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Abstract 

Shiffrin and Steyvers (1997) presented a computational model of human memory they 

called Retrieving Effectively from Memory (REM). In their original report of the model, 

they described several REM variants. To date, the majority of papers using REM have 

employed the simplest version of the model, known as REM.1. Although it does not 

matter for most applications, REM.1 makes an important, simplifying assumption: 

namely, that item strengthening always accumulates in a single mnemonic trace. In other 

words, there is one trace for each study item, regardless of the time for which items were 

presented or the number of times items were repeated. In the case of spaced repetitions, 

this assumption of automatic, single-trace storage is untenable. Here, I use a version of 

REM Shiffrin and Steyvers termed REM.3. In REM.3, spaced repetitions are stored in 

one trace if subjects identify the repetition as previously studied, and in separate traces 

otherwise. I show that this model can account for two findings previously believed to be 

inconsistent with the REM framework: the spacing effect (Delaney, Verkoeijen, & 

Spirgel, 2010) and positive list-strength effects observed with spaced strengthening 

(Ratcliff, Clark, & Shiffrin, 1990, Experiment 5) and the strong-interference paradigm 

(Norman, 1999). I then test a novel prediction from REM.3 concerning the list-strength 

effect. Three experiments were unable to find support for this prediction. Instead, I 

present an explanation of the list-strength effect based on strategy disruption.  
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Chapter 1: Introduction 

 The overarching goal of the present work is to test the viability of a computational 

model of human memory called Retrieving Effectively from Memory (REM; Shiffrin & 

Steyvers, 1997). REM’s applicability is widespread, with REM successfully accounting 

for a variety of human-memory phenomena (see, e.g., Criss, 2006; Criss, Malmberg, & 

Shiffrin, 2011; Lehman & Malmberg, 2013; Malmberg & Shiffrin, 2005; Malmberg, 

Zeelenberg, & Shiffrin, 2004; Osth, Fox, McKague, Heathcote, & Dennis, 2018; 

Schooler, Shiffrin, & Raaijmakers, 2001). Yet, several findings in the literature are 

inconsistent with the REM framework, including the spacing effect (Delaney, Verkoeijen, 

& Spirgel, 2010) and some positive list-strength effects (Norman, 1999, 2002). 

 When Shiffrin and Steyvers (1997) first proposed REM, they presented several 

versions varying in complexity. Importantly, a version they called REM.1, which is the 

simplest version of REM, is most often utilized, and it is with REM.1 that the above-

mentioned phenomena are inconsistent. My first test of REM, therefore, assessed whether 

a more realistic version of the model—termed REM.3 by Shiffrin and Steyvers—can 

account for the phenomena (see Chapter 4). My simulations demonstrate that, although 

these phenomena were previously thought to be inconsistent with REM, a more realistic 

version is capable of predicting the results. 

 Shiffrin and Steyvers’ (1997) treatment of REM.3 was quite brief, and thus the 

simulations presented in Chapter 4 represent the first extensive test of REM.3’s viability. 

Importantly, REM.3 makes novel predictions concerning a phenomenon known as the 

list-strength effect (described in-depth in Chapter 3). As a second test of REM.3’s 

viability, then, I conducted three experiments to explore these novel predictions. 
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 The present dissertation has two major parts, which I will term the simulation test 

of REM.3 and the empirical test of REM.3. However, some background is necessary 

before delving into the REM tests. In the present chapter, I begin by briefly reviewing 

several accounts of retrieval failure: decay, interference, inhibition, and repression. This 

is followed by an in-depth examination of two related interference phenomena: the list-

length effect and the list-strength effect (Chapters 2 and 3, respectively). Chapter 4 

presents the simulation test of REM.3, and Chapter 5 presents the empirical test of 

REM.3. Finally, in Chapter 6, I interpret the simulation and experimental results with 

respect to REM.3 and other theoretical accounts of the list-strength effect. 

1.1. Accounts of Retrieval Failure 

 For the most part, everyday remembering is accomplished quickly and seemingly 

without effort. At any given moment, we have access to thousands of words and their 

meanings; the names of numerous acquaintances, friends, and relatives; a lifetime of first-

person experiences; and so on. Of course, to use one of these memories, it must be 

retrieved. Memory is cue dependent (J. E. Eich, 1980; James, 1890/1983; Surprenant & 

Neath, 2009, Chapt. 3; Tulving, 1974): A memory is accessible only when an appropriate 

cue is utilized to access it. For example, one might remember an acquaintance’s name 

when presented with their face—here, the face is the cue and the name is the target. 

Therefore, without a cue, there is no retrieval. 

 Despite the frequency with which memory retrieval succeeds, it also can fail. 

Memory failure can take several forms: Sometimes, despite a strong phenomenological 

feeling of knowing the sought-after memory exists, it cannot be accessed; this is termed 

the tip-of-the-tongue phenomenon (Brown & McNeill, 1966). Retrieval can also fail in 
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the absence of a tip-of-the-tongue phenomenon, such as when a subject in a memory test 

cannot remember all of the words from the study list, even though they were all encoded. 

Other times, people incorrectly remember events that did not occur, such as when post-

event information modifies the original memory (i.e., the misinformation effect; Loftus & 

Palmer, 1974); when subjects recall an item related to, but not present on, the study list, 

as in the Deese-Roediger-McDermott paradigm (Deese, 1959; Roediger & McDermott, 

1995); or when subjects make a false alarm on a recognition test. What is responsible for 

retrieval failure? 

1.1.1. Decay theory 

One of the earliest explanations of retrieval failure was decay theory, according to 

which memories become inaccessible as the time since they were encoded or last 

accessed increases (Thorndike, 1913; see also J. Brown, 1958; Ebbinghaus, 1885/1913; 

Peterson & Peterson, 1959; Reitman, 1974). When a target is retrieved with a given cue, 

it is assumed that the associative strength between the cue and target increases. So, under 

the decay framework, cue-target associative strengths steadily weaken with time unless 

they are periodically refreshed through retrieval. In decay theory, then, forgetting occurs 

when the associative strength between a cue and target weakens so much that retrieval is 

no longer possible, and permanent forgetting occurs when the associative strength 

between any possible cue and the target decays completely. 

 Decay theory was challenged by a number of findings demonstrating that the 

passage of time alone was not sufficient to degrade memory. McGeoch (1932a) pointed 

out that the passage of time is confounded with intervening experiences—that is, as the 

time since a memory was last accessed increases, the number of events added to memory 
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increases. As such, time-based forgetting could instead be due to retroactive interference. 

For example, Jenkins and Dallenbach (1924) tested subjects’ memory for a list of 

nonsense syllables following a retention interval of 1, 2, 4, or 8 h. One group of subjects 

was awake during the retention interval, whereas the other group was asleep. Subjects in 

the awake condition produced forgetting functions consistent with decay theory: As the 

length of the retention interval increased, memory decreased. Crucially, however, 

retention interval did not affect memory in the asleep condition. Clearly, this is 

inconsistent with temporal decay, but consistent with McGeoch’s suggestion: In the 

awake condition, subjects were continuously adding new mnemonic traces to memory; 

conversely, subjects in the asleep condition were not. By unconfounding the passage of 

time from intervening experiences, then, Jenkins and Dallenbach demonstrated that, on its 

own, time-based decay is insufficient to explain retrieval failure. 

1.1.2. Interference theory 

Based on Jenkins and Dallenbach’s (1924) results and similar findings (Cheng, 

1929; McGeoch, 1929, 1931, 1932b, 1933a, 1933b, 1936; McGeoch & McDonald, 1931; 

McGeoch & McGeoch, 1937), McGeoch (1932a, 1942) proposed interference theory as 

an alternative to decay theory. According to interference theory, retrieval failure occurs 

when access to the target is impeded by other memories associated to the cue. In one case, 

a retrieval cue subsumes so many memories that, although it is associated to the target, it 

cannot be found among all of the other memories.
1
 An illustrative example is provided by 

                                                 

1. In most models, it is assumed that, given infinite sampling attempts, every memory 

subsumed by a cue will eventually be retrieved (see, e.g., Raaijmakers & Shiffrin, 1980). 
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Wickens, Born, and Allen (1963), who conducted a study using the Brown-Peterson 

paradigm (J. Brown, 1958; Peterson & Peterson, 1959). On a Brown-Peterson trial, 

subjects study a list of three items that they must remember in order. A distractor task 

(e.g., counting backward by threes from a three-digit number) is interpolated between 

study and test. In Wickens et al.’s study, stimuli for three quarters of the trials were 

consonant trigrams (e.g., RQX, PFH, GZM, etc.); on every fourth trial, however, subjects 

memorized three-digit number triplets instead. Performance declined progressively as 

subjects moved through the consonant-trigram trials, but performance rebounded when 

the to-be-remembered stimuli were changed to three-digit numbers. After three 

consecutive consonant-trigram trials, the “consonant” cue subsumed nine total items, 

thereby reducing its utility. In contrast, when the category was changed to three-digit 

number triplets, the new “number” cue subsumed only the three items from the current 

trial, thereby enhancing its efficacy. This type of interference is called cue overload or the 

fan effect (Badham, Poirier, Gandhi, Hadjivassiliou, & Maylor, 2016; Surprenant & 

Neath, 2009, Chapt. 5; M. J. Watkins & Watkins, 1976; O. C. Watkins & Watkins, 1975). 

 A second way in which other memories can interfere with a target occurs when 

competing memories are more strongly associated to the cue than the target. For example, 

consider a task in which subjects are asked to name as many birds as possible. Here, the 

“bird” cue is used to probe memory. High-typicality exemplars, such as “robin” and 

“pigeon”, will be easier to access than low-typicality exemplars, such as “ostrich” or 

                                                                                                                                                  

However, in practice, retrieval attempts are terminated because the subject gives up or the 

experimenter has imposed a time limit on recall. 
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“vulture” (Bousfield & Barclay, 1950; Bousfield, Cohen, & Silva, 1956; Bousfield & 

Sedgewick, 1944; Bousfield, Sedgewick, & Cohen, 1954; Bousfield, Whitmarsh, & 

Esterson, 1958). This is because high-typicality exemplars are more strongly associated to 

the “bird” cue than low-typicality exemplars, and thus the high-typicality exemplars 

impede access to the low-typicality exemplars. This type of interference is called 

occlusion or blocking. Analysis of subjects’ output protocols in exemplar-naming tasks 

shows that high-typicality exemplars are mentioned more often across subjects than low-

typicality exemplars, and that high-typicality exemplars appear earlier in subjects’ output 

sequences than low-typicality exemplars, consistent with occlusion (Bousfield & Barclay, 

1950; Bousfield & Sedgewick, 1944; Bousfield et al., 1954, 1956, 1958; W. Brown, 

1915). 

 More traditional memory tests also produce occlusion. Wike and Wike (1970) 

asked subjects to study a list of 20 unrelated words for a free-recall test. Importantly, 

although 15 of the words were presented once, the remaining five words were presented 

three times. As one would expect, memory for the repeated words was better than 

memory for the once-presented words. Critically, and consistent with occlusion, repeated 

words were significantly more likely than nonrepeated words to be output early in the test 

phase. Wixted, Ghadisha, and Vera (1997) showed that this effect extends to response 

times: After studying a list of once-presented and repeated words, subjects output 

repeated items earlier and faster (as measured by time from the start of the test phase to 

output) than once-presented words. 

 One of McGeoch’s (1932a, 1942) critical insights was that context—what he 

termed “stimulating conditions”—contributed to encoding and retrieval. Although 
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scholars disagree on the precise definition of context, the term is generally thought to 

refer to factors peripheral to the to-be-encoded stimulus, but which nevertheless become 

incorporated into its mnemonic trace. Context can include internal factors specific to the 

individual subject, such as pharmacological state (Stillman, Weingartner, Wyatt, Gillin, & 

Eich, 1974), emotional state (E. Eich, 1995), or posture (Rand & Wapner, 1967), and 

external factors specific to the to-be-remembered stimuli or learning environment, such as 

the room in which encoding takes place (Smith, Glenberg, & Bjork, 1979); the font in 

which to-be-remembered words are displayed (Reder, Donavos, & Erickson, 2002); the 

font colour, background colour, and screen location of to-be-remembered words 

(Murnane & Phelps, 1993); background pictures on which to-be-remembered words are 

displayed (Hockley, 2008); ambient odour present during encoding (Isarida et al., 2014); 

and background music accompanying presentation of the to-be-learned stimuli (S. M. 

Smith, 1985). Because context is part of both the mnemonic trace and the retrieval cue, 

changing the context between encoding and retrieval impairs memory. In this way, 

McGeoch’s insight foreshadowed Mandler’s (1980) butcher-on-the-bus phenomenon: If 

we see our butcher on the bus, although we may experience a sense of familiarity, we 

may be unable to retrieve the butcher’s name or even why the butcher seems familiar. 

This is because the cue—the butcher’s face—lacks the context of the butcher shop. 

Although empirical support for the role of context in memory was inconsistent when 

McGeoch developed interference theory (see, e.g., Abernethy, 1940; Burri, 1931; Dulsky, 

1935; Farnsworth, 1934; Pan, 1926; Pessin, 1932; Reed, 1931), considerable evidence has 

since amassed supporting McGeoch’s contention that reinstating the encoding context 

benefits retrieval (Bilodeau & Schlosberg, 1951; Godden & Baddeley, 1975; Hockley, 
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Bancroft, & Bryant, 2012; Isarida, Isarida, Kubota, Higuma, & Matsuda, 2018; S. M. 

Smith, 1979; Smith et al., 1978; Smith & Manzano, 2010; for reviews, see Baddeley, 

1982; Bjork & Richardson-Klavehn, 1989; Capaldi & Neath, 1995; Klein, Shiffrin, & 

Criss, 2007; S. M. Smith, 1988, 1994; Smith & Vela, 2001). 

 To summarize interference theory, then, memory failure results from four—not 

mutually exclusive but, in some cases, independently sufficient—factors: (1) use of a cue 

that is not sufficiently associated to the target, (2) cue overload, (3) occlusion, and (4) a 

mismatch between the encoding and retrieval contexts. Today, interference theory is the 

dominant account of retrieval failure in long-term memory, with numerous quantitative 

and qualitative theories appealing to mechanisms of interference to explain memory 

phenomena (e.g., Malmberg & Shiffrin, 2005; Postman & Underwood, 1973; 

Raaijmakers & Jakab, 2013; Raaijmakers & Shiffrin, 1980, 1981; Reder et al., 2000; 

Rundus, 1973; Shiffrin, 1970; Underwood, 1957; Verde, 2012, 2013; for one exception, 

see Hardt, Nader, & Nadel, 2013).
2
 

1.1.3. Inhibition and repression 

Although I am primarily concerned with interference theory in the present paper, 

two other accounts of memory failure bear mentioning. Anderson (2003) has argued that, 

in addition to interference, memory failure can also be caused by inhibition (see also 

                                                 

2. It should be noted that the dominance of interference theory does not extend to short-

term and working memory, where some scholars continue to regard decay as a viable 

account of retrieval failure (e.g., Baddeley, 2012; Burgess & Hitch, 1999; Cowan, 1999; 

Page & Norris, 1998). 
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Norman, Newman, & Detre, 2007; Weiner, 1968). According to this account, an 

inhibitory mechanism is deployed (consciously or unconsciously) to lower the associative 

strength between the cue and occluding competitors. For example, if given the cue “fruit” 

and the target stem “a____”, the correct response—“apple”—can be retrieved more 

efficiently by lowering the associative strengths between “fruit” and strong competitors 

such as “banana” and “orange”. This has been empirically tested using the retrieval-

practice paradigm (Anderson, Bjork, & Bjork, 1994), in which practicing retrieval of 

some items depresses memory for related items, a pattern known as retrieval-induced 

forgetting. I discuss retrieval-induced forgetting in more detail in Chapter 3. For now, 

note that whether retrieval-induced forgetting actually provides evidence for an inhibitory 

mechanism is a point of contention among memory theorists (Anderson & Spellman, 

1995; Camp, Pecher, & Schmidt, 2007; Hulbert, Shivde, & Anderson, 2012; Verde, 

2012). 

 An account of retrieval failure related to inhibition appeals to Freudian repression 

(Freud, 1895/1964) (Anderson & Levy, 2002; Anderson & Green, 2001; Erdelyi, 2006). 

The question of whether inhibition and repression occur in memory is currently being 

debated (Anderson, 2007; Anderson & Hanslmayr, 2014; Anderson & Levy, 2007, 2009; 

Bäuml, Pastötter, & Hanslmayr, 2010; Bjork, 2007; Hu, Bergström, Gagnepain, & 

Anderson, 2017; Jonker, Seli, & MacLeod, 2013, 2015; Kihlstrom, 2002; Levy & 

Anderson, 2011; MacLeod, 2007a, 2007b; MacLeod, Dodd, Sheard, Wilson, & Bibi, 

2003; Raaijmakers & Jakab, 2013a, 2013b; Storm, 2011; Verde, 2012, 2013); 

importantly, because most (if not all) inhibition and repression theorists accept 

interference as a partial cause of forgetting, this debate is not pertinent to the present 
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discussion. Nevertheless, inhibitory accounts of the list-strength effect (discussed later) 

exist (Bäuml, 1997), so inhibition theory will be revisited at that time. 

1.2. List-Length and List-Strength Effects 

 In the following two chapters, I turn to two related interference phenomena: the 

list-length effect (e.g., Strong, 1912) and the list-strength effect (e.g., Ratcliff, Clark, & 

Shiffrin, 1990). Studies exploring the list-length effect are concerned with how memory is 

affected when the length of a study list is increased. Ceteris paribus, increasing the 

number of to-be-remembered stimuli decreases the proportion of stimuli remembered 

(Ebbinghaus, 1885/1913; Strong, 1912; Underwood, 1978). It is worth noting, however, 

that although the proportion of items remembered decreases, the total number of items 

remembered tends to be higher on long lists than short lists (Beaman, 2006). A 

phenomenon related to the list-length effect is the list-strength effect. Rather than 

increasing the number of to-be-remembered stimuli, experiments on the list-strength 

effect increase the strength of a subset of the to-be-remembered stimuli; performance is 

then compared to control lists of all strengthened or unstrengthened items (Ratcliff et al., 

1990) (sometimes, one of the control lists is omitted; e.g., Hirshman, 1995; Tulving & 

Hastie, 1972). Experimenters accomplish strengthening by presenting strong items more 

often than weak items, providing more study time for strong items than weak items, or 

inducing elaborative processing of strong items and shallow processing of weak items 

(for a comparison of strengthening methods in the list-strength effect, see Malmberg & 

Shiffrin, 2005). A list-strength effect is said to occur if strengthening a subset of items 

yields a mnemonic benefit for the strengthened items and a mnemonic cost for the 

unstrengthened items, relative to the control lists. Using the interference terms described 
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above, list-length manipulations can be thought of as cue-overload manipulations, and 

list-strength manipulations can be thought of as occlusion manipulations. 

 Prima facie, one might suspect that the list-length and list-strength effects would 

be highly correlated, with paradigms producing list-length effects yielding list-strength 

effects, and with paradigms failing to produce list-length effects failing to produce list-

strength effects. Indeed, this was the prediction made by a class of models known as 

global-matching models, examples of which include Search of Associative Memory 

(SAM; Gillund & Shiffrin, 1984; Mensink & Raaijmakers, 1988, 1989; Raaijmakers & 

Shiffrin, 1980, 1981), MINERVA 2 (Hintzman, 1984, 1986, 1987, 1988; Hintzman & 

Hartry, 1990), Composite Holographic Associative Recall Model (CHARM; J. M. Eich, 

1982, 1985; Metcalfe, 1990, 1993), Theory of Distributed Associative Memory 

(TODAM; Murdock, 1982, 1983, 1989, 1992, 1997), and the Matrix Model (Humphreys, 

Bain, & Pike, 1989; Pike, 1984) (for reviews, see Clark & Gronlund, 1996; Humphreys, 

Pike, Bain, & Tehan, 1989). Algorithmically, early instantiations of global-matching 

models treated item repetitions (or increased study time of some items relative to others) 

as equivalent to adding a new mnemonic trace to memory. Consequently, strengthening 

some items was the same as adding new items to memory, and thus list-strength 

manipulations were de facto list-length manipulations. However, empirical tests of the co-

occurrence prediction produced cases in which a list-length effect occurred without a list-

strength effect (Ratcliff et al., 1990) or a list-strength effect occurred without a list-length 

effect (Buratto & Lamberts, 2008). Shiffrin, Ratcliff, and Clark (1990) showed that, 

without modification, no global-matching model could predict the presence of a list-

length effect and the absence of a list-strength effect in recognition (see also Clark & 
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Gronlund, 1996; Criss & Howard, 2015; Criss & Koop, 2015; Murdock & Kahana, 

1993a; Shiffrin & Raaijmakers, 1992). 

 For present purposes, I am more concerned with the list-strength effect than the 

list-length effect. However, a review of both literatures is warranted for two reasons: 

First, the list-strength effect arose from work on the list-length effect (see Tulving & 

Hastie, 1972). Second, accounts of the list-length effect—in particular, Dennis and 

Humphreys’ (2001) Bind Cue Decide Model of Episodic Memory (BCDMEM) and 

Murdock and Kahana’s (1993a, 1993b) continuous-memory version of TODAM—

provide accounts of the list-strength effect that are more easily understood through the 

lens of the list-length effect.  
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Chapter 2: The List-Length Effect 

 Strong (1912) conducted one of the earliest experiments on the list-length effect. 

Subjects in his experiments studied full-page newspaper advertisements; at test, they were 

asked to differentiate between studied and unstudied advertisements in an old/new 

recognition test. Strong used study lists of 5, 10, 25, 50, 100, and 150 advertisements. 

Although he did not report inferential statistics, his descriptive statistics show that 

accuracy decreased as list length increased. 

 Since Strong (1912), the list-length effect has been documented in numerous 

memory paradigms, including learning to criterion (Ceraso, 1967; Lyon, 1914a, 1914b, 

1914c; Robinson & Darrow, 1924; Robinson & Heron, 1922), free recall (Gillund & 

Shiffrin, 1981; Grenfell-Essam, Ward, & Tan, 2013; Howell, 1973; Roberts, 1972; 

Shiffrin, 1973; Tabachnik & Brotsky, 1976; Ward, 2002), serial recall (Grenfell-Essam, 

Ward, & Tan, 2017; Haberlandt, Thomas, Lawrence, & Krohn, 2005; Penney, 1985; 

Spurgeon, Ward, Matthews, & Farrell, 2015; Ward, Tan, & Grenfell-Essam, 2010), serial 

recognition (Scarmeas et al., 2004), cued recall (Aue, Criss, & Fischetti, 2012; Calfee & 

Atkinson, 1965; Ceraso, Bader, & Silverstein, 1970; Davis, 1966; Nobel & Shiffrin, 

2001; Samuels, 1970; Schumsky, Grasha, Trinder, & Richman, 1969), item recognition 

(Anderson & Revelle, 1994; Atkinson & Joula, 1973, 1974; Beth, Budson, Waring, & 

Ally, 2009; Bowles & Glanzer, 1983; Bowyer, Humphreys, & Revelle, 1983; Brandt, 

2007; Brandt, Zaiser, & Schnuerch, 2019; Cary & Reder, 2003; Erber, 1974; Gillund & 

Shiffrin, 1984; Gronlund & Elam, 1994; Nobel & Shiffrin, 2001; Ohrt & Gronlund, 1999; 

Ratcliff & Murdock, 1976; Schulman, 1974; Toga, 1975; Underwood, 1978; Willis & 

Underwood, 1983; Wolk, Gold, Signoff, & Budson, 2009; Yonelinas, 1994), associative 
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recognition (Criss & Shiffrin, 2004b; Kinnell & Dennis, 2012), and source recognition 

(Glanzer, Hilford, & Kim, 2004). The overwhelming number of demonstrations of the 

list-length effect may give the impression that its existence is unquestionable. Indeed, 

Glanzer et al. identified list-length manipulations as “a variable that reliably affects item-

recognition memory” (p. 1184), on par with well-established recognition phenomena 

including the repetition effect (e.g., Hilford, Glanzer, & Kim, 1997), levels-of-processing 

effect (e.g., Glanzer, Kim, Hilford, & Adams, 1999), word-frequency effect (e.g., Allen & 

Garton, 1968), and the decline in recognition accuracy with aging (e.g., Gordon & Clark, 

1974). However, overlooked methodological issues with the standard experimental 

approach have led some researchers to question whether the list-length effect is a real 

phenomenon (Ceraso, 1967; Dennis & Humphreys, 2001; Henmon, 1917; Hipple, 1972; 

Murdock & Kahana, 1993b). The existence of the list-length effect has proven 

particularly contentious in recognition (Annis, Lenes, Westfall, Criss, & Malmberg, 2015; 

Criss & Shiffrin, 2004a; Dennis & Humphreys, 2001; Murdock & Kahana, 1993b; 

Shiffrin, Ratcliff, Murnane, & Nobel, 1993). Dennis and Humphreys noted four 

confounds that could be artificially producing a list-length effect: differences in the study-

test lag between short and long lists, higher likelihood of attentional lapse for long lists 

than short lists, rehearsal borrowing, and more effective context reinstatement for short 

compared to long lists. I discuss these confounds next. 

2.1. Confounds in the List-Length Paradigm 

2.1.1. Study-test lag 

The study-test lag is a critical factor to consider in list-length experiments. If the 

retention interval is the same for short and long lists, then, on average, less time elapses 
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between studying and testing of a short-list item compared to a long-list item. It is 

conceivable, then, that the memory advantage observed on short lists compared to long 

lists is a function of study-test lag rather than list length. 

 The solution to the study-test lag confound is not as simple as equating the study-

test lag between the start of the study and test phases. For example, if the long list takes 

twice as long to present as the short list, then items studied in the second half of the long 

list will still have a shorter study-test lag than any of the items on the short list. Two 

paradigms have been developed to address this confound: the retroactive design and the 

proactive design. In the retroactive design, the time between the start of the study and test 

phases is equated between short and long lists, but only items from the start of the long 

list are tested. So, if the short list has nshort items and the long list has nlong items (where 

nlong > nshort), all items from the short list are tested, but only long-list items studied in 

positions 1−nshort are tested. Conversely, in the proactive design, the lag between the end 

of the study list and start of the test list is equated between conditions, and only the last 

nshort items from the long list are tested. 

 In recognition, studies using the retroactive design have generally found null or 

small list-length effects (Bowles & Glanzer, 1983; Buratto & Lamberts, 2008; Dennis & 

Humphreys, 2001; Dennis, Lee, & Kinnell, 2008; Kinnell & Dennis, 2011; Murnane & 

Shiffrin, 1991a; Schulman, 1974; Willis & Underwood, 1983). Note, however, that this is 

not universal: Some experiments employing the retroactive design have still found robust 

list-length effects (Cary & Reder, 2003; Gronlund & Elam, 1994). Results from 

experiments using the proactive design are also mixed: Although Dennis and Humphreys 

(2001), Kinnell and Dennis (2011), and Anderson and Revelle (1994) reported null or 
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small list-length effects with the proactive design, Glanzer et al. (2004), Ohrt and 

Gronlund (1999), and Underwood (1978) reported standard list-length effects. 

2.1.2. Attentional lapse 

The second confound noted by Dennis and Humphreys (2001) has to do with 

differences in attentional demands required between short and long lists. Clearly, long 

lists require subjects to maintain attention for a longer time than short lists. According to 

the attentional-lapse account of the list-length effect, short lists are remembered better 

than long lists because subjects are more attentive during the short lists. Therefore, this 

account attributes the list-length effect to processes at encoding rather than retrieval. To 

the best of my knowledge, the attentional-lapse account was first posited by Henmon 

(1917; but see also Underwood, 1978). Attentional lapse is particularly problematic in the 

proactive design, since this design compares performance on end-of-list long-list items to 

all of the items from the short list. If long-list subjects’ attention has waned by the end of 

the study list, then the proactive-design list-length effect may stem from poorer encoding 

of critical items in the long list compared to the short list, rather than proactive 

interference. 

 Despite its long history (Henmon, 1917; Underwood, 1978) and its intuitive 

appeal, the attentional-lapse hypothesis has little, if any, direct support in the literature. 

Two assumptions underpin the attentional-lapse hypothesis: (1) subjects’ attention to 

studying stimuli decreases as the length of the study phase increases, and (2) decreasing 

attention results in poorer memory. In recent years, mind wandering has emerged has an 

active research area in cognitive science (for reviews, see Donhoff & Fox, 2015; Kane & 

McVay, 2012; Mooneyham & Schooler, 2013; Randall, Oswald, & Beier, 2014; Schooler 



REM.3 17 

 

et al., 2014; Seli, Risko, Smilek, & Schacter, 2016; Smallwood & Schooler, 2015). In 

mind-wandering research, experimenters ask subjects to self-report mind wandering while 

they perform an attention task. Typically, this is accomplished through the use of thought 

probes—that is, periodic inquiries about current mind wandering during the experimental 

session (e.g., “Are you mind wandering now?”) (Seli, Jonker, Cheyne, Cortes, & Smilek, 

2015; Seli et al., 2014; Smallwood, Beach, Schooler, & Handy, 2008). Memory 

experiments using this paradigm have demonstrated that memory decreases as mind 

wandering increases (Maillet & Rajah, 2013; Thomson, Smilek, & Besner, 2014; for a 

review on the detrimental effects of mind wandering in educational settings, see Szpunar, 

2017), thereby supporting the second assumption of the attentional-lapse account. 

 To the best of my knowledge, no experiments have compared subjects’ propensity 

for mind wandering on short and long lists. As a result, direct support for the first 

assumption of the attentional-lapse account is lacking. It should be noted that 

behaviourally testing this assumption is quite complicated. Imagine, for example, that 

thought probes are issued every fifth item. In that case, long-list subjects would receive a 

greater number of thought probes than short-list subjects. However, further spacing 

thought probes for long-list subjects introduces a different confound. Other indices of 

mind wandering would therefore be more appropriate in a list-length experiment. 

Observable indices of mind wandering include amount of fidgeting (Carriere, Seli, & 

Smilek, 2013; Farley, Risko, & Kingstone, 2013; Seli et al., 2014) and pupil dilation 

(Franklin, Broadway, Mrazek, Smallwood, & Schooler, 2013); in addition, there are 

mind-wandering signatures from electroencephalography (Jin, Borst, & van Vugt, 2019; 
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van Son et al., 2019) and functional magnetic resonance imaging (Christoff, Gordon, 

Smallwood, Smith, & Schooler, 2009). 

2.1.3. Rehearsal borrowing 

Dennis and Humphreys (2001) proposed rehearsal borrowing as another potential 

confound in research on the list-length effect. When the retroactive or proactive designs 

are used, all short-list items are tested, but only a subset of items from the long list are 

tested. Rehearsal borrowing occurs when subjects rehearse earlier-presented items during 

the presentation of other items. For short lists, this is a zero-sum game: Studying Item A-1 

during presentation of Item A will increase memory for Item A-1 at the expense of Item A. 

Since both Items A-1 and A are tested, this is not problematic for interpreting the results. 

However, in the long list, subjects—being unaware that some items will not be tested—

may inadvertently focus their effort on untested items at the expense of tested items. A 

related concern arises in the retroactive design, in which short-list subjects experience a 

longer study-test lag than long-list subjects. Motivated subjects may spend the retention 

interval rehearsing study items, thus enhancing their memorability. 

2.1.4. Context reinstatement 

Dennis and Humphreys’ (2001) final confound concerns context reinstatement. As 

described in Chapter 1, McGeoch (1931a) proposed that the mnemonic trace and retrieval 

cue always contain contextual information. Memories associated to the same or similar 

contexts as that contained in the retrieval cue are easier to access than memories 

associated to less similar contexts. Importantly, even within a given study episode, 

context is not stable; rather, it is assumed to fluctuate with the passage of time (Estes, 

1955a, 1955b; Malmberg & Shiffrin, 2005; Mensink & Raaijmakers, 1988, 1989). Ceteris 



REM.3 19 

 

paribus, two adjacent study items will be associated to more similar contexts than two 

widely separated study items, and start-of-test context will be more similar to end-of-

study context than middle- or start-of-study context. This has important implications for 

the retroactive design, wherein long-list subjects are tested on items from the start of the 

study phase. Following the retention interval, subjects may attempt to reinstate study 

context. Because end-of-study context will be easier to reinstate than start- or middle-of-

study context, this is the context most likely to be mentally reinstated. Critically, short-list 

subjects are tested on end-of-study items but long-list subjects are not; consequently, list-

length effects may reflect an intuitively reasonable strategy (reinstating study context) 

that happens to penalize long-list subjects relative to short-list subjects. 

2.2. Testing the Confounds 

 After describing these potential confounds, Dennis and colleagues (Dennis & 

Chapman, 2010; Dennis & Humphreys, 2001; Dennis et al., 2008; Kinnell & Dennis, 

2011; Maguire, Humphreys, Dennis, & Lee, 2010) conducted a number of list-length 

experiments to assess their merit. An illustrative example is provided by Experiment 1 of 

Dennis and Humphreys’ (2001) original paper. In their experiment, subjects studied 24 

and 72 words in the short- and long-list conditions, respectively. Subjects were not 

forewarned of the memory test, a methodological precaution that Dennis and Humphreys 

reasoned would minimize the probability of rehearsal borrowing. To maintain subjects’ 

attention across the study phase, Dennis and Humphreys asked subjects to make a 

pleasantness judgment for each item. They also reasoned that focusing subjects’ attention 

on each item as it was presented would further decrease the probability of rehearsal 

borrowing. In an attempt to attenuate the effects of context fluctuation, long-list subjects 
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took part in a puzzle task between each third of the study list. Although this 

methodological precaution may not entirely eliminate context fluctuation, it should at 

least increase the uniformity of context throughout the study phase (e.g., items in 

Positions 24, 48, and 72 were all followed by the same puzzle task). Dennis and 

Humphreys also increased the difficulty of context reinstatement by including an 8 min 

retention interval. If context fluctuates across time, then lengthening the time between the 

study and test phases should make context reinstatement far more difficult than in 

experiments using more typical retention-interval durations (e.g., 2 min). Finally, note 

that there were two short-list conditions: one in which subjects began the session by 

studying 24 words, and one in which participants started with a puzzle task. For the first 

group, the study phase took place at the same time as the first 24 items of the long list; for 

the second group, the study phase took place at the same time as the final 24 items in the 

long list. Long-list subjects were tested on items from both the first and final third of the 

study list. This allowed Dennis and Humphreys to assess the list-length effect in the 

retroactive design by comparing start-of-session short-list subjects’ performance to 

discrimination of first-third targets from distractors in the long-list condition, and to 

assess the list-length effect in the proactive design by comparing delayed-study short-list 

subjects’ performance to discrimination of end-of-study targets from distractors. 

Critically, and consistent with the argument that list-length effects are methodological 

artifacts, results did not produce a list-length effect. 

2.3. Theoretical Interpretation 

 Dennis and colleagues (Dennis & Humphreys, 2001; Dennis et al., 2008; Kinnell 

& Dennis, 2011, 2012) interpreted the null list-length effect as support for BCDMEM 
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(see Dennis & Humphreys, 2001). According to BCDMEM, identifying a recognition 

probe as “old” or “new” involves determining whether the study context is one of the 

contexts in which the probe has been previously encountered. In BCDMEM, then, 

interference is caused entirely by previous contexts with which items have been 

associated, rather than other items from the same study episode. As a result, BCDMEM 

does not predict that lengthening a study list will affect recognition. 

 BCDMEM’s assumption that interitem interference does not occur in recognition 

represents an important departure from traditional recognition models. In the global-

matching models and their descendants (e.g., Clark & Gronlund, 1996; Criss & Shiffrin, 

2004a; Gillund & Shiffrin, 1984; Hintzman, 1987, 1988; Shiffrin & Steyvers, 1997), 

interference in recognition arises from two sources: item noise (i.e., other items on the 

study list) and context noise (i.e., as in BCDMEM). Dennis and Humphreys’ (2001) 

finding of a null list-length effect in recognition, then, is consistent with context-noise 

models and inconsistent with context-plus-item-noise models. 

 Two simplifying assumptions common to most global-matching models are 

partially responsible for the prediction of the list-length effect in recognition. First, pre-

experimental memories are assumed not to interfere with information learned during a 

study phase. Second, previous lists from the experimental session are assumed not to 

interfere with subsequent lists. So, according to most instantiations of global-matching 

models, if an experimental session involves multiple study-test cycles, neither items 

studied on earlier lists, nor memories from prior to the experimental session, affect 

performance on the test list. Indeed, the search set (i.e., the mnemonic traces searched 

during the test phase) are assumed to consist entirely of mnemonic traces generated 
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during the study phase. Prima facie, these assumptions seem unsound, inasmuch as they 

render subjects’ minds de facto tabula rasae. Moreover, researchers have demonstrated 

that interference on recognition tests can be caused by previous study lists (Criss et al., 

2011) and experimental instructions (Curtis et al., 2016). However, in defence of the 

tabula-rasa view, because retrieval cues contain current context, it is reasonable to assume 

that, by and large, pre-experimental memories are excluded from the search set and that 

previous study lists exert much less interference than the present list. It is also important 

to point out that proponents of global-matching models would not seriously argue for the 

tabula-rasa view; rather, it is implemented in computational models to make the 

simulations faster, and because the inclusion of pre-experimental memories would not 

typically affect the qualitative pattern of the models’ predictions. 

 As an alternative to the tabula-rasa view, Murdock and Kahana (1993a) presented 

what they termed the continuous-memory version of TODAM. In this version, mnemonic 

traces from earlier lists and prior to the experiment are present during the recognition test. 

This is implemented by initializing simulated subjects’ memories with pre-experimental 

noise (i.e., a computational representation of pre-experimental memories). Shiffrin et al. 

(1993) demonstrated that this causes TODAM to no longer predict a list-length effect, 

since increases in list length produce almost no additional noise when compared to the 

lifetime of experiences already present in the search set. Shiffrin et al. (1993) considered 

this to be a limitation (see also the discussion in Shiffrin et al., 1990), but Murdock and 

Kahana (1993b)—using some of the arguments later leveraged by Dennis and Humphreys 

(2001)—suggested that the list-length effect had yet to be satisfactorily demonstrated in 

recognition. It is worth noting, however, that Ohrt and Gronlund (1999) found a list-
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length effect in recognition using an experimental design informed by Murdock and 

Kahana’s (1993b) discussion. 

2.4. Summarizing the List-Length Effect 

 Despite the evidence provided by Dennis and colleagues (Dennis & Chapman, 

2010; Dennis & Humphreys, 2001; Dennis et al., 2008; Kinnell & Dennis, 2011; Maguire 

et al., 2010), debate still exists concerning whether the list-length effect is a real 

recognition phenomenon. Although Dennis and colleagues have produced a number of 

null findings, it remains the case that other researchers have found list-length effects with 

some or all of Dennis and colleagues’ controls implemented (e.g., Cary & Reder, 2003; 

Criss & Shiffrin, 2004a; Underwood, 1978). Annis et al. (2015) have called into question 

the Bayesian analyses Dennis et al. (2008) presented to support their claim that their 

results were consistent with context-noise models (like BCDMEM) and inconsistent with 

item-noise models (e.g., REM). Instead, Annis et al. showed that Dennis et al.’s results 

were consistent with a small, but real, list-length effect. Additional data is probably 

necessary to settle this debate. At present, my position is that the list-length effect exists, 

but that it is small when Dennis and Humphreys’ (2001) methodological precautions are 

taken.  
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Chapter 3: The List-Strength Effect 

 Research on the list-strength effect emerged from research on the list-length 

effect. In list-length experiments, researchers are interested in how adding items to a list 

affects memory; in list-strength experiments, researchers are interested in how repeating 

some items affects memory. Tulving and Hastie (1972) reported the first experiment on 

the list-strength effect. In Experiment 1 of their paper, they manipulated both list length 

and list strength. Free recall was tested across three list types: a short pure-weak list, on 

which 10 items were presented once; a long pure-weak list, on which 15 items were 

presented once; and a mixed list, on which five items were presented once and five items 

were presented twice. As one would expect, memory was better for the short pure-weak 

list than the long pure-weak list, reflecting a list-length effect. Also unsurprising is that 

memory was better for the twice-presented items than the once-presented items. 

Interestingly, though, memory was worse for the once-presented items on the mixed list 

than the items on the short pure-weak list, demonstrating that the presence of 

strengthened items on the mixed list produced a mnemonic cost for the unstrengthened 

items. Subsequent work showed that the strengthened items also incur a mnemonic 

benefit from the unstrengthened items—that is, free recall is better for repeated items on a 

mixed list than a list on which all items are repeated (Malmberg & Shiffrin, 2005). 

Although the term did not exist when Tulving and Hastie conducted their experiments, 

Ratcliff et al. (1990) and Shiffrin et al. (1990) later termed this pattern the list-strength 

effect. 

 In Chapter 1, I described two interference phenomena: cue overload and 

occlusion. The list-strength effect can be thought of in terms of occlusion: On the mixed 
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list, the strengthened items “stand out” from the unstrengthened items, thereby enhancing 

their memorability. At the same time, the unstrengthened items are occluded by the 

strengthened items, thereby diminishing their memorability. 

 Several free- and cued-recall experiments followed Tulving and Hastie’s (1972) 

initial demonstration of the list-strength effect (Fritzen, 1975; Hastie, 1975; Mueller & 

Brown, 1977; Robbins, Bray, & Irvin, 1974). However, it was not until a series of 

experiments by Ratcliff et al. (1990) that the list-strength effect was investigated in 

recognition. Ratcliff et al. conducted seven recognition experiments on the list-strength 

effect. Interestingly, the results from free recall did not extend to recognition: Although 

strong items were better recognized than weak items, the effect did not differ as a 

function of list type. Indeed, several of their experiments found a trend in the opposite 

direction, with strong-item performance better on the pure list and weak-item 

performance better on the mixed list. These results were replicated by several subsequent 

papers (Hirshman, 1995; Murnane & Shiffrin, 1991a; Ratcliff, McKoon, & Tindall, 1994; 

Ratcliff, Sheu, & Gronlund, 1992; Yonelinas, Hockley, & Murdock, 1992). This 

discrepancy between free recall and recognition came as a surprise: Shiffrin et al. (1990) 

showed that, without modification, none of the global-matching models could predict the 

absence of a list-strength effect in recognition (see also Clark & Gronlund, 1996). 

 Ratcliff et al.’s (1990) demonstration of a null list-strength effect in recognition 

produced a number of theoretical explanations. I describe these later in the present 

chapter. First, however, I describe the three paradigms used to study the list-strength 

effect: the A+2B, mixed-pure, and strong-interference paradigms. 

3.1. Paradigms Used for the List-Strength Effect 
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3.1.1. The A+2B paradigm 

Early studies on the list-strength effect used what Tulving and Hastie (1972) termed 

the A+2B paradigm. The A+2B paradigm divides targets into A and B items. On the A+B 

list, both A and B items are presented once; on the A+2B list, A items are presented once 

and B items are presented twice. A list-strength effect is present if memory is better for 

the A items on the A+B list relative to A items on the A+2B list. Studies using the A+2B 

paradigm have largely tested free recall, and thus they have typically yielded a list-

strength effect (Fritzen, 1975; Hastie, 1975; Mueller & Brown, 1977; Sahakyan, 

Abushanab, Smith, & Gray, 2014; Tulving & Hastie, 1972). 

3.1.2. The mixed-pure paradigm 

The mixed-pure paradigm, introduced by Ratcliff et al. (1990), can be thought of as 

an extension of the A+2B paradigm. Both the A+B and A+2B lists are retained, although 

their names are changed to the pure-weak and mixed lists, respectively. There is also a 

mixed-strong list, on which all items are strengthened (in terms of the A+2B paradigm, 

the pure-strong list could be thought of as a 2A+2B list). Therefore, experiments using the 

mixed-pure paradigm have a 2 (strength: weak vs. strong) × 2 (list type: pure vs. mixed) 

design. Unlike experiments using the A+2B paradigm, which, to the best of my 

knowledge, have exclusively strengthened B items through multiple, spaced repetitions, 

experiments using the mixed-pure paradigm have explored various strengthening 

techniques, including multiple presentations of strong items, longer study time for strong 

items, and more elaborative processing of strong items (see Malmberg & Shiffrin, 2005). 

 Although the addition of the pure-strong list is typically considered to be the only 

difference between the A+2B and mixed-pure paradigms, one other difference bears 
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mentioning. In the A+2B paradigm, the critical comparison is between A items from the 

A+B list and A items from the A+2B list. In other words, performance on only half of the 

items from the A+B list is considered when evaluating the presence of a list-strength 

effect. For example, if a subject in Tulving and Hastie’s (1972) experiment recalled one A 

item and four B items, their overall performance on the A+B list would be 5/10 = .5, but 

their performance for comparison to the A+2B list would be 1/5 = .2. In contrast, in the 

mixed-pure paradigm, performance on all pure-weak items is compared to performance 

on weak items from the mixed list, and performance on all pure-strong items is compared 

to performance on all strong items from the mixed list. 

 Somewhat confusingly, two empirical patterns resulting from the mixed-pure 

paradigm have been termed a list-strength effect. In the first, a list-strength effect is said 

to occur when performance is better for mixed-strong items than pure-strong items, and 

performance is better for pure-weak items than mixed-weak items. I will call this the 

crossover list-strength effect because it arises when there is a crossover interaction 

between strength and list type. 

 The second empirical pattern defines the list-strength effect in terms of what 

Ratcliff et al. (1990) and Shiffrin et al. (1990) called the ratio of ratios (Rr). The Rr is the 

ratio of strong-to-weak performance ratios in the mixed and pure lists. Let mMW, mMS, 

mPW, and mPS denote memory performance for mixed-weak, mixed-strong, pure-weak, 

and pure-strong items, respectively. Then: 

Rr = (mMS/mMW)/(mPS/mPW) 

A positive list-strength effect exists if Rr > 1, a null list-strength effect exists if Rr = 

1, and a negative list-strength effect exists if Rr < 1. Notice that, if there is a crossover 
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list-strength effect, the Rr is necessarily positive, but that the Rr can still be positive in the 

absence of a crossover list-strength effect. As an example, consider a free-recall 

experiment on which the mean proportion of mixed-strong, mixed-weak, pure-strong, and 

pure-weak items recalled is .6, .3, .6, and .4, respectively. Here, the Rr is (.6/.4)/(.6/.4) = 

1.333. So, these means represent a positive list-strength effect, as indexed by the Rr. 

However, they do not represent a crossover list-strength effect, since there is not a 

crossover interaction between strength and list type. 

3.1.3. The strong-interference paradigm 

Norman (1999, 2002) introduced the strong-interference paradigm as an alternative 

to the mixed-pure paradigm. In the strong-interference paradigm, study lists are 

composed of tested and untested items, called targets and interference items, respectively. 

There are two list types: the weak-interference list and the strong-interference list. The 

targets are presented once on each list. However, interference items are presented 

multiple times on the strong-interference list and once on the weak-interference list. At 

test, only targets are tested, and a list-strength effect occurs if performance is better on the 

weak-interference list than the strong-interference list. 

 I will have more to say about the strong-interference paradigm in a later section. 

For now, it bears mentioning that, unlike the mixed-pure paradigm, the strong-

interference paradigm typically yields a list-strength effect in recognition (Diana & 

Reder, 2005; Norman, 1999, 2002; Norman, Tepe, Nyhus, & Curran, 2008; Osth, Dennis, 

& Kinnell, 2014; but see Osth, Fox, et al., 2018). 

3.2. Theoretical Accounts of the List-Strength Effect 

3.2.1. Differentiation 
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Experts are able to capitalize on information that laypeople cannot, thereby giving 

them an advantage in distinguishing among similar stimuli. For example, violins and 

violas look very similar and, to a layperson, are likely indistinguishable without research 

and/or assistance from an expert. Yet, experts can easily categorize them as different 

instruments. Unlike laypeople, experts know that violas have slightly longer strings than 

violins, that violas have a lower note range than violins, and that violins and violas have 

distinct timbres. Indeed, some experts will be able to listen to a piece of music and easily 

identify its likely composer and composition era. The critical difference between 

laypeople and experts is that, unlike laypeople, experts are able to draw fine distinctions 

between and within categories. This ability—called differentiation—has a long history in 

psychological research (Gibson, 1940; Gibson & Gibson, 1955; Goldstone, 1998; 

Nosofsky, 1987; Saltz, 1963), and has been applied to a number of domains of expertise, 

including reading sheet music (Waters & Underwood, 1998), predicting the movement of 

billiards balls (Crespi, Robino, Silva, & de’Sperati, 2012), fingerprint identification 

(Searston & Tangen, 2017), identifying the best move in a chess game (Sheridan & 

Reingold, 2014), discriminating among wines (Foroni et al., 2017; Parr, Heatherbell, & 

White, 2002), and identifying clinically relevant abnormalities in chest X-rays (Myles-

Worsley, Johnston, & Simons, 1988). 

 Does differentiation play a role in memory? One phenomenon that implicates 

differentiation is the so-called paradox of interference (see Smith, Adams, & Schorr, 

1978). Recall that, as the number of memories subsumed by a retrieval cue increases, the 

retrieval cue’s efficacy diminishes, a phenomenon called cue overload (Surprenant & 

Neath, 2009, Chapt. 5; O. C. Watkins & Watkins, 1975). Notice that cue overload implies 
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that, as one learns more about a topic, one’s ability to retrieve facts about that topic will 

become increasingly difficult. For example, a strict interpretation of cue overload would 

predict that students who have just completed an introductory neuroscience course will be 

faster at naming the parts of a neuron than their professor, for whom the cues 

“neuroscience” or “neuron” subsume far more information. 

 Differentiation provides a solution to the paradox of interference: As experience 

with a topic increases, more specific cues can be utilized to retrieve desired information. 

For example, in retrieving information about cardinals, laypeople will probably have to 

use the cue “cardinal”, but experts will be able to use cues corresponding to different 

cardinal species (e.g., “vermilion cardinal”, “northern cardinal”, “red-crested cardinal”, 

etc.). Notice, too, that encoding also benefits from differentiation: For laypeople, a picture 

of a vermilion cardinal is likely to be given a verbal label such as “cardinal” or “red bird”, 

but experts will easily encode the picture with a label such as “female vermilion cardinal” 

or “unusually large vermilion cardinal”. If a picture of a northern cardinal is then shown, 

laypeople will probably end up with the same label used for the vermilion cardinal, but 

experts will generate a mnemonic trace corresponding to a separate cue. So, experts’ 

ability to draw finer distinctions within and between categories allows them to increase 

the specificity of both their encoded mnemonic traces and their retrieval cues. 

 One memory phenomenon for which differentiation has been used as an 

explanation is the strength-based mirror effect. In recognition, a mirror effect is said to 

occur when an increase in the hit rate is accompanied by a decrease in the false-alarm rate 

(Glanzer & Adams, 1985, 1990). Mirror effects have generally been divided into 

stimulus-based mirror effects and strength-based mirror effects. In the stimulus-based 
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mirror effect, targets and distractors are evenly divided between two types of stimuli, and 

one of the stimulus types produces a higher hit rate and lower false-alarm rate, relative to 

the other stimulus type. Manipulations that produce a stimulus-based mirror effect include 

low- versus high-frequency words (Reder et al., 2000), concrete versus abstract words 

(Hockley, 1994), and pictures versus words (Snodgrass, Wasser, Finkelstein, & Goldberg, 

1974). In contrast, the strength-based mirror effect tests subjects’ recognition of two list 

types: a weakly encoded list and a strongly encoded list. These lists are analogous to the 

pure-weak and pure-strong lists in the mixed-pure paradigm. Unsurprisingly, hit rates are 

higher for strongly encoded lists than weakly encoded lists; more surprising is that the 

false-alarm rate is lower on the strongly encoded list than the weakly encoded list (Bruno, 

Higham, & Perfect, 2009; Criss, 2006, 2009, 2010; Criss, Aue, & Kılıç, 2014; Criss & 

McClelland, 2006; Criss, Wheeler, & McClelland, 2013; Hockley & Niewiadomski, 

2007; Kılıç & Öztekin, 2014; Koop, Criss, & Pardini, 2019; Starns, Ratcliff, & White, 

2012; Starns, White, & Ratcliff, 2010, 2012; Stretch & Wixted, 1998; Wixted & Stretch, 

2000). 

 Stretch and Wixted (1998) appeal to criterion placement to explain the strength-

based mirror effect. In item recognition, although measures of discrimination (e.g., d′) are 

most often the dependent variable of interest, some experiments investigate measures of 

criterion placement (e.g., β). Subjects’ criterion placement reflects the amount of 

evidence they need to call an item “old”; if a probe’s activation level (match, familiarity, 

etc.) exceeds the criterion, an “old” response is made, and if it does not, a “new” response 

is made. According to the criterion-placement account of the strength-based mirror effect, 

subjects adopt a stricter criterion (i.e., a more conservative criterion) on a strong test list 
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than a weak test list. The targets from the strong list are sufficiently well encoded that 

they exceed this higher criterion, but the higher criterion results in fewer distractors being 

called “old” than on the weak list since, presumably, the average activation of distractors 

is the same between lists. 

 Differentiation can explain the strength-based mirror effect without appealing to 

criterion placement (Criss & McClelland, 2006; McClelland & Chappell, 1998; Shiffrin 

& Steyvers, 1997). Most memory models assume that studying an item produces an error-

prone, mnemonic trace of the original stimulus. Models also generally assume that the 

fidelity of the mnemonic trace increases as encoding time increases. A mnemonic trace 

can be said to be differentiated when it is better encoded than other, related mnemonic 

traces. Trace differentiation has two important consequences: First, differentiated traces 

are more distinctive than related items, thus decreasing the potential for them to produce 

interitem interference. Second, differentiated traces are less confusable with other items, 

thus decreasing the probability that a distractor on a recognition test will be called “old”. 

The differentiation account, then, proposes that the strength-based mirror effect is a 

necessary outcome of better encoding: The hit rate is higher for strong items than weak 

items because their mnemonic traces are more accurate representations of the studied 

items, and the false-alarm rate is lower on strong lists than weak lists because the greater 

distinctiveness of strong mnemonic traces decreases the probability of erroneous 

distractor matches. 

 What about the list-strength effect? Although it is often said that the list-strength 

effect tends to be null in recognition, it actually tends to be slightly negative (i.e., Rr < 1; 

see Ratcliff et al., 1990, 1992, 1994). When a negative list-strength effect occurs, 
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performance is better on mixed-weak items than pure-weak items, but worse on mixed-

strong items than pure-strong items. Under a differentiation framework, weak items 

produce more interitem interference than strong items, and thus the negative list-strength 

effect has a straightforward explanation: Mixed-weak items are protected to a greater 

extent from interitem interference than pure-weak items, since half of their competitors 

are differentiated. Similarly, pure-strong items are better protected from interitem 

interference than mixed-strong items, since all of their competitors are differentiated.
3
 

 When Ratcliff et al. (1990) first documented the null or negative list-strength 

effect in recognition, Shiffrin et al. (1990) demonstrated that no extant model could 

simultaneously predict a positive list-length effect and negative list-strength effect in 

recognition. Shiffrin et al. therefore added a differentiation assumption to SAM, which 

allowed it to predict the requisite pattern. In earlier instantiations of SAM (Gillund & 

Shiffrin, 1984; Raaijmakers & Shiffrin, 1980, 1981), strengthened items were stored in 

multiple traces—for example, if weak items were presented for 1 s and strong items were 

presented for 5 s, weak items would have one mnemonic trace and strong items would 

have five mnemonic traces. In the differentiation version of SAM, however, strengthened 

items were stored in a single trace, which resulted in SAM predicting a negative list-

strength effect (see also Shiffrin & Raaijmakers, 1992). Although SAM is no longer 

considered a viable model of recognition memory, differentiation is still the mechanism 

by which the null or negative list-strength effect occurs according to REM (Shiffrin & 

                                                 

3. Note that the level of differentiation is always relative to a baseline, and that 

differentiation is best conceived as a continuum rather than a dichotomy. 
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Steyvers, 1997) and the Subjective Likelihood Model (SLIM; McClelland & Chappell, 

1998) (see also Criss & McClelland, 2006; Criss & Howard, 2015; Criss & Koop, 2015; 

Kılıç, Criss, Malmberg, & Shiffrin, 2017). 

 Importantly, if differentiation is responsible for the null or negative list-strength 

effect, then disrupting differentiation should produce a list-strength effect in recognition. 

Murnane and Shiffrin (1991b) tested this prediction by embedding to-be-remembered 

words in sentences during the study phase. In Experiment 1, strong items were repeated in 

new sentences; in Experiment 2, strong items were repeated in the same sentence. 

Murnane and Shiffrin reasoned that repeating words in new sentences would result in 

separate mnemonic traces, but that repeating words in the same sentence would result in a 

single, differentiated trace. Their predictions were supported, with a list-strength effect 

observed in Experiment 1 but not in Experiment 2 (for similar results, see Sahakyan & 

Malmberg, 2018). 

3.2.2. Criterion placement 

As discussed above, some scholars have attributed the strength-based mirror effect 

to a criterion shift, with subjects adopting a more conservative criterion on the strong list 

than the weak list (Stretch & Wixted, 1998). The criterion shift is assumed to be because 

subjects recognize the greater strength of studied items on the strong list, and thus require 

a recognition probe to have a greater degree of familiarity to call it “old” than they do 

following study of the weak list. In the mixed-pure paradigm, then, one might suspect that 

subjects would vary their criterion from probe to probe on the mixed list according to 

whether they believe a given probe to be a mixed-strong or mixed-weak item. However, 

two factors complicate such a strategy: First, because test lists are not blocked by item 
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strength, it is unclear how subjects would know when to use a conservative criterion and 

when to use a more liberal criterion. Second, previous work has demonstrated that 

subjects are reluctant to modify their criterion within a test list (Verde & Rotello, 2007). 

 So, if subjects’ criterion placement is a function of list strength, and if within-list 

criterion changes are unlikely, then subjects’ criterion on a mixed-strength list should be 

more conservative than their criterion for the pure-weak list, but more liberal than their 

criterion for the pure-strong list. This is because the average strength of targets on the 

mixed list will be greater than the average strength of the targets on the pure-weak list and 

less than the average strength of targets on the pure-strong list. Let N denote the number 

of targets per list, W denote the presentation duration of weak items, and S denote the 

presentation duration of strong items. Then, the average target strength, T, for the pure-

weak (TPW), mixed (TM), and pure-strong (TPS) lists is: 

TPW = WN/N = W 

TM = (W(N/2)+S(N/2))/N = (W+S)/2 

TPS = SN/N = S 

Therefore, if criterion placement is indeed a product of study-list strength, subjects’ 

criterion should become increasingly conservative from the pure-weak list to the mixed 

list to the pure-strong list. Hirshman (1995) argued that the different criteria used across 

list types in the mixed-pure paradigm is responsible for the absence of the list-strength 

effect in recognition. 

 Why does Hirshman’s (1995) criterion-placement account predict a null or 

negative list-strength effect? First, notice that, although the criterion is assumed to change 

across lists, the actual familiarity of the distractors does not change. In other words, if the 
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average familiarity of distractors on the pure-weak list is Fd, then the average familiarity 

of distractors on the mixed and pure-strong lists should also be Fd. This is because 

distractors across the three lists are presumably drawn from the same population of 

potential distractors. For example, Ratcliff et al. (1990) randomly sampled stimuli for 

each subject from the Toronto Word Pool (Friendly, Franklin, Hoffman, & Rubin, 1982). 

Therefore, because of the increasingly conservative criterion, the false-alarm rate will be 

highest on the pure-weak list, lowest on the pure-strong list, and intermediate on the 

mixed list. 

 What about target familiarity? Because they will be better encoded, the average 

familiarity of strong targets (FTS) will exceed the average familiarity of weak targets 

(FTW), but FTS and FTW will not differ between pure and mixed lists. However, although 

mixed- and pure-weak targets will be equally well encoded, the more liberal criterion on 

the pure-weak list will result in a higher hit rate for pure-weak targets than mixed-weak 

targets. Similarly, although mixed- and pure-strong targets will be equally well encoded, 

the more liberal criterion on the mixed list will result in a higher hit rate for mixed-strong 

targets than pure-strong targets. 

 It can be difficult to grasp why the criterion-placement account predicts a null list-

strength effect. If one considers only the hit rates, then the pattern is consistent with a 

positive list-strength effect: the hit rate is higher for pure-weak items than mixed-weak 

items, because FTW is the same across list types but subjects adopt a more conservative 

criterion on the mixed list than the pure-weak list. At the same time, the hit rate is higher 

for mixed-strong items than pure-strong items, again because FTS is the same between 

lists but subjects adopt a more conservative criterion on the pure-strong list than the 
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mixed list. However, the pattern of hit rates is offset by the pattern of false-alarm rates: 

Recall that FD is the same across lists. This means that, because the criterion becomes 

increasingly conservative as list strength increases, the false-alarm rate is higher on the 

pure-weak list than the mixed list, and the false-alarm rate is higher on the mixed list than 

the pure-strong list. The differences in false-alarm rates offset the hit-rate differences, 

producing roughly equivalent discrimination on weak and strong items across pure and 

mixed lists. 

 I find the differentiation account more persuasive than the criterion-placement 

account for two reasons. First, the criterion-placement account assumes a distribution of 

hit and false-alarm rates that is difficult to assess based on the published record. Although 

Hirshman (1995) found hit and false-alarm rates consistent with the criterion-placement 

account, most other list-strength experiments restrict their analyses to discrimination 

measures like d′. As such, it is unclear whether null list-strength effects are always due to 

this pattern of hit and false-alarm rates. Second, the differentiation account has generated 

novel predictions that have been tested and verified (Murnane & Shiffrin, 1991b; 

Sahakyan & Malmberg, 2018). In contrast, it is unclear what a priori predictions are made 

by the criterion-placement account, and it is unclear how the criterion-placement account 

could explain exceptions to the null list-strength effect (e.g., Sahakyan & Malmberg, 

2018). 

3.2.3. The continuous-memory version of TODAM 

As described in the previous chapter, Murdock and Kahana (1993a, 1993b) 

introduced the continuous-memory version of TODAM. For simplicity, most memory 

models assume that memory is empty when a study list is first presented. Instead, in the 
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continuous-memory version of TODAM, the memory matrix consists of all pre-

experimental memories when the experiment begins. As subjects move through study-test 

cycles, memories from previous cycles remain in memory. 

 Murdock and Kahana (1993a) showed that, with the addition of the continuous-

memory assumption, TODAM was able to predict a null list-strength effect in 

recognition. This is because it renders within-list interference nearly negligible when 

weighed against a subject’s lifetime of memories. As Shiffrin et al. (1993) pointed out, 

the continuous-memory version of TODAM also predicts a null list-length effect in 

recognition, although, given recent findings (Dennis & Humphreys, 2001; Dennis et al., 

2008; Kinnell & Dennis, 2011), this may not be as problematic as once thought. 

 Even setting aside the controversy regarding the list-length effect in recognition, 

the continuous-memory version of TODAM does not provide an entirely satisfying 

solution to the list-strength effect. No scholar would seriously suggest that a subject’s 

memory is empty at the beginning of an experimental session; nor would they suggest 

that the act of moving from one study-test cycle to the next reinitializes memory. 

However, we know that context plays a substantial role in limiting the search set. It is 

perfectly reasonable, then, to assume that pre-experimental memories and mnemonic 

traces from previous study-test cycles exert minimal interference on the current list, 

simply because those memories will be associated to different contexts, and thus will be 

largely excluded from the search set. 

3.2.4. BCDMEM 

As reviewed in the previous chapter, Dennis and Humphreys’ (2001) BCDMEM 

assumes that recognition decisions are unaffected by interitem interference. Instead, false 
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alarms occur when subjects erroneously believe they last saw the distractor during the 

study phase, and misses occur when subjects erroneously believe that the target was last 

encountered in a context other than the study phase. Therefore, because BCDMEM does 

not include a mechanism for interitem interference, it predicts a null list-strength effect. 

Note, however, that BCDMEM can only account for a null list-strength effect, and not the 

slightly negative list-strength effects that have been observed (Ratcliff et al., 1990). 

3.2.5. Insufficient strengthening and dual-process accounts 

Norman (1999, 2002) proposed two explanations for negative or null list-strength 

effects: insufficient strengthening of strong items and a failure to separate recollection 

from familiarity. According to the insufficient-strengthening hypothesis, extant studies on 

the list-strength effect had failed to strengthen strong items sufficiently to interfere with 

weak items. Because strong items are tested in the mixed-pure paradigm, experimenters 

have been careful to keep strong-item performance below ceiling. Norman (1999, 2002) 

argued that strengthening strong items to ceiling would produce a list-strength effect, at 

least in weak-item performance. Norman (1999, 2002) therefore developed the strong-

interference paradigm as an alternative to the mixed-pure paradigm. I described the 

strong-interference paradigm in Section 3.1.3 but, very briefly, this paradigm eliminates 

the pure-strong list and tests only weak items. 

 Norman (1999, 2002) also proposed a dual-process interpretation of the list-

strength effect. According to dual-process theorists (Jacoby, 1991; Mandler, 1980, 2008; 

Norman & O’Reilly, 2003; Reder et al., 2000; Tulving, 1985; Yonelinas, 2002), 

recognition decisions are based on information from two independent sources: familiarity 

and recollection (for an argument that familiarity and recollection are correlated, rather 
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than independent, see Moran & Goshen-Gottstein, 2015). Familiarity is a 

phenomenological sense that an item was studied in the absence of a concrete, episodic 

memory of studying the probe. In contrast, recollection involves an episodic memory of 

studying the probe. Although dual-process theorists assume that familiarity and 

recollection both contribute to recognition decisions, only recollection contributes to free-

recall performance (but see Hamilton & Rajaram, 2003). Since free recall produces a 

positive list-strength effect but recognition does not, Norman (1999, 2002) hypothesized 

that the list-strength effect was a purely recollection-based phenomenon, and that the 

combination of familiarity and recollection in recognition was obscuring the list-strength 

effect. 

 Norman (1999, 2002) tested the insufficient-strengthening and dual-process 

accounts of the list-strength effect by coupling the strong-interference paradigm and 

remember/know paradigm (see Tulving, 1985). In the remember/know paradigm, when 

subjects identify a probe as “old”, they are asked to indicate whether their response was 

based on “remembering” or “knowing” (recollection and familiarity, respectively). 

Consistent with the insufficient-strengthening account, Norman (1999, 2002) 

demonstrated that strengthening interference items to ceiling produced a list-strength 

effect in the strong-interference paradigm (i.e., better recognition of weak items from the 

weak-interference list than weak items from the strong-interference list). Consistent with 

the dual-process account, the list-strength effect occurred in “remember” but not “know” 

responses. The recollection-based list-strength effect has since been replicated by Diana 

and Reder (2005) and Norman et al. (2008) (but see Osth, Fox, et al., 2018, for a failed 

replication). 
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 Two additional findings provide converging support for the view that the list-

strength effect is a recollection-based phenomenon. In the switched-plurality paradigm, 

subjects study a list of singular and plural nouns, and are then tested with targets (i.e., 

items from the study list), switched-plurality distractors (i.e., plural versions of singular 

nouns or singular versions of plural nouns), and unrelated distractors (see Hintzman, 

Curran, & Oppy, 1992). Buratto and Lamberts (2008) found a list-strength effect in 

recognition using the switched-plurality paradigm. In another study, Verde and Rotello 

(2004) found a list-strength effect in associative recognition. Importantly, distinguishing 

between targets and switched-plurality distractors or between intact and rearranged pairs 

are assumed to rely more on recollection than standard old/new recognition. 

3.2.6. Inhibition and output interference 

My discussion of the theoretical accounts of the list-strength effect concludes with 

two accounts that have only been applied in free and cued recall. In particular, I begin by 

describing the inhibition account of the list-strength effect (Anderson, 2003; Bäuml, 

1997), and finish by arguing that output interference provides a more compelling account 

of the data than inhibition. 

 The inhibition account relies heavily on similarities between the mixed-pure 

paradigm and the retrieval-practice paradigm, introduced by Anderson et al. (1994) to 

study retrieval-induced forgetting. The retrieval-practice paradigm consists of three 

distinct phases: study, retrieval practice, and test. During the study phase, subjects study a 

list of words from several distinct categories (e.g., fruits, animals, instruments, etc.). 

During the retrieval-practice phase, subjects practice retrieving half of the exemplars from 

half of the categories. This is accomplished by presenting subjects with a category-
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exemplar stem (e.g., “instrument”-“p____” for “piano”). In the retrieval-practice 

literature, the convention is to refer to practiced categories as Rp categories and 

nonpracticed categories as Nrp categories. Practiced exemplars from Rp categories are 

denoted Rp+, and nonpracticed exemplars from Rp categories are denoted Rp−. At test, 

all exemplars from all categories are tested. Unsurprisingly, performance is best for Rp+ 

exemplars. More importantly, memory is better for Nrp exemplars than Rp− exemplars—

in other words, the Rp− exemplars incur a mnemonic cost from the presence of Rp+ 

exemplars (Anderson et al., 1994; Bäuml, Zellner, & Vilimek, 2005; Cinel, Cortis Mack, 

& Ward, 2018; Ciranni & Shimamura, 1999; Gómez-Ariza, Pelegrina, Lechuga, Suárez, 

& Bajo, 2009). 

 Prima facie, retrieval-induced forgetting appears consistent with interference 

mechanisms like cue dependence and occlusion. From an interference perspective, the 

category label serves as the retrieval cue, and subsumes the studied exemplars. In Nrp 

categories, the cue is, on average, equally associated to each of the exemplars; in Rp 

categories, the cue is more strongly associated to Rp+ exemplars than Rp− exemplars, 

and thus the former occlude the latter. Yet, two important findings challenge the 

interference account of retrieval-induced forgetting.
4
 First, it has been demonstrated that 

retrieval-induced forgetting is retrieval-dependent—that is, simply restudying the Rp+ 

exemplars, rather than overtly retrieving them, does not result in an Rp− decrement 

                                                 

4. In addition to the two discussed here, Anderson (2003) described two other indices of 

inhibition: strength independence and competition dependence. However, as these indices 

do not bear on the issue of the list-strength effect, I do not discuss them here. 
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(Ceranni & Shimamura, 1999; Hulbert et al., 2012; but see Jonker et al., 2013; Verde, 

2013). This is inconsistent with most interference models: Although it is reasonable to 

assume that retrieval practice results in greater strengthening than restudy, restudying 

should still result in stronger Rp+ traces than Rp− traces. Therefore, the finding that Nrp 

and Rp− exemplars are remembered at the same rate, even though Rp+ exemplars exceed 

Rp− exemplars, is inconsistent with occlusion. From an inhibition perspective, the act of 

overt retrieval involves suppression of a target’s competitors. For example, after studying 

“kiwi”, “pineapple”, “lemon”, and “orange” in the “fruit” category, completing the 

category-exemplar-stem “fruit”-“p___” involves suppressing “kiwi”, “lemon”, and 

“orange” to retrieve “pineapple”. This suppression is necessary because the “fruit” cue 

activates all four exemplars, not just “pineapple”—coactivation results in suppression. 

From an inhibition perspective, then, whether or not retrieval practice results in 

strengthening is secondary—its relative strength is increased by virtue of the fact that 

competitors are weakened. Therefore, while interference theory attributes retrieval-

induced forgetting to occlusion of Rp− exemplars by Rp+ exemplars, inhibition theory 

attributes retrieval-induced forgetting to a mechanism that actively weakens the strength 

of Rp− exemplars. 

 The second property of retrieval-induced forgetting that favours an inhibition 

explanation is that the mnemonic cost to Rp− exemplars is cue independent. In other 

words, Rp− exemplars are impaired for the original cue (e.g., “fruit”-“a___” for “apple”) 

and for all other cues (e.g., “red”-“a___” for “apple”) (Anderson & Bell, 2001; Anderson 

& Spellman, 1995; Hulbert et al., 2012; Saunders & MacLeod, 2006; Shivde & Anderson, 

2001; Weller, Anderson, Gómez-Ariza, & Bajo, 2013). It is important to emphasize how 



REM.3 44 

 

extraordinary cue independence is, given the substantial support for the cue-dependence 

principle (Surprenant & Neath, 2009, Chapt. 3). It is difficult to see how an interference 

theory of forgetting could incorporate cue-independence (but see Huber, Tomlinson, 

Jang, & Hopper, 2015; Tomlinson, Huber, Rieth, & Davelaar, 2009, for an attempt using 

SAM), but the phenomenon is consistent with inhibitory accounts (Anderson, 2003; 

Anderson & Spellman, 1995). It should be noted that several studies have failed to 

replicate cue-independent forgetting (Perfect et al., 2004; Williams & Zacks, 2001; see 

also Bulevich, Roediger, Balota, & Butler, 2006). For present purposes, when I discuss 

inhibition theory, I will assume that cue-independent forgetting is a real phenomenon; 

otherwise, however, I remain agnostic regarding its veracity. 

 Paradigms used to investigate the list-strength effect bear important similarities to 

the retrieval-practice paradigm. In both, a subset of to-be-remembered stimuli is 

strengthened, and performance on the unstrengthened items is compared to a baseline, 

control list. When present, the list-strength effect and retrieval-induced forgetting result in 

a mnemonic cost for the unstrengthened items. From an inhibition perspective, the most 

important difference between the paradigms is that, in the retrieval-practice paradigm, 

inhibition takes place before the test phase, but in list-strength paradigms (i.e., the mixed-

pure, A+2B, and strong-interference paradigms), inhibition only occurs during the test 

phase. This is because restudy is insufficient to cause inhibition; rather, overt retrieval is 

required. 

 Bäuml (1997) was the first to test an inhibition account of the list-strength effect. 

He argued that the presence of the list-strength effect in free recall, but not cued recall or 

recognition, was best explained by subjects deploying an inhibitory mechanism during the 



REM.3 45 

 

test phase. Wike and Wike (1970) and Wixted et al. (1997) have demonstrated that, in 

mixed-strength lists, subjects, on average, output strong items earlier and faster than weak 

items. From an inhibition perspective, the retrieval of any item during a free-recall test 

results in the weakening of the remaining traces. So, by the time subjects begin recalling 

mixed-weak items, the mnemonic traces of these items have been subjected to substantial 

inhibition from the recall of mixed-strong items. In pure lists, all items are equally (or, at 

least, roughly equally) associated to the retrieval cue. As a result, pure-weak items are 

subjected to less inhibition than mixed-weak items, but pure-strong items are subjected to 

more inhibition than mixed-strong items. 

 Bäuml (1997) used a novel variant of the mixed-pure paradigm to test this 

account. Subjects in his experiment studied lists of items from several distinct categories. 

There were six exemplars in each category, each of which started with a unique letter to 

allow for unambiguous word-stem completion. There were three category types: pure-

weak categories, for which each exemplar was studied for 2 s; pure-strong categories, for 

which each exemplar was studied for 6 s; and mixed categories, for which half of the 

exemplars were studied for 2 s and the other half of the exemplars were studied for 6 s. 

Because memory was tested using category-exemplar-stem completion (e.g., “animal”-

“g___” for “giraffe”), Bäuml was able to control output order. Importantly, for half of the 

mixed categories, strong exemplars were tested first; for the other half of the mixed 

categories, weak exemplars were tested first. When Bäuml ignored test position, he found 

a positive list-strength effect; crucially, however, when he restricted his analysis to first-

half exemplars, he found a null list-strength effect. This pattern is consistent with the 

inhibition account: If overt retrieval is required for inhibition, then this should manifest 
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later in the test phase (as shown by the overall positive list-strength effect) but not early in 

the test phase (as shown by the first-half null list-strength effect). 

 Subsequent to Bäuml’s (1997) experiment, Malmberg and Shiffrin (2005) 

investigated different strengthening techniques on the list-strength effect in free recall. 

They found that, although spaced repetitions produced the standard list-strength effect, 

massed repetitions, increased study time, and levels-of-processing manipulations did not. 

Verde (2009) noted that Malmberg and Shiffrin’s results make interpretation of Bäuml’s 

findings difficult, since Bäuml strengthened items using increased study time. Therefore, 

the null list-strength effect observed in the first half of his test may have been due to a 

suboptimal strengthening technique rather than a lack of inhibition during the early part 

of the test phase. Verde performed several conceptual replications of Bäuml’s experiment 

using a spaced strengthening technique. Ignoring test position, Verde found positive list-

strength effects, consistent with the one reported by Bäuml. Critically, however, when 

Verde considered recall of only the first tested item in each category, there was still a 

positive list-strength effect, contradicting Bäuml’s first-half analysis. Verde’s results 

cannot be explained by inhibition, since no overt retrieval took place prior to recall of the 

first item. 

 A final important difference between the list-strength effect and retrieval-induced 

forgetting casts doubt on the viability of the inhibition account. As described above, the 

list-strength effect does not occur in recognition (Ratcliff et al., 1990); however, retrieval-

induced forgetting does (Hicks & Starns, 2004; Rupprecht & Bäuml, 2016). Inhibition 

theorists explain recognition-based retrieval-induced forgetting by appealing to cue 

independence. Recall that inhibition is not limited to the original cue; rather, it decreases 
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the probability of successful retrieval using any possible cue. For example, if subjects 

studied “vegetable”-“asparagus” during the study phase, “vegetable” is the cue and 

“asparagus” is the target. In a recognition test, “asparagus” becomes the cue, with 

subjects asked to make an old/new decision. Crucially, “asparagus” is a different cue 

from “vegetable”—that is, it is an independent cue. If cue independence is responsible for 

retrieval-induced forgetting in recognition, then the same rationale should lead to a list-

strength effect in recognition. Since the list-strength effect is not found in recognition, it 

is difficult to see how inhibition theory can simultaneously account for retrieval-induced 

forgetting in recognition along with a null or negative list-strength effect. 

 Although I am skeptical of the inhibition interpretation of the list-strength effect 

(Anderson, 2003; Bäuml, 1997), I think the data leveraged in support of it make a 

persuasive case for the role of output interference. Output interference is the well-

documented phenomenon wherein performance on a memory test declines as testing 

proceeds (Arbuckle, 1967; Aue, Criss, & Prince, 2015; J. Brown, 1954; Dalezman, 1976; 

Jahnke, 1969; Kang & Oh, 2016; Roediger, 1974; Roediger & Schmidt, 1980; Runquist 

& Horton, 1977; A. D. Smith, 1971, 1973; Smith, D’Agostino, & Reid, 1970; Tulving & 

Arbuckle, 1963, 1966). Particularly in free recall, one might suspect that output 

interference simply stems from subjects exhausting the set of items they successfully 

encoded at study. However, item recognition—in which, importantly, the experimenter 

controls output order rather than the subject—produces output interference, with 

discrimination of targets from distractors decreasing as test position increases (Annis, 

Malmberg, Criss, & Shiffrin, 2013; Criss, Malmberg, & Shiffrin, 2011; Koop, Criss, & 

Malmberg, 2015; Norman & Waugh, 1968; Osth, Jansson, Dennis, & Heathcote, 2018; 
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Peixotto, 1947; Ratcliff & Hockley, 1980; Ratcliff & Murdock, 1976; Schulman, 1974; 

Underwood & Freund, 1970). 

 Why does output interference occur? From an interference perspective, 

successfully retrieving an item increases its association to the retrieval cue. This increase 

in strength exerts interference on other, related items through occlusion. The fact that, on 

mixed-strength lists, strong items are output earlier than weak items (Wike & Wike, 

1970; Wixted et al., 1997), may explain the list-strength effect. On pure lists, all output 

items were necessarily encoded at the same strength, so output interference “washes out”. 

In contrast, on mixed lists, the early recall of mixed-strong items protects them from 

output interference, and the later recall of mixed-weak items subjects them to output 

interference. This is the pattern produced in Bäuml’s (1997) experiment. 

 An important strength of the output-interference account of the list-strength effect 

is its parsimony. Recall that Verde (2009) found positive list-strength effects for both the 

entire test list and for just the first tested item. Although inhibition can explain the former 

finding, it cannot explain the latter. An inhibition account, therefore, would have to 

appeal to different mechanisms for the two list-strength effects. Conversely, interference 

appeals to the same mechanism—occlusion—for both patterns. 

3.3. Summary of the List-Strength Effect 

 None of the accounts reviewed above provide a complete explanation of the list-

strength effect. Hirshman’s (1995) criterion-placement account is consistent with some 

data, but its universality is difficult to assess given that many experiments only analyze 

measures of discrimination, not hit and false-alarm rates. Although BCDMEM (Dennis & 

Humphreys, 2001) and the continuous-memory version of TODAM (Murdock & Kahana, 
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1993a, 1993b) can explain a null list-strength effect in recognition, they cannot explain 

negative list-strength effects (e.g., Ratcliff et al., 1990). Norman’s (1999, 2002) 

insufficient-strengthening account is consistent with results from the strong-interference 

paradigm, but the account cannot explain why much weaker strengthening manipulations 

can produce positive list-strength effects in free recall (e.g., the 2:1 strength ratio used by 

Tulving & Hastie, 1972).
5
 Similarly, although Norman’s (1999, 2002) dual-process 

account is consistent with some empirical findings, it cannot explain why cued recall, 

which should rely on recollection and not familiarity, yields a null list-strength effect 

(Ratcliff et al., 1990; Wilson & Criss, 2017). Output interference and inhibition are 

consistent with Bäuml’s (1997) finding that the list-strength effect is present when test 

position is ignored but absent when controlled, but inconsistent with Verde’s (2009) 

experiments, which, while replicating Bäuml’s full-list analysis, also found positive list-

strength effects with test position controlled. 

 The differentiation account (McClelland & Chappell, 1998; Shiffrin & Steyvers, 

1997; Shiffrin et al., 1990) may provide the most complete explanation of the list-strength 

effect. It is capable of explaining null and negative list-strength effects without appealing 

to criterion placement, and it is able to predict positive list-strength effects when the 

differentiation process is disrupted (Murnane & Shiffrin, 1991b; Sahakyan & Malmberg, 

2018). Yet, one finding it cannot explain is the positive list-strength effect observed in the 

strong-interference paradigm (Diana & Reder, 2005; Norman, 1999, 2002; Norman et al., 

2008). 

                                                 

5. I thank Amy Criss for this idea. 
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 In the following chapter, I present a detailed description and analysis of the 

Retrieving Effectively from Memory model (Shiffrin & Steyvers, 1997). In particular, I 

use version 3 of this model (REM.3) which, to date, has received very little attention in 

the literature.  
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Chapter 4: The Simulation Test of REM.3 

 The discoveries of the mirror effect (Glanzer & Adams, 1985, 1990; Stretch & 

Wixted, 1998) and the null or negative list-strength effect (Ratcliff et al., 1990, 1992, 

1994) led to the abandonment of many first-generation global-matching models (for 

reviews, see Clark & Gronlund, 1996; Shiffrin et al., 1990). One of the earliest second-

generation global-matching models was REM, introduced by Shiffrin and Steyvers 

(1997). Since its inception, REM has successfully accounted for a number of human-

memory phenomena, including the word-frequency effect (Malmberg, Holden, & 

Shiffrin, 2004; Malmberg & Murnane, 2002), the letter-frequency effect (Malmberg, 

Steyvers, Stephens, & Shiffrin, 2002), effects of midazolam on memory (Malmberg et al., 

2004), associative recognition (Criss & Shiffrin, 2005), the list-length effect (Criss & 

Shiffrin, 2004a, 2004b; Lehman & Malmberg, 2013), the strength-based mirror effect 

(Criss, 2006), output interference (Criss et al., 2011), the list-strength effect (Malmberg & 

Shiffrin, 2005; Osth, Fox, et al., 2018), context-dependent memory (Klein et al., 2007), 

retrieval-induced forgetting (Verde, 2013), intentional forgetting (Lehman & Malmberg, 

2011), and some implicit-memory phenomena (Schooler et al., 2001). 

 Shiffrin and Steyvers (1997) presented several versions of REM, but the one most 

often utilized is called REM.1. A hallmark of the REM framework is differentiation: Like 

its SAM predecessor (Shiffrin et al., 1990; see also Raaijmakers & Shiffrin, 1992), item 

strengthening in REM.1 always results in single-image storage. This assumption, 

however, renders REM.1 unable to account for two empirical phenomena: the spacing 

effect (i.e., better memory for spaced repetitions than massed repetitions; see Delaney et 
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al., 2010, for a review) and positive list-strength effects observed with the strong-

interference paradigm (Norman, 1999, 2002). 

 The REM variant Shiffrin and Steyvers (1997) called REM.3 relaxes REM.1’s 

strict differentiation assumption. In REM.3, item repetitions are only stored in the 

originally generated image if subjects recognize that the repeated item was previously 

studied. The purpose of the simulations in the present chapter is to determine whether 

REM.3 is a viable alternative to REM.1. In particular, I assess whether REM.3 can 

account for the spacing effect and results from the strong-interference paradigm. I begin 

with a review of REM’s historical underpinnings, followed by a description of the basic 

model (i.e., REM.1). I then describe REM.3 and how it differs from REM.1. Finally, I test 

REM.3’s viability by simulating phenomena for which REM.1 cannot account. 

4.1. A Brief Review of REM’s Antecedents 

 REM is a direct descendant of the SAM model; in turn, SAM is a descendant of 

the Atkinson-Shiffrin model (Atkinson & Shiffrin, 1968). As such, both SAM and REM 

share characteristics with the Atkinson-Shiffrin model. In particular, both SAM and REM 

divide memory into short- and long-term stores. When an item is studied, it first enters 

the short-term store, where it is rehearsed along with other recently presented items. Once 

the short-term store reaches capacity, a random item is transferred to the long-term store, 

from which it can later be retrieved. Memories in the long-term store are assumed to be 

permanent, with forgetting attributed to interference (e.g., occlusion, cue overload, 

context change, etc.). 

 Raaijmakers and Shiffrin’s (1980, 1981) original instantiation of SAM was only 

applied to free and cued recall; Gillund and Shiffrin (1984) later extended the model to 
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recognition, and Mensink and Raaijmakers (1988, 1989) extended it to a number of 

classic interference phenomena. Gillund and Shiffrin demonstrated that the recognition 

version of SAM could account for a number of benchmark phenomena, including the list-

length effect (Strong, 1912), the word-frequency effect (Gorman, 1961), and higher 

recognition performance observed with increased study time (Ratcliff & Murdock, 1976). 

However, SAM was unable to simultaneously account for the mirror effect (Glanzer & 

Adams, 1985, 1990; Stretch & Wixted, 1998) and a null or negative list-strength effect 

(Ratcliff et al., 1990, 1992, 1994). It is worth noting, however, that, although the 

recognition version of SAM has been abandoned, its free- and cued-recall versions still 

enjoy considerable success (Huber et al., 2015; Kahana, 1996; Karlsen & Snodgrass, 

2004; Kimball, Smith, & Kahana, 2007; Raaijmakers & Phaf, 1999; Sirotin, Kimball, & 

Kahana, 2005; Tomlinson et al., 2009). 

4.2. Description of REM 

4.2.1. The geometric distribution 

REM relies heavily on the geometric distribution; therefore, it is prudent to review 

some of its properties first. The geometric distribution is the probability distribution of the 

number of Bernoulli trials required for a single, specific event to occur. A Bernoulli trial 

is a trial for which two mutually exclusive outcomes are possible. By convention, the 

terms “success” and “failure” are used to denote the outcome for which the probability is 

being computed and the other outcome, respectively. For example, if one is interested in 

the number of coin flips required to land on heads, heads is referred to as a success and 

tails is referred to as a failure. Provided the probability of flipping heads on any given 

trial can be determined, then the geometric distribution reflects the probability 
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distribution of the number of trials to reach one success. As another example, if one is 

interested in the number of rolls of a six-sided die that are needed before a four is rolled, 

then a roll of four is referred to as a success and rolls of one, two, three, five, and six are 

referred to as failures. Note that, although rolling a six-sided die has six possible 

outcomes, a die roll is still a Bernoulli trial if we are only interested in two possible 

outcomes, and if these outcomes, combined, exhaust all possible outcomes (e.g., six vs. 

anything else, four or five vs. anything else, etc.). In other words, Bernoulli trials are true 

dichotomies. 

 Let p denote the probability of a success and t denote the number of trials. 

Because there are only two outcomes, the probability of a failure is 1−p. The probability 

mass function can then be written as: 

f(t) = (1−p)
(t−1)

p 

where t is a positive integer and 0 < p < 1. 

 For the purposes of REM, the most important feature of the geometric distribution 

is that varying the p parameter changes the sampling distribution. If a success is a 

common occurrence, then randomly sampling from the geometric distribution will 

produce a lot of low numbers. Consider, for example, an event that has a 90% chance of 

occurring on any given trial. Then, the probability of a success on the first trial is .9, the 

probability of a success on the second trial is .09, the probability of success on the third 

trial is .009, and so on. These probabilities are additive, such that the probability of 

success on any of the first three trials is .999. A property of the geometric distribution is 

that p approaches 0 as t increases; however, the speed at which this occurs goes up as the 

probability of a success on any given trial increases. In the present case, then, randomly 
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sampling from the geometric distribution will usually produce mostly 1s with some 2s. 

Sampling a 3 will be rare, and sampling very large numbers will be extraordinarily 

unlikely. 

 What about the distribution when p is set to a small probability? Consider the 

situation in which the probability of success on a given trial is .1. Here, the probability of 

success on the first trial is .1, the probability of success on the second trial is .09, the 

probability of success on the third trial is .081, and so on. In this case, although the 

probability still approaches 0 as t increases, it does so at a much slower rate than when the 

probability of success was higher. Randomly sampling from the geometric distribution 

when p = .1, then, will produce a more variable result than when p = .9. 

4.2.2. Stimuli in REM 

In REM, stimuli are represented as vectors of lexical and semantic features. For 

simplicity, all stimulus vectors are equal in length—w is the parameter that denotes the 

number of features per stimulus. Each stimulus feature is a positive integer drawn from 

the geometric distribution with parameter g. In Bernoulli trial terms, g represents the 

probability of success on any given trial, so higher values of g result, on average, in 

smaller feature values. Although Shiffrin and Steyvers (1997) left the notion of features 

relatively vague, features can be thought of as representing the individual components of 

the studied stimuli that subjects could potentially notice. So, some features represent 

orthographic features, some represent contextual features, some represent semantic 

features, and so on. The distinctiveness of a given feature is indexed by its value, with 

larger feature values denoting more distinctive features. This is due to the fact that, when 
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sampling from the geometric distribution, lower values are more common than higher 

values. 

 In most REM simulations, w is set to 20. The value of g is chosen according to the 

normative frequency of the word stimuli being simulated—that is, gl < gh, where gl is the 

value of g used for low-frequency words and gh is the value of g used for high-frequency 

words. In Shiffrin and Steyvers’ (1997) original simulations, gl was set to .325 and gh was 

set to .45. As shown in the previous section, sampling from the geometric distribution 

with a lower probability event produces more variable results—as such, vectors for low-

frequency words will, on average, have more unique integers and more large integers 

when compared to vectors for high-frequency words. The idea underpinning this 

assumption is that low-frequency words are composed of more distinctive features than 

high-frequency words. 

 Prima facie, making gl < gh as an a priori assumption may appear arbitrary. 

Indeed, without this assumption, REM cannot predict the word-frequency mirror effect. 

Yet, there is empirical support for the assumption. Zechmeister (1969) asked subjects to 

rate the orthographic and graphemic distinctiveness of low- and high-frequency words, 

and found that low-frequency words were rated as more distinctive than high-frequency 

words. Landauer and Streeter (1973) supplemented these subjective ratings with an 

objective analysis of low- and high-frequency words. They found that high-frequency 

words have more orthographic neighbours than low-frequency words (an orthographic 

neighbour is defined as the words that a given word can become by changing a single 

letter; e.g., orthographic neighbours of “cat” include “eat”, “cut”, and “car”). 

Additionally, the neighbours of high-frequency words had higher normative frequencies 
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than the neighbours of low-frequency words. Landauer and Streeter also showed that the 

phonemes and graphemes of low-frequency words are less common than those found in 

high-frequency words. Given these findings, there is empirical justification for REM’s 

assumption that gl < gh. 

4.2.3. Mnemonic traces in REM 

Mnemonic traces in REM are called images. When an item is studied, an image 

corresponding to the studied item is generated. Images are rarely exact copies of studied 

stimuli; rather, images usually contain a combination of correctly copied features, 

incorrectly copied features, and missing features. Like stimuli, images are vectors of 

length w. Positions for which features were copied (correctly or incorrectly) contain 

positive integers; positions with missing information (i.e., positions for which no 

information was copied) are set to 0. 

 Shiffrin and Steyvers (1997) presented three encoding parameters: t, u, and c. The 

t parameter represents the number of time units for which each stimulus is studied. The u 

parameter represents the probability of copying a feature on any given unit of study time. 

Finally, the c parameter represents the probability that a feature, if copied to the image, 

will be copied correctly. In Shiffrin and Steyvers’ simulations, u was set to .04, c was set 

to .7, and t varied according to the paradigm being simulated. For example, in simulating 

the mixed-pure paradigm, they set t1 to 7 and t2 to 10, with t1 representing the number of 

time units for which weak items were studied and t2 representing the number of time units 

for which strong items were studied. 

 Although Shiffrin and Steyvers (1997) treated t and u as separate parameters, 

subsequent papers noted that they are actually a single parameter, representing the 
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probability of storing a value for a given feature when an item is studied. Notice that the 

probability of storing information for a feature across the entire study trial is tu. For a 

more concrete example, Shiffrin and Steyvers’ values of 7, 10, and .04 for t1, t2, and u, 

respectively, can be condensed into uweak and ustrong: uweak = t1 × u = .28 and ustrong = t2 × u 

= .4. Therefore, for the remainder of the present paper, I will use u to refer to tu from 

Shiffrin and Steyvers’ original presentation. 

 When a feature from a studied stimulus is copied to its corresponding image, it is 

copied correctly with probability c and incorrectly with probability 1−c. When copied 

incorrectly, a new value is drawn from the geometric distribution. However, REM 

assumes that subjects are unaware of experimental manipulations like word frequency. 

Therefore, incorrect feature values are drawn with the value of g assumed to reflect 

subjects’ beliefs about environmental base rates of features. Shiffrin and Steyvers set this 

to .4.
6
 For ease of exposition, I differentiate between two g parameters: gdraw, which refers 

to the value of g used in filling stimulus vectors, and gbase, which refers to the value of g 

used when incorrectly copying a feature.
7
 

                                                 

6. It is not entirely clear why Shiffrin and Steyvers (1997) chose .4 as the value of g 

known to subjects. However, recognition discrimination increases as g decreases, so .4 

was likely chosen because it produced reasonable performance levels. 

7. My division of g into gdraw and gbase should not be interpreted to mean that these are 

two independent, free parameters. Values of gdraw—inasmuch as they are taken to be 

indices of normative feature frequency—necessarily depend on the value of gbase. Most 

REM implementations set gbase to .4, and gl and gh to values such as .325 and .45, 
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 To summarize, images in REM are vectors of length w. Values in the image are 0s 

or positive integers. On average, wu of the image values will be positive integers and 

w(1−u) of the image values will be 0s. Of the non-zero values in the image, 100c% of 

them will be the values contained in the studied stimulus, and 100(1−c)% of them will be 

values drawn from the geometric distribution with gbase. Notice that this means that, by 

coincidence, some of the incorrectly stored values will be identical to the feature from the 

studied stimulus, and the probability of this increases as gdraw increases (i.e., as word 

frequency increases) and as the specific feature value decreases (e.g., if a feature value of 

1 is incorrectly copied, the probability of the correct value being stored by sampling from 

the geometric distribution is equal to gbase). 

4.2.4. Evaluating recognition probes 

REM is a global-matching model, so recognition decisions are made by matching 

probes to all of the images in memory. The purpose of the matching process is to 

determine whether or not an image in memory was generated by studying the probe. This 

matching process involves comparing each feature in the probe to the corresponding 

feature in each image, skipping positions for which the image contains no information 

(i.e., positions for which the image vector is 0). The matching process takes feature 

diagnosticity into account. Recall that, regardless of the value of gbase, lower values are 

                                                                                                                                                  

respectively. If gbase were changed, for example, to .6, gl and gh would likewise need to 

increase; otherwise, it would be incoherent to argue that gl reflects words composed of 

environmentally uncommon features and that gh reflects words composed of 

environmentally common features. 
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more commonly sampled from the geometric distribution than higher values—that is, 1 is 

always more common than 2, which is always more common than 3, and so on. 

Consequently, the probability of a probe and an image sharing a feature by chance 

decreases as the stored feature value increases. 

 In REM, recognition decisions are made according to the ratio between the 

probability that an image in memory was generated by the probe and the probability that 

an image in memory was generated by a different stimulus (denoted φ). As mentioned 

above, this process takes environmental base rates into account, such that rarer feature 

matches increase the probability to a greater extent than do common feature matches. φ is 

computed according to the following equation 

𝜙 =
1

𝑛
∑
𝑗=1

∞

𝜆𝑗 

where n is the number of images in memory. λ can be computed as follows 

𝜆𝑗 = (1− 𝑐)𝑛𝑗𝑞∏
1

∞

[
𝑐 + (1 − 𝑐)𝑔

𝑏𝑎𝑠𝑒
(1 − 𝑔

𝑏𝑎𝑠𝑒
)𝑖−1

𝑔𝑏𝑎𝑠𝑒(1 − 𝑔𝑏𝑎𝑠𝑒)
𝑖−1

]𝑛𝑖𝑗𝑚 

where njq denotes the number of nonzero values in the jth image nijm denotes the 

number of nonzero values in the jth image that match the probe and have value i. 

 Recognition tests introduce a final REM parameter: criterion. The criterion 

parameter represents the odds ratio required for a probe to be called “old” (i.e., an “old” 

response is made if φ > criterion, and a “new” response is made if φ ≤ criterion). Shiffrin 

and Steyvers (1997) set criterion to 1, which results in a probe being called “old” if the 

probability that the probe generated an image in memory exceeds the probability that the 

probe did not generate an image in memory. Note that an odds ratio of 1 reflects 
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equivalent evidence that the probe is a target and that the probe is a distractor. Shiffrin 

and Steyvers argued that, in the absence of experimental pressure to use a more liberal or 

conservative criterion, a value of 1 for the criterion parameter is the most reasonable. 

4.2.5. Basic simulations 

Shiffrin and Steyvers (1997) showed that REM.1—that is, the version of REM 

described above—is capable of predicting a number of benchmark recognition findings. 

In the following four subsections, I replicate REM simulations of the word-frequency 

mirror effect, the strength-based mirror effect, the negative list-strength effect, and the 

list-length effect. Combined, these simulations illustrate three properties of the REM 

framework: feature diagnosticity, differentiation, and interitem interference. Later in the 

paper, I run simulations using REM.3 instead of REM.1. However, my purpose in the 

present section is twofold: (1) to replicate simulation results from the literature, thereby 

establishing that I have correctly implemented the REM framework, and (2) to 

demonstrate the utility of the simplest version of REM. 

 Before proceeding to the simulations, a note on the analysis of simulated data is 

warranted. Historically, researchers have not performed inferential statistical tests on 

simulated data. Although I know of no study where the rationale for this is explicitly 

articulated, this is likely because, owing to the large number of simulated subjects, any 

observed difference is bound to be statistically significant. If it is not, a researcher could 

simply increase the number of simulations until the desired p value is achieved. I believe 

this reasoning is sound and, therefore, remain consistent with previous studies: Although I 

present descriptive statistics in figures and give a verbal description of the findings, I do 

not perform inferential tests. 
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 4.2.5.1. The word-frequency mirror effect. As briefly described in the previous 

chapter, the word-frequency mirror effect occurs when low- and high-frequency words 

are included on a recognition test. The standard finding is that the hit rate is higher and 

the false-alarm rate is lower for low-frequency words compared to high-frequency words 

(Glanzer & Adams, 1985, 1990). 

 Ten thousand simulated subjects completed a recognition test consisting of 16 

targets and 16 distractors, evenly divided between low- and high-frequency words. 

Consistent with Shiffrin and Steyvers (1997), I set gl to .325 and gh to .45. The remaining 

parameters were set using values common in the REM literature: w = 20, u = .28, c = .7, 

gbase = .4, and criterion = 1. 

 The simulation results are shown in Figure 4.1. There was a word-frequency 

mirror effect: The hit rate was higher for low-frequency words (M = .872, SE = .001) than 

high-frequency words (M = .863, SE = .001), but the false-alarm rate was higher for high-

frequency words (M = .352, SE = .002) than low-frequency words (M = .259, SE = .002). 

Naturally, this resulted in a discrimination advantage—as indexed by d′—for low-

frequency words (M = 2.253, SE = 0.011) over high-frequency words (M = 1.869, SE = 

0.010).
8
 Note that, although the hit-rate portion of the mirror effect is quite small, it is 

consistent across simulation runs. 

 REM explains the word-frequency mirror effect in terms of feature diagnosticity 

or feature distinctiveness. As described above, there is empirical support for the claim 

                                                 

8. In the present paper, d′ was computed by changing hit and false-alarm rates of 1 and 0 

to .995 and .005, respectively. 
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that low-frequency words are composed of more distinctive features than high-frequency 

words (Landauer & Streeter, 1973) and that this difference is noticeable to subjects 

(Zechmeister, 1969). REM simulates this feature difference by using less common 

features for low-frequency words than high-frequency words. 

 In the present simulations, the encoding parameters—u and c—were equivalent 

for low- and high-frequency words. Consequently, images from low- and high-frequency 

words, on average, consisted of the same number of copied features. Indeed, because of 

the more common features contained in the high-frequency vectors, images are more 

likely to have correct feature values for high- than low-frequency words. This is because, 

when correct copying fails, which occurs with probability 1−c, features from high-

frequency words are more likely to be sampled from the geometric distribution with 

parameter gbase than features from low-frequency words. However, because features from 

low-frequency words are more unique, a match between a probe and an image from a 

low-frequency word provides more evidence for an “old” response than a match between 

a probe and an image from a high-frequency word. In effect, fewer feature matches 

between a probe and image were required for the odds ratio to exceed criterion for a low-

frequency word than a high-frequency word—put another way, a low-frequency word 

could be recognized with fewer features encoded compared to a high-frequency word. 

Therefore, feature diagnosticity explains the hit-rate portion of the word-frequency mirror 

effect. 

 The false-alarm portion of the mirror effect is also due to feature diagnosticity. On 

average, high-frequency distractors will have more features in common with high-

frequency targets when compared to features shared between low-frequency distractors 
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and targets. Therefore, erroneous matches between high-frequency distractors and an 

image are more common than erroneous matches between low-frequency distractors and 

an image in memory, thereby producing a higher false-alarm rate. 

 4.2.5.2. The strength-based mirror effect. The strength-based mirror effect is the 

finding that the hit rate is higher and the false-alarm rate is lower following study of a 

strong list than study of a weak list (Stretch & Wixted, 1998). Ten thousand simulated 

subjects completed two study-test cycles, with stimuli presented for a longer study 

duration in one list than the other. Each recognition test had 25 targets and 25 distractors. 

I set uweak to .28 and ustrong to .4, consistent with the values used by Shiffrin and Steyvers 

(1997). The remaining parameters were set to values common in the REM literature: w = 

20, c = .7, gbase = .4, gdraw = .35, and criterion = 1. 

 Simulation results are shown in Figure 4.2. The results produced a strength-based 

mirror effect: The hit rate was higher following study of the strong list (M = .899, SE = 

.001) than following study of the weak list (M = .852, SE = .001), but the false-alarm rate 

was higher following study of the weak list (M = .300, SE = .001) than following study of 

the strong list (M = .175, SE = .001). As one would expect, d′ was higher for the strong 

list (M = 2.366, SE = 0.006) than the weak list (M = 1.654, SE = 0.005). 

 Recall that the strength-based mirror effect has been attributed to differentiation 

(Criss, 2006) or to between-list criterion shifts (Stretch & Wixted, 1998). Critically, REM 

provides an account of the strength-based mirror effect that does not require a criterion 

shift. The criterion parameter was equal between list conditions; yet, despite the 

distractors being equivalent between lists, the false-alarm rate was higher on the weak list 

than the strong list. REM explains this pattern by appealing to differentiation: With 
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additional study time, more features are encoded for strong items than weak items, thus 

increasing their dissimilarity to other images. Obviously, the greater encoding of strong 

items compared to weak items explains the hit-rate portion of the strength-based mirror 

effect. Importantly, better encoding also reduces the similarity of the resulting images to 

distractors. The false-alarm portion of the mirror effect, then, stems from fewer erroneous 

matches between distractor features and features encoded for strong items. 

 4.2.5.3. The list-strength effect. Ratcliff et al. (1990) showed that the list-strength 

effect is slightly negative in recognition. I simulated the mixed-pure paradigm using 

10000 simulated subjects. This represented a 2 (strength: weak vs. strong) × 2 (list type: 

pure vs. mixed) repeated-measures design. On the pure lists, 24 targets were encoded at 

the same rate; on the mixed list, half of the items were strengthened. Consistent with 

Shiffrin and Steyvers (1997), I set uweak to .28 and ustrong to .4. The remaining parameters 

were set to values common in the REM literature: w = 20, gdraw = .35, c = .7, gbase = .4, 

and criterion = 1. 

 As expected, the simulations yielded a negative list-strength effect (see Figure 

4.3): Pure-strong items (M = 2.407, SE = 0.006) were slightly better recognized than 

mixed-strong items (M = 2.405, SE = 0.008), but mixed-weak items (M = 1.868, SE = 

0.007) were better recognized than pure-weak items (M = 1.665, SE = 0.005). The strong-

to-weak ratios in the mixed and pure lists were 1.288 and 1.445, respectively, yielding a 

negative list-strength effect (Rr = 0.891). 

 Like the differentiation version of SAM (Shiffrin et al., 1990), strengthened items 

in REM are always accumulated in a single image. As an item becomes better learned 

(i.e., as the number of features correctly copied to the corresponding image increases), it 
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is less likely to erroneously match a distractor. This differentiation is responsible for 

REM’s prediction of a negative list-strength effect in recognition. 

 Somewhat counterintuitively, stronger images exert less interitem interference 

than weaker images. Therefore, overall interference is highest for the pure-weak list, 

lowest for the pure-strong list, and intermediate for the mixed list. This leads to the 

negative list-strength effect. Discrimination is better for mixed-weak items than pure-

weak items because half of the competitors on the mixed list are strong, and therefore 

produce less interference than the competitors on the pure-weak list. In contrast, 

discrimination is better for pure-strong items than mixed-strong items because the mixed-

weak competitors produce more interference than the competitors on the pure-strong list. 

Notably, the effect is much smaller for strong items since, due to differentiation, strong 

images are less susceptible to interference, even from weak images. 

 4.2.5.4. The list-length effect. Despite recent controversy (Annis et al., 2015; 

Criss & Shiffrin, 2004a; Dennis & Humphreys, 2001; Dennis et al., 2008), the list-length 

effect was considered a well-established phenomenon when Shiffrin and Steyvers (1997) 

first presented REM (e.g., Strong, 1912). Moreover, the reason that REM predicts a list-

length effect is informative. I therefore performed a simulation of the list-length effect. 

Forty thousand simulated subjects completed a single study-test cycle consisting of 10, 

20, 30, or 40 targets and distractors. Because the manipulation was run between simulated 

subjects, there were 10000 simulated subjects per cell, rather than 10000 total simulated 

subjects. Because memory is cleared between study-test cycles in REM.1, the results 

would have been the same with a within-subjects manipulation of list length. Parameters 
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were set to values common in the REM literature: w = 20, gdraw = .35, u = .28, c = .7, gbase 

= .4, and criterion = 1. 

 Simulation results are shown in Figure 4.4. Inspection of the graph shows that d′ 

decreased as list length increased, confirming that REM predicts a list-length effect in 

recognition. 

 The reason REM predicts a list-length effect lies in how the odds ratio is 

calculated. The probe is matched sequentially to each image in memory, and subjects’ 

old/new decision reflects this. If there is only a single image in memory, then a match of a 

common feature value (e.g., 1) between the probe and image is fairly diagnostic. 

However, if the probe is matched to 40 separate images, then one would expect some 

erroneous feature matches, particularly for common feature values. The amount of 

evidence required for an “old” response therefore increases as list length increases, 

reducing the hit rate. At the same time, the possibility of an erroneous match between a 

distractor and image increases as list length increases, resulting in a higher false-alarm 

rate for long lists than short lists. 

4.3. REM.3 

 Almost all implementations of REM make an important, simplifying assumption: 

namely, that strengthened items are always stored in a single image. The alternative 

approach, wherein strengthened items are stored in multiple images, renders list-strength 

manipulations de facto list-length manipulations, as in early instantiations of first-

generation global-matching models (Gillund & Shiffrin, 1984; Shiffrin et al., 1990), and 

thus causes the model to predict a list-strength effect in recognition. However, it would be 

circular to assume that item strengthening accumulates in a single image simply because 
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this allows the model to fit experimental data. Instead, it is critical to consider the 

strengthening techniques experimenters have used, and determine whether single-image 

storage is supported for these techniques. 

 Experimenters have used a variety of strengthening techniques, including 

increased study time, massed repetitions (i.e., repeating strengthened items without any 

intervening items), spaced strengthening (i.e., only repeating strong items following one 

or more intervening items), and levels-of-processing manipulations (for a comparison in 

free recall, see Malmberg & Shiffrin, 2005). Increasing study time or inducing elaborative 

processing of strengthened items constrains each strong item to a separate episode, and 

thus single-image storage is reasonable. Otherwise, one would have to assume that the 

weak items in these experiments could also be stored in separate images. For example, 

consider two list-strength experiments, one of which presents weak and strong items for 1 

and 2 s, respectively, and one of which presents weak and strong items for 2 and 4 s, 

respectively. To argue that the strong items in the first experiment are stored in separate 

images, one would also have to argue that the weak items in the second experiment are 

stored in separate images. 

 What about strengthening via item repetitions? In the case of massed 

strengthening, single-image storage seems reasonable. Massed repetitions are very similar 

to increased study time, save that an interstimulus interval is interpolated during item 

presentation. In REM, items are rehearsed in the short-term store before being transferred 

to the long-term store. As such, the immediate re-presentation of a strong item should 

occur while the image is still in the short-term store, therefore resulting in a single study 

episode. 
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 Spaced-strengthening techniques present a challenge to the assumption of single-

image storage. When items are strengthened through spaced repetitions, at least one other 

item intervenes between presentations. For example, Malmberg and Shiffrin (2005, 

Experiment 2) used nine-item lags in their list-strength experiments, such that nine items 

were interpolated between the first and second presentations of a strong item. Here, an 

assumption of automatic, single-image storage seems misplaced. Imagine, for example, 

that the first presentation of the strengthened item was poorly encoded, or that a large 

number of items appeared between presentations. In these cases, it is possible that the re-

presentation of the strengthened item will not be recognized by subjects as previously 

studied and a second image could plausibly be created. Of course, if the original 

presentation was well-encoded, subjects would recognize the re-presentation as 

previously studied, and thus update the original image. 

 Shiffrin and Steyvers (1997) recognized the potential problems that arise for 

single-image storage with spaced repetitions. They therefore described a version of 

REM—REM.3—that took spaced repetitions into account. REM.3 incorporates a 

mechanism by which spaced repetitions can be encoded in the originally generated 

image—what Shiffrin and Steyvers termed superimposition of similar images. Crucially, 

in REM.3, a repetition must be recognized as previously studied for it to be superimposed 

on the original image. In REM.3, each target during the study phase is treated like a test 

probe. The simulated subject matches the target to all images in memory and, if the odds 

that the target was previously studied exceeds a given criterion, the most-similar image to 

the target is updated. If the criterion is not exceeded, a new image is generated. REM.3 

thus has two criteria parameters, which I will term criterionstudy and criteriontest. The 
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former represents the odds required to identify a study item as previously studied; the 

latter represents the threshold required to call a test probe “old”. 

 Shiffrin and Steyvers (1997) noted that a number of complexities arise with 

REM.3, not least of which is that the time needed to run the simulations increases 

considerably. Given that the qualitative predictions of REM.1 and REM.3 were the 

same—at least for the phenomena Shiffrin and Steyvers examined—they did not pursue 

REM.3 further. To the best of my knowledge, no subsequent REM papers have 

implemented REM.3. 

 We know that at least one phenomenon, the spacing effect, cannot be 

accommodated by REM.1. The spacing effect refers to the finding that spaced repetitions 

have a mnemonic advantage over massed repetitions (for reviews, see Cepeda, Pashler, 

Vul, Wixted, & Rohrer, 2006; Delaney et al., 2010; Dempster, 1988; Dempster & Farris, 

1990; Donovan & Radosevich, 1999; Janiszewski, Noel, & Sawyer, 2003; Noel & Vallen, 

2009; Ruch, 1928; Son & Simon, 2012). The spacing effect is ubiquitous in the memory 

literature, occurring in free recall (Delaney & Knowles, 2005; Delaney, Spirgel, & 

Toppino, 2012; Delaney & Verkoeijen, 2009; Foos & Smith, 1974; Glanzer, 1969; 

Glenberg, 1977; Kahana & Howard, 2005; Madigan, 1969; Melton, 1967, 1970; 

Shaughnessy, Zimmerman, & Underwood, 1972; Siegel & Kahana, 2014; Underwood, 

1969, 1970; Zimmerman, 1975), cued recall (Challis, 1993; D’Agostino & DeRemer, 

1972; Delaney, Godbole, Holden, & Chang, 2018; Morehead, Dunlosky, Rawson, 

Bishop, & Pyc, 2018), recognition (Allen & Garton, 1970; Braun & Rubin, 1998; Kahana 

& Greene, 1993; Maddox, Pyc, Kauffman, Gatewood, & Schonhoff, 2018; Ross & 

Landauer, 1978; Russo, Parkin, Taylor, & Wilks, 1998; Strong, 1916; Xue et al., 2011), 
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frequency judgments (Greene & Stillwell, 1995; Hintzman, 1969; Hintzman & Rogers, 

1973; Hintzman, Summers, Eki, & Moore, 1975; Rose & Rowe, 1976), implicit-memory 

tasks (Greene, 1990), second-language retention (Bahrick, Bahrick, Bahrick, & Bahrick, 

1993; Bercovitz, Bell, Simone, & Wiseheart, 2017), and workplace training (Kim, Wong-

Kee-You, Wiseheart, & Rosenbaum, 2019). Indeed, the spacing effect has even been 

documented in nonhuman populations, including mice (Aziz et al., 2014), chicks (C. P. 

Brown, 1976), honeybees (Menzel, Manz, Menzel, & Greggers, 2001), and sea slugs 

(Carew, Pinsker, & Kandel, 1972). Critically, if REM treats massed and spaced 

repetitions identically, then they will necessarily be recognized at the same rate, and 

therefore the model cannot account for the spacing effect. 

 In Chapter 3, I described Norman’s (1999, 2002) results from the strong-

interference paradigm. Unlike the mixed-pure paradigm, the strong-interference paradigm 

produces a positive list-strength effect in recognition. According to the insufficient-

strengthening account, this is because, unlike the mixed-pure paradigm, the strong-

interference paradigm strengthens strong items to ceiling. From a REM perspective, 

because this represents significant strong-item differentiation, performance should be 

better on the strong-interference list than the weak-interference list, contrary to empirical 

results (Diana & Reder, 2005; Norman, 1999, 2002; Norman et al., 2008; Osth et al., 

2014). Interestingly, all published experiments using the strong-interference paradigm 

have strengthened strong items through widely spaced repetitions. It is conceivable, 

therefore, that the predictions derived from REM.1 may not extend to REM.3. 

4.4. REM.3 Simulations 
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 The purpose of the simulations that follow was to determine whether REM.3 is a 

viable alternative to REM.1. REM.1 cannot explain the spacing effect or the results from 

the strong-interference paradigm. Here, I assess whether REM.3 can predict these 

phenomena. 

4.4.1. Simulation 1: Setting criterionstudy 

REM assumes that, when making old/new decisions on a recognition test, subjects 

optimize performance by making an “old” decision whenever the probability that the 

probe is a target exceeds the probability that the probe is a distractor. In REM.3, each 

item on the study list is subjected to the same evaluative process. However, is a criterion 

of 1 still reasonable in this case? Two factors suggest that it may not be. 

 First, on a recognition test, subjects are asked to make a binary decision: Did this 

item appear on the study list? Here, even a small amount of evidence one way or the other 

is sufficient to tip the proverbial scales. During a study list, in contrast, subjects are not 

overtly assessing whether each item was previously studied. Instead, motivated subjects 

are actively trying to commit each item to memory and, presumably, recognizing that an 

item was studied earlier only occurs when the corresponding image is particularly strong. 

In REM.3, then, if the first presentation of an item was poorly encoded, it does not make 

sense for the study item to be superimposed on the original image. 

 There is a second reason that a stricter value for criterionstudy is desirable. In 

REM.3, when a study item is identified as previously studied, it is superimposed on the 

most similar image. Superimposition can go wrong in two ways: First, the study item may 

not have actually appeared on the study list. This is akin to a false alarm on a recognition 

test. In this case, the image on which the study item is superimposed was generated by a 
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different item. This results in an image formed from two (or more) targets. Second, even 

if the item was previously studied, it may, by chance, match a different image to a greater 

extent than the image from the item that was actually studied earlier. In both cases, the 

item is superimposed on the wrong image, leading to images containing features from 

multiple items. 

 To test the degree to which superimposition is a problem in REM.3, I simulated 

study phases on which no items were repeated. The dependent variable was the 

proportion of targets that were superimposed on other images. Because no targets were 

repeated, all instances of superimposition were errors. 

 As reviewed earlier, in REM, the false-alarm rate increases as gdraw increases. A 

reasonable prediction for REM.3, then, is that the proportion of superimposition errors 

will increase as gdraw increases. I therefore varied gdraw in the present simulation. 

 4.4.1.1. Method. I varied three parameters: gdraw (.3, .35, .4, .45, .5), list length (2, 

4, 8, 16, 32, 64, 128, 256), and criterionstudy (1, 2, 3). I ran 1000 simulations for each 

combination of these parameters, resulting in 120,000 simulated subjects. 

 Parameters not central to the present simulation were set to values common in the 

REM literature: gbase = .4, w = 20, and c = .7. In REM.3, two separate u parameters are 

required, which I will call u1 and u2. u1 denotes the probability of storing features from a 

study item when a new image is generated (i.e., when superimposition does not occur). u2 

denotes the probability of storing features for a study item when it is superimposed on a 

previously generated image. Note that, during superimposition, only item features in 

positions where the image contains no information (i.e., 0s) can be encoded. In REM.3, it 

is standard for u2 to be less than u1, in the same way that ustrong is generally less than 2 × 
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uweak. This is because subjects are assumed to devote fewer resources to information that 

has already been well learned. In the present simulations, I set u1 to .28 and u2 to .12. This 

matches Shiffrin and Steyvers’ (1997) values of .28 and .4 for uweak and ustrong, 

respectively. This means that, when a study item is identified as previously studied, item 

features from vector positions for which the image has a value of 0 are copied with 

probability .12. 

 Two algorithmic decisions bear mentioning. First, when an item was identified as 

previously studied, it was superimposed on the most similar image in memory. If a tie 

occurred between two or more images, the item was superimposed on the more recently 

generated image. Second, none of our simulated study lists contained any repeated items, 

even by chance. As each study item was generated, it was checked against the current list 

of study items and, if it matched a previously generated item, it was replaced. These 

algorithmic precautions were used in this and all subsequent simulations. 

 4.4.1.2. Results and discussion. The simulation results are presented in Figure 4.5. 

As is clear in the figure, the probability of superimposition errors increased as word 

frequency (i.e., gdraw) increased. This is consistent with the higher false-alarm rate 

observed for high-frequency words than low-frequency words (Glanzer & Adams, 1985, 

1990). It is also clear that the probability of superimposition errors increases with list 

length. This is intuitively reasonable: As the number of images in memory increases, the 

probability of a study item mistakenly matching a previously studied item increases. This 

is akin to the higher false-alarm rates observed following study of a long list compared to 

a short list (e.g., Gillund & Shiffrin, 1984). Of greatest importance for present purposes is 
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that, for all gdraw values and list lengths, the probability of superimposition errors 

decreases as criterionstudy increases. 

 None of the results from Simulation 1 are particularly surprising; indeed, they are 

necessary outcomes of the math underlying the model. However, what they demonstrate 

is that a value of 1 for criterionstudy is far too error-prone to be useful. For example, 

collapsing across gdraw, the probability of superimposition errors with criterionstudy = 1 

was .138 for 32-item lists and .164 for 64-item lists. By increasing criterionstudy to 2, 

mean error rates decrease to .064 and .070, respectively, and by increasing criterionstudy to 

3, mean error rates decrease to .039 and .041, respectively. These error rates seem more 

reasonable, given that subjects are usually not asked to make old/new decisions during the 

study phase. 

 It is not possible to collect behavioural data on the probability of superimposition 

errors during a study phase. Asking subjects to report whether each item on a study list 

was studied earlier renders the study phase a de facto continuous-recognition test; 

subjects in such an experiment would presumably use the criterion they would use during 

an old/new recognition test. Therefore, Simulation 1 is necessarily speculative with 

regard to subjects’ actual criterion placement at study. However, I find it difficult to 

believe that subjects are incorrectly identifying 10%-20% of novel study items as 

previously studied, and thus I believe that a higher value for criterionstudy is more realistic. 

 Interestingly, it may be possible to test subjects’ criterion placement using 

neuroscientific methods. Recognition that the re-presentation of an item was previously 

studied—or incorrectly believing an item was previously studied—would presumably be 

accompanied by a feeling of knowing. Feelings of knowing produce distinct brain activity 
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measurable with electroencephalography (Paynter, Reder, & Kieffaber, 2009) and 

functional magnetic resonance imaging (Chua, Schacter, & Sperling, 2009). Physiological 

measures are also possible, as feelings of knowing are accompanied by heart-rate 

increases (Fiacconi, Kouptsova, & Köhler, 2017) and shorter viewing time as measured 

by eye tracking (Chua & Solinger, 2015). Therefore, neuroscientific and/or physiological 

tests of study-phase criterion placement may be a fruitful avenue for research. 

 In the remainder of my REM.3 simulations, I systematically varied criterionstudy. 

By and large, changes in criterionstudy rarely affect the qualitative pattern of the results. 

However, in the situations in which differences in predictions across values of 

criterionstudy are observed, higher values of criterionstudy are more in line with empirical 

data than lower values. 

4.4.2. Simulation 2: The spacing effect 

In REM.1, the simplifying assumption that spaced repetitions are always 

accumulated in a single image renders it unable to predict the spacing effect. Given the 

robustness of the spacing effect (Delaney et al., 2010), REM.3 must be able to predict an 

advantage for spaced over massed repetitions to remain viable. The purpose of Simulation 

2 was to assess whether REM.3 results in better memory for spaced (i.e., probabilistically 

superimposed) or massed (i.e., automatically superimposed) images. 

 4.4.2.1. Method. I simulated a 2 (strengthening method: massed vs. spaced) × 3 

(list length: 16, 32, 64) design. Each study list consisted of an equal number of massed 

and spaced stimuli, all of which were presented twice. 

 I used the following fixed parameters: gdraw = .35, gbase = .4, w = 20, c = .7, u1 = 

.28, u2 = .12, and criteriontest = 1. I varied criterionstudy as in Simulation 1 (1, 2, 3). 
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 Massed repetitions were always stored in a single image, with the assumption that 

the immediate re-presentation of an item would be obvious to subjects. Features from 

massed items were thus copied with probability u1+u2. This is identical to how strong 

items are treated in REM.1. When subjects recognized the spaced repetition as previously 

studied, it was superimposed on the most similar image in memory, with features copied 

with probability u2. When a spaced repetition was not recognized as previously studied, 

its features were copied to a new image with probability u1. Notice that superimposed 

spaced items were functionally identical to massed items, with features from both copied 

to an image with probability u1+u2. Spaced and massed items only differed when the 

second presentation was stored in a new image rather than in the originally generated 

image, or when a superimposition error occurred. 

 4.4.2.2. Results and discussion. The simulation results are displayed in Figure 4.6. 

It is evident that REM.3 correctly predicts a discrimination advantage for spaced over 

massed items, regardless of criterionstudy. 

 The results of Simulation 2 confirm that REM.3 can account for the spacing 

effect. In the remaining simulations, I turn to two phenomena from experiments on the 

list-strength effect: REM.3 needs to predict a null or negative list-strength effect with the 

mixed-pure paradigm, but a positive list-strength effect with the strong-interference 

paradigm. Although REM.1 predicts the former result, it cannot predict the latter. 

4.4.3. Simulation 3: The mixed-pure paradigm 

As discussed throughout the present paper, the mixed-pure paradigm generally 

produces a null or negative list-strength effect in recognition (Ratcliff et al., 1990). As a 

second test of REM.3’s viability, I investigated whether it can predict this result. 
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 4.4.3.1. Method. Each simulated subject studied five lists: a pure-weak list, on 

which all items were presented once; a massed pure-strong list, on which all items were 

studied multiple times, with strengthening accomplished through immediate repetitions; a 

spaced pure-strong list, on which all items were presented multiple times, with 

strengthening accomplished through spaced repetitions; a massed mixed list, on which 

half of the items were presented once and half of the items were presented multiple times 

in a massed fashion; and a spaced mixed list, on which half of the items were presented 

once and half of the items were presented multiple times in a spaced fashion. In the 

spaced pure-strong list and the spaced mixed list, all items were presented once before 

any items were presented a second time, all items were presented twice before any items 

were presented a third time, and so on. The dependent variable of interest was d′, 

although I also computed Rr on the mean d′ scores to remain consistent with previous 

reports (e.g., Ratcliff et al., 1990). 

 The following variables were systematically manipulated across simulations: the 

number of strong-item presentations (2, 3, 4, 5, 6), criterionstudy (1, 2, 3), and list length 

(28 vs. 84 unique targets per list). The full design can thus be conceived of as a 2 (item 

strength: weak vs. strong) × 2 (list type: pure vs. mixed) × 2 (strengthening technique: 

massed vs. spaced) × 2 (list length: 28 vs. 84) × 5 (strong-item presentations: 2, 3, 4, 5, 6) 

× 3 (criterionstudy: 1, 2, 3) mixed design, with item strength, list type, and strengthening 

technique manipulated within simulated subjects and the remaining factors manipulated 

between simulated subjects. I ran 1000 simulations per cell, yielding 30,000 simulated 

subjects. 
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 I used the following fixed parameters: gbase = .4, gdraw = .35, w = 20, c = .7, u1 = 

.28, u2 = .12, and criteriontest = 1. Algorithmically, strong items were treated as in 

Simulation 2. 

 4.4.3.2. Results and discussion. Figure 4.7 shows d′ results for the pure-weak (top 

row), pure-strong (second row), mixed-weak (third row), and mixed-strong (bottom row) 

conditions, and Figure 4.8 shows Rr results. As expected, massed strengthening produces 

a negative list-strength effect, with a mean Rr across simulations of 0.937. Surprisingly, 

spaced strengthening produced a positive list-strength effect, with a mean Rr across 

simulations of 1.123. The Rr was slightly larger with an 84-item list (Rr = 1.133) than a 

28-item list (Rr = 1.113) and increased as criterionstudy increased (Rr = 1.083, 1.136, and 

1.150 for criterionstudy values of 1, 2, and 3, respectively). 

 Do these results falsify REM.3? The prevalent view in the literature is that the list-

strength effect is negative or null in recognition. Yet, careful examination of the Rr values 

reported with massed and spaced strengthening suggests that the list-strength effect tends 

to be null or negative with massed strengthening and null or slightly positive with spaced 

strengthening. For example, Ratcliff et al. (1990, Experiment 5) manipulated 

strengthening technique (massed vs. spaced) within subjects and between lists using the 

mixed-pure paradigm. They found a negative list-strength effect with massed 

strengthening that did not quite reach their adopted significance level (Rr = 0.89, p = .055, 

two tailed). In contrast, the Rr was slightly positive in the spaced-strengthening condition 

(Rr = 1.03, NS). As another example, Ratcliff et al. (1992) used massed strengthening in 

Experiment 1 and obtained an Rr of 1.04; in Experiment 2, they used spaced 
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strengthening and obtained an Rr of 1.21, broadly consistent with the predictions of 

REM.3. 

 Table 4.1 shows the Rr values in published reports of the list-strength effect in 

recognition. I excluded experiments that used very fast presentation rates (Ratcliff et al., 

1994; Yonelinas et al., 1992), as these are known to produce positive list-strength effects 

because of rehearsal borrowing (i.e., weak items are presented too quickly to process, so, 

on mixed lists, subjects continue rehearsing strong items during the presentation of weak 

items; for a discussion, see Yonelinas et al., 1992). I also excluded studies that used 

stimuli other than words or word pairs (e.g., Malmberg & Shiffrin, 1991a, 1991b). Such 

stimuli have not been modelled in REM, and there is evidence that they are more 

susceptible to interitem interference than words (Kinnell & Dennis, 2012; Osth et al., 

2014). Finally, I only included experiments using the full mixed-pure paradigm—that is, I 

excluded experiments that omitted the pure-strong list or the pure-weak list (e.g., 

Hirshman, 1995). Across these experiments, the mean Rr for massed strengthening is 

0.916, but the mean Rr for spaced strengthening is 1.062. 

 It is critical to note that REM.1 cannot account for even a slightly positive list-

strength effect in recognition; therefore, REM.1 cannot account for the difference 

documented in Table 4.1. In contrast, Simulation 3 shows that REM.3 can simultaneously 

account for a positive list-strength effect with spaced strengthening and a negative list-

strength effect with massed strengthening. 

4.4.4. Simulation 4: Norman (2002, Experiment 1) 

As described in Chapter 3, Norman (1999, 2002) introduced the strong-interference 

paradigm as an alternative to the mixed-pure paradigm. In the strong-interference 
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paradigm, only weak items are tested, thereby allowing experimenters to strengthen 

strong items to ceiling. Another difference between the two paradigms is that in the 

strong-interference paradigm, interference items are presented on both lists. The only 

difference is that on the weak-interference list, the interference items are given fewer 

presentations than on the strong-interference list. 

 Because it assumes that overall interference decreases as the strength of some 

items on a list increases, REM.1 cannot account for the positive list-strength effect 

observed in the strong-interference paradigm (Norman, 1999, 2002). The purpose of 

Simulation 4 was to investigate whether REM.3 can predict the pattern. In particular, I 

applied REM.3 to Experiment 1 of Norman (2002). 

 4.4.4.1. Description of the experiment. Norman (2002, Experiment 1) used the 

strong-interference paradigm to test for a list-strength effect in recognition, 

operationalized as better discrimination in the weak-interference list than the strong-

interference list. Stimuli were unrelated, medium-frequency words. List type was 

manipulated within subjects, with order of conditions counterbalanced. On the weak-

interference list, subjects studied five untested primacy buffers, 50 target and 50 

interference items randomly combined, and five untested recency buffers. Subjects were 

unaware of the buffer/target/interference item distinction, and thus attempted to learn all 

items. The strong-interference list was identical to the weak-interference list, save that, 

following the five recency buffers, the 50 interference items were presented five more 

times. Therefore, the interference:target strength ratio was 1:1 on the weak-interference 

list and 6:1 on the strong-interference list. Note, as well, that interference items were all 

presented a second time before any were presented a third time, all were presented a third 
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time before any were presented a fourth time, and so on. Each repetition of the 

interference items was randomized; consequently, the minimum lag between interference-

item repetitions was 49, and the maximum lag was 98. 

 Two methodological precautions bear mentioning: First, to attenuate the 

likelihood of rehearsal borrowing, on each study trial, subjects were asked to indicate 

whether the word’s referent could fit into a banker’s box. Second, to equate the study-test 

lag between conditions, a longer distractor task was interpolated between the study and 

test phases in the weak-interference condition than the strong-interference condition. 

Neither of these features were implemented in my simulations: To my knowledge, no one 

has incorporated different encoding tasks in REM. In addition, because I did not include 

context features in my simulations, equating study-test lag is not necessary. 

 Test lists consisted of the 50 targets and 50 distractors. At test, subjects rated their 

confidence that probes were “old” on a six-point scale. If they believed that a probe was 

“old” (i.e., if they selected 4, 5, or 6 on the confidence scale), they then made a 

remember/know judgment (Tulving, 1985). Norman (2002) computed d´ by changing 

confidence ratings of 4, 5, and 6 to “old” responses and changing confidence ratings of 1, 

2, or 3 to “new” responses. I did not simulate confidence-scale responding; rather, I 

simply had simulated subjects make old/new recognition decisions. 

 Norman’s (2002) results produced a list-strength effect: d′ was higher on the 

weak-interference list (M = 2.35, SE = 0.12) than the strong-interference list (M = 2.22, 

SE = 0.10). The hit rate was higher in the weak-interference list (M = .91) than the strong-

interference list (M = .77). Interestingly, the false-alarm rate was also higher in the weak-
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interference list (M = .22) than the strong-interference list (M = .11).
9
 Hit and false-alarm 

rates, then, produced a concordant effect (i.e., hit and false-alarm rates increasing 

together) rather than a mirror effect (i.e., an increasing hit rate accompanied by a 

decreasing false-alarm rate). 

 4.4.4.2. Simulation 4A: REM.1. I began by verifying that REM.1 could not 

predict Norman’s (2002, Experiment 1) results. Although the reasoning presented above 

is intuitively reasonable, to the best of my knowledge, there are no published reports 

simulating the strong-interference paradigm with REM.1. If REM.1 predicts Norman’s 

results, then the use of a more complex model like REM.3 would violate the principle of 

parsimony. 

 4.4.4.2.1. Method. Recall that the purpose of the strong-interference paradigm is to 

strengthen strong items to ceiling on the strong-interference list. In Shiffrin and Steyvers 

(1997) simulations ustrong was set to .4. However, this keeps strong-item performance well 

below ceiling. Here, I varied ustrong (.4, .6, .8) to simulate increasingly strong interference 

items. I set uweak to .28 as in Shiffrin and Steyvers’ simulations. 

 Because Norman (2002) used medium-frequency words, I set gdraw to .38. The 

remaining parameters were fixed at values used in previous simulations: gbase = .4, w = 

20, c = .7, and criteriontest = 1 (recall that REM.1 does not have a criterionstudy parameter). 

 4.4.4.2.2. Results and discussion. Figure 4.9 shows hit rates, false-alarm rates, and 

d´ as a function of ustrong. Examination of the hit and false-alarm rates reveals that REM.1 

                                                 

9. I do not have standard errors for hit and false-alarm rates, as Norman (2002) presented 

means as a function of confidence-scale responses. 



REM.3 84 

 

correctly predicts the concordant effect observed by Norman (2002, Experiment 1). 

However, REM.1 predicts a negative list-strength effect, with better discrimination on the 

strong-interference list than the weak-interference list. Indeed, as ustrong increases, the 

magnitude of the strong-list advantage increases. Therefore, REM.1 is inconsistent with 

Norman’s empirical results. 

4.4.4.3. Simulation 4B: REM.3 

 4.4.4.3.1. Method. In my REM.3 simulations, I only varied the criterionstudy 

parameter (1, 2, 3, 4). As I describe below, for the present simulation, criterionstudy 

affected the qualitative pattern of results. In particular, a criterionstudy value of 1 failed to 

replicate the empirical pattern, but criterionstudy values of 2 and 3 did. Therefore, I also 

simulated the paradigm with a criterionstudy of 4 to ensure the pattern would continue with 

stricter values of criterionstudy. The following fixed parameters were used: gdraw = .38, 

gbase = .4, w = 20, c = .7, u1 = .28, u2 = .12, and criteriontest = 1. 

 4.4.4.3.2. Results and discussion. Figure 4.10 shows hit rates, false-alarm rates, 

and d′ as a function of criterionstudy. Qualitatively, the results for criterionstudy values of 2, 

3, and 4 replicate Norman’s (2002, Experiment 1) results, with better discrimination on 

the weak-interference list than the strong-interference list. However, when criterionstudy is 

1, REM.3 predicts equivalent discrimination for the weak- and strong-interference lists. 

Note, as well, that the hit and false-alarm rates replicate the concordant effect from 

Norman’s experiment: Both hit and false-alarm rates are higher on the weak-interference 

list than the strong-interference list. 

 I am not concerned that a value of 1 for criterionstudy fails to produce a list-strength 

effect in REM.3. Based on the results of Simulation 1, it is clear that 1 is not a reasonable 
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value for the criterionstudy parameter. The fact that higher values of criterionstudy produce 

results that are more consistent with empirical data further bolsters this contention. 

 Prima facie, the concordant effect observed here and in Norman (2002, 

Experiment 1) is puzzling. Typically, strength manipulations produce a mirror effect 

(Criss, 2006; Stretch & Wixted, 1998). However, the way differentiation works in REM.3 

provides an explanation for this pattern. Because of the probabilistic nature of 

superimposition in REM.3, memory will consist of more images following study of the 

strong-interference list than the weak-interference list. This is because, when a repeated 

item is not recognized as previously studied, a new image is generated. Thus, there is 

more interitem interference on the strong-interference list than the weak-interference list, 

producing a lower hit rate. Distractors, however, are more likely to erroneously match an 

image on the weak-interference list than the strong-interference list. This is because there 

is a greater degree of differentiation for interference items on the strong-interference list 

than the weak-interference list, and images from interference items are therefore less 

likely to erroneously match a distractor. As such, the false-alarm rate is also lower on the 

strong-interference list than the weak-interference list. 

4.4.5. Simulation 5: Norman (1999, Experiment 4) 

Norman (2002, Experiment 1) used relatively long study phases, with 360 trials in 

the strong-interference condition. To ensure that the REM.3 results from Simulation 4B 

were not an artifact of the large number of study trials, I also simulated Norman (1999, 

Experiment 4). This experiment had two between-subjects conditions, which I simulate in 

Simulations 5A and 5B. One condition was very similar to Norman (2002, Experiment 1), 

with the major difference being that the study list was shorter. In the other condition, 
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distractors were semantically related to targets (e.g., alligator-crocodile). Both 

experiments yielded a list-strength effect. 

4.4.5.1. Simulation 5A: Unrelated distractors. 

 4.4.5.1.1. Description of the experiment. The procedure of Norman (1999, 

Experiment 4) was very similar to the procedure of Norman (2002, Experiment 1). The 

strong-interference paradigm was used, with interference items presented once in the 

weak-interference list and six times in the strong-interference list. However, there were 

16 targets instead of 50, 48 interference items instead of 50, and three primacy and 

recency buffers instead of five. In addition, the test list contained only half of the targets 

from the study phase, along with eight distractors. Unlike the confidence judgments from 

Norman (2002, Experiment 1), Norman (1999, Experiment 4) used standard old/new 

recognition. 

 Norman (1999, Experiment 4) uncovered a list-strength effect as measured by d′: 

Discrimination was better on the weak-interference list (M = 2.28, SE = 0.08) than the 

strong-interference list (M = 1.90, SE = 0.09). The hit and false-alarm rates produced the 

concordant effect observed in Norman (2002, Experiment 1): The hit rate was higher in 

the weak-interference list (M = .91, SE = .02) than the strong-interference list (M = .66, 

SE = .03), and the false-alarm rate was higher in the weak-interference list (M = .12, SE = 

.01) than the strong-interference list (M = .03, SE = .01). 

 4.4.5.1.2. Method. Other than the number of targets, interference items, primacy 

buffers, recency buffers, and distractors, the algorithm and parameters for this simulation 

were the same as those used in Simulation 4B. 
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 4.4.5.1.3. Results and discussion. Figure 4.11 shows hit rates, false-alarm rates, 

and d′ as a function of criterionstudy. As in Simulation 4B, criterionstudy values of 2, 3, and 

4 produced a list-strength effect, whereas a criterionstudy value of 1 produced a null list-

strength effect. Simulation 5A also replicated the concordant effect observed in 

Simulation 4B and the empirical data. 

4.4.5.2. Simulation 5B: Semantically related distractors. 

 4.4.5.2.1. Description of the experiment. This condition was identical to the 

condition from Simulation 5A, save that each distractor was semantically related to a 

target from the study phase. Results matched those from the unrelated-distractors 

condition: There was a list-strength effect, with higher discrimination (as measured by d′) 

in the weak-interference list (M = 1.87, SE = 0.08) than the strong-interference list (M = 

1.48, SE = 0.09). The concordant effect was also replicated: The hit rate was higher in the 

weak-interference list (M = .85, SE = .02) than the strong-interference list (M = .58, SE = 

.03), and the false-alarm rate was higher in the weak-interference list (M = .18, SE = .02) 

than the strong-interference list (M = .07, SE = .01). 

 4.4.5.2.2. Method. To simulate semantic relatedness in REM, I set 8 features for 

each distractor equal to 8 features of one of the targets. Otherwise, Simulation 5B was 

identical to Simulation 5A. 

 4.4.5.2.3. Results and discussion. Figure 4.12 shows hit rates, false-alarm rates, 

and d′ as a function of criterionstudy. REM.3 replicates the concordant effect regardless of 

the value of criterionstudy. Similarly, values of 3 or 4 for criterionstudy produce a list-

strength effect, consistent with Norman’s (1999, Experiment 4) results. However, a value 
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of 1 for criterionstudy produces a negative list-strength effect, and a value of 2 for 

criterionstudy produces a null list-strength effect. 

4.5. Discussion of REM.3 

 The purpose of the simulations reported in the present chapter was to determine 

whether, when stripped of a simplifying assumption, REM is capable of explaining 

phenomena with which it was previously believed inconsistent. In REM.1, strengthened 

items are always stored in the same image; in REM.3, repetitions are superimposed on the 

original image only if the subject recognizes the repetition as previously studied. In 

Simulation 1, I showed that, although a value of 1 for criteriontest is reasonable, it is not 

reasonable for criterionstudy. Because subjects are not explicitly attempting to make 

old/new judgments at study, the threshold for superimposing a studied item on a 

previously generated image needs to be higher. In Simulation 2, I demonstrated that 

REM.3 correctly predicts an advantage for spaced over massed repetitions. In Simulation 

3, I examined whether REM.3 predicts a negative or null list-strength effect with the 

mixed-pure paradigm in recognition. REM.3 actually predicts a slightly positive list-

strength effect with spaced strengthening, but examination of published reports of the list-

strength effect in recognition provides empirical support for this prediction. Finally, in 

Simulations 4 and 5, I showed that REM.3 can account for positive list-strength effects 

observed with the strong-interference paradigm. 

 REM.3 provides a more complete picture than REM.1. REM.1’s simplifying 

assumption that repetitions are always accumulated in a single image, regardless of the 

time or number of intervening items between presentations, renders it unable to account 

for the spacing effect. Obviously, if massed and spaced repetitions are algorithmically 
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identical, they will be recognized at the same rate. Instead, if superimposition is made 

dependent on subjects’ recognition that the item was previously studied (as in REM.3), 

then spaced repetitions obtain a mnemonic advantage over massed repetitions. 

 The list-strength effect is one of the phenomena responsible for the emergence of 

REM. Broadly, REM.1 is consistent with experiments on the list-strength effect: 

Strengthening some items on a list protects the weaker items from interitem interference, 

thus resulting in a negative list-strength effect. Yet, although REM.1 always predicts a 

negative list-strength effect, this is inconsistent with null or slightly positive list-strength 

effects observed in the literature with spaced strengthening (Ratcliff et al., 1990, 1992, 

1994). Similarly, the prediction of an increasingly negative list-strength effect as strong-

item strength increases renders REM.1 unable to explain positive list-strength effects 

found with the strong-interference paradigm (Norman, 1999, 2002). I have demonstrated 

that REM.3 is consistent with these results. In the following chapter, I empirically test a 

novel prediction generated by REM.3.  
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Chapter 5: The Empirical Test of REM.3 

 As described in the previous chapter, REM.3 is able to explain two findings that 

REM.1 cannot: the spacing effect and positive list-strength effects with the strong-

interference paradigm. Chapter 4 also demonstrated that REM.3 predicts a slightly 

positive list-strength effect in the mixed-pure paradigm when strengthening is 

accomplished through spaced repetitions, a prediction that receives empirical support in 

the literature. REM.3’s success over REM.1 in accounting for these phenomena stems 

from making superimposition of repetitions on originally generated images dependent on 

subjects’ recognition that the item was previously studied. 

 The superimposition process during REM.3’s study phase is similar to an REM 

test-phase algorithm introduced by Criss et al. (2011). In traditional instantiations of 

REM, the test phase does not involve the addition of new images to memory. This 

assumption is made on the basis of computational efficiency, rather than because of any 

commitment to the idea that test probes are not encoded. 

 In Criss et al.’s (2011) test-phase algorithm, when a test probe is called “old”, the 

most similar image in memory is updated—that is, the probe is superimposed on the most 

similar image. When a probe is called “new”, its features are copied to a new image. 

Consequently, false alarms produce incorrect superimposition—that is, storage of 

multiple items in a single image, and misses produce storage of one item across multiple 

images. Criss et al. demonstrated that this version of REM was capable of predicting 

output interference in old/new and forced-choice recognition (Norman & Waugh, 1968; 

Peixotto, 1947). 
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 Given the similarities between REM.3 and Criss et al.’s (2011) test-phase 

algorithm, it makes sense to combine them (i.e., to use the study-phase algorithm from 

REM.3 and the test-phase algorithm from Criss et al.’s REM variant). This extension of 

REM.3 generates novel predictions regarding the mixed-pure paradigm, which are 

described below. First, however, it is necessary to discuss why REM predicts output 

interference. 

 Output interference in REM has an important, somewhat counterintuitive, 

property: namely, output interference arises entirely from “new” responses in recognition. 

“New” responses increase the size of the search set by adding images to memory. In 

contrast, the search set remains the same size when an “old” response is made, since new 

features are copied to an extant image. Of course, if the “old” response is a false alarm, 

the distractor’s features are copied to an image that was generated by a different item at 

study; yet, this still attenuates interference, since the addition of any features to an image 

renders it “more complete”, and therefore less similar to other images or test probes. 

 As demonstrated in Chapter 4, REM.3 predicts a positive list-strength effect when 

strengthening is accomplished via spaced repetitions. If the test-phase algorithm 

presented by Criss et al. (2011) is added to REM.3, then REM.3 makes a novel prediction 

concerning the list-strength effect in the mixed-pure paradigm: If weak items are tested 

before strong items on the mixed list, there will be a positive list-strength effect; if strong 

items are tested before weak items on the mixed list, there will be a null list-strength 

effect. 

 Why does the combination of REM.3 and Criss et al.’s (2011) output-interference 

version of REM produce this prediction? I will start by addressing this with respect to the 
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weak-tested-first condition, as this is the condition producing the counterintuitive 

prediction of a positive list-strength effect in recognition. Recall that, in REM, 

interference arises from additional images in memory, and differentiation is capable of 

offsetting interference. In REM.3, because superimposition of similar images is 

probabilistic, the number of images in memory increases from the pure-weak list to the 

mixed list to the pure-strong list. Therefore, interitem interference actually increases with 

list strength, but the degree to which images are differentiated in stronger lists 

compensates for this. 

 When weak items are tested first on the mixed list, they are evaluated with respect 

to a larger search set than pure-weak items, thereby giving first-half pure-weak items an 

advantage over the mixed-weak items. Even though some of the mixed-weak items’ 

competitors are strong, and therefore differentiated, this is not enough to offset the larger 

search set. In contrast, mixed-strong items are compared to second-half pure-strong items. 

Prima facie, one might suspect that the mixed-weak items from the first half of the test 

list would produce more interference than first-half pure-strong items, thereby yielding a 

pure-strong advantage. However, recall that hits result in updating the most similar 

image, thereby increasing differentiation of that trace and reducing its interference. Hits 

to mixed-weak items, therefore, increase mixed-strong performance by reducing interitem 

interference. Why does this not hold for the pure-strong list which, after all, will likely 

have more hits in the first half of the list than the mixed list? The reason is that increases 

in differentiation yield diminishing returns. pure-strong images are already well 

differentiated by the time they are tested, so updating them does not produce much more 

protection. When coupled with the fact that there are more images in the pure-strong 
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condition than the mixed-strong condition, performance ends up being better for mixed-

strong items than second-half pure-strong items. 

 Next, consider the strong-tested-first condition, which REM.3 and Criss et al.’s 

(2011) output-interference version of REM predict will produce a null list-strength effect. 

Here, mixed-weak items are compared to second-half pure-weak items. As before, pure-

weak items will be evaluated with respect to a smaller search set than mixed-weak items. 

However, because of the higher hit rate in the first half of the mixed list, the second half 

of the test lists will have search sets closer in size. This is because the larger number of 

misses in the first half of the pure-weak list will cause the search set to increase in size 

more rapidly than the mixed list. This results in roughly equal performance for mixed-

weak items and second-half pure-weak items. 

 For strong items, although the pure-strong list will have more images than the 

mixed list, the interference caused by the mixed-weak items will offset this difference, 

resulting in roughly comparable performance. Notice that, when strong items are tested 

before weak items, the protection from increasing the differentiation of mixed-weak items 

does not occur until after the mixed-strong items are tested, and thus the model’s 

predictions are similar to standard REM instantiations. 

5.1. Simulating Output Interference in the Mixed-Pure Paradigm 

5.1.1. Simulation 1: Weak-tested first 

 5.1.1.1. Method. I simulated the mixed-pure paradigm using the study-phase 

algorithm from REM.3 and the test-phase algorithm from Criss et al.’s (2011) output-

interference version of REM. On the pure-weak list, 84 targets were studied once; on the 

pure-strong list, 84 targets were studied twice; and on the mixed list, 42 targets were 
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studied once and 42 targets were studied twice. List construction was modelled after the 

“spaced repetitions in the same order” lists from Experiment 3 of Malmberg and Shiffrin 

(2005). In free recall, Malmberg and Shiffrin showed that this form of strengthening 

produced the largest list-strength effect. For the pure-strong list, targets were first divided 

into 12, nonoverlapping, seven-item sublists. After a sublist was presented, it was re-

presented immediately in the same order. Therefore, all repetitions had a lag of six. 

Strong items in the mixed list were strengthened in the same fashion, with the 42 strong 

targets divided into six sublists. Note that, on the mixed list, all strong items and their 

repetitions were presented before any weak items. This is a methodological precaution 

taken with human subjects to prevent the possibility of rehearsal borrowing (i.e., studying 

mixed-weak items during the presentation of mixed-strong items; see Malmberg & 

Shiffrin, 2005; Murnane & Shiffrin, 1991a, 1991b; Ratcliff et al., 1990). 

 Test lists consisted of the 84 targets along with 84 distractors. For the mixed list, 

the first 84 test probes consisted of the 42 mixed-weak targets and 42 distractors; the 

second half of the test list consisted of the 42 mixed-strong targets and 42 distractors. The 

pure test lists were matched to the mixed list, such that the last 42 targets from the study 

list appeared in the first half of the test list, and the first 42 items from the study list 

appeared in the second half of the test list. This allows for item-strength comparisons 

between mixed and pure list without confounding study and test position: The first 42 

study items on the mixed list are mixed-strong items, and these are tested in the second 

half of the test list. These can be compared to the first 42 targets from the pure-strong list, 

which are also tested in the second half of the test list. Similarly, the second 42 study 

items on the mixed list are pure-weak items, and these are tested in the first half of the 
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test list. Performance on these items can be compared to performance on the second 42 

study items from the pure-weak list, which also appear in the first half of the test list. 

 As in the REM.3 simulations from Chapter 4, I varied criterionstudy (1, 2, 3). The 

remaining parameters were fixed as follows: gbase = .4, gdraw = .35, u1 = .28, u2 = .12, c = 

.7, and criteriontest = 1. 

 The study-phase algorithm was the same as that used in Chapter 4. As each item 

was studied, it was matched to all of the images in memory. If the odds that the item was 

studied earlier exceeded criterionstudy, the study item was superimposed on the most 

similar image, with features copied to the old image with probability u2. As before, only 

positions for which the image had no information stored could be updated—that is, 

nonzero values were skipped in updating the image. 

 The algorithm for the test phase followed that used by Criss et al. (2011) in their 

output-interference simulations. When a probe was identified as “old”, it was 

superimposed on the most similar image, with features copied with probability u2. When 

a probe was identified as “new”, its features were copied to a new image with probability 

u1. 

 The simulations represent a 2 (strength: weak vs. strong) × 2 (list type: pure vs. 

mixed) × 3 (criterionstudy: 1, 2, 3) mixed design, with the first two factors within subjects 

and the last factor between subjects. There were 3000 simulated subjects, with 1000 in 

each of the criterionstudy conditions. 

 5.1.1.2. Results. Hit and false-alarm rates are shown in Figure 5.1 and d′ is shown 

in Figure 5.2. Like the majority of the REM.3 simulations in Chapter 4, the qualitative 

pattern of results was unaffected by criterionstudy. Therefore, I collapsed across 
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criterionstudy to consider the results. Examination of performance confirms that output 

interference occurred: The first half of the pure-weak list had a higher hit rate (M = .773, 

SE = .001), lower false-alarm rate (M = .349, SE = .001), and higher d′ (M = 1.163, SE = 

0.006) compared to the second half (hit rate: M = .711, SE = .001; false-alarm rate: M = 

.350, SE = .001; d′: M = 0.961, SE = 0.005). Output interference also occurred on the 

pure-strong list: The first half of the pure-strong list had a higher hit rate (M = .903, SE = 

.001), lower false-alarm rate (M = .325, SE = .001), and higher d′ (M = 1.830, SE = 0.007) 

compared to the second half (hit rate: M = .847, SE = .001; false-alarm rate: M = .332, SE 

= .001; d′: M = 1.510, SE = .006). 

 Of greater importance for present purposes is the list-strength effect. In Bäuml’s 

(1997) cued-recall experiment on the list-strength effect, he controlled test position like I 

have here. He performed two analyses: one for which test position was ignored, and one 

for which test position was controlled. I take the same approach. Ignoring test position 

(i.e., using d′ from the entire pure-weak and pure-strong lists), there is a null list-strength 

effect: d′ is slightly higher for pure-strong items (M = 1.629, SE = 0.005) than mixed-

strong items (M = 1.622, SE = 0.007), and d′ is slightly higher for mixed-weak items (M = 

1.063, SE = 0.006) than pure-weak items (M = 1.046, SE = 0.004). The strong-to-weak 

ratios were 1.526 and 1.557 for mixed and pure lists, respectively, yielding a slightly 

negative list-strength effect (Rr = 0.980). Therefore, ignoring test position produces the 

standard finding of a null list-strength effect in recognition. 

 The above analysis confounds list type with test position. Test probes from the 

first half of the pure-strong list are evaluated with less output interference than any of the 

mixed-strong items, since the testing of mixed-strong items is preceded by the testing of 
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mixed-weak items. Similarly, test probes from the second half of the pure-weak list are 

evaluated with more output interference than any mixed-weak items, since all mixed-

weak items are tested in the first half of the mixed test list. To control for this, mixed-

strong performance can be compared to second-half pure-strong performance, and mixed-

weak performance can be compared to first-half pure-weak performance. This analysis 

produces a positive list-strength effect: d′ is higher for mixed-strong items than second-

half pure-strong items (M = 1.510, SE = 0.006), and d′ is higher for pure-weak items (M = 

1.163, SE = 0.005) than mixed-weak items. The strong-to-weak ratios were 1.526 and 

1.298 for mixed and pure lists, respectively, yielding a positive list-strength effect (Rr = 

1.175). Therefore, when controlling for test position, REM.3 predicts a positive list-

strength effect, contrary to most results in the literature (Ratcliff et al., 1990). 

 5.1.1.2. Discussion. The present simulation demonstrates that REM.3 predicts a 

positive list-strength effect when weak items are tested before strong items on the mixed 

list. This is a function of output interference and REM.3’s differentiation process. Study 

lists have 84, 126, and 168 trials in the pure-weak, mixed, and pure-strong lists, 

respectively. Because single-image storage in REM.3 is probabilistic rather than 

inevitable, some of the repeated items in the mixed and pure-strong lists are stored in 

separate images. In effect, then, the search set is smallest for the pure-weak list, largest 

for the pure-strong list, and intermediate for the mixed list. When sufficient 

differentiation occurs (i.e., when a sufficient number of repeated items are stored in a 

single image), the decreased probability of interference from differentiated images offsets 

the costs associated with larger search sets. Here, the search set also grows as the test list 

proceeds, from the addition of probes identified as “new” to memory. So, although pure-
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strong items are more protected from interitem interference than mixed-strong items, this 

advantage is offset by the larger search set on the pure-strong list than the mixed-strong 

list (stemming from adding “new” items from the test list to memory and from strong-

item repetitions that were inadvertently stored in separate images). Similarly, although 

mixed-weak items are shielded from interitem interference by the presence of mixed-

strong items, they nevertheless are more poorly recognized than pure-weak items because 

of the larger search set on the mixed list compared to the pure-weak list. In other words, 

REM.3 predicts a positive list-strength effect because cue overload (i.e., a larger search 

set) overwhelms occlusion. 

5.1.2. Simulation 2: Strong-tested first 

 5.1.2.1. Method. Simulation 2 was identical to Simulation 1, save that first-half 

study items were tested in the first half of the test list and second-half study items were 

tested in the second half of the test list. This means that, on mixed lists, strong items were 

tested before weak items. 

 5.1.2.2. Results. Hit and false-alarm rates are shown in Figure 5.3 and d′ is shown 

in Figure 5.4. The qualitative pattern of results was unaffected by the criterionstudy 

parameter, so I collapsed across criterionstudy to consider the results. On the pure-weak 

list, output interference was fairly modest: Although the first half of the test list produced 

a higher hit rate (M = .749, SE = .001) and better discrimination (M = 1.081, SE = 0.006) 

than the second half (hit rate: M = .732, SE = .001; d′: M = 1.022, SE = 0.006), the false-

alarm rate was slightly higher on the second half of the pure-weak test (M = .352, SE = 

.001) than the first half (M = .350, SE = .001). On the pure-strong list, output interference 

was reversed: The second half of the test list produced a higher hit rate (M = .880, SE = 
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.001) and higher d′ (M = 1.662, SE = 0.007) than the first half (hit rate: M = .870, SE = 

.001; d′: M = 1.634, SE = 0.006). However, the false-alarm rate did increase from the first 

half of the test list (M = .328, SE = .001) to the second half (M = .334, SE = .001), 

consistent with output interference. 

 Ignoring test position, there was a null list-strength effect: d′ was higher for 

mixed-strong items (M = 1.692, SE = 0.007) than pure-strong items (M = 1.618, SE = 

0.005), and d′ was higher for mixed-weak items (M = 1.048, SE = 0.005) than pure-weak 

items (M = 1.039, SE = 0.004). The strong-to-weak ratios were 1.615 and 1.558 for mixed 

and pure lists, respectively, yielding a slightly positive list-strength effect (Rr = 1.037). 

 To unconfound list type from test position, I compared mixed-strong items to first-

half pure-strong items, and mixed-weak items to second-half pure-weak items. With test 

position controlled, there was still a null list-strength effect: Mixed-strong items were 

better recognized than pure-strong items (M = 1.634, SE = 0.006), and mixed-weak items 

were better recognized than pure-weak items (M = 1.022, SE = 0.004). The strong-to-

weak ratios were 1.615 and 1.599 for mixed and pure lists, respectively, yielding a 

slightly positive list-strength effect (Rr = 1.010). 

 5.1.2.3. Discussion. Concerning the list-strength effect, the results from 

Simulation 2 are unambiguous and broadly consistent with REM.1 (Shiffrin & Steyvers, 

1997): Whether or not test position is controlled, REM.3 predicts a null list-strength 

effect when strong items are tested before weak items on the mixed list. 

 A more surprising finding from Simulation 2 is that output interference was not 

observed on the pure-strong list. Yet, reduced or absent output interference on a strongly 

encoded list is consistent with differentiation: In the output-interference version of REM, 
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images are updated when “old” responses are made, thereby increasing image 

differentiation and reducing interitem interference for other items. So, as subjects move 

through a test list on which the hit rate is relatively high, later-tested targets are easier to 

identify as “old” because there is less interitem interference. REM simulations and 

empirical data consistent with this claim are provided by Kılıç et al. (2017). 

 If no output interference with strong lists is the norm, then why was output 

interference observed on the pure-strong list in Simulation 1? Recall that, in Simulation 1, 

second-half pure-strong items were tested first, but that in Simulation 2, first-half pure-

strong items were tested first. In an REM.3 study phase, items repeated later in a study 

list are more likely to be stored in separate images than items repeated early in the list. 

This is because, with each successive study trial, the evidence needed for superimposition 

of similar images to occur increases as a result of the size of the search set increasing. On 

the pure-strong list, the first repeated item occurred in Study Position 8. When this item 

was studied, subjects needed to identify that it was earlier studied in a search set of seven 

items. This is akin to successfully identifying that a probe is “old” following study of a 

seven-item list. In contrast, the first repeated item from the second half of the study list 

occurred in Study Position 98. By this point, the search set will be much larger, so more 

evidence is needed to identify that the item was previously studied. Consequently, 

successful superimposition follows patterns observed with the list-length effect (Strong, 

1912). 

 In Chapter 4, I showed that REM.3 predicts the spacing effect because spaced 

repetitions are sometimes stored in separate images. The same phenomenon is operating 

for second-half pure-strong items in Simulation 1: They are more likely to be in multiple 
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traces, and thus have a mnemonic benefit over first-half pure-strong items, which are 

more likely to be in single images. Recall that, when comparing massed and spaced 

repetitions in REM.3, spaced repetitions that are correctly superimposed are functionally 

identical to massed items. Therefore, the output interference observed in Simulation 1 

was primarily driven by study-phase mechanisms rather than test-phase mechanisms. 

5.2. Experiment 1 

 The purpose of Experiment 1 was to test the prediction from Simulation 1: 

namely, does a positive list-strength effect occur when weak items are tested before 

strong items on the mixed list? In Chapter 3, I reviewed several theoretical accounts of 

the list-strength effect. Next, I briefly consider what predictions these various accounts 

make regarding the present experiment. 

5.2.1. Predictions 

 5.2.1.1. Differentiation. As shown in Simulation 1, REM.3 predicts a positive list-

strength effect when weak items are tested first on the weak list. However, this prediction 

differs from classic differentiation models (e.g., McClelland & Chappell, 1998; Shiffrin 

& Steyvers, 1997; Shiffrin et al., 1990), wherein item repetitions are always accumulated 

in a single mnemonic trace. From the perspective of classic differentiation accounts, 

Experiment 1 should produce a negative list-strength effect. 

 5.2.1.2. Criterion placement. Recall that, according to the criterion-placement 

account (see Hirshman, 1995), the null list-strength effect arises from subjects adopting 

increasingly conservative response criteria as the average strength of study items 

increases. Although this account predicts a hit rate consistent with a positive list-strength 

effect, the false-alarm rate is in the direction of a negative list-strength effect, thereby 
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yielding a null list-strength effect as assessed by discrimination. The criterion-placement 

account therefore predicts a null list-strength effect in the present case. 

 5.2.1.3. BCDMEM and the continuous-memory version of TODAM. Both of 

these accounts predict a null list-strength effect for the present experiment. In BCDMEM 

(Dennis & Humphreys, 2001), interference is only caused by the previous contexts in 

which items have been encountered. Interitem interference does not occur in BCDMEM, 

and therefore recognition of strong and weak items should be unaffected by list 

composition. 

 Although the continuous-memory version of TODAM (Murdock & Kahana, 

1993a, 1993b) does not reject the notion of interitem interference, it assumes that this 

interference arises from both experimental and pre-experimental memories. The strong 

items in a study list are not strong enough to overcome all of a subject’s pre-experimental 

memories, and thus the continuous-memory version of TODAM predicts a null list-

strength effect. 

 5.2.1.4. Insufficient-strengthening and dual-process accounts. According to 

Norman (1999, 2002), strengthening in the mixed-pure paradigm is insufficient to 

produce interference. In the present case, strong items are presented twice and weak items 

are presented once—this is a considerably smaller strength ratio than has been used in the 

strong-interference paradigm. Therefore, from the perspective of the insufficient-

strengthening account, Experiment 1 should produce a null list-strength effect. 

 What about dual-process accounts? According to dual-process accounts of the list-

strength effect (Diana & Reder, 2005; Norman, 2002), positive list-strength effects are 

driven by recollection. If a recognition test forces subjects to adopt memory strategies 
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they would use in a free-recall test, there should be a positive list-strength effect; 

otherwise, the list-strength effect should be negative. 

 Experiment 1 does not provide a direct test of the dual-process account, inasmuch 

as the remember/know procedure is not included. There is no mechanism in Experiment 1 

for separating recollection from familiarity. However, if the positive list-strength effect 

relies on recall-like processes, then one should not expect a positive list-strength effect in 

Experiment 1. In free recall, strong items are output earlier than weak items on mixed 

strength lists (Wike & Wike, 1970; Wixted et al., 1997); in Experiment 1, this is reversed, 

such that weak items are tested before strong items. According to dual-process accounts, 

recollection-based phenomena should occur in recognition to the degree that the 

recognition test mimics processes observed in free recall. This being the case, one could 

tentatively predict a negative list-strength effect in Experiment 1. 

 5.2.1.5. Inhibition. According to inhibition theory (Anderson, 2003; Norman et 

al., 2007), forgetting occurs as a result of active remembering. When a target is retrieved, 

its competitors are made less accessible, even with independent cues. What triggers 

inhibition? According to inhibition theory, inhibition is retrieval dependent—simply 

restudying an item does not result in the inhibition of its competitors. In his cued-recall 

experiment, Bäuml (1997) found that controlling test position resulted in a null list-

strength effect, but that confounding strength with test position produced a positive list-

strength effect. This is because, in list-strength experiments, retrieval does not occur until 

the test phase. Therefore, inhibition is absent at the start of the test list, since nothing has 

yet been retrieved. However, as subjects move through the test list, identifying targets as 

“old” causes other targets to be suppressed, thereby reducing performance. Therefore, 
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consistent with Bäuml’s cued-recall experiment, inhibition theory predicts a null list-

strength effect when controlling test position but a positive list-strength effect when 

confounding test position. Notice, then, that the prediction from inhibition is opposite the 

prediction from REM.3, which predicts a positive list-strength effect when test position is 

controlled but a null list-strength effect when test position and list type are confounded. 

 5.2.1.6. Output interference. The REM.3 predictions presented in Simulation 1 

are based on output interference, and thus it is difficult to disentangle the REM account 

from the output-interference account. However, it is worth noting that, to the degree that 

output interference has been used to explain the list-strength effect (e.g., Tulving & 

Hastie, 1972; Wixted et al., 1997), the explanations have focused on mixed-strong items 

interfering with mixed-weak items. In other words, output-interference accounts have 

made a different prediction from that made by REM: There should be a positive list-

strength effect when mixed-strong items are tested before mixed-weak items, but not 

when mixed-weak items are tested before mixed-strong items. 

5.2.2. Method 

 5.2.2.1. Subjects. Twenty-five Memorial University of Newfoundland students 

participated in exchange for course credit or a $10.00 honourarium. 

 5.2.2.2. Materials. The experiment was programmed in Psychopy (version 

1.82.01; Peirce, 2007) and presented on Macintosh desktop computers located in 

individual, sound-attenuating cubicles. Stimuli were 516 words obtained from the MRC 

Psycholinguistic Database (Coltheart, 1981). All words were 5 to 12 letters in length (M = 

7.023, SE = 0.081) and had Kucera-Francis written frequencies (Kucera & Francis, 1967) 

of 30 to 200 occurrences per million (M = 72.194, SE = 1.770). Words had mean 
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familiarity, concreteness, and imageability ratings of 530.630 (SE = 1.686, range: 389-

590), 390.108 (SE = 4.135, range: 217-589), and 428.091 (SE = 3.521, range: 224-589), 

respectively. For each subject, stimuli were sampled at random without replacement to 

create the study and test lists. 

 All study and test lists began and ended with two untested serial-position buffers, 

and consisted of 84 targets. On the pure-weak list, all targets were presented once; on the 

pure-strong list, all targets were presented twice; and on the mixed list, half of the targets 

were presented once and half were presented twice. In the mixed list, all presentations of 

strong items occurred before any weak items were presented. Strong items were repeated 

with a six-item lag, as in Simulations 1 and 2 (modelled after Malmberg & Shiffrin, 

2005). The first 42 targets studied always appeared in the second half of the test list, and 

the second 42 targets studied always appeared in the first half of the test list. This meant 

that, for the mixed list, weak items were tested before strong items. Note that each half of 

the test list had 42 targets and 42 distractors. 

 5.2.2.3. Procedure. Subjects cycled through three phases three times: study, 

distraction, and test. The order of lists was randomized for each subject. 

 5.2.2.3.1. Study phase. During the study phase, targets appeared one at a time in 

the centre of the computer screen. Words were presented in black, Times New Roman 

font on a white background. Stimuli were presented at a 2-s rate with no interstimulus 

interval. Subjects were asked to learn the words for an upcoming memory test, the nature 

of which was explained. 

 5.2.2.3.2. Distraction phase. During the distraction phase, subjects solved math 

problems of the form AB+C = D? where A, B, and C were integers from 2 to 10 and D 
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was always equal to AB+C or was displaced by ±1. Subjects were instructed to press the 

“y” key if an equation was correct or the “n” key if the equation was incorrect. The 

probability of AB+C = D was .5, the probability of AB+C = D+1 was .25, and the 

probability of AB+C = D−1 was .25. Values for A, B, and C were drawn randomly with 

replacement; therefore, there was a chance that subjects could see the same equation more 

than once during an experimental session. 

 The purpose of the math task was to equate the study-test lag between list types, 

an approach used by Malmberg and Shiffrin (2005). Subjects solved math equations for 

76, 160, and 244 s in the pure-strong, mixed, and pure-weak conditions, respectively. 

 5.2.2.3.3. Test phase. The old/new recognition test was subject paced. For each 

probe, subjects pressed the “y” key if they believed it was a target and the “n” key 

otherwise. Feedback was not provided. 

5.2.3. Results 

 In the present paper, generalized eta squared (ηg
2
; Olejnik & Algina, 2003) is the 

effect size reported for F tests and Cohen’s d (Cohen, 1992) is the effect size reported for 

t tests. Statistical analyses were carried out using R (version 3.4.1; R Core Team, 2017). 

Analyses of variance were performed using the ez package (version 4.4-0; Lawrence, 

2016), and Cohen’s d was computed using the effsize package (version 0.7.1; Torchiano, 

2018). I used the plyr (version 1.8.4; Wickham, 2011) and reshape2 (version 1.4.3; 

Wickham, 2007) packages for computing descriptive statistics and structuring data 

frames, respectively. 
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 Across the experimental session, subjects saw an average of 101.640 (SE = 7.988, 

range: 43-184) math problems. Performance was high, with a mean of 95.246% (SE = 

0.565) answered correctly. 

 Hit and false-alarm rates are shown in Table 5.1, and d′ is shown in Table 5.2. The 

dependent variable of interest was d′. 

 I first analyzed d′ without regard to test position (e.g., Bäuml, 1997; Verde, 2009). 

Inspection of the means shows that pure-strong items (M = 1.291, SE = 0.116) were better 

recognized than mixed-strong items (M = 0.997, SE = 0.117), but that mixed-weak items 

(M = 0.915, SE = 0.111) were better recognized than pure-weak items (M = 0.788, SE = 

0.116). The strong-to-weak ratios were 1.089 and 1.639 for mixed and pure lists, 

respectively, yielding a negative list-strength effect (Rr = 0.665). A 2 (strength: weak vs. 

strong) × 2 (list type: pure vs. mixed) repeated-measures analysis of variance produced a 

main effect of strength, F(1, 24) = 28.260, p < .001, ηg
2
 = .064, with discrimination better 

for strong items (M = 1.144, SE = 0.092) than weak items (M = 0.852, SE = 0.098). The 

main effect of list type was not significant, F(1, 24) = 0.790, p = .383, ηg
2
 = .005. The 

interaction between strength and list type was significant, F(1, 24) = 5.728, p = .025, ηg
2
 

= .034, supporting the reliability of the negative Rr. 

 Planned contrasts compared weak- and strong-item performance in mixed and 

pure lists. Pure-strong performance was better than mixed-strong performance, although 

this result did not reach the adopted significance level, t(24) = 2.043, p = .052, d = 0.407. 

The discrimination advantage for pure-weak items over mixed-weak items was not 

significant, t(24) = 1.158, p = .258, d = 0.232. 
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 I next conditionalized performance on list half, thereby deconfounding test 

position and list type. Second-half pure-strong items (M = 1.163, SE = 0.139) were better 

recognized than mixed-strong items, but mixed-weak items were better recognized than 

first-half pure-weak items (M = 0.814, SE = 0.141). The strong-to-weak ratios were 1.089 

and 1.427 for mixed and pure lists, respectively, yielding a negative list-strength effect 

(Rr = 0.763). A 2 (strength: weak vs. strong) × 2 (list type: pure vs. mixed) repeated-

measures analysis of variance produced a main effect of strength, F(1, 24) = 9.009, p = 

.006, ηg
2
 = .029, with discrimination better for strong items (M = 1.080, SE = 0.099) than 

weak items (M = 0.865, SE = 0.113). Neither the main effect of list type, F(1, 24) = 

0.080, p = .779, ηg
2
 = .001, nor the interaction between strength and list type, F(1, 24) = 

2.606, p = .120, ηg
2
 = .011, were significant. 

 Planned contrasts produced a nonsignificant advantage for second-half pure-strong 

items over mixed-strong items, t(24) = 1.018, p = .319, d = 0.204, and a nonsignificant 

advantage for mixed-weak items over first-half pure-weak items, t(24) = 0.886, p = .385, 

d = 0.177. 

5.2.4. Discussion 

 The purpose of Experiment 1 was to test a prediction derived from REM.3 (see 

Figures 5.1 and 5.2). According to these simulations, structuring the mixed list such that 

all of the weak items were tested before any of the strong items should have produced a 

positive list-strength effect when performance was conditionalized on list half and a null 

list-strength effect when confounding test position and list type. Although Experiment 1 

produced a null list-strength effect when test position and list type were confounded, this 

is not a surprising finding, given the plethora of null list-strength effects in the literature 
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(Ratcliff et al., 1990, 1992, 1994). More importantly for present purposes, Experiment 1 

failed to find evidence for the simulation predictions; indeed, there was a statistically 

significant negative list-strength effect instead of the predicted positive list-strength 

effect. 

 The results of Experiment 1 are consistent with classic differentiation models like 

REM.1 (Shiffrin & Steyvers, 1997), the differentiation version of SAM (Shiffrin et al., 

1990), and SLIM (McClelland & Chappell, 1998). However, as shown in Chapter 4, 

several findings in the literature—the spacing effect, positive list-strength effects with 

spaced strengthening techniques, and list-strength effects found with the strong-

interference paradigm—render classic differentiation models untenable. 

 The fact that Experiment 1 produced a significant negative list-strength effect is 

also inconsistent with BCDMEM (Dennis & Humphreys, 2001) and the continuous-

memory version of TODAM (Murdock & Kahana, 1993a, 1993b). This is because both of 

these models predict null list-strength effects rather than negative list-strength effects. 

 Interestingly, the results of Experiment 1 are consistent with a free-recall-based 

output-interference account (Tulving & Hastie, 1972; Wixted et al., 1997). According to 

this account, the list-strength effect occurs because subjects recall strong items earlier 

than weak items on mixed lists, thereby subjecting mixed-weak items to more output 

interference than pure-weak items. In Experiment 2, I more directly tested the output-

interference account by testing strong items before weak items on the mixed list. 

 In addition to testing the output-interference account, Experiment 2 offers a direct 

test of the REM.3 simulations presented in Figures 5.3 and 5.4. REM.3 predicts null list-
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strength effects when strong items are tested before weak items, regardless of analysis 

method (i.e., confounding or unconfounding test position and list type). 

5.3. Experiment 2 

5.3.1. Method 

 5.3.1.1. Subjects. Twenty-five Memorial University of Newfoundland students 

participated in exchange for course credit or a $10.00 honourarium. Computer error led to 

the loss of three subjects’ data, resulting in a sample size of 22. 

 5.3.1.2.Materials and procedure. Experiment 2 was identical to Experiment 1, 

save that the first 42 targets from the study list were tested in the first half of the test list, 

and the last 42 targets from the study list were tested in the second half of the test list. 

This meant that, for mixed lists, strong items were tested before weak items. 

5.3.2. Results 

 Across the experimental session, subjects saw an average of 112.727 (SE = 9.905, 

range: 52-224) math problems. Performance was high, with a mean of 94.700% (SE = 

1.234) answered correctly. 

 Mean hit and false-alarm rates are reported in Table 5.3, and mean d′ is reported in 

Table 5.4. 

 I first analyzed results without regard to test position. Inspection of the means 

shows that mixed-strong items (M = 1.437, SE = 0.131) were better recognized than pure-

strong items (M = 1.137, SE = 0.125), but that pure-weak items (M = 0.985, SE = 0.143) 

were better recognized than mixed-weak items (M = 0.628, SE = 0.113). The strong-to-

weak ratios were 2.288 and 1.154, respectively for mixed and pure lists, yielding a 

positive list-strength effect (Rr = 1.983). A 2 (strength: weak vs. strong) × 2 (list type: 
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pure vs. mixed) repeated-measures analysis of variance produced a main effect of 

strength, F(1, 21) = 24.967, p < .001, ηg
2
 = .143, with discrimination better for strong 

items (M = 1.287, SE = 0.106) than weak items (M = 0.806, SE = 0.095). The main effect 

of list type was not significant, F(1, 21) = 0.043, p = .838, ηg
2
 = .001. The interaction 

between strength and list type was significant, F(1, 21) = 17.002, p < .001, ηg
2
 = .072, 

supporting the reliability of the Rr. 

 Planned contrasts compared weak- and strong-item performance in mixed and 

pure lists. Performance was significantly better for mixed-strong items than pure-strong 

items, t(21) = 2.100, p = .048, d = 0.448. There was also an advantage for pure-weak 

items over mixed-weak items, although this advantage did not reach the adopted 

significance level, t(21) = 2.058, p = .052, d = 0.439. 

 I next analyzed d′ conditionalized on list half. Inspection of the means shows that 

mixed-strong items were better recognized than first-half pure-strong items (M = 1.277, 

SE = 0.163), but that performance was better for second-half pure-weak items (M = 0.874, 

SE = 0.159) than mixed-weak items. The strong-to-weak ratios were 2.288 and 1.465 for 

mixed and pure lists, respectively, yielding a positive list-strength effect (Rr = 1.562). A 2 

(strength: weak vs. strong) × 2 (list type: pure vs. mixed) repeated-measures analysis of 

variance produced a main effect of strength, F(1, 21) = 25.476, p < .001, ηg
2
 = .177, with 

discrimination better for strong items (M = 1.357, SE = 0.116) than weak items (M = 

0.750, SE = 0.109). The main effect of list type was not significant, F(1, 21) = 0.072, p = 

.790, ηg
2
 = .001. The interaction between strength and list type was significant, F(1, 21) = 

6.051, p = .023, ηg
2
 = .023, supporting the reliability of the Rr. 
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 Planned contrasts compared weak- and strong-item performance across mixed and 

pure lists. There was a nonsignificant advantage for mixed-strong items over pure-strong 

items, t(21) = 0.883, p = .387, d = 0.188. There was also a nonsignificant advantage for 

pure-weak items over mixed-weak items, t(21) = 1.448, p = .163, d = 0.308. 

5.3.3. Discussion 

 Experiment 2 was designed to test contrasting predictions from REM.3 and the 

output-interference account of the list-strength effect. According to REM.3, testing strong 

items before weak items on the mixed list should produce a null list-strength effect. In 

contrast, according to the output-interference account, testing strong items before weak 

items should produce a positive list-strength effect. The results of Experiment 2 clearly 

support the output-interference account: Regardless of analysis method, there was a 

significant, positive list-strength effect as measured by the Rr. 

 Combined, the results of Experiments 1 and 2 provide support for the output-

interference account and contradict predictions from REM.3. I discuss the implications of 

these findings in more detail in Chapter 6. First, however, I wanted to verify that my 

stimuli could produce a typical null list-strength effect using the standard mixed-pure 

paradigm, wherein test lists are randomized without regard to study position or item 

strength. 

5.4. Experiment 3 

5.4.1. Method 

 5.4.1.1. Subjects. Twenty-five Memorial University of Newfoundland students 

participated in exchange for course credit or a $10.00 honourarium. 



REM.3 113 

 

 5.4.1.2. Materials and procedure. Experiment 3 was identical to Experiments 1 

and 2, save that test lists were randomized as in the standard mixed-pure paradigm 

(Ratcliff et al., 1990). This meant that, unlike Experiments 1 and 2, the distribution of 

targets and distractors could differ between list halves (i.e., there was no longer a 

guarantee that the first and second halves of the test list contain 42 targets and 42 

distractors). 

5.4.2. Results 

 Across the experimental session, subjects saw an average of 107.720 (SE = 8.084, 

range: 40-222) math problems. Performance was high, with a mean of 93.767% (SE = 

1.128) answered correctly. 

 Mean hit and false-alarm rates are reported in Table 5.5, and mean d′ is reported in 

Table 5.6. Note that, because mixed-weak and mixed-strong items were not blocked at 

test, the same false-alarm rate is used to compute d′ for these conditions. Although 

separate false-alarm rates is preferable, a common false-alarm rate for mixed-strong and 

mixed-weak items is standard in the list-strength literature (e.g., Ratcliff et al., 1990). 

 Because test lists were randomized, there is no way to control for test position. 

Therefore, I performed a single analysis using the entirety of the pure lists. Inspection of 

the means shows that mixed-strong items (M = 1.108, SE = 0.139) were better recognized 

than pure-strong items (M = 1.041, SE = 0.138), and that mixed-weak items (M = 0.746, 

SE = 0.113) were recognized at the same rate as pure-weak items (M = 0.746, SE = 

0.111). The strong-to-weak ratios were 1.484 and 1.396 in mixed and pure lists, 

respectively, yielding a slightly positive list-strength effect (Rr = 1.063). A 2 (strength: 

weak vs. strong) × 2 (list type: pure vs. mixed) repeated-measures analysis of variance 
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produced a main effect of strength, F(1, 24) = 21.907, p < .001, ηg
2
 = .066, with 

discrimination better for strong items (M = 1.074, SE = 0.122) than weak items (M = 

0.746, SE = 0.101). Neither the main effect of list type, F(1, 24) = 0.126, p = .726, ηg
2
 = 

.001, nor the interaction between strength and list type, F(1, 24) = 0.262, p = .614, ηg
2
 = 

.001, were significant. 

 Planned contrasts compared performance on strong and weak items across list 

type. Mixed-strong items had a nonsignificant advantage over pure-strong items, t(24) = 

0.511, p = .614, d = 0.102, and mixed-weak items had a nonsignificant advantage over 

pure-weak items, t(24) = 0.007, p = .995, d = 0.001. 

5.4.3. Discussion 

 Experiment 3 had a straightforward purpose: to verify that the stimuli used in 

Experiments 1 and 2 would produce a standard list-strength effect when test lists were 

randomized. Although the list-strength effect was slightly positive, neither the interaction 

between strength and list type, nor the pairwise comparisons across list type, produced 

evidence that the positive Rr was reliable. Notably, the fact that the list-strength effect 

was slightly positive is consistent with the massed/spaced discrepancy documented in 

Chapter 4 (see Table 4.1). Using a spaced strengthening technique, Experiment 3 

produced a slightly positive list-strength effect rather than the more common negative 

list-strength effect (Ratcliff et al., 1990). 

 In Chapter 6, I consider the theoretical implications of the REM.3 simulations 

presented in Chapter 4 and the experimental findings presented in this chapter.  
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Chapter 6: General Discussion 

6.1. Summary of Findings 

 The REM model—introduced by Shiffrin and Steyvers (1997)—has provided an 

account of a wide variety of memory phenomena, ranging from the word-frequency 

mirror effect (Malmberg et al., 2004) to implicit-memory phenomena (Schooler et al., 

2001). A simplifying assumption in most versions of REM is that item strengthening 

always accumulates in a single image. Although this simplification drastically reduces the 

complexity of the simulations, it renders REM unable to predict a number of important 

phenomena, including the spacing effect (e.g., Strong, 1916), slightly positive list-

strength effects with spaced strengthening (e.g., Ratcliff et al., 1990, Experiment 5), and 

positive list-strength effects observed with the strong-interference paradigm (e.g., 

Norman, 2002). In Chapter 4, I demonstrated that a REM version Shiffrin and Steyvers 

termed REM.3—in which repetitions are only superimposed on the originally generated 

image when subjects recognize the repetition as previously studied—can handle these 

phenomena. 

 In Chapter 5, I combined REM.3 with Criss et al.’s (2011) output-interference 

version of REM. This hybrid REM model made an important, novel prediction: namely, 

that testing mixed-weak items before mixed-strong items would produce a list-strength 

effect in recognition. I tested this prediction in Chapter 5, but the results produced a 

statistically significant, negative list-strength effect (i.e., the results were opposite to the 

REM predictions). I tested a second REM prediction: namely, that testing mixed-strong 

items before mixed-weak items would produce a null list-strength effect. However, 

Experiment 2 produced a statistically significant, positive list-strength effect, again 
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inconsistent with REM’s predictions. Finally, in Experiment 3, I verified that, under 

normal testing conditions, the stimuli used in Experiments 1 and 2 produce the standard 

null list-strength effect. 

 Combined, the experimental results contradict the REM.3/output-interference 

hybrid. However, they are consistent with the output-interference account of the list-

strength effect proposed by Tulving and Hastie (1972; see also Wixted et al., 1997). 

 In the remainder of the present chapter, I discuss the theoretical implications of the 

results, both for REM.3 in particular and for accounts of the list-strength effect more 

generally. Although the experimental results are inconsistent with REM, I provide a 

framework based on mnemonic strategies and output interference to account for the 

findings. First, however, I address whether the list-strength effects observed in 

Experiments 1 and 2 stem from methodological artifacts. 

6.2. Methodological Considerations 

 In Chapter 2, I reviewed the literature on the list-length effect. Although the list-

length effect was long considered a hallmark of recognition (Gillund & Shiffrin, 1984; 

Ratcliff & Murdock, 1976; Strong, 1912), Dennis and Humphreys (2001; see also 

Murdock & Kahana, 1993b) suggested that extant list-length effects may have been 

artifactual. In particular, Dennis and Humphreys argued that four factors could have 

artificially produced or inflated previous list-length effects: differences in study-test lag, 

attentional lapse, rehearsal borrowing, and counterproductive context reinstatement. 

Debate still exists concerning the status of the list-length effect in recognition (Annis et 

al., 2015; Criss & Shiffrin, 2004a, 2004b; Dennis & Humphreys, 2001; Dennis et al., 

2008; Kinnell & Dennis, 2011), and I will not attempt to resolve that issue here. 
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Nevertheless, given the similarities between list-length and list-strength manipulations, it 

is worthwhile to consider the degree to which Dennis and Humphreys’ arguments apply 

to the present experiments. 

 Like list-length manipulations, list-strength manipulations encounter issues with 

study-test lag. As average test strength increases from the pure-weak list to the mixed list 

to the pure-strong list, the time required to present the study list increases. Given the 2-s 

presentation rate in the present experiments, the pure-weak list lasted for 176 s, the mixed 

list lasted for 260 s, and the pure-strong list lasted for 344 s. To address the study-test lag, 

I interpolated a distractor task between study and test, with the duration of the distractor 

task increasing as list length decreased. The result was that the time that elapsed between 

the presentation of the first primacy buffer and the end of the math task was equated 

across list types. 

 The math task equated the start of the study and test lists, but it did not fully 

address the issue of the study-test lag. In Experiments 1 and 2, test lists were blocked 

according to study position: In Experiment 1, second-half study items were tested in the 

first block of the test list and first-half study items were tested in the second block of the 

test list; in Experiment 2, first-half study items were tested in the first block of the test list 

and second-half study items were tested in the second block of the test list. For illustrative 

purposes, consider the study-test lag between second-half study items from the pure-weak 

and pure-strong lists in Experiment 1. In the pure-weak list, study of these items began 89 

s after study-phase onset and ended 172 s after study-phase onset. In contrast, study of 

second-half pure-strong items began 173 s after study-phase onset and ended 340 s after 

study-phase onset. Assuming subjects spent an average of 1 s on each test probe, then the 
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midpoint of the first block of the test phase occurred 462 s after the start of the study-test 

cycle. As such, second-half pure-strong items had a recency advantage over second-half 

pure-weak items. 

 The issue of the study-test lag is only problematic if it artificially produced the 

negative list-strength effect in Experiment 1 and/or the positive list-strength effect in 

Experiment 2. For example, although second-half pure-strong items had a recency 

advantage over second-half pure-strong items, comparison of performance on these items 

is not relevant in assessing whether a list-strength effect occurred. Note that, because test 

lists were always equal in length across list types, we need only consider the lag between 

when the items were last studied and the start of the test list (i.e., calculating the lag 

between the last time the item was studied and its likely test position within the specified 

block will produce the same difference between conditions). Since the study phases were 

identical in Experiments 1 and 2, this allows simultaneous consideration of the study-test-

lag concern between experiments. Mixed-strong items were always compared to pure-

strong items from the first half of the study list, and mixed-weak items were always 

compared to pure-weak items from the second half of the study list.
10

 For the strong-item 

comparison, then, the study-test lag was equivalent: Both mixed-strong items and first-

half pure-strong items were studied between 5 and 172 s following study-phase onset. 

There was, however, a recency advantage for mixed-weak items over second-half pure-

weak items. Second-half pure-weak items were studied between 89 and 172 s after study-

                                                 

10. It does not make sense to consider the whole-list analysis because, by definition, that 

analysis confounded study and test position. 
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phase onset, and mixed-weak items were studied from 173 to 256 s after study-phase 

onset. Therefore, the study-test lag was shorter for mixed-weak items than pure-weak 

items, presumably giving them a mnemonic benefit. 

 The recency advantage for mixed-weak items over pure-weak items cannot 

explain the presence of a positive list-strength effect in Experiment 2. In that case, despite 

the recency advantage afforded mixed-weak items, pure-weak items were recognized at a 

higher rate. If anything, then, rather than inflating the list-strength effect, the weak-item 

study-test-lag confound in Experiment 2 may have underestimated it. The confound 

leaves open the possibility, however, that the negative list-strength effect in Experiment 1 

partially stemmed from a recency advantage for mixed-weak items. I find this argument 

unpersuasive for three reasons: First, it is unclear why the mixed-weak items would 

benefit from the recency advantage in Experiment 1 but not Experiment 2. Second, the 

difference in study-test lag cannot explain why strong-item performance went in different 

directions between Experiments 1 and 2. Finally, although it is likely that time-based 

recency plays some role in memory, the argument in the present case relies heavily on the 

decay theory of forgetting (Thorndike, 1913). As reviewed in Chapter 1, there are reasons 

to be skeptical of decay as a mechanism of forgetting—generally, it is intervening 

experiences, rather than the mere passage of time, that causes forgetting (e.g., Jenkins & 

Dallenbach, 1924; see McGeoch, 1932a, for an early review). 

 Despite the above rationale, one might reasonably ask why I did not use an 

experimental design that was immune to study-test-lag criticisms. I used the design that I 

did for four reasons. First, Malmberg and Shiffrin (2005) showed that, in free recall, 

spaced strengthening with relatively short lags produced the largest, positive list-strength 
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effects. This type of strengthening cannot be used if study-test lag is controlled. If 

experimenters want to control study-test lag, they need to present all to-be-remembered 

items once in a random order, followed by blocks of strong-item repetitions. This results 

in a substantially longer lag between repetitions than I wanted to use, given Malmberg 

and Shiffrin’s findings. If, for example, I had used that approach, and Experiments 1 and 

2 had both yielded positive list-strength effects, a plausible interpretation of the results 

would have been that the lag between repetitions was too long for single-image storage. 

 The second reason I chose to ignore the study-test lag is that, in studies that have 

controlled this aspect of the mixed-pure paradigm, the same pattern of results is observed 

as when it is ignored. Osth et al. (2014) and Osth, Fox, et al. (2018) reported null list-

strength effects when study-test lag was controlled, although it should be noted that none 

of their experiments included a pure-strong list. 

 The third reason to structure the study lists in the way that I did concerns another 

confound noted by Dennis and Humphreys (2001): rehearsal borrowing. When the null 

list-strength effect was first documented (Ratcliff et al., 1990), researchers wondered 

whether rehearsal borrowing was contributing to the result—that is, were subjects on 

mixed lists using strong-item presentations to rehearse weak-item presentations? If this 

occurred, it could mask the presence of a list-strength effect. The simplest way to avoid 

this concern is to present all of the strong items before any weak items are presented. In 

this way, subjects cannot rehearse weak items during strong-item presentations, since 

strong-item presentations end before any weak items have been studied. 

 The final reason I did not implement study-test-lag controls is that I wanted to 

remain as consistent as possible with traditional list-strength experiments. Although 
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Malmberg and Shiffrin (2005) equated the start of the study and test lists by increasing 

the duration of their distractor task for shorter lists, they did not consider study position. 

Indeed, in early list-strength experiments (Murnane & Shiffrin, 1991a, 1991b; Ratcliff et 

al., 1990, 1992, 1994; Yonelinas et al., 1992), study-test lag was ignored entirely; if a 

distractor task was interpolated between study and test, its duration was the same across 

list types. 

 Before concluding my discussion of study-test lag, it is worth emphasizing one 

final point: Had I controlled study-test lag and found positive list-strength effects, two 

methodological explanations would have become plausible. First, one could argue that the 

use of a long repetition lag rendered subjects unable to identify repeated items as 

previously studied. Second, controlling study-test lag would have made my design far 

more similar to the strong-interference paradigm than the mixed-pure paradigm. We 

already know that the strong-interference paradigm produces a positive list-strength effect 

(Norman, 1999, 2002), so finding one with a similar procedure would not have been 

surprising. In balance, then, the benefits of ignoring study-test lag outweighed the 

disadvantages. 

 I addressed rehearsal borrowing above, but what about attentional lapse? The 

argument for attentional lapse is that the greater attentional demands imposed by longer 

lists reduces subjects’ focus, thereby decreasing test performance (Henmon, 1917; 

Underwood, 1978). Although attentional lapse is persuasive in the case of the list-length 

effect, its relevance to the list-strength effect is less clear. If we accept the premise that 

longer study lists reduce subjects’ attention, then we would expect encoding to suffer for 

mixed-weak items and second-half pure-strong items, since these items were studied 



REM.3 122 

 

following 86 study trials (two primacy buffers and 42 twice-presented targets). Yet, in 

Experiment 1, mixed-weak items were better recognized than second-half pure-weak 

items, which followed only 44 study items (two primacy buffers and 42 once-presented 

targets). From an attentional-lapse perspective, we would also expect second-half pure-

strong items to be more poorly recognized than first-half pure-strong items. Numerically, 

there is support for this idea: d´ was higher for first-half pure-strong items (M = 1.277, SE 

= 0.163) than second-half pure-strong items (M = 1.106, SE = 0.137), but this difference 

was not significant, t(21) = 1.271, p = .218, d = 0.271. So, there may have been a slight 

effect of attentional lapse on the pure-strong list. Yet, since first-half pure-strong items 

were compared to mixed-strong items, this attentional lapse cannot have contributed to 

the list-strength effect. 

 Dennis and Humphreys’ (2001) final confound concerns context reinstatement. In 

list-length experiments, context reinstatement poses a problem in the retroactive design, 

wherein start-of-list items from the long list are tested but end-of-list items are not. 

Following the distractor task, if subjects try to reinstate study context, it is easier to 

reinstate end-of-study context than start-of-study context, since end-of-study context will 

be more similar to start-of-test context than start-of-study context. So, a strategy that 

appears intuitively reasonable is actually counterproductive. While it is conceivable that 

this affected performance in Experiment 2—where test lists began with start-of-study 

targets—it should have affected performance equally across lists. In other words, because 

test lists were blocked according to study block, context reinstatement is not a viable 

interpretation of the results. 

6.3. Theoretical Considerations 
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 In this section, I attempt to square the results from Experiments 1 and 2 with 

extant accounts of the list-strength effect. To foreshadow, no account is capable of 

explaining the findings. Therefore, I conclude by describing an account that appeals to 

output interference and subjects’ mnemonic strategies. 

6.3.1. Differentiation 

Classic differentiation models include the differentiation version of SAM (Shiffrin 

et al., 1990), REM (Shiffrin & Steyvers, 1990; although REM.3 is an exception), and 

SLIM (McClelland & Chappell, 1998). In classic differentiation models, differentiation 

occurs automatically: When an earlier studied item is re-presented, the mnemonic trace 

generated on its first presentation is updated, rather than a new trace being formed. 

Classic differentiation accounts necessarily predict a negative list-strength effect in 

recognition, unless some feature of the experiment disrupts the differentiation process 

(e.g., Murnane & Shiffrin, 1991b; Sahakyan & Malmberg, 2018). Consequently, classic 

differentiation models cannot explain the positive list-strength effect observed in 

Experiment 2. 

 What about more realistic differentiation models? REM.3 (Shiffrin & Steyvers, 

1997; Chapt. 4 of the present work) is a well-specified differentiation model wherein 

single-trace storage is probabilistic rather than automatic. However, REM.3 cannot 

explain the present findings (see Figures 5.1-5.4 in Chapter 5): Indeed, REM.3 predicts 

the opposite pattern—that is, a positive list-strength effect in Experiment 1 and a negative 

list-strength effect in Experiment 2. I have tested several parameter values with REM.3, 

but none have been able to predict the present findings. I will have more to say about 
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REM.3 below; for now, it suffices to say that the present results are inconsistent with both 

classic differentiation models and more complex versions. 

6.3.2. Criterion placement 

According to the criterion-placement account of the list-strength effect (Hirshman, 

1995), recognition does not produce a list-strength effect because subjects calibrate their 

test criteria based on the average strength of the study list. So, response criteria become 

increasingly conservative from the pure-weak list to the mixed list to the pure-strong list. 

The criterion-placement account, then, cannot explain the contrasting results from 

Experiments 1 and 2. 

 Rather than setting response criteria according to study-list strength, is it possible 

that subjects set their response criterion according to the perceived difficulty of the first 

few test items? Using mixed-strength lists, Verde and Rotello (2007) demonstrated that 

this is the case—that is, subjects use a more conservative response criterion when strong 

items are tested first and a more liberal response criterion when weak items are tested 

first. What implications does this have for Experiments 1 and 2? The mixed list in 

Experiment 1 began with weak items whereas the mixed list in Experiment 2 began with 

strong items. This implies that subjects would have used a more liberal response criterion 

in Experiment 1 than in Experiment 2. Yet, the data do not support this contention: The 

proportion of probes identified as “old” (i.e., hits and false alarms) was actually lower in 

Experiment 1 (M = .490, SE = .025) than Experiment 2 (M = .542, SE = .033), suggesting 

that a slightly more liberal response criterion was used when the first half of the test list 

was more difficult. 
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 In Chapter 3, I described why I believe differentiation accounts provide a more 

parsimonious explanation of the list-strength effect and strength-based mirror effect than 

criterion-placement accounts. Briefly, more conservative responding is a natural outcome 

of differentiation, and thus does not require an appeal to strategic deployment of response 

criteria on the part of subjects. In any case, the present results are inconsistent with the 

criterion-placement account, inasmuch as such an account cannot predict a negative list-

strength effect in Experiment 1 and a positive list-strength effect in Experiment 2. 

6.3.3. The continuous-memory version of TODAM 

Murdock and Kahana (1993a) proposed the continuous-memory version of 

TODAM in response to Shiffrin et al.’s (1990) claim that TODAM could not predict a 

null list-strength effect in recognition. Murdock and Kahana showed that, when simulated 

subjects’ memories were initialized with pre-experimental noise, interference from the 

pre-experimental memories overwhelmed any effect of strong-item interference on the 

mixed list, thereby negating the list-strength effect predicted by simpler versions of 

TODAM. 

 Although the assumption—present in many memory models—that subjects’ 

memories are blank at the beginning of a study list is an obvious simplification, it is 

unclear whether Murdock and Kahana’s (1993a) model provides an adequate solution. 

Pre-experimental memories are presumably isolated from experimental memories by 

virtue of the fact that they occurred in different contexts. Most people do not routinely 

participate in memory experiments, and therefore one would expect that the cue 

corresponding to a current experiment would be fairly diagnostic. In any case, the 
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continuous-memory version of TODAM cannot explain the negative list-strength effect 

from Experiment 1 and the positive list-strength effect from Experiment 2. 

6.3.4. BCDMEM 

Dennis and Humphreys’ (2001) BCDMEM makes the provocative claim that 

recognition is unaffected by interitem interference. Instead, BCDMEM assumes that all 

forgetting in a recognition test is either a product of poor encoding or interference from 

previous contexts in which the probes have been encountered. Because BCDMEM 

excludes interitem interference, it easily predicts a null list-strength effect in recognition. 

 It should also be noted that BCDMEM can account for output interference—a 

phenomenon on which the present experiments were based. Although interitem 

interference does not affect memory, BCDMEM includes context drift (Estes, 1955a, 

1955b; Mensink & Raaijmakers, 1988, 1989), such that context becomes increasingly 

different as time elapses. So, in BCDMEM, discrimination declines as subjects move 

through a recognition test list because, with every test probe, the study context moves 

further into the past, thus becoming less similar to present context (see Osth & Dennis, 

2015; Osth, Jansson, et al., 2018). However, although this mechanism is consistent with 

the positive list-strength effect in Experiment 2 when test position was ignored, it cannot 

explain the presence of a list-strength effect when performance was conditionalized on 

list half. Notice that, by conditionalizing performance on list half, comparisons between 

the mixed and pure lists involve items for which study context is equally distant in the 

past. Therefore, BCDMEM cannot explain the present findings. 

6.3.5. Insufficient strengthening 
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Norman (1999, 2002) argued that experimenters’ emphasis on keeping strong-item 

performance below ceiling was obscuring the list-strength effect. He therefore 

strengthened strong items to ceiling and tested only weak items. As reviewed earlier, this 

generally yields a positive list-strength effect (Diana & Reder, 2005; Norman, 1999, 

2002; Norman et al., 2008; but see Osth, Fox, et al., 2018). 

 The present experiments do not directly assess the merit of the insufficient-

strengthening account, inasmuch as I did not manipulate the degree of strengthening (i.e., 

all experiments used a 2:1 strengthening ratio). Yet, what is clear from the present 

findings is that, although strengthening to ceiling is sufficient to produce a positive list-

strength effect, it is not necessary. In Experiment 2, I found a positive list-strength effect 

when strong items were only presented twice; this is a much less potent strength 

manipulation than typical list-strength experiments have used, where a 3:1 or 4:1 strength 

ratio is far more common (Malmberg & Shiffrin, 2005; Ratcliff et al., 1990). 

6.3.6. Dual-process accounts 

Dual-process accounts of the list-strength effect (Diana & Reder, 2003; Norman, 

1999, 2002; Norman & O’Reilly, 2003; Reder et al., 2000) contend that the positive list-

strength effect is an inherently recollection-based phenomenon, and thus it can only be 

detected in recognition when contributions from familiarity are minimized. I did not 

include the remember/know procedure (Tulving, 1985) in my experiments, and thus I 

cannot speculate on the degree to which familiarity and recollection contributed to the 

results. Yet, the fact that testing strong items before weak items produced a positive list-

strength effect is broadly consistent with the notion that the list-strength effect is recall-

based. In free recall, subjects generally output strong items earlier than weak items (Wike 
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& Wike, 1970; Wixted et al., 1997). I will have more to say about this in the following 

Section. 

6.4. A Strategy-Disruption Account of the List-Strength Effect 

 Upon first documenting the list-strength effect in free recall, Tulving and Hastie 

(1972) described it as a puzzling finding, saying that it “appears to violate both common 

sense and current theoretical notions” (p. 302). The present results seem to return us to 

this early position, given that no extant theoretical account is capable of predicting the 

pattern. Although an overarching explanation of list-strength effects in recognition 

remains elusive, the free-recall list-strength effect is well understood. It therefore may be 

informative to consider the dominant account of the list-strength effect in free recall when 

searching for a recognition explanation. 

6.4.1. The list-strength effect in free recall 

As described in Chapter 3, positive list-strength effects are generally found in free 

recall (Malmberg & Shiffrin, 2005; Tulving & Hastie, 1972). The free-recall list-strength 

effect is often explained in terms of sampling and recovery probabilities. Here, I use the 

SAM model (Raaijmakers & Shiffrin, 1980, 1981) to illustrate the list-strength effect in 

free recall. Note that, although REM has replaced the recognition version of SAM 

(Gillund & Shiffrin, 1984), SAM and REM are nearly indistinguishable in free recall (see, 

e.g., Malmberg & Shiffrin, 2005). The only difference has to do with complexity—for 

example, SAM represents items as single numbers, whereas REM uses feature vectors. 

 In SAM, studied items are first placed in the short-term store, where they are 

rehearsed along with other recently studied items. When the short-term store reaches 

capacity, a random item is transferred to the long-term store. At test, images are sampled 
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with either the general context cue or with a context-plus-item cue, where the item is a 

previously recalled target. The probability of sampling a given image is proportional to 

the associative strength between the cue and image, weighed against the associative 

strength between the cue and all images. The associative strength between an item and 

context increases linearly while the item is rehearsed in the short-term store, and the 

associative strength between two items increases linearly while the items are rehearsed 

together in the short-term store. Because strong items are presented multiple times, the 

context cue will be more strongly associated to strong images than weak images. 

Similarly, assuming a spaced strengthening technique was used, strong items will be 

associatively connected to a greater number of images than weak items. 

 When a cue samples an image, it must be recovered. The sampled image can only 

be output if recovery is successful. The probability of successful recovery increases as the 

associative strength between the cue and image increases. 

 For the sake of completeness, I next briefly describe SAM’s parameters as 

presented by Raaijmakers and Shiffrin (1980). There are four strength parameters: a, b, c, 

and d. These are, respectively, the context-to-image strength parameter, the image-to-

image strength parameter, the self strength parameter, and the residual strength parameter. 

The context-to-image strength parameter represents the rate at which strength between the 

context cue and image increases while the image is in the short-term store, the image-to-

image strength parameter represents the rate at which the associative strength between 

two images increases while they occupy the short-term store together, the self strength 

parameter represents the degree to which an image’s associative strength to itself 

increases while the image is in the short-term store, and the residual strength parameter 
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represents the associative strength between images that did not occupy the short-term 

store together. Of these, the self strength parameter is probably the most obscure: Note, 

however, that because sampling with a cue in SAM occurs with replacement, this leaves 

open the possibility that using a recently recalled item as a cue will result in that cue 

sampling its own image. 

 In SAM, sampling an image with a cue causes the associative strength between the 

cue and image to increase, a process Raaijmakers and Shiffrin (1980) termed 

incrementing. SAM has three incrementing parameters: e, f, and g. These are, 

respectively, the context-to-image incrementing parameter, the image-to-image 

incrementing parameter, and the self incrementing parameter. The context-to-image 

incrementing parameter represents the degree to which the associative strength between 

context and an image increases when an image is retrieved, the image-to-image 

incrementing parameter represents the degree to which the associative strength between 

two images increases when one image is used to retrieve another, and the self 

incrementing parameter represents the degree to which the associative strength between 

an image and itself increases when a cue retrieves its own image. 

 Raaijmakers and Shiffrin (1980) included two sampling parameters: kmax and lmax. 

The kmax parameter represents the number of failed sampling attempts that simulated 

subjects make before terminating the search. In SAM, because all cues have some degree 

of associative strength to all images in memory, if search is permitted to continue 

indefinitely, then everything in memory will eventually be sampled (although not 

necessarily recovered). The lmax parameter represents the number of sampling attempts 
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that can be made with a given item cue before the simulated subject abandons the cue and 

returns to the context cue. 

 The last two parameters in SAM are t and r. The t parameter represents the 

number of time units for which each item is presented. Note that the values of the a, b, 

and c parameters reflect the amount of associative strengthening that occurs per unit of 

study time.
11

 The r parameter represents the capacity of the short-term store. As items are 

studied, they are added one by one to the short-term store. When r images are being 

rehearsed in the short-term store, studying a new item causes a random item in the short-

term store to be dropped. This discontinues the accumulation of associative strength 

between the dropped image and context, and between the dropped image and the other 

images in the short-term store. 

 Why does SAM predict a positive list-strength effect? I begin by considering why 

strong items have a mnemonic advantage over weak items on pure lists. Consider that, 

although the average associative strength between the context cue and a given image is 

higher on the pure-strong list than the pure-weak list, the probability of sampling any 

given image is, on average, the same. Let S denote the number of times strong items are 

presented, W denote the number of times weak items are presented, and n denote the total 

number of items on the study list. If we make the simplifying assumption that all items 

spend the same amount of time in the short-term store (i.e., that all items are encoded 

                                                 

11. Like the t1 and t2 parameters from REM, the t parameter in SAM is superfluous. To 

remove it, one would simply have to multiply a, b, and c by t. 
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equally well), then the probability of sampling a pure-weak item’s image—denoted iPW—

with the general context cue is: 

p(iPW) = W/(Wn) 

Similarly, the probability of sampling a pure-strong item’s image—denoted iPS—is: 

p(iPS) = S/(Sn) 

Therefore, p(iPW) = p(iPS). As a result, the advantage of pure-strong items over pure-

weak items is a function of the recovery process, not the sampling process. On pure-

strong lists, the probability of successfully outputting an item, given that it has been 

sampled, is higher than on a pure-weak list. 

 On the mixed list, the strong-item advantage is a function of both sampling and 

recovery. Using the same simplifying assumptions used for the pure lists, the probability 

of the general context cue sampling a mixed-weak item’s image—denoted iMW—is: 

p(iMW) = W/(W(n/2)+S(n/2)) 

and the probability of the general context cue sampling a mixed-strong item’s 

image—denoted iMS—is: 

p(iMS) = S/(W(n/2)+S(n/2)) 

Since S > W, p(iMS) > p(iMW), and p(iMW) < p(iPW) = p(iPS) < p(iMS). So, in SAM, the 

list-strength effect is an occlusion phenomenon: the mixed-strong items block access to 

the mixed-weak items, thereby enhancing strong-item memory on mixed lists and 

depressing weak-item memory on mixed lists, relative to pure lists. 

 I confirmed the above predictions by simulating the mixed-pure paradigm in 

SAM. Ten thousand simulated subjects performed free recall of 28-item lists. On the 

pure-weak list, all items were presented once; on the pure-strong list, all items were 
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presented twice; and on the mixed list, half of the items were presented once and half 

were presented twice. 

 Simulations used the following parameter values, consistent with those used in 

most of Raaijmakers and Shiffrin’s (1980, 1981) simulations: t = 2, a = 0.1, b = 0.1, c = 

0.1, d = 0.02, e = 0.7, f = 0.7, g = 0.7, r = 4, kmax = 30, and lmax = 3. The simulations 

produced a positive list-strength effect: The proportion of mixed-strong items recalled (M 

= .515) was higher than the proportion of pure-strong items recalled (M = .442), but the 

proportion of pure-weak items recalled (M = .301) was higher than the proportion of 

mixed-weak items recalled (M = .232). The strong-to-weak ratios were 2.220 and 1.468 

for mixed and pure lists, respectively, yielding a positive list-strength effect (Rr = 1.512). 

 SAM provides a straightforward account of the free-recall list-strength effect: 

Because of the sampling bias afforded mixed-strong items, they tend to be output earlier 

in the test phase than mixed-weak items or pure-strong items. At the same time, mixed-

weak items tend to be output later in the test phase than other items. To verify this, I made 

a slight modification to Raaijmakers and Shiffrin’s (1980) original SAM algorithm. In 

SAM, one way to operationalize output latency is by the total number of sampling 

attempts made prior to an image’s recovery. If we assume that the number of sampling 

attempts is relatively uniform across time, then this provides a useful measure of response 

latency. I therefore eliminated the stopping parameter, kmax; instead, simulated subjects 

made sampling attempts until all items were recalled or until a maximum number of 

sampling attempts were made (i.e., until a specified amount of time had elapsed, where 

time is operationalized in terms of the number of sampling attempts since test-phase 

onset). I will term this new parameter tmax. Although kmax and tmax appear similar, there are 
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two important differences: First, the tmax counter is incremented even when a sampling 

attempt results in the recovery of a new item; conversely, the kmax counter is only 

incremented when a sampling attempt fails. Second, the tmax parameter is set to an 

unrealistically high value, at least for comparison with human subjects. The point is to 

measure the boundaries of the SAM model, not to make comparisons to real data. Notice 

that, given a sufficiently large value for tmax, there should be no missing data in the 

simulation results—that is, all subjects should recall at least one mixed-weak item, even if 

doing so requires an unrealistically large number of sampling attempts. 

 This second simulation was identical to the previous simulation, save that kmax was 

replaced with tmax, which was set to 1000. This meant that a simulated subject’s test phase 

ended when 1000 sampling attempts had been made or when all 28 targets had been 

recovered. The results are displayed in Table 6.1. Results were consistent with the 

sampling interpretation described above: The average output latency was earlier for 

mixed-strong items (M = 258.60, MDN = 39) than pure-strong items (M = 282.95, MDN = 

55), but the average output latency was earlier for pure-weak items (M = 516.18, MDN = 

551) than mixed-weak items (M = 546.16, MDN = 617.5). 

 So, in SAM, two related mechanisms account for the free-recall list-strength 

effect: First, mixed-strong items have a privileged output position relative to pure-strong 

items—that is, strong items are recalled earlier in the test phase in mixed lists than pure 

lists. Second, because of their later output position, mixed-weak items are subjected to a 

greater degree of output interference than pure-weak items. In SAM, incrementing 

produces output interference, since increasing the associative strength between a cue and 
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an image reduces the probability of sampling a different image with that cue on 

subsequent sampling attempts. 

6.4.2. A strategy-disruption account of the list-strength effect 

Free recall reliably produces a positive list-strength effect (Fritzen, 1975; Hastie, 

1975; Malmberg & Shiffrin, 2005; Mueller & Brown, 1977; Sahakyan et al., 2014; 

Tulving & Hastie, 1972; Wixted et al., 1997). Although Tulving and Hastie considered it 

a puzzling phenomenon when first documented, it has since been effectively explained by 

sampling/recovery models of memory such as SAM. Following study of a mixed list, 

subjects tend to output strong items early and weak items late (Wike & Wike, 1970; 

Wixted et al., 1997). This gives mixed-strong items a sampling advantage over pure-

strong items, and mixed-weak items an output-interference disadvantage compared to 

pure-weak items. 

 Other than free recall, only one paradigm produces a positive list-strength effect: 

A-B/A-C cued recall (Bäuml, 1997; Verde, 2009). By A-B/A-C cued recall, I mean a cued-

recall experiment in which each cue subsumes several targets (e.g., “walnut-scissors”, 

“walnut-envelope”, “walnut-diamond”, “highway-icicle”, “highway-farm”, etc.). This can 

be contrasted with A-B/C-D cued recall, in which each cue subsumes a single target (e.g., 

“triangle-chicken”, “sand-helicopter”, “string-island”, etc.). Importantly, although A-B/A-

C cued recall produces a positive list-strength effect (Bäuml, 1997; Verde, 2009), A-B/C-

D cued recall produces a null list-strength effect (Wilson & Criss, 2017). 

 The explanation for the A-B/A-C cued-recall list-strength effect is identical to that 

used for free recall: Compared to pure cues (i.e., cues subsuming all equally strengthened 
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targets), mixed cues yield earlier output of strong targets than weak targets. In SAM 

terms, the A cue simply takes the place of the general context cue used in free recall. 

 Paradigms that produce a null or negative list-strength effect include A-B/C-D 

cued recall (Wilson & Criss, 2017), two-alternative forced-choice recognition (Yonelinas 

et al., 1992), and old/new recognition (Ratcliff et al., 1990). An important difference 

between the paradigms producing a positive list-strength effect and the paradigms 

producing a null or negative list-strength effect is that, in the former, subjects control 

output order, but, in the latter, experimenters control output order. When left up to 

experimenters, output order is generally randomized—this means that, in mixed-strength 

lists, weak and strong items are equally likely to appear early in the test phase. In 

contrast, when subjects control output order of mixed lists, strong items appear earlier 

than weak items (Wike & Wike, 1970; Wixted et al., 1997). 

 To what degree does changing the output order that subjects would have otherwise 

used matter? A phenomenon known as part-list cuing suggests that interfering with a 

subject’s mnemonic strategy can have detrimental effects. In a part-list-cuing experiment, 

subjects study a list of words and are then tested using free recall. In one condition, the 

experimenter provides subjects with a subset of the items from the study list, allegedly to 

aid their recall. In the control condition, subjects complete the free-recall test without 

cues. The standard finding is that the provision of cues harms memory, with the 

proportion of items recalled higher in the uncued condition compared to the cued 

condition (Aslan, Bäuml, & Grundgeiger, 2007; Andrés & Howard, 2011; Basden, 

Basden, Church, & Beaupre, 1991; J. Brown, 1968; Peynırcıoğlu, 1989; Slamecka, 1968; 
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for reviews, see Bovee, Fitz, Yehl, Parrott, & Kelley, 2009; Nickerson, 1984; Roediger & 

Neely, 1982). 

 One dominant account attributes part-list cuing to strategy disruption (Basden, 

Basden, & Stephens, 2002; Basden & Basden, 1995; Basden, Basden, & Galloway, 1977; 

Sloman, Bower, & Rohrer, 1991; Serra & Nairne, 2000). According to the strategy-

disruption account, providing subjects with cues forces them to modify the mnemonic 

strategy they otherwise would have used. This disruption leads them to adopt a 

suboptimal mnemonic strategy, resulting in poorer recall of the remaining items. Strategy 

disruption is widely accepted as a cause of part-list cuing: Even accounts that rely on 

other mechanisms tend to incorporate a role for strategy disruption (Aslan & Bäuml, 

2007; Bäuml & Aslan, 2006; Cole, Reysen, & Kelley, 2013; Crescentini, Shallice, Del 

Missier, & Macaluso, 2010; Kelley, Parasiuk, Salgado-Benz, & Crocco, 2016). 

 How might strategy disruption affect recognition results from the mixed-pure 

paradigm? From a strategy-disruption account, a subject’s mnemonic strategy should be 

affected on both pure and mixed lists, by virtue of the fact that both types of list 

randomize test order. Yet, there is reason to believe that the degree of disruption will be 

greater on mixed lists than pure lists. There are regularities in how subjects recall items 

from a pure list, such as primacy and recency (Rundus & Atkinson, 1970); by and large, 

however, mnemonic strategies from pure lists will be idiosyncratic across subjects. In 

contrast, although idiosyncrasies will certainly exist from subject to subject, the structure 

of the mixed list is such that we know what strategy, in broad terms, subjects will employ 

if left to their own devices: They will output strong memories prior to weak memories 
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(Bousfield & Barclay, 1950; Bousfield & Sedgewick, 1944; Bousfield et al., 1954, 1956, 

1958; W. Brown, 1915; Wike & Wike, 1970; Wixted et al., 1997). 

 So, according to the strategy-disruption account of the list-strength effect, the list-

strength effect should be positive when the memory test is consistent with subjects’ 

mnemonic strategies, but null or negative when the memory test interferes with subjects’ 

mnemonic strategies. Experiments 1, 2, and 3 provide direct support for this account: 

There was a positive list-strength effect in Experiment 2 in which, crucially, strong items 

were tested before weak items on the mixed list. Conversely, there was a negative list-

strength effect in Experiment 1, where weak items were tested before strong items on the 

mixed list. Finally, Experiment 3 produced a null list-strength effect (i.e., between the 

list-strength effects from Experiments 1 and 2) when test probes were randomized 

without regard to item strength. In strategy-disruption terms, Experiment 1 went out of its 

way to disrupt subjects mnemonic strategies, Experiment 2 went out of its way to remain 

consistent with subjects’ mnemonic strategies, and Experiment 3 ignored subjects’ 

mnemonic strategies altogether. 

 Crucially, the strategy-disruption account I have proposed here is also consistent 

with discrepancies in the literature. In free recall and A-B/A-C cued recall, subjects 

determine output order, and thus are free to utilize any mnemonic strategy they believe 

will be most effective. Both of these paradigms produce positive list-strength effects 

(Bäuml, 1997; Tulving & Hastie, 1972). In contrast, A-B/C-D cued recall and recognition 

randomize test order, thereby interfering with subjects’ mnemonic strategies. Both of 

these paradigms produce null or negative list-strength effects (Ratcliff et al., 1990; 

Wilson & Criss, 2017). Consequently, the strategy-disruption account provides an 
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explanation of the present data specifically, as well as an explanation of data in the 

literature more generally. 

6.5. Final Thoughts 

 Two goals guided the present study: First, I sought to test the viability of REM.3, 

which provides for a more realistic differentiation process than REM.1. Second, I sought 

to test a novel prediction of REM.3. REM.3 was capable of accounting for several 

phenomena for which simpler versions of REM cannot: the spacing effect, negative list-

strength effects with massed strengthening but slightly positive list-strength effects with 

spaced strengthening, and results from the strong-interference paradigm. However, 

REM.3’s predictions regarding output interference in the mixed-pure paradigm were not 

supported. Instead, I proposed a strategy-disruption account of the list-strength effect, 

according to which subjects’ mnemonic strategies are responsible for positive list-strength 

effects. Future work should further investigate the viability of more complex REM 

versions. In addition, the present findings highlight the need to consider mnemonic 

strategies when designing experiments.  
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Tables 

Table 4.1 

Ratio of ratio (Rr) values reported in previous experiments using the mixed-pure 

paradigm. 

Paper Experiment Strengthening Manipulation Rr 

Ratcliff et al. (1990) 1 Massed 0.88 

Ratcliff et al. (1990) 2 Massed 1.10 

Ratcliff et al. (1990) 3 Massed 0.93 

Ratcliff et al. (1990) 4a Massed 0.77 

Ratcliff et al. (1990) 4b Massed 0.80 

Ratcliff et al. (1990) 5a Spaced 1.03 

Ratcliff et al. (1990) 5b Massed 0.89 

Ratcliff et al. (1990) 6a Spaced 1.02 

Ratcliff et al. (1990) 6b Spaced 1.08 

Ratcliff et al. (1990) 6c Spaced 0.97 

Ratcliff et al. (1992) 1 Massed 1.04 

Ratcliff et al. (1992) 2 Spaced 1.21 
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Table 5.1 

Means and standard deviations for hit and false-alarm rates in Experiment 1. 

Probe List type Strength List half Mean Standard error 

target mixed weak first 0.642 0.034 

target mixed strong second 0.668 0.038 

target pure weak first 0.618 0.039 

target pure weak second 0.579 0.039 

target pure strong first 0.761 0.030 

target pure strong second 0.701 0.039 

distractor mixed weak first 0.323 0.027 

distractor mixed strong second 0.326 0.030 

distractor pure weak first 0.342 0.036 

distractor pure weak second 0.310 0.032 

distractor pure strong first 0.275 0.027 

distractor pure strong second 0.310 0.038 
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Table 5.2 

Means and standard errors for d′ for Experiment 1. 

List type Strength Test half Mean Standard error 

mixed weak first 0.915 0.111 

mixed strong second 0.997 0.117 

pure weak first 0.814 0.141 

pure weak second 0.801 0.120 

pure strong first 1.488 0.141 

pure strong second 1.163 0.139 
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Table 5.3 

Means and standard deviations for hit and false-alarm rates in Experiment 2. 

Probe List type Strength List half Mean Standard error 

target mixed strong first 0.826 0.023 

target mixed weak second 0.583 0.043 

target pure strong first 0.761 0.028 

target pure strong second 0.710 0.037 

target pure weak first 0.700 0.033 

target pure weak second 0.628 0.041 

distractor mixed strong first 0.366 0.044 

distractor mixed weak second 0.393 0.048 

distractor pure strong first 0.352 0.040 

distractor pure strong second 0.365 0.046 

distractor pure weak first 0.318 0.036 

distractor pure weak second 0.342 0.040 
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Table 5.4 

Means and standard errors for d′ for Experiment 2. 

List type Strength List half Mean Standard error 

mixed strong first 1.437 0.131 

mixed weak second 0.628 0.113 

pure strong first 1.277 0.163 

pure strong second 1.106 0.137 

pure weak first 1.166 0.158 

pure weak second 0.871 0.159 
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Table 5.5 

Means and standard deviations for hit and false-alarm rtes in Experiment 3. 

Probe List type Strength Mean Standard error 

target mixed strong 0.679 0.034 

target mixed weak 0.557 0.035 

target pure strong 0.653 0.030 

target pure weak 0.563 0.034 

distractor mixed  0.311 0.036 

distractor pure strong 0.283 0.027 

distractor pure weak 0.313 0.038 
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Table 5.6 

Means and standard errors for d′ for Experiment 3. 

List type Strength Mean Standard error 

mixed strong 1.108 0.139 

mixed weak 0.746 0.113 

pure strong 1.041 0.138 

pure weak 0.746 0.111 
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Table 6.1 

Mean and median sampling attempts required for each output position. Simulated subjects 

completed 1000 sampling attempts regardless of outcome. If an item was not retrieved 

after 1000 sampling attempts, 1001 was recorded as its output position. 

 Pure Mixed 

Output  

 

Position 

Weak Strong Weak Strong 

mean median mean median mean median mean median 

1 2.74 2.50 2.14 2.00 8.26 5.00 2.07 1.00 

2 9.06 8.50 6.61 6.50 21.87 15.00 5.17 4.00 

3 17.92 16.50 12.07 12.00 44.68 28.00 9.17 8.00 

4 32.46 28.00 18.49 18.00 91.53 47.00 13.93 13.00 

5 66.90 45.50 26.36 25.50 174.91 75.00 19.83 18.00 

6 168.65 78.00 36.37 35.00 315.77 126.00 28.09 24.00 

7 388.99 165.50 50.46 47.50 506.24 276.00 41.50 33.00 

8 672.63 1001.00 73.66 64.00 698.56 1001.00 71.16 44.00 

9 888.32 1001.00 128.65 90.00 851.67 1001.00 135.67 62.00 

10 977.42 1001.00 270.31 138.50 945.16 1001.00 264.47 92.00 

11 998.57 1001.00 539.28 566.50 987.40 1001.00 463.69 175.00 

12 1000.83 1001.00 825.79 1001.00 998.35 1001.00 695.35 1001.00 

13 1001.00 1001.00 971.78 1001.00 1000.84 1001.00 888.32 1001.00 

14 1001.00 1001.00 999.36 1001.00 1001.00 1001.00 981.95 1001.00 
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Figures 

Figure 4.1 

The figure shows that REM predicts a word-frequency mirror effect (Glanzer & Adams, 

1985, 1990). This is evident in the false-alarm rates: Simulated subjects had a higher 

false-alarm rate to high-frequency words than low-frequency words. The pattern is 

present in hit rates, although the effect is very small and difficult to see in the graph. It 

should be noted, however, that the hit-rate advantage for low-frequency words over high-

frequency words is consistent across simulation runs. The results are based on 10000 

simulated subjects completing recognition tests of 16 targets and 16 distractors, evenly 

divided between low- and high-frequency words. REM parameters were as follows: gl = 

.325, gh = .45, w = 20, u = .28, c = .7, gbase = .4, and criterion = 1. 
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Figure 4.2 

The figure shows that REM predicts a strength-based mirror effect (Stretch & Wixted, 

1998). It is evident in the graph that the hit rate is higher for strong targets than weak 

targets, and that the false-alarm rate is higher for distractors on the weak test list than 

distractors on the strong test list. The results are based on 10000 simulated subjects, each 

of whom completed a weak list and a strong list (25 targets and 25 distractors per list). 

REM parameters were as follows: uweak = .28, ustrong = .4, w = 20, c = .7, gbase = .4, gdraw = 

.35, and criterion = 1. 
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Figure 4.3 

The figure shows that REM predicts a negative list-strength effect in recognition (Ratcliff 

et al., 1990). The graph plots d′ as a function of item strength (weak vs. strong) and list 

type (pure vs. mixed). It is evident that discrimination is stronger for strong items than 

weak items, but that the magnitude of this difference is smaller in mixed lists than pure 

lists. It should be noted that, although the discrimination advantage for pure-strong items 

over mixed-strong items is small and difficult to see in the graph, it is consistent across 

simulation runs. The results are based on 10000 simulated subjects, each of whom 

completed a pure-weak list, a pure-strong list, and a mixed list (24 targets and 24 

distractors per list). REM parameters were as follows: uweak = .28, ustrong = .4, w = 20, 

gdraw = .35, gbase = .4, c = .7, and criterion = 1. 
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Figure 4.4 

The figure shows that REM predicts a list-length effect in recognition (Gillund & 

Shiffrin, 1984; Strong, 1912). The graph plots d′ as a function of list length (10, 20, 30, or 

40 targets). It is evident that performance declines as list length increases. Results are 

based on 40000 simulated subjects, with 10000 in each list-length condition. REM 

parameters were as follows: w = 20, gdraw = .35, gbase = .4, u = .28, c = .7, and criterion = 

1. 
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Figure 4.5 

The graph plots the proportion of superimposition errors as a function of gdraw (.3, .35, .4, 

.45, and .5), list length (2, 4, 8, 16, 32, 64, 128, and 256), and criterionstudy (1, 2, and 3). It 

is evident that the probability of superimposition errors increases with list length and 

gdraw, and decreases as criterionstudy increases. Results are based on 120,000 simulated 

subjects, evenly divided among the cells of the between-subjects design. Other than gdraw 

and criterionstudy, which were varied, REM parameters were as follows: gbase = .4, w = 20, 

c = .7, u1 = .28, u2 = .12. 

 

 

  



REM.3 211 

 

Figure 4.6 

The figure shows that REM.3 predicts a discrimination advantage for spaced over massed 

items (Delaney et al., 2010). The graph plots d′ as a function of strengthening method 

(massed vs. spaced), list length (16, 32, and 64), and criterionstudy (1, 2, and 3). It is 

evident that, regardless of list length, d′ is higher for spaced items than massed items. 

Results are based on 30000 simulated subjects with strengthening method manipulated 

within list (i.e., massed and spaced repetitions on the same list) and list length between 

list. There were 10000 simulated subjects in each of the criterionstudy conditions. REM.3 

parameters were fixed as follows: gdraw = .35, gbase = .4, w = 20, c = .7, u1 = .28, u2 = .12, 

and criteriontest = 1. 
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Figure 4.7 

The graph plots d′ as a function of item strength (weak vs. strong), list type (pure vs. 

mixed), strengthening method (massed vs. spaced), strong item presentations (2, 3, 4, 5, 

and 6), list length (28 vs. 84), and criterionstudy (1, 2, and 3). It is clear that, across values 

of list length, degree of item strengthening, and studycriterion, REM.3 predicts a negative 

list-strength effect with massed strengthening and a positive list-strength effect with 

spaced strengthening. Results are based on 3000 simulated subjects, with simulated 

subjects evenly divided among cells of the design. Of the manipulated factors, list type, 

item strength, and strengthening technique were within-subject factors and the remaining 

were between-subjects factors. REM.3 parameters were set as follows: gbase = .4, gdraw = 

.35, w = 20, c = .7, u1 = .28, u2 = .12, and criteriontest = 1. 
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Figure 4.8 

The graph plots Rr as a function of item strength (weak vs. strong), list type (pure vs. 

mixed), strengthening method (massed vs. spaced), strong item presentations (2, 3, 4, 5, 

and 6), list length (28 vs. 84), and criterionstudy (1, 2, and 3). It is clear that, across values 

of list length, degree of item strengthening, and studycriterion, REM.3 predicts a negative 

list-strength effect with massed strengthening and a positive list-strength effect with 

spaced strengthening. Results are based on 30000 simulated subjects, with simulated 

subjects evenly divided among cells of the design. Of the manipulated factors, list type, 

item strength, and strengthening technique were within-subject factors and the remaining 

were between-subjects factors. REM.3 parameters were set as follows: gbase = .4, gdraw = 

.35, w = 20, c = .7, u1 = .28, u2 = .12, and criteriontest = 1. 
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Figure 4.9 

The graph plots hit rates, false-alarm rates, and d´ as a function of ustrong (.4, .6, and .8) 

and list type (weak vs. strong interference). It is evident that, consistent with Norman 

(2002, Experiment 1), REM.1 predicts a concordant effect, with higher hit and false-

alarm rates on the weak-interference list than the strong-interference list. However, 

REM.1 cannot predict the list-strength effect observed by Norman: Indeed, as ustrong 

increases, the list-strength effect becomes increasingly negative. Results are based on 

3000 simulated subjects, evenly divided among the ustrong conditions. REM.1 parameters 

were set as follows: uweak = .28, gdraw = .38, gbase = .4, w = 20, c = .7, and criterion = 1. 
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Figure 4.10 

The graph plots hit rates, false-alarm rates, and d´ as a function of criterionstudy (1, 2, 3, 

and 4). It is evident that, regardless of the value of criterionstudy, REM.3 replicates the 

concordant effect documented by Norman (2002, Experiment 1). A positive list-strength 

effect is also predicted when criterionstudy is 2, 3, or 4. Results are based on 4000 

simulated subjects, evenly divided among the criterionstudy conditions. REM.3 parameters 

were set as follows: gdraw = .38, gbase = .4, w = 20, c = .7, u1 = .28, u2 = .12, and 

criteriontest = 1. 
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Figure 4.11 

The graph plots hit rates, false-alarm rates, and d′ as a function of criterionstudy (1, 2, 3, 4). 

Regardless of the value of criterionstudy, there is a concordant effect. With criterionstudy 

values of 2, 3, or 4, Norman’s (1999, Experiment 4) positive list-strength effect is 

replicated. When criterionstudy is 1, there is a null list-strength effect. Results are based on 

4000 simulated subjects, evenly divided among criterionstudy conditions. REM.3 

parameters were set as follows: gdraw = .38, gbase = .4, w = 20, c = .7, u1 = .28, u2 = .12, 

and criteriontest = 1. 
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Figure 4.12 

The graph plots hit rates, false-alarm rates, and d′ as a function of criterionstudy (1, 2, 3, 4). 

Regardless of the value of criterionstudy, there is a concordant effect. With criterionstudy 

values of 3 or 4, Norman’s (1999, Experiment 4) positive list-strength effect is replicated. 

When criterionstudy is 1, there is a negative list-strength effect, and when criterionstudy is 2, 

there is a null list-strength effect. Results are based on 4000 simulated subjects, evenly 

divided among the criterionstudy conditions. To simulate semantic relatedness, distractors 

shared 8 features with a target. REM.3 parameters were set as follows: gdraw = .38, gbase = 

.4, w = 20, c = .7, u1 = .28, u2 = .12, and criteriontest = 1. 
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Figure 5.1 

The graph shows hit and false-alarm rates as a function of item strength (weak vs. strong),  

list type (pure vs. mixed), list half (first vs. second), and criterionstudy (1, 2, and 3). It is 

evident from the figure that output interference was observed: The hit rate was higher and 

the false-alarm rate was lower in the first half of the pure test lists than the second half (it 

does not make sense to consider the mixed list here, since this is inherently confounded 

with target strength). There were 3000 simulated subjects, evenly divided among the 

criterionstudy conditions (the remaining factors were manipulated within subjects). REM 

parameters were set as follows: gbase = .4, gdraw = .35, w = 20, u1 = .28, u2 = .12, c = .7, and 

criteriontest = 1. 
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Figure 5.2 

The graph shows d′ as a function of item strength (weak vs. strong),  list type (pure vs. 

mixed), list half (first vs. second), and criterionstudy (1, 2, and 3). It is evident from the 

figure that output interference was observed: d′ was higher in the first half of the pure test 

lists than the second half (it does not make sense to consider the mixed list here, since this 

is inherently confounded with target strength). It is also clear that there is a positive list-

strength effect when controlling list half (i.e., mixed-strong performance vs. second-half 

pure-strong performance and mixed-weak performance vs. first-half pure-weak 

performance), but not when considering pure lists without regard to list half. There were 

3000 simulated subjects, evenly divided among the criterionstudy conditions (the remaining 

factors were manipulated within subjects). REM parameters were set as follows: gbase = .4, 

gdraw = .35, w = 20, u1 = .28, u2 = .12, c = .7, and criteriontest = 1. 
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Figure 5.3 

The graph shows hit and false-alarm rates as a function of item strength (weak vs. strong),  

list type (pure vs. mixed), list half (first vs. second), and criterionstudy (1, 2, and 3). It is 

evident that output interference was quite modest (see the main text for discussion). There 

were 3000 simulated subjects, evenly divided among the criterionstudy conditions (the 

remaining factors were manipulated within subjects). REM parameters were set as 

follows: gbase = .4, gdraw = .35, w = 20, u1 = .28, u2 = .12, c = .7, and criteriontest = 1. 
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Figure 5.4 

The graph shows d′ as a function of item strength (weak vs. strong),  list type (pure vs. 

mixed), list half (first vs. second), and criterionstudy (1, 2, and 3).  It is clear that, when 

ignoring test position, there is a null list-strength effect. There is also a null list-strength 

effect when controlling test position (i.e., mixed-strong performance vs. first-half pure-

strong performance and mixed-weak performance vs. second-half pure-weak 

performance). There were 3000 simulated subjects, evenly divided among the criterionstudy 

conditions (the remaining factors were manipulated within subjects). REM parameters 

were set as follows: gbase = .4, gdraw = .35, w = 20, u1 = .28, u2 = .12, c = .7, and criteriontest = 

1. 

 


