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Abstract

In this thesis, we use the dispersive approach to calculate the effective fine struc-

ture constant. In this calculation, a truncated self-energy and triangle topology is

considered up to Next-to-Next to Leading Order (NNLO). We have used the disper-

sive approach for two-loop self energy to evaluate a NNLO (two loop) contributions

and a result obtained is rather compact expressions using only two loop Passarino-

Veltman function basis. For the triangle topology, we have used a bulk approximation

technique. The numerical result was obtained using the LoopTools and ColliersLink

packages in Mathematica.
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Chapter 1

Introduction

In quantum electrodynamics (QED) the coupling constant, α, the Thompson limit is

the low energy limit known as the fine structure constant tells us about the strength

of any electromagnetic interaction. Usually, it is considered as a constant and has

been measured to have a numerical value of 1
137 . However, from renormalization

theory we know that α is not really a constant; rather it is a function that depends

on the total amount of momentum associated with the interaction. As a result, the

strength of the coupling constant varies significantly with the energy of the associated

particles (significantly in the GeV scale energy). In this thesis, we tried to calculate,

theoretically, the correction of the fine structure constant. We evaluated the effective

fine structure constant at different energies and have shown the sub-percent level

correction to the Thomson limit.

In order to fully understand the underlying processes of how the effective fine struc-

ture constant is calculated, in this thesis, we will have to know about the Standard

model of particle physics. Throughout this chapter, there will be a discussion of our

understanding of the Standard model and its possibilities and limitations. Also, there

will be a description of the software and the related packages that we have used for
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modeling and calculating our results. All the physical theories associated with the cal-

culations are discussed in-depth in the following chapter. We discussed the details of

our results in the chapter after that. Finally, we concluded by discussing the possible

uses of the calculations and the future directions of similar kind of calculations.

1.1 The Standard Model

An ancient Greek philosopher, Democritus, who lived around 460 B.C. summed up

some philosophical views of the world and proposed the idea of atom - everything

in the world is constructed by "something" which cannot be broken-down further.

He believed that there are many different types of atoms which either attract each

other or repel. Due to limitations of scientific knowledge at the time, he could not

theorize about subatomic particles; yet, it was a milestone. In 1897, J.J. Thomson

discovered the electron while studying the properties of the cathode ray which lead to

the investigation of the subatomic particles. Consequently, the theories and discoveries

of thousands of physicists since the 1930s have helped us gain a remarkable insight

into the fundamental structure of matter. All of these developments in the field of

particle physics lead physicist to propose the Standard model.

The Standard model of particle physics is one of the most successful theories

of subatomic particles. It is capable of describing all interactions that subatomic

particles undergo with the exception of gravity. Most of the theoretical development

of the Standard model was concluded in the 1970s. It has been successful in explaining

almost all experimental results and precisely predicted a wide variety of phenomena

over the last decades. As a result, it is considered as one of the most well-tested

physical theories of subatomic particles.

There are three generation of subatomic particles in the Standard model. They

11



Figure 1.1: The Standard Model of Particle Physics [10]

could either be fermions or bosons. They all have an intrinsic property called the

spin. Any subatomic particles that have half-integer spin (e.g. 1
2 or 3

2) are classified

as fermions. On the other hand, any subatomic particles that have an integer spin

(e.g. 1 or 2) are known as bosons. It is believed that all of the known universe is only

made up of the first generation of fermions and bosons and that is widely supported

by astrophysical data. Generally, fermions are associated with matter and bosons are

force carriers in an interaction that the fermions participate. In a way, fermions are

that "something" which the ancient Greek philosophers thought to be indestructible.

All the fermions and bosons currently known and described by the Standard model

are shown in figure 1.1.
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1.2 Fermions

All quantum particles in nature have an associated intrinsic angular momentum like

property which is known as the spin. Fermions are defined as particles with half integer

spin (e.g. 1
2 ,

3
2). Moreover, fermions obey Pauli Exclusion Principle, which states that

no two identical and bounded fermions can simultaneously occupy the same quantum

state. For instance, for the electrons in an atom, to exist in the same orbital, they

must have different spin values, typically known as spin up(+1
2) or spin down(−1

2).

However, bosons does not exhibit the Pauli Exclusion Principle. According to the

Standard model of particle physics, all fermions can be classified further as quarks

and leptons, see figure 1.1. On the other hand, bosons include fundamental particles

such as photons, gluons, and W and Z bosons which are force-carrying gauge bosons,

Higgs boson and the hypothetical graviton of quantum gravity.

1.2.1 Leptons

Leptons, shown in figure 1.1, are fundamental particles in the Standard model that

have half-integer spin and are classified to be fermions.

Fermions have several intrinsic properties such as electric charge, spin, and mass.

They interact via electromagnetic interactions (exchange of photons), weak interac-

tions (exchange of W+,W− and Z0) or gravity (exchange of gravitons)1. However,

they do not take part in strong interactions-exchange of gluon. There are three gen-

erations of leptons which can either be charged or neutral and the mass of the leptons

increases with the generation.

The charged leptons are electron, muon, and tau, and the neutral ones are electron

neutrino, muon neutrino, and the tau neutrino. All three generations of neutrinos have

1No experimental verification yet.
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a very small mass and they only interacts via the weak interaction. In fact, a single

neutrino could travel through millions of kilometers of a material, like steel, without

even being detected. As a consequence of this, neutrinos were discovered much later

than other leptons in the Standard model. In 1930, Wolfgang Pauli proposed an

undetectable particle which transferred energy when he was trying to explain missing

energy in nuclear β-decay [3]. In 1956, Clyde Cowan and Fred Reines confirmed the

existance of neutrinos via their experiment [4].

The second and third generation of charged leptons share similar properties to

that of electrons. However, they are much more massive than electrons; consequently,

they are very unstable because of spontaneous decay. Muon and tau leptons tend to

decay into less massive particles in less than a microsecond.

1.2.2 Quarks

Quarks are fermionic particles in the Standard model having half-integer spin.

The existence of quarks was independently proposed by Murray Gell-Mann and

George Zweig in 1963 [6] and in 1968 was experimentally verified at Stanford Linear

Accelerator Center. The scattering of electron beams into liquid hydrogen revealed

that protons and neutrons consist of even smaller particles- quarks [16].

Quarks interact via the strong interaction and form composite particles. Due

to a phenomena called the color confinement, quarks are never found in isolation.

Quarks are found in bound states known as hadrons. All the different types of quarks

are shown in figure 1.1. The top quark is the most massive quark in the Standard

model. It is 186 times the mass of a proton. Due to the uncertainty principle, the

massive top quarks have much shorter life due to having higher energy and their

tendency of spontaneous decay to be in a lower quantum state which prevents them

from interacting with other quarks and form hadrons. Examples of hadrons include
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Pion (π) and Kaon (K). Hadrons can be classified further into Baryons and Mesons.

Like leptons, the mass of quarks also increases with generation, i.e. the second

generation of quarks are heavier than the first generation. Despite the mass differ-

ence between the generations, the interaction within each generation remain identical.

They also have another property called the flavor. Each flavor of quarks also has three

different color charges. In addition, all the quarks in the Standard model have their

associated anti-quarks which have the same mass but opposite electrical charge.

1.3 Bosons

Fundamental particles are either bosons or fermions. Bosons are the particles that

has integer spin. Unlike fermions, they do not obey Pauli Exclusion Principle which

means bosons with same energy can occupy the same quantum state, thus allowing

the bosons to be the mediator of any interaction.

Force Relative Strength Range (m) Mediator Theory
Strong 1 10−15 Gluon Chromodynamics

Electromagnetic 1
137 ∞ Photon Electrodynamics

Weak 10−6 10−18 W+,W− & Z0 Flavordynamics
Gravitational 10−42 1

r2 Graviton2 Geometrodynamics

Table 1.1: The four fundamental forces and their corresponding gauge-bosons

1.3.1 Gauge Bosons

There are four fundamental forces of nature. In order to quantize them gauge bosons

were introduced in the Standard model. In classical field theory there is no need of a

mediator particle for interactions to occur. On the contrary, in quantum field theory,

any interactions are explained by the exchange of mediator particles of a particular

theory. These mediator particles are the gauge bosons. In the classical view, inter-
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actions occur at a single point and there is no need of a mediator particle. At low

energies, the classical model of field theory gives us an accurate approximation. How-

ever, at high energies this model fails and eventually is replaced by the intermediate

vector boson theory.

1.3.2 Higgs Boson

The Higgs boson plays an important role in the Standard model of particle physics.

Unlike gauge bosons, the Higg boson is the carrier of the Higgs field which is included

in the theory as a mass gaining field. Only inside the Higgs field, all fundamental

particles in the SM can get their respective masses. The idea of the Higgs particle

was proposed around the 1960s- by three different working groups but it was only

discovered in 2012 at CERN.

1.4 Limitations of the Standard Model

The Standard model of particle physics, as discussed above is the most successful the-

ory that is capable of explaining a lot of the physical phenomena around us. However,

there are a lot of observations that cannot be explained by the current version of the

Standard model.

At first, let us take the example of the mass of the neutrinos. From experimental

evidence, we have come to know that neutrinos have a non-vanishing mass, though

their exact mass is yet to be discovered. In addition, we also know that they are

abundant in nature. Consequently, we may expect them to contribute a fair share of

the mass of the universe. As a result, they may play a significant role in the evolution

of the universe. Moreover, experimental evidence suggests that there are interactions

of both neutrinos and anti-neutrinos. We also know that neutrinos do not have charge;
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therefore, the notion of having an anti-particle is controversial. Neutrino-oscillations

is also a phenomena that has been observed but cannot be explained by the theory

nor can they be explained by the Standard model.

The universe consists of ordinary matter which is made up from the sub-atomic

particles existing in the Standard model 1.1. Scientists have estimated that the or-

dinary matter in the observable universe only accounts for roughly 4.9% of the total

matter and energy. However, from astrophysical observations, the accelerating expan-

sion of the universe, we know that there must be other kinds of matter and energy in

the universe and their rough estimation is shown in figure 1.2. We also know that the

Standard model of particle physics does not recognize the existence of dark matter or

dark energy. Therefore, we can safely say that the Standard model of particle physics

is not complete.

Figure 1.2: A pie-chart showing the matter contribution in the universe [12]

In addition, the existence of the hypothetical graviton is yet to be confirmed by

experimental evidences. Moreover, at certain instances, the most successful theory of

gravity, General Relativity, is incompatible with the Standard model.

Lastly, the matter-antimatter asymmetry is also a major drawback of the Standard
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model. The universe is mostly made up of matter; however, from the predictions of

the Standard model we expect them to be created in equal amounts just after the

inflation in the early universe. From astrophysical observations,however, we know

they are is disproportionate ratio; however, there is no mechanism in the Standard

model to describe this.

We can clearly say that the Standard model is not a complete theory and in order

to explain all the physical phenomena we observe, we need a theory that explains

physics beyond the Standard model.

1.5 Physics Beyond the Standard Model (BSM)

The limitations of the Standard model (as discussed in the section 1.4) lead physicists

to look for physics beyond the Standard model. Some of the theories that try to

explain the limitations of the Standard model includes various extension to the theory

such as Supersymmetry, String theory, M-theory, and a lot of mathematical models

including extra dimensions. However, not all of these theories can be simultaneously

correct. In the near future, physicists hope to find enough experimental evidence to

support one of these theories that will be able to explain all of the observed physical

phenomenas.

Generally, there are three different ways of probing the physics beyond the Stan-

dard model; the Energy Frontier, the Cosmic Frontier and the Precision/ Intensity

Frontier, shown in figure 1.3. The Energy frontier uses high-energy colliders, like the

Large Hadron Collider (LHC) and others, to probe physics of the Standard model

and beyond. They tend to look for the origin of mass which is partly revealed by the

discovery of the Higgs boson. In addition, they look for the matter-anti-matter asym-

metry, dark matter, unification of the forces, and new physics beyond the standard
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Figure 1.3: Three frontiers of Physics [5]

model.

The Cosmic Frontier is another way of unraveling all the unknown physical phe-

nomenas that is yet to be discovered. The people working in this frontier use un-

derground experiments and ground-based and space-based telescopes to collect astro-

nomical data. One such example would be Laser Interferometer Gravitational-Wave

Observatory (LIGO) which recently discovered gravitational waves. Generally, they

look for cosmic particles, try to get data that suggests the existence of dark energy,

and consequently look for physics beyond the Standard model.

The Precision or the Intensity Frontier is the other group which tries to probe

physics beyond the Standard model using intense particle beams and precise calcula-

tions of the cross-sections involved in the scattering process for a physical phenomena.
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1.6 Precision Frontier

A number of theories describing the early universe predicted that there are many other

particles which disappeared at the time after inflation. However, it is believed that

those particles are now indirectly present as interaction carriers, and can be probed

through precision measurements at low momentum transfer. In order to access the

scale of the new physics at multi-TeV level, we need to push one or more experi-

mental parameters such as asymmetry [2] to extreme precision. Few of the ongoing

theoretical research to probe at these high precise level includes precision neutrino

scattering, weak-electromagnetic interference (such as opposite parity transitions in

heavy atoms), and parity-violating electron scattering.

From a theoretical perspective, the precise calculation can be achieved by ex-

tending the perturbation expansion of the scattering matrix element. However, the

calculation of such a scattering matrix is highly involved. Since electroweak (EW)

interactions usually have different mass-propagators and higher-order tensor Feynman

integrals, even a two-loop EW calculation can become increasingly complicated. If

we consider EW interactions, it is sometimes very challenging and even impossible

to find analytical results beyond the one-loop level. This has lead us to use various

approximations or purely numerical methods.

In this thesis, however, I have considered only quantum electrodynamics and kept

my calculations only up to two-loop levels. In addition to various approximations,

I have used several numerical methods and the Dispersion approach [1] to calculate

the effective fine structure constant. I have intensively used Mathematica for the

purpose of my numerical calculations.
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1.7 Mathematica

In this thesis, we have used Mathematica as the main language to code our cal-

culations. In addition, we have extensively used three publicly available packages-

FeynArts, FormCalc and LoopTools [7] [8]. FeynArts was used to gener-

ate all the necessary Feynman diagrams. FeynArts is also capable of generating

multi-loop topologies such as the vertex, box, etc.

FormCalc uses an algorithm that has all the Feynman rules built-in for cal-

culating the scattering matrix of a single Feynman diagram. In addition, it is also

capable of combining all the scattering matrices of several Feynman diagrams. At the

end of a calculation, the amplitude is given in Passarino-Veltman basis. Passarino-

Veltman basis are discussed in more detail in chapter 2.3. However, FormCalc only

performs tree-level calculations and the algorithm is unable to calculate the scatter-

ing matrices for two-loop level topologies. Furthermore, FormCalc has a built-in

renormalization procedure for one-loop or tree-level topologies. For the purpose of

doing two-loop topologies we used the renormalization scheme developed for EW in

the paper [1]. However, we had to modify the renormalization scheme, shown in 2.8,

because we have only considered quantum electrodynamics.

LoopTools is used in the last part of the calculation. It calculate all the nu-

merical integration of the scattering matrices. It is a very powerful numerical tool

to do Feynman integrals for one-loop topologies. However, it cannot perform two-

dimensional Feynman integrals. We used the dispersion approach and converted the

two-dimensional Feynman integrals to one-dimensional Feynman integrals. As a re-

sult, we were able to calculate our final result using LoopTools. Futhermore, there

are some parameters in our Mathematica notebook that can also be used to test the

divergences from FormCalc and also the numerical stability of LoopTools.
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Chapter 2

Theoretical Background

This chapter provides a general overview of the quantum field theories that are relevant

for the understanding of the calculations.

2.1 Feynman Diagrams: A General Overview

One of the most important parts of any calculation in quantum field theory is the

calculation of the S-matrix. This calculation involves a large number of convoluted

integrals. However, upon close inspection, a repeated pattern appears in such calcu-

lations. These repeated patterns can be depicted by Feynman diagrams which are

a general graphical representation that describes the interactions of the fundamental

particles in the Standard model. The diagrams can be used to construct amplitudes

for different scattering processes. One can easily associate field theories such as Quan-

tum Electrodynamics (QED), Electroweak, etc. with Feynman diagrams in order to

extract mathematical information that a Feynman diagram holds. Moreover, the di-

agrams can be associated to arbitrary mathematical fields such as the φ4, φ3, etc. in

order to model different physical phenomena.

The Feynman rules are generally derived from the Lagrangian of the theory. For
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instance, φ4 with the Lagrangian

L = 1
2(∂µφ)2 − 1

2m
2φ2 − λ

4!φ
4 (2.1)

has the following space-time Feynman rules:

For each external point: 1

For each vertex: (−iλ)

For each propagator: DF (x− y)

where DF (x− y) is the two-point correlation function, sometimes called the two-

point Green’s function in φ4 theory. For the purpose of defining the correlation we

use the Dirac notation from quantum physics. We introduce 〈Σ| to denote the ground

state of the interacting theory. However, this is not the same ground state, 〈0|, as in

a free theory. We introduce T as a time-ordering symbol and also the fields φ(x) and

φ(y). We know that in free theory [15], the propagator is defined as

DF (x− y) = 〈0|Tφ(x)φ(y) |0〉free

=
∫ d4p

(2π)4
ie−ip.(x−y)

p2 −m2 + iε

(2.2)

where p is the four-momentum associated with the interaction. Then, using the

Hamiltonian of φ4 theory as in [15]

H = H0 +Hint = HKlein-Gordon +
∫
d3x

λ

4!φ
4(x) (2.3)

and writing the correlation function of φ4 theory as a power series of λ while ensuring

that the Hamiltonian is a unitary operator. The last term in equation (2.3) is the

coupling constant that shows up in the vertex. Using these rules, we can easily
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construct all the S-matrices for the interaction. Finally, by adding them together

and dividing by the symmetry factor we will get probability amplitude. When the

interaction φ4(x) is substituted by the QED interaction term we can derive same kind

of Feynman rules for QED.

For the purpose of this thesis, we focused on two different types of Feynman

diagrams; namely the one-loop self energy diagram and two-loop self energy diagram.

A general topology of those types are shown in figure 2.1 and figure 2.2. Finally, using

a computer algebra package like FormCalc [7] [9] we can insert associated fermion

fields to the topology and then get the S-matrix of any fields associated with these

kinds of topology.

Figure 2.1: General topology of a one-loop self energy diagram

Figure 2.2: General topology of a first order correctio to one-loop self-energy diagram

One of our primary goal is to calculate the Vacuum Polarization function, Π̂(Q2)

where Q2 is the momentum squared associated with the interaction. The vacuum

polarization function is directly related to the effective fine structure constant as
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follows (derivation shown in section 2.6):

α(Q2) = α(0)
1−∆α(Q2) (2.4)

= α(0)
1− Π̂(Q2)

(2.5)

where α(0) is the coupling constant for QED at Q2 = 0 and α(Q2) is the effective

coupling constant at momentum Q2.

2.2 Feynman rules for QED

The Lagrangian of QED which as

LQED = iψ̄ /∂ψ − ψ̄mψ − 1
4(Fµν)2 − eψ̄γµAµψ (2.6)

where

Fµν = ∂µAν − ∂νAµ

/∂ = ∂µγ
µ

γµ are the Dirac matrices

ψ are the spinor field associated with the particle fields

Aµ is the four- potential of the electromagnetic field generated by the particles

m is the mass of the particle associated

e is the coupling constant in the theory.

The above Lagrangian can be used to derive the Feynman rules for QED using func-

tional derivatives of the path integral. In order to do so we have to apply the functional
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derivative of the path integral on the Lagrangian to get S and then use Π = iS−1

to derive the propagator and Γ = iS to get the coupling. This is a rather involved

task. However, as shown in Introduction to Elementary Particles [6], we can use a set

of Feynman rules, similar to the φ4-theory in previous section, to derive the desired

scattering matrix. In general, to get the scattering matrix of a QED interaction we

have to use the following steps from a given Feynman diagram:

• Notations: It is customary to label the momenta of incoming and outgoing

particles as p1, p2, ..., pn and the internal momenta as q1, q2, ..., qn. It is also

required to use an arrow in order to trace the direction of the momenta.

• External lines: A particle associated with the interaction is denoted by an exter-

nal line and there is a corresponding Dirac spinor (for a fermion) or a polarization

vector (for a vector boson)

Particles :


Incoming: u

Outgoing: ū

Anti-particles :


Incoming: ū

Outgoing: u

Photons :


Incoming: εµ

Outgoing: ε∗µ
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• Coupling: At each vertex, a coupling Γµ is introduced which is given by

Γµ = igγµ (2.7)

where g is the strength of the coupling. It represents the coupling strength of

the participating particles. It may depend on the spin of the particles for parity

violating interactions(weak interactions).

• Propagators: For each internal line or particle, the following terms should be

introduced:

For Fermions: Π =
i/q +m

q2 −m2 , where /q = qµγ
µ

For Bosons: Πµν = igµν

q2 −m2

where q and m are the momentum and the mass of the internal particle. The

particle that does not belong to external lines is assumed to be off-shell particles.

Off-shell particles are those particles that are spontaneously formed during pair

production and do not obey energy-momentum conditions of the Dirac equation.

• Conservation of energy and momenta: For each vertex, a ∆-function is needed

to ensure the conservation of energy and momentum which is given by

∆ = (2π)4δ4(k1 + k2 + k3)

where ki is the momentum of the corresponding particle and the sign of ki is

determined by the direction of the momentum of the particle.
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• Integration over internal momenta: For each internal particle, the integration I

of the internal momenta is:

I = d4qj
(2π)4

• Finally, we have to assemble all the terms together and rewrite the delta function

as:

∆ = (2π)4δ4(pi + p2 + ....− pn)

and after multiplying the whole expression by i we derive the amplitudeM.

As an example, we can choose electron-muon scattering as shown in figure 2.3,

and use the steps of the Feynman rules to get the amplitudeM.

The external particles are the incoming electron (p1,m1), incoming muon (p2,m2),

Figure 2.3: Feynman diagram for electron-muon scattering

the outgoing electron (p3,m3) and the outgoing muon (p4,m4), where the kinematic

information pi,mi is known. Now, according to Feynman rules:
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1. The Dirac spinors are:

• ue(p1,m1)

• ūe(p3,m3)

• um(p2,m2)

• ūm(p4,m4)

2. The coupling for the vertices are: igeγµ and igmγν

3. The propagator is: −igµν
q2

4. The delta function and the integration term is: δ4(p1−p3−q)δ4(p2−p4 +q) d4q
(2π)4

Now, when we assemble everything we get:

(2.8)M = (2π)4
∫

[ūe(p3,m3)(igeγµ)ue(p1,m1)] −igµν
q2 [ūm(p4,m4)(igeγν)um(p2,m2)]

× δ4(p1 − p3 − q)δ4(p2 − p4 + q)d4q

Simplifying the integration and the delta function we get:

M = −ige
(p1 − p3)2 [ūe(p3,m3)(igeγµ)ue(p1,m1)] [ūm(p4,m4)(igeγµ)um(p2,m2)] (2.9)

Since, the kinematic information is known, the numerical value can easily be calcu-

lated.
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Figure 2.4: One-loop N-point topology

2.3 Passarino-Veltman Function

For calculating the amplitude in Feynman diagrams at tree level(one-loop) Veltman

and ’t Hooft introduced basic one-loop integrals, namely scalar 1-point, 2-point, 3-

point and 4-point integrals [18]. An example of such one-loop tensor N-point integral

is shown in figure 2.4 and has the following general form

TN,µ1...µP (p1, ..., pN−1,m0, ...,mN−1) = (2πµ)4−D

iπ2

∫
dDq

qµ1,...,qµP

N0N1...NN−1
(2.10)

where

Nk = (q + pk)2 −m2
k + iη, (p0 = 0)

and iη for η > 0 denotes an infinitesimal small imaginary part, µ is a mass parameter

and D is the non-integer dimension of the spacetime defined as D = 4 − ε. Then

Passarino and Veltman provided a systematic method which allowed us to reduce all

tensor integrals with up to four-loop internal propagators to these basic integrals [13].
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These functions are often recognized as Passarino-Veltman functions. In the following

sections, I will show explicit examples of a few of the Passarino-Veltman functions

that can be derived from a given Feynman diagram.

2.3.1 One-point and two-point scalar function

Figure 2.5: Fermion self-energy diagram

The truncated amplitude for figure 2.5 is

Σff (q2) = −ie2
∫
d4qγν

/k − /q +m

[(k − q)2 −m2]qγµ
gµν

q2

= 2ie2
∫
d4q

/k

[(k − q)2 −m2]q2︸ ︷︷ ︸
I1

−2ie2
∫
d4q

/q

[(k − q)2 −m2]q2︸ ︷︷ ︸
I2

(2.11)

where k, q and m are shown in figure 2.5 and the limit of integration is taken from

+∞ to −∞. In most cases, this kind of integration is divergent. In order to evaluate,

we will set the dimension of the integration to be D instead of 4 and introduce a

pre-factor µ4−D

2πD . Thus, I1 becomes

I1 = µ4−D

2πD
∫
dDq

1
[(k − q)2 −m2]q2 (2.12)

and using the Feynman trick

1
ab

=
∫ 1

0
dz

1
[az + b(1− z)]2 (2.13)
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where z is the Feynman parameter, I1 takes the form

I1 = µ4−D

2πD
∫ 1

0
dz
∫
dDq

1
[(q − kz)2 − k2z2 + (k2 −m2)]2 (2.14)

and now we can chose q − kz 7→ q without changing the integration which gives us

I1 = I1 = µ4−D

2πD
∫ 1

0
dz
∫
dDq

1
[q2 − k2z2 + (k2 −m2)]2 (2.15)

Then, we use the following Feynman master integral [15]

∫ dDq

2πD
1

(q2 − Π)2 = i

(4π)D/2
Γ(2− D

2 )
Γ(2)

( 1
Π

)2−D2
(2.16)

where

Γ(z) =
∫ ∞

0
tz−1e−tdt

= 1
z
− γ + θ(z)

(2.17)

and γ ≈ 0.5772 (known as Euler Mascheroni constant) give us

I1 = iµ4−D

4πD
∫ 1

0
dz

Γ(2− D
2 )

Γ(2)

(
1

q2 − k2z2 + (k2 −m2)

)2−D2
(2.18)

. Now,

Γ
(

2− D

2

)
= 2

4−D − γ + θ
(4−D

2

)
= 2
ε
− γ + θ(ε)

(2.19)
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with ε = 4−D and

µ4−D = (µ2)
4−D

2 = 1− ε

2 ln
(

1
µ2

)
+ θ(4−D) (2.20)

and (
1

k2z2 − (k2 −m2)z

) ε
2

= 1− ε

2 ln
(
k2z2 − k2z +m2z

)
(2.21)

where ε 7→ 0 when D = 4 which is known as the limit of dimensional regularization.

The dimensional regularization confines the divergence of I1 and gives us

I1 = µ2

(4π)2k2

(
2
ε
− γ + 2k2

µ2 + m2

µ2 ln m
2

µ2 + k2 −m2

µ2 ln k
2 −m2

µ2

)
(2.22)

. By using similar methods, we derived

I2 =
/k

(4π)2

[
1
ε

γ

2 + m2

2k2 −
m4

2k4 ln m
2

µ2 −
(

1
2 −

m4

2k4

)
ln m

2 − k2

µ2

]
(2.23)

. Using the results for I1 and I2 we get the truncated amplitude to be

Σff (k) = ie2 2ie2µ2

(4π)2k2

(
2
ε
− γ + 2k2

µ2 + m2

µ2 ln m
2

µ2 + k2 −m2

µ2 ln k
2 −m2

µ2

)

− 2ie2/k

(4π)2

(
1
ε
− γ

2 + m2

2k2 −
m4

2k4 ln m
2

µ2 −
(

1
2 −

m4

2k4

)
ln m

2 − k2

µ2

) (2.24)

. Now, equation (2.24) can be rewritten in the Passarino-Veltman basis using a one-

point Passarino-Veltman function defined as

A0(m2) =
∫ d4q

q2 −m2

= m2
[

1
ε
− ln m

2

µ2 + 1− γ + ln(4π)
] (2.25)

where m is the mass parameter in the figure, the scalar two-point function is defined
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as

B0(p2,m2
1,m

2
2) = µ4−D

iπ2

∫
dDq

1
(q2 −m2

1) [(q + p)2 −m2
2] (2.26)

and a general B-function is defined as

Bν1,ν2,...,νN = µ4−D

iπ2

∫
dDq

qν1,ν2,...,νN

(q2 −m2
1) [(q + p)2 −m2

2] (2.27)

where k, q,m1 andm2 are shown in figure 2.5. From the figure 2.5 , using the Feynman

rules for QED the following amplitude can be defined

M =
∫
d4q

[
ū(k)(ieγµ)

/k − /q +m

[(k − q)2 −m2] (ieγν)u(k)
]
igµν

q2

= −i(4πα)
[
ū(k)

∫
d4q

γµ(/k − /q +m)γµ

[(k − q)2 −m2]q2u(k)
] (2.28)

. Now, from equation (2.28) we can separate the following integrals

I1 = −2/k
∫
d4q

1
D

(2.29)

I2 = −
∫
d4q

γµ/qγ
µ

D
(2.30)

I3 = 4m
∫
d4q

1
D

(2.31)

where D = [(k−q)2−m2]q2. With careful inspection we see that we can write equation

(2.29) and equation (2.31) using the scalar B-function in equation (2.26) as

I1 = −2/kB0[k2, 0,m2] (2.32)

I3 = 4mB0[k2, 0,m2] (2.33)
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also, taking the trace of the matrices Tr[γµγαγµ ≡ −2γα] we get

I2 = 2γαBα[k2, 0,m2] (2.34)

. Then by using tensor reduction defined as

Bα[k2,m2
1,m

2
2] = kαB1 ⊗ kα (2.35)

and contracting both side of of equation (2.54) with kα we evaluate B1 which is

∫
d4q

(q.k)
D

= −k2B1 (2.36)

where (q · k) = 1
2 [(k − q)2 −m2] +m2 − k2 − q2 which gives us

1
2

∫
d4q

[(k − q)2 −m2] +m2 −K2 − q2

D

= 1
2


∫
d4q

1
q2︸ ︷︷ ︸

A0[0]

+m2
∫
d4q

1
D︸ ︷︷ ︸

B0[k2,0,m2]

−k2
∫
d4q

1
D︸ ︷︷ ︸

B0[k2,0,m2]

−
∫
d4q

1
[(k − q)2 −m2]︸ ︷︷ ︸
A0[m2]


(2.37)

. After collecting everything together and since A0[0] converges to zero we get

B1 = 1
2k2

[
A0[m2] + (k2 −m2)B0[k2, 0,m2]

]
(2.38)

and

(2.39)
M = i(4πα)ū(k)

[
4mB0[k2, 0,m2]

− 2/k
[
B0[k2, 0,m2] + 1

2k2

[
A0[m2] + (k2 −m2)B0[k2, 0,m2]

]]]
u(k)

Although the value of M in equation 2.39 can be calculated manually, it is a

35



laborious task. In this thesis, I used the FormCalc package in Mathematica to do

this calculation.

2.3.2 Vector Boson Self-Energy (QED only)

Figure 2.6: Truncated vector boson self-energy diagram with incoming momentum k
and mass m1 and m2

In figure 2.6, the photon is off-shell and the amplitude is a second-rank tensor.

Using the Feynman rules for QED, the amplitude works out to be

Πµν = Tr
[∫

d4q(ieγν)
/q +m1

q2 −m2
1
(ieγµ)

/k + /q +m2

[(k + q)2 −m2
2]

]
(2.40)

. Now, expanding the numerator and defining the following denominator as

D1 = q2 −m2
1 (2.41)

D2 = (k + q)2 −m2
2 (2.42)

we get

Πµν = (−4πα)Tr
[∫

d4q
[
γν/qγµ + γν/qγµ/q + γν/qγµm2 +m1

(
γνγµ(/k + /q +m2)

)] 1
D1D2

]
(2.43)
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. After taking the trace of all the matrices we obtain the following form

Πµν = (−4πα)
∫
d4q

[
Tr[γν/qγµ/k] + Tr[γν/qγµ/q] + 4m1m2gµν

] 1
D1D2

(2.44)

. Now, we can use the following one-point and two-point Passarino-Veltman functions:

A0[m2
2] +m2

1B0 =
∫
d4q

(
k2 −m2

1 −m2
2

D1D2

)
(2.45)

Bν [k2, 0,m2] =
∫
d4q

(
kν
D1D2

)
(2.46)

Bµν [k2,m1,m
2] =

∫
d4q

(
kµkν
D1D2

)
(2.47)

Bα[k2, 0,m2] =
∫
d4q

(
kα

k2

D1D2

)
(2.48)

B0[k2, 0,m2] =
∫
d4q

( 1
D1D2

)
(2.49)

Using the above one-point and two-point functions we can write equation (2.40) as

(2.50)Πµν = (−16πα) [kµBν + kνBµ + 2Bµν − gµνkαBα + gµνm1m2B0]
+ (16πα)

[
A0(m2

2) +m1B0
]
gµν .

In the equation (2.50), there are some two-point functions which are not numerically

stable and are therefore not suitable for numerical integration; therefore, we tend to

use tensor decomposition, such as

Bµ = kµB1 (2.51)

Bµν = gµνB00 + kµkνB11 (2.52)
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. Substituting equation (2.51) and equation (2.52) in equation (2.50) we get

Πµν = −(16πα)
[
2kµkνB1 + 2 (gµνB00 + kµkνB11)− gµνk2B1 + gµνm1m2B0

−gµν
(
A0(m2

2) +m2
1B0

)]
= −(16πα)

[
gµν

{
2B00 − k2B1 − A0(m2

2)−m2
1B0 +m1m2B0

}
+ kµkν {2 (B1 +B11)}

]
(2.53)

and with a tensor reduction such as

Bν [k2,m2
1,m

2
2] = kνB1 ⊗ kν (2.54)

Bµν [k2,m2
1,m

2
2] = gµνB00 + kµkνB11 ⊗

 gµν

kµkν

 (2.55)

we use equation (2.54) and (2.55) to get the following relations between two-point

functions

B1 = 1
2k2

{
A0(m2

1)− A0(m2
2)− (k2 −m2

2 +m2
1)B0

}
(2.56)

gµνBµν = 4B00 + k2B11 (2.57)

B11 = 1
3

{
A0(m2

2) +m2
1B0 −

1
2
[
A0(m2

2)− (k2 −m2
2 +m2

1)B1
]}

(2.58)

B00 = 1
3k2

{
2
[
A0(m2

2)− (k2 −m2
2 +m2

1)B1
]
− A0(m2

2)−m2
1B0

}
(2.59)

. Furthermore, if we set m1 = m2 = m we get

B1 = −1
2B0 (2.60)

B00 = 1
3

(1
2A0 +m2B0 −

1
4k

2B0

)
= 1

12
(
2A0 +B0(k2 − 4m2)

)
(2.61)

B11 = 1
3k2

(
A0 +B0(k2 −m2)

)
(2.62)
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. Finally, we can write equation (2.40) as

Πµν = −(16πα)
(
gµν

{
−2

3A0 + 1
3B0(k2 + 2m2)

}
− kµkν

k2

{
−2

3A0 + 1
3B0(k2 + 2m2)

})
(2.63)

2.3.3 Three-point function

In figure 2.7 there is a generic triangle insertion. In our calculation, however, we

will only consider virtual particles that are possible according to QED. In figure 2.7,

Figure 2.7: A general triangle topology with pi are the incoming momenta and mi

represents the masses of the off-shell particles

k1 = p1 and k2 = p1 + p2. The amplitude for a general triangle topology such as in

figure 2.7 is given as

Cµ1,µ2,...,µN = µ4−D

iπD/2

∫
dDq

qµ1 , qµ2 , ..., qµN

[q2 −m2
1]
[
(q + k1)2 −m2

2

] [
(q + k2)2 −m2

3

] (2.64)

where m1, m2 and m3 are the masses of the vertex shown in figure 2.7, and their

respective momentum is as shown in figure 2.7. By doing some algebra in equation

(2.64), we will try to get a similar structure to the master integral in appendix of [15].
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For that purpose, we will use the Feynman trick which is

1
ABC

=
∫
dxdydzδ(x+ y + z − 1). 1

[Ax+By + Cz]3

=
∫ 1

0
dx
∫ 1−x

0
dy.

1
[Ax+By + (1− x− y)C]3

(2.65)

and then define

D ≡ (1− x− y)
[
q2 −m2

1

]
+
[
(q + p1)2 −m2

2

]
x+

[
(q + p1 + p2)2 −m2

3

]
y (2.66)

. Then using equation (2.65) and defining

A ≡
[
q2 −m2

1

]
(2.67)

B ≡
[
(q + k1)2 −m2

1

]
(2.68)

C ≡
[
(q + k2)2 −m2

3

]
(2.69)

l = q + p1(x+ y) + p2y (2.70)

∆ = p2
1 (x+ y)2 + 2 (p1.p2) y (x+ y) + p2

2y
2 +m2

1 (x̄− y)− xp2
1 +m2

2x− p12y + ym2
3

(2.71)

where x̄ = 1−x and p12 = (p1 + p2)2 we get a similar structure to the master integral

in the appendix of the book "An Introduction To Quantum Field Theory" [15] which

is ∫ dDl

(2π)D .
1

(l2 −∆)n = (−1)n i
(4π)D/2

Γ
(
n− D

2

)
Γ(n)

( 1
∆

)n−D2
(2.72)

where n = 3 and Γ(n) = (n− 1)! which finally gives us

C0 =
∫ 1

0
dx
∫ 1−x

0
dy(−i)(4π)D/2

(4π)d/2
(−i)Γ(1)

3

( 1
∆

)1

= −1
2

∫ 1

0
dx
∫ 1−x

0
dy
( 1

∆

) (2.73)
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. In the limiting case D 7→ 4 the poles cancel analytically which in turns makes C0 a

convergent integral.

2.4 Renormalization of QED

In order to understand the renormalization of Quantum Electrodynamics we will start

with a toy model, namely φ3 theory, and then proceed from there. This helps us to

understand the the logical sequence that underlies the process of renormalization.

2.4.1 Motivation for renormalization

The core idea behind the renormalization in quantum field theory [17] is-"Observables

are finite and in-principle calculable functions of other observables." Regularization

serves to isolate the infinite terms appearing in the loop integrals and renormalization

is the procedure that absorbs these infinite terms in the bare parameters of the the-

ory to generate the physical and measurable parameters of the theory. There could

be divergences which appear in the intermediate steps of the calculations, such as

calculating a loop graphs, but after regularization the infinities will disappear.

In general, tree level amplitudes are mathematically rational polynomials and we

do not have any functions which result in infinity; this is not the case for a loop

diagram. For instance, if we consider the toy model φ4 theory we find that the

expression for the correlation function involves terms like ln
(
s
s0

)
which give rise to

infinities. Expressing the correlation function at the scale s in terms of the correlation

function at a different scale s0 gives a finite prediction.
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2.4.2 Renormalization of φ3 theory

The Lagrangian for φ3 theory is

L = −1
2φ(� +m2)φ+ g

3!φ
3 (2.74)

. We will consider a off-shell one-loop Feynman diagram as in figure 2.8, and by using

Figure 2.8: One-loop Feynman diagram for φ3 theory

the Feynman rules for φ3 theory as in [15] we get

iMloop(p) = 1
2(ig)2

∫ d4k

(2π)4
i

(k − p2)−m2 + iε

i

k2 −m2 + iε
(2.75)

whereM is the amplitude. Then we use the following Feynman trick [17]

1
AB

=
∫ 1

0

dx

[A+ (B − A)x]2 (2.76)

where x is the Feynman parameter. In addition we use the shift kµ 7→ kµ + pµ(1− x)

and Pauli-Villars regularization

∫ d4k

(2π)4
1

(k2 −∆ + iε)2 = − i

16π2 ln ∆
Λ2 (2.77)
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where Λ is a fictitious scalar mass that obeys fermionic statistics and ∆ = m2 −

p2x(1− x). Finally, by completing the integration we get

Mloop(p) = g2

32π2

[
2− ln −p

2

Λ2

]
(2.78)

. By redefining Λ2 7→ Λ2e−2 and assuming pµ is spacelike we get

Mloop(p) = − g2

32π2 ln Q
2

Λ2 (2.79)

where Q2 is a physical scale which is related to Casimir force [17]. We can see that

lnQ2 is the regulator that will generate the physical prediction from the loop. Now,

Figure 2.9: A generic t-channel scattering diagram

we use equation (2.79) as a insertion into a tree level diagram as in figure 2.9, i.e. we

calculate the amplitude for the topology in figure 2.10 and use the conditions p2 < 0

and Q2 = −p2 with Q > 0 resulting in

M(Q) = M0(Q) +M1(Q) = g2

Q2

(
1− 1

32π2
g2

Q2 ln Q
2

Λ2 +O(g4)
)

(2.80)

. Let us now substitute g̃ ≡ g2

Q2 , to make it a dimensionless quantity at some fixed Q0

which gives us the renormalization condition for this diagram which is

g̃2
R = M(Q0) (2.81)
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Figure 2.10: A generic scalar bubble diagram

The renormalization condition defines the coupling in terms of an observable which

reduces the possibilities of the renormalization condition to be only one parameter

in a quantum theory. Finally, substituting g̃2
R in to the matrix element gives us a

prediction for the matrix element at the scale of Q in terms of the matrix element at

the scale of Q0 which is

M(Q) = g̃2
R + 1

32π g̃
2
R ln Q

2
0

Q2 + ... (2.82)

Thus, we get the renormalized amplitude for φ3 theory which is given by equation

2.82. The amplitude can be measured at one Q and then it can be used to make

non-trivial prediction at another value of Q.

2.4.3 Vacuum Polarization in Quantum Electrodynamics

The Lagrangian of QED is given as

LQED = iψ̄ /∂ψ − ψ̄mψ − 1
4(Fµν)2 − eψ̄γµAµψ (2.83)
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where where

Fµν = ∂µAν − ∂νAµ

/∂ = ∂µγ
µ

γµ are the Dirac matrices

ψ are the spinor field associated with the particle fields

Aµ is the four- potential of the electromagnetic field generated by the particles

m is the mass of the particle associated

e is the coupling constant in the theory.

. The counter-term Lagrangian will give us the the Feynman rules for that can be

used to get the renormalized amplitude. In order to get the derive the the Feynman

rules for the renormalized amplitude we start with the construction of the Lagrangian

for the counter-terms:

L0
QED = ψ̄0

(
i/∂ − e0 /A0 −m0

)
ψ0 −

1
4(F 0

µν)2 (2.84)

where

ψ0 7→
√
zψψ with zi = 1 + δzi,

e0 7→ zee,

A0
µ 7→

√
zγAµ and

m0 7→ zmm
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. Thus, we have

L̂QED = (1 + δzψ)ψ̄
(
i/∂ − (1 + δze)e+ (1 + δzγ)1/2 /A− (1 + δzm)m

)
ψ − 1

4(Fµν)2(1 + δzγ)

= (1 + δzψ)ψ̄
(
i/∂ − (1 + δze)e+ (1 + 1

2δzγ)
/A− (1 + δzm)m

)
ψ − 1

4(Fµν)2(1 + δzγ)

= ψ̄
(
i/∂ − ie /A−m

)
ψ − 1

4(Fµν)2

δzψψ̄(i/∂ − e /A−m)ψ + ψ̄(−δze)e /Aψ

ψ̄
(
−1

2δzγ
)
e /Aψ + ψ̄(−δzm)mψ − 1

4(Fµν)2δzγ

= L+ δL

(2.85)

where δL is the counter-term Lagrangian. The counter terms help us to get rid of the

infinities that arises in the amplitude and is given by

δL = δzψψ̄(i/∂ − e /A−m)ψ + ψ̄(−δze)e /Aψ

ψ̄
(
−1

2δzγ
)
e /Aψ + ψ̄(−δzm)mψ − 1

4(Fµν)2δzγ

. The Feynman rules for the counter-term Lagrangian δL are then derived as follows
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Figure 2.11: Feynman rules for counter-term Lagrangian

Then by using the following renormalization conditions

1. Σ̂γγ(0) = 0 (2.86)

2. ∂Σ̂γγ

∂k2 |k2=0 = 0 (2.87)

3. Σ̂ff (m) = 0 (2.88)

4. ∂Σ̂ff (k2

∂/k
|/k=m = 0 (2.89)

5. Γ̂γff (k2)|k2=0 = −ieQfγµ (2.90)

where Σ̂γγ is the truncated photon self-energy amplitude, Σ̂ff is the truncated fermion

self-energy graph and Γ̂γff is the vertex correction to the fermion current. They are
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defined as:

Σ̂γγ(k2) = k2Π̂(k2) (2.91)

Π̂µν(k2) = i

(
gµν −

kµkν
k2

)
Σ̂γγ(k2) (2.92)

Σ̂ff (/k) = /kΣ̂V (k2) +mΣS(k2) (2.93)

Γ̂µ = −ieQfγµ + ieQf

(
γµF̂1(k2) + i

2mσµαk
αF̂2(k2)

)
(2.94)

and F1 and F2 are the Dirac and Pauli form factors respectively. Using the Feynman

rules for counter-term Lagrangian and using the renormalization condition, the renor-

malized amplitude will be derived for the photon self-energy diagram and the fermion

self energy diagram.

Renormalization of photon self-energy

Figure 2.12: Photon self-energy diagram

The amplitude of the photon self-energy in figure 2.12 has the following form

Π̂µν = i

(
gµν −

kµkν
k2

)
Σγγ(k2) + i

(
gµν −

kµkν
k2

)
δzγk

2

= i

(
gµν −

kµkν
k2

)(
Σγγ(k2) + k2δzγ

) (2.95)

and

Σ̂γγ(k2) = Σγγ(k2) + k2δzγ (2.96)
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. Then, by using using the renormalization conditions we get

δzγ = −∂Σγγ(k2)
∂k2 |k2=0 (2.97)

and finally

Σ̂γγ(k2) = Σγγ(k2)− k2∂Σγγ

∂k2 |k2=0 (2.98)

Π̂(k2) = Π(k2)− Π(0) (2.99)

which is the renormalized amplitude for a photon self-energy graph.

Renormalization of fermion self-energy

Figure 2.13: Fermion self-energy diagram

The amplitude of the fermion self-energy graph 2.13 has the following structure

Σ̂ff (/k) = /kΣV (k2) +mΣS(k2) + (/k −m)δzψ −mδzm (2.100)

By using the renormalization conditions we get

Σ̂ff (m) = mΣV (m2) +mΣS(m2)−mδzm = 0

= ΣV (m2) + ΣS(m2)− δzm = 0
(2.101)

which gives us

δzm = ΣV (m2) + ΣS(m2)
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. Then using the renormalization conditions we get

δzψ = ΣV (m2)− 2m2
(
∂ΣV

∂k2 + ∂ΣS

∂k2

)
k2=m2

= −∂Σff

∂/k

∣∣∣∣
/k=m

Finally, we get the renormalized amplitude as

Σ̂ff (/k) = /kΣV (k2) +mΣS(k2)− (/k −m)∂Σff

∂/k

∣∣∣∣
/k=m

(2.102)

.

Renormalization of Vertex

Rewriting the equation (2.94)

Γ̂µ(k2) = −ieQfγµ + ieQf

(
γµF̂1(k2) + i

2mσµαk
αF̂2(k2)

)
(2.103)

we see that

δΓµ = ieQf

(
γµF̂1(k2) + i

2mσµαk
αF̂2(k2)

)
= δze + 1

2δzγ + δzψ

(2.104)

and using Thomson limit

Γ̂µ(0) = −ieQfγµ (2.105)

we get

Γ̂µ(0) = −ieQfγµ + ieQf F̂1(0)γµ − ieQfγµ

(
δze + 1

2δzγ + δzψ

)
(2.106)
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. Since Γ̂µ(0) = −ieQfγµ we get

F̂1(0) = δze + 1
2zγ + δzψ (2.107)

. Thus we finally obtain

Γ̂µ
(
k2
)

= −ieQfγµ + δΓµ(k2)− ieQfγµF̂1(0)︸ ︷︷ ︸
δΓµ(0)

(2.108)

which can be written as

Γ̂µ
(
k2
)

= −ieQfγµ + δΓµ(k2)− δΓµ(0) (2.109)

.

2.5 One particle irreducible contribution(1P1)

In equation (2.63), we see that the Lorentz structure for a vacuum polarization func-

tion is

Πµν = i
(
k2gµν − kµkν

)
Π(k2) (2.110)

. The contribution to the vacuum polarization function in such case is known as the

one particle irreducible contribution. We see that there is a integration pre-factor as-

sociated with the vacuum polarization function which is given by i(2π)−4×number of loops;

which for one-loop gives us i
16π4 .

Since the photon is off-shell there is an infinite number of possible topologies.

Few of these diagrams are shown in figure 2.14; however, it is not possible for us to
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Figure 2.14: One-Particle irreducible contribution (1PI)

calculate the vacuum polarization function for an infinite number of topologies. We

should consider an effective propagator for any kind of interaction taking place which

is discussed in the following section.

Figure 2.15: Feynman diagram for Effective propagator

2.6 Effective Feynman Propagator

In section 2.5, we have seen the amplitude for one-particle irreducible contribution. In

general, we have the Feynman diagram as in figure 2.15, for any kind of interaction.

The amplitude for the effective propagator is given as

Πeff
µν(k2) = −igµν

k2 + −igµρ
k2

[
i
(
k2gρσ − kρkσ

)
Π(k2)

] −igνσ
k2 + ... (2.111)
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where k2 is the momentum of the incoming photon. Now, using

i
(
k2gρσ − kρkσ

) −igµν
k2

= δρν −
kρkν
k2

≡ ∆ρ
ν

(2.112)

we get

Πeff
µν(k2) = −igµν

k2 + −igµρ
k2 Π2.∆ρ

ν + −igµρ
k2 ∆ρ

σ∆σ
νΠ2 + ...

= −igµν
k2 + −igµρ

k2

(
δρν −

kρkν
k2

) [
Π(k2) + Π(k2) + ...

] (2.113)

which gives us the following effective propagator

Πeff
µν(k2) = −i

k2 [1− Π(k2)]

(
gµν −

kµkν
k2

)
(2.114)

. Using gauge-invariance, Dirac equation and the fact that at zero momentum transfer

the fine structure constant gives us same result as in Thomson limit, α = e2

4π , to deduce

the vacuum polarization tensor. The effective fine structure constant turns out to be

α(k2) = α(0)
1− Π̂(k2)

(2.115)

where

Π̂(k2) = Π(k2)− Π(0) (2.116)

and

Π(k2) = Π1Loop + Π2Loop + ... (2.117)
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2.7 The Dispersion Approach

A dispersion relation [1] allows us to express a loop integral through the known imag-

inary part as follows:

L(q2) = 1
π

∫ ∞
s0

ds
IL(s)

s− q2 − iε
(2.118)

where q2 is the external momentum squared, s is the dispersion parameter and s0

is the branch-point position on the real axis. The imaginary part IL(q2) can be

calculated from discontinuities of the loop integral using Cutkosky rules. Cutkosky

rules tell us to put internal propagators on the mass-shell in order to determine the

imaginary part of a Feynman amplitude [11].

2.7.1 Self-energy sub-loop dispersion representation

A self-energy sub-loop can be used as an insertion to another self-energy, triangle or a

box topology. For fermions or vector bosons, the self-energy sub-loop can be defined

in form of the Lorentz covariant terms [1] as follows:

ΣV−V
µν (q) =

(
gµν −

qµqν
q2

)
ΣV−V
T (q2) + qµqν

q2 ΣV−V
L (q2) (2.119)

Σf (q) = /qΣf (q2) +mfΣf (q2) (2.120)

where ΣV−V
T (q2) and ΣV−V

L (q2) are the transverse and longitudinal parts of the diag-

onal and mixed vector boson self-energies. Both equations (2.119) and (2.120) can

be written in terms of the Passarino-Veltman two-point tensor coefficient functions.

Then, each of the two-point tensor coefficient functions Bi,ij,ijk(q2,m2
α,m

2
β) can be
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replaced by the dispersion integral as

Bi,ij,ijk(q2,m2
α,m

2
β) = 1

π

∫ ∞
(mα+mβ)2 ds

IBi,ij,ijk(s,m2
α,m

2
β)

s− q2 − iε
(2.121)

where IBi,ij,ijk(s,m2
α,m

2
β) can be computed with LoopTools [8] or ColliersLink

[14].

In the paper [1] this has been done for electroweak case which can be applied for

our case (only QED) and that gives the following for a sub-loop represented by a

vector boson self-energy

(2.122)
I1,M,1
µ1,µ2,ν1...νR

= 1
π

µ(4−D)

π(iπD/2)Σα,β

∞∫
(mα+mβ)2

ds
∫
dDq2

q2,ν1 ...q2,νR
s− q2

2 − iε
Fµ1µ2(q2, s,mα,mβ)∏M

j=0

[
(q2 + kj,M)2 −m2

j,M

]
where Fµ1µ2(q2, s,mα,mβ) is defined as

(2.123)
Fµ1µ2(q2, s,mα,mβ) =

(
gµ1µ2 −

q2µ1q2µ2

q2
2

)
IΣV−V

T (s,m2
α,m

2
β)

+ q2µ1q2µ2

q2
2
IΣV−V

L (s,m2
α,m

2
β) .

For the sub-loop insertion from fermion self-energy we get

(2.124)I1,M,1
ν1,...,νR

= 1
π

µ(4−D)

π(iπD/2)Σα,β

∞∫
(mα+mβ)2

ds
∫
dDq2

q2,νFµ1µ2 (q2,s,mα,mβ)...q2,νR

s− q2
2 − iε

1∏M
j=0

[
(q2 + kj,M)2 −m2

j,M

]
where G(q2, s,mα,mβ) is given by

(2.125)G(q2, s,mα,mβ) =
[
/q2IΣf (s,m2

α,m
2
β) +mfIΣf

S(s,m2
α,m

2
β)
]
.
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Figure 2.16: Examples of self-energy subloops

2.8 Renormalization in the Dispersion Approach

The vector boson self-energy insertion for diagrams such as in figure 2.16, has the

following analytical structure for the amplitude

Σff (/k) = /kΣV (k2) +mΣS(k2) (2.126)

where k is the incoming momentum and m is the mass of the fermion. We know

from [1] that the renormalized amplitude for fermion self-energy insertion is given by

Σ̂ff = Σff (/k)− Σff (m)− ∂Σff

∂/k

∣∣∣∣
/k=m

(/k −m) (2.127)

and

∂Σff

∂/k

∣∣∣∣
/k=m

(/k −m) = ΣV (m2) + 2m2∂ΣV

∂k2

∣∣∣∣
k2=m2

+ 2m2∂ΣS

∂k2

∣∣∣∣
k2=m2

(2.128)

where ΣV and ΣS are the scalar and the vector part of the vacuum polarization

function. Then we define

Σ′V (m2) = ∂ΣV

∂k2

∣∣∣∣
k2=m2

(2.129)

Σ′S(m2) = ∂ΣS

∂k2

∣∣∣∣
k2=m2

(2.130)
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and finally we get

Σ̂ff (/k) =/kΣV (k2) +mΣS(k2)−mΣV (m2)−mΣS(m2)

−
[
ΣV (m2) + 2m2Σ′V (m2) + 2m2Σ′S(m2)

]
(/k −m).

(2.131)

Now, when we finally separate the vector part and the scalar part from Σ̂ff (/k) we get

Σ̂V (k2) = ΣV (k2)− ΣV (m2)− 2m2
[
Σ′V (m2) + Σ′S(m2)

]
(2.132)

Σ̂S(k2) = ΣS(k2)− ΣS(m2)− 2m2
[
Σ′V (m2) + Σ′S(m2)

]
. (2.133)

The last part of equation (2.133) and equation (2.132) are the UV-finite parts. We

use the following dispersive representation of Σ̂V (k2) and Σ̂S(k2) [1]

ΣV,S(k2) = 1
π

∫ ∞
m2

IΣV,S(s)
s− k2 − iε

ds. (2.134)

Also, as shown in Ref. [1] we see

Σ′V,S(m2) = 1
π

∫ ∞
m2

IΣV,S(s)
(s−m2 − iε)2 (2.135)

and by combining equation 2.134 and equation 2.135 we get

Σ̂V,S(k2) = k2 −m2

π

∫ ∞
m2

ds
IΣV,S

(s− k2)(s−m2)

− 2m2

π

∫ ∞
m2

ds
I [ΣV (s) + ΣS(s)]

(s−m2)2

(2.136)

In equation (2.136), the second part
∫∞
m2 ds

I[ΣV (s)+ΣS(s)]
(s−m2)2 is a convergent integral; it

plays the role as a constant. The numerical evaluation is often challenging because

the the numerical integration is highly unstable. However, the numerical value of∫∞
m2 ds

I[ΣV (s)+ΣS(s)]
(s−m2)2 is equal to the the numerical value of the UV-finite part.
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Substitution of equation (2.136) into the second-loop will result in the cancellation

of (k2 − m2) with one of the fermion propagators, where k2 is the momentum of

the insertion and m is the mass of the fermion in the insertion as shown in figure

2.16. This gives us the possibility to employ a computer-algebra approach, where

the second-loop integral could be evaluated analytically, and after subtractions the

dispersion integration can be carried out numerically.
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Chapter 3

Results

The calculation of the effective fine structure constant using the Dyson-resummation

technique involves the evaluation of many Feynman diagrams. In this thesis, I have

only considered Quntum Electrodynamics (QED). For evaluating the vacuum polar-

ization function up to to one-loop level, we have used FeynArts and FormCalc [7].

All the two-loop level Feynman diagrams are shown in figure 3.3, figure 3.4 and figure

3.5. These are the diagrams that gave rise to the numerically unstable Passarino-

Veltman functions and a alternative representation to evaluate them had to be found.

We have used the Dispersion representation explained in the paper [1].

3.1 Next to Leading Order (NLO) Correction

Since we are only considering QED, there were only nine Feynman diagrams in Next-

to-Leading Order (NLO) calculations. The Feynman diagrams for NLO are shown in

figure 3.1. As we have mentioned earlier, we did not evaluate these diagrams by hand.

We used FeynArts and FormCalc to generate the vacuum polarization function

and did the the numerical integration using LoopTools. Since NLO digrams only

contain one-loop, the calculated vacuum polarization function only gave one-point and
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Figure 3.1: Feynman diagrams generated using FeynArts
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two-point Passarino-Veltman functions which are numerically stable and we did not

have to use the dispersion representation for them. We used the following equation

to calculate the effective fine structure constant (code as shown in the Appendix):

αeff = α(0)
1− Π̂(k2)

(3.1)

where α(0) is the fine structure constant with no momentum transfer and α(p2) is the

renormalized vacuum polarization function up to one-loop level. Using the numerical

results obtained from the one-loop level correction we plotted the graph in figure

3.2, this shows a clear indication of the difference in the fine structure constant at

zero-momentum transfer and the the effective fine structure constant.

The results shown in graph 3.2 (which has already been published in several arti-

cles) are a clear indication of the need to calculate the effective fine structure constant

for high momentum transfer interaction. The distinctive kinks in the graphs are due

to the threshold limit of the particles that have been considered in the loops. In the

next section, we showed how we did that for Next-to-the-Next Leading Order (NNLO)

interactions in QED.

3.2 Next-to-the-Next Leading Order (NNLO) Cor-

rection

For the analysis of the NNLO Feynman diagrams, the diagrams are separated into

two categories: NNLO self-energy topologies and the NNLO triangle topologies. The

methods used to evaluate these two categories of topologies are different and are

explained in the next sub-sections.
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Figure 3.2: One-loop level correction for the fine structure constant
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3.2.1 Two-loop self-energy topologies

Figure 3.3: Two-loop self-energy topologies (γ 7→ γ)

All the two-loop self-energy topologies for the calculation are shown in figure 3.3

and 3.4. These diagrams have been generated using FeynArts and FormCalc to

create the scattering matrices (S-matrix) for these topologies. In the S-matrix we see
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Figure 3.4: Two-loop self-energy topologies (γ 7→ γ)

that each diagram has five propagators; calculating them gives us C-functions (three-

point) and D-functions (four-point). However, these functions are not numerically

stable and cannot be calculated using the existing numerical packages. So, we had to

use the Dispersion approach as explained in earlier chapters and in the paper [1].
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All the two-loop self-energy topologies have essentially the same graph except for

two major differences: the mass of the leptons and quarks and the coupling constant

between the leptons and quarks. The up-quarks, charm-quarks and the top-quarks

have the same coupling constant because of their electric charges (2
3 the charge of

an electron). The down-type quarks are the down-quarks, strange-quarks and the

bottom-quarks which also has the same electric charge (−1
3 the charge of an elec-

tron). Finally, the renormalized vacuum polarization function was calculated using

the method explained in section 2.8 of chapter 2. The detailed code is shown in the

Appendix.

As we can see, the vacuum polarization in the denominator of equation (2.115) is

the numerical quantity that contributes to the running of the fine structure constant.

We have calculated the contribution of the leptons and quarks up to two-loop level in

the vacuum polarization function and tabulated them. Table 3.1 shows the correction

of the vacuum polarization function when only the leptonic two-loop diagrams are

considered. Similarly, when we add the quark-type topologies, we see the difference

in the numerical value of the vacuum polarization function in table 3.2. These tables

show us the correction to the running of the fine structure which lead us to finally

tabulate the effective fine structure constant.

Momentum transfer squared/GeV 2 Vacuum polarization function correc-
tion due to Leptons

0.001 0.00012048246763488457
0.1 0.0002812312188941
10.0 0.00027932401957754776

1000.0 0.00047956039021741965
100000 0.0004535550036151077
1000000 0.0004405454537314081

Table 3.1: The contributions of the Leptons in two-loop vacuum polarization function
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Momentum transfer squared/GeV 2 Vacuum polarization function correc-
tion due to Leptons and Quarks

0.001 0.000020810356655247066
0.1 0.00027361764606209795
10.0 0.0003708261066308674

1000.0 0.0006321762510106652
100000 0.0006220256362705225
1000000 0.0007480856478050458

Table 3.2: The contributions of the Leptons and Quarks in two-loop vacuum polar-
ization function

Similarly, we tabulated the correction in the vacuum polarization function when

the triangle graphs are calculated, which is shown in table 3.3 and finally in table

3.4 shows us the correction in the vacuum polarization function when both NLO and

NNLO graphs are considered.

Momentum transfer squared/GeV 2 Vacuum polarization function correc-
tion due to all two-loops

0.001 0.0000209593893316985
0.1 0.00027338164478734966
10.0 0.00037041624847941276

1000.0 0.0006315322406318514
100000 0.000621140603685161
1000000 0.0007470983294597187

Table 3.3: The contributions of all two-loop graphs in two-loop vacuum polarization
function

3.2.2 Two-loop triangle topologies

All the two-loop triangle topologies are shown in figure 3.5. Neither the dispersion

approach used in evaluating the two-loop self-energy topologies could be used directly

in the two-loop triangle topologies nor could we use the straightforward numerical
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Momentum transfer squared/GeV 2 Vacuum polarization function correc-
tion due to NLO and NNLO graphs

0.001 0.005004016603699983
0.1 0.00964054125350663
10.0 0.023317684755984832

1000.0 0.048653735079418794
100000 0.07122482924961453
1000000 0.08617354677478717

Table 3.4: The contributions of both NLO and NNLO in vacuum polarization function

methods for evaluating these topologies. To begin with we calculated the S-matrix

of the insertion for one of the diagrams of two-loop triangle topologies. A generic

topology of such insertion is shown in figure 3.6.

The CreateAmp function in FormCalc was then used to calculate that am-

plitude. All the Dirac form-factors that were in the amplitude were separated. The

non-vanishing Lorentz contributions comes from the following:

γµ × C1 (3.2)

/k1/k2γµ × C2 (3.3)

k1µm/k2 × C3 (3.4)

k2µm/k2 × C4 (3.5)

where k1 and k2 are the incoming momenta shown in figure 3.6 and C1, C2, C3 and

C4 are the coefficients associated with each form-factors. The Dirac form-factors are

then plotted against the square of the momenta which is shown in figure 3.7, 3.8, 3.9

and 3.10.

From the plots in figure 3.7 we see that only one of the graphs gives us a significant

numerical value. The other graphs are almost vanishing which can be ignored for
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Figure 3.5: Two-loop triangle topologies (γ 7→ γ)

NNLO calculations. This gives us an approximation for insertions like in figure 3.6 and

we calculated all the graphs for the different masses in our QED NNLO calculations.

We have plotted the graphs for leptons electrons, muons, and tau and for all the

quarks, up, down, charm, strange, bottom and top. A similar kind of plot is obtained
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Figure 3.6: A general insertion for two-loop triangle topology

for all the different types of particles.

We used a bulk-approximation method and have taken an average value for the

Dirac form-factor. The average values for all the different types of particles are shown

in table 3.5.

Types of particle Mean value of Dirac form factor

Electron −0.000029251336819614
Muon −0.000029251336819614
Tau −0.0000292359781139407
Up 8.66688281254374× 10−6

Down −1.08336034580833× 10−6

Charm 8.65764030942123× 10−6

Strange −1.08331217418434× 10−6

Top 5.06935613130901× 10−6

Bottom −1.08338541665249× 10−6

Table 3.5: Table showing the mean value for the Dirac form factor

When we substitute these numerical values into the triangle graphs, the graphs

essentially become one-loop self-energy graphs with an extra numerical pre-factor.

This is shown in figure 3.11, where the shaded region represents the insertion, i.e. the

numerical values in the table 3.5. Finally, we used FormCalc to get the vacuum

polarizaton function and LoopTools to get the corrections for the effective fine

structure constant.
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Figure 3.7: Dirac form-factor in eq:
3.2

Figure 3.8: Dirac form-factor in eq:
3.3

Figure 3.9: Dirac form-factor in eq:
3.4

Figure 3.10: Dirac form-factor in eq:
3.5

3.3 Results

With the techniques described above we get the numerical values for the effective

fine structure constant up to Next-to-the-Next to the Leading order. The percentage

difference between the fine structure constant with zero momentum transfer and the

effective fine structure constant is shown in table 3.6. In the table 3.6 the momentum-

transfered was chosen arbitrarily.

As expected, we see a sub-percent level accuracy in our results in table 3.6. We

have also plotted a graph for the inverse of the effective fine structure constant upto

NNLO which is shown in figure 3.12.
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Figure 3.11: A triangle topology after subsituting the insertion

Momentum transfer squared/GeV 2 αup to 2-Loops−αup to 1-Loop
αzero momentum transfer(

1
137 ) × 100

0.001 −0.00207361097745995
0.1 0.027290109718436373
10.0 0.038004453663620374

1000.0 0.06823448932844478
100000 0.0703759794650427
1000000 0.08739471414560551

Table 3.6: Relative correction to the effective fine structure constant with NNLO
contributions
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Figure 3.12: Plot of the Effective Fine Structure Constant upto NNLO correction
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Chapter 4

Conclusion

4.1 Summary of Results

In chapter 2, we have seen the contribution of the Next to the Next to the Lead-

ing Order contribution and how it changes the numerical value of the fine structure

constant at high momentum transfer.

The behaviour shown in the plots and the tables in 3 is the one that we were

expecting. The effective fine structure constant at low momentum transfer coincides

with the Bohr’s approximation value of 1
137 .

In table 3.6 in chapter 3, we saw that the percentage accuracy for an addition of

the Next to the Next to the Leading Order (NNLO) is at the sub-percent level which

was also expected.

4.2 Mathematica

Mathematica provided a nice platform to calculate the theoretical predictions. All

the well developed packages we used made our calculations easier and manageable

allowing us to focus on the physics, rather than the tedious mathematical analysis.
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The packages that were used for the calculations in this thesis are FeynArts, Form-

Calc, LoopTools, X and ColliersLink. The packages provided us with a lot

of options for optimization and also provided us with tools to implement new meth-

ods for solving Feynman diagrams beyond one-loop topologies. Although we have

used our own renormalization method for both Next to the Leading Order (NLO)

and Next-to the-Next to the Leading Order (NNLO), there is a built-in algorithm for

the NLO topologies in FormCalc which can be easily used to get a renormalized

amplitude.

4.3 Future Work

Mathematica was very useful for the optimization of the calculations involved in the

thesis. However, compared to low-level programming languages such as C++ or

Fortran it is still much slower. In addition, even with all the packages which are

publicly available we are only able to perform one-loop level calculations automati-

cally. In order to do all the two-loop calculations we had to manually interfere with

the existing functions in those packages.

In the future, I would like to look for methods and design algorithms that are

able to do all these calculations automatically in Mathematica. In addition, when we

consider QCD, the number of diagrams increases dramatically and the calculations be-

come slower. In certain cases they take days, which is mainly due to the NIntegrate

function in Mathematica not being optimized for multi-variable calculus. Also, the

fact that most of the integrations involved in multi-loop level calculations are numer-

ically unstable, does not help. One of my future targets is to design a more efficient

numerical integration either in Mathematica or a low level programming language.

Futhermore, we can use tensor reduction and tensor decomposition to convert
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Passarino Veltman fuctions as shown in paper [1]. In that case, we can convert three-

loop functions and four-loop functions into more stable two-loop functions which will

make our calculations of the triangle topologies and even box topologies easier and

faster. Currently, I am working on this using Python 3.
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Appendix A

Mathematica Notebook of the

Calculations
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In[]:= << FeynArts`

<< FormCalc`

FeynArts 3.10 (21 Jan 2019)

by Hagen Eck, Sepp Kueblbeck, and Thomas Hahn

FormCalc 9.6 (16 Apr 2018)

by Thomas Hahn

In[]:= NLOSE = CreateTopologies[1, 1 → 1, ExcludeTopologies →
{Tadpoles, Boxes, Pentagons, Hexagons, AllBoxes, WFCorrections, Triangles} ];

NLOSEfields = InsertFields[NLOSE, {V[1]} → {V[1]}, Restrictions → {QEDOnly},

InsertionLevel → {Particles}, Model → "SM", GenericModel → "Lorentz"] ;

loading generic model file /home/reefat/packages1/FeynArts-3.10/Models/Lorentz.gen

> $GenericMixing is OFF

generic model {Lorentz} initialized

loading classes model file /home/reefat/packages1/FeynArts-3.10/Models/SM.mod

$CKM = False

> 46 particles (incl. antiparticles) in 16 classes

> $CounterTerms are ON

> 88 vertices

> 115 counterterms of order 1

> 6 counterterms of order 2

classes model {SM} initialized

Excluding 2 Generic, 21 Classes, and 25 Particles fields

inserting at level(s) Particles

> Top. 1: 0 Particles insertions

> Top. 2: 9 Particles insertions

Restoring 2 Generic, 21 Classes, and 25 Particles fields

in total: 9 Particles insertions

Printed by Wolfram Mathematica Student Edition
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In[]:= SetOptions[CreateFeynAmp, Truncated → True];

SetOptions[DeclareProcess, OnShell → False, Transverse → False];

SetOptions[CalcFeynAmp, FermionChains → VA,

FermionOrder → None, PaVeReduce → True, SortDen → True,

CombineDen → True, CancelQ2 → True, Dimension → D];

In[]:= NLOSEfieldsCreate = CreateFeynAmp[NLOSEfields];

creating amplitudes at level(s) Particles

> Top. 1: 9 Particles amplitudes

in total: 9 Particles amplitudes

In[]:= NLOSEfieldsCalc = CalcFeynAmp[NLOSEfieldsCreate] //. Subexpr[] //. Abbr[] //.

Pair[k[1], k[1]] → Q2 //. Finite → 1;

preparing FORM code in /home/reefat/fc-amp-13.frm

running FORM...

ok

In[]:= IGram[x_] =
1

x
;

In[]:= metricpartNLO[Q2_] = FullSimplify[

Coefficient[NLOSEfieldsCalc[[1]], MetricTensor[Lor1, Lor2]] //. Finite → 1];

In[]:= metricpartNLOZERO[Q2_] = FullSimplify[D[metricpartNLO[Q2], Q2]] //. Q2 → Q2Z;

In[]:= metricpartNLOREN[Q2_] = FullSimplify[metricpartNLO[Q2] - Q2 * metricpartNLOZERO[Q2]];

In[]:= metricpartUVREN[Q2_, BH_, BH2_] :=

-
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In[]:= metricpartDispersion[Q2_, BH_, BH2_] :=

1

288 π5 Q2 BH2 - s
ⅈ Alfa -

1

π2 -BH2 + s
6 BH2 -BH2 - 2 Q2 + s A0BH2 +

BH2 + 2 Q2 - s A0[s] + 2 Q2 BH2 - s + 2 BH2 + Q2 B0ibb0, Q2, BH2, BH2 +

BH4 - 2 Q22 - 2 Q2 s + s2 - 2 BH2 Q2 + s B0ibb0, Q2, BH2, s
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4 BH2 Q2 2 BH2 + Q2 B0ibb0, Q2, BH2, BH2 + BH6 + BH4 Q2 - s +

s -2 Q22 + Q2 s + s2 - BH2 2 Q22 + 10 Q2 s + s2 B0ibb0, Q2, BH2, s
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s2 B0ibb0, Q2ZNNLO, BH2, s + 4 BH2 Q2ZNNLO2 B0idbb0, Q2ZNNLO, BH2, BH2 +

2 Q2ZNNLO3 B0idbb0, Q2ZNNLO, BH2, BH2 +
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Alfa -B0i[dbb0, BD2, 0, BD2] - B0i[dbb1, BD2, 0, BD2] +

2 BD4 - 10 BD2
1

10 000
+ BD

2

+
1

10000
+ BD

4

BD2

-
Alfa B0i[dbb0, BD2, 0, BD2]

π
-

1

2 π
Alfa -B0i[dbb0, BD2, 0, BD2] - B0i[dbb1, BD2, 0, BD2] +

BD2 -
1

10 000
+ BD

2 2

+ 2 Q2ZDownUv2 B0ibb0, Q2ZDownUv, BD2,

1

10 000
+ BD

2

 4 BD2 BD2 -
Alfa B0i[dbb0, BD2, 0, BD2]

π
-

1

2 π
Alfa -B0i[dbb0, BD2, 0, BD2] - B0i[dbb1, BD2, 0, BD2] -

2 BD2 +
1

10000
+ BD

2

BD2 -
Alfa B0i[dbb0, BD2, 0, BD2]

π
-

1

2 π
Alfa -B0i[dbb0, BD2, 0, BD2] - B0i[dbb1, BD2, 0, BD2] +

1

10 000
3

1

10000
+ 2 BD A0BD2 4 BD2 BD2 -

Alfa B0i[dbb0, BD2, 0, BD2]

π
-

1

2 π
Alfa -B0i[dbb0, BD2, 0, BD2] - B0i[dbb1, BD2, 0, BD2] -
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2 BD2 +
1

10000
+ BD

2

BD2 -
Alfa B0i[dbb0, BD2, 0, BD2]

π
-

1

2 π
Alfa

-B0i[dbb0, BD2, 0, BD2] - B0i[dbb1, BD2, 0, BD2] -
1

10000

3
1

10 000
+ 2 BD A0 1

10000
+ BD

2

 4 BD2 BD2 -
Alfa B0i[dbb0, BD2, 0, BD2]

π
-

1

2 π
Alfa -B0i[dbb0, BD2, 0, BD2] - B0i[dbb1, BD2, 0, BD2] -

2 BD2 +
1

10000
+ BD

2

BD2 -
Alfa B0i[dbb0, BD2, 0, BD2]

π
-

1

2 π
Alfa -B0i[dbb0, BD2, 0, BD2] - B0i[dbb1, BD2, 0, BD2] +

1

2500

1

10000
+ 2 BD BD2 Q2ZDownUv2 -

Alfa B0i[dbb0, BD2, 0, BD2]

π
-

1

2 π
Alfa -B0i[dbb0, BD2, 0, BD2] - B0i[dbb1, BD2, 0, BD2] ;

In[]:= upTypeMetricpartUVREN[Q2_, BU_, BU2_] :=

1

81  1

10 000
+ 2 BU π5 Q2

1250 ⅈ Alfa 3 BU2 -
1

10000
+ BU

2

+ 2 Q2

A0 1

10000
+ BU

2

 4 BU2 BU2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] -

2 BU2 +
1

10000
+ BU

2

BU2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] +

A0BU2 -4 BU2 BU2 BU2 -
1

10000
+ BU

2

+ 2 Q2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] -

2 BU2 -BU4 +
1

10000
+ BU

4

- 6 BU2 Q2 + 2
1

10000
+ BU

2

Q2

-
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] +

B0ibb0, Q2, BU2,
1

10 000
+ BU

2

 4 BU2 BU2 BU2 -
1

10000
+ BU

2 2

-

2 BU2 +
1

10000
+ BU

2

Q2 - 2 Q22 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] -

2 BU2 BU2 -
1

10000
+ BU

2 2

BU2 +
1

10 000
+ BU

2

+
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BU4 - 10 BU2
1

10 000
+ BU

2

+
1

10000
+ BU

4

Q2 -

2 BU2 +
1

10000
+ BU

2

Q22 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] -

1

5000

1

10 000
+ 2 BU Q2 -6 BU2 BU2 -

Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] -

6
1

10 000
+ BU

2

BU2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] +

2 BU2 Q2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] +

1

Q2ZUpUv2
Q22 3 BU2 -

1

10000
+ BU

2 2

+ 2 Q2ZUpUv2 B0ibb0, Q2ZUpUv,

BU2,
1

10 000
+ BU

2

 4 BU2 BU2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] -

2 BU2 +
1

10000
+ BU

2

BU2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] +

Q2ZUpUv B0idbb0, Q2ZUpUv, BU2,
1

10 000
+ BU

2



-4 BU2 BU2 BU2 -
1

10000
+ BU

2 2

- 2 BU2 +
1

10 000
+ BU

2

Q2ZUpUv -

2 Q2ZUpUv2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] +

2 BU2 BU2 -
1

10 000
+ BU

2 2

BU2 +
1

10000
+ BU

2

+

BU4 - 10 BU2
1

10 000
+ BU

2

+
1

10000
+ BU

4

Q2ZUpUv -

2 BU2 +
1

10000
+ BU

2

Q2ZUpUv2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] +

1

10 000
3

1

10000
+ 2 BU A0BU2 4 BU2 BU2 -

Alfa B0i[dbb0, BU2, 0, BU2]

π
-
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1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] -

2 BU2 +
1

10000
+ BU

2

BU2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa

-B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] -
1

10000

3
1

10 000
+ 2 BU A0 1

10000
+ BU

2

 4 BU2 BU2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] -

2 BU2 +
1

10000
+ BU

2

BU2 -
Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] +

1

2500

1

10000
+ 2 BU BU2 Q2ZUpUv2 -

Alfa B0i[dbb0, BU2, 0, BU2]

π
-

1

2 π
Alfa -B0i[dbb0, BU2, 0, BU2] - B0i[dbb1, BU2, 0, BU2] ;
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In[]:= upTypeMetricpartDisREN[Q2_, BU_, BU2_] :=

-
1

648 π5 Q2 BU2 - s
ⅈ Alfa 1

π2 -BU2 + s
6 BU2 -BU2 - 2 Q2 + s A0BU2 +

BU2 + 2 Q2 - s A0[s] + 2 Q2 BU2 - s + 2 BU2 + Q2 B0ibb0, Q2, BU2, BU2 +

BU4 - 2 Q22 - 2 Q2 s + s2 - 2 BU2 Q2 + s B0ibb0, Q2, BU2, s
ImAlfa 1

2
- B0i[bb0, s, 0, BU2]  -

1

π2 -BU2 + s
-2 Q2 -9 BU2 + Q2 - 3 s BU2 - s +

3 -BU4 - 6 BU2 Q2 + s 2 Q2 + s A0BU2 + BU2 + 2 Q2 - s BU2 + s A0[s] +

4 BU2 Q2 2 BU2 + Q2 B0ibb0, Q2, BU2, BU2 + BU6 + BU4 Q2 - s +

s -2 Q22 + Q2 s + s2 - BU2 2 Q22 + 10 Q2 s + s2 B0ibb0, Q2, BU2, s
ImAlfa 1

4
+
1

2
-B0i[bb0, s, 0, BU2] - B0i[bb1, s, 0, BU2]  -

1

Q2ZUpDis2
Q22

1

π2 -BU2 + s
6 BU2 BU2 - s A0BU2 - BU2 A0[s] + s A0[s] +

2 Q2ZUpDis2 B0ibb0, Q2ZUpDis, BU2, BU2 - BU4 B0ibb0, Q2ZUpDis, BU2, s -

2 Q2ZUpDis2 B0ibb0, Q2ZUpDis, BU2, s + 2 BU2 s B0ibb0, Q2ZUpDis, BU2, s -

s2 B0ibb0, Q2ZUpDis, BU2, s + 4 BU2 Q2ZUpDis2

B0idbb0, Q2ZUpDis, BU2, BU2 + 2 Q2ZUpDis3 B0idbb0, Q2ZUpDis, BU2, BU2 +

Q2ZUpDis BU4 - 2 Q2ZUpDis2 - 2 Q2ZUpDis s + s2 - 2 BU2 Q2ZUpDis + s
B0idbb0, Q2ZUpDis, BU2, s ImAlfa 1

2
- B0i[bb0, s, 0, BU2]  -

1

π2 -BU2 + s
2 Q2ZUpDis2 -BU2 + s + 3 BU4 - s2 A0BU2 +

3 -BU4 + s2 A0[s] + 12 BU2 Q2ZUpDis2 B0ibb0, Q2ZUpDis, BU2, BU2 -

3 2 Q2ZUpDis2 + BU2 - s2 BU2 + s B0ibb0, Q2ZUpDis, BU2, s +

3 Q2ZUpDis 4 BU2 Q2ZUpDis 2 BU2 + Q2ZUpDis B0idbb0, Q2ZUpDis, BU2, BU2 +

BU6 + BU4 Q2ZUpDis - s + s -2 Q2ZUpDis2 + Q2ZUpDis s + s2 -

BU2 2 Q2ZUpDis2 + 10 Q2ZUpDis s + s2 B0idbb0, Q2ZUpDis, BU2, s

ImAlfa 1

4
+
1

2
-B0i[bb0, s, 0, BU2] - B0i[bb1, s, 0, BU2]  ;
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In[]:= downTypeMetricpartDisREN[Q2_, BD_, BD2_] :=

-
1

2592 π5 Q2 BD2 - s
ⅈ Alfa 1

π2 -BD2 + s
6 BD2 -BD2 - 2 Q2 + s A0BD2 +

BD2 + 2 Q2 - s A0[s] + 2 Q2 BD2 - s + 2 BD2 + Q2 B0ibb0, Q2, BD2, BD2 +

BD4 - 2 Q22 - 2 Q2 s + s2 - 2 BD2 Q2 + s B0ibb0, Q2, BD2, s Im
Alfa

1

2
- B0i[bb0, s, 0, BD2]  -

1

π2 -BD2 + s
-2 Q2 -9 BD2 + Q2 - 3 s BD2 - s +

3 -BD4 - 6 BD2 Q2 + s 2 Q2 + s A0BD2 + BD2 + 2 Q2 - s BD2 + s A0[s] +

4 BD2 Q2 2 BD2 + Q2 B0ibb0, Q2, BD2, BD2 + BD6 + BD4 Q2 - s + s

-2 Q22 + Q2 s + s2 - BD2 2 Q22 + 10 Q2 s + s2 B0ibb0, Q2, BD2, s
ImAlfa 1

4
+
1

2
-B0i[bb0, s, 0, BD2] - B0i[bb1, s, 0, BD2]  -

1

Q2ZDownDis2
Q22

1

π2 -BD2 + s
6 BD2 BD2 - s A0BD2 - BD2 A0[s] + s A0[s] +

2 Q2ZDownDis2 B0ibb0, Q2ZDownDis, BD2, BD2 - BD4 B0ibb0,
Q2ZDownDis, BD2, s - 2 Q2ZDownDis2 B0ibb0, Q2ZDownDis, BD2, s +

2 BD2 s B0ibb0, Q2ZDownDis, BD2, s - s2 B0ibb0, Q2ZDownDis, BD2, s +

4 BD2 Q2ZDownDis2 B0idbb0, Q2ZDownDis, BD2, BD2 +

2 Q2ZDownDis3 B0idbb0, Q2ZDownDis, BD2, BD2 +

Q2ZDownDis BD4 - 2 Q2ZDownDis2 - 2 Q2ZDownDis s + s2 - 2 BD2 Q2ZDownDis + s
B0idbb0, Q2ZDownDis, BD2, s ImAlfa 1

2
- B0i[bb0, s, 0, BD2]  -

1

π2 -BD2 + s
2 Q2ZDownDis2 -BD2 + s + 3 BD4 - s2 A0BD2 +

3 -BD4 + s2 A0[s] + 12 BD2 Q2ZDownDis2 B0ibb0, Q2ZDownDis, BD2, BD2 -

3 2 Q2ZDownDis2 + BD2 - s2 BD2 + s B0ibb0, Q2ZDownDis, BD2, s +

3 Q2ZDownDis 4 BD2 Q2ZDownDis 2 BD2 + Q2ZDownDis
B0idbb0, Q2ZDownDis, BD2, BD2 + BD6 + BD4 Q2ZDownDis - s +

s -2 Q2ZDownDis2 + Q2ZDownDis s + s2 - BD2 2 Q2ZDownDis2 +
10 Q2ZDownDis s + s2 B0idbb0, Q2ZDownDis, BD2, s

ImAlfa 1

4
+
1

2
-B0i[bb0, s, 0, BD2] - B0i[bb1, s, 0, BD2]  ;
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In[]:= triangleMetricREN[Q2_] :=

Alfa 7.663384192618505`*^-8 MB2 - 2.4496111124551734`*^-6 MC2 +

7.663206852672925`*^-8 MD2 + 6.207326462516705`*^-6 ME2 +

6.204067243946839`*^-6 ML2 + 6.207040176437114`*^-6 MM2 +

7.662866108136267`*^-8 MS2 - 1.434334376161842`*^-6 MT2 -

2.4522262058924886`*^-6 MU2 - 7.663384192618505`*^-8 A0[MB2] +

2.4496111124551734`*^-6 A0[MC2] - 7.663206852672925`*^-8 A0[MD2] -

6.207326462516705`*^-6 A0[ME2] - 6.204067243946839`*^-6 A0[ML2] -

6.207040176437114`*^-6 A0[MM2] - 7.662866108136267`*^-8 A0[MS2] +

1.434334376161842`*^-6 A0[MT2] + 2.4522262058924878`*^-6 A0[MU2] +

7.663384192618505`*^-8 MB2 + 3.831692096309253`*^-8 Q2 B0i[bb0, Q2, MB2, MB2] +

-2.4496111124551734`*^-6 MC2 - 1.2248055562275867`*^-6 Q2
B0i[bb0, Q2, MC2, MC2] + 7.663206852672925`*^-8 MD2 B0i[bb0, Q2, MD2, MD2] +

6.207326462516705`*^-6 ME2 B0i[bb0, Q2, ME2, ME2] + 6.204067243946839`*^-6

ML2 B0i[bb0, Q2, ML2, ML2] + 6.207040176437114`*^-6 MM2 B0i[bb0, Q2, MM2, MM2] +

7.662866108136267`*^-8 MS2 B0i[bb0, Q2, MS2, MS2] - 1.434334376161842`*^-6

MT2 B0i[bb0, Q2, MT2, MT2] - 2.4522262058924878`*^-6 MU2 B0i[bb0, Q2, MU2, MU2] +

Q2 3.831603426336463`*^-8 B0i[bb0, Q2, MD2, MD2] + 3.1036632312583524`*^-6

B0i[bb0, Q2, ME2, ME2] + 3.1020336219734196`*^-6 B0i[bb0, Q2, ML2, ML2] +

3.103520088218557`*^-6 B0i[bb0, Q2, MM2, MM2] + 3.8314330540681334`*^-8

B0i[bb0, Q2, MS2, MS2] - 7.17167188080921`*^-7 B0i[bb0, Q2, MT2, MT2] -

1.2261131029462439`*^-6 B0i[bb0, Q2, MU2, MU2] - 3.831692096309253`*^-8

B0i[bb0, Q2ZV, MB2, MB2] + 1.2248055562275867`*^-6 B0i[bb0, Q2ZV, MC2, MC2] -

3.831603426336463`*^-8 B0i[bb0, Q2ZV, MD2, MD2] - 3.1036632312583524`*^-6

B0i[bb0, Q2ZV, ME2, ME2] - 3.1020336219734196`*^-6 B0i[bb0, Q2ZV, ML2, ML2] -

3.103520088218557`*^-6 B0i[bb0, Q2ZV, MM2, MM2] - 3.8314330540681334`*^-8

B0i[bb0, Q2ZV, MS2, MS2] + 7.17167188080921`*^-7 B0i[bb0, Q2ZV, MT2, MT2] +

1.2261131029462439`*^-6 B0i[bb0, Q2ZV, MU2, MU2] +

-7.663384192618505`*^-8 MB2 - 3.831692096309253`*^-8 Q2ZV B0i[dbb0, Q2ZV,

MB2, MB2] + 2.4496111124551734`*^-6 MC2 + 1.2248055562275867`*^-6 Q2ZV B0i[
dbb0, Q2ZV, MC2, MC2] - 7.663206852672925`*^-8 MD2 B0i[dbb0, Q2ZV, MD2, MD2] -

6.207326462516705`*^-6 ME2 B0i[dbb0, Q2ZV, ME2, ME2] -

6.204067243946839`*^-6 ML2 B0i[dbb0, Q2ZV, ML2, ML2] -

6.207040176437114`*^-6 MM2 B0i[dbb0, Q2ZV, MM2, MM2] -

7.662866108136267`*^-8 MS2 B0i[dbb0, Q2ZV, MS2, MS2] +

1.434334376161842`*^-6 MT2 B0i[dbb0, Q2ZV, MT2, MT2] +

Q2ZV -3.831603426336463`*^-8 B0i[dbb0, Q2ZV, MD2, MD2] -

3.1036632312583524`*^-6 B0i[dbb0, Q2ZV, ME2, ME2] -

3.1020336219734196`*^-6 B0i[dbb0, Q2ZV, ML2, ML2] -

3.103520088218557`*^-6 B0i[dbb0, Q2ZV, MM2, MM2] - 3.8314330540681334`*^-8

B0i[dbb0, Q2ZV, MS2, MS2] + 7.17167188080921`*^-7 B0i[dbb0, Q2ZV,

MT2, MT2] + 1.2261131029462439`*^-6 B0i[dbb0, Q2ZV, MU2, MU2] +

2.4522262058924878`*^-6 MU2 B0i[dbb0, Q2ZV, MU2, MU2]
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In[]:= uvFiniteCont2Loop[Q2_, BH_, BH2_] =

2 * π4 *
RemetricpartUVREN[Q2, BH, BH2] //. Q2Zuv → 10-1

Q2
;

In[]:= downTypeUVCont[Q2_, BD_, BD2_] =

2 * π4 * 1

Q2
RedownTypeMetricpartUVREN[Q2, BD, BD2] //. Q2ZDownUv → 10-1;

In[]:= upTypeUVCont[Q2_, BU_, BU2_] =

2 * π4 * 1

Q2
ReupTypeMetricpartUVREN[Q2, BU, BU2] //. Q2ZUpUv → 10-1;

In[]:= dispersionCont2Loop[Q2_, BH_, BH2_] :=

2 * π4 * NIntegrateRemetricpartDispersion[Q2, BH, BH2]

Q2
//. Q2ZNNLO → 10-8,

s, BH2, BH2, 108 * BH2, MaxRecursion → 30,

WorkingPrecision → 10, Method → "PrincipalValue";

In[]:= upTypeDisCont[Q2_, BU_, BU2_] :=

2 * π4 * NIntegrateReupTypeMetricpartDisREN[Q2, BU, BU2]

Q2
//. Q2ZUpDis → 10-8,

s, BU2, BU2, 108 * BU2, MaxRecursion → 30,

WorkingPrecision → 10, Method → "PrincipalValue";

In[]:= downTypeDisCont[Q2_, BD_, BD2_] := 2 * π4 *

NIntegrateRedownTypeMetricpartDisREN[Q2, BD, BD2]

Q2
//. Q2ZDownDis → 10-8,

s, BD2, BD2, 108 * BD2, MaxRecursion → 30,

WorkingPrecision → 10, Method → "PrincipalValue";

In[]:= Install["LoopTools"]

Out[]= LinkObject Name: '/home/reefat/packages1/LoopTools-2.14/x86_64-Linux/bin/LoopTools

Link mode: Listen

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In[]:= Alfa := 1  137.0359895;
Alfa2 := Alfa * Alfa;

ME := 0.510998928 * 10-3;

MZ := 91.1876;

MN := 0.939565379;

MW := 80.385;

ME := 0.510998928 * 10-3;

MN2 := MN * MN;

MU := 0.06983;

MD := 0.06984;

MM := 105.6583715 * 10-3;

ML := 1776.82 * 10-3

MC := 1.275;

MB := 4.18;

MT := 173.5;

MS := 0.125;

MH := 125.0;

ME2 := ME * ME;

MH2 := MH * MH;

MM2 := MM * MM;

ML2 := ML * ML;

MC2 := MC * MC;

MB2 := MB * MB;

MT2 := MT * MT;

MS2 := MS * MS;

MD2 := MD * MD;

MU2 := MU * MU;

ME2 := ME * ME;

MW2 : MW * MW;

MZ2 := MZ * MZ

In[]:= SetLambda10-18
SetDelta0 * 103
SetMudim100

In[]:= q21 = 0.001;

q22 = 0.100;

q23 = 10.0;

q24 = 1000;

q25 = 105;

q26 = 106;

In[]:= NLOCorrection[Q2_] := Re metricpartNLOREN[Q2] //. Q2Z → 10-10

Q2

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In[]:= oneLoopTable =

Grid"k12/GeV2", "One-loop vaccum polarization", {q21, NLOCorrection[q21]},

{q22, NLOCorrection[q22]}, {q23, NLOCorrection[q23]}, {q24, NLOCorrection[q24]},

{q25, NLOCorrection[q25]}, {q26, NLOCorrection[q26]}, Frame -> All

Out[]=

k1
2/GeV2 One-loop vaccum polarization

0.001 0.00502497599303168

0.1 0.00936715960871928

10. 0.0229472685075054

1000 0.0480222028387869

100000 0.0706036886459294

1000000 0.0854264484453274

In[]:= uvFiniteCont2LoopTableME = Grid"k12/GeV2", "UV-Finite Contributions(e)",
q21, uvFiniteCont2Loopq21, ME, ME2,
q22, uvFiniteCont2Loopq22, ME, ME2, q23, uvFiniteCont2Loopq23, ME, ME2,
q24, uvFiniteCont2Loopq24, ME, ME2, q25, uvFiniteCont2Loopq25, ME, ME2,
q26, uvFiniteCont2Loopq26, ME, ME2, Frame -> All

Out[]=

k1
2/GeV2 UV-Finite Contributions(e)

0.001 0.0000714290678792285

0.1 0.0000714410066800723

10. 0.0000714411257164574

1000 0.0000714411269067862

100000 0.0000714411269186895

1000000 0.0000714411269187977

In[]:= uvFiniteCont2LoopTableML = Grid"k12/GeV2", "UV-Finite Contributions(τ)",
q21, uvFiniteCont2Loopq21, ML, ML2,
q22, uvFiniteCont2Loopq22, ML, ML2, q23, uvFiniteCont2Loopq23, ML, ML2,
q24, uvFiniteCont2Loopq24, ML, ML2, q25, uvFiniteCont2Loopq25, ML, ML2,
q26, uvFiniteCont2Loopq26, ML, ML2, Frame -> All

Out[]=

k1
2/GeV2 UV-Finite Contributions(τ)
0.001 0.

0.1 0.

10. 0.

1000 0.000117505109686222

100000 0.000117512228808099

1000000 0.000117512230068204
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In[]:= uvFiniteCont2LoopTableMM = Grid"k12/GeV2", "UV-Finite Contributions(μ)",
q21, uvFiniteCont2Loopq21, MM, MM2,
q22, uvFiniteCont2Loopq22, MM, MM2, q23, uvFiniteCont2Loopq23, MM, MM2,
q24, uvFiniteCont2Loopq24, MM, MM2, q25, uvFiniteCont2Loopq25, MM, MM2,
q26, uvFiniteCont2Loopq26, MM, MM2, Frame -> All

Out[]=

k1
2/GeV2 UV-Finite Contributions(μ)
0.001 0.

0.1 0.0000923860161032114

10. 0.000101564349550255

1000 0.000101565429671561

100000 0.000101565432936296

1000000 0.000101565432965283

In[]:= uvFiniteCont2LoopTableUP = Grid
"k12/GeV2", "UV-Finite Contributions(UP)", q21, upTypeUVContq21, MU, MU2,
q22, upTypeUVContq22, MU, MU2, q23, upTypeUVContq23, MU, MU2,
q24, upTypeUVContq24, MU, MU2, q25, upTypeUVContq25, MU, MU2,
q26, upTypeUVContq26, MU, MU2, Frame -> All

Out[]=

k1
2/GeV2 UV-Finite Contributions(UP)

0.001 -0.0000448287189485694

0.1 -1.41406087835672 × 10-6

10. -7.28678495881824 × 10-7

1000 -7.28523927968602 × 10-7

100 000 -7.28523006402142 × 10-7

1 000 000 -7.28522998077492 × 10-7

In[]:= uvFiniteCont2LoopTableCHARM =

Grid"k12/GeV2", "UV-Finite Contributions(CHARM)",
q21, upTypeUVContq21, MC, MC2, q22, upTypeUVContq22, MC, MC2,
q23, upTypeUVContq23, MC, MC2, q24, upTypeUVContq24, MC, MC2, q25,
upTypeUVContq25, MC, MC2, q26, upTypeUVContq26, MC, MC2, Frame -> All

Out[]=

k1
2/GeV2 UV-Finite Contributions(CHARM)

0.001 0.

0.1 0.

10. 0.000040273039315184

1000 0.0000513934148293354

100000 0.0000513942509516129

1000000 0.0000513942512093566
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In[]:= uvFiniteCont2LoopTableTOP = Grid
"k12/GeV2", "UV-Finite Contributions(TOP)", q21, upTypeUVContq21, MT, MT2,
q22, upTypeUVContq22, MT, MT2, q23, upTypeUVContq23, MT, MT2,
q24, upTypeUVContq24, MT, MT2, q25, upTypeUVContq25, MT, MT2,
q26, upTypeUVContq26, MT, MT2, Frame -> All

Out[]=

k1
2/GeV2 UV-Finite Contributions(TOP)

0.001 0.

0.1 0.

10. 0.

1000 0.

100000 0.

1000000 0.0000633707979624905

In[]:= uvFiniteCont2LoopTableDOWN = Grid"k12/GeV2", "UV-Finite Contributions(DOWN)",
q21, downTypeUVContq21, MD, MD2,
q22, downTypeUVContq22, MD, MD2, q23, downTypeUVContq23, MD, MD2,
q24, downTypeUVContq24, MD, MD2, q25, downTypeUVContq25, MD, MD2,
q26, downTypeUVContq26, MD, MD2, Frame -> All

Out[]=

k1
2/GeV2 UV-Finite Contributions(DOWN)

0.001 -0.0000112073839046431

0.1 -3.53731793015015 × 10-7

10. -1.82283907386001 × 10-7

1000 -1.82245252789368 × 10-7

100 000 -1.82245022361001 × 10-7

1 000 000 -1.82245020280369 × 10-7

In[]:= uvFiniteCont2LoopTableSTR =

Grid"k12/GeV2", "UV-Finite Contributions(STRANGE)",
q21, downTypeUVContq21, MS, MS2,
q22, downTypeUVContq22, MS, MS2, q23, downTypeUVContq23, MS, MS2,
q24, downTypeUVContq24, MS, MS2, q25, downTypeUVContq25, MS, MS2,
q26, downTypeUVContq26, MS, MS2, Frame -> All

Out[]=

k1
2/GeV2 UV-Finite Contributions(STRANGE)

0.001 -0.0000146103092918533

0.1 -5.46223531967491 × 10-6

10. -3.21993736906405 × 10-6

1000 -3.21972774407794 × 10-6

100 000 -3.21972730433597 × 10-6

1 000 000 -3.21972730048846 × 10-6
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In[]:= uvFiniteCont2LoopTableBT = Grid"k12/GeV2", "UV-Finite Contributions(BOTTOM)",
q21, downTypeUVContq21, MB, MB2,
q22, downTypeUVContq22, MB, MB2, q23, downTypeUVContq23, MB, MB2,
q24, downTypeUVContq24, MB, MB2, q25, downTypeUVContq25, MB, MB2,
q26, downTypeUVContq26, MB, MB2, Frame -> All

Out[]=

k1
2/GeV2 UV-Finite Contributions(BOTTOM)

0.001 0.

0.1 0.

10. 0.

1000 0.0000135684614343902

100000 0.0000135939806784566

1000000 0.0000135939832976403

In[]:= dispersionCont2LoopTableME =

Grid"k12/GeV2", "Dispersion Contributions(e)", q21,
dispersionCont2Loopq21, ME, ME2, q22, dispersionCont2Loopq22, ME, ME2,

q23, dispersionCont2Loopq23, ME, ME2, q24,
dispersionCont2Loopq24, ME, ME2, q25, dispersionCont2Loopq25, ME, ME2,

q26, dispersionCont2Loopq26, ME, ME2, Frame -> All

Out[]=

k1
2/GeV2 Dispersion Contributions(e)

0.001 -0.00001118783406

0.1 -0.00001768821866

10. -0.00002419317221

1000 -0.00002737709363

100000 -0.00002743186237

1000000 -0.00002743236031

In[]:= dispersionCont2LoopTableML =

Grid"k12/GeV2", "Dispersion Contributions(τ)", q21,
dispersionCont2Loopq21, ML, ML2, q22, dispersionCont2Loopq22, ML, ML2,

q23, dispersionCont2Loopq23, ML, ML2, q24,
dispersionCont2Loopq24, ML, ML2, q25, dispersionCont2Loopq25, ML, ML2,

q26, dispersionCont2Loopq26, ML, ML2, Frame -> All

Out[]=

k1
2/GeV2 Dispersion Contributions(τ)
0.001 3.903650759 × 10-31

0.1 3.903650758 × 10-31

10. 3.903650758 × 10-31

1000 -7.718033238 × 10-6

100 000 -0.00001416824731

1000000 -0.00001742019076
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In[]:= dispersionCont2LoopTableMM =

Grid"k12/GeV2", "Dispersion Contributions(μ)", q21,
dispersionCont2Loopq21, MM, MM2, q22, dispersionCont2Loopq22, MM, MM2,

q23, dispersionCont2Loopq23, MM, MM2, q24,
dispersionCont2Loopq24, MM, MM2, q25, dispersionCont2Loopq25, MM, MM2,

q26, dispersionCont2Loopq26, MM, MM2, Frame -> All

Out[]=

k1
2/GeV2 Dispersion Contributions(μ)
0.001 4.881045794 × 10-36

0.1 -5.523194678 × 10-6

10. -9.150293264 × 10-6

1000 -0.00001563634429

100000 -0.00002214117717

1000000 -0.00002539351202

In[]:= disCont2LoopTableUP = Grid"k12/GeV2", "Dispersion Contributions(UP)",
q21, upTypeDisContq21, MU, MU2,
q22, upTypeDisContq22, MU, MU2, q23, upTypeDisContq23, MU, MU2,
q24, upTypeDisContq24, MU, MU2, q25, upTypeDisContq25, MU, MU2,
q26, upTypeDisContq26, MU, MU2, Frame -> All

Out[]=

k1
2/GeV2 Dispersion Contributions(UP)

0.001 -4.138880582 × 10-37

0.1 2.166794682 × 10-6

10. 4.581935054 × 10-6

1000 7.469235405 × 10-6

100 000 0.00001036048567

1000000 0.00001174512634

In[]:= disCont2LoopTableCHARM = Grid"k12/GeV2", "Dispersion Contributions(CHARM)",
q21, upTypeDisContq21, MC, MC2,
q22, upTypeDisContq22, MC, MC2, q23, upTypeDisContq23, MC, MC2,
q24, upTypeDisContq24, MC, MC2, q25, upTypeDisContq25, MC, MC2,
q26, upTypeDisContq26, MC, MC2, Frame -> All

Out[]=

k1
2/GeV2 Dispersion Contributions(CHARM)

0.001 -4.599974683 × 10-32

0.1 -4.599974682 × 10-32

10. 2.916723348 × 10-6

1000 3.835012161 × 10-6

100 000 6.713689401 × 10-6

1 000 000 8.159005679 × 10-6
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In[]:= disCont2LoopTableTOP = Grid"k12/GeV2", "Dispersion Contributions(TOP)",
q21, upTypeDisContq21, MT, MT2,
q22, upTypeDisContq22, MT, MT2, q23, upTypeDisContq23, MT, MT2,
q24, upTypeDisContq24, MT, MT2, q25, upTypeDisContq25, MT, MT2,
q26, upTypeDisContq26, MT, MT2, Frame -> All

Out[]=

k1
2/GeV2 Dispersion Contributions(TOP)

0.001 -1.577293882 × 10-23

0.1 -1.577293882 × 10-23

10. -1.577293882 × 10-23

1000 -1.577293882 × 10-23

100 000 -1.577293882 × 10-23

1 000 000 2.265344250 × 10-6

In[]:= disCont2LoopTableDOWN = Grid"k12/GeV2", "Dispersion Contributions(DOWN)",
q21, downTypeDisContq21, MD, MD2,
q22, downTypeDisContq22, MD, MD2, q23, downTypeDisContq23, MD, MD2,
q24, downTypeDisContq24, MD, MD2, q25, downTypeDisContq25, MD, MD2,
q26, downTypeDisContq26, MD, MD2, Frame -> All

Out[]=

k1
2/GeV2 Dispersion Contributions(DOWN)

0.001 -1.035312981 × 10-37

0.1 5.416936588 × 10-7

10. 1.145438574 × 10-6

1000 1.867264525 × 10-6

100 000 2.590076386 × 10-6

1 000 000 2.936251310 × 10-6

In[]:= disCont2LoopTableSTR = Grid"k12/GeV2", "Dispersion Contributions(STRANGE)",
q21, downTypeDisContq21, MS, MS2,
q22, downTypeDisContq22, MS, MS2, q23, downTypeDisContq23, MS, MS2,
q24, downTypeDisContq24, MS, MS2, q25, downTypeDisContq25, MS, MS2,
q26, downTypeDisContq26, MS, MS2, Frame -> All

Out[]=

k1
2/GeV2 Dispersion Contributions(STRANGE)

0.001 -1.062416412 × 10-36

0.1 7.147532346 × 10-7

10. 9.648070079 × 10-7

1000 1.684591697 × 10-6

100 000 2.407349731 × 10-6

1 000 000 2.768736575 × 10-6
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In[]:= disCont2LoopTableBT = Grid"k12/GeV2", "Dispersion Contributions(BOTTOM)",
q21, downTypeDisContq21, MB, MB2,
q22, downTypeDisContq22, MB, MB2, q23, downTypeDisContq23, MB, MB2,
q24, downTypeDisContq24, MB, MB2, q25, downTypeDisContq25, MB, MB2,
q26, downTypeDisContq26, MB, MB2, Frame -> All

Out[]=

k1
2/GeV2 Dispersion Contributions(BOTTOM)

0.001 -1.328494736 × 10-30

0.1 -1.328494736 × 10-30

10. -1.328494736 × 10-30

1000 6.204472690 × 10-7

100 000 1.305978847 × 10-6

1 000 000 1.667095734 × 10-6
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In[]:= twoLoopTable = Grid"k12/GeV2", "Two Loop Contribution (LEPTONS)",
q21, 2 * uvFiniteCont2LoopTableME[[1]][[2]][[2]] +

uvFiniteCont2LoopTableML[[1]][[2]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[2]][[2]] + dispersionCont2LoopTableME[[1]][[

2]][[2]] + dispersionCont2LoopTableML[[1]][[2]][[2]] +

dispersionCont2LoopTableMM[[1]][[2]][[2]],
q22, 2 * uvFiniteCont2LoopTableME[[1]][[3]][[2]] +

uvFiniteCont2LoopTableML[[1]][[3]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[3]][[2]] + dispersionCont2LoopTableME[[1]][[

3]][[2]] + dispersionCont2LoopTableML[[1]][[3]][[2]] +

dispersionCont2LoopTableMM[[1]][[3]][[2]] ,
q23, 2 * uvFiniteCont2LoopTableME[[1]][[4]][[2]] +

uvFiniteCont2LoopTableML[[1]][[4]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[4]][[2]] +

dispersionCont2LoopTableME[[1]][[4]][[2]] +

dispersionCont2LoopTableML[[1]][[4]][[2]] +

dispersionCont2LoopTableMM[[1]][[4]][[2]] ,
q24, 2 * uvFiniteCont2LoopTableME[[1]][[5]][[2]] +

uvFiniteCont2LoopTableML[[1]][[5]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[5]][[2]] +

dispersionCont2LoopTableME[[1]][[5]][[2]] +

dispersionCont2LoopTableML[[1]][[5]][[2]] +

dispersionCont2LoopTableMM[[1]][[5]][[2]] ,
q25, 2 * uvFiniteCont2LoopTableME[[1]][[6]][[2]] +

uvFiniteCont2LoopTableML[[1]][[6]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[6]][[2]] +

dispersionCont2LoopTableME[[1]][[6]][[2]] +

dispersionCont2LoopTableML[[1]][[6]][[2]] +

dispersionCont2LoopTableMM[[1]][[6]][[2]] ,
q26, 2 * uvFiniteCont2LoopTableME[[1]][[7]][[2]] +

uvFiniteCont2LoopTableML[[1]][[7]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[7]][[2]] +

dispersionCont2LoopTableME[[1]][[7]][[2]] +

dispersionCont2LoopTableML[[1]][[7]][[2]] +

dispersionCont2LoopTableMM[[1]][[7]][[2]] , Frame -> All

Out[]=

k1
2/GeV2 Two Loop Contribution (LEPTONS)

0.001 0.000120482467634885

0.1 0.0002812312188941

10. 0.000279324019577548

1000 0.00047956039021742

100000 0.000453555003615108

1000000 0.000440545453731408

In[]:= twoLoopTable1 =

Grid"k12/GeV2", "Vacuum Polarization Two-loop Contribution(LEP+QUARKS)",
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q21, 2 * uvFiniteCont2LoopTableME[[1]][[2]][[2]] +

uvFiniteCont2LoopTableML[[1]][[2]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[2]][[2]] + uvFiniteCont2LoopTableUP[[1]][[

2]][[2]] + uvFiniteCont2LoopTableCHARM[[1]][[2]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[2]][[2]] + uvFiniteCont2LoopTableDOWN[[1]][[

2]][[2]] + uvFiniteCont2LoopTableSTR[[1]][[2]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[2]][[2]] + dispersionCont2LoopTableME[[1]][[

2]][[2]] + dispersionCont2LoopTableML[[1]][[2]][[2]] +

dispersionCont2LoopTableMM[[1]][[2]][[2]] +

disCont2LoopTableUP[[1]][[2]][[2]] + disCont2LoopTableCHARM[[1]][[2]][[2]] +

disCont2LoopTableTOP[[1]][[2]][[2]] + disCont2LoopTableDOWN[[1]][[2]][[2]] +

disCont2LoopTableSTR[[1]][[2]][[2]] + disCont2LoopTableBT[[1]][[2]][[2]],
q22, 2 * uvFiniteCont2LoopTableME[[1]][[3]][[2]] +

uvFiniteCont2LoopTableML[[1]][[3]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[3]][[2]] +

uvFiniteCont2LoopTableUP[[1]][[3]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[3]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[3]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[3]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[3]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[3]][[2]] +

dispersionCont2LoopTableME[[1]][[3]][[2]] +

dispersionCont2LoopTableML[[1]][[3]][[2]] +

dispersionCont2LoopTableMM[[1]][[3]][[2]] +

disCont2LoopTableUP[[1]][[3]][[2]] + disCont2LoopTableCHARM[[1]][[3]][[2]] +

disCont2LoopTableTOP[[1]][[3]][[2]] + disCont2LoopTableDOWN[[1]][[3]][[2]] +

disCont2LoopTableSTR[[1]][[3]][[2]] + disCont2LoopTableBT[[1]][[3]][[2]],
q23, 2 * uvFiniteCont2LoopTableME[[1]][[4]][[2]] +

uvFiniteCont2LoopTableML[[1]][[4]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[4]][[2]] +

uvFiniteCont2LoopTableUP[[1]][[4]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[4]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[4]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[4]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[4]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[4]][[2]] +

dispersionCont2LoopTableME[[1]][[4]][[2]] +

dispersionCont2LoopTableML[[1]][[4]][[2]] +

dispersionCont2LoopTableMM[[1]][[4]][[2]] +

disCont2LoopTableUP[[1]][[4]][[2]] + disCont2LoopTableCHARM[[1]][[4]][[2]] +

disCont2LoopTableTOP[[1]][[4]][[2]] + disCont2LoopTableDOWN[[1]][[4]][[2]] +

disCont2LoopTableSTR[[1]][[4]][[2]] + disCont2LoopTableBT[[1]][[4]][[2]],
q24, 2 * uvFiniteCont2LoopTableME[[1]][[5]][[2]] +

uvFiniteCont2LoopTableML[[1]][[5]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[5]][[2]] +
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uvFiniteCont2LoopTableUP[[1]][[5]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[5]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[5]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[5]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[5]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[5]][[2]] +

dispersionCont2LoopTableME[[1]][[5]][[2]] +

dispersionCont2LoopTableML[[1]][[5]][[2]] +

dispersionCont2LoopTableMM[[1]][[5]][[2]] +

disCont2LoopTableUP[[1]][[5]][[2]] + disCont2LoopTableCHARM[[1]][[5]][[2]] +

disCont2LoopTableTOP[[1]][[5]][[2]] + disCont2LoopTableDOWN[[1]][[5]][[2]] +

disCont2LoopTableSTR[[1]][[5]][[2]] + disCont2LoopTableBT[[1]][[5]][[2]],
q25, 2 * uvFiniteCont2LoopTableME[[1]][[6]][[2]] +

uvFiniteCont2LoopTableML[[1]][[6]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[6]][[2]] +

uvFiniteCont2LoopTableUP[[1]][[6]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[6]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[6]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[6]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[6]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[6]][[2]] +

dispersionCont2LoopTableME[[1]][[6]][[2]] +

dispersionCont2LoopTableML[[1]][[6]][[2]] +

dispersionCont2LoopTableMM[[1]][[6]][[2]] +

disCont2LoopTableUP[[1]][[6]][[2]] + disCont2LoopTableCHARM[[1]][[6]][[2]] +

disCont2LoopTableTOP[[1]][[6]][[2]] + disCont2LoopTableDOWN[[1]][[6]][[2]] +

disCont2LoopTableSTR[[1]][[6]][[2]] + disCont2LoopTableBT[[1]][[6]][[2]],
q26, 2 * uvFiniteCont2LoopTableME[[1]][[7]][[2]] +

uvFiniteCont2LoopTableML[[1]][[7]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[7]][[2]] +

uvFiniteCont2LoopTableUP[[1]][[7]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[7]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[7]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[7]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[7]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[7]][[2]] +

dispersionCont2LoopTableME[[1]][[7]][[2]] +

dispersionCont2LoopTableML[[1]][[7]][[2]] +

dispersionCont2LoopTableMM[[1]][[7]][[2]] +

disCont2LoopTableUP[[1]][[7]][[2]] + disCont2LoopTableCHARM[[1]][[7]][[2]] +

disCont2LoopTableTOP[[1]][[7]][[2]] +

disCont2LoopTableDOWN[[1]][[7]][[2]] + disCont2LoopTableSTR[[1]][[7]][[2]] +

disCont2LoopTableBT[[1]][[7]][[2]], Frame -> All
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Out[]=

k1
2/GeV2 Vacuum Polarization Two-loop Contribution(LEP+QUARKS)

0.001 -0.0000208103566552471

0.1 0.000273617646062098

10. 0.000370826106630867

1000 0.000632176251010665

100000 0.000622025636270523

1000000 0.000748085647805046

In[]:= triangleCorrection[Q2_] := Re triangleMetricREN[Q2] //. Q2ZV → 10-10

Q2
;

triangleTable =

Grid"k12/GeV2", "Triangle Contribution", {q21, triangleCorrection[q21]},

{q22, triangleCorrection[q22]}, {q23, triangleCorrection[q23]},

{q24, triangleCorrection[q24]}, {q25, triangleCorrection[q25]},

{q26, triangleCorrection[q26]}, Frame -> All

Out[]=

k1
2/GeV2 Triangle Contribution

0.001 -1.49032676451433 × 10-7

0.1 -2.36001274748313 × 10-7

10. -4.098581514546 × 10-7

1000 -6.44010378813779 × 10-7

100 000 -8.85032585361598 × 10-7

1 000 000 -9.8731834532708 × 10-7

In[]:= twoLoopTable2 = Grid"k12/GeV2",
"Vacuum Polarization Two-loop Contribution(LEP+QUARKS+TRIANGLES)",

q21, 2 * uvFiniteCont2LoopTableME[[1]][[2]][[2]] +

uvFiniteCont2LoopTableML[[1]][[2]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[2]][[2]] + uvFiniteCont2LoopTableUP[[1]][[

2]][[2]] + uvFiniteCont2LoopTableCHARM[[1]][[2]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[2]][[2]] + uvFiniteCont2LoopTableDOWN[[

1]][[2]][[2]] + uvFiniteCont2LoopTableSTR[[1]][[2]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[2]][[2]] + dispersionCont2LoopTableME[[

1]][[2]][[2]] + dispersionCont2LoopTableML[[1]][[2]][[2]] +

dispersionCont2LoopTableMM[[1]][[2]][[2]] + disCont2LoopTableUP[[1]][[

2]][[2]] + disCont2LoopTableCHARM[[1]][[2]][[2]] +

disCont2LoopTableTOP[[1]][[2]][[2]] + disCont2LoopTableDOWN[[1]][[2]][[

2]] + disCont2LoopTableSTR[[1]][[2]][[2]] +

disCont2LoopTableBT[[1]][[2]][[2]] + triangleTable[[1]][[2]][[2]],
q22, 2 * uvFiniteCont2LoopTableME[[1]][[3]][[2]] +

uvFiniteCont2LoopTableML[[1]][[3]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[3]][[2]] +

uvFiniteCont2LoopTableUP[[1]][[3]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[3]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[3]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[3]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[3]][[2]] +
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uvFiniteCont2LoopTableBT[[1]][[3]][[2]] +

dispersionCont2LoopTableME[[1]][[3]][[2]] +

dispersionCont2LoopTableML[[1]][[3]][[2]] +

dispersionCont2LoopTableMM[[1]][[3]][[2]] +

disCont2LoopTableUP[[1]][[3]][[2]] + disCont2LoopTableCHARM[[1]][[3]][[

2]] + disCont2LoopTableTOP[[1]][[3]][[2]] +

disCont2LoopTableDOWN[[1]][[3]][[2]] + disCont2LoopTableSTR[[1]][[3]][[

2]] + disCont2LoopTableBT[[1]][[3]][[2]] + triangleTable[[1]][[3]][[2]],
q23, 2 * uvFiniteCont2LoopTableME[[1]][[4]][[2]] +

uvFiniteCont2LoopTableML[[1]][[4]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[4]][[2]] +

uvFiniteCont2LoopTableUP[[1]][[4]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[4]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[4]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[4]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[4]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[4]][[2]] +

dispersionCont2LoopTableME[[1]][[4]][[2]] +

dispersionCont2LoopTableML[[1]][[4]][[2]] +

dispersionCont2LoopTableMM[[1]][[4]][[2]] +

disCont2LoopTableUP[[1]][[4]][[2]] + disCont2LoopTableCHARM[[1]][[4]][[

2]] + disCont2LoopTableTOP[[1]][[4]][[2]] +

disCont2LoopTableDOWN[[1]][[4]][[2]] + disCont2LoopTableSTR[[1]][[4]][[

2]] + disCont2LoopTableBT[[1]][[4]][[2]] + triangleTable[[1]][[4]][[2]],
q24, 2 * uvFiniteCont2LoopTableME[[1]][[5]][[2]] +

uvFiniteCont2LoopTableML[[1]][[5]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[5]][[2]] +

uvFiniteCont2LoopTableUP[[1]][[5]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[5]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[5]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[5]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[5]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[5]][[2]] +

dispersionCont2LoopTableME[[1]][[5]][[2]] +

dispersionCont2LoopTableML[[1]][[5]][[2]] +

dispersionCont2LoopTableMM[[1]][[5]][[2]] +

disCont2LoopTableUP[[1]][[5]][[2]] + disCont2LoopTableCHARM[[1]][[5]][[

2]] + disCont2LoopTableTOP[[1]][[5]][[2]] +

disCont2LoopTableDOWN[[1]][[5]][[2]] + disCont2LoopTableSTR[[1]][[5]][[

2]] + disCont2LoopTableBT[[1]][[5]][[2]] + triangleTable[[1]][[5]][[2]],
q25, 2 * uvFiniteCont2LoopTableME[[1]][[6]][[2]] +

uvFiniteCont2LoopTableML[[1]][[6]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[6]][[2]] +

uvFiniteCont2LoopTableUP[[1]][[6]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[6]][[2]] +
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uvFiniteCont2LoopTableTOP[[1]][[6]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[6]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[6]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[6]][[2]] +

dispersionCont2LoopTableME[[1]][[6]][[2]] +

dispersionCont2LoopTableML[[1]][[6]][[2]] +

dispersionCont2LoopTableMM[[1]][[6]][[2]] +

disCont2LoopTableUP[[1]][[6]][[2]] + disCont2LoopTableCHARM[[1]][[6]][[

2]] + disCont2LoopTableTOP[[1]][[6]][[2]] +

disCont2LoopTableDOWN[[1]][[6]][[2]] + disCont2LoopTableSTR[[1]][[6]][[

2]] + disCont2LoopTableBT[[1]][[6]][[2]] + triangleTable[[1]][[6]][[2]],
q26, 2 * uvFiniteCont2LoopTableME[[1]][[7]][[2]] +

uvFiniteCont2LoopTableML[[1]][[7]][[2]] +

uvFiniteCont2LoopTableMM[[1]][[7]][[2]] +

uvFiniteCont2LoopTableUP[[1]][[7]][[2]] +

uvFiniteCont2LoopTableCHARM[[1]][[7]][[2]] +

uvFiniteCont2LoopTableTOP[[1]][[7]][[2]] +

uvFiniteCont2LoopTableDOWN[[1]][[7]][[2]] +

uvFiniteCont2LoopTableSTR[[1]][[7]][[2]] +

uvFiniteCont2LoopTableBT[[1]][[7]][[2]] +

dispersionCont2LoopTableME[[1]][[7]][[2]] +

dispersionCont2LoopTableML[[1]][[7]][[2]] +

dispersionCont2LoopTableMM[[1]][[7]][[2]] +

disCont2LoopTableUP[[1]][[7]][[2]] +

disCont2LoopTableCHARM[[1]][[7]][[2]] + disCont2LoopTableTOP[[1]][[7]][[

2]] + disCont2LoopTableDOWN[[1]][[7]][[2]] +

disCont2LoopTableSTR[[1]][[7]][[2]] + disCont2LoopTableBT[[1]][[7]][[2]] +

triangleTable[[1]][[7]][[2]], Frame -> All

Out[]=

k1
2/GeV2 Vacuum Polarization Two-loop Contribution(LEP+QUARKS+TRIANGLES)

0.001 -0.0000209593893316985

0.1 0.00027338164478735

10. 0.000370416248479413

1000 0.000631532240631851

100000 0.000621140603685161

1000000 0.000747098329459719
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In[]:= NNLOCorrectionTable =

Grid"k12/GeV2", "Vacuum Polarization Contribution (NLO+NNLO)",
{q21, oneLoopTable[[1]][[2]][[2]] + twoLoopTable2[[1]][[2]][[2]]},

{q22, oneLoopTable[[1]][[3]][[2]] + twoLoopTable2[[1]][[3]][[2]]},

{q23, oneLoopTable[[1]][[4]][[2]] + twoLoopTable2[[1]][[4]][[2]]},

{q24, oneLoopTable[[1]][[5]][[2]] + twoLoopTable2[[1]][[5]][[2]]},

{q25, oneLoopTable[[1]][[6]][[2]] + twoLoopTable2[[1]][[6]][[2]]}, {q26,

oneLoopTable[[1]][[7]][[2]] + twoLoopTable2[[1]][[7]][[2]]}, Frame -> All

Out[]=

k1
2/GeV2 Vacuum Polarization Contribution (NLO+NNLO)

0.001 0.00500401660369998

0.1 0.00964054125350663

10. 0.0233176847559848

1000 0.0486537350794188

100000 0.0712248292496145

1000000 0.0861735467747872

In[]:=

In[]:= (*denCorrection is the addition of all the Vacuum Polarization function*)

In[]:= denCorrection[Q2_] :=

2 * uvFiniteCont2Loop[Q2, ME, ME2] + dispersionCont2Loop[Q2, ME, ME2] +

uvFiniteCont2Loop[Q2, ML, ML2] + dispersionCont2Loop[Q2, ML, ML2] +

uvFiniteCont2Loop[Q2, MM, MM2] + dispersionCont2Loop[Q2, MM, MM2] +

downTypeUVCont[Q2, MD, MD2] + downTypeDisCont[Q2, MD, MD2] +

downTypeUVCont[Q2, MS, MS2] + downTypeDisCont[Q2, MS, MS2] +

downTypeUVCont[Q2, MB, MB2] + downTypeDisCont[Q2, MB, MB2] +

upTypeUVCont[Q2, MU, MU2] + upTypeDisCont[Q2, MU, MU2] +

upTypeUVCont[Q2, MC, MC2] + upTypeDisCont[Q2, MC, MC2] +

upTypeUVCont[Q2, MT, MT2] + upTypeDisCont[Q2, MT, MT2] +

NLOCorrection[Q2] + triangleCorrection[Q2];
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In[]:= ComparisonTable = Grid"k12/GeV2", "
αupto 2-loops - αupto 1-loops

αtree level
*100",

q21, 1

1 - denCorrection[q21]
-

1

1 - NLOCorrection[q21]
* 100,

q22, 1

1 - denCorrection[q22]
-

1

1 - NLOCorrection[q22]
* 100,

q23, 1

1 - denCorrection[q23]
-

1

1 - NLOCorrection[q23]
* 100,

q24, 1

1 - denCorrection[q24]
-

1

1 - NLOCorrection[q24]
* 100,

q25, 1

1 - denCorrection[q25]
-

1

1 - NLOCorrection[q25]
* 100,

q26, 1

1 - denCorrection[q26]
-

1

1 - NLOCorrection[q26]
* 100, Frame -> All

Out[]=

k1
2/GeV2 αupto 2-loops-αupto 1-loops

αtree level
*100

0.001 -0.00211711826145766

0.1 0.0278653034695431

10. 0.0388167080995761

1000 0.069731673795892

100000 0.0719578831070988

1000000 0.0893913305579863

In[]:= EffectiveAlfaTwoLoop := Alfa
1

1 - denCorrection[Q2]
;
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In[]:= LogLinearPlotEffectiveAlfaTwoLoop-1, Alfa
1

1 - NLOCorrection[Q2]

-1

, Alfa-1,

Q2, 10-5, 106, AxesLabel → k12  GeV2,
1

α
,

(*PlotRange→ 1

125
, 1

145
,*)PlotRange → All,

PlotLegends → {"Effective Fine Structure Constant (2 Loop correction)",

"Effective Fine Structure Constant (1 Loop correction)",

"Fine Structure Constant"},

AspectRatio → 1 / 1, GridLines → Automatic, PlotStyle -> Thick

Out[]=

0.001 0.100 10 1000 105

k1
2

GeV2

126

128

130

132

134

136

1

α

Effective Fine Structure Constant (2 Loop correction

Effective Fine Structure Constant (1 Loop correction

Fine Structure Constant
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