i ≥ i0, we have

hK∗
i
(u) ≥ ρK∗

i
(vi)〈u, vi〉

= Ri〈u, vi〉

≥ Riε0/2,
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and therefore

|µ| =

∫

Sn−1

G(ρKi
(u), u) du

=

∫

Sn−1

G(hK∗
i
(u)−1, u) du

≥

∫

Σε0 (v0)

G(hK∗
i
(u)−1, u) du

≥

∫

Σε0 (v0)

G(2/(Riε0), u) du

→ ∞

as i→ ∞. This contradiction proves our claim.

By the Blaschke selection theorem, we may assume that K∗
i → L for some L ∈

K n. Suppose that L /∈ K n
(o). Then o ∈ ∂L, so there exists w0 ∈ Sn−1 such that

limi→∞ hK∗
i
(w0) = hL(w0) = 0. Since |µ| > 0 and µ is not concentrated on any closed

hemisphere, there is an ε ∈ (0, 1) such that µ(Σε(w0)) > 0. Let v ∈ Σε(w0). Since

0 ≤ ρK∗
i
(v) ≤

1

〈v, w0〉
hK∗

i
(w0) ≤

1

ε
hK∗

i
(w0) → 0

as i → ∞, it follows that ρK∗
i
→ 0 uniformly on Σε(w0). As ṼG(Ki) = |µ| and

K∗
i ⊂ RBn, using (2.4), (4.58), (4.59), and (4.60), we obtain

α = lim
i→∞

F (Ki) = lim
i→∞

1

|µ|

∫

Sn−1

ϕ
(
ρK∗

i
(u)−1

)
dµ(u)

≥ lim inf
i→∞

1

|µ|

∫

Σε(w0)

ϕ
(
ρK∗

i
(u)−1

)
dµ(u) +

1

|µ|

∫

Sn−1\Σε(w0)

ϕ (1/R) dµ(u)

≥
µ(Σε(w0))

|µ|
lim inf
i→∞

min
{
ϕ
(
ρK∗

i
(u)−1

)
: u ∈ Σε(w0)

}
+
µ(Sn−1 \ Σε(w0))

|µ|
ϕ (1/R)

= ∞.

This is not possible, so L ∈ K n
(o).

Let K0 = L∗ ∈ K n
(o). Then Ki → K0 as i → ∞ in K n

(o). Hence, hKi
→ hK0 > 0

uniformly on Sn−1. The continuity of ϕ ensures that

sup{|ϕ(hKi
(u))| : i ∈ N, u ∈ Sn−1} <∞.
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Now it follows from (4.58), (4.60), and the dominated convergence theorem that

α = lim
i→∞

F (Ki) =
1

|µ|

∫

Sn−1

lim
i→∞

ϕ(hKi
(u)) dµ(u) =

1

|µ|

∫

Sn−1

ϕ(hK0(u)) dµ(u) = F (K0).

(4.61)

Also, by Lemma 4.1.2, we have ṼG(K0) = |µ|, so the aim stated earlier has been

achieved. It also follows from (4.61) that α ∈ R.

We now show that K0 satisfies (4.55) with K replaced by K0. Due to ϕ ∈ Ja and

f ≥ h[f ], one has F (f) ≥ F (h[f ]) = F ([f ]) for f ∈ C+(Sn−1). By (4.61),

F (hK0) = F (K0) = α = inf{F (f) : ṼG([f ]) = |µ| and f ∈ C+(Sn−1)}. (4.62)

Let g ∈ C(Sn−1). For u ∈ Sn−1 and sufficiently small ε1, ε2 ≥ 0, let hε1,ε2 be defined

by (4.28) with f0 and εg replaced by hK0 and ε1g + ε2, respectively, i.e.,

hε1,ε2(u) = ϕ−1 (ϕ(hK0(u)) + ε1g(u) + ε2) . (4.63)

Then for sufficiently small ε, we have

hε1+ε,ε2(u) = ϕ−1 (ϕ(hε1,ε2(u)) + εg(u)) ,

and

hε1,ε2+ε(u) = ϕ−1 (ϕ(hε1,ε2(u)) + ε) .

The properties of ϕ listed after (4.57) allow us to apply (4.49), with Ω = Sn−1 and

with h0 and hε replaced by hε1,ε2 and hε1+ε,ε2 , respectively, to obtain

∂

∂ε1
ṼG([hε1,ε2 ]) = lim

ε→0

ṼG([hε1+ε,ε2 ])− ṼG([hε1,ε2 ])

ε
= n

∫

Sn−1

g(u) dC̃G,ψ([hε1,ε2 ], u),

(4.64)

and with g, h0, and hε replaced by 1, hε1,ε2 and hε1,ε2+ε, respectively, to yield

∂

∂ε2
ṼG([hε1,ε2 ]) = n

∫

Sn−1

1 dC̃G,ψ([hε1,ε2 ], u) = n C̃G,ψ([hε1,ε2 ], S
n−1) 6= 0. (4.65)

Since [hε1,ε2 ] depends continuously on ε1, ε2 and in view of Proposition 4.3.1 (ii), (4.64)

and (4.65) show that the gradient of the map (ε1, ε2) 7→ ṼG([hε1,ε2 ]) has rank 1 and

depends continuously on (ε1, ε2), implying that this map is continuously differentiable.
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Hence we may apply the method of Lagrange multipliers to conclude from (4.62) that

there is a constant τ = τ(g) such that

∂

∂ε1

(
F (hε1,ε2) + τ(log ṼG([hε1,ε2 ])− log |µ|)

) ∣∣∣
ε1=ε2=0

= 0, (4.66)

and
∂

∂ε2

(
F (hε1,ε2) + τ(log ṼG([hε1,ε2 ])− log |µ|)

) ∣∣∣
ε1=ε2=0

= 0. (4.67)

By (4.58) and (4.63), we have

∂

∂ε1
F (hε1,ε2)

∣∣∣
ε1=ε2=0

=
1

|µ|

(
∂

∂ε1

∫

Sn−1

(ϕ(h0(u)) + ε1g(u) + ε2) dµ(u)

) ∣∣∣
ε1=ε2=0

=
1

|µ|

∫

Sn−1

g(u) dµ(u), (4.68)

and
∂

∂ε2
F (hε1,ε2)

∣∣∣
ε1=ε2=0

=
1

|µ|

∫

Sn−1

1 dµ(u) = 1. (4.69)

Since ṼG(K0) = |µ| and (4.63) gives h0,0 = hK0 , (4.64) and (4.65) imply that

∂

∂ε1
log ṼG([hε1,ε2 ])

∣∣∣
ε1=ε2=0

=
n

|µ|

∫

Sn−1

g(u) dC̃G,ψ(K0, u), (4.70)

and
∂

∂ε2
log ṼG([hε1,ε2 ])

∣∣∣
ε1=ε2=0

=
n

|µ|
C̃G,ψ(K0, S

n−1). (4.71)

It follows from (4.66), (4.68), and (4.70) that

∫

Sn−1

g(u) dµ(u) = −nτ

∫

Sn−1

g(u) dC̃G,ψ(K0, u), (4.72)

and from (4.67), (4.69), and (4.71) that

τ = −
|µ|

n C̃G,ψ(K0, Sn−1)
. (4.73)

In particular, we see from (4.73) that τ is independent of g. Finally, (4.72) and (4.73)

show that (4.55) holds with K replaced by K0.

We remark that −C̃G,ψ(K, ·) is a nonnegative measure since Gt < 0. Note that
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(4.53) holds if limt→0+G(t, u) = ∞ for u ∈ Sn−1 and limt→∞G(t, u) = 0 for u ∈ Σε(v).

This follows from the monotone convergence theorem, since t 7→ G(t, u) is decreasing.

In order to solve Problem 4.3.2 when t 7→ G(t, u) is increasing, one needs to use

different techniques and we leave it for future work in Chapter 5.

When ψ ≡ 1 (and hence ϕ(t) = log t ∈ J−∞), the following result was proved in

[69, Theorem 5.1].

Corollary 4.3.4. Let µ be a nonzero finite Borel measure on Sn−1 not concentrated

on any closed hemisphere. Let φ : Rn \{o} → (0,∞) be continuous and such that Φ is

continuous on (0,∞)× Sn−1, where Φ is defined by (4.2). Let 0 < c < 1 and suppose

that for v ∈ Sn−1,

lim
b→0+

V φ(C(v, b, c)) = ∞, (4.74)

where C(v, b, c) = {x ∈ Rn : |x| ≥ b and 〈x/|x|, v〉 ≥ c} and V φ(·) is defined by (4.3).

Let ψ : (0,∞) → (0,∞) be continuous and satisfy (4.54). Then there exists K ∈ K n
(o)

such that
µ

|µ|
=

C̃φ,ψ(K, ·)

C̃φ,ψ(K,Sn−1)
.

Proof. By assumption, Φ is continuous on (0,∞)× Sn−1, and limt→∞ Φ(t, u) = 0 for

u ∈ Sn−1. Hence the second condition in (4.53) holds with G replaced by Φ. Clearly,

∂Φ(t, u)/∂t = −φ(tu)tn−1 < 0. By (4.74),

∞ = lim
b→0+

V φ(C(v, b, c)) = lim
b→0+

∫

Σc(v)

∫ ∞

b

φ(ru)rn−1drdu = lim
b→0+

∫

Σc(v)

Φ(b, u)du.

Therefore the first condition in (4.53) also holds with G replaced by Φ. Due to the

fact C̃Φ,ψ(K, ·) = −C̃φ,ψ(K, ·), Theorem 4.3.3 yields the result.

Another special case arises if µ is a discrete measure on Sn−1, that is, µ =∑m
i=1 ciδvi , where ci > 0 for i = 1, . . . ,m, and v1, . . . , vm ∈ Sn−1 are not contained

in any closed hemisphere. Let G and ψ be as in Theorem 4.3.3. Then there exists a

polytope P ∈ K n
(o) such that

µ

|µ|
=

C̃G,ψ(P, ·)

C̃G,ψ(P, Sn−1)
.
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To see this, note that Theorem 4.3.3 ensures the existence of a K ∈ K n
(o) such that

(4.55) holds. Since µ is discrete, we obtain

C̃G,ψ(K, ·) =
m∑

i=1

c̄iδvi ,

where c̄i = C̃G,ψ(K,S
n−1)ci/|µ| < 0 for i = 1, . . . ,m. Proposition 4.3.1 (i) shows that

there is a measurable function g : Sn−1 → (−∞, 0] such that

m∑

i=1

c̄iδvi(E) =

∫

E

g(u) dS(K, u)

for Borel sets E ⊂ Sn−1. Hence S(K, ·) is a discrete measure and [59, Theorem 4.5.4]

implies that K is a polytope.

4.4 Inequalities for the general dual volume

In this section, we investigate some important inequalities with respect to the general

dual volume ṼG, including the dual Orlicz-Brunn-Minkowski inequalities and dual

Orlicz-Minkowski inequalities.

4.4.1 Dual Orlicz-Brunn-Minkowski inequalities

Let Φm be the set of continuous functions ϕ : [0,∞)m → [0,∞) that are strictly

increasing in each component and such that ϕ(o) = 0, ϕ(ej) = 1 for 1 ≤ j ≤ m,

and limt→∞ ϕ(tx) = ∞ for x ∈ [0,∞)m \ {o}. By Ψm we mean the set of continuous

functions ϕ : (0,∞)m → (0,∞), such that for x = (x1, . . . , xm) ∈ (0,∞)m,

ϕ(x) = ϕ0(1/x1, . . . , 1/xm) (4.75)

for some ϕ0 ∈ Φm. It is easy to see that if ϕ ∈ Ψm, then ϕ is strictly decreasing in each

component and such that limt→0 ϕ(tx) = ∞ and limt→∞ ϕ(tx) = 0 for x ∈ (0,∞)m.

Let K1, . . . , Km ∈ S n
c+ and let ϕ ∈ Φm ∪Ψm. Define +̃ϕ(K1, . . . , Km) ∈ S n

c+, the
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radial Orlicz sum of K1, . . . , Km, to be the star body whose radial function satisfies

ϕ

(
ρK1(u)

ρ+̃ϕ(K1,...,Km)(u)
, . . . ,

ρKm(u)

ρ+̃ϕ(K1,...,Km)(u)

)
= 1 (4.76)

for u ∈ Sn−1. It was proved in [18, Theorem 3.2(v) and (vi)] that if ϕ ∈ Φm, then

ρ+̃ϕ(K1,...,Km)(u) > ρKj
(u) for u ∈ Sn−1. (4.77)

Together with (4.75) and (4.76), this implies that if ϕ ∈ Ψm, then

ρ+̃ϕ(K1,...,Km)(u) < ρKj
(u) for u ∈ Sn−1. (4.78)

For each 0 6= q ∈ R and ϕ ∈ Φm ∪Ψm, let

ϕq(x) = ϕ
(
x
1/q
1 , x

1/q
2 , . . . , x1/qm

)
for x = (x1, . . . , xm) ∈ (0,∞)m. (4.79)

Then (4.76) is equivalent to

ϕq

((
ρK1(u)

ρ+̃ϕ(K1,...,Km)(u)

)q

, . . . ,

(
ρKm(u)

ρ+̃ϕ(K1,...,Km)(u)

)q)
= 1. (4.80)

For t ∈ (0,∞) and u ∈ Sn−1, let

Gq(t, u) =
G(t, u)

tq
. (4.81)

The proof of the following result closely follows that of [18, Theorem 4.1].

Theorem 4.4.1. Let m,n ≥ 2, let ϕ ∈ Φm ∪ Ψm, let K1, . . . , Km ∈ S n
c+, let G :

(0,∞) × Sn−1 → (0,∞) be continuous, and let ϕq and Gq be defined by (4.79) and

(4.81). Suppose that ϕq is convex and either q > 0 and Gq(t, ·) is increasing, or q < 0

and Gq(t, ·) is decreasing. Then

1 ≥ ϕ



(

ṼG(K1)

ṼG(+̃ϕ(K1, . . . , Km))

)1/q

, . . . ,

(
ṼG(Km)

ṼG(+̃ϕ(K1, . . . , Km))

)1/q

 . (4.82)

The reverse inequality holds if instead ϕq is concave and either q > 0 and Gq(t, ·) is

decreasing, or q < 0 and Gq(t, ·) is increasing.



82

If in addition ϕq is strictly convex (or concave, as appropriate) and equality holds

in (4.82), then K1, . . . , Km are dilatates of each other.

Proof. Let ϕ ∈ Φm ∪ Ψm and let K1, . . . , Km ∈ S n
c+. It follows from (4.76) that

ρ+̃ϕ(K1,...,Km)(u) > 0 for u ∈ Sn−1. By (4.1), one can define a probability measure µ

on Sn−1 by

dµ(u) =
G(ρ+̃ϕ(K1,...,Km)(u), u)

ṼG(+̃ϕ(K1, . . . , Km))
du. (4.83)

Suppose that ϕ ∈ Φm, q > 0, and Gq(t, ·) is increasing. By (4.80) and Jensen’s

inequality [18, Proposition 2.2] applied to the convex function ϕq, similarly to the

proof of [18, Theorem 4.1], we have

1 =

∫

Sn−1

ϕq

((
ρK1(u)

ρ+̃ϕ(K1,...,Km)(u)

)q

, . . . ,

(
ρKm(u)

ρ+̃ϕ(K1,...,Km)(u)

)q)
dµ(u)

≥ ϕq

(∫

Sn−1

ρK1(u)
q

ρ+̃ϕ(K1,...,Km)(u)
q
dµ(u), . . . ,

∫

Sn−1

ρKm(u)
q

ρ+̃ϕ(K1,...,Km)(u)
q
dµ(u)

)
.

(4.84)

Since ϕ ∈ Φm and q > 0, ϕq is strictly increasing in each component. According to

(4.77) and the fact that Gq(t, ·) is increasing, we have

ρKj
(u)q

ρ+̃ϕ(K1,...,Km)(u)
q
G(ρ+̃ϕ(K1,...,Km)(u), u) ≥ G(ρKj

(u), u) (4.85)

for j = 1, . . . ,m. Using (4.83), we obtain for j = 1, . . . ,m,

ṼG(Kj)

ṼG(+̃ϕ(K1, . . . , Km))

=
1

ṼG(+̃ϕ(K1, . . . , Km))

∫

Sn−1

G(ρKj
(u), u) du

≤
1

ṼG(+̃ϕ(K1, . . . , Km))

∫

Sn−1

ρKj
(u)q G(ρ+̃ϕ(K1,...,Km)(u), u)

ρ+̃ϕ(K1,...,Km)(u)
q

du

=

∫

Sn−1

ρKj
(u)q

ρ+̃ϕ(K1,...,Km)(u)
q
dµ(u).
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Since ϕq is strictly increasing in each component and (4.84) holds, we get

1 ≥ ϕq

(∫

Sn−1

ρK1(u)
q

ρ+̃ϕ(K1,...,Km)(u)
q
dµ(u), . . . ,

∫

Sn−1

ρKm(u)
q

ρ+̃ϕ(K1,...,Km)(u)
q
dµ(u)

)

≥ ϕq

(
ṼG(K1)

ṼG(+̃ϕ(K1, . . . , Km))
, . . . ,

ṼG(Km)

ṼG(+̃ϕ(K1, . . . , Km))

)

= ϕ



(

ṼG(K1)

ṼG(+̃ϕ(K1, . . . , Km))

)1/q

, . . . ,

(
ṼG(Km)

ṼG(+̃ϕ(K1, . . . , Km))

)1/q

 ,(4.86)

which yields (4.82).

Suppose in addition that ϕq is strictly convex and equality holds in (4.82). Then

equality holds throughout (4.86) and hence in (4.84). Therefore equality holds in

Jensen’s inequality as used above. Since G > 0, the definition (4.83) of µ shows that

its support is the whole of Sn−1. Then, exactly as in the proof of [18, Theorem 4.1],

we can conclude that K1, . . . , Km are dilatates of each other.

This proves (4.82) and the implication in case of equality when ϕ ∈ Φm, q > 0,

and Gq(t, ·) is increasing. The other cases are similar, noting that if ϕ ∈ Ψm, we can

use (4.78) instead of (4.77), and if ϕq is concave, Jensen’s inequality [18, Proposition

2.2] yields the reverse of inequality (4.84).

It is possible to state more general versions of Theorem 4.4.1 that hold when

K1, . . . , Km ∈ S n. Indeed, the definition (4.76) of the radial Orlicz sum can be

modified, as in [18, p. 817], so that it applies when K1, . . . , Km ∈ S n. Then extra

assumptions would have to be made in Theorem 4.4.1, analogous to the one in [18,

Theorem 4.1] that V (Kj) > 0 for some j, but now also involving the function G.

Note that the stronger assumption that K1, . . . , Km ∈ S n
c+ is still required for the

implication in case of equality, as it is in [18, Theorem 4.1].

Under certain cases, equality holds in Theorem 4.4.1 if and only if K1, . . . , Km are

dilatates of each other. One such is given in Corollary 4.4.2, and it is easy to see

that this is true more generally if G is of the form G(t, u) = tqH(u), where t > 0 and

u ∈ Sn−1, for some q 6= 0 and suitable function H, since equality then holds in (4.85).

However, it does not seem straightforward to formulate a precise condition and we do

not pursue the matter here.
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Dual Orlicz-Brunn-Minkowski inequalities for V φ(·), V φ(·) and V̆φ,ϕ(·, ·) follow

directly from Theorem 4.4.1, once the corresponding assumptions are verified. We

shall only state the special case when G(t, u) = tqρQ(u)
n−q/n for some Q ∈ S n

c+.

Then, for q 6= 0, we have

ṼG(K) =

∫

Sn−1

G(ρK(u), u) du =
1

n

∫

Sn−1

ρK(u)
q ρQ(u)

n−q du = Ṽq(K,Q), (4.87)

the qth dual mixed volume of K and Q, as in (4.6).

The following result was proved for q = n and Q = Bn in [18, Theorem 4.1].

Corollary 4.4.2. Let m,n ≥ 2, let q 6= 0, let ϕ ∈ Φm ∪Ψm, and let Q,K1, . . . , Km ∈

S n
c+. If ϕq is convex, then

1 ≥ ϕ



(

Ṽq(K1, Q)

Ṽq(+̃ϕ(K1, . . . , Km), Q)

)1/q

, . . . ,

(
Ṽq(Km, Q)

Ṽq(+̃ϕ(K1, . . . , Km), Q)

)1/q

 . (4.88)

If ϕq is concave, the inequality is reversed. If instead ϕq is strictly convex or strictly

concave, respectively, then equality holds in (4.82) if and only if K1, . . . , Km are di-

latates of each other.

Proof. The required inequalities and the necessity of the equality condition follow

immediately from Theorem 4.4.1 on noting that Gq(t, u) = ρQ(u)
n−q/n is a constant

function of t. Suppose that K1, . . . , Km are dilatates of each other, so Ki = ciK and

hence ρKi
= ciρK for some K ∈ S n

c+ and ci > 0, i = 1, . . . ,m. Let d > 0 be the

unique solution of

ϕ
(c1
d
, . . . ,

cm
d

)
= 1. (4.89)

Comparing (4.76), we obtain ρ+̃ϕ(K1,...,Km)(u) = dρK(u) for u ∈ Sn−1 and hence we

have +̃ϕ(K1, . . . , Km) = dK. From (4.87), we get Ṽq(Ki, Q) = cqi Ṽq(K,Q), i =

1, . . . ,m, and Ṽq(+̃ϕ(K1, . . . , Km), Q) = dq Ṽq(K,Q). Substituting for ci, i = 1, . . . ,m,

and d from the latter two equations into (4.89), we obtain (4.88) with equality.
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4.4.2 Dual Orlicz-Minkowski inequalities and uniqueness re-

sults

Let K,L,Q ∈ S n
c+, let q 6= 0, and let ϕ : (0,∞) → (0,∞) be continuous. It will be

convenient to define

Ṽq,ϕ(K,L,Q) =
1

n

∫

Sn−1

ϕ

(
ρL(u)

ρK(u)

)
ρK(u)

q ρQ(u)
n−q du. (4.90)

Note that this is a special case of the general dual Orlicz mixed volume Ṽφ,ϕ(K,L)

defined in (4.35), obtained by setting φ(x) = |x|q−nρQ(x/|x|)
n−q. When q = n, (4.90)

becomes the dual Orlicz mixed volume introduced in [18, 79], and when q = n and

Q = Bn, the following result yields the dual Orlicz-Minkowski inequality established

in [18, Theorem 6.1] and [79, Theorem 5.1].

Theorem 4.4.3. Let K,L,Q ∈ S n
c+, let q 6= 0, let ϕ : (0,∞) → (0,∞) be continuous,

and let ϕq(t) = ϕ(t1/q) for t ∈ (0,∞). If ϕq is convex, then

Ṽq,ϕ(K,L,Q) ≥ Ṽq(K,Q)ϕ



(
Ṽq(L,Q)

Ṽq(K,Q)

)1/q

 . (4.91)

The reverse inequality holds if ϕq is concave. If ϕq is strictly convex or strictly

concave, respectively, equality holds in the above inequalities if and only if K and L

are dilatates of each other.

Proof. Let q 6= 0 and let ϕq be convex. By (4.87), one can define a probability measure

µ̃ by dµ̃(u) =
ρK(u)q ρQ(u)n−q

nṼq(K,Q)
du. Jensen’s inequality [18, Proposition 2.2] implies that

Ṽq,ϕ(K,L,Q) =
1

n

∫

Sn−1

ϕ

(
ρL(u)

ρK(u)

)
ρK(u)

q ρQ(u)
n−q du

= Ṽq(K,Q)

∫

Sn−1

ϕq

((
ρL(u)

ρK(u)

)q)
dµ̃(u)

≥ Ṽq(K,Q)ϕq

(∫

Sn−1

(
ρL(u)

ρK(u)

)q
dµ̃(u)

)

= Ṽq(K,Q)ϕq

(∫

Sn−1

ρL(u)
q ρQ(u)

n−q

nṼq(K,Q)
du

)

= Ṽq(K,Q)ϕ



(
Ṽq(L,Q)

Ṽq(K,Q)

)1/q

 ,



86

where the first and the last equalities are due to (4.90) and (4.87), respectively.

Suppose that ϕq is strictly convex and equality holds in (4.91). Then the above

proof and the equality condition for Jensen’s equality show that ρL(u)/ρK(u) is a

constant for µ̃-almost all u ∈ Sn−1 and hence for H n−1-almost all u ∈ Sn−1. Since

ρK and ρL are continuous, ρL(u)/ρK(u) is a constant for u ∈ Sn−1 and so K and L

are dilatates of each other.

If instead ϕq is concave, the proof is similar since Jensen’s inequality [18, Propo-

sition 2.2] also reverses.

Corollary 4.4.4. Let K,L,Q ∈ S n
c+, let q 6= 0, let ϕ : (0,∞) → (0,∞), and let

ϕq(t) = ϕ(t1/q) for t ∈ (0,∞). Suppose that ϕ is either increasing or decreasing, and

that ϕq is either strictly convex or strictly concave. Then K = L if either

Ṽq,ϕ(K,M,Q)

Ṽq(K,Q)
=
Ṽq,ϕ(L,M,Q)

Ṽq(L,Q)
(4.92)

holds for all M ∈ S n
c+, or

Ṽq,ϕ(M,K,Q) = Ṽq,ϕ(M,L,Q) (4.93)

holds for all M ∈ S n
c+.

Proof. Let q 6= 0 and suppose that (4.92) holds for all M ∈ S n
c+. Assume that ϕ is

increasing and ϕq is strictly convex; the other three cases can be dealt with similarly.

Taking M = K in (4.92), it follows from (4.6), (4.90) with L = K, and (4.91) with K

and L interchanged, that

ϕ(1) =
Ṽq,ϕ(K,K,Q)

Ṽq(K,Q)
=
Ṽq,ϕ(L,K,Q)

Ṽq(L,Q)
≥ ϕ



(
Ṽq(K,Q)

Ṽq(L,Q)

)1/q

 . (4.94)

Since ϕ is increasing, we get

1 ≥

(
Ṽq(K,Q)

Ṽq(L,Q)

)1/q

. (4.95)

Repeating the argument with K and L interchanged yields the reverse inequality.

Hence we get Ṽq(K,Q) = Ṽq(L,Q), from which we obtain equality in (4.94). The
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equality condition for (4.91) implies that L = rK for some r > 0. This together with

Ṽq(K,Q) = Ṽq(L,Q) easily yields K = L.

Now suppose that (4.93) holds for all M ∈ S n
c+. Taking M = K and arguing as

above, we get

ϕ(1) Ṽq(K,Q) = Ṽq,ϕ(K,K,Q) = Ṽq,ϕ(K,L,Q) ≥ Ṽq(K,Q)ϕ



(
Ṽq(L,Q)

Ṽq(K,Q)

)1/q

 .

(4.96)

Therefore (4.95) holds. Interchanging K and L yields the reverse inequality and hence

we have Ṽq(K,Q) = Ṽq(L,Q), giving equality in (4.96). Exactly as above, we conclude

that K = L.

Corollary 4.4.5. Let K,L,Q ∈ S n
c+, let q 6= 0, let ϕ : (0,∞) → (0,∞) be continuous,

and let ϕq(t) = ϕ(t1/q) for t ∈ (0,∞). If ϕq is strictly convex or strictly concave and

Ṽq,ϕ(K,M,Q) = Ṽq,ϕ(L,M,Q) (4.97)

for all M ∈ S n
c+, then K = L.

Proof. Let q 6= 0 and let α > 0. Replacing K and L by L and αL, respectively, in

(4.90), and taking (4.87) into account, we obtain

Ṽq,ϕ(L, αL,Q) =
ϕ(α)

ϕ(1)
Ṽq,ϕ(L,L,Q) = ϕ(α)Ṽq(L,Q).

Suppose that ϕq is strictly convex; the case when ϕq is strictly concave is similar.

Using (4.97) with M = αL, (4.91) implies that

ϕ(α)Ṽq(L,Q) = Ṽq,ϕ(L, αL,Q) = Ṽq,ϕ(K,αL,Q) ≥ Ṽq(K,Q)ϕ


α

(
Ṽq(L,Q)

Ṽq(K,Q)

)1/q

 .

(4.98)

Let

c =

(
Ṽq(L,Q)

Ṽq(K,Q)

)1/q

.
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Then (4.98) reads cqϕ(α) ≥ ϕ(αc). When α = 1, we obtain

cqϕ(1) ≥ ϕ(c). (4.99)

Repeating the argument with K and L interchanged yields c−qϕ(α) ≥ ϕ(αc−1). Set-

ting α = c, we get c−qϕ(c) ≥ ϕ(1) and hence

cqϕ(1) ≤ ϕ(c). (4.100)

By (4.99) and (4.100), ϕ(c) = cqϕ(1), which means that

ϕ



(
Ṽq(L,Q)

Ṽq(K,Q)

)1/q

 =

Ṽq(L,Q)

Ṽq(K,Q)
ϕ(1).

Thus equality holds in (4.98) when α = 1. By the equality condition for (4.91), we

conclude that L = rK for some r > 0. That is, K and L are dilatates of each other.

Suppose that L = rK, where r > 0 and r 6= 1. Let α > 0. Then (4.87), (4.90),

and (4.97) with M = αK yield

ϕ(α)Ṽq(K,Q) = Ṽq,ϕ(K,αK,Q) = Ṽq,ϕ(rK, αK,Q) = ϕ(α/r)rq Ṽq(K,Q).

Consequently, ϕ(rs) = rqϕ(s) for s > 0. Equivalently, setting β = rq and t = sq, we

obtain ϕq(βt) = βϕq(t) for t > 0, where β 6= 1. But then the points (βm, ϕq(β
m)),

m ∈ N, all lie on the line y = ϕ(1)x in R2, so ϕq cannot be strictly convex. This

contradiction proves that r = 1 and hence K = L.

Let K,L ∈ K n
(o). We recall from [16, 68] that for ϕ ∈ (0,∞) → (0,∞), the Orlicz

mixed volume Vϕ(K,L) is defined by

Vϕ(K,L) =
1

n

∫

Sn−1

ϕ

(
hL(u)

hK(u)

)
hK(u) dS(K, u). (4.101)

The Orlicz-Minkowski inequality [16, Theorem 9.2] (see also [68, Theorem 2]) states

that if ϕ ∈ I is convex, then

Vϕ(K,L) ≥ V (K)ϕ

((
V (L)

V (K)

)1/n
)
. (4.102)
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If ϕ is strictly convex, equality in (4.102) holds if and only if K and L are dilatates of

each other. When ϕ(t) = t, we write Vϕ(K,L) = V1(K,L) and retrieve from (4.102)

Minkowski’s first inequality

V1(K,L) ≥ V (K)(n−1)/nV (L)1/n. (4.103)

Note that (4.103) actually holds for all K,L ∈ K n, with equality if and only if K

and L lie in parallel hyperplanes or are homothetic; see [15, Theorem B.2.1] or [59,

Theorem 6.2.1].

Let ϕ ∈ I ∪D and let n ∈ N, n ≥ 2. We say that ϕ behaves like tn if there is r > 0,

r 6= 1, such that ϕ(rt) = rnϕ(t) for t > 0. Of course, if ϕ(t) = tn, then ϕ behaves like

tn, but there is a ϕ ∈ I ∪D that behaves like tn such that ϕ(t) 6= tn for some t > 0. To

see this, let f(t) = tn and define ϕ(t) on [1, 2], such that (i) ϕ is increasing and strictly

convex, (ii) ϕ(t) = f(t) at t = 1 and t = 2, (iii) ϕ′
r(1) = f ′(1) and ϕ′

l(2) = f ′(2),

(iv) ϕ(t) < f(t) on (1, 2). Then define ϕ on [1/2, 1] by ϕ(t) = ϕ(2t)/2n and on [2, 4]

by ϕ(t) = 2nϕ(t/2). It follows that ϕ is increasing and strictly convex on [1/2, 1]

and on [2, 4], ϕ(t) = f(t) at t = 1/2 and t = 4, ϕ′
r(1/2) = ϕ′

r(1)/2
n−1 = f ′(1/2),

ϕ′
l(4) = 2n−1ϕ′

l(2) = f ′(4) and ϕ(t) < f(t) on (1/2, 1)∪(2, 4). Moreover, ϕ′
l(t) = ϕ′

r(t)

at t = 1 and t = 2, so ϕ is increasing and strictly convex on [1/2, 4]. Continuing

inductively, we define ϕ on [1/2m, 2m+1], m ∈ N, and hence on (0,∞), so that it is

increasing and strictly convex, ϕ(t) = tn for t = 1/2m and t = 2m, m ∈ N, and

ϕ(t/2) = 2−nϕ(t) for t > 0, but ϕ is not identically equal to tn. This construction

for r = 1/2 (or, equivalently, r = 2) can be easily modified for other values of r > 0,

r 6= 1.

The following result can be obtained from (4.102) and the argument in the proof

of Corollary 4.4.5.

Corollary 4.4.6. Let K,L ∈ K n
(o). Suppose that ϕ ∈ I is strictly convex and

Vϕ(K,M) = Vϕ(L,M) for all M ∈ K n
(o). Then K and L are dilatates of each other.

Moreover, K = L unless ϕ behaves like tn.

Note that the restriction in the second statement of the previous theorem is neces-

sary, since it is evident from (4.101) that if ϕ behaves like tn, then for the corresponding

r 6= 1, we have V (K,M) = V (rK,M) for all M ∈ K n
(o).

Let K,L ∈ K n
(o), let Q ∈ S n

c+, and let p, q ∈ R. In [54, (1.13), p. 91], the
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(p, q)-mixed volume Ṽp,q(K,L,Q) was defined by setting g = hpL in (4.27):

Ṽp,q(K,L,Q) =

∫

Sn−1

hL(u)
p dC̃p,q(K,Q, u)

=
1

n

∫

Sn−1

hL(αK(u))
p hK(αK(u))

−p ρK(u)
q ρQ(u)

n−q du.

=
1

n

∫

Sn−1

(
hL(αK(u))

hK(αK(u))

)p (
ρK(u)

ρQ(u)

)q
ρQ(u)

n du. (4.104)

Inspired by (4.104), we can consider the nonlinear Orlicz dual curvature functionals

defined by
1

n

∫

Sn−1

ϕ

(
ψ

(
f(αK(u))

hK(αK(u))

)(
ρK(u)

ρQ(u)

)n)
ρQ(u)

n du,

where ϕ, ψ : (0,∞) → (0,∞) are continuous functions and f ∈ C+(Sn−1). We can

then take f = hL to define the (ϕ, ψ)-mixed volume

Ṽϕ,ψ(K,L,Q) =
1

n

∫

Sn−1

ϕ

(
ψ

(
hL(αK(u))

hK(αK(u))

)(
ρK(u)

ρQ(u)

)n)
ρQ(u)

n du.

This is a natural generalization of (4.104) when q 6= 0, corresponding to taking ϕ(t) =

tq/n and ψ(t) = tnp/q.

When L ∈ K n
(o), the following result provides a common generalization of [16,

Theorem 9.2], [18, Theorem 6.1] (see also [79, Theorem 2]), and [54, Theorem 7.4].

The first corresponds to taking K = Q when ϕ there is replaced by ϕ ◦ ψ, the second

corresponds to taking K = L, and the third is obtained by the choices of ϕ and ψ

given in the previous paragraph. Note that in the latter case, for the convexity of ϕ

and ψ we then require that 1 ≤ q/n ≤ p, which is precisely the assumption made in

[54].

Theorem 4.4.7. Let K,L ∈ K n
(o) and let Q ∈ S n

c+. If ϕ, ψ : (0,∞) → (0,∞) are

increasing and convex, then

Ṽϕ,ψ(K,L,Q) ≥ ϕ

(
V (K)

V (Q)
ψ

((
V (L)

V (K)

)1/n
))

V (Q). (4.105)

If ϕ and ψ are strictly convex, equality holds if and only if K, L, and Q are dilatates

of each other.
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Proof. Setting Q = K and p = 1 in [54, (7.6), Proposition 7.2], (4.104), and (4.27),

we have, for any q 6= 0,

V1(K,L) = Ṽ1,q(K,L,K)

=

∫

Sn−1

hL(u) dC̃1,q(K,K, u)

=
1

n

∫

Sn−1

hL(αK(u))

hK(αK(u))
ρK(u)

n du. (4.106)

We use Jensen’s inequality [18, Proposition 2.2] twice, once with ϕ and once with ψ,

Minkowski’s first inequality (4.103), and (4.106) to obtain

Ṽϕ,ψ(K,L,Q)

V (Q)
=

1

nV (Q)

∫

Sn−1

ϕ

(
ψ

(
hL(αK(u))

hK(αK(u))

)(
ρK(u)

ρQ(u)

)n)
ρQ(u)

n du

≥ ϕ

(
1

nV (Q)

∫

Sn−1

ψ

(
hL(αK(u))

hK(αK(u))

)(
ρK(u)

ρQ(u)

)n
ρQ(u)

n du

)

= ϕ

(
V (K)

V (Q)
·

1

nV (K)

∫

Sn−1

ψ

(
hL(αK(u))

hK(αK(u))

)
ρK(u)

n du

)

≥ ϕ

(
V (K)

V (Q)
ψ

(
1

nV (K)

∫

Sn−1

hL(αK(u))

hK(αK(u))
ρK(u)

n du

))

= ϕ

(
V (K)

V (Q)
ψ

(
V1(K,L)

V (K)

))

≥ ϕ

(
V (K)

V (Q)
ψ

((
V (L)

V (K)

)1/n
))

,

as required.

Suppose that ϕ and ψ are strictly convex and that equality holds in (4.105). Then

equality holds throughout the previous display. As in the proof of [16, Lemma 9.1],

equalities in Minkowski’s first inequality and in Jensen’s inequality with ψ implies

that K and L are dilatates of each other. Then equality in Jensen’s inequality with

ϕ implies that K and Q are dilatates of each other.

We omit the proof of the following corollary, which is again similar to that of

Corollary 4.4.5.

Corollary 4.4.8. Let K,L ∈ K n
(o), and suppose that ϕ, ψ : (0,∞) → (0,∞) are

increasing and strictly convex. If Ṽϕ,ψ(K,M,Q) = Ṽϕ,ψ(L,M,Q) for M = αK, α > 0,

Q = K and for M = αL, α > 0, Q = L, then K and L are dilatates of each other.
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Moreover, K = L unless ψ behaves like tn. If ψ behaves like tn with ψ(rt) = rnψ(t),

t > 0, for some r > 0, then Ṽϕ,ψ(K,M,Q) = Ṽϕ,ψ(rK,M,Q) for all K,M,Q ∈ K n
(o).



Chapter 5

General volumes and Minkowski

problem for G(t, ·) increasing

This chapter is based on our paper [19]. In this chapter, we extend the general dual

volume ṼG and the general dual Orlicz curvature measure C̃G,ψ defined in Chapter 4

for K ∈ K n
(o) to more general functions G : [0,∞) × Sn−1 → [0,∞) and to compact

convex sets K ∈ K n
o containing the origin (but not necessarily in their interiors).

Again we investigate the general dual Orlicz-Minkowski problem with respect to C̃G,ψ

for G(t, ·) increasing. Methods used in this chapter are the approximation arguments

from discrete measures to general measures.

5.1 The general dual volume on compact convex

sets

First, we extend the G : (0,∞) × Sn−1 → (0,∞) to G : [0,∞) × Sn−1 → [0,∞) and

obtain the generalized dual volume.

Definition 5.1.1. Let G : [0,∞) × Sn−1 → [0,∞) be such that u 7→ G(ρK(u), u) is

integrable on Sn−1 for K ∈ K n
o . Define the general dual volume ṼG(K) of K ∈ K n

o

by

ṼG(K) =

∫

Sn−1

G(ρK(u), u) du. (5.1)

If K ∈ K n
o has empty interior, then ρK = 0 outside a great subsphere of Sn−1.
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Since H n−1 vanishes on such great subspheres, we then have

ṼG(K) =

∫

Sn−1

G(0, u) du. (5.2)

In particular, if intK = ∅ and G(0, u) = 0 for u ∈ Sn−1, then ṼG(K) = 0.

The general dual volume was introduced forK ∈ K n
(o) via (4.1) is clearly subsumed

under Definition 5.1.1, since such a G can be extended to [0,∞) × Sn−1 by setting

G(0, u) = 0 for u ∈ Sn−1.

In Lemma 4.1.2, ṼG was shown to be continuous on K n
(o) in the Hausdorff metric

when G : (0,∞)×Sn−1 → (0,∞) is continuous. We next prove a corresponding result

for ṼG on K n
o .

Lemma 5.1.2. Let G : [0,∞) × Sn−1 → [0,∞) be continuous. If Ki ∈ K n
o , i ∈ N,

and Ki → K ∈ K n
o as i→ ∞, then limi→∞ ṼG(Ki) = ṼG(K).

Proof. Let Ki ∈ K n
o , i ∈ N, and Ki → K ∈ K n

o as i → ∞. If K ∈ K n
(o), we can

assume without loss of generality that Ki ∈ K n
(o) for all i ∈ N, and the result then

follows from Lemma 4.1.2. It therefore suffices to prove the lemma when o /∈ intK.

To this end, suppose first that intK = ∅, so that K ⊂ v⊥ for some v ∈ Sn−1.

First, we show that ρKi
(u) → ρK(u) as i → ∞ for H n−1-almost all u ∈ Sn−1. Since

H n−1(Sn−1∩v⊥) = 0, it suffices to consider a fixed u ∈ Sn−1\v⊥. Let ε ∈ (0, |〈u, v〉|).

There exists iε ∈ N so that Ki ⊂ K + ε2Bn ⊂ {x ∈ Rn : |〈x, v〉| ≤ ε2} for i > iε.

Hence, for i > iε we get

0 ≤ ρKi
(u)ε < ρKi

(u)|〈u, v〉| = |〈ρKi
(u)u, v〉| ≤ ε2,

and therefore 0 ≤ ρKi
(u) < ε for i > iε. Thus ρKi

(u) → 0 = ρK(u) as i → ∞, as

required.

SinceKi → K, there exists R > 0 such that ρKi
≤ R for i ∈ N. The continuity ofG

on [0,∞)×Sn−1 implies thatM0 = max{G(t, u) : (t, u) ∈ [0, R]×Sn−1} <∞. Hence,

since G is continuous, G(ρKi
(u), u) → G(ρK(u), u) for H n−1-almost all u ∈ Sn−1 and

the dominated convergence theorem applies. This yields

lim
i→∞

ṼG(Ki) = lim
i→∞

∫

Sn−1

G(ρKi
(u), u) du =

∫

Sn−1

G(ρK(u), u) du = ṼG(K),
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as required.

It remains to consider the case when intK 6= ∅ and o ∈ ∂K. It is shown in the

proof of [3, Lemma 2.2] that limi→∞ ρKi
(u) = ρK(u) for u ∈ Sn−1 \ ∂N(K, o)∗. Using

this and (2.13), we obtain

lim
i→∞

ṼG(Ki) = lim
i→∞

∫

Sn−1\∂N(K,o)∗
G(ρKi

(u), u) du

=

∫

Sn−1\∂N(K,o)∗
G(ρK(u), u) du

= ṼG(K),

where the second equality follows again from the dominated convergence theorem and

the fact that ρKi
≤ R for i ∈ N.

We shall also need the following lemma. For v ∈ Sn−1 and ε ∈ (0, 1), let

Σε(v) = {u ∈ Sn−1 : 〈u, v〉 ≥ ε}. (5.3)

Lemma 5.1.3. Let G(t, u) be continuous on (0,∞) × Sn−1 and decreasing in t on

(0,∞). Let 0 < ε0 < 1 and suppose that for v ∈ Sn−1,

lim
t→0+

∫

Σε0 (v)

G(t, u) du = ∞. (5.4)

If Ki ∈ K n
(o), i ∈ N, and Ki → K ∈ K n

o as i→ ∞ with o ∈ ∂K, then

lim
i→∞

ṼG(Ki) = ∞.

Proof. Let Ki ∈ K n
(o), i ∈ N, and Ki → K ∈ K n

o as i → ∞ with o ∈ ∂K. Choose

v ∈ Sn−1 ∩ N(K, o). Let t ∈ (0, ε0). Then there is an it ∈ N such that for i > it, we

have Ki ⊂ {z ∈ Rn : 〈z, v〉 ≤ t2}. If u ∈ Σε0(v) and i > it, then

t < ε0 ≤ 〈u, v〉 =
〈ρKi

(u)u, v〉

ρKi
(u)

≤
t2

ρKi
(u)

,

and therefore 0 ≤ ρKi
(u) < t for i > it and u ∈ Σε0(v). Hence, for i > it we get
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ṼG(Ki) ≥

∫

Σε0 (v)

G(ρKi
(u), u) du

≥

∫

Σε0 (v)

G(t, u) du, (5.5)

since G(t, u) is decreasing for t. In (5.5), we let i → ∞ and then t → 0+. This and

(5.4) yield the assertion.

5.2 The general dual Orlicz-Minkowski problem for

discrete measures

Recall the definition of the general dual Orlicz curvature measure in (4.7). Let K ∈

K n
(o) and let G : (0,∞) × Sn−1 → (0,∞) and ψ : (0,∞) → (0,∞) be continuous.

Suppose that Gt(t, u) = ∂G(t, u)/∂t is such that u 7→ Gt(ρK(u), u) is integrable on

Sn−1,

C̃G,ψ(K,E) =
1

n

∫

ααα∗
K(E)

ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du (5.6)

for each Borel set E ⊂ Sn−1.

Problem 5.2.1. For which nonzero finite Borel measures µ on Sn−1 and continuous

functions G : (0,∞) × Sn−1 → (0,∞) and ψ : (0,∞) → (0,∞) do there exist τ ∈ R

and K ∈ K n
(o) such that µ = τ C̃G,ψ(K, ·)?

A solution to Problem 5.2.1 was presented in Section 4.3, assuming that Gt < 0,

G satisfies some growth conditions, and

∫ ∞

1

ψ(s)

s
ds = ∞. (5.7)

Our aim here is to provide a solution to Problem 5.2.1 when Gt > 0. To do this,

we first deal with the case when µ is discrete, i.e., when µ =
∑m

i=1 λiδui , where

δui denotes the Dirac measure at ui ∈ Sn−1, λi > 0 for each i, and {u1, . . . , um}

is not contained in a closed hemisphere. In this case we seek a solution for which

K ∈ K n
(o) is a convex polytope. This discrete Minkowski-type problem has been

solved in several special cases. Indeed, when G(t, u) = tn/n, then ṼG(K) is the

volume of K and the corresponding Orlicz-Minkowski problem for discrete measures
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was solved in [27, 33, 39]. When ψ(t) = tp for p > 1 and G(t, u) = tqφ1(u) for

q > 0 and φ1 ∈ C+(Sn−1), the problem becomes the Lp dual Minkowski problem for

discrete measures proposed in [54] and solved in [3]. Our solution to Problem 5.2.1 in

Theorem 5.4.3 below significantly extends those in [3, 27, 33, 39].

We utilize the techniques in [33] which were also found effective in other works,

such as [3, 24, 27]. Let m > n be an integer and suppose that {u1, . . . , um} is not

contained in a closed hemisphere. For each z = (z1, . . . , zm) ∈ [0,∞)m, let

P (z) = {x ∈ Rn : 〈x, ui〉 ≤ zi, for i = 1, . . . ,m}. (5.8)

Then P (z) ∈ K n
o is a convex polytope. We point out that the facets of P (z) are

among the support sets F (P (z), ui), i ∈ {1, . . . ,m}, of P (z), but not all of these

necessarily are facets. We have h(P (z), ui) ≤ zi for i ∈ {1, . . . ,m}, with equality if

F (P (z), ui) is a facet of P (z).

Lemma 5.2.2. Let P ∈ K n
(o) be a convex polytope with facets F (P, u1), . . . , F (P, um).

Then

C̃G,ψ(P, ·) =
m∑

i=1

γiδui , (5.9)

where

γi =
C̃G(P, {ui})

ψ(hP (ui))
(5.10)

for i = 1, . . . ,m. If Gt > 0 (or Gt < 0) on (0,∞) × Sn−1, then γi > 0 (or γi < 0,

respectively) for i = 1, . . . ,m.

Proof. That C̃G,ψ(P, ·) is of the form (5.9) follows immediately from the absolute

continuity of C̃G,ψ(P, ·) with respect to S(P, ·) in Proposition 4.3.1 (i), since the latter

measure is concentrated on {u1, . . . , um}. Using (5.6) and the fact that ααα∗
K({ui}) =

π̃(F (P, ui)), we obtain

γi = C̃G,ψ(P, {ui})

=
1

n

∫

π̃(F (P,ui))

ρP (u)Gt(ρP (u), u)

ψ(hP (ui))
du

=
1

nψ(hP (ui))

∫

π̃(F (P,ui))

ρP (u)Gt(ρP (u), u) du

=
C̃G(P, {ui})

ψ(hP (ui))
, (5.11)
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proving (5.10). (Recall that C̃G(P, ·) denotes C̃G,ψ(P, ·) with ψ ≡ 1 and note that

hP (ui) > 0, so ψ(hP (ui)) > 0 is defined.)

Suppose that Gt > 0 (or Gt < 0) on (0,∞)×Sn−1. Since o ∈ intP , we have ρP > 0,

so the integrand in (5.11) is positive on Sn−1 (or negative on Sn−1, respectively). It

follows that γi > 0 (or γi < 0, respectively) for i = 1, . . . ,m.

Lemma 5.2.3. Let f : (0,∞) → (0,∞) be continuously differentiable and let α2 >

2α1 > 0. There exists c0 = c0(α1, α2) > 0 such that

f(α− s) ≥ f(α)− c0s (5.12)

for α ∈ [2α1, α2] and s ∈ [0, α1].

Proof. If α ∈ [2α1, α2] and s ∈ [0, α1], then α − s ∈ [α1, α2]. Let c0 = max{|f ′(s)| :

s ∈ [α1, α2]}. Define

g(s) = f(α− s)− f(α) + c0s

for s ≥ 0. Then g(0) = 0 and g′(s) = c0 − f ′(α − s) ≥ 0 for s ∈ [0, α1]. Therefore on

[0, α1], g is increasing and hence g(s) ≥ g(0) = 0, which proves (5.12).

For K ∈ K n
(o) and ϕ ∈ I , we let

‖hK‖µ,ϕ = inf

{
λ > 0 :

1

ϕ(1)µ(Sn−1)

∫

Sn−1

ϕ

(
hK(u)

λ

)
dµ(u) ≤ 1

}
. (5.13)

Under appropriate assumptions, ‖ · ‖µ,ϕ is a norm, the Orlicz or Luxemburg norm.

For example, in [16, Section 4], and elsewehere, the triangle inequality is proved for

suitable convex ϕ. We do not need this restriction on ϕ, since we merely use (5.13)

for normalization purposes.

Suppose that ψ : (0,∞) → (0,∞) is continuous. Define

ϕ(t) =

∫ t

0

ψ(s)

s
ds for t > 0 and ϕ(0) = 0. (5.14)

(A similar, but slightly different, function was employed in (4.56).) If ϕ < ∞ on

(0,∞), then it is continuous (by the dominated convergence theorem) and strictly

increasing on [0,∞), and ϕ′(t) = ψ(t)/t for t > 0. Note that this assumption on ϕ

imposes a weak growth condition on ψ(t) as t ↓ 0.
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The hypotheses of the next theorem allow ψ(t) = tp for p > 1 and G(t, u) = tq for

q > 0, for example.

Theorem 5.2.4. Let µ =
∑m

i=1 λiδui, where λi > 0, i = 1, . . . ,m, and {u1, . . . , um} ⊂

Sn−1 is not contained in a closed hemisphere. Let G : [0,∞) × Sn−1 → [0,∞) be

continuous and such that Gt is continuous and positive on (0,∞) × Sn−1. Suppose

that ψ : (0,∞) → (0,∞) is continuous and such that limt→0+ ψ(t)/t = 0 and (5.7)

holds. Then there exist a convex polytope P ∈ K n
(o) and τ > 0 such that

µ = τ C̃G,ψ(P, ·) and ‖hP‖µ,ϕ = 1, (5.15)

where ϕ and τ are given by (5.14) and (5.25), respectively.

Proof. Define ϕ by (5.14). The assumptions on ψ imply that ϕ is finite, so ϕ :

[0,∞) → [0,∞) is continuous and strictly increasing, and that ϕ(t) → ∞ as t → ∞.

It follows that the set

M =

{
(z1, . . . , zm) ∈ [0,∞)m :

m∑

i=1

λiϕ(zi) =
m∑

i=1

λiϕ(1)

}
(5.16)

is compact and nonempty as (1, . . . , 1) ∈ M . By Lemma 5.1.2 and since z 7→ P (z),

z ∈ [0,∞)m, is continuous, there is a z0 = (z01 , . . . , z
0
m) ∈M such that

ṼG(P (z
0)) = max{ṼG(P (z)) : z ∈M}. (5.17)

As Gt > 0, G(t, u) is strictly increasing in t ∈ [0,∞), and then (5.1) implies that

ṼG(·) is also increasing, i.e., if K ⊂ K ′, then ṼG(K) ≤ ṼG(K
′). From (5.8) we see

that Bn ⊂ P ((1, . . . , 1)) and then (5.17) yields

∞ > ṼG(P (z
0)) ≥ ṼG(P ((1, . . . , 1))) ≥ ṼG(B

n) =

∫

Sn−1

G(1, u) du >

∫

Sn−1

G(0, u) du.

(5.18)

In view of (5.2), this implies that dimP (z0) = n.

Let h0 ∈ C+(Sn−1), g ∈ C(Sn−1), and ϕ0 ∈ Ja for some a ∈ R ∪ {−∞}. Then

we have ϕ−1
0 : (a,∞) → (0,∞), and since Sn−1 is compact, 0 < c ≤ h0 ≤ C for

some 0 < c ≤ C. It is then easy to check that for ε ∈ R close to 0, one can define
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hε = hε(h0, g, ϕ0) ∈ C+(Sn−1) by

hε(u) = ϕ0
−1 (ϕ0(h0(u)) + εg(u)) . (5.19)

In particular, we can apply (5.19) when h0 = hK for some K ∈ K n
(o).

We shall first prove the theorem assuming that o ∈ intP (z0), in which case P (z0) ∈

K n
(o) and z0i > 0 for i = 1, . . . ,m. Fix i ∈ {1, . . . ,m} for the moment. Let h0 ∈

C+(Sn−1) be such that h0(uj) = z0j > 0 for j = 1, . . . ,m. Further, let gi ∈ C(Sn−1)

be such that gi(uj) = δij for j = 1, . . . ,m. If |ε| is small enough, we may define hε

via (5.19) with ϕ0(t) = t, so that hε = h0 + εgi ∈ C+(Sn−1) and ψ0(t) = tϕ′
0(t) = t.

Moreover, if the Alexandrov body [hε] of hε is taken with respect to the set Ω =

{u1, . . . , um}, we have [hε] = P (z0 + εei). Using this, (4.49), and (5.11), we obtain

∂ṼG(P (z))

∂zi

∣∣∣∣
z=z0

= lim
ε→0

ṼG([hε])− ṼG([h0])

ε

= n
m∑

j=1

gi(uj)C̃G,ψ0(P (z
0), {uj})

= nC̃G,ψ0(P (z
0), {ui})

= n
C̃G(P (z

0), {ui})

hP (z0)(ui)
. (5.20)

The argument does not depend on the choice of z ∈ Rm with positive coordinates zi, so

the calculation shows that the map z 7→ ṼG(P (z)) has continuous partial derivatives

and therefore is continuously differentiable. Moreover, since λi > 0 and ϕ′ > 0, the

rank condition in the Lagrange multipliers theorem is satisfied. In view of (5.16) and

(5.17), that theorem provides a τ ∈ R such that

τ

n

∂ṼG(P (z))

∂zi

∣∣∣∣
z=z0

=
∂

∂zi

m∑

i=1

λiϕ(zi)

∣∣∣∣
z=z0

(5.21)

for i = 1, . . . ,m. As o ∈ intP (z0), (5.8) implies that z0i > 0 for each i. This, (5.20),

(5.21), and ϕ′(t) = ψ(t)/t for t > 0 yield

τ
C̃G(P (z

0), {ui})

hP (z0)(ui)
= λiϕ

′(z0i ) = λi
ψ(z0i )

z0i
for i = 1, . . . ,m, (5.22)
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while z0 ∈M implies that

m∑

i=1

λiϕ(z
0
i ) = ϕ(1)

m∑

i=1

λi. (5.23)

For each i, we have λi > 0 and hence C̃G(P (z
0), {ui}) > 0, by (5.22). The absolute

continuity of C̃G,ψ(P, ·) with respect to S(P, ·) (see Proposition 4.3.1) implies that the

face F (P (z0), ui) is actually a facet, hence we have z0i = hP (z0)(ui). From (5.22), we

conclude that

λi = τ
C̃G(P (z

0), {ui})

ψ(hP (z0)(ui))
= τ C̃G,ψ(P (z

0), {ui}) (5.24)

for i = 1, . . . ,m. This proves that µ = τ C̃G,ψ(P (z
0), ·) because both measures are

concentrated on {u1, . . . , um}. Summing (5.24) over i, we obtain

τ =
µ(Sn−1)

C̃G,ψ(P (z0), Sn−1)
=

1

C̃G(P (z0), Sn−1)

∫

Sn−1

ψ(hP (z0)(u)) dµ(u). (5.25)

Moreover, in view of (5.13), (5.23) is equivalent to ‖hP (z0)‖µ,ϕ = 1.

This proves the theorem under the assumption that o ∈ intP (z0), which we now

claim is true. Suppose that o ∈ ∂P (z0). To obtain a contradiction, we use an

argument similar to that in the proof of [3, Lemma 3.2]. By relabeling, if necessary,

we may suppose that for some 1 ≤ k < m, z0j = 0 for j = 1, . . . , k and z0j > 0 for

j = k+1, . . . ,m. Note that k < m because otherwise, z0j = 0 for j = 1, . . . ,m implies

P (z0) = {o}, which is impossible. Let

λ =
λ1 + · · ·+ λk
λk+1 + · · ·+ λm

> 0, (5.26)

and choose t0 > 0 small enough that ϕ(z0i ) − λϕ(t0) > 0 for i = k + 1, . . . ,m. For

t ∈ (0, t0), let

at =
(
0, . . . , 0, ϕ−1(ϕ(z0k+1)− λϕ(t)), . . . , ϕ−1(ϕ(z0m)− λϕ(t))

)
, (5.27)

where the first k components of at are equal to 0, and let

bt = at + t(e1 + · · ·+ ek), (5.28)
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so that bt is obtained from at by setting the first k components equal to t. By (5.14),

ϕ, and hence ϕ−1, is increasing on [0,∞). Therefore ati = ϕ−1(ϕ(z0i )−λϕ(t)) ≤ z0i for

i = k + 1, . . . ,m. This yields

P (at) ⊂ P (z0) and hence ṼG(P (a
t)) ≤ ṼG(P (z

0)). (5.29)

For t ∈ (0, t0), we have o ∈ intP (bt) and from (5.27) and (5.28),

P (at) ⊂ P (bt) and hence ṼG(P (a
t)) ≤ ṼG(P (b

t)). (5.30)

Using (5.26), (5.27), ϕ(z01) = · · · = ϕ(z0k) = ϕ(0) = 0, and z0 ∈M , we obtain

m∑

i=1

λiϕ(b
t
i) =

k∑

i=1

λiϕ(t) +
m∑

i=k+1

λi(ϕ(z
0
i )− λϕ(t))

= ϕ(t)

(
k∑

i=1

λi − λ

m∑

i=k+1

λi

)
+

m∑

i=k+1

λiϕ(z
0
i )

=
m∑

i=1

λiϕ(z
0
i )

=
m∑

i=1

λiϕ(1),

from which we see via (5.16) that bt ∈M .

Let r0 = min{z0i : i = k + 1, . . . ,m} > 0 and let R0 > max{z0i : i = k + 1, . . . ,m}

be such that P (z0) ⊂ intR0B
n. We apply Lemma 5.2.3 with f = ϕ−1, α = ϕ(z0i ) for

i = k + 1, . . . ,m, s = λϕ(t) > 0, α1 = ϕ(r0)/2, and α2 = ϕ(R0). We conclude that

with

c0 = max{(ϕ−1)′(s) : s ∈ [α1, α2]} = max

{
1

ϕ′(ϕ−1(s))
: s ∈ [α1, α2]

}
,

and

β = min

{
ϕ−1

(
ϕ(r0)

2λ

)
, ϕ−1

(
r0

2λc0

)}
> 0,

we have

ϕ−1(ϕ(z0i )− λϕ(t)) ≥ z0i − c0λϕ(t) >
r0
2

(5.31)

for t ∈ (0, β), where the second inequality follows from the definition of β and z0i > r0.
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Note that (5.31) and the definition of t0 ensure that we can choose t0 = β.

Recall (see (2.15)) that ρP (z0)(u) > 0 if and only if u ∈ Sn−1 ∩ N(P (z0), o)∗. By

(5.8), the inclusion in (5.29), and the fact that ati = 0 if and only if z0i = 0, ρP (at)(u) > 0

if and only if ρP (z0)(u) > 0. In fact, by the definition of r0 and R0, (5.27), and (5.31),

we have ρP (z0)(u) ∈ (r0, R0) and ρP (at)(u) ∈ (r0/2, R0) for u ∈ Sn−1 ∩ N(P (z0), o)∗.

Consequently, in view of the continuity of Gt on (0,∞) × Sn−1, there are constants

c1 > 0 and β1 ∈ (0, β) such that

G(ρP (z0)(u), u)−G(ρP (at)(u), u) ≤ c1(ρP (z0)(u)− ρP (at)(u)) (5.32)

for u ∈ Sn−1 ∩N(P (z0), o)∗.

Let u ∈ Sn−1∩N(P (z0), o)∗ and choose i0 ∈ {k+1, . . . ,m} so that the ray from o

in the direction u meets the facet F (P (at), ui0), and hence, by the inclusion in (5.29),

the facet F (P (z0), ui0) as well. Then, by (5.31),

R0〈u, ui0〉 > ρP (at)(u)〈u, ui0〉 = ati0 = ϕ−1(ϕ(z0i0)− λϕ(t)) >
r0
2
,

and z0i0 = ρP (z0)(u)〈u, ui0〉.

Using these relations and (5.31) again, we obtain

ρP (at)(u) =
ϕ−1(ϕ(z0i0)− λϕ(t))

〈u, ui0〉

≥
z0i0 − c0λϕ(t)

〈u, ui0〉

≥ ρP (z0)(u)−
2R0c0λ

r0
ϕ(t). (5.33)

From (5.32) and (5.33) we get

ṼG(P (z
0))− ṼG(P (a

t)) =

∫

Sn−1∩N(P (z0),o)∗

(
G(ρP (z0)(u), u)−G(ρP (at)(u), u)

)
du

≤ c1

∫

Sn−1∩N(P (z0),o)∗

(
ρP (z0)(u)− ρP (at)(u)

)
du

≤
2R0c0c1λ

r0
ϕ(t)

∫

Sn−1∩N(P (z0),o)∗
du

≤ c2ϕ(t) (5.34)



104

for t ∈ (0, β1), where c2 = 2R0c0c1λnκn/r0.

Using o ∈ intP (bt) and the containments in (5.29) and (5.30), one can show that

there is a closed set Et ⊂ Sn−1 and constants r1 > 0, β2 ∈ (0, β1), and c3 > 0,

depending only on n, r0, and R0, satisfying H n−1(Et) ≥ c3t for t ∈ (0, β2) and such

that ρP (at)(u) = 0 and ρP (bt)(u) ≥ r1 for u ∈ Et. We omit the details, since these are

given in the proof of [3, p. 13]; there, the set Et is denoted by G̃t and is the radial

projection on Sn−1 of a certain (n− 1)-dimensional spherical cylinder of height t. For

u ∈ Et, we have G(ρP (at)(u), u) = G(0, u) and G(ρP (bt)(u), u) ≥ G(r1, u) as Gt > 0.

Consequently,

ṼG(P (b
t)) =

∫

Sn−1\Et

G(ρP (bt)(u), u) du+

∫

Et

G(ρP (bt)(u), u) du

≥ ṼG(P (a
t)) +

∫

Et

(G(r1, u)−G(0, u)) du

≥ ṼG(P (a
t)) + c4t (5.35)

for t ∈ (0, β2), where

c4 = c3 min{G(r1, u)−G(0, u) : u ∈ Sn−1} > 0.

From (5.34) and (5.35), we obtain

lim inf
t→0+

ṼG(P (b
t))− ṼG(P (z

0))

t
≥ lim

t→0+

c4t− c2 ϕ(t)

t
= c4 > 0, (5.36)

since

lim
t→0+

ϕ(t)

t
= lim

t→0+
ϕ′(t) = lim

t→0+

ψ(t)

t
= 0.

By (5.36), there exists t1 ∈ (0, β2) such that ṼG(P (b
t1)) > ṼG(P (z

0)). It was shown

above that bt1 ∈ M , so this contradicts (5.17). Thus o ∈ intP (z0) and the proof is

complete.

Recall that for v ∈ Sn−1 and ε ∈ (0, 1), Σε(v) is defined by (5.3) and that ‖ · ‖µ,ϕ

is defined by (5.13). The hypotheses of the next theorem allow ψ(t) = tp for p > 0

and G(t, u) = tq for q < 0, for example.

Theorem 5.2.5. Let µ =
∑m

i=1 λiδui, where λi > 0, i = 1, . . . ,m, and {u1, . . . , um} ⊂

Sn−1 is not contained in a closed hemisphere. Let G : (0,∞) × Sn−1 → (0,∞) be
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continuous and such that Gt is continuous and negative on (0,∞) × Sn−1. Let 0 <

ε0 < 1 and suppose that (5.4) holds for v ∈ Sn−1. Suppose that ψ : (0,∞) → (0,∞) is

continuous, (5.7) holds, and that ϕ is finite when defined by (5.14). Then there exist

a convex polytope P ∈ K n
(o) and τ < 0 such that

µ = τ C̃G,ψ(P, ·) and ‖hP‖µ,ϕ = 1,

where τ is given by (5.25).

Proof. Define ϕ by (5.14). The assumption that ϕ is finite implies that ϕ : [0,∞) →

[0,∞) is continuous and strictly increasing, and from (5.7), we have ϕ(t) → ∞ as

t→ ∞. The set

M ′ =

{
(z1, . . . , zm) ∈ (0,∞)m :

m∑

i=1

λiϕ(zi) =
m∑

i=1

λiϕ(1)

}

is bounded and nonempty as (1, . . . , 1) ∈M ′. Let

α = inf{ṼG(P (z)) : z ∈M ′}, (5.37)

where P (z) is defined by (5.8). Choose zj ∈M ′, j ∈ N, such that

lim
j→∞

ṼG(P (z
j)) = α. (5.38)

Since M ′ is bounded, we can assume, by taking a subsequence, if necessary, that

zj → z0 ∈M , where M is defined by (5.16). However, we actually have o ∈ intP (z0)

and hence z0 ∈ M ′. To see this, suppose to the contrary that o ∈ ∂P (z0). Since

P (zj) ∈ K n
(o) for j ∈ N and P (zj) → P (z0) as j → ∞, Lemma 5.1.3 yields

lim
j→∞

ṼG(P (z
j)) = ∞.

By (5.8), Bn ⊂ P ((1, . . . , 1)). Also, as Gt < 0, G(t, ·) is decreasing on (0,∞) and

hence ṼG(·) is also decreasing, i.e., if K ⊂ K ′, then ṼG(K) ≥ ṼG(K
′). Therefore,

using (1, . . . , 1) ∈M ′, (5.37), and (5.38), we obtain

∞ > ṼG(B
n) ≥ ṼG(P ((1, . . . , 1))) ≥ α = lim

j→∞
ṼG(P (z

j)),
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a contradiction proving that z0 ∈ M ′ and P (z0) ∈ K n
(o). By Lemma 4.1.2, ṼG(·) is

continuous in the Hausdorff metric on K n
(o), so

∞ > ṼG(B
n) ≥ ṼG(P (z

0)) = lim
j→∞

ṼG(P (z
j)) = α > 0. (5.39)

The remainder of the proof is precisely the same as the passage from (5.20) to

(5.25) in the proof of Theorem 5.2.4.

Under the conditions on µ, G, and ψ stated in Theorem 5.2.5, but with the as-

sumption that ϕ <∞ replaced by the condition

lim
t→∞

∫

Sn−1

G(t, u) du = 0, (5.40)

Theorem 4.3.3 proves that there is a K ∈ K n
(o) such that

µ

µ(Sn−1)
=

C̃G,ψ(K, ·)

C̃G,ψ(K,Sn−1)
. (5.41)

If µ is discrete, Theorem 4.3.3 does not prove that K is a convex polytope, but, as is

explained in the discussion after Corollary 4.3.4, this is an easy consequence of (5.41).

Thus Theorem 5.2.5 is a variant of Theorem 4.3.3 for discrete µ.

5.3 General dual Orlicz curvature measures for K n
o

The general dual Orlicz curvature measure C̃G,ψ(K, ·) was defined by (5.6) for K ∈

K n
(o). In this section, we extend the definition to K ∈ K n

o .

Let K ∈ K n
o . Recall that N(K, o) and N(K, o)∗ are defined by (2.11) and (2.12).

Definition 5.3.1. Define the general Orlicz curvature measure C̃G,ψ(K, ·) by

C̃G,ψ(K,E) =
1

n

∫

ααα∗
K(E\N(K,o))

ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du (5.42)

for each Borel set E ⊂ Sn−1, whenever G : [0,∞)× Sn−1 → [0,∞) and ψ : [0,∞) →

[0,∞) with ψ(t) > 0 for t > 0 are such that the integral in (5.42) exists for all

K ∈ K n
o and Borel sets E ⊂ Sn−1.
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Note that if dimK < n, then C̃G,ψ(K,E) = 0, since Sn−1 ∩ N(K, o)∗ is then at

most (n − 2)-dimensional. Furthermore, if dimK = n, then in view of (2.13) and

(2.18), the integral in (5.42) may equivalently be taken over ααα∗
K(E)∩N(K, o)∗ or over

ααα∗
K(E) ∩ intN(K, o)∗. For H n−1-almost all u ∈ ααα∗

K(E \ N(K, o)), the vector αK(u)

is well defined and αK(u) /∈ N(K, o), hence hK(αK(u)) > 0 and ψ(hK(αK(u))) > 0.

As before, if ψ ≡ 1, we often write C̃G(K, ·) instead of C̃G,ψ(K, ·). The integral

in (5.42) should be considered as 0 if ααα∗
K(E \ N(K, o)) = ∅, in particular for E ⊂

Sn−1∩N(K, o). In other words, C̃G,ψ(K,E) = 0 for each Borel set E ⊂ Sn−1∩N(K, o).

When o ∈ intK, we have N(K, o) = {o} and hence E \ N(K, o) = E, so (5.42)

agrees with (5.6). Moreover, if G : (0,∞) × Sn−1 → (0,∞) and ψ : (0,∞) → (0,∞)

are continuous and Gt(t, u) = ∂G(t, u)/∂t is such that u 7→ Gt(ρK(u), u) is integrable

on Sn−1, then we can extend G and ψ by setting G(0, u) = 0 for u ∈ Sn−1 and ψ(0) = 0

and the integral in (5.42) will exist for all K ∈ K n
(o) and Borel sets E ⊂ Sn−1. Thus

Definition 4.1.3 is subsumed under Definition 5.3.1.

Suppose that G and ψ are such that C̃G,ψ(K, ·) is indeed a finite signed Borel

measure on Sn−1. Then integrals with respect to C̃G,ψ(K, ·) can be calculated as

follows. For any bounded Borel function g : Sn−1 → R, we have

∫

Sn−1

g(u) dC̃G,ψ(K, u)

=
1

n

∫

Sn−1∩intN(K,o)∗
g(αK(u))

ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du (5.43)

=
1

n

∫

∂K\ΞK

g(νK(x))
〈x, νK(x)〉

ψ(〈x, νK(x)〉)
|x|1−nGt(|x|, x̄) dx. (5.44)

Indeed, it suffices to prove (5.43) for g = 1E, where E ⊂ Sn−1 is a Borel set. If

dimK ≤ n− 1, then all integrals are zero, so we can assume that dimK = n. Then,

using (2.17) and (2.18), we obtain

∫

Sn−1

1E(u) dC̃G,ψ(K, u) = C̃G,ψ(K,E)

=
1

n

∫

ααα∗
K(E)∩intN(K,o)∗

ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du

=
1

n

∫

Sn−1∩intN(K,o)∗
1E(αK(u))

ρK(u)Gt(ρK(u), u)

ψ(hK(αK(u)))
du,
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as required, thus proving (5.43). Now (2.16) and a standard change of variables (see,

e.g., [3, (21)], (4.9), or [29, (2.30)]) gives (5.44). When ψ does not vanish or when

H n−1(ΞK) = 0, (5.44) becomes

∫

Sn−1

g(u) dC̃G,ψ(K, u) =
1

n

∫

∂K

g(νK(x))
〈x, νK(x)〉

ψ(〈x, νK(x)〉)
|x|1−nGt(|x|, x̄) dx, (5.45)

since it is easy to see that 〈νK(x), x〉 = 0 for x ∈ ΞK ∩ ∂K. We emphasize that these

observations are made under the assumption that the integrals exist.

In Proposition 5.3.2 (iii) below, we will find use for a simplified version of (5.43)

that holds when ψ ≡ 1 and tGt(t, u) = 0 at t = 0 for u ∈ Sn−1. The latter of

these two conditions simply means that tGt(t, u) → 0 as t → 0+ for u ∈ Sn−1.

The apparently weaker condition that limt→0+ tGt(t, u) exists for u ∈ Sn−1 is in fact

equivalent. Indeed, suppose that u ∈ Sn−1 and tGt(t, u) → c 6= 0 as t → 0+. If

c > 0, there exist 0 < c1 ≤ c2 < ∞ and t0 > 0 such that 0 < c1 ≤ tGt(t, u) ≤ c2 for

t ∈ (0, t0]. If s ∈ (0, t0], we can divide by t and integrate from s to t0 to obtain

G(t0, u)− c2 ln t0 + c2 ln s ≤ G(s, u) ≤ G(t0, u)− c1 ln t0 + c1 ln s.

But then G(s, u) → −∞ as s→ 0+, a contradiction. If c < 0, there exist c1 ≤ c2 < 0

and t0 as above and a similar argument leads to G(s, u) → ∞ as s → 0+, again a

contradiction.

The following proposition focuses on the case when ψ ≡ 1. In this case, provided

tGt(t, u) = 0 at t = 0 for u ∈ Sn−1, (5.43) simplifies to

∫

Sn−1

g(u) dC̃G(K, u) =
1

n

∫

Sn−1

g(αK(u)) ρK(u)Gt(ρK(u), u) du (5.46)

for any bounded Borel function g : Sn−1 → R, since the integral may be restricted to

intN(K, o)∗ due to (2.13) and (2.14).

Proposition 5.3.2. Let G : [0,∞)× Sn−1 → [0,∞) and let K ∈ K n
o . The following

statements hold.

(i) C̃G(K, ·) is a finite signed measure on Sn−1.

(ii) Suppose that t1−nGt(t, u) is continuous on [0,∞) × Sn−1, where the value of

t1−nGt(t, u) for each u ∈ Sn−1 at t = 0 is taken to be the value of the limit as
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t→ 0+. Then C̃G(K, ·) is absolutely continuous with respect to S(K, ·).

(iii) Suppose that tGt(t, u) is continuous on [0,∞)×Sn−1, where tGt(t, u) = 0 at t = 0

for u ∈ Sn−1. If Ki ∈ K n
o and Ki → K ∈ K n

o as i→ ∞, then C̃G(Ki, ·) → C̃G(K, ·)

weakly as i→ ∞.

Proof. (i) As was pointed out before, C̃G(K, ·) is the zero measure if dimK ≤ n− 1.

Hence let dimK = n. The assumption on Gt ensures that with ψ ≡ 1, the integral in

(5.42) exists. For the σ-additivity, it suffices to show that

C̃G(K,∪
∞
i=1Ei) =

∞∑

i=1

C̃G(K,Ei), (5.47)

for disjoint Borel sets Ei ⊂ Sn−1, i ∈ N. To this end, observe that it has ααα∗
K((∪

∞
i=1Ei)\

N(K, o)) = ∪∞
i=1ααα

∗
K(Ei \ N(K, o)). From (5.42), we see that (5.47) will be proved if

we can show that

H n−1
(
ααα∗
K(Ei \N(K, o)) ∩ααα∗

K(Ej \N(K, o))
)
= 0 (5.48)

for i 6= j. To see this, note that since rK is locally bi-Lipschitz on Sn−1∩ intN(K, o)∗,

we have

H n−1(r−1
K (∂K \ regK) ∩ intN(K, o)∗) = 0.

Using this and (2.18), we get

H n−1
(
ααα∗
K(Ei \N(K, o)) ∩ααα∗

K(Ej \N(K, o))
)

= H n−1
(
ααα∗
K(Ei) ∩ααα

∗
K(Ej) ∩ intN(K, o)∗ ∩ r−1

K (regK)
)
.

But the latter set is empty, because if it contained a point u, we would have

rK(u) ∈ ννν
−1
K (Ei) ∩ ννν

−1
K (Ej) ∩ regK = ∅,

as Ei ∩ Ej = ∅. This proves (5.48) and hence (5.47).

(ii) If intK = ∅, then C̃G(K, ·) = 0 and there is nothing to prove. Suppose that

intK 6= ∅. Let E ⊂ Sn−1 be a Borel set such that S(K,E) = 0, let g = 1E, and choose

R < ∞ such that K ⊂ RBn. By (5.45) with ψ ≡ 1, the continuity of t1−nGt(t, u),
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and the fact that 〈x, νK(x)〉 ≤ R for x ∈ ∂K, we obtain

C̃G(K,E)

=
1

n

∫

∂K

1E(νK(x)) 〈x, νK(x)〉 |x|
1−nGt(|x|, x̄) dx

≤
R

n
max

{
t1−nGt(t, u) : (t, u) ∈ [0, R]× Sn−1

}
H n−1 ({x ∈ ∂K : νK(x) ∈ E})

= 0,

as required.

(iii) The case when K ∈ K n
(o) was proved in Proposition 4.3.1 (ii). First assume

that o ∈ ∂K and intK 6= ∅. Let g ∈ C(Sn−1) and let

IK(u) = g(αK(u)) ρK(u)Gt(ρK(u), u)

be the integrand of the right-hand side of (5.46). If u ∈ intN(K, o)∗, then u ∈

intN(Ki, o)
∗ for i ≥ iu and ρKi

(u) → ρK(u) as i → ∞. Let Z be the set consisting

of those u ∈ Sn−1 ∩ intN(K, o)∗ for which ρK(u)u /∈ regK and those u ∈ Sn−1 ∩

intN(Ki, o)
∗ for which ρKi

(u)u /∈ regKi for some i ∈ N. Then (2.8) yields H n−1(Z) =

0. Also, since αKi
(u) → αK(u) as i→ ∞ for u ∈ intN(K, o)∗\Z (cf. [29, Lemma 2.2]),

we have IKi
(u) → IK(u) as i→ ∞ for u ∈ intN(K, o)∗ \ Z.

On the other hand, if u ∈ Sn−1\N(K, o)∗, then ρK(u) = 0 by (2.15) and ρKi
(u) → 0

as i→ ∞ (as can be seen by a separation argument), and hence, using the assumption

that tGt(t, u) = 0 at t = 0 for u ∈ Sn−1, we have IKi
(u) → 0 as i → ∞. Thus we

have shown that IKi
(u) → IK(u) as i → ∞ for H n−1-almost all u ∈ Sn−1. We also

have sup{|IK(u)| : u ∈ Sn−1}| <∞, by the continuity of tGt(t, u) on [0,∞)× Sn−1.

Using these facts, (5.46), and the dominated convergence theorem, we obtain

∫

Sn−1

g(u) dC̃G(K, u) =
1

n

∫

Sn−1

IK(u) du

= lim
i→∞

1

n

∫

Sn−1

IKi
(u) du

= lim
i→∞

∫

Sn−1

g(u) dC̃G(Ki, u),

proving the result when intK 6= ∅.
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Now assume that intK = ∅. Since g is continuous on Sn−1, it is bounded, so there

is a c > 0 such that |g(αKi
(u))| ≤ c for u ∈ Sn−1 and i ∈ N. We apply Lemma 5.1.2

with G(t, u) replaced by t|Gt(t, u)| to obtain

lim sup
i→∞

∫

Sn−1

|g(αKi
(u))| ρKi

(u) |Gt(ρKi
(u), u)| du

≤ c lim sup
i→∞

∫

Sn−1

ρKi
(u) |Gt(ρKi

(u), u)| du

≤ c

∫

Sn−1

ρK(u) |Gt(ρK(u), u)| du = 0,

where we have used again the assumption that tGt(t, u) = 0 at t = 0 for u ∈ Sn−1.

This and (5.46) yield

lim
i→∞

∫

Sn−1

g(u) dC̃G(Ki, u) =

∫

Sn−1

g(u) dC̃G(K, u)

= 0,

completing the proof.

Finally, we provide a generalization of uniqueness results for C̃G(K, ·) in [69, The-

orem 6.1], [75, Theorem 5.2], and [78, Theorem 3.1], with a simpler proof.

Theorem 5.3.3. Let G : (0,∞) × Sn−1 → (0,∞) be continuous and such that Gt is

continuous and negative on (0,∞)×Sn−1. Suppose that tGt(t, u) is strictly increasing

on t for u ∈ Sn−1. If K,L ∈ K n
(o) satisfy

C̃G(K, ·) = C̃G(L, ·),

then K = L.

Proof. Suppose that K 6= L. Then we may assume that L 6⊂ K. Let E = {v ∈ Sn−1 :

hL(v) > hK(v)} 6= ∅. We apply Lemma 3.5.2 with K ′ = L and L = K. Using (5.46)

and the fact that Gt < 0, Lemma 3.5.2 (a), the assumption that tGt(t, u) is strictly

increasing on t for u ∈ Sn−1, and Lemma 3.5.2 (c) together with (2.17), we obtain
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C̃G(K,E) = C̃G(L,E)

=

∫

Sn−1

1E(αL(u)) ρL(u)Gt(ρL(u), u) du

≥

∫

Sn−1

1E(αL(u)) ρK(u)Gt(ρK(u), u) du

≥

∫

Sn−1

1ααα∗
K(E)(u) ρK(u)Gt(ρK(u), u) du

= C̃G(K,E).

If H n−1(ααα∗
K(E) \ααα

∗
L(E)) > 0, then the second inequality is strict. If H n−1(ααα∗

K(E) \

ααα∗
L(E)) = 0, then Lemma 3.5.2 (d) implies that H n−1(ααα∗

L(E)) > 0 and therefore the

first inequality is strict. Thus, in any case we arrive at a contradiction.

In the following, we provide solutions to the Minkowski type problems in terms of

general measures and even measures.

5.4 Minkowski problems for general measures

In view of (5.42), one sees that

dC̃G,ψ(K, u)

dC̃G(K, u)
=

1

ψ(hK(u))
.

We consider the following Minkowski-type problem.

Problem 5.4.1. For which nonzero finite Borel measures µ on Sn−1 and continuous

functions G : (0,∞) × Sn−1 → (0,∞) and ψ : (0,∞) → (0,∞) do there exist τ ∈ R

and K ∈ K n
o with intK 6= ∅ such that

µ = τ C̃G,ψ(K, ·) and/or (ψ ◦ hK)µ = τ C̃G(K, ·)?

For our contribution to this problem, we need the following lemma. It is essentially

known (see e.g., [24, 27, 44, 77]), but we provide an explicit dependence of R on µ

that will be needed in the proof of Theorems 5.4.3 and 5.5.3.

Lemma 5.4.2. Let µ be a finite Borel measure on Sn−1 not concentrated on any

closed hemisphere and let ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 be continuous and
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strictly increasing. Suppose that K ∈ K n
(o) satisfies ‖hK‖µ,ϕ = 1 (see (5.13)). Then

there is an R = R(µ, ϕ) > 0 such that K ⊂ RBn.

Proof. There is a δ = δ(µ) > 0 such that

∫

Sn−1

〈u, v〉+ dµ(u) ≥ δ µ(Sn−1) (5.49)

for v ∈ Sn−1, since the integral on the left is continuous in v on Sn−1 and µ is not

concentrated on a closed hemisphere. Let K ∈ K n
(o) satisfy ‖hK‖µ,ϕ = 1 and let rv0 ∈

K, where r ≥ 0 and v0 ∈ Sn−1. Then [o, rv0] ⊂ K implies that hK(u) ≥ r〈u, v0〉+ for

u ∈ Sn−1, so using (5.3), (5.13), and our assumptions on ϕ, we obtain

ϕ(1)µ(Sn−1) =

∫

Sn−1

ϕ(hK(u)) dµ(u) ≥

∫

Σδ/2(v0)

ϕ(rδ/2) dµ(u) = ϕ(rδ/2)µ
(
Σδ/2(v0)

)
.

(5.50)

Splitting the integral in (5.49) with v = v0 into one over Σδ/2(v0) and one over

Sn−1 \Σδ/2(v0), and using the obvious bounds for the integrand in these cases, we get

δ µ(Sn−1) ≤ µ
(
Σδ/2(v0)

)
+ (δ/2)µ(Sn−1),

and therefore µ
(
Σδ/2(v0)

)
≥ (δ/2)µ(Sn−1). Substituting this into (5.50), we see that

r ≤ R, where

R = (2/δ)ϕ−1(2ϕ(1)/δ), (5.51)

proving that K ⊂ RBn.

We can now state the first main theorem of this section, whose hypotheses allow

ψ(t) = tp for p > 1 and G(t, u) = tq for q > 0, for example.

Theorem 5.4.3. Let G : [0,∞)×Sn−1 → [0,∞) be continuous and such that Gt > 0

on (0,∞) × Sn−1 and tGt(t, u) is continuous on [0,∞) × Sn−1, where tGt(t, u) = 0

at t = 0 for u ∈ Sn−1. Suppose that ψ : (0,∞) → (0,∞) is continuous and such that

limt→0+ ψ(t)/t = 0 and (5.7) holds. Then the following statements are equivalent:

(i) The finite Borel measure µ on Sn−1 is not concentrated on any closed hemisphere.
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(ii) There exist K ∈ K n
o with intK 6= ∅ and τ > 0 such that H n−1(ΞK) = 0 and

(ψ ◦ hK)µ = τ C̃G(K, ·), (5.52)

where

τ =
1

C̃G(K,Sn−1)

∫

Sn−1

ψ(hK(u)) dµ(u). (5.53)

Proof. Assume that (i) is true. Following the proof of [59, Theorem 8.2.2], we can

construct nonzero finite discrete Borel measures µj, j ∈ N, such that µj → µ weakly

as j → ∞ and such that there is a δ > 0 so that (5.49) holds for µ and also with µ

replaced by µj, j ∈ N. In particular, µj, j ∈ N, is not concentrated on any closed

hemisphere. By Theorem 5.2.4, for each j, there exists a convex polytope Pj ∈ K n
(o)

such that µj = τj C̃G,ψ(Pj, ·), where

τj =
µj(S

n−1)

C̃G,ψ(Pj, Sn−1)
=

1

C̃G(Pj, Sn−1)

∫

Sn−1

ψ(hPj
(u)) dµj(u). (5.54)

Moreover, from (5.18), we have

ṼG(Pj) ≥ ṼG(B
n) >

∫

Sn−1

G(0, u) du (5.55)

for j ∈ N. Theorem 5.2.4 also gives ‖hPj
‖µj ,ϕ = 1, where ϕ is defined by (5.14).

By Lemma 5.4.2, we have Pj ⊂ RBn for j ∈ N, where R is given by (5.51). Then

Blaschke selection theorem implies that Pj → K for some K ∈ K n
o , as j → ∞, in the

Hausdorff metric. By Lemma 5.1.2, limj→∞ ṼG(Pj) = ṼG(K). This and (5.55) imply

that

ṼG(K) ≥ ṼG(B
n) >

∫

Sn−1

G(0, u) du.

In view of (5.2), this shows that intK 6= ∅.

By Proposition 5.3.2 (iii) and the fact that intK 6= ∅, we have C̃G(Pj, ·) →

C̃G(K, ·) weakly as j → ∞ and hence

C̃G(Pj, S
n−1) → C̃G(K,S

n−1) > 0

as j → ∞. Our assumption that limt→0+ ψ(t)/t = 0 shows that ψ(0) = 0 provides a

continuous extension of ψ to [0,∞). This and the uniform convergence of hPj
to hK
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imply that ψ(hPj
) → ψ(hK) uniformly as j → ∞. Now from the weak convergence

of µj to µ and of C̃G(Pj, ·) to C̃G(K, ·), along with µj = τj C̃G,ψ(Pj, ·), which can be

expressed in the form

(ψ ◦ hPj
)µj = τj C̃G(Pj, ·),

with τj as in (5.54), we conclude that (5.52) holds, with τ given by (5.53). That τ is

finite is a direct consequence of the continuity of ψ.

Since Gt > 0, we have τ ≥ 0. We claim that τ > 0. To see this, use intK 6= ∅

to choose v ∈ Sn−1 such that ρK(v) > 0. As µ is not concentrated on any closed

hemisphere, the monotone convergence theorem yields

lim
j→∞

∫

Σ1/j(v)

〈u, v〉 dµ(u) =

∫

{u∈Sn−1:〈u,v〉>0}

〈u, v〉 dµ(u) > 0,

where Σε(v) is defined for ε ∈ (0, 1) by (5.3). Hence a j0 ≥ 2 exists such that

µ
(
Σ1/j0(v)

)
≥

∫

Σ1/j0
(v)

〈u, v〉 dµ(u) > 0.

We use this, (5.53), and the fact that

hK(u) ≥ ρK(v)〈u, v〉 ≥ ρK(v)/j0

for u ∈ Σ1/j0(v) to obtain

τ ≥
1

C̃G(K,Sn−1)

∫

Σ1/j0
(v)

ψ(hK(u)) dµ(u)

≥ min {ψ(t) : t ∈ [ρK(v)/j0, R]}
µ
(
Σ1/j0(v)

)

C̃G(K,Sn−1)
> 0,

proving our claim and (5.53).

It remains to be shown that H n−1(ΞK) = 0. To see this, suppose to the contrary

that H n−1(ΞK) 6= 0. Then (see (2.16)) we have o ∈ ∂K. Since τ > 0, we can, in

view of (5.54) and the fact that µj → µ and τj → τ as j → ∞, assume without loss

of generality that

C̃G,ψ(Pj, S
n−1) ≤

2µ(Sn−1)

τ
<∞ (5.56)
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for j ∈ N, where Pj is as above. Let z ∈ intK be fixed. For E ⊂ ∂K, define

σ(E) = {z + λ(x− z) : x ∈ E and λ > 0}.

Let a, b > 0, and let ε > 0. From statements (a’), (b’), and (c’) in the proof of [3,

Lemma 4.4], we know (recall that all Pj ∈ K n
(o)) that there exist U ⊂ ∂K and jε ∈ N

such that for j ≥ jε, one has a ≤ |x| ≤ R for all x ∈ σ(U)∩∂Pj, H n−1(σ(U)∩∂Pj) ≥

b/2, and hPj
(u) ≤ 2ε if u ∈ Sn−1 is an outer normal vector at x ∈ σ(U) ∩ ∂Pj. Using

these facts, (5.45) for Pj with o ∈ intPj, and the continuity of Gt on (0,∞) × Sn−1,

we obtain, for j ≥ jε,

C̃G,ψ(Pj, S
n−1) =

1

n

∫

∂Pj

〈x, νPj
(x)〉

ψ(〈x, νPj
(x)〉)

|x|1−nGt(|x|, x̄) dx

≥
1

n

∫

σ(U)∩∂Pj

〈x, νPj
(x)〉

ψ(〈x, νPj
(x)〉)

|x|1−nGt(|x|, x̄) dx

≥
bc dε
2n

, (5.57)

where c = min {t1−nGt(t, u) : (t, u) ∈ [a,R]× Sn−1} > 0 and dε = inf{t/ψ(t) : t ∈

(0, 2ε]}. Since limt→0+ ψ(t)/t = 0, (5.56) and (5.57) yield

∞ >
2µ(Sn−1)

τ
≥ C̃G,ψ(Pj, S

n−1) ≥ lim
ε→0+

bc dε
2n

= ∞.

This contradiction proves that H n−1(ΞK) = 0. Therefore (ii) holds.

Now assume that (ii) is true. We claim that C̃G(K, ·) is not concentrated on any

closed hemisphere; by (5.52), this will yield (i). To prove the claim, we must show

that (2.6) holds when µ there is replaced by C̃G(K, ·). If this is not true, there is a

v0 ∈ Sn−1 such that

∫

Sn−1

〈u, v0〉+ dC̃G(K, u) =
1

n

∫

Sn−1∩intN(K,o)∗
〈αK(u), v0〉+ ρK(u)Gt(ρK(u), u) du = 0,

(5.58)

where the first equality is due to (5.43) with ψ ≡ 1. By (2.14), we have ρK(u) > 0 if

u ∈ Sn−1∩ intN(K, o)∗. It follows from (5.58) that 〈αK(u), v0〉+ = 0 for H n−1-almost

all u ∈ Sn−1 ∩ intN(K, o)∗. Define X = ΞK ∪ σK ∪ Y ⊂ ∂K, where

Y =
{
rK(u) = ρK(u)u : u ∈ Sn−1 ∩ intN(K, o)∗ and 〈αK(u), v0〉+ 6= 0

}
.
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Then the observations just made imply that H n−1(Y ) = 0, and since H n−1(ΞK) = 0

by assumption and (2.8) holds, it follows that H n−1(X) = 0. Moreover, for x =

rK(u) ∈ ∂K \X, we have 〈αK(u), v0〉+ = 〈νK(rK(u)), v0〉+ = 0 and hence

〈νK(x), v0〉 ≤ 0. (5.59)

Next, note that if A ⊂ regK = ∂K \ σK and H n−1(∂K \ A) = 0, then

K =
⋂

x∈A

H−(K, x), (5.60)

whereH−(K, x) is the unique supporting halfspace ofK containingK whose bounding

hyperplane H(K, x) passes through x. Indeed, K is contained in the set on the

right-hand side of (5.60). For the reverse inclusion, let z ∈ Rn \ K. Choose a ball

B ⊂ intK. Then conv ({z}∪B)∩∂K is open relative to ∂K and since it has positive

H n−1-measure, it must contain an x ∈ A. Then B ⊂ intH−(K, x) and therefore

z 6∈ H−(K, x). This proves (5.60).

The representation (5.60) immediately implies that the positive hull of {νK(x) :

x ∈ A} is Rn. Noting that ∂K \X ⊂ regK by the definition of X, we see that when

A = ∂K \X, this contradicts (5.59) and completes the proof.

It is not true in general that the set K in Theorem 5.4.3 (ii) satisfies K ∈ K n
(o).

In fact this is already the situation for the Lp Minkowski problem, corresponding to

G(t, u) = tn and ψ(t) = tp for p > 1; see [33, Example 4.1]. However, additional

assumptions can be imposed ensuring that we can find a solution K of (5.52) with

K ∈ K n
(o). For example, suppose that t/ψ(t) is decreasing on (0, 1] and there exists

c0 > 0 such that

inf

{
tGt(t, u)

ψ(t)
: (t, u) ∈ (0, 1]× Sn−1

}
> nc0. (5.61)

We show that it is not possible to have o ∈ ∂K and intK 6= ∅. Using (5.57),

〈x, νPj
(x)〉 ≤ |x| for j ∈ N and x ∈ ∂Pj, the fact that ψ(t)/t is increasing on (0, 1],

and (5.61), we obtain
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2µ(Sn−1)

τ
≥

1

n

∫

Bn∩∂Pj

〈x, νPj
(x)〉

ψ(〈x, νPj
(x)〉)

|x|1−nGt(|x|, x̄) dx

≥
1

n

∫

Bn∩∂Pj

|x|

ψ(|x|)
|x|1−nGt(|x|, x̄) dx

≥ c0

∫

Bn∩∂Pj

|x|1−n dx.

The argument then follows directly from [3, (55)-(57)]. In particular, we can find

v ∈ Sn−1, c1 > 0, and 0 < r0 < r1 < 1 such that

2µ(Sn−1)

τ
≥ c0

∫

Bn∩∂Pj

|x|1−n dx ≥ c1

∫

B(r1)\B(r0)

|x|1−n dx >
2µ(Sn−1)

τ
,

where B(r) = rBn ∩ v⊥. This contradiction proves that K ∈ K n
(o).

Instead of assuming the monotonicity of ψ(t)/t, one can assume that there exists

an α ≥ n− 1 such that

inf
{
t1−nGt(t, u) : (t, u) ∈ (0, 1]× Sn−1

}
> 0 and inf

t∈(0,1]

t1+α

ψ(t)
> 0.

Indeed, by (5.57), we then have

2µ(Sn−1)

τ
≥

1

n

∫

Bn∩∂Pj

〈x, νPj
(x)〉

ψ(〈x, νPj
(x)〉)

|x|1−nGt(|x|, x̄) dx

≥ c2

∫

Bn∩∂Pj

〈x, νPj
(x)〉−α dx,

for some c2 > 0. It then follows directly from the arguments on [33, p. 713] that

o ∈ intK and hence K ∈ K n
(o).

The following result provides a variant of Theorem 4.3.3, not requiring the condi-

tion (5.40) but with a weak additional growth condition at 0 on ψ (see the discussion

after Theorem 5.2.5). The hypotheses allow ψ(t) = tp for p > 0 and G(t, u) = tq for

q < 0, for example.

Theorem 5.4.4. Let G : (0,∞) × Sn−1 → (0,∞) be continuous and such that Gt is

continuous and negative on (0,∞) × Sn−1. Let 0 < ε0 < 1 and suppose that (5.4)

holds for v ∈ Sn−1. Suppose that ψ : (0,∞) → (0,∞) is continuous, (5.7) holds, and

that ϕ is finite when defined by (5.14). Then the following statements are equivalent:
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(i) The finite Borel measure µ on Sn−1 is not concentrated on any closed hemisphere.

(ii) There exist K ∈ K n
(o) and τ < 0 such that

µ = τ C̃G,ψ(K, ·), (5.62)

where

τ =
µ(Sn−1)

C̃G,ψ(K,Sn−1)
. (5.63)

Proof. Assume that (i) is true. Define ϕ as in (5.14). As at the beginning of the

proof of Theorem 5.4.3, but using Theorem 5.2.5 instead of Theorem 5.2.4, we can

find nonzero finite discrete Borel measures µj, j ∈ N, not concentrated on any closed

hemisphere, such that µj → µ weakly as j → ∞, and convex polytopes Pj ∈ K n
(o) such

that µj = τj C̃G,ψ(Pj, ·), where (in view of (5.25)) τj satisfies (5.54) and ‖hPj
‖µj ,ϕ = 1

for j ∈ N. From the latter property and Lemma 5.4.2, it follows as in the proof of

Theorem 5.4.3 that (Pj)j∈N is bounded. Hence, we can extract a subsequence that

converges to K ∈ K n
o .

Next, we show that o ∈ intK. In fact, if o ∈ ∂K, we can apply Lemma 5.1.3 to

get limj→∞ ṼG(Pj) = ∞. However, since Pj corresponds to P (z
0) in Theorem 5.2.5,

(5.39) implies that

ṼG(Pj) ≤ ṼG(B
n) <∞

for all j ∈ N, a contradiction.

Then (5.62) and (5.63) follow from the weak convergence of µj to µ and of

C̃G,ψ(Pj, ·) to C̃G,ψ(K, ·), the latter a consequence of Proposition 4.3.1 (ii). In partic-

ular, we use that C̃G,ψ(Pj, S
n−1) → C̃G,ψ(K,S

n−1) ∈ (0,∞) to ensure the convergence

of (τj)j∈N. Suppose that (ii) holds. By Proposition 4.3.1 (iii), C̃G,ψ(K, ·) is not con-

centrated on any closed hemisphere, so by (5.62), this is also the case for µ.

The final result in this section addresses the uniqueness problem related to The-

orem 5.4.4 and generalizes and extends [54, Theorem 8.3]. It can be applied, for

example, when G(t, u) = tq, q 6= 0, and ψ(s) = sp with q < p. Note that when ψ ≡ 1

and Gt < 0, the result holds for general K,K ′ ∈ K n
(o) by Theorem 5.3.3, since the

assumption there that tGt(t, u) is strictly increasing on t for u ∈ Sn−1 implies the
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second inequality in (5.64). We do not know if the result holds for general ψ and

general K,K ′ ∈ K n
(o).

Theorem 5.4.5. Let G : (0,∞) × Sn−1 → (0,∞) and ψ : (0,∞) → (0,∞) be

continuous. Suppose that Gt > 0 (or Gt < 0) on (0,∞)× Sn−1 and that if

Gt(t, u)

ψ(s)
≥
λGt(λt, u)

ψ(λs)
(or

Gt(t, u)

ψ(s)
≤
λGt(λt, u)

ψ(λs)
, respectively) (5.64)

for some λ, s, t > 0 and u ∈ Sn−1, then λ ≥ 1. If K,K ′ ∈ K n
(o) are both polytopes or

both have support functions in C2 and C̃G,ψ(K, ·) = C̃G,ψ(K
′, ·), then K = K ′.

Proof. Suppose that K,K ′ ∈ K n
(o) are such that C̃G,ψ(K, ·) = C̃G,ψ(K

′, ·) and K 6= K ′.

Then we can assume without loss of generality that K 6⊂ K ′, so there is a maximal

λ < 1 such that λK ⊂ K ′.

Consider first the case when K and K ′ are polytopes. By Lemma 5.2.2, the facets

of K and K ′ have the same outer unit normal vectors, u1, . . . , um, say, and from (5.9)

and (5.11), we have

C̃G,ψ(K, ·) = C̃G,ψ(K
′, ·) =

m∑

i=1

γiδui ,

where

γi =

∫

π̃(F (K,ui))

ρK(u)Gt(ρK(u), u)

nψ(hK(ui))
du =

∫

π̃(F (K′,ui))

ρK′(u)Gt(ρK′(u), u)

nψ(hK′(ui))
du. (5.65)

Since the facets of λK and K ′ also have the same outer unit normal vectors and λ is

maximal, at least one facet of λK is contained in a facet of K ′. If this facet has outer

unit normal vector ui, then

hλK(ui) = hK′(ui), π̃(F (K, ui)) = π̃(F (λK, ui)) ⊂ π̃(F (K ′, ui)), (5.66)

and

ρλK(u) = ρK′(u) for u ∈ π̃(F (K, ui)). (5.67)

If Gt > 0 (the argument when Gt < 0 is similar), we conclude from (5.65), (5.66), and

(5.67) that

∫

π̃(F (K,ui))

ρK(u)Gt(ρK(u), u)

nψ(hK(ui))
du ≥

∫

π̃(F (K,ui))

ρλK(u)Gt(ρλK(u), u)

nψ(hλK(ui))
du.
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Since H n−1(π̃(F (K, ui)) > 0, there is a u ∈ π̃(F (K, ui)) such that

ρK(u)Gt(ρK(u), u)

nψ(hK(ui))
≥
ρλK(u)Gt(ρλK(u), u)

nψ(hλK(ui))
,

that is,
Gt(ρK(u), u)

ψ(hK(ui))
≥
λGt(λρK(u), u)

ψ(λhK(ui))
.

Now the first inequality in (5.64) with s = hK(ui) and t = ρK(u) yields λ ≥ 1, a

contradiction. This completes the proof for when K and K ′ are polytopes.

For the other case, note firstly that if L ∈ K n
(o) and hL ∈ C2, then S(L, ·) is

absolutely continuous with respect to H n−1 with continuous density R(L, ·), where

R(L, u) is the product of the principal radii of curvature of L at u ∈ Sn−1. (This is well

known when L is of class C2
+; see, for example, [59, (4.26), p. 217]. When hL ∈ C2,

one can observe that [4, Lemma 5.1] implies that [32, Theorem 3.7(c)] holds, and then

[32, Theorem 3.7(a)] yields the absolute continuity of S(L, ·). The form of the density

is then given by [31, Theorem 3.5].) Let K,K ′ ∈ K n
(o) and hK , hK′ ∈ C2. Using (4.10),

we obtain

hK(u) |∇hK(u)|
1−nGt (|∇hK(u)|,∇hK(u)/|∇hK(u)|)R(K, u)

ψ(hK(u))

=
hK′(u) |∇hK′(u)|1−nGt (|∇hK′(u)|,∇hK′(u)/|∇hK′(u)|)R(K ′, u)

ψ(hK′(u))
(5.68)

for all u ∈ Sn−1, since both sides of (5.68) are continuous functions. Since λK ⊂ K ′

and λ < 1 is maximal, there exists u0 ∈ Sn−1 such that hλK(u0) = hK′(u0) and

∇hλK(u0) = ∇hK′(u0), i.e., λK and K ′ have a common boundary point with common

outer unit normal vector u0.

We claim that

R(K ′, u0) ≥ R(λK, u0) = λn−1R(K, u0). (5.69)

It suffices to prove the inequality, since the equality follows by homogeneity. Let

u = u0 + av, where a > 0 and v ∈ Sn−1. For L ∈ K n
(o) with hL ∈ C2, and u ∈ Sn−1,

let d2hL[u] denote the second differential of hL at u, considered as a bilinear form on

Rn. Since hλK ≤ hK′ , hλK(u0) = hK′(u0), and ∇hλK(u0) = ∇hK′(u0), we may apply

the first displayed equation in [59, p. 31, Note 3] (with f = hL, Af(x) = d2hL[x],
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x = u0, and y = u, for L = λK and L = K ′), to obtain

1

2
d2hλK [u0](av, av) + rλK(u0, a)a

2 ≤
1

2
d2hK′ [u0](av, av) + rK′(u0, a)a

2,

where rλK(u0, a), rK′(u0, a) → 0 as a → 0+. Dividing by a2 letting a → 0+, we

get d2hλK [u0](v, v) ≤ d2hK′ [u0](v, v) for v ∈ Sn−1. We write d2hλK [u0]|u
⊥
0 and

d2hK′ [u0]|u
⊥
0 for the symmetric, positive semidefinite linear maps from u⊥0 to itself, as-

sociated with the restrictions of the bilinear forms to u⊥0 ×u
⊥
0 . By [59, Corollary 2.5.2],

which in particular guarantees that for both maps u0 is an eigenvector with eigenvalue

zero, [59, p. 124, l. -3], and with the help of [25, Corollary 7.7.4(e)], we conclude that

R(λK, u0) = det
(
d2hλK [u0]|u

⊥
0

)
≤ det

(
d2hK′ [u0]|u

⊥
0

)
= R(K ′, u0),

proving the claim.

Suppose that Gt > 0 on (0,∞) × Sn−1; a similar argument applies when Gt < 0

instead. By (5.68) with u = u0, and (5.69), we have

hK(u0)

ψ(hK(u0))
|∇hK(u0)|

1−nGt (|∇hK(u0)|,∇hK(u0)/|∇hK(u0)|)R(K,u0)

=
hλK(u0)

ψ(hλK(u0))
|∇hλK(u0)|

1−nGt (|∇hλK(u0)|,∇hλK(u0)/|∇hλK(u0)|)R(K
′, u0)

≥ λ
hK(u0)

ψ(λhK(u0))
λ1−n|∇hK(u0)|

1−nGt (λ|∇hK(u0)|,∇hK(u0)|/∇hK(u0)|)λ
n−1R(K,u0).

Therefore

Gt (|∇hK(u0)|,∇hK(u0)/|∇hK(u0)|)

ψ(hK(u0))
≥
λGt (λ|∇hK(u0)|,∇hK(u0)/|∇hK(u0)|)

ψ(λhK(u0))
.

But then the first inequality in (5.64) implies that λ ≥ 1, a contradiction proving that

K = K ′.

5.5 Minkowski problems for even measures

In this section we revisit the Minkowski problems considered in earlier sections, fo-

cusing on the case of even measures and attempting to keep the discussion as brief

as possible. We say that a set K is origin symmetric if it is centrally symmetric with



123

the center o, i.e, K = −K. Let K n
os (or K n

(o)s) denote the class of origin-symmetric

compact convex sets containing the origin (or containing the origin in their interiors,

respectively). Also, note that an even measure is not concentrated on any closed

hemisphere if and only if it is not concentrated on a great subsphere.

The hypotheses of the next theorem allow ψ(t) = tp for p > 0 and G(t, u) = tq for

q > 0, for example.

Theorem 5.5.1. Let G : [0,∞) × Sn−1 → [0,∞) be continuous and such that Gt is

continuous and positive on (0,∞)×Sn−1. Assume that Gt(t, u) = Gt(t,−u) for (t, u) ∈

(0,∞)× Sn−1. Suppose that ψ : (0,∞) → (0,∞) is continuous, (5.7) holds, and that

ϕ is finite when defined by (5.14). Then the following statements are equivalent:

(i) The finite even Borel measure µ on Sn−1 is not concentrated on any closed hemi-

sphere.

(ii) There is a K ∈ K n
(o)s such that µ = τC̃G,ψ(K, ·), with τ > 0 as in (5.53).

Proof. We first observe that under our extra assumption that Gt(t, u) = Gt(t,−u) for

(t, u) ∈ (0,∞)×Sn−1, Theorem 5.2.4 holds for even discrete measures. Specifically, if

µ =
m∑

i=1

λi(δui + δ−ui),

where λi > 0 for i = 1, . . . ,m and {±u1,±u2, . . . ,±um} ⊂ Sn−1, there is a convex

polytope P ∈ K n
(o)s satisfying (5.15). Indeed, the proof of Theorem 5.2.4 can be easily

adapted, as follows. For each z = (z1, . . . , zm) ∈ [0,∞)m, let

Pe(z) = {x ∈ Rn : |〈x, ui〉| ≤ zi, for i = 1, . . . ,m},

so that Pe(z) is a convex polytope in K n
os . As in the proof of Theorem 5.2.4, one can

find z0 = (z01 , . . . , z
0
m) ∈M+ such that

ṼG(Pe(z
0)) = max

{
ṼG(Pe(z)) : z ∈M+

}
.

Moreover, (5.18) holds with P (z0) replaced by Pe(z
0). From this, we see that Pe(z

0) ∈

K n
(o)s and z

0
i > 0 for i = 1, . . . ,m. One can adjust the argument used to prove (5.20)
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to obtain
∂ṼG(Pe(z))

∂zi

∣∣∣∣
z=z0

= 2n
C̃G(Pe(z

0), {ui})

hPe(z0)(ui)
(5.70)

for i = 1, . . . ,m. The method of Lagrange multipliers provides τ ∈ R such that

τ

2n

∂ṼG(Pe(z))

∂zi

∣∣∣∣
z=z0

=
∂
∑m

i=1 λiϕ(zi)

∂zi

∣∣∣∣
z=z0

(5.71)

for i = 1, . . . ,m. Then (5.70) and (5.71) can be used instead of (5.20) and (5.21),

respectively, and the rest of the proof of Theorem 5.2.4 can be followed up to (5.25)

to conclude the proof in the case of an even discrete measure.

With Theorem 5.2.4 for even discrete measures in hand, the proof of (i)⇒(ii) in

Theorem 5.4.3 can be followed without difficulty to obtain the same implication for

even measures, where K is origin symmetric. In particular, we can take advantage of

the fact that it easily follows that Pj → K ∈ K n
os and intK 6= ∅, hence K ∈ K n

(o)s.

But then hK is bounded away from zero and no continuous extension of ψ at 0 is

needed.

The implication (ii)⇒(i) follows from the proof of the same implication in Theo-

rem 5.4.3 together with the evenness of C̃G(K, ·) when K is origin symmetric and our

extra assumption on G holds. (Recall that ΞK = ∅ if K ∈ K n
(o).)

We omit the proof of the following result, which provides the even analogue of

Theorem 4.3.3, since it follows without difficulty from the argument given in the

proof of Theorem 5.4.4. The hypotheses allow ψ(t) = tp for p > 0 and G(t, u) = tq

for q < 0, for example.

Theorem 5.5.2. Let G : (0,∞) × Sn−1 → (0,∞) and ψ : (0,∞) → (0,∞) satisfy

the assumptions of Theorem 5.4.4 and suppose also that Gt(t, u) = Gt(t,−u) for

(t, u) ∈ (0,∞) × Sn−1. Then Theorem 5.4.4 holds when in (i) µ is an even measure

and in (ii) K is origin symmetric.

Our final result addresses Problem 5.2.1 when Gt < 0 and ψ is decreasing. The

hypotheses allow ψ(t) = tp for p < 0 and G(t, u) = tq for q < 0, for example.

If ψ : (0,∞) → (0,∞) is continuous, define

ϕ(t) =

∫ ∞

t

ψ(s)

s
ds (5.72)
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for t > 0.

Theorem 5.5.3. Let µ be a nonzero finite even Borel measure vanishing on great

subspheres. Let G and Gt be continuous on (0,∞) × Sn−1, where Gt < 0 and where

Gt(t, u) = Gt(t,−u) for (t, u) ∈ (0,∞)×Sn−1. Suppose that there is some 0 < ε0 < 1

such that (5.4) holds for v ∈ Sn−1. Let ψ : (0,∞) → (0,∞) be continuous and suppose

that ϕ is finite when defined by (5.72). Then there exists a K ∈ K n
(o)s such that

µ

µ(Sn−1)
=

C̃G,ψ(K, ·)

C̃G,ψ(K,Sn−1)
. (5.73)

Proof. Since Gt < 0, we may define a0 ∈ [0,∞) by a0 = limt→∞

∫
Sn−1 G(t, u) du.

Define the functional F : C+(Sn−1) → R by

F (f) =
1

µ(Sn−1) + a0

∫

Sn−1

ϕ(f(u)) dµ(u)

for f ∈ C+(Sn−1), and define F (K) = F (hK) for K ∈ K n
(o)s. Let

α = sup
{
F (K) : K ∈ K(o)s and ṼG(K) = µ(Sn−1) + a0

}
. (5.74)

As in the proof of Theorem 4.3.3, there is an r0 > 0 such that ṼG(r0B
n) = µ(Sn−1)+a0,

so the supremum in (5.74) is taken over a nonempty set. (Note that our assumptions

on the even measure µ imply in particular that it is not concentrated on any closed

hemisphere, as is assumed in Theorem 4.3.3.) Choose Kj ∈ K n
(o)s, j ∈ N, such that

ṼG(Kj) = µ(Sn−1) + a0 and limj→∞ F (Kj) = α. The proof of Theorem 4.3.3 shows

that there is an R > 0 such that the polar bodies satisfy K∗
j ⊂ RBn for j ∈ N. By

relabeling, if necessary, using Blaschke selection theorem, and noting that K∗
j is also

origin symmetric for j ∈ N, a Q0 ∈ K n
os can be found such that K∗

j → Q0 as j → ∞.

Define ϕ̃ by ϕ̃(t) = ϕ(1/t) for t > 0. The dominated convergence theorem shows

that ϕ(t) → 0 as t→ ∞. Then our assumption on ϕ implies that

ϕ̃(0) = lim
t→0+

ϕ̃(t) = lim
t→0+

ϕ(1/t) = 0

defines a continuous extension of ϕ̃ at 0. By (2.4), we have

F (hKj
) =

1

µ(Sn−1) + a0

∫

Sn−1

ϕ(hKj
(u)) dµ(u) =

1

µ(Sn−1) + a0

∫

Sn−1

ϕ̃(ρK∗
j
(u)) dµ(u).
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We claim that Q0 ∈ K n
(o)s. In fact, assume that intQ0 = ∅, so that Q0 ⊂ v⊥

for some v ⊂ Sn−1. Then, as shown in the proof of Lemma 5.1.2, ρK∗
j
(u) → 0 as

j → ∞ for u ∈ Sn−1 \ v⊥. Since ϕ̃ : [0,∞) → [0,∞) is continuous, it follows that

ϕ̃(ρK∗
j
(u)) → ϕ̃(0) = 0 as j → ∞ for u ∈ Sn−1 \ v⊥, and hence for µ-almost all

u ∈ Sn−1, as µ vanishes on the great subsphere Sn−1 ∩ v⊥. The continuity of ϕ̃ also

implies that M1 = max{ϕ̃(t) : t ∈ [0, R]} < ∞. Hence the dominated convergence

theorem can be applied and yields

α = lim
j→∞

F (hKj
) = lim

j→∞

1

µ(Sn−1) + a0

∫

Sn−1

ϕ̃(ρK∗
j
(u)) dµ(u) = 0.

But this is impossible because α ≥ F (r0B
n) = ϕ(r0) > 0. This proves the claim.

Let K0 = Q∗
0. Then K0 ∈ K n

(o)s. Also, Kj → K0 as j → ∞, so ṼG(Kj) → ṼG(K0)

as j → ∞ by the continuity of G and Lemma 4.1.2, yielding ṼG(K0) = µ(Sn−1) + a0.

If f ∈ C+(Sn−1), the support function h[f ] of the Wulff shape [f ] of f , defined by

(2.19), satisfies h[f ] ≤ f . As ϕ is decreasing, we have ϕ(h[f ]) ≥ ϕ(f). Consequently,

F (hK0) = α = sup
{
F (f) : ṼG([f ]) = µ(Sn−1) + a0 and f ∈ C+(Sn−1) is even

}
.

(5.75)

Let g ∈ C(Sn−1) be even. We apply the method of Lagrange multipliers, following

the argument in the proof of Theorem 4.3.3 from (4.62) onwards, where ϕ play the

role of ϕ. (Note that from (5.72), we have ψ(t) = −tϕ′(t).) The extra constant a0 in

(5.75) has no effect on the conclusion, which is

∫

Sn−1

g(u) dµ(u) = −nτ

∫

Sn−1

g(u) dC̃G,ψ(K0, u),

where

τ = −
µ(Sn−1)

n C̃G,ψ(K0, Sn−1)
.

As g is an arbitrary even function in C(Sn−1), we can use our assumption that

Gt(t, u) = Gt(t,−u) for (t, u) ∈ (0,∞) × Sn−1 to obtain (5.73) with K replaced

by K0.



Chapter 6

The general dual-polar

Orlicz-Minkowski problem

This chapter is based on our paper [70]. In this chapter, we give a systematic study to

the general dual-polar Orlicz-Minkowski problem. This problem involves the general

dual volume ṼG introduced in Chapter 4. Therefore, the general dual-polar Orlicz-

Minkowski problem is “polar” to the general dual Orlicz-Minkowski problem in Chap-

ter 4 and “dual” to the newly proposed polar Orlicz-Minkowski problem in [44]. In

particular, we establish the existence, continuity and uniqueness for the solutions to

the general dual-polar Orlicz-Minkowski problem. Again our main techniques are the

approximation from discrete measures to general measures. Moreover, polytopal so-

lutions and/or counterexamples to the general dual-polar Orlicz-Minkowski problem

for discrete measures are also provided. Several variations of the general dual-polar

Orlicz-Minkowski problem are discussed as well.

6.1 The homogeneous general dual volumes and

properties

In the following, we will define the homogeneous general dual volume and discuss

related properties. For simplicity, let

GI =
{
G : G(t, ·) is continuous, strictly increasing on t, lim

t→0+
G(t, ·) = 0, lim

t→∞
G(t, ·) = ∞

}
,

Gd =
{
G : G(t, ·) is continuous, strictly decreasing on t, lim

t→0+
G(t, ·) = ∞, lim

t→∞
G(t, ·) = 0

}
.
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The homogeneous general dual volume of K ∈ K n
(o), denoted by V̂G(K), can be

formulated by

V̂G(K) = inf

{
η > 0 :

∫

Sn−1

G

(
ρK(u)

η
, u

)
du ≤ 1

}
, if G ∈ GI , (6.1)

V̂G(K) = inf

{
η > 0 :

∫

Sn−1

G

(
ρK(u)

η
, u

)
du ≥ 1

}
, if G ∈ Gd. (6.2)

The following proposition provides a more convenient formula for V̂G.

Proposition 6.1.1. Let K ∈ K n
(o). For any G ∈ GI ∪Gd, there exists a unique η0 > 0

such that ∫

Sn−1

G

(
ρK(u)

η0
, u

)
du = 1. (6.3)

Moreover, η0 = V̂G(K).

Proof. For η ∈ (0,∞) and K ∈ K n
(o), let G ∈ GI and

HK(η) =

∫

Sn−1

G

(
ρK(u)

η
, u

)
du.

As K ∈ K n
(o), there exist positive constants r and R such that r ≤ ρK ≤ R. Thus for

any u ∈ Sn−1,

∫

Sn−1

G

(
r

η
, u

)
du ≤ HK(η) ≤

∫

Sn−1

G

(
R

η
, u

)
du. (6.4)

This, together with G ∈ GI and Fatou’s lemma, implies that

lim inf
η→0+

HK(η) ≥ lim inf
η→0+

∫

Sn−1

G

(
r

η
, u

)
du ≥

∫

Sn−1

lim inf
η→0+

G

(
r

η
, u

)
du = ∞.

On the other hand, the dominated convergence theorem yields, by (6.4), that

lim
η→∞

HK(η) ≤ lim
η→∞

∫

Sn−1

G

(
R

η
, u

)
du =

∫

Sn−1

lim
η→∞

G

(
R

η
, u

)
du = 0.

Thus, limη→0+ HK(η) = ∞ and limη→∞HK(η) = 0. As G ∈ GI is continuous and

strictly increasing, HK(η) is clearly continuous and strictly decreasing on η ∈ (0,∞).

Hence, there exists a unique η0 > 0 such that HK(η0) = 1, which proves (6.3). Clearly

η0 = V̂G(K) by (6.1).
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The case for G ∈ Gd follows along similar lines as above, and its proof will be

omitted.

Clearly, if G(t, u) = tq/n with q 6= 0 for all (t, u) ∈ (0,∞)× Sn−1, then

V̂G(K) =

(
1

n

∫

Sn−1

ρqK(u) du

)1/q

=
(
Ṽq(K)

)1/q
.

Properties for V̂G are summarized in the following proposition.

Proposition 6.1.2. Let G ∈ GI ∪ Gd. Then V̂G(·) has the following properties.

(i) V̂G(·) is homogeneous, that is, V̂G(sK) = sV̂G(K) holds for all s > 0 and all

K ∈ K n
(o).

(ii) V̂G(·) is continuous on K n
(o) in terms of the Hausdorff metric, that is, for any

sequence {Ki}i≥1 such that Ki ∈ K n
(o) for all i ∈ N and Ki → K ∈ K n

(o), then

V̂G(Ki) → V̂G(K).

(iii) V̂G(·) is strictly increasing, that is, for any K,L ∈ K n
(o) such that K ( L, then

V̂G(K) < V̂G(L).

Proof. (i) The desired argument follows trivially from Proposition 6.1.1, and ρsK =

sρK for all s > 0.

(ii) Let Ki ∈ K n
(o) for all i ∈ N and Ki → K ∈ K n

(o). Then ρKi
→ ρK uniformly on

Sn−1. Moreover, there exist two positive constants rK < RK such that rK ≤ ρK ≤ RK

and rK ≤ ρKi
≤ RK for all i ∈ N. For G ∈ GI , it follows from Proposition 6.1.1 and

(6.4) that for each i ∈ N,

∫

Sn−1

G

(
rK

V̂G(Ki)
, u

)
du ≤ 1

=

∫

Sn−1

G

(
ρKi

(u)

V̂G(Ki)
, u

)
du

≤

∫

Sn−1

G

(
RK

V̂G(Ki)
, u

)
du.

Suppose that infi∈N V̂G(Ki) = 0, and without loss of generality, we assume that

limi→∞ V̂G(Ki) = 0. Then for any ε > 0, there exists iε ∈ N such that V̂G(Ki) < ε for
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all i > iε. Thus, for i > iε,

∫

Sn−1

G

(
rK
ε
, u

)
du ≤

∫

Sn−1

G

(
rK

V̂G(Ki)
, u

)
du

≤ 1.

Fatou’s lemma and the fact that limt→∞G(t, ·) = ∞ yield

∞ =

∫

Sn−1

lim inf
ε→0+

G

(
rK
ε
, u

)
du ≤ lim inf

ε→0+

∫

Sn−1

G

(
rK
ε
, u

)
du ≤ 1,

a contradiction. Hence,

A1 = inf
i∈N

V̂G(Ki) > 0.

Moreover, for all u ∈ Sn−1 and all i ∈ N,

G

(
ρKi

(u)

V̂G(Ki)
, u

)
≤ G

(
RK

A1

, u

)
.

Assume that lim supi→∞ V̂G(Ki) > V̂G(K). There exists a subsequence {Kij} of

{Ki} such that limj→∞ V̂G(Kij) > V̂G(K). Together with Proposition 6.1.1 and the

dominated convergence theorem, one has

1 = lim
j→∞

∫

Sn−1

G

(
ρKij

(u)

V̂G(Kij)
, u

)
du

=

∫

Sn−1

lim
j→∞

G

(
ρKij

(u)

V̂G(Kij)
, u

)
du

=

∫

Sn−1

G

(
ρK(u)

limj→∞ V̂G(Kij)
, u

)
du

<

∫

Sn−1

G

(
ρK(u)

V̂G(K)
, u

)
du

= 1.

This is a contradiction and hence lim supi→∞ V̂G(Ki) ≤ V̂G(K). Similarly, one can ob-

tain lim infi→∞ V̂G(Ki) ≥ V̂G(K), which leads to limi→∞ V̂G(Ki) = V̂G(K) as desired.

The case for G ∈ Gd follows along the same lines, and its proof will be omitted.

(iii) Let G ∈ GI and let K,L ∈ K n
(o) such that K ( L. Then, the spherical measure
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of the set E = {u ∈ Sn−1 : ρK(u) < ρL(u)} is positive. By Proposition 6.1.1, one has

1 =

∫

Sn−1

G

(
ρL(u)

V̂G(L)
, u

)
du

=

∫

Sn−1

G

(
ρK(u)

V̂G(K)
, u

)
du

=

∫

E

G

(
ρK(u)

V̂G(K)
, u

)
du+

∫

Sn−1\E

G

(
ρK(u)

V̂G(K)
, u

)
du

<

∫

E

G

(
ρL(u)

V̂G(K)
, u

)
du+

∫

Sn−1\E

G

(
ρL(u)

V̂G(K)
, u

)
du

=

∫

Sn−1

G

(
ρL(u)

V̂G(K)
, u

)
du.

Then V̂G(K) < V̂G(L) follows from the fact that G(t, ·) is strictly increasing on t ∈

(0,∞).

The case for G ∈ Gd follows along the same lines, and its proof will be omitted.

The following property may be useful in later context. Denote by O(n) the set of

all orthogonal matrices on Rn, that is, for any T ∈ O(n), one has TT t = T tT = In,

where T t denotes the transpose of T and In is the identity map on Rn.

Proposition 6.1.3. Let K ∈ K n
(o). If G(t, u) = φ(t) for all (t, u) ∈ (0,∞) × Sn−1

with φ : (0,∞) → (0,∞) being a continuous function, then ṼG(TK) = ṼG(K).

Proof. Let G(t, u) = φ(t) for all t > 0 and u ∈ Sn−1. For K ∈ K n
(o) and T ∈ O(n),

then the determinant of T is ±1 and

ṼG(TK) =

∫

Sn−1

φ(ρTK(u)) du =

∫

Sn−1

φ(ρK(T
tu)) du =

∫

Sn−1

φ(ρK(v)) dv = ṼG(K),

if letting T tu = v. This completes the proof.

In later context, we will employ Proposition 6.1.3 to G(t, u) = 1
n
tq for 0 6= q ∈ R,

which implies Ṽq(TK) = Ṽq(K) for all T ∈ O(n) and all K ∈ K n
(o).

For G : (0,∞)× Sn−1 → (0,∞), define two families of convex bodies as follows:

B̃ =
{
Q ∈ K n

(o) : ṼG(Q
∗) = ṼG(B

n)
}
;

B̂ =
{
Q ∈ K n

(o) : V̂G(Q
∗) = V̂G(B

n)
}
, if G ∈ GI ∪ Gd.
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It is obvious that both B̃ and B̂ are nonempty as they all contain the unit Euclidean

ball Bn. The following lemma plays essential roles in later context.

Lemma 6.1.4. Let G : (0,∞)×Sn−1 → (0,∞) be a continuous function. For q ∈ R,

let Gq(t, u) =
G(t,u)
tq

. Suppose that there exists a constant q ≥ n− 1 such that

inf
{
Gq(t, u) : t ≥ 1 and u ∈ Sn−1

}
> 0. (6.5)

Then the following statements hold.

(i) If {Qi}i≥1 with Qi ∈ B̃ for all i ∈ N is a bounded sequence, then there exist a

subsequence {Qij}j≥1 of {Qi}i≥1 and a convex body Q0 ∈ B̃ such that Qij → Q0.

(ii) If in addition G ∈ GI , the statement in (i) also holds if B̃ is replaced by B̂.

Remark. Clearly G(t, u) = tq for some q ≥ n − 1 satisfies (6.5). In particular

G(t, u) = tn/n satisfies (6.5) and hence Lemma 6.1.4 recovers [48, Lemma 3.2]. It can

be easily checked that formula (6.5) is equivalent to: there exist constants c, C > 0,

such that

inf
{
Gq(t, u) : t ≥ c and u ∈ Sn−1

}
> C. (6.6)

Moreover, if G ∈ Gd, then G does not satisfy (6.5). In fact, for all q ≥ n− 1 and for

all u ∈ Sn−1,

lim
t→∞

Gq(t, u) = lim
t→∞

G(t, u)× lim
t→∞

t−q = 0.

Proof. Let {Qi}i≥1 be a bounded sequence with Qi ∈ B̃ (or, respectively, Qi ∈ B̂) for

all i ∈ N. It follows from the Blaschke selection theorem that there exist a subsequence

of {Qi}i≥1, say {Qij}j≥1, and a compact convex set Q0 ∈ K n, such that Qij → Q0 in

the Hausdorff metric. As o ∈ intQij for all j ∈ N, one has, o ∈ Q0. In order to show

Q0 ∈ B̃ (or, respectively, Q0 ∈ B̂), we first need to show o ∈ intQ0.

(i) To this end, we assume that o ∈ ∂Q0 and seek for contradictions. As {Qi}i≥1 is a

bounded sequence, there exists a constant R > 0 such that Qi ⊂ RBn for each i ∈ N.

For each j ∈ N, one can find uij ∈ Sn−1 such that rij = hQij
(uij) = minu∈Sn−1 hQij

(u).

As o ∈ ∂Q0, one sees that limj→∞ rij = 0. The fact that Qij ⊂ RBn implies that
1
R
Bn ⊂ Q∗

ij
, and in particular, ρQ∗

ij
(u) ≥ 1

R
for any u ∈ Sn−1.
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we have du = (sin θ)n−2 dθ dv, where dv denotes the spherical measure of Sn−2. Thus

nṼq(Cj) =

∫

Sn−2

(∫ π
2

0

(
1

R sin θ + rij cos θ

)q
(sin θ)n−2 dθ

)
dv

= (n− 1)V (Bn−1)

∫ π
2

0

(
1

R sin θ + rij cos θ

)q
(sin θ)n−2 dθ. (6.8)

We will not need the precise value of Ṽq(Cj), however if q = n, formula (6.8) does

lead to

Ṽn(Cj) = V (Cj) =
V (Bn−1)

nRn−1rij
,

which coincides with the calculation provided in [48, Lemma 3.2].

Together with (6.7), ρQ∗
ij
≥ ρCj

, Fatou’s lemma, and limj→∞ rij = 0, one has, if

q ≥ n− 1, then n− 2− q ≤ −1 and

lim inf
j→∞

ṼG(Q
∗
ij
)

≥ lim inf
j→∞

CnṼq(Cj)

= C · (n− 1)V (Bn−1) · lim inf
j→∞

∫ π
2

0

(
1

R sin θ + rij cos θ

)q
(sin θ)n−2dθ

≥ C · (n− 1)V (Bn−1) ·

∫ π
2

0

lim inf
j→∞

(
1

R sin θ + rij cos θ

)q
(sin θ)n−2 dθ

=
C · (n− 1)V (Bn−1)

Rq

∫ π
2

0

(sin θ)n−2−q dθ

≥
C · (n− 1)V (Bn−1)

Rq

∫ π
2

0

1

sin θ
dθ

=
C · (n− 1)V (Bn−1)

Rq
· ln tan(θ/2)

∣∣∣
θ=π/2

θ=0
= ∞. (6.9)

On the other hand, as Qij ∈ B̃ for each j ∈ N, then

ṼG(Q
∗
ij
) = ṼG(B

n) =

∫

Sn−1

G(1, u) du <∞.

This is a contradiction and thus o ∈ intQ0.

As Qij ∈ K n
(o) for each j ∈ N and Q0 ∈ K n

(o), Qij → Q0 yields Q
∗
ij
→ Q∗

0. Together

with the continuity of ṼG(·) (see Lemma 4.1.2) and the fact that ṼG(Q
∗
ij
) = ṼG(B

n)
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for each j ∈ N, one gets ṼG(Q
∗
0) = limj→∞ ṼG(Q

∗
ij
) = ṼG(B

n). This concludes that

Q0 ∈ B̃ as desired.

(ii) Again, we assume that o ∈ ∂Q0 and seek for contradictions. It follows from

Proposition 6.1.1 that V̂G(B
n) > 0 is a finite constant. Following notations in (i),

Proposition 6.1.1 and V̂G(Q
∗
ij
) = V̂G(B

n) for each j ∈ N yield that

∫

Sn−1

G

( ρQ∗
ij
(u)

V̂G(Bn)
, u

)
du = 1. (6.10)

As 1
R
Bn ⊂ Q∗

ij
for each j ∈ N, one can take the constant c in (6.6) to be 1

R·V̂G(Bn)
and

there exists a constant C > 0 such that, for all u ∈ Sn−1 and some q ≥ n− 1,

G

( ρQ∗
ij
(u)

V̂G(Bn)
, u

)
≥ C ·

( ρQ∗
ij
(u)

V̂G(Bn)

)q
.

Together with (6.10), one has,

∫

Sn−1

C ·

( ρQ∗
ij
(u)

V̂G(Bn)

)q
du ≤ 1 =⇒ C ·

∫

Sn−1

(
ρQ∗

ij
(u)
)q
du ≤

(
V̂G(B

n)
)q
.

Similar to (6.9), one gets

∞ = lim inf
j→∞

C ·

∫

Sn−1

(
ρQ∗

ij
(u)
)q
du

≤
(
V̂G(B

n)
)q
,

a contradiction and hence o ∈ intQ0. The rest of the proof follows along the lines in

(i), where the continuity of V̂G(·) (see Proposition 6.1.2) shall be used.

6.2 The general dual-polar Orlicz-Minkowski prob-

lem

Motivated by the polar Orlicz-Minkowski problem proposed in [44] and by the gen-

eral dual Orlicz-Minkowski problem proposed in Chapters 4 and 5, we propose the

following general dual-polar Orlicz-Minkowski problem:
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Problem 6.2.1. Under what conditions on a nonzero finite Borel measure µ defined

on Sn−1, continuous functions ϕ : (0,∞) → (0,∞) and G ∈ GI ∪ Gd can we find a

convex body K ∈ K n
(o) solving the following optimization problems:

inf / sup

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̃

}
; (6.11)

inf / sup

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̂

}
. (6.12)

Although the function G in the optimization problem (6.11) can be any continuous

function G : (0,∞) × Sn−1 → (0,∞), to find its solutions, only those G ∈ GI ∪ Gd

with monotonicity will be considered. One reason is that most G of interest (such

as G(t, u) = tq/n for 0 6= q ∈ R) are monotone. More importantly, without the

monotonicity of G, the set B̃ may contain only one convex body Bn (for instance,

if G(1, u) < G(t, u) for all (t, u) ∈ (0,∞) × Sn−1 such that t 6= 1). In this case, the

optimization problem (6.11) becomes trivial. Note that when G(t, u) = tn/n, both

ṼG and (essentially) V̂G are volume, then Problem 6.2.1 becomes the polar Orlicz-

Minkowski problem posed in [44].

In the following subsection, we will solve the general dual-polar Orlicz-Minkowski

problem for discrete measures first.

6.2.1 The general dual-polar Orlicz-Minkowski problem for

discrete measures

Throughout this subsection, let µ be a discrete measure of the following form:

µ =
m∑

i=1

λiδui , (6.13)

where λi > 0, δui denotes the Dirac measure at ui, and {u1, · · · , um} is a subset

of Sn−1 which is not concentrated on any closed hemisphere (clearly m ≥ n + 1).

It has been proved in [44, Propositions 3.1 and 3.3] that the solutions to the polar

Orlicz-Minkowski problem for discrete measures must be polytopes, the convex hulls

of finite points in Rn. It is well known that all convex bodies can be approximated by

polytopes, and hence to study the Minkowski type problems for discrete measures is
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very important and receives extensive attention, see e.g., [3, 5, 14, 19, 24, 27, 33, 35,

39, 67, 81, 82, 83].

The following lemma shows that if, when the infimum is considered, Problem 6.2.1

for discrete measures has solutions, then the solutions must be polytopes.

Lemma 6.2.2. Let ϕ ∈ I and µ be as in (6.13) whose support {u1, · · · , um} is not

concentrated on any closed hemisphere. Let G ∈ GI .

(i) If M̃ ∈ B̃ is a solution to the optimization problem (6.11) when the infimum is

considered, then M̃ is a polytope, and u1, · · · , um are the corresponding unit normal

vectors of its faces.

(ii) If M̂ ∈ B̂ is a solution to the optimization problem (6.12) when the infimum is

considered, then M̂ is a polytope, and u1, · · · , um are the corresponding unit normal

vectors of its faces.

Proof. Let G ∈ GI . For discrete measure µ and Q ∈ K n
(o), one has

∫

Sn−1

ϕ(hQ(u))dµ(u) =
m∑

i=1

ϕ(hQ(ui))µ({ui}) =
m∑

i=1

λiϕ(hQ(ui)).

(i) Let M̃ ∈ B̃ be a solution to the optimization problem (6.11). Define the polytope

P as follows: M̃ ⊆ P , hP (ui) = hM̃(ui) for 1 ≤ i ≤ m, and u1, · · · , um are the corre-

sponding unit normal vectors of the faces of P . As M̃ ∈ B̃, one has ṼG(M̃
∗) = ṼG(B

n)

and o ∈ intM̃ . Hence P ∈ K n
(o) and P ∗ ⊆ M̃∗. Similar to the proof of Proposition

6.1.2 (iii), one can obtain that ṼG(·) for G ∈ GI is strictly increasing in terms of set

inclusion. In particular, ṼG(P
∗) ≤ ṼG(M̃

∗) = ṼG(B
n). As limt→∞G(t, ·) = ∞, there

exists t0 ≥ 1 such that ṼG(t0P
∗) = ṼG(B

n). That is, P/t0 ∈ B̃. Due to the minimality

of M̃ and the fact that ϕ ∈ I is strictly increasing, one has

m∑

i=1

λiϕ(hP (ui)) =
m∑

i=1

λiϕ(hM̃(ui)) ≤
m∑

i=1

λiϕ(hP/t0(ui)) ≤
m∑

i=1

λiϕ(hP (ui)),

which yields t0 = 1. Then, ṼG(P
∗) = ṼG(B

n) = ṼG(M̃
∗) and hence P = M̃ following

from M̃ ⊆ P .

(ii) Proposition 6.1.2 (iii) asserts that, if G ∈ GI , V̂G(K) < V̂G(L) for all K,L ∈ K n
(o)
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such that K ( L. The proof in this case then follows along the same lines as in (i),

and will be omitted.

The following result is for the existence of solutions to Problem 6.2.1 for discrete

measures if the infimum is considered.

Theorem 6.2.3. Let ϕ ∈ I and µ be as in (6.13) whose support {u1, · · · , um} is

not concentrated on any closed hemisphere. Let G ∈ GI be a continuous function such

that (6.5) holds for some q ≥ n− 1. Then the following statements hold.

(i) There exists a polytope P̃ ∈ B̃ with u1, · · · , um being the corresponding unit normal

vectors of its faces, such that,

m∑

i=1

λiϕ(hP̃ (ui)) = inf
{ m∑

i=1

λiϕ(hQ(ui)) : Q ∈ B̃
}
. (6.14)

(ii) There exists a polytope P̂ ∈ B̂ with u1, · · · , um being the corresponding unit

normal vectors of its faces, such that,

m∑

i=1

λiϕ(hP̂ (ui)) = inf
{ m∑

i=1

λiϕ(hQ(ui)) : Q ∈ B̂
}
.

Proof. By Lemma 6.2.2, to solve (6.14), it will be enough to find a solution for the

following problem:

α̃ = inf
{ m∑

i=1

λiϕ(zi) : z ∈ Rm
+ such that P (z) ∈ B̃

}
, (6.15)

where z = (z1, · · · , zm) ∈ Rm
+ means that each zi > 0 and

P (z) =
m⋂

i=1

{
x ∈ Rn : 〈x, ui〉 ≤ zi

}
⊂ K n

(o).

Clearly hP (z)(ui) ≤ zi for all i = 1, 2, · · · ,m.

Let P1 = P (1, · · · , 1). Then Bn ( P1 and hence P ∗
1 ( Bn. As G ∈ GI one has

ṼG(P
∗
1 ) < ṼG(B

n). The facts that G(t, ·) is strictly increasing on t and limt→∞G(t, ·) =

∞ imply the existence of t1 > 1 such that ṼG(t1P
∗
1 ) = ṼG(B

n). In other words,

P1/t1 ∈ B̃ and then the infimum in (6.15) is not taken over an empty set. Moreover,
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due to ϕ ∈ I (in particular, ϕ is strictly increasing and ϕ(1) = 1) and 1/t1 < 1, one

has,

α̃ ≤ ϕ(1/t1)
m∑

i=1

λi ≤
m∑

i=1

λi.

This in turn implies that z ∈ Rm
+ in (6.15) can be restricted in a bounded set, for

instance,

zi ≤ ϕ−1
(λ1 + · · ·+ λm

min1≤i≤m λi

)
, for all i = 1, 2, · · · ,m. (6.16)

Let z1, · · · , zj · · · ∈ Rm
+ be the limiting sequence of (6.15), that is,

α̃ = lim
j→∞

m∑

i=1

λiϕ(z
j
i ) and ṼG(P

∗(zj)) = ṼG(B
n) for all j ∈ N.

Due to (6.16), without loss of generality, we can assume that zj → z0 for some z0 ∈ Rm

and hence P (zj) → P (z0) in the Hausdorff metric (see e.g., [59]). Lemma 6.1.4 yields

that P (z0) ∈ B̃, i.e., ṼG(P
∗(z0)) = ṼG(B

n) and o ∈ intP (z0). In particular, z0i > 0

for all i = 1, 2, · · · ,m.

On the other hand, we claim that hP (z0)(ui) = z0i for all i = 1, 2, · · · ,m. To this

end, assume not, then there exists i0 ∈ {1, 2, · · · ,m} such that hP (z0)(ui0) < z0i0 . As

ϕ ∈ I is strictly increasing and λi0 > 0, one clearly has

α̃ =
m∑

i=1

λiϕ(z
0
i ) >

∑

i∈{1,2,··· ,m}\{i0}

λiϕ(z
0
i ) + λi0ϕ(hP (z0)(ui0)).

This contradicts with the minimality of α̃.

Let P̃ = P (z0). Then P̃ ∈ B̃ solves (6.15) and hence (6.14). This concludes the

proof of (i).

(ii) The proof is almost identical to the one for (i), and will be omitted.

It has been proved in [44] that the existence of solutions to Problem 6.2.1 for

discrete measures in general is invalid when G(t, u) = tn/n, if the supremum is con-

sidered for ϕ ∈ I ∪ D , or the infimum is considered for ϕ ∈ D . One can also prove

similar arguments for Problem 6.2.1 for discrete measures with more general G ∈ GI ,

but more delicate calculations are required. We only state the following result as an

example.
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Proposition 6.2.4. Let µ be as in (6.13) whose support {u1, · · · , um} is not con-

centrated on any closed hemisphere. Let G ∈ GI be such that (6.5) holds for some

q ≥ n− 1.

(i) If ϕ ∈ D and the first coordinates of u1, u2, · · · , um are all nonzero, then

inf
Q∈B̂

m∑

i=1

λiϕ(hQ(ui)) = 0.

(ii) If ϕ ∈ I ∪ D , then

sup
Q∈B̂

m∑

i=1

λiϕ(hQ(ui)) = ∞.

Proof. (i) For 0 < ǫ < 1, let Tǫ = diag(1, 1, · · · , 1, ǫ) and Lǫ = TǫB
n. It can be checked

that

ρLǫ(w) =
(
w2

1 + w2
2 + · · ·+ w2

n−1 + w2
n/ǫ

2
)−1/2

for all w = (w1, · · · , wn) ∈ Sn−1. Thus ρLǫ(w) is increasing on ǫ > 0 for each w ∈ Sn−1

and then Lǫ is increasing in the sense of set inclusion on ǫ > 0. In particular, Lǫ ⊂ Bn

and Bn ⊂ L∗
ǫ = T−1

ǫ Bn. Moreover, L∗
ǫ = T−1

ǫ Bn is decreasing in the sense of set

inclusion on ǫ > 0, and so is V̂G(L
∗
ǫ) due to G ∈ GI . By the homogeneity of V̂G(·), one

has

V̂G(f(ǫ)L
∗
ǫ) = V̂G(B

n),

if

f(ǫ) =
V̂G(B

n)

V̂G(L∗
ǫ)
.

We now claim that f(ǫ) → 0, which is equivalent to prove V̂G(L
∗
ǫ) → ∞ as ǫ→ 0+.

To this end, it is enough to prove that sup0<ǫ<1 V̂G(L
∗
ǫ) = ∞. Let us assume that

sup0<ǫ<1 V̂G(L
∗
ǫ) = A0 < ∞. By Bn ⊂ L∗

ǫ and (6.6) with c = 1/A0, there exists a

constant CA > 0 such that

∫

Sn−1

G

(
ρL∗

ǫ
(u)

A0

, u

)
du ≥ CA

∫

Sn−1

(
ρL∗

ǫ
(u)

A0

)q
du ≥ CA

∫

Sn−1

(
ρCǫ(u)

A0

)q
du,

where Cǫ ⊂ L∗
ǫ is the cone with the base Bn−1 and the apex ǫ−1en. It follows from
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Proposition 6.1.1, (6.8) and (6.9) that

1 = lim inf
ǫ→0+

∫

Sn−1

G

(
ρL∗

ǫ
(u)

V̂G(L∗
ǫ)
, u

)
du

≥ lim inf
ǫ→0+

∫

Sn−1

G

(
ρL∗

ǫ
(u)

A0

, u

)
du

≥
CA
Aq0

· lim inf
ǫ→0+

∫

Sn−1

(
ρCǫ(u)

)q
du

≥
CA(n− 1)V (Bn−1)

Aq0
· lim inf

ǫ→0+

∫ π
2

0

(
1

sin θ + ǫ cos θ

)q
(sin θ)n−2 dθ

= ∞.

This is a contradiction, which yields sup0<ǫ<1 V̂G(L
∗
ǫ) = ∞ and then f(ǫ) → 0 as

ǫ→ 0+.

Recall that V̂G(f(ǫ)L
∗
ǫ) = V̂G(B

n) and then Lǫ/f(ǫ) = TǫB
n/f(ǫ) ∈ B̂. It is

assumed that α = min1≤i≤m{|(ui)1|} > 0, and hence for all 1 ≤ i ≤ m (by letting

v2 = ui),

hLǫ/f(ǫ)(ui) = max
v1∈Lǫ/f(ǫ)

〈v1, ui〉

= max
v2∈Bn

〈Tǫv2, ui〉/f(ǫ)

≥ α2/f(ǫ).

The fact that ϕ ∈ D is strictly decreasing yields

inf
Q∈B̂

m∑

i=1

λiϕ(hQ(ui)) ≤
m∑

i=1

ϕ
(
hLǫ/f(ǫ)(ui)

)
· µ({ui})

≤ ϕ
(
α2/f(ǫ)

)
· µ(Sn−1)

→ 0,

where we have used limǫ→0+ f(ǫ) = 0 and limt→∞ ϕ(t) = 0. This concludes the proof

of (i).

(ii) Note that µ({u1}) > 0. For any 0 < ǫ < 1, let L̃ǫ = TTǫB
n, where T ∈ O(n) is

an orthogonal matrix such that T tu1 = e1 (indeed, this can always be done by the

Gram-Schmidt process). Again L̃ǫ ⊂ Bn and hence Bn ⊂ L̃∗
ǫ . As in (i), one can prove

that
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f(ǫ) =
V̂G(B

n)

V̂G(L̃∗
ǫ)

→ 0 as ǫ→ 0+.

Moreover, V̂G(f(ǫ)L̃
∗
ǫ) = V̂G(B

n) and thus L̃ǫ/f(ǫ) ∈ B̂. One can check (by letting

v2 = e1) that

hL̃ǫ/f(ǫ)
(u1) = f(ǫ)−1 max

v2∈Bn
〈TTǫv2, u1〉 = f(ǫ)−1〈T tu1, diag(1, 1, · · · , 1, ǫ) · e1〉 = f(ǫ)−1.

Together with ϕ ∈ I (in particular, limt→∞ ϕ(t) = ∞), one has

sup
Q∈B̂

m∑

i=1

λiϕ(hQ(ui)) ≥
m∑

i=1

ϕ
(
hL̃ǫ/f(ǫ)

(ui)
)
· µ({ui})

≥ ϕ
(
hL̃ǫ/f(ǫ)

(u1)
)
· µ({u1})

= ϕ
(
f(ǫ)−1

)
· µ({u1})

→ ∞,

as ǫ→ 0+, which follows from the fact that limǫ→0+ f(ǫ) = 0.

When ϕ ∈ D , let Lǫ = L̃∗
ǫ = L̃1/ǫ. Hence L

∗

ǫ ⊂ Bn for all ǫ ∈ (0, 1). We claim that

V̂G(L
∗

ǫ) → 0 as ǫ→ 0+. To this end, it can be checked that

ρL∗
ǫ
(u) =

ǫ√
[(T tu)n]2 + ǫ2(1− [(T tu)n]2)

,

where (T tu)n denotes the n-th coordinate of T tu. Clearly ρL∗
ǫ
(u) ≤ 1 for all u ∈ Sn−1

and ρL∗
ǫ
(u) → 0 as ǫ → 0+ for all u ∈ η, where η = {u ∈ Sn−1 : (T tu)n 6= 0}. Also

note that the spherical measure of Sn−1 \ η is 0.

On the other hand, L
∗

ǫ is increasing (in the sense of set inclusion) and hence

V̂G(L
∗

ǫ) is strictly increasing on ǫ due to Proposition 6.1.2. To show that V̂G(L
∗

ǫ) → 0

as ǫ → 0+, we assume that infǫ>0 V̂G(L
∗

ǫ) = β > 0 and seek for contradictions. By

Proposition 6.1.1, one has, for all ǫ ∈ (0, 1),

∫

Sn−1

G

(
ρL∗

ǫ
(u)

β
, u

)
du ≥

∫

Sn−1

G

(
ρL∗

ǫ
(u)

V̂G(L
∗

ǫ)
, u

)
du = 1. (6.17)

Moreover, as ρL∗
ǫ
(u) ≤ 1 for all u ∈ Sn−1, one has, for all u ∈ Sn−1,
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G

(
ρL∗

ǫ
(u)

β
, u

)
≤ G

(
1

β
, u

)
.

Together with (6.17) and the dominated convergence theorem, one gets that

1 ≤ lim
ǫ→0+

∫

Sn−1

G

(
ρL∗

ǫ
(u)

β
, u

)
du =

∫

Sn−1

lim
ǫ→0+

G

(
ρL∗

ǫ
(u)

β
, u

)
du = 0.

This implies V̂G(L
∗

ǫ) → 0 as ǫ → 0+. Again, Lǫ/f(ǫ) ∈ B̂ and hLǫ/f(ǫ)
(u1) = f(ǫ)−1,

where

f(ǫ) =
V̂G(B

n)

V̂G(L
∗

ǫ)
→ ∞ as ǫ→ 0+.

Together with ϕ ∈ D (in particular, limt→0+ ϕ(t) = ∞), one has

sup
Q∈B̂

m∑

i=1

λiϕ(hQ(ui)) ≥ ϕ
(
hLǫ/f(ǫ)

(u1)
)
· µ({u1}) = ϕ

(
f(ǫ)−1

)
· µ({u1}) → ∞,

as ǫ→ 0+. This concludes the proof of (ii).

It is worth to mention that the argument in Proposition 6.2.4 (ii) for the case

ϕ ∈ D indeed works for all G ∈ GI without assuming (6.5) for some q ≥ n − 1.

Moreover, the proof of Proposition 6.2.4 can be slightly modified to show similar

results for the case B̃ and the details are omitted.

6.2.2 The general dual-polar Orlicz-Minkowski problem

In view of Proposition 6.2.4, in this subsection, we will provide the continuity, unique-

ness, and existence of solutions to Problem 6.2.1 for ϕ ∈ I and with the infimum

considered.

The following lemma is very useful in later context. Its proof can be found in, e.g.,

the proof of [44, Theorem 3.2] (slight modification is needed) and hence is omitted.

Lemma 6.2.5. Let ϕ ∈ I . Let µi, µ for i ∈ N be nonzero finite Borel measures

on Sn−1 which are not concentrated on any closed hemisphere and µi → µ weakly.

Suppose that {Qi}i≥1 is a sequence of convex bodies such that Qi ∈ K n
(o) for each

i ∈ N and

sup
i≥1

{∫

Sn−1

ϕ(hQi
(u))dµi(u)

}
<∞.
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Then {Qi}i≥1 is a bounded sequence in K n
(o).

The continuity of the extreme values for Problem 6.2.1 is given below.

Theorem 6.2.6. Let µi, µ for i ∈ N be finite Borel measures on Sn−1 which are

not concentrated on any closed hemisphere and µi → µ weakly. Let G ∈ GI be a

continuous function such that (6.5) holds for some q ≥ n − 1 and ϕ ∈ I . The

following statements hold true.

(i) If for each i ∈ N, there exists M̃i ∈ B̃ such that

∫

Sn−1

ϕ
(
hM̃i

(u)
)
dµi(u) = inf

{∫

Sn−1

ϕ(hQ(u))dµi(u) : Q ∈ B̃

}
, (6.18)

then there exists M̃ ∈ B̃ such that

∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u) = inf

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̃

}
. (6.19)

Moreover,

lim
i→∞

∫

Sn−1

ϕ
(
hM̃i

(u)
)
dµi(u) =

∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u). (6.20)

(ii) If for each i ∈ N, there exists M̂i ∈ B̂ such that

∫

Sn−1

ϕ
(
hM̂i

(u)
)
dµi(u) = inf

{∫

Sn−1

ϕ(hQ(u))dµi(u) : Q ∈ B̂

}
,

then there exists M̂ ∈ B̂ such that

∫

Sn−1

ϕ
(
hM̂(u)

)
dµ(u) = inf

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̂

}
.

Moreover,

lim
i→∞

∫

Sn−1

ϕ
(
hM̂i

(u)
)
dµi(u) =

∫

Sn−1

ϕ
(
hM̂(u)

)
dµ(u).

Proof. For each i ∈ N, let

µi(S
n−1) =

∫

Sn−1

dµi and

∫

Sn−1

dµ = µ(Sn−1).
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(i) It can be easily checked from (6.18) and Bn ∈ B̃ that for each i ∈ N,

∫

Sn−1

ϕ
(
hM̃i

(u)
)
dµi(u) ≤ ϕ(1)µi(S

n−1).

Moreover, the weak convergence of µi → µ yields µi(S
n−1) → µ(Sn−1). Hence,

sup
i≥1

{∫

Sn−1

ϕ(hM̃i
(u))dµi(u)

}
<∞.

By Lemma 6.2.5, one sees that {M̃i}i≥1 is a bounded sequence in K n
(o). As M̃i ∈ B̃ for

each i ∈ N, Lemma 6.1.4 implies that there exist a subsequence {M̃ij}j≥1 of {M̃i}i≥1

and a convex body M̃ ∈ B̃ such that M̃ij → M̃.

Now we verify that M̃ satisfies the desired properties. First of all, for any given

Q ∈ B̃, one has, for each j ∈ N,

∫

Sn−1

ϕ
(
hM̃ij

(u)
)
dµij(u) ≤

∫

Sn−1

ϕ
(
hQ(u)

)
dµij(u).

Together with the weak convergence of µi → µ, Lemma 2.3.3, ϕ ∈ I , and M̃ij → M̃ ,

one obtains that ϕ
(
hM̃ij

)
→ ϕ(hM̃) uniformly on Sn−1 and for each given Q ∈ B̃,

∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u) = lim

j→∞

∫

Sn−1

ϕ
(
hM̃ij

(u)
)
dµij(u)

≤ lim
j→∞

∫

Sn−1

ϕ
(
hQ(u)

)
dµij(u)

=

∫

Sn−1

ϕ
(
hQ(u)

)
dµ(u).

Taking the infimum over Q ∈ B̃ and together with M̃ ∈ B̃, one gets that

∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u) ≤ inf

Q∈B̃

{∫

Sn−1

ϕ
(
hQ(u)

)
dµ(u)

}
≤

∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u).

Hence, M̃ ∈ B̃ verifies (6.19).

Now let us verify (6.20). To this end, let {µik}k≥1 be an arbitrary subsequence

of {µi}i≥1. Repeating the arguments above for µik and M̃ik (replacing µi and M̃i,

respectively), one gets a subsequence {M̃ikj
}j≥1 of {M̃ik}k≥1 such that M̃ikj

→ M̃0 ∈
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B̃ and M̃0 satisfies (6.19). Thus,

lim
j→∞

∫

Sn−1

ϕ
(
hM̃ikj

(u)
)
dµikj (u) =

∫

Sn−1

ϕ
(
hM̃0

(u)
)
dµ(u)

= inf

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̃

}

=

∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u),

where the first equality follows from Lemma 2.3.3 and the last two equalities follow

from (6.19). This concludes the proof of (6.20), i.e.,

lim
i→∞

∫

Sn−1

ϕ
(
hM̃i

(u)
)
dµi(u) =

∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u).

(ii) The proof of this case is almost identical to the one in (i), and will be omitted.

The following theorem provides the existence and uniqueness of solutions to Prob-

lem 6.2.1 for ϕ ∈ I and with the infimum considered.

Theorem 6.2.7. Let ϕ ∈ I and µ be a nonzero finite Borel measure defined on

Sn−1 which is not concentrated on any closed hemisphere. Let G ∈ GI be a continuous

function such that (6.5) holds for some q ≥ n − 1. Then the following statements

hold.

(i) There exists a convex body M̃ ∈ B̃ such that

∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u) = inf

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̃

}
. (6.21)

If, in addition, both ϕ(t) and G(t, ·) are convex on t ∈ (0,∞), then the solution is

unique.

(ii) There exists a convex body M̂ ∈ B̂ such that

∫

Sn−1

ϕ
(
hM̂(u)

)
dµ(u) = inf

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̂

}
.

If, in addition, both ϕ(t) and G(t, ·) are convex on t ∈ (0,∞), then the solution is

unique.
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Proof. Let µ be a nonzero finite Borel measure defined on Sn−1 which is not concen-

trated on any closed hemisphere. Let µi for all i ∈ N be nonzero finite discrete Borel

measures defined on Sn−1, which are not concentrated on any closed hemisphere, such

that, µi → µ weakly (see e.g., [59]).

(i) By Theorem 6.2.3, for each i ∈ N, there exists a polytope P̃i ∈ B̃ solving (6.21)

with µ replaced by µi. It follows from Theorem 6.2.6 that there exists a M̃ ∈ B̃ such

that (6.21) holds.

Now let us prove the uniqueness. Assume that M̃ ∈ B̃ and M̃0 ∈ B̃, such that

∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u) =

∫

Sn−1

ϕ
(
hM̃0

(u)
)
dµ(u) = inf

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̃

}
.

Note that both M̃ ∈ K n
(o) and M̃0 ∈ K n

(o). Let K0 =
M̃+M̃0

2
∈ K n

(o). Then,

hK0 =
hM̃ + hM̃0

2
=⇒ ρK∗

0
= 2 ·

ρM̃∗ · ρM̃∗
0

ρM̃∗ + ρM̃∗
0

,

following from hK · ρK∗ = 1 for all K ∈ K n
(o). The facts that G(t, ·) is convex and

G ∈ GI is strictly increasing, together with M̃ ∈ B̃ and M̃0 ∈ B̃, yield that

ṼG(K
∗
0) =

∫

Sn−1

G
(
ρK∗

0
(u), u

)
du

≤

∫

Sn−1

G

(
2 ·

ρM̃∗(u) · ρM̃∗
0
(u)

ρM̃∗(u) + ρM̃∗
0
(u)

, u

)
du

≤

∫

Sn−1

G

(ρM̃∗(u) + ρM̃∗
0
(u)

2
, u

)
du

≤

∫

Sn−1

G
(
ρM̃∗(u), u

)
+G

(
ρM̃∗

0
(u), u

)

2
du

=
ṼG(M̃

∗) + ṼG(M̃
∗
0 )

2

= ṼG(B
n). (6.22)

Again, as G ∈ GI , one can find a constant t2 ≥ 1 such that ṼG(t2K
∗
0) = ṼG(B

n) and

K0/t2 ∈ B̃. Due to t2 ≥ 1 and the facts that ϕ ∈ I is convex and strictly increasing,
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one has

∫

Sn−1

ϕ(hK0/t2(u)) dµ(u) ≥ inf

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̃

}

=
1

2

(∫

Sn−1

ϕ
(
hM̃(u)

)
dµ(u) +

∫

Sn−1

ϕ
(
hM̃0

(u)
)
dµ(u)

)

≥

∫

Sn−1

ϕ

(
hM̃(u) + hM̃0

(u)

2

)
dµ(u)

=

∫

Sn−1

ϕ(hK0(u)) dµ(u)

≥

∫

Sn−1

ϕ(hK0/t2(u)) dµ(u). (6.23)

Hence all “≥” in (6.23) become “=”; and this can happen if and only if t2 = 1 as ϕ

is strictly increasing. This in turn yields that all “≥” in (6.22) become “=” as well.

In particular, as G(t, ·) is strictly increasing, for all u ∈ Sn−1,

2 ·
ρM̃∗(u) · ρM̃∗

0
(u)

ρM̃∗(u) + ρM̃∗
0
(u)

=
ρM̃∗(u) + ρM̃∗

0
(u)

2
,

and hence ρM̃∗(u) = ρM̃∗
0
(u) for all u ∈ Sn−1. That is, M̃ = M̃0 and the uniqueness

follows.

(ii) The proof of this case is almost identical to the one in (i), and will be omitted.

The following result states that the continuity of solutions to Problem 6.2.1 for

ϕ ∈ I and with the infimum considered.

Corollary 6.2.8. Let µi, µ for i ∈ N be nonzero finite Borel measures on Sn−1 which

are not concentrated on any closed hemisphere and µi → µ weakly. Let G ∈ GI be a

continuous function such that G(t, ·) is convex on t ∈ (0,∞) and (6.5) holds for some

q ≥ n− 1. Let ϕ ∈ I be convex. The following statements hold true.

(i) Let M̃i ∈ B̃ for each i ∈ N and M̃ ∈ B̃ be the solutions to the optimization

problem (6.11) with the infimum considered for measures µi and µ, respectively. Then

M̃i → M̃ as i→ ∞.

(ii) Let M̂i ∈ B̂ for each i ∈ N and M̂ ∈ B̂ be the solutions to the optimization

problem (6.12) with the infimum considered for measures µi and µ, respectively. Then
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M̂i → M̂ as i→ ∞.

Proof. (i) The proof of this result follows from the combination of the proof of Theo-

rem 6.2.6 and the uniqueness in Theorem 6.2.7. Indeed, let {M̃ik}k≥1 be an arbitrary

subsequence of {M̃i}i≥1. Like in the proof of Theorem 6.2.6, one can check that there

exist a subsequence {M̃ikj
}j≥1 of {M̃ik}k≥1 and a convex body M̃0 ∈ B̃ such that

M̃ikj
→ M̃0. Moreover, M̃0 satisfies that

∫

Sn−1

ϕ
(
hM̃0

(u)
)
dµ(u) = inf

{∫

Sn−1

ϕ(hQ(u))dµ(u) : Q ∈ B̃

}
.

The uniqueness in Theorem 6.2.7 yields M̃0 = M̃.

In other words, one shows that every subsequence {Mik}k≥1 of {Mi}i≥1 must have

a subsequence M̃ikj
convergent to M̃. This concludes that M̃i → M̃.

(ii) The proof of this case is almost identical to the one in (i), and will be omitted.

Problem 6.2.1 discussed in Section 6.2 is only typical example of the polar Orlicz-

Minkowski type problems. In the following section, several variations of Problem 6.2.1

will be provided.

6.3 Variations of dual-polar Orlicz-Minkowski prob-

lem

First, we investigate the general dual-polar Orlicz-Minkowski problem associated with

the Orlicz norms.

6.3.1 The general dual-polar Orlicz-Minkowski problem as-

sociated with the Orlicz norms

Let µ be a given nonzero finite Borel measure defined on Sn−1. For ϕ ∈ I ∪ D and

for Q ∈ K n
(o), the functional

∫
Sn−1 ϕ(hQ) dµ is in general not homogeneous. Similar to

the definition for V̂G, based on (5.13), we give a systematic definition of the “Orlicz
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norm” with respect to ϕ ∈ I ∪ D and Q ∈ K n
(o) as follows:

‖hQ‖µ,ϕ = inf

{
λ > 0 :

1

µ(Sn−1)

∫

Sn−1

ϕ

(
hQ(u)

λ

)
dµ(u) ≤ 1

}
if ϕ ∈ I ;

‖hQ‖µ,ϕ = inf

{
λ > 0 :

1

µ(Sn−1)

∫

Sn−1

ϕ

(
hQ(u)

λ

)
dµ(u) ≥ 1

}
if ϕ ∈ D .

Following the proof of Proposition 6.1.1, it can be checked that, for any Q ∈ K n
(o) and

ϕ ∈ I ∪ D , ‖hQ‖µ,ϕ > 0 satisfies

1

µ(Sn−1)

∫

Sn−1

ϕ

(
hQ(u)

‖hQ‖µ,ϕ

)
dµ = 1. (6.24)

Moreover, ‖1‖µ,ϕ = 1, ‖chQ‖µ,ϕ = c‖hQ‖µ,ϕ for any constant c > 0 and any Q ∈ K n
(o),

and ‖hQ‖µ,ϕ ≤ ‖hL‖µ,ϕ for Q,L ∈ K n
(o) such that Q ⊆ L.

The following lemma for ϕ ∈ I ∪D can be proved similar to the proof of Propo-

sition 6.1.2 (ii). For completeness, we provide a brief proof here. See e.g., [22, Lemma

4] and [27, Lemma 3.4 and Corollary 3.5] for similar results.

Lemma 6.3.1. Let Qi, Q ∈ K n
(o) for each i ∈ N, and µi, µ for each i ∈ N be nonzero

finite Borel measures on Sn−1. If Qi → Q and µi → µ weakly, then for all ϕ ∈ I ∪D ,

lim
i→∞

‖hQi
‖µi,ϕ = ‖hQ‖µ,ϕ.

Proof. We only prove the case for ϕ ∈ I (and the case for ϕ ∈ D follows along the

same lines). Let Qi ∈ K n
(o) for all i ∈ N and Qi → Q ∈ K n

(o). Let the constants

0 < rQ < RQ < ∞ be such that rQ ≤ hQ ≤ RQ and rQ ≤ hQi
≤ RQ for all i ∈ N. It

can be checked that

rQ ≤ inf
i≥1

‖hQi
‖µi,ϕ ≤ sup

i≥1
‖hQi

‖µi,ϕ ≤ RQ.

Assume that lim supi→∞ ‖hQi
‖µi,ϕ > ‖hQ‖µ,ϕ. There exists a subsequence {Qij} of

{Qi} such that limj→∞ ‖hQij
‖µij ,ϕ > ‖hQ‖µ,ϕ. Together with (6.24), Lemma 2.3.3, the

uniform convergence of hQi
→ hQ on Sn−1, and the weak convergence of µi → µ, one

has
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1 = lim
j→∞

1

µij(S
n−1)

∫

Sn−1

ϕ

(
hQij

(u)

‖hQij
‖µij ,ϕ

)
dµij

=
1

µ(Sn−1)

∫

Sn−1

ϕ

(
hQ(u)

limj→∞ ‖hQij
‖µij ,ϕ

)
dµ

<
1

µ(Sn−1)

∫

Sn−1

ϕ

(
hQ(u)

‖hQ‖µ,ϕ

)
dµ

= 1.

This is a contradiction and hence lim supi→∞ ‖hQi
‖µi,ϕ ≤ ‖hQ‖µ,ϕ. Similarly, one can

obtain lim infi→∞ ‖hQi
‖µi,ϕ ≥ ‖hQ‖µ,ϕ, which leads to limi→∞ ‖hQi

‖µi,ϕ = ‖hQ‖µ,ϕ as

desired.

For the convenience of later citation, the following lemma is given, whose proof

for polytopes and discrete measures has appeared in e.g., [19, 24, 27] and is similar

to the proof of Lemma 6.2.5. A brief sketch of the proof is provided for completeness

and for future reference.

Lemma 6.3.2. Let ϕ ∈ I . Let µi, µ for i ∈ N be nonzero finite Borel measures

on Sn−1 which are not concentrated on any closed hemisphere and µi → µ weakly.

Suppose that {Qi}i≥1 is a sequence of convex bodies such that Qi ∈ K n
(o) for each

i ∈ N and supi≥1 ‖hQi
‖µi,ϕ <∞. Then {Qi}i≥1 is a bounded sequence in K n

(o).

Proof. Let a+ = max{a, 0} for all a ∈ R. For each i ∈ N, let ui ∈ Sn−1 be such that

ρQi
(ui) = maxu∈Sn−1 ρQi

(u), and hence hQi
(u) ≥ ρQi

(ui)〈u, ui〉+ for any u ∈ Sn−1.

Assume that {Qi}i≥1 is not bounded in K n
(o), i.e., supi≥1 ρQi

(ui) = ∞. Without loss

of generality, let ui → v ∈ Sn−1 and limi→∞ ρQi
(ui) = ∞. By formula (6.24) and

ϕ ∈ I , one has for any given C > 0, there exists iC ∈ N such that for all i > iC ,

1 =
1

µi(Sn−1)

∫

Sn−1

ϕ

(
hQi

(u)

‖hQi
‖µi,ϕ

)
dµi(u)

≥
1

µi(Sn−1)

∫

Sn−1

ϕ

(
ρQi

(ui)〈u, ui〉+
supi≥1 ‖hQi

‖µi,ϕ

)
dµi(u)

≥
1

µi(Sn−1)

∫

Sn−1

ϕ

(
C · 〈u, ui〉+

supi≥1 ‖hQi
‖µi,ϕ

)
dµi(u).

By Lemma 2.3.3, the uniform convergence of 〈u, ui〉+ → 〈u, v〉+ on Sn−1 as ui → v,
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the weak convergence of µi → µ, and ϕ ∈ I , one gets

1 ≥ lim
i→∞

1

µi(Sn−1)

∫

Sn−1

ϕ

(
C · 〈u, ui〉+

supi≥1 ‖hQi
‖µi,ϕ

)
dµi(u)

=
1

µ(Sn−1)

∫

Sn−1

ϕ

(
C · 〈u, v〉+

supi≥1 ‖hQi
‖µi,ϕ

)
dµ(u)

≥
1

µ(Sn−1)
· ϕ

(
C · c0

supi≥1 ‖hQi
‖µi,ϕ

)
·

∫

{u∈Sn−1:〈u,v〉≥c0}

dµ(u),

where c0 > 0 is a finite constant (which always exists due to the monotone convergence

theorem and the assumption that µ is not concentrated on any closed hemisphere)

such that
∫
{u∈Sn−1:〈u,v〉≥c0}

dµ(u) > 0. Taking C → ∞, the fact that limt→∞ ϕ(t) = ∞

then yields a contradiction to 1 < ∞. This concludes that {Qi}i≥1 is a bounded

sequence in K n
(o).

Our first variation of Problem 6.2.1 is the following general dual-polar Orlicz-

Minkowski problem associated with the Orlicz norms:

Problem 6.3.3. Under what conditions on a nonzero finite Borel measure µ defined

on Sn−1, continuous functions ϕ : (0,∞) → (0,∞) and G ∈ GI ∪ Gd can we find a

convex body K ∈ K n
(o) solving the following optimization problems:

inf / sup
{
‖hQ‖µ,ϕ : Q ∈ B̃

}
; (6.25)

inf / sup
{
‖hQ‖µ,ϕ : Q ∈ B̂

}
. (6.26)

Due to the high similarity of properties of
∫
Sn−1 ϕ(hQ) dµ and ‖hQ‖µ,ϕ, results

and their proofs in Section 6.2 can be extended and adopted to Problem 6.3.3. For

instance, the existence of solutions to Problem 6.3.3, if the infimum is considered, can

be obtained.

Theorem 6.3.4. Let ϕ ∈ I and µ be a nonzero finite Borel measure defined on

Sn−1 which is not concentrated on any closed hemisphere. Let G ∈ GI be a continuous

function such that (6.5) holds for some q ≥ n − 1. Then the following statements

hold.
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(i) There exists M̃ ∈ B̃ such that

‖hM̃‖µ,ϕ = inf
{
‖hQ‖µ,ϕ : Q ∈ B̃

}
. (6.27)

If, in addition, both ϕ(t) and G(t, ·) are convex on t ∈ (0,∞), then the solution is

unique.

(ii) There exists M̂ ∈ B̂ such that

‖hM̂‖µ,ϕ = inf
{
‖hQ‖µ,ϕ : Q ∈ B̂

}
.

If, in addition, both ϕ(t) and G(t, ·) are convex on t ∈ (0,∞), then the solution is

unique.

Proof. Only the brief proof for (i) is provided and the proof for (ii) follows along the

same lines. First of all, Bn ∈ B̃, and the optimization problem (6.27) is well defined.

In particular, there exists a sequence {Qi}i≥1 such that each Qi ∈ B̃ and

lim
i→∞

‖hQi
‖µ,ϕ = inf

{
‖hQ‖µ,ϕ : Q ∈ B̃

}
<∞.

This further implies that supi≥1 ‖hQi
‖µ,ϕ < ∞, which in turn yields the existence

of a subsequence {Qij}j≥1 of {Qi}i≥1 and M̃ ∈ B̃, such that Qij → M̃ , by Lem-

mas 6.1.4 and 6.3.2. It then follows from Lemma 6.3.1 that limi→∞ ‖hQi
‖µ,ϕ =

limj→∞ ‖hQij
‖µ,ϕ = ‖hM̃‖µ,ϕ. This concludes the proof, if one notices M̃ ∈ B̃, for

the existence of solutions to the optimization problem (6.27).

For the uniqueness, assume that M̃ ∈ B̃ and M̃0 ∈ B̃, such that

‖hM̃‖µ,ϕ = ‖hM̃0
‖µ,ϕ = inf

{
‖hQ‖µ,ϕ : Q ∈ B̃

}
. (6.28)

Note that G(t, ·) is convex and G ∈ GI is strictly increasing. Let K0 = M̃+M̃0

2
. By

(6.22), there is a constant t2 ≥ 1 such that ṼG(t2K
∗
0) = ṼG(B

n) and hence K0/t2 ∈ B̃.

It follows from (6.24), (6.28), t2 ≥ 1 and ϕ ∈ I being convex and strictly increasing

that
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µ(Sn−1) =

∫

Sn−1

ϕ

(
hK0(u)

‖hK0‖µ,ϕ

)
dµ

=
1

2

[ ∫

Sn−1

ϕ

(
hM̃

‖hM̃‖µ,ϕ

)
dµ+

∫

Sn−1

ϕ

(
hM̃0

(u)

‖hM̃0
‖µ,ϕ

)
dµ

]

≥

∫

Sn−1

ϕ

(
hK0(u)

‖hM̃0
‖µ,ϕ

)
dµ,

and hence ‖hM̃0
‖µ,ϕ ≥ ‖hK0‖µ,ϕ ≥ ‖hK0/t2‖µ,ϕ ≥ ‖hM̃0

‖µ,ϕ. Thus, all “≥” become “=”;

and this can happen if and only if t2 = 1. This in turn yields that all “≥” in (6.22)

become “=” as well. In particular, M̃ = M̃0 and the uniqueness follows.

Our second example is the continuity for Problem 6.3.3 and its solutions.

Theorem 6.3.5. Let µi, µ for i ∈ N be finite Borel measures on Sn−1 which are

not concentrated on any closed hemisphere and µi → µ weakly. Let G ∈ GI be a

continuous function such that (6.5) holds for some q ≥ n − 1 and ϕ ∈ I . The

following statements hold.

(i) Let M̃i, M̃ ∈ B̃, for all i ∈ N, be solutions to the optimization problem (6.25), with

the infimum considered, for measures µi and µ, respectively. Then, limi→∞ ‖hM̃i
‖µi,ϕ =

‖hM̃‖µ,ϕ. If, in addition, both ϕ(t) and G(t, ·) are convex on t ∈ (0,∞), then M̃i → M̃

as i→ ∞.

(ii) Let M̂i, M̂ ∈ B̂, for all i ∈ N, be solutions to the optimization problem (6.26), with

the infimum considered, for measures µi and µ, respectively. Then, limi→∞ ‖hM̂i
‖µi,ϕ =

‖hM̂‖µ,ϕ. If, in addition, both ϕ(t) and G(t, ·) are convex on t ∈ (0,∞), then M̂i → M̂

as i→ ∞.

Proof. Only the brief proof for (i) is provided and the proof for (ii) follows along the

same lines. It follows from Bn ∈ B̃, (6.24), and ϕ ∈ I , in particular ϕ(1) = 1 that

sup
i≥1

‖hM̃i
‖µi,ϕ ≤ sup

i≥1
‖hBn‖µi,ϕ = 1.

Lemma 6.3.2 yields that {M̃i}i≥1 is a bounded sequence.

Let {M̃ik}k≥1 be an arbitrary subsequence of {M̃i}i≥1. Lemma 6.1.4 yields the

existence of a subsequence {M̃ikj
}j≥1 of {M̃ik}k≥1 and M̃0 ∈ B̃ such that M̃ikj

→ M̃0.
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Together with the minimality of ‖hM̃ikj

‖µikj ,ϕ
, Lemma 6.3.1 and the weak convergence

of µi → µ imply that

‖hM̃0
‖µ,ϕ = lim

j→∞
‖hM̃ikj

‖µikj ,ϕ
≤ lim

j→∞
‖hQ‖µikj ,ϕ

= ‖hQ‖µ,ϕ,

for all Q ∈ B̃. Taking the infimum over Q ∈ B̃ and together with M̃0 ∈ B̃, one gets

that

‖hM̃0
‖µ,ϕ ≤ inf

Q∈B̃
‖hQ‖µ,ϕ = ‖hM̃‖µ,ϕ ≤ ‖hM̃0

‖µ,ϕ. (6.29)

In conclusion, every subsequence {M̃ik}k≥1 of {M̃i}i≥1 has a subsequence {M̃ikj
}j≥1

such that

‖hM̃‖µ,ϕ = lim
j→∞

‖hM̃ikj

‖µikj ,ϕ
,

which implies limi→∞ ‖hM̃i
‖µi,ϕ = ‖hM̃‖µ,ϕ.

Formula (6.29) asserts that M̃0 ∈ B̃ solves the optimization problem (6.25) with

the infimum considered. If, in addition, both ϕ(t) and G(t, ·) are convex on t ∈ (0,∞),

the uniqueness in Theorem 6.3.4 implies M̃0 = M̃ . In conclusion, every subsequence

{M̃ik}k≥1 of {M̃i}i≥1 has a subsequence {M̃ikj
}j≥1 such that M̃ikj

→ M̃ . Hence

M̃i → M̃ as i→ ∞.

An argument almost identical to Lemma 6.2.2 shows that, if ϕ ∈ I and G ∈ GI

satisfying (6.5) for some q ≥ n − 1, the solutions to Problem 6.3.3 with the in-

fimum considered for µ being a discrete measure defined in (6.13) (whose support

{u1, · · · , um} is not concentrated on any closed hemisphere) must be polytopes with

{u1, · · · , um} being the corresponding unit normal vectors of their faces. Counterex-

amples in Proposition 6.2.4 can be used to prove that the solutions to Problem 6.3.3

may not exist if ϕ ∈ I ∪ D and the supremum is considered or if ϕ ∈ D and the

infimum is considered. We leave the details for readers.
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6.3.2 The polar Orlicz-Minkowski problem associated with

the general volume

First, we propose the definitions of the general nonhomogeneous and homogeneous

volume with respect to a convex body K ∈ K n
(o).

Definition 6.3.6. Let G : (0,∞) × Sn−1 → (0,∞) be a continuous function. The

general volume of a convex body K ∈ K n
(o), denoted by VG(K), is proposed to be

VG(K) =

∫

Sn−1

G(hK(u), u) dS(K, u).

Note that VG(K) = V (K) if G(t, u) = t/n for any (t, u) ∈ (0,∞)× Sn−1.

Proposition 6.3.7. Let G : (0,∞) × Sn−1 → (0,∞) be a continuous function. The

general volume VG(·) has the following properties.

(i) VG(·) is continuous on K n
(o) in terms of the Hausdorff metric, that is, for any

sequence {Ki}i≥1 such that Ki ∈ K n
(o) for all i ∈ N and Ki → K ∈ K n

(o), then

VG(Ki) → VG(K).

(ii) Let K ∈ K n
(o). If G(t, ·) = tn−1G(t, ·) ∈ GI , then VG(tK) is strictly increasing on

t ∈ (0,∞) and

lim
t→0+

VG(tK) = 0 and lim
t→∞

VG(tK) = ∞;

while if G ∈ Gd, then VG(tK) is strictly decreasing on t ∈ (0,∞) and

lim
t→0+

VG(tK) = ∞ and lim
t→∞

VG(tK) = 0.

Proof. The fact that Ki → K ∈ K n
(o) with Ki ∈ K n

(o) for each i ∈ N implies that

hKi
→ hK uniformly on Sn−1 and S(Ki) → S(K). Moreover, there exist two positive

constants rK < RK such that

rK ≤ hK ≤ RK and rK ≤ hKi
≤ RK for all i ∈ N.

(i) As hKi
→ hK uniformly on Sn−1, one has G(hKi

(u), u) → G(hK(u), u) also uni-

formly on Sn−1. Lemma 2.3.3 and the well known fact that S(Ki, ·) → S(K, ·) weakly

yield that VG(Ki) → VG(K) as i→ ∞.
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(ii) Let K ∈ K n
(o). For all t > s > 0 and all u ∈ Sn−1, if G ∈ GI (and hence G(t, ·) is

strictly increasing on t > 0), then VG(tK) is strictly increasing on t > 0 as follows:

VG(tK) =

∫

Sn−1

G(htK(u), u) dS(tK, u)

=

∫

Sn−1

tn−1G(t · hK(u), u) dS(K, u)

=

∫

Sn−1

G(t · hK(u), u)h
1−n
K (u) dS(K, u)

>

∫

Sn−1

G(s · hK(u), u)h
1−n
K (u) dS(K, u)

= VG(sK).

As rK ≤ hK(u) ≤ RK for all u ∈ Sn−1,

lim
t→0+

VG(tK) = lim
t→0+

∫

Sn−1

G(t · hK(u), u)h
1−n
K (u) dS(K, u)

≤ lim
t→0+

∫

Sn−1

r1−nK G(t ·RK , u) dS(K, u)

=

∫

Sn−1

lim
t→0+

r1−nK G(t ·RK , u) dS(K, u)

= 0,

where we have used the dominated convergence theorem and limt→0+ G(t, ·) = 0.

This proves that limt→0+ VG(tK) = 0. Similarly, limt→∞ VG(tK) = ∞ can be proved

as follows:

lim
t→∞

VG(tK) ≥ lim inf
t→∞

∫

Sn−1

G(t · rK , u)R
1−n
K dS(K, u)

≥

∫

Sn−1

lim inf
t→∞

G(t · rK , u)R
1−n
K dS(K, u)

= ∞,

where we have used Fatou’s lemma and the fact that limt→∞G(t, ·) = ∞. The desired

result for the case G ∈ Gd follows along the same lines.

For each K ∈ K n
(o), denote by S(K) the surface area of K. A fundamental

inequality for S(K) is the celebrated classical isoperimetric inequality (see e.g., [59]):

S(K) ≥ n
[
V (Bn)

]1/n
V (K)

n−1
n . (6.30)
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Definition 6.3.8. The homogeneous general volume of K ∈ K n
(o), denoted by V G(K)

is defined as follows: for G ∈ GI ∪ Gd,

1

S(K)

∫

Sn−1

G

(
S(K) · hK(u)

V G(K)
, u

)
dS(K, u) = 1. (6.31)

Indeed, V G(K) for K ∈ K n
(o) exists and is uniquely defined following from similar

arguments to Proposition 6.1.1. In particular, V G(K) = V (K) if G(t, u) = t/n. Note

that V G(K) has equivalent formulas similar to (6.1) and (6.2).

Proposition 6.3.9. Let G ∈ GI ∪ Gd. The homogeneous general volume V G(·) has

the following properties.

(i) V G(·) is homogeneous, that is, V G(tK) = tnV G(K) holds for all t > 0 and all

K ∈ K n
(o).

(ii) V G(·) is continuous on K n
(o) in terms of the Hausdorff metric, that is, for any

sequence {Ki}i≥1 such that Ki ∈ K n
(o) for all i ∈ N and Ki → K ∈ K n

(o), then

V G(Ki) → V G(K).

Proof. (i) The desired argument follows trivially from (6.31), the strict monotonicity

of G, and the facts that S(tK) = tn−1S(K) and htK = t · hK for all t > 0.

(ii) Following the notations as in Proposition 6.3.7, we will prove the continuity for

V G(·) if G ∈ GI (and the proof for the case G ∈ Gd is omitted). It follows from (6.31)

that

∫

Sn−1

G

(
S(Ki) · rK

V G(Ki)
, u

)
dS(Ki, u) ≤ S(Ki)

≤

∫

Sn−1

G

(
S(Ki) ·RK

V G(Ki)
, u

)
dS(Ki, u).

Suppose that infi∈N V G(Ki) = 0, and without loss of generality, let limi→∞ V G(Ki) =

0. Then for any ε > 0, there exists iε ∈ N such that V G(Ki) < ε for all i > iε. Hence,

for i ≥ iε,

∫

Sn−1

G

(
S(Ki) · rK

ε
, u

)
dS(Ki, u) ≤

∫

Sn−1

G

(
S(Ki) · rK

V G(Ki)
, u

)
dS(Ki, u)

≤ S(Ki).
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A contradiction can be obtained from Lemma 2.3.3, the weak convergence of S(Ki, ·) →

S(K, ·), the facts that limt→∞G(t, ·) = ∞ and S(Ki) → S(K), and Fatou’s lemma as

follows:

S(K) ≥ lim inf
ε→0+

[
lim
i→∞

∫

Sn−1

G

(
S(Ki) · rK

ε
, u

)
dS(Ki, u)

]

= lim inf
ε→0+

∫

Sn−1

G

(
S(K) · rK

ε
, u

)
dS(K, u)

≥

∫

Sn−1

lim inf
ε→0+

G

(
S(K) · rK

ε
, u

)
dS(K, u)

= ∞.

This is impossible and hence infi∈N V G(Ki) > 0. Similarly, supi∈N V G(Ki) <∞.

Now let us prove limi→∞ V G(Ki) = V G(K). Assume V G(K) < lim supi→∞ V G(Ki).

There exists a subsequence {Kij} of {Ki} such that

V G(K) < lim
j→∞

V G(Kij) ≤ sup
i∈N

V G(Ki) <∞.

By G ∈ GI , (6.31), Lemma 2.3.3, S(Kij , u) → S(K, ·) weakly and hKij
→ hK > 0

uniformly on Sn−1, one gets

S(K) = lim
j→∞

∫

Sn−1

G

(
S(Kij) · hKij

(u)

V G(Kij)
, u

)
dS(Kij , u)

=

∫

Sn−1

G

(
S(K) · hK(u)

limj→∞ V G(Kij)
, u

)
dS(K, u)

<

∫

Sn−1

G

(
S(K) · hK(u)

V G(K)
, u

)
dS(K, u)

= S(K).

This is a contradiction and hence lim supi→∞ V G(Ki) ≤ V G(K). Similarly, one can

obtain lim infi→∞ V G(Ki) ≥ V G(K) and then the desired equality limi→∞ V G(Ki) =

V G(K) holds.

Problems 6.2.1 and 6.3.3 can be asked for VG and V G, respectively.

Problem 6.3.10. Under what conditions on a nonzero finite Borel measure µ defined

on Sn−1, continuous functions ϕ : (0,∞) → (0,∞) and G : (0,∞) × Sn−1 → (0,∞)
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can we find a convex body K ∈ K n
(o) solving the following optimization problems:

inf / sup {‖hQ‖µ,ϕ : Q ∈ B} or inf / sup

{∫

Sn−1

ϕ(hQ(u)) dµ(u) : Q ∈ B

}
;

inf / sup
{
‖hQ‖µ,ϕ : Q ∈ B

}
or inf / sup

{∫

Sn−1

ϕ(hQ(u)) dµ(u) : Q ∈ B

}
,

where B and B are given by

B =
{
Q ∈ K n

(o) : VG(Q
∗) = VG(B

n)
}
;

B =
{
Q ∈ K n

(o) : V G(Q
∗) = V G(B

n)
}
, if G ∈ GI ∪ Gd.

Again, when G = t/n, Problem 6.3.10 becomes the polar Orlicz-Minkowski prob-

lem [44]. From Sections 6.2 and 6.3.1, one sees that the existence and continuity of

solutions to Problems 6.2.1 and 6.3.3 are similar, and their proofs heavily depend on

Lemmas 6.1.4, 6.2.5, 6.3.1 and 6.3.2. In particular, if alternative arguments of Lemma

6.1.4 for VG(·) and V G(·) can be established, the desired existence and continuity of

solutions, if applicable, to Problem 6.3.10 will follow. The following lemma is a re-

placement of Lemma 6.1.4. Note that the monotonicity of VG(·) and V G(·) in terms

of set inclusion, in general, may be invalid. Therefore, our proof for Lemma 6.3.11 is

quite different from the one for Lemma 6.1.4.

Lemma 6.3.11. Let G : (0,∞) × Sn−1 → (0,∞) be a continuous function and

Gq(t, u) =
G(t,u)
tq

for q ∈ R.

(i) Suppose that there exists a constant q ∈ (1− n, 0), such that,

inf
{
Gq(t, u) : t ≥ 1 and u ∈ Sn−1

}
> 0. (6.32)

If {Qi}i≥1 with Qi ∈ B for all i ∈ N is a bounded sequence, then there exist a

subsequence {Qij}j≥1 of {Qi}i≥1 and Q0 ∈ B such that Qij → Q0.

(ii) Let G ∈ GI satisfy (6.32) for some q ≥ 1. If {Qi}i≥1 with Qi ∈ B for all i ∈ N is

a bounded sequence, then there exist a subsequence {Qij}j≥1 of {Qi}i≥1 and Q0 ∈ B

such that Qij → Q0.

Proof. Let {Qi}i≥1 with Qi ∈ K n
(o) for each i ∈ N be bounded. There exists a finite

constant R > 0 such that Qi ⊂ RBn for all i ∈ N, which in turn implies Q∗
i ⊃

1
R
Bn. In
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particular, hQ∗
i
≥ 1/R for each i ∈ N and S(Q∗

i ) ≥ R1−nS(Bn) due to the monotonicity

of surface area for convex bodies.

(i) Again (6.32) is equivalent to: there exist finite constants c0, C0 > 0 such that for

q ∈ (1− n, 0),

inf
{
Gq(t, u) : t ≥ c0 and u ∈ Sn−1

}
> C0. (6.33)

Let c0 = 1/R. Then G(t, u) ≥ C0t
q for q ∈ (1 − n, 0) and for all (t, u) ∈ [1/R,∞) ×

Sn−1. Thus,

VG(Q
∗
i ) =

∫

Sn−1

G(hQ∗
i
(u), u) dS(Q∗

i , u)

≥ C0 · S(Q
∗
i )

∫

Sn−1

hqQ∗
i
(u)

1

S(Q∗
i )
dS(Q∗

i , u)

≥ C0 · S(Q
∗
i )

(∫

Sn−1

hQ∗
i
(u)

1

S(Q∗
i )
dS(Q∗

i , u)

)q

= C0 · S(Q
∗
i )

(
nV (Q∗

i )

S(Q∗
i )

)q

≥ C0 · n
(
V (Bn)

) 1
n
(
V (Q∗

i )
)1− 1

n

(
V (Q∗

i )

V (Bn)

) q
n

= C0 · n
(
V (Bn)

) 1−q
n
(
V (Q∗

i )
)n−1+q

n ,

where we have used Jensen’s inequality and the classical isoperimetric inequality

(6.30). Recall that VG(Q
∗
i ) = VG(B

n) for all i ∈ N and 1− n < q < 0, one has

sup
i≥1

{
V (Q∗

i )
}
≤

(
VG(B

n)

C0 · n
(
V (Bn)

) 1−q
n

) n
n−1+q

<∞.

Note that tn/n satisfies (6.5). The proof of Lemma 6.1.4 (in particular, (6.9)) can

be used to get a subsequence {Qij}j≥1 of {Qi}i≥1 and Q0 ∈ K n
(o) such that Qij → Q0

(see also [48, Lemma 3.2]). Consequently Q∗
ij
→ Q∗

0, and the continuity of VG(·) in

Proposition 6.3.7 further yields that Q0 ∈ B following from Qi ∈ B for all i ∈ N.

(ii) Recall that Q∗
i ⊃

1
R
Bn for each i ∈ N. As Qi ∈ B for each i ∈ N, one has

c0 =
R−nS(Bn)

V G(Bn)
≤
S(Q∗

i ) · hQ∗
i
(u)

V G(Q∗
i )

.
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It follows from (6.31), (6.33) and Jensen’s inequality for q ≥ 1 that

1 =
1

S(Q∗
i )

∫

Sn−1

G

(
S(Q∗

i ) · hQ∗
i
(u)

V G(Q∗
i )

, u

)
dS(Q∗

i , u)

≥
C0

S(Q∗
i )

∫

Sn−1

(
S(Q∗

i ) · hQ∗
i
(u)

V G(Bn)

)q
dS(Q∗

i , u)

≥ C0

(∫

Sn−1

hQ∗
i
(u)

V G(Bn)
dS(Q∗

i , u)

)q

= C0

(
nV (Q∗

i )

V G(Bn)

)q
.

This further implies that

V (Q∗
i ) ≤ n−1C

−1/q
0 V G(B

n)

for each i ∈ N. As in (i) (the last paragraph), one gets a subsequence {Qij}j≥1 of

{Qi}i≥1 and Q0 ∈ K n
(o), such that, Q∗

ij
→ Q∗

0. The continuity of V G(·) in Proposition

6.3.9 further yields that Q0 ∈ B following from Qi ∈ B for all i ∈ N.

Remark. It can be easily checked that if (6.32) holds for some q ≥ 0, Part (i) of

Lemma 6.3.11 also holds. To this end, if (6.32) holds for q ≥ 0, one can verify that

2q + n− 1 > 0 and

inf
{
G 1−n

2
(t, u) : (t, u) ∈ [1,∞)× Sn−1

}

= inf
{
Gq(t, u) · t

2q+n−1
2 : (t, u) ∈ [1,∞)× Sn−1

}

≥ inf
{
Gq(t, u) : (t, u) ∈ [1,∞)× Sn−1

}

> 0.

Hence, (6.32) holds for 1−n
2

∈ (1 − n, 0) and then Part (i) of Lemma 6.3.11 also

follows. In particular, Part (i) of Lemma 6.3.11 works for G = t/n and G = 1 which

correspond to the volume and the surface area, respectively. Similar to the remark of

Lemma 6.1.4, if G ∈ Gd, G does not satisfy (6.32) for some q ≥ 1.

The existence of solutions and the continuity of the extreme values to Problem

6.3.10 for VG are stated below.

Theorem 6.3.12. Let ϕ ∈ I and let G : (0,∞) × Sn−1 → (0,∞) satisfying (6.32)
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for some q ∈ (1− n, 0).

(i) Let µ be a nonzero finite Borel measure on Sn−1 whose support is not concentrated

on any great hemisphere. Then there exist M1,M2 ∈ B such that

∫

Sn−1

ϕ(hM1(u))dµ(u) = inf
Q∈B

∫

Sn−1

ϕ(hQ(u)) dµ(u); (6.34)

‖hM2‖µ,ϕ = inf
Q∈B

‖hQ‖µ,ϕ. (6.35)

(ii) Let {µi}
∞
i=1 and µ be nonzero finite Borel measures on Sn−1 whose supports are

not concentrated on any closed hemisphere, such that, µi → µ weakly as i→ ∞. Then

lim
i→∞

(
inf
Q∈B

∫

Sn−1

ϕ(hQ(u)) dµi(u)

)
= inf

Q∈B

∫

Sn−1

ϕ(hQ(u)) dµ(u);

lim
i→∞

(
inf
Q∈B

‖hQ‖µi,ϕ

)
= inf

Q∈B
‖hQ‖µ,ϕ.

Proof. (i) Note that Bn ∈ B and hence the optimization problem in (6.34) is well

defined. Let {Qi}i≥1 be the limiting sequences such that Qi ∈ B for each i ∈ N and

µ(Sn−1) ≥ inf
Q∈B

∫

Sn−1

ϕ(hQ(u)) dµ(u) = lim
i→∞

∫

Sn−1

ϕ(hQi
(u)) dµ(u).

It follows from Lemma 6.2.5 that {Qi}i≥1 is a bounded sequence in K n
(o). Together

with Lemma 6.3.11, there exist a subsequence {Qij}j≥1 of {Qi}i≥1 and M1 ∈ B such

that Qij →M1. Lemma 2.3.3 and ϕ ∈ I then yield

∫

Sn−1

ϕ(hM1(u)) dµ(u) = lim
j→∞

∫

Sn−1

ϕ(hQij
(u)) dµ(u) = inf

Q∈B

∫

Sn−1

ϕ(hQ(u)) dµ(u).

The existence of M2 ∈ B that verifies (6.35) can be obtained similarly, with
Lemma 6.2.5 and Lemma 2.3.3 replaced by Lemma 6.3.2 and Lemma 6.3.1, respec-

tively, if one notices that

1 ≥ inf
Q∈B

‖hQ‖µ,ϕ = lim
i→∞

‖hQi
‖µ,ϕ.

(ii) First, note that from Part (i), the optimization problems (6.34) and (6.35) for µ

and µi for each i ∈ N have solutions. The rest of the proof is almost identical to those

for Theorems 6.2.6 and 6.3.5, with Lemma 6.1.4 replaced by Lemma 6.3.11.
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Similarly, one can prove the existence of solutions and the continuity of the extreme

values to Problem 6.3.10 for V G(·). The proof will be omitted due to the high similarity

to those in e.g., Theorem 6.3.12.

Theorem 6.3.13. Let ϕ ∈ I and let G ∈ GI satisfy (6.32) for some constant q ≥ 1.

(i) Let µ be a nonzero finite Borel measure on Sn−1 whose support is not concentrated

on any great hemisphere. There exist M1,M2 ∈ B such that

∫

Sn−1

ϕ(hM1
(u))dµ(u) = inf

Q∈B

∫

Sn−1

ϕ(hQ(u)) dµ(u) and ‖hM2
‖µ,ϕ = inf

Q∈B
‖hQ‖µ,ϕ.

(ii) Let {µi}
∞
i=1 and µ be nonzero finite Borel measures on Sn−1 whose supports are

not concentrated on any closed hemisphere, such that, µi → µ weakly as i→ ∞. Then

lim
i→∞

(
inf
Q∈B

∫

Sn−1

ϕ(hQ(u)) dµi(u)

)
= inf

Q∈B

∫

Sn−1

ϕ(hQ(u)) dµ(u));

lim
i→∞

(
inf
Q∈B

‖hQ‖µi,ϕ

)
= inf

Q∈B
‖hQ‖µ,ϕ.

6.3.3 The general Orlicz-Petty bodies

The classical geominimal surface area [57, 58] and its Lp or Orlicz extensions (see

e.g., [48, 71, 72, 74, 77]) are central objects in convex geometry. When studying the

properties of various geominimal surface areas, the Petty body or its generalizations

play fundamental roles. In short, the Orlicz-Petty bodies are the solutions to the

following optimization problems [74, 77]:

inf
{
nVϕ(K,L) : L ∈ K n

(o) with V (L∗) = V (Bn)
}
; (6.36)

inf
{
V̂ϕ(K,L) : L ∈ K n

(o) with V (L∗) = V (Bn)
}
, (6.37)

where ϕ ∈ I , and Vϕ(K,L) and V̂ϕ(K,L) are the Orlicz Lϕ mixed volumes of K,L ∈

K n
(o) defined by (see e.g., [16, 68, 77]):

Vϕ(K,L) =
1

n

∫

Sn−1

ϕ

(
hL(u)

hK(u)

)
hK(u)dS(K, u) and V̂ϕ(K,L) =

∥∥∥∥
hL
hK

∥∥∥∥
S(K,·),ϕ

.
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The surface area measure S(K, ·) may be replaced by other measures; for instance,

Luo, Ye and Zhu in [44] obtained the p-capacitary Orlicz-Petty bodies where the

surface area measure is replaced by the p-capacitary measure (see e.g., [14, 34]). As

explained in [44], the polar Orlicz-Minkowski problem (i.e., Problems 6.2.1 and 6.3.3

with G = tn/n) and the optimization problems (6.36) and (6.37) are quite different

in their general forms; however these two problems are also very closely related. In

view of their relations, we can ask the following problem aiming to find the general

Orlicz-Petty bodies.

Problem 6.3.14. Let K ∈ K n
(o) be a fixed convex body. Let µK be a nonzero finite

Borel measure associated with K defined on Sn−1, which is not concentrated on any

closed hemisphere. Under what conditions on continuous functions ϕ : (0,∞) →

(0,∞) and G : (0,∞) × Sn−1 → (0,∞) can we find a convex body M ∈ K n
(o) solving

the following optimization problems:

inf / sup

{∥∥∥∥
hQ
hK

∥∥∥∥
µK ,ϕ

: Q ∈ A

}
or inf / sup

{∫

Sn−1

ϕ

(
hQ(u)

hK(u)

)
hK(u)dµK(u) : Q ∈ A

}
,

(6.38)

where A is selected from the following sets: B̃, B̂,B and B.

Note that the measure µK assumed in Problem 6.3.14 includes many interesting

measures, such as, the surface area measure S(K, ·), the p-capacitary measure [14, 34],

the Orlicz p-capacitary measure [24], the Lp dual curvature measures [29, 54], the

general dual Orlicz curvature measures [17, 19, 69, 78], and many more.

Definition 6.3.15. Let K ∈ K n
(o) be a fixed convex body. Let µK be a nonzero finite

Borel measure associated with K defined on Sn−1, which is not concentrated on any

closed hemisphere. If M ∈ A solving the optimization problem (6.3.14), then M is

called a general Orlicz-Petty body of K with respect to µK.

Recall that if K ∈ K n
(o), there are two constants 0 < rK < RK such that rKB

n ⊂

K ⊂ RKB
n. In view of this, the existence, continuity and uniqueness, if applicable, of

the general Orlicz-Petty bodies with respect to µK can be obtained (almost identically)

as in Sections 6.2, 6.3.1 and 6.3.2. Polytopal solutions and counterexamples as in

Proposition 6.2.4, when K is a polytope, can be also established accordingly.
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ṼG, 54
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