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Abstract 

In this thesis, induction motors fault diagnosis are investigated using machine learning and 

advanced signal processing techniques considering two scenarios: 1) induction motors are directly 

connected online; and 2) induction motors are fed by variable frequency drives (VFDs).  The 

research is based on experimental data obtained in the lab. Various single- and multi- electrical 

and/or mechanical faults were applied to two identical induction motors in experiments. Stator 

currents and vibration signals of the two motors were measured simultaneously during experiments 

and were used in developing the fault diagnosis method. Signal processing techniques such as 

Matching Pursuit (MP) and Discrete Wavelet Transform (DWT) are chosen for feature extraction. 

Classification algorithms, including decision trees, support vector machine (SVM), K-nearest 

neighbors (KNN), and Ensemble algorithms are used in the study to evaluate the performance and 

suitability of different classifiers for induction motor fault diagnosis. Novel curve or surface fitting 

techniques are implemented to obtain features for conditions that have not been tested in 

experiments. The proposed fault diagnosis method can accurately detect single- or multi- electrical 

and mechanical faults in induction motors either directly online or fed by VFDs. 

In addition to the machine learning method, a threshold method using the stator current signal 

processed by DWT is also proposed in the thesis. 
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Chapter 1 

Introduction  

 

1.1 Background Study 

Induction motors are workhorse for various industrial sectors. General applications of induction motors 

include pumps, conveyors, machine tools, centrifugal machines, presses, elevators, and packaging 

equipment. They are also used in hazardous locations such as petrochemical and natural gas plants, and in 

severe environment such as grain elevators, shredders, and equipment for coal plants [1]-[3]. 

Although relative robust, induction motors are still susceptible to many types of faults. A motor failure 

that is not identified in an initial stage may become catastrophic, the motor may suffer severe damage and 

it may cause production shutdowns. Such shutdowns are costly in terms of lost production time, 

maintenance costs, and wasted raw materials. For reliable and smooth operation in any industrial process, 

it is important to know the distribution of different failure sections of an induction motor for condition 

monitoring and incipient fault diagnosis. 

Recently, research has designated different fault distributions of induction motors within a range of 0.75 

kW to 150 kW and provided probable scenario and decision processes to diagnose those faults. The main 

distribution of induction motor faults, shown in Fig. 1.1, can be categorized as rotor bar (7%), stator winding 

(21%), bearing fault (69%), and shaft/coupling and others (3%). Approximately two-third of faults arose 

due to bearing and one-fifth occurred due to stator windings [1] [2]. 

A similar statistical survey conducted by IEEE and electric power research institute (EPRI) on induction 

motor faults and the percentage of different faults with respect to the total number of faults is tabulated in 

Table 1.1 [4]. 
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Fig. 1. 1. Different fault distribution of an induction motor [2]. 

 

The maintenance of electrical machines can be categorized in three ways: 1) condition-based 

maintenance, 2) scheduled maintenance, and 3) breakdown maintenance. Condition-based maintenance 

includes noticing and receiving several periodic data like voltage, current spectrum, torque profile etc. from 

a machine during operation and taking necessary steps to prevent any fault at the initial stage to minimize 

the machine’s downtime [4]. The scheduled maintenance is defined as employing expertise to stop the 

machine for checkup, determine any defects and repair and replace the part accordingly, although the 

process requires a long downtime. Lastly, the breakdown maintenance, which occurs during a mechanical 

failure of the machine, requires the replacement of the whole machine rather than fixing or replacing the 

faulty parts of the machine [3]-[5]. Therefore, it is advantageous to implement a condition-based monitoring 

system because it requires less maintenance, lowers the cost and reduces the downtime of the machine [5]. 

Table 1. 1: Statistical survey results for induction motor faults by IEEE and EPRI [3] [4]. 

Major fault components 
Studied by 

IEEE (%) EPRI (%) 

Rotor fault 8 9 

Bearing fault 42 41 

Stator fault 28 36 

Others 22 14 

 

 



 

3 | P a g e  

 

The motor faults are due to mechanical and electrical stresses. Mechanical stresses are caused by 

overloads and abrupt load changes, which can produce bearing faults and rotor bar breakage. Electrical 

stresses are usually associated with the power supply. Induction motors can be energized from constant 

frequency sinusoidal power supplies or from adjustable speed ac drives. 

 

However, induction motors are more susceptible to faults when supplied by ac drives. This is due to the 

extra voltage stress on the stator windings, the high frequency stator current components, and the induced 

bearing currents, caused by ac drives. In addition, motor over-voltages can occur because of the length of 

cable connections between a motor and an ac drive. Such electrical stresses may produce stator winding 

short circuits and result in a complete motor failure. 

 

The aim of the condition monitoring process of an induction motor is to demonstrate a reliable 

mechanism for fault detection at the initial stage so that necessary steps can be taken [6]. According to the 

different survey processes, different types of fault are revealed under different conditions that are shown in 

Fig. 1.2 [3], [5]-[7]. Observing and examining the corresponding abnormalities in induction motor voltage, 

current spectrum and leakage flux helps to monitor the condition and diagnose the fault at the incipient 

breakdown stage of an induction motor [7]. 

 

There are several methods used by researchers to investigate the diagnosis process of faulty machines, 

including their bearing faults, broken rotor bars, air gap eccentricity and stator winding inter turn faults [5]. 

The objective of this thesis is to obtain an effective fault diagnosis method using machine learning and 

advanced signal processing techniques. 
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Source of machine faults

Internal fault External fault

Mechanical fault Electrical fault

• Broken rotor bar

• Bearing faults

• Eccentricity

• Stator winding

• Mass unbalance

• Dielectric failure

• Inter-turn short 

circuit

• Magnetic circuit 

faults

Electrical faultMechanical fault Environmental fault

• Transient voltage

• Crawling

• Unbalance supply 

voltage or current

• Overload

• Pulsating load

• Earth fault

• Poor mounting

• Temperature

• Cleanliness

• Foundation defect

 

Fig. 1. 2. Summary of different faults under different operating conditions [3], [5]-[7]. 

 

1.2 Thesis Outline   

This thesis consists of three manuscripts, two have been already published, and one has been accepted 

for publication. 

 

Chapter 1  

In Chapter 1, the importance of the research topic is introduced; the objectives of the research work are 

described. 

Chapter 2   

In Chapter 2, a literature review for the research work is conducted. The main objective of this thesis is 

to develop a fault diagnosis method for induction motors using machine learning and advanced signal 

processing techniques. 

 

Chapter 3   

In Chapter 3, a machine learning based fault diagnosis method is proposed for induction motors using 

experimental data for induction motors connected directly online. Various single- and multi- electrical 

and/or mechanical faults were applied to two identical induction motors in experiments. Stator currents and 
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vibration signals of the motors were measured simultaneously during experiments and are used in 

developing the fault diagnosis method. Two signal processing techniques, Matching Pursuit (MP) and 

Discrete Wavelet Transform (DWT), are chosen for feature extraction. Three classification algorithms, 

support vector machine (SVM), K-nearest neighbors (KNN), and Ensemble, with 17 different classifiers 

offered in the MATLAB Classification Learner toolbox, are used in the study to evaluate the performance 

and suitability of different classifiers for induction motor fault diagnosis. A novel curve fitting technique is 

developed to calculate features for the conditions that are not tested in experiments. The proposed fault 

diagnosis method can accurately detect single- or multi- electrical and mechanical faults in induction 

motors. A version of this chapter has been published in the IEEE Transactions on Industry Applications in 

May/June 2019 regular issue. 

Chapter 4   

In Chapter 4, a general methodology is developed by using experimentally measured stator current 

signals under the full load condition of an induction motor connected directly online. The measured stator 

current for various single- and multi-electrical faults of the induction motor are investigated to obtain 

signatures for fault diagnosis. In this chapter, the DWT is chosen for signal processing. The threshold and 

energy values at each decomposition level for the DWT analysis are evaluated. A version of this chapter 

has been published in the proceedings of 2019 IEEE Canadian Conference of Electrical and Computer 

Engineering (CCECE). 

 

Chapter 5   

In Chapter 5, a machine learning based fault diagnosis method is developed for induction motors fed by 

VFDs. Two identical 0.25 HP induction motors under healthy, single- and multi-fault conditions were tested 

in the lab with different VFD output frequencies settings and motor loadings. The stator current and 

vibration signals of the motor were recorded simultaneously under steady-state for each test. Both signals 

have been evaluated for their suitability for machine learning. The DWT is chosen to process the signals 
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and extract the features. Four families of algorithms from the MATLAB Classification Learner Toolbox, 

decision trees, SVM, KNN, and Ensemble, with twenty classifiers, are used to evaluate their classification 

accuracy. To allow fault diagnosis for untested motor operating conditions with different combinations of 

the motor operating frequency and the motor loading factor, feature calculation formulas are developed 

through surface fitting for the conditions that are not tested in experiments. The proposed fault diagnosis 

method can accurately detect single- or multi- electrical and mechanical faults in induction motors fed by 

VFD. A version of this chapter has been accepted by 2019 IEEE Industry Application Society (IAS) Annual 

Meeting. 

 

Chapter 6   

In Chapter 6, the research outcomes are summarized and the potential future research scope is addressed.  
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Chapter 2  

Literature Review  

2.1 Streams of Research on Fault Diagnosis of the Induction Motor 

Induction motors play a vital role in safe and efficient running of industrial plants and processes due to 

their low cost, strength and economical maintenance. Early detection of abnormalities in induction motors 

will help to avoid destructive failures. The goal of machine condition monitoring and fault diagnosis is to 

provide useful and effective information on the condition of equipment in a timely manner [1]-[4].  

 

There are many published techniques and commercially available tools to monitor induction motors to 

assure a high degree of reliable uptime. Redundancy and conservative design systems have been adopted 

for improving the reliability of induction motor drive systems for a variety of faults that can occur, but these 

techniques are expensive to implement. 

 

There are several advantages of condition monitoring of induction motors can be addressed as follows: 

(i) improved operating efficiency, (ii) reduced maintenance costs for better planning, (iii) extended 

operational life of the machine, and (iv) increased machine availability and reliability etc. However, there 

are some disadvantages that must be weighed in the decision to use machine condition monitoring and fault 

diagnostics and these drawbacks includes: (i) monitoring equipment costs, (ii) a significant running time to 

collect machine histories and trends is usually needed, and (iii) operational costs etc. [1][2]. Condition 

monitoring leading to incipient fault detection and prediction for induction motors has attracted many 

researchers in the past few years owing to its considerable influence on the safe operation of many industrial 

processes. It is important to be able to detect motor faults while they are still developing [2]. The one-line 

diagram of a general approach to condition monitoring for the induction motor is shown in Fig. 2.1 [3]. 
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Fig. 2. 1. General approach of condition monitoring [3]. 

Early detection and precise diagnosis of incipient faults allow preventive maintenance to be performed 

and provide sufficient time for controlled shutdown of the affected process. They can reduce financial losses 

and avoid catastrophic consequences. An ideal condition monitoring and fault diagnosis scheme should take 

the minimum measurements from a motor. A condition can be inferred to give a clear indication of incipient 

fault modes in a minimal time. Condition monitoring establishes a map between input signals and output 

indications of motor conditions. Classifying the type of motor faults and determining the severity of faults 

are not easy because they are affected by many factors [4]. 

 

In the literature, there are three streams of research on fault diagnosis for induction motors, which can 

be categorized as follows: 1) signature extraction based approaches, 2) model-based approaches, and 3) 

knowledge-based approaches. The signature extraction based approaches quantify fault signatures in time 

and/or the frequency domain. Current, voltage, power, vibration, temperature, and acoustic emission can 

serve as monitoring signals. Signatures extracted from the recorded monitoring signals are used to detect 

faults. Motor Current Signature Analysis (MSCA), a well-known spectral analysis method, is one of the 

most popular techniques for online monitoring of induction motors in industrial environments. The MCSA 

can remotely monitor the stator current through the motor control center, and is most successful in detecting 

broken rotor bars or end ring faults. However, the false fault indication is a common issue with MSCA that 

needs to be improved. The model-based approaches depend on mathematical modeling to predict behaviors 

of induction motors under fault conditions. Although model-based approaches can provide warnings and 

estimate incipient faults, their accuracy is largely dependent on explicit motor models, which may not be 
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always available. The knowledge-based approaches, on the other hand, do not need a trigger threshold, 

machine models, motor or load characteristics. The knowledge-based approaches use machine learning 

techniques for on-line and off-line applications. Artificial intelligence (AI) methods have been applied for 

fault diagnosis in very complex time-varying and non-linear systems. With continuous advancement of 

machine learning algorithms, the knowledge-based approach is emerging as a promising research direction 

for induction motor fault diagnosis with great industrial application potential [2][5][6].  

 

Signal processing is a key step for condition monitoring and fault diagnosis. It can be categorized as 

follows: 1) time domain analysis, 2) frequency domain analysis, and 3) time-frequency domain analysis. 

There are many signals, including vibration and electrical signals, for motor condition monitoring and fault 

diagnosis. However, an important factor for motor condition monitoring and fault diagnosis is the ability to 

extract the features of motor signals. The goal is to extract features which are related to specific motor fault 

modes. A feature extraction technique is needed for signal processing of recorded time-series signals over 

a long period of time to obtain suitable feature parameters for condition monitoring and fault diagnosis. By 

employing appropriate signal analysis algorithms, it is feasible to detect changes in signals caused by faulty 

components. The aim of feature extraction is to extract the signal features hidden in the original time 

domain. Corresponding to different signals, a signal analysis method should be properly selected such that 

the feature value of signals can be boosted to improve diagnostic sensitivity to a motor fault. 

 

Most of the analysis used for fault diagnosis, starting about three decades ago, was performed using fast 

Fourier transform (FFT) based tools on the motor current or vibration signature. However, FFT has some 

limitations, like the masking of characteristic frequencies (generally small frequency) by supply frequency, 

inappropriateness for transient signals, etc. To overcome these limitations, different new techniques are 

being used now [1]-[3]. Some of the present signal processing techniques are reported in the literature as 

critical steps for fault diagnosis. These techniques include short-time Fourier transform (STFT), Wigner-
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Ville distribution (WVD), power spectral density (PSD), wavelet transform (WT) [6]-[10], multiple signal 

classification (MUSIC) method [11]-[13], Hilbert transform [14]-[16], or hybrid techniques, such as 

combining Wavelet and Hilbert transforms with a linear discrimination method [17], and homogeneity 

analysis with the Gaussian probability density function [18]. 

 

The condition monitoring and fault diagnosis of induction motors have moved from traditional 

techniques to AI techniques. The knowledge-based approach using AI and machine learning opens a 

pathway to exciting new research directions in condition monitoring and fault diagnosis of induction 

motors. During the past two decades, the most reported machine learning methods for fault diagnosis of 

induction motors are the artificial neural network (ANN) or hybrid ANN combined with other techniques 

[19]-[32]. As one appealing feature of ANN that can be used for on-line applications, many of the proposed 

ANN methods are for on-line fault diagnosis of induction motors [19]-[22]. The hybrid ANN methods 

include: Park’s vector–neural networks approach [22], an analytical redundancy method based neural 

network modeling [24], statistical and neural network approaches [25][26], and the convolutional 

discriminative feature learning method [27]. One of the most popular hybrid ANN methods is combining 

ANN with fuzzy logic, which can provide accurate fault detection with heuristic interpretation [28]-[32]. 

These techniques use association, reasoning and decision making processes as would the human brain in 

solving diagnostic problems [4]. In this chapter, the literature review for the research work is focused on 

condition monitoring and fault diagnosis of the induction motor. The main objective of this thesis is to 

develop a fault diagnosis method for induction motors using machine learning and advanced signal 

processing techniques. 

 

2.2 Outcomes of the Thesis 

In this thesis, the fault diagnosis of three-phase squirrel-cage induction motors is investigated  by 

processing the measured stator current and vibration signals for two sample machines in the lab through 
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advanced signal processing techniques and machine learning. The proposed approaches and outcomes of 

the thesis are described as follows: 

 

• In chapter 3, a machine learning based fault diagnosis method is proposed for induction motors fed 

directly online using experimental data. MP and DWT are used for signal processing, and their 

performance is compared. A novel curve fitting technique is developed to calculate features for the 

conditions that are not tested. The proposed fault diagnosis method can accurately detect single- or 

multi- electrical and mechanical faults in induction motors fed directly online. 

• In chapter 4, a general methodology based on threshold value is developed by DWT processing of 

the measured stator current signals under the full load condition of an induction motor fed directly 

online. The suitability of the DWT method is assessed by the threshold value of each decomposition 

level and the energy of each detail level. A robust fault diagnosis method is proposed for classifying 

various faults of induction motors based on the DWT processing results. 

• In chapter 5, a machine learning based fault diagnosis method is developed for induction motors fed 

by VFDs using experimental data considering both motor loading and VFD output frequency. The 

surface fitting technique is used to determine feature calculation formula for the conditions that are 

not tested during experiments. 
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Chapter 3 

Machine Learning Based Fault Diagnosis for Single- and Multi- Faults in 

Induction Motors Using Measured Stator Currents and Vibration Signals 
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• Performed literature searches required for background information of machine learning based 

fault diagnosis.  

• Implemented hardware and performed experiments using two identical induction motors in the 

lab. 

• Conducted signal processing and evaluated machine learning algorithms using experimented 

data. 

• Examined the results and depicted the conclusion. 

• Involved writing of the paper as the first author. 
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feature calculation formulas, wrote the relative part of the manuscript. Because machine learning content is 

the main technique in the paper, we have involved a graduate student, Yu Zhang, and a faculty member, 

Dr. Ting Hu, from the Department of Computer Science at Memorial University of Newfoundland. Yu 

Zhang reviewed and provided opinion for machine learning algorithms. Dr. Ting Hu reviewed the 

manuscript and provided expert opinion to improve the work.  

In this chapter, the manuscript is presented with altered figure numbers, table numbers and reference 

formats in order to match the thesis formatting guidelines set out by Memorial University of Newfoundland. 

 

Abstract- In this paper, a practical machine learning based fault diagnosis method is proposed for induction 

motors using experimental data. Various single- and multi- electrical and/or mechanical faults are applied 

to two identical induction motors in lab experiments. Stator currents and vibration signals of the motors are 

measured simultaneously during experiments and are used in developing the fault diagnosis method. Two 

signal processing techniques, Matching Pursuit (MP) and Discrete Wavelet Transform (DWT), are chosen 

for feature extraction. Three classification algorithms, support vector machine (SVM), K-nearest neighbors 

(KNN), and Ensemble, with 17 different classifiers offered in MATLAB Classification Learner toolbox are 

used in the study to evaluate the performance and suitability of different classifiers for induction motor fault 

diagnosis. It is found that five classifiers (Fine Gaussian SVM, Fine KNN, Weighted KNN, Bagged trees, 

and Subspace KNN) can provide near 100% classification accuracy for all faults applied to each motor, but 

the remaining 12 classifiers do not perform well. A novel curve fitting technique is developed to calculate 

features for the motors that stator currents or vibration signals under certain loadings are not tested for a 

particular fault. The proposed fault diagnosis method can accurately detect single- or multi- electrical and 

mechanical faults in induction motors. 

Keywords- Discrete wavelet transform, fault diagnosis, induction motors, machine learning, matching 

pursuit. 
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3.1 Introduction  

Fault diagnosis of induction motors is critical to maintain uninterrupted operation of industrial processes. 

In the literature, there are three streams of research on fault diagnosis for induction motors: 1) signature 

extraction based approaches; 2) model-based approaches; and 3) knowledge-based approaches. The 

signature extraction based approaches are achieved by surveying fault signatures in time and/or frequency 

domain. Current, voltage, power, vibration, temperature, and acoustic emission can serve as monitoring 

signals. Signatures extracted from the recorded monitoring signals are used to detect faults. 

 

Motor Current Signature Analysis (MSCA), a well-known spectral analysis method, is one of the most 

popular techniques for online monitoring induction motors in industrial environments. The MCSA can 

remotely monitor the stator current through the motor control center, and is most successful in detecting 

broken rotor bars or end rings faults. However, the false fault indication is a common issue with MSCA 

that needs to be improved [1]. The model-based approaches rely on mathematical modeling to predict 

behaviors of induction motors under fault conditions. Although model-based approaches can provide 

warnings and estimate incipient faults, its accuracy is largely dependent on explicit motor models, which 

may not be always available. 

 

The knowledge-based approaches, on the other hand, do not need a trigger threshold, machine models, 

motor or load characteristics. Knowledge-based approaches use machine learning techniques for on-line 

and off-line applications. Artificial intelligence methods have been applied for fault diagnosis in very 

complex time-varying and non-linear systems. With continuous advancement of machine learning 

algorithms, the knowledge-based approach emerges as a promising research direction for induction motor 

fault diagnosis with great industrial application potential. 
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During past two decades, the most reported machine learning methods for fault diagnosis of induction 

motors are the artificial neural network (ANN) or hybrid ANN combined with other techniques [2]-[15]. 

As one appealing feature of ANN that can be used for on-line applications, many of the proposed ANN 

methods are for on-line fault diagnosis of induction motors [2]-[5]. The hybrid ANN methods include: 

Park’s vector–neural networks approach [5], analytical redundancy method based neural network modeling 

[7], statistical and neural network approaches [8][9], convolutional discriminative feature learning method 

[10]. One of the most popular hybrid ANN methods is combining ANN with Fuzzy logic, which can provide 

accurate fault detection with heuristic interpretation [11]-[15]. 

 

Several other machine learning approaches are employed in [16]-[20]. The immunological principles are 

applied for induction motor fault detection in [16]. A pattern recognition approach associated with Kalman 

interpolator/extrapolator is proposed in [17]. An integrated class-imbalanced learning scheme for 

diagnosing bearing defects is reported in [18]. A sparse deep learning method proposed in [19] can 

overcome overfitting risk of deep networks. In [20], signal processing and machine-learning techniques are 

combined for bearing fault detection, a novel hybrid approach based on Optimized Stationary Wavelet 

Packet Transform (Op-SWPT) for feature extraction and Artificial Immune System (AIS) nested within 

Support Vectors Machines (SVM) for fault classification is proposed. Investigations conducted using 

multiple machine learning algorithms are reported in [21][22]. 

 

Among machine learning based fault diagnosis methods, stator current is the most widely used signal, 

either alone or combined with other signals. The stator current alone is reported in [2]-[5],[8][15][16],[20]-

[22]; vibration signal alone is reported in [6][7][9][10]; stator current and rotor speed combined is reported 

in [11][12]; stator current, speed, load and friction combined is reported in [13]; stator current, speed, 

winding temperature, bearing temperature and noise combined is reported in [14]; and stator current and 

voltage combined is reported in [17]. It appears that stator currents and vibration signals are two dominant 
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signals used in induction motor fault diagnosis by signature extraction based approaches [1] and machine 

learning based approaches. However, no quantitative comparison is reported in the literature between stator 

currents and vibration signals for their fault diagnosis accuracy. 

 

Despite various reported machine learning based fault diagnosis methods for induction motors, these 

methods have not been as widely used in real life as other techniques such as MSCA. Practical approaches 

need to be developed in industrial applications to take advantage of advanced and intelligent nature of 

machine learning. To fill in this research gap, a practical machine learning based approach for induction 

motor fault diagnosis is proposed using experimental data in this paper. Experiments were conducted on 

two identical induction motors under healthy, single- and multi-fault conditions. A total of six motor 

loadings were tested for each healthy or faulty case. Stator currents and vibration signals of the motors were 

measured simultaneously in each testing. 

 

Machine learning relies on features extracted from measurement signals [23]. In this paper, two signal 

processing techniques are adopted for feature extraction: Discrete Wavelet Transform (DWT) and Matching 

Pursuit (MP). Most DWT applications are for spectral analysis through the MSCA and threshold decision 

[24], where start-up or transient motor currents are analyzed [25][26]. However, DWT is rarely used for 

feature extraction [23]. Matching Pursuit was invented and firstly reported in [27] by Mallat and Zhang in 

1993, and only a few papers are found so far implementing MP for induction motor fault diagnosis [28]-

[31]. In this paper, the suitability of MP and DWT for feature extraction for induction motor fault diagnosis 

is evaluated. 

 

The major contribution of the paper includes: 1) An effective machine learning based fault diagnosis 

method is proposed for single- and multi-fault diagnosis of induction motors using experimental data; 2) 

Both measured stator currents and vibration data are used to detect faults, and their quantitative comparison 
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on the fault classification accuracy for the same groups of faults is demonstrated for the first time; 3) MP 

and DWT as signal processing methods are evaluated for feature extraction; 4) Three classification 

algorithms, SVM, K-nearest neighbors (KNN), and Ensemble, are evaluated with 17 different classifiers 

offered in MATLAB Classification Learner toolbox, and the effectiveness of chosen classifiers is 

compared; 5) Experiments were only conducted for six motor loadings in this study, different motor 

loadings between training and testing processes can deeply influence the fault diagnosis, to avoid this 

drawback, curve fitting equations are developed in this paper to calculate unknown features for any untested 

motor loadings. 

 

The paper is arranged as follows: in Section 3.2, the machine learning based fault diagnosis approach 

using experimental data is proposed; Experimental set-up is provided in Section 3.3; in Section 3.4, signal 

processing using MP and DWT is conducted using measured stator current and vibration data, eight features 

are extracted through MP or DWT processing; classification accuracies using different classifiers are 

demonstrated in Section 3.5; In Section 3.6, curve fitting equations are developed to calculate unknown 

features vs. motor loadings; conclusions are drawn in Section 3.7. 

 

3.2 The proposed Machine Learning Based Fault Diagnosis Approach 

In this paper, an effective machine learning based fault diagnosis approach using experimental data is 

proposed. The main idea is illustrated in Fig. 3.1. 

 

Six steps are needed to implement this method: 

 

1) Conduct experiments for an induction motor under healthy, single- and multi-fault conditions. 

2) Record stator current and vibration data simultaneously, where vibration sensors and a power quality  

     analyzer are required to take measurements. 

3) Choose suitable signal processing methods, such as MP and DWT, for features extraction. 
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4) Extract features for machine learning. 

5) Conduct classification for electrical and mechanical faults using chosen classifiers. 

6) Develop curve fitting equations to calculate features vs. motor loadings. 

Start

Equipments Calibration

Experimental Setup

Data Aquisition

Data Processing

Signal Processing 

Matching Pursuit 

(MP)

Discrete Wavelet 

Transform (DWT)

Feature 
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means of Machine 

Learning 

Reasonable 

Accuracy?

Curve 

Fitting

Desired Output
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Fig. 3. 1. The flow chart of the proposed method. 
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3.3 Experimental Set-Up 

In this paper, 4-pole, 0.25 HP, 208-230/460V, 1725 rpm rated squirrel-cage induction motors (Model 

LEESON 101649) are purchased for experiments in the lab. Two identical motors named as “Motor 1” and 

“Motor 2”, which are treated as sister units, are used. Motor 1 is mainly tested for mechanical faults, and 

Motor 2 for electrical faults. The healthy, single- and multi-fault conditions are applied to the two motors 

as shown in Fig. 3.2.  

Motor 1

H

UNB

BF

BF+UNB

BF+UNB+UV

BF+1BRB

    

Motor 2

H

UV

1BRB

UV+3BRB 2BRB

3BRB

 

(a)                                                               (b) 

Fig. 3. 2. Experimental plan of the applied faults: (a) Motor 1; (b) Motor 2. 

Motor 1 was tested for the healthy condition (H), plus two single faults and three multi-faults: (a) an 

unbalance shaft rotation (UNB); (b) a bearing fault (BF); (c) a combined BF and UNB fault; (d) a combined 

BF and one broken rotor bar (BRB) faults; and (e) a combined BF, UNB, and unbalance voltage (UV) 

condition from the three-phase power supply. Similarly, Motor 2 was tested for the healthy condition (H), 

plus four single faults and one multi-fault: (a) a UV from three-phase power supply; (b) one BRB fault; (c) 

two BRB fault; (e) three BRB fault; and (f) a combined UV and three BRB fault. 

 

In the experimental test bench (Fig. 3.3), an induction motor is connected directly to a three-phase power 

supply, and a dynamometer coupled to the motor shaft through a belt pulley serves as the load. Motor 

loadings can be adjusted by the dynamometer’s control knob. Under full load, the torque is 7 pound force 

inch (lbf-in) at the rated speed. 
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Fig. 3. 3. Experimental test bench used in this study. 

As shown in Fig. 3.4, an eight-channel power quality analyzer, PQPro by CANDURA instrument, is 

used to monitor and record three-phase currents. The vibration is measured by a tri-axial accelerometer 

(Model 356A32) with a four-channel sensor signal conditioner (Model 482C05). The accelerometer is 

mounted on the top of the motor near the face end, vibration at the axial (x-axis), vertical (y- axis) and 

horizontal (z-axis) directions is measured. A 4-channel oscilloscope is patched between the sensor signal 

conditioner and the computer for vibration data acquisition. The sampling frequency for vibration 

measurements is 1.5 kHz. In each test, three phase stator currents (I1, I2, and I3) and vibration at x-, y-, and 

z-axis during the start-up and steady-state conditions are recorded simultaneously for two minutes. A single- 

or multi-fault creates unbalance inside the motor, which will be reflected in stator currents and vibration 

signals. 
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Fig. 3. 4. Experimental schematic diagram for the system set-up. 

In experiments, a BRB fault was realized by drilling a hole of a 4.2 mm diameter and 18 mm depth in 

the rotor bar. One hole was drilled for one BRB fault (Fig. 3.5 (a)); two and three holes with 90° separation 

were drilled for two and three BRB faults, respectively (Figs. 3.5 (b) and (c)). The bearing fault was the 

general roughness type, realized by a sand blasting process, outer and inner raceway of the bearing became 

very rough as shown in Fig. 3.5 (d). The UNB is due to uneven mechanical load distribution causing 

unbalanced shaft rotation. The UNB was created by adding extra weight on part of the pulley (Fig. 3.5 (e)). 

An UV condition was produced by adding an extra resistance at the second phase of the power supply for 

the motor. Six different loadings (10%, 30%, 50%, 70%, 85% and 100%) of the motors were tested for each 

fault.  

 

                  (a)                       (b)                (c) 
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                                        (d)                        (e) 

Fig. 3. 5. Implementation of different faults in the experimental test bench: (a) 1 BRB, (b) 2 BRB, (c) 3 

BRB, (d) bearing fault – general roughness type, and (e) UNB condition. 

 

3.4 Signal Processing for Feature Extraction 

In this paper, two signal processing algorithms, MP and DWT, are adopted for feature extraction through 

MATLAB Wavelet toolbox. 

 

3.4.1. Matching Pursuit 

Matching Pursuit decomposes a signal into a linear expansion of waveforms (atoms) that are selected 

from a redundant dictionary of functions to best match original signal [27]-[30]. To simplify the problem, 

only the measured stator current at the second phase (I2) and vibration at z-axis are used for signal 

processing by the orthogonal matching pursuit (OMP) technique. 

 

As an example, MP processing results for Motor 2 with a 1 BRB fault at 100% loading are shown in Fig. 

3.6 using the current I2 and Fig. 3.7 using the z-axis vibration signal. In these figures, “3000” at the x-axis 

means 3000 sample points. In Figs. 3.6 (a) and 3.7 (a), five signal components are chosen from the MP 

dictionary: 1) “sym4-lev5”, the Daubechies least-asymmetric wavelet with 4 vanishing moments at the 5th 

level; 2) “wpsym4-lev5”, the Daubechies least-asymmetric wavelet packet with 4 vanishing moments at 

5th level; 3) “dct”, the discrete cosine transform-II basis; 4) “sin”, the Sine sub dictionary; and 5) “cos”, 

Cosine sub dictionary [32]. 
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The dct and cos components are dominant in Fig. 3.6 (a), and the dct and sym4-lev5 components are 

dominant in Fig. 3.7 (a). By OMP processing, the approximated signals in Figs. 3.6 (c) and 3.7 (c) are 

obtained by setting the “maximum relative error” of “L1 Norm” equal to 0.01%, and the “maximum 

iterations” equal to 100 in the MATLAB Wavelet toolbox. With the same procedure, all measured current 

and vibration signals under healthy and faulty conditions for the two motors are analyzed.   
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(c) 

Fig. 3. 6. The stator current I2 for Motor 2 using MP (1 BRB fault, 100% loading): (a) indices of selected 

coefficients; (b) original signal and signal components; (c) signal and its approximation. 
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(c) 

Fig. 3. 7. The z-axis vibration signal for Motor 2 using MP (1 BRB fault, 100% loading): (a) indices of 

selected coefficients; (b) original signal and signal components; (c) signal and its approximation. 

Eight statistical features are determined using the OMP as follows: mean, median, standard deviation, 

median absolute deviation, mean absolute deviation, L1 norm, L2 norm, and the maximum norm as 

tabulated in Table 3.1 [33][34]. Table II shows a sample of features obtained using the current I2 for Motor 

2 with a 1BRB fault at 100% loading. Every set of eight features, such as S1 in the first row of Table 3.2, 

is obtained by taking 3000 sample points from the current I2 and processed by the OMP. Other sets of 

features (from S2 to S7) are determined by taking sample points in a similar way. Fig. 3.8 shows one feature, 

Mean, for Motors 1 and 2 processed by the current I2 vs. motor loadings and different types of faults. Other 

features show similar patterns. 

Table 3. 1: Statistical features [33][34] 

Features Formations 

Mean 
𝜇𝑋 =  

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 , where 𝑥𝑖 is the ith sampled measurement point, i = 1, 

2, 3,…, N for N observations. 

Median med = 
1

2
(𝑥(⌊(𝑁+1)/2⌋) + 𝑥(⌊𝑁/2⌋+1)) 

Standard Deviation (Std. Dev.) 𝜎 =  √
1

𝑁
∑ (𝑥𝑖 − 𝜇𝑥)2𝑁

𝑖=1  , where 𝜇𝑥 is the mean. 

Median Absolute Deviation Median_AD = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑚𝑒𝑖𝑑𝑎𝑛(𝑋)|) 

Mean Absolute Deviation Mean_AD = 
1

𝑁
∑ |𝑥𝑖 − 𝜇𝑥|𝑁

𝑖=1  

Sample points
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L1 norm 
‖𝐿‖1 =  ∑ |𝑥𝑖|𝑁

𝑖=1 , the sum of absolute values of its components, also 

known as one-norm, or mean norm 

L2 norm 
‖𝐿‖2 =  √∑ |𝑥𝑖|2𝑁

𝑖=1 , the square root of the sum of the squares of 

absolute values of its components, also known as two-norm, or mean-

square norm. 

Maximum norm (Max norm) ‖𝐿‖∞ = max {|𝑥𝑖|: 𝑖 = 1, 2, … , 𝑛}, the maximum of absolute values of 

its components, also known as infinity norm, or uniform norm.  

 

3.4.2. Discrete Wavelet Transform  

Wavelet transform defines a signal consisting of regions of different frequency components. It can 

decompose a signal into wavelets confined by both time and frequency [25][35]. In this paper, motor stator 

currents and vibration signals are analyzed using the DWT analysis. The wavelet db4 is selected as the 

mother wavelet under consideration of the 6th level decomposition. db4 is from the Daubechies family with 

four vanishing moment. To demonstrate the DWT processing results, the stator current I2 and z-axis 

vibration signals for Motor 2 with a 1 BRB fault at 100% motor loading are analyzed as shown in Figs. 3.9 

and 3.10, respectively. 

 

Similar to MP, the aim of the DWT processing is to extract statistical features of the original signal after 

the signal decomposition. Through the DWT analysis, eight features defined in Table 3.1 are also 

determined. Table 3.3 shows a sample of eight features processed using the stator current I2 for Motor 2 

with a 1BRB fault at 100% loading. 

 

Table 3. 2: A sample of Features using stator current I2 processed by OMP (Motor 2, 1 BRB, 100% 

loading) 

Features Mean Median Std. Dev. Median Absolute Dev. Mean Absolute Dev. L1 norm L2 norm Max norm 

s1 0.001783 0.001462 0.001397 0.0008932 0.0011080 5.349 0.1241 0.008743 

s2 0.001624 0.001341 0.001261 0.0007733 0.0009930 4.873 0.1126 0.007977 

s3 0.001676 0.001400 0.001284 0.0008274 0.0010160 5.027 0.1156 0.009878 

s4 0.001545 0.001285 0.001205 0.0007696 0.0009574 4.634 0.1073 0.006766 
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s5 0.001770 0.001458 0.001351 0.0008747 0.0010750 5.310 0.1220 0.009370 

s6 0.001583 0.001331 0.001223 0.0008150 0.0009799 4.750 0.1096 0.007019 

s7 0.001712 0.001460 0.001305 0.0008588 0.0010350 5.135 0.1179 0.007477 

 

Table 3. 3: A sample of Features for Machine Learning using one phase stator current I2 processed by 

DWT (Motor 2, 1 BRB, 100% loading) 

Features Mean Median Std. Dev. Median Absolute Dev. Mean Absolute Dev. L1 norm L2 norm Max norm 

s1 -0.021220 -0.040460 0.8473 0.8354 0.7623 2288 46.42 1.307 

s2 -0.025300 -0.042620 0.8459 0.8357 0.7602 2282 46.34 1.309 

s3 -0.022740 -0.043430 0.8445 0.8314 0.7591 2278 46.26 1.308 

s4 -0.020420 0.039110 0.8474 0.8419 0.7626 2289 46.42 1.316 

s5 -0.013450 -0.034260 0.8522 0.8473 0.7686 2306 46.67 1.303 

s6 -0.004517 -0.007013 0.8570 0.8583 0.7733 2320 46.93 1.309 

s7 0.006022 0.013220 0.8558 0.8543 0.7721 2317 46.87 1.307 
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(b) 

Fig. 3. 8. One feature, Mean, vs. motor loadings and different types of faults processed by OMP using 

the stator current I2: (a) Motor 1, and (b) Motor 2. 

 

 

Fig. 3. 9. The processed one phase stator current signal I2 using DWT for Motor 2 under a 1 BRB fault 

and 100% loading condition. 
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Fig. 3. 10. The processed z-axis vibration signal using DWT for Motor 2 under a 1 BRB fault and 100% 

loading condition. 

3.5 Machine Learning Results  

Several classification algorithms are available in the MATLAB Classification Learner Toolbox. In this 

paper, three algorithms, SVM, KNN, and ensemble, are selected with 17 different classifiers. Their 

performance and suitability for induction motor fault diagnosis are evaluated. 

  

3.5.1 Classification Algorithms  

SVM is a commonly used machine learning method for data classification and regression based on 

statistical learnings and structural risk minimization [38]. It generally classifies a dataset into two classes, 

positive and negative. A statistical learning theory based algorithm is used to train the data set, which is 

known as support vector. It provides information about the classification and builds the hyperplane. The 

hyperplane maximizes the margin of separation between positive and negative classes [39]. SVM is suitable 

for a dataset where separable and non-separable data profile are present. The soft margin (hyperplane), 

which is the smallest distance in the architecture for separable and non-separable data set, is used to 
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distinguish data points. Kernel functions are used for nonlinear transformation. A kernel function converts 

a nonlinearly separable object into linearly separable by mapping them in a higher dimensional feature 

space [23]. The common types of kernel functions include linear kernel, polynomial kernel, Gaussian radial 

basis function (RBF) kernel as shown in Table 3.4 [40][41]. 

Table 3. 4: Common SVM kernel functions [40][41] 

Kernel name Kernel function formula Description 

Linear kernel 𝑘(𝑥, 𝑦) = 𝑥𝑇𝑦 + 𝑐 

Linear kernel is the simplest kernel function. 

It is given by the inner product (𝑥, 𝑦) plus an 

optional constant c. 

Polynomial Kernel 

𝑘(𝑥, 𝑦) = (𝛼𝑥𝑇𝑦 + 𝑐)𝑑 

Where, adjustable parameters are the slope 

alpha, the constant term is c and the 

polynomial degree is d. 

Polynomial kernel is a non-stationary kernel, 

well suited for problems where all the 

training data is normalized. The most 

common degree is d = 2 (quadratic) and d = 

3 (cubic), since larger degree tends to overfit 

on machine learning problems. 

Gaussian Kernel or 

Radial Basis 

Function (RBF) 

𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑦‖2

2𝜎2 )  𝑜𝑟 

𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝛾‖𝑥 − 𝑦‖2) 

Where, 𝛾 = 1/2𝜎2  is an adjustable 

parameter and ‖𝑥 − 𝑦‖  is denoted as 

squared euclidean distance between the two 

feature vectors. 

In Gaussian kernel, 𝛾 plays a major role in 

the performance of the kernel. If over-

estimated, the exponential will behave 

almost linearly and the higher-dimensional 

projection will start to lose its non-linear 

power. 

 

KNN is an instance based classification technique that classifies an unknown instance by correlating it 

with a known instance through a similarity function or an effective distance. It is the simplest machine 

learning process to classify data. In KNN, a data set is divided into a fixed number (k) of clusters. The 

center data point of a cluster is called centroid, which can be real or imaginary, is used to train the KNN 

classifier. Choosing centroid value is an iterative process. To generate an initial set of random clusters, the 

emanated classifier is used. Then it continue to adjust the centroid value until it becomes stable. The stable 

centroids are used to classify input data by transforming an anonymous dataset into a known one [42].  
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Ensemble is a superior classifier that combines multiple diverse single classifier to boost the prediction 

accuracy. Each single classifier is trained and then combined. The combined ensemble can be trained later 

as a single hypothesis, which is not necessarily constrained within the set of hypothesis from where it is 

originated. This flexibility may lead to over fitting, which is overcome in Bagged Trees where each 

classifier is trained in different partitions and combined through a majority voting. A weaker correlation of 

error of single classifiers leads to a better prediction accuracy. Therefore, diverse single classifiers are 

preferred for ensemble [43]-[46]. 

 

3.5.2 Classifiers Selected from the Toolbox   

The MATLAB Classification Learner toolbox can train models to classify data using supervised machine 

learning. In this paper, three classification algorithms, SVM, KNN and Ensemble, provided in the toolbox 

are chosen to perform fault diagnosis. The selected 17 classifiers are listed as follows: 

• SVM: linear SVM, quadratic SVM, cubic SVM, fine Gaussian SVM, medium Gaussian SVM, and 

coarse Gaussian SVM. 

• KNN: fine KNN, medium KNN, coarse KNN, cosine KNN, cubic KNN, and weighted KNN.  

• Ensemble: boosted trees, bagged trees, subspace discriminant, subspace KNN, and RUSBoosted 

trees. 

Table 3.5 shows descriptions of each classifier used in the paper. We performed a five-fold cross 

validation to protect against overfitting in this paper. The data is partitioned into five disjoint folds. For 

each of the five iterations, four folds were used as training samples and one fold as testing samples. Each 

sample in the data was used as a testing sample exactly once. The average test error is calculated over all 

folds. This method gives a good estimation of the predictive accuracy of the final model trained with all the 

data. 
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Table 3. 5: 17 classifiers from MATLAB classification learner toolbox. 

Classification 

algorithms 

Classifier 

types 

Classifier description from MATLAB classification learner 

toolbox 

Support vector 

machines (SVM) 

Linear SVM 
Makes a simple linear separation between classes, using the linear 

kernel. The easiest SVM to interpret. 

Quadratic 

SVM 
Uses the quadratic kernel. 

Cubic SVM Uses the cubic kernel. 

Fine Gaussian 

SVM 

Makes finely-detailed distinctions between classes, using the Gaussian 

kernel with kernel scale set to sqrt(P)/4, where P is the number of 

predictors. 

Medium 

Gaussian SVM 

Makes fewer distinctions than a Fine Gaussian SVM, using the 

Gaussian kernel with kernel scale set to sqrt(P), where P is the number 

of predictors. 

Coarse 

Gaussian SVM 

Makes coarse distinctions between the classes, using the Gaussian 

kernel with kernel scale set to sqrt(P)*4, where P is the number of 

predictors. 

Nearest neighbor 

classifiers (KNN) 

Fine KNN 
Makes finely detailed distinctions between classes, with the number of 

neighbors set to 1. 

Medium KNN 
Makes fewer distinctions than a Fine KNN, with the number of 

neighbors set to 10. 

Coarse KNN 
Makes coarse distinctions between classes, with the number of 

neighbors set to 100. 

Cosine KNN Uses a cosine distance metric, with the number of neighbors set to 10. 

Cubic KNN Uses a cubic distance metric, with the number of neighbors set to 10. 

Weighted KNN Uses a distance weighting, with the number of neighbors set to 10. 

Ensemble 

classifiers 

Boosted trees 

This model creates an ensemble of medium decision trees using the 

AdaBoost algorithm. Compared to bagging, boosting algorithms use 

relatively little time or memory, but might need more ensemble 

members. 

Bagged trees 
It is a bootstrap-aggregated ensemble of fine decision trees. Often very 

accurate, but can be slow and memory intensive for large data sets. 

Subspace 

discriminant 

Good for many predictors, relatively fast for fitting and prediction, and 

low on memory usage, but the accuracy varies depending on the data. 

The model creates an ensemble of Discriminant classifiers using the 

Random Subspace algorithm. 

Subspace KNN 
Good for many predictors. The model creates an ensemble of nearest-

neighbor classifiers using the Random Subspace algorithm. 

RUSBoosted 

trees 
Used for skewed data with many more observations of one class. 
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3.5.3 Fault Diagnosis Results   

The fault diagnosis accuracies for all faults of Motors 1 and 2 at 100% loading using the current I2 and 

z-axis vibration signal are shown in Figs. 3.11 and 3.12, respectively. In each graph, MP and DWT 

processing are compared. The data for Fig. 3.12 are also shown in Table 3.6.     

 

(a) 

 

(b) 

Fig. 3. 11. Classification accuracy for all faults implemented on Motor 1 at 100% loading using the 

selected classifiers: (a) stator current I2; (b) z-axis vibration. 
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(a) 

 

(b) 

Fig. 3. 12. Classification accuracy for all faults implemented on Motor 2 at 100% loading using the 

selected classifiers: (a) stator current I2; (b) z-axis vibration. 
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Table 3. 6: Accuracy for classification of all faults for Motor 2 at 100% loading using various classifiers 

Classification 

Method 
Sub-groups 

Features by means of MP (% 

of accuracy) 

Features by means of DWT (% 

of accuracy) 

Current 

(I2) 

Vibration 

(z-axis)  

Current 

(I2) 

Vibration 

(z-axis)  

SVM 

Linear 73.8 76.2 92.9 66.7 

Quadratic 85.7 83.3 97.6 81 

Cubic 88.1 88.1 100 97.6 

Fine Gaussian 97.6 100 100 100 

Medium Gaussian 81 83.3 95.2 73.8 

Coarse Gaussian 71.4 64.3 83.3 50 

KNN 

Fine 100 100 100 100 

Medium 71.4 61.9 52.4 50 

Coarse 16.7 16.7 16.7 16.7 

Cosine 54.8 61.9 54.8 45.2 

Cubic 71.4 61.9 52.4 52.4 

Weighted 100 100 100 100 

Ensemble 

Boosted Trees 16.7 16.7 16.7 16.7 

Bagged Trees 100 100 100 100 

Subspace Dis-

criminant 
76.2 81 97.6 73.8 

Subspace KNN 100 100 100 100 

RUSBoosted 

Trees 
16.7 16.7 16.7 16.7 

 

It is found that the five classifiers, Fine Gaussian SVM, Fine KNN, Weighted KNN, Bagged trees, and 

Subspace KNN, return mostly 100% classification accuracy for all faults on each motor at 100% loading. 

The classification accuracy for other motor loadings is similar to 100% loading for these five classifiers. 

However, not all selected classifiers are suitable for fault diagnosis. As the worst case, the Boosted Trees 

and RUSBoosted Trees only have 16.7% classification accuracy. 

 

It can be observed that DWT has better accuracy than MP for most SVM classifiers, while MP has better 

accuracy than DWT for most KNN algorithms. Both MP and DWT demonstrate excellent and equally 

strong performance, and thus, they can be used as signal processing tools to extract features for induction 

motor fault diagnosis. 
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The classifier performance is assessed using the confusion matrix and receiver operating characteristic 

(ROC) curve in this paper. The confusion matrix indicates how a classifier performed in each class. It is 

able to categorize the regions, where the classifier has performed correctly or poorly. The rows show the 

true class, the columns show the predicted class, and the diagonal cells show where the true class and 

predicted class match. If these diagonal cells are green, it means that the classifier has performed well and 

classified observations of this true class correctly. The accuracy in the confusion matrix is calculated as 

follows:  

Accuracy =  
𝑇𝑃 

𝑇𝑃+𝐹𝑁
       (1) 

 

Where, TP is true positive, and FN is false negative. The ROC curve is a graphical representation of the 

confusion matrix. It summarizes the overall performance of a classifier over all possible thresholds, and the 

area under the curve (AUC) gives an insight about how confidently the classification is done. The ROC 

curve shows true positive rate (TPR) versus false positive rate (FPR) for a trained classifier, where TPR 

and FPR can be calculated as follows [47][48]: 

True positive rate =  
TP

TP+FN
= 1 −  False negative rate  (2) 

False positive rate =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
= 1 −  True negative rate  (3) 

 

Where, TP is true positive, FN is false negative, FP is false positive, and TN is true negative. TPR 

signifies how often the classifier predicts positive when the actual case is positive; FPR represents how 

often the classifier incorrectly predicts positive when the actual case is negative. Both TPR and FPR range 

from 0 to 1, and the AUC ranges from 0.5 to 1.  An AUC of 1 represents a good result with no misclassified 

points; while an AUC of 0.5 represents that the classifier is doing no better than random guessing. Fig. 3.13 

shows the confusion matrix and ROC curve with 100% classification accuracy obtained by the classifier, 

Fine KNN, for Motor 2 at 100% loading and processed using the current I2 signal.   
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Fig. 3. 13. 100% classification accuracy obtained by Fine KNN for Motor 2 at 100% loading using the 

current I2: (a) confusion matrix; (b) ROC curve. 

3.5.4 Stator Current vs. Vibration Signal   

In this study, both motors are tested for healthy and faulty conditions from light load to full load. 

Although Motor 1 has mostly mechanical faults, and Motor 2 has electrical faults, it can be observed in 

Figs. 3.11 and 3.12 that both stator current and vibration signals work equally well for fault diagnosis of 

each motor. Therefore, by the quantitative comparison through this research, it is concluded that either 
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stator current or vibration signal can serve as the condition monitoring signal for induction motor fault 

diagnosis with a comparable accuracy.  

 

In real life applications, stator currents are more readily available than vibration signals. Stator currents 

can be measured at the motor terminal or remotely at the motor control center; while vibration 

measurements require a vibration sensor attached to the motor surface, more costly and complicated, 

especially for motors in a harsh environment. 

 

3.5.5 Influence of the Number of Chosen Features    

In this study, we have chosen eight features for fault classification. It is important to evaluate the 

influence of the number of features on the classification accuracy. The following six cases are considered 

for feature selection: 1) Two features: mean and median; 2) Two features:  mean and max norm; 3) Three 

features: mean, median, and max norm; 4) Four features: mean, median, max norm, and std dev.; 5) Five 

features: mean, median, max norm, std dev., and L1 norm; and 6) Eight features: mean, median, max norm, 

standard deviation, median absolute dev., mean absolute dev, L1 norm, and L2 norm. 

 

The classification accuracy of the six cases is shown in Table 3.7. It is found that different feature 

combinations do affect the accuracy. Case 6, which is the chosen features in this paper, has better 

performance than other cases. 

Table 3. 7: Influence of the number of Features on Classification accuracy for all Faults of Motor 2 

(current I2 processed by MP, 100% loading) 

Machine 

learning 

methods 

Sub groups 

Classification accuracy in percentage using different 

number of features, % 

Case 

1 

Case 

2 

Case 

3 

Case 

4 

Case 

5 

Case 6 (chosen 

method) 

SVM 

Linear SVM  71.4 71.4 76.2 71 73.8 73.8 

Quadratic SVM  73.8 83 78.6 78.6 81 85.7 

Cubic SVM  92.9 90.5 90.5 90.5 88.1 88.1 
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Fine Gaussian 

SVM  
95.2 97.6 97.6 97.6 97.6 97.6 

Medium 

Gaussian SVM 
78.6 78.6 81 81 78 81 

Coarse Gaussian 

SVM  
73.8 71.4 66.7 66.4 66.7 71.4 

KNN 

Fine KNN  100 97.6 97.6 100 100 100 

Medium KNN 73.8 71.4 71.4 69 66.7 71.4 

Coarse KNN 16.7 16.7 16.5 16.7 16.7 16.7 

Cosine KNN  40.5 45.2 40 54.8 52.4 54.8 

Cubic KNN  73.8 71.4 71 71 71.4 71.4 

Weighted KNN 97.6 100 100 100 100 100 

Ensemble 

Boosted Trees 16.5 16.7 16.5 16.5 16.5 16.7 

Bagged Trees 97.6 100 97.6 100 100 100 

Subspace 

Discriminant 
69 76.2 78 71.4 66.7 76.2 

Subspace KNN 100 100 100 97.6 100 100 

RUSBoosted 

Trees 
16.5 16.7 16.7 16.5 16.5 16.7 

 

3.6 Calculated Features through Curve Fitting Equations for Different Motor 

Loadings  

In experiments, the two motors were tested under six different loadings: 100%, 85%, 70%, 50%, 30%, 

and 10%. However, the motor might run at a different loading under normal operation, how to obtain 

features for a certain loading factor when the corresponding experimental data are not available? To address 

this concern, curve fitting equations are developed using experimental data of the tested six loadings for a 

particular fault. 

  

3.6.1 Curve Fitting Method 

The purpose of the proposed curve fitting technique is to find statistical features for untested loading 

conditions under motor healthy and faulty cases. After getting all features for untested loadings through 

curve fitting, the same method used for the tested loading conditions is followed for fault classification. 



 

44 | P a g e  

 

Using curve fitting, the motor loading in percentage is an independent variable; eight features processed 

by MP using experimental data for the six tested loadings are dependent variables. The accuracy of the 

developed fitting equations are evaluated by R-square values and relative errors between experimental and 

calculated data using these equations. The R-square value represents how closely the fitted model can 

follow the variance of the actual data set. It ranges from 0 to 1 where a value closer to 1 represents a better 

fit [49][50]. 

 

Table 3.8 shows regression models along with their R-square values for Motor 2 with a 1BRB fault 

processed by MP using the stator current I2. In these models, second order polynomial equations are 

adopted, x represents the percent of loading, and y represents a feature. High R-square values prove that the 

fitting equations follow the trend of actual measurement data. Relative errors between experimental based 

data and calculated data are shown in Table 3.9 with all errors less than 8%, which further validates the 

accuracy of the fitting equations. Fig. 3.14 shows the graphs of the eight features vs. the motor loading 

using the stator current I2 for Motor 2, 1BRB fault. The dots are MP processing results using experimental 

data; while the solid line is determined by the curve fitting equations. Using a similar procedure, curve 

fitting equations for features of other types of faults can be determined. 

 

Table 3. 8: Regression models for features using stator current I2 processed by MP for Motor 2, 1 BRB 

fault 

Feature Name Equation R-square Values 

Mean  y = -2E-07x2 + 2E-05x + 0.0013 0.9512 

Median y = -1E-07x2 + 2E-05x + 0.0011 0.9197 

Standard Deviation y = -1E-07x2 + 1E-05x + 0.001 0.9897 

Median Absolute Value y = -8E-08x2 + 9E-06x + 0.0006 0.9168 

Mean Absolute Value y = -8E-08x2 + 1E-05x + 0.0008 0.9700 
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L1 Norm  y = -0.0005x2 + 0.0549x + 3.86 0.9512 

L2 Norm y = -1E-05x2 + 0.0012x + 0.0898 0.9695 

Maximum Norm y = -6E-07x2 + 7E-05x + 0.006 0.6482 

 

 

Table 3. 9: Relative errors between experimental based data and calculated data (for Motor 2, 1 BRB 

fault, stator current I2) 

Feature Name 
Experiment based MP 

data 

Calculated data from fitting 

equations 
% of error 

Mean (A) 0.001466 0.001480 -0.95498 

Median(A) 0.001216 0.001290 -6.08553 

Standard Deviation (A) 0.001130 0.001090 3.880071 

Median Absolute Value 

(A) 
0.000738 0.000682 7.588076 

Mean Absolute Value (A) 0.000905 0.000892 1.425572 

L1 Norm  4.399000 4.359000 0.909298 

L2 Norm 0.102000 0.100800 0.689655 

Maximum Norm 0.006700 0.006640 0.895522 

 

Similarly, curve fitting can be applied to vibration signal to obtain features of a new motor loading for a 

fault. Table 3.10 shows the developed regression models along with their R-square values for Motor 2, 

1BRB fault processed by MP using the z-axis vibration signal. 

 

In these models, the second order polynomial equations are chosen for fitting equations, x represents the 

percent of loading, and y represents a feature. Relative errors between experimental based data and 

calculated data by curve fitting equations are shown in Table 3.11. Fig. 3.15 shows the graphs of the eight 
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features vs. the motor loading percentage in this case. The dots are MP processing results using experimental 

data; while the solid line is determined by the curve fitting equations. 

 

Table 3. 10: Regression models for Features using z-axis vibration signal processed by MP for Motor 2, 1 

BRB fault 

Feature Name Equation R-square Value 

Mean y = 1E-07x2 - 2E-05x + 0.0027 0.9855 

Median y = 9E-08x2 - 1E-05x + 0.0023 0.9898 

Standard Deviation y = 8E-08x2 - 1E-05x + 0.002 0.9334 

Median Absolute Value y = 5E-08x2 - 8E-06x + 0.0013 0.9615 

Mean Absolute Value y = 6E-08x2 - 9E-06x + 0.0016 0.9349 

L1 Norm y = 0.0003x2 - 0.0495x + 8.1017 0.9855 

L2 Norm y = 8E-06x2 - 0.0011x + 0.1856 0.9707 

Maximum Norm y = 1E-06x2 - 0.0001x + 0.0138 0.9345 

 

Table 3. 11: Relative errors between experimental based data and calculated data (for Motor 2, 1 BRB 

fault, z-axis vibration signal) 

Feature Name Simulated Value Calculated Value % of error 

Mean (A) 0.002557 0.002510 1.840 

Median(A) 0.002150 0.002209 -2.740 

Standard Deviation (A) 0.001940 0.001908 1.800 

Median Absolute Value (A) 0.001273 0.001225 3.770 

Mean Absolute Value (A) 0.001550 0.001516 2.070 

L1 Norm  7.672000 7.636700 0.460 

L2 Norm 0.176000 0.175400 0.284 

Maximum Norm 0.012310 0.012900 -4.790 
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Fig. 3. 14. Curve fitting results for features of Motor 2 with a 1BRB fault using the stator current I2: (a) 

mean, (b) median, (c) standard deviation, (d) median absolute value, (e) mean absolute value, (f) L1 

norm, (g) L2 norm, and (h) maximum norm. 

 

 
Fig. 3. 15. Curve fitting results for features of Motor 2, 1BRB fault using the z-axis vibration signal: (a) 

mean, (b) median, (c) standard deviation, (d) median absolute value, (e) mean absolute value, (f) L1 

norm, (g) L2 norm, and (h) maximum norm. 
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3.6.2 Machine Learning Results Using Fitting Equations 

Using the developed curve fitting equations, features are calculated for three loadings (90%, 60% and 

20%) that have not been tested during experiments for Motor 2. It is found that all faults can be classified 

at mostly 100% accuracy using the calculated features for Fine Gaussian SVM, Fine KNN, Weighted KNN, 

Bagged trees, and Subspace KNN. Fig. 3.16 shows fault classification accuracy for the three loadings for 

Motor 2 with the current I2. Curve fitting equations offer effective calculation of unknown features for 

various motor loadings.   

 
Fig. 3. 16. Classification accuracy for all faults using features calculated by curve fitting equations for 

three loadings (90%, 60% and 20%) that has never been tested by experiments (Motor 2, the stator current 

I2). 

3.7 Conclusion  

Due to applications of induction motors in critical industrial processes, accurately detect various 

electrical or mechanical faults of induction motors are very important to avoid process down-time and large 

financial losses. In this paper, a machine learning based fault diagnosis method for single- and multi-faults 

of induction motors is proposed, developed, and validated using experimental data measured in the lab.  
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The following conclusions are drawn through this research: 1) The proposed fault diagnosis method is 

proved to be effective; 2) Either MP or DWT can be used for signal processing to extract features with a 

comparable accuracy; 3) The paper conducts a quantitative comparison by using stator currents and 

vibration signals for fault diagnosis, it is found that either stator currents or vibration signals can be used to 

detect the same groups of faults with a similar accuracy; 4) The number of features have influence on 

classification accuracy, so they should be evaluated carefully; 5) The developed curve fitting equations 

offer an effective calculation method of unknown features for the motors that experimental data are not 

available under certain loading conditions; 6) Five classifiers, Fine Gaussian SVM, fine KNN, weighted 

KNN, Bagged Trees, and subspace KNN, selected from MATLAB Classification Learner toolbox have 

mostly 100% classification accuracy for all faults of each motor, therefore, any of these five classifier can 

be used for induction motor fault diagnosis. The future work for this research is to investigate how to apply 

the proposed fault diagnosis method to sister units of the test motor with adequate accuracy.  
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Chapter 4 

Induction Motor Fault Diagnosis Using Discrete Wavelet Transform  
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• Performed literature searches required for background information on induction motors fault 
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value based fault diagnosis. 

• Examined the results and discussed the findings. 

• Wrote the paper. 
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manuscript.  
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formats in order to match the thesis formatting guidelines set out by Memorial University of Newfoundland. 

 

Abstract- In this paper, a general methodology is constructed by using experimentally measured stator 

current signals under full load condition of an induction motor. The measured stator current data for various 

single- and multi-electrical faults of the induction motor are investigated to obtain signatures for fault 
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diagnosis. In this study, the discrete wavelet transform (DWT) is chosen for signal processing. The 

threshold and energy values at each decomposition level for the DWT analysis are evaluated. The threshold 

values appear to be more consistent than the energy values at different data windows of the measurement 

data, and thus, the threshold can serve as a reliable parameter for fault diagnosis. 

 

Keywords- Fault diagnosis, discrete wavelet transform, induction motors, broken rotor bar. 

 

4.1 Introduction  

Induction motors are workhorse for our modern industry. Condition monitoring and fault diagnosis of 

induction motors play an important role to maintain reliable and smooth operation of industrial processes 

[1]-[4]. An unexpected motor breakdown may interrupt the workflow and reduce the motor drive efficiency. 

Therefore, condition monitoring plays a significant role to maintain reliable and smooth operation in 

industrial processes [1]. 

 

The motor current signature analysis (MCSA) is the most commonly used fault diagnosis method [5]-

[7]. Advanced signal processing techniques are reported in the literature as a critical step for fault diagnosis. 

These techniques include wavelet transform [1][6]-[9], Multiple Signal Classification (MUSIC) method 

[10]-[12], Hilbert Transform [13]-[15], or hybrid techniques, such as combining Wavelet and Hilbert 

transforms with a linear discrimination method [16], and homogeneity analysis with Gaussian probability 

density function [17]. 

 

In this paper, the Discrete Wavelet Transform (DWT) [6][7][18] is implemented for signal processing 

using the stator current signals measured in a lab using a 0.25 HP squirrel-cage induction motor for the fault 

diagnosis purpose. The suitability of the DWT method is assessed by the threshold value of each 

decomposition level and the energy of each detail level. A robust fault diagnosis method is proposed for 

classifying various faults of induction motors based on the DWT processing results. 
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The paper is detailed as follows: in Section 4.2, the proposed approach is demonstrated through a 

recommended 3-step procedure, and the experimental set-up for testing the 0.25 HP induction motor is 

explained; a brief explanation of the DWT method is provided in Section 4.3; in Section 4.4, the signal 

processing results using the DWT are demonstrated and analyzed, the fault diagnosis criteria are 

summarized; conclusions are drawn in Section 4.5. 

 

4.2 The proposed Method and Experimental Test Bench 

In this paper, a fault diagnosis method for induction motors using the stator current signal is proposed. 

The main idea is shown in Fig. 4.1. There are three critical steps involved in the method: 1) The experiment 

is conducted for healthy and several faulty conditions, faults are prepared by damaging the motor 

physically; 2) After equipment calibration and experimental setup, the motor stator current is measured for 

each condition; 3) Signal processing using the DWT analysis to extract fault signatures. In DWT, 

decomposition levels are specified, the threshold and energy values associated with each decomposition 

level are calculated, which will be used for fault diagnosis.  

 
Fig. 4. 1. The flow chart of the proposed method. 
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In this study, a 4-pole, ¼ HP, 208-230/460V squirrel cage induction motor is used in experiments. The 

healthy and faulty conditions of the motor are shown in Fig. 4.2. The experiments were conducted on: (a) 

healthy motor (H); (b) unbalance voltage (UV) condition; (c) one broken rotor bar (BRB) fault; (d) two 

BRB fault; (e) three BRB fault; and (f) a multi-fault by combining UV and 3 BRB faults. The UV condition 

is formed by adding an extra resistance on one phase of the power supply. The BRB faults are produced by 

drilling a hole (4.2 mm diameter and 18 mm depth) on the rotor bar. One hole is drilled for a 1 BRB fault; 

two and three holes with 90° separation are drilled for 2 BRB and 3BRB faults as shown in Fig. 4.3. The 

induction motor is connected directly to a three phase power supply, and the motor shaft is coupled through 

a belt pulley with a dynamometer as the load. At the rated speed, the full load of the motor is measured 

corresponding to a 7 pound force inch (lbf-in) torque. The three-phase stator currents are recorded using an 

8-channel power quality analyzer (PQPro by CANDURA instrument). 

 
Fig. 4. 2. Detailed experiment plan for healthy and faulty conditions. 

 
     (a)                                   (b)                                    (c) 

Fig. 4. 3. Motors with BRB faults: (a) 1 BRB, (b) 2 BRB, and (c) 3 BRB. 
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4.3 Signal Processing Approaches 

The DWT offers an effective analysis for time-frequency representation of a non-stationary signal [6][7]. 

Orthogonal wavelets such as Daubechies wavelet series are used to decompose the signal into several 

frequency bands [8]. Through the DWT, an original signal is decomposed into several batches of wavelet 

signals, each contains the original signal’s information within a certain frequency band. The number of 

decomposition is known as levels. The decomposition can be implemented using filtering and down 

sampling process as shown in Fig. 4.4. the operation is repeated until the signal is decomposed to the 

preferred level. 

LPF

HPF

a1

Original 

Signal

LPF

HPF

d2

a2

LPF

HPF

a3

d3

d1

 

Fig. 4. 4. Sequence of signal decomposition process into approximations and details by DWT. 

At each decomposition stage, two coefficients can be determined: 1) approximation coefficient aj, which 

are acquired from the low pass filter (LPF), containing low frequency signal components; 2) detail 

coefficient dj, which are acquired from the high pass filter (HPF), containing high frequency signal 

components [6][8], where j is the decomposition level. The selection criteria for the appropriate mother 

wavelet and the number of the decomposition levels are key steps in the DWT analysis. In this study, 

Daubechies-44 (db44) wavelet is selected as the mother wavelet because it provides a more precise detail 

signal with lower harmonics. The total number of decomposition level 𝑁𝐿𝑠 can be calculated as follows 

[7][9][20]: 
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    𝑁𝐿𝑠 = 𝑖𝑛𝑡 (
𝑙𝑜𝑔 (

𝑓𝑠
𝑓

)

𝑙𝑜𝑔 (2)
) + 2              (1) 

 

Where, 𝑓𝑠 is the sampling frequency for the captured signal (In this study, 𝑓𝑠 is approximately equal to 

15.5 kHz); 𝑓 is the fundamental frequency (60 Hz); 2 means that two more additional decomposition levels 

are suitable. Eq. (1) leads to 10 level decompositions. The detail coefficient 𝑑j and the approximations 

coefficient 𝑎j have the following frequency bands [9]: 

    𝑓𝑑𝑗  ∈ [(
𝑓𝑠

2(𝑗+1)) → (
𝑓𝑠

2𝑗)]  𝐻𝑧              (2) 

    𝑓𝑎𝑗  ∈ [0 → (
𝑓𝑠

2(𝑗+1))]  𝐻𝑧              (3) 

In this paper, the measured stator current signal is processed using DWT, frequency bands for each 

approximation and detail signals from levels 1 to 10 is determined and tabulated in Table 4.1 using (1)-(3). 

Table 4. 1: Frequency Bands for Multi-levels Decomposition Obtained by DWT   

Levels Approximation signals, 𝑎j (Hz) Detail signals, 𝑑j (Hz) 

j = 1 a1 0-3850 d1 3850-7700 

j = 2 a2 0-1925 d2 1925-3850 

j = 3 a3 0-962.5 d3 962.5-1925 

j = 4 a4 0-481.25 d4 481.25-962.5 

j = 5 a5 0-240.625 d5 240.625-481.25 

j = 6 a6 0-120.3125 d6 120.3125-240.625 

j = 7 a7 0-60.1563 d7 60.1563-120.3125 

j = 8 a8 0-30.0781 d8 30.0781-60.1563 

j = 9 a9 0-15.0391 d9 15.0391-30.0781 

j = 10 a10 0-7.5195 d10 7.5195-15.0391 

 

4.4 Signal Processing Results Using DWT 

In this paper, the MATLAB wavelet toolbox is used for the DWT analysis. db44 is the mother wavelet 

under the 10th level decompositions. The analysis is conducted using four data windows from the measured 

stator current signal, each data window consists of 4000 sample points. Data windows 1-4 are [68.2223 s, 

68.4824 s], [80 s, 80.26 s], [72 s, 72.261 s], and [77.25 s, 77.51 s], respectively. 
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As an example, the motor stator current with 1 BRB fault under 100% loading is analyzed using the data 

window 1. Fig. 4.5 shows the original signal along with the details plotted for levels 1-10. It is observed 

that the activity in the detail signals reduces drastically as the scale or decomposition level increases. Based 

on the level 1 detail and ignoring the rest of the levels, the aim here is to retain sharp changes and get rid of 

the noise, which can be done by scaling detail coefficients by a threshold. The universal threshold (UT) 

technique is followed to compute the threshold as follows [21][22]:    

𝑈𝑇 =
√2∗𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝑥))∗𝑀𝑒𝑑𝑖𝑎𝑛 (𝑎𝑏𝑠(𝐷))

0.6745
              (4) 

 

Where, x is the signal, and D is the set of first level detail coefficients. Later, the threshold value is 

determined for all other detail levels. The computation of the threshold value can be done by soft or hard 

thresholding operations, in both cases, coefficients with the magnitude less than the threshold are set to 

zero. In this paper, the soft thresholding operation is considered, and the coefficients in magnitude greater 

than the threshold are shrunk towards zero. Based on all motor conditions, the threshold values for all 

decomposition levels are determined as shown in Fig. 4.6 using four data windows, which can be considered 

as a fault indicator. The energy associated with each decomposition level is evaluated to see if it can be 

used in fault diagnosis. The energy of each frequency band can be calculated by [7][20] 

𝐸𝑗 =  ∑ |𝑑𝑗(𝑛)|
2𝑁

𝑛=1                      (5) 

 

Where, N is the number of samples, 𝑑𝑗 is the detail signal at the level j. Based on (5), the energy for each 

frequency band is calculated as shown in Fig. 4.7 using four data windows. It is found that the changes are 

obvious between levels d6 to d9. At level d8, different motor fault conditions can be determined efficiently. 

 

In this study, the main tasks for the DWT is to calculate the threshold value for each decomposition level 

and the energy for each frequency bandwidth. It is observed using the four data windows that the changes 
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of both threshold and energy occur between d7 and d9 decomposition levels. The summarized threshold 

and energy values at d8 are provided in Table 4.2. The tendency of the changes is consistent for threshold 

and energy for healthy and faulty conditions of the motor using both data windows. The changes are more 

pronounced between d7 and d9, especially the energy reaches the highest values at d8. However, the 

threshold appears to be more stable for the four data windows, with very similar shape and magnitude 

values, while the shape and magnitude of the energy varies quite significantly. Therefore, the threshold is 

considered as a more reliable fault detection criteria. 

500 1000 1500 2000 2500 3000

Decomposition at level 10: s = a10 + d10+ d9+ d8+ d7 + d6 + d5 + d4 + d3 + d2 + d1

3500 4000  
Fig. 4. 5. The processed stator current signal I2 of the motor at 100% loading, 1 BRB condition using 

DWT. 
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(b) 

 
(c) 

 
(d) 

Fig. 4. 6. Threshold values for all decomposition levels using four different data windows in measured 

stator current: (a) data window 1; (b) data window 2; (c) data window 3; and (d) data window 4.  
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(d) 

Fig. 4. 7. Energy associated with each decomposition levels for different motor conditions using four 

different data windows in measured stator current: (a) data window 1; (b) data window 2; (c) data window 

3; and (d) data window 4. 

Table 4. 2: Threshold and Energy at the decomposition level d8 for all four data windows, each window 

with 4000 sample points 

Data windows H 1BRB 2BRB 3BRB UV 3BRB + UV 

1 
Threshold 4.442 4.638 4.717 4.818 2.287 2.169 

Energy, J 2410.4 2580.8 2720 2870 534.4 470.8 

2 
Threshold 4.142 4.238 4.417 4.618 2.787 2.645 

Energy, J 1549.5 1647.6 1750.8 1867.9 724.5 640 

3 
Threshold 4.146 4.24 4.417 4.615 2.781 2.645 

Energy, J 2100.4 2208.3 2350.7 2456.4 545.7 482 

4 
Threshold 4.118 4.224 4.409 4.513 2.787 2.645 

Energy, J 2210.9 2386.5 2522.4 2682.6 502.4 415.4 

 

4.5 Conclusion  

In this paper, stator currents of an 0.25 HP induction motor measured through an experimental test bench 

under healthy and faulty conditions and 100% loading are analyzed using the DWT for fault diagnosis 

purpose. Two parameters are evaluated, threshold and energy values, by the DWT processing. It is found 
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that the threshold value for each decomposition level can serve as a good fault indicator of the motor. 

Therefore, the results present the effectiveness of the proposed method in the field of motor fault diagnosis 

application.    
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Chapter 5 

Machine Learning Based Fault Diagnosis for Single- and Multi-Faults for 

Induction Motors Fed by Variable Frequency Drives 
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• Examined the results and discussed the findings. 
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calculation formulas, and wrote the relative part of the manuscript. Shafi helped with data processing for 

feature preparation and machine learning.  

In this chapter, the manuscript is presented with altered figure numbers, table numbers and reference 

formats in order to maintain the thesis formatting guidelines set out by Memorial University of 

Newfoundland.  

 

Abstract- In this paper, an effective machine learning based fault diagnosis method is developed for 

induction motors fed by variable frequency drives (VFDs). Two identical 0.25 HP induction motors under 

healthy, single- and multi-fault conditions were tested in the lab with different VFD output frequencies and 

motor loadings. The stator current and the vibration of the motors were recorded simultaneously under 

steady-state for each test, and both signals are evaluated for their suitability for fault diagnosis. The signal 

processing technique, Discrete Wavelet Transform (DWT), is chosen in this paper to extract features for 

machine learning. Four families of machine learning algorithms in the MATLAB Classification Learner 

Toolbox, decision trees, support vector machines (SVM), k-nearest neighbors (KNN), and ensemble, with 

twenty classifiers are evaluated for their classification accuracy when used for fault diagnosis of induction 

motors fed by VFDs. To allow fault diagnosis for untested motor operating conditions with different 

combinations of the motor operating frequency and the motor loading factor, the feature calculation 

formulas are developed through surface fitting using experimental data for a range of tested frequencies and 

loadings. 

 

Keywords- Discrete wavelet transform, fault diagnosis, induction motors, machine learning, variable 

frequency drives. 
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5.1 Introduction  

Induction motors are used in various industrial applications due to their reliability, lower cost and ease 

of control. However, electro-mechanical faults of induction motors can cause severe interruption of 

industrial processes although protective devices are employed in the system [1]. To overcome such 

challenges, fault diagnosis approaches for induction motors have been reported in the literature; however, 

the majority of the research is for induction motors fed directly by the grid [2]-[5].  

 

Recently, due to the advancement of variable frequency drive (VFD) technology and benefits brought 

by the VFDs, such as flexible production control and soft motor start-up capability, the motor drive systems 

are increasingly used in various industry facilities [6]. Induction motors driven by VFDs have several 

differences compared to induction motors directly connected to power sources. These differences are as 

follows: 1) induction motors fed by VFDs can experience higher stress in bearings and windings because 

of higher harmonic contents in voltage and current, 2) the operating frequency of the induction motor can 

be varied at the VFD output, and 3) other factors such as the control method used by the VFD and the carrier 

frequency of the VFD might also have an effect on induction motor operation. Therefore, it is important to 

develop an effective fault diagnosis method for induction motors supplied by VFDs. 

 

Very few works have been reported in the literature to investigate fault diagnosis approaches for 

induction motors fed by VFDs [7]-[27]. The existing research in this particular area can be divided into 

three categories: 1) model-based approaches [7], 2) signature-extraction-based approaches [8]-[23], and 3) 

knowledge-based approaches [24]-[27]. In model-based approaches, the mathematical model of induction 

motor is used to detect and diagnose faults [28]. In signature-extraction-based approaches, signatures 

extracted from the recorded monitoring signals are used to detect faults. In knowledge-based approaches, 

machine learning in association with classification learners, and signal-processing techniques are used to 

detect faults. 
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Based on our literature review, the only model-based fault diagnosis approach for induction motors 

driven by VFDs is conducted in [7]. An accurate model of dual-stator winding induction machine (DSWIM) 

is developed in [7] and the normalized fast Fourier transform (NFFT) of the stator current and control 

variables is used to investigate the eccentricity impacts. The signature-extraction-based approaches are 

reported the most. Different signal processing methods have been used to extract signatures including the 

Fast Fourier Transform (FFT) [8][9][16], the novel time series data mining technique [11], the continuous 

wavelet transform (CWT)[14], the discrete wavelet transform (DWT) [16], the wavelet packet 

decomposition (WPD) [17], the diagnostic space vector [18], and the Finite element method [23]. However, 

the model or signature-extraction-based approaches require a trigger threshold, machine model, and motor 

or load characteristics, which may not be available or obtained accurately. 

 

On the other hand, the knowledge-based approach uses machine learning to detect faults of induction 

motors fed by VFDs. It does not need a trigger threshold, machine models, motor or load characteristics; 

therefore, it is suitable for real-time fault diagnosis once the model is trained. However, only limited 

research is done in this category for induction motors fed by VFDs [24]-[27]. In [24][25], the advanced 

complex wavelets transform is used for feature extraction, M-SVM and k-nearest neighbors (KNN) are 

used for multiple fault detection and isolation for a VFD driven induction motor. An experimental 

comparative evaluation of different machine learning techniques is carried out in [26]. Classification 

accuracy among six machine learning algorithms, namely Bayesian Learning, Instance-Based Methods, 

Bootstrap Aggregating, Boosting Algorithms, Artificial Neural Networks, Support Vector Machines 

(SVM), are compared in the analysis. Although the artificial neural network (ANN) is very popular in fault 

diagnosis for induction motors fed directly by power grid [28], only Ref [27] is found in the literature using 

ANN in fault diagnosis for induction motors fed by VFDs. Short time Discrete Fourier transform (STDFT) 

is used in [27] to extract features which are used to train ANN. 
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There are three major challenges related to fault diagnosis for induction motors fed by VFDs: 1) What 

signal should be chosen for signal processing? 2) Can we deal with single- and multi-faults? 3) How the 

prediction can be effectively made for situations that the testing data are not available for training? 

 

Challenge 1: The stator current of the motor, either alone or combined with other parameters, are 

commonly used for signal processing for signature-extraction or knowledge-based approaches. To extract 

features, stator current alone is used in [8][12][14][17][22][26], the combined stator voltage and current are 

used in [7][27], the stator current and estimated mechanical speed are both used in [10]. In addition to the 

stator current, the machine vibration is used in [24], the instantaneous input power is used in [18][21]. 

Although the stator current and vibration signals are commonly used for fault diagnosis of induction motors 

fed directly by power grids, no comparative analysis has been carried out for induction motors fed by VFDs. 

 

Challenge 2: In the literature, induction motor fault diagnosis is reported mostly for single fault, such as 

the eccentricity [7][14][27][21], bearing fault [17][10], rotor faults [15][18][26][22][23], stator winding 

fault [8][9][12], broken rotor bar/end-ring and eccentricity in [16], broken rotor bars (BRBs) and broken 

end-ring connectors [11], and stator winding and bearing faults [24]. None of these investigations consider 

the impact of the multiple faults’ occurrence at the same time. 

 

Challenge 3: In real life, the loading factor and the operating frequency of induction motors can be 

different from the values used in testing. No guidelines are proposed to determine features for untested 

conditions in order to train machine learning algorithms for induction motors fed by VFDs.  

 

In this paper, to address these challenges, a robust machine learning based fault diagnosis method is 

proposed for a wide variety of single- and multi-faults of VFD driven induction motors. The stator current 

and vibration signals recorded simultaneously in the lab for a wide range of operating frequencies and load 

factors of the induction motor are processed using the DWT to extract features for machine learning. The 
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major contributions of the paper are summarized as follows: 1) Compare the fault diagnosis performance 

using the measured stator current and vibration signals; 2) Compare the fault classification performance for 

four families of machine learning algorithms (Decision trees, SVM, KNN, and Ensemble in MATLAB 

Classification Learner toolbox); 3) Create several single- multi-faults for the tested motors to evaluate the 

robustness of the proposed method; 4) Determine and validate features for the untested cases for training, 

the equations to calculate these unknown features are developed using surface fitting through MATLAB 

curve fitting tool box. 

 

The paper is arranged as follows: the proposed machine learning based fault diagnosis approach using 

experimental data for induction motors fed by VFDs is given in Section 5.2; detailed experimental set-up 

is provided in Section 5.3; in Section 5.4, signal processing of the measured stator current and vibration 

signals using the DWT is conducted, and eight features are extracted through DWT processing; details 

about the machine learning classifiers are provided in Section 5.5; classification accuracies using different 

classifiers are demonstrated in Section 5.6; in Section 5.7, the surface fitting equations are developed to 

calculate unknown features vs. motor loadings and operating frequencies; and conclusions are drawn in 

Section 5.8. 

 

5.2 The proposed Fault Diagnosis Approach 

In this paper, an effective fault diagnosis approach for VFD supplied induction motors using 

experimental data is proposed in Fig. 5.1. The basic procedure is configured under three considerations: 1) 

Hardware implementation; 2) Simulation-based implementation and analysis; and 3) Quantitative 

comparison and decision. 
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Fig. 5. 1. The flow chart of the proposed method. 

The approach can be implemented in a six-step procedure: 1) conduct experiments for an induction motor 

fed by a VFD under healthy, single- and multi-fault conditions by considering different output frequencies 

of the VFD and load factors of the motor; 2) record stator currents and vibration signals simultaneously 

using a power quality analyzer and vibration sensors; 3) choose a suitable signal processing method for 

features extraction, such as DWT; 4) compare different feature selections and determine the most suitable 

features for the system; 5) classify faults for the motor using the chosen classifiers; and 6) develop surface 
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fitting equations to calculate features vs. motor loadings and operating frequencies for conditions without 

measurement data. 

5.3 Experimental Set-Up 

In the experiment set-up, two identical 4-pole, 0.25 HP, 208-230/460V, 1725 rpm rated squirrel-cage 

induction motors (Model LEESON 101649) are tested fed by a VFD in the lab. The motors are named as 

“Motor 1” and “Motor 2” and are treated as sister units. The VFD is manufactured by Saftronics (Model: 

CIMR-G5U23P7F). The input ratings include AC three phase, 200-220 V at 50 Hz (200-230V at 60Hz), 

and 21 A. The output ratings include AC three phase, 0-230 V, 0-400 Hz, and 17.5 A. 

 

As shown in Fig. 5.2, the faults applied on Motor 1 are mainly mechanical faults, and the faults on Motor 

2 are electrical faults. The Motor 1 testing include: (a) a healthy condition (H), (b) an unbalance shaft 

rotation (UNB), (c) a bearing fault (BF), (d) the combined BF and UNB fault, (e) the combined BF and one 

broken rotor bar (BRB) faults, and (f) the combined BF, UNB, and unbalance voltage (UV) condition from 

the three-phase power supply. The Motor 2 testing include: (a) a healthy condition (H), (b) a UV from three-

phase power supply, (c) one BRB fault, (d) two BRBs fault, (e) three BRBs fault, and (f) the combined UV 

and three BRB fault. 

 
(a)              (b) 

Fig. 5. 2. The testing for the two motors: (a) Motor 1; (b) Motor 2. 
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The experimental test bench is shown in Fig. 5.3. The induction motor is connected through a VFD to a 

three-phase power supply. The load is a dynamometer coupled to the motor shaft through a belt pulley. 

Motor loadings can be adjusted by the dynamometer’s control knob. Under the full load, the torque of the 

motors is 7 pound force inch (lbf-in) at the rated speed. 

 

Fig. 5. 3. The experimental test bench for induction motors fed by a VFD. 

Fig. 5.4 shows the schematic diagram of the system set-up. An eight-channel power quality analyzer, 

PQPro by CANDURA instrument, is used to measure the three-phase stator currents (I1, I2, and I3) of the 

motor. The measurements are taken on the output of the VFD. A tri-axial accelerometer (Model 356A32) 

with a four-channel sensor signal conditioner (Model 482C05) mounted on top of the motor near the face 

end is used to record vibration signals. 

 

It is specified in this measurement that the vibration at the axial direction is x-axis, at the vertical 

direction is y- axis, and at the horizontal direction is z-axis. A four-channel oscilloscope is patched between 

the sensor signal conditioner and the computer for vibration data acquisition. The sampling frequency for 
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vibration measurements is 1.5 kHz. The stator currents and vibration signals were measured simultaneously 

under steady-state operating conditions. 
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Fig. 5. 4. Schematic diagram of the system set-up.  

Photos of the motors with a specific type of fault used in the experiment are shown in Fig. 5.5. A BRB 

fault was realized by drilling a hole of a 5 mm diameter and 18 mm depth in the rotor bar (Fig. 5(a)). Two 

and three holes were drilled on adjacent rotor bars for two BRBs and three BRBs faults, respectively (Figs. 

5.5 (b) and 5.5 (c)). The general roughness type of bearing fault was realized by a sand blasting process, 

the outer and inner raceway of the bearing becomes very rough (Fig. 5.5 (d)). The UNB was created by 

adding extra weight on part of the pulley (Fig. 5.5 (e)). An UV condition was formed by adding an extra 

resistance on the second phase of the VFD output. 

 

 
(a)     (b)   (c) 
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(d)             (e) 

Fig. 5. 5. Photos of faults applied on the motors in experiments: (a) 1 BRB, (b) 2 BRBs, (c) 3 BRBs, 

(d) the general roughness type of bearing fault, and (e) the UNB condition. 

 

Six output frequencies of the VFD from 45 Hz to 70 Hz were used in the testing. Four different carrier 

frequencies (1100 Hz, 3100 Hz, 8000 Hz, and 15 kHz) were evaluated, and 3100 Hz was chosen as the 

carrier frequency for all testing. Six different loadings ranging from no load (0%) to full load (100%) of the 

motors were tested for each output frequency per fault. Table 5.1 summarizes various parameters used in 

the experiments. By combining different types of faults, output frequencies of the VFD and motor loadings, 

a total of 540 tests were conducted in the lab. 

 

Table 5. 1: The equipment settings of the experiments 

Parameters Settings 

VFD output frequency, Hz 45, 50, 55, 60, 65, 70 

VFD carrier frequency, Hz 3100  

VFD base frequency  

(1) 60 Hz for output frequency at or below 60 Hz 

(2) 65 Hz for 65 Hz output frequency  

(3) 70 Hz for 70 Hz output frequency  

VFD control method Voltage per Hz control 

Motor loading factor, % 0, 20, 40, 60, 80, 100 

 

5.4 Signal Processing Using DWT for Feature Extraction 

The wavelet transform is an effective way to define a signal that is comprised of different frequency 

components by decomposing a signal into wavelets, which are confined by time and frequency. The discrete 

wavelet transform (DWT) can be used to analyze a non-stationary signal in time-frequency domain 
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[29][30]. The DWT uses orthogonal wavelets like Daubechies wavelet series for decomposing the signal 

into several frequency bands. Because of this feature, it is also known as multiresolution analysis [31]. 

 

In this paper, the DWT method is adopted for feature extraction through MATLAB Wavelet toolbox. 

Among all other different wavelet families in the DWT analysis, the wavelet from Daubechies family with 

four vanishing moment as db4 is considered as the mother wavelet with the 6th level decomposition. Eight 

statistical features (mean, median, standard deviation, median absolute deviation, mean absolute deviation, 

L1 norm, L2 norm, and the maximum norm) are evaluated for the motor stator currents and vibration signals 

processed by DWT. These features are tabulated in Table 5.2 [32][33], which will be used for machine 

learning. 

  

Table 5.3 shows a sample of features obtained using the z-axis vibration signal for Motor 1 with a bearing 

fault (100% loading factor of the motor and 60 Hz drive output frequency). Every set of eight features, such 

as S1 in the first row of Table 5.3, is obtained by choosing a data window, which contains 9000 sample 

points, from the z-axis vibration signal and processed by the DWT. Other nine sets of features (from S2 to 

S10) are determined by taking sample points in a similar way from nine different data windows. Similarly, 

Table 5.4 shows a sample of features obtained using the stator current I2 for Motor 2 with a 1 BRB fault 

(80% loading factor of the motor and 50 Hz drive output frequency). 

  

Fig. 5.6 shows one feature, Mean, for Motors 1 and 2 processed by the current I2 vs. motor loading 

factors and different types of faults for a fixed output frequency of 60 Hz. Other features show similar 

patterns to Fig. 5.6. Fig. 5.7 shows one feature, Mean, for Motors 1 and 2 processed by the z-axis vibration 

signal vs. VFD output frequencies and different types of faults for a fixed motor loading factor of 60%. 

Other features show similar patterns to Fig. 5.7. 
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Fig. 5.8 shows the processed one phase stator current signal I2 for Motor 2 under a 1 BRB fault (100% 

motor loading and 60 Hz drive output frequency). Fig. 5.9 shows the processed z-axis vibration signal for 

Motor 2 under a 1 BRB fault (40% motor loading and 50 Hz drive output frequency). 

Table 5. 2: Potential Statistical features [28] [32] [33] 

Features Formations 

Mean 
𝜇𝑋 =  

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 , where 𝑥𝑖 is the ith sampled measurement point, i = 1, 

2, 3, …, N for N observations. 

Median med = 
1

2
(𝑥(⌊(𝑁+1)/2⌋) + 𝑥(⌊𝑁/2⌋+1)) 

Standard Deviation (Std. Dev.) 𝜎 =  √
1

𝑁
∑ (𝑥𝑖 − 𝜇𝑥)2𝑁

𝑖=1  , where 𝜇𝑥 is the mean. 

Median Absolute Deviation  Median_AD = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑚𝑒𝑖𝑑𝑎𝑛(𝑋)|) 

Mean Absolute Deviation Mean_AD = 
1

𝑁
∑ |𝑥𝑖 − 𝜇𝑥|𝑁

𝑖=1  

L1 norm 
‖𝐿‖1 =  ∑ |𝑥𝑖|𝑁

𝑖=1 , the sum of absolute values of its components, also 

known as one-norm, or mean norm  

L2 norm 
‖𝐿‖2 =  √∑ |𝑥𝑖|2𝑁

𝑖=1 , the square root of the sum of the squares of 

absolute values of its components, also known as two-norm, or mean-

square norm. 

Maximum norm (Max norm) 
‖𝐿‖∞ = max {|𝑥𝑖|: 𝑖 = 1, 2, … , 𝑛}, the maximum of absolute values 

of its components, also known as infinity norm, or uniform norm.  
 

Table 5. 3: Potential Features using Z-axis vibration signal (Motor 1, BF, 100% loading, 60 Hz drive 

output frequency) 

Features Mean Median Std. Dev. Median Absolute Dev. Mean Absolute Dev. L1 norm L2 norm Max norm 

s1 0.003018 0 0.07637 0.04 0.05462 541.00 7.250 1.28 

s2 0.020240 0.04 0.08115 0.04 0.05763 527.00 7.934 1.76 

s3 0.034740 0.04 0.08405 0.04 0.05260 539.70 8.628 2.16 

s4 0.019210 0.04 0.07822 0.04 0.05709 517.80 7.640 1.68 

s5 0.027120 0.04 0.07440 0.04 0.05391 517.90 7.513 1.48 

s6 0.024430 0.04 0.07383 0.04 0.05366 531.30 7.377 1.92 

s7 0.006244 0 0.08218 0.04 0.05701 511.10 7.818 1.72 

s8 0.003649 0 0.08302 0.04 0.05654 504.00 7.883 1.52 

s9 0.010920 0 0.07050 0.04 0.05119 519.60 6.768 1.16 

s10 0.004240 0 0.07388 0.04 0.05283 526.40 7.020 1.92 
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Table 5. 4: Potential features using stator current I2 (Motor 2, 1 BRB, 80% loading, 50 Hz drive output 

frequency) 

Features Mean Median Std. Dev. Median Absolute Dev. Mean Absolute Dev. L1 norm L2 norm Max norm 

s1 0.004439 0.006474 0.8838 0.95920 0.7754 6979 83.840 1.526 

s2 0.004178 0.009441 0.8964 0.96970 0.7892 7103 85.040 1.533 

s3 0.006279 0.007823 0.8839 0.96570 0.7769 6992 83.850 1.553 

s4 0.004808 0.005665 0.8932 0.96460 0.7839 7055 84.730 1.530 

s5 0.005496 0.007823 0.8900 0.96950 0.7832 7049 84.430 1.527 

s6 0.004785 0.007013 0.8894 0.95440 0.7793 7014 84.370 1.528 

s7 0.006381 0.011870 0.8914 0.97000 0.7852 7067 84.560 1.516 

s8 0.006344 0.000540 0.8872 0.95890 0.7771 6994 84.160 1.524 

s9 0.005027 0.008632 0.8951 0.96890 0.7880 7092 84.920 1.525 

s10 0.005090 0.007013 0.8818 0.95760 0.7726 6954 83.650 1.507 

 

 

(a) 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100

Loading, %

M
e

a
n

H BF UNB

BF+UNB BF+UNB+UV BF+1BRB



 

84 | P a g e  

 

 

(b) 

Fig. 5. 6. One feature, Mean, vs. motor loadings and different types of faults using one phase stator 

current signal I2 (60Hz output frequency): (a) Motor 1; (b) Motor 2. 
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(b) 

Fig. 5. 7. One feature, Mean, vs. VFD output frequency and different types of faults using z-axis vibration 

signal (60% motor loading): (a) Motor 1; (b) Motor 2. 

 

Fig. 5. 8. The processed one phase stator current signal I2 using DWT for Motor 2 under a 1 BRB fault 

(100% motor loading and 60 Hz drive output frequency). 
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Fig. 5. 9. The processed z-axis vibration signal using DWT for Motor 2 under a 1 BRB fault (40% motor 

loading and 50 Hz drive output frequency). 

5.5 Machine Learning Classifiers  

In this paper, four families of classification algorithms offered in the MATLAB Classification Learner 

Toolbox including Decision Trees, SVM, KNN, ensemble are selected to evaluate their suitability for fault 

diagnosis of induction motors fed by VFDs, where twenty different classifiers are chosen for evaluation. 

   

5.5.1 Classification Algorithms  

The decision tree learning is a classification method by using a decision model to predict and evaluate 

possible consequences and event outcome. The algorithms hold conditional control statements and are used 

as descriptive means for calculating conditional probabilities. A decision tree mainly consists of three 

nodes: decision nodes, chance nodes, and end nodes. Decision nodes represent the root the model, chance 

nodes represent the possible event outcomes, and end nodes provide the classification [34] [35]. 
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SVM is a commonly used machine learning based data classification and regression tool, which 

generally classifies a dataset into two classes; positive and negative classes. The two classes are separated 

by hyperplane. Kernel functions in SVM are used for nonlinear transformation [36]-[40]. The common 

types of kernel functions like linear kernel, polynomial kernel, Gaussian or radial basis function (RBF) 

kernel, are used in this study. 

 

KNN is an instance-based classification technique, where the learner summarizes the training data but 

does not abstract any information from the training data. The basic classification pattern follows by an 

unknown instance by correlating with a known instance via a valid distance or a similarity functions. In 

KNN, input data set is separated into a fixed number (k) of clusters and the center of the cluster is called 

centroid. A centroid is a data point that can be either real or imaginary. All centroids are used to train the 

KNN classifier. The emanated classifier is proposed during the initialization of primary cluster. The process 

between classification and centroid adjustment is repeated until the value of centroid become steady and 

later, these stabilized centroids are used for the clustering of input data. Therefore, the transformation of an 

anonymous dataset into a known one is acquired by stabilized centroids [37][41].  

 

An ensemble is a superior classifier and uses multiple algorithms to enhance its performance and 

prediction accuracy. It combines multiple diverse single classifiers. In ensemble classifier, the trained 

ensemble represents a single hypothesis. This hypothesis does not necessarily need to be presented within 

the set of hypothesis space from where it is initiated. Due to this flexibility, sometimes it tends to over-fit 

the training data. Some ensemble methods like Bagged Trees tend to reduce over fitting of training data. 

The weaker error correlation between single classifiers gives better prediction accuracy [42]-[45].  

 



 

88 | P a g e  

 

5.5.2 Classifiers from the Toolbox   

In this paper, the following four families of classification algorithms in MATLAB Classification Learner 

toolbox are chosen to perform fault diagnosis with twenty classifiers:  

• Decision trees: Complex Tree, medium Tree, and simple Tree. 

• SVM: linear SVM, quadratic SVM, cubic SVM, fine Gaussian SVM, medium Gaussian 

SVM, and coarse Gaussian SVM. 

• KNN: fine KNN, medium KNN, coarse KNN, cosine KNN, cubic KNN, and weighted KNN. 

• Ensemble: boosted trees, bagged trees, subspace discriminant, subspace KNN, and 

RUSBoosted trees. 

Table 5.5 shows the description of each classifier used in the paper. A five-fold cross validation for all 

classifiers is performed to prevent the model from overfitting. 

Table 5. 5: Description of twenty Classifiers in MATLAB Classification Learner Toolbox 

Classification 

algorithms 
Classifier  

Classifier description from MATLAB classification learner 

toolbox 

Decision 

Trees 

Fine Tree 

A decision tree with many leaves that make many fine 

distinctions between classes, where maximum number of splits is 

100. 

Medium Tree 
A decision tree of medium flexibility with fewer leaves, where 

maximum number of splits is 20. 

Coarse Tree 

A simple decision tree with few leaves that makes coarse 

distinctions between classes, where maximum number of splits is 

4. 

 SVM 

Linear SVM 
Makes a simple linear separation between classes, using the 

linear kernel. The easiest SVM to interpret. 

Quadratic SVM Uses the quadratic kernel. 

Cubic SVM Uses the cubic kernel. 



 

89 | P a g e  

 

Fine Gaussian 

SVM 

Makes finely-detailed distinctions between classes, using the 

Gaussian kernel with kernel scale set to sqrt(P)/4, where P is the 

number of predictors. 

Medium 

Gaussian SVM 

Makes fewer distinctions than a Fine Gaussian SVM, using the 

Gaussian kernel with kernel scale set to sqrt(P), where P is the 

number of predictors. 

Coarse Gaussian 

SVM 

Makes coarse distinctions between the classes, using the 

Gaussian kernel with kernel scale set to sqrt(P)*4, where P is the 

number of predictors. 

KNN 

Fine KNN 
Makes finely detailed distinctions between classes, with the 

number of neighbors set to 1. 

Medium KNN 
Makes fewer distinctions than a Fine KNN, with the number of 

neighbors set to 10. 

Coarse KNN 
Makes coarse distinctions between classes, with the number of 

neighbors set to 100. 

Cosine KNN 
Uses a cosine distance metric, with the number of neighbors set 

to 10. 

Cubic KNN 
Uses a cubic distance metric, with the number of neighbors set to 

10. 

Weighted KNN 
Uses a distance weighting, with the number of neighbors set to 

10. 

Ensemble  

Boosted trees 

This model creates an ensemble of medium decision trees using 

the AdaBoost algorithm. Compared to bagging, boosting 

algorithms use relatively little time or memory, but might need 

more ensemble members. 

Bagged trees 

It is a bootstrap-aggregated ensemble of fine decision trees. Often 

very accurate, but can be slow and memory intensive for large 

data sets. 

Subspace 

discriminant 

Good for many predictors, relatively fast for fitting and 

prediction, and low on memory usage, but the accuracy varies 

depending on the data. The model creates an ensemble of 

Discriminant classifiers using the Random Subspace algorithm. 

Subspace KNN 

Good for many predictors. The model creates an ensemble of 

nearest-neighbor classifiers using the Random Subspace 

algorithm. 

RUSBoosted 

trees 
Used for skewed data with many more observations of one class. 
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5.6 Classification Results for Various Faults  

5.6.1 Fault Diagnosis Results 

Fed by a VFD, the motor operates at a frequency between 45 Hz and 70 Hz, and operates under different 

loading conditions between 0 % and 100% in the lab testing. It is important to evaluate the accuracy of fault 

diagnosis of induction motors with such variations. Fig. 5.10 shows the fault classification accuracy for all 

faults implemented on Motor 1 at 100% motor loading and 60 Hz operating frequency using the stator 

current I2 and z-axis vibration signals. 

 

Similarly, Fig. 5.11 presents the fault diagnosis accuracy for all faults implemented on Motor 2 at 80% 

loading and 45 Hz operating frequency using the stator current I2 and z-axis vibration signals. The 

corresponding accuracy data for Fig. 5.10 and Fig. 5.11 are provided in Tables 5.6 and 5.7.  

 

It is found that the stator current demonstrates a significantly better performance than the vibration for 

both motors. The accuracy values using vibration signal are mostly below 70% for Motor 1, and 60% for 

Motor 2; while the accuracy values using the stator current signal can be as high as 92.8% for Motor 1, and 

100% for Motor 2. In real life applications, the stator current is much easier to measure than the vibration 

signal. Therefore, the stator current signal is recommended to be used for induction motor fault diagnosis 

fed by VFDs. 

 

Motor 2 with electrical faults has much better accuracy than Motor 1 with mechanical faults when both 

using the stator current. Among the 20 classifiers, 3 classifiers (Linear SVM, Medium Gaussian SVM, and 

Subspace Discriminant) has above 90% accuracy for Motor 1, and 8 classifiers (Fine Tree, Medium Tree, 

Linear SVM, Quadratic SVM, Fine Gaussian SVM, Medium Gaussian SVM, Bagged Trees, and Subspace 

KNN) has above 90% accuracy for Motor 2.  
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(a) 

 

(b) 

Fig. 5. 10. Classification accuracy for all faults implemented on Motor 1 (100% loading and 60Hz): (a) 

stator current I2; (b) z-axis vibration. 
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(a) 

 

(b) 

Fig. 5. 11. Classification accuracy for all faults implemented on Motor 2 (80% loading and 45Hz): (a) 

stator current I2; (b) z-axis vibration. 
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Table 5. 6: Accuracy for classification of all faults for Motor 1 (100% loading and 60Hz) using various 

classifiers 

Classification 

Method 
Classifiers 

Classification accuracy, % 

Current 

(I2) 

Vibration 

(z-axis) 

Decision Trees 

Fine Tree 87.8 62.8 

Medium Tree 87.8 63.3 

Coarse Tree 71.1 58.9 

SVM 

Linear SVM 92.8 67.2 

Quadratic SVM 88.9 67.2 

Cubic SVM 87.2 65.6 

Fine Gaussian SVM 80 58.9 

Medium Gaussian SVM 90 71.1 

Coarse Gaussian SVM 87.8 53.9 

KNN 

Fine KNN 70 66.7 

Medium KNN 62.2 53.3 

Cosine KNN 63.9 56.7 

Cubic KNN 53.3 51.7 

Weighted KNN 69.4 68.3 

Ensemble 

Boosted Trees 83.9 67.2 

Bagged Trees 85.6 67.8 

Subspace Discriminant 90 67.2 

Subspace KNN 77.2 53.9 

RUSBoosted Trees 82.2 66.1 
 

Table 5. 7: Accuracy for classification of all faults for Motor 2 (80% loading and 45Hz) using various 

classifiers 

Classification 

Method 
Classifiers 

Classification accuracy, % 

Current 

(I2) 

Vibration 

(z-axis) 

Decision Trees 

Fine Tree 98.3 62.2 

Medium Tree 98.3 62.2 

Coarse Tree 79.4 58.3 

SVM 

Linear SVM 91.1 55 

Quadratic SVM 97.2 55.6 

Cubic SVM 69.4 53.9 

Fine Gaussian SVM 90.6 52.8 

Medium Gaussian SVM 90.6 60 

Coarse Gaussian SVM 87.8 55 

KNN 

Fine KNN 70 58.9 

Medium KNN 44.4 56.1 

Cosine KNN 37.2 53.9 

Cubic KNN 42.8 53.3 
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Weighted KNN 67.8 60 

Ensemble 

Boosted Trees 16.7 59.4 

Bagged Trees 100 57.8 

Subspace Discriminant 73.9 53.3 

Subspace KNN 100 46.1 

RUSBoosted Trees 16.7 62.8 

 

The classifier performance is evaluated by employing the confusion matrix and receiver operating 

characteristic (ROC) curve. The confusion matrix is able to recognize the regions, where the classifier has 

performed correctly or poorly, and to evaluate how a classifier is executed in each class. In this study, the 

confusion matrix has been summarized by choosing the positive predictive value (PPV) and false discovery 

rate (FDR). The PPV is shown in green for the correctly predicted points in each class, and the FDR is 

shown below the PPV in red for incorrectly predicted points in each class. The accuracy from confusion 

matrix is calculated by 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
       (1) 

 

Where, TP is true positive, TN is true negative, FP is false positive, and FN is false negative. The ROC 

curve condenses the overall performance of a classifier over all possible threshold. The area under the curve 

(AUC) gives a brief perception about how confidently the classification is done. The ROC curve plots the 

true positive rate (TPR) as a function of the false positive rate (FPR). The ROC is a graphical representation 

of confusion matrix where parameters are calculated as follows [46] [47]: 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
= 1 −  𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒    (2) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
= 1 −  𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒    (3) 

The TPR implies how often the classifier predicts positive when the actual classification is positive, 

while the FPR signifies how often the classifier incorrectly predict positive when the actual classification 

is negative. Both TPR and FPR are ranges from 0 to 1 and AUC ranges from 0.5 to 1.  An AUC value of 1 
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denote a better result with no misclassified points and 0.5 represents that the classifier is no better than 

random estimation. Fig. 5.12 illustrates the confusion matrix and ROC curve with the 100% classification 

accuracy achieved by the classifier, Subspace KNN, for Motor 2 at 80% motor loading and 45 Hz operating 

frequency using the stator current I2. 

 

(a) 

 

(b) 

Fig. 5. 12. Classification accuracy using Subspace KNN for Motor 2 at 80% motor loading and 45 Hz 

using the current I2: (a) confusion matrix; (b) ROC curve. 

Positive
Predictive Value

False
Discovery Rate
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5.6.2 Influence of the Number of Chosen Features    

In this study, eight statistical features are considered as features for fault classifications. It is essential to 

examine the influence of the number of features on the classification accuracy. Six cases are considered as 

follows: Case 1 - two features (mean and median); Case 2 - two features (mean and max. norm); Case 3 - 

three features (mean, median, and max. norm); Case 4 - four features (mean, median, max. norm, and std. 

dev.); Case 5 - five features (mean, median, max. norm, std. dev., and L1 norm); and Case 6 - eight features 

(mean, median, max. norm, std. dev., median absolute dev., mean absolute dev, L1 norm, and L2 norm).  

 

To evaluate their influence, the classification accuracy for all faults implemented on Motor 2 under 80% 

motor loading and 45 Hz operating frequency using the stator current I2 for the six cases are tabulated in 

Table 5.8. It is found Case 6 has better accuracy for most cases, therefore, Case 6 is chosen as the features 

used in this paper. 

5.6.3 Performance Evaluation of Trained Classifier Models 

After the training, the performance of the trained classification models was evaluated in MATLAB 

through testing using a new set of testing data under two tests: test 1 with 80% training data and 20% testing 

data, and test 2 with 70% training data and 30% testing data. The training set contains labels of faults, but 

the testing contains new data without labels of faults. Both training and testing accuracy values for the two 

motors are provided in Table 5.9. 

Table 5. 8: Influence of the number of Features on Classification accuracy for all Faults of Motor 2 

(current I2 processed at 45Hz and 80% loading) 

Machine 

learning 

methods 

Sub groups 

Classification accuracy in percentage using different number 

of features, % 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Decision 

Trees 

Fine Tree 47.8 85.6 85.6 98.9 98.9 98.3 

Medium Tree 46.1 85.6 85.6 98.9 98.9 98.3 

Coarse Tree 38.9 76.1 76.1 82.8 82.8 79.4 

SVM Linear SVM  33.9 82.8 75.6 91.1 91.1 91.1 
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Quadratic SVM  45.6 72.2 81.1 98.9 93.9 97.2 

Cubic SVM  38.3 57.2 55.6 52.2 63.3 69.4 

Fine Gaussian 

SVM  
43.9 76.7 77.8 93.3 90 90.6 

Medium Gaussian 

SVM 
39.4 74.4 78.3 91.7 91.1 90.6 

Coarse Gaussian 

SVM  
25 70 72.8 86.7 86.1 87.8 

KNN 

Fine KNN  40.6 60.6 50 55 62.8 70 

Medium KNN 38.9 50 41.1 39.4 44.4 44.4 

Cosine KNN  32.8 39.4 35.6 35.6 41.1 37.2 

Cubic KNN  37.8 48.3 41.1 38.3 43.9 42.8 

Weighted KNN 44.4 60 51.7 52.8 60.6 67.8 

Ensemble 

Boosted Trees 44.4 70.6 30.6 16.7 50 16.7 

Bagged Trees 46.7 85 82.8 88.9 91.1 100 

Subspace 

Discriminant 
19.4 34.4 19.4 38.3 40.6 73.9 

Subspace KNN 28.9 52.8 85.6 100 100 100 

RUSBoosted Trees 45 73.3 31.1 16.7 50 16.7 

 

Table 5. 9: Testing Performance of Trained Classifier Models with maximum accuracy for All Faults of 

Motor 1 and 2 

Motor 

Name 

Classification 

Method 

Test 1 (80% training data, 20% 

testing data) 

Test 2 (70% training data, 30% 

testing data) 

Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Motor 1 

Linear SVM 91.7 88.89 88.9 85.18 

Quadratic SVM 89.3 88.89 87.3 87.04 

Medium 

Gaussian SVM 
89.6 86.11 84.9 83.33 

Subspace 

Discriminant 
90 88.89 90 88.89 

Motor 2 

Fine Tree 98.3 97.2 98.2 96.3 

Medium Tree 98.3 97.2 98.2 96.3 

Linear SVM 90.5 88.89 90.1 88.89 

Quadratic SVM 97.2 94.44 94.4 94.44 

Fine Gaussian 

SVM  
89.6 88.89 86.5 85.19 

Medium 

Gaussian SVM 
91.7 91.67 90 88.89 

Bagged Trees 100 100 100 100 

Subspace KNN 100 100 100 100 
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5.7 Features Calculation Formulas Developed Through surface Fitting 

In experiments, the motors were tested under six loadings (0%, 20%, 40%, 60%, 80%, and 100%) and 

six VFD output frequencies (45 Hz, 50 Hz, 55 Hz, 60 Hz, 65 Hz, and 70 Hz). In real life, the motor loading 

factor and the VFD output frequency can be values that are different from the testing data. Directly 

determination of features for those untested cases through DWT is not feasible. 

 

To solve this problem, in this research, we propose to develop feature calculation formulas for untested 

cases through the surface fitting technique using the tested data. Surface fitting is a regressional process, 

where the relationship among a dependent variable and two independent variables is developed. In this 

paper, the motor operating frequencies and load factors are used as independent variables, the features are 

the function to be developed using the two independent variables. 

 

5.7.1 Surface Fitting Method 

To improve the effectiveness and accuracy of the developed equations, the least absolute residuals (LAR) 

robustness algorithm is used. It detects and cures outliers to follow the actual trend of the data set. In LAR, 

data points having absolute residual values higher than threshold are disregarded and thus, the main trend 

of the dataset is captured. LAR is an iterative method, and the equation used to estimate the least absolute 

deviation for LAR is [48] 

𝛽𝐿𝐴𝑅 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ |𝜀𝑖(𝛽)|𝑛
𝑖=1                         (4) 

Where, 𝛽𝐿𝐴𝑅 is the absolute deviation estimator, 𝜀𝑖(𝛽) is the error, and n is the number of data samples. 

Table 5.10 shows surface fitting models of the DWT processed stator current I2 features, along with their 

R-square values for Motor 1 with a multi-fault (BF + 1BRB). In these models, x represents the operating 

frequency in Hz, y represents the percentage of loading (%), and f(x,y) represents the feature value. 

Polynomial 11 and polynomial 21 equations are chosen as the target functions. Six out of eight equations 
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have high R-square values, which indicate that the fitting equations follow the trend of actual measurement 

data. Only two equations for calculating features “mean” and “median” have low R-square values due to 

very small values, however, relative errors between the experimental based data and calculated data shown 

in Table 5.11 proves that the experimental based data match  are also following the actual measurement. 

Fig. 5.13 shows the graphs of the eight features vs. the motor loading and operating frequency using the 

stator current I2 for Motor 1 with a multi-fault (BF + 1BRB). The dots are DWT processing results using 

experimental data; while the solid surface is determined by the surface fitting equations. Surface fitting 

equations for features of other types of faults can be determined using similar procedure. 

 

Similarly, the surface fitting equations using z-axis vibration signal features are shown in Table 5.12 

along with their R-square values for the same fault. Polynomial 11 and polynomial 21 models are adopted, 

where x represents the operating frequency in Hz, y represents the percentage of loading %), and f(x,y) 

represents the function to be developed to calculate new features. Relative errors between experimental 

based data and calculated data by curve fitting equations are shown in Table 5.13. Fig. 5.14 shows the 

graphs of the eight features vs. the motor operating frequency in Hz and loading factor in percentage. The 

dots are DWT processing results using experimental data, while the surface line is determined by the surface 

fitting equations. 

Table 5. 10: Surface fitting models for Features using stator current I2 processed by DWT for Motor 1 

with a multi-fault (BF + 1 BRB) 

Features Name Equation R-square Values 

Mean  f(x, y)  =  0.013 +  0.00014x +  9.6 ∗ 10−6y 0.3217 

Median 
f(x, y)  =  − 0.010 7 +  0.0012x +  0.0001y 

−  1.438 ∗ 10−5x2
 −  3.465 ∗ 10−6xy 

0.4112 

Standard 

Deviation 

f(x, y)  =  3.691 −  0.085x −  0.0047y 
+  0.00059x2  +  0.0001168xy 

0.9933 

Median Absolute 

Value 

f(x, y)  =  3.261 −  0.074x −  0.0010y 
+  0.0005x2  +  6.931 ∗ 10−5xy 

0.9964 

Mean Absolute 

Value 

f(x, y) =  3.461 −  0.081x −  0.0044y 
+  0.0005x2  +  0.0001xy 

0.9923 
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L1 Norm  
f(x, y)  =  3.121E + 4 − 731.2x − 39.51y 

+  5.09x2  +  0.9303xy 
0.9922 

L2 Norm 
f(x, y)  =  350.3 −  8.065x −  0.4626y 

+  0.055x2  +  0.011xy 
0.9825 

Maximum Norm 
f(x, y)  =  6.816 −  0.1544x −  0.006y 

+  0.0011x2  +  0.0001xy 
0.9714 

 

Table 5. 11: Relative errors between experimental based data and calculated data for Motor 1 with a 

multi-fault (BF+1 BRB) processed by the stator current I2 

Features Name Experimental based data 
Calculated 

Data 
Error, % 

Mean  0.006622 0.0065816 0.61 

Median 0.007013 0.006983 0.43 

Standard Deviation  0.9679 0.9575375 1.07 

Median Absolute 

Value  
1.037 1.03508 0.185 

Mean Absolute 

Value  
0.8483 0.8403249 0.94 

L1 Norm  7635 7562.95 0.94 

L2 Norm 91.82 90.868251 1.03 

Maximum Norm 1.625 1.627175 -0.13 
 

Table 5. 12: Regression models for Features using z-axis vibration signal processed by DWT for Motor 1, 

BF+1 BRB fault 

Featured Name Equation 
R-square 

Value 

Mean  f(x, y)  =  0.01926 −  6.133 ∗ 10−5x +  2.307 ∗ 10−5y 0.8129 

Median 
f(x, y)  =  − 1.675 ∗ 10−18  +  3.722 ∗ 10−20x

+  4.181 ∗ 10−25y 
0.8053 

Standard 

Deviation  

f(x, y)  =  0.2703 −  0.007354x − 0.000776y 

+  6.608 ∗ 10−5x2
+  1.384 ∗ 10−5xy 

0.6308 

Median Absolute 

Value  
f(x, y)  =  0.04 −  2.782 ∗ 10−19x − 5.375 ∗ 10−20y 0.8429 

Mean Absolute 

Value  

f(x, y)  =  0.177 −  0.005276x − 0.0002981y 

+  5.128 ∗ 10−5x2
 +  5.439 ∗ 10−6xy 

0.8858 

L1 Norm  
f(x, y)  =  1900 − 56.64x −  4.408y +  0.5263x2  

+  0.07838xy 
0.8862 

L2 Norm 
f(x, y)  =  23.64 −  0.6239x − 0.07123y 

+  0.00565x 2 +  0.001293y 
0.6292 

Maximum Norm 
f(x, y)  =  − 3.9 +  0.2297x −  0.018y −  0.002x 2

+  0.0003201xy 
0.1257 
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Table 5. 13: Relative errors between experimental based data and calculated data (for Motor 1, BF+1 

BRB fault, z-axis vibration signal) 

Features Name Experimental based data Calculated data Error, % 

Mean  0.0182 0.0182 -0.021 

Median 0 0 0 

Standard Deviation  0.0629 0.06478 -3.07 

Median Absolute Value  0.04 0.04 0 

Mean Absolute Value  0.0397 0.04205 -5.857 

L1 Norm  356.2 367.1475 -3.073 

L2 Norm 6.21 6.405 -3.21 

Maximum Norm 2 1.9958 0.21 

 

 

 
Fig. 5. 13. Surface fitting results for features for Motor 1 with a multi-fault (BF+1BRB) processed by the 

stator current I2: (a) mean, (b) median, (c) standard deviation, (d) median absolute value, (e) mean 

absolute value, (f) L1 norm, (g) L2 norm, and (h) maximum norm. 
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Fig. 5. 14. Surface fitting results for features for Motor 1 with a multi-fault (BF+1BRB) processed by 

the z-axis vibration signal: (a) mean, (b) median, (c) standard deviation, (d) median absolute value, (e) 

mean absolute value, (f) L1 norm, (g) L2 norm, and (h) maximum norm. 

 

5.7.2 Machine Learning Results Using Fitting Equations 

The features of Motor 1 for all healthy and faulty conditions processed by the stator current I2 are 

calculated using the developed surface fitting equations for the following three cases, 90% at 64 Hz, 85% 

at 48 Hz, and 75% at 54 Hz, which have not been tested during experiments.  

The results are shown in Fig. 15. Fig. 15 indicates similar performance to previous accuracy using tested 

cases, and thus, it proves that the surface fitting equations offer effective feature calculation of untested 

cases for induction motors fed by VFDs. The testing accuracy based on surface fitting methods for Motor 

1 is also evaluated as shown in Table 5.14.  
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Fig. 5. 15. Classification accuracy for all faults of Motor 1 using features calculated by surface fitting 

equations for three untested cases (90% at 64 Hz, 85% at 48 Hz and 75% at 54 Hz) (processed using the 

stator current I2). 

Table 5. 14: Testing Performance of Trained Classifier Models with maximum accuracy for Motor 1 after 

surface fitting processed data (using stator current I2)

Motor 1 

Operating 

Conditions 

Classification 

Method 

Test 1 (80% training data, 20% 

testing data) 

Test 2 (70% training data, 30% 

testing data) 

Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Training 

Accuracy (%) 

Testing 

Accuracy (%) 

85% at 48 

Hz 

Linear SVM 89.6 88.89 88.9 85.18 

Quadratic 

SVM 
92.8 91.67 90 87.04 

Subspace 

Discriminant 
91.7 88.89 90.5 88.89 

 

5.8 Conclusion  

In this paper, a machine learning based fault diagnosis method for induction motors fed by 

VFDs are proposed. Two identical induction motors are tested in the lab by using a VFD as the 

power supply. The tests were conducted considering different single- and multi-faults, VFD output 

frequencies, and motor loading factors. The experimental data in the form of one phase stator 
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current I2 and z-axis vibration signals are processed using DWT to extract features for machine 

learning. Eight features (mean, median, standard deviation, median absolute deviation, mean 

absolute deviation, L1 norm, L2 norm, and maximum norm) are extracted from the signal and 

verified to be the best feature combination. 

Four families of classification algorithms in MATLAB Classification Learner toolbox with 

twenty classifiers are chosen to perform machine learning. It is found that among the twenty 

classifiers, 3 classifiers for Motor 1 and 8 classifiers for Motor 2 have accuracy above 90%. Among 

these high performance classifiers, two classifiers, Linear SVM and Medium Gaussian SVM, 

consistently appear for both motors, therefore, Linear SVM and Medium Gaussian SVM can serve 

as effective classifiers for fault diagnosis of induction motors fed by VFDs. 

By comparing the classification accuracy for different types of faults under various operating 

conditions, it is found that the stator current performs better and offers higher accuracy than the 

vibration signal. Therefore, it is recommended that the motor stator current should be used for 

fault diagnosis of induction motors fed by VFDs. 

The feature calculation formulas are developed through surface fitting using experimental data, 

these formulas are the function of the motor operating frequency in Hz and the motor loading 

factors in percentage. The purpose to develop these formulas is to calculate features for untested 

operating conditions in order to provide more comprehensive training to the chosen machine 

learning algorithm. 
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Chapter 6 

Conclusion  

6.1 Summary  

The main objective of this thesis is to develop fault diagnosis approaches for induction motors 

by employing machine learning and advanced signal processing techniques. Several diagnosis 

techniques are proposed in this thesis and verified to be effective for induction motors fed directly 

online or fed by VFDs. The main content of Chapters 3, 4 and 5 are summarized as follows: 

 

In Chapter 3, a machine learning based fault diagnosis method for single- and multi-faults of 

induction motors fed directly online is proposed, developed, and validated using experimental data 

measured in the lab. Several conclusions are drawn in this chapter as follows: 1) The signal 

processing technique, MP or DWT can be addressed to extract features with comparable accuracy. 

2) A quantitative comparison has been made and it is suggested that either stator current and 

vibration signals can be used to detect the same group of faults with a similar accuracy. 3) Five 

classifiers, Fine Gaussian SVM, fine KNN, weighted KNN, Bagged Trees, and subspace KNN are 

selected as suitable classifiers for induction motors fault diagnosis. 4) A novel curve fitting 

technique is developed to calculate features for the motors for which stator currents or vibration 

signals under certain loadings are not tested for a particular fault. 

 

In Chapter 4, a robust fault diagnosis method is proposed for classifying various faults of 

induction motors based on the DWT processing results. In this chapter, stator currents of an 0.25 

HP induction motor measured through an experimental test bench under healthy and faulty 

conditions and 100% loading are analyzed using the DWT for fault diagnosis. Two parameters are 
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evaluated, threshold and energy values, by the DWT processing. It is found that the threshold value 

for each decomposition level can serve as a good fault indicator of the motor. 

 

In Chapter 5, a machine learning based fault diagnosis method considering different single- and 

multi-faults for induction motors fed by VFDs is proposed and verified. Four families of 

classification algorithms in MATLAB Classification Learner toolbox with twenty classifiers are 

chosen to perform machine learning. It is found that among the twenty classifiers, 3 classifiers for 

Motor 1 and 8 classifiers for Motor 2 have accuracy above 90%. Among these high performance 

classifiers, two classifiers, Linear SVM and Medium Gaussian SVM, consistently appear for both 

motors, therefore, Linear SVM and Medium Gaussian SVM can serve as  effective classifiers for 

fault diagnosis of induction motors fed by VFDs. A quantitative comparison is also made and it is 

found that using the stator current performs better and offers higher accuracy than using the 

vibration signal for VFD-motor systems. Later, a novel surface fitting technique is developed to 

calculate features using experimental data for the motors for which stator currents or vibration 

signals under certain loadings and operating frequency are not tested for a particular fault, so the 

fault diagnosis can be conducted under any operating conditions. 

 
 

6.2 Future Works  

• The future work for this research is to investigate how to apply the proposed fault 

diagnosis method to sister units of the test motor with adequate accuracy. 

• The experiment and result analysis are done considering the stator current and vibration 

signal. Other monitoring signals such as voltage, instant power, temperature, and torque 

may be also considered in the future. 
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