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Abstract 

The current dissertation provides developments on mechanical behavior and material 

failure modeling utilizing the framework of extended finite element method (XFEM). 

Different types of materials, i.e., brittle and ductile were numerically investigated at 

different length scales. Plain epoxy resin representing the brittle behavior was prepared and 

tested using digital image correlation (DIC) displacement measurement system on an 

Instron© load-frame under different types of loading. Advanced technology methods such 

as optical and scan electron microscopy (SEM) were used to characterize the failure 

mechanisms of the tested specimens. Also, computed tomography (CT) scans were used to 

identify the void content within the epoxy specimens. In addition, fracture surfaces were 

also CT scanned to further investigate epoxy’s failure mechanism closely. On the other 

hand, relevant reported testing results in the literature regarding low and high strength steel 

materials were used to represent the ductile behavior. Different micromechanical methods 

such as unit cell (UC) and representative volume element (RVE) were employed in the 

framework of finite element method (FEM) or XFEM to numerically obtain mechanical 

behaviors and/or investigate material damage from a microscopic point of view. Several 

algorithms were developed to automate micromechanical modeling in Abaqus, and they 

were implemented using Python scripting. Also, different user-defined subroutines 

regarding the material behavior and damage were developed for macroscopic modeling and 

implemented using Fortran. A chief contribution of the current dissertation is the extended 

Ramberg-Osgood (ERO) relationship to account for metal porosity which was enabled by 

utilizing micromechanical modeling along with regression analyses.  
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1 Introduction 

1.1 Background and Research Motivation  

In many engineering applications such as aerospace, marine and automotive industries 

different classes of materials are being used. Among these are organic materials such as 

polymers, inorganic materials such as metallic alloys and a wide variety of fiber reinforced 

polymers (FRPs) which lie under the main category of composite materials. Mechanical 

behavior is the key role of understanding how a material deforms under applied loads.  

Different failure mechanisms are associated with each material type. Generally, material 

failure can be classified mainly into two main categories; brittle failure signified by low 

strain-to-failure capacity and ductile failure where significant inelastic deformation occurs 

ahead of final failure. In fact, material failure would be a combination of both brittle and 

ductile behavior where one behavior is dominating the damage mechanism while the other 

is minorly existing. To justify this claim, consider the fractured surface of a typical ductile 

metallic specimen under uniaxial tension, which is commonly a cup and cone shaped after 

separation. It is well-known that the cup and cone shape results from both shear and normal 

stresses where if the failure mechanism was purely ductile the failure surfaces should have 

been at 45°. Also, for most of brittle materials such as concrete, epoxy and even glass a 

minor plastic deformation would occur ahead of final failure. Usually failure criteria and 

damage models are developed to serve for either ductile or brittle mechanisms. In other 

words, a generic damage model that is applicable for both types is hard to develop. 

Precise modeling and simulation of mechanical behaviors is an asset for early design stages 

enabling an insight into the structure performance. Perhaps the most referenced type of 
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analysis regarding structural behavior is the finite element analysis (FEA). The main 

advantage of utilizing FEA in structural analysis is dealing with sophisticated problems 

involving complex geometries and boundary conditions where a closed form solution may 

not exist. Several commercially available finite element codes (e.g., Abaqus and LS-Dyna) 

are generally used in both industry and academia. Also, inhouse finite element (FE) codes 

can be developed for a specific problem by optimizing the code for it. FE modeling 

accuracy is dependent on several aspects such as boundary conditions, material definition 

and meshing. The proper definition of each aspect requires a grasp understanding of 

physical features regarding the studied problem as well as the proper way of representing 

these features in a numerical model. Usually, a FE user would spend relatively long time 

until reaching a suitable efficient model. Also, required computational runtime may vary 

from minutes to several weeks depending on the problem size and available processing 

resources. In addition, post-processing the numerical results usually requires substantial 

user effort and time. Therefore, it can be concluded that FE model accuracy is mainly tied 

to user-experiences/skills. Enhancing available tools or modeling techniques would act as 

a significant contribution to the pool of knowledge for both engineers as well as researchers. 

Studying fracture mechanics using the conventional FE method possess the need of 

embedding a crack into the FE mesh a priori. Besides, remeshing is required to enable the 

crack front to conform to the mesh boundaries. Embedding a crack in the analysis will bias 

the numerical results. Also, the remeshing requirement is computationally inefficient and 

imposed runtime requirements would be massive. Another approach which is currently 

implemented in finite element codes is the element deletion method where a certain 
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criterion is set to define a material point failure. Once the criterion is encountered the 

stiffness of the associated element is enforced to zero. While this approach alleviates the 

remeshing requirement, it would require relatively large number of elements to meet 

acceptable results accuracy. Moreover, cracks are not introduced to the failed elements nor 

the elements are removed from mesh. In other words, fracture surfaces are not predicted. 

The extended finite element method was originally proposed by (T. Belytschko & Black, 

1999) providing a method for solving crack propagation problem with minimal remeshing. 

The method was later advanced to account for crack propagation without remeshing (Moës, 

Dolbow, & Belytschko, 1999). The method relies on special nodal enrichment applying the 

partition of unity (PU) theorem (Melenk & Babuška, 1996) to the conventional FE method. 

These nodal enrichments enable accounting for cracks within an enriched element without 

the need for remeshing. Notably the method can be applied for different class of problem 

other than structural problems. In other words, the method can be applied to any differential 

equation representing a physical problem that can be numerically solved using the FE 

discretization (Ted Belytschko, Gracie, & Ventura, 2009b). The method has been utilized 

to study different class of problems with the focus on fracture mechanics problems. The 

method is available in commercial FE codes such as Abaqus since 2009. In a relatively 

recent study by Duarte et al. (Duarte, Díaz Sáez, & Silvestre, 2017) comparing the 

numerical implementation of Hashin’s criterion to that of XFEM in Abaqus applied to 

predict of FRPs, they showed that XFEM has the advantage of predicting crack onset, 

evolution and final fracture surface. However, the predicted failure loads using built-in 

damage initiation mechanisms in Abaqus (i.e., stress/strain-based) were over estimated. 
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Therefore, they concluded that further investigation into damage initiation mechanisms is 

required. In fact, numerically obtained results using XFEM are dominated by the chosen 

damage model. 

As mentioned earlier, the perfect case scenario of seamless brittle or ductile behavior is 

almost inexistent for many practical applications. Therefore, it is necessary to account for 

both contributions on material’s failure. The current research aimed to enhance the 

accuracy of numerical predictions utilizing the general framework of both conventional 

finite element method (FEM) and XFEM. Also, minimizing computational effort besides 

attempting to alleviate or minimize user-dependency was targeted. In addition, developing 

a damage model within the framework of XFEM accounting for both brittle and ductile 

behaviors contributions in an attempt of proposing a relatively generic damage criterion 

that can be applied to brittle as well as ductile materials. Regarding mechanical testing 

program, plain epoxy resin and some of concrete specimens were prepared and tested at 

Memorial university’s laboratories. Testing results regarding different types of steels were 

obtained from the literature. Different modeling approaches were employed in the 

conducted research. Diverse micromechanical methods such as UC and RVE were 

combined in FEA. Also, an example on multiscale modeling utilizing physical 

representation of microscopic features (i.e., micro-voids) is provided. In addition, a two-

stage FE procedure employing micromechanical RVEs to numerically predict macroscopic 

material properties for macroscale modeling was proposed. A miniature Python scripting 

library was developed for generating different class of micromechanical models in FEA. 
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Also, a couple of macroscopic user-defined material subroutines were developed and 

implemented in Fortran. 

1.2 Research Objectives and Significance 

 A chief objective of the current research was to investigate the mechanical behavior of 

plain epoxy resin being the most commonly used resin material in the majority of FRPs. 

Also, epoxy resins are widely used as a layup adhesive in composite laminates. Moreover, 

two typical failure modes of composite materials are dominated by the resin material, 

namely, matrix cracking and delamination (Jones, 1999; P.K. Mallick, 2007). Most of 

research articles in literature focus on the composite behavior not the individual 

constituents (Dong, 2016; Pawar & Ganguli, 2006; Frans P. Van Der Meer, 2016). Besides, 

few studies were found in literature investigating plain epoxy resin (L. E. Asp, Berglund, 

& Talreja, 1996; Fiedler, Hojo, Ochiai, Schulte, & Ando, 2001; Jordan, Foley, & Siviour, 

2008; Kinloch & Williams, 1980). As a result, the plain epoxy resin is thoroughly 

investigated in the current research with the objective of better understanding its failure 

mechanism. Also, manufacturing imperfections in composite materials such as voids are 

known for their detrimental effect on mechanical behavior (Di Landro et al., 2017; Huang 

& Talreja, 2005; Kim & Kim, 2005; W. V. Liebig, Leopold, & Schulte, 2013; Wilfried V. 

Liebig, Viets, Schulte, & Fiedler, 2015; Nikishkov, Airoldi, & Makeev, 2013; Zhu, Wu, 

Li, Zhang, & Chen, 2011). All the above triggered and motivated the conducted studies 

regarding epoxy resin testing, fractographic analyses and numerical modeling at different 

length scales.  
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On the other hand, edge technologies such as 3D printing are currently being utilized to 

produce final metallic parts in various engineering applications (Frazier, 2014; Gao et al., 

2015; Herzog, Seyda, Wycisk, & Emmelmann, 2016). Among these technologies is the 

selective laser sintering (SLS) technique which is commonly used for steel parts production 

(Aboulkhair, Everitt, Ashcroft, & Tuck, 2014; Zaharin et al., 2018). The manufacturing 

process involves significant thermal cycles owed to the subsequent melting or fusion and 

solidification of the powder metal during the printing successive layers (Puydt et al., 2014; 

Vilaro, Colin, & Bartout, 2011). These cycles results in micro-porosity which has proven 

to deteriorate the material behavior in both linear and plastic regimes (R. A. Hardin & 

Beckermann, 2013). To the author best of knowledge, a complete material model 

accounting for effective behavior of porous metals regarding elastic and plastic behaviors 

is inexistent. Therefore, a second chief objective of the conducted work was focused on the 

complete mechanical behavior (i.e., elastoplastic) of porous metals in the low porosity 

range, i.e. less than 10%. 

 Finally, developing a generic algorithm attempting to automate XFEM modeling 

procedure was targeted to minimize computational efforts and user-dependency while 

maintaining optimal predictions accuracy. 

1.3 Thesis Outline 

This dissertation consists of nine chapters described as follows: 

Chapter 1 demonstrates the background, motivation, objectives, significance, and scope 

of research conducted in the current thesis. 
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Chapter 2 presents a comprehensive study on failure characterization of plain epoxy resin 

under different types of loading using edge technologies in testing (i.e., digital image 

correlation). Fractographic analyses using optical microscopy (OM), computed 

tomography (CT) and scan electron microscopy (SEM) were conducted to enable precise 

investigation of failure mechanisms. Also, numerical modeling is provided. 

Chapter 3 illustrates the developed algorithm for generating micromechanical finite 

element models representing physical microstructural features (i.e., micro-voids) within a 

specimen sized model. The micromechanical voids were generated based on actual 

computed tomography scans of tested Epoxy. 

Chapter 4 proposes a material damage model based on strain energy density for brittle 

materials (e.g. plain epoxy) accounting for elastoplastic behavior of epoxy within the 

framework of extended finite element od (XFEM). The damage model was implemented 

in a user-defined damage subroutine in mainstream finite element software Abaqus. 

Chapter 5 investigates the validity of applying the unit cell (UC) method to enable 

predicting elastic-plastic behavior of porous metals using micromechanical FEA. Also, 

validation against reported testing results from the literature is provided. 

Chapter 6 presents the developed extended Ramberg-Osgood (ERO) relationship 

accounting for metal porosity. In this work, numerical micromechanical models were used 

in conjunction with regression analyses to enable extending the original R-O relationship. 

Notably, the ERO relationship is one of the major contributions of this dissertation. 
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Chapter 7 provides a two-stage finite element procedure for elastoplastic behavior and 

damage of porous metals. A user-defined material damage subroutine was developed and 

implemented to predict final failure of porous metals within the framework of XFEM 

utilizing numerically obtained elastic-plastic behavior from micromechanical 

representative volume elements (RVEs). Also, a porosity dependent relationship to 

evaluate the critical value of strain energy density (SED) of porous metals was provided 

and validated against testing results from the literature. 

Chapter 8 demonstrate the developed algorithm for automating XFEM modeling 

procedure for accurate structural failure predictions. In which, a generic algorithm was 

developed in Python to automate the modeling process including mesh convergence in 

Abaqus with the objective of automatic identification of potential failure region(s). 

validation against full-scale testing results from own and reported testing results is 

provided.  

Chapter 9 presents the summary and recommendations from the completed research 
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2 Fracture Behavior of Heavily Cross-linked Epoxy under Uniaxial 

Tension and Three-point Bending Loads; Testing, Fractography and 

Numerical Modeling 

2.1 Abstract 

In this article, heavily cross-linked epoxy was characterized under different types of loading 

with an insight into its failure behavior. The scope of work involves detailed testing 

procedures utilizing high precision digital image correlation (DIC) system for all strain 

measurements. Yield identification method is proposed utilizing the stress-whitening 

phenomenon. Fractographic analysis using optical and scan electron microscopes were also 

provided. In addition, computed tomography (CT) scan were employed to characterize 

existing manufacturing imperfections such as voids. Numerical modeling using XFEM 

utilizing the actual microstructure is conducted. Also, specimen sized modeling for failure 

predictions is provided. Testing results and fractographic analyses showed that failure 

initiation is caused by micro-cavitation and possibly leading to fracture. The final failure 

was dominated by an unstable fracture behavior under different types of loading. Global 

plastic deformation was observed in the case of uniaxial tension while local plasticity was 

observed in three-point bending specimens. It can be concluded that epoxies failure under 

combined state of stresses is complex and simple stress/strain-based failure criteria are not 

well-suited for failure predictions. 

2.2 Introduction 

Fiber reinforced polymers (FRP) are widely used in many engineering fields such as 

automotive, marine and aerospace industries. FRP are mainly preferred for their enhanced 

physical and mechanical properties such as thermal stability and strength-to-weight ratio. 
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Heavily cross-linked thermoset polymers are usually used as matrix materials for FRP. 

Most of FRP composites are manufactured using epoxy as the resin material (P.K. Mallick, 

2007). Also, epoxies are widely used in lamination process as an adhesive material. Epoxy 

resins have excellent resistance to chemicals and harsh environmental conditions In 

addition, cured epoxies have the advantage of low-shrinkage over other resin materials 

(Uygunoglu, Gunes, & Brostov, 2015). However, cured epoxy resins exhibit low strain-to-

failure capacity owed to brittleness resulting from polymerization process (Zhenqing 

Wang, Liu, Liang, & Zhou, 2013). Brittleness of cured epoxies dominates the overall strain-

to-failure capacity of FRP (Pulungan, Lubineau, Yudhanto, Yaldiz, & Schijve, 2017). 

Moreover, manufacturing defects in FRP laminated composites such as voids, resin rich 

regions and fiber misalignment have a detrimental influence on composite mechanical 

properties (Kalantari, Dong, & Davies, 2017; Y. Li, Stier, Bednarcyk, Simon, & Reese, 

2016; Zhen Wang et al., 2016). While several manufacturing methods are being utilized to 

minimize void content during fabrication procedures such as autoclaving and vacuum 

bagging, however voids cannot be entirely avoided. Manufacturing defects such as 

inclusions/voids have a dominant effect on matrix failure (Hagstrand, Bonjour, & Månson, 

2005; Kalantari et al., 2017; W. V. Liebig et al., 2013; Wilfried V. Liebig et al., 2015). 

The anisotropic behavior of heterogeneous materials such as polymeric composites is 

complex in terms of failure modes (F. P. Van Der Meer, Sluys, Hallett, & Wisnom, 2012). 

Mainly there are four damage modes controlling fracture process of FRP. Two of which 

are dominated by resin materials, namely matrix cracking and ply delamination (Bieniaś, 

Dȩbski, Surowska, & Sadowski, 2012; Lachaud, Espinosa, Michel, Rahme, & Piquet, 



 

35 

 

2015; Pawar & Ganguli, 2006; Pollayi & Yu, 2014). The total void content is considered 

as a property reducing agent and stresses have the tendency to build up in their vicinities 

(Wilfried V. Liebig et al., 2015). In addition, resin materials in FRP are subject to a complex 

state of stresses (Esna Ashari & Mohammadi, 2012; Fard, 2011; Talreja, 2014) which 

highlights the need of developing effective methods for characterization and modeling. As 

a result, several theories have been proposed for failure analysis of composite materials in 

the literature (Camanho, Arteiro, Melro, Catalanotti, & Vogler, 2015; Christensen, 2001; 

Daniel, Daniel, & Fenner, 2018; Hinton.M.J, Kaddour.A.S, & Soden.P.D, 2002; Isaac & 

Ori, 2013; E. M. Wu & Tsai, 1971). Most of failure theories are based on linear elasticity 

treating each composite constituent (i.e. matrix or fiber) with a stress or strain based failure 

limits (Daniel et al., 2018). For example, the Hashin-Rotem failure criterion which is a 

macroscale failure criterion for unidirectional (UD) composites relying on two failure 

modes, matrix cracking and fiber breakage (Hashin & Rotem, 1973). Noteworthy to 

mention that Hashin’s damage criteria represent the foundation for many available stress 

based theories, where individual failure limits for both fiber and matrix are used to define 

the failure envelope (Dávila, Camanho, & Rose, 2005). More advanced failure theories 

such as the Tsai-Hill and the Tsai-Wu (Isaac & Ori, 2013; E. M. Wu & Tsai, 1971) utilize 

a criterion where all stress components are involved in a polynomial form (Daniel, 2015). 

These failure theories prediction have significant differences even when dealing with a UD 

lamina as elaborated by Talreja in (Talreja, 2014) and Daniel in (Daniel, 2015). Asp et al. 

(L. E. Asp et al., 1996) proposed a strain energy based failure criterion for damage initiation 
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in glassy polymers to account for composite-like stresses on epoxy failure. Their criterion 

proved very good agreement with testing results.  

Computed Tomography (CT) scanning is a valuable tool for the use of non-destructive 

engineering (NDE) methods to investigate damage in composites, such as cracks 

(Baumann, Kennedy, & Herbert, 1984; Verges, Schilling, Herrington, Tatiparthi, & 

Karedla, 2005), fracture (Aroush et al., 2005), fibre breakage (Wright, Fu, Sinclair, & 

Spearing, 2008), and voids (Lambert, Chambers, Sinclair, & Spearing, 2012; Nikishkov et 

al., 2013). Baumann et al. were one of the first groups to evaluate the effectiveness of a 

medical CT scanner for the use in NDE of composite materials (Baumann et al., 1984). 

Baumann et al. were able to resolve resolutions on the order of 500µm and recommended 

future researchers to utilize dye or other fluids to visually improve distinguishing features 

of cracks (Baumann et al., 1984). Building upon the foundation set by Baumann et al., 

Schilling et al. were able to characterize microcracking in fiber-reinforced polymer 

laminates and determined the maximum sample size (1.5mm) to obtain a 0.5 to 1µm 

resolution at the crack tip without the use of dye (Verges et al., 2005). It was concluded in 

[2] that the use of dye to contrast the sample allowed for the investigation of larger samples. 

In 2006, Aroush et al. utilized 2µm in-situ CT scanning to study in-situ fracture (Aroush et 

al., 2005). At the same time, Baruchel et al. demonstrated that CT scanners were capable 

of obtaining resolutions on the 0.3µm scale (Baruchel et al., 2006). More recently, Lambert 

et al. demonstrated the first 3D void analysis within composite materials at a resolution of 

8µm, obtaining size, distribution, and shape of approximately 10,000 voids (Lambert et al., 

2012). Lastly, the work of Nikishokov et al. successfully demonstrated measuring voids in 
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epoxy composites using  CT scanning with resolutions of 5.6 to 29.4µm (Nikishkov et al., 

2013).  

To this end, matrix materials have a dominant role in composite materials failure. While 

several failure theories exist, most of them assumed linear isotropy and the homogeneity of 

matrix materials. In addition, manufacturing imperfections such as inclusions/voids have a 

significant effect on resin materials failure. Following simple logic, resin material is 

considered as the weakest link in a FRP which was shown to initiate damage in several 

cases and possibly lead to final failure. This highlighted the need for a thorough 

investigation on plain epoxy failure behavior. The main objective is to identify the failure 

mechanisms of neat epoxy under different types of loading with an insight into fractured 

surfaces. In the current work, plain epoxy resin was prepared and tested under different 

types of loading. Testing measurements were obtained using a high precision digital image 

correlation system (DIC). A fractographic analysis using optical and scan electron 

microscopies (SEM) were conducted. In addition, computed tomography imaging was used 

to quantify manufacturing defects and further investigate fracture surfaces. Building upon 

the work of Lambert et al. (Lambert et al., 2012) and Nikishokov et al. (Nikishkov et al., 

2013), the current study utilizes CT scanning to measure voids within a pure epoxy sample. 

The void size and total porosity within the samples were compared to results obtained 

through Optical Microscopy and Scanning Electron Microscopy (SEM). The utilization of 

CT imaging allowed for through-thickness investigation of void size, distribution, and total 

void volume. Numerical modeling analyses at micro and macro scales utilizing the 

framework of XFEM in Abaqus are provided. 
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2.3 Material and Mechanical Testing 

2.3.1 Material Preparation and Test Setup 

LAMPOXY61 Plain epoxy resin slab was prepared and cured for the current investigation 

by Polynt Composites Canada, Inc. the resin and the hardener were mixed by a weight 

ration 6:1 and allowed to cure in a metallic mold without vacuum application. This type of 

resin is commonly used in fiber reinforced composites layup lamination. Table 2.1 shows 

the resin as well as the hardener physical properties as provided by manufacturer. Mixture 

constituents have a shelf life of 90 days, a pot life of approximately 20 mins and the tack-

free time is 5 hours. 

Table 2.1. LAMPOXY61 physical properties at room temperature, 25οC. 

Lamination Epoxy 

properties 

Resin material 

EPO-LAMPOXY 61 

Hardener material 

EPO-LAMCAT 61 

Viscosity (mPs) 1200-1400 25-50 

Density (g/ml) 1.09-1.12 0.96-0.98 

Weight (%) 85.72 14.28 

To minimize surface flaws from both sides, the plain resin slab was milled down to a 

thickness of 9mm. To avoid biasing testing results, all specimens were prepared from the 

same plain resin slab. Six dog-bone tensile specimens were machined from the slab 

according to ASTM D638-14 recommendations. In addition to, a set of six prismatic 

specimens prepared as per ASTM D790-17 recommendations. Schematic diagrams 

showing specimens dimensions are shown in Figure 2.1a and Figure 2.1b, respectively. 
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Figure 2.1 Specimen geometry: a) uniaxial tensile dog-bone and b) three-point loading prism. 

Both uniaxial tension and three-point loading tests were carried in an Instron E10000 load 

frame utilizing high precision non-contacting strain measurement with a 0.5 microns ± 1.0 

% resolution. The load frame showing the dog-bone specimen setup along with the video 

extensometer are shown in Figure 2.2. Dog-bone specimens were fixed from both ends 

using deeply scored grip surfaces to avoid slippage. Specimens were fixed from their lower 

ends while a displacement load was applied to their upper end at a rate of 1mm/min which 

is the minimum required by the testing standard. As can be seen from the zoomed view of 

dog-bone specimen, two longitudinal and lateral marks were used for local axial and lateral 

strain measurements, respectively. The specimens were cautiously marked within the 

specified standard gauge lengths for both strain measurements, axial and lateral. 
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Figure 2.2 Load frame setup showing videoextensometer and dog-bone specimen marking. 

Figure 2.3 shows three-point bending test setup, the lower rollers were fixed while the 

upper roller was used for load application at a rate of 1mm/min. Standard rollers coated 

with a thin film of lubricant were used to minimize frictional effect on testing results. Mid-

span deflection was measured using a single mark on prismatic specimen correlated to a 

fixed reference mark as shown in Figure 2.3. 
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Figure 2.3 Three-point load test setup showing prismatic specimen marking. 

Heavily cross-linked epoxy systems are known for their low strain to failure capacities. 

Identifying the onset of yielding for such material is quite problematic. A novel approach 

for accurate determination of yield onset is proposed in the current work for this matter. 

Uniaxial testing procedures were synchronically video recorded with strain measurements. 

Monochromic image analysis was used for efficient identification of yielding, details on 

this matter are discussed in the following section. Stress-strain behavior of the material was 

used to report testing results. Also, failure stresses and strains were used to characterize the 

fracture behavior of plain resin material. On the other hand, load-deflection curves were 

used to reporting three-point bending test results. 

2.3.2 Computed Tomography Imaging Procedure 

To establish repeatability of the scans, the scanner was calibrated to ensure no more than 

0.5% error. All samples were scanned following a similar procedure, except where failure 

surfaces were inspected. No filter material was used pre- or post-scanning. The samples 
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were scanned with a Reflection Rotation 225 target head and tungsten target material 

utilizing the Nikon XT H225 ST system. Inspect X software from Nikon was utilized in the 

scanning procedure. A total of 3141 projections were collected with two-frame averaging. 

After scanning was complete, verification of the results was performed to ensure 

consistency. The center of rotation was validated and showed a less than one-pixel error. A 

slightly modified scanning procedure was followed for the samples which required 

observation of the failure surfaces. These samples were scanned in a tilted position to avoid 

beam hardening artifacts which usually appear on the top and bottom surfaces.  

Next, reconstruction of the samples was performed in CT Pro 3D with noise reduction, 

scattering reduction, and beam hardening corrections applied. Analysis of the reconstructed 

samples was performed in Volume Graphics VGStudio MAX 3.0 software. Utilizing 

VGStudio MAX 3.0, surfaces were determined using the advanced surface determination 

tool. The spatial resolution (voxel size) of this method was between 9.3 and 11.12 µm. 

After the samples were reconstructed, the determination of voids was performed using the 

Otsu (Otsu, 1979) global thresholding method within VGStudio MAX 3.0 software. The 

Otsu (Otsu, 1979) global thresholding method has been shown to be applicable and accurate 

to identify and measure voids. The method derives a threshold based on the gray level 

histogram to avoid qualitative analysis of thresholds. Using a single thresholding value, 

this method is capable of segmenting voids from the parent material. Within the software, 

two thresholding values were defined for two separate materials – air and bulk epoxy. 

Throughout the samples, areas of interest were analyzed if the grey value was below the 

threshold for air and was fully enclosed within that of bulk material. These areas of interest 
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were then further investigated as potential voids such that the fully enclosed area must be 

at least 24 voxels in size to be classified as a void. 

2.4 Results and Discussion 

2.4.1 Uniaxial tension test results 

The onset of plastic deformation was efficiently identified using synchronized video record 

along with DIC strain measurements. Monochromic images from synchronized record were 

used to observe stress-whitening caused by plastic deformation. Plain epoxy resin has an 

opaque transparent glass-like color which turns into an observable white color upon 

inelastic deformation. Figure 2.4 shows monochromic images from the synchronized 

record of a dog-bone specimen from testing. As can be observed, plastic deformation 

started at time frame 145s, time frame value was used to efficiently determine the onset of 

yielding and correspondingly yield stress. Inelastic deformation originated from mid-span 

and slightly biased towards the moving grip. Plastic deformation continued to build up 

throughout the specimen narrow section which can be observed by inspecting the first- and 

last-time frames. 

 

Figure 2.4 Dog-bone specimen at different time frames showing stress whitening caused by inelastic 

deformation. 
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Six dog-bone plain resin specimens were tested under uniaxial loading until failure. The 

stress-strain results are shown in Figure 2.5. Mechanical behaviors of all specimens are 

almost identical in the linear regime. Almost all specimens hold a linear behavior up to 

90% of the loading capacity followed by unstable brittle failure. Noteworthy to mention 

that none of the specimens showed a necking type failure behavior.  

 

Figure 2.5 Stress-strain curves for uniaxial load testing. 

Slight variations in both stress and strain failure limits were observed. Table 2.2 documents 

failure limits of each specimen and the fracture energy from testing results. The mean 

values of elastic constants, namely modulus of elasticity and Poisson’s ratio were 3.328 

GPa and 0.361, respectively.  
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Table 2.2. Failure limits from uniaxial tension testing. 

specimen number 
failure stress 

(MPa) 

failure strain 

(%) 

fracture energy 

(N/m) 

T1 53.82 2.187 1.885 

T2 59.70 2.401 2.039 

T3 60.22 2.481 2.108 

T4 60.35 2.482 2.018 

T5 60.46 2.502 2.114 

T6 60.42 2.452 2.101 

The DIC local measurements of regarding load-displacement results are shown in Figure 

2.6. Local measurements showed similar plateau to that of global ones. Specimen T5 

showed the maximum local displacement and load at failure as 687μm and 4734N, 

respectively. The lowest values were recorded by specimen T1 as 551μm and 4546N.  

 

Figure 2.6 Local axial load-displacment measurements from DIC. 
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Fractured specimens from uniaxial tension testing were scanned and monochromic images 

are presented in Figure 2.7. All specimens showed a fractured surface normal to load 

application direction implying that brittle type of failure dominated the fracture mechanism. 

Even though plastic deformation was minimal, stress-whitening caused by plastic 

deformation can be observed in all specimens. The lowest intensity of whitening was shown 

by specimen T1. Further, details on the failure mechanisms are provided in the following 

section. 

 

Figure 2.7 Monochromic scan of dog-bone specimens after failure. 

2.4.2 Three-point bending test results 

Six prismatic specimens were prepared for testing under three-point loading. The load 

versus net deflection results obtained using DIC are presented in Figure 2.8. The arrows 
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on the figure shows the failure limits in terms of loads and displacements. Testing results 

from different specimens are almost coinciding with very similar behavior in the linear 

region.  

 

Figure 2.8 Load-deflection curves from three-point loading tests. 

Three specimens showed a linear behavior almost until final brittle failure, namely 

specimens B1, B4 and B6. On the other hand, specimens B2, B3 and B5 exhibited 

significant plastic deformation ahead of final unstable fracture. A stress element in a prism 

under three-point loading will experience both maximum bending and shear stresses at mid-

span. Fractured prisms monochromic scan is shown in Figure 2.9. As can be noticed, local 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 500 1000 1500 2000 2500

L
o

ad
 (

K
N

)

Deflection (μm)

Specimen B1

Specimen B2

Specimen B3

Specimen B4

Specimen B5

Specimen B6



 

48 

 

inelastic deformation appears in the lower mid-segment of specimens B2, B3 and B5. Load-

deflection results signifies the significant plastic deformation. On the other hand, the rest 

of the specimens had minimal plastic deformation ahead of final failure. Detailed failure 

and fractographic analysis are provided in the following section.  

 

Figure 2.9 Monochromic scan of prismatic specimens after failure. 

A quantitative comparison of obtained failure loads and deflections is provided in Table 

2.3. Specimen B6 recorded the lowest failure load with a value of 1070N while specimen 

B4 recorded the lowest failure deflection with a value of 1416μm. Both specimens showed 

almost identical behavior and their final failure was dominated by brittleness. Specimen B1 

had slightly higher failure limits while the brittle behavior still dominated the final fracture. 

On the other hand, specimens B2, B3 and B5 had significantly deformed in an inelastic 
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manner resulting in higher failure limits. Maximum values were recorded by specimen B5 

at failure limits of 1452N and 2319μm for load and deflection, respectively. 

Table 2.3. Failure limits from Three-point load testing. 

specimen number 
failure load 

(N) 

failure deflection 

(μm) 

B1 1138 1514 

B2 1380 2032 

B3 1419 2183 

B4 1074 1416 

B5 1452 2319 

B6 1070 1435 

2.5 Fractography 

As it was stated prior, the presence of voids have a dominant effect of the failure of a 

material (Hagstrand et al., 2005; Kalantari et al., 2017; W. V. Liebig et al., 2013; Wilfried 

V. Liebig et al., 2015). To understand this effect, a fractographic analysis was performed 

to view failure initiation in the presence of voids. First, optical microscopic images for 

fractured surfaces are provided. Second a closer investigation using scanning electron 

microscope (SEM) was conducted. Lastly, a computed tomography (CT) scan was 

completed, showing the void content in cured neat epoxy and an investigation on the 

fractured surface after failure. 

2.5.1 Optical Microscopy 

As an initial investigation step, the failed surfaces from both uniaxial and three-point 

bending specimens were explored using optical microscopy. First, fractured surfaces from 

dog-bone specimens are shown in Figure 2.10. As can be seen, the failure mechanism in 

tension was consistent in all tested specimens. A glass-like behavior regarding fractured 
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surfaces was observed originating from a micro-cavitation and scattering towards edges. 

The failure onset in each specimen is highlighted using red arrows on each surface. 

Confirming with literature findings, failure initiation was attributed to micro-cavitation 

with local inelastic deformation in its vicinity. Also, macro cracks crazing was observed to 

originate from larger size voids shattering towards the edges of each specimen. Brittle 

failure in all dog-bone specimens dominated the failure mechanism. Examining fractured 

surfaces from prismatic specimens (Figure 2.11), i.e. three-point bending tests, some 

showed local plastic deformation ahead of final unstable failure. These specimens (B2, B3 

and B5) are same ones recording higher failure limits as can be observed from Figure 2.11. 
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Figure 2.10 Optical microscopic images of dog-bone specimens failures surfaces. 
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Figure 2.11 Optical microscopic images of prismatic specimens’ failure surfaces. 
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2.5.2 Scan Electron Microscopy 

The samples were observed using a field emission gun FEI MLA 650FEG Scanning 

Electron Microscope (SEM). The samples were carbon coated to reduce surface charging. 

One tension and two three-point bending samples were tested; samples T6, B3, and B4. 

Since all tension samples underwent similar amounts of plastic deformation only a single 

specimen was analyzed (Figure 2.6). Conversely, for bending, differing amounts of plastic 

deformation were observed (Figure 2.8) – B3 underwent significant plastic deformation 

whereas B4 underwent minimal plastic deformation. As such, both B3 and B4 samples 

were studied to investigate differences in failure surfaces. It was observed that void sizes 

obtained through SEM were similar to those obtained from optical microscopy. Utilizing 

the higher magnification capabilities of SEM, a more invasive investigation into the failure 

was performed, identifying key features on the failure surfaces such as cracks extending 

from voids. 

2.5.2.1 Specimen T6 

A failure surface for T6 was observed using the secondary electron detector in the SEM 

(Figure 2.12a-d). The propagation of failure within the sample was from lower right 

towards upper left. Observing Figure 2.12b, it is evident that many voids were within the 

microstructure of T6. Upon further inspection of T6 in Figure 2.12c, it is evident that the 

specimen underwent initial slow-ductile failure due to the smooth, featureless surface 

around initial failure. Further investigation, shown in Figure 2.12d, shows a void with 

diameter of 47.4µm present at the initiation of crack propagation. This void was the internal 

defect at which failure initiated. The initial crack which propagated from this void was 
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approximately 4.8µm across and was the only crack which propagated throughout the 

initial slow-ductile failure region. Following the propagation of this initial crack, a 

transition of the surface was observed (Figure 2.12c). The smooth, featureless surface 

around the void and initial crack was followed by flat, elongated cracks and surface tears, 

indicating brittle failure. The surface transitions once again from flat topography to highly 

pronounced cracks and surface tears, indicating rapid tearing of the surface (Figure 2.12a-

b) during final failure. 

 

Figure 2.12 Failure surface of specimen T6: a) wide view, b) zoom on area of interest, c) zoom on area 

of interest, and d) zoom on area of interest. 

Upon closer inspection of sample T6, it was observed that due to its neat epoxy nature, the 

microcracks propagated deep into the matrix with obvious surface features. In Figure 
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2.13a, the transition from brittle failure to rapid tearing was observed. The lower right 

portion of Figure 2.13a possesses flat, elongated cracks which transition to highly 

pronounced cracks and surface tears moving from lower right towards the upper left. These 

surface features are consistent with brittle failure transitioning into rapid tearing failure. 

The large cracks present in Figure 2.13a were on the order of 139-152µm wide, with large 

surface deformities, once again indicating tearing occurred. Figure 2.13b shows the areas 

of interest from Figure 2.13a that are investigated in Figure 2.13c and Figure 2.13d. 

Figure 2.13c provides an enhanced view of one of the large surface deformities indicative 

of rapid tearing. The onset of this rapid tearing can be observed in Figure 2.13d with a 

large ridge stretching from the lower middle to the upper left. In addition, it is clearly 

indicated by the direction of parabolic surface striations that failure occurred from lower 

right to upper left of the image, consistent with the previous observations. The short 

distance between successive striations indicates fast-brittle failure, which was expected 

since region (d) was within the brittle failure region previously indicated. Moving from 

region (d) towards the upper left to region (c), it is evident that the brittle failure observed 

in region (d) transitions to rapid tearing in region (c) and beyond. 
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Figure 2.13 Failure Surface of T6: a) microcrack dimensions, b) areas of interest, c) zoom on area of 

interest, and d) zoom on area of interest. 

2.5.2.2 Specimen B3 

The failure surface of sample B3 is provided in Figure 2.14. As observed in sample T6, 

sample B3 exhibits a smooth surface near failure initiation, indicative of initially slow-

ductile failure. It is observed in Figure 2.14a that failure originated in the top right and 

propagated to the bottom left. It is not as obvious in this sample if failure occurred at a pore 

as this topography may have been lost as the sample broke into separate pieces. At the top 

of the image, the sample was in tension while the bottom was in compression. Failure 

initiated on the tensile side and propagated through to the compressive side, hence the 

transition from slow-ductile, to brittle, to rapid final tearing observed when moving from 

the tensile side to compressive side.  
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Figure 2.14 Failure Surface of B3: a) wide view, and b) zoom on area of interest. 

Moving down the right side of the sample, a change in surface topography was noticed 

(Figure 2.15). The specimen’s surface topography changed from smooth and relatively 

featureless to flat elongated cracks and tears, indicating a transition to brittle failure, as 

observed in Figure 2.15a. Moving further down the specimen surface, the transition of flat 

elongated cracks into prominent cracks and ridges, thus indicating the onset of rapid tearing 

of the surface (Figure 2.15b). 
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Figure 2.15 Failure Surface of B3: a) upper right-side, and b) lower right-side. 

When moving further down the right side towards the bottom of the specimen and into the 

compressive-side of the sample, the surface topography changed once again with large 

cavitation, cracks, grooves, and surface defects, as shown in Figure 2.16. When moving 

from top to bottom in Figure 2.16, the transition from brittle failure to rapid tearing is 

observed. At the top of the image, the end of brittle failure was observed with flat, elongated 

cracks and surface topography transitioning into large prominent cracks indicating the onset 

of rapid tearing failure. At the bottom of Figure 2.16, a large groove is present, indicating 

the location of final tearing and separation of the sample.  
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Figure 2.16 Failure Surface of B3, right-hand side, compressive-side. 

2.5.2.3 Specimen B4 

The failure surface of sample B4 is provided in Figure 2.17. As observed in the previous 

samples, sample B4 exhibits a smooth surface near failure initiation, indicative of initially 

slow-ductile failure. It is observed in Figure 2.17a-b that failure originated in the bottom 

middle, initiating at an internal defect, and propagated upwards. Like Sample B3, failure 

initiated on the tensile side and propagated through to the compressive side. Focusing more 

closely around the area of initial failure, multiple cracks were observed, as shown in Figure 

2.17c. It was observed that while several cracks began to propagate, only one propagated 

until the onset of brittle failure – the crack propagating upwards. The other cracks appear 

to cease propagation within this slow-ductile region as shown in Figure 2.17c and Figure 

2.17d, respectively. 
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Figure 2.17 Failure Surface of B4: a) wide view, b) zoom on area of interest, c) increased zoom on 

area of interest, and d) further increased zoom on area of interest. 

When observing a composite image of the right-hand side of the specimen from tensile side 

to compressive side (Figure 2.18), similar surface features were observed as were present 

in sample B3. The surface around initial failure was smooth and featureless, transitioning 

into flat, elongated cracks, further transitioning into large surface cracks, cavitation, and 

grooves. Indicating a transition from initial slow-ductile failure, to brittle failure through to 

rapid tearing failure during final separation. 
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Figure 2.18 Failure Surface of B4 right-side: a) compressive-side, and b) tensile-side. 

No distinct differences were observed in the failure surfaces between B3 and B4, except in 

the area of initial failure. Sample B3 possessed a single internal pore from which a single 

crack propagated, leading to failure. Conversely, sample B4 does not appear to originate 

from an internal pore and originates from micro cavities, or defects, on the surface. In 

addition, the numerous cracks within the initial failure region of sample B4 were indicative 

of higher stress concentrations near the region of initial failure. As such, the difference in 

the degree of yielding observed in samples B3 and B4 was due to the presence of a surface 

defect which caused stress concentrations near the region of initial failure, resulting in 

sample B4 failing sooner than sample B3.  
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2.5.3 Computed Tomography Imaging 

Next, failure surfaces were analyzed using CT imaging to quantify the void size, volume, 

and distribution through the sample. Due to the resolution of the scans, voids greater than 

40µm in diameter are confidently observed as this implies two or more voxels across for 

each void. For consistency, the same set of parameters were used for scanning and analysis. 

The imaging allowed for determination of internal voids and defects present in the neat 

epoxy samples. It was determined that void sizes obtained from CT imaging were similar 

to those observed through optical microscopy and SEM, providing further confidence in 

the application of CT imaging to study voids within neat epoxy. 

Prior to studying the failure surfaces, a portion of the neat epoxy slab was studied to 

determine the void volume, as well as the smallest and largest voids from the bulk epoxy. 

The void volume observed in the sample of neat epoxy was 0.467 mm3, with the smallest 

and largest single void volumes of 0.000006 mm3 and 0.00097 mm3, respectively. The 

diameters of the voids ranged from 20µm to 190µm 

2.5.3.1 Specimen T6a 

The first failure piece of sample T6 (T6a) was determined to have a pore volume of 0.303 

mm3, with the smallest and largest single pore volumes of 0.00001 mm3 and 0.000482 

mm3, respectively. The diameters of the pores ranged from 40µm to 130µm. Like the bulk 

neat epoxy, the pore diameters were consistent with results found in optical microscopy 

and SEM. A 3D transparent scan is shown in Figure 2.19. 
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Figure 2.19 Three-dimensional CT scan of specimen T6a 

Upon closer inspection of the pores within the sample, three slices were observed – one 

located at the plane of largest pore volume, one located just beneath the failure surface, and 

one located at the failure surface. Figure 2.20a shows the plane of largest pore volume for 

T6a. This plane had a pore volume of 0.001661 mm3. Figure 2.20b shows the plane just 

below the failure surface. Closely observing this plane, there were two pores on the left-

hand side at the edge of the sample, highlighted in red circles. This sample failed at a plane 

just slightly above the lower highlighted region, initiating at an edge pore as shown in 

Figure 2.20c. The long stretches of black in Figure 2.20c were artifacts of the CT imaging 

and a result of contrast with the material surfaces at various topographies. 
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Figure 2.20 Specimen T6a Planes of interest, left to right: a) largest pore volume, b) plane slightly 

beneath failure surface, and c) failure surface. 

2.5.3.2 Specimen T6b 

Next, the other failure surface, T6b, was scanned. T6b was determined to have a pore 

volume of 0.257 mm3, with the smallest and largest single pore volume of 0.000011 mm3 

and 0.000476 mm3, respectively. The diameters of the pores ranged from 40µm to 150µm. 

Pore sizes were approximately the same size as the other sample, T6a. Once again, the pore 

diameters were consistent with results found in optical microscopy and SEM. A 3D 

transparent scan is shown in Figure 2.21. 

Like T6a, three slices were observed for closer inspection Figure 2.22a shows the plane of 

largest pore volume for T6b. This plane had a pore volume of 0.000949 mm3. Figure 2.22b 

shows the plane just beneath the failure surface. Closely observing this plane, there is a 

single pore on the left-hand side, which is at the edge of the sample, highlighted in a red 
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circle. When moving up through the sample to the failure surface, Figure 2.22c, it is 

obvious that failure initiated at an edge pore, highlighted with red circle, similar to the one 

in Figure 2.22b.  

 

Figure 2.21Three-dimensional CT scan of specimen T6b. 
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Figure 2.22 Specimen T6b Planes of interest, left to right: a) largest pore volume, b) plane slightly 

beneath failure surface, and c) failure surface. 

The advantage of CT scanning over conventional optical microscopy and SEM analyses is 

the ability to obtain through-thickness distribution and sizes of voids. This data is incredibly 

useful for further investigation through numerical analysis. 

2.6 Numerical Modeling 

A micromechanical investigation for tested epoxy is provided using the framework of 

extended finite element method (XFEM). The unit cell (UC) method was employed in finite 

element analysis to predict the mechanical behavior from the actual microstructure. 

Necessary set of continuity boundary conditions were applied to enable predicting 

continuum mechanical behavior. This procedure was necessary, and it is slightly different 

than homogenization techniques. This approach have the advantage of obtaining 

mechanical behavior in elastic-plastic regimes rather than discrete stiffness properties. 
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Also, preliminary fracture analysis was conducted on the actual microstructural UC. 

Finally, macroscale modeling of conducted testing is also provided to predict macroscopic 

failure.  

The procedures for generating the UC model are presented in Figure 2.23. The microscopic 

image shown in Figure 2.23a was utilized to isolate an image representing micro voids to 

be used in the analysis. Figure 2.23b shows a monochromic image used to isolate the actual 

structural voids with a unit size of 1000μm. Image format was then converted to a drawing 

exchange format (DXF) as shown in Figure 2.23c to enable importing actual 

microstructure into Abaqus interface. Finally, the actual microstructural UC model was 

generated as shown in Figure 2.23d. The convergent mesh had approximately 62000 

triangular elements, namely CPS3 which is a three-noded plane stress element. A solid 

homogeneous section was used to apply the material definition to all UC models. The 

material behavior was defined using deformation plasticity theory utilizing the modulus of 

elasticity and Poisson’s ratio for linear behavior while the yield stress together with the 

hardening exponent defines the plastic flow. 
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Figure 2.23 Procedures for generating actual microstructural UC model: a) OM image, b) Isolated 

image, c) Drawing exchange format image, and d) Actual UC model. 

Micromechanical UC presenting actual voids distribution was utilized within the 

framework of XFEM to investigate failure initiation. Damage process is initialized 

depending on maximum principal stress while the evolution was enabled on energy basis. 

Traction separation law details are illustrated in Abaqus documentation (Abaqus V6.14– 

Documentation, Dassault Systèmes Simulia Corporation, 2013). Figure 2.24a presents the 
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contour plot of von-Mises stress for the actual microstructure UC model while a zoomed 

in view showing the micro cracks is provided in Figure 2.24b. The micro-cracks initiated 

at the largest hole/void signifying that failure onset at a micro-scale will possibly be in the 

vicinity of the larger voids. In fact, this observation was documented in conducted testing 

observations. Stress concentrations in the vicinity of holes triggered the onset of damage in 

microstructural UCs. There is a possibility that micro-cracks cause coalescence and activate 

damage at the macroscopic scale. 

 

Figure 2.24 Von-Mises contour plot results of actual microstructure UC model: a) UC model, and b) 

Zoomed in view showing micro cracks. 

Specimen sized three- dimensional models were constructed following the specimens’ 

geometries outlined in Figure 2.1. The convergent meshes for the dog-bone and prismatic 

specimens had approximate sizes of 45000 and 30000 brick (C3D8R) elements, 

respectively.  The standard testing procedures regarding loading conditions were utilized 

to define each model boundary and loading conditions. Both models were loaded until final 

failure using the framework of XFEM in Abaqus. The residual plasticity contour plots are 

compared to monochromic scans of actual failed specimens as presented in Figure 2.25. 
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The dog-bone and the prismatic specimens comparisons are shown by Figure 2.25a and 

Figure 2.25b, respectively. As can be observed, stress-whitening phenomena in the actual 

specimens are in excellent agreement with residual plastic strains contour plots. Also, 

predicted failure surfaces locations and shapes were very close to actual ones. Even though 

the final failure is dominated by brittleness, the plastic deformations were obvious. The 

precise results from numerical analyses can be attributed to precise identification of 

yielding stresses explained in Section 2.4.1. 

 

Figure 2.25 Residual plastic strains compared to failed specimens’ monochromic scans. 

The average curve of load-displacement testing results was used to validate the specimen 

sized model results as shown in Figure 2.26. Comparing both behaviors, it can be observed 

that numerical results are in excellent agreement with the average testing results. Both 

linear and non-linear behaviors were precisely predicted. Regarding failure limits, the 

numerical results showed a lower bound signifying conservative type of predictions. 
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Figure 2.26 Load-displacement curves: Testing vs. numerical. 

2.7 Conclusions 

In this work, a thorough investigation on plain epoxy failure under different types of 

loading was conducted. Neat epoxy resin was tested under uniaxial tension and three-point 

bending loads. Accurate strain measurements were enabled using a high precision non-

contact digital image correlation (DIC) system. Fractographic analyses using optical 

microscopy, scan electron microscopy (SEM) and computer tomography (CT) scan were 

also presented. Also, numerical modeling analyses utilizing the framework of XFEM at 
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micro and macro scales were provided.  From the conducted research the following 

conclusions can be withdrawn; 

• Heavily cross-linked epoxy resins were characterized by undergoing brittle final 

failure in the case of uniaxial loading. However, minimal plastic deformation was 

observed. 

• Under three-point loading the failure behavior is a complex type of failure 

dominated by unstable final failure. 

• The proposed method of stress-whitening yield identification enabled reliable and 

efficient numerical modeling at micro and macro scales. In which, the yield stress 

was experimentally identified using minimal testing effort and therefore, accurate 

mechanical behavior was defined in the material model for computational analyses.  

• Microscopic analyses using three different methods characterized micro voids radii 

ranging from 40-150 μm with almost perfect spherical shapes.  

• The current work demonstrated the effectiveness of CT scanning to obtain through-

thickness pore size and total porosity. The results were compared to results obtained 

through Optical Microscopy (approximate void sizes and total porosity) and SEM 

(approximate void sizes). 

• Fractographic analysis revealed that micro-cavitation was leading to damage 

initiation and possible final failure in glassy polymers under different types of 

loading. Same can be concluded from micromechanical modeling results. 
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• Complex failure mechanisms were observed in specimens under three-point 

loading. While the failure initiated in a vicinity of micro-cavitation, there exist a 

transition region signifying going from ductile to brittle behavior. 
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3 Actual Microstructural Voids Generation in Finite Element Analysis 

utilizing Computed Tomography Scan of Heavily Cross-linked 

Epoxy 

3.1 Abstract 

In the present work, computed tomography (CT) was used to characterize the 

microstructural voids content in a plain epoxy resin like the one used in aerospace 

applications. A Python script was developed and implemented within the mainstream finite 

element (FE) software Abaqus to generate actual microstructural FE model employing 

computed tomography (CT) scan of heavily cross-linked epoxy. Developed script enabled 

modeling sophisticated microstructural features such as micro-voids based on their actual 

size/location. Specimen sized model utilizing finite microstructural region was used to 

investigate the material behavior and damage initiation at microscales utilizing the 

framework of extended finite element method (XFEM). The proposed algorithm is capable 

of generating a micromechanical model in less than one-minute runtime. Prediction results 

proved excellent agreement compared to experimental data from the current investigation 

besides the literature findings. 

3.2 Introduction 

Composite materials are widely used in numerous engineering applications such as 

aerospace, automotive and biomedical (Arumugam, Saravanakumar, & Santulli, 2018; 

Koerber et al., 2018). Composites are usually preferred over metallic materials for their 

enhanced mechanical properties at relatively lower densities (Z. C. Su, Tay, Ridha, & Chen, 

2015). However, Composite materials are known for multiple failure modes that are driven 

by their constituents’ behaviors. Two out of four typical failure modes of composites are 
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dominated by the resin material, namely matrix cracking and separation of plies or 

delamination (Chevalier, Morelle, Camanho, Lani, & Pardoen, 2018; Yang et al., 2017). 

Also, composite failure is strongly associated with manufacturing defects such as resin rich 

regions and voids (Di Landro et al., 2017; Giddings, Bowen, Salo, Kim, & Ive, 2010; W. 

V. Liebig et al., 2013; Spaggiari & O’Dowd, 2012a) which are intensely tied to the used 

resin materials. Epoxy polymers represent the majority of matrix and adhesive materials in 

composite manufacturing (P.K. Mallick, 2007). Heavy cross-linkage occurs during the 

polymerization process resulting in a tridimensional network or structure (Uygunoglu et 

al., 2015). The polymerization process results in a thermally stable polymer with excellent 

resistance to harsh environmental conditions (Jones, 1999). However, the resulting resin 

material is usually of a brittle behavior (Isaac & Ori, 2013) owed to the pressure and thermal 

cycles during the curing process (Daniel, Luo, Schubel, & Werner, 2009). The curing 

process usually results in undesired void content which is known for deteriorating the 

mechanical behavior (Huang & Talreja, 2005). Some advanced manufacturing techniques 

are being utilized to reduce the void content such as autoclaving vacuum bagging (Di 

Landro et al., 2017; Park, Choi, & Choi, 2010) yet; they are unavoidable. 

Computed tomography (CT) is a useful tool to investigate the internal defects of composite 

materials. CT scanning allows for the non-destructive analysis of materials, particularly for 

meeting manufacturing standards. The work of Schell et al. (Schell, Renggli, van Lenthe, 

Müller, & Ermanni, 2006) demonstrated that micro-CT scans enable engineers to 

investigate the distribution/size of void defects within glass fiber reinforced polymers. 

Also, the work of Sharma et al. (R. Sharma, Deshpande, Bhagat, Mahajan, & Mittal, 2013) 
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provided in-depth investigation of cracks and voids in carbon-carbon composites. They are 

investigating various voids such as micro and large voids, as well as cracks with interfacial, 

matrix, and intra-bundle cracks. More recently several works have extended the usefulness 

of CT scanning to obtain internal defects to be further studied in finite element analysis. 

The work of Shigang et al. (Shigang, Rujie, & Yongmao, 2015) investigated the thermal 

conductivity of woven carbon-carbon composites under the presence of voids. Shigang et 

al. (Shigang, Rujie, et al., 2015) utilize CT scanning to obtain the void volume fractions for 

both the fibers and matrix to then study with finite elements (FE). A representative volume 

element (RVE) is created, and the voids are imported into the model following a Monte 

Carlo approach where randomly selected elements are turned into voids (assigned 

properties of air) until the void volume fraction is obtained in both fiber and matrix. Shigang 

et al. (Shigang, Rujie, et al., 2015) finite element results showed good agreement when 

compared to compare both theoretical and experimental ones. Unfortunately, Shigang et al. 

(Shigang, Rujie, et al., 2015) do not study the effect of voids. Instead CT scanning is used 

only as a tool to obtain a more thorough model. In a similar work, Shigang et al. (Shigang, 

Xiaolei, Yiqi, Yongmao, & Daining, 2014) investigate the performance of carbon-carbon 

composites undergoing three-point bending with the presence of voids. Shigang et al. 

(Shigang et al., 2014) utilize CT scanning to obtain the void volume fraction in the fibers, 

matrix, and fiber-matrix interface. The void volume fraction is obtained by calculating the 

two-dimensional area of the voids and converting to three-dimensional volume by dividing 

by the total surface area. These void volume fractions are then utilized in finite elements 

through the implementation of a Monte Carlo approach to randomly select elements and 
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reduce the stiffness of said elements by a factor of 10e-6. Shigang et al. (Shigang et al., 

2014) compare their experimental results to two finite element models – one without the 

voids and one with the voids. The presence of voids within the composite has reduced the 

strength of the material, with an apparent reduction in the load-deflection curve. Lastly, the 

work of Shigang et al. (Shigang, Daining, Rujie, & Yongmao, 2015) studied the effect of 

voids on the performance of carbon-carbon composites undergoing uniaxial tension. 

Shigang et al. (Shigang, Daining, et al., 2015) extend their previous work (Shigang et al., 

2014) by studying the same model now undergoing uniaxial tension. Once again, a Monte 

Carlo approach was utilized to randomly select elements and reduce their stiffness by a 

factor of 10e-6. Comparing experimental results to two finite element models, one without 

the voids and one with the voids, Shigang et al. [5] demonstrated the importance of 

including internal defects for enhanced analysis of composite materials. The uniaxial 

tension results (Shigang et al. (Shigang, Daining, et al., 2015)) demonstrate the significant 

variance in the prediction of ultimate stress with and without the presence of voids. The 

inclusion of voids allowed for more accurate predictions of the mechanical performance, 

closely resembling the experimental results. Shigang et al. (Shigang, Daining, et al., 2015) 

also investigate the effect of void location on the mechanical performance of the composite; 

focusing the voids entirely in the fibers, entirely in the matrix, and entirely in the fiber-

matrix interface. Shigang et al. (Shigang, Daining, et al., 2015) demonstrated that the 

location of voids clearly influenced the mechanical performance. When the voids were 

concentrated entirely within the fibers, the most significant effect to reduce the mechanical 

performance was observed. When the voids were concentrated within either the matrix or 
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the interfaces, the effect was not as significant when compared to the no void scenario. 

Lastly, Shigang et al. (Shigang, Daining, et al., 2015) investigate the effect of various void 

volume fractions concentrated entirely in the fibers since this had the most substantial 

impact on mechanical performance. Shigang et al. (Shigang, Daining, et al., 2015) clearly 

demonstrated that as void volume fraction increases within the fibers, the mechanical 

performance is drastically reduced. A reduction of approximately 7% in the tensile strength 

was observed for a void volume fraction of 0.25% when compared to the same model with 

no voids – a significant reduction for an insignificant void volume. 

While the work of Shigang et al. (Shigang, Daining, et al., 2015; Shigang et al., 2014) have 

demonstrated the importance of CT scanning to obtain internal defects for enhanced 

understanding of mechanical performance, there are some critical means of improving the 

analysis. First, the conversion of two-dimensional area to three-dimensional volume is a 

rough approximation of the real void volume. The shape of the voids, as well as the position 

of the voids, throughout the composite, mean that observing just a two-dimensional slice 

could introduce significant errors. Second, the implementation of a Monte Carlo approach 

to import these voids randomly throughout the model has its disadvantages. Namely, its 

implementation may be restricted to advanced users. In addition to the difficulty of 

developing the model, the random distribution may bias prediction results. Besides, it is 

impossible to be representative of the experimental distribution. From the CT scans, it is 

possible that the voids within the composite are concentrated in critical areas and using a 

Monte Carlo approach could result in significant errors if the random distribution does not 

focus the voids within the correct location. Also, there may be large clusters of voids which 
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may have a more dominant effect than the same void volume fraction distributed 

throughout the entire matrix.  

Therefore, a finite element procedure is proposed to alleviate the abovementioned 

challenges. A Python script is developed and implemented within the framework of 

commercially available FE software Abaqus, to represent physical microstructural voids 

features within the models. Computed tomography (CT) scan is utilized to characterize the 

void content in epoxy samples which were prepared and tested to investigate the effect of 

voids on the damage process from a microscopic point of view. Also, a strain energy density 

(SED) based damage subroutine was implemented to enable numerical investigation of 

microscopic damage process. 

3.3 Multiscale Modeling Employing Microstructural Voids 

The proposed finite element procedures are outlined in the flowchart presented by Figure 

3.1. As can be seen, three main stages summarize the modeling procedures. The first stage 

utilizes computed tomography (CT) scan to investigate voids in plain epoxy resin at the 

microscale. Processing the CT scan results using Volume Graphics VGStudio MAX 3.0 

software enabled identifying the actual microstructural voids physical dimensions and 

exact locations. A data file Employing these physical quantities is generated with each void 

radius and the corresponding location. 
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Figure 3.1 Finite element model involving microstructural voids procedure. 

In the second stage, a Python script was developed and implemented in Abaqus to automate 

micromechanical model generation. In which, the physical scanned epoxy specimen is used 

to generate a slab with microstructural features (i.e., voids). Slab thickness is user-

determined based on the region of interest while each void location/size is read from the 

geometric data file resulting from post-processing the CT scan. The geometries of created 

voids are subtracted from the main block part, i.e., Boolean subtraction to generate the final 

voided slab. Finally, in the third stage, a specimen sized model is created employing the 

actual representation of micromechanical voids represented by the embedded 
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micromechanical slab. Extended finite element method (XFEM) framework is utilized to 

investigate the onset of failure from a microscopic point of view. Particulars regarding each 

stage are thoroughly illustrated in subsections 3.3.1, 3.3.2, and 3.3.3. 

3.3.1 Computed Tomography (CT) Scan 

Several samples were scanned through computed tomography (CT) to characterize their 

micro-voids content. Samples were scanned with a Reflection Rotation 225 target head and 

tungsten target material utilizing the Nikon XT H225 ST system. No filters were used 

pre/post-scanning. Also, the samples were scanned in a tilted position to reduce the effect 

of beam hardening. Using Nikon’s Inspect X software, 3141 projections were collected 

with two-frame averaging. The quality of the scanning results was investigated to ensure 

consistency. To verify the scanning quality, the center of rotation was examined and 

showed less than one-pixel deviation. After verifying the quality of the scans, the three-

dimensional reconstruction was performed utilizing CT Pro 3D (Figure 3.2a). In the 

generation of the three-dimensional reconstruction, noise reduction, scattering reduction, 

and beam hardening corrections were applied. The reconstructed samples were then 

analyzed in Volume Graphics VGStudio MAX 3.0 software, allowed for the determination 

of surfaces using the advanced surface determination tool. The next step was to obtain the 

void distribution, in which the Otsu (Otsu, 1979) global thresholding method is utilized 

within VGStudio MAX 3.0. The Otsu (Otsu, 1979) thresholding method derives a single 

thresholding value such that it segments voids from the parent material. Within VGStudio 

MAX 3.0, one thresholding value was identified for the epoxy and another for air. Next, 

the threshold values were applied to the reconstruction to identify voids. Key interest areas 
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were defined as being areas where the threshold value of air was surrounded by the 

threshold value for epoxy. These areas were then required to have a fully enclosed area of 

at least 24 voxels to be classified as voids. The reconstructed sample with pores identified 

is shown in Figure 3.2b. 

 

Figure 3.2 Reconstructed Sample, a) without pores identified, b) with pores identified 

Of crucial importance was the failure surface as this area of the sample possessed certain 

qualities which ultimately led to the failure of the sample. Within the reconstructed sample, 

the failure surface was identified, and a volume of the sample from the failure surface down 

into the bulk became the region of interest. The entire reconstructed sample was 

approximately 6 mm x 13 mm x 8 mm with a void volume fraction of 0.051%, whereas the 

failure surface segment (see Figure 3.3) was approximately 6 mm x 13 mm x 0.7 mm with 

a void volume fraction of 0.044%. As can be observed, damage initiation seems to have an 

onset coinciding with the largest void. A local plasticity zone bounded was observed in the 

vicinity of that void as shown by the dashed line on Figure 3.3. Finally, several crazes of 

cracking can be observed signifying an unstable failure of the material, i.e., brittleness 

dominated. 
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Figure 3.3 Top-view of failure surface showing local plasticity and crazes of cracking. 

3.3.2 Actual microstructural model generation 

A chief objective of the proposed work is to generate microstructural features (i.e., voids) 

within the finite element model of plain epoxy. CT technique was employed to scan the 

prepared epoxy resin to characterize the void content besides physical features (i.e., 

size/location). For illustration purpose, a schematic diagram for model generation is 

presented in Figure 3.4.  
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Figure 3.4 Final microstructural slab showing voids at their exact locations. 

The CT scan of tested epoxy was used to generate a micromechanical slab of 700 μm 

thickness and identical cross-section to that of the tested specimen as shown in Figure 3.4a. 

A Python script was developed to automate micromechanical model generation from the 

CT scan. The algorithm starts by uploading data file entries into a repository file to be used 

for generating actual micro-voids within the FE model. Table 3.1 illustrates the structure 

of the data file resulting from stage 1, where the first column represents an index 𝑖, 

specifying the current void number while the remaining columns are used for physical 

features. Each void is created as an independent part utilizing its current radius 𝑟𝑖, 

represented by the second column in Table 3.1. The total number of voids 𝑛, is determined 

from the size of the data file. 
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Table 3.1. Geometric features of physical voids data file resulting from CT scan post-processing. 

Index 

indicating 

current void 𝑖 

Actual void 

radius, 𝑟𝑖 (μm) 

x-coordinate, 𝑥𝑖 

(μm) 

y-coordinate, 𝑦𝑖 

(μm) 

z-coordinate, 𝑧𝑖  

(μm) 

1 38.0 3970.0 7420.0 250.0 

2 43.0 2550.0 9140.0 250.0 

...  … … … … 

𝑛 28.0 2380.0 2540.0 1000.0 

After creating all voids, a block part is constructed utilizing the same scanned specimen 

dimensions. All associated voids are repositioned to their exact physical coordinates 

namely, 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖  as illustrated in Table 3.1. The following step requires a Boolean 

subtraction operation on the geometry of all parts, in which the void parts are subtracted 

from the main block part resulting in an equivalent voided part to that of the CT scan as 

presented in Figure 3.4b. As can be observed, the proposed script enabled a precise 

representation of microstructural voids automatically. Notably, the running time to generate 

the presented micromechanical model (Figure 3.4b) is less than one minute. Manual 

generation of such model can be deemed unattainable or extensively time consuming.  

3.3.3 Specimen model employing micro-voids 

The final stage regarding specimen sized model employing micromechanical slab is 

accomplished by assembling the micromechanical FE slab into the specimen model. 

Incorporating the micro model into the specimen model should be precisely defined to 

ensure domain’s piecewise continuity. Therefore, top and bottom surfaces of the 

micromechanical slab, highlighted in orange color (Figure 3.4c) are tied to opposing 

surfaces of the specimen. The corresponding nodes are tied together during simulations to 

avoid a discontinuity at these surfaces which may bias numerical results. Also, these 
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constraints enable meshing the macromechanical portion with significantly refined mesh 

while maintaining moderately coarse mesh for the rest of the specimen. The 

micromechanical slab final mesh is shown in Figure 3.5a, while a zoomed in view, is 

provided in Figure 3.5b, note that both figures were generated with translucency to enable 

visualizing internal voids. 

 

Figure 3.5 (a) Micromechanical slab finite element mesh (b) Zoomed in view. 

This meshing technique resulted in a significant enhancement regarding computational 

efforts. Instead of maintaining a microscopic characteristic length in the mesh, the 

technique enabled varying the elemental lengths according to the physical features of each 

region. Accordingly, the resulting final part together with the final convergent mesh are 

shown in Figure 3.6a and Figure 3.6b, respectively. The micromechanical portion was 

meshed using quadratic tetrahedral elements, namely C3D10 while linear hexahedral 

elements, C3D8R were used to mesh the rest of the domain. The convergent mesh had an 
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approximate size of 47000 elements with a maximum and minimum characteristic length 

of hundred μm and seven μm, respectively.  

 

Figure 3.6 Final constructed part (b) Final convergent mesh. 

 As mentioned earlier, the main objective is modeling the actual microstructural voids in 

the tested epoxy to investigate the effect of voids on mechanical behavior and failure at 

microscales. The framework of the extended finite element method (XFEM) in Abaqus is 

employed for that purpose. XFEM in general works by nodal enrichments utilizing special 

shape functions to account for discontinuities within an enriched element such as cracks 

(Ted Belytschko, Gracie, & Ventura, 2009a). In other words, it accounts for crack onset as 

well as propagation without requiring the FE mesh to conform to the crack front. A damage 

initiation criterion is defined for crack onset besides an evolution law for propagation 

(Abdelaziz & Hamouine, 2008). Consider the material behavior of an enriched element as 

shown in Figure 3.7. The hypothetical stress-strain behavior of epoxy material is presented 

by the solid line in which no damage is defined for the material. In other words, this is 

typical behavior of conventional elements from a material’s point of view. On the other 

hand, enriched elements are associated with a damage model defining the material 
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degradation resulting from loading the material beyond the initiation criterion. Upon 

increasing the load, the material will continue to degrade following the dashed lined path 

until failure as shown in Figure 3.7.  

 

Figure 3.7 Schematic diagram showing damaged and undamaged material behavior of epoxy. 

The material failure from a numerical point of view may be defined as the total loss of load-

bearing capability as a result of progressive deterioration in the material stiffness. A 

damage factor, 𝐷 is useful to express the deterioration process of an enriched element. 

Three regions are identified on the schematic behavior, namely undamaged, partially 

damaged and fully damaged. The first region has a zero damage while in the second region 

(highlighted in orange), the damage factor has a value between zero and unity. Finally, a 

unity value defines final failure at a material point and complete separation of an enriched 
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element. During the analysis at any step, the damage stress tensor is evaluated as 𝜎𝑖𝑗
𝐷 =

(1 − 𝐷)𝜎𝑖𝑗. The implemented damage initiation criteria in Abaqus are either stress or strain 

based. As can be concluded from the literature (L. E. Asp et al., 1996; Elnekhaily & Talreja, 

2018; Huang & Talreja, 2005; Talreja, 2014) besides the current investigation findings, the 

failure of epoxy is dominated by voids. Therefore, critical strain energy density (SED), 

𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 was used as the crack initiation mechanism in a user-defined subroutine while the 

damage evolution was controlled by the fracture energy. 

3.3.4 Material model and damage 

The material model of epoxy material is defined utilizing the deformation plasticity theory 

in Abaqus ich is based on the Ramberg-Osgood (RO) relationship (Ramberg & Osgood, 

1943). The material model for a generalized case of stress state reads as 

𝐸𝜺𝒊𝒋 = (1 + 𝜈)𝜎𝑑𝑒𝑣 − (1 − 2𝜈)𝜎ℎ𝑦𝑑𝑰 +
3

2
𝛼 (

𝜎𝑚𝑖𝑠𝑒𝑠

𝜎𝑦
)

𝑛−1

𝜎𝑑𝑒𝑣 (Eq.3.1) 

where 𝐸 is the young’s modulus, 𝜈 is the Poisson’s ratio, 𝜎𝑦 is yield stress while 𝛼 is the 

yield offset and 𝑛 is the hardening exponent for the non-linear term, i.e., 𝑛 ≥ 1. 𝜺𝒊𝒋 and 

𝝈𝒊𝒋 define the strain and the stress tensors, respectively. 𝑰 is the identity matrix, 𝜎𝑑𝑒𝑣 is the 

stress deviator tensor while 𝜎ℎ𝑦𝑑 is the equivalent hydrostatic stress and 𝜎𝑚𝑖𝑠𝑒𝑠 defines the 

Mises flow stress. (Eq.3.2) to (Eq.3.4) define the stress invariants. 

𝜎ℎ𝑦𝑑 = −
1

3
𝝈𝒊𝒋: 𝑰 (Eq.3.2) 

𝜎𝑑𝑒𝑣 = 𝝈𝒊𝒋 + 𝜎ℎ𝑦𝑑𝑰 (Eq.3.3) 

𝜎𝑚𝑖𝑠𝑒𝑠 = √
3

2
𝜎𝑑𝑒𝑣: 𝜎𝑑𝑒𝑣 (Eq.3.4) 
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The model is assumed to be compressible in the linear region and incompressible in the 

non-linear one where the plastic flow is normal to Mises stress (Abaqus V6.14– 

Documentation, Dassault Systèmes Simulia Corporation, 2013). (Eq.3.1) is reduced to a 

uniaxial state of stress to identify the material parameters of the plasticity model, reading 

as 

𝐸𝜀 = 𝜎𝑖 + 𝛼𝜎𝑖 (
𝜎𝑖

𝜎𝑦
)

𝑛−1

 (Eq.3.5) 

where 𝜎𝑖 represents the stress component along the 𝑖th direction. The above relationship is 

nonlinear at all stress values where the non-linearity becomes significant at stress values 

approaching/exceeding 𝜎𝑦. In the current work, a user-defined damage subroutine is 

developed and implemented to predict the final failure of epoxy resin. In which, the damage 

factor, 𝐷 is controlled based on critical strain energy density (SED). Assuming small 

deformations (i.e., less than 10%), the SED for the material model defined by (Eq.3.5) can 

be obtained as  

𝑊 = ∫ 𝝈𝒊𝒋𝑑𝜺𝒊𝒋

𝜎𝑓

0

=
(1 + 𝜈)(𝜎𝑚𝑖𝑠𝑒𝑠)2

3𝐸
+

3(1 − 2𝜈)(𝜎ℎ𝑦𝑑)2

2𝐸
+

𝑛𝛼(𝜎𝑚𝑖𝑠𝑒𝑠)𝑛+1

𝐸(𝑛 + 1)(𝜎𝑦)
𝑛−1 (Eq.3.6) 

The expression enables evaluating SED for a general state of stress at enriched elements. 

Noteworthy to mention that SED is invariant under rotation of coordinates (Jones, 1999; 

Jones, 2009; Shames, 1997). Therefore, damage initiation condition in the developed 

subroutine reads  

𝑓 =
〈𝑊〉

𝑊𝑐
 (Eq.3.7) 
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where 𝑓 = 1 signifies the onset of damage within an enriched element. The Macaulay 

brackets 〈∙〉 signifies that pure compressive state of stress does not initiate damage. 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

represents the critical value of SED which can be evaluated from the area under the load-

displacement curve of a uniaxial tension test (Jones, 1999, 2009; Shames, 1997). SED 

expressed by (Eq.3.6) can be rewritten for a uniaxial state of stress after some manipulation 

as 

𝑊𝑐 =
𝜎𝑓

2

𝐸
(

𝛼𝑛

𝑛 + 1
+

1

2
) (Eq.3.8) 

where 𝜎𝑓 is the failure stress and 𝐸 is the elasticity modulus. The hardening exponent 𝑛 and 

the yield offset 𝛼 can be obtained from the stress-strain curve of uniaxial tensile test. The 

determined material parameters for the tested epoxy resin are documented in Table 3.2. 

Table 3.2. Epoxy resin material model parameters.  

Property 𝐸 (GPa) 𝜈 𝑛 𝛼 𝜎𝑦 (MPa) 𝑊𝑐 (MPa) 

Epoxy 3.11  0.36 9.87 0.20 58.12 0.62 

3.4 Results and Discussion 

 In the current section, finite element simulation results are provided and discussed. For 

better visualization, the mesh gridlines were removed from all the following figures. A 

uniform continuous stress distribution can be observed from the full-size model contour 

plot regarding von Mises stress as shown in Figure 3.8a, which can be attributed to proper 

constraints application between different scales (see Figure 3.4c) as explained in 

subsection 3.3.3. A closer view on a cutout section showing micro-voids is presented in 

Figure 3.8b where the micro-voids can be barely observed due to their infinitesimal sizes. 

The top view of the cut-out at different load increments provides a better illustration of 
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stress distribution as depicted in Figure 3.8c. Stress concentrations in the vicinity of voids 

were observed to build up as the load increased. Also, voids with larger radii were more 

likely to have intense stress concentrations. This observation was consistent from the 

current CT investigation to actual failure surfaces from dog-bone specimens showed that 

cracks were originating from relatively larger voids.  

 

Figure 3.8 von Mises stress contour plot: (a) complete specimen (b) Cut-out at micro-voids zoomed in 

view (c) top view of micro-slice at different load increments. 

Figure 3.9 provides the contour plot of equivalent plastic strains for the complete specimen 

(Figure 3.9a) besides the top view of another cutout section (Figure 3.9b) with different 

voids distribution. In general, the material exhibited global plastic deformation in as can be 

observed from the specimen’s narrow section contour plot. Even though brittleness 

dominated the fracture behavior of plain epoxy, there exists minor plastic deformation 

ahead of failure (see Figure 3.3). Voids at microscale lengths can be significant regarding 

stress concentration leading to micro-cavitation and possible initiation of cracks. 
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Figure 3.9 Equivalent plastic strain contour plot: (a) complete specimen (b) top view of micro-slice at 

different load increments. 

Regarding failure and damage initiation at a microscopic scale, micro-cracks initiated in 

the vicinity of the largest void. The cracked surfaces were found to be normal to the load 

application direction which implies that brittleness dominated the failure behavior. These 

observations are consistent with findings from the current study as revealed by the CT scan 

of fractured specimens. Also, as reported in the literature (L. E. Asp et al., 1996; Bressers, 

2002), micro-cavitation was found to initiate and possibly lead to larger cracks in plain 

epoxy resin. A cut-out section passing through the most significant void is depicted in 

Figure 3.10 to illustrate the microscopic damage process. As can be observed, the first 

damage incident occurred at load increment 93 where the color of the highlighted region 

signifies the intensity of damage as per the provided legend. Upon increasing the loads, 

more damaged elements could be observed as shown by the frames at load increments 95 
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and 97, respectively. Load increment 98 shows that three elements located just outside the 

spheroidal void had most severe damage. Damage originated from the most significant 

void, and the propagation at microscale shows the potential direction towards the bulk 

edges. This observation is also consistent with observations from testing where the cracks 

or crazes seemed to have an origin coinciding with the largest spheroidal void origin. 

 

Figure 3.10 The vicinity of a micro-void showing element damage status at different load increments. 

3.5 Conclusions  

In the current work, the microstructure of plain epoxy resin was investigated utilizing 

computed tomography (CT) scan. An approximate total volumetric void content of 0.05% 

was identified from different samples. A Python script was developed to incorporate 

physical microstructures features (i.e., micro-voids) in a multiscale domain finite element 

model. Strain energy density (SED) damage criterion was implemented to enable 
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microscopic damage modeling in Abaqus. From the provided study the following can be 

concluded; 

• The CT scan investigations enabled quantifying physical microstructural features 

such as voids regarding their actual size/location.  

• The CT scan of the failed specimen revealed that crazes of cracking were 

originating from the largest void in the fractured surface. 

• Developed Python script enabled incorporating real microstructural features (i.e., 

voids) in a multiscale finite element model automatically without user intervention. 

• The automatic generation of the micromechanical model (as shown in Figure 3.4b) 

required less than one-minute runtime. 

• The proposed algorithm is capable of generating the real microstructural features 

rather than an estimate or a representative model as in the case of Monte Carlo based 

simulations (Shigang, Daining, et al., 2015; Shigang, Rujie, et al., 2015; Shigang et 

al., 2014). Notably, this facilitates the precise model building for enhanced 

analyses. 

• Incorporating strain energy density (SED) to control the microstructural damage 

process within the frame of XFEM enabled a closer investigation on the damage 

mechanism at a microscale. 

Numerical results were consistent with observations from testing showing that 

microstructural voids were dominating the onset of material damage. 
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4 Strain Energy Density Based Damage Initiation in Heavily Cross-

linked Epoxy Using XFEM 

4.1 Abstract  

This article proposes a damage initiation criterion based on the total strain energy density 

(SED) for glassy polymers such as epoxy resins. The proposed damage initiation model 

was developed and implemented in a user-defined subroutine in the finite element code 

Abaqus using extended finite element method (XFEM). Numerical results were verified 

with uniaxial and three-point bending tests. To accurately assess predictions, a high 

precision digital image correlation (DIC) system was utilized for precise strain 

measurements. Also, synchronized image processing was used for efficient identification 

of yielding whenever it occurred. Furthermore, a microscopic investigation of fractured 

surfaces using optical microscopy was conducted. Micro-cavitation were consistently 

observed in all failed specimens identifying that brittle behavior dominated the final 

fracture. Comparisons with built-in damage models in Abaqus concluded enhanced and 

conservative predictions of the currently developed and implemented model. 

4.2 Introduction 

Fiber-reinforced polymer (FRP) composites are widely used in aerospace, marine and 

automotive engineering industries (P.K. Mallick, 2007). Wide application spectrum of FRP 

motivated intensive investigations of their failure modes. Generally, there are four damage 

failure modes in FRP composites, namely matrix cracking, fiber breakage, interfacial 

debonding and ply delamination (P.K. Mallick, 2007). In particular, matrix cracking and 

ply delamination are typical modes leading to final failure of laminated composites 

(Lachaud et al., 2015; Pawar & Ganguli, 2006; Pollayi & Yu, 2014). These typical modes 
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are deleteriously affected by manufacturing defects in resin materials such as voids and 

resin rich regions (Hagstrand et al., 2005; Jeong & Pan, 1995; Kalantari et al., 2017). Void 

content is considered as a property reducing agent besides acting as stress concentrators 

(Bressers, 2002; W. V. Liebig et al., 2013; Uygunoglu et al., 2015; Yamini & Young, 

1980). Epoxy resins most commonly used for both the structural matrix and the stacking 

adhesive materials (Aho, Nerg, & Pyrhönen, 2007; Pawar & Ganguli, 2006; Pollayi & Yu, 

2014; Zhenqing Wang et al., 2013). These resins consist of a densely cross-linked polymer 

that, after curing, forms three-dimensional polymeric networks of covalent bonds. The 

strong covalent bonds result in a thermo-mechanically stable polymer with favorable 

environmental resisting properties. However, cured epoxy exhibit low strain-to-failure 

capacity due to the brittleness of the thermosetting polymer (Pawar & Ganguli, 2006; 

Pollayi & Yu, 2014; Zhenqing Wang et al., 2013). This particular behavior dominates the 

overall strain-to-failure capacity of the FRP composite leading to the brittle type of failure. 

Therefore, all these considerations underlined the importance as well as posing the need for 

developing efficient damage prediction tools for epoxy resins. 

In the meantime, recent advances in computational methods resulted in reliable techniques 

focused on damage initiation and propagation. The eXtended Finite Element Method 

(XFEM) initially proposed by Belytschko and Black (T. Belytschko & Black, 1999) based 

on the partition of unity theory (Melenk & Babuška, 1996) to solve crack problems 

eliminated the necessity to update the mesh. Therefore, XFEM became a well-established 

method studying fracture mechanics problems to account for crack onset as well as 

propagation (Abdelaziz & Hamouine, 2008; Ted Belytschko et al., 2009a; H. Li, Li, & 
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Yuan, 2018; J. H. Song, Wang, & Belytschko, 2008; Sukumar, Dolbow, & Moës, 2015; 

van Dongen, van Oostrum, & Zarouchas, 2018; Yazid, Abdelkader, & Abdelmadjid, 2009). 

In other words, XFEM lends itself the superiority over conventional FEM when analyzing 

failure and damage problems. Consequently, the method became available in the 

mainstream finite element analysis codes such as Abaqus (Abaqus Documentation, 2014)  

and LS-DYNA (LS-DYNA, 2013). As a result, researchers employed XFEM to study 

composite structures failure investigating its predictions accuracy. For example, Petrov et 

al. (Petrov, Gorbatikh, & Lomov, 2018) presented a parametric study for assessing the 

performance of XFEM applied to cross-ply composite laminates cracking. XFEM results 

were in a good agreement following the testing results trend reported by Yokozeki et al. 

(Yokozeki, Iwahori, & Ishiwata, 2007). However, the XFEM predictions overestimated the 

number of cracks as well as corresponding strains and stresses (Petrov et al., 2018). Also, 

Duarte et al. (Duarte et al., 2017) provided a comparative study between numerical 

outcomes of XFEM-implementation and Hashin’s damage criterion implementation in 

Abaqus applied to the failure of composite plates. They concluded that while XFEM had 

the advantage of showing the crack onset, opening and propagation; numerically predicted 

failure loads were overestimated. They concluded that further investigation is required 

since stress-based criteria in XFEM implementation led to what they referred to as “stiffer 

post-cracked behavior” (Duarte et al., 2017). This highlights the importance of accurate 

damage initiation criteria. Therefore, XFEM presents the potential of an efficient 

framework for failure analysis of composites given an accurate failure model or criterion 

is implemented within to surmount over-prediction of failure conditions.  
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Several stress/strain-based failure models have been proposed for failure prediction in 

resins material (Elnekhaily & Talreja, 2018; Talreja, 2014). For instance, Asp et al. (L. E. 

Asp et al., 1996) investigated the crack initiation in three epoxy systems and proposed a 

failure criterion based on the dilatational Strain Energy Density (SED). The uniaxial testing 

results obtained from this study showed good agreement with the benchmark failure 

envelopes proposed by Bauwens (Bauwens, 1970) and Raghava et al. (Raghava, Caddell, 

& Yeh, 1973). On the other hand, the results of three-point bending tests yielded a 

contradicted level of agreement. Another study conducted by Knauss (Knauss, 2012) 

indicated the importance of the dilatational component of strain energy when dealing with 

polymers under a uniaxial state of stress. However, the matrix material in a composite is 

subject to a complex state of stresses (Leif E. Asp, Berglund, & Gudmundson, 1995). 

Hence, further investigations are required to enhance the prediction accuracy of currently 

existing failure criteria of resin materials. 

Despite the numerical complexity in predicting failure of brittle materials such as epoxy, 

especially under a combined state of stress, developing improved damage models is 

increasingly needed as they can provide reliable tools for early design stages. In this 

research, an improved damage initiation criterion is proposed to predict failure in brittle 

materials, particularly in epoxy. The proposed damage model was derived accounting for 

both dilatational and distortional energy densities. Within the framework of XFEM, the 

total SED criterion is implemented in a user-defined damage initiation subroutine 

(UDMGINI) using FORTRAN. Comparisons were held between the proposed damage 

model and available XFEM built-in damage models in Abaqus. For validation of all 
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numerical predictions, neat epoxy resin specimens were prepared and tested under uniaxial 

and three-point bending. Accurate strain measurements were obtained for all tested 

specimens using a high-precision Digital Image Correlation (DIC) system. Also, plastic 

behavior was efficiently captured using synchronized video processing together with 

testing measurements from DIC. Furthermore, failure mechanisms were examined using 

optical microscopic imaging. 

4.3 Theoretical background 

The scope of the current work utilizes the framework of XFEM; hence a brief overview of 

the method is provided. A general three-dimensional elasticity problem as shown in Figure 

4.1 is considered. The domain Ω is bounded by the boundary Γ which composes of three 

sets, namely, Γ𝑢, Γ𝑡 and Γ𝑐 such that Γ = Γ𝑢 ∪ Γ𝑡 ∪ Γ𝑐. The displacements are imposed 

on Γ𝑢, while tractions are imposed on Γ𝑡. 

 

Figure 4.1 Three-dimensional linear elastic cracked body problem 

The equilibrium equations and the constitutive relationships are given by (Eq.4.1)The crack 

surface represented by Γ𝑐 is assumed to be traction-free.  
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∇ ⋅ σ = 0             σ = C: ε           in      Ω (Eq.4.1) 
 

where ∇ is the gradient operator, σ is the Cauchy stress tensor, and 𝐂 is Hooke’s tensor and 

ε is the strain tensor. The prescribed tractions are given by 

σ ⋅ n = 𝑡̅           on      Γ𝑡 (Eq.4.2) 
 

where n is the outward unit normal vector to Γ𝑡. Consequently, for traction free crack 

surface σ .  n = 0. Under the assumptions of small strains and displacements, the kinematic 

equations read 

ε =
1

2
(∇𝑢 +  ∇𝑇𝑢)  ≡ ε(𝑢)         on      Ω (Eq.4.3) 

 

where 𝛆 is the linearized strains and 𝒖 is the displacement field. (Eq.4.1) and (Eq.4.2) along 

with the boundary conditions represent the strong form of the governing equations. In order 

to transform strong formulation of the problem into a weak form which is better suited for 

finite element computations (Moës & Belytschko, 2002), the displacement 𝒖 must belong 

to a set of kinematically admissible displacement fields (T. Belytschko & Black, 1999; 

Melenk & Babuška, 1996; Pommier, Gravouil, & Combescure, 2013). The weak 

formulation for solving equilibrium equations is given by (Eq.4.4) which is solved using 

the Galerkin’s method. The Galerkin’s formulation is the one followed in mainstream FE 

software. 

∫
Ω

σ(𝑢ℎ) ∶ ε(vℎ)dΩ = ∫
Γ𝑡

𝑡̅ ⋅ (vℎ) dΓ (Eq.4.4) 
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The XFEM works by enriching the domain of conventional FE mesh with special shape 

functions to account for the strong discontinuities in the displacement field (e.g., cracked 

surface) as well as the crack tip singularity. The general shape functions of XFEM takes 

the following form  

𝑢ℎ(𝑥) = ∑ 𝑢𝑖

𝑖∈𝐼

𝑁𝑖 + ∑ 𝑏𝑗

𝑗∈𝐽

𝑁𝑗𝐻(𝑥) +  ∑ 𝑁𝑘 [∑ 𝑐𝑘
𝑙 𝐹𝑙(𝑥)

4

𝑙=1

]

𝑘∈𝐾

 (Eq.4.5) 
 

where 𝑢ℎ is the global displacement, 𝑁𝑖 are the shape functions and 𝑢𝑖 are the degrees of 

freedom at node 𝑖. 𝐻(𝑥) is the Heaviside function or jump function to represent 

discontinuity across the crack surface, 𝑁𝑗 are the shape functions related to the discontinuity 

at node 𝑗, while 𝑏𝑗 are the additional degrees of freedom associated to the jump function. 

𝐹𝑙(𝑥) are the crack-tip enrichment functions, 𝑁𝑘 are the shape functions related to the crack-

tip at node 𝑘 and 𝑐𝑘
𝑙  are the additional degrees of freedom related to the elastic asymptotic 

crack-tip enrichment functions.  

The implemented XFEM-based cohesive behavior in Abaqus adopts a damage mechanism 

that allows for crack onset as well as propagation at any material point in the domain Ω. A 

cracked surface Γ𝑐 is introduced in an enriched element using the stress-strain state defined 

by (Eq.3.1) and (Eq.3.3). The damage process consists of two stages, namely, crack 

initiation and damage evolution. The crack initiation points to the cohesive response onset 

of degradation at an enriched element, while the damage evolution stage represents the 

material behavior after a crack is being initiated. In this stage, the material degradation in 

an enriched element is allowed using a bilinear-traction separation law as shown in Figure 
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4.2. 𝑇 and 𝛿 represent the cohesive traction and the separation displacement, respectively. 

The material degradation is introduced to the material stiffness through a scalar damage 

factor 𝐷, where an undamaged material corresponds to a zero value while completely 

damaged material corresponds to a unity value. The damage evolution can be based on 

displacement at failure or fracture energy. 

 

Figure 4.2 Traction-separation law: Damage initiation and evolution. 

Based on literature findings (Abdelaziz & Hamouine, 2008; Fries & Belytschko, 2010; H. 

Li et al., 2018; Yazid et al., 2009), XFEM in its current implementation is well suited for 

crack propagation problems. Hence, damage evolution is not the scope of the current work. 

On the other hand, failure predictions were overestimated using built-in damage initiation 

mechanisms. Built-in damage initiation mechanisms are either stress or strain based which 

may capture the behavior of one aspect at the expense of the other. Therefore, the 

commonly used damage initiation mechanisms are briefly overviewed. Crack initiation 

begins when a specific failure criterion 𝑓 is encountered. The damage initiation is said to 

begin when 𝑓 is equal to unity. The failure criterion defining function is either stress or 

strain based. For convenience, the damage initiation mechanisms are illustrated in terms of 
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stresses while strains follow the same context. Table 4.1 summarizes the three main 

damage initiation mechanisms and their defining equations, the standard Abaqus notation 

is followed. 

Table 4.1 Commonly used damage initiation mechanisms in Abaqus. 

Damage initiation  Symbol Defining equation 
nominal 

values 

Maximum principal 

stress 

(MAXPS) 

𝜎𝑝𝑚𝑎𝑥  𝑓 = {
〈𝜎𝑚𝑎𝑥〉

𝜎𝑚𝑎𝑥
𝜊 } 𝜎𝑚𝑎𝑥

𝜊  

Maximum nominal 

stress 

(MAXS) 

𝑡 𝑓 = 𝑚𝑎𝑥 {
〈𝑡𝑛〉

𝑡𝑛
𝜊 ,

𝑡𝑠

𝑡𝑠
𝜊 ,

𝑡𝑡

𝑡𝑡
𝜊} 𝑡𝑛

𝜊, 𝑡𝑠
𝜊, 𝑡𝑡

𝜊 

Quadratic nominal 

stress 

(QUADS) 

𝑡 𝑓 = {
〈𝑡𝑛〉

𝑡𝑛
𝜊 }

2

+  {
𝑡𝑠

𝑡𝑠
𝜊}

2

+ {
𝑡𝑡

𝑡𝑡
𝜊}

2

 𝑡𝑛
𝜊, 𝑡𝑠

𝜊, 𝑡𝑡
𝜊 

First, the maximum principal stress (MAXPS) which requires one principal value to initiate 

damage, namely, principal stress nominal value 𝜎𝑚𝑎𝑥
𝜊 . The symbol 〈 〉 represents the 

Macaulay bracket which signifies that purely compressive state of stress does not initiate 

damage. The associated stress/strain values are calculated at each material point and 

compared to their nominal values denoted by the omicron superscript symbol. The nominal 

values are the ones required to be determined from material characterization and testing. 

Second, the maximum nominal stress (MAXS) which works by evaluating nominal traction 

stress vector 𝑡 components. In general, three-dimensional problems, 𝑡 has three 

components; a normal component to the crack surface and two shear components  𝑡𝑛 and 

𝑡𝑡. Finally, the nominal quadratic stress (QUADS) which is based on the calculation of a 

quadratic interaction function involving nominal stress ratios as shown in Table 4.1. This 

occurs only when the summation of the quadratic ratios in the defining function is equal to 
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unity. As concluded from references (Duarte et al., 2017; Petrov et al., 2018), stress/strain 

based damage initiation criteria lead to overestimated failure predictions. Hence, a user-

defined damage initiation mechanism is proposed based on the strain energy density (SED) 

coupled with the built-in fracture energy damage evolution of Abaqus. The proposed SED 

damage mechanism details together with the implementation are explained in subsection 

4.4. The detailed analysis and comparisons with testing results are presented in subsection 

4.7. 

4.4 Proposed SED Based Damage Initiation Criterion  

Further clarification on strain energy-based failure criteria is emphasized to substantiate the 

proposed approach. The maximum distortional strain-energy theory which is the basis of 

von Mises failure criterion states that the failure by yielding under a combination of stresses 

occurs when the energy of distortion equals or exceeds the energy of distortion resulting 

from the uniaxial state of stress when the yield strength is reached (Hencky, 1924; Knauss, 

2012; Ukadgaonker & Awasare, 1995; von Mises, 1913). The von Mises criterion is widely 

used to predict failure in ductile materials. The distortional strain energy density 𝑼𝒅 in 

terms of Cauchy’s stress tensor 𝝈𝒊𝒋 and the modulus of rigidity 𝑮 reads as  

𝑈𝑑 =
1

4𝐺
(𝜎𝑖𝑗𝜎𝑖𝑗 −

1

3
[𝑡𝑟(𝜎𝑖𝑗)]2) (Eq.4.6) 

 

On the other hand, in heavily cross-linked epoxy systems (N.B., brittle materials), they are 

characterized by low strain-to-failure capacity. The yielding is suppressed while brittle 

fracture caused by crack growth from cavitation occurs (L. E. Asp et al., 1996; Leif E. Asp 

et al., 1995; Elnekhaily & Talreja, 2018; Talreja, 2014). The distortional energy at a 
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material point for such material is minimal while the hydrostatic effect given by the 

dilatational energy is dominant. The hydrostatic tension could trigger the critical condition 

of the micro-cavitation formation (L. E. Asp et al., 1996; Elnekhaily & Talreja, 2018; 

Talreja, 2014). Once a cavity is introduced into the material it is more likely to initiate a 

crack orthogonal to maximum tensile principal stress causing brittle failure (L. E. Asp et 

al., 1996). Hence, a failure criterion for glassy polymers based on the dilatational energy 

density has been assessed as a yield failure criterion accounting for hydrostatic stress effect 

on deviatoric stress to yielding. Asp et al. (L. E. Asp et al., 1996) proposed a failure 

criterion utilizing the critical value for dilatational SED assuming the material to behave 

linearly elastic and the distortional energy density at a material point to be negligible, which 

is acceptable for brittle materials. The criterion reads as follows 

𝑈ℎ =
1 − 2𝜈

6𝐸
[𝑡𝑟(𝜎𝑖𝑗)]2 = 𝑈ℎ

𝐶𝑟𝑖𝑡 (Eq.4.7) 
 

where 𝑈ℎ is the dilatational SED, 𝜎𝑖𝑗 is the stress tensor and 𝑈ℎ
𝐶𝑟𝑖𝑡 is the corresponding 

critical value at which failure occurs. Their criterion has proven to be in good agreement 

with testing measurements. It can be anticipated that failure can be dominated by either 

distortional or dilatational SED components depending on the material type. However, both 

strain energy componenets should be considered. For example, in the case of brittle 

materials such as heavily cross-linked epoxies; the failure would occur at low strains (less 

than ~2%). This type of failure is said to be brittle where the volumetric distortion is finite 

and is assumed to be negligible while in fact, it should be considered.  
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In the current work, a damage initiation mechanism is proposed and implemented in a user-

defined subroutine in Abaqus based on the total SED, Sih (Sih, 1991) reading as follows 

𝑈𝑐 =
𝑑𝑊

𝑑𝑉
|

𝑐𝑟𝑖𝑡
= ∫ 𝜎𝑑𝜀

𝜀𝑐

0

 (Eq.4.8) 
 

where 
𝑑𝑊

𝑑𝑉
|

𝑐𝑟𝑖𝑡
 represents the critical value of SED, 𝜀 is the uniaxial strain and 𝜎 is the 

corresponding stress. The fracture strain is denoted by 𝜀𝑐. The material toughness is defined 

as the strain energy absorbed by a material to introduce fracture. It is also considered as a 

material property independent of the axes orientation which is necessary to develop a 

failure criterion. In this method, the failure criterion is accounting for both contributions, 

the distortional as well as that of the hydrostatic. Assuming linear isotropy, the total SED 

reads  

𝑑𝑊

𝑑𝑉
|

𝑐
= 𝑈𝒅 + 𝑈ℎ =

1

2
𝜎𝑖𝑗(

𝜎𝑖𝑗

2𝜇
−

𝜆𝛿𝑖𝑗𝜎𝑘𝑘

2𝜇 + 3𝜆
) (Eq.4.9) 

 

where 𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
 represents Lame’s first parameter, 𝛿𝑖𝑗 is the kronecker delta, 𝜇 =

𝐸

2(1+𝜈)
 is the modulus of rigidity and 𝜎𝑘𝑘 denotes the normal stress components. Both 

constants, 𝜆 and 𝜇, can be calculated upon the determination of the elastic modulus and the 

Poisson’s ratio. The determination of the stress components may be quite difficult for a 

complex state of stress. Therefore, one can deal with a uniaxial load case to determine the 

critical value causing failure. This is possible due to the fact that the total critical SED is 

defined in terms of the first and second invariants of stress tensor along with two material 

independent parameters (Timoshenko & J. N. Goodier, 2010). Consequently, it can be 
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utilized as a material property. Unlike most of the available failure criteria which requires 

the determination of four material constants at least. The critical value of the proposed 

criterion is determined using the two material constants and the failure stress under uniaxial 

loading. It is noteworthy of mentioning, that these constants represent the minimum number 

of characterizing a material.  

To this end, a user-defined damage initiation subroutine (UDMGINI) is implemented in 

Abaqus to incorporate a damage mechanism based on total critical SED as a crack initiation 

criterion together with the fracture energy to control damage evolution. The standard 

Abaqus notation is followed throughout the current section. The UDMGINI subroutine 

procedure is presented in Algorithm 4.1. The procedure is repeated for every enriched 

element throughout the FE mesh. First, the material mechanical properties are defined using 

material properties ‘call function’. Namely, the elastic modulus 𝐸, the Poisson’s ratio 𝜈, 

and the critical value of SED, 
𝒅𝑾

𝒅𝑽
|

𝒄
. Second, is the matrices initialization step, in which two 

arrays are defined and zeroed. The first array is the principal stresses array while the second 

is the direction cosines array. Afterwards, the material constants from (Eq.4.9), 𝜆 and 𝜇, 

are evaluated and the utility subroutine SPRIND is then used to calculate the principal 

stresses and their corresponding directions based on the loading conditions of the current 

load step. The calculated values are assigned to the designated arrays. The maximum 

principal stress is then identified using a while-loop. The next step is the evaluation of the 

current value of total SED based on the stresses corresponding to the current load step. The 

condition for damage initiation is checked by comparing the total SED to the critical value 

set for crack initiation. Finally, a while-loop is used to assign the crack direction to be 
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normal to the maximum principal stress reached which is consistent with the testing results 

as will be shown later. 

Algorithm 4.1 Damage Initiation Subroutine (UDMGINI) 

 Input: 𝐸, 𝜈, 𝑈𝑐 

1:  

Initialize:  Initialize matrices ⇾ Set matrices dimensions  

PS(3)  

an(3,3) 

⇾ PS: Principal Stress, an: direction 

cosines 

2:  

PS(1) = ZERO 

⇾ Zeroing Principal stress vector PS(2) = ZERO 

PS(3) = ZERO 

3:  

Evaluate: 𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
   

𝜇 =
𝐸

2(1 + 𝜈)
 

⇾ Material Constants  

4:  Call SPRIND ⇾ Calculate principal values and directions 

5:  Assign calculated principal values to Sig1, Sig2, Sig3 variables 

6:  while K1 = 3, ndi ⇾ Check max value 

7:  if PS(K1) > Sig1 

8:  Sig1 = PS(K1) 

9:  Kmax = K1 

10:  endif 

11:  end while 

12:  Sig_max = Sig1 ⇾ Assign current max. principal stress 

13:  Compute: 𝑼𝒄 ⇾ Using (Eq.4.9) 

14:  if  (𝑼𝒄/𝑃𝑟𝑜𝑝𝑠(1)) >1 ⇾ Check if the failure criterion is met 

15:  while K1 = 1, ndi  

16:  Fnormal(K1,1) = an(Kmax, K1) ⇾ Assign crack direction 

17:  end while  

18:  return 

19:  end 

For validation, two three-dimensional FE models were used to assessing the proposed 

damage initiation criterion. The two models are simulating uniaxial and three-point bending 

tests, respectively, to test the proposed damage mechanism under different types of loading. 

The following section illustrates the FE modeling aspects. 
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4.5 Finite Element Modeling  

Three-dimensional FE models were considered to assess further stress and strain-based 

damage initiation mechanisms as well as the proposed total SED damage mechanism. The 

first model is considering a uniaxial loading state of stress while the second is considering 

a combined state of stress that is of a prism under three-point bending. FE model geometries 

for tensile and bending specimens are based on the test samples prepared according to 

(ASTM D638-14, 2014) and (ASTM-D790-17, 2017), respectively. Schematic diagrams 

showing both test setups and loading conditions are provided in Figure 4.3. The arrows on 

the schematic diagrams indicate the applied displacement direction in each model. For the 

uniaxial loading model, the specimen was fixed at the lower end and displacement was 

applied to the top end. The two tabs of the specimens were constrained as rigid bodies. As 

for the prism under three-point bending, three rollers were defined to be rigid bodies. The 

bottom rollers were fixed in all directions while the top one was limited to move along the 

vertical direction only. The friction coefficient defining the contact property between the 

prism and rollers was taken 0.1 as recommended by the Abaqus manual (Abaqus 

Documentation, 2014). A general static analysis step was selected to perform the 

simulations in both models with automatic incrementation. The initial increment size was 

set to 0.1 with a minimum increment size of 1E-30. 
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Figure 4.3 Tension test and three-point bending test schematic diagrams 

The material linear behavior was defined by the elastic modulus 𝐸 and the Poisson’s ratio 

𝜈. The material module in Abaqus defines the plastic behavior using inelastic strains and 

their corresponding stresses. A solid homogeneous section was selected in both models 

with 8-noded linear three-dimensional brick elements, namely (C3D8R). The element uses 

reduced integration with hourglass control for optimizing computational efficiency with 

acceptable predictions accuracy. Based on displacements and stress convergence studies 

the sufficient mesh size was determined to be 4720 and 3275 elements for uniaxial and 

three point bending cases, respectively. 

Analyses were performed with the intention to assess built-in failure mechanisms (section 

4.3) together with the proposed SED mechanism compared to testing. In order to delineate 

the effect of damage initiation mechanisms on predictions results solely, the damage 
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evolution was controlled using fracture energy in all simulations to ensure a frame of 

reference for comparisons. 

4.6 Material and Mechanical Testing 

The epoxy material was obtained as neat resin epoxy plate from Polynt Composites Canada, 

Inc. The epoxy resin type was LamPoxy61 with a LamCat61 hardener. Both the resin and 

the hardener were mixed by a composition weight ratio of 6:1. The physical properties of 

the mixture are listed in Table 4.2 as provided by the manufacturer. 

Table 4.2. Polynt LAMPOXY61physical properties at 25 οC 

Lamination Epoxy 

properties 

Resin material 

EPO-LAMPOXY 61 

Hardener material 

EPO-LAMCAT 61 

Viscosity (mPs) 1200-1400 25-50 

Density (g/ml) 1.09-1.12 0.96-0.98 

Weight (%) 85.72 14.28 

Shelf life (days) 90 

Pot life (mins) 15-25 

Tack free (mins) 200-300 

In order to minimize surface flaws, the plate was milled down to the desired thickness of 

each test specimen. The profile geometries of the dog-bone and the prismatic specimens 

are shown in Figure 2.4. A set of six specimens was machined to the designated dimensions 

recommended by each ASTM standard. All the specimens were prepared from the same 

plate to ensure consistency of the tested material. 
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Figure 4.4 (a) Dog-bone specimen profile. (b) Prism specimen profile. 

Assuring a high precision measurement method is indispensable dealing with a brittle 

material (i.e., low strain-to-failure) such as heavily cross-linked epoxy. Specimens were 

tested in an Instron E10000 load-frame employing an advanced video extensometer system 

for strain measurements. The system utilizes high precision non-contacting digital image 

correlation (DIC) displacement measurement with a resolution of 0.5±0.01 microns. 

Furthermore, the full-field strain measurements were synchronized with video recordings 

to identify the onset of yielding as will be elaborated in the following section.  The dog-

bone specimens we marked with sets of two circles along the longitudinal and lateral 

directions, respectively. These markings were used by the video extensometer to measure 

strains in both directions as shown in Figure 4.5a. The correlation between the 

deformations along the two orthogonal directions results in the determination of Poisson’s 

ratio. As for the prisms under three-point bending, the specimens were marked with a circle 

at the prism’s center that is correlated to a fixed reference mark as shown in Figure 4.5b.  
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Figure 4.5 (a) Uniaxial test setup. (b) Three-point bending setup.  

In the following section, results from testing are compared to those of FE modeling using 

conventional damage initiation mechanisms (subsection 4.3) and using the proposed user-

defined damage initiation subroutine (subsection 4.4) based on total SED. 

4.7 Results and Comparisons 

4.7.1 Material Characterization 

A set of six specimens were used for characterization of the heavily cross-linked plain 

epoxy. The tested material had a linear elastic behavior up to approximately 2.1% strain 

followed by nonlinear plastic deformation and sudden failure at approximately 2.4% strain. 

All fractured surfaces were normal to the load application direction (i.e., brittle failure).  

The testing results were averaged and used as material input parameters in FE models. The 

material averaged properties read as follows; the modulus of elasticity 𝐸 = 3.31 GPa, the 

Poisson’s ratio 𝜈 = 0.36 and the fracture energy 𝐺𝑓 =1.99 N.m. The fracture energy was 

evaluated from area under load-displacement curves (D5045-99, 2013). Identifying the 

yield point of the highly cross-linked epoxy material is quite problematic due to low strain-

to-failure capacity. To overcome this challenge, the entire loading procedures were video 
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recorded synchronically with the video extensometer testing mesurements. The video data 

were analyzed by means of image processing to identify the yield point using the stress-

whitening caused by plasticity. In other words, the first timeframe showing discoloration 

was considered as the onset of plastic deformation. Different images of the monochromic 

video at specifc timeframes are portrayed in Figure 4.6. A gradual plastic deformation can 

be observed on the specimen going from one timeframe to another. The discoloration or 

the stress-whitening can be easily correlated to the onset of plastic deformation (yield 

point). The specimen started to undergo plastic deformation at the time frame of 225 sec. 

Synchronizing the test mesurements with first timeframe image showing the stress 

whitneing the yield point was efficiently indentified. 

 

Figure 4.6 Discoloration caused by plasticity at different time frames for uniaxial testing 

The following subsections are devoted for comparisons of testing measurements against 

FE predictions. The built-in damage initiation criteria together with the proposed total SED 

damage initiation mechanism were further assessed in the current work. Also, a fracture 
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surface investigation on failed specimens compared to FE predictions is provided. Finally, 

a closer investigation on the fractured surface is conducted using microscopic imaging is 

provided in following subsections. 

4.7.2 Uniaxial loading 

The epoxy dog-bone specimens were prepared for testing under tension according to 

ASTM D638-14. The specimens were fixed from both ends as shown in Figure 4.5a. 

Considering the brittleness of the heavily cross-linked epoxy the loading rate was set to 0.1 

mm/min which is the minimum rate recommended by the testing standard. The distances 

between markings are based on the gauge lengths provided in the testing standard. Namely, 

25 mm for markings along the longitudinal direction and 12 mm along the lateral direction. 

The local displacement between the markings was measured using the advanced video 

extensometer for axial strains while the lateral markings were used to measure lateral 

strains for Poisson’s ratio evaluation. The axial load-displacement results are presented in 

Figure 4.7. As can be observed, the load-displacement curves hold a linear relation to 

approximately 90% of the failure load. The maximum and the minimum failure 

displacements had the values of 0.706 mm and 0.551 mm, respectively. Correspondingly, 

the peak of failure loads was 4734 N while the lowest was 4546 N.   
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Figure 4.7 Load vs. relative displacement from video extensometer (uniaxial tension) 

It can be noticed that the behavior of different specimens in the linear region is almost 

identical. Also, the plastic behavior of each specimen is following the same trend. All 

specimens had an unstable brittle failure with fractured surfaces normal to the load 

application direction. Observed failure loads had slight variations within approximately 5% 

while failure displacements had significant variations of approximately 20%. Table 4.3 

presents the mechanical failure properties, namely failure loads, tensile stresses and failure 

displacements. 

Table 4.3. Failure limits for uniaxial tensile specimens  

Specimen 

number 

Failure Load 

 (N) 

Tensile stress  

(MPa) 

Failure displacement 

(mm) 

T1 4686 59.71 0.704 

T2 4703 60.22 0.708 

T3 4546 57.87 0.551 
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T4 4716 60.35 0.687 

T5 4734 60.41 0.686 

T6 4720 60.46 0.654 

The FE predictions using currently available damage initiation criteria together with the 

proposed SED damage mechanism were compared against the averaged testing results from 

the uniaxial test. The comparison results in terms predicted load-displacement curves are 

presented in Figure 4.8. The average testing results are shown with markers while FE built-

in damage mechanisms predictions are presented with different types of black lines. 

Finally, predictions using the proposed SED damage mechanism are presented using a 

dashed red line. 

 

Figure 4.8. Load vs. relative displacement FE predictions compared to testing results 

Currently, available damage initiation mechanisms showed an overestimation of failure 

loads while the failure displacements were underpredicted. The proposed SED damage 
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mechanism predicted both failure load and displacement with minimal error. A quantitative 

comparison between all failure mechanisms compared to the average testing data is 

documented in Table 4.4. The highest predicted failure loads were recorded by MAXPS 

and QUADS with 6% error from the testing data. The proposed SED damage mechanism 

slightly underpredicted the failure load with -0.4% error. Regarding failure displacements, 

all damage mechanisms underestimated the failure displacements. The maximum error, 

approximately -20%, was recorded by the MAXPE damage mechanism while the lowest, -

1.5%, was recorded by the proposed SED damage mechanism.  

Table 4.4. FE predictions (uniaxial): Failure loads, displacements and percentage error. 

Damage Initiation Mechanism 

Failure 

Load 

(N) 

Error % 

Failure 

displacement 

(mm) 

Error % 

MAXE 4914  4.1 0.565 -16.7 

MAXPE 4788  1.5 0.543 -19.9 

MAXPS 5000  6.0 0.610 -10.0 

MAXS 4857  2.9 0.601 -11.4 

QUADE 4950  4.9 0.577 -14.9 

QUADS 5000  6.0 0.612 -9.7 

Proposed SED  4702 -0.4 0.668 -1.5 

Different damage initiation models were also compared by inspecting their associated 

failure surfaces together with the von Mises contour plots. Both stress-based damage 

initiation models, namely, MAXS and MAXPS showed fractured surfaces that are more 

like a cup and cone as depicted in Figure 4.9a and Figure 4.9c which was in contradiction 

with testing observations. The strain-based damage initiation models, namely, MAXE and 

MAXPE showed three parallel cracked surfaces normal to the load application direction as 

shown in Figure 4.9b while in fact, there is only one failure surface. The proposed SED 
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damage initiation model introduced in the current work showed a single fracture surface 

orthogonal to the load application direction as shown in Figure 4.9d. The proposed 

mechanism predicted a realistic failure surface matching experimental observation. As can 

be observed from Figure 4.9, there is a small variation in the von-Mises value for using 

each mechanism. The most conservative one is the SED mechanism, while the least 

conservative ones are MAXPS and QUADS. The proposed SED mechanism efficiently 

captured the residual stresses in the vicinity of the fractured surfaces while other built-in 

damage mechanisms failed to account for the same behavior. 

 

Figure 4.9 Failure surfaces profiles (a, b, and c) built-in mechanisms (d) the proposed SED 

mechanism.   
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The plastic deformations in specimens were efficiently captured using simple image 

processing. A monochromic image of specimen number 4 (uniaxial loading) after failure is 

compared to a monochromic contour plot of residual plastic strains using the proposed SED 

damage as presented in Figure 4.10. As can be seen, the residual plasticity predicted by the 

introduced damage model is in excellent agreement compared to discoloration resulting 

from plastic deformation in the specimen. 

 

Figure 4.10 Plastic strains contour plot using proposed SED damage compared to discoloration from 

testing. 

The failed specimens from uniaxial load testing were examined using optical microscopic 

imaging. The fractured surfaces showed crazes of cracks originating from micro-cavitation 

as presented in Figure 4.11. Micro-cavitation was observed towards the edges of the cross-

section implying that the macroscopic crack moved from one side of the specimen inwards 

till fracture. Inspecting the micro-cavitation, their diameters were approximately 60~70 

microns. The cracks were spread in a plane normal to the load application direction 

followed by rapid growth leading to the brittle failure. The direction of the crack growth is 

found to be in a plane normal to the applied load direction. This, in fact, emphasizes the 

importance of using a damage initiation criterion that accounts for the hydrostatic strain 

energy density component being the one dominating failure. 
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Figure 4.11 Specimen T1 Failure surface microscopic image 

4.7.3 Three-point bending loading 

To further investigate the heavily cross-linked epoxy, six prisms were tested under three-

point loading according to ASTM D790-17. The loading rate was determined based on the 

specimen geometry as recommended by the testing standard (0.5 mm/min). Prismatic 

specimens were placed on standard roller supports attached to the load frame base. Same 

type of rollers was used for load application on top of the specimen mid-span. Center mark 

was placed on the specimen in addition to another on a fixed reference to measure the total 

relative deflection. The load-deflection testing results obtained from testing are provided 

in Figure 4.12. As can be observed, the linear relation dominates the behavior of all 

specimens. Some specimens showed almost brittle failure while the rest showed moderate 

plastic deformation before going into final failure. A peak failure load of approximately 

1500 N was recorded by specimen B5 while the maximum failure displacement was 2.4 
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mm. on the other hand, the minimum failure load had a value of approximately 1200 N 

which was recorded by specimen B6 while the maximum failure displacement was 1.4 mm. 

 

Figure 4.12 Load vs. relative displacement from video extensometer (three-point bending) 

The variation of failure load is quite significant contradicting with the uniaxial loading case, 

approximately 25% which can be associated to the complex state of stress. Also, the failure 

displacement variation is more noticeable with approximately 40%, which rationalize the 

need of a failure criterion accounting for such performance. Table 4.5 presents the 

mechanical failure properties, namely failure loads, flexural stresses and failure deflections. 
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Table 4.5. Failure limits for three-point loading specimens. 

Specimen 

number 

Failure load  

(N) 

Flexural stress  

(MPa) 

Failure 

Deflection  

(mm) 

B1 1223 97.69 1.519 

B2 1483 118.49 1.944 

B3 1525 121.83 2.375 

B4 1203 96.12 1.563 

B5 1561 124.67 2.414 

B6 1164 92.99 1.425 

The FE predictions from the three-point bending model using the currently available 

damage initiation criteria together with the proposed SED damage mechanism are 

compared to the averaged testing results as depicted in Figure 4.13. As can be observed 

from the comparison, all built-in damage initiation mechanisms overestimated failure loads 

with errors varying from 2.9% to more than 10% error.  
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Figure 4.13 Load vs. deflection FE predictions compared to testing results. 

Predicted failure deflections are compared against the average testing measurements. Two 

mechanisms underestimated the failure deflections, namely, MAXE and MAXPE with 

approximate errors of -5% and -8%, respectively. The proposed SED damage mechanism 

predicted both failure load and deflection with lower bounds. The percentage errors in 

failure load and deflection were -1% and -2.4%, respectively. Detailed failure loads and 

deflections with corresponding errors are documented in Table 4.6. The proposed SED 

damage mechanism is more conservative than the built-in damage mechanisms with lower 

errors in predicting both failure loads and deflections. 
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Table 4.6. FE predictions (three-point loading): Failure loads, deflections and percentage error. 

Damage 

Initiation 

Mechanism 

Failure  

load 

(N) 

Error % 

Failure  

deflection  

(mm) 

Error % 

MAXE 1570 2.9 2.069 -5.2 

MAXPE 1602 5.0 2.009 -7.9 

MAXPS 1656 8.5 2.280 4.5 

MAXS 1637 7.3 2.400 10.0 

QUADE 1637 7.3 2.520 15.5 

QUADS 1682 10.2 2.600 19.1 

Proposed SED 1511 -1.0 2.130 -2.4 

Regarding the predicted failure surfaces using FE simulations, all built-in damage 

mechanisms together with the proposed mechanism efficiently predicted a failure surface 

parallel to the prismatic model cross-section. The lower mid-segment is the critical cross-

section of a prism under three-point loading. The failure initiated in the lower mid-segment 

of the prism as can be observed from Figure 4.14. 

 

Figure 4.14 Von Mises contour plot and initiated crack location using proposed SED damage 

mechanism 

The plastic strains contour plot from FE predictions using the proposed SED damage 

mechanism is presented in Figure 4.15a while the corresponding monochromic image of 

fracture specimen, B5, is presented in Figure 4.15b. As can be observed by simple 
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comparison, the proposed SED damage mechanism efficiently predicted plastic strains as 

well as the failed surface. 

 

Figure 4.15 Plastic strains: (a) proposed SED results (b) Specimen B5 monochromic image showing 

whitening. 

The prismatic specimens under three-point loading had different failure behaviors. Three 

specimens had a linear behavior until failure. Namely, specimens 1, 4 and 6. The rest of the 

specimens manifested localized plastic deformation before failure as can be observed from 

Figure 4.12. To further investigate, the fractured surfaces were closely examined using 

optical microscopy. Figure 4.16 portrays two of the fractured specimens (B3 and B4) and 

the corresponding fracture surface microscopic images. First, specimen B3 went through 

significant plastic deformation ahead of final failure. The plastically deformed region 

(whitened) can be observed from Figure 4.16a. Almost half the depth of the cross-section 

experienced a plastic deformation followed by crazes of cracking indicating that the final 

failure was of brittle manner. On the other hand, specimen B4 experienced a slight local 

plastic deformation originating from a micro-cavitation and expanding radially with many 

crazes of cracking initiating from the same locus. It can be said that the brittle behavior 

dominated the failure process from the beginning. 
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Figure 4.16 Failure surface microscopic image: (a) specimen B3 (b) specimen B4. 

4.8 Conclusions 

This paper proposed an improved damage model in the framework of XFEM to predict 

failure in heavily-cross linked epoxies. The SED based damage initiation criterion was 

developed and implemented in a UDMGINI subroutine. Comparisons against currently 

available damage initiation criteria in Abaqus were performed. For validation, a parallel 

experimental effort for both uniaxial and bending loading tests was conducted. Advanced 

techniques, precise measurements and post-failure analysis were also provided. In 

particular, high precision DIC system with synchronized monochromic video recording 

enabled precise yielding identification. 

Further inspection of failed specimens using fractographic analysis was conducted using 

optical microscopic imaging. The existence of micro-cavitation was reported in all 

specimens concurring with literature findings. Crazes of cracks were observed originating 

from micro-cavitation signifying brittle failure superiority and confirming the need to 
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account for dilatational SED component. Under a complex state of stress, a potential plastic 

zone was observed which highlights the importance of the distortional SED component as 

well. In turn, fractographic analysis emphasized the importance of using a damage initiation 

criterion that accounts for the hydrostatic as well as the distortional SED components.  

From comparisons with testing, the proposed SED damage model demonstrated accurate 

prediction of damage initiation, propagation and the potential development of plastic 

strains. It can be concluded that the proposed SED damage in comparison to available 

damage criteria in Abaqus showed; 

- Absolute minimum error in predictions when compared to both uniaxial and 

bending testing. 

- Prediction results proved to be conservative under predicting both failure loads and 

displacements. 

- Applicable to different loading scenarios and complex stress states accounting for 

total SED. 

- Obtained results were accurately consistent in predicting both failure loads and 

displacements while built-in damage criteria reflected contradicting levels of 

accuracy in predicting loads versus those of displacements. 

- In bending, all built-in criteria together with the proposed SED criterion predicted 

a realistic fracture surface. In uniaxial tension, built-in criteria failed to predict the 

correct fracture surface while the proposed SED criterion predicted a realistic 

fracture surface. 

Therefore, the proposed model and its implementation is recommended for failure analysis 

of composites with heavily cross-linked epoxies. Also, it worth noting that the proposed 

model is applicable to brittle materials characterized by low strain-to-failure (i.e., less than 

3% strain). 
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5 Standard Mechanics Approach to Predict Effective Mechanical 

Behavior of Porous Sintered Steel Using Micromechanical RVE-

based Finite Element Modeling 

 

5.1 Abstract  

This article proposes a standard approach Representative Volume Element (RVE)-based 

micromechanical model to predict effective elastic-plastic behavior of porous metals in the 

low range porosity, i.e. less than 10%. Three-dimensional RVE model was used to validate 

the proposed micromechanical modeling approach. The size effect of holes representing 

micro-porosity as well as the uniform and random distributions in RVEs were investigated. 

The results indicated the number of holes had a slight effect on predicting the linear 

behavior while in the plastic domain the influence was significant. Validation against 

testing results at three porosity fractions in the low range is provided. The proposed 

micromechanical model proved to be in excellent agreement with testing results from 

literature with maximum approximate errors of 2% and 4% in predicting the modulus of 

elasticity and the yield stress, respectively.  

5.2 Introduction 

Additive manufacturing (AM) or three-dimensional (3D) printing is a lay-up process of 

joining materials to construct parts from 3D modeling. Metallic 3D printing has been 

rapidly emerging in many engineering fields such as mechanical, aerospace and biomedical 

(Cheng & Ghosh, 2015; Mercelis & Kruth, 2006). The main advantage of 3D printing is 

manufacturing complex geometry parts while minimizing material waste (Attaran, 2017; 

Sercombe et al., 2015; B. Song et al., 2015; S. L. Su, Rao, & He, 2013; Szost et al., 2016). 
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However, this advanced manufacturing process results in decreased pore size to micro 

levels which may considerably influence the mechanical behavior (Attaran, 2017; Chawla 

& Deng, 2005; Frazier, 2014; R. A. Hardin & Beckermann, 2013; R. a Hardin & 

Beckermann, 2011; Richard A. Hardin & Beckermann, 2007; HASSELMAN, 1963; 

Jagota, Hui, & Dawson, 1987; P. Liu, Fu, Li, & Shi, 1999; Morin, Michel, & Leblond, 

2017). Therefore, accounting for micro-porosity effect on the mechanical behavior is 

essential for design stages. As a result, the effective modulus of porous materials has been 

extensively studied in the literature, and many empirical models were developed (Debboub, 

Boumaiza, & Boudour, 2012; Dewey, 1947; MACKENZIE, 1949; Roberts & Garboczi, 

2000; Saimoto & Thomas, 1986; S. L. Su et al., 2013; Sumitomo, Cáceres, & Veidt, 2002). 

However, most analytical models cannot account for geometrical variations at the 

microscale and are limited to linear behavior (Oliver, Caicedo, Huespe, Hernández, & 

Roubin, 2017; Omairey, Dunning, & Sriramula, 2018). 

The commonly referenced model for porous metal plasticity is the Gurson-Tvergaard-

Needleman (GTN) model which was originally proposed by Gurson (Gurson, 1977) and 

later extended by Tvergaard and Needleman (Tvergaard & Needleman, 1984). The model 

is micromechanically based on a cube with a central void to predict damage of porous 

metals in the low range porosity, i.e. less than 10% (Abaqus Documentation, 2014). GTN 

model can be used to study void growth and nucleation in porous metals however it requires 

the plastic behavior to be defined as a material input. Also, to predict nucleation and void 

growth nine material specific parameters are to be defined (Abaqus Documentation, 2014; 

R. A. Hardin & Beckermann, 2013; R. a Hardin & Beckermann, 2011; Richard A. Hardin 
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& Beckermann, 2007). Defining the material parameters entails substantial testing effort.  

Moreover, simulation runtime associated with a specimen sized model can be several days 

(R. A. Hardin & Beckermann, 2013). Nevertheless, the model does not predict the change 

in linear behavior due to micro-pores implying that further analysis is required to determine 

the effective modulus. 

On the other hand, computational methods such as finite element analysis (FEA) have 

proven versatility in investigating mechanical behavior at different scales (e.g., micro, meso 

and macro) (Matouš, Geers, Kouznetsova, & Gillman, 2017). Rapidly emerging multiscale 

modeling techniques became indispensable for more precise and accurate predictions in 

material science (Leszczynski & Shukla, 2010). The multiscale modeling process is 

hierarchical by nature, aiming to study the material behavior at one scale (e.g., microscale) 

to predict the behavior at another (e.g., meso/macro-scale) (Collini, L., & Nicoletto, 2005; 

Dæhli, Faleskog, Børvik, & Hopperstada, 2016; GAO, WANG, LIU, & ZHUANG, 2017; 

Guidault, Allix, Champaney, & Cornuault, 2008; Leszczynski & Shukla, 2010; Matouš et 

al., 2017; Oliver, Caicedo, Roubin, Huespe, & Hernández, 2015; Schmitz & Horst, 2014; 

Schneider, Klusemann, & Bargmann, 2016; Talebi, Silani, Bordas, Kerfriden, & Rabczuk, 

2014; Toro et al., 2016; J. Zhang, Koo, Subramanian, Liu, & Chattopadhyay, 2016). For 

example, Collini and Nicoletto (Collini, L., & Nicoletto, 2005) utilized an FEA model to 

determine the relationship between microstructural performance and the constitutive 

behavior of nodular cast iron. Also, micromechanical FE simulations were used to validate 

porous plasticity models for ductile materials as in the work of Morin et al. (Morin, 

Leblond, & Kondo, 2015; Morin et al., 2017) and Mbiakop et al. (Mbiakop, 
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Constantinescu, & Danas, 2015). All these studies commonly investigated the 

microstructural effect on mechanical behavior and reported satisfactory results. A 

commonly used micromechanical modeling approach is the representative volume element 

(RVE) homogenization method (Rodney Hill, 1963). The RVE is commonly defined as the 

smallest volume over which the material properties can be measured to represent the global 

properties (Elnekhaily & Talreja, 2018). The RVE-based FE simulations were used to 

predict effective behavior of solid materials with void inclusions (Babu, Mohite, & 

Upadhyay, 2018; Dong, 2016; Ghayoor, Hoa, & Marsden, 2018; Gitman, Askes, & Sluys, 

2007; Hosseini-Toudeshky & Jamalian, 2015; Nguyen, Lloberas-Valls, Stroeven, & Sluys, 

2011; Oliver et al., 2017). For example, RVE with spheroidal/spherical inclusions was 

proposed to model the micromechanical behavior of sintered produced porous titanium 

materials under compression (Soro et al., 2018). The predicted elastic properties were in 

good agreement with the Mori-Tanaka model (Mori & Tanaka, 1973), yet overestimating 

experimental results by approximately 20%. In general, RVE-based FE simulations have 

proven effectiveness in micromechanical investigations. However, RVE modeling process 

is time consuming and requires relatively high computational effort especially in three-

dimensional domains (Elnekhaily & Talreja, 2018; Omairey et al., 2018). Also, prediction 

results are significantly influenced by microstructural representative size (Babu et al., 2018; 

Biswas & Poh, 2017; Cheng & Ghosh, 2015; Mirkhalaf, Andrade Pires, & Simoes, 2016; 

Yu et al., 2018). Besides, these simulation results are susceptible to mesh convergence as 

well as boundary conditions (BCs). These challenges motivated the current study to present 
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computationally effective micromechanical modeling approach emphasizing the RVE size 

and mesh quality effects. 

Therefore, the effective macroscopic behavior of porous material is predicted from the 

material’s microstructure. The computationally efficient standard mechanics approach is 

proposed to predict the mechanical behavior of porous materials using micromechanical 

RVE-based FEA. The proposed approach predicts the elastic-plastic behavior of porous 

material given the dense material behavior under the assumption of small deformations, i.e. 

less than 10%. A thorough investigation regarding the size and distribution of pores in the 

microstructure was conducted. Also, adequate structured meshing technique using different 

types of elements for RVE modeling is provided. The model requires minimal material 

parameters, i.e. dense material stress-strain curve, to predict effective elastic-plastic 

behavior of the porous one. FE predictions were validated against testing results at different 

volumetric porosity fractions in the low range porosity, i.e. less than 10%, results were in 

excellent agreement. 

5.3 Theoretical Background  

The RVE concept entails large enough volume representing the material and small enough 

to emulate the microstructure in consideration (Pelissou, Baccou, Monerie, & Perales, 

2009). This concept can be achieved either by experimental observations or by validating 

numerical analysis with testing results (Liang, Li, Yu, Jiang, & Zhang, 2012). Also, the 

numerical response of the RVE must be independent of applied BC, i.e. uniform tractions 

or displacements. These homogenization requirements resulted in the development of the 

commonly used periodic boundary conditions (PBC). Usually, a node-to-node PBC is 
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applied in homogenization modeling to enable accurate predictions of the effective stiffness 

properties, i.e., linear behavior. Further details on PBCs application techniques can be 

found in (Gitman et al., 2007; Mirkhalaf et al., 2016; Omairey et al., 2018). An alternate 

approach for applying BCs on RVEs is the standard mechanics approach. This approach is 

utilized when both linear and plastic behaviors are anticipated. In the current work, RVE-

based standard mechanics approach is used to estimate not only the effective stiffness but 

also, the entire effective stress-strain behavior in both linear and plastic domains.  

5.3.1  Standard Mechanics Approach 

The proposed RVE-based standard mechanics approach is analyzed using uniform 

displacement BC to produce an average strain within the homogenized material. The 

governing equation can be written using the divergence theorem (Rodney Hill, 1963) as 

𝜀𝑖̅𝑗 =
1

|𝑉𝑅𝑉𝐸|
∫ 𝜀𝑖𝑗𝑑𝑉𝑅𝑉𝐸 =

𝑉𝑅𝑉𝐸

∫
1

2
(𝑢𝑖𝑛𝑗 + 𝑢𝑗𝑛𝑖)𝑑Γ𝑅𝑉𝐸

Γ𝑅𝑉𝐸

 (Eq.5.1) 
 

where 𝜀𝑖̅𝑗 is the average strain tensor, 𝑉𝑅𝑉𝐸 is the RVE volume, 𝜀𝑖𝑗 is the local strain tensor, 

and Γ𝑅𝑉𝐸 is the element boundary. 𝑢𝑖 and 𝑢𝑗  are the imposed displacements on the RVE 

boundary while 𝑛𝑖 and 𝑛𝑗  are the normal unit vectors. Similarly, the average stress relation 

to the imposed tractions reads as 

𝜎𝑖𝑗 =
1

|𝑉𝑅𝑉𝐸|
∫ 𝜎𝑖𝑗𝑑𝑉𝑅𝑉𝐸 =

𝑉𝑅𝑉𝐸

∫
1

2
(𝑡𝑖𝑦𝑗 + 𝑡𝑗𝑦𝑖)𝑑Γ𝑅𝑉𝐸

Γ𝑅𝑉𝐸

 (Eq.5.2) 
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where 𝜎𝑖𝑗 is the average stress tensor, 𝜎𝑖𝑗 is the local stress tensor, 𝑡𝑖 and 𝑡𝑗 are the imposed 

tractions while 𝑦𝑖 and 𝑦𝑗 are elemental boundary local coordinates. The imposed 

displacements or tractions defined by (Eq.5.1) and (Eq.5.2) are generally chosen to be 

uniform (Hollister & Kikuchi, 1992). Consequently, the local strain in RVE is evaluated 

using the standard weak formulation of equilibrium equations. The material behavior was 

defined for a general state of stress using the Ramberg-Osgood relationship (Ramberg & 

Osgood, 1943) 

𝐸𝜀𝑖𝑗 = (1 + 𝜈)𝜎𝐷𝑒𝑣 − (1 − 2𝜈)𝜎𝐻𝑦𝑑𝐼 +
3

2
𝛼 (

𝜎𝑀𝑖𝑠𝑒𝑠|𝑒𝑞

𝜎𝑦
)

𝑚−1

𝜎𝐷𝑒𝑣 (Eq.5.3) 
 

where 𝐸 is the modulus of elasticity, 𝜈 is the Poisson’s ratio and 𝐼 represents the identity 

matrix. The hydrostatic stress, 𝜎𝐻𝑦𝑑, and the deviatoric stress, 𝜎𝐷𝑒𝑣 are defined by (Eq.5.4)  

and (Eq.5.5), respectively. The equivalent Mises stress is denoted by 𝜎𝑀𝑖𝑠𝑒𝑠|𝑒𝑞 while the 

yield stress is denoted by 𝜎𝑦. Finally, the yield offset is defined by 𝛼 while 𝑚 is the 

hardening exponent of the plastic region, i.e. 𝑚 > 1). 

𝜎𝐻𝑦𝑑 =
1

3
𝑡𝑟(𝜎𝑖𝑗) (Eq.5.4) 

 

𝜎𝐷𝑒𝑣 = 𝜎𝑖𝑗−𝐻𝑦𝑑 (Eq.5.5) 

5.4 Micromechanical Finite Element Modeling  

Micromechanical models are known for intensive computational efforts due to the required 

element size presenting micro-features. Consequently, leading to a large number of 

elements in a convergent mesh specifically in three-dimensional domains. Minimizing 
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computational effort while maintaining accurate results is targeted in the proposed work. 

Consider the infinitesimal element with micro-pores from a dog-bone specimen under 

uniaxial loading as shown in Figure 5.1a. This element is modeled using both three and 

two dimensional RVE models representing the total micro-porosity fraction using a center 

sphere and hole, respectively. Both three and two dimensional RVEs predictions were 

compared to validate plane stress/strain assumptions. The constructed three-dimensional 

RVE model cutaway is shown in Figure 5.1b. The cube side length is 100 microns while 

the void radius is approximately 28 microns which represents a 0.1 porosity fraction. Eight-

noded linear hexahedral elements with reduced integration, namely C3D8R, were used for 

meshing the RVE model. Stress based mesh convergence study led to a mesh size of 103872 

elements with a total number of unknowns 326832. On the other hand, the two-dimensional 

RVE had a side length of 100 microns with an 18 microns radius for the center hole 

corresponding to a 0.1 porosity fraction as shown in Figure 5.1c. The convergent mesh had 

3076 quadrilateral elements which are approximately 3% of what is required by three-

dimensional one, details of two-dimensional RVE meshing are discussed in the following 

paragraph. Average true stress-strain data from both models were compared, and results 

were in an excellent agreement. Therefore, the two-dimensional RVE modeling was 

adequate for the proposed micromechanical model based on their cost-effective 

characteristics. 
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Figure 5.1 (a) Infinitesimal element with micro-pores (b) RVE mesh with single spherical void (c) 

RVE mesh with a center hole. 

Plate with a center hole accounting for total microscopic porosity fraction was considered 

for modeling. Stresses in the vicinity of holes are significantly increased, given these stress 

concentration regions (Perumal, Tso, & Leng, 2016). Also, FEA predictions accuracy is 

strongly related to mesh size. Verification analysis was conducted regarding element type, 

aspect ratio and corner angles to ensure a high quality mesh. First, quadrilateral elements 

are known for better predictions compared to triangular ones (Reddy, 2014). Hence, it was 

attentively preferred for the current micro-structural analysis investigation. Two 

quadrilateral elements were compared based on plane stress/strain assumptions, namely 

CPS4R and CPE4R, respectively. Both elements follow the same formulation with a slight 

difference correlated to the associated assumption. The plane stress scenario neglects the 

out-of-plane stresses while the plane strain assumes zero out-of-plane relative 

displacements. The main challenge of using quadrilateral elements is conforming to 

complex geometries. To overcome this challenge, structured meshing technique was 

followed using appropriate partitions and manual seeds. As can be seen from Figure 5.2a, 
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a circular partition circumscribing the center hole enabled a high-quality mesh around the 

center hole. Smooth transition from the circular border to sharp corners of the RVE model 

was supported using an octagon shaped partition. Edges for each closed region were 

manually seeded the number of elements. Triangular elements were successfully avoided 

in meshing the all RVE-based models, Figure 5.2b shows the structured convergent mesh 

of 3076 quadrilateral elements with a total number of unknowns 7542. The average 

elemental aspect ratio along with the deviation from a right-angled corner were 

approximately 1.44 and 5ο, respectively. Noteworthy to mention that the total number of 

unknowns in the two-dimensional model is approximately 2.3% of what is required by 

three-dimensional one. Consequently, the same methodology was followed in mesh 

generation for following RVEs. 

 

Figure 5.2 Center hole model: (a) partitioned RVE (b) convergent RVE mesh. 

To investigate the influence of micro-porosity on effective material behavior, four uniform 

RVE models were used to simulate 10% total porosity fraction. The side length of each 
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model was maintained at 100 microns while the number of holes, 𝑛 representing the total 

porosity fraction was varied, i.e. 𝑛 = 1, 4, 16, 64. Partitioned RVE models together with 

their corresponding convergent meshes are presented in Figure 5.3 and Figure 5.4, 

respectively. 

 

Figure 5.3 RVE models partitioning: (a) center hole (b) four holes (c) sixteen holes (d) sixty-four 

holes. 

 

Figure 5.4 RVE models convergent mesh: (a) center hole (b) four holes (c) sixteen holes (d) sixty-four 

holes. 

The Ramberg-Osgood relationship defined by (Eq.5.3) was used to calibrate the dense or 

sound material behavior. The resulted material properties were 𝐸 = 201 GPa, 𝜎𝑦 = 510 

MPa, and 𝜈 = 0.3. The calibration process of the Ramberg-Osgood model led to an 8.5 

hardening exponent and a 0.2% yield offset. A solid homogeneous section with plane 

stress/strain assumption was used. Each RVE was constrained from one edge while 

uniform-displacement was applied to the opposing edge. A general static step was chosen 

to perform the simulations with automatic incrementation. The initial increment size was 
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set to 0.01 with a minimum increment size of 1E-30 and a maximum of 0.02. Regarding 

the computational effort, the workstation used for running all simulations utilizes an Intel® 

Xeon® central processing unit E5-1603 v4 running at 2.80 GHz with 32 GB of RAM. A 

single processor was used to perform the simulations on Abaqus 2017.  

5.5 Results and Discussion 

Three different porosity fractions were investigated (i.e., low range <10%). Prediction 

results were validated against test data of Fe-0.85Mo-Ni powder metallurgy (P/M) steels 

reported by Chawla and Deng in (Chawla & Deng, 2003). Standard mechanics approach 

(subsection 5.3.1) was followed to predict the effective mechanical behavior from the 

microstructure. True-stress strain results were obtained based on the displacement approach 

from RVE models (subsection 4.5). The effective modulus was evaluated using the linear 

behavior slope while yield stress was defined using a 0.2% offset guided by calibration 

results of the sound material model. The results were quantitatively validated against testing 

results and corresponding errors were determined. Insights regarding the micromechanical 

local full-field predictions regarding von-Mises stresses and the total energy dissipation 

resulting from plastic deformations are provided. 

5.5.1 Effective stress-strain results 

Throughout the following figures, plane strain and stress predictions are presented using 

red and black lines, respectively, while reported testing results are presented with markers. 

Also, dense material behavior was predicted using a solid micromechanical RVE model. 

Prediction results using the CPE4R/CPS4R elements were validated against testing results 

reported by Chawla and Deng (Chawla & Deng, 2003) as shown in Figure 5.5. Plane strain 



 

152 

 

predictions have slightly overestimated the modulus of elasticity while in the plastic region 

significant deviation from testing can be observed. On the other hand, plane stress 

predictions proved to be in excellent agreement compared to testing results of dense 

material.  

 

Figure 5.5 Predicted effective stress-strain curves for 10% porosity: CPE4R vs. CPS4R elements. 

The three porosity fractions, i.e. 3.2%, 4.5% and 10.3%, were investigated thoroughly using 

four uniformly distributed RVE models discussed in subsection 4.5. Prediction results 

using the CPE4R and CPS4R elements at different porosity fractions were found to follow 

similar trends. For convenience, the maximum porosity fraction (i.e., 10%) was used to 

compare the plane strain/stress predictions. Figure 5.5 illustrate the effect of 10% porosity 

on the true stress-strain behavior using the above types of elements. Also, the number of 

holes presenting the porosity in an RVE was varied. All predicted true stress-strain 
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behaviors captured the reduction in the modulus of elasticity, yield stress as well as the 

plastic flow compared to the dense material behavior. Increasing the number of holes in the 

RVE had an almost negligible effect on the linear region using both elements. It can be 

concluded that a center hole is sufficient to represent overall micro-porosity to estimate 

effective modulus. The predicted modulus of elasticity using plane strain elements was 

slightly higher than that obtained using plane stress ones. Contrarily, the onset of yielding 

was overestimated using plane strain elements. Similarly, a significant impact can be 

observed in the plastic region upon increasing number of holes. Both element types showed 

a convergence like behavior upon the increase of holes. For instance, increasing the number 

of holes from 16 to 64 holes had an infinitesimal effect on predicted results. In fact, 

following the same logic of mesh convergence the reader can conclude that the sufficient 

number of holes representing micro-porosity is 16. 

To further investigate the suitable element for the proposed micro-structural analysis, 16 

holes RVEs predictions were validated against reported testing results for different micro-

porosity volumetric fractions. Figure 5.6 shows that plane strain elements were consistent 

in overestimating moduli, yield stresses and plastic flow curves. The zero out-of-plane 

strains assumption resulted in an artificial in-plane stiffness leading to overestimated 

results. On the other hand, the plane stress elements predictions were in excellent agreement 

with testing results.  
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Figure 5.6 Predicted vs. testing (Chawla & Deng, 2003) stress-strain curves for 16 holes RVE. 

Table 5.1 documents a quantitative comparison between predictions and testing results 

along with the percentage errors. As can be observed from comparisons, plane strain 

elements were consistent in over predicting both modulus as well as yield values. The 

maximum error in predicting the effective modulus of elasticity using plane strain elements 

was approximately less than 10%. On the other hand, the error in predicting yield stress 

was quite significant with minimum and maximum values of 17% and 24%, respectively. 

The plane stress elements showed an excellent agreement compared to testing results where 

the modulus of elasticity was efficiently predicted with a maximum error of -2.8%. 

Subsequently, the predicted yield stress results showed significant enhancement compared 

to plane strain elements with a maximum error of -4.39%. 
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Table 5.1 Prediction results and percentage errors compared to testing results. 

Porosity 

fraction 

number of 

holes 

element 

type 
E (GPa) Error (%) 

yield stress 

(MPa) 

Error 

(%) 

Dense 

material 
N/A 

CPS4R 200.96 -0.50 574.36 -1.51 

CPE4R 220.82 9.34 706.12 21.08 

3.20% 

1 

CPS4R 

160.50 -2.48 498.31 -2.70 

4 163.39 -0.72 504.13 -1.56 

16 164.23 -0.21 508.37 -0.74 

64 164.45 -0.08 509.07 -0.60 

1 

CPE4R 

167.86 2.00 607.67 18.65 

4 172.93 5.07 623.68 21.78 

16 173.96 5.70 628.74 22.77 

64 174.18 5.84 629.97 23.01 

4.50% 

1 

CPS4R 

152.97 -2.81 476.36 -4.39 

4 156.30 -0.70 486.52 -2.35 

16 156.85 -0.35 491.08 -1.44 

64 157.52 0.08 492.67 -1.12 

1 

CPE4R 

159.95 1.62 584.16 17.25 

4 165.44 5.11 605.46 21.52 

16 166.63 5.87 609.31 22.29 

64 166.87 6.02 610.02 22.44 

10.30% 

1 

CPS4R 

132.45 -0.24 402.63 -3.36 

4 133.37 0.45 409.98 -1.60 

16 134.72 1.46 418.58 0.47 

64 135.23 1.85 431.84 3.65 

1 

CPE4R 

134.35 1.19 489.76 17.55 

4 140.68 5.95 510.64 22.56 

16 142.15 7.06 516.42 23.95 

64 142.56 7.37 518.34 24.41 

Effective mechanical behaviors of several random hole distributions were investigated. For 

demonstration purposes, three cases are illustrated for utilizing 16 holes RVE model, 

namely, uniform, random, and biased distributions. Holes were randomly distributed by 

deviating the center of each hole manually. Also, the last case shows the sixteen holes 
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locations biased towards the RVE edge. Predicted effective mechanical behaviors validated 

against test data of the corresponding porosity level are shown in Figure 5.7 (i.e. RVE 

distributions are shown above the legend). 

 

Figure 5.7 Predicted stress-strain curves for 16 holes RVE with different hole distributions. 

It can be observed that the predicted behaviors using uniform, random and biased hole 

distribution are almost identical in the linear region as well as the onset of yielding. It can 

be observed that in the plastic region, there exists a slight difference between predicted 

curves. Noteworthy to mention that these slight differences in prediction results lie within 

the standard deviation of testing.  

5.5.2 Microstructural local fields  

Full-field contour plots were considered to investigate local microstructure behavior 

further. The von-Mises stresses at the final step of load application were used to compare 

different numbers of holes as presented in Figure 5.8. As can be seen, all evenly structured 
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RVEs showed localized stress concentration regions around holes with a maximum value 

towards the center and corners. Stresses were found to build up in a symmetric manner 

which can be correlated to the uniform distribution of holes. Also, along the diagonals 

between two holes at approximately at 45ο, the highly localized stress concentration 

appeared to accumulate. Von-Mises values for relatively low deformations are significantly 

superior to predicted yield strength which anticipates localized plasticity in the vicinity of 

holes.  

 

Figure 5.8 Von-Mises contour plots for RVEs with different holes number. 

The stress field from both random and biased distributed RVEs are presented in Figure 5.9. 

A substantial increase in stress concentration can be observed between holes in a closer 
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vicinity. Even though damage is not within the scope of current work, it is most likely to 

initiate at those regions where significantly localized plasticity occurs. In most cases, 

stresses around holes in the neighborhood of edges seemed to accumulate at approximately 

±45ο. This may be correlated to the development of micromechanical slip bands in a ductile 

material. 

 

Figure 5.9 Von-Mises contour plots for16 holes RVE with different hole distributions. 

For potential extension of the current study to failure analysis, strain energy results are 

illustrated. Total plastic energy dissipation contour plots for uniform and random 

distributions are shown in Figure 5.10 and Figure 5.11. Critical regions of plastically 

dissipated energy and von Mises stresses contours were consistent. Inspecting total energy 

dissipation in the microstructure suggests possible damage initiation regions. Closer micro-

holes indicate a higher tendency to coalescence and merge into a single hole. This can be 

observed by the intense plastic energy dissipation between holes. This observation is in 

agreement with conclusions in (Chawla & Deng, 2003, 2005).  



 

159 

 

 

Figure 5.10 Total energy dissipated by plastic deformation in uniformly distributed holes RVEs. 

 

Figure 5.11 Total energy dissipated by plastic deformation in randomly distributed holes RVEs. 
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5.6 Conclusions 

RVE-based micromechanical finite element simulations were proposed to predict the 

mechanical behavior of porous sintered steels under uniaxial loading in the low range (i.e., 

<10%). Three and Two-dimensional RVEs prediction results were compared, and the 

results were in excellent agreement. Two-dimensional RVEs requires a small fraction of 

computational effort compared to three-dimensional ones.  The use of plane stress and 

strain elements was thoroughly investigated. Stress based convergent high quality meshes 

were ensured using appropriate partitioning and manual seeding. Four uniform 

distributions of holes/pores were investigated in addition to several random and biased 

distributions. The effective true stress-strain (linear and plastic behaviors) prediction results 

were validated against testing results from the literature. Predicted moduli together with 

yield stresses were compared to testing results and errors were documented. Local 

microstructural full-fields insights were also provided and discussed. From the presented 

work the following conclusions can be withdrawn 

- Two-dimensional analysis proved the ability to efficiently capture effective 

behavior of porous material at significantly lower computational cost and can be 

utilized instead of three-dimensional one. 

- Plane strain elements prediction results were found to overestimate modulus of 

elasticity with a relatively high error up to 10% while plane stress elements 

predicted the effective moduli with a maximum error of -2.81, i.e. lower bound. 

- The predicted yield stresses using plane strain elements recorded errors varying 

from 17% to 24% consequently leading to a stiffer behavior causing a significant 

shift in the plastic flow curve. On the other hand, plane stress elements results were 
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in excellent agreement with testing results with a maximum error of -4.39% which 

lead to very close results in the plastic flow. 

- Increasing number of holes in an RVE did not have a significant effect on predicted 

modulus. Therefore, using a center hole RVE is sufficient to estimate the micro-

porosity effect on modulus. Contrarily, increasing the number of holes had a 

significant effect in plastic region predictions. Therefore, the center hole RVE 

model is not sufficient for predicting the effective plastic behavior as it leads to 

underestimated predictions. 

- The current investigation identified the sufficient number of holes, 𝑛 = 16, to 

accurately capture plastic behavior. There exist a minimum number of holes to 

represent the total porosity fraction in RVEs based on the actual size of micro-

porosity in the material which confirms existing knowledge on general RVE 

modeling requirements. 

- The local micromechanical von-Mises full-fields revealed stress concentration 

regions to be dependent on micro-holes distribution and locations.  

- The total energy dissipated by plastic deformation full-fields provided insight into 

damage initiation and possible coalescence upon further loading. Higher energy 

dissipation was found in the neighborhood between closer holes. 
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6 Extending the Ramberg-Osgood relationship to Account for Metal 

Porosity 

6.1 Abstract  

This article proposes an extended Ramberg-Osgood (R-O) relationship accounting for the 

effect of porosity on porous metals behavior under tension. Initially, microstructural unit 

cells satisfying continuity boundary conditions was employed to account for pores intensity 

and their effect on elastic-plastic behavior. Results obtained from micromechanical 

simulations coupled with regression analyses were utilized to express elastic-plastic 

behavior as a function of porosity. Therefore, mathematical relationships were successfully 

developed to extend the R-O model to account for porosity. Finally, for validation and 

assessment of developed relation, analytical and macro-mechanical finite element (FE) 

results were compared to those of testing. Comparisons at low porosity range, i.e. less than 

10% proved an excellent agreement. It is concluded that multiscale FE analyses conducted 

successively in micro and macro scales efficiently delineated the effect of porosity on 

mechanical behavior. Moreover, these analyses enabled extending R-O relationship for 

accurate modeling of porous metals in low range porosity 

6.2 Introduction 

Additive manufacturing (AM) or three-dimensional (3D) printing has been rapidly 

emerging in many fields such as automotive, aerospace and biomedical. A paramount 

advantage of 3D printing over subtractive manufacturing is fabricating complex shaped 

components directly from computer-aided design (CAD) models while minimizing 

material waste (Allison et al., 2013; Attaran, 2017; Frazier, 2014). Fabricated components 
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vary from aircraft structural components to biomedical implants (Choren, Heinrich, & 

Silver-Thorn, 2013; Frazier, 2014; Soro et al., 2018; Zaharin et al., 2018). In AM processes 

materials are joined together using layering to form an object. For example, laser sintering 

(LS) methods produce metallic objects from powder metallurgy (PM) using laser(s) to 

selectively fuse or melt material locally in a layer by layer series (Gibson, Rosen, & 

Stucker, 2013). Layering process usually results in undesired material imperfections such 

as lack of fusion, micro-cracks and high porosity levels (R. A. Hardin & Beckermann, 

2013; Szost et al., 2016; F. Wang, Williams, Colegrove, & Antonysamy, 2013). Most of 

the material defects especially residual porosity may be minimized but not avoided (Cao, 

Shen, Shao, & Burlion, 2018; R. a Hardin & Beckermann, 2011; Polasik, Williams, & 

Chawla, 2002).  

Therefore, accounting for the porosity effect on material behavior is essential for early 

design stages. As a result, many relationships correlating the so-called effective modulus 

of elasticity to total porosity level have been proposed for various materials. For example, 

the work by Dewey (Dewey, 1947) proposed an extension to the early work of Goodier 

(GOODIER & N., 1933) by solving linear equations describing small deformations of a 

medium containing single spherical inclusion for any elastic constant. In his work, a linear 

relation was proposed correlating effective modulus to that of fully dense material. 

Similarly, Hasselman and Fulrath (HASSELMAN, 1962, 1963) proposed first-order 

relationships on elastic moduli dependency on the porosity of polycrystalline refractory 

materials. Power laws were also proposed to estimate moduli of elasticity as reported in the 

work of Phani et al. and Bert (Bert, 1985; Phani, 1986). Also, exponential laws were 
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proposed by Spriggs and Panakkal et al. in references (Panakkal, Willems, & Arnold, 1990; 

SPRIGGS, 1961) to estimate elastic modulus given total porosity fraction. Also, an 

exponential law for the dependence of mechanical strength on porosity was proposed by  

Knudsen (KNUDSEN, 1959). All these relations were developed to account for porosity 

on material deterioration from the linear regime to failure limits. However, these models 

focus on discretized material parameters as modulus of elasticity (i.e., linear behavior) and 

few of them predicts effective yield strength. Even though available relations provide an 

insight into the effective material properties compared to testing results of different 

materials, the precise accuracy of predictions may fail to reach a substantial confidence 

degree (Choren et al., 2013). Besides, most of analytical relations are based on a single 

inclusion assumption representing total volumetric porosity. In other words, 

microstructural features were marginally considered. Regarding plastic behavior, most 

commonly referenced is the Gurson-Tvergaard-Needleman (GTN) model which was 

initially proposed by Gurson (Gurson, 1977) and later extended by Tvergaard and 

Needleman (Tvergaard & Needleman, 1984). The original micromechanical model is based 

on spherically symmetric deformations of a single spherical inclusion representing total 

porosity in metals. GTN model implementation in mainstream FE codes is referred to as 

porous plasticity model (Abaqus Documentation, 2014). It can be used to study void growth 

and nucleation assuming a single void, and it is applicable to low porosity range (i.e., less 

than 10%). While the GTN model can be utilized to study localized plasticity and failure 

analysis, the model possesses a strict requirement for defining porous material elastic-

plastic behavior. Moreover,  nine material-specific parameters are to be determined from 
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substantial testing effort and model calibration (R. A. Hardin & Beckermann, 2013; R. a 

Hardin & Beckermann, 2011; Oh, Nam, Kim, & Miura, 2018; Schiavone, 

Abeygunawardana-Arachchige, & Silberschmidt, 2016). Finally, simulation runtime using 

the GTN model for a specimen sized domain would be in the order of several days (R. A. 

Hardin & Beckermann, 2013; R. a Hardin & Beckermann, 2011). 

Similarly, parallel efforts utilizing multiscale FE modeling is widely used as verastile tool 

for different scale investigations on material behavior (e.g., micro/macro) (Oliver et al., 

2017; Roters et al., 2010). For example, representative volume element (RVE) FE-based 

analyses have been widely used to predict elastic constants for anisotropic composites 

(Gusev, 1997). Usually, RVE is used to predict effective stiffness properties for anisotropic 

materials such as composites or a solid matrix with inclusion(s) (Miled, Sab, & Le Roy, 

2011; Mori & Tanaka, 1973; Omairey et al., 2018). While RVE presents a solid foundation 

for predicting stiffness properties, homogenization results are limited to stiffness properties 

which are utilized to predict elastic properties (Elnekhaily & Talreja, 2018; Hollister & 

Kikuchi, 1992; Miled et al., 2011; Trofimov, Abaimov, Akhatov, & Sevostianov, 2018). In 

a recent study, porous plasticity modeling was combined with unit cell (UC) simulations 

for modeling recrystallization textures in aluminum alloys (Dæhli et al., 2016). UC analyses 

were used to calibrate the porous plasticity model, and results showed predictive 

capabilities (Dæhli et al., 2016). Also, another study proposed UC modeling using porous 

plasticity model for strongly anisotropic face-centered cubic (FCC) metals (Bryhni Dæhli, 

Faleskog, Børvik, & Hopperstad, 2017). A sequential least-square optimization was applied 
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on a single void UC, and numerical results were utilized to calibrate two out of nine material 

parameters regarding porous plasticity model (Bryhni Dæhli et al., 2017).  

In the current work, the well-known Ramberg-Osgood (R-O) relationship is extended to 

account for porosity effect on elastic-plastic behavior. An extended R-O relationship would 

be of a primary benefit for early design stages utilizing AM technologies in manufacturing. 

Micromechanical investigations utilizing UC method to predict effective mechanical 

behavior of porous materials were conducted. UC models were implemented to study pore 

intensity, shape and distribution effect(s) on mechanical behavior. Numerically obtained 

stress-strain curves from micromechanical models were validated against relevant testing 

results reported in the literature for two types of steel. Upon validation, UC models were 

exploited to generate a sufficient number of stress-strain curves for regression analysis. 

Effective material behaviors at various levels of porosity factor were used to establish 

mathematical relationships. Following literature findings, regression analysis yielded 

exponential expressions as a function of porosity for both effective modulus and yield 

strength. Developed expressions were employed to modify the original R-O model to 

account for porosity. Extended R-O enabled capturing the effect of porosity on complete 

elastic-plastic behavior of porous metals. Effective behaviors at different levels of porosity 

factor were generated using the proposed R-O extension. Analytically generated curves 

were utilized to evaluate porous material parameters used in macroscale (specimen sized) 

FE models. Finally, numerically obtained results were validated against testing results. 



 

172 

 

6.3 Theoretical Background  

The porosity fraction is usually evaluated from relative density which can be defined as the 

density ratio of porous material to that of the fully dense, i.e. sound material. Some of 

existing mathematical relationships correlating total volumetric porosity fraction, 𝑝 to 

mechanical properties are emphasized to substantiate the proposed work. Several forms of 

mathematical expressions were available in literature such as power laws, linear and 

exponential relationships. Most of the mathematical expressions are similar where material 

constants vary depending on material behavior as well as being applicable to limited 

porosity ranges. For brevity purpose, only a few of available relationships considering 

different mathematical expressions are discussed. As an example on power laws, Eudier 

(Eudier, 1962) proposed a simple power law based on stress intensity factors of an infinite 

plate with a spherical pore/hole reading as  

𝐸𝑝 =̃ 𝐸𝜊 (1 − 1.19𝑝
2
3) (Eq.6.1) 

 

where 𝐸𝑝 is the effective modulus of elasticity, 𝐸𝜊 is modulus of elasticity of sound (i.e., 

fully dense) material. The validity range for Eudier’s expression 0-35% porosity range. 

However, assessment against testing results of several sintered metals showed that errors 

tend to increase by approaching high levels of porosity factor, i.e. greater than 25%.  

Similarly, Bert (Bert, 1985) proposed a semi-empirical approach to accurately derive an 

effective modulus relationship as a function of porosity. The developed power included 

stress intensity factor 𝐾𝜊 depending on inclusion, i.e. pore, shape (i.e. 𝐾𝜊 = 2 for spherical 

inclusion) as 
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𝐸𝑝 ≡ 𝐸𝜊 (1 − (
𝑝

𝑃𝑚𝑎𝑥
))

𝐾𝜊𝑃𝑚𝑎𝑥

 (Eq.6.2) 
 

where 𝑃𝑚𝑎𝑥 defines the maximum possible volumetric fraction of porosity depending on 

the inclusion shape. The expression was validated against available experimental results at 

the time of proposing work and showed good agreement for 0-20% porosity range. 

Noteworthy to mention, Bert (Bert, 1985) concluded that effective yield strength 

relationship could be similarly derived. 

As an example on linear relationships, Dewey (Dewey, 1947) analytically derived linear 

relationships to evaluate effective modulus elasticity and yield strength and of a porous 

medium loaded with non-rigid fillers (gas), for derivation details the reader is referred to 

read the original article by Dewey (Dewey, 1947). The porosity dependent mathematical 

expressions read as  

𝐸𝑝 = 𝐸𝜊(1 − 𝑎𝑝) (Eq.6.3) 
 

𝜎𝑝 = 𝜎𝜊(1 − 𝑏𝑝) (Eq.6.4) 
 

where 𝜎𝑝 is the effective yield stress, 𝑎 and 𝑏 are constants depending on dense materials 

parameters in addition to the gas pressure. Typical values for 𝑎 and 𝑏 assuming zero gas 

pressure are 0.25 and 0.75, respectively. Dewey’s work was purely mathematical by 

providing a solution for linear equations describing elastic deformations of a medium 

containing spherical void of any elastic constants (Dewey, 1947). Similar relationship to 

(Eq.6.3) was proposed by Fryxell and Chandler (FRYXELL & CHANDLER, 1964) for a 
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2-17% porosity range and the material constant was independent of the pressure with a 

value of approximately 1.9. Also, Hasselman and Fultrath (HASSELMAN & FULRATH, 

1964) proposed a similar linear relationship with the material constant, 𝑎 as a function of 

Poisson’s ratio of the dense material. In their work, the range of validity was fairly narrow 

(i.e., less than 2.5%). Other researchers proposed exponential equations such as the work 

by Knudsen (KNUDSEN, 1959) to predict the porosity dependent strength, 𝑆𝑝 from the 

nominal material strength 𝑆𝜊 as 

𝑆𝑝 = 𝑆𝜊𝑒𝑥𝑝(−𝑚𝑝) (Eq.6.5) 
 

where 𝑚 is the exponential constant and the negative sign signifies the deteriorating effect. 

(Eq.6.5) was found to be independent of pore size validated against their presented 

experimental data and it is valid for a moderate porosity range of 5-31% (KNUDSEN, 

1959). Similar exponent based formula was proposed by Spriggs (SPRIGGS, 1961) to 

predict porosity dependent modulus reading as 

𝐸𝑝 = 𝐸𝜊𝑒𝑥𝑝(−𝑚𝑝) (Eq.6.6) 
 

Validation against several reported experimental data for polycrystalline alumina was 

conducted by Spriggs (SPRIGGS, 1961). Exponential constant values were reported to vary 

between 2.7 to 4.3. Noteworthy to mention that (Eq.6.6) is valid for open as well as closed 

pores in addition to applicability to a wide range of porosity (0-37%). As can be observed 

that several models were developed either analytically and/or empirically with the objective 

of expressing effective elastic constants as a function of total volumetric porosity. It was 
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also demonstrated that each relationship is valid for a class of material(s) as well as certain 

porosity range(s) with the exception of Spriggs work which is valid to moderately wide 

porosity range (SPRIGGS, 1961). It seems that exponential laws are more accurate and 

their range of validity is moderately wider. The scope of current work lies within low 

porosity range, i.e. less than 10% for metals under tensile loads. An extension to the R-O 

relationship to account for porosity is the main objective of the current work. Hence, the 

R-O model for a general state of stress is briefly reviewed. The tensorial notation for general 

state of stress as per R-O model (Ramberg & Osgood, 1943) reads as 

𝐸𝜀𝑖𝑗 = (1 + 𝜈)𝜎𝐷𝑒𝑣 − (1 − 2𝜈)𝜎𝐻𝑦𝑑𝐼 +
3

2
𝛼 (

𝜎𝑀𝑖𝑠𝑒𝑠|𝑒𝑞

𝜎𝑦
)

𝑛−1

𝜎𝐷𝑒𝑣 (Eq.6.7) 
 

where 𝜀𝑖𝑗 reperesents the strain tensor, 𝜎𝑖𝑗 is the stress tensor, 𝐼 is the identity matrix while 

 𝜎𝐷𝑒𝑣 and 𝜎𝐻𝑦𝑑 are deviatoric and hydrostatic stresses as defined by (Eq.6.8) and (Eq.6.9), 

respectively. Finally, the equivalent Mises stress is denoted by 𝜎𝑀𝑖𝑠𝑒𝑠|𝑒𝑞 and defined using 

(Eq.6.10). 

𝜎𝐻𝑦𝑑 = −
1

3
𝜎𝑖𝑗: 𝐼 (Eq.6.8) 

 

𝜎𝐷𝑒𝑣 = 𝜎𝑖𝑗 + 𝜎𝐻𝑦𝑑𝐼 (Eq.6.9) 
 

𝜎𝑀𝑖𝑠𝑒𝑠|𝑒𝑞 = √
3

2
𝜎𝐷𝑒𝑣: 𝜎𝐷𝑒𝑣 (Eq.6.10) 

The relationship was originally developed by Ramberg and Osgood (Ramberg & Osgood, 

1943) to describe stress-strain curves using three material dependent parameters. To better 

understand the R-O relationship, (Eq.6.7) for a uniaxial state of stress reads as 
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𝐸𝜀 = 𝜎 + 𝛼𝜎 (
|𝜎|

𝜎𝑦
)

𝑛−1

 (Eq.6.11) 
 

where 𝐸 is Young’s modulus, 𝜀 is the strain, 𝜎 is uniaxial stress and the subscript 𝑦 

represents the yield stress. 𝛼 is the yield offset while 𝑛 is the hardening exponent, i.e. 𝑛 >

1. In fact, R-O relationship is nonlinear at all stress levels where the nonlinearity becomes 

significant (for 𝑛 ≥ 5) upon reaching the yield stress 𝜎𝑦. In other words, second term on 

the RHS of (Eq.6.11) will only start becoming significantly valued at stress levels close to 

yield strength. Otherwise, the term will approximately become minor resulting in a close 

to linear relationship (Hooke’s law). The nonlinear relationship tends to behave as a linearly 

elastic perfectly plastic material for very high values of the hardening exponent, 𝑛 ≥ 50. 

For elaboration, consider a steel material with 196000 MPa modulus of elasticity and a 

yield stress of 400 MPa. Figure 6.1 shows the effect of increasing 𝑛 on stress-strain 

behavior of (Eq.6.11). For better illustration, non-dimensional stress values are defined 

relative to the yield stress. Therefore, the onset of yielding corresponds to a unity value on 

the vertical axis. Strains are represented on the horizontal axis which is limited to 0.5% 

strain to provide a zoomed-in view on the onset of yielding region. 
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Figure 6.1 Non-dimensional stress vs. non-dimensional strain showing the effect of increasing the 

hardening exponent 𝒏. 

R-O model lends itself supremacy being a single relationship describing mechanical 

behavior in linear elastic, non-linear elastic and plastic regimes, however it does not 

account for porosity. Therefore, current work proposes an extension to the original R-O 

relationship to account for porosity as will be explained in subsection 6.5.  

6.4 Micromechanical investigations for model development 

As reported in literature, porosity is well-known for deteriorating material behavior in both 

linear and non-linear regimes. Several porosity features can be used in microstructural 

characterization of porosity (e.g. shape, size and location). Micromechanical investigations 

are required to assess and evaluate effective mechanical behavior relying on pores 

intensity/shapes. Multiscale FE analysis framework was used for developing representative 
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UC models accounting for porosity. Applying necessary boundary conditions on 

continuum enabled predicting global macromechanical behavior. Figure 6.2 shows a 

schematic diagram to elaborate FE modeling at different scales. For this purpose, 

microstructural representative UCs were implemented to study the effect of porosity on 

material behavior. To determine pore shape effect on predicted mechanical behavior, both 

regular circular and irregular pore shapes were used. Also, uniform and non-uniform pore 

distributions were used to investigate the effect of their locations. UCs predicted effective 

behaviors were validated against test data for two types of steel at different levels of 

porosity factor. Micromechanical UCs were used to determine the effective behaviors for 

porosity levels varying from 0-10%.  

 

Figure 6.2 Schematic diagram showing finite element modeling at different scales. 

To enable accurate representation of effective behavior using a micromechanical unit cells 

a minimum number of pores is required (Elnekhaily & Talreja, 2018; Ghayoor et al., 2018; 

Gusev, 1997). Convergence study should be conducted to determine the satisfactory 

number depending on the problem of interest. In the current work, convergence study on 

microstructure and associated effect on mechanical behavior led to a minimum number of 

16 pores. Initial configuration showing geometry of each unit cell is shown in Figure 6.3 
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.Each UC had a side length of 100 microns and pores were uniformly distributed along each 

side. Uniform holes of circular cross-section were used to represent micro-porosity. Total 

area of 16 pores were used to calculate the radii for each porosity level. 

 

Figure 6.3 Unit cell geometry showing initial configuration (uniform distribution) of pore locations. 

A chief objective of the proposed work is to analytically predict complete mechanical 

behavior of porous metals given the sound material behavior only. Hence, all 

micromechanical investigations were based on the material definition using calibration of 

sound materials. Calibration processes was performed on a solid (i.e. without pores) unit 

cell models and corresponding material parameters are documented in Table 6.1.  

Table 6.1 Micromechanical unit cell models material parameters. 

Material E [GPa] 𝜈 𝜎𝑦 [MPa] 𝑛 𝛼 

Low strength steel 198 0.3 490 7.41 0.2 

High strength steel 196 0.3 1462 9.31 0.1 

The vicinity of pores is known to act as a stress concentrator, infinitesimal elements of very 

small characteristic lengths are required in those regions. Stress convergence mesh analysis 
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was conducted on each UC yielding an average mesh size of 20000 elements with slight 

variations depending on pores geometries. Elemental lengths varied from 0.18 μm to a 

maximum of 1 μm, infinitesimal elements were associated towards pores and gradually 

increased reaching its maximum value towards UC edges. This meshing technique was 

necessary to satisfactorily capture microstructural effect of porosity on mechanical 

behavior. A general static step was used to simulate load application of uniaxial state of 

stress. To ensure continuity of different scales and smoothness of predicted effective 

mechanical behaviors essential Dirichlet and Neumann boundary conditions were applied 

on each unit cell. One edge was constrained with zero degrees of freedom (Dirichlet type) 

while a uniform displacement boundary condition (Neumann type) was enforced on the 

opposing edge (Chawla & Deng, 2005). Nodes on both edges were constrained to be rigid 

to avoid local stress concentrations. These boundary conditions produce an average strain 

within the homogenized material. 

To complicate matters, pore shapes are not necessary circular nor uniform as reported in 

references (Chawla, Williams, & Saha, 2003; Deng, Piotrowski, Chawla, & Narasimhan, 

2008; Richard A. Hardin & Beckermann, 2007; Nimmo, 2004; Soro et al., 2018). 

Therefore, irregular random geometries were used to delineate whether the global 

mechanical behavior is going to be influenced or not. Irregular geometries were manually 

constructed assuring that pore area percentage is representative of the total porosity level 

investigated. In addition, the locations of pores were biased towards the right side of a UC. 

Figure 6.4 presents numerical results in terms of stress-strain curves for a total porosity of 

8%. For better demonstration of results, stress values were normalized by division on 
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maximum stress value at 5% strain. In addition, von Mises stress contour plots from 

different unit cell models are portrayed above the figure legend. Contour plots shows high 

stress concentrations in micro-pores vicinities which tend to intensify with irregular 

geometries and biased pore locations. Despite that pore shapes/distributions may 

significantly influence stress localization and hypothetically local plasticity, numerically 

evaluated mechanical behaviors proved to be identical in the linear region while there is 

negligible deviation in plastic regions. Also, uniformly distributed circular pores numerical 

results present the mean value of plastic flows. 

 

Figure 6.4 Pore shape/distribution effect on mechanical behavior. 

For purpose of initial assessment of the proposed work, numerically obtained behaviors 

using micromechanical UCs were validated against testing results reported in literature. 

Test data regarding two types of powder metal (P/M) steel alloys produced using sintering 

manufacturing techniques were found relevant for comparisons. First, testing results of low 



 

182 

 

strength steel (Fe-0.85Mo-Ni P/M) reported by Chawla and Deng (Chawla & Deng, 2005). 

Second, are testing results of high strength steel (FL4405 P/M) reported by Stephens et al. 

(Stephens, Horn, Poland, & Sager, 1998b). Detailed material composition and 

specifications are found in references (Chawla & Deng, 2005; Stephens et al., 1998b). 

Figure 6.5 shows the stress-strain curves of reproduced uniaxial tension testing data from 

reference (Chawla & Deng, 2005) against numerically obtained micromechanical results. 

Testing results are presented using different markers while prediction results are presented 

with different line types. The deteriorating effect of porosity can be observed starting with 

the linear region. Variation in modulus of elasticity was efficiently captured even for 

moderately low porosity level (e.g. 3.2%). For the 10.3% porosity, a significant drop in the 

modulus can be observed by a change of slope in the linear region. Also, the predicted 

plastic behaviors are in excellent agreement with test data of low strength steel. On the 

other hand, comparisons with reproduced testing results of high strength steel from 

reference (Stephens et al., 1998b) against corresponding UCs numerical results are 

presented in Figure 6.6. Beginning with the sound material behavior, micromechanical 

model efficiently captured effective stress-strain curve in both linear and plastic domains. 

At moderately small porosity level of 2.5%, numerically obtained effective behavior shown 

to be in excellent agreement compared to testing. Finally, at a porosity level of 10.1% the 

overall predicted behavior is in a very good agreement with test data. Inspecting 

numerically obtained behaviors for more than 10.0% porosity, Figure 6.5 and Figure 6.6, 

a slight deviancy from testing data can be observed approximately at the onset of yielding. 
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Figure 6.5 Low strength steel stress-strain curves: Micromechanical FE results vs testing (Chawla & 

Deng, 2005). 

 

Figure 6.6 High strength steel stress-strain curves: Micromechanical FE results vs testing (Stephens 

et al., 1998b). 
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Noteworthy to mention that defining material behaviors using Ramberg-Osgood 

relationship enabled smooth predicted curves avoiding sharp transitions from linear to non-

linear regions. This can be observed from comparisons with test data of low and high 

strength steels. To this end, micromechanical UCs were deemed sufficient for capturing the 

effect of microstructural porosity on material’s mechanical behavior.  

As discussed in literature, micro-porosity has proven to deteriorate the overall mechanical 

behavior of a porous material. Most of studies have shown that material deterioration in the 

linear region can be accounted for using an effective modulus. A relationship correlating 

total micro-porosity level is attainable based on analytical modeling and/or empirical data. 

Most of empirically based relationship are limited to the modulus of elasticity (i.e. linear 

behavior). Few studies proposed relationships to predict effective yield strength as a 

function of porosity. In fact, these empirical models remain limited to discrete values (e.g. 

𝐸𝑒𝑓𝑓 or 𝜎𝑦,𝑒𝑓𝑓) in addition to requiring numerous testing results. According to the authors’ 

best of knowledge, none of available empirical models predicts complete (elastic-plastic) 

behavior for a porous material. Moreover, controlling porosity level during manufacturing 

process is one way or another challenging which resulted in insufficient testing results in 

literature. Hence, micromechanical UCs are used to numerically predict various effective 

behaviors at different porosity levels. In doing so, several numerically acquired effective 

mechanical behaviors will be obtainable saving time, effort and testing costs. Relying on 

which will enable development of statistically representative equations.  

Consequently, same parameters for low strength steel micromechanical modeling 

documented in Table 6.1 were used with 10 equally sized UCs with different pores radii. 
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The minimum and maximum radii were evaluated as 1.41μm and 4.46μm corresponding to 

total porosity levels of 1% and 10%, respectively. Details of each porosity level and 

corresponding pore radius are documented in Table 6.2. Numerically obtained stress-strain 

results corresponding to each porosity level are shown in Figure 6.7. 

Table 6.2 Different levels of porosity factor and corresponding pore radii. 

Porosity [%] 1 2 3 4 5 6 7 8 9 10 

Pore radius 

[μm] 
1.41 1.99 2.44 2.82 3.15 3.45 3.73 3.99 4.23 4.46 

 

Figure 6.7 Low strength steel predicted stress-strain curves at 10 porosity levels. 

As can be observed, stress-strain curves at different levels of porosity shows varying 

moduli and onset of plastic behavior while similar behaviors can be observed in the plastic 

region. This similarity indicates that the hardening exponent is almost unaltered. In other 

words, the significant change is limited to modulus of elasticity and the onset of plastic 

behavior.  Hence, effective elastic moduli together with effective yield stresses at 0.2% 
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offset were evaluated from stress-strain curves and documented in Table 6.3. These results 

were used to construct relationship(s) between nominal values of the sound material and 

effective ones as a function of porosity. 

Table 6.3 Effective material properties at different levels of porosity factor. 

Porosity 

[%] 
1 2 3 4 5 6 7 8 9 10 

𝐸𝑒𝑓𝑓 

[GPa] 
189.2 183.9 178.7 173.8 169.2 164.8 160.5 156.4 152.6 148.8 

𝜎𝑦,𝑒𝑓𝑓 

[MPa] 
520.6 501.2 483.9 468.2 454.2 441.1 428.7 417.2 406.4 396.1 

The effective material properties at 10 levels of porosity were adequate to construct 

statistically accurate governing relationships between nominal values of sound material and 

effective properties that of a porous one (Cain, 2017). Figure 6.8 presents the statistical 

data used in constructing governing equations as a function of the porosity factor 𝑝. Also, 

governing equations for low strength steel together with corresponding root mean squared 

errors are shown on Figure 6.8.  
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Figure 6.8 Effect of porosity on modulus of elasticity and yield strength. 

Regression analyses yielded two exponential laws as a function of porosity fraction, 𝑝 with 

root mean squared values of approximately 0.98 and 0.99 for effective modulus and yield, 

respectively. Both exponential constants had same negative value which can be attributed 

to the deteriorating effect of porosity. Noteworthy to mention that developed equations are 

in excellent agreement with the work proposed by Spriggs (SPRIGGS, 1961) as discussed 

in subsection 6.3. Produced exponential laws are valid for low range porosity, i.e. ≤ 10% 

and can be written in a generic form as 

𝐸𝑒𝑓𝑓 = 𝐸𝜊𝑒−𝑚𝑝 (Eq.6.12) 
 

𝜎𝑦,𝑒𝑓𝑓 = 𝜎𝑦𝜊
𝑒−𝑚𝑝 (Eq.6.13) 

where 𝐸𝑒𝑓𝑓 is the effective modulus of the porous material, 𝜎𝑦,𝑒𝑓𝑓 represents the effect 

yield strength, 𝑚 is the exponential constant while 𝐸𝜊 and 𝜎𝑦𝜊
 are the nominal values of a 
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non-porous material. To this end, the governing equation law was developed correlating 

effect of micro-porosity on effective mechanical behavior regarding linear region as well 

as the onset of plastic deformation. The following section is devoted for proposed extension 

of R-O relationship as a function of the porosity factor. 

6.5 Extended Ramberg-Osgood relationship  

Following the current study findings via micromechanical modeling both modulus of 

elasticity as well as yield stress have proven dependency on material’s total porosity 

fraction. Modulus of elasticity defines linear region behavior while yield stress initiates 

plastic deformation. An extension to the R-O reltionship to account for porosity effect on 

overall mechanical behavior is proposed. Supremacy of R-O relationship is that the full 

behavior is described using a single relationship which is not the case for most of available 

material models. The majority of available material models deals either with the linear 

beahvior or plastic behavior. A comined model to describe the complete behavior does not 

exist. Therefore, proposing a single relationship depending on minimum number of 

material parameters would be of chief advantage for early design stages. Knowing which, 

an extension of R-O relationship is proposed. Inserting the effective properties relationships 

defined by (Eq.6.12) and (Eq.6.13) into (Eq.6.11) we get 

𝐸𝑒−𝑚𝑝𝜀 = 𝜎 + 𝛼𝜎 (
|𝜎|

𝜎𝑦𝑒−𝑚𝑝
)

𝑛−1

 (Eq.6.14) 

(Eq.6.14) reperesnts the foundation of a porosity dependent R-O relationship that can be 

used as a single relationship describing mechanical beahvior of a porous material in both 
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elastic and plastic regimes. Noteworthy to mention that this extension depends on a single 

additional material parameter, 𝑚, to be calibrated from testing data and/or micromechanical 

modeling. To illustrate effect of porosity on stress-strain behavior using the developed 

extension of R-O relationship, total porosity was varied from zero to 10% and 

corresponding stress-strain curves are presented in Figure 6.9.  

 

Figure 6.9 Effect of total porosity on stress-strain behavior using (Eq.6.14). 

A slope change can be observed in the linear region at different levels of porosity which 

can be attributed to a reduction in modulus of elasticity. The deterioration effect of porosity 

on modulus of elasticity was efficiently captured using the exponential law defined by 

(Eq.6.12). Also, onset of non-liearity appears to vary as well as the onset of yielding or 

plastic flow depending on effective yield strength defined by (Eq.6.13). It is noteworthy to 
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mention that the developed relationship is smooth throughout both linear and plastic 

regimes in addition to the transition in between. In order to validate the proposed extension, 

(Eq.6.14) was used to generate various stress-strain behaviors at different levels of porosity 

matching relevant testing data. Effective mechanical behaviors were analytically generated 

at reported levels of porosity for low and high strength steels, corresponding results are 

presented in Figure 6.10 and Figure 6.11, respectively. 

 

Figure 6.10 Predicted effective behavior using (Eq.6.14) for low strength steel at reported levels of 

porosity. 
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Figure 6.11 Predicted effective behavior using (Eq.6.14) for high strength steel at reported levels of 

porosity. 

Generated curves were used to evaluate material parameters to be used in macroscale 

(specimen sized) modeling, obtained material parameters are documented in Table 6.4. 

Table 6.4 Material parameters evaluated from extended R-O results at reported levels of porosity. 

Material 

parameters 
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𝐸𝑒𝑓𝑓 

[GPa] 

𝜎𝑦𝑒𝑓𝑓
 

[MPa] 
𝑛 [-] 𝛼 [-] 𝑚 [-] 

Low strength 

steel 
A 

3.2 176.5 443.6 

7.4 0.2 3.106 4.5 169.6 426.1 

10.3 141.6 355.8 

High strength 

steel 
B 

2.5 164.9 1380.0 
9.3 0.1 3.106 

10.1 130.8 1048.0 
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Two dumbbell were constructed in three dimensional finite element models corresponding 

to their relevant experimental results from literature (Chawla & Deng, 2005; Stephens et 

al., 1998b). A schematic diagram showing the profile of specimens used to construct both 

models along with loading conditions and the deformed models are shown in Figure 6.12. 

For convenience, the major geometric parameters for both models A and B are also 

provided in Figure 6.12. 

 

Figure 6.12 Specimen geometry and three-dimensional finite element models (not to scale). 
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Solid homogeneous section was defined for both models with 20-node quadratic brick 

elements, namely C3D20R to ensure precise results at each material point. Stress 

convergence analysis resulted in a mesh sizes of approximately 26000 and 33000 elements 

for models A and B, respectively. Following standard testing procedures specimens were 

fixed from one end while a monotonic displacement was applied on the other. 

Macromechanical numerically obtained stress-strain behaviors are plotted against 

corresponding testing results in Figure 6.13 and Figure 6.14, respectively. As can be seen, 

numerical predictions at a macroscale based on the proposed Ramberg-Osgood extension 

are generally in excellent agreement with testing results. A chief advantage of numerical 

results is continuity of predicted behaviors which is attributed to the nature of Ramberg-

Osgood model. The proposed extension shows an extended capability to account for effect 

of micro-porosity. Given that the extension is purely analytical, precise effective material 

properties were obtained which enabled accurate macromechanical numerical results.   
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Figure 6.13 Low strength steel stress-strain curves: Macro numerical results vs testing (Chawla & 

Deng, 2005). 

 

Figure 6.14 High strength steel stress-strain curves: Macro numerical results vs testing (Stephens et 

al., 1998b). 
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6.6 Conclusions 

An extended Ramberg-Osgood (R-O) relationship accounting for effect of porosity on 

behavior of porous metals under tension was proposed. Micromechanical modeling 

utilizing unit cell (UC) method was employed to investigate pore intensity, shape and 

distribution effect(s) on elastic-plastic behaviors. Numerically obtained UC results were 

validated against testing results of low and high strength steels from literature. UC results 

proven predictive capabilities regarding porous materials behavior (i.e. elastic-plastic). 

Sufficient set of numerically obtained stress-strain data (i.e. 10 curves) were employed to 

generate effective material parameters for regression analysis. Two mathematical 

expressions correlating effective modulus and yield strength as a function of porosity were 

efficiently developed enabling the proposed R-O extension to account for porosity. The 

resulting relationship defined by (Eq.6.14) presents the proposed R-O extension accounting 

for porosity in elastic-plastic behavior. To assess and validate proposed extension, 

analytically obtained stress-strain curves at different levels of porosity were used to 

generate mechanical properties. Macroscale (specimen sized) FE models utilizing 

analytically generated properties were also provided. Noteworthy to mention that all 

provided comparisons within the context are were on elastic-plastic behavior basis rather 

than discrete points. Finally, macromechanical results were validated against those of 

testing. From the current work the following can be concluded; 

• Micromechanical modeling using UC method proven to capture effect of micro-

porosity on mechanical behavior given practical representative UC size and 

sufficient intensity of pores, see Figure 6.5 and Figure 6.6. 
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• The pore shape/distribution effect on effective mechanical behavior under tension 

is negligible on linear behavior while a minor slight deviation from plastic region 

occurred in extreme cases, see Figure 6.4. 

• Developed porosity mathematical expressions were in excellent agreement with the 

work by Spriggs. Also, both developed expressions yielded same exponential 

constant values which may signify that both material constants are similarly 

deteriorating, at least for presented validation with experimental data. 

• A single relationship (extended R-O) was proposed to capture effect of porosity on 

complete elastic-plastic behavior relying on single additional parameter to be 

calibrated from testing and/or micromechanical modeling 

• The extended R-O relationship, (Eq.6.14) has proven excellent analytical 

predictions capabilities compared with both macroscale numerical results and 

testing from literature.  
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7 Two-stage finite element modeling procedure to predict elastoplastic 

behavior and damage of porous metals 

7.1 Abstract  

The current article presents two-stage finite element analysis procedures employing 

micro/macromechanical models to predict the effective mechanical behavior of porous 

metals in addition to its final failure under tension. Micromechanical three-dimensional 

representative volume elements (RVEs) with single ellipsoidal void were employed to 

predict effective elastic-plastic behaviors. Python script was developed and implemented 

in the commercial finite element software Abaqus to analyze the effect of pore shape on 

mechanical behaviors. Post-processing for micromechanical modeling results was 

automated to generate material parameters for macroscale modeling. Three user-defined 

subroutines were developed and implemented in Abaqus using Fortran to enable 

macromechanical failure predictions utilizing the framework of XFEM. Strain energy 

density (SED) based damage model was employed to simulate the damage process. 

Proposed procedure results were validated against reported testing results from literature 

regarding low and high strength steels at different volumetric porosity levels, i.e. low range 

porosity (=̃ 10%). Proposed modeling procedure proven excellent agreement with testing 

results. 

7.2 Introduction 

Metal additive manufacturing (AM) techniques are widely used to produce high quality 

final parts in many engineering fields such as biomedical, aerospace and automotive 

industries (Attaran, 2017; Frazier, 2014). Selective laser sintering (SLS) is one of the most 

eminent techniques utilized to generate complex geometry metallic parts consolidating 
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successive layers of powder materials (Kruth, Mercelis, Van Vaerenbergh, Froyen, & 

Rombouts, 2005). This procedure involves complex thermal cycles resulting from 

subsequent melting/solidification of each successive layer (Zheng, Zhou, Smugeresky, 

Schoenung, & Lavernia, 2008). Melting and solidification progression results in 

microstructural features such as micro-pores (Choren et al., 2013; Gao et al., 2015; Pabst 

& Gregorová, 2015; B. Song et al., 2015). Mechanical behavior as well as load-bearing 

capacity are strongly related to porosity level of the manufactured material (Chawla & 

Deng, 2005; Deng et al., 2008; Stephens, Horn, Poland, & Sager, 1998a). Accounting for 

microstructural features effect on the mechanical behavior is of paramount significance for 

early design stages (Allison et al., 2013).  

Several research addressing the effect of total volumetric porosity on material properties 

such Young’s modulus and material strength were proposed in literature. Choren et al. 

(Choren et al., 2013) provided a comprehensive review on available relationships 

correlating total volumetric porosity to effective modulus of elasticity from 1947 until 

2007. In their work, available linear and non-linear relationships were summarized based 

on the applicable porosity ranges. They concluded that while many relationships are 

available to predict porous materials mechanical properties particularly Young’s modulus, 

there remains an absence of “perfect-association”  regarding micro-structural porosity and 

corresponding effective moduli (Choren et al., 2013). The material strength dependency on 

volumetric porosity was correlated to that of non-porous material utilizing power and 

exponential laws as in the work of Bal’shin (Bal’shin, 1949) and Knudsen (KNUDSEN, 

1959), respectively. The exponential law proposed by Knudsen was validated against wide 
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variety of metals for moderate porosity range, i.e. less than 30%. Regarding plastic 

behavior, the Gurson-Tvergaard-Needleman (GTN) model (Gurson, 1977; Tvergaard & 

Needleman, 1984) is commonly referenced for studying ductile behavior of porous metals 

in the low range porosity, i.e. less than 10%. This model defines a yield potential based on 

single isolated spherical void in an infinite continuum based on the early work of Gurson 

(Gurson, 1977). The GTN model constructs the basis for many available porous plasticity 

models (Besson, 2010; Jeong & Pan, 1995; Leblond, 2014; Mbiakop et al., 2015; Morin et 

al., 2015, 2017; Vadillo, Reboul, & Fern, 2016). Also, the GTN model is currently 

implemented in commercial finite element analysis (FEA) software Abaqus. GTN model 

requires the definition of nine parameters (Abaqus V6.14– Documentation, Dassault 

Systèmes Simulia Corporation, 2013); several of which are material specific and rely on 

the best fitting of experimental stress-strain data of porous materials (Rousselier, 2001; 

Trillat & Pastor, 2005; Weinberg, Mota, & Ortiz, 2006). Also, GTN model does not deal 

with linear elastic behavior which implies that the effective modulus of elasticity remains 

to be user-defined (Abaqus V6.14– Documentation, Dassault Systèmes Simulia 

Corporation, 2013). In addition, the GTN model does not predict actual macroscopic 

failure besides demanding considerable computational effort as pointed out by Hardin and 

Beckermann (R. A. Hardin & Beckermann, 2013; Richard A. Hardin & Beckermann, 2007) 

that a specimen sized model may require several days of computational runtime. Therefore, 

practical challenges are associated with GTN model when analyzing full-scale models as it 

can be deemed unattainable. Also, GTN model requires explicit definition of porous 
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material behavior regarding both linear and non-linear plastic behaviors (Abaqus V6.14– 

Documentation, Dassault Systèmes Simulia Corporation, 2013).  

Alternatively, homogenization methods can be utilized to predict the effective stiffness 

properties of anisotropic materials (Leclerc, Karamian-Surville, & Vivet, 2015; Pontefisso, 

Zappalorto, & Quaresimin, 2015; Shan & Gokhale, 2002; Xu, Sun, Li, Ryu, & Khaleel, 

2013). Among the commonly referenced homogenization techniques is the representative 

volume element (RVE) or the unit cell (UC) method. The term RVE was coined by Hill (R. 

Hill, 1963) which can be defined as the smallest volume element capable of representing 

microstructural features while being macroscopically representative of continuum 

(Elnekhaily & Talreja, 2018; Ma, Liu, & Hu, 2006; Omairey et al., 2018; Salahouelhadj & 

Haddadi, 2010). In other words, to predict continuum constitutive properties accounting for 

structural properties of microconstituents (Siavouche & Hori, 1993). The RVE method has 

been widely used in past two decades to predict effective elastic properties of 

heterogeneous materials such as composite materials (Elnekhaily & Talreja, 2018; Omairey 

et al., 2018; Shan & Gokhale, 2002; Siavouche & Hori, 1993; Trias, Costa, Turon, & 

Hurtado, 2006), multi-phase materials (Gaudig, Mellert, Weber, & Schmauder, 2003; Xu 

et al., 2013; C. Zhang, Gong, Deng, & Wang, 2017) and porous materials (Guo et al., 2017; 

Han, Tang, Kou, Li, & Feng, 2015; Saby, Bernacki, Roux, & Bouchard, 2013; Sladek, 

Sladek, Krahulec, & Song, 2016; Dawei Song & Ponte Castañeda, 2017). To enable RVE 

predictions of effective elastic properties, uniform stress/strain should be imposed on the 

micromechanical RVE ensuring uniform deformations and satisfying equilibrium 

(Siavouche & Hori, 1993). For that purpose, usually periodic boundary conditions (PBC) 
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are employed to ensure that deformed boundaries remain periodic (Elnekhaily & Talreja, 

2018; Leclerc et al., 2015; Omairey et al., 2018; Pontefisso et al., 2015; Salahouelhadj & 

Haddadi, 2010). There exist two main types of RVEs, first type is real microstructure or 

voxel based RVEs (Leclerc et al., 2015; Mignone et al., 2017; Saby et al., 2013) in which 

microstructural features are characterized and modeled. Second type is of a unit cell nature, 

in which each RVE can be repeated indefinitely in all directions to construct the periodic 

structure (Asim, Siddiq, & Kartal, 2018; Ravi, Seefeldt, Van Bael, Gawad, & Roose, 2019; 

Dawei Song & Ponte Castañeda, 2017). The main advantage of RVE homogenization is 

that the periodic system is usually simulated utilizing a single step to obtain anisotropic 

stiffness matrix representing material’s elastic behavior (Ghayoor et al., 2018; Omairey et 

al., 2018). To overcome analysis limited to elastic behavior, continuum mechanics 

approach applying special deformation boundary conditions is alternatively utilized if the 

anticipated result is the mechanical behavior, i.e. elastic-plastic behavior (Hollister & 

Kikuchi, 1992; Rashid & Nemat-Nasser, 1992; Siavouche & Hori, 1993; Danlong Song et 

al., 2016). For example, Soro et al. (Soro et al., 2018) utilized RVE homogenization 

technique to study the behavior of porous titanium produced by sintering used in 

biomedical implants under compressive loads. Their results showed good agreement in the 

linear behavior and demonstrated better predictive capabilities compared to semi-analytical 

model of Mori-Tanaka (Mori & Tanaka, 1973). Regarding plastic behavior, there were 

uncertainties in reported numerical stress-strain behavior when compared to testing (Soro 

et al., 2018). The predicted yield strengths showed up to 23% error which can be attributed 
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to moderately high porosity levels (up to 36% porosity) and random pore size/location 

contributing to localized stress concentrations. 

In the current work, continuum mechanics approach RVE method is employed to generate 

micromechanical models predicting effective mechanical behavior of porous metals under 

tension. Micromechanical RVE models with center oblate spheroidal void representing 

total volumetric porosity are generated using Python scripting in Abaqus. Non-porous 

material behavior is used to define voided RVE matrix material. Post-processing of 

numerically obtained effective behaviors is performed to automatically generate 

macromechanical modeling material properties. User-defined material model accounting 

for linear, plastic and final failure behaviors of porous materials is developed using Fortran 

in Abaqus. The macromechanical model employs material properties generated from RVE 

post-processing to precisely define elastic-plastic behavior. Also, a strain energy density 

(SED) based damage model was developed and implemented to predict macroscopic cracks 

and final failure. Numerically obtained results were validated against independent testing 

results regarding low and high strength steel materials reported in literature. 

7.3 Material model and methods 

7.3.1 Proposed modeling procedure overview 

The main objective of proposed procedure is to predict elastic-plastic behavior of porous 

metals as well as its final failure given the mechanical behavior of the non-porous one and 

total volumetric porosity. For that purpose, a two-stage finite element procedure employing 

micro and macro mechanical modeling is proposed. First stage is dealing with 

micromechanical modeling utilizing three-dimensional RVE method based on continuum 
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mechanics approach. Micromechanical RVEs utilizing single spheroidal void are used to 

predict effective elastic-plastic behavior of porous materials. The matrix material in all 

RVE simulations is defined using the mechanical behavior of fully dense material, i.e. non-

porous. Post-processing of numerically obtained effective stress-strain behaviors is 

automated to generate macromechanical material properties. Second stage deals with 

macromechanical specimen sized models utilizing the framework of extended finite 

element method (XFEM) in Abaqus for macroscopic failure predictions. XFEM was 

originally proposed by Belytschko and Black (T. Belytschko & Black, 1999) and later 

developed by Moës et al. (Moës et al., 1999). XFEM has superior advantage over 

conventional finite element method enabling crack onset as well as final failure without the 

need of remeshing (Duarte et al., 2017; Fries & Belytschko, 2010; Yazid et al., 2009). 

References (Abdelaziz & Hamouine, 2008; Ted Belytschko et al., 2009a; Fries & 

Belytschko, 2010; Yazid et al., 2009) provide comprehensive details on XFEM 

mathematical formulation and applications. The framework of XFEM in Abaqus is used to 

develop the user-defined damage model. A flowchart outlining the two-stage modeling 

procedure at different scales is provided in Figure 7.1. A Python script was developed in 

Abaqus to automatically perform three major tasks. First task is the automatic generation 

of micromechanical RVE with single oblate ellipsoidal void representing the total 

volumetric porosity. The second task deals with extracting the effective elastic-plastic 

behavior of the RVE at a given porosity level. Third task is post-processing the effective 

behavior to automatically generate material parameters used in user-defined subroutines of 

the second stage, i.e. macromechanical.  
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Figure 7.1 Flowchart showing the scope of work at different scales (micro/macro). 

The second stage involves specimen sized models’ generation along with developing user-

defined subroutines to define mechanical and failure behavior of the porous material. Three 

subroutines were developed and implemented using Fortran in Abaqus to enable accurate 

material definition regarding elastic-plastic behavior as well as predicting final failure. 

User-defined material (UMAT) together user-defined hardening (UHARD) deals with the 

elastic-plastic behavior while user-defined damage (UDMG) utilizing the framework of 

XFEM controls material degradation and predicts final failure. The material model is 

explained in subsection 7.3.2 while particular details of micromechanical and 
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macromechanical methods are discussed in subsections 7.3.3 and 7.3.4, respectively. 

subsection 7.4 illustrates finite element modeling details on both micro and macro scales. 

Numerical results using the proposed procedure are reported and discussed in subsection 

7.5. 

7.3.2 Material model  

The material model of RVE matrix material is defined utilizing the deformation plasticity 

theory in Abaqus (Abaqus V6.14– Documentation, Dassault Systèmes Simulia 

Corporation, 2013) which is based on the Ramberg-Osgood (RO) relationship (Ramberg 

& Osgood, 1943). The material model for a generalized case of stress state reads as 

𝐸𝜀𝑖𝑗 = (1 + 𝜈)𝜎𝑑𝑒𝑣 − (1 − 2𝜈)𝜎ℎ𝑦𝑑𝐼 +
3

2
𝛼 (

𝜎𝑚𝑖𝑠𝑒𝑠

𝜎𝑦
)

𝑛−1

𝜎𝑑𝑒𝑣 (Eq.7.1) 

where 𝐸 is the young’s modulus, 𝜈 is the Poisson’s ratio, 𝜎𝑦 is yield stress while 𝛼 is the 

yield offset and 𝑛 is the hardening exponent for the non-linear term, i.e. 𝑛 ≥ 1. 𝜺𝒊𝒋 and 

𝝈𝒊𝒋 define the strain and the stress tensors, respectively. 𝑰 is the identity matrix, 𝜎𝑑𝑒𝑣 is the 

stress deviator tensor while 𝜎ℎ𝑦𝑑 is the equivalent hydrostatic stress and 𝜎𝑚𝑖𝑠𝑒𝑠 defines the 

Mises flow stress. (Eq.7.2) to (Eq.7.4) define the stress invariants. 

𝜎𝐻𝑦𝑑 = −
1

3
𝜎𝑖𝑗: 𝐼 (Eq.7.2) 

 

𝜎𝐷𝑒𝑣 = 𝜎𝑖𝑗 + 𝜎𝐻𝑦𝑑𝐼 (Eq.7.3) 
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𝜎𝑀𝑖𝑠𝑒𝑠|𝑒𝑞 = √
3

2
𝜎𝐷𝑒𝑣: 𝜎𝐷𝑒𝑣 (Eq.7.4) 

The model is assumed to be compressible in the linear region and incompressible in the 

non-linear one where the plastic flow is normal to Mises stress (Abaqus V6.14– 

Documentation, Dassault Systèmes Simulia Corporation, 2013). Currently, microstructural 

RVE is utilized to predict the effective elastic-plastic behavior of porous metals under 

tension, hence the assumption is valid for the scope of work. Uniaxial tension testing results 

of low and high strength steel materials from literature were found adequate for validation 

purposes. First, is a set of uniaxial tension testing results regarding low strength steel at 

different porosity fractions reported by Chawla and Deng (Chawla & Deng, 2005). Second, 

is a set of testing results of high strength steel at different porosity fractions reported by 

Stephens et al. (Stephens et al., 1998b). To determine RVE matrix material parameters, the 

RO relationship presented by (Eq.7.1) is reduced to uniaxial state of stress as 

𝐸𝜀 = 𝜎𝑖 + 𝛼𝜎𝑖 (
𝜎𝑖

𝜎𝑦
)

𝑛−1

 (Eq.7.5) 
 

Where 𝜎𝑖 represents the stress component along the 𝑖th direction. The above relationship is 

nonlinear at all stress values where the non-linearity becomes significant at stress values 

approaching/exceeding 𝜎𝑦. The non-porous mechanical behavior of low and high strength 

steels were used to identify material parameters of (Eq.7.5). Table 7.1 documents the 

resulting material parameters from calibration processes which are used in material 

definition of RVE models.  
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Table 7.1. Material properties of the non-porous metals. 

Material 
E  

[GPa] 

𝜎𝑦  

[MPa] 

𝜈 

 

𝑛 

 

𝛼 

 

Low strength steel 201.2 480.4 0.3 7.55 0.2 

High strength steel 186.8 1449.3 0.3 8.47 0.1 

7.3.3 Representative volume element (RVE) method 

Hill (Rodney Hill, 1963) defined RVE to be typical of microstructural features such as 

inclusions or voids yet large enough to evaluate effective material properties. This can be 

enabled by proper sizing of RVEs in addition to applying necessary boundary conditions 

to produce an average uniform strain/traction within the homogenized element (Babu et al., 

2018; Elnekhaily & Talreja, 2018; Mirkhalaf et al., 2016; Omairey et al., 2018). 

Homogenization methods are usually utilized when the material behavior is of 

heterogeneous nature. The homogenization method yields effective stiffness properties 

which are then employed to evaluate elastic constants of anisotropic behavior. RVE can be 

also analyzed in continuum mechanics approach using either uniform tractions or 

displacements (Salahouelhadj & Haddadi, 2010; N. K. Sharma, Mishra, & Sharma, 2016; 

Siavouche & Hori, 1993). The type of utilized boundary conditions in this approach is 

selected to produce an average stress/strain within the homogeneous matrix material of 

RVE. In the current work, displacement boundary conditions were employed where the 

averaged strain can be correlated to displacements via the divergence theorem (Hashin & 

Rotem, 1973; Rodney Hill, 1963; Siavouche & Hori, 1993) as 

𝜀𝑖̅𝑗 =
1

|𝑉𝑅𝑉𝐸|
∫ 𝜀𝑖𝑗

𝑙𝑜𝑐𝑎𝑙𝑑𝑉𝑅𝑉𝐸 =

𝑉𝑅𝑉𝐸

∫
1

2
(𝑢𝑖𝑛𝑗 + 𝑢𝑗𝑛𝑖)𝑑Γ𝑅𝑉𝐸

Γ𝑅𝑉𝐸

 (Eq.7.6) 



 

212 

 

where 𝜀𝑖̅𝑗 is the averaged strain tensor, 𝑉𝑅𝑉𝐸 is the RVE volume, 𝜀𝑖𝑗
𝑙𝑜𝑐𝑎𝑙 is the local strain 

tensor, and Γ𝑅𝑉𝐸 is the element boundary. 𝑢𝑖 and 𝑢𝑗  are the imposed displacements on the 

RVE boundary while 𝑛𝑖 and 𝑛𝑗  are the normal unit vectors. Similarly, the averaged stress 

relation to the imposed tractions reads as 

𝜎𝑖𝑗 =
1

|𝑉𝑅𝑉𝐸|
∫ 𝜎𝑖𝑗

𝑙𝑜𝑐𝑎𝑙𝑑𝑉𝑅𝑉𝐸 =

𝑉𝑅𝑉𝐸

∫
1

2
(𝑡𝑖𝑦𝑗 + 𝑡𝑗𝑦𝑖)𝑑Γ𝑅𝑉𝐸

Γ𝑅𝑉𝐸

 (Eq.7.7) 

where 𝜎𝑖𝑗 is the average stress tensor, 𝜎𝑖𝑗
𝑙𝑜𝑐𝑎𝑙 is the local stress tensor, 𝑡𝑖 and 𝑡𝑗 are the 

imposed tractions while 𝑦𝑖 and 𝑦𝑗 are elemental boundary local coordinates. The imposed 

displacements or tractions defined by (Eq.7.6) and (Eq.7.7) are generally chosen to be 

uniform (R Hill, 2006; Mori & Tanaka, 1973; Nemat-Nasser & Taya, 1981). Consequently, 

the local strain in RVE is evaluated using the standard weak formulation of equilibrium 

equations.  In case of displacement boundary conditions, the weak form of RVE 

equilibrium equations is  

∫ 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗
(𝑣𝑖𝑟𝑡𝑢𝑎𝑙)

𝜀𝑘𝑙
(𝑡𝑜𝑡𝑎𝑙)

𝑑𝑉𝑅𝑉𝐸 =

𝑉𝑅𝑉𝐸

∫ 𝐶𝜀𝑣𝑖
(𝑣𝑖𝑟𝑡𝑢𝑎𝑙)

(𝑢𝑖 − 𝑔𝑖)𝑑Γ𝑅𝑉𝐸

Γ𝑅𝑉𝐸

 
(Eq.7.8) 

Where 𝐶𝑖𝑗𝑘𝑙 is the stiffness tensor, 𝜀𝑖𝑗
(𝑣𝑖𝑟𝑡𝑢𝑎𝑙)

 is the virtual strain tensor and 𝜀𝑘𝑙
(𝑡𝑜𝑡𝑎𝑙)

 is the 

total microstructural strain tensor. The displacements are imposed using a penalty method 

where 𝐶𝜀 represents a correction factor (Abaqus V6.14– Documentation, Dassault Systèmes 

Simulia Corporation, 2013). 𝑣𝑖
(𝑣𝑖𝑟𝑡𝑢𝑎𝑙)

 is the virtual displacement while the term (𝑢𝑖 − 𝑔𝑖) 

represents the imposed displacements boundary conditions to generate averaged uniform 
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strain, 𝜀𝑘̅𝑙 within the homogenised matrix material. Note that total strain, 𝜀𝑘𝑙
(𝑡𝑜𝑡𝑎𝑙)

, is 

decomposed into 𝜀𝑘𝑙
(𝑒𝑙𝑎𝑠𝑡𝑖𝑐)

 and 𝜀𝑘𝑙
(𝑝𝑙𝑎𝑠𝑡𝑖𝑐)

 representing the elastic and plastic strain 

components, respectively. Strain states are obtained from finite element simulations and 

local microstructural strains are correlated to the average strains via local structure 

tensor, 𝑀𝑖𝑗𝑘𝑙. Assuming small deformations, i.e. less than 10% strain, the local strain at any 

point in the RVE can be evaluated as 

𝜀𝑖𝑗 = 𝑀𝑖𝑗𝑘𝑙𝜀𝑘̅𝑙 (Eq.7.9) 

The averaged stress tensor can be readily obtained using the effective stiffness tensor, 𝐶𝑖̅𝑗𝑘𝑙 

which correlates average stress to average strains reading as 

𝜎𝑖𝑗 = 𝐶𝑖̅𝑗𝑘𝑙𝜀𝑘̅𝑙 (Eq.7.10) 

The same relationship can be written to determine stresses at macroscopic levels  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (Eq.7.11) 

Integrating both sides of  over the RVE volume and dividing by the total RVE volume, 

𝑉𝑅𝑉𝐸 we get  

1

|𝑉𝑅𝑉𝐸|
∫ 𝜎𝑖𝑗𝑑𝑉𝑅𝑉𝐸 =

𝑉𝑅𝑉𝐸

1

|𝑉𝑅𝑉𝐸|
∫ 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙𝑑𝑉𝑅𝑉𝐸

𝑉𝑅𝑉𝐸

 (Eq.7.12) 

Substituting (Eq.7.10) into (Eq.7.12) and recalling (Eq.7.6) and (Eq.7.7) the effective 

stiffness tensor can be defined as 
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𝐶𝑖̅𝑗𝑘𝑙 =
1

|𝑉𝑅𝑉𝐸|
∫ 𝐶𝑖𝑗𝑘𝑙𝑀𝑘𝑙𝑖𝑗𝑑𝑉𝑅𝑉𝐸

𝑉𝑅𝑉𝐸

 (Eq.7.13) 

In this approach, the equilibrium equations have to be solved once for each component of 

the stress/strain tensor unlike periodic boundary conditions which usually enables solving 

the analysis in a single step for all components. The major advantage of utilizing the 

continuum approach relies in the ability to predict the complete elastic-plastic behavior of 

the RVE material. Hence, it is adopted for the analysis of the proposed micromechanical 

models. 

To this end, the main role of the micromechanical RVE simulations is almost accomplished. 

The next step is a post-processing step in which predicted behaviors are employed to 

evaluate macromechanical material model properties. User-defined material and damage 

subroutines parameters are automatically generated from effective stress-strain data. For 

illustration of post-processing step, consider the schematic diagram of an effective behavior 

as presented by Figure 7.2. Once the effective stress-strain behavior is predicted, the script 

will generate a ‘strain vs. stress’ dataset using numerically obtained values. The process 

begins with evaluating effective modulus of elasticity, 𝐸𝑒𝑓𝑓  which can be readily available 

from the slope of the linear region. Generated dataset is used for that purpose utilizing first 

five rows (strain vs. stress) to evaluate the effective modulus. Second, step is the evaluation 

of yield stress and total elastic strains. The yield stress, 𝜎𝑦  can be defined as the onset of 

plastic deformation while corresponding strain is considered as the magnitude of total 

elastic strain 𝜀𝑡. 
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Figure 7.2 Material properties evaluation from effective stress-strain curves. 

Tangential moduli 𝐸𝑖
𝑡 through each successive data entries are evaluated as pointed out on 

Figure 7.2 where the subscript 𝑖 denotes the current data entry. Each tangential modulus 

𝐸𝑖
𝑡 is compared to the effective modulus, 𝐸𝑒𝑓𝑓 as shown on Figure 7.2. A factor 𝜂 is defined 

as the ratio between tangential and young’s moduli where 𝜂 is equal to unity if the data 

belongs to the linear region. Once the behavior deviates from linearity, 𝜂 will be less than 

unity. A predefined tolerance is set to control yield identification process based on the exact 

yield offset 𝛼 of the non-porous material. Upon reaching the tolerance, the stress-strain 

curve is deemed yielding at the interpolation point between the last successive entries. 

Finally, the plastic strains are isolated from elastic ones and corresponding stresses are 

determined. This step is essential to define the plastic behavior in the user-defined 

subroutine as will be discussed in subsection 7.3.4. 
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7.3.4 Macromechanical modeling and failure 

Macromechanical material behavior is defined using three user-defined subroutines using 

Fortan in Abaqus. User-defined material (UMAT) subroutine is developed to define the 

linear elastic behavior of the porous material as well as calling the hardening behavior 

(UHARD) subroutine. Finally, to predict final failure of material a user-defined damage 

(UDMG) is developed based on strain energy density (SED) as will be discussed shortly. 

The frame work of extended finite element method (XFEM) is utilized for macroscopic 

failure predictions. XFEM was originally proposed by Belytschko and Black (T. 

Belytschko & Black, 1999) and later developed by Moës et al. (Moës et al., 1999). XFEM 

has superior advantage over conventional finite element method  regarding predicting crack 

onset as well as final failure without the need of remeshing (Duarte et al., 2017; Fries & 

Belytschko, 2010; Yazid et al., 2009). XFEM works by enriching the domain of 

conventional finite element mesh with special enrichments function to account for crack 

onset as well as propagation (V. Gupta & Duarte, 2016). The standard Abaqus notation is 

followed throughout the following subsections. 

7.3.4.1 User-defined material (UMAT) 

The linear behavior is defined using generalized Hooke’s law in terms of elastic strains 

while stresses beyond yielding are correlated to total strains. The UMAT subroutine utilizes 

material behavior predicted using the micromechanical RVE simulations stage. Input 

material parameters are read from the automatically generated text file as discussed in 

subsection 7.3.3. For elaboration purpose, the subroutine properties and their equivalent 

mechanical properties are presented in Table 7.2. First two properties PROPS(1) and 
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PROPS(2) define effective elastic modulus, 𝐸𝑒𝑓𝑓 and Poisson’s ratio, respectively, while 

PROPS(3) and PROPS(4) present the first yield stress, 𝜎𝑦0 and corresponding zero plastic 

strain, 𝜀𝑝𝑙0. Remaining table entries PROPS(…) are dedicated for stress vs. plastic strain 

data.  

Table 7.2. User-defined material (UMAT) subroutine properties. 

Subroutine property Mechanical property  property symbol 

PROPS(1) Effective modulus  𝐸𝑒𝑓𝑓 

PROPS(2) Poisson’s ratio 𝜈 

PROPS(3), 

PROPS(4) 
Yield stress, plastic strain 𝜎𝑦0, 𝜀𝑝𝑙0 

PROPS(…) Table for yield stress, plastic strain 𝜎𝑦…, 𝜀𝑝𝑙… 

The linear behavior is defined using generalized Hooke’s law 𝝈 = 𝐶𝜺 where 𝐶 presents the 

constitutive matrix.  Effect of porosity on linear behavior is accounted for using Lamé’s 

parameters 𝜆 and 𝜇 as a function of effective modulus reading as 

𝜆 =
𝐸𝑒𝑓𝑓𝜈

(1 + 𝜈)(1 − 2𝜈)
 (Eq.7.14) 

𝜇 =
𝐸𝑒𝑓𝑓

2(1 + 𝜈)
 (Eq.7.15) 

Afterwards, the hardening subroutine (UHARD) is called to check if the material is 

undergoing plastic deformation which is achieved by checking the stress value for the 

current load increment compared to first yield stress, 𝜎𝑦0 or PROPS(3) in strain vs. stress 

dataset. If the material is actively yielding, then the material is flowing inelastically. 

Incremental plasticity theory is adopted where total strain rates 𝑑𝜀𝑡 are assumed to be 

decomposed into elastic 𝑑𝜀𝑒𝑙 and inelastic components 𝑑𝜀𝑝𝑙 (Abaqus V6.14– 
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Documentation, Dassault Systèmes Simulia Corporation, 2013). Inelastic deformation is 

defined in terms of scalar value of equivalent plastic strain rate 𝑑𝜀𝑝̅𝑙 as 

𝑑𝜀𝑝𝑙 = 𝑑𝜀𝑝̅𝑙 (
3

2

𝜎𝑑𝑒𝑣

𝑞
) (Eq.7.16) 

where deviatoric stress 𝜎𝑑𝑒𝑣 has been already defined by (Eq.7.2). For a general state of 

stress 𝑞 = 𝜎𝑚𝑖𝑠𝑒𝑠 as defined by (Eq.7.4). For a uniaxial tension case and a rate independent 

material, the yield condition reduces to 𝑞 = 𝜎𝑦𝑖
 where yield stresses 𝜎𝑦𝑖

 are defined as a 

function of inelastic strain components 𝜀𝑝𝑙𝑖
. The sub-subscript 𝑖 denotes the 𝑖𝑡ℎ entry in the 

plastic behavior table depending on the table length.  

7.3.4.2 User-defined damage (UDMG) 

A traction separation was is utilized to define an enriched element damage within the 

framework of XFEM. To illustrate the damage process, consider the schematic diagram in 

Figure 7.3 showing the undamaged and damaged material behaviors. If no damage model 

is utilized, the material response is going to be similar to the undamaged behavior presented 

by the solid line in Figure 7.3. Correspondingly if a damage model is utilized, the material 

behavior will show degradation at some point and will continue to degrade until final failure 

as shown by the dashed line path. Material failure may be defined as the total loss of load-

bearing capability as a result of progressive deterioration in the material stiffness. A 

damage factor 𝐷 is useful to define the deterioration process of an enriched element where 

𝐷 = 0 prior to damage initiation. If the damage initiation criterion is encountered, the 

damage factor will have a value between zero and unity as shown in Figure 7.3 signifying 
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partially damaged elements. Finally, a unity damage factor signifies final failure and 

separation of material. During the analysis at any step, damaged stress tensor is evaluated 

for enriched elements by 𝝈𝒊𝒋
𝑫 = (1 − 𝐷)𝝈𝒊𝒋. 

 

Figure 7.3 Schematic diagram showing damaged and undamged material behaviors for metals. 

In the current work, a user-defined damage subroutine is developed and implemented to 

predict final failure of porous metals. In which, the damage factor, 𝐷 is controlled based on 

critical strain energy density (SED). Assuming small deformations, i.e. less than 10%, the 

SED for the material model defined by (Eq.7.1) can be obtained as  

𝑊 = ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗

𝜎𝑓

0

=
(1 + 𝜈)(𝜎𝑚𝑖𝑠𝑒𝑠)2

3𝐸
+

3(1 − 2𝜈)(𝜎ℎ𝑦𝑑)2

2𝐸
+

𝑛𝛼(𝜎𝑚𝑖𝑠𝑒𝑠)𝑛+1

𝐸(𝑛 + 1)(𝜎𝑦)
𝑛−1 (Eq.7.17) 

The expression enables evaluating SED for a general state of stress at enriched elements. 

Noteworthy to mention that SED is invariant under rotation of coordinates (Jones, 2009; 
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Shames, 1997). Therefore, damage initiation condition in the developed UDMG subroutine 

reads  

𝑓 =
〈𝑊〉

𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 

(Eq.7.18) 

where 𝑓 = 1 signifies onset of damage within an enriched element. The Macaulay brackets 

〈∙〉 signifies that pure compressive state of stress does not initiate damage. 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

represents the critical value of SED which can be evaluated from area under the load-

displacement curve of a uniaxial tension test (R. Hill, 1998; Jones, 2009; Shames, 1997). 

SED expressed by (Eq.7.17) can be rewritten for a uniaxial state of stress after some 

manipulation as 

𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝜎𝑓

2

𝐸
(

𝛼𝑛

𝑛 + 1
+

1

2
) (Eq.7.19) 

where 𝜎𝑓 is the failure stress, 𝐸 and 𝜈 are material constants. The hardening exponent 𝑛 

and the yield offset 𝛼 can be calibrated from stress-strain curve of the non-porous material. 

(Eq.7.19) was used to evaluate the critical SEDs of non-porous material defined in Table 

7.1 yielding 6.8 MPa and 3.0 MPa for high and low strength steels, respectively. The main 

objective of defining the damage behavior is to enable accurate failure predictions for 

porous materials. To achieve this objective, the failure stress should be expressed as a 

function of porosity. For that purpose, a relationship correlating failure stress of porous 

metals to that of non-porous one is utilized. The exponential relationship was originally 

developed and validated by Knudsen (KNUDSEN, 1959) reading as 
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𝜎𝑓
𝑒𝑓𝑓

= 𝜎𝑓
𝜊𝑒−𝑚𝜙 (Eq.7.20) 

where 𝜎𝑓
𝑒𝑓𝑓

 is the effective failure stress of the porous material, 𝜎𝑓
𝜊 presents the failure 

stress of the fully-dense material and 𝑒 is the Napierian constant (2.71828..). 𝑚 is an 

empirical constant while 𝜙 is total volumetric porosity factor and the exponent negative 

sign implies the deteriorating effect. The relationship is valid for moderate porosity ranges 

up to 30% (Choren et al., 2013; KNUDSEN, 1959) which is adequate for the current work. 

Inserting (Eq.7.20) into (Eq.7.19) will result in an expression for the critical SED as a 

function of porosity reading as 

𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
𝑒𝑓𝑓

=
(𝜎𝑓

𝜊𝑒−𝑚𝜙)
2

𝐸𝑒𝑓𝑓
(

𝛼𝑛

𝑛 + 1
+

1

2
) (Eq.7.21) 

(Eq.7.21) was implemented in the Python script as the final post-processing step to evaluate 

the critical SED for the porous material. To this end the proposed modeling procedure 

details at micro and macro scales were illustrated. Finite element models particulars are 

discussed in subsection 7.4 while subsection 7.5 is devoted for validating micro/macro 

numerical results against reported testing results from literature. 

7.4 Finite Element Modeling 

7.4.1 Micromechanical RVE models 

Micromechanical RVE models were automatically generated using the developed Python 

script. Also, numerically obtained results from RVE simulations are post-processed using 

the same script for automatic generation of macromechanical material properties as 
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illustrated earlier in subsection 7.3.3. Single spheroidal voided RVE similar to references 

(Asim et al., 2018; Danas & Aravas, 2012; Huang & Talreja, 2005; Mbiakop et al., 2015; 

Saby et al., 2013; Spaggiari & O’Dowd, 2012b) was utilized in the current work to predict 

the effective elastic-plastic behavior of porous metals. RVE size was optimized to be small 

enough to capture microscopic features (e.g. micro-porosity), yet large enough to support 

accurate predictions of effective macroscopic behavior. The size analysis of representative 

volume for the current study yielded a unit length, 𝑙𝑅𝑉𝐸 = 100 𝜇𝑚 for the RVE. The cubic 

RVE model geometry showing center oblate ellipsoidal void is presented in Figure 7.4. 

Total volume of a fully dense cube is represented by 𝑉𝑅𝑉𝐸 which can be evaluated 

as (𝑙𝑅𝑉𝐸)3.  

 

Figure 7.4 Single ellipsoidal RVE model cutaway and void geometry. 

Total volumetric porosity factor, 𝜙 is evaluated using density ratio as 
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𝜙 = (1 −
𝜌𝑝𝑜𝑟𝑜𝑢𝑠

𝜌𝑛𝑜𝑛−𝑝𝑜𝑟𝑜𝑢𝑠
) (Eq.7.22) 

where 𝜌𝑝𝑜𝑟𝑜𝑢𝑠 is the density of porous material while 𝜌𝑛𝑜𝑛−𝑝𝑜𝑟𝑜𝑢𝑠 represents the density of 

non-porous material, i.e. sound material. Ellipsoidal void volume, 𝑉𝑣𝑜𝑖𝑑 is then determined 

by utilizing the porosity factor 𝜙 and total volume, 𝑉𝑅𝑉𝐸. The embedded ellipsoidal void 

geometric parameters are shown in Figure 7.5. The ellipsoidal shapes utilized for current 

analyses has an equal minor radius, 𝑟 along the x and z axes while 𝑅 represents the major 

radius along the y-axis.  

 

Figure 7.5 Ellipsoidal void shape and geometric parameters. 

Ellipsoidal three-dimensional surface expression can be written as 

𝑥2

𝑅2
+

𝑦2 + 𝑧2

𝑟2
= 1 (Eq.7.23) 
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where 𝑥, 𝑦 and 𝑧 represent the Cartesian coordinates along the three orthogonal directions, 

respectively. To parametrize ellipsoid volume, a non-dimensional aspect ratio between 

major and minor axes, 𝑎 = 𝑅/𝑟 was utilized to express the ellipsoidal volume as 

𝑉𝑣𝑜𝑖𝑑 =
4

3
𝜋𝑎𝑟3 (Eq.7.24) 

Note that a unity aspect ratio yields a perfect spherical void with three identical radii. In 

the current work different aspect ratios are considered to investigate the void shape effect 

on predicted mechanical behaviors. Figure 7.6 presents different ellipsoids utilizing aspect 

ratios greater than or equal to unity. 

 

Figure 7.6 Ellipsoidal shapes at different aspect ratios: (a) a=1.0, (b) a=1.5, (c) a=2.0, (d) a=2.5. 

Each ellipsoid is aligned at RVE centroid and Boolean geometric subtraction operation is 

utilized to generate the final voided RVE model as shown in Figure 7.7. In order to attain 

better mesh conformation to the curved boundaries of ellipsoids, the developed python 

script was used to enable automatic partitioning to each generated RVE. The partitioning 

process results in eight symmetric subdivisions of the three-dimensional cube. To enable 

structured meshing technique, geometric edges of each sub-division including ellipsoidal 

edges were seeded the same number of nodes. As a result, only brick elements were used 
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in meshing, namely C3D8R, which are eight-noded elements with reduced integration. 

Figure 7.7a and Figure 7.7b shows the automatically partitioned RVE model and the 

resulting high-quality structured mesh, respectively. The final convergent meshes for 

generated RVEs had average size of 60,000 elements with a minimum and a maximum 

elemental length of 1μm and 2.5 μm, respectively.  

 

Figure 7.7 (a) Automatically partitioned RVE model showing edge seeding, (b) resulting high quality 

structured mesh. 

Micromechanical modeling is focused on effective behavior of porous metals under 

tension. Therefore, the continuum mechanics approach is adopted to enable predictions of 

a complete mechanical behavior. To enable homogenization of the microstructure, it is 

necessary to produce an average strain within the homogenized material. Necessary set of 

Neumann and Dirichlet boundary conditions should be precisely applied (Siavouche & 

Hori, 1993). For this purpose, two faces of the RVE are associated with three-dimensional 

rigid nodes, namely RNODE3D as shown in Figure 7.8. These nodes constraint faces from 
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deforming during the analysis as well as being used to apply necessary set of boundary 

conditions. The face highlighted in red is constrained with a fixed boundary condition 

(Dirichlet type) while the face highlighted in blue is set to uniform displacement (Neumann 

type) ramped at 100 equal steps to generate a uniform strain within the homogenized 

material. The peak value of applied displacement is limited to produce 5% strains to 

conform to the small deformation’s assumption, i.e. less than 10%. 

 

Figure 7.8 RVE model showing rigid node faces highlighted in blue and red. 

7.4.2 Macromechanical modeling and failure 

Macromechanical material behavior is defined using the three user-defined subroutines 

UMAT, UHARD and UDMG as discussed in subsection 7.3.4. Material properties were 

automatically generated using the Python script by post-processing micromechanical RVE 
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output as illustrated in subsection 7.3.3. Three-dimensional specimen sized models were 

considered for macromechanical models. Loading conditions and geometric parameters are 

presented by Figure 7.9. Models representing the low and high strength steel specimens 

are named model A and B, respectively.  

 

Figure 7.9 Finite element models geometry and loading conditions. 

Specimens end tabs should be constrained as undeformable sections to avoid biasing 

numerical results. Therefore, corresponding elements were chosen of a rigid type. The left 

tab was fixed in all degrees of freedom using the ENCASTRE boundary condition in 

Abaqus, while the right tab was constrained to move along the specimen’s vertical axis 

only to mimic the test conditions. A solid homogeneous section was selected for all 

specimen sized models with an eight-noded linear three-dimensional brick element, namely 

(C3D8R). The element utilizes reduced integration technique to reduce computational 

effort with hourglass control for better prediction results. Based on displacements and stress 

convergence studies the sufficient mesh size was determined to be 8000 and 10000 



 

228 

 

elements for models A and B, respectively. XFEM enrichments were utilized in the narrow 

section of each model to allow for damage initiation and evolution. The displacement was 

linearly ramped until final failure. A general static analysis step was selected to perform 

the simulations with automatic incrementation. The initial increment size was set to 0.005 

with a while the maximum was set to 0.01. Nonlinear geometric behavior was allowed 

during the analysis. Regarding the computational effort, the workstation used for running 

all simulations utilizes an Intel® Xeon® central processing unit E5-1603 v4 running at 2.80 

GHz with 32 GB of RAM. A single processor was used to perform the simulations on 

Abaqus 2017. 

7.5 Results and Discussion 

7.5.1 Micromechanical RVE results 

To assess the effect of oblate ellipsoidal void, four aspect ratios were considered as shown 

in Figure 7.6. Starting with a unity ratio to generate a perfect spherical void and increasing 

the aspect ratio up to 2.5. Obtained micromechanical numerical results were used to extract 

effective elastic-plastic behavior of the voided material. Effective behaviors for same 

volumetric porosity, i.e. 4.5% at different aspect ratios compared to that of testing reported 

by Chawla and Deng (Chawla & Deng, 2005) are presented in Figure 7.10. 



 

229 

 

 

Figure 7.10 RVE effective stress-strain behaviors for 4.5% porosity low strength steel at different 

aspect ratios. 

As can be observed that a perfect spherical void, i.e. 𝑎 = 1 is showing larger slope in the 

linear region followed by a significant deviation in non-linear region as well as the plastic 

flow. The numerically obtained stress-strain curve is similar in nature to that of testing, yet 

there is a major deviation from testing curve specifically in the non-linear region and plastic 

flow. As the aspect ratio was increased, the numerically obtained effective behaviors had a 

tendency of approaching the testing results. This can be observed from the effective 

behaviors of aspect ratios 1.5 and 2.0. A perfect agreement can be observed between 

numerically obtained stress-strain behaviors utilizing an aspect ratio of 2.5 when compared 

to testing. Increasing the aspect ratio above 2.5 did not seem to have an effect on prediction 

results and stress-strain curves were unaltered. In fact, this signifies that an optimum aspect 

ratio may exist depending on material type of interest. To further assess this claim, the 

aspect ratio was set to 2.5 while total volumetric porosity percentage was varied. Chawla 
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and Deng (Chawla & Deng, 2005) reported testing results regarding three total volumetric 

percentages of porosity regarding low strength sintered steel. The developed Python script 

was used to generate effective behaviors of these percentages and numerical results were 

compared to those of testing as shown in Figure 7.11. Numerical results are presented with 

different line types while corresponding testing data are presented with different marker 

types. Upon varying only one factor, i.e. total volumetric porosity 𝜙, a change in the slope 

of the linear region as well as a variation regarding the onset of plastic deformation can be 

observed similar to testing behaviors. Finally, predicted behaviors were able to capture 

differences regarding plastic flows at each porosity percentage where there is drop in the 

curve owed to the onset of yielding. For low strength steel, the proposed micromechanical 

RVE results showed excellent agreement with those of testing at different porosity 

percentages. 

 

Figure 7.11 RVE effective elastic-plastic behavior vs low strength steel testing (Chawla & Deng, 

2005). 
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To further validate the proposed modeling approach, the micromechanical RVE script was 

used to obtain stress-strain behaviors of high strength steel. Two porosity percentages were 

reported by Stephens et al. (Stephens et al., 1998b) regarding the mechanical behavior of 

high strength steel. The developed Python script was used to generate effective behaviors 

at reported porosity percentages. Numerically obtained stress-strain curves from RVE 

simulations are compared to those of testing as shown in Figure 7.12. The proposed RVE 

approach proven predictive capabilities regarding the effective mechanical behavior. This 

can be demonstrated by a change of slope in linear region, alteration in onset of yielding as 

well as the plastic flow curves. Excellent agreement was consistently observed between 

numerical predictions when compared to testing results of high strength steel. 

 

Figure 7.12 RVE effective elastic-plastic behavior vs strength steel testing (Stephens et al., 1998b). 

Noteworthy to mention, that the selected material model, i.e. defined by (Eq.7.1) enabled 

predicting precise continuous stress-strain curves as can be observed from comparisons 
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with two independent sets of reported testing results. To this end, anticipated outcome from 

micromechanical modeling stage is accomplished. The proposed macromechanical 

material model results are discussed in the following subsection. 

7.5.2 Macromechanical modeling results 

Numerical results obtained using the proposed user-defined subroutines are demonstrated. 

For brevity purposes, only model A results are shown in full-field results (i.e. at 4.5% 

volumetric porosity). Meanwhile numerically obtained stress-strain curves are compared 

to those of testing and presented for both models, A and B, respectively, and for all 

specimens at different porosity levels. Also, quantitative comparisons based on discrete 

material properties are provided. In the following comparisons, UMDMG denotes the 

developed subroutine numerical results. The elastic strain energy density (ESEDEN) 

contour plot was extracted at different load increments, and the corresponding results are 

depicted in Figure 7.13. As can be observed, the critical cross-section existed towards the 

lower end of the specimen. The critical cross-section is the one experiencing a maximum 

value of strain energy density, elements belonging to this region are highlighted in red in 

Figure 7.13. 
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Figure 7.13 Elastic SED contour plot at different load increments 

The plastic dissipation of SED (EPDDEN) at the particular load increments are portrayed 

in Figure 7.14. The plastic energy dissipation represents the amount of energy required to 

permanently deform the material. The same critical cross-section location was observed to 

be in consistency with the critical cross-section from Figure 7.13.  
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Figure 7.14 Total plastic dissipation of SED contour plots 

The total SED combining both elastic and plastic contributions is depicted in Figure 7.15. 

The mesh gridlines were removed from the model for better viewing. As can be seen, the 

combined SED results validates the previous results reported in both Figure 7.13 and 

Figure 7.14. The damage initiation location, as well as the damage evolution direction, can 

be anticipated by inspecting the SED at different load increments, Figure 7.15. 
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Figure 7.15 SED contour plots at different load increments 

Figure 7.16 presents predicted damage initiation and evolution using the proposed 

UMDMG at different step increments. A cutout through the specimen cross-section is used 

to better visualize the damage process. As can be seen, damage initiation was in the center 

of the specimen where 4 elements were subject to approximately 10% damage according 

to the damage factor scale. Upon increasing the load more elements were subject to the 

same percentage of damage. It can be observed that damage was expanding radially with 

the increase of loading. At increment 82 a change in color for some elements with more 

intensity towards the center can be observed signifying more loss of stiffness. Starting from 

increment 85, material degradation was rapid where two elements in the center showed a 

complete loss of stiffness signified by the red color which corresponds to a damage factor 

of unity. At increment 88 the center elements shown by the grey color have already 



 

236 

 

exhibited separation. Finally, the final fractured surface can be anticipated from the contour 

plot at increment 93. 

 

Figure 7.16 UMDMG results showing damage initiation and evolution at different increments. 

Stress-strain results utilizing UMDMG subroutine are presented against reported testing 

data from literature. Throughout the following comparisons, reported testing results are 

presented with different types of markers while UMDMG numerical results are presented 

with different line types. Figure 7.17 presents numerical results simulating the low strength 

steel behavior. As can be seen, numerical results are in excellent agreement with testing 

behaviors starting with the sound material and up to 10.3% total volumetric porosity. Also, 

the developed damage model showed prediction capabilities regarding macroscopic failure. 

Noteworthy to mention that prediction results were consistently conservative. Table 7.3 

provides a quantitative comparison between predicted and reported testing regarding 

mechanical properties of low strength steel. The predicted moduli of elasticity were in 

excellent agreement when compared to those of testing with minimum and maximum errors 

of -0.25% and 4.48%, respectively. The maximum error was recorded by the 10.3% 
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porosity level while lower porosity levels showed less errors. Regarding failure limits, the 

maximum recorded error was -2.13% recorded by the predicted strain at failure of the 4.5% 

total volumetric porosity material. Failure limits were in excellent agreement which can be 

attributed to strain energy density-based damage model. 

 

Figure 7.17 Stress-strain results of low strength steel at different volumetric porosity: UMDMG vs 

Testing (Chawla & Deng, 2005). 

Table 7.3. Low strength steel mechanical properties: predicted vs testing. 

Total volumetric 

porosity 

Mechanical 

property  

Testing results 

(Chawla & 

Deng, 2005)  

UMDMG 

predictions 

Percentage error 

(%) 

0.0% 

𝐸 (GPa) 201.2 200.7 -0.25 

𝜎𝑓 (MPa) 939.1 934.7 -0.47 

ε𝑓 (%) 7.0 6.9 -1.43 

3.2% 

𝐸 (GPa) 183.7 180.9 -1.52 

𝜎𝑓 (MPa) 819.0 816.0 -0.37 

ε𝑓 (%) 5.6 5.5 -1.79 
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4.5% 

𝐸 (GPa) 169.7 173.8 2.42 

𝜎𝑓 (MPa) 770.1 769.4 -0.10 

ε𝑓 (%) 4.7 4.6 -2.13 

10.3% 

𝐸 (GPa) 138.5 144.7 4.48 

𝜎𝑓 (MPa) 578.6 572.3 -1.07 

ε𝑓 (%) 2.2 2.1 -4.54 

Figure 7.18 presents a similar comparison for high strength steel at different total 

volumetric porosity. As can be observed, the proposed UMDMG subroutine results are in 

excellent agreement with reported testing behaviors which can be observed for the sound 

material behavior as well as the porous materials behaviors. It can be said that the material 

behaviors were precisely captured beginning with the linear region, yielding as well as the 

plastic flow. Also, regarding failure, consistency was observed in conservative predictions. 

This can be attributed to the adopted failure mechanism in the proposed model. Energy 

based criteria are by far more accurate compared to simple stress/strain criteria. Table 7.4 

provides a quantitative comparison between predicted and reported testing regarding 

mechanical properties of high strength steel. As can be observed the maximum error in 

Young’s modulus is 1.25% which was reported by the 11.0% porosity material. The 

maximum errors in predicting failure stress and strain were 1.06% and -1.55%, 

respectively. As can be observed from both comparisons with testing results of low and 

high strength steels, the proposed procedure proven excellent prediction capabilities in 

linear, non-linear as well as final failure of porous materials. Noteworthy to mention that 

only required material input for the analyses was the behavior of the fully dense materials 

as reported in Table 7.1. 
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Figure 7.18 Stress-strain results of high strength steel at different volumetric porosity: UMDMG vs 

Testing (Stephens et al., 1998b). 

Table 7.4. High strength steel mechanical properties: predicted vs testing. 

Total volumetric 

porosity 

Mechanical 

property  

Testing results 

(Stephens et al., 

1998b) 

UMDMG 

predictions 

Percentage error 

(%) 

0.0% 

𝐸 (GPa) 186.8 184.6 -1.18 

𝜎𝑓 (MPa) 2293.3 2274.6 -0.82 

ε𝑓 (%) 5.47 5.40 -1.28 

3.8% 

𝐸 (GPa) 163.4 164.2 0.49 

𝜎𝑓 (MPa) 2012.8 2008.5 -0.21 

ε𝑓 (%) 3.99 3.90 -2.26 

11.0% 

𝐸 (GPa) 128.4 130.0 1.25 

𝜎𝑓 (MPa) 1185.0 1197.6 1.06 

ε𝑓 (%) 1.29 1.27 -1.55 

7.6 Conclusions  

Two-stage finite element procedure was provided to predict effective elastic-plastic 

behavior as well as final failure of porous metals under tension. Micromechanical modeling 

utilizing RVE method was used for the first stage to predict the effective mechanical 
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behavior given the fully dense material behavior. A python script was developed to fully 

automate RVE generation, boundary conditions application and high-quality mesh 

generation. Also, post-processing of micromechanical results was implemented in the same 

script. Second stage provided macromechanical modeling utilizing automatically generated 

material parameters to be used in Fortran user-defined subroutine, i.e. UMDMG. A strain 

energy density (SED) based damage model was utilized to predict final failure at 

macroscopic levels within the framework of XFEM. Finally, proposed work was validated 

against two independent sets of testing results of porous metals, namely low and high 

strength steels. Noteworthy to mention that validation was limited to low range porosity, 

i.e. =̃10%. From the presented work, the following can be concluded 

• Micromechanical RVE representing total volumetric porosity by a single oblate 

spheroidal void proven excellent predictive capabilities regarding elastic-plastic 

behavior of porous metals under tension. 

• The RVE size and ellipsoidal void aspect ratio were found to be dominant 

parameters controlling numerical predictions accuracy.  

• A major contribution of the proposed work is automatic post-processing of 

micromechanical modeling results enabling precise definition of macromechanical 

modeling material properties while alleviating user-intervention. 

• For macroscale level, the proposed user-defined subroutines employing 

automatically generated material properties enabled accurate definition of elastic-

plastic behavior of porous materials. 
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• Critical strain energy density (SED) as a function of total volumetric porosity 

presented by (Eq.7.21) was developed in the proposed work and proven excellent 

predictive capabilities. 

• SED damage model utilizing the framework of XFEM enabled predicting final 

failure precisely. Also, the damage model proven to be consistent providing 

conservative failure limits. 

• The proposed two-stage finite element procedure running time for (micro-macro 

models) was in the order of minutes. Therefore, computational effort is a fraction 

of multiscale modeling techniques requirements where the overall simulation time 

is in the order of days, e.g. GTN model.  
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8 Automating XFEM Modeling Process for Optimal Failure 

Predictions 

8.1 Abstract 

The eXtended Finite Element Method (XFEM) is a versatile method for solving crack 

propagation problems. Meanwhile, XFEM predictions for crack onset and propagation rely 

on the stress field which tends to converge at a slower rate than that of displacements, 

making it challenging to capture critical load at crack onset accurately. Furthermore, 

identifying the critical region(s) for XFEM nodal enrichments is user dependent. The 

identification process can be straightforward for small scale test specimen while in other 

cases such as complex structures it can be unmanageable. In this work a novel approach is 

proposed with three major objectives; (1) alleviate user-dependecy (2) enhance predictions 

accuracy (3) minimize computational effort. An automatic critical region(s) identification 

based on material selected failure criterion is developed. Moreover, the approach enables 

the selection of optimized mesh necessary for accurate prediction of failure loads at crack 

initiation. Also, optimal enrichment zone size determination is automated. The proposed 

approach was developed as an iterative algorithm and implemented in ABAQUS using 

Python scripting. The proposed algorithm was validated against own test data of un-notched 

specimens as well as relevant test data from the literature. The results of the predicted 

loads/displacements at failure are in excellent agreement with measurements. Crack onset 

locations were in very good agreement with observations from testing. Finally, the 

proposed algorithm has shown a significant enhancement in the overall computational 

efficiency compared to the conventional XFEM. The proposed algorithm can be easily 

implemented into user-built or commercial finite element codes. 
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8.2 Introduction 

Stress concentrations may cause the initiation of a fatigue crack in a structure (Sumi, 2014). 

It arises mainly by either a concentrated force acting on a body or a geometrical 

discontinuity such as holes, a sharp geometrical change or a cracked surface. Finite Element 

Method (FEM) has proven to be a versatile analysis technique in solving structural 

engineering problems. Meanwhile, problems involving discontinuities or singularities such 

as crack onset/propagation problems, are quite problematic (Pommier et al., 2013). One 

Major challenge in the conventional FEM is the need for mesh regeneration (Sumi, 2014) 

to align the mesh with crack boundaries. Moreover, stress concentration at the crack-tip 

requires mesh refinement for accurate representation (Moës et al., 1999). Mesh alignment 

and refinement operations negatively affect computational efficiency and accuracy of 

predictions (Dolbow, Moës, & Belytschko, 2001). The eXtended Finite Element Method 

(XFEM) initially proposed by Belytschko and his collaborators (T. Belytschko & Black, 

1999; Moës et al., 1999). Belytschko and Black (T. Belytschko & Black, 1999) introduced 

a new technique for solving crack growth problems with minimal remeshing. Their 

methodology was developed based on the work by Melenk and Babuška (BABUŠKA & 

MELENK, 1997; Melenk & Babuška, 1996). The method provided an application of the 

partition of unity theorem to conventional FEM. XFEM works by enriching the nodes of 

the traditional finite element mesh by special shape functions to account for the 

displacement field discontinuities which are present in the case of a macro-crack. Hence, 

in XFEM domain remeshing is no longer needed to account for the crack presence and its 

propagation. The method is well suited for crack propagation (Ted Belytschko et al., 

2009b), and it was implemented in commercial Finite Element Analysis (FEA) codes such 



 

251 

 

as ABAQUS and ANSYS (Abaqus Documentation, 2014; Radhakrishnan, 2011). 

Meanwhile, the current implementation of XFEM in commercial finite element code has 

its challenges (L. Wu, Zhang, & Guo, 2013). The primary problem is related to the need of 

embedding an initial crack a priori into the finite element mesh to trigger crack propagation. 

Inserting a crack raises the need for an expert user to identify the crack location. 

Alternatively, critical region(s) which are more likely to fail has to be determined for 

XFEM nodal enrichments. Hence without an expert user, enriching nodes of the entire 

domain of a finite element mesh becomes a general practice, which in turn results in more 

runtime and reduced computational efficiency. Heavily tied to the primary challenge comes 

a second one resulting from the dependency of prediction accuracy on mesh quality; more 

specifically the prediction of crack onset being dependent on mesh quality and density. 

XFEM predictions applied to composites has been on rapid development by researchers. 

For example, Grogan et al. (Grogan, Leen, & O. Brádaigh, 2014) proposed a methodology 

for simulating thermal fatigue delamination in FRP composites using the framework of 

XFEM. Their methodology was used for the safe design of composite cryogenic fuel tanks. 

The proposed model predictions were validated with measurements from static and fatigue 

test methods. In their models, initial cracks were embedded to trigger crack propagation till 

failure. Duarte et al. (Duarte et al., 2017) provided a comparative study between XFEM 

and the Hashin’s damage criterion applied to the failure of composites. They concluded 

that the XFEM solution of the problem dealing with laminated composites overestimated 

failure loads at smaller deformations, suggesting that further investigation is required since 

XFEM predicted stiffer behavior. Petrov et al. (Petrov et al., 2018) presented a parametric 
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study for assessing the performance of XFEM applied to cross-ply composite laminates 

cracking. In their conclusions, XFEM predictions overestimated the number of cracks as 

well as corresponding strains and stresses. Bobiński and Tejchman (Bobinski & Tejchman, 

2012; Tejchmann & Bobinski, 2015) used XFEM to study cracked concrete elements. In 

their work, they compared XFEM predictions to testing measurements of double-notched 

specimens reported by Nooru-Mohamed (Nooru-Mohamed, M. B. "Mixed-mode Fracture 

of Concrete: An Experimental Approach." Delft University of Technology, 1992). Load-

deflection curves in (Bobinski & Tejchman, 2012; Tejchmann & Bobinski, 2015) reflected 

over-predictions of approximately 20% when compared to measurements. In review article 

on recent developments in damage modeling methodologies for composites (P. F. Liu & 

Zheng, 2010), the multiscale modeling technique was highlighted  as promising technique 

and promoted further investigation. Meanwhile Liu and Zheng (P. F. Liu & Zheng, 2010) 

identified multiscale modeling computational challenges in incorporating microscopic 

modeling and macroscale failure mechanisms. As an example on multiscale modeling, 

Unger and Eckardt (Unger & Eckardt, 2011) presented multiscale modeling of concrete by 

coupling a homogeneous macroscale model with a heterogeneous mesoscale one. Their 

results were in a good agreement compared to testing results, but the multiscale modeling 

approach required long computational time (45000 ~ 64000 sec) for solving 2-D problems. 

In the same review article Liu and Zheng (P. F. Liu & Zheng, 2010) pointed out the 

advantages as well as the promising outcomes of XFEM which is the focus of the current 

research. 
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Therefore, in the current work, a novel approach is developed with the objectives (1) 

Automatic identification of critical region(s) to alleviate user-dependency, (2) rigorous 

automatic mesh refinement based on stress convergence within these region(s) to ensure 

accurate predictions and (3) automatically enriching critical region(s) for optimal XFEM 

execution. The main aim of current work is to eliminate the reliance on an expert user in 

identifying the critical region(s) and mesh refinement to enhance predictions accuracy at 

failure onset (damage initiation). For this purpose, an automation algorithm is developed 

to enable automatic identification of critical region(s) location/size and performing optimal 

mesh refinement procedure. The algorithm enriches only necessary nodes corresponding to 

the critical region(s) for XFEM modeling to predict the crack onset failure load and 

location. For the purpose of validating the current methodology, notched specimens were 

excluded since they are mainly used to study crack propagation rather than its onset. It is 

noteworthy to mention that the scope of the current work is predicting failure onset location 

together with failure loads/displacements with minimal user intervention to allow analyzing 

a real-life structure. To this end, a set of six un-notched concrete prismatic specimens were 

prepared and tested for validation. In addition, further comparisons were established with 

relevant test data of un-notched specimens from the literature. 

8.3 Research Significance 

In the current work, some of XFEM implementation challenges are considered. The first 

challenge is the method dependency on user skills for critical region(s) identification for 

nodal enrichments. The second challenge stems from the high dependency of predictions 

accuracy on mesh quality and density. The proposed approach overcomes both challenges 
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by automating the XFEM modeling process to arrive at a convergent mesh as well as 

potential (crack onset) zone without user intervention, hence allowing regular users to 

predict failure onset accurately. Another chief advantage of the proposed methodology is 

eliminating the need to embed initial cracks when analyzing crack propagation problems. 

This provides further advantages when the analysis is not limited to propagation and 

damage onset prediction is of primary importance. Critical load predictions at crack 

initiation facilitated by the current approach proved to be in excellent agreement with 

measurements obtained when testing un-notched specimens as well as relevant test data 

from the literature. Therefore, the proposed method allows accurate prediction of failure 

onset and eliminates the need for biasing specimens by introducing notches or first cracks. 

Furthermore, the proposed approach enables efficient mesh optimization and optimal 

enrichments which in turn enhances the overall computational efficiency. In conclusion, 

applying the proposed approach have significant effects on providing accurate and 

computationally efficient analysis of complex structures where critical region(s) 

identification can be challenging even for an expert user. 

8.4 XFEM Fundamentals and ABAQUS Implementation 

8.4.1 Mathematical Formulation 

In the current section, the mathematical aspects of XFEM are briefly presented as in (Moës 

et al., 1999). Consider a finite element mesh of a two-dimensional cracked body as shown 

in Figure 8.1a, in which a crack is shown using a dashed line, finite element mesh by solid 

lines and nodes are represented by black filled circles (set I). As can be seen, in XFEM the 

crack is surrounded by two types of nodes. The first type is the ‘Heaviside’ enrichment 
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nodes which are illustrated using square shapes (set J). The second type is the ‘Crack-tip’ 

nodes which are presented using red circles (set K). The formulation of the XFEM problem 

is similar to that of conventional FEM formulation where both are based on standard 

Galerkin’s formulation with a slight difference in the former (Abaqus Documentation, 

2014). XFEM utilizes the global shape functions of conventional FEM throughout all nodes 

in the mesh (set I). A subset of the elemental nodes is referred to as ‘enriched nodes’ (set J 

and K) where extra terms are added to the global shape function to account for 

discontinuities in the displacement field (e.g., crack jump) in addition to the crack-tip 

singularities. 

 

Figure 8.1 (a) 2-D finite element mesh of a cracked body. (b) 2-D linear elastic boundary value 

problem with a crack 

Therefore, general shape function for all nodes in the domain takes the form of (Eq.8.1). 

𝑢ℎ(𝑥) = ∑ 𝑢𝑖

𝑖∈𝐼

𝑁𝑖 + ∑ 𝑏𝑗

𝑗∈𝐽

𝑁𝑗𝐻(𝑥) +  ∑ 𝑁𝑘 [∑ 𝑐𝑘
𝑙 𝐹𝑙(𝑥)

4

𝑙=1

]

𝑘∈𝐾

 (Eq.8.1) 

where 𝑥 presents the global coordinates, 𝑁𝑖 are shape functions of 𝑖 and 𝑢𝑖 are the degrees 

of freedom of node 𝑖. 𝐻(𝑥) is the Heaviside function or the jump function, 𝑁𝑗 are the shape 
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functions related to the discontinuity at node 𝑗, while 𝑏𝑗 are the additional degrees of 

freedom associated to the jump function. 𝐹𝑙(𝑥) are the crack-tip enrichment functions, 𝑁𝑘 

are the shape functions related to the crack-tip functions at node 𝑘 and 𝑐𝑘
𝑙  are the additional 

degrees of freedom related to the elastic asymptotic crack-tip enrichment functions. For 2-

D elasticity problem, the crack-tip enrichment functions are given by 

{𝐹𝑙(𝑟, 𝜃)}𝑙=1
4 = {√𝑟 cos (

𝜃

2
) , √𝑟 sin (

𝜃

2
), √𝑟 sin (

𝜃

2
) sin 𝜃, √𝑟 cos (

𝜃

2
) sin 𝜃} (Eq.8.2) 

where (𝑟, 𝜃) represent the polar coordinate system with the origin at the crack-tip as shown 

in Figure 8.2. The tangent 𝑠 is at 𝜃 = 0, and the outward normal at 𝜃 = 90, is denoted by 

𝑛. 

 

Figure 8.2 Crack-tip representation showing the outward normal and the tangent. 

Throughout the domain of the problem, nodes which are not enriched by a Heaviside 

function nor a crack-tip asymptotic function are associated with the conventional shape 

functions of FEM. Hence, (Eq.8.1) can be simplified to include only the first summation 

term on RHS leading to the traditional formulation of FEM reading as 
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𝑢ℎ(𝑥) = ∑ 𝑢𝑖

𝑖∈𝐼

𝑁𝑖 (Eq.8.3) 

For the region which is cut by the crack (crack domain), the displacement approximation 

function of XFEM can be reduced to only include both first and second summation terms 

of (Eq.8.1) and can be written as 

𝑢ℎ(𝑥) = ∑ 𝑢𝑖

𝑖∈𝐼

𝑁𝑖 + ∑ 𝑏𝑗

𝑗∈𝐽

𝑁𝑗𝐻(𝑥) 
(Eq.8.4) 

Finally, to account for the crack-tip singularities as well as its propagation (Eq.8.1) can be 

reduced to only include first and third summation terms on the RHS which takes the form 

of (Eq.8.5) as follows 

𝑢ℎ(𝑥) = ∑ 𝑢𝑖

𝑖∈𝐼

𝑁𝑖 + ∑ 𝑁𝑘 [∑ 𝑐𝑘
𝑙 𝐹𝑙(𝑥)

4

𝑙=1

]

𝑘∈𝐾

 (Eq.8.5) 

As can be observed from the previous equations, the computational effort required for the 

solution of XFEM is higher than that needed for conventional FEM, because XFEM 

accounts for more degrees of freedom to capture crack behavior using the same number of 

nodes leading to an increased problem size; demanding more computational effort. 

8.4.2 Enrichment Zone Sizing 

In a 2D linear elastic boundary value problem shown in Figure 8.1b, the crack domain is 

denoted by Ω while the boundary is presented by Γ. The boundary conditions Γ is composed 

of three sets, namely, Γ𝑢, Γ𝑡 and Γ𝑐 such that Γ = Γ𝑢 ∪ Γ𝑡 ∪ Γ𝑐. The displacements are 
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imposed on Γ𝑢, while tractions are imposed on Γ𝑡. The crack surface represented by Γ𝑐 

which is assumed to be traction-free. The equilibrium equations and the constitutive 

relationships are given by 

∇ ⋅ σ = 0               σ = C ∶ ε           in      Ω (Eq.8.6) 

where ∇ is the gradient operator, 𝛔 is Cauchy’s stress tensor, 𝐂 represents Hooke’s tensor 

and 𝛆 is the strain tensor. The prescribed tractions are  

σ ⋅ n = 𝑡̅           on      Γ𝑡 (Eq.8.7) 

where n is the outward unit normal vector to Γ𝑡. Consequently, for traction free crack 

surface  σ .  n = 0. Under the assumptions of small strains and displacements, the kinematic 

equations read 

ε =
1

2
(∇𝑢 +  ∇𝑇𝑢)  ≡ ε(𝑢)         on      Ω (Eq.8.8) 

where 𝜀(𝑢) is the linearized strains and 𝑢 is the displacement field. (Eq.8.6) and (Eq.8.7) 

represents the strong form of the governing equations. In order to transform strong 

formulation of the problem into the weak form which is better suited for finite element 

computations (Moës & Belytschko, 2002), the displacement 𝒖 must belong to a set of 

kinematically admissible displacement fields (BABUŠKA & MELENK, 1997; T. 

Belytschko & Black, 1999; Melenk & Babuška, 1996; Pommier et al., 2013). The weak 

form of the equilibrium equations is given by (Eq.8.9), which is solved using the Galerkin’s 

method. 
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∫
Ω

σ(𝑢ℎ) ∶ ε(vℎ)dΩ = ∫
Γ𝑡

𝑡̅ ⋅ (vℎ) dΓ (Eq.8.9) 

Based on the weak form in (Eq.8.9), the error in the energy norm can be calculated (Moës 

& Belytschko, 2002; Strouboulis, Copps, & Babuška, 2011). Gupta and Duarte (V. Gupta 

& Duarte, 2016) utilized the expression of the error in the energy norm to develop a priori 

estimate for the enrichment zone size. In their work, they explained that the error in the 

element located immediately outside a distance 𝑑 from the crack-tip is to remain bounded 

for optimal convergence. Under this condition and accounting for displacement field 𝑢ℎ 

near the crack-tip, they developed an expression for optimal zone enrichment reading as 

follows 

𝑑−2𝑝ℎ   ≤   𝐶 (Eq.8.10) 

where 𝑑 is the minimal enrichment zone size for optimal convergence, 𝑝 is the polynomial 

degree of interpolation functions and ℎ is the characteristic length of the element. To attain 

the optimal rate of convergence the left-hand side of (Eq.8.10) is to remain less than or 

equal to a constant 𝐶. This equation was extensively studied in (P. Gupta, Pereira, Kim, 

Duarte, & Eason, 2012; V. Gupta, 2014; V. Gupta & Duarte, 2016) proving its validity. 

8.4.3 XFEM in ABAQUS 

Modeling process using XFEM for crack initiation in ABAQUS involves several steps. 

First, selection of regions that are more likely to fail or initiate a crack (Abaqus 

Documentation, 2014). As an illustration, let us consider the Koyna dam problem shown 

in Figure 8.3, the Koyna dam survived an earthquake of magnitude 6.5 on the Richter scale 
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on December 11, 1967 (Abaqus Documentation, 2014). The quake did not cause significant 

damage, but it triggered the initiation of some cracks in the dam. 

 

Figure 8.3 The Koyna dam two-dimensional profile reproduced from (Abaqus V6.14– Documentation, 

Dassault Systèmes Simulia Corporation, 2013). 

There exist two approaches to analyze this problem using XFEM. The first approach is to 

embed an initial crack in the critical region to trigger crack propagation analysis as shown 

in Figure 8.4a. Merely this is done to study crack propagation rather than its onset. 

Embedding initial cracks reduce the accuracy of predicted failure limits, which is 

detrimental in the case of brittle materials as their failure is said to be catastrophic; Once 

the damage is initiated, it will rapidly propagate under various types of loading till fracture. 

In the second approach, the user is required to identify potential failure region(s) which 

might be a straightforward task for a small structure (e.g., specimen). On the other hand, it 

might become a very challenging task dealing with large structures. Upon identifying the 
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critical region(s), the user would select this region(s) as shown in Figure 8.4b. 

Corresponding nodes for this region(s) are enriched with XFEM unique shape functions to 

account for crack onset. Failing to identify the critical region(s) will potentially lead to the 

enrichment of the entire domain of the problem. Full domain enrichment results in a drastic 

increase of required computational requirements and there is a possibility of an ill-

conditioned system of equations that may cause convergence problems. 

 

Figure 8.4: Koyna dam 2-D problem. (a) Initially embedded crack. (b) User-defined critical region 

for XFEM enrichment. 

Initiation of a crack depends on a selected failure criterion for damage, typically stress or 

strain-based failure criterion. Accurate and efficient evaluation of the stress/strain fields for 

critical regions is dominant to precisely encounter crack initiation criterion. It is known that 

stresses in finite elements tend to converge at a slower rate than that of displacements which 

prompts the need of using refined and optimal mesh throughout the critical region(s) to 
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precisely capture stress/strain fields (Abaqus Documentation, 2014). Mesh refinement and 

optimization process is a user-dependent process relying on the user’s experience. 

Therefore, the lack of expert user insight entails enriching the entire domain of the problem 

and raises the potential of using less than optimal mesh, leading to a drastic increase in 

computational requirements along with lower predictions accuracy. Hence, overcoming the 

previously mentioned challenges is the primary objective of the current work. The 

following section devoted to present and discuss the proposed approach by emphasizing 

the role of each module. 

8.5 The Proposed Approach 

In the current work, a novel method is proposed to overcome XFEM modeling challenges 

in ABAQUS. The main aim is to automate the modeling process to predict failure onset 

(damage initiation) while maintaining optimal computational efficiency. It worth noting 

that the primary interest of current work is predicting failure onset without biasing or 

introducing any initial cracks a priori. The proposed algorithm was implemented using 

Python scripting in ABAQUS with three main tasks to be performed. First, automatic 

identification of critical region(s). Second, mesh optimization for precise predictions. 

Third, optimal XFEM execution for predicting crack onset location together with the 

corresponding load. A typical four-point bending problem was used as an example to 

demonstrate the algorithm procedures. A two-dimensional model was used throughout this 

section. The flowchart of the proposed algorithm is shown in Figure 8.5.  
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Figure 8.5: The proposed algorithm flowchart 

The main algorithm starts with reading geometric parameters, material properties and 

loading conditions as user input parameters. The first primary step is an automatic 

determination of mesh size. For this purpose, a subroutine was implemented into the main 

algorithm to correlate the model geometry to the initial mesh size. A stress convergence 
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condition was utilized for mesh refinement and optimization to ensure accurate predictions. 

Figure 8.6 illustrates the stress convergence performed by the optimal mesh subroutine for 

the problem in hand. 

 

Figure 8.6: Mesh convergence (normalized stress invariant vs. mesh size)  

The second step is the essential one, where the algorithm is to check the model to identify 

the potential region(s) for crack onset. Predictions accuracy relies mainly on the proper 

selection of failure criterion which is strongly related to the material behavior. In the current 

work, brittle and quasi-brittle materials are the ones of interest. Hence, the failure criterion 

was chosen based on the third stress invariant 𝐼3. The work of Papadopoulos 

(Papadopoulos, 1987) concluded fracture would occur when the stress tensor determinant 

reaches a critical value. The evaluation of a stress tensor will result in the same value 

independent of the material orientation, which can be considered as a material property 
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(Papadopoulos, 1987). The third stress invariant equation assuming zero out of plane 

stresses can be expressed as 

𝐼3 = 𝑑𝑒𝑡(𝜎𝑖𝑗) = 𝜎11𝜎22 − 𝜎12
2  (Eq.8.11) 

where 𝜎11 and 𝜎22 are the normal stress components, while 𝜎12 is the shear stress 

component. The subroutine initiates iterations by incrementing loading magnitude while 

checking if failure criterion was encountered. During each iteration, the algorithm extracts 

data related to the most possible regions to fail. Figure 8.7 presents the third invariant stress 

field from the finite element simulation showing the critical region experiencing the 

maximum values.  

 

Figure 8.7: Third Invariant stress field from FE simulations 

Once the failure criterion is encountered, the algorithm automatically highlights critical 

zone(s) for crack initiation as depicted in Figure 8.8. 
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Figure 8.8: 2-D FE model of the beam showing critical zone identification based on a perfect case 

scenario 

As can be seen from Figure 8.8, the algorithm highlighted a small zone of the beam’s lower 

mid-segment. By comparison with Figure 8.7, this zone is the one suffering maximum 

third invariant stress. The location is identified assuming perfect loading and boundary 

conditions. The critical region identification subroutine can also account for imperfect 

scenarios in load application/boundary conditions resulting from misalignments. In this 

case, the subroutine expands the critical zone to include its neighborhood. Critical zone(s) 

for crack onset are expanded to include regions of potential crack propagation direction. It 

worth noting that the crack propagation process is proven to be accurate in the standard 

XFEM method and consequently current implementation in ABAQUS. Meanwhile, 

without identifying a crack onset zone, the entire domain of the problem becomes a 

potential region for enrichment. It can be concluded that the region identification subroutine 

predicts the critical region(s) based on loading levels and imperfections. Figure 8.9 

provides the final critical zone(s) as identified by the subroutine. 
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Figure 8.9: Beam FE model showing critical zone identification based on imperfections 

In the final step of the algorithm for optimal XFEM execution, a dedicated subroutine 

performs a mesh refinement to the automatically identified critical region(s). Figure 8.10 

shows the refined mesh for the problem in hand. Subsequently, critical region’s nodes are 

enriched, and the algorithm solves for crack onset.  

 

Figure 8.10: FE refined mesh based on the automatically identified critical region 

Figure 8.11 shows the enriched nodes of the model highlighted in red. The algorithm 

submits a new job to the ABAQUS solver, in which the critical region(s) have already been 

identified for nodal enrichments and the critical region mesh is optimized without user 

intervention. 

 

Figure 8.11: FE mesh showing the enriched nodes of the automatically determined critical region 
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8.6 Numerical Modeling 

As discussed in subsection 8.4.3, embedding a notch (crack) in the finite element model or 

the tested specimens may bias crack onset predictions. Therefore, to test and validate the 

proposed algorithm, a problem of an un-notched prism under four-point bending was 

selected. The problem geometry along with the loading conditions as per the American 

Standard for Testing and Materials (ASTM) designation for the selected problem is shown 

in Figure 8.12. For the detailed specifications of the problem, the reader is referred to 

ASTM C78 (C78/C78M-16: Standard Test Method for Flexural Strength of Concrete ( 

Using Simple Beam with Third-Point Loading ), 2010). 

 

Figure 8.12: A two-dimensional model of the beam under four-point bending 

The total length of the beam is 400 mm centrally position on two supports spanned 300 mm 

apart. The beam is of square cross-section with a side length of 100 mm. The load consists 

of two concentrated forces applied at the edges of the mid-segment of supported span 

allowing the beam to experience a uniform bending moment in this segment. It is 

noteworthy to mention; there is no need for a prior definition of the crack location as in the 
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case of a notched beam. The crack location is to be identified automatically using the 

proposed algorithm. The current test is conducted on a beam of brittle material, i.e., 

concrete. Brittle materials are said to undergo catastrophic failure due to their low strain to 

failure capacity. In other words, once a crack is initiated, it propagates under various levels 

of loading until fracture. The material model for concrete is chosen to be linearly elastic in 

compression and tension until failure. For failure initiation, a traction separation law based 

on maximum principal stress is adopted taking into consideration the ease of determining 

the maximum tensile strength for concrete by testing. The damage evolution was selected 

based on the fracture energy of concrete rather than the critical crack opening displacement. 

Fracture energy results in better accuracy due to the difficulty of capturing a crack behavior 

after being initiated for a brittle material (Lee & Lopez, 2014), in addition to, the 

availability of detailed data on concrete fracture energy in the literature. A general static 

step was chosen for the analysis, and 4-noded bilinear plane strain quadrilateral element 

(CPE4R) with reduced integration is selected for meshing. The model is meshed using 

structured meshing control. 

8.7 Specimens Preparation and Testing 

General use Portland cement similar to ASTM (2012b) C150 Type I (ASTM C150/C150M-

12, “Standard specification for Portland cement.”, Philadelphia, PA: American Society for 

Testing and Materials, 2012, n.d.) was used to produce mixtures. Natural crushed stone 

was used as a coarse aggregate with a maximum size of 10 mm while natural sand was used 

as a fine aggregate. Both types of aggregates had a specific gravity of 2.6 and absorption 

of 1%. Several trial mixtures were cast to determine the water/cement ratio and coarse/fine 
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aggregate ratio. Based on the trial mixtures stage, the optimized flowability of mixtures and 

enhanced mechanical properties were achieved by using a coarse to fine aggregate weight 

ratio of 0.7 and 0.9. Meanwhile, the water to cement ratios of 0.4, 0.45, and 0.5 were used. 

Table 8.1 provides the details of the mix designs used to build test specimens. 

Table 8.1: Mix design for tested specimens 

Mixture Cement (kg/m3) 
Coarse to fine 

aggregate ratio 

Water to cement 

ratio 

Mix #1 550 0.9 0.50 

Mix #2 550 0.7 0.40 

Mix #3 550 0.7 0.45 

Mix #4 550 0.9 0.40 

Mix #5 550 0.9 0.45 

Mix #6 550 0.7 0.50 

 

The material mechanical properties namely compressive strength, flexural strength, 

splitting tensile strength and the modulus of elasticity for each mixture were measured from 

standard testing. First, the compressive strength was measured according to ASTM C39 

standard testing (ASTM C39, 2016). Second, the flexural strength was measured according 

to ASTM C78 (C78/C78M-16: Standard Test Method for Flexural Strength of Concrete ( 

Using Simple Beam with Third-Point Loading ), 2010). Third, splitting tensile strength was 

measured according to ASTM C496 (ASTM C496/C496M − 17, 2011). Finally, the 

modulus of elasticity was measured according to ASTM C469 (ASTM Standard 

C469/C469M, 2014). The load cell accuracy of the testing machine was ±0.062 % 

according to the last calibration report of the load-frame. The measured mechanical 

properties associated with each mixture are recorded in Table 8.2. 
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Table 8.2: Mechanical properties from testing the six concrete specimens. 

Concrete 

Mixture 

Number 

Compressive 

Strength 

Flexural 

Strength 

Splitting 

Tensile 

Strength 

Modulus of 

Elasticity 

Fracture 

Energy 

Poisson’s 

Ratio 

(MPa) (MPa) (MPa) (MPa) (N/M) (_) 

Mix #1 60.08 8.40 3.43 32010 90.13 0.2 

Mix #2 51.16 8.31 3.07 30910 80.54 0.2 

Mix #3 45.90 5.40 3.20 29300 74.65 0.2 

Mix #4 81.09 10.56 5.41 34060 111.18 0.2 

Mix #5 74.07 9.66 3.91 35500 104.36 0.2 

Mix #6 41.49 6.57 3.32 27470 69.55 0.2 

All mechanical properties were measured except for Poisson’s ratio which was assumed to 

be 0.2 (Unger & Eckardt, 2011) and fracture energy which is dependent on two main 

parameters, namely, size of aggregate used and compressive strength of the mixture. Given 

the knowledge of the maximum aggregate size and measuring the compressive strength, 

the fracture energy of concrete 𝐺𝑓 was calculated using (Eq.8.12) and (Eq.8.13) provided 

by Comité Euro-International du Béton (CEB) (MC90 CEB. Comité Euro-International du 

Béton, CEB-FIP Model Code 1990. Bulletin D’Information. 1993(215), n.d.). 

𝐺𝑓 = 𝐺𝑓𝜊
(

𝑓𝑐

10
)

0.7

 (Eq.8.12) 

𝐺𝑓𝜊
= 0.0469 𝐷𝑚𝑎𝑥

2 −
𝐷𝑚𝑎𝑥

2
+ 26 

(Eq.8.13) 

where 𝐺𝑓 is the calculated fracture energy, 𝑓𝑐 is the compressive strength of mixture and 

𝐺𝑓𝜊
is a factor accounting for the maximum aggregate size 𝐷𝑚𝑎𝑥 used in the preparation of 

concrete mixtures. 
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8.8 Results and Discussion 

This section is devoted to discussing the results from testing un-notched concrete prisms. 

The corresponding results predicted by the proposed algorithm are compared to those of 

testing for the validation purposes. Assessments are introduced delineating two significant 

aspects, namely, the critical load causing crack onset and corresponding crack location. 

Also, the proposed approach is compared to the conventional XFEM regarding 

computational efficiency. The failure loads measured from testing of the six concrete 

prisms are reported in Table 8.3. Correspondingly, predicted values using the automation 

algorithm in addition to the percentage error are provided. As can be seen from the results, 

predictions compared to measurements, indicated percentage error from 1.91% to 1.96%. 

The algorithm was able to precisely predicted failure loads with a relatively minimal error. 

Table 8.3: Failure load: Testing, predictions and relative error. 

Concrete Mixture 

Number 

FMeasured  

(N) 

FPredicted  

(N) 

Error  

(%) 

Mix #1 28000 28542 1.94 

Mix #2 27700 28238 1.94 

Mix #3 18000 18343 1.91 

Mix #4 35200 35883 1.94 

Mix #5 32200 32832 1.96 

Mix #6 21900 22326 1.95 

Finally, comparisons were conducted regarding computational efficiency for proposed 

algorithm. Correlations assumed the absence of an expert user hence conventional XFEM 

required enriching the entire domain. Since the proposed algorithms automatically arrives 

at convergent mesh, the same exact mesh was used for conventional XFEM assuming an 

expert user has arrived at this convergent mesh. Therefore, identical mesh size (i.e., the 
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same number of elements) was utilized for the comparison purposes as shown in Table 8.4. 

The proposed algorithm enabled optimal enrichment of nodes in the critical region only. 

The total number of enriched nodes by the algorithm is 53% less than those of conventional 

XFEM. Consequently, the total number of unknowns in the system is 33% less than 

conventional XFEM requirements. Table 8.4 shows the detailed computational effort 

comparison. As can be seen from the comparison, the conventional implementation of 

XFEM results in almost doubling the total number of enriched nodes. Meanwhile, a 

minimal increase in the enrichment unknowns was enabled through the proposed approach 

resulting in runtime reduction by 39% and enhancing overall computational efficiency. 

Through this simple example, the reader can conclude the high potential of the current 

approach when applied to problems of complex geometry and combined loading scenarios. 

Furthermore, minimizing computational effort is significant in the case of dynamic analysis 

and 3-D problems. 

Table 8.4: Computational effort comparison: conventional XFEM vs. proposed approach. 

Item of Comparison  Conventional XFEM Proposed Algorithm 

Number of elements  1860 1860 

Number of Nodes 2268 2268 

Number of Enriched nodes 2268 1066 

Total number of unknowns 7696 5200 

Increments to solve 14 6 

Iterations 46 13 

Runtime (sec) 14.8 9.1 

The following section is dedicated for comparisons with relevant test data (plain concrete 

testing) from the literature. The same aspects of comparisons outlined in Section 7 were 

used. 
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8.9 Algorithm Validation with Test Data from Literature 

The proposed algorithm was tested for validation purposes against relevant test data from 

the literature. Only test data for un-notched specimens were compared with the algorithm 

predictions in the current section. Comparisons were based on damage initiation loads 

and/or displacements (if available). The first case adopted from literature for validation is 

from the work of Unger and Eckardt (Unger & Eckardt, 2011). Their work presented 

adaptive multiscale modeling for concrete combining two different scale models, namely, 

mesoscale and macroscale. Non-Linear analysis of an L-shaped large-scale panel was 

provided using multiscale modeling. Their results were validated with specimens prepared 

and tested by Winkler et al. (Winkler, Hofstetter, & Niederwanger, 2001). The mechanical 

properties as reported in (Unger & Eckardt, 2011) are reproduced in Table 8.5. The 

mechanical properties required for the current analysis are minimal compared to multiscale 

modeling techniques.  

Table 8.5: L-shaped specimen mechanical properties as reported in (Unger & Eckardt, 2011). 

Concrete  

Mixture  

Flexural  

Strength 

Modulus of 

Elasticity 

Fracture  

Energy 

Poisson’s  

Ratio 

(MPa) (MPa) (N/M) (_) 

Plain 2.60 18500 140 0.18 

The problem geometry together with the loading conditions are shown in Figure: 8.13a. 

The proposed algorithm was used to analyze the L-shaped problem using the methodology 

illustrated in subsection 8.5. The third stress invariant contour plot identifying the potential 

region for crack onset is shown in Figure: 8.13b. 
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Figure: 8.13: (a) Specimen geometry and loading conditions. (b) Contour plot of third stress invariant 

showing potential region for crack onset. 

Based on the maximum value of the third stress invariant, the algorithm automatically 

identified the potential region for XFEM enrichment. The critical region mesh is refined to 

ensure accurate failure predictions. Finally, the optimal enriched zone size is determined. 

The optimized final mesh along with the optimal enrichment zone constructed 

automatically by the proposed algorithm are shown in Figure 8.14a. The crack onset 

location predicted using the proposed algorithm is shown in Figure 8.14b. 
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Figure 8.14: (a) Optimized mesh and enrichment zone. (b) Predicted crack onset location using the 

proposed algorithm 

The onset location is in excellent agreement with the test data reported in (Unger & Eckardt, 

2011). Table 8.6 shows the predicted failure load and displacement using the mesoscale-

macroscale coupled model from (Unger & Eckardt, 2011) in addition to the predicted 

values using the proposed algorithm. The proposed algorithm recorded excellent agreement 

with measurements from testing in predicting both failure load as well as failure 

displacement. As can be observed from Table 8.6, the percentage error of the proposed 

algorithm shows enhanced predictions on both failure loads and displacements. 

Table 8.6: Proposed Algorithm versus experimental data from testing. 

Item of 

Comparison  

Failure  

Load [N] 

Load  

Error [%] 

Displacement 

[mm] 

Displacement 

Error [%] 

Experimental 

data 
6933  _ 0.163 _ 

Coupled Model 

(Unger & 

Eckardt, 2011) 

6789 2.1 0.180 10.4 

Proposed 

Algorithm 
6960 0.4 0.169 3.7 
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For completeness, the proposed algorithm was also compared to the conventional XFEM 

regarding computational efficiency as shown in Table 8.7. It can be observed that same 

meshes were used for the sake of comparison assuming the user of conventional XFEM has 

performed mesh convergence analysis which was automatically performed using the 

current algorithm.  

Table 8.7. Computational effort comparison (L-Shape): conventional XFEM vs. proposed approach. 

Item of Comparison  Conventional XFEM Proposed Algorithm 

Number of elements  1700 1700 

Number of Nodes 1798 1798 

Number of Enriched nodes 1798 840 

Total number of unknowns 9022 4232 

Increments to solve 19 11 

Iterations 43 17 

Runtime (sec) 6.3  2.7 

The algorithm enabled enriching less than 47% of the nodes in the entire domain for the 

current problem, in turn reducing the total number of unknowns in the system. 

Consequently, the total number of required increments and iterations to solve using the 

proposed algorithm is significantly less than that required by conventional XFEM. It can 

be observed that the total runtime of the proposed algorithm is 42% in comparison to that 

of conventional XFEM. It can be concluded from Table 8.6 and Table 8.7, that the 

proposed algorithm enhanced the overall predictions while minimizing computational 

effort. 

The second case for comparison is a large-scale T-section adopted from (AbdelAleem & 

Hassan, 2017). The specimen geometry and the loading conditions are presented in Figure 

8.15a. The section has a total height of 1 m and a hanging span of 0.6 m with a uniform 
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thickness of 0.25 m. A concentrated tip load is applied to the free end of the hanging span. 

The proposed algorithm was utilized for analyzing the T-section problem following the 

same methodology discussed in subsection 8.5. The contour plot of the third stress invariant 

is shown in Figure 8.15b, based on its maximum values the potential region for crack onset 

is automatically identified. The mechanical properties for the plain concrete mix as reported 

in (AbdelAleem & Hassan, 2017) are reproduced in Table 8.8. 

 

Figure 8.15: (a) Specimen geometry and loading conditions. (b) Contour plot of third stress invariant 

showing potential region for crack onset. 

Table 8.8: T-section specimen mechanical properties as reported in (AbdelAleem & Hassan, 2017). 

Concrete Mix 

Flexural  

Strength 

Modulus of 

Elasticity 

Fracture  

Energy 

Poisson’s  

Ratio 

(MPa) (MPa) (N/M) (_) 

Plain concrete 4.5 29400 114.70 0.18 

As per the current algorithm, the initial enrichment zone identification is followed by an 

automatic mesh refinement for the critical region. The final optimized mesh is shown in 

Figure 8.16a, the automatically optimized enrichment zone is highlighted in red. The crack 

onset location as predicted by the proposed algorithm is shown in Figure 8.16b.  
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Figure 8.16: (a) Optimized mesh and enrichment zone. (b) Predicted crack onset location using the 

proposed algorithm. 

The crack onset location is in excellent agreement with testing results from (AbdelAleem 

& Hassan, 2017). The failure load causing the first crack from testing was reported to be 

(30.9 KN), whereas the proposed algorithm predicted the first crack to occur at (30.6 KN). 

It can be concluded that the proposed algorithm is in excellent agreement with testing for 

both predicting the crack location and the failure load causing the first crack. Regarding 

computational efficiency, the proposed algorithm is compared to conventional XFEM as 

shown in Table 8.9. 

Table 8.9. Computational effort comparison (T-section): conventional XFEM vs. proposed approach. 

Item of Comparison  Conventional XFEM Proposed Algorithm 

Number of elements  1828 1828 

Number of Nodes 1936 1936 

Number of Enriched nodes 1936 980 

Total number of unknowns 9712 4932 

Increments to solve 39 7 

Iterations 103 15 

Runtime (sec) 15.2  5.4 
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The proposed algorithm was able to enrich approximately 50% of the entire domain 

resulting in a 50% reduction in the total number of unknowns. The required runtime to 

analyze this problem using the proposed algorithm was 36% of the runtime required by 

conventional XFEM.  

8.10 Conclusions 

In the presented work, a novel technique is proposed for automating XFEM implementation 

in user-built and commercial FE codes with minimal user-intervention. The proposed 

technique was developed to overcome XFEM existing challenges related to prediction 

accuracy and to enhance computational efficiency. The novel technique was developed into 

an algorithm which was implemented using Python scripting in mainstream FE code 

ABAQUS performing three major tasks; (1) Automatic identification of critical region(s) 

based on material-specific failure criterion, (2) Automatic mesh refinement based on stress 

convergence for accurate predictions, and (3) Optimal enrichment for identified critical 

region(s). 

Three different problems were used for validation of prediction accuracy, namely, beam 

under four-point bending, L-shaped and T-section problems. Furthermore, regarding 

computational efficiency, the performance of the implemented algorithm was compared to 

that of conventional XFEM. The following observations were recorded in these 

comparisons; (1) Predicted failure loads/displacements corresponding to damage initiation 

were in excellent agreement with measurements of un-notched specimens obtained from 

literature and in-house testing, (2) Crack onset location predictions showed excellent 

agreement with observations from different geometries/loading-conditions, and (3) 
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significant reduction in all model parameters in terms of total number of enriched nodes, 

number of unknowns, increments and iterations when compared to conventional XFEM. It 

is notable to mention that the runtime for three different problems under diverse loading 

conditions was in the order of seconds. Therefore, and based on these observations it can 

be concluded that the proposed algorithm: 

- Alleviated the user-dependency for identifying the critical region(s). 

- Enabled accurate predictions due to rigorous and automatic mesh-refinement. 

- Enhanced the overall computational efficiency. 

In conclusion, applying the proposed approach was proven to have significant effects on 

providing accurate and computationally efficient analysis. Therefore, this approach is 

recommended for analysis of complex structures and combined loading scenarios where 

critical region(s) identification can be challenging even for an expert user. Moreover, the 

approach possesses high potential of minimizing computational effort in the case of 

dynamic and 3-D analyses. 
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9 Conclusions and Future Work 

In the current thesis, micro/macro investigations on material mechanical behaviors were 

investigated. The framework of extended finite element method (XFEM) was employed in 

most of numerical models. Also, the unit cell (UC) method as well as the representative 

volume element (RVE) methods were used for micromechanical modeling. Different 

material behaviors were investigated, namely plain epoxy, plain concrete and steel 

materials. A general algorithm was proposed for optimal failure predictions using the 

framework of XFEM. The modeling process was automated and optimized to minimize 

computational effort and user-intervention. For plain epoxy and concrete, the specimens 

were tested at Memorial University’s laboratories while testing results regarding different 

types of steel and large-scale concrete structures were obtained from the literature.  

First, a comprehensive study on plain epoxy resin was conducted. Plain epoxy was prepared 

and tested under different types of loading utilizing digital image correlation (DIC) for 

displacement measurements. Fractographic analyses were performed using three different 

methods, namely, optical microscopy (OM), scan electron microscopy (SEM), and 

computed tomography (CT). Numerical modeling at different scales (micro/macro) were 

provided. Numerical results were validated against testing results proving excellent 

agreements. Fractographic analyses revealed better understanding of failure mechanism at 

different scales. Also, consistent results were obtained from different fractographic 

analyses. Novel modeling procedures were proposed accounting for microscopic features 

(i.e., micro-voids). Besides, user-defined damage driven by microstructural voids effect 
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was developed and implemented in user-defined Fortran subroutines in Abaqus. 

Numerically obtained results were validated with measurements from standard testing.  

Second, is the ductile behavior of porous metals which was extensively investigated from 

numerical point of view while the testing was acquired from the literature due to limited 

resources and the challenges associated with manufacturing. The UC method was used to 

predict elastic plastic behavior of porous metals under tension. Numerical predictions were 

in excellent agreement with the reported testing results which motivated and triggered the 

proposed extended Ramberg-Osgood (ERO) relationship. The proposed ERO relationship 

has proven its validity to account for metal porosity in the low range porosity (i.e., less than 

10%). Notably, the ERO employed a single extra parameter to the original three parameters 

of Ramberg-Osgood relationship. The proposed ERO relationship can be considered as an 

asset for early design stages specially for being representative of the complete elastoplastic 

behavior of porous metals. Noteworthy, to the author best of knowledge there exists no 

relationship that can predict the elastic-plastic behavior of porous metals. For completeness, 

a two-stage finite element procedure was provided mainly to predict the final failure of 

porous metals. Single spheroidal RVE was employed in micromechanical models to predict 

the elastic plastic behavior of the porous metal. At macro scale, a strain energy density 

(SED)-based user-defined material model was developed and implemented for final failure 

prediction within the framework of XFEM. A similar porosity dependent relationship to 

evaluate the critical SED of porous metals was proposed and validated with reported testing 

results proving excellent agreement and conservative predictions.  
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Third, the modeling process of XFEM was automated to alleviate the user-dependency and 

minimize computational effort. Initial validation with specimen sized models proven 

excellent agreement for two-dimensional domains. Also, full-scale structures were 

numerically investigated using the proposed automating algorithm. Validation against the 

reported testing results from the literature showed excellent predictive capabilities. Finally, 

the experimental/numerical investigations conducted in the abovementioned work led to 

the following conclusions: 

Brittle behavior (epoxy): 

• Micro-voids were observed in plain epoxy resin which is most probably resulting 

from the curing process and the exothermic chemical reaction (i.e., polymerization). 

These voids were characterized by shape, size and intensity and were found to be a 

major reason for damage initiation at microscales. 

• A novel testing procedure was proposed to experimentally identify yielding. The 

key role for the procedure employs the discoloration caused by inelastic 

deformation by means of image processing. To the author best of knowledge, the 

method does not exist in the well-known testing standards (e.g., ASTM) 

• A Python script was developed and implemented in Abaqus to generate actual 

micro-voids in finite element models based on their physical sizes/location 

employing computed tomography (CT) scans. The resulting models enabled an 

insight into the microstructure of plain epoxy.  
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• Enabling the framework of XFEM at microscale showed that the largest void is 

most probably the one leading to micro-cavitation and hence, macroscopic cracks 

and failure, which is consistent with the current experimental investigation as well 

as the literature findings. 

• The proposed strain energy density (SED) damage model proven to be more 

accurate than stress/strain built in damage initiation mechanisms in Abaqus. Also, 

the predicted failure surfaces were realistic signifying that brittleness dominated the 

failure behavior. 

• Also, accounting for precise yield stress using the image processing enabled 

accurate material model definition in finite element analyses which in turn assisted 

in obtaining precise numerical results.  

Ductile behavior (steels): 

• Two-dimensional unit cell models with enough holes representing total volumetric 

porosity showed predictive capabilities in both linear and non-linear behaviors.  

• While irregular holes shape/distribution triggered local plasticity and stress 

concentrations, the overall mechanical behavior predictions were unaltered. 

• A chief contribution of the current work is the extended Ramberg-Osgood (ERO) 

relationship accounting for metal porosity which was enabled utilizing 

micromechanical modeling and regression analyses. 

• Automating the modeling procedure had a significant effect on minimizing 

computational effort and alleviating the user-dependency. 
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Future Work   

• Build and test different composite laminates to investigate their complex failure 

mechanisms  

• Advance on what have been already accomplished regarding the developed and 

implemented damage models by extending the applicability to composite materials 

by defining competing damage criteria. 

• Extending the general algorithm presented in Chapter 8 to three-dimensional 

domains and incorporate different damage mechanisms within the script. 
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