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ABSTRACT

Laboratory experiments ""''ere conducted to examine the effects of varying prey

availability on the behaviOW". growth, and survival of larval witch flounder

(Glyptocephafus cynoglossus) and yellowtail flounder (Pleuroneaes ftrrugineus). The

performance of larvae in relation 10 prey availability can provide insight into larval

behavioural ecology, highlight faclors Utal promote survival at sn. and aid in

construction of appropriate feeding strategies during larviculture.ln lhe first study. witch

floundu larvae were exposed to a range ofpr-ey densities (250-16000 prey per liter) and

their behaviour was recorded during feeding trials. Larvae were also reared at a range of

prey densities (2{)(J(}.8000 prey per liter) and their erowth and suMval were monitored.

1be foraging behaviour of witch f10under was not as affected by variation in prey

availability as are other species. Larvae appear to have low prey requirements as they

exhibit low foraging activity. Growth and survival of witch flounder in culture is

relatively robust to changes in prey availability. The ability to forage when prey is more

or less abundant may be a response to the extended larval period of this species. In the

second study, yellowtail flounder larvae were reared at a constant high prey density (8000

prey per liter) and fed at high prey density at different feeding frequencies (1.2. and 4 pet

day). Larval behaviour, growth and survival were monitored. 1be conswnption rate of

larvae was highest in the treaunents fed I and 2 times per day. Growth and survival of

larvae fed 2 and 4 times per day were similar to that of larvae fed continuously. It is

concluded that IWO feedings per day at high prey density is adequate for the culture of

yellowtail flounder. Pulse feedinj may be an efficient str.l.tegy for larval rearing.
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CHAPTER 1

INTRODUCfION AND OVERVIEW

1.1 Introductio.

The focus of this thesis is the behavioUT, growth, and survival of the larvae of two

flatfish species, witch flounder (GlyPiocephalw C)'f'Ioglossw) and yello\\1ai1 flounder

(Pleuronectes/efTUginew), in relation to prey availability. This research has both

academic and applied goals. Information regarding the early life history of fishes is

interesting from a behaviowal ecology perspective, and is also useful to ftsheries

scientists and the developing aquaculture industry.

Fisheries biologists hypothesize that starvation is one of the major factors

contributing to monality during the larval period (Hjort, 1914; Hunter, 1981). Because of

the link. between larval survival and year class strength (Cushing, 1975; Hunter. 1981;

Lasker, 1981), examining the relationship between larval fish and their prey can provide

insight into recruitment variability. Funhennore. the first-feedini stage of the fish life

cycle is typically the bottleneck to commercial aquaculture (Tilseth. 1990). The

experiments described in this thesis can therefore aid in constructing appropriate feeding

regimes for these species.

1.2 Witd' nouader

Witch flounder is a commercially important member of the family Pleuronectidae

found in the deeper waters of the nonh Atlantic (Bowering, 1976). Despite its commercial



imponancc. little is known about the: life history ohms species. What is kno'A'n is largely

the result of field observations conducted by fisheries scientists for stock assessment

purposes. Because of its commerciaJ imponance and recent decline: in stOCk abundance

(Bowering. 1987). witch flounder has been identified as potential candidate for

aquaculture in the Canadian Atlantic Provinces. However. this species exhibits a life

history characteristic that may pose a challenge to larviculture: a protracted larval period.

Witch flounder have one of the longest larval stages among flatfishes (Evseenko and

Nevinsky, 1975; Miller el al.. 1991; Osseand Van lkn Boogaarr. 1997). which may last

longer than four months in the wild (Bigelow and Schroeder. 1953). As mortality during

the larval period is typically hieb in the wild and in culture. this long larval period may

prevent the successful development of witch flow\der aquaculture. For this reason. the

focus of my research is the larval stage.

The experiments presented here are the first reported on witch flounder culture in

Atlantic Canada. In Chapter 2. I describe some preliminary results. I was able to make

some interesting comparisons between witch flounder larvae from two different source

populations under different experimental conditions. Although I am primarily interested

in the larval stage, I also monitored the gro'A1h rates ofjuveniles from both populations.

In Chapter 3. I present the results of a feeding experiment on witch flounder larvae. This

is one of the first larval mmng uperiments described fOC" this species, and the first that

focuses on witch flounder behaviour. Because this species has such an interesting life

history. I discuss the results primarily in terms of the behavioural ecology ofwilch



flounder larvae in Chapter 3. However, the relevance oflhese results to aquacultun: is

discussed in Appendix A.

t.J VeUowtliil no..der

Yellowtail flounder is a shallow-water member of the family Pleuronectidac

found in the western North Adantic (Pitt. 1970). Ycllowtaill1ounder has historically

supported a moderate commercial fishery, but stocks have been depleted in recent yeatS

(Bo\lo-ering and Brodie, 1991). like witch flounder. yello1A.1ai1 flounder has been

identified as a candidate species for aquacultme because of its conswncr acceptabiliry and

redlJCCd availability. Research on yellowtail flounder aquaculture has been conducted at

the Ocean Sciences Centre, Memorial University of Newfoundland for the past five years.

In the 1998 season, the laboratory produced nearly 20,000 yellowtail flounder juveniles.

While we are clearly successful at rearing yellowtail flounder. it is necessary to improve

our rearing efficiency. Therefore, the experiment conducted on yellowtail flounder.

described in Chapter 4, is aimed at refining the rearing tcchniques for this species.

1.4 Objedives

This thesis focuses on the interactions ofmaril1C fish larvae and their prey. In

Chapter 2. preliminary results on wite:h flounder culture are presented. In Chapter 3, the

effects of prey density on witch flounder perfonnance are examined. This is a critical first

step in understanding the foraging ecology and aquaculture potential of this species. The

goal of this experiment is to gain infonnation on the f«ding behaviour of witch flounder



larvae. as limited information is available on the early life histo!)' of this species. In

Chapter 4. the effects of feeding frequency on )'ello\o\uil flounder performance are

examined. This experiment was possible bcca~ more is kno""ll about the prey

requirements of yellowtail flounder larvae. 1be experiments presented in this thesis are

relaled 10 me foraging of larval fishes and are relevant to both ecology and aquaculture.



CHAPTER 2

PRELIMINARY RESULTS OF WITCH FLOUNDER CULTURE

2.t (.trod_ctio.

The witch Oounder(Glyptocepholus cynoglossw) is a member of the family

Pleuronectidae that once formed a significant component of the Newfoundland

eommercial flatfish catch (Dowering and Brodie, 1991). Due to the recent collapse of

commercial fish stocks and the interest in generating economic development in

Newfoundland, a research program was initiated at the Ocean Sciences Centre, Memorial

University of Newfoundland, to investigate the potential of witch flounder as a species

for aquaculture. Witch flounder was chosen as a candidate species because it is a local

species that consistendy fetches a high price. However. it exhibits undesirable biological

characteristics for cuJture such as a long larval period. For this ~ason, the present

research was focused primarily on the larval stage. This is the first stage in the fish life

cycle and is typically the bottleneck 10 commercial production (Tilseth. 1990).

1.2 Witch RoaDde:,. b'olocY

Witch f1ound«~ right-sided flatfish that can grow 10 a size of 65-70 cm and live

to 25 years in Newfoundland waters (Bowering, i 976). Western Atlantic popuJations are

found from Nonh Carolina (USA) to Labrador. However, this species is only

commercially abundant nonh ofCapc Cod, Massachusens (USA; Burnen et al., 1992).

Wilch flounder is primarily taken as by-catch in other offshore fisheries, such as those for



Atlantic cod (Gadus mDnlha) and American plaice (Hippoglassoides plaussoides).

However, there is a limited~ fishery which targets this species in the deep-water

bays of Newfoundland (Bowerin&. 1976). Witch flowxieT is also found in the eastern

Atlantic Ocean where it suppons moderate yield fisheries in the North Sea. lrish Sea, and

around Iceland (Burnen ef al., 1992). The individuals in these populations differ

dramatically from those in western populations in that they do no! grow to such a large

size: (Steinarsson et 01., 1989). The biological infonnation on witch flounder presented in

this chapter is dra""n primarily from .....estern Atlantic populations and Newfoundland

populations in panicular.

Witch flounder inhabit relatively deep waters. In Newfoundland catches of highest

abundance occur at depths of 185·366 meters (Bowering. 1976), although the species has

been caught at depths up to 1,500 meters (P«hc:niclc. and Troyanovslc.y. 1970) and as

shallow as 20 meters (Bowering, 1976). It is found on the muddy bottoms which are

typical of the continental slope: bordering the fishing banks of Newfoundland and

Labrador (McKenzie. 1955). Commercially exploited populations also exist in the Gulf of

51. LaIo'!TCIKe and the Gulf of Maine wbcTc the maximum depth is not as great (powles

and Kohler, 1970; Bow~ring and Brodie. 1984; Burnett etal., 1992). Adult witch

flounder feed on benthic polychaete worms that are associated with soft bottoms. These:

annelids make up 75% of their diet (Langton and Bowman, 1981). Witch flowlder has

been caught at tempcnltures of2-6°C aroWKi Newfoundland (Bowering, 1976) and

according to Bowering (1989), temperature is more imponant than depth in regulating

habi!atchoice.



In Newfoundland, witch flounder is managed as four separate units and a total

allowable catch has been in place since 1974 (Bowcring, 1976). However, there are

thought to be more than four distinct spa\lrning stocks of witch flounder. Six stocks have

been identified on the basis of genetic variability (Fairbairn. 1981), while seven have

been identified on the basis of meristic characters (Dowering and Misra. 1982).

Witch flounder are lhouiht to grow slowly compared to other flatfish species

(Burnett et al., 1992). The slowest growing Newfowxlland populations are found in the

Gulf ofSt. Lawrence and the fastest are found on the Nonhca.st Newfoundland Shelf.

This suggests that growth rate is not entirely dependent on tcmperature (Dowering. 1976).

Indeed. the life history chaBctcrislics oflhis species. such as laIC agc at maturity

(Bowering. 1976) and slow growth rate. fit expectations of density-dcpmdcnt population

growth models and suggest that it is resource limited and competition is high. It has been

suggestcd that thc slow growth in the GulfofSt. Lawrencc population is due to increased

competition for food with redfish, &bastes marinus (Bowering, 1976).

The spawning season of witch flounder is extensive and ripe fish have been found

throughout the year (Bo\\ocring, 1990). Peaks of spawning intensity vary throughout the

species rangc. For example, in Labrador, peak spawning occurs from Man::h-May

(EvSC'Cnko and Nevinsky, 1975), and in the GulfofMainc it occurs in July-August

(Bigelow and Schroder, 1953). The age and length at which 50"/i of the population

reaches sexual maturity is approximately 5 yr and 28 cm for males and 9 yr and 4S cm for

females, but varies throughout the species range (Bowering, 1976).



Witch flounder exhibit inlermediate fecundity and produce eggs that number in

the hundreds of thousands. "The fecundity varies with lish size:, population, and year

(Bo""ering, 1978). The sizc:ofeggs ranges from 1.10-1.45 mm with a mean of 1.27 mm

(Evs«nko and Nevinsky, 1975). Egg size and morphology is very- similar 10 that of

Atlantic cod and the eggs of these species cannot be diff~ntiated until the last stages of

egg development (Brander and Hurley, 1992). Witch flounder is thought to have one of

the longest larval periods of the flatfish (Miller ef al.. 1991; Osse and Van den Boogaan.

1997). lIS Pacific relative, the rex sole (G/}plocephDJus zad'irus), also has a long pelagic

phasc(PearcYf!tal.,1977).

The long larval period and slow growth rates of this species reponed from field

observations have p«:viously dissuaded researchers from studying the potential of witch

flounder for aquaculture. However, preliminary results (Bidwell ef al., 1997) suggest that

the survival of witch floWlder larvae in cullure is high despite the long larval period.

Furthermore, slow growth rates in the field, if they result from prey resource limitation.

will not necessarily translate into slow growth in cultW'C, as it will be possible to provide

adequate food for growth.

2.3 Project onn'Hw

In 1996 Deborah Bidwell, a graduate student of Dr. Hunt Howell of the Coastal

Marine Laboratory, University of New Hampshire, began preliminary work with witch

flounder larvae. She was able to rear five larvae successfully to metamorphosis. Because

this is such an accomplishment for a rearing anempt with a new, unfamiliar species, the



Ocean Sciences Centn: began a program to invcstiaate the potential of witeh flounder

culture in cooperation 'Aith the Coastal Marine Laboratory. This chapter serves to

describe the history of the witch flounder" project and to present some of my preliminary

results.

In 1997, 1lravelcd to New Hampshire to assist Ms. Bidwell in the collection of

witch flounder gametes. Unfonunately few eggs were collected. and effons during lIle

1997 season were directed towards maintaining the larvae. and experiments were not

conducted. In the 1997 season. witch flounder broodstock were also collected from

Fonune bay. Newfoundland.

h was possible to obtain eggs from the Gulfof Maine again in the 1998 season.

As before, few eggs were collected. These eggs were used in an experiment determining

the effects of prey density on the behaviour, growth and swvival of witch. flounder larvae.

This experiment forms the basis of Chapter 3 and is also discussed in Appendix A. Some

of these eggs were also used to determine the effects of different temperatures on ....itch

flounder growth (Section 2.4.3). In 1998. eggs were also obtained from the broodstock

collected in the previous year. These eggs were used to compare the growth of witch

flounder larvae obtained from the Gulfof Maine and from the Newfoundland collected

broodstock under different environmental conditions (Section 2.4.3).

The growth rates ofthcjuvcniles from both the 1997 and 1998 ycar-elasscs ....'C1e

also monitored (Sections 2.4.4. 2.4.5). While the focus of my thesis is larval rearing.

juvenile growth rates are an imponant detenninant of aquaculture potential.



2.4 Prdimm..ry nsalts

This chapter will describe some preliminary results of witch flounder culture. I

have set up the discussion below as a series of cxperimCltal mats or descriptions

(Sections 2.4.1-2.4.5), presented in chronological order. This chapter is a venue for

presenting results which are meaningful, but which cannot stand as chapters on their own.

Future: research directions and potential difficulties of ....llrking with witch flounder are

discussed. Because experiments were not set up in the uaditional sense. the data

presented is preliminary. Statistical analyses were not performed and information such as

methodology is not provided in detail.

2.4.1 Preliminary results of larval rearing

Introduction

My first anemptatlarval rearing was in 1997.1 uaveled to New Hampshire to

collect witch flounder gametes. J returned to the Ocean Sciences Centre in September

with very few (_2000) eggs. Because few eggs were collected.. the aim ofthc 1997 season

....'as to gain experience work..ing with this species. and experiments were not conducted.

Materials and Methods

Witch flounder were stripped at sea (by Deborah Bidwell) in the GulfofMainc: in

early september, 1997. I nansponed the fenilizcd eggs to the Ocean Sciences Centre. A

250L cylindro-conica.l upwelling IaIIk was used for egg incubation and first-feeding. Eggs

were incubated at 12° C and hatched in approximately IOdays over a period ofone day.



The rearing protocol Wll5 modified from that used for Atlantic cod and yello~tail flounder

in our laboratOl)' (Puvanendran and Bro'tNn. 1999; PuVllllendan.. unpublished data).

Larvae were fed rotifers enriched with Isoc!vysis twice a day at 4000 prey per liter (pIL)

from day I. After 30 days, A,.femia, enriched with A1gamac (Dio-Marine, USA) or protein

selco (INVE, Belgium), was added at 2000 pIL in addition to rotifers. The light intensity

at the water surface W3J 200 lux. Although cod of Grand Banks origin and yellowtail

nounder prefer high light intensities (Puvanendran and Brown, 1998; Puvanendtan.

unpublished data) witch flounder larvae were observed feeding at this low light intensity

and it was not increased. Larvae were mo\'ed to a flat-bonomed 3000L tank on day 40.

The light intensity at the surface orthis tank was 1000 lux. Anemia was added four times

a day at 2000 pIL. Roofers were also added fOUT times 3 day 3t4000 pIL although gut

color of larvae indicated that mainly ",,.femiQ was being consumed. An anificial diet

(pellet size 1OG-200 JUIl) was offered to the larvae from day 50. However. it was not until

day \00 that live food was reduced for weaning. Microalgae-enriched water was used

until day 100. The average rearing temperature was approximately 10"' C with a range of

8.4°_13.2°C. Larvae were measUJ'Cd every few days from hatching to week 17 when SO-A.

of the larvae had settl~ The sample sizes were small (1-4 fish) due to the limited

number of animals.

Results

Only SO'% of the approximately 2000 eggs hatched. Some larvae were observed

feeding on day 1 post·hatch. larvae grew and survived well under this protocol. The total



length ofthc larvae: increased from 5.9 to 59 mm over the 17 \\'ttk study period (Figure

2.1). "The survival was 75% from hatching to the age of 4 months.

Weaning was difJicuJt. It was not until day 70 that larvae wuc observed to ingest

an artificial diet and weaning was not complete until day 160. A wide variation in larval

size was also observed. Larvae suffered from an infection that was not possible to

diagnose (Atlantic Veterinary College. Prince Edward Island). This blled approximately

I()"/. of the larvae. A cloudy white growth would develop on the head or muscle oflarvee

and the)' eould survive for I·) weeks in this condition. Howe\'er. it would increase in size

and eventually death would occur.

Discussion

"The growth and survival of witch flounder was high during this first anempt at

rearing the species at the Ocean Sciences Centre. Most of the mortality occ~d during

the egg incubation stage which can be attributed to handling stress during egi

transportation. These positive results indicated that the potential exists for the

development of commercial witch flounder culture.

Some difficulties of witch flounder culture became: apparent as a result of this

preliminary work. First, it is verydifJicult to obtain witch flowxler gametes. For this

reason. effort was subsequently directed at obtaining witch noWlder broodstock. Second,

because of the long pelagic phase of the witch flounder life cycle and the \\;de variation

in growth rates observed. the first-feeding period is long and weaning to an artificial diet

12
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is difficult. Although witch flounder larvae arc relatively large, their larval digestive

system may not be adequate to digest an artificial diet. A wide variation in size-at-age

means that some larger larvae may be competent to consume a dry diet, while smaller

larvae continue lO require live prey. Fwthennore. a loog first.fceding period is expensive.

as live food production is labor-intensive. Weaning difficulties may have been the result

of using too smail a panicle size. In 1998. a larger diet was used and larvae accepted the

diet easier. With future research dirrcted at weaning. it is likely that the live food

requirements of witch flounder larvae can be reduced.

2.4.2 Broodstock collcction

Witch flounder are fragile, deep-water fish. The fragility of this species poses

several problems for broodstock collection. Witch flounder are caught around

Newfoundland by Danish seine fishenncn. This gear type is relatively good for

broodstock collection purposes because it does not dng the catch as much as other gear

types. Furthermore. on the south coast of Newfoundland. Danish seiners make day trips.

Therefore. it is possible lO catch the fish and bring them back to the lab in minimal time.

I contacted Danish seine fishennen and accompanied them on a trip in November.

1997 out of Harbor Breton. Fonune Bay. On the last tow. I collected 30 fish to bring back

to the laboratory. I collected fish that did noI have any visible signs of net damage. I did

not touch them with a net. but instead picked them up with gloved hands. Fish were

maintained in 3 plastic tubs on board. Water from the deck hose was used to keep water

flowing into the tubs. The trip to shore lasted approximately one hour. On land. fish were



transferred to a tank inside a cargo truck.. The drive to the Ocean Sciences Centre lasted

approximately 9 hours. Throughout the trip, oxygen concentration was monitored and

recirculating pumps were used to increase oxygen availability when the oxygen

concentration fell below goe/. in the tank. At the laboratory, fish were transferred 10 a 2x.2

meter tank. Presently, approximatelyl5 ofthos<: fish are still alive.

I anempted to collect fish again in thes~rof 1998. I had hoped to collect pre

spawning fish and use their eggs in my experiments. None of the fish that I collected in

July survived. This may be due to the stress associaled with spawning. It may also be due

to the higher temperatures encountered at the surface. November may be a bener time for

fish collection because there is likely a lesser difference between surface: and bottom

temperatures than in the swnmer.

243 Growth ofwjtch nounder larvae l'rom two wurce oopulations and the dfects

of light and temperature

Introduction

Light is an imponanl environmental variable for aquaculture and it has been

shown to affect the behaviour. growth., and survival offish larvae (Batty, 1987; MookeJji

and Rao. 1993; Puvanendnm and Bro\l,n., 1998). In the 1997 season.....itch nounder larvae

grew and survived well at a light intensity of 200 lux. This light intensity is low, and both

Atlantic cod (Grand banks origin) and yellowtail nounder have been shown 10 prefcr

higher light intcnsities (>1500 lux, Puvanendran and Brown, 1998; Puvanendran,

unpublished data). The eycs of witch Oow'lder larvae are pigmented and are relatively

IS



large at hatching which may explain their ability to forage at low light intensities.

However. to pin insight into the light requirements of this species. a simple trial was set

up 10 determine if witch flounder larvae grew and survived differently under high (2000

lux) and low (200 lux) lighl. Larvae from the broodstoek of Newfoundland origin were

used in this comparison.

There is also evidence that individuals from different areas within a species' range

will perform differently when reared in a common environment if they arc genetically

adapted 10 locaJ conditions (Conover and Schultz. 1997). This has imponant implications

for broodstock selection as a &TOwer would prefer to usc animals from the faster growing

sour« population. The collection ofeggs from witch nounder broodstock as well as from

die Gulfof Maine provided an opponunity to compare: the gro"'-m of witch nounder

larvae from two source populations: Newfoundland (NF) and New Hampshire (NH). This

comparison was conducted at two temperatures to determine iftemperatUtC affected the

relalive perfonnance of larvae from both populations.

Materials and Methods

Eggs were collected from witch flOUlllkr broodstoek at the Ocean Sciences Centre

(NF) and ....-ere stripped at sea in the Gulf of Maine (NH: by Deborah Bidwell). The NH

eggs were shipped by courier on ice to the Ocean Sciences Centre. The NF larvae were

obtained 12 days earlier than the NH larvae. Because the NF broodstock were not

expected to spawn so soon after being captured they were not checked regularly for

l'



ripeness. This is unfortw1ate as over 100 mL eggs \\o'ae collected, although only <5 mL

were viable.

Egg incubation and rearing methodology (feeding schedule, tank set·up. etc.) is

similar to that described in Chapter 3. The NH eggs hatched ove!" a period of I day while

the NF eggs hatched o"er a 2 day period. There \\o'ae 2 replicate tanks for each treatment.

The treatmenlS used were: NF fish raised al high (2000 lux) and low (200 lux) light at

ambient (12_14DC) temperatures. NF fish raised at 7DC, NH fish raised at low light at

ambient temperatures (the 4000 pIL treatment of Chapter 3), and NH fish raised at 7DC.

The ambient temperature tanks were flow.through systems, while it was only possible to

use static systems at the low temperature. All fish were fed enriched rotifers and/or

Anemia three times per day at 4000 pIL (see Chapter 3 for enrichment products). Larvae

were measured for standard length only. NH larvae were measured weekly and NF larvae

were measured every 1-2 weeks.

This experimental trial was lcnnina.lcd at week 7. Many of the NF larvae died as a

result of a visible infection. A white growth would develop within the muscle of the

larvae. This white gro\\oth was different from that observed in the 1997 larvae. Diagnostic

laboratories (Atlantic Veterinary College. Prince Edward Island) could not detcmtine the

cause of the mortality. As the NH larvae were younger than the NF larvae, the NH larvae

were moved to larger tanks at~k 5 as it was assumed that the infection may have

resulted from the larvae out-growing their tanks. The surviving NF larvae were moved to

a 3000L tank.



Results

All larvae at JOe died within 10 days. Larvae reared at ambient temperatures

performed '"-'ell. Larvae from NH were slightly larger than NF larvae at hatching (5.62

mm ± 0.12 mm S.E.• 4.89 mm ± 0.055 mm, respectively). larvae from both populations

reached similar sizes at the end of the experiment at ambient temperatures. NF larvae also

grew similarly under both high and low light. However, NF larvae underwent a lag period

of growth between weeks 2-4 and were smaller than NH larvae at week 4 (Figure 2.2).

Discussion

The mortality of the larvae at JOC is consistent ",ith the results of Bidwell (1999)

who found that witch flounder larvae do not initiate feeding at IO"C or below. However.

the stalic systems used at the colder temperature: clearly may have contributed 10 the high

mortality in this treatmenl. Witch flounder larvae from NH and NF populations appear to

grow similarly at the warmer, ambient temperatures. This finding was surprising because

the NF larvae were presumed to suffer from poor egg quality, as the eggs were likely

over-ripe, and the broodstodr. did not feed for an extended period in captivity. This may

explain the smaller size of the NF larvae at hatching. It is unclear what caused the

decrease: and subsequent increase in growth rates of the Newfoundland larvae. It may be

related to the infection they suffered. Some infected larvae may have been included in the

week 4 measurements, reducing the mean standard length.
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2.4.4 Growth of"'itch flounder !aIC-stagC Iarv:l£ and juveniles from h\o"O source

~

"The growth comparison between fish from the Nev.foundland and New

Hampshire source populalions was continued once larvae were in the later stages oflhl:

larvalpcriod

Materials and Methods

Late stage larvae from both NH and NF populations were moved to experimental

Ianks in early November, when the rearing experiment (Chapter 3, Part B) was

completed. Weaning to an artificial diet (pellet size 300-500 J.1m) was initiated and

weaning was complete when the experiment began on D«ember 14. On day 0 of the

experiment. NF larvae were 20 weeks. 3 days post-hatch and NH larvae ....'ere 18 weeks. 5

days post hatch.

Four 220L circular tanks "''ere used in the experiment_ The water (low was

adjusted such that water entered at the bonom of the tank and flowed in a circular pattern

to facilitate tank cleaning. "There were 60 fish per tank.. Most of the fish in both

populations were still pelagic when the experiment began. Two replicate tanks "''ere used

per population. The light intensity was approximatelyl40 lux. at the center of each tank

and ranged from 60-190 lux over the surfaces of the tanks. A photoperiod of 18L6D was

used. Fish were fed to excess with a commercial diet (a mixtw"c of pellet sizes 600-1200

and 1100-1900 J.Ull). The diet manufacturer varied depending on availability. At the start



of the experiment the temperature was approximately 10°C. Ho","'Cver. for some extended

periods the temperature was reduced to <soC (figure 2.3).

Fish were measwed for standard length and wet weight every few weeks unlit

.....eek 18. On each sampling day. 20 fish per tank were: measured. An effon was made to

measure pelagic and settled foo in proportion to their occwrence. In addition. fish weft:

scored for progression of eye migration dwing the metamorphosis period. A simple index

oreye migration stage was used. Fish were scOf"Cd as pre<resl, crest, post-crest, and

incomplete eye migration. Pre-cresl refers to the migrating eye not yel reaching the dorsal

fin margin. Crest refers to the stage at which the migraling eye is aligned with the dorsal

fin margin. Post-crest refers 10 the eye having migrated past lhe dorsal fin margin to the

prospective occular side. Incomplete refers to abnormal eye migration. Migration may not

initiate or may not proceed past a cenain point. In witch flounder, this was often

manifested as the migrating eye Slopping al the dorsal fin margin.

Results

At the start of the eXperiment, NH fish were: larger and more developed than NF

fish. The mean standard length orNH larvae was 5.77 ± 0.07 cm on day O. At this time

42% of NH fish were scored as post-crest, 20% were scored as pre-cfCSt, 23% were

scored as crest, and 15-;. WC're scored as incomplete eye migration. The mean standard

length ofNF fish on day 0 was 5.62 ± 0.02 cm. At this time 5% ofNF fish were scored as

post--erest, 52.5% were scored as pre-crest, 32.5% were scored as crest, and 10% were

scored as incomplete eye migration.
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Both populations grew at similar rates. However. the NF fish suffered from a lag

in growth bctwccn weeks 4-6. After !his period they resumed their previous growth rates.

and at the end of the experirnmt NF fish were smaller than NH fish (Figure 2.4). The

average length-specific growth rate (L-SGR; see Chapler 3 for equation) for the NH fish

was 0.33 %day·l. The average L-SGR for the NF fish was 0.26 % day·l. The absolute

growth rate (see Chapter 3 for equation) for the NH fish was 0.022 em day·l over the

sludy period. The absolute growth rate for the NF fish \l.'3S 0.019 em day·l over the study

period. The average weight-speciftc growth rale (W-SGR) for the NH fish was 1.19 %

day" and for the NF fish was 1.14 %day·I."The survival was similar for both populations.

The NH fish suffered 8.3% mortality and the NF fish suffered 10.8% mortality. TypKally.

it was the slower developing, pelagic fish thai died.

At the end of the experiment <5% of fish in both populations were still pelagic

larvae. The approximate bonom coverage was <25% in alilanks. The smallest size at

which a fish was scored as post-crest was 4.8 cm SL. The largest fish scored as pre-cresl

was 6.6 cm SL. Fish within the size range of 4.4·7.3 em were scored as cresco The mean

size ofNH fish scored as crest was 5.66 cm while the mean size ofNF fish scored ase~

was 6.17 em. The process ofsettlement was also protracted and roughly coincided with

the e),e moving from the crest to the prospecti\'e occular side. During this time

individuals were semi-pelagic. the proportion oftime spent on the bonom oflhc: tank

increasing with development
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Discussion

The: results suggest that NF and NH fuh grow at similar rates. Ho.....ever. it is

unclear what eaused the lag in growth of the NF fish during weeks 4-6. This occurnd

.....hen the larvae .....ere beN.oeen the lengths of6-7 em. This size range COrTe5ponds 10 Ute

trallsition from a late slage pelagic larva to a newly senled benthic juvenile. Reasol'5 for

the growth difference arc not obvious as the fish did not appear to suffer from stress, and

it may be relaled to the transition period.

Data on the stage of eye migration was collected to obtain a preliminary estimate

of the size al which witch flounder larvae underi:o metamorphosis. as Ute liming of

metamorphosis is often defined by eye migration stages for flatfish (eg. Chambers ad

Leggen. 1987). As larvae ....'ere scored as crest bdw~ such a large Slzc range (4.4-7.3

em). a simple character such as stage of eye migralion may nol be useful 10 identify the

slage of transition from a larva 10 ajuvenile for this species. There is evidence that the

processes of transformation varies between NH and NF populations as NH larvae scored

as crest were smaller than NF larvae. Future work should be directed at more precisdy

sludying the transition to a juvt:nile. and determining if the size at settlement varies

bctw~n populations. Because the uansfonnation from larva to juvenile is pl'OltaCted for

witch flounder, this species may be a useful model for those interesled in this stage «fish

development.

The weight.specific growth rates (""1.15% day) reported in this preliminary study

are relatively slow compared to other species that art considered aquaculture candidates.

Witch flounder also do nOI feed actively compared to other species. One possible cause of



lhe low prey consumption is that the artificial diet offered to the fish is very different in

texture. smell. and/or behaviour from their diet in the wild. In the wild. the adult ",itch

flounder diet is composed of75% polychaete worms (langtOn and &"'man. 1981).

Because the diet of this species is not naturally diverse. it may be less likely to consume

and pertonn well when fed an artificial diet compared to species that are used to

consuming a wider range of pI"ey. Tbc: variable temperature regime used may also have

contributed [0 the 5ub-optimal growth rates. Other species such as yellowtail flounder

have perfonncd well in the experimental system used in this trial (D. Boyce. personal

communication). However, witch flounder may have unique environmental requirements

and research involving light regime, temperature. tank design. and diet would be

valuable.

2.4.5 Growth of 1997 vrar=e1ass juveniles

Introduction

Gro'~lth rates of fish arc an important detenninant of aquaculture potential. For

lhis reason, the growth ofthejuveniles from the 1997 year-class was monitored at the

same time as the growth ofthc NF and NH fish from the 1998 year-class.

Prior to the initiation of mcastJTements. the 1997 ycar-class did not perform well.

Due to a tank shortage, they were moved from a JOOOL tank to a shallow (SOcm) 2x2

meter tank in February, 1998. The temperature in Utis tank was maintained around 6°C

through the rest ofthc winter. The fish grew slowly during this period. Furthermore. all of

the fish which had not settled by the time of tank change (15"10) died in the new tank. In

"



the summer, when temperatures reached over 12°C. many of the juveniles conltaCted

furunculosis (Atlantic Veterinary College, Prince Ed....-ard Island) and died. The fish also

contracted a stomach disorder wt could not be diagnosed by laboratories (Atlantic

Veterinary College. Prince Edward Island). Fornmately. it was possible to save 157

juveniles using feed coaled in oxyteuacydine.

Materials and Methods

In November 1998. juveniles from the 1997 year-elass were moved to the same

experimental system used for the comparison ofNF and NH late stage larvae and

juveniles from the 1998 year-elass. Fish were size graded by eye into "small" and "large"

groups and stocked into two 220L tanks. There were 88 fish in the large group and 69 fish

in the small group. The approximate bonom coverage was between 50-750/. in both tanks

during the experimental trial. The light intensity at the center of the large cohon tank was

120 lux (range: 75.180). The light intensity at the center of the small cohon tank was 40

lux (range 35-50 lux). The temper3ture regime was the same as that for the juveniles from

the 1998 year-elass (Figure 2.3). Fish were fed to excess at 1.25% body weight per day.

There was always exua food in the tanks under this feeding regime. Fish .....ere measured

for standard length and wet weight every few weeks. On each sampling day, 20 fish per

tank were measured.

27



Results

Fish in both size classes appear to grow similarly (Figure: 2.5). The l-SGR oflhe

larger fish was 0.160/. day" and the W-SGR was 0.67% day·l. The L-SGR of the smaller

fish was 0.210/.day·1 and the W-SGR was O.63%day·1.

Discussion

Fish in the small and large size dasses appear to grow sir.tilarly. Thus. the: loWCT

light intensity OVtt!he lank conlaining the: small size cohort likely did not inhibit gro",,'th.

As \\-;tch flounder occupy a deep habilat in the wild. it is probable that the juveniles are

capable of foraging in light-limited conditions. Ikcau.se of the poor health in the fish

history. these growth rates should be:: interpreted with caution.

2.5 S••••ry ••d Coachuiou

Preliminary results on witch floW\der cultun: are very positive. II is

possible 10 raise larvae to mewnorphosis with relatively high survival. Futun: work

should be:: directed towards juvenile growth as well as larval and juvenile health. The

witch flounder juveniles in !his study had fairly slow growth rates and some suffered from

bacterial disease. larvae in both years suffered h.igh mortality due to an infection that was

not possible to diagnose. Examinations of the effects of different diets and temperatures

on juvenile growth would be:: particularly useful. Continued research on witch floW\der

culture is desirable as these positive results suggest potential for the development of

commercial witch flounder aquaculture.

"
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CHAPTER 3

THE SERAVlOUR, GROWTH, AND SURVIVAL or WITCH
A.OUNDER LAKVA£ IN RELAnON TO PREY AVAILABILITY

Starvation is one of the major causes of larval fish. mortality al sea (Hjort. 1914;

Hunter, 1981) and it is generally accepted thai larval survival has a significant effect on

fisheries recruitment (Cushing, 1975; Hunter, 1981; lasker, 1981). The foraging

behaviour oflarvae and the availability of prey are therefore important (aclen

detennining larval. success. Data collected at sea suggests that fish larvae mcounter prey

on a scale which is spatially and temporally variable (Arthur, 1977; Owen, 1989). and it is

likely that larvae have evolved behavioural and physiological responses 10 this variation

in prey availability (Brown et 01., 1997). In this paper, the effects of prey density on the

behaviour, growth, and survival ofwilch flounder (Glyptocephalus cynoglossus) larvae

are examined. Behaviowal observalions are a powerful experimental tool because they

can illustrate underlying causes of variation in larval a.rowth and survival.

Prey density has been shown to affect the behaviour, growth, and survival of many

species of marine fish larvae (Houde and Seheber, 1980; Werner and 81axta, 1980;

Puvanendran and Bro....n, 1999). While many species respond 10 variations in pre)'

density, the nature of this response is often species·specific (Houde and Schekter, 1980).

The foragina success of a larva at different prey densities will depend on its morphology

and physiology, including such factors as visual acuily, swimming speed, assimilation

)0



effici~nc:y, and metabolic rate. Given mat the shape: and size of larvae change \loilh

development, their response to prey density may change with time. The perfocmance of

larvae (measured in terms of behaviour, growth, and/or survival) aI different prey

densities can be used to make asswnptions about the fomging environment they

encount~r in the wild, illustrate how they respond to variations in prey availability. and

ultimately det~nnine the susceptibility of the speci~SIO starVation.

Witch flowxier are interesting study organisms because they display a life history

characteristic which is very different from most species offlalfish. Most flatfish larvae

undergo metamorphosis at a relatively small size and early age (see Miller et 01., 1991:

Osse and Van den Boogaatt., 1997). Witch flounder have a protracted larval period that

may last for longer than four months (Bigelow and Schroeder, 1953; Chapter 2. Section

2.4.4). Because this species commits itself to the pdagic environment for longer than

many other species. witch flounder larvae may have developed the ability to cope with

variations in prey availability and may not be as susceptible to starVation compared to

other species.

The results of this experiment "ill be used to discuss the development of

behaviour ofwitcb flounder larvae. Of particular interest is the foraging behaviour of the

larvae. The sequence ofevmts in an individual predation event will be described to

detennine if this confonns to any model of1arvai foraging strategy. and to determine if

this strategy changes with time. The effects of prey density on foraging behaviour and the

importance of prey density throughout ontogeny will be detennined. The growth and

survival results will be used to suppa" these observations. The results will be compared



to those: for yellowtail flowlder to detenninc if differences in feeding behaviour bcN.·een

these species can be: related to any ofthcir life history characteristics. Finally. the

susceptibility of witch flounder larvae to mortality at sea will be discussed.

3.2 M.I~rtals .ad Metlaods

Eggs and milt of adult witch flounder in spawning condition were collected

aboard a commercial fishing vessel in the Gulf of Maine. Tbe eggs from approximately

10 females YiC're fertilized with milt from an equal nwnber of males. Egg stripping and

fertilization was perfonned by Deborah Bidwell. Fertilized eggs were shipped by courier

on ice to the Ocean Sciences Centre, Logy Bay. Newfoundland. Upon arrival the eggs

were stocked into two 250L cylindro-conical upwelling incubalors at 12"""C. Larvae

hatched on the seventh day following fertilization. AI this point 10 larvae were sampled

for morphometric measurements (defined below) and this was identified as day zero

(week 0) of the experiment.

The nwnber oflarvac was estimated by taking sub-samples from the eia

incubators at hatching. Approximately 1900 larvae halched. The experiment was

conducted in two parts in order to obtain the most information possible from the limited

nwnbcroflarvae available. In Pan A of the expcrimenl, larvae were exposed to a f1UIge of

prey densities and their behaviour was recorded during feeding trials. In Part B. a second

group of larvae were reared at a f1UIge ofprcy densilies and their gro\l,th and survival

were monitored. Larvae were divided in the following manner; 400 larvae were used for



Part A, 1170 larvae were used for Part B, and the remaining 330 larvae \o\'m: used in a

separate experiment (described in Chapter 2, Section 2.4.3).

Part A-Bshavjour

Experimental design

Larvae were stocked into a 2S0L cylindro-conical upwelling tank on day zero.

This tank scr...cd as a gencnJ rearing tank for larvae that were used in fceding trials. 'The

light intensity at the surface was 200 lux and continuous lighting (24h) was used.

Preliminary results with witch flounder larvae showed that !.his light intensity and light

regimc resulted in good growth and survival (Chapter 2, Section 2.4.1). Th~ temperature

in this tank ranged from 4·14"C and the mean temperature was approllimately 12"C.

Feeding began on day 1 post-hatch. Rotifers (Brachionus pUcatilis). enriched with

culture seleo ONVE. Belgium) and/or Artemiafi'anciscana nauplii. enriched with DHA

seleo (rNVE. Belgium) or Algamac (Bio.Marinc, USA) were used as prey for the larvae.

Larvae were fed three times daily at 4000 prey per liter(pIL). The prey density in this

rearing tank ranged from 0-4000 pIl. throughout the day. MicroaJgae (lsochrysis and

Nannochloropsis) was added 10 this tank twice daily.

Data ColI«tion

Bchaviowal observations were conducted every 3-4 days from weeks 2·8

beginning on day 8. Prior to feeding, larvae were arbitrarily selected and removed from

the general stock tank. placed in 2L glass bowls containing the appropriate density of

J)



prey. and allowed to acclimate for five minutes. The prey densities used in the feeding

trials were 250. 500. 1000,2000,4000, SOOO, and 16000 pIL. Ten larvae were observed at

each prey density and two larvae were placed together in the same bowl for observation.

larvae were not obsenred to interfere with each other during observation periods.

Behavioural observations on individual larvae laskd for two minutes using the focal

animal technique (Altman., 1974). The daily order ofthc observations ofprey density

trials was varied over the study period. 1be light intensity was 200 lux during the

observations. On observation days, 12 larvae were non-lethally sampled for standard

length and returned to the rearing tank..

Larval behaviOW'S wen: categorized into Modal Action Patterns (MAPs. Barlow.

1968). During observation periods the frequency and duration of the following MAPs

were recorded using an event recorder (Tandy 102): swim. pause, tum, shake. sink,

orient,. fixate. and lunge. For simplicity, these behaviours are grouped as follows:

locomotory behaviours: swim and rum; inactive behaviours: pause. sink. and shake;

foraging behaviours: orient,. fiXate, and lunge. Lunges on prey "'ve scored as success or

miss to produce the variable capture success [-success/(sl.lccess+miss» when it was

possible for the observer to detennine the outcome ofa lunge (Table 3.1).

Data Analysis

The frequency and duration of the behaviows~ swnmarized using the

Observer software package (Noldus Information Technology, Wageningen, Netherlands,

..



Table 3.1. Definition of Modal Action Pancms (MAPs) OMen'cd in developing witch
flounda larvae. after Barlow (1961).

MAP Dcfmition

locomotOry MAPs

Swim: Forward move~nt of the larva through water column resulting from
undulations ofthc caudal region.

Tum: A rapid lateral tum initiated by the head, usually results in mlating the
bodyappmximately 180".

lnactiveMAPs

Pause: l.arva is motionless (similar to "non·swimming" of Munk, 1995).

Sink: l.arva is motionless and descends through water column. often head first.

Shake: Rapid lateral undulations ofthc entire larvaJ body.

Foraging MAPs

Orient: The head movement towards a prey ilem (similar 10 "orienlalion" of
Brown and Colgan, 1985).

Fixate: The larva is stationary and bends its caudal region into an "S" shape
position, typically follows orient (LaUlCI, 1998).

lunge: The larva moves towards prey from the fixate position in an attempt [0
capture prey (similar to "bite" of Laurel. 1998).

Success: lunge that results in prey capture.

Miss: Lunge in which prey capture was unsuccessful.

"



version 2.0). All statistical analyses were performed using Minilab 9.2. (Minilab lrx:..

State College. PAl. 1be effects ofprey density and latvaJ size on bebavioural data were

analyzed using analysis of covariance (ANCOVA). w;th size as the co\'ariant (a'"'O.OS).

For each behaviowal response variable. the mean value for each of the 10 individual

larvae per prey density was calculated for each observation day and this value was used in

the analysis. Means for each treaunent were weighted by the: inverse of the standard

deviation (S.D.) around that mean in the ANCOVA (P. Pepin. personal communication).

In cases where the S.D. for a treatment was zero, the mean S.D. for that MAP (for all prey

density-size combinations) was used to weight the mean for that tre3bTlent.. in order to

include in the: analysis those larvae which did not perform during observation periods.

For most MAPs, a linear model was adequate to describe the data. However. a

second order polynomial was fitted to the swim and pause duration data. Those MAPs

that dropped OUI of the behavioural repertoire or Ceased 10 vary between treabTlents

(swim. lum. pause, sink, shake) posed a problem for the slalistical analysis. For the tum.

pause. sink and shake duration analyses. onJy data for the size range prior to the ncar

decrease: or disappearance of that MAP 'A"aS used. in order 10 satisfy the: assumptions of

the ANCOVA. For the swim duration analysis, onJydata for the size range prior 10 the

larvae spending most ofwit time swimming was used. The behaviowaJ response

variables were also logarithmically transfonned to satisfy ANCOVA assumptions. Plots

of residuals and predicted values were examined for heteroscedasticity and nonnaiity for

each model and model assumptions were satisfied.

36



1bc: orient f'requeocy dala could not be easily fitted to a linear Of polynomial

equation and \o\'lIS analyzed diffe~ndy. A one-way analysis of variance (ANOVA) was

used to detennine the effects of prey density on orient frequency within the size range

where orient frequency was variable between trealments (10.5·20.8 mm). A Tukey test

was then used to detennine which treatment means differed. This analysis ignores the

effects of size 00 orient frequency.

Part B-Gro\o\tb and Suryiyal

Experimental Design

Six 33L rectangular glass tanks were used for the experiment. The sides of the

tanks were paint~ black and all tanks "''CJ'e kept in a water bath to minimize temperature

nuctuations. 1be tanks were supplied with filtered (25J.UTl) seawater. Each tank was fined

with two air stones that provided light aeration 10 promote a homogeneous distribution of

prey. The light level at the water surface was 200 lux and continuous lighting (24h) was

used. The temperature ranged from 10·1 SoC and the mean temperature was

approximately 12.5°(.

On day zero, newly hatched larvae we~ transfcrred to the experimental tanks.

Larvae \o\'Cfe stocked at 195 (.-611.) per tank.. T1uee replicated treatments \o\"ttC chosen:

2000.4000, and 8000 pI1. (the 4000 pi!; treatment is the 200-lux NH treatment discussed

in Chapter 2, Section 2.4.3). 1be use ofa greater nwnber oftreatments and replicates was

desired; however, this design was chosen due to space limitations. Previous results in our

laboratory for other Nonh AtJanti<: fish larvae indicated that this range of prey densities

)7



and replication level was sufficient to observe the effects of~ density on gro",,1h and

survival (laUJ'CI, 1998; Pu..-ancnd.nln and Brown. 1999; Puvanendran. unpublished data).

Rotifers (Brochionus pliCOfili.s) andIOf Arte,"iafraTlci.sco"a nauplii were used as

prey for the larvae:. The live prey was enriched with commercial products as indicated in

Pan A. Prey densities in the tanks were adjusted three times a day (approximately lOAM.

4PM and IOPM). MicroaJgac (/.soc1lry:su and NonnochlO'op.sis) was added to the

experimental tanks prior to each feeding. Prey densities wen: dctmnined by sampling a S

ml aliquot from different depths within the tanks (below surface, mid-depth and above

bottom) before each feeding. The total number of prey items in each sample was counted

and the prey density was adjusted as required.

At week S, the larvae were transferred to larger 6Sl orange tubs as the larvae had

grown in size. 1be rearing experiment ""'as stopped at week 12 when the larvae were too

large 10 continue feeding Anemia and weaning to an anificial diet was initiated. At this

point mosllarvae had begun eye migration and alilarvac: were pelagic:, spending little

time on the bottom of the tanks.

Data Collection

Larvae wen: sampled weekly for gro\oVth. Standard length (SL measured from tip

ofsnoullO posterior end of notochord) was measwed every week. For weeks (}oJ, larvae

were measured 10 Ihc nearest 0.1 mm using a dissecting microscope. Standard length was

measured to the nearest I mm using a ruler after week 3. On weeks O. I, S, 8, and 12

larvae were lethally sampled (lcilled by an overdose of MS.222) for Sl, body height (BH.
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myotome height posterior to anus), head depth (HD, measured posterior to eye), eye

diameter (ED, measured perpendicular to body axis), and dry weight (OW). For all other

weeks, live larvae were measured for standard length only. Lethally sampled larvae wne

kept in beakers on ice and measured immediately after death to prevent shrinkage due to

osmotic loss. Larvae """ere rinsed in 3% anunoniwn fonnate (to remove salts), placed on

pre-weighed aluminum foils (weighed to nearest O.()OI mg), dried at SS"C fOt' at least 48

hours, and re-weighed. When larvae were lethally sampled, five larvae were measured

from each tank. When larvae were non.lethally sampled for Sl only, ten larvae were

measured per tank (except for weeks 2-3 where n-S per tank).

The absolute growth rale was calculated according to the equation:

(l,.loY'

and the length-specific arowth rate (L·SGR) was calculated according to the equation:

SGR=(In(l,)-ln(loYt)xIOO,

where L, is the mean fmallength (nun), L(J is the mean initial length, and f is the period of

growth (days) (Busacker ~f al., 1990).

All tanks were examined for mortalities twice daily from day 14. The small larval

carcass decomposes too quickly to be observed prior to this tUne. At the end of the

experiment, the nwnber of surviving larvae in ~ach tteatment was recorded.

DalaAnalysis

For each growth measurement (Sl, BH, HD, ED, OW). a mean value was

calculated for each replicate and this value was used in the analysis. These growth

"



measuremenlS wc:rc: analyzed by lrCaUDent using ANCOVA with week oftbc: expc:rimc:nt

as the eovariant (a-Q.05). Dry weighl data was logarithmically transformed to satisfy Ibc:

assumptions of ANCOVA. An ANOVA was used to test for differences in survival at

weeks 2. 5. and 12.

J.3Res.lb

Pan A.Ekhaviour

Ontogeny of Behaviour

The behaviour of the larvae changed throuihout the study period. Inilially larvae

divided their time betw~n periods of inactivity (60-800/0 of IOtai time) and locomotory

activities (20.«>-1. oftOtailirne. Figure 3.1). As the larvae grew, they became more

aClive, spending most of their time performing locomotory activilies (>90%), and very

linle time inactive «5""_). For elWnple. a.sequence of MAPs for a small larva (9.4 mm)

at 500 pIL occurred as follows; swim (0.9). pause (3.8), sink (1.4), lum (0.6). p31JSe (6.0).

!Urn (1.0), swim (0.9). pause (0.7), orient (0.5). etc (numbers in parenlheses indicate

duration of activity in seconds). A MAP sequence for a larger larva (24.4 mm) at 2000

pIL was as follows; s~;m (61.2). orient (O.I), fixate (0.6), lunge (0.3). swim (16.2). This

shift from inactivity to locomotion occutTCd bctv.ft1t the sizes of 10.5-162 nun.

Throughout the study period larvae spent berwe:en 2-10% of the lotal time obscn'ed

performing foraging activities (Figure 3.1).

The behaviours used by the larvae also changed throughout the study period. Tum

was used when larvae were small «10 nun) and rapidly dropped out of the behavioural
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Figure 3.1. Mean percentage (%) of time witch notmder larvae spent perfonning the
inaclive, locomotory, and foraging MAPs over standard length (mm) during two minute
observation periods. Values are means (n-70 larvae per length):!:: S.E.



repertoire and disappeared by the time lan'llC reached 10.5 nun (Figure 3.2). Pause, sink.

and shake all decreased when larvae reached 16.2 mm (Figure 3.3). At this point the

shake behaviour did stop altogetheT. while both pause and sink persisted at low

frequency. 1be durations of the locomoIory and inactive MAPs were significantly

affected by size, but not JnY density (Tables 3.2. 3.3). At the end of the study period

(27.6 mm) there ",llS a slight increase in pause and concomitant decrease in swim

duration. This was due to some larvae senling during the observation periods.

Fomging behaviour

The lotal time engaged in foraging was initially low (2%). increased rapidly 10 a

peak of ]()-/. at 13.8 mm, and then decreased slowly back to its initial low frequency. The

variation in total time spent foraging was largely due to variation in orient duration. The

duration oftbe fixate and lunge MAPs (.qe;. of total time per MAP) was relatively

constant over the observation periods while the orienl duration ranged from 1-7"4 of total

time (Figure 3.4).

The frequencies of the foraging behaviours were highly variable and many larvae

did not forage during the observation periods. The frequency of orient changed

throughout the study period. Orient frequency reached a peak between the sizes of 10.5

and 20.8 nun (Figure 3.5). Within !his six range there was a significant effect of prey

density on orient frequency where orient frequency increased ~ith increasing prey density

(Tables 3.4, 3.5). After this size interval, the frequencyoforiem was low for all sizes and

treatments. The frequencies of fixate and lunge varied from 0-4 per two minute
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Figure 3.2. Mean percentage (%) or time witch OoWlder larvae spent perfonning the
locomotory MAPs over standard length (mm) during two minule observation periods.
Values are means (n-70 larvae per length) ± S.E.
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Figure 3.3. Mean percentage (%) ohime witch flounder larvae spent perfonning the
inactive MAPs over standard length (mm) during two minute observation periods. Values
are means (0-70 larvae pet length) ± S.E.



Table 3.2. Swnmary ofANCOVA resullS for locomotory MAPs of witch flounder larvae
at different prey densities. Each model was run until the larval sizc indicated in
parentheses. Sizc2 is the square of larval size; for some MAPs a polynomial tenn was
used in the model.

MAP SoW« <If F P
S......mdwatioo Sac I 19.2 0.000
(20.8mm) Sizc~ I 6.02 0.018

Prey density 6 0.43 0.853
Sizc..Ptey density 6 0.20 0.974
Sizc2.. Prc:y density 6 0.13 0.992
Em>' 42

Turn duration Size I 56.6 0.000
(I3.8mm) Prey density 6 1.09 0.398

Sizc"Prc:ydensity 6 0.82 0.570
Em>< 21



Table 3.3. Summary of ANCOVA results for inactive MAPs of witch flounder larvae at
different prey densities. Each model \\'3$ run untillhc larval size: indicated in parentheses.
Size~ is the square of lanral size; for some MAPs a polynomial term was used in !he
model.

MAP So=< df F P
Pause dumtion Size: 1 26.4 0.000
(20.8mm) Size:2 1 11.3 0.002

Prcydensity 6 0.88 0.516
Size'Prey density 6 1.16 0.347
Size2'Prey density 6 1.14 0.356
Em>< 42

Sink duration Siu I 79.8 0.000
(18.4mm) Prey density 6 0.73 0.631

Size'Prey density 6 1.35 0.257
Em>< 42

Shake dumtion Size: 1 13.0 0.001
(16.2mm) Prey density 6 0.28 0.940

Size'Prey density 6 0.25 0.955
Em>< J5

..
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Figure 3.4. Mean percentage ('II) of time witch flounder larvae spent perfonning the
foraging MAPs over standard length (mm) during two minulc observation periods.
Values are means (n"70 larvae per length) ± S.E.
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Figure 3.5. Orient frequency ofw;teh flounder larvae during two minute observation
periods at different prey densitin over standard length (nun). VaJues are means (n=IO)±
S.E.
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Table 3.4. Sumnwy or ANOVA results ror orient frequency or witch nounder larvae at
different prey densities between the sizes or 10.5·20.8 nun.

MAP Source

Orient rrequency Prey density
Em"

df

•
42

4.71 0.001



Table 3.5. Summary ofTukey's pairwise comparison for ori~t frequency of witch
flounder larvae at different prey densities betv.un the sizes of 10.5·20.8 nun. Significant
differences occw where 0 lies outside the range of listed confidence interVals for each
tcst. 'Significant difference (P<family error rate of 0.0'>.

Prey Density 2>0 '00 1000 2000 4000 8000

'00 ...{).S49
0.156

1000 ..0.487 ".290
0.219 0.415

2000 -0.733' -0.539 -0.599
-0.028 0.168 0.106

4000 ·0.802' ·0.606 -0.668 -0.422
-0.097 0.099 0.037 0.283

8000 ·0.746' -0.550 -0.612 ·0.366 ·0.296
-0.041 0.155 0.093 0.339 00409

16000 -0.790' -0.594 -0.656 ...{).410 -0.340 -0.396
-0.085 0.111 0.049 0.295 0.365 0.309



obseTvatioo throughout the study period_ larvae at higher prey densities lended to

pcrfonn more fotale and lunge MAPs compared 10 larvae al lower prey densities,

especially within !he 13.8-16.2 nun size range (Figures 3.6, 3.7). This uend was not

statistically significant (Table 3.6). The frequencies of fixate and lunge increased slightly

throughoul the study period and there was a significant effect of size on the frequency of

lhese foraging MAPs (figure:s 3.6, 3.7; Table 3.6). The capnue success oftbe Iarvac:

ranged from 0-1 and \o\"llS unaffected by prey density or size (Figure 3.8; Table 3.6).

Pan B-Growth and Survjval

At halching, the mean standard length of the larvae was 5.62 nun (±0.12 nun

S.E.). ANCQVA results show thai the standard length, dry weight. body height. head

depth., and eye diameter orthe larvae were 1101 dependent on prey density (Table 3.7).

larvae in all treilltnents grew similarly (figures 3.9·3.13; see Table 3.8 for growth

equations). The average absolute growth rate from week 0-12 for all treatments was 0.53

mm dol. The average specific growth rate (SGR) from week 0,(; was ].67 % d-I and from

week 0-12 was 2.60 %d· l
.

The survival results were not corr«:terl for lethally sampled fish (20 per tank). The

survival in all treatments was similar. At week S, when larvae were mo\'ed 10 luger

tanks, the mean survival was 28.7% for the 2000 pI1 treatment., 25.1% for 4000 pi!. and

31 % for 8000 pIL. AI the end of the experimenl (week 12), the mean survival was 14.1%

for 2000 pIL, 4.6'''' for 4000 pIL, and 8.9"/0 for 8000 pIL (Table 3.9). Survival was not

dependent on ptty density at week 2, 5, or 12 (Table 3.10).
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Figure 3.6. Fixale frequency of witch flounder larvae during IWO minute observation
periods over standard length (mm) at differenl prey densities. Values are means (n-IO):t
S.E.
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Figure 3.7. Lunge frequency of witch flowxkT larvae during two minute observation
periods over standard length (mm) at different prey densities. VaJues~ means (n-IO) ±
S.E.



Table 3.6. Summary of ANCQVA results fOf the foraging MAPs fixatc. lungc. and
eapnn success of witch flounder Iarvac at diffcrent prer densities.

MAP So=e d' F P
Fixatc frequcncy Sizc 1 6.94 0.010

Prcydcnsity 6 0.67 0.676
Sizc· Prey density 6 0.52 0.794
Em" 84

Lungc frequcncy Size I 15.8 0.000
Preydmsity 6 0.83 0.547
Size· Prey density • 0.62 0.714
Em>< 84

Capture sucrcss Sizc 1 0.38 0.541
PTeydensity • 0.87 0.523
Sizc·Prey dcnsity 6 0.43 0.856
Em" 66
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Figure 3.8. Mean capture success (succ:essl(succcss+miss)] of witch nounder larvae
during two minute observation periods at different prey densities over standard length
(mm). Values are means (n>o()..! 0 as only lunges for which the outcome of the attack was
scored are included) ± S.E.



Table 3.7. Sumnwyof ANCOVA results for growth response variables for "";lch
flounder larvae reared at diff~t prey densities.

Response variable So=e df F p
Standard length Age I 7041.4 0.000
(mm) Prey density 2 0.85 0.434

Age·Prey density 2 0.75 0.478
Eno, 66

Dryweighl Age 2640.4 0.000
(mg) Prey density 0.06 0.942

Age·Prey density 0.21 0.811
fno, "

Body heighl Age I S82.1 0.000
(mm) Prey density 2 0.03 0.974

Age·Prey density 2 0.28 0.762
Eno, 18

Head depth Age I 2903.1 0.000
(mm) Prey density 2 0.16 0.8S5

Age·Preydenisty 2 0.60 0.560
fno, Ig

Eye diameter Age 2016.7 0.000
(mm) Prey density O.OS 0.949

Age·Prey density 2 0.06 0.941
Eno, 18

"
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Figure 3.9. Mean standard length (nun) of witch flounder larvae reared at different prey
densities over lime (weeks post-hatch). Values are means of the two means for each
replicatc:t S.E.
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Figure 3.10. Relationship between standard length (mm) and dry weight (mg) or witch
nounder larvae reared at different prey densities. Symbols are iooividuallarvae.
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Figure 3.11. Relationship between standard length (mm) and body height (nun) of witch
flOWldcr larvae reared at different prey densities. Symbols an: individuaJ larvae.
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Figure 3.12. Relationship between standard length (mm) and head depth (mm) of \.\-'itch
Ooundcr larvae reared at different prey densities. Symbols are indiv'duallarvae.
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Table 3.8. Regression equations (in the form y-a+bx) dcscribina changes in growth
response variables with age for wilcb floundct". ",,'here y=response variable (indicated if
lransfonned)and~.

Response variable b R'
Siandard length 1.86 4.06 98.9

Dry weight -0.14 0.19 99.1
log OW

Body neight 0.07 0.10 96.3
log BH

Headde:pth 0.21 0.47 99.2

Eye diameler O.IS 0.14 99.0
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Table ].9. Survival of witch flounder larvae reared at diffet"ellt prey densities. Lethally
sampled larvae (20 per tank) are nor. included in calculations.

Prey density 2000 4000 8000
Replicate A B A B A B
I#larvae 190 190 190 190 190 190
day 0

#larvae 68 7J 71 47 66 83
week 2

#Ian.-ae 53 5. 59 3. 53 68
week 5

#Iarvae 23 32 10 26
week 12

%survival ]6.15 (1.28) ]0.26 (6.15) ]8.20 (4.]6)
(±S.E.)
week 2

'Y-survival 28.12(1.54) 25.1] (5.13) 31.03 (3.85)
(t S.E.)
week 5

%survival 14.10(2.31) 4.62(0.51) 8.97(4.36)
(tS.E.)
week 12
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Table ].10. SummlU)'of ANOVA results forsurvivaJ ofwiteh flowxkr larvae reared at
different prey densities at weeks 2,5, and 12.

Time period So""" df F P
Week 2 Prey density 2 0.81 0.50]

Em>< 3

WeekS Prey density 0.61 0.600
Em><

Week 12 Prey density 2.15 0.210
Em>'



3.4 DiscussicHI

Witch flounder grew and survived in all l!'CalmenlS used in this study. This

experiment is the firsl examining the behaviour of wilch flounder larvae. Because larval

behaviour can be infl~edby many faclors other than prey density, including

lempenlUre: (Hunter. 1981). light, (Puvanendran and Brown. 1998). prey type (Drost.

1987). and nuhuleoee (MacKenzie and Kiorboe 1995; Browman. 1996). as ",-ell as other

factors such as tank design. it is important 10 recognize thallhese results arc a preliminary

step towards understanding the behaviournl ecology of wilch flounder larvae.

Ontogeny of witch flounder behaviour

Locomotory and inactive behaviours

Three lypeS of prey search behaviour have been described for larval fishes. Cruise

searchers swim continuously while scanning for prey. At the opposite end of the

spectrum. ambush foragers are stationat)· and wait for prey to enler their search space.

The saltalory strategy is an intermediale search behaviour where larvae scan for prey

within Iheir visuallield, but only during the motionless periods thai puncluale swimming

events. If prey is not located. larvae will swim a short distance and scan again (O'Brien et

of.. 1990; Browman and O'Brien, 1992).

1be shift from time spent inactive to time spent perfonning locomotory activities

suggests that the witch flounder foraging stralegy changed from a saltatory search strategy

\0 a cruise search stralcgy during the study period. When larvae are small «10 mm)

foraging includes many turns and bricf periods of swimming which serve as repositioning



acts. The search strategy of larger larvae is remarbbly different. Swimming is not

interrupted by pauses and turns; larger larvae swim slowly, continuously cruising for

prey. By the time that larvae reach 16.2 nun. most of their time is spent swimming

(>9(W.) and little is spent inactive «S%).

During this apparent shift from a saltatory to cruise stlatqo'. the behaviours used

by the larvae also change. The tum and shake behaviours disappeared from the

behavioural repenoire, while the frequency of the pause and sink behaviours decreased.

The decrease and/or disappearance ofturo at 10.S nun, and sink and shake. around 16.2

nun, were rapid. However, the general shift from pause to swim. the remaining two

dominant behaviours, ""1lS more gradual. The disappearance of MAPs from the

behaviowaJ repenoire during ontogeny has been reponed previously and has been related

to size increases (Brown and Colgan, 1985). In witch flounder. the change in search

strategy and disappearance or decrease of behaviours occurs gradually between the: sizes

of 10.5-16.2 nun and coincides with a dramatic change in larval morphology.

The: most obvious change in witch flounder morphology that can be expected to

contribute to changes in behaviour during this 10.5-16.2 mm size interval, is that larvae

begin to increase in body height as well as length. This height increase is largely a result

of finfold growth. However, myotome height also increases in this size range (Figure

j.12). By the time that larvae arc 20 nun SL, their fonn has changed dramatically. They

are no longer long and thin. but have gro""u in length and heipt. resulting in a ribbon

like fonn.
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This shape change likely necessitates behavioural changes. Increased height along

the entire body axis will it'lCT'e:aSe the resistance KtinK on lbe larvae. requiring more

energy to perform cenain motions. A probable: result of this shape change is that any

lateral rotation. such as a rapid turn motio", becomes difficuh and this could account for

Ihe decline: in the tum behaviour during this time. Later stage larvae that have increased in

body depth swim at a constant slow speed. searching for prey. Once their shape has

changed. stopping and re-starting could become energetically costly. necessitating the

switch 10 a cruise-searching mode coincident with lbe disappearance of the resting

activities pause and sink. When Iarvac are startled they are able 10 swim rapidly in one

dirtttion. but the rapid and successive changing ofdirections is difficult due to !he

increased body height,

Other authors have reported Onlogeruc changes in swimming behaviour which

were relaled 10 morphological developments. The swimming behaviour of anchovy

larvae is a useful model because it has been e1(tensively studied. Swimming in yolk-sac

anchovy larvae consists of continuous bouts of energetic swimming followed by resting

periods. First-f«ding larvae: change 10 an intermittent beat and glide swimming panern

(Hunter. 1972). 1bc: energetics of swimming in anchovy has been modeled by Weihs

(1980) and this change seems to be an adaptive enerv sparing mechanism 10 cope: with

the low Reynolds nwnber encountered by the smaller yolk-sac larvae. Further speculation

concerning the energetics of witch flounder swimming behaviour is not warranted.

However. il seems reasonable that the ontogenic changes in locomotory and inactive
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MAPs of the larvae are related 10 morphologica.l de\'clopmcnt as these changes occur

simultaneously.

The natun: of the shake, sink. and pause behaviours is not straightforward. These

MAPs disappear or decline around the size of 16.2 mIn. Sinking has been reported in

other species. such as the snapper (Pogrus Ollrolus) and.. like the pause MAP, has been

interpreled as a resting behaviour. In snapper, it occurs in yolk-sac larvae and feeding

larvae during nighnime periods of inaclivity (Pankhurst et 01., 1991). Sinking is typically

observed only in the early stages ofother species such as the black sea bream.

Acamhopagrus schlegeli (Fukuhara. 1987). However, Kawamura and Ishida (1985) note

thai sinking occurs in both yolk-sac: larvae and larger feeding larvae of the Japanese

flounder. Paralichthys oIivaceus, wllich have jusl anacked a prey ilem. Observalions of

sinking in laler stage witch flounder larvae were not related 10 feeding events. The sink.

shake, and pause behaviours are typical ofearly stage yellowtail flounder larvae

(Puvanendran., unpublished data) and the same is probably true of witch floWlder. as they

only occur ailligh frequency during the early stage. Thc persistence of these behaviours in

wilch flounder is likely the result of some smaller, slower growing individuals being

included in the observations. When the behaviowal observations were tenninaled, a few

small. slow growing individuals remained in the stock tank.

Foraging behaviour

Orient was the only forasing MAP stalistically affected by prey density. 1be

increase in orient frequency with prey density is in agreemenl with expected encounter
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rates. The change in orient frequency with size is inlttesting as this MAP \lo'llS only

affected by prey density within a limited size range. Orient frequency was initially low.

increased between the mean size interval of 10.S-20.8 mm SL across ueatmenls in

response 10 prey density, and rtnally decreased to low levels. The initial low frequency of

orient followed by an increase associaled with greater larval size can be explained by

changes in s\l.imming speeds mit eoc:ounter rates (Minelbach. 1981). HowevCT. the

decrease in orient frequency across treatments later in the study period is puzzling as

larger larvae are genena.l.ly competenl swimmers (Roscnthal and Hempel. 1971; Laurence.

1972; Houde and Schekter, 1980) and are expected 10 exhibit a high prey encounter rate.

This decrease in orient frequency may be due to improved foraging ability associated with

greater visual acuity. Miller et al. (1993) showed that the visual angle -the smallest angle

which a Slimulus may sublend the eye and remain resolvable (Neave. 1984) - decreases

during the development of three species offish larvae. Thus. !he eye develops such that

larvae can likely detect pteY items in their periphery without lurning the head and

orienting. In this case. the orient frequency decreases as most orient MAPs would be

recorded only when the larva completes its fomging routine with a fixate and lunge.

A lJend of increased consumption al higher prey densities was detected as the

frequencies of fixate and lunge tended to increase with prey density. However, differences

between treatments were not significanL This effect ofprey availability on foraging

behaviour was first described as a functional response: by Holling (I96S) and has been

reported for many species oflarval fish (Houde and Schekler, 1980; Werner and Blaxter,

1980; Puvanendran and Brown, 1999).



Capture success data is useful to support hypotheses of larval foraging ability.

Many species oflarvae show increases in caplUfC success wi!h age (Chilty and Houde.

\981; Hunter, 1981: Tucker. 1989) and variable caplure success at different prey densities

(Puvanenderan and Brown. 1999). The results of this experiment suggest that witch

flounder capture success is highly variable and is unaffected by size or prey density.

Unfortunalcly. it was difficult fM the observer to determine the outcome of lunges on

prey in the experimental set-up used. This was due to the low light intensity (200 lux).

Furthermore, at higher prey densities. it was especially difficult 10 detennine the outcome

of lunges and more data was callceled for capture success at low prey densities. Finally.

many fish did not lunge during the observation periods. &cause few larvae attacked prey

and il was difficult to determine the oUlcome of me attacks. the sample size forcaplUfC

success data is small. For these reasons, linle emphasis is placed on the caplure success

data. as it may be unrepresentative of!hc: capture ability ofwilch flounder.

Comparative evidence and behavioural ecology

The foraging behaviour of witch flounder is affected by varialions in prey density.

This finding is not surprising, as many studies report effects of prey density on Ihe

behaviour, gro"1h and survi.."3.1 of different species oflarvae (Laurence, 1977; Houde and

Schekler, 1980; Werner and Blaxtcr, 1980; Munk and Ki0rboe, 1985; van der Meeren and

Naess. 1993; Puvanendran and Bro"n. 1999). However. the main finding of this srudy i.s

!hat witch flounder are not affected by changes in prey availability in the same manner as

are olller species of larvae observed under similar laboratory conditions. The typical



pancm among fish larvae· that they increase their prey consumption ratc with increased

prey density (Houde and Schcktcr, 1990). was supported by lhis study as the lunge

frequency of witch flounder larvae was often higher at higher prey densities. However.

while this trend exists. differences in lunge frequency and assumed prey consumption at

diffcrent prey densities were not statistically significant. Thus. !be results for witch

flounder arc unusual in that the cffects of prey density on foraging behaviour were not as

strong as results thai have been reponed for otbcr species. and 51atistically significant

results were only detected OVCT a limited size range.

The results from the growth and survival experiment Icnd suppc.rt to the

conclusion that witch nounder foraging behaviour is not strongly affected by prey density.

Statistically signifJCant differences in growth and survival were DOt found between prey

density treatments. Although the experimcntal treatment and replicate levels WCTC not

exhaustive, this experimental design has resulted in infonnativcdifferenccs in growth and

survival for other cold water marine fish larvae such as Atlantic cod (Gadus moruha:

Puvaneodran and Brown, 1999), redfish (&bastes sp.; Laurel, 1998) and yellowtail

floundcr (PleuTaflectes ferrugineur, Puvanendran, unpublished data) reared under similar

laboratory conditions. While the use of a low number of repliclmS may have prevented

the statistical detection of model1llte differences in perfonnance between treatments, the

rearing experiment 'A"lIS supponcd by the results of the behaviourexpcrimcn1.

Furthermore. an important result oflhis study is that the foragingbcMviour of witch

nounder larvae is very different from that of other species reared in laboratory conditions.
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1be ecological implications of these results can be illustrated by a comparison of

the behaviour of witch flounder and yellowtail flounder at different prey densities. As it is

always difficult to eXO'lIpolate laboratory observations to the field. the ecological

significance ofthcse results is largely restricted 10 a discussion of comparisons belween

laboratory derived results for witch flounder and yellowtail flounder. Both species an:

members of the family Pleuroncctidae, and the larvae CO-OCCUf in the waler column

around Newfoundland (Bonnyman. 1983). Fwthennore. both species have: been reared

under similar conditions in our laboratory. Witch flounder and yellowtail flounder have

similar larval specific growth ralcs(3.67 % d- I
. 3.65 % d- I respectively. from week 0-6:

yellowtail flowx1er data from Puvanendran., unpublished data). HO\\o'eVCT. the size and age

of yellowtail flounder at metamorphosis is more typical of other flatfish species.

Yellowtail flounder undergo metamorphosis around the length of 16 mm which occurs

approximately between weeks 6-8 in the laboratory. Witch flounder have a longer larval

period and metamorphose at a larger size. Unfortunately. data on witch flounder larvae:

from the field is scarce. Bigelow and Schroeder (1953) suggest that the: wilch flounder

larval period may last up to 4-6 months and point out that they grow 10 a larger size than

other flatfish Iluvae found in the GulfofMaine. Evseenko and Nevinsky(1975) report

that witch flounder begin metamorphosis at the size of22.5 nun. as the right and left

sides begin 10 appear differently at this time. Bonnyman (1983) found a late stage larva

measuring 46.S mm in January over the Grand Banks. after a peak of spawning in lale

May. This suggests that some larvae may over-winter in the water column. In the

laboratory, the transition from a pelaaic. largely transparent larva 10 a benthic. scaled and



pigmented juvenile occurs between the sizes of 44-73 mm and the ages of4-7 months

(see Chapter 2, Section 2.4.4). Because of lhe extended development time for this species.

it is not meaningful to pinpoint the exact stage of transition from larva to ajuvenile using

a character such as stage of eye migration. II is clear. however. that this species is very

different from moSi other flatfish in that the larvae are in the water column for a much

longer time and an much larger than other species during lhe pelagic phase (Miller ~l 01.•

1991; Osse and Vanden Boogaan.. 1997).

In similar rearing experiments on yellowtail tlounder in our laboratory it was

found that the larvae have specific requirements for high prey densities. While larvae

reared at 4(100.16000 pfI.. had similar rapid growth rates, only larvae reared at 8000 pfI..

had greater than 2<>-/0 survival at week 6. This difference in survival was related to the

foraging behaviour of the larvae. The number of prey captured by yellowtail flounder.

quantified by gut content analysis., was highest at 8000 pIL compared to all other prey

densities. The consumption rate (measured as lunges per minute) ofyelJowtail flounder

larvae also increa.u:d dramatically with age compared to witch flounder. For first-feeding

yellowtail flounder Larvae the consumption rale was 0-1 min· l
• and increased to 6-12 min

I at week 6. depending on prey density (Puvanendran, unpublished data).

The comparison between witch flounder and yellowtail flounder illustrates two

important points. First, witch flounder are able 10 find prey when it is both more or less

abundanl. demonsttated by the Lack of a strong effect ofprey density on foraging, growth

and survival compared to yellowtail flounder. Second, witch flounder do not have high

prey requirements, illustrated by the gradual increase in average consumption rate from
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0.2 to 0.6 prey items per two minutes over the study period (weeks 2-9), compared 10 the

increase from 0-1 10 6-12 prey ilems per minute fOf' yellowtail Ooundcr (weeks 1-6).

This comparative evidence suggests that witch flounder is both behaviourally and

physiologically adapted 10 variations in pr-ey availability. The foraging behaviour of witch

flounder is largely unatrcekd by changes in prey density compared to )"ellowtail flO\mdcr.

This indicates that witch flounder is not dependent on high prey availability for feeding,

bUI can find prey and thus survive, when prey is more or less abundant. The lack of a

strong effect of prey density on the foraging ability of wilch Oounder is not solely a resull

of the greater size of this species. Redfish are ovoviviparous and larvae are large at

extrusion (6-8.9 mm; Penny and Evans, 1985). Laurel (1998) found that the foraging

behaviour, growth, and survival of redfish larvae in the laboratory is strongly affected by

variations in prey availability.

It is remaricable that wilch flounder can grow as rapidly as yellowtail flounder

given their lower lunge frequency and assumed prey consumption. Two possible

mechanisms that may explain this phenomenon are a high assimilation efficiency and low

metabolic requirements of witch flounder. Witch flounder may be able 10 assimilate more

energy for gJO\o\th and metabolism from prey compared 10 yellowtail flounder. For mosl

of the study period witch flounder larvae were larger than yello....1ailflounder. This size

difference alone implies that its digestive system is larger, more developed, and more

efficienl than that of yellowtail flounder. Increases in digestive efficiency with body size

have been reponed (Govoni el al., 1986; Klumpp and von WeSlemhagen, 1986).

Laurence (1977) notes that the prey requirements relative 10 body weight of winter



flounder are initially mih. Although the larvae are small, their digwve: system is

inefficient and they fUlu1re more pr-ey per unit body weight compand to larger larvae.

The prey requirements decrease relative to body weight as winter flounder grow because

the digestive: system becomes mon: efficient (laurence. 1971). Witdl flounder larvae

probably havc lown prey requirements per unit body weight comPftd to yellowtail

flounder larvae due to their larger body size. Furtbermon:. the length oftbe witch

flounder gut appears proponionally longer compared to that of yellowtail flounder

(personal observation). Therefore, for larvae of the same size, witch flounder have a

longer, presumably more efficient digestive system compared to yellowtail flounder.

These differences in size may contribute to lower prey requirements and higher

assimilation efficiency of witch flounder.

The swimming speed and gencraJ activity level of witch flolll.der is also different

from yellowtail flOWlder. Yellowtail flounder are cruise sean:hers (personal observation)

which swim continuously, searching for prey. When witch flounder overlap in size ....ith

yello.....tail flounder larvae they are saltatory searchers and spend a amiderable amount of

time inactive. Even when their search strategy changes and they constantly cruise for

prey. witch flounder larvae swim slowly through the W3lercolumn. Yellowtail flounder

are much faster swimmers. This higher activity couJd explain the higber pn:y

requirements of yellowtail flounder larvae compared to witch flounder larvae. Higher

activity imparts a greater need for prey, which will cause larvae to be mon: susceptible to

starVation in the absence of prey (Hunter, 1981). The difference in activity levels between

these flatfish species parallels differences between anchovy and maderel larvae observed
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by Hunter (1981). Anchovy larvae swim sloVt'n than mackerel larvae for all

developmental stages and anchovy also consume less oxygen per dry weight compared to

mackerel (Hunter. 1972; Hunter and KimbR:lI. 1980). Hunter (1981) suggests that these

striking ditTerences in cNising speed arc indicative of major differences in life history

strategies because they imply differences in metabolic requirements. Measurements of

swimming speed and oxygen consumption would be useful to funher compare the

metabolic requirements of witch flounder and yellowtail flounder larvae.

The ecological significantt ofthc weak effects of prey density on foraging. and

the: absence of effects 00 growth and survival found in this study can be understood giveD

the length ofthc larval period ofwiteh flounder. Witch flounder have an extended larval

period and arc committed to being io the variable environment ofthc: water column for

much longer than other species. The abundance of zooplankton prey for fish larvae can

vary over four orders of magnitude during the year, typically reaching a peak in the

warmer months and decreasing dramatically in the winter (Myers el at., 1994). Therefore.

witch flounder larvae will necessarily encounter periods ofOOm high and low plankton

abundance during the long larval period and must be able to cope wilh variations in prey

availability to ensure some survival during this time. This is a very different strategy from

other species that have shorter larval periods and likely rely on a match of spawning Vtith

plankton production to promote larval survival. Indeed. the match-mismatch hypolhesis

ofCushing (1972) and the body of work that has followed it can be applied to most

species lhat show strong responses of hllva! growth and survival to prey availability, such

as yellowtailfloundcr.



Witch Ooundg and predation

Swvation and predation are two factors which contribute to lhe high monality

nnes offish larvae in the wild (Hunter. 1981). I have arped that witch flounder Ian.. are

not as susceptible 10 starvation as are other species because they can find prey when it is

both more or less abundant and because they have low prey requirements. It is impol"lalll

10 speculate on the susceptibilityoftbc larvae to predation. as this factor will also

conuibute 10 monality in the wild. Research in fisheries TeCroitment has been directed

toward understanding the effects of factors such as food availability and temperature.

which can affect growth rales and change the length of the larval period in the wild. This

is because a longer larval period will increase the dural ion of susceptibility of the larvae

to size-specific predation, reducing overall survival. ''the slage dumlion hypothesis"

(Houde, 1987). The growth results from the rearing experiment indicate thai the length of

the long larval period of wileh flounder cannot be decreased by increasing prey

availability from 2000-8000 pIL. 1bere muse be some mechanism other than rapid gro"'th

10 metamorphosis by which witch flounder can decrease its susceptibility to predation. as

!he larval period is long even when prey is readily available.

II can be c:xpecled thai predation pressun: on wilch flounder larvae is high because

of me long larval period and large size at mewnorphosis (Bailey and Houde. 1989).

These factors will cause witch flounder 10 be susceptible to larval-specific predalion for

longer than other species and make it a more aruactive prey ilem due 10 its large size

(Litvak and Leggett, 1992). In order 10 promote some survival through the long larval

period, witch flounder may have evolved a predator avoidance strategy. Witch flounder



larvae have a nuorcscent yellow band around the perimeter oflhe fin-fold (personal

observation). This band is only apparent when the larvae are viewed alive apinst a black

backgrow1d, which may explain why it has not )'fl been reponed. When larvae reach the

size of approximately IS mm, the band develops. I suggest lIIat this band is a predator

avoidance strategy that acts by resembling the tentacles ofctenophores. thereby warning

potential predators not to attack. This is similar to the hypothesis of Fraser and Smith

(1974) that a pigmented. free..trailing intestinal loop on rare "exterilium" fish larvae acts

10 discourage potential predators because it resembles a poisonous coelenter.lte. Moser

(1981) speculates that strategies of mimicry may be adaptations characteristic of

prolonged pelagic life. A strategy of mimicry such as this may help protect witch flounder

larvae from the impact of predation on mortality during the long larval period.

Why a long larva! omod?

1have argued that witch flounder has evolved strategies to avoid :..oth starVation

and predation during the extended larval period. 1be question remains as to why witch

flounder have a long larval period, one of the longest among flatfishes (Miller et al.,

1991; Osse and Van den Boogaart, 1997). Because witch flounder is different from other

species. the long larval period is probably a derived trait that has evolved as a response to

some limitation on population gro\ll"th.. A possible answer to this question is that witch

flounder need to be large at settlement, and require the long larval period to grow to II

large size. A larger size might confer competitive ability on the newly settled recruits.

Witch flounder are characterized as slow-growing (Burnell el oJ., 1992) and slow growth
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rates suggest high competition for resources according 10 life history theory (Bell. 1997).

Thus, the: larger size aI 5C1lIemeni may be imperative for !he newly senled juveniles to

compete wi!h the: iaTger, benthic members of !he population.

Limitations ofexoerjmental prolocol

In !he interpretation of data.. it is assumed that !he behavioural response of witch

flounder larvae observed during !he two-minute observation periods is an accwale

representalion oflbe response oflhe larvae 10 the: experimental prey density. The resuhs

indicate thai witch flounder larvae respond to varialions in prey demity. bUI this response

is not as dramalic as seen in other species. This could mean I) that the lWO-minule

observalion period was not sufficient 10 observe a response or 2) !hat witch flounder

larvae do nOI respond as suongly to changes in prey density as do other species. Many

methods have been used 10 estimate the behavioural response of larvae 10 different prey

densilies including the focal animaltcchnique (Puvanendrnn and Brown, 1999), counls of

prey remaining after feeding (Houde and Schelcter, 1980), gut content analysis, and

bioenergelic models (Laurence, 1977). Unfortunately, none oflhese methods are perfect.

A comprehensive research elTon would involve all methods. Collecting many types of

data to answer the same question w;1I provide a clearer understanding of the larva's

behavioural and physiological response 10 variations in prey density. For example,

because many species oflarvae increase their prey consumption w;th increasing prey

density (Houde and Schelcter, 1980), researchers may conclude that higher prey densities

are required by the larvae. However, this extra prey may nol be assimilaled. This is



exemplified by herring larvae (C/upea harengw) passing live: Arlemia through the anal

pore when fed at high prey densities (Werner and Blaxttr. 1980). For this reason. growth

rates at different pr-ey densities are nc:cc:ssary to fully interprd behavioural results. Gut

content analysis was nol an option in this study because of the limited number of animals.

A one-minute observation period has been used previously to examine the effects of prey

density on foraging bebaviour (eg. Laurel. 1998; Puvanendran and Brown, 1999).

Preliminary observations on witch flounder larvae indicated that they fed less frequently

than other species. For this reason. a two-minute observation period was used. The

behavioural results are supported by the results of the rearing experiment where ....;((:h

flOWlder grew and SW'Vived equally .....ell at the range of prey densities tested. Estimating

tile response of fish larvae to variations in prey availability is not a straightforward

process and requires more refined methodology. For these reasons, these interprelations

offer reasonable, but preliminary, insight on the effects of prey availability on witch

flounder larvae. Future research should be directed at determining the behavioural and

growth response of larvae to prey densities Iowa than 250 p1L. Clearly, witch flounder

are different from other species as they did not respond strongly to the w;de range of prey

densities used in this experiment. It is possible that a ~critical~ prey density for this

species may be found at lower prey densities.

~

The behavioural ecology of w;tch flounder larvae is very different from the larvae

of other species. The results presented here illustrate that w;tch flounder foraging

so



be'haviour was latKdY unaffected by variations in prey availability and comparisons with

yello\\uil flcnmder indicate that it has low prey requirements. Because of the long larval

period, witch flounder is likely not dependent on a Wmatch" of spawning with plankton

production. Instead, it will necessarily encounter periods of both high and low plankton

abundance. Two physiological mechanisms have been proposed which this species may

use to grow and survive in a variable pr-ey environment: high assimilation efficiency and

low activity. Comparative evidence suggests that witch flounder is both behaviourally and

physiologically adapted to a fluctuating prey environment and is therefore less susceptible

to starvation as are other species. The results of this study on witch nounder indicate that

this species has evolved behavioural, physiological and morphologicaJ mechanisms to

promote survivaJ throughout its extended larval period.



CHAPTER 4

THE EFFECT'S OF FEEDING FREQUENCY ON THE BEHAVIOUR.. GROWTH,
AND SURVIVAL OF VELWwrAIL FLOUNDER LAKVAE

Marine fish larvae are often fed at high prey densities during larvicultute. Higher

prey densities serve to increase the encounter rate between predator and PRY and an

increase in consumption rate with prey density has been observed for many species

(Houde and Schekter, 1980i Munk and Kierboe. 1985; KJumpp and von Westemhagen.

1986). Given the rapid i"Owth of larvae, it is assumed that they must maintain optimal

feeding rates in order to grow and survive. Therefore, a great deal of anention is invested

in the monitoring and maintenance of prey densities. Greater feeding rates typically result

in rapid growth and development, as well as greater condition of the larvae. and

ultimately high survival.

While it is recopized that larvae: require high prey densities to feed etfKientiy.

the required frequency of exposure to high prey availability has received little research

inlerc:st (but see Houde and Schelcter, 1978). However, this is a relevant issue as

laboratory and field evidence suggests that Iarvac: may not require the constant exposure

to high prey densities often used in larviculture. In this paper. a new strategy for feeding

larval fish is tested. Yellowtail nounder (PJeuTOnecles!errugineus) larvae were offered

live prey at high density constantly and at ditTerent feeding frequencies (I. 2. and 4 per

day). It is possible 10 test this strategy with yellowtail flounder as previous research has

detennined the prey density that maximizes the ingestion rate of this species. A goal of

"



this experiment ....1lS to determine if larvae require the constant high levels of prey often

used in rearing tanks. OC" if"puJscs" of high prey availability are sufficient to sustain rapid

growth.

This feeding sttategy has an ecological basis. Data from field observations

suggests that fish I......ae encounter prey on a scale which is spatially and temporally

variable (Arthur. 1977; Owen, 1989). It is reasonable to assume that larvae are both

behaviourally and physiologically adapted to these conditions of varying prey availability

(Brown el 01., 1997). For example. northern anchovy (£ngraulis mordax) and hening

(Clupea hare"gus) I......ae decreased their search area al high prey density. in an apparent

attempt to stay within a patch of prey (Hunter and Thomas. 1974; Gallego. 1994). Houde

and Schekter (1978) were interested in the idea that patches of high prey density in the

sea contribute to recruitment and compared the survival of larvae fed in simulated high

density patches to the survival of larvae fed continuously at high prey density. They found

that only three hours of exposure to high prey density is required by sea bream

(Archosargus rhomboida/is) larvae in order to obtain the same high survival observed

when reared under constant high prey density.

Continuous feeding may be harmful as .....ell as unnecessary. 11Jc:re is evidence that

prolonged feeding periods and high rations decrease digestive efficiency as lhey increase

evacuation rate (BoehIen and Yok..lavich. 1984). Johnston and Mathias (I 994) showed

that apparent digestibility increased with gut retention time in larval walleye (Slizosledion

vitreum). As gut evacuation time is shoner in continuously feeding fish (Canino and

Bailey. 1995) it is predicted that larvae in the constant prey treatment will have reduced
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absorption efficiency compared to pulse-fed larvae. This evidence suggests that some:

species of marine fish llUVlIe are adapl:ed to the patchy distribution of prey in the wild and

they consume prq- when it is available in rearing tanks, baving lost any satiation

response. Funhennore. feeding and digestion require energy. For example, an increase in

oxygen consumption was observed in sea bream juveniles offerm higher rations (Guinea

and Fernandez, 1991). Because the consumplioo of excess food decreases absorption

efficiency and increases the energy required for digestion, and because live food is

expensive. continuous feeding may not be an optimal strategy for larval rearing.

The effect of feeding frequency on the growth of fishes has been examined on a

number of different marine and freshwater species with the goal of improving the

efficiency of rearing lechniques (Grove et al., 1978; Tsevis el al., 1992; Kayano elol..

199]; Goldan el al.. 1997). This won: has 13liCly focused on juvenile fishes. It is possible

to obtain precise estimates of food eaten and weight gained due to the dry, artificial diet

and large size ofjuveniles compared to larvae. For this reason, a body of won: on juvenile

rations and food conversion exists. This is not possible to the same extent with llUVae. in

pan because of the complexities of IlUVai fceding energetics. For example. the ration. or

prey required by the IlUVae., varies with the density of prey available, as it requires ITIOf"C

energy to pursue and captW'C prey at low prey densities (La~nce, 1977; Houde and

$chekter, 1978). As it was nol possible 10 weigh the prey offered to the liUVaC,

bchaviowal observations on feeding larvae ""'ere used to detennine ifllUV3C fed at

different frequencies consumed different amounts of prey.
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It has b«n suggested that the undifferentiated digestive system orlarval fish is

adapted to exploit high-densif)' patches of prey (Govoni el 01.• 1986; Klumpp and von

Westemhagen, 1986). Although absorption efficiency decreases at high feeding rates.

Bohlen and Yoklavich (1984) have calculated. using the ingestion rates of Werner and

Bla.xter (1980). that the increase in prey consumed at hiah prey density more than

compensates for the overall decrease in assimilation efficiency in larval herring. Larvae:

may therefore maximize growth rate rather than growth efficiency. Ho\\,ocver. in

aquaculture, as in many industries. it may be desirable to favor efficiency rather than

absolute growth (Klumpp and von Westemhagen. 1986). Live food for fish larvae is

costly. and maintaining high prey densities may be wasteful. Therefore. a goal of this

experiment is to determine if it is possible to reduce the amount of prey offered to the

larvae. without significantlf decreasing growth and survival. Pulse feeding may be a more

efficient SlI'ategy 10 dcliverthe required amount of live food to the larvae. The objeclives

oflhis study were to detennine 1) if feeding frequency affecl5 growth and survival of

yellowtail noW\der larvae and 2) if the observations on gro\\,th can be explained by

differences in larval behaviour.

4.2 M.Cerials ••d Mtebods

Experimental Design

Eggs and mill were collected from captive broodstock maintained at the Ocean

Sciences CenlJe, Logy Bay, Newfoundland. Fenilized eggs were incubated in a 2S0L

cylindro-conical upwelling tank. The eggs hatched over a 24-hour period. Larvae: were



sampled for initiaJ morphometric measurements (described below) once most (>90%) of

the eggs had hatched and this day was considered day zero oflhc experiment.

Larvae were reared in rectangular 33L glasslanks. The sides of the tanks were

painted black. All tanks were kept in a water bath and were supplied with filtered (25~)

~awater. Two air stones were used per tank to provide gentle aaation and promote a

homogeneous diSlribution ofprq. The light inteD5ily at the water surface was

approximately 7SO lux in the center ofeach tank and continuous lighting (24h) was used.

The temperat~ranged from 11.5°-14.5"C throughout the experiment and the mean

temperature was approximately 12.5"C. The experiment lasted 7 weeks as this is the

approximate midpoint of the tranSformation from the larval to juvenile stage in yellowtail

Oounder under these rearing conditions.

Larvae~ stocked into experimcntallanks on day one post-hatch. The stocking

density used was 60 larvae per liter. Feeding began on day 2 and alllrcatments were fed

at 8000 prey per liter (pIL), adjusted three times daily (aroWld IDAM, 4PM, and IDPM),

from day 2-10 in order to establish feeding in alllanks. On day II, the different feeding

treatments were initiated. Rotifers (BrachionllS plicQtilis), cnriched with culture seleo

(INVE, Belgium) and/or ArtemiafrandscaT/O nauplii, cnriched with DHA sclco (INVE.

Belgium) or Algamac: (Bio.Marine. USA) ....-m: used as prey for the larvae. Larvae were

fed rotifers until the end of week 4. Weaning to Artemia was complcte by thc end of week

5.

The four tteatments used in this study were fceding once (I X, at 10 AM), twice

(2X, every 12 hours: at 10 AM and 10 PM), foW" times (4X, every 6 hours: at 10 AM, 4



PM. 10 PM. and 4 AM), and continuously (by automatic feeder) at 8.000 pIL Two

replicate tanks were used pel" treatment. An automatic feeder consisted of a reservoir for

live prey and a solenoid attached to a timer. Aeration within the reservoir kept the prey

evenly distributed. The prey density of 8000 pi(. was chosen because yellowtail flounder

can capture the most prey ilems per 15 minute period at this prey density compared to

both lower and higher prey densities, quantified by aut content analysis. Funhennore,

although the growth ofyellowtail flounder larvae is similarly rapid at prey densities from

4000-16000 pIl... the survival of this species is highest al 8000 pIl.. (Puvanendran.

unpublished data).

Prey densities w~re detcnnined by sampling a 5 mL aliquot from different depths

within the tanks (below surface, mid-depth and above bonom) prior to the 10 AM. 4 PM.

and 10 PM feedings. The total number of prey items in each sample was counted and the

prey density was adjusted as required. Microaigae (I$ochrysis and Nannochloropsis) was

also added to all tanks at lOAM, 4 PM, and 10 PM. Due to the 24 hour experimental

feeding schedule, prey densities were not couoted prior to the 4 AM feeding. The prey

densities in the conti~uously fed tanks were monitorM at the same time as the lOAM. 4

PM. and 10 PM feedings. However. for a1J other feedings for this lfeatment it was

assumed that prey densities had decreased as expected.

When the feeding treatments were initiated (day II) the flow rates in all tanks

""~re increased such that within two hours after feeding the prey availability had dropped

10 <4,000 pIL and within six hours it had been reduced 10 <1,000 pIL. The automatic

feeder was programmed to deliver prey to the continuously fed tanks every two hours to
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make up foc- prq lost in the: outflow. To ensure lhat the: prey densities decreased as

desired, prey densities were: measured hourly for 6 hours follow;ng the 10 AM feeding,

four times over !he course of the experiment and prey densities for the measured 6 hour

period were avc:ragc:d and cttrapolated over the: 24 hour day (Figure 4.1).

B«:ause the nutritional content of live: prey changes wi!h time in enrichment

medium, an attempt was made to control for differential enrichment. of Live: food. This

was especially imponant because of!he different feeding schedules of the live food

(rotifers enriched 4 times daily, Anemia fed once daily) and larvae:. Rotifers were

collc:cted from live food culture tanks aroWld 10 AM and maintained in microalgae for 6

24 hours prior to feeding, depending on which rtsh tre:aunent was being fed. For moSt

feedings. Arremia was Iaken direcLly from enrichment tanks. However, for Lhe 4 Ai\f

fc:c:ding Artemia was maintained in microalgae for 6 hours. Microalgae was also added to

Arremia in the automatic feeder ~rvoir. The volume of microalgae added was

approximately 20% ohhc: rotife:t" or ArtemiQ volume:.

Data collection

Larvae were sampled .....c:c:kly to measure growth. Five larvae from each tank were

sampled for standard length (mm) and then pooled for a measwc:ment of dry weight (mg)

and ash weight (mg). Larvae were kept on icc and measured immediately after dea!h to

prevent shrinkage: due: 10 osmotic loss. A dissecting microscope ....'35 used to measure

larvae to the nearest 0.1 mm. larvae: were rinsed in 3% ammonium formate (to remove

W[S), placed on preweighed aluminum foils (weighed to nearest 0.001 mg), dried at SSOC

..



Figure 4.1. Prey densities (prey per liter) in experimental treatments (± S.E.) over a
typical 24 period: (a) one feeding per day, (b) two feedings per day, (c) four feedings per
day, (d) continuously fed. Prey densities were measured in all tanks between IO-16h and
extrapolated over the 24h period.
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for at least 48 hours. and reweighed. Larvae were lhen burned in a muffle furnace at

4OO"C for 12 hours and ash weights were measured. On day zero. four sets of S larvae

each were sampled from the incubation tank. On the final sampling day (day 49. week 7).

three sets of S larvae each were sampled from each tank.. except for one of the IX

replicates where only two fish remained. Fish~ also sampled for chemical analysis

(30 per tank) which will not be discussed h-:tt.

Dead larvae were removed tw;ce daily from day 14. The small larval carcass

decomposes too quickly to be observed prior to this time. At the end of the experiment.

the number of survivinllarvae in each treatment was ru:orded.

Behaviowal observations on larvae were conducted once weekly during weeks I

and 2. before different feeding regimn bcgan. and ","ice weekly during weeks 3-7. All

tanks were observed following the first (10 AM) meal of the day. The order of tanks

observed was changed systematically on each observation day. Observations on larvae

began S minutes following the adjustment of prey densities to 8000 pIL. "The focal animal

technique (Altman, 1974) was used to observe ten arbitrarily chosen larvae in each tank.

Each larva was observed for one minute. During each observation. the frequency and

duration of the followina Modal Action Pallems (MAPs; Barlow. 1968) were recorded

using an event rca)rdcr: sw;m. shake. sink, pause. orient. fiute. and lunge (Table 4.1).

The lunge:orient ratio was calculated as this variable can be used as a measure ofhow

likely a larva is to attack a prey item upon encounter". Only 2 larvae remained in one of

the IX replicates during week 7. Observations on these larvae arc not included in the

analysis.



Table 4.1. Definition orthc Modal Action Pauems observed in developing yelloy.'tail
flounder larvae. after Barlow (1968).

MAP Definition

Swim: Forward movement of the larva through water column resulting from
undulations orthe caudal region.

Pause: Larva is motionless (similar to -non-swimming- of MURk. 1995).

Sink: Larva is motionless and descends through the water column. often head
first.

Shake: Rapid lateral undulations of the entire larval body.

Orient: The head movement towards a prey item (similar to "orientation- of
Brown and Colgan. 1985).

Fixate: The larva is stationary and bends its caudal region into an "S" shape
position, typically follows orient (La,"!. 1998).

Lunge: The larva moves towards prey from the fixate position in an attempt to
c:.aplUJ"e prey (similar to "bite- oflawel, 1998).
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DataanaJysis

The frequency and duration of the behaviours were summarized using a

behavioural software package (Observer. Noldus Information Technology. Wageningen.

Netherlands. version 2.0). All statistical analyses were performed using Minitab 9.2.

(Minitab Inc.. State College. PAl. The effects offecding frequency and age on growth

indices and behavioural data were analyzed using analysis of covariance (ANCQVA),

with week as the covariant (a=O.05). For each response variable (growth or behavioural

measurement). the mean value for each replicate tank was calculated and this value was

used in the analysis. When significant results were obtained from the ANCOVA model.

planned one-taikd pairwise comparisons between lleatme1lts were perfonncd to

determine which trealments differed (a=O.IO; in a one-tailed test the a-value can be

doubled). Three planned comparisons were chosen. as three treatment degrees of freedom

were available. In these three comparisons. all llealmenls were compared to the

continuous fed llealmcnt (IX vs. constant. 2X V.I. constant. 4X vs. constant). Regression

equations describing the change in response variable 'oI.ith age were caJculaled for each

treatment when significant results were obtained from the model. For response variables

which were unaffected by trealment OT" the interaction of age and treatment. only one

regression equation is provided which describes the change in that response variable with

age.

In order to fit the assumptions of ANCOVA it was necessary to logarithmically

transform some response variables. Dry weight and ash free dry weight data were

logarithmically uansfonned. MAP frequency data were transformed according to the
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equalion Log (MAP frequency + 1) when zero values occurred. It was not necessary to

rransfonn standard lenKth. swim duration, orient frequency. and lunge:orient ratio data 10

satisfy ANCOVA assumptions. Plots of residuals and predicted values were examined for

heteroscedasticity and normality for each anaJysis. For all tests the assumption of

hcteroscedasticity was met. However. in some instances the residuals differed from a

nonnal distribution. In all cases the error df was greater than 30 andIor the P-\'alue was

highly significant. in which case the non-normality of residuals ....,ouJd not affect the P

value: (D. Schneider. personal communication). Therefore, non-normality of the residuals

was not considered to affcct the interpretation oflbe results.

For most response variables. a linear model was adequate to describe the results.

However. a sec:ondoOfdcr polynomial was used to anaJyze the orient frequency data. The

sink. shake. and pause MAPs are characteristic ofearly stage yello.....uil flounder larvae

and are not expected 10 be affected by feeding frequency (Puvanendran. unpublished

data). Therefore, they were not analyzed statistically.

A one way analysis of variance (ANOVA) was used 10 test for differences in

survival between treatments. The nwnber oflat'V3e alive prior to the final morphometric

sampling (week 7) was used to determine percent survival 1be percent survival was

calculated from day 0-49 and day 14-49. after the different feeding regimes were

established.
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4.3 Res.hs

Growth: The standard length of the larvae was significantly afT«ted by the

interaction of age and feeding frequency (Table 4.2. Figure 4.2a). Pairwisc comparisons

ofSlandard length.at.age bctw~ treatments show that the growth rate of larvae in !be

IX treatment was significantly Iowcr than the growth rate of larvae fed continuously

(Table 4.3). Regression equations illustrate that the gro",'th rate oflarvac: in the IX

lrealment was nearly 25~" slower than that of larvae in other treatments (Table 4.4). No

significant differences were found between growth rates in the 2X and continuous, or 4X

and continuous treatJMnts (Table 4.3).

Dry \lreight of the larvae was not significantly influenced by feeding freqUCflC)'

(Table 4.2). However. by ""'eek 7, larvae in the IX treatment weighed less than larvae in

all other treatments (Figure 4.2b). A similar pattern was secn with ash free dry weight

(Table 4.2, Figure 4.2c).

Survival: Survival results Wffe: not corrected for larvae removed for gro""th

measurements or chemical analysis. A toW of 75 larvae were: removed per tank. prior to

the final sampling day. Survival from day 049 was low in all tanks (O.II~.66%)and was

not dependent on feeding frequency. Survival from day 1449 was high and variable (8.0

55.44 %). and was not dependent on fceding frequency (Tables 4.5, 4.6). One of the IX

replicates suffered unusually low survival to day 14 (1.39-/.) and day 49 (0.11%).

Behaviour: Orient frequency increased early in the study, peaked during weeks 3·

4, and then declined laler in the study for aU treatments (Figure 4.3a). The frequency of

orient in the IX and 2X treatments was always higher than in the 4X and constant



Table 4.2. Summary of ANCOVA results for standard length (nun). dry weight (mi). and
ash free dry weight (mi) response: variables for yc:lIo,""UiI flounder larvae reared at
different fc:c:dingfrcquc:ncies.

Response: variable 50=, d( F p
Standard length Ag, I 1197.8 0.000
(mm) T"""""" 3 0.89 0.456

Age-Treatment 3 3.55 0.021
Em. 4g

Dry .....eight Ai' I 2101.0 0.000
(mg) Treatmen! 3 0.67 0.574

Age-Treatment 3 1.04 0.385
Em" 48

Ash free: dry weight Ai' I 1962.4 0.000
(mg) Trc:atmc:nl 3 0.62 0.607

Age-Treatmc:nt 3 1.84 0.477
Em>< 48



--1X
-- 2X
--4X
-- Constant

Figure 4.2. Mean of: (a) standard length (mm), (b) dry weight (mg), and (e) ash free dry
weight (mg) of yellowtail flounder larvae reared at difTerent feeding frequencies over age
(weeks post·hatch). Symbols are means of the two means for each replicate ± S.E.
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Table 4.3. Summary of ANCOVA results for one-tailed pairwise comparisons between
treatments for standard length and age. AU tteatments are compared 10 the constant prey
treatment. IX=one feeding per day: 2X-tWo feedings per day: 4X-four feedings per day.

COnstanltreatrnent"J'. So""" df F P
IX W",k I 818.0 0.000

Treatment I 0.15 0.701
Week-Treatment I IL2 0.()()3
Em>< 2'

2X W",k I 753.3 0.000
Treatment I 0.38 0.546
Week-Treatment I 0.11 0.739
Em>' 2'

'x W",k I 558.3 0.000
Treatment I 1.18 0289
Week-Treatment I 0.01 0.926
Em>, 2'



Table 4.4. Regression equations (in the form )--.+bx) describing lhe change in response
variables with age. where y=responsc: variable (indicated i(trans(onned) and x=wce:k.
The equation y=a+bx+cx1 is used for orient frequency. An asterix (-) indicates which
treatments differ sianificantly from the constant treatment. IX-one feeding per day,
2X=two feedings pcrday, 4X=four feedings per day. Constantz:continuously fed.

Response variable Treatment b R'
Sl3ndard length IX' 2.57 1.S7 96.'

2X 1.97 1.93 96.'
'X 1.54 2.00 94.4
Constant 2.36 1.98 97.4

Fixate frequency IX' -0.800 0.131 70.1
log (fixale F+I) 2X' -0.035 0.109 85.7

'x 0.009 0.060 47.2
Constant -0.013 0.061 82.3

Lunge: frequency IX' -0.112 0.136 n.6
log (lunge F+ I) 2X' -0.059 0.112 86.0

'X -0.004 0.062 50.0
Constant -0.027 0.063 84.9

Lunge:orient ratio IX' -0.192 0.139 83.5
2X' -0.198 0.128 92.4

'X -0.117 0.096 70.3
Constant -0.077 0.074 75.5

Dry ",,-eight (mg) -1.78 0.437 96.'
10gDWT

Ash free dry weight -1.86 0.443 96.7
(mg)

Orient frequency 0.084 0.310 36.9
log (orient F)
c=.O.0368

Swim duration 46.1 1.82 60.6
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Treatment

Table 4.5. Survival of)'ellowtail flotmder larvae reared at different feeding frequencies.
Survival was back-caJ.culated to da)' 14 and quantified at the end of the experiment.
Lethally sampled larvae (15 per tank) are not included in calculations. IX"'"One fcedin&
per day, 2Xqwo feedings per day. 4Xsfour feedings per day, Constant=eontinuously fed.

#J larvae #I larvae IIlarvae % survival % survival
day 0 da)'14 day 49 day().49 day 1449

IX(a)
IX(b)

1800 129 46 2.56 35.65
1800 25 2 0.11 8.00

2X(a) 1000 244 119 6.61 48.11
2X(b) 1000 262 120 6.67 45.80

4X(a) 1000 142 43 239 30.28
4X(b) 1000 Jl2 110 6.11 35.25

Constant (a) 1000 101 J2 J.n 31.68
Constant (b) 1000 193 107 5.94 55.44



Table 4.6. Summary of ANOVA results for survival ofyellowtail flounder larvae reared
al different feeding frequencies. Survival calculaled from days 0-49 and 14-49.

Time p!riod Sowce df F p
Day 0-49 Treatment 3 2.03 0.252

Em" 4

Day 14-49 Treatment I.SS 0.333
Error

'00
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Week

Figure 4.3. Mean (a) orient frequency (min-I), (b) fixate frequency (min-I), and (e) lunge
frequency (min-I) ofyeJlowtail flounder larvae reared at different feeding frequencies
over age (weeks post-hatch). Symbols are means of the two means for each replicate ±
S.E.
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treatments after week 2. However. orient frequency ....-as not significantly affected by

feeding frequency or aie (Table 4.7). The frequency of the foraging MAPs fixate and

lunge were similar and increased throughout the study period (Fi&ure 4.Jb.c). The

mquencies of fixate and lunge were significantly affected by the interaction of age and

feeding frequency (Table 4.7). Pairwise comparisons show that the IX and 2X treatments

had a significantly greater increase in fixate and lunge frequency with age compared to

the constant treatment. The tn:quencies of rLXate and lunge ...."eI"e not significanlly

different between the 4X and constant treabnents (Tables 4.8, 4.9). Regression equations

show that the increase in fixate and lunge with age was approximately twice as great for

the IX and 2X treatments compared to the 4X and constant treatment (Table 4.4). The

lunge:orient ratio was significantly affected by the interaction ofage and feeding

frequency (Table 4.7, Figure 4.4). Pait\4;se comparisons show that the IX and 2X

treatments had a significantly greater increase in lunge:orient ratio with age compared to

the constant treatment. The lunge:orient ratio of the 4X treatment was not significantly

different from that of the constant treatment (Table 4.10).

Swim duration increased during the study period. There was a significant effect of

age on swim duration (Table 4.7. Figure 4.5). The frequencies of the pause. sink, and

shake MAPs decreased throughout the study period (Figure 4.6) and larvae spent <J% of

their time in these activities after the different feeding frequencies began.
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Table 4.7. Swnmary of ANCOVA results for behaviour response variables for )·dIO\"u.i1
flounder larvae reared at differenl feeding frequencies. Week2 is the square of larva! age
in weeks; for orient frequency a polynomial tenn was used in the modd.

Response variable SoW<' df F P
Orient frequency Woo, I 39.8 0.000

Woo'" I 35.9 0.000
Treatment 3 0.65 0.588
Week-Treatment 3 0.19 0.900
Week2-Treatrnent 3 0.03 0.992
Ene, 43

Fixate frequency Woo, I 113.1 0.000
Treatment 3 0.25 0.860
Week-Treatment 3 4.27 0.010
Ern>< 47

Lunge frequency Week 1 125.7 0.000
Treatment 3 0.40 0.751
Week-Treatment 3 4.76 0.006
Ern>< 47

lunge:orient ratio Woo, I 209.8 0.000
Treatmenl 3 0.79 0.505
Week-Treatment ] 3.84 0.015
Error 47

Swim duration Woo, I 89.9 0.000
Treatment 3 1.99 0.129
Week-Treatment 3 0.48 0.698
Eno, 47
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Table 4.8. Summary of ANCQVA results for one-tailed pairwise comparisons between
treaunents for fixate frequency and age. All treaunents are compared to the constant
lreaunent. lX=one feeding pet' day, 2X-No"O feedings per day, 4X...-f'our feedings pet'day.

Constant treatment v,s. Sowee df F P
IX Woe. I 56.0 0.000

Treatment I 0.36 0.556
Week-Treaunent I 7.51 0.012
Eno' 23

2X Woe. I 124.4 0.000
Treatment I 0.11 0.141
Week-Treatment I 10.1 0.004
Em>< 2'

'X Woe. I 36.3 0.000
Treatment I 0.06 0.806
Week-Treatment I 0.00 0.969
E~, 2'



Table 4.9. Summary of ANCOVA results for one-tailed pairwise comparisons between
treatments for lunge frequency and age. All treatments are compared to the constant
treatment. IX-one feeding per day. 2X=two feedings per day. 4X-four feedings per day.

Constant treatment vs. Sou= df F P
'X W",k I 63.7 0.000

Treatment J 0.62 0.439
Week-Treatment I 8.61 0.007
Eno, 23

2X W",k , 133.8 0.000
Treatment , 0.23 0.638
Week-Treatment J lOA 0.004
Eno, 2'

.x W",k J 41.2 0.000
Treatment I 0.07 0.191
Week-Treatment I 0.00 0.957
Eno, 2'
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Figure 4.4. Mean ratio of lunge to orient of yellowtail flounder larvae reared at different
feeding frequencies over age (weeks post-hatch). Symbols are means of the two means
for each replicate ±S.E.
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Table 4.10. Summary of ANCQVA results for one-lailcd pairwise comparisons bcN.·cen
treatments for lunge:oricnt ratio and age. All treatments are compared to the constant
treatment. IX:ooc feeding pcrday, 2X=tWo feedings per day, 4X-four feedings per day.

Constant treatment v.s. So"", d' F P
IX Week I 95.6 0.000

Treatment I 1.48 0.236
Week-Treatment I 8.86 0.007
Em>< 23

2X Week I 156.8 0.000
Treatment I 2.82 0.106
Week-Treatment I 11.06 0.003
Eno, 2.

'X Week I 61.4 0.000
Treatment I 0.18 0.679
Week-Treatment I 0.98 0.332
Em>< 2.
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Figure 4.5. Mean swim duration (scdminute) of yello~1ai1 flounder larvae reared at
different feeding frequencies during one minute observation periods OVe!" age (~ks
post-hatch). Symbols are means of the two means for each replicate ± S.E.
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sink duration (sec/minute) of yellowtail nounder larvae reared at different feeding
frequencies during one minute observation periods over age (weeks post-hatch). Symbols
are means of the tv.'o means for each replicate ± S.E.
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4.4. DiscullioD

Yellowtail flounder larvae grew and survived in all treatments used in this study.

The results dcmonsuate lhat yellowtail flounder larvae do not require constant. high prey

densities. Larvae grew and survived ",-hen offered prey at high prey density only once per

day. However, a feeding frequency of2X caused an increase in growth rate compared to

IX. Increasing fccd.ini frequency above 2X did IlOI result in a further increase in if'O\Ioth

rate. Therefore, larvae in the 4X and continuous treatments were fed to excess.

The survival in all treatments was low and unaffected by feeding frequency. lbe

low survival can be attributed to poor egg quality and the relatively low light intensity

used in the experiment. 'The eggs used in this study were collected late in lhe spawning

season when temperatures were high and many curled larvae were observed at hatching.

Most mortality occurred before the experimental feeding regimes were established,

suggesting that the high mortality was due to a general failure to initiate f~ing and not

due 10 the different treatments. This is supported by the higher percent survival obscr'ved

when survival is calculated only from weeks 2-7. Furthcnnore. yellowtail flounder larvae

prefer high light intensities (> I SOO lux; Puvancndran. unpublished data). Unfornmately it

was not possible to increase the lighl intensity above 7S0 lux in the experimental system

used. and this likely also contributed to the low survival.

The behavioural data can aid in interpreting the observation that larvae in the 2X.

4X, and constant treatments had similar gro",1h rates and survival despite wide

differences in amount ofprey offered 10 the larvae. The increase in lunge frequency with

age for the 2X treatment is nearly twice as high as that for the constant treatment (Table
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4.4). This increase in instantaneous consumption rate in the 2X ueaunent likely enabled

these larvae 10 oblain an adequate ration ....-hen prey was available and grow and survive

as well as larvae in the 4X and constanl treatments.

Larvae reared in Ihe 1X and 2X treatments did exhibit a higher lunge frequency

and therefore likely consumed more prey during the observation periods compared to

larvae reared in !he 4X and constant treatments. However, larvae reared in the 4X and

constant treatments may have actually consumed mocc prey per day !han larvae in the 1X

and 2X trealments, ifit is assumed that these observed lunge frequencies were maintained

in all treatmenls when prey was present at high density. The lunge frequency of larvae in

the IX and 2X treatments was between 2-4 times higher than that of larvae reared in the

constant treatment (Figure 4.3c). Therefore, it .....ould require between 6-12 hours of

feeding at this rale for larvae in the IX and 2X treatments to consume the same amount of

prey as larvae in !he: constant tre3unenl, assuming a constant ratio of lunges to captures

across treatments. Clearly, prey densities of &000 pIL were not maintained for this extent

of time in the IX and 2X treatmenlS. Of course. larvae will feed when prey densities are

<:8000 pIL. however it is not possible 10 estimate the amount of prey consumed during

these times. It is only presumed that larvae in the 1X and 2X treatments consumed less

prey than larvae in the 4X and constant ueatments over a 24·hour period. large

differences in growth between the 2X. 4X and constant treatments were not detected. and

it is assumed that the extra prey likely consumed by larvae in the 4X and constant

treatments was not assimilaled for growth.



The lunge frequency data is interesting because it differs from an accepted model

of consumption rate for larval fish. Previous descriptions of predation describe the

consumption rate oflarvac at differenl prey densities as a functional response. which was

first described by Holling in 1965 (Houde and Schektet'. 1981). The consumption rale of

many species of larval fish has been shown to increase lowards an asymptote with

increasing prey density (Houde and Schcktet', 1981; Munk and Kierboc. 1985; Klumpp

and von Wcstcmhagcn, 1986; Miller rl al.• 1992). The theoretical interpretation of larval

feeding behaviour assumes that the observed conswnption rate is a physiological and/or

behavioW'3l response to the prey density alone. However. in this experiment. yellowtail

flounder larvae fed at the same prey density. in the same foraging environment of 8000

pIL. did not exhibit the same conswnption rate. Instead. they altered their consumption

rate in response to feeding history or degree of hunger. and therefore prey density is not

the sole detetminant of consumption nue. Clearly, fceding histoty is an imponant

detenninanl of the foraging resp:mse.

In his study on cod larvae. Munk (1995) also observed an apparent behavioural

response 10 hunger that was independent of prey densily. Larval cod decreased their

search effort as they became satiated. In his study, the time spent swimming and

searching for prey decreased as the number of prey items in the jut increased. The results

for yello....'tail flounder diffet' in that significant differences in the time spenl swimming

between treatments were not detected. This may be a result of the different prey search

behaviours of cod and yellowtail flounder. Cod arc saltatory searchers. which search for

prey during the motionless periods that punctuate swimming events. If prey is not located.
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larvae will swim a short distance and search again (Browman and O-Brien. 1992;

Puvanendran et al.. 1999). For a saltatory searchCT. swimming duration can thus be used

as an indicalor of search effort. Yellowtail flounder an:: cruise searchers and spend mosl

of their lime swimming (personal observation). The time that yellowtail noundCT spend

pcrfonning foraging behaviours therefore makes up little oCme Iota! observation period

~lative 10 s",imming duration. Differences in !he total time spent swimming between

treatments are therefore expected 10 be small. and detecting them may be limiled by the

observer's reflexes.

Larvae reared in different feeding frequencies exhibiled different patterns of

foraging. A larva may orient tO~"ards a prey item upon encounlCring it. The larva may

then follow through its foraging routine by fixating and lunging. in an attempt to attack

and consume the prey. The increase in lunge:orien[ ratio with age was greater in the IX

and 2X treatments. This suggests that larvae reared at low fceding frequencies are more

likely to attempt to capture a prey item upon encounter. compared to larvae at rugh

fceding frequencies. This differrocc in behaviour can be attributed to differing degrees of

hunger experienced by larvae in !he treatments.

The lunge:orient ratio may be indicative of prey discrimination or selectivity.

Larvae that encounter and orient 10ward many prey items but only attempt to capcurc a

fraction of them may be exhibiting selection in their choice of prey. The data suggests

that larvae in the 4X and constant tre:atments are more sclccti,,"C than the larvae in the 1X

and 2X treatments, as they have a lower luoic:orient ratio throughout the study period.

This apparent prey selectivity is in accordance with foraging theory which states that prey



discrimination should occur only when resources are abundant (Emlen. 1966; MacArthur

and Pianka. 1966; Werner and Hall. 1974). Both prey size and species selectivity have

previously been reported for other spedes of larvae and it has been sho....n that when pr-cy

density is low larvae arc less selective than when resources are abundant and prey density

is high (Houde and $chekter. 1980; Khadka and Rao. 1986; van dcr Mccrcn. 1991; Munk.

1995). The yellowtail flounder results differ from previous studies as they suggest that

when larvae with different fffding histories arc fed at the same high prey density. larvae

which are fed less frequently arc less selective than larvae which are fed continuously. Of

course. while these resuJts suggesl differences in selectivity between treatments in

accordance with foraging lheory, it is difficult to determine for what the larvae arc

actually selecting. All larvae were fed the same prey type. eilher rotifers Dr AneMia. with

a ""Cry briefperiod (4 days) ofcofccding. It can only be speculated that the larvae at

higher feeding frequencies are sdecting for larger. energetically profitable prey. out of the

general rotifer or Artemia population. That this pattern represents some selectivity is

supported by the fact that larvae reared at high feeding frequencies. which are presumed

to be somewhat satiated. continue to orient towards and therefore demonstrate interest in

prey. If the lungc:oriem ralio is indffd a measure of selectivity. it demonstrates that

larvae can respond to the scarcity of resources. or patchiness of their respective

environments. This is interesting because it suggests that prey density is not the sole

delenninant of prey selectivity.

The lunge:orient ratio results differ from a model of prey selectivity for larval fish.

Griffiths (1975) described vertebrate larvae as "number maximizers~which consume
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different prey typeS in proportion 10 their presence in the environment. Larval guppies

(l£bistes reticulatus) appear 10 iii this model as they consume different types ofprey in

proponion to their abundance even at very high prey density (50,000 pIL; Lair et al.,

1994). According 10 Griffiths' theory, larvae in the same foraging environment should

exhibit the same degree ofselectivity". However. yellowtail flounder in the same

-environment" of 8000 pIL altered their apparent selectivity as a response 10 feeding

history. Larvae reared in the IX and 2X treatments appear to behave as number

maximizers, while larvae fed more frequently exhibil a degree of selectivity as they have

a lower lunge:orient ratio. Griffiths (1975) did not incorporate hunger inlo his model. and

these results suggest that feeding h.iSlOry will affect prey selection.

The pattern oforient frequency observed is interesting and merits comment. Tbe

orient frequency follows a similar pauem with age for all treatments. Initially orient

frequency is low; it then rises 10 a peak at weeks 3-4 and Uten decreases. The initial low

frequency oforienl may be explained by a low encounter rate of the larvae due 10 their

small size and slow swimming speed (Mittelbach, 1981). Similarly, an increase in orient

frequency at week 2 can be explained by an increase in swimming speed and encounter

rale. However. the decrease in orienl frequency following week 4 is puzzling as larger

larvae are competent SwimmeTS (Rosenthal and Hempel, 1971; Laurence, 1972; Houde

and Schekter, 1980) and are expected 10 exhibit a high prey encounter rale.

This decrease in orient frequency may be explained by an improvemenl in visual

ability. Miller et at. (1993) showed Ihal the visual angle - the smallest angle which a

stimulus may subtend the eye and remain resolvable (Neave, 1984) - decreases during the
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development of three species of fish larvae. Thus, the eye develops such that larvae can

dete:cl prey ilcms in their periphery withoulluming the: head and orienting. In the case of

yellowtail flounder, the orient frequency likely decreases because most orient MAPs

would be recorded only when the larva completes its foraging routine with a fixate and

lunge.

The growth results are similar to those of Houde and Schekter (1978) who showed

that there was a minimum time period ofhigh prey availability (3 hours) that resulted in

survival rates of sea brum larvae that approached those observed when larvae \\"ere:

reared at a constant high prey density. However, the yellowtail flounder data differs from

the results of Brown el 01. (1997), who examined the effects of feeding frequency on

growth and consumption rate of lwnpfish (Cycloplerus lumpus) larvae. Their results

demonstrated that lumpfish larvae grow faster when fed in discrete meals compared to

continuously. Their behavioural results were similar to those for yellowtail flounder in

that larvae fed two and three meals per day had a higher instantaneous consumption rate

during observation periods compared to larvae fed constantly. The different results. that

lumpfish growth is inhibited by continuous feeding and yello....tail flounder gro.....'th is not.,

may be explained by differences in digestive physiology between the two species.

Lumpfish spawn in the spring around Ne'wfoundland. and larvae are larger and

more developed at hatching compared to yellowtail flounder. Because of their advanced

state ofdevelopment. the digestive system of larvallumpftsh is likely more similar to thai

of adults compared to yellowtail flounder. The alimentary canal of altricial larvae, such as

yellowtail flounder, is relatively undifferentiated (Govoni el 01., 1986) and a stomach
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cannot be detecled in this species until day 36 (Baglole et af.. 1997). Digestion in

lumpfish probably occurs within the alimental)' canal by extracellular digestion and

membrane transport, as this is the adult mode of digestion (Govoni et al., 1986). In

altricial larvae, digestion occurs involves pinocytosis and intraeelluJar digestion (Govoni

et al.• 1986), which presumably occurs in the undifferentiated digestive system of

)'etlowtail flounder.lfindeed digestion occurs within the alimentary canal oflarval

lumpfish. it is nOI difficult 10 imagine thaI assimilation efficiency would be: decreased by

!he continuous passage ofpre:y through the di&esthre syslem under constant feeding

conditions. Digestion probably does not occur in the alimentary canal of yellowtail

flounder and it may be possible thaI pinocytosis and intracellular digestion can occur as

prey passes through the larval gut. lbese differing results~n species suppan the

idea thaI the undifferentiated digestive system of many species of marine fish larvae is

adapted to exploit patches of prey (Chcckley. 1984; GO\'oni et al.• 1986; Klumpp and von

Westemhagen. 1986).

All treaunents were maintained equally during the first 10 days of feeding. This

\\11S an effon to establish feeding in all tanks. If the different treatments were initiated on

day I. larvae in the IX and 2X treatments may have been at a disadvantage as they had

less opponunity to learn how 10 feed. Day lOis after the period of high monaility

associated with start·feedin& in )"C'llowtail flounder at the relatively high temperatures

used in this study (Puvanendran. unpublished data) and larvae surviving after this lime

....'Cre presumed to be successful foragers. Initiating the treatments on day II was an effon

10 ensure that differences in lunge frequency were due 10 differences in consumption rate.



and not due to diffe~nces in foraging success. To furthcTensure that capture success ""as

similar between treatments. all larvae were fed at a high prey density that enabled them to

capture the greatest amount of prey per unit time. It was not possible for the observer to

determine the outcome ofall foraging events. and capture success was not recorded.

However. because all larvae were allowed to Ieam IIow to feed. and were fed at it high

prey density that promotes high captUfC success. it is probable that that the higher lunge

frequency observed in the IX and 2X tteatments is not due to low capture success. but

due to a higher consumption rate.

The results of this study demonstrate that yellowtail flounder larvae do not require

constant high prey densities during larviculture. Feeding larvae twice a day at high prey

density provided an adequate ration as similar growth and survival was observed between

the 2X and continuously fed treatments. This may be explained by a behavioural response

of increased consumption rate in larvae fed twice a day. or a physiological response of

decreased assimilation efficicnc:y in larvae fed continuously. The results support the idea

thai larvae may be able 10 obtain an adequate ration \lonen prey is distributed in patches in

the sea. Furthermore. the behavioural data suggests that larvae exhibit plasticiry in

~sponding to their foraging environment. The similar growth between larvae in !he 2X

and constant treatments demonstrates that there is potential to reduce the live food and

labor cost in larviculture. It is not necessary to maintain constant high prey densities in

the rearing of yellowtail flounder. provided thatlarvac are offered high prey densiry at

least twice a day. Because different species vary both physiologically and behaviourally.



it may nOI be possible 10 universaJly apply these findings to the larvicuhure ofother

species.
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CHAPTERS

SUMMARY AND FUTURE RESEARCH

'The experiments described in this thesis focused on the behaviour. growth, and

survival of witch nowxler and yellowtail nowxlcr larvae: in relation to prey availability.

The objective of tile experiments was twofold. First, the results can be used 10 design

rearing protocols for the larviculrw-e of these species. Second. the results can be

interpreled in an ecological context. lbey can be used to provide insight into causes of

survival at sea 01" to lest assumptions about foraging theory.

In the first experiment, witch flounder larvae .....ere exposed 10 a wide range of

pr"ey densities and their behaviour was recorded during feeding trials_ larvae were also

reared at an intermediate range of pr"ey densities and their growth and survival were

monilored. The main findings of this study were that the foraging behaviour of wilch

flounder larvae is not as strongly affected by prey density as are other species.

Funhennore, comparative evidence suggests that larvae have low prey requirements. The

lack of a strong effect ofprey density on foraging behaviour suggests thaI fish culturists

do not ha\"e to be as vigilant in monitoring prey densities for wilch flounder larvae as they

do for other species. Finally. this indicates that witch flOWKkr may not be as susceptible

to starvation in the wild compared to other specks. This is in agreement with witch

flounder ecology. Witch flounder has an extended larva! period and must be able to cope

with the wide variations in prey availability they are likely to encounter at sea.
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Witcb f'Iounder behaves very differently from othe!' species in culnue. Because of

its unusual life IUstOt'y and low prey requirements. the construction of an energy budget

for this species would be interesting. Inslanlal!eOus consumption rates toward the end of

the study period rarely exceeded IImin. Measuring the oxygen consumption of witch

flounder would be a simple rust step in this direction. Rearing the larvae at prey densities

<2000 pIL would abo be valuable.

In the second experiment yellowtail flounder were exposed to high prey density at

different feeding frequencies. The main result of this experiment was that larvae grew and

survived similarly whether they were offered prey at high prey density twice a day or

continuously. This shows that larvae are not dependent on constant high prey availability

to maintain rapid growth. This finding is important fOC" aquaculture as it suggests there is

a potential to reduce the cost of live food and labor associated with first-feeding.

Furthermore, it supports the hypothesis that patches of high prey availability contribute to

survival at sea as larvae grew well when prey availability varied temporally.

An improvement in the foraging ability of witch flounder and yellowtail flounder

larvae was suggested by the behavioural observations. For witch flounder this was

manifested as a decrease in orient frequency with age as well as a disappearance of the

minimal effects of prey density on foraging behaviour. once the larvae reached a larger

size. Larvae appeared to reach a size where prey density no longer affected their forqing

ability. For yellowtail flounder, a similar decrease in orient frequency was detected. For

both species, it appeared that later stage larvae did not need to orient towards as many

prey items before encountering one suitable fOf capture. as their prey capture abilities had
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improved. Future work examining the orient, lunge. and capture su«ess behaviour of

larvae in relation to different types of prey. perhaps on a magnified scale. would be useful

to determine if the decrease in orient frequency is indeed evidence of prey capture ability.

Ifit is. this suggests that the larvae are aware oftheir ovm abilities to capture prey and

vary their anacks accordingly.

The results of the yellowtail flounder experimeot suggested that the lalVae "''eTC

foraging in accordance with foraging theory. 1be ratio of lun&e to orient between

U'eatments indicated that larvae fed less frequently were less selective in their prey types.

Because the experiment was not set up to test foraging theory. data was not colle£ted in a

way that would unequivocally support this hypolhesis. Future experiments could be

designed to test this hypothesis, perhaps by using a variety of prey types.

The results of the yellowtail flounder experiment also suggested that the

assimilation efficiency of the larvae was affected by feeding frequency. This is because

larvae fed at higher feeding frequencies likely consumed more prey per day compared to

larvae at lower feeding frequencies. although they did not grow faster. Differences in

assimilation efficiency could be detennined by a1lowin& larvae to feed on Labeled prey

and sampling for label uptake on a time scale ofhours. It is expected that larvae reared

with continuous exposure to high prey density will incorporate labeled prey at a slower

rate than larvae fed less frequently.

The use of behavioural observations was a valuable component to the design of

lhe experiments presented here. Due to space limitations. it was only possible to use a

low number of replicates in each growth and survival experiment. Thus, the
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interpretations WCR susceptible to criticism, as statistical analysis was unable to detect

minute diffCTel'lCCS bctwccn treatments. Ho,,","Cvcr, the bchaviowaJ results upheld and

elaborated on Ihe growth and survival results. lending support to the tank experiments.

The bchaviowaJ results for witch flounder indicated thai prey density has a weak

effcct on foraging and docs nol affect foraging ability once the larvae reach a cenain size.

It would not have been possible to obtain this infonnation without the usc ofbehaviowal

observations, especially given the small number ofanimals available for the study.

BchaviowaJ results on )'ello\\'tail flounder larvae showed that larvae fed less frequently

were able to respond 10 limited prey availability by increasing their consumption rate

when prey was available, This likely enabled them 10 grow as fast as larvae reared at high

feeding frequency. With this behavioural approach. it was possible to apply the results of

both studies to the aquaculture and ecology of witch lloundtt and ycllo1Atailflounder.
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APPEl'II'DIXA

IMPLICATIONS FOR WITCH fLOUNDER AQUACULTURE

The results of experiments conducted on wilch flounder larvae indicate thai this

species perfonns well in a culture situation. Therefore. there is polential for the successful

development ofconuncn::ial witch flounder culture. A goal of the experiment prcsctlted in

Chapter J was 10 determine the optimal rearing prey density for wilch flounder larvae.

The results of Pan A demonstrated that the foraging behaviour. and in particular the lunge

frequency (an indicator of consumplion rate) of wilCh flounder larvae was largely

independent of prey density. However. larvae did have a higher lunge frequency at prey

densities ~OOO pIL compared to prey densities <2000 pIL for the early pan ohhc sludy

period. In Pan B. 1llr\'aC grew and survived equally well when reared al 2000-8000 p/L

The results from both Pan A and Part 8 suggCSl thai a prey density of 2000 pIL is

ad~uate for rearing wilCh flounder larvae. Funhennore. the growth and survival results

demonstrate that there is no deleterious effect of growth at higher prey densities for this

species as has been seen with red fish (Laurel. 1998). Preliminary results also indicale thai

lighl intensity has linle effect on witch flounder larval growth and survival as larvae

perfonncd similarly under high and low light.

Witch flounder 1llr\'aC seem 10 be fairly robUSllo floclualions in prey availability

and light intensity in culture. Future expcrimcntaJ work should include rearing witch

flounder larvae at prey densities <2000 pIL to determine exactly how linle prey this

species r~uires during the first-feeding stage. It may also be appropriate to direct future



~arch towards ju,·cnile growth and survival. My preliminary results with juvenile witch

flounder suggest that this species ifOws sJowly during this stage and is susceptible to

disease. Improvements injuvenile husbandry with panicular emphasis on tank design and

diet may overcome these difficulties.

The witch flounder project at the Ocean Sciences Centre was hig.h.ly productive as

all aspects oftbe lish production cycle were addrn.sed. Broodstock were collected, and

the growth of two year-elasses of larvae and juveniles were monitort'd. 11Je results

presented in this thesis are very encouraging and indicate that witch flounder is a strong

candidate for aquaculture.

".
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