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Abstract 

Wetlands are complex land cover ecosystems that represent a wide range of biophysical 

conditions. They are one of the most productive ecosystems and provide several important 

environmental functionalities. As such, wetland mapping and monitoring using cost- and time-

efficient approaches are of great interest for sustainable management and resource assessment. In 

this regard, satellite remote sensing data are greatly beneficial, as they capture a synoptic and 

multi-temporal view of landscapes. The ability to extract useful information from satellite imagery 

greatly affects the accuracy and reliability of the final products. This is of particular concern for 

mapping complex land cover ecosystems, such as wetlands, where complex, heterogeneous, and 

fragmented landscape results in similar backscatter/spectral signatures of land cover classes in 

satellite images. Accordingly, the overarching purpose of this thesis is to contribute to existing 

methodologies of wetland classification by proposing and developing several new techniques 

based on advanced remote sensing tools and optical and Synthetic Aperture Radar (SAR) imagery. 

Specifically, the importance of employing an efficient speckle reduction method for polarimetric 

SAR (PolSAR) image processing is discussed and a new speckle reduction technique is proposed. 

Two novel techniques are also introduced for improving the accuracy of wetland classification. In 

particular, a new hierarchical classification algorithm using multi-frequency SAR data is proposed 

that discriminates wetland classes in three steps depending on their complexity and similarity. The 

experimental results reveal that the proposed method is advantageous for mapping complex land 

cover ecosystems compared to single stream classification approaches, which have been 

extensively used in the literature. Furthermore, a new feature weighting approach is proposed 

based on the statistical and physical characteristics of PolSAR data to improve the discrimination 

capability of input features prior to incorporating them into the classification scheme. This study 
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also demonstrates the transferability of existing classification algorithms, which have been 

developed based on RADARSAT-2 imagery, to compact polarimetry SAR data that will be 

collected by the upcoming RADARSAT Constellation Mission (RCM). The capability of several 

well-known deep Convolutional Neural Network (CNN) architectures currently employed in 

computer vision is first introduced in this thesis for classification of wetland complexes using 

multispectral remote sensing data. Finally, this research results in the first provincial-scale wetland 

inventory maps of Newfoundland and Labrador using the Google Earth Engine (GEE) cloud 

computing resources and open access Earth Observation (EO) collected by the Copernicus Sentinel 

missions. Overall, the methodologies proposed in this thesis address fundamental 

limitations/challenges of wetland mapping using remote sensing data, which have been ignored in 

the literature. These challenges include the backscattering/spectrally similar signature of wetland 

classes, insufficient classification accuracy of wetland classes, and limitations of wetland mapping 

on large scales. In addition to the capabilities of the proposed methods for mapping wetland 

complexes, the use of these developed techniques for classifying other complex land cover types 

beyond wetlands, such as sea ice and crop ecosystems, offers a potential avenue for further 

research. 

Keywords: Wetland, remote sensing, Synthetic Aperture Radar (SAR), polarimetric SAR 

(PolSAR), compact polarimetry, RADARSAT Constellation Mission (RCM), deep convolutional 

neural network (CNN), Google Earth Engine (GEE), Earth Observation (EO), Sentinel missions. 
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Chapter 1. Introduction 

1.1. Overview  

A simple, straightforward definition for wetlands is that “ wetlands are environments subject to 

permanent or periodic inundation or prolonged soil saturation sufficient for the establishment of 

hydrophytes and/or the development of hydric soils or substrates unless environmental conditions 

are such that they prevent them from forming” [1]. Another definition based on the Ramsar 

Convention on wetlands is that “wetlands are areas of marsh, fen, peatland, or water, whether 

natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish, 

or salt, including areas of marine water the depth of which at low tide does not exceed six meters”. 

This disparity in terms of wetland definition is because they are being subjected to both spatial and 

temporal hydrological variations, surrounded by upland and open water, as well as the variability 

of their spatial distribution and extent, thus making a concise definition of wetlands difficult [2]. 

Despite this, there is consensus that wetlands support hydrology and vegetation [3]. 

Wetlands provide several key roles in maintaining ecosystem functions globally. They play an 

important role in hydrological and biogeochemical cycles, significantly contribute to wildlife 

habitat, and offer several services to humankind [4]. For example, according to the Millennium 

Ecosystem Assessment Report on Wetlands and Water, the annual combined global value of 

wetlands, tidal marshes and swamp ecosystem services is US$ 44,355 ha−1 year−1[5] , which is 

significantly higher than that of forest ecosystems (US$ 3,278) [6]. Despite these benefits, 

wetlands have degraded by 64% to 71 % due to land reclamation, hydrological changes, and 

extensive agricultural and industrial activities, as well as pollution during the twentieth century 

[7], [8].  
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Traditional approaches for wetland mapping, such as point-based measurements of biochemical, 

ecological, and hydrological variables through ground surveying techniques, are laborious and 

costly, especially on large scales [4]. In this regard, remote sensing (RS) is a key tool, which is of 

great benefit for mapping and monitoring different aspects of wetland ecosystems, as it captures a 

synoptic and multi-temporal view of landscapes [9], [10]. There are varieties of Earth Observation 

(EO) data that may be useful to aid in our understanding of spatial and temporal variability of 

wetlands [11]. These include data collected by airborne and spaceborne (satellites) missions, as 

well as unmanned aerial vehicles. These data may be also a high resolution single scene or a 

medium to high resolution time series of imagery collected by optical or Synthetic Aperture 

RADAR (SAR) sensors [7]. Accordingly, the selection of the most appropriate EO data for 

wetland studies depends on several factors. This is because wetlands represent diversity according 

to their geographic location, dominant vegetation types, hydrology, and soil and sediment types 

[3].  

1.2. Background  

The application of aerial photography was among the earliest attempts for wetland mapping and 

characterization [11]. Having high spatial resolution, cost- and time-efficiency made aerial 

photographs an important source of information for wetland mapping, especially in early 

developmental stages of satellite RS sensors. Prior to the availability of satellite imagery, aerial 

photography techniques were primarily employed for wetland mapping through visual 

interpretation [12]. This was a challenging task, given the complexity of wetland ecosystems and 

the variation of biophysical parameters, such as water level, phenological cycle, and vegetation 

biomass and density [13]. Despite these challenges, several studies reported the success of wetland 

characterization using aerial photography in the United States [14], [15], Austria [16], and Canada 
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[17]. One of the main challenges of wetland mapping using aerial photography is its inability to 

map wetlands on large scales. As such, after the launch of satellites (particularly Landsat), aerial 

photography has been mainly used for the preparation of the training data and the classification 

accuracy assessment [11].  

Multispectral satellite imagery is the most common type of EO data used for wetland classification. 

These data include coarse (>100m: e.g., MODIS and AVHRR), medium (>10m; Landsat, ASTER, 

SPOT), and high (<5; IKONOS, Quickbird, and WorldView) spatial resolution imagery. Among 

coarse spatial resolution optical data, MODIS images have been extensively used in several studies 

of wetland [18], [19] and water body mapping [20], [21] due to their spectral, temporal, and spatial 

resolution relative to other global sensors. Because of its lower spectral and coarse spatial 

resolution, sparse studies reported the capability of AVHRR imagery for wetland characterization 

[22]. Medium resolution multispectral images have also been widely used for wetland mapping. 

In particular, data collected by Landsat sensors were used for mapping wetland extent [23], 

discriminating various wetland vegetation classes [24], and change detection [25] due to their 

relatively adequate temporal and spatial resolution and, importantly, free availability.  

High spatial resolution multispectral data are advantageous for the determination of wetland 

boundaries and identification of small-sized wetland classes. These data significantly improved 

the accuracy of wetland classification. High spatial resolution data collected by IKONOS and 

WorldView-2, for example, were used in various wetland studies, including the production of a 

coastal wetland map [26], shoreline change detection [27], and mangrove mapping [28], [29]. 

Despite the benefit of these data for wetland studies, very detailed information within imagery 

causes challenges in pixel-based classification approaches. Accordingly, advanced image analysis 

techniques, such as object-based image analysis (OBIA), have been developed to address the 
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limitations of pixel-based classifications using high spatial resolution images [30], [31]. As such, 

several studies reported the success of wetland mapping using the object-based approach using 

high spatial resolution data collected by WorldView-2 [32] and IKONOS [33].  

Hyperspectral sensors contain tens to hundreds of narrow bands, thus improving the discrimination 

of wetland vegetation types [34]. Hyperspectral images collected by hand-held, airborne, and 

satellite instrumentation have been used in various wetland studies, such as wetland classification, 

wetland species identification, plant leaf chemistry studies, and in wetland soil analysis [11]. These 

data are advantageous for mapping complex and similar wetland classes due to the availability of 

various bands and continuous reflectance values relative to multispectral imagery. The success of 

mapping tidal marshes [35], salt marshes [36], and marsh habitats [37] using hyperspectral imagery 

has been reported in the literature. Other studies also reported promising results for identification 

of mangrove species using various hyperspectral data [38]. 

The advent of Synthetic Aperture RADAR (SAR) imagery has significantly altered wetland 

mapping and monitoring using EO data. This is because spaceborne SAR sensors are capable of 

acquiring EO data independent of solar radiations and day/night conditions, thus addressing the 

main limitations of optical imagery [39]. Furthermore, SAR signals have the capability of 

penetrating through soil and vegetation, which make them advantageous for wetland studies [10]. 

As such, several studies reported the success of wetland classification using SAR imagery 

collected from various sensors, such as ERS-1/2 [40], JERS-1 [41], ALOS PALSAR-1 [42], 

RADARSAT-1 [43], RADARSAT-2 [44], TerraSAR-X [45], and Sentinel-1 [46].  

The capability of SAR signals for mapping various wetland classes depends on SAR operating 

parameters and the type of wetland classes [47]. For example, longer wavelengths are 

advantageous for monitoring forested wetland, given their deeper penetration capability. 
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Furthermore, SAR signals with steep incidence angles and HH polarization have a superior 

capability to monitor flooded vegetation [48]. Notably, polarimetric SAR (PolSAR) and, in 

particular, full polarimetric SAR data are advantageous relative to SAR imagery for wetland class 

characterization. This is because the various backscattering mechanisms of ground targets are 

collected by PolSAR data[10]. Furthermore, full polarimetric data allow the application of 

advanced polarimetric decomposition techniques that discriminate ground targets according to 

their types of scattering mechanisms. This is of great benefit for characterizing ground targets with 

similar backscattering mechanisms, such as wetland complexes. The details of the capability of 

various polarimetric data are presented in Chapters 3, 4, and 5. 

Despite the great capability of SAR and PolSAR images for wetland and land cover mapping, the 

radiometric quality of both data is hindered by speckle noise caused by the coherent interference 

of waves reflected from many elementary scatterers [39]. The presence of speckle complicates 

radar image interpretation, degrades the image segmentation performance, and reduces the 

detectability of targets in the images [49]. This highlights the significance of employing an 

efficient speckle reduction as a mandatory pre-processing step in studies based on SAR imagery. 

As such, several speckle reduction methods have been introduced for SAR and PolSAR imagery 

[50]–[52]. A detailed description of various speckle reduction methods along with the introduction 

of a new speckle reduction technique are presented in Chapter 2.  

In addition to the type of data, the accuracy of wetland classification depends on the classification 

algorithms. Generally, non-parametric classification algorithms are advantageous relative to the 

parametric approaches, particularly for classification of SAR and PolSAR data [53]. This is 

because the former techniques are independent of input data distribution and they have the 

capability of handling a large volume of multi-temporal imagery during the classification scheme 
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[4]. Accordingly, several studies reported the success of wetland classification using non-

parametric classification algorithms, such as decision trees (DT) [43], support vector machine 

(SVM) [54], and random forest (RF) [55]. The details of the advantages and disadvantages of 

different machine learning tools is provided in Chapters 3, 4, and 5.   

Despite the great capability of conventional machine learning tools for land cover and wetland 

classification, the accuracy of pixel-based classification algorithms may be insufficient. This is 

because these approaches are based only on the statistical distribution of pixels and ignore the 

contextual and neighbouring information of a given pixel [30]. As such, object-based classification 

approaches yield better results than the former, as they take into account both the spectral and 

spatial information of a given pixel [31]. These advanced tools allow the integration of various EO 

data with different spectral and spatial resolutions, which is beneficial for wetland mapping.  

Due to the advantages mentioned above, several studies demonstrated the capability of 

conventional machine learning tools (e.g., SVM and RF) for the classification of wetland 

complexes using object-based image analysis techniques [56], [57]. However, the accuracy of 

wetland classification using the aforementioned tools depends on the number of input features 

incorporated into the classification scheme. The process of extracting amenable features, also 

known as feature engineering design, is laborious and requires profound knowledge [58]. 

Therefore, deep learning (DL) methods have recently drawn attention for several computer vision 

and remote sensing applications [59]. Deep Belief Net (DBN), Stacked Auto-Encoder (SAE), and 

deep Convolutional Neural Network (CNN) are current deep learning models, of which the latter 

is most well-known [60]. CNNs are characterized by multi-layered interconnected channels, with 

a high capacity for learning the features and classifiers from data spontaneously given their deep 

architecture, their capacity to adjust parameters jointly, and to classify simultaneously [26]. One 
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of the ubiquitous characteristics of such a configuration is its potential to encode both spectral and 

spatial information into the classification scheme in a completely automated workflow [61]. 

Accordingly, several studies investigated the capability of CNNs for a variety of remote sensing 

applications, such as scene classification [62], semantic segmentation [63], and object detection 

[64]. The details of the capability of deep CNNs and their application are presented in Chapter 6.  

Although the methodologies and results for wetland mapping using the above-mentioned 

techniques were sound, wetland classification on large scales remains challenging. In particular, 

precise, consistent, and comprehensive wetland inventories are lacking on large scales [4]. This is 

attributed to the low availability of powerful processing systems, which are capable of handling a 

large volume of remote sensing data, and unavailability of EO data with a sufficient spatial and 

temporal resolution on large scale [65]. Most recently, the increasing availability of large-volume 

open-access EO data, such as Sentinel-1 and Sentinel-2 data [66], and the development of powerful 

cloud computing resources, such as Google Earth Engine (GEE), offer new opportunities for 

monitoring ecosystems on large scales [67]. Several recent studies highlighted the capability of 

GEE and open access EO data (e.g., Landsat, Sentinel-1, and Sentinel-2) for a variety of large-

scale applications, such as global surface water mapping [68], global forest-cover change mapping 

[69], and large-scale cropland mapping [70]. Chapter 7 provides the details of recent advances of 

cloud computing resources and open access data for land cover and wetland mapping on large 

scales.   

1.3. Research motivations  

Despite several wetland research studies that have used optical and SAR imagery worldwide (e.g., 

[42], [55], [71]), the accuracy of wetland classification is still less than adequate. Although some 
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research reported an acceptable result by integrating various sources of EO data (e.g., optical, SAR, 

and high resolution digital elevation model (DEM)), many others found insufficient semantic 

information obtained from single-source EO data [11]. Accordingly, this PhD thesis bridges the 

main technological gaps in the existing techniques by introducing several innovative classification 

schemes. In particular, a comprehensive literature review of existing techniques revealed the 

following technological gaps: 

i. The importance of the pre-processing step for classification of SAR and PolSAR imagery 

is not taken into account. However, an efficient speckle reduction of SAR imagery can 

significantly affect the accuracy of further image processing. 

ii. The complexity and similarity of various wetland classes are ignored. Many developed 

techniques are based on a single stream classification algorithm rather than hierarchical 

approaches.  

iii. In several wetland studies using PolSAR imagery, the typical PolSAR features were only 

incorporated into the classification scheme. As such, the statistical and physical 

characteristics of PolSAR imagery are not considered for enhancing the capability of such 

data for land cover and, in particular, wetland mapping.  

iv. The effect of employing highly correlated features is ignored in almost all existing 

developed methods for land cover and wetland classification.  

v. Despite the great potential of deep CNNs for various remote sensing applications, little to 

no research has examined the capability of state-of-art classification algorithms for 

mapping complex land cover ecosystems.  

vi. Existing wetland inventory maps are fragmented, incomplete, inconsistent, and 

incomparable with each other globally. This highlights the significance of developing 
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provincial- and national-scale wetland inventory maps using advanced remote sensing 

tools and data.  

In addition to identifying technological gaps in the existing literature and mitigating these 

limitations, another strong motivation behind conducting this research is to map and monitor 

Newfoundland and Labrador (NL), which is one of the richest Canadian provinces in terms of 

wetlands and biodiversity. In particular, despite vast expanses of wetland classes across NL, less 

research has been conducted for monitoring wetlands across NL and, importantly, mapping 

wetland on provincial-scale is completely ignored. Having identified challenges in the literature, 

this thesis improves and fills the technical gaps for mapping wetlands in NL and beyond using 

advanced remote sensing tools and data by introducing markedly novel techniques.  

1.4. Scope and objectives   

The scope of this study is to map wetlands using both optical and PolSAR imagery using advanced 

remote sensing tools. Much effort is devoted to take into account various aspects of wetland 

mapping using EO data. For example, this research investigates the importance of employing pre-

processing steps on the accuracy of further image analysis. This study also addresses the issue of 

backscattering/spectrally similar wetland classes by proposing or employing several novel 

classification schemes using either conventional machine learning tools or state-of-the-art deep 

learning methods. The developed classification tools in this work are best suited for discriminating 

land cover classes with similar spectral or backscatter signatures, such as sea ice, where 

heterogeneous and fragmented landscape hinder the effectiveness of conventional remote sensing 

tools.  

Six papers compose the main contribution of this thesis, and the main objectives are to: 
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i. investigate the importance of an efficient speckle reduction method on the accuracy of 

wetland classification (Paper 1);  

ii. propose a new hierarchical classification scheme, specifically designed for distinguishing 

similar wetland classes (Paper 2);  

iii. introduce a new PolSAR feature, known as the modified coherency matrix, that considers 

both statistical and physical characteristics of PolSAR data (Paper 3); 

iv. examine the capability of simulated compact polarimetry (CP) SAR data for mapping 

wetlands (Paper 4); 

v. develop a deep learning framework compatible with optical remote sensing data for 

mapping wetlands (Paper 5); 

vi. leverage the capability of cloud computing resources and open access EO data for mapping 

wetlands on a provincial scale (Paper 6).  

All of these methodologies were applied to case studies in NL and they have the potential to be 

applied elsewhere. 

1.5. Contribution and novelty   

This section provides an overview of the contributions of this doctoral dissertation and its 

significance in improving the existing methodologies for mapping complex land cover ecosystems, 

particularly in effectively classifying wetlands. In this regard, a comprehensive literature review 

of wetland mapping using remote sensing data and techniques was carried out to identify potential 

methodologies and mathematical tools, which are beneficial for addressing identified challenges 

in the existing literature. A brief description of the main methodological contributions and 
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novelties of this PhD thesis are described below, the details of which are presented in relevant 

chapters of this study.     

1.5.1. PolSAR pre-processing: a novel speckle reduction method 

Since the introduction of SAR imagery in the early 1980s, several speckle reduction methods have 

been proposed to address this common drawback of SAR imagery (e.g., [50]–[52]). The continued 

development of new speckle reduction methods in SAR and PolSAR image applications highlights 

that existing techniques are yet far from what is required for practical applications. Therefore, this 

work provides an improvement to the current techniques by introducing a new speckle reduction 

method based on an adaptive Gaussian Markov Random Field model [72]. Notably, one of the 

most innovative aspects of this proposed method is its application in a practical case study to map 

wetlands in NL. The details of the proposed method and its comparison with well-known de-

speckling methods are presented in Chapter 2.   

1.5.2. A novel hierarchical framework for wetland classification 

Most techniques developed for land cover mapping consider the classification problem as a single 

stream image processing chain [55], [57]. While this may be a good, straightforward approch for 

distinguishing typical land cover classes, it is not optimal for discriminating land cover classes 

with similar backscattering/spectral signatures. Therefore, this study introduces a novel 

hierarchical classification scheme to discriminate wetland classes depending on their degree of 

complexity [73]. Some classes, such as shallow- and deep-water, are much easier to distinguish 

compared to other wetland classes (e.g., bog and fen), as they are characterized by a single 

dominant scattering mechanism. Additionally, the capability of various EO data collected from 

multi-frequency SAR sensors, namely ALOS PALSAR-2 L-band, RADARSAT-2 C-band, and 



12 

 

TerraSAR-X, was examined for wetland mapping. To the best of the author’s knowledge, this 

study is the first to discriminate Canadian wetland classes using this new hierarchical classification 

scheme and such enhanced SAR observations. Chapter 3 presents a detailed description of the 

proposed method along with the classification results.   

1.5.3. Fisher Linear Discriminant Analysis of PolSAR data 

Full polarimetric SAR imagery contains full scattering information from ground targets and such 

data are advantageous compared to dual- and single-polarimetric SAR data in terms of information 

content [74]. Despite these benefits, the classification accuracy using such data may be less than 

adequate, as the accuracy greatly depends on the polarimetric features that are incorporated into 

the classification scheme. To address this limitation, a novel feature weighting approach for 

PolSAR imagery is proposed based on the integration of Fisher Linear Discriminant Analysis 

(FLDA) and the physical interpretation of PolSAR data. The obtained feature from the proposed 

method was found to be advantageous compared to several well-known PolSAR features [44]. The 

details of the proposed algorithm and its experimental results are presented in Chapter 4.  

1.5.4. Wetland classification using simulated compact Polarimetric SAR data 

The upcoming RADARSAT Constellation Mission (RCM) will continue the Canadian Space 

Agency’s (CSA) program for acquiring SAR data through its scheduled launch in 2019 [74]. RCM 

contains three C-band satellites and will collect Compact Polarimetric (CP) SAR data with 

enhanced temporal resolution compared to RADARSAT-2 [75]. The investment in this advanced 

SAR mission indicates that SAR will continue to be one of the most important mapping tools in 

Canada. This also highlights that developed methods using RADARSAT-2 will need to be 

evaluated for their transferability to the new RCM data format. Accordingly, this study assesses 
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the capability of simulated CP SAR data for classification of wetland complexes. Furthermore, the 

classification results obtained from simulated CP SAR data are compared with those of full- and 

dual-pol SAR data [76]. Chapter 5 represents a detailed description of the methodology adopted 

in this study.    

1.5.5. Deep learning models for wetland classification using satellite data 

Most recently, deep CNNs have gained increasing interest for a variety of computer vision and, 

subsequently, remote sensing tasks [59]. While several studies have employed high and very high-

resolution aerial imagery for classification of typical land cover classes (e.g., water, vegetation, 

and built-up) using state-of-the-art deep CNNs [63], [77], little to no research has examined the 

capability of multi-spectral satellite data for the classification of land cover classes with similar 

spectral signatures (e.g., wetlands). Most developed techniques use only three input bands (i.e., 

red, green, and blue), as this is compatible with the intrinsic structure of these deep CNNs [77]. 

Furthermore, several studies only introduced or adopted relatively shallow-structured CNNs for 

their classification tasks [78], [79]. Accordingly, we develop a framework in Python for 

classification of multi-spectral remote sensing data with five input bands using several well-known 

deep CNNs currently employed in computer vision, including DenseNet121 [80], InceptionV3 

[81], VGG16, VGG19 [82], Xception [83], ResNet50 [84], and InceptionResNetV2. A detailed 

description of these advanced tools for wetland classification is presented in Chapter 6.  

1.5.6. Large-scale wetland mapping using fusion of PolSAR and optical imagery 

Although wetland classification using EO data has been a popular topic over the last two decades 

[42], [47], [85]–[87], given the cost and infeasibility of wetland mapping on large scales (e.g., 

provincial- or national-scale), many studies have focused only on small scales (e.g.,[88]). This has 
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resulted in the production of partial, incomplete, and fragmented wetland inventories globally [4]. 

For example, although Canada contains 24% of world’s wetlands [89], comprehensive wetland 

inventory maps are lacking in most provinces. Several studies have classified various wetland 

classes in different Canadian provinces, such as Manitoba [90], Ontario [91], and Nova Scotia 

[92], yet all on small scales. Leveraging the capability of advanced cloud computing resources and 

availability of open access EO data, this thesis produces the first provincial scale wetland inventory 

map of NL. In particular, more than 3000 images collected by Sentinel-1 and Sentinel-2 sensors 

are used to produce the ever-in-demand inventory map of NL using GEE [93]. Chapter 7 provides 

a detailed description of the proposed methodology for generating the first provincial-scale 

wetland inventory map.  

1.6. Organization of this doctoral dissertation  

This PhD thesis is manuscript-based, comprising six published peer-reviewed journal articles 

described in Table 1.1.  
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Table 1.1. Organization of the thesis 

Chapter title Paper title 

Chapter 1: Introduction  N/A 

Chapter 2: PolSAR pre-

processing: a novel speckle 

reduction method 

The effect of PolSAR image de-speckling on wetland classification: 

introducing a new adaptive method. Canadian Journal of Remote 

Sensing, 43(5), pp.485-503, (2017). 

Chapter 3: A novel 

hierarchical framework for 

wetland classification 

Random forest wetland classification using ALOS-2 L-band, 

RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS Journal of 

Photogrammetry and Remote Sensing, 130, pp.13-31, (2017). 

Chapter 4: Fisher Linear 

Discriminant Analysis of 

PolSAR data 

Fisher Linear Discriminant Analysis of coherency matrix for wetland 

classification using PolSAR imagery. Remote Sensing of 

Environment, 206, pp.300-317, (2018). 

Chapter 5: Wetland 

classification using 

simulated compact 

Polarimetric SAR data 

An assessment of simulated compact polarimetric SAR data for wetland 

classification using random forest algorithm. Canadian Journal of 

Remote Sensing, 43(5), pp.468-484, (2017).  

 

Chapter 6: Deep learning 

models for wetland 

classification using satellite 

data 

Very deep convolutional neural networks for complex land cover 

mapping using multispectral remote sensing imagery. Remote 

Sensing, 10(7), p.1119, (2018). 

Chapter 7: Large-scale 

wetland mapping using 

fusion of PolSAR and 

optical imagery 

The first wetland inventory map of Newfoundland at a spatial resolution 

of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine 

cloud computing platform. Remote Sensing, 11(1), p.43, (2019). 

Chapter 8: Summary, 

conclusions, and future 

outlook  

N/A 

Appendix. Canadian 

wetland inventory map 

Canadian wetland inventory map through the synergistic use of Sentinel-

1 and Sentinel-2 data on the Google Earth Engine cloud computing 

platform (Submitted). 

The outline of remaining chapters is described below: 

A detailed description of the proposed speckle reduction method for PolSAR imagery appears in 

Chapter 2. The capability of the proposed method was also compared with several well-known 

speckle reduction methods and was evaluated for a subsequent image processing task (i.e., wetland 

classification in this case). Next, a new hierarchical wetland classification scheme that uses data 

collected from various SAR missions, including ALOS PALSAR-2 L-band, RADARSAT-2 C-

band, and TerraSAR-X, is presented in Chapter 3.  
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In Chapter 4, a novel feature weighting method for PolSAR imagery is proposed. The method is 

based on both the statistical and physical characteristics of PolSAR data as means for improving 

the discrimination capability of PolSAR features prior to their incorporation into the classification 

scheme. The capability of simulated CP SAR data for discriminating Canadian wetland classes is 

then investigated in Chapter 5. The author also compared the potential of CP data with those of FP 

and DP SAR data for wetland classification in a study area located in NL. 

A detailed description of various, well-known deep CNNs architectures (e.g., Inception and 

ResNet) is presented in Chapter 6. This is followed by the author’s experimental design for the 

exploitation of these deep CNNs for the classification of multi-spectral imagery. The proposed 

methodology for the production of the first provincial-scale wetland inventory map of NL is then 

presented in Chapter 7.  

The thesis is drawn to a close in Chapter 8, which contains a brief summary, conclusion, and 

recommendations and directions for future research. Notably, the candidate also extended the 

wetland classification’s study from Newfoundland (Chapter 7) to the entire country (i.e., Canada). 

In particular, similar methodologies as those described in Chapter 7 were employed to produce the 

first wetland inventory map of Canada at a spatial resolution of 10-m based on the synergistic use 

of Sentinel-1 and Sentinel-2 EO data. The results of this part are presented in the appendix.  

1.7. Other publications  

In addition to the above-mentioned journal papers, the candidate published or contributed to the 

following peer-reviewed journal papers and book chapter, either as author or co-author, during his 

PhD program. 
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Chapter 2. PolSAR pre-processing: a novel speckle reduction method1 

Preface 

A version of this manuscript has been published in the Canadian Journal of Remote Sensing. I am 

a primary author of this manuscript along with the co-authors, Bahram Salehi and Fariba 

Mohammadimanesh. I conceptualized and designed the study. I developed the model and 

performed all experiments and tests. I wrote the paper and revised it based on comments from all 

co-authors. I also revised the paper according to the reviewers’ comments. The co-author, Fariba 

Mohammadimanesh, helped in performing the experiments and analyzing the results and 

contributed to revising the manuscript. All co-authors provided editorial input and scientific 

insights to further improve the paper. They also reviewed and commented on the manuscript. 

  

                                                           
1 Mahdianpari, M., Salehi, B. and Mohammadimanesh, F., 2017. The effect of PolSAR image de-speckling on wetland 

classification: introducing a new adaptive method. Canadian Journal of Remote Sensing, 43(5), pp.485-503. 
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Abstract 

Speckle noise significantly degrades the radiometric quality of PolSAR image and, consequently, 

decreases the classification accuracy. This paper proposes a new speckle reduction method for 

PolSAR imagery based on an adaptive Gaussian Markov Random Field model. We also introduce 

a new span image, called pseudo-span, obtained by the diagonal elements of the coherency matrix 

based on the least square analysis. The proposed de-speckling method was applied to full 

polarimetric C-band RADARSAT-2 data from the Avalon area, Newfoundland, Canada. The 

efficiency of the proposed method was evaluated in two different levels: de-speckled images and 

classified maps obtained by the Random Forest classifier. In terms of de-speckling, the proposed 

method illustrated approximately of 19%, 43%, 46%, and 50% improvements in Equivalent 

Number of Looks (ENL) values, in comparison with SARBM3D, Enhanced Lee, Frost, and Kuan 

filter, respectively. Also, improvements of approximately 19%, 9%, 55%, and 32% were obtained 

in the overall classification accuracy using de-speckled PolSAR image by the proposed method 

compared with SARBM3D, Enhanced Lee, Frost, and Kuan filter, respectively. This new adaptive 

de-speckling method illustrates to be an efficient approach in terms of both speckle noise 

suppression and details/edges preservation, while has a great influence on the overall wetland 

classification accuracy. 

Keywords: Polarimetric Synthetic Aperture Radar (PolSAR), image de-speckling, Gaussian 

Markov Random Field (GMRF), pseudo-span image, wetland classification. 
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2.1. Introduction 

Wetlands are transitional lands between terrestrial areas and aquatic systems, which regulate local 

climate and prevent accelerated rates of climate change. This productive ecosystem provides 

several advantages, such as filtering contamination, sequestering carbon, supporting wildlife 

habitat, and several recreational activities [1]. In the recent years, wetland monitoring has gained 

increasing attention, thanks to the advancement in remote sensing technologies [2]–[4]. Most of 

these studies highlighted the importance of a wetland inventory map, which distinguishes different 

wetland classes and is essential for sustainable preservation of this productive ecosystem [5]–[7]. 

Remote sensing offers both cost- and time-efficient tools for wetland mapping and monitoring by 

providing data from inaccessible geographic regions [8]. The capability of optical satellite imagery 

for wetland mapping has been documented in several studies [9]–[14]. However, the main 

hindrances to optical sensors are cloud coverage and dependency on solar illumination. Synthetic 

Aperture Radar (SAR) sensors address these limitations, since they are sun-independent, all-

weather condition sensors [15]. Furthermore, SAR penetration capability, depending on SAR 

wavelength, through cloud, soil, and vegetation makes SAR image an ideal tool for land cover 

classification [16]–[21]. 

The advent of Polarimetric SAR data greatly enhanced the capability of remote sensing images for 

land cover classification by providing different characteristics of land surface in different 

polarizations [22], [23]. A full polarimetric SAR (PolSAR) image has the highest discriminating 

capability due to multiple polarizations, which make it more efficient in classification of complex 

land cover such as wetland and sea ice. This is because different scattering mechanisms of ground 

targets, including surface, double-bounce, and volume scattering are obtainable using PolSAR 

imagery. Each ground target has a distinct scattering mechanism, which is useful for discrimination 
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of various land cover types. Polarimetric decomposition is a typical technique to extract PolSAR 

data information [24]–[26]. 

The main drawback of PolSAR images is the presence of speckle. Speckle is a signal-dependent 

granular disturbance, which degrades the radiometric quality of PolSAR imagery [27]. Moreover, 

speckle severely affects the accuracy of further PolSAR image analysis [28]. Thus, applying an 

efficient speckle reduction method is a necessary pre-processing step in PolSAR image processing 

[29]. This is because the accuracy of end-user products of SAR images, such as image 

classification, segmentation, and target detection greatly depends on the quality and reliability of 

the input data [30]. 

Over the past decades, several studies have proposed different speckle reduction algorithms for 

SAR and PolSAR images [31]–[37]. These algorithms are generally divided into four main 

categories, including filters based on (1) homogeneity criteria [30], [38], [39], (2) a probability 

distribution assumption [40], [41], (3) patch matching [37], and (4) other techniques [42]–[44]. A 

brief introduction of some well-known de-speckling methods is presented below. 

One of the simplest and commonly used methods is the boxcar filter, wherein the center pixel is 

replaced with the average of its neighboring pixels [41]. Other commonly-used traditional filters 

are the Lee, Kuan, and Frost filters, which use a weighted averaging to estimate the statistical 

parameters over different windows [27], [45], [46]. These traditional approaches are widely used 

because they can be easily applied; however, they degrade the spatial resolution of images and 

blur edges and strong targets [41]. To address the limitations associated with traditional 

approaches, Lee proposed two other de-speckling filters [32], [43]. Specifically, Lee et al. (2006) 

proposed a scattering model-based filter (SMBF), wherein neighboring pixels with the same 
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scattering characteristics are selected based on the Freeman-Durden decomposition [43]. 

Furthermore, Lee et al. (2009) introduced the refined Lee filter. This filter uses the minimum mean-

square error (MMSE) technique and edge-aligned non-squared windows to preserve the edges of 

ground targets as well as image details [32]. Also, Vasile et al. (2006) proposed the intensity-

driven adaptive neighborhood (IDAN) filter based on a region-growing technique, which utilized 

all intensity images [40]. This filter defines an adaptive neighborhood for each pixel and then 

employs simple averaging. Later, a modified version of the IDAN filter was proposed in order to 

mitigate the limitations of the original one, which was bias in the radiometric information of the 

images [47]. Deledalle et al. (2015) suggested a novel patch-wise non-local SAR (NL-SAR) 

method that smooths images by determining data-driven weights from the similarities between 

small patches [37]. Lang et al. (2015) proposed an adaptive-window PolSAR de-speckling method 

based on a line-and-edge (LAE) detector and homogeneity measurement [48]. In particular, a LAE 

detector algorithm identifies image details (i.e., lines and edges). Next, the Equivalent Number of 

Looks (ENL) and the LAE maps are integrated to determine polarimetric homogeneity. Then, an 

adaptive filtering is applied that uses small and non-square windows in heterogeneous areas to 

preserve detail, and large and square windows in homogeneous regions to maximize suppression 

of speckle noise. Another speckle filters are knowns as variational methods, which work based on 

a total variation (TV) regularization, and were first applied for speckle reduction of single SAR 

images [49], [50]. These methods were later developed for PolSAR image filtering. In particular, 

Nie et al. (2015) proposed a PolSAR de-speckling based on the complex Wishart distribution of 

the covariance or coherency matrix and multichannel total variation (TV) regularization [51]. This 

algorithm was the first de-speckling method based on the TV-based variational model that can be 

applied to a whole PolSAR coherency or covariance matrix. Most recently, Nie et al. (2016) 
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proposed a non-local TV-based variational model that has been applied to the covariance or 

coherency matrix of PolSAR data [52]. 

Another important criterion in the case of speckle reduction is to evaluate the performance of the 

de-speckling method. In particular, the effectiveness of a given de-noising method must be 

assessed based on the success of the subsequent processing tasks (e.g., classification). For this 

purpose, in addition to well-known de-speckling performance criteria such as ENL, Edge-

Preservation Degree based on the Ratio of Average (EPD-ROA), and Mean and Variance of Ratio 

Image (MVRI), we evaluated the effectiveness of the proposed method on subsequent wetland 

classification. In particular, the performance of the proposed method was evaluated in terms of 

wetland classification accuracy and compared with the results of other well-known speckle filter 

methods. In this paper, a brief review of the theoretical concepts of speckle and polarimetric SAR 

image formation is first provided. Then, our proposed method for speckle reduction of PolSAR 

data is explained. Finally, the experimental results, the arguments, and a conclusion are presented. 

2.2. PolSAR image and speckle noise characteristics  

2.2.1. Polarimetric SAR images  

In the last two decades, Synthetic Aperture Radar (SAR) sensors have been established as an 

important remote sensing tool for environmental and natural resource monitoring, as well as for 

planetary exploration [53]. SAR, as an active sensor, illuminates targets with electromagnetic 

pulses that are able to penetrate cloud cover. A full PolSAR sensor measures the amplitude and 

phase of returned electromagnetic waves in the four combinations of the linear receiving and 

transmitting polarizations (HH, HV, VH, and VV) [54]. A common representation of PolSAR 

measurement is a 2x2 complex scattering matrix, [𝑺], and in the case of linear polarization is 

expressed as follows: 
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𝑺 = [
𝑆𝐻𝐻 𝑆𝐻𝑉

𝑆𝑉𝐻 𝑆𝑉𝑉
] 

(2.1) 

where 𝑆𝐻𝑉 is the scattering coefficient of horizontal receiving and vertical transmitting. The 

coherency matrix is another representation of PolSAR data with more physical meaning, and 

formulated based on the Pauli complex vector as: 

𝐾 =
1

√2
[𝑆𝐻𝐻 + 𝑆𝑉𝑉   𝑆𝐻𝐻 − 𝑆𝑉𝑉     2𝑆𝐻𝑉]𝑇 

(2.2) 

The coherency matrix from a single-look image is determined as follows [41]: 

(2.3) 

𝑻 =< 𝐾.𝐾∗𝑇 > = [
𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33

]

=

[
 
 
 
 

1

2
〈|𝑆𝐻𝐻 + 𝑆𝑉𝑉|2〉

1

2
〈(𝑆𝐻𝐻 + 𝑆𝑉𝑉)(𝑆𝐻𝐻 − 𝑆𝑉𝑉)∗〉 (𝑆𝐻𝐻 + 𝑆𝑉𝑉)𝑆𝐻𝑉

∗

1

2
〈(𝑆𝐻𝐻 − 𝑆𝑉𝑉)(𝑆𝐻𝐻 + 𝑆𝑉𝑉)∗〉

1

2
〈|𝑆𝐻𝐻 − 𝑆𝑉𝑉|2〉 〈(𝑆𝐻𝐻 − 𝑆𝑉𝑉)𝑆𝐻𝑉

∗〉

〈𝑆𝐻𝑉(𝑆𝐻𝐻 + 𝑆𝑉𝑉)∗〉 〈𝑆𝐻𝑉(𝑆𝐻𝐻 − 𝑆𝑉𝑉)∗〉 〈2|𝑆𝐻𝑉|2〉 ]
 
 
 
 

 

 

Finally, the span image, which indicates the total received power, is formulated based on diagonal 

elements of the coherency matrix as: 

𝑆𝑝𝑎𝑛 =  𝑇11 + 𝑇22 + 𝑇33 (2.4) 

The following section describes the characteristics of speckle in PolSAR images.  

2.2.2. Speckle noise 

Speckle is defined as a scattering phenomenon due to the complex nature of scattered waves from 

observed terrain elements in each resolution cell. The overall objective of de-speckling filters is to 

estimate the noise-free radar reflectivity of a noisy image for each resolution cell [55]. More 

precisely, an incident radar pulse interacts with each element of the surface and, depending on the 
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surface characteristics, the backscatter signals propagate in different directions [56]. Accordingly, 

the SAR focusing procedure coherently combines all backscatters to produce a SAR image. 

 

 

Figure 2.1. Scattering model addressing fully developed speckle. 

Given the distributed target assumption [57] (see also Figure 2.1), each resolution cell consists of 

several scatterers, all of which have equal strength [34]. As a result, the received signal in the 

sensor is the sum of all backscattered rays in different directions from the target and is presented 

as follows: 

𝐴𝑡  𝑒
 𝑖𝜑𝑡 = ∑ 𝐴𝑘  𝑒  𝑖𝜑𝑘

𝑘
 

(2.5) 

where amplitudes, 𝐴𝑘, and phases, 𝜑𝑘, are functions of several factors, such as propagation 

attenuation, scattering of the illuminated targets, and the antenna directivity [58]. Maxwell’s 

equations, which are typically used to model the received signal, were developed based on both 

propagation geometry and scattering medium [59]. The basic information about the observation 

scene is obtained by interfering of each propagation path. The amplitude of the received signal 

changes randomly, since the phases of each path are very different from each other. The scattered 

wave phase results in both constructive and destructive interference of individual scattered returns, 

and randomly modulates the strength of the signal in each resolution cell. The received signal is 

strong if the waves are relatively constructive and weak if the waves are out of phase. Constructive 
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interference increases mean intensity and produces bright pixels. In contrast, destructive 

interference decreases mean intensity and produces dark pixels. Both situations are illustrated in 

Figure 2.2. 

 

Figure 2.2. Constructive and destructive interference. 

In the case of a distributed target, it is demonstrated that intensity measurement comprises 

information about the average backscattering coefficients. As a result, even in homogeneous areas, 

SAR images are affected by a “salt and pepper” noise, known as speckle, in a SAR imaging system 

[60].  

As previously mentioned, a full PolSAR image has four polarimetric channels and is represented 

using a scattering matrix. Given the same statistic for all polarization channel, the statistics of a 

fully polarized image is described by extending the statistical model of single SAR image [61]. 

The statistical models of a SAR image defined in three categories in terms of scattering: 

homogeneous, heterogeneous, and highly heterogeneous. Homogenous area represents an area 

with low (e.g., slack water and roads) or moderate backscattering (e.g., crops). A heterogeneous 
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area represents targets with diffusing backscattering towards the sensor (e.g., forests). Finally, a 

highly heterogeneous area represents targets with strong backscattering (e.g., man-made objects).  

2.3. Accuracy assessment parameters 

In this paper, we evaluate our proposed de-speckling method in two different steps, a pre-

processing and a post-processing step. In the pre-processing step, different de-speckling metrics 

are used to evaluate the performance of the proposed method in comparison with other well-known 

de-speckling methods. Since the main purpose of this study is to improve classification accuracy, 

the capability of the proposed method is further evaluated in terms of classification results. 

Therefore, assessment of classification accuracy is performed based on the confusion matrix.  

2.3.1. Speckle reduction evaluation metrics 

The main objectives of PolSAR image filtering are to reduce the speckle noise and to maintain 

spatial resolution and polarimetric information. In order to evaluate the strength of different de-

speckling methods, a number of indices, including ENL, EPD-ROA, and MVRI were employed 

in this study. These indices are briefly introduced below. 

2.3.1.1. Equivalent Number of Looks (ENL)  

A common metric to evaluate the de-speckling performance and the degree of speckle suppression 

in a PolSAR image is ENL, which is calculated over a homogeneous area of the image. The ENL 

parameter is used to determine algorithm validity in speckle reduction, and is defined as follows: 

𝐸𝑁𝐿 =  
𝐸(𝐼)

𝑉𝑎𝑟(𝐼)
 

(2.6) 

where 𝐸(𝐼) and 𝑉𝑎𝑟(𝐼) are the mean and variance of the de-speckled image. A higher value of 

ENL corresponds to a better performance of de-speckling method [62].   
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2.3.1.2. Edge-Preservation Degree based on the Ratio of Average (EPD-ROA) 

Another index used in this study for evaluation of the proposed method is EPD-ROA [63], which 

is formulated as follows: 

𝐸𝑃𝐷 − 𝑅𝑂𝐴 =
∑ |𝐼𝐷1(𝑖)/𝐼𝐷2(𝑖)|

𝑚
𝑖=1

∑ |𝐼𝑂1(𝑖)/𝐼𝑂2(𝑖)|
𝑚
𝑖=1

 
(2.7) 

where, m is the pixel number of the selected area. 𝐼𝐷1(𝑖) and 𝐼𝐷2(𝑖) denote the adjacent pixel values 

of the de-speckled image along the vertical and horizontal directions, respectively. Also, 𝐼𝑂1(𝑖) 

and 𝐼𝑂2(𝑖) illustrate the adjacent pixel values of the original image. The EPD-ROA values closer 

to one illustrate the high efficiency of the de-speckling method for edge preservation. 

2.3.1.3. Mean and Variance of Ratio Image (MVRI) 

To evaluate the capability of the de-speckling method for preservation of polarimetric information, 

the two parameters, mean and variance of ratio image are extracted as follows: 

𝜇𝑟 = 𝐸(𝑟), 𝜎2 = 𝑉𝑎𝑟(𝑟) (2.8) 

where r denotes the ratio image that is a point-by-point ratio between the original and de-speckled 

images and is extracted by: 

𝑟(𝑖) =
𝐼(𝑖)

𝐼(𝑖)
  , 𝑖 = 1,2,… , 𝑛 

(2.9) 

where 𝐼 and 𝐼 are the original and de-speckled image, respectively, and 𝑛 denotes the number of 

pixels in the image. This ratio image can be used in a fully developed speckle model, contains 

useful information for both the homogeneous and heterogeneous areas, and also represents the 

noise pattern removal. 
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2.3.2. Classification accuracy assessment 

For evaluation of classification results, we used Overall Accuracy (OA), commission and omission 

errors obtained by the classification confusion matrix. The confusion matrix compares the 

classification results with reference data collected in the field (ground truth). Overall accuracy is 

calculated by dividing the total number of correctly classified pixels (diagonal elements of 

confusion matrix) to the total number of pixels [64]. Commission error for class A shows pixels 

that belong to another class, but are mislabeled to class A. In contrast, omission error represents 

those pixels that belong to a specific class according to the ground truth data, but the classifier has 

failed to classify them into the proper class [65]. 

2.4. Proposed GMRF-based de-speckling method 

In this section, we describe our proposed method for speckle reduction of PolSAR imagery. 

Generally, de-speckling methods are applied to a single intensity channel [66], or the covariance 

and coherency matrix [36], [67]. In this study, we proposed a new de-speckling approach applied 

to the coherency matrix that carries the full polarimetric information. One of the advantages of the 

coherency matrix compared to the covariance matrix is that its diagonal elements are directly 

related to the physical characteristics (i.e., scattering mechanism) of the ground targets. The three 

diagonal elements of the coherency matrix 𝑇11,  𝑇22, and 𝑇33 are related to the surface, double-

bounce, and volume scattering mechanism, respectively. Strong targets, which are not affected by 

speckle noise, are determined based on the first two elements (𝑇11 and 𝑇22) [68]. Thus, excluding 

the strong targets from the de-speckling procedure improves speckle reduction performance and, 

subsequently, classification results. Most of the standard speckle reduction methods are applied to 

the entire polarimetric information carried by the coherency and covariance matrix [43], [69]. 
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However, in our new proposed method, strong targets are excluded in order to both reduce the 

blurring effects and preserve polarimetric information. 

In this study, the proposed speckle reduction method consists of 4 main steps. First, the coherency 

matrix is extracted from the PolSAR imagery. Second, strong point targets are determined using 

the first two diagonal elements of the coherency matrix (i.e., 𝑇11 and 𝑇22), and excluded from the 

subsequent processing step. This is because maintaining the signature from strong point targets 

and man-made objects is desirable for further PolSAR image processing and interpretation. Both 

double-bounce and direct specular scattering mechanisms generate a strong point target in a SAR 

image. These two components are found within the T11 and T22 elements of the coherency matrix, 

and not found in the T33 element. Thus, we used the 98th percentile for detection of strong targets 

in a small 3x3 window [36]. In the next step, for better preservation of textural and contextual 

information, the de-speckling filter is applied using a Gaussian Markov Random Field (GMRF) 

based on a Bayesian framework. Finally, a pseudo-span image is produced using the diagonal 

elements of the de-speckled coherency matrix. Based on the Bayesian framework, the image can 

be modelled as a random field, and the de-speckling problem is expressed as an estimation 

problem. Since each pixel value is generally dependent on the neighboring pixels in the image, the 

ability of MRF to model spatial dependency is used. Thus, the de-speckling problem is converted 

to an optimization problem in which the minimization of the Gaussian energy function is solved 

based on simulated annealing (SA) [70]. Figure 2.3 summarizes the main steps of the proposed 

method. 



39 

 

 

Figure 2.3. The flowchart of the proposed method. 

 

2.4.1. Bayesian framework 

Over the last few decades, model-based image techniques are widely applied to solve inverse 

problems in the field of image processing [71]–[73]. More specifically, the unknown image value 

𝑥 is determined based on the measured value of 𝑦 in the image de-noising procedure. This is called 

an inverse problem because 𝑥 is not directly observed and is determined based on the observed 𝑦. 

This is the main objective of all inversion approaches to estimate �̂� of the unknown image value 

𝑥, from the observation 𝑦.  
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Speckle is considered as a multiplicative noise in the intensity images. Assuming speckle has an 

individual mean and is independent of the signal, the multiplicative model can be represented as 

follows [34]: 

𝑦𝑖 = 𝑥𝑖 × 𝑛𝑖 (2.10) 

where 𝑦𝑖 denotes the observed value of the SAR image, 𝑥𝑖 represents a noise-free signal response 

to scatterer, and 𝑛𝑖 is the speckle noise. For convenience, the multiplicative noise is rewritten as 

an additive noise: 

𝑦𝑖 = 𝑥𝑖 + 𝑥𝑖(𝑛𝑖 − 1)  (2.11) 

𝑦𝑖 = 𝑥𝑖 + 𝑁𝑖 (2.12) 

where in Equation 2.11, 𝑥𝑖(𝑛𝑖 − 1) term is considered as an additive noise (𝑁𝑖). For simplicity, 

several studies have established a logarithmic transformation to convert multiplicative noise to 

additive noise [42], [74]. However, the main drawback of applying logarithmic transformation is 

that the dynamic range of the original signals is compressed by the logarithm operation. 

 As shown in Figure 2.3, our proposed speckle reduction method is based on the Bayesian 

framework. In pixel-wise analysis, prior knowledge can be combined with observations to obtain 

a logical derivation of the optimal decision for speckle reduction in a Bayesian scheme. The 

Bayesian framework is used to determine the likelihood model for estimation of speckle and 

texture in a PolSAR image. The Bayesian rule is defined as follows [35]: 

�̂� =  𝑦𝑃𝐶𝑀(𝑦|𝜃) → 𝑃(�̂�|𝑦, 𝜃) =
𝑃(𝑦|�̂�, 𝜃)𝑃(�̂�|𝜃)

𝑃(𝑦|𝜃)
∝ 𝑃(𝑦|�̂�, 𝜃)𝑃(�̂�|𝜃) (2.13) 
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where 𝑦 refers to the noisy image, �̂� shows the de-speckled image and 𝜃 is the model parameters. 

In the conditional probability distribution function (PDF), the prior probability and the observation 

are represented by 𝑃(𝑦|�̂�, 𝜃), 𝑃(�̂�|𝜃) and 𝑃(𝑦|𝜃), respectively [75]. Therefore, likelihood and 

prior PDFs are determined from Equation 2.13. The accomplishment of a Maximum A Posterior 

(MAP) method requires statistical knowledge of a prior distribution of PolSAR images. 

2.4.2. Markov Random Field 

Preservation of textural information is important in PolSAR image de-speckling. Notably, textural 

features should be accurately reconstructed in the de-speckled image. For this purpose, Gaussian 

Markov Random Fields (GMRFs) were applied as texture models in this study, which used 

Bayesian inference to gain a maximum a posteriori (MAP) estimate of the de-speckled image. 

Since Markov Random Field (MRF) models allow integration of prior knowledge of the images, 

they are commonly applied for regularization. MRFs are known as undirected graphical models 

and also defined in terms of the conditional independence characteristics of the random variables. 

More specifically, in a pairwise MRF model, each pixel of an image corresponds to a node. In a 

first-order neighboring system, the simplest way to define a pairwise MRF is to connect each pixel 

to its horizontal and vertical neighbors. However, in a second-order neighboring system, each pixel 

is connected to its eight neighbors. Figure 2.4 illustrates first and second order neighboring systems 

[76]: 
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(a)  (b) 

Figure 2.4. (a) First-order neighborhood system (4 connections), (b) Second-order neighborhood system 

(8 connections). 

Prediction is a primary tool in modelling; also, the result of an accurate model is an accurate 

prediction. Generally, two different orders are used for modelling data based on prediction: casual 

and non-casual. In casual order, which is the simplest way to predict values, the procedure starts 

in the past and continues toward the future. Unfortunately, casual order is not an efficient model 

in the context of visual problems and image de-noising, since it often causes artifacts in the results. 

Therefore, in the field of image processing, approaches that remove causality from modelling are 

required. Thus, image models are used to determine the probability distribution for an image based 

on the differences between neighboring pixels. For this purpose, a GMRF model is used as an 

image model in this study. Given 𝜕𝑠 as a neighborhood system, wherein 𝜕𝑠 ∈  𝑆 is the set of 

neighboring pixels to 𝑠, in this system if s is a neighbor of t, then t is a neighbor of s (𝑠 ∈  𝜕𝑡 if 

only if 𝑡 ∈  𝜕𝑠). Thus, a set of pair-wise cliques is defined as follows [77]: 

𝑃 = {{𝑠, 𝑡}|𝑠 ∈  𝜕𝑡} (2.14) 

where 𝑃 is the set of all unordered neighboring pixel pairs {𝑠, 𝑡}, in which 𝑡 ∈  𝜕𝑠. The distribution 

of a zero-mean GMRF is formulated based on this convention given by: 
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𝑝(𝑥) =
1

𝑧
exp{−

1

2
 𝑥𝑇𝐵𝑥} (2.15) 

where 𝐵 is the inverse of coherency matrix, 𝑧 represents the normalization constant and 𝐵𝑡,𝑠 = 0 

when 𝑡 ∉  𝜕𝑠. Also, 𝑥 is a random vector with Gaussian distribution and denstiy 𝑁(0, 𝐵−1). In 

order to hilight the difference between neighboring pixels, a pairwise quadratic form identity, 

which converts matrix to vector, is used [78]. Therefore, 𝑥𝑇𝐵𝑥 term for image pixels is presented 

as follows: 

𝑥𝑇𝐵𝑥 = ∑ 𝑎𝑠𝑥𝑠
2 +

𝑠∈ 𝑆 

∑ 𝑏𝑠,𝑡|𝑥𝑠 − 𝑥𝑡|
2

{𝑠,𝑡}∈ 𝑃 

 (2.16) 

where 𝑎𝑠 = ∑ 𝐵𝑠,𝑡𝑡∈ 𝑆 , 𝑏𝑠,𝑡 = −𝐵𝑠,𝑡 and in the case of image modelling, the coefficients 𝑎𝑠 are 

most often chosen to be zero in order to guarantee that the prior probability of an image x is 

invariant to additive constant shifts in the pixel values [79]. Therefore, by dropping first term, the 

pair-wised GMRF distribution is defined as follows: 

𝑝(𝑥) =
1

𝑧
𝑒𝑥𝑝 {− ∑ 𝑏𝑠,𝑡

|𝑥𝑠 − 𝑥𝑡|
2

2
{𝑠,𝑡}∈ 𝑃 

} (2.17) 

It is worth noting that this concept is originated from statistical thermodynamics, in which the 

energy function is formulated as follows: 

𝑝(𝑥) =
1

𝑧
𝑒𝑥𝑝 {−𝑈(𝑥)} 

(2.18) 

Therefore, in this study, the energy function of the pair-wise Gaussian distribution is defined as 

[78]: 



44 

 

𝑈(𝑥) = ∑ 𝑏𝑠,𝑡

|𝑥𝑠 − 𝑥𝑡|
2

2
{𝑠,𝑡}∈ 𝑃 

 
(2.19) 

in which the optimization algorithm is used to find the global maximum of a posteriori distribution 

in Equation 2.17, and is equivalent to the global minimum of the energy function. In this study, 

the stochastic optimization method, Simulated Annealing (SA), is used to detect the global 

minimum of the energy function [80]. 

2.4.3. Fast MAP estimation 

The MAP estimator provides a framework for solving problems that require estimation of an 

unknown parameter 𝑥 from observation 𝑦. The likelihood function together with the chosen prior 

probability is used to calculate a MAP estimate of the noise-free scene 𝑥. Given a known model 

parameter, the optimal estimator for this problem is determined by maximum a posteriori (MAP) 

estimate [81]: 

𝑥𝑀𝐴𝑃 = argmax𝑥∈Ω 𝑝(𝑥|𝑦) (2.20) 

where Ω is the set of feasible values for 𝑥 and the conditional distribution 𝑝(𝑥|𝑦) is the posterior 

distribution. For estimating �̂�𝑀𝐴𝑃, the first derivative of the logarithm of the posterior is set to zero. 

In summary, a GMRF is used to model the contextual relationships among pixel labels given the 

Hammersley-Clifford theorem [78]. Also, the de-speckling problem is formulated as an 

optimization process with a well-defined cost function using the Fast MAP estimation criterion. 

More specifically, given the observed image random field Y = y, the MAP criterion looks for a 

labeling X = x which maximizes the conditional probability function 𝑃𝑋|𝑌(𝑥|𝑦) for all possible 

realizations x of X. In the case of discrete problems such as SAR image de-speckling, this 

corresponds to maximizing the probability 𝑝(𝑥|𝑦) and minimizing the probability of an error. 
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2.4.4. Pseudo-span image formation 

As illustrated in Figure 2.3, a by-product of the proposed de-speckling method is the pseudo-span 

image, which is explained with more detailed in this section. A span image is the sum of the 

diagonal elements of the coherency matrix (Equation 2.4). Thus, in the de-speckled image, the 

span image is formed as follows: 

De-speckled span image= 𝑇11
′ + 𝑇22

′ + 𝑇33
′ (2.21) 

where 𝑇11
′, 𝑇22

′, and 𝑇33
′ are de-speckled diagonal elements of the coherency matrix. In Equation 

2.4, the coefficients of these three elements are one. The pseudo-span image of the original image 

is defined as follows:  

Pseudo-span image = 𝑘1𝑇11 + 𝑘2𝑇22 + 𝑘3𝑇33 (2.22) 

wherein the three coefficients k1, k2 and k3 are unknown and should be determined. Since the span 

image value represents the total power of the coherency matrix (Equation 2.4), it is approximately 

equal before and after de-speckling. Given this hypothesis, the optimum weights of pseudo-span 

image are determined using the following equation in this study:  

𝑇11
′ + 𝑇22

′ + 𝑇33
′  = 𝑘1𝑇11 + 𝑘2𝑇22 + 𝑘3𝑇33

 (2.23) 

where the left and right sides of Equation 2.23 are the span of de-speckled and the pseudo-span of 

the original images, respectively. In this equation, the three unknown coefficients should be 

determined. In particular, each imaging pixel is an independent observation within each ground 

target, which is used to determine these coefficients using a least square estimator (LSE) [82]. 

Furthermore, the k1, k2, and k3 elements illustrate the best linear combination of the diagonal 

elements of the coherency matrix, which is the nearest representation to the de-speckled span 

image. Moreover, by solving Equation 2.23, the effect of the de-speckling is inserted into the k1, 
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k2, and k3 parameters. Next, these parameters are integrated with the de-speckled diagonal 

elements of the coherency matrix (𝑇11
′,𝑇22

′, and 𝑇33
′) to generate the de-speckled pseudo-span 

image, which is formulated as follows: 

De-speckled pseudo-span image = 𝑘1𝑇11
′ + 𝑘2𝑇22

′ + 𝑘3𝑇33
′ (24) 

Using these weights for the de-speckled diagonal elements of the coherency matrix produces a 

more accurate feature, which is called the de-speckled pseudo-span image in this study. 

Accordingly, using the more reliable noise-free feature should improve the classification accuracy 

of the PolSAR data in further analysis. Next, the de-speckled PolSAR image based on the proposed 

method is used for wetland classification. Furthermore, the effect of different de-speckling 

methods on the PolSAR image is compared in terms of wetland classification accuracy.  

2.5. Experimental results 

2.5.1. Study area and data description 

The study area is about 700 km2 and is located in the northeastern portion of the Avalon Peninsula, 

Newfoundland and Labrador, Canada (Figure 2.5). The area is mostly covered by boreal wetlands 

of different types (i.e., bog, fen, swamp, marsh, and shallow-water).  
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Figure 2.5. The geographic location of the study area, the Avalon Peninsula, Newfoundland and 

Labrador, Canada. 

Eight land cover classes including bog, fen, built-up, marsh, open-water, shallow-water, swamp, 

and upland are found within this pilot site. For the classified maps, a confusion matrix was 

calculated for these eight classes. For each class, reference polygons, manually digitized on high-

resolution aerial photographs using GPS points collected on the field, and were sorted by size and 

alternatingly assigned to testing and training groups. Due to the limited amount of data (58 ground-

referenced wetlands) and the wide variation of size within each wetland class (some small, some 

large), random assignment to the testing and training group could result in the testing and training 

groups having highly uneven pixel counts. However, the random procedure ensured that both the 

testing and the training groups had equal assignment of small and large wetlands polygons to allow 
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for comparable pixel counts and to account for the high variation in intra-wetland size. Table 2.1 

shows land cover classes and their respective pixel counts. 

Table 2.1. Testing and training pixel counts for reference data. 

Class Class Description Training 

Pixels 

Testing 

Pixels 

Total 

Bog Peatland dominated by Spahgnum 

species* 

2523 3536 6059 

Fen Peatland dominated by graminoid 

species* 

1202 2215 3417 

Swamp Mineral wetland dominated by woody 

vegetation* 

458 796 1254 

Marsh Mineral wetland dominated by 

graminoids and emergent plants* 

1096 1246 2342 

Shallow-water Mineral wetland with standing water at 

most 2m deep* 

1007 267 1274 

Built-Up Human-made structures 3938 3491 7429 

Open-water Deep water areas 9352 10804 20156 

Upland Forested dry upland 5973 4551 10524 

Total   25549 26906 52455 

*(National Wetlands Working Group, 1997) 

Two descending RADARSAT-2 images in Fine Quad (FQ) beam mode acquired on June 10th, 

2015 were used. Due to the small swath width of FQ mode imagery, more than one image was 

used to cover the whole study area. In the first step, the scattering matrix was converted to a 

coherency matrix. The diagonal elements of the coherency matrix are illustrated in Figure 2.6.  
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Figure 2.6. Original coherency matrix of RADARSAT-2 image in Fine Quad (FQ) beam mode. 

Different speckle reduction methods were applied to the coherency matrix elements. Also, for 

better evaluation of the de-speckling results, three areas with different land cover types 

representing a homogeneous area, a linear feature, and edge were selected (see Figure 2.7). 

 

Figure 2.7. A sub-region of the study area and three small areas used for evaluating the performance of 

the proposed method. 
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2.5.2. Results of the proposed de-speckling method  

The results of our proposed de-speckling method, applied to the PolSAR data, are presented in this 

section. We also compare the strength of the proposed method, visually and quantitatively, with a 

number of well-known de-speckling methods listed in Table 2.2. Importantly, the size of the 

filtering window was set to 5×5 for the Kuan, Frost and Refined Lee filters. These three filters 

were implemented using the PCI Geomatica 2015 software. For the SARBM3D filter, maximum 

size of the 3rd dimension of a stack, the diameter of search area, the dimension of step in sliding, 

and the parameter of the 2-D Kaiser window are set to 16, 39, 3, and 2, respectively. This filter 

was implemented using Matlab toolbox, provide by [83]. In the proposed method, second order 

MRF neighboring system was used. Figure 2.8 shows the results of different speckle reduction 

methods on the span image of RADARSAT-2 PolSAR image. 

  

(a) (b) 

  

(c) (d) 



51 

 

 

(e) 

Figure 2.8. Comparison of the de-speckled span images using different filtering techniques (a) Frost, (b) 

Kuan, (c) Enhanced Lee, (d) SARBM3D, and (e) the proposed method (Pseudo-span). 

Table 2.2 summarizes the interpretation of the obtained results using different de-specking 

methods in Figure 2.8. 

Table 2.2. Properties of different de-speckling methods. 

De-speckling method         Properties 

Frost • High speckle level. 

• Maintains the mean value of the original image in the homogenous 

areas. 

Kuan • Low speckle level. 

• High blurring effect. 

• Loses the mean value of the original image. 

Enhanced Lee • Moderate speckle level. 

• Maintains the mean value of the original image in the homogenous 

areas. 

• Preserves the edges. 

SARBM3D • Moderate speckle level. 

• Loses the mean value of the original image in the homogenous 

areas. 

• Better preservation of the edges and linear features. 

The proposed method • Low speckle level. 

• Maintains the mean value of the original image in the homogenous 

and heterogonous areas. 

• Preserves the edges. 

• Better preservation of the edges and linear features. 
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Figure 2.9 represents the results of the proposed method on the diagonal elements of the coherency 

matrix. 

 

Figure 2.9. De-speckled diagonal elements of the coherency matrix. 

Comparing visual appearance (Figure 2.6 versus Figure 2.9), it can be observed that by applying 

the proposed filtering method speckle noise is removed, while edges, detail, and texture 

information are well preserved. Also, Figure 2.10 illustrates a visual comparison between the de-

speckled image obtained by the proposed method and the optical image. 
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Figure 2.10. Visual comparison of the de-speckled image obtained by the proposed method and the 

optical imagery. 

As seen in Figure 2.10, the linear features and edges (e.g., roads and man-made structures) are 

preserved representing the efficiency of the proposed method in de-speckling. Furthermore, the 

quantitative comparisons between the proposed method and other well-known methods are 

presented in Figure 2.11, Table 2.3, and Table 2.4 using different quantitative indices. Figure 2.11 

demonstrates the ENL values for different de-speckling methods. The ENL determines the degree 

of speckle reduction and was computed in the selected sub-region as marked in Figure 2.7. 

 

Figure 2.11. Equivalent Number of Looks (ENL) for different de-speckling methods. 
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As seen, the proposed method shows approximately 19%, 43%, 46%, and 50% improvements in 

term of ENL values, compared to SARBM3D, Enhanced Lee, Frost, and Kuan, respectively. 

Another index used to evaluate the strength of the de-speckling is EPD-ROA criterion, which 

illustrates the efficiency of different filters in term of edge preservation. Table 2.3 represent EPD-

ROA values, in both horizontal and vertical direction, for three diagonal elements of the coherency 

matrix obtained from different de-speckling methods.  

Table 2.3. Evaluation of edge preservation based on EPD-ROA index for different de-speckling methods. 

De-speckling 

method 

EPD-ROA 

T11-HD T11-VD T22-HD T22-VD T33-HD T33-VD 

Kuan 0.5699 0.552 0.572 0.563 0.544 0.538 

Frost 0.583 0.566 0.608 0.579 0.561 0.547 

Enhanced Lee 0.729 0.698 0.645 0.619 0.594 0.567 

SARBM3D 0.709 0.687 0.720 0.706 0.731 0.699 

The proposed 

method 
0.741 0.702 0.783 0.721 0.719 0.685 

From Table 2.3, it can be observed that the proposed method has a better performance in edge 

preservation in most cases compared with other well-known filters, which resulted in higher EPD-

ROA values. However, there is an exception, wherein the larger EPD-ROA value is obtained from 

SARBM3D filter in T33 element of the coherency matrix in both horizontal and vertical direction. 

Notably, the proposed method illustrates to be more efficient for speckle reduction of T22 element 

of the coherency matrix resulting in higher EPD-ROA values for this element compared to T11 and 

T33 elements. For instance, an improvement of approximately 27%, 22%, 18%, and 8% was 

observed for T22 element of the coherency matrix in horizontal direction in term of edge 

preservation by the proposed method compared to Kuan, Frost, Enhanced Lee, and SARBM3D, 
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respectively. In addition to the ENL and EPD-ROA, the mean and variance of the ratio image were 

determined for various de-speckling methods used in this study and represented in Table 2.4. This 

index was used in order to determine the amount of bias introduced by each de-speckling method.  

Table 2.4. Quantitative comparison of de-speckling algorithms. 

Parameters Mean(r) Var(r) 

Original Image 1.0000 0.0000 

Kuan 0.7905 0.5793 

Frost 0.7166 0.6309 

Enhanced Lee 0.9014 0.3955 

SARBM3D 0.8931 0.4380 

Proposed method 0.9386 0.3164 

As seen, the proposed method has the highest mean and lowest variance of the ratio image. In 

particular, the proposed method has mean ratio that is close to one, implying better preservation 

of mean value. Furthermore, the mean of the ratio image illustrates improvements approximately 

of 5%, 4%, 31%, and 19% by the proposed method compared to SARBM3D, Enhanced Lee, Frost, 

and Kuan filter, respectively. Furthermore, the variance of the ratio image is improved using the 

proposed method approximately of 27%, 20%, 49%, and 45% in comparison with SARBM3D, 

Enhanced Lee, Frost, and Kuan filter, respectively. Next, we used de-speckled PolSAR images 

obtained by different filters for classification. We also evaluated the performance of different de-

speckling methods on the overall classification results. 

2.5.3. Random Forest classification results 

The Random Forest (RF) classifier is one of the most effective approaches for classification [84]. 

In this study, RF is used to evaluate the effects of different de-speckling methods on classification 

results.  
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Figure 2.12, 2.13, and 2.14 illustrate the accuracy assessment, including omission error, 

commission error, and overall accuracy (OA) of classified maps obtained by PolSAR images, 

which were filtered using different de-speckling methods. Particularly, Figure 2.12 and 2.13 show 

omission and commission errors, which are calculated from marginal proportions of the row and 

column of the confusion matrix. 

 

Figure 2.12. Comparison of the omission error in different land cover types for classified maps obtained 

by different de-speckling methods. 

 

Figure 2.13. Comparison of the commission error in different land cover types for classified maps 

obtained by different de-speckling methods. 



57 

 

These results confirm the outperformance of the proposed de-speckling method over other 

methods in terms of classification results. As seen in Figure 2.12 and 2.13, omission and 

commission errors of both the shallow-water and open-water class and also, commission error of 

swamp class are zero. Particularly, the average omission and commission errors are significantly 

lower using the proposed method than using other methods. For example, the omission errors for 

the marsh class illustrate a reduction of 43%, 51%, 23%, and 27% using the proposed method 

compared to Kuan, Frost, Enhanced Lee, and SARBM3D, respectively. Figure 2.14 compares the 

overall accuracies for classified maps obtained by PolSAR images based on different de-speckling 

methods. 

 

Figure 2.14. Overall accuracies for classified maps obtained by applying different de-speckling methods. 

Notably, the proposed method shows the highest OA of about 81%, followed by 74% achieved by 

Enhanced Lee. Furthermore, the classified map obtained by de-speckled PolSAR image (the 

proposed method) illustrates improvements of about 19%, 9%, 55%, and 32% compared to 

SARBM3D, Enhanced Lee, Frost, and Kuan filter, respectively.  
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2.6. Conclusion 

PolSAR images are widely used for land cover classification. However, the presence of speckle 

noise hinders the radiometric quality of the PolSAR images and, subsequently, further PolSAR 

image analysis (e.g., segmentation and classification). Thus, speckle reduction is a necessary pre-

processing step in most of PolSAR image analysis, which has a great influence on the accuracy of 

end-user products. In this paper, a novel speckle reduction method based on a GMRF model was 

proposed. We compared the efficiency of the proposed method in term of different quantitative 

indices with other well-known de-speckling filters. The results demonstrated the superior 

performance of the proposed method in edges and detailed preservation as well as speckle 

suppression compared to other methods. Another purpose behind this study was to assess the effect 

of the proposed speckle reduction method, along with four other well-known de-speckling 

methods, on the accuracy of wetland classification. The experimental results demonstrated that the 

overall accuracy of wetland classification was improved by about 19%, 9%, 55%, and 32% using 

the de-speckled PolSAR image obtained by the proposed method compared to SARBM3D, 

Enhanced Lee, Frost, and Kuan filter, respectively.  

Furthermore, the proposed method outperformed other methods in terms of class-based accuracies 

(i.e., omission and commission errors). Importantly, the proposed method was demonstrated to be 

more effective in terms of maintaining polarimetric properties and backscattering mechanisms. 

This conclusion is based on demonstrably better performance of the proposed method in 

discriminating between wetland classes with similar spectral signature (e.g., bog and fen, shallow- 

and open-water). This promises a great potential for operational wetland inventory generation for 

Canadian north, and elsewhere particularly with Canada’s upcoming RADARSAT Constellation 

Mission (RCM). 
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Abstract 

Wetlands are important ecosystems around the world, although they are degraded due both to 

anthropogenic and natural process. Newfoundland is among the richest Canadian province in terms 

of different wetland classes. Herbaceous wetlands cover extensive areas of the Avalon Peninsula, 

which are the habitat of a number of animal and plant species. In this study, a novel hierarchical 

object-based Random Forest (RF) classification approach is proposed for discriminating between 

different wetland classes in a sub-region located in the north-eastern portion of the Avalon 

Peninsula. Particularly, multi-polarization and multi-frequency SAR data, including X-band 

TerraSAR-X single polarized (HH), L-band ALOS-2 dual polarized (HH/HV), and C-band 

RADARSAT-2 fully polarized images, were applied in different classification levels. First, a SAR 

backscatter analysis of different land cover types was performed by training data and used in 

Level-I classification to separate water from non-water classes. This was followed by Level-II 

classification, wherein the water class was further divided into shallow- and deep-water classes, 

and the non-water class was partitioned into herbaceous and non-herbaceous classes. In Level-III 

classification, the herbaceous class was further divided into bog, fen, and marsh classes, while the 

non-herbaceous class was subsequently partitioned into urban, upland, and swamp classes. In 

Level-II and -III classifications, different polarimetric decomposition approaches, including 

Cloude-Pottier, Freeman-Durden, Yamaguchi decompositions, and Kennaugh matrix elements 

were extracted to aid the RF classifier. The overall accuracy and kappa coefficient were determined 

in each classification level for evaluating the classification results. The importance of input 

features was also determined using the variable importance obtained by RF. It was found that the 

Kennaugh matrix elements, Yamaguchi, and Freeman-Durden decompositions were the most 

important parameters for wetland classification in this study. Using this new hierarchical RF 
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classification approach, an overall accuracy of up to 94% was obtained for classifying different 

land cover types in the study area. 

Keywords: Wetland classification, Polarimetric Synthetic Aperture Radar (PolSAR), Random 

Forest (RF), Object-Based Image Analysis (OBIA), Kennaugh matrix. 
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3.1. Introduction 

Wetlands are soil saturated areas with water long enough to provide suitable ecosystems for 

hydrophytic vegetation and various kinds of biological activity, which are associated with a wet 

environment [1]. Wetlands are important ecosystems with a variety of environmental services, 

including flood storage, shoreline stabilization, carbon sequestration, water-quality renovation, 

and, more important, a desirable habitat for both animal and plant species [2]. Despite the benefits, 

wetlands are being destroyed at increasing rates due both to natural processes, such as climate 

change, coastal processes, erosion and human interferences, such as road construction, installation 

of water-control structures, and oil spills [3]. 

Traditional approaches for wetland mapping and monitoring have been mainly based on ground 

surveys of water and vegetation patterns to gather information about wetland ecosystems, which 

are time and cost consuming techniques. These traditional approaches have been gradually 

replaced with aerial photography and, later, with satellite remote sensing tools [4]. The advent of 

remote sensing technology has greatly changed applied techniques for wetland monitoring by 

providing data for inaccessible wetland ecosystems in multi-temporal dimensions that facilitated 

long term monitoring of wetland complex. The use of remote sensing approaches for wetland 

monitoring have been well demonstrated in different applications such as classification [5], change 

detection [6], and water level monitoring [7].  

Optical satellite images have been demonstrated to be useful for wetland classification if free cloud 

cover images are available [8], [9]. However, optical images are less-useful in tropical, subtropical, 

and northern latitudes regions due to near permanent cloud cover [10]. In contrast, Synthetic 

Aperture Radar (SAR) images are the preferred alternative for wetland monitoring when the 

capability of optical remote sensing imagery is hampered by either cloud cover or sun illumination 
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[11], [12]. In addition to being an independent of weather and day-night time conditions, the 

capability of SAR images to penetrate to soil, water, and vegetation canopies has caused them to 

gain increasing attention for wetland monitoring during the past two decades [12]–[15]. 

Though single SAR polarized data have been less investigated for wetland classification, they 

represented great potential for monitoring open water surfaces in different applications, including 

waterbody extraction [16], [17], flooding, and inundation mapping [18]. Since satellite SAR 

sensors have a side-looking geometric data acquisition and transmit signals in off-nadir look angle, 

most of the signals transmitted to calm water surfaces are scattered away from the SAR sensor. 

Particularly, open water acts like a mirror and, as a result, open water appears dark in a SAR image 

with no or an extremely low SAR backscatter making it distinguishable from surrounding land. C- 

and X-band SAR data have been examined for open water mapping in several studies [19]–[21]. 

Surface water detection can also be conducted as an initial step for classification of flooded 

vegetation [10]. Focusing on the suitable SAR polarization for water detection, HH-polarized data 

have been illustrated to be more useful due to their highest contrast between upland and open water 

[19]. Furthermore, it is less affected by wind-induced water surface changes than VV-polarization 

[22], [23]. However, water surfaces affected by wind or current have higher SAR backscatter than 

calm water and can be challenging to detect using only single SAR polarized data. In the latter 

case, using the cross-polarization channel that is less sensitive to surface roughness is useful. 

Particularly, using the HH/HV ratio assures accurate water body delineation [20].  

The selection of appropriate SAR wavelength and polarization are two influential factors for land 

cover classification. Using Polarimetric Synthetic Aperture Radar (PolSAR) images with high 

capabilities to discriminate between different land cover classes [24] and, particularly, wetland 
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classes [25] is a more sophisticated approach. A fully polarimetric SAR sensor such as 

RADARSAT-2 acquires the full polarimetric scattering matrix, which provides comprehensive 

ground target information for each imaged pixel [26]. Different scattering mechanisms of ground 

targets can be detected by PolSAR data, including surface scattering (calm water surface), double-

bounce scattering (man-made structure and flooded vegetation), and volume scattering (vegetation 

canopy). Different decomposition approaches of PolSAR data have been shown to be a promising 

tool for wetland classification [25]. In addition, wetland ecosystems are dominated by several 

distributed targets and may be better characterized using incoherent polarimetric decomposition 

techniques, such as Cloude-Pottier [27], Freeman-Durden [28], van Zyl [29], and Kennaugh matrix 

[30], different polarimetric decomposition techniques have been used for wetland classification 

based on several classifiers in recent years [31].  

In the case of fully polarimetric SAR data, the classification result would be sufficiently robust 

due to complete polarimetric information. However, recent studies have focused on using a 

combination of dual polarized SAR data that provides high classification accuracy, as close to that 

of fully polarimetric data as possible, for wetland classification [31], [32]. Although, the dual 

polarization mode obtains half the information of a fully polarimetric dataset, they have a wider 

swath width, and therefore, cover a larger area [26]. 

While the suitabilitythe suitability of using dual co-polarized (HH/VV) SAR data for monitoring 

flooded vegetation was demonstrated early in 1997 [33], it has not been further investigated due 

to a lack of SAR sensors operating in that particular polarization mode [31]. Later studies have 

demonstrated the sufficiency of information content of co-polarized SAR data for monitoring of 

flooded vegetation [14], [31], [34]6). Currently, SAR missions primarily operate in either dual 

(TerraSAR-X, Sentinel-1) or fully polarimetric (RADARSAT-2, ALOS -2) modes. 
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Another consideration for land cover classification is the fusion of multi-source data. In particular, 

a fusion of optical and SAR data for classification of flooded vegetation has been extensively 

examined [35], [36]. The results demonstrated that integration of optical and radar data provides a 

promising tool in terms of classification accuracy. Furthermore, the combination of different SAR 

frequency bands has been found to improve the land cover classification accuracy [26], [35], [37], 

particularly for wetlands [10], [38], [39]. Importantly, each wavelength has its own advantages in 

the context of land and wetland cover classifications. For example, longer wavelengths, such as L-

band (~24 cm) have higher penetration depths through the vegetation canopy —necessary for 

discriminating between different wetland classes— while maintaining sensitivity to soil moisture 

and inundation. Also, a number of studies have demonstrated that longer wavelengths are better 

suited for forested wetland due to their higher penetration capability [35], [40]. However, shorter 

wavelengths, such as C-band (~5.6cm) and X-band (~3.1 cm), are preferred to discriminate non-

forested wetland classes (e.g., bog, fen, and marsh) as well as water [19]. 

Concerning classification algorithms, the availability of high resolution SAR data has been 

combined with advanced image analysis techniques, such as Object-Based Image Analysis 

(OBIA), to further improve the accuracy of land cover classification [41], [42]. OBIA has been 

demonstrated to outperform pixel-based classification approaches because it fuses multiple 

sources of data with different spatial resolutions. OBIA employs object features as classification 

inputs, including the spectral, spatial, geometrical, textural, and contextual information of a group 

of neighboring pixels (objects), in addition to the original pixel values, and enhances input 

information for the classification procedure. The capability of OBIA for wetland classification has 

been examined by a number of studies [38], [43]–[45]. OBIA is initiated with a Multi-Resolution 

Segmentation (MRS) analysis that generates objects of ground targets, which is a more intuitive 
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representation of ground features compared to that of pixel-based classification [46]. Particularly, 

MRS is developed based on a region-merging algorithm, starting with a pixel as a first-level object 

followed by the integration of pixels to produce objects, wherein the heterogeneity criteria is 

minimized [42]. However, segmentation parameters, such as scale, shape, smoothness, and 

compactness criteria, should be determined by users through a “trial and error” procedure 

depending on the classification purposes and available dataset [47]. This segmentation process is 

usually followed by classification to produce a classified map. 

The Random Forest (RF) classifier is a powerful ensemble learning technique that has gained 

increasing attention in land cover classification using satellite images during the last decade [48]–

[50]. The Random Forest algorithm is beneficial because: (1) it is less affected by outliers and 

noisier datasets; (2) it has a great capability to deal with a high dimensional, multi-source dataset 

while not being over-fitted to that; and (3) it has represented a higher classification accuracy 

compared to other well-known classifiers, such as Support Vector Machines (SVM) and Maximum 

Likelihood (ML) [51], [52]. Moreover, RF assesses the variable importance of input features, 

which is a qualitative analysis of variable contribution to the classification procedure [53]. The RF 

algorithm is similar to a decision tree algorithm, though it is constructed based on a series of trees, 

wherein each tree assigns a pixel to a specific class through a single vote [54]. Finally, RF has 

been demonstrated to be an easy to handle classifier, since only two input parameters should be 

determined by the user: the number of trees and the number of split variables. 

This study aims to integrate multi-polarization and multi-frequency SAR images for classification 

of wetland complex. Particularly, single polarized TerraSAR-X, dual polarized ALOS-2, and fully 

polarized RADARSAT-2 SAR data are integrated in a hierarchical OBIA framework to identify 

different wetland classes. This flexible, hierarchical classification approach allows for 
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incorporating new rules and datasets without compromising predefined rules [55]. In such an 

approach, the number of input features is adjusted according to the complexity of classes, which 

are distinguished from each other in each classification level. 

Using multiple scenarios in different classification levels, wetland classes are extracted. Therefore, 

the capability of each SAR polarization corresponding to different SAR wavelengths is evaluated 

in terms of classification accuracy in different levels and scenarios. For this purpose, different 

polarimetric features, including covariance, coherency, Kennaugh matrices obtained by dual and 

fully polarimetric SAR data, Cloude-Pottier, Freeman-Durden, and Yamaguchi decompositions, 

as well as SAR intensity images corresponding to single polarimetric SAR data, are extracted as 

input features for object-based RF classification. 

The rest of this paper is structured as follows: Section 2 introduces the study area, in situ data, and 

satellite imagery in this research. This will be followed by a description of the methodology in 

Section 3. Section 4 presents the experimental results and discussion, and, finally, Section 5 draws 

a conclusion. 

3.2. Study area and data 

3.2.1. Study area  

Within its borders, Canada contains 24% of the world’s wetlands, corresponding to approximately 

150 million hectares. The extensiveness of these wetlands highlights the importance of wetland 

management and particularly, wetland classification in this country [56]. Accordingly, 

Newfoundland and Labrador is among the richest Canadian provinces in terms of different types 

of wetlands (e.g., bog, fen, swamp, marsh, and shallow-water) and yet, it is the only province in 

Atlantic Canada that currently does not have a wetland inventory system. This paper addresses the 
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aforementioned issue by proposing a new wetland classification framework with a case study in 

Newfoundland and Labrador. The study area is located in the Avalon Peninsula (Figure 3.1) with 

various types of wetland classes and here is referred to the Avalon pilot site. The Avalon pilot site 

is a 700 square kilometer area located in the north eastern section of the Avalon Peninsula, on the 

island of Newfoundland, Canada, located in the Maritime Barren ecoregion. This ecoregion is 

characterized by a typical oceanic climate, experiencing foggy, cool summers and relatively mild 

winters. Mean annual temperatures are around 5.5°C and mean annual precipitation ranges from 

1200 to 1600mm [57]. Land cover within the pilot site is dominated by different wetland types and 

it includes other classes such as urban, deep-water, and upland. Particularly, an upland may be 

more clearly defined as a “forested area” or a “forested dry area”, and does not include non-

forested upland areas, such as dry, non-woody herbaceous areas or heathlands. The majorities of 

urban regions are centered in the north eastern portion of the study area and includes the city of St. 

John’s, the capital city of Newfoundland, with a population of around 200,000, and the city of 

Mount Pearl, Torbay and the Goulds.  

According to the Canadian Wetland Classification System, wetland can be categorized as bog, fen, 

marsh, swamp, and shallow-water. All of these classes are found in the Avalon pilot site, though 

bog and fen are most common relative to the occurrence of swamp, marsh, and shallow-water. 

Bogs are dominated by Sphagnum moss, Ericaceous shrub, and sedge species. Fens are dominated 

by sedges and grasses, and although Sphagnum moss species are often present in fens, they do not 

dominate as they do in bogs [58]. Marshes are dominated by emergent aquatic species of sedges, 

rushes, and grasses. Swamps are primarily dominated by both tree and shrub Black Spruce (Picea 

mariana) and Tamarack (Larix laricina). Characteristic shallow-water vegetation is submerged 

aquatic macrophytes, especially species belonging to the genus water lilies (Nymphaecae). 
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Figure 3.1. Overview of the study area with overlay of SAR images, RADARSAR-2 (blue boxes), 

TerraSAR-X (green box), and ALOS-2 (red box). 

3.2.2. In situ data collection 

Biologists, as the project team members, collected in situ data in the summers and falls of 2015 

and 2016 in the Avalon pilot site. Using the visual analysis of high resolution Google Earth 

imagery and prior knowledge of the area, accessible wetland areas across the Avalon pilot site 

were flagged for visitation. A total number of 191 wetland sites were visited and categorized as 
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bog, fen, swamp, marsh, or water, as directed by the Canadian Wetland Classification System. 

During field work, one or, up to 3 points were taken per wetland site, depending on the size of 

each wetland. For some wetlands, such as swamp, which are somewhat challenging to delineate 

using visual methods, a point was taken at the nearest transition to upland. GPS points at each site 

were collected, along with ancillary data such as notes describing dominant vegetation and 

hydrology, and photographs, to aid the wetland boundary delineation process. Field delineation 

was conducted via visual interpretation of aerial photography and satellite images taken at different 

dates. An effort was made to delineate wetlands conservatively as to avoid including transitional 

areas within classifications. In particular, the GPS points were imported to ArcMap 10.3.1 to 

highlight visited wetlands and extract wetland boundary. Using satellite and aerial imagery, 

including a 50cm resolution orthophotograph and 5m resolution RapidEye imagery, polygons 

representing classified delineated wetlands were generated. 

3.2.3. Reference data 

For each class, reference polygons were sorted by size and alternatingly assigned to testing and 

training groups. Due to the limited amount of data and the wide variation of size within each 

wetland class (some small, some large), random assignment to testing and training groups could 

result in these groups having highly uneven pixel counts. However, alternative assignment ensures 

that both the testing and the training groups had comparable pixel counts for each class. Figure 3.2 

illustrates the distribution of the training and the testing polygons for each land cover type across 

the study area.  



77 

 

  

(a) (b) 

Figure 3.2. Distribution of reference data: (a) training and (b) testing polygons used for different 

classification levels.    

Table 3.1 represents land cover classes and their respective pixel counts. As seen, the bog and fen 

classes have the most associated pixels of the wetland classes. In contrast, shallow-water and 

swamp classes have the least amount of pixels. The collection of in situ data was affected by 

several factors, including accessibility of wetlands by roadways, the natural ecology and 

distribution of wetland classes, and availability of biologists for field work. Thus, there is a 

variation in the quantity and quality of data for each individual class, as seen in Table 3.1. 

Importantly, the initial goal of the fieldwork component was to provide a minimum mapping unit 

of one hectare. However, over the course of the field work, many of the accessible wetlands of 

certain classes frequently occurred in smaller sizes. For example, of the 191 polygons collected in 
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the Avalon pilot site, 30 of those were swamp wetlands, of which only 7 were greater than 1 hectare 

in size. Similarly, of the 46 marsh wetlands, only 18 were greater than 1 hectare. These spatially 

small wetlands were chosen to be included in the study, because, without them, these wetland 

classes would be represented by a limited amount of field data. 

Table 3.1. Testing and training pixel counts for Avalon reference data. 

Class Class Description 
#Training 

Pixels 

#Testing 

Pixels 
Total 

Bog Peatland dominated by Spahgnum species 20650 17080 37730 

Fen Peatland dominated by graminoid species 11183 11311 22494 

Swamp 
Mineral wetland dominated by woody 

vegetation 
3197 5161 8358 

Marsh 
Mineral wetland dominated by graminoids and 

emergent plants 
10869 9685 20554 

Shallow-water 
Mineral wetland with standing water at most 2m 

deep 
6205 5743 11948 

Urban Human-made structures 66339 67853 134192 

Deep-water Deep water areas 62927 89184 152111 

Upland Forested dry upland 73458 88947 162405 

Total   254828 294964 549792 
 

Bog wetlands are often large relative to other wetland classes in the province due both to their 

natural formation and ecology [58] and the province climate, which facilitates extensive peatland 

formation [59]. Furthermore, bog wetlands are often easy to access in the pilot site and are better 

spotted via satellite imagery. As a result, the bog wetland class has a relatively large amount of 

associated pixels. Conversely, shallow-water and swamps are arduous to flag for visitation and 

delineate as they may look visually similar to deep-water (>2m deep) and upland forest 

respectively when looking at aerial or satellite data. Swamps and shallow-water also tend to occur 

in physically smaller areas compared to other wetlands, such as in transition zones between one 
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wetland and another or along the edge of a water body. As a result, most swamp and shallow-water 

polygons will contain fewer pixels when compared to other wetlands types.  

3.2.4. Satellite imagery 

In this study, we used multi-polarized and multi-frequency SAR images. More specifically, single 

polarized (HH) TerraSAR-X (TSX), dual polarized (HH/HV) ALOS-2, and full polarized 

RADARSAT-2 images were acquired from the Avalon pilot site. A summary of data 

characteristics is presented in Table 3.2. RADARSAT-2 images were acquired in Fine Quad (FQ) 

mode. Due to small swath of FQ mode, more than one image was used to cover the whole study 

area. Also, level 3A RapidEye optical imagery with a pixel size of 5m was employed in initial 

segmentation for object-based classification. An overlay of SAR images on the study area is 

depicted in Figure 3.1. 

Table 3.2. Characteristic of satellite imagery used in this study. 

Sensor Acquisition 

Date 

(yyyy/mm/dd) 

Number of 

Images 

Image Mode Polarization Incidence 

angle 

( °) 

Resolution (m) 

(Range× Azimuth) 

TerraSAR-X 2016/08/22 1 StripMap HH 20-45 3.1 × 3.2 

RADARSAT-2 2015/08/21 2 FQ4 Full 22.1-24.1 4.7 × 4.9 

ALOS-2 2015/08/02 1 FBD HH/HV 36 9.1 × 5.3 

RapidEye 2015/06/18 1 - - - 5 
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3.3. Methodology 

The methodology comprised the four main steps outlined in Figure 3.3, wherein all Levels are 

classification levels. First, in the pre-processing step (Level-0 classification), image 

orthorectification and de-speckling were applied and SAR images were prepared for application 

in the hierarchical classification scheme. A sigma naught backscattering analysis for all land cover 

classes was then performed and water classes were separated from non-water areas in Level-I 

classification. This step was followed by Level-II and -III classification wherein: (1) PolSAR 

features were extracted; (2) MRS with different scale parameters compared to Level-I 

classification was employed; and (3) the RF classification was applied. This general process is 

explained in more detail in the following sections. 
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Figure 3.3. Flow diagram of processing and analysis steps employed in this study for wetland 

classification. The classification is initiated with pre-processing step in Level-0. Next, Level-I 

classification is at the top of the diagram and its results are water and non-water classes. In the middle of 

the diagram (Level-II classification), water is classified to shallow- and deep-water and non-water class 

is distinguished into herbaceous and non-herbaceous classes. In the bottom of the diagram (Level-III 

classification), herbaceous and non-herbaceous classes are classified to bog, fen, and marsh and urban, 

upland, and swamp classes, respectively. 

3.3.1. Pre-processing step: Level-0 classification 

3.3.1.1. Image orthorectification 

Aligning the images from different sensors and geo-referencing each pixel is the main objective 

of orthorectification [60]. In this study, TerraSAR-X level-1 SSC and RADARSAT-2 level 1-SLC 

images were processed and orthorectified by PCI Orthoengine 2015 SP1 software using a SAR 

specific satellite orbiting model. ALOS-2 level 1.1 image was geo-referenced through the Gamma 

Remote Sensing V.4.1 software. An external Digital Elevation Model (DEM) released by Natural 

Resources Canada, with a resolution of roughly 19 meters, was used for orthorectification 

(http://geogratis.gc.ca/site/eng/extraction). All images were projected to UTM coordinates (Zone 

22, row T) using the WSG84 reference ellipsoid. Also, orthorectified RADARSAT-2 images were 

mosaicked to produce a cohesive coverage of our case study.  

3.3.1.2. Speckle reduction 

The enhanced Lee adaptive filter with a 5×5 kernel was applied to reduce the effect of speckle in 

the images. De Leeuw et al. (2009) have demonstrated that the enhanced Lee adaptive filter 

outperformed other well-known filters (e.g., Kuan, Frost, Enhanced Frost, and Gamma filters) in 

terms of both speckle reduction as well as preserving the feature edges [61]. Adaptive filters use 

the standard deviation of neighboring pixels within a local kernel surrounding each pixel to 

http://geogratis.gc.ca/site/eng/extraction
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calculate a de-noised value [62]. Unlike a traditional filter, they preserve the mean values, image 

sharpness, pixel value variability, and details while minimizing the loss of radiometric and textural 

information [62]. More specifically, the enhanced Lee filter has three different solutions according 

to the level of heterogeneity on the image: (a) a mean filter is applied in homogeneous areas; (b) a 

Lee filter is applied on heterogeneous areas; and (c) pixel value is preserved in areas with strong 

heterogeneity [63]. 

3.3.2. Polarimetric decompositions 

In this study, several decomposition features were extracted in OBIA (section 3.3.3). A brief 

description of these decompositions is presented here. The Cloude-Pottier decomposes 

information of distributed ground targets into deterministic targets (dominant scattering 

mechanisms) using a mathematical framework known as eigenvalue and eigenvector 

decomposition. More precisely, eigenvectors and eigenvalues determine the type and strength of 

the scattering mechanism, respectively. However, due to the complexity of interpreting scattering 

vectors in their original representation (eigenvalue/eigenvector), 𝐻/𝐴/𝛼 parameters are extracted 

to define the relationship between three scattering mechanisms [31]. Entropy (𝐻) determines the 

heterogeneity of a single scatter, wherein lower values represent that single scattering mechanism 

is dominant. On the other hand, higher values illustrate the presence of three equipollent scattering 

mechanisms. The intermediate values are not, themselves, interpretable and must be considered in 

relation to the anisotropy (𝐴) values. Thus, anisotropy is a complimentary component to entropy 

and determines the relative importance of the secondary scattering mechanisms. The alpha angle 

(𝛼) determines the dominant scattering mechanism and varies between 0-90 degrees. Low alpha 

angles indicate that the surface scattering mechanism is dominant. Intermediate (~45°) and high 



84 

 

(~90°) alpha angles illustrate that volume scattering and double-bounce are the dominant scattering 

mechanisms, respectively [64]. 

The Freeman-Durden decomposition exploits different scattering mechanisms of ground targets 

using a physical scattering model. Particularly, three polarimetric features from a dihedral corner 

reflector are extracted to determine the portion of surface, double-bounce, and volume scatterings 

exhibited in each target [28]. 

The Touzi decomposition is an eigenvalue/eigenvector-based decomposition like the Cloude-

Pottier decomposition. However, in the Touzi decomposition, a roll-invariant coherent scattering 

model for determination of the coherency eigenvectors is used. The Touzi decomposition has five 

independent parameters for non-interferometric applications, which are 𝛼𝑠, 𝜙𝛼𝑠
, Ψ, 𝜏𝑚, and 𝑚 

[25]. More specifically, the target scattering types are characterized with a complex entity (𝛼𝑠) and 

a symmetric scattering type. The phase (∅𝛼𝑠
) of the symmetric scattering represents a high 

potential for wetland vegetation discrimination, though its magnitude (real part) may not be as 

useful. 

The Yamaguchi decomposition is a four-component scattering model for decomposing PolSAR 

images and is an extended version of Freeman-Durden decomposition. A helix scattering 

component is added to separate the co-pol and the cross-pol correlations, which is generally the 

case of complex urban area [65].  

Normalized Kennaugh elements developed by Schmitt and Brisco (2013) were also extracted in 

this study [31]. It is considered as a complementary feature to typical polarimetric decompositions 

while may also outperform other decompositions, since the necessity of removing the number of 

channels, and accordingly, information content is eliminated. More precisely, the elements of 
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scattering matrix are interpreted without any intermediate tools, and the Kennaugh elements in the 

case of fully polarimetric data (by considering the reciprocity assumption) are obtained as follows 

[66]: 

[𝑲] = [

𝐾0 𝐾4

𝐾4 𝐾1

𝐾5 𝐾6

𝐾9 𝐾8

𝐾5 𝐾9

𝐾6 𝐾8

𝐾2 𝐾7

𝐾7 𝐾3

] 

  

(3.1) 

However, for dual polarimetric data some elements are removed according to the availability of 

PolSAR data. For instance, Kennaugh elements for cross-pol acquisitions (HH/HV), wherein the 

transmission is occurred in one while the reception in two linear polarizations, are 𝐾0, 𝐾1, 𝐾5, and 

𝐾8. In particular, 𝐾0 denotes the total intensity, 𝐾1 illustrates the difference between co- and cross-

polarized intensity (HH and HV), 𝐾5 and 𝐾8 hold the real and imagery part of inter-channel 

correlation. By dividing the Kennaugh matrix to total intensity (𝐾0), the normalized Kennaugh 

matrix is obtained as follows: 

[𝑲] = 𝐾0 [

1 𝑘4

𝑘4 𝑘1

𝑘5 𝑘6

𝑘9 𝑘8

𝑘5 𝑘9

𝑘6 𝑘8

𝑘2 𝑘7

𝑘7 𝑘3

] = 𝐼. [𝒌] (3.2) 

where each element varies between -1 and 1 and represents in decibel unit. Furthermore, the 

polarization content is defined as the polarimetric information contribution and obtainable by the 

sum of the normalized Kennaugh elements as follows: 

𝑃𝐺 = √
1

𝑛
 ∑𝑘𝑖

2

𝑛

1

  𝑖 ∈ [1,2, … ,9]  (3.3) 
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3.3.3. Object-Based Image Analysis (OBIA) and classification 

Image classification was carried out on the basis of an OBIA framework and executed in the 

eCognition software package (V.9.0.3). The object oriented classification was preferred over pixel-

based classification, since the former incorporates the shape, size and spatial relationship of 

objects, integrates multi-source data, and significantly increases information content in the 

classification procedure. Moreover, due to the presence of speckle noise, the object-based 

classification was demonstrated to be better suited for classification of radar images [41]. 

OBIA processing generally includes two main steps: segmentation and classification. In this study, 

the Multi-Resolution Segmentation (MRS) and the Random Forest (RF) were selected as 

segmentation and classification methods, respectively. The MRS approach is known as a region-

merging method, wherein the main objective is to minimize the summed heterogeneity between 

neighboring pixels [67]. MRS is adjusted in the eCognition software by determining three user-

defined factors: shape, compactness, and scale. Particularly, the shape parameter varies between 

0-1 and specifies both the level of radiometric homogeneity and object shape simultaneously. 

Lower and higher shape values produce objects that are optimized for radiometric and shape 

homogeneity, respectively. The compactness parameter specifies the degree of object smoothing 

and varies between 0-1. More specifically, the value for compactness determines a relative 

weighting against smoothness. Finally, the scale parameter specifies the size of the final image 

object, which corresponds to the maximum acceptable heterogeneity [10]. Higher scale parameter 

values result in larger image objects and lower values produce smaller image objects. 

As mentioned above, the first step in the object-based image classification is to segment the image 

into different objects, in which the segmentation scale is the most important parameter. This is 

because different ground targets have different optimal scales that result in the highest 
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classification accuracy. Thus, three classification levels were defined in this paper and discussed 

in the following sections. 

3.3.3.1. Feature extraction: Level-I classification 

The main objective of Level-I classification was to produce image objects that correspond to 

ground features, particularly lakes. The MRS was employed using an optical image in this study 

(see Figure 3.3) because unlike segmentation using SAR images, it does not produce meaningless 

objects. Thus, we extracted objects from optical images (RapidEye) and applied them into SAR 

images. Furthermore, MRS analysis in this step was carried out using different segmentation 

parameters. The final parameters for scale, shape, and compactness were obtained 300, 0.05, and 

0.5, respectively. These values were chosen since they were well-suited to represent image objects 

corresponding to ground features and, particularly, for small water bodies. 

 Level-I classification was performed for the entire Avalon study area. Surface scattering of water 

body causes low signal return to the SAR sensor and, as a result, calm water appears dark in the 

SAR image [19]. However, wind and water streams cause water surface disturbance, and the rough 

water surface appears as different grey levels and can be difficult to distinguish from other land 

cover types. Thus, to best differentiate water surfaces from other land cover classes, a sigma naught 

backscattering analysis was performed in this study in multi-polarized, multi-frequency 

framework to determine the best configuration. Particularly, in Level-I classification, different 

thresholds in each channel were employed to discriminate water and non-water classes. For this 

purpose, extracted intensity values from different land cover classes were converted into 

normalized backscattering coefficients (𝜎𝑜) expressed in the logarithmic scaling dB, which is a 

standard unit to represent SAR backscattering [10]. Accordingly, box-and-whisker plots of the 
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classes in varying polarizations and SAR wavelengths were exploited to determine the 𝜎𝑜 

variability of different training classes.  

3.3.3.2. Feature extraction: Level-II classification 

The second level of the classification scheme partitioned the water class obtained in Level-I into 

two possible land covers: shallow- and deep-water. Furthermore, the non-water class obtained in 

Level-I was further classified into herbaceous and non-herbaceous classes. In this level, a second 

MRS was performed with a scale parameter set to 50 and other parameters remained the same as 

in the primary segmentation. 

The main objective of Level-II classification was to identify different scattering mechanism of 

ground target to obtain polarimetric information. For this purpose, SAR intensities, polarimetric 

decomposition features, as well as covariance and coherency matrices were extracted, and used 

along with 𝜎𝑜 signatures and the training dataset for object-based image classification obtained in 

Level-I. Incoherent polarimetric decomposition aids discrimination between several distributed 

targets of wetland complexes, wherein the measured polarization channels are incorporated in a 

backscattering matrix [31]. Cloude-Pottier, Freeman-Durden, and Touzi decompositions were 

applied in different scenarios using varying configuration of input features for wetland 

classification (scenarios 1-8 in Table 3.3). These decompositions were selected since they 

represent the basic scattering mechanisms of ground targets and provide the required detail 

discrimination between land cover types for this classification level. This procedure resulted in 

four land cover classes, including shallow-water, deep-water, herbaceous, and non-herbaceous.  
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3.3.3.3. Feature extraction: Level-III classification 

Level-III classification considered both herbaceous and non-herbaceous classes while ignoring 

both shallow- and deep-water classes derived in Level-II classification. In Level-III classification, 

a third multi-resolution segmentation was performed with a scale parameter set to 10 while other 

MRS parameters were the same as the primary segmentation. 

 In the final classification level, the herbaceous class was further portioned into more detailed 

wetland classes, including bog, fen, and marsh, and the non-herbaceous class was further classified 

into swamp, upland, and urban classes. The main reason for this categorization is that the term 

herbaceous can mean any plant with non-woody stems. In the context of the Canadian Wetland 

Classification System (CWCS), the marsh and shallow-water classes can be considered to be 

herbaceous wetlands as they are majorly, if not entirely, dominated by non-woody plant species. 

Marshes can contain some shrub species (Myrica gale for example), but usually contain mostly 

grasses, sedges, and rushes. Bogs and fens can contain a mix of herbaceous and non-woody plant 

species, as is reflected by the peatland “types” (a level of the wetland classification hierarchy in 

the CWCS) of treed bog, shrubby bog, and shrubby fen. However, in the context of Newfoundland 

and this research, peatlands are majorly treeless on the island, and the majority of bogs and fens 

sampled during field work were dominated by sphagnum moss species (bogs) and sedges and 

grasses (fens). Based on this information and for purposes of simplification, bogs and fens can be 

grouped in the category of herbaceous wetlands. Comparatively, swamps are always dominated 

by woody vegetation, whether that vegetation is trees, shrubs, or a mixture of both. In this research, 

upland represents forested dry land which, like swamp, is dominated by woody trees and shrubs. 

Thus, bog, fen, and marsh are characterized as herbaceous classes, while swamp, upland, and urban 

are considered as non-herbaceous classes. 
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The main objective of Level-III classification is to obtain detailed land cover classes. Thus, as seen 

in Table 3.3, in addition to Level-II features (scenarios 1-7), Yamaguchi decomposition with four 

elements and Kennaugh matrix with ten elements were added to Level-III classification. More 

specifically, the classification in this step was followed using the polarimetric features similar to 

Level-II classification, including covariance and coherency matrices, Cloude-Pottier, Freeman-

Durden, and Touzi decompositions (scenarios 1-7 in Table 3.3), as well as other polarimetric 

decomposition features such as Kennaugh matrix elements, and Yamaguchi components 

(scenarios 9-13 in Table 3.3). The normalized Kennaugh matrix elements were included since they 

provided additional information compared to covariance and coherency matrices [31], which may 

be useful for distinguishing similar herbaceous wetland classes (e.g., bog and fen). Furthermore, 

by defining different scenarios, the effect of dual polarimetric (HH/HV) versus fully polarimetric 

images was investigated for wetland classification using different elements of the Kennaugh 

matrix. The Yamaguchi decomposition was also extracted in this step because the helix term of 

the Yamaguchi decomposition is suitable for discriminating complex land cover classes [65]. 

Thus, adding the helix term was beneficial for separating the urban class from other possible land 

cover types obtained in Level-II.    
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Table 3.3. Different scenarios employed in Level-II and -III classification. In Level-II classification, 

scenarios 1 to 7 were defined based on different polarimetric features and scenario 8 was a combination of 

all seven. In Level-III classification, all scenarios were used excluding scenario 8 (see Figure 3.3). 

Scenario 

 

Number of 

features 
Name of features 

ALOS-2 

Dual (HH/HV) 

RADARSAT-2 

Dual (HH/HV) 

RADARSAT-2 

Quad (HH/HV/VV) 

1 3 Cov [C2]  ✓    

2 3 Cov [C2]  
✓  

 

3 6 Cov [C3]   ✓  

4 6 Coh [T3]    
✓  

5 3 Cloude-Pottier    ✓  

6 3 Freeman-Durden    ✓  

7 5 Touzi    ✓  

8 26 

All features in 

scenarios 1, 3, 4, 5, 

6, and 7 

✓   
✓  

9 4 Yamaguchi    ✓  

10 10 Kennaugh [K4]     
✓  

11 4 Kennaugh Elements  
✓  

 

12 4 Kennaugh Elements ✓    

13 44 
All features 

excluding scenario 8 

✓  
 

✓  

 

3.3.4. Accuracy assessment 

The accuracy assessment was performed for classified maps using the field data held back for 

validation purposes through: 1) overall accuracy; 2) kappa coefficients; and 3) user’s and 

producer’s accuracy. Overall accuracy reflects the correctly classified areas for the whole image 

and is calculated by the ratio of the correctly classified pixels to the total number of pixels in the 

confusion matrix. The kappa coefficient determines the degree of matching between reference data 

and classified map. The other accuracy parameters obtained by confusion matrix are user’s and 

producer’s accuracy corresponding to the commission and omission error for each class, 

respectively [68]. In this study, the first two assessment parameters were extracted for different 

scenarios. However, the latter one was carried out for the final classified map. 
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3.4. Results and discussion 

3.4.1. Backscatter analysis 

Backscattering analysis was performed for all wetland classes as well as other land cover types in 

the multi-polarization and multi-frequency framework to determine which configuration of 

wavelength/polarization was better suited for discriminating between different wetland classes. 

The statistical distribution of backscatter for each class is illustrated using box-and-whisker plots 

in Figure 3.4. A detailed description of the results of the backscattering analysis in this step is 

presented in the following sections.  
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Figure 3.4. Box-and-whisker plots representing the distribution of backscattering coefficients for land 

cover classes obtained using pixel values extracted from training data sets. The white bars within boxes 

illustrate the median. 

3.4.1.1. Water class 

The backscatter analysis demonstrated that water classes, including shallow- and deep-water, have 

the lowest overall distribution of 𝜎0 values for all wavelengths and polarizations. The results 

illustrated that median 𝜎0 values for shallow-water, which is one of the wetland classes, were 

approximately -20dB in all HH polarized data as well as in C-band HV, and -22dB, and -23dB for 

C-band VV and L-band HV, respectively. Furthermore, the 𝜎0 values represented the lowest and 

highest variabilities in X-band HH and L-band HV, respectively.  

Backscatter analysis of the deep-water class represented the lowest 𝜎0 values among all classes 

(water and non-water) and higher variability within water classes. The median 𝜎0 values for all 

HH polarized images, regardless of SAR wavelength, as well as C-band VV image were 

approximately -21dB. However, C- and L-band HV images exhibited lowest median 

approximately -25dB. The lower median 𝜎0 in the former values of the deep-water compared to 

the shallow-water classes could be due to the greater water depth and less emergent vegetation. 

Thus, the larger water area produces surface scattering and results in a greater decrease in the 
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median 𝜎0 values. More precisely, the deep-water class does not have any emergent vegetation 

and, as such, surface scattering is the only dominant scattering mechanism. In such a class, surface 

water acts like a mirror and, as a result, most of the transmitted signal is specularly backscattered 

away from the SAR sensor, causing a negligible 𝜎0 return [69]. However, shallow-water wetlands 

generally contain some emergent vegetation. Emergent vegetation can cause both volume- and 

double-bounce backscatter, depending on vegetation conditions, wavelength, and polarization. 

Furthermore, though wind roughness has the same effect on both shallow- and deep-water, the 

magnitude may be different for these two classes. This is because the shallow-water can produce 

larger waves and generate higher 𝜎0 compared to the deep-water class.  

Overall, the observed median values for the deep-water class illustrated the dominance of the 

surface scattering mechanism. Furthermore, the results revealed a high degree of 𝜎0 variabilities 

at C-band HH and HV images. We speculated that this occurred due to surface roughness caused 

by wind or water flow at the time of C-band image acquisition [39]. 

3.4.1.2. Non-water class 

The backscatter analysis of non-water class demonstrated that urban class has the highest 𝜎0 values 

among all land cover types with a median varied between 0 and -3dB depending on the SAR 

wavelengths and polarizations. However, HH polarized images had the highest 𝜎0 median of 

approximately 0dB. Upland class had the second highest 𝜎0 values in all HH polarized images 

with a median about -5dB in L-band and -10dB in C- and X-band images. Among wetland classes 

(bog, fen, marsh, and swamp within non-water class), swamp class showed the highest overall 

median 𝜎0 values in all SAR polarizations and wavelengths images with a few exceptions wherein 

marsh class had higher median. The overall high 𝜎0 values for swamp class was an evidence for 

dominant volume (or multiple) backscattering mechanisms within forest woodland class. In such 
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an environment, the backscattering is resulted from several sources, including backscattering from 

upper part of vegetation canopy, volume scattering within the vegetation, and double- or multiple-

bounce scattering between water and tree trunk [11]. Furthermore, the longer L-band wavelength 

has higher penetration depth in comparison with shorter wavelengths such as C- and X-bands. All 

these mentioned parameters were combined and resulted in higher 𝜎0 values for L-band in the 

swamp class. However, for this class, the median 𝜎0 values were lower in C-band (HH and HV) 

and X-band (HH) images, which showed the volume scattering was dominant within the canopy 

in shorter wavelength [70]. A high degree of similarity was observed among non-herbaceous 

classes especially upland and swamp classes, although HH polarized data, and particularly X-band 

image, demonstrated to be better able to separate upland and swamp classes. 

Focusing on herbaceous wetland classes (bog, fen, and marsh) versus non-herbaceous wetland 

class (swamp), the backscattering analysis represented that the lower 𝜎0 values observed in the 

marsh class compared to the swamp at L-band. This confirmed that herbaceous vegetation is 

partially transparent at L-band [11], [71]. As also reported by other comparable studies [10], [72] 

the lower values at L-band in comparison to C-band for marsh class are because of a combined 

volume and surface scattering mechanisms at L-band. However, the dominant scattering 

mechanism in marsh class at C-band is expected to be volume scattering, which also caused a 

relatively higher 𝜎0 values.  

The analysis also revealed a high degree of overlap between herbaceous classes (bog, fen, and 

marsh) for all imagery especially for bog and fen classes. Particularly, bog and fen classes 

exhibited close median values regardless of SAR polarizations and wavelengths: both classes are 

peatland dominated with non-woody structure. The high degree of overlap between herbaceous 

classes is due both to the similar vegetation cover (Spahgnum and graminoid) as well as dominant 



96 

 

volume scattering mechanism in the herbaceous classes. However, the marsh class represented 

different median than two other classes although its box plot diagrams still represented a great 

degree of overlap with these two classes. The backscatter analysis also showed that herbaceous 

classes overall had the lowest 𝜎0 values in comparison with non-herbaceous classes due to the 

heterogeneity of the vegetation canopy compared to the relatively homogeny non-herbaceous 

classes. Particularly, the mixed vegetation canopy structure in the herbaceous classes caused a 

relatively higher variability and, as a result, lower median 𝜎0 values. As it seen in Figure 3.4, 

marsh class represented a high degree of 𝜎0 variabilities within non-water class in all imagery. 

From the polarization point of view, the backscattering analysis demonstrated that HH and HV 

polarized images had the highest and lowest backscatter in all classes, respectively. Concerning 

the SAR wavelength X-band image represented higher backscatter in herbaceous classes while L-

band illustrated higher backscatter in the swamp class when comparing only HH polarized images. 

This is in great consistency with the results of other studies that found shorter wavelengths to be 

better suited for monitoring of herbaceous classes, while longer wavelengths are preferred for 

monitoring of woody wetlands [20]. 

3.4.2. Level-I classification 

In this classification level, an initial classified map was obtained using backscattering analysis 

(Section 3.4.1). More specifically, the mean values of 𝜎0 were calculated and used along with the 

median 𝜎0 values and their variability to separate water and non-water classes. The classified map 

of Level-I classification is depicted in Figure 3.5 with two water and non-water classes. 
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Figure 3.5. Level-I classification, separating water and non-water classes in the study area. 

3.4.3. Level-II classification 

In Level-II classification, the water and non-water classes obtained from Level-I were further 

separated into more detail. Particularly, the water class was separated into two classes, shallow- 

and deep-water, while the non-water class was partitioned into herbaceous and non-herbaceous 

classes. As discussed earlier, this classification level was performed using different decomposition 

methods in eight scenarios described in Table 3.3. Table 3.4 represents the overall accuracies and 

Kappa coefficients of different RF scenarios for Level-II classification. 
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Table 3.4. Overall accuracy and kappa coefficient for Level-II classification in different scenarios. 

Scenarios Name of features Kappa Coefficient OA (%) 

1 Cov [C2]  0.41 41.28 

2 Cov [C2] 0.45 39.79 

3 Cov [C3] 0.52 48.55 

4 Coh [T3]  0.60 52.85 

5 Cloude-Pottier  0.63 54.98 

6 Freeman-Durden  0.72 73.19 

7 Touzi  0.81 76.28 

8 
All features in scenarios 

1, 3, 4, 5, 6, and 7 
0.92 96.20 

The effects of dual versus fully polarimetric images, as well as decomposition methods, were 

investigated in terms of classification accuracies. Focusing on the dual polarimetric images, L-

band data (scenario 1) was approximately 1.5% more accurate than C-band (scenario 2). This is in 

good agreement with backscatter analysis of different wetland classes in Section 3.4.1, wherein 

overall L-band images exhibited higher 𝜎0 values in most cases excluding the marsh class. 

However, using fully polarimetric RADARSAT-2 images significantly improved classification 

accuracy up to 13% (scenario 4 versus scenario 2). The other remarkable improvement was 

observed by adding Freeman-Durden decomposition (~20%, scenario 6), while Cloude-Pottier 

decomposition was less successful for increasing the classification accuracy with only a 2% 

improvement (scenario 5) compared to the coherency matrix (scenario 4). 

The Cloude-Pottier decomposition is usually applied as an initial unsupervised classification to 

decompose the information of the distributed target into the scattering mechanism of deterministic 

targets, which may explain its less contribution to increase the classification accuracy [31], [73]. 
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Another reason could be the discrepancy of the phase centers during reflection. In particular, this 

issue is more severe in the Cloude-Pottier decomposition resulting in a very noisy decomposition 

parameter and less successful classified map [66]. The anisotropy and entropy layers of the 

Cloude-Pottier decomposition are characterized by very high noise content over natural scatterer 

environments such as wetland complexes [31]. 

 In contrast, the Freeman-Durden decomposition (scenario 6) was found to be more successful than 

covariance and coherency matrices (scenarios 3 and 4, respectively) for improving classification 

accuracy. This is because Freeman-Durden decomposition incorporates the physical scattering 

mechanisms of the ground target into the classification scheme, which added more information in 

this study. Particularly, two steps are involved in the Freeman-Durden decomposition. First, the 

volume scattering information is exploited and then the remaining scattering content is further 

divided into dominant double-bounce or dominant surface scattering mechanisms. Although, the 

classification would be more robust if there was only one dominant scattering mechanism in the 

second step. The backscatter analysis of wetland vegetation classes represented that the volume 

scattering was the first dominant scattering mechanism in this study (corresponding to the first 

step of Freeman-Durden decomposition), followed by double-bounce as the second dominant 

scattering mechanism (corresponding to the second step of Freeman-Durden decomposition). The 

above issue demonstrates the reason for significant classification improvement obtained by 

Freeman-Durden decomposition.  

Following the consequent classification scheme in Level-II, the result was further improved by 

using Touzi decomposition. The best classification result was obtained with scenario 8, which 

incorporated target decomposition features, covariance and coherency matrices of fully 

polarimetric RADARSAT-2 image, and covariance matrix of dual polarimetric ALOS-2 image. 
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An overall accuracy of approximately 96% was obtained using all polarimetric features, which 

improved the classification accuracy about 20% compared to scenario 7. Figure 3.6 depicts the 

classified map for scenario 8, which was the most significant result of Level-II classification using 

the RF classifier. 

 

Figure 3.6. The most significant result of RF (scenario 8) in Level-II classification, which divided the 

water class (from Level-I classification) into shallow- and deep-water, and the non-water class (from 

Level-I classification) into herbaceous and non-herbaceous classes. 
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3.4.4. Level-III classification 

In Level-III classification, the shallow- and deep-water classes obtained from Level-II 

classification were removed from further analysis and classification focused on herbaceous and 

non-herbaceous classes (obtained from Level-II). In this level, the non-herbaceous class was 

further classified into urban, upland, and swamp classes, while the herbaceous class was divided 

into bog, fen, and marsh classes. Similar to Level-II classification, different polarimetric features 

were used for different RF scenarios (see Table 3.3). More precisely, the effect of using 

polarimetric decompositions (Cloude-Pottier, Freeman-Durden, Touzi, and Yamaguchi 

decomposition), covariance and coherency matrices, and different elements of the normalized 

Kennaugh matrix were evaluated in detail to improve the classification accuracy of the wetland 

complexes. Furthermore, the effect of dual polarimetric images for wetland classification were 

investigated and compared with fully polarimetric SAR data. Table 3.5 represents the overall 

accuracies and kappa coefficients obtained in different RF scenarios in Level-III classification. 
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Table 3.5. Overall accuracy and kappa coefficient for Level-III classification in different scenarios. 

Scenarios Name of features Kappa coefficient OA (%) 

1 Cov [C2]  0.33 38.44 

2 Cov [C2] 0.31 37.86 

3 Cov [C3] 0.34 40.07 

4 Coh [T3]  0.42 45.31 

5 Cloude-Pottier  0.60 62.39 

6 Freeman-Durden  0.64 68.27 

7 Touzi  0.66 69.73 

9 Yamaguchi  0.67 70.40 

10 Kennaugh [K4]   0.69 71.29 

11 
Kennaugh Elements 

(RADARSAT-2) 
0.62 63.81 

12 
Kennaugh Elements (ALOS-

2) 
0.60 62.07 

13 
All features excluding 

scenario 8 
0.88 91.83 

In Level-III classification, 12 RF scenarios were considered (scenarios 1-13 in Table 3.3 excluding 

scenario 8). For the first two scenarios dual polarimetric data were applied. Similar to Level-II 

classification, L-band dual polarized data (scenario 1) represented higher accuracy than C-band 

(scenario 2) due to its higher penetration capability. However, using full polarization C-band 

images (scenarios 3 and 4) illustrated more success than dual polarimetric images (scenario 1 and 

2) in comparable cases. 

Applying the Cloude-Pottier decomposition was less successful compared to other decompositions 

as was also the case in Level-II classification. Freeman-Durden, Touzi, and Yamaguchi 

decompositions demonstrated better results. Yamaguchi decomposition is a modified version of 



103 

 

Freeman-Durden decomposition, wherein the helix scattering term was added to three scattering 

mechanisms of model-based decomposition. The helix component is particularly important for 

obtaining scattering information of complex urban structures and may not be as useful for a 

naturally distributed scatterer (e.g. wetland complex). However, there is a small improvement for 

Yamaguchi decomposition (scenario 9) in comparison to the Freeman-Durden decomposition 

(scenario 6), which could be due to its better performance in urban areas. 

Following the hierarchical classification procedure using different polarimetric features, the 

classification accuracy improved by 25% when Kennaugh matrix elements are incorporated 

(scenarios 10, 11, and 12) compared to scenario 4. The normalized Kennaugh elements are 

obtained from linear combinations of the correlation between polarization channels, which 

minimizes noise levels. This contrasts with other common polarimetric approaches, which require 

classification or eigenvalue decomposition [27]. The results confirm that Kennaugh matrix 

elements improve the overall classification accuracy [31]. We believe that the normalized 

Kennaugh elements have the highest polarimetric information content with the least amount of 

noise compared to other polarimetric features. 

The most interesting result was the classification accuracy obtained by Kennaugh elements of dual 

polarimetric images. Particularly, the classification accuracy of dual polarimetric images 

(scenarios 1 and 2) was less than 40%. However, incorporating Kennaugh elements, even in dual 

polarization mode (scenarios 11 and 12), increased the classification accuracy up to 60%. This is 

of great importance considering the capability of Kennaugh elements for wetland classification, 

especially when using dual polarized data. As discussed earlier (see section 3.3.2), in the case of 

cross-pol acquisition (HH/HV), Kennaugh matrix has four elements that breaks down the 

backscatter signal into the total intensity (𝐾0), the ratio between intensities (𝐾1), the ratio between 
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double-bounce and volume scattering intensity (𝐾5), as well as the phase shift between double-

bounce and volume scattering (𝐾8). We believe that the most important parameter, which has 

contributed to improve the classification accuracy in these two scenarios (scenarios 11 and 12), is 

𝐾0. This is because Moser et al. (2016) performed a multi-temporal classification using only 𝐾0 

data obtained from dual polarimetric (HH/VV) TerraSAR-X data and concluded that 𝐾0 improved 

classification accuracy [34]. The 𝐾0 element represents total intensity, although it has been 

formulated differently in the case of co- and cross-polarization imagery. Also, 𝐾1 illustrates the 

difference between co- and cross-polarized intensities and therefore, might be the second important 

features to improve the classification accuracy [66]. Finally, 𝐾5 and 𝐾8 are more useful in urban 

areas with deterministic targets [66], though even those areas are much influenced by intensity 

information [34]. Fully polarimetric SAR data contain all of the polarimetric scattering 

information. However, it has been demonstrated that Kennaugh elements 𝐾0, 𝐾2, and 𝐾4 are 

sufficient for wetland classification since these elements are directly related to land cover 

scattering mechanisms [31]. In our research, inclusion of all Kennaugh elements further improved 

the classification accuracy up to 71% (scenario 10), which could be due to incorporating 𝐾2 and 

𝐾4 elements into the classification framework [31]. Finally, inclusion of all polarimetric features 

into the RF classifier significantly improved overall accuracy (scenario 13), up to 91%, in 

comparison with scenario 10 (see Table 3.5).  

3.4.5. Post classification analysis 

As mentioned before, a unique advantageous of RF is that it provides information on the 

importance of input variable to determine the significance of each input feature for increasing 

classification accuracy. This is particularly important, for PolSAR image classification, wherein 

several polarimetric decomposition features are incorporated into the classification process. Since 
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the most significant result was obtained for scenario 13, this classification was selected for further 

accuracy assessments. Figure 3.7 represents the variable importance of the most significant result 

in this study. 

 

Figure 3.7. Normalized variable importance of RF classification for scenario 13. Different variables are 

represented as follows: Kennaugh matrix elements (red), polarization content obtained by Kennaugh 

elements (orange), Yamaguchi decomposition (purple), Freeman-Durden decomposition (gray), Touzi 

decomposition (light green), diagonal element of coherency matrix (dark green), Cloude-Pottier 

decomposition (dark blue), diagonal elements of covariance matrix for full polarization data 

(RADARSAT-2) (light blue), and covariance matrix elements for dual polarization data (ALOS-2) 

(cyan). 
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The three most important polarimetric features of scenario 13 are 𝐾0,  𝐾2, and  𝐾4, which are 

Kennaugh matrix elements. This corresponds to the results of other studies such as [31], which 

demonstrated that these three input features were the most determining factors for wetland change 

detection among three decomposition approaches, including Cloude-Pottier, Freeman-Durden, and 

Kennaugh matrix elements. Polarization content (PG) and Yamaguchi decomposition were the 

next most important input features (see Figure 3.7). 

Another important parameter in the RF classifier is the number of trees, which has a vital role in 

the classification processing time and final classification accuracy. In this study, the effect of this 

variable is determined using the user’s accuracy for each class. Figure 3.8 depicts the user’s 

accuracy for each class obtained by a different number of trees. 

 

Figure 3.8. User’s accuracies for different land cover types based on number of trees in RF classification. 

The user’s accuracy in classifications with less than 50 trees is low for all classes, excluding upland 

and urban classes. However, the user’s accuracies for all classes improved up to 60% as the number 
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of trees exceeded approximately 100. Also, this analysis illustrated that the classification user’s 

accuracy tended to be constant as the number of trees reached to 200.  

As mentioned earlier, another important parameter is classification processing time. Thus, we 

evaluated the processing time of the RF classifier by setting varying numbers of trees. The 

processing time was approximately 14, 39, 68, 127, 191, and 364 minutes, which correspond to 

50, 100, 200, 300, 400, and 500 numbers of trees, respectively. Thus, 200 trees were found to be 

the optimum number, since values beyond 200 did not improve the classification results and would 

be also computationally extensive. 

Figure 3.9 depicts the final classified map, which has been obtained by inclusion of water classes 

from Level-II classification and the most significant classification result obtained from Level-III 

classification (scenario 13). An overall accuracy approximately of 94% has been attained for the 

final classified map, which is for all land cover classes. Furthermore, the overall classification 

accuracy of approximately 81% was only obtained for wetland classes, including bog, fen, marsh, 

swamp, and shallow-water. This classification result is comparable with other wetland 

classification studies [10], [39]. The confusion matrix of the final classified map is represented in 

Table 3.6. 
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Figure 3.9. The final classified map, which has been obtained by inclusion of water classes from Level-

II classification and the most significant classification result obtained from Level-III classification 

(scenario 13). 
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Table 3.6. Classification confusion matrix of integrating the most significant results from Level-II and -III 

classifications. An overall accuracy of 94.82% and kappa coefficient of 0.93 were obtained. 

 

  Reference Data 

 Bog Fen Marsh Swamp Upland Urban 
Shallow-

water 

Deep-

water 
Tot. 

User. 

Acc. 

C
la

ss
if

ie
d

 D
at

a 

Bog 15237 1810 4 11 1320 1183 0 0 19565 77.88 

Fen 256 7094 26 920 436 8 54 0 8794 80.67 

Marsh 203 128 7623 156 978 403 0 0 9491 80.32 

Swamp 125 71 773 4015 168 86 0 0 5238 76.65 

Upland 1259 2187 1259 59 85114 0 0 0 89878 94.70 

Urban 0 21 0 0 931 66173 0 0 67125 98.58 

Shallow-

water 
0 0 0 0 0 0 5461 218 5679 96.16 

Deep-water 0 0 0 0 0 0 228 88966 89194 99.74 

 Tot. 17080 11311 9685 5161 88947 67853 5743 89184 294964  

 Prod. Acc. 89.21 62.72 78.71 77.80 95.69 97.52 95.09 99.76   

The deep-water, shallow-water, upland, and urban classes obtained producer’s and user’s 

accuracies up to 90%, which represented the smallest omission and commission errors. Among 

herbaceous classes, fen and marsh had user’s accuracy of about 80%; however, for the bog class, 

the user’s accuracy was 77.88%. On the other hand, bog wetland represented the highest 

producer’s accuracy of approximately 89% within the vegetation classes. The fen class represented 

the smallest producer’s accuracy and, as a result, the highest omission error among all land covers 

classes in this study. This means that a large portion of the fen class was misclassified as bog or 

upland classes. Swamp wetland was also illustrated to be incorrectly classified due to the smallest 

user’s accuracy of about 76%, which demonstrated the highest commission error. As seen in Table 
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3.6, the marsh class was particularly misclassified as swamp (commission error). Furthermore, a 

large percentage of swamp class was also misclassified as fen (omission error). A high commission 

error was also observed for bog wetland, wherein a large portion of fen and upland were 

misclassified as bog.  

Overall, the greatest confusion error was observed within herbaceous classes, and particularly 

between bog and fen. The confusion error in herbaceous classes can be due to: (1) the similar 

backscatter signature of these classes in SAR images as seen in the backscattering analysis 

performed in this study (see Section 3.4.1); and (2) these classes have high heterogeneous nature 

in terms of landscape. Furthermore, there is not a straightforward border between these land cover 

types. As reported by field biologists, these classes were hard to be distinguished during in-situ 

data collection. Particularly, bog and fen wetlands are peatland dominated with very similar 

vegetation (Spahgnum and graminoid species), and no apparent border between the two, 

contributing to the level of confusion observed between these two classes. 

 Non-herbaceous classes were found to be better classified, particularly urban and upland classes. 

However, some degree of mixture was observed between swamp and herbaceous classes (marsh 

and fen). We speculated that the less accurate result for the swamp class may be due to the smallest 

portion of in-situ data for this class. As mentioned earlier, swamp wetlands tend to occur in 

physically smaller areas compared to other wetlands, and are found to be arduous to flag for 

visitation and delineation as they may look visually similar to upland forest. Thus, the limited 

amount of training data for this class caused the largest portion of errors.   

Water classes were found to be the most accurately classified. However, a small level of confusion 

was observed between the shallow- and deep-water classes. The confusion in these two classes 
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could be due to similar backscatter signatures in SAR images as seen in the SAR backscatter 

analysis. Furthermore, a small portion of shallow-water class was misclassified as fen wetland. 

We speculated this error was likely a result of minimal flooded-vegetation (herbaceous) at the edge 

of shallow-water, which caused some degree of mixture. 

3.5. Conclusion 

Newfoundland is among the richest Canadian province in terms of different wetland classes (e.g., 

bog, fen, marsh, swamp, and shallow-water); however, to date they have not been well mapped or 

monitored. The results of this study represent the first detailed land cover classification and spatial 

distribution of wetlands, as well as other land cover classes, in a sub-region of the Avalon 

Peninsula. A new, advanced hierarchical object-based Random Forest classification was proposed 

based on a combination of single polarized TerraSAR-X, dual polarized ALOS-2, and fully 

polarized RADARSAT-2 images. 

A detailed backscattering analysis was performed for all land cover classes in both multi-frequency 

and multi-polarized frameworks. Water classes represented the lowest backscatter, while the 

highest backscatter was observed in the urban class. Herbaceous classes also represented a lower 

backscatter than non-herbaceous classes. Overall, HH polarized images illustrated the highest 

backscatter; in contrast, backscatter was the lowest for HV polarization. Furthermore, by 

comparing the SAR wavelength (only in HH channels), X-band represents the higher backscatter 

for herbaceous classes, while L-band represents the higher backscatter in the swamp class.  

An overall accuracy of 94.82% was achieved for the final classified map using the 44 PolSAR 

features assessed in this study. The variable importance analysis of RF has demonstrated that the 

Kennaugh matrix elements, Yamaguchi, and Freeman-Durden decomposition are the most 
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important parameters for wetland classification. However, it may not be the same for other land 

cover classification.  

In the classified map, the highest confusion error was observed within the herbaceous vegetation, 

particularly between the bog and fen classes due to similar SAR backscatter signatures. The swamp 

class was also misclassified with herbaceous classes in some cases, which could be due to the 

smallest training data for this specific class. The most accurate results were obtained for the water 

(shallow- and deep-water), urban and upland classes, respectively.  

Overall, the results of this study provide: (1) a detailed spatial distribution map of wetland classes 

in the Avalon Peninsula; and (2) decisive information for monitoring changes in wetland 

ecosystems, which is beneficial for conservation efforts to preserve this productive habitat. Thus, 

the results of this study facilitate and contribute to the sustainable monitoring, management, and 

conservation of wetlands in Newfoundland, which may be applied in similar conservation efforts 

elsewhere in the world, especially in Canada. In particular, the RF classifier could be trained using 

the ecological training datasets from the Avalon pilot site for classification of other wetland sites 

with similar wetland classes.  
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Abstract 

Wetlands provide a wide variety of environmental services globally and detailed wetland inventory 

maps are always necessary to determine the conservation strategies and effectively monitor these 

productive ecosystems. During the last two decades, satellite remote sensing data have been 

extensively used for wetland mapping and monitoring worldwide. Polarimetric Synthetic Aperture 

Radar (PolSAR) imagery is a complex and multi-dimensional data, which has high potential to 

discriminate different land cover types. However, despite significant improvements to both 

information content in PolSAR imagery and advanced classification approaches, wetland 

classification using PolSAR data may not provide acceptable classification accuracy. This is 

because classification accuracy using PolSAR imagery strongly depends on the polarimetric 

features that are incorporated into the classification scheme. In this paper, a novel feature 

weighting method for PolSAR imagery is proposed to increase the classification accuracy of 

complex land cover. Specifically, a new coefficient is determined for each element of the 

coherency matrix by integration of Fisher Linear Discriminant Analysis (FLDA) and physical 

interpretation of the PolSAR data. The proposed methodology was applied to multi-temporal 

polarimetric C-band RADARSAT-2 data in the Avalon Peninsula, Deer Lake, and Gros Morne 

pilot sites in Newfoundland and Labrador, Canada. Different combinations of input features, 

including original PolSAR features, polarimetric decomposition features, and modified coherency 

matrix were used to evaluate the capacity of the proposed method for improving the classification 

accuracy using the Random Forest (RF) algorithm. The results demonstrated that the modified 

coherency matrix obtained by the proposed method, Van Zyl, and Freeman-Durden decomposition 

features were the most important features for wetland classification. The fine spatial resolution 

maps obtained in this study illustrate the distribution of terrestrial and aquatic habitats for the three 

wetland pilot sites in Newfoundland using the modified coherency matrix and other polarimetric 
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features. The classified maps provide valuable baseline data for effectively monitoring climate and 

land cover changes, and support further scientific research in this area. 

Keywords: Polarimetric Synthetic Aperture Radar, Wetland classification, Fisher Linear 

Discriminant Analysis, RADARSAT-2, Random Forest, Machine Learning.   
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4.1. Introduction 

Wetlands are important ecosystems that play vital roles in climate change as well as in local and 

global environmental sustainability [1]. At the microscopic scale, wetlands provide food, carbon 

storage, filtering contamination, controlling flood, protecting shoreline, and a desirable habitat for 

a variety of unique plant and animal species [2], [3]. At the macroscopic scale, they influence 

regional climate by, for example, preventing accelerating rates of climate change. Despite these 

benefits, population growth and, subsequently, human interferences, such as urbanization, 

industrial development, and natural resource extractions have significantly contributed to the 

destruction and degradation of wetland ecosystems. Furthermore, a number of natural processes, 

such as sea level rise, changing in temperature and precipitation patterns due to climate change, 

and coastal erosion have further accelerated wetland loss [3]. 

Given the numerous benefits provided by these ecosystems, the necessity of an all-inclusive, up-

to-date inventory map with spatial distribution of different wetland classes is of great importance 

for the effective monitoring of wetlands over time [3], [4]. The sustainable management of wetland 

ecosystems is a critical issue for assessing wetland environmental impacts, monitoring land cover 

changes, and preserving wildlife resources [5]. This is especially important, for countries with 

large expanses of wetlands, such as Canada and the United States. Traditional approaches (e.g., 

ground survey) for wetland monitoring are inefficient given the size and inaccessibility of wetland 

regions worldwide. For example, many wetlands are located in remote areas where vegetation 

cover, hydrology, and topography make ground surveying challenging and costly. Furthermore, 

repeated in-situ investigations are often required to accurately map wetlands due to their dynamic 

nature over time [6].  
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In the past two decades, several studies have demonstrated the efficiency of satellite remote 

sensing tools for wetland monitoring [1], [7]–[10]. These remote sensing approaches have 

effectively addressed many difficulties associated with traditional approaches (e.g., accessibility 

and repeatability). For example, optical satellite images are efficient for wetland classification 

using spectral signature of different classes although there are some limitations with this approach 

[11]–[13].The advent of Synthetic Aperture Radar (SAR) images has further facilitated land cover 

classification and, in particular, wetland mapping and monitoring by addressing the main 

drawbacks of optical images [14]. Specifically, SAR sensors are independent of solar illumination 

and have the capability to penetrate through cloud, soil, and vegetation [15]–[17]. With the 

continuous development of remote sensing sensors, fully Polarimetric SAR (PolSAR) systems 

have proven to possess great potential for discriminating between similar land cover types such as 

various wetland complexes [18], [19]. This is because PolSAR images record different 

backscattering mechanisms of ground targets, which are not obtainable using a single SAR channel 

[20], [21]. These highly valuable PolSAR data are efficient tools to assess the distribution and 

dynamics of wetlands at both regional and global scales. Accordingly, the capability of PolSAR 

images for wetland classification has been investigated by several studies [4], [22]. Moreover, 

polarimetric decompositions using PolSAR imagery are sophisticated approaches, which hold 

great promise for wetland classifications [23]–[26]. The main objective of polarimetric 

decomposition is to determine an average target scattering mechanism as the sum of independent 

elements and to assign a physical scattering mechanism to each component [27]. 

 Importantly, high resolution satellite images have been integrated with advances in image analysis 

techniques, such as Object Based Image Analysis (OBIA), to further enhance land cover mapping 

[28]. The object-based methods exploit several characteristics of optical and SAR imagery, 
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including spectral (or SAR backscatter), geometrical, textural, and contextual information of a 

group of neighboring pixels (objects or segments) in addition to the original pixel values. 

Therefore, they employ additional information by incorporating the information of neighboring 

pixels into the classification scheme, which may be useful in distinguishing between similar land 

cover classes [4], [29]. Accordingly, a number of studies have successfully used OBIA and SAR 

imagery for wetland classification [4], [30], [31]. 

A variety of classification algorithms have been utilized for land cover mapping using satellite 

imagery. These algorithms can be broadly categorized into unsupervised approaches, such as 

ISODATA [32] and K-means [33], and supervised approaches, such as Maximum Likelihood 

Classification (MLC) [34]. Artificial neural network [35], decision tree [36], and Support Vector 

Machine (SVM) [37] are also non-parametric supervised machine learning techniques commonly 

used for land cover classification. These algorithms are advantageous compared to parametric 

approaches because they do not rely on the statistical distribution of input data (e.g., normality) 

[38]. In the last two decades, ensemble classifiers have gained an increasing attention for land 

cover mapping [39]–[41]. The Random Forest (RF) classifier is one of the well-known commonly 

used ensemble classifiers, which utilizes a set of Classification And Regression Trees (CARTs) in 

the classification scheme [42]. Specifically, the RF classifier is a sophisticated version of the 

decision tree algorithm for solving classification and regression problems. In this study, RF was 

selected due to several advantageous compared to other classifiers. First, RF does not require any 

assumptions for the distribution of the data (e.g., normality) unlike MLC and, thus, it can 

accommodate polarimetric SAR data with Wishart distributions [43]. Second, it can easily handle 

large and multi-temporal remote sensing datasets, which is also demanded in this study [38]. 
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Finally, it has a flexible and straightforward structure and has shown good results in various remote 

sensing applications [25], [44]. 

Despite advanced remote sensing tools (e.g., classification methods and data), thematic mapping 

of fragmented landscapes, such as wetland complexes, is challenging due to high similarity of 

some classes, which contribute to confusion in the classification scheme. A practical approach to 

improve the classifier performance is to increase the class separability of the input data before 

incorporating them into the classifier. Thus, in this study, a new weighting approach was proposed 

based on the integration of Fisher Linear Discriminant Analysis (FLDA) [45] and physical 

characteristic of PolSAR data to increase the separability of input features. In particular, the main 

objective of this research study was to determine the effect of an optimum feature weighting 

approach on the classification of heterogeneous landscape using multi-temporal PolSAR data. Our 

proposed method was applied to full polarimetric RADARSAT-2 data for wetland classification 

in three different pilot sites in Newfoundland and Labrador province, Canada. We evaluated the 

efficiency of our proposed method using different combination of input features in three different 

models in multiple RF scenarios. 

The rest of this paper is organized as follows: Section 2 introduces the location of the study areas 

and provides a description of the data used in this research; Section 3 describes polarimetric 

features employed in each classification model and represents the proposed methodology in detail; 

Section 4 presents the experimental results and discussion; and, finally, Section 5 draws the 

conclusion. 
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4.2. Study area and data 

4.2.1. Study area 

Wetland mapping and monitoring in Canada is crucial because 24% of the world’s wetlands, 

corresponding to roughly 150 million hectares are contained within its borders [46]. This indicates 

the significance of wetland mapping and monitoring in Canada. Accordingly, Newfoundland and 

Labrador is part of a large Canadian wetland that represents a high biodiversity of different wetland 

types (e.g., bog, fen, swamp, marsh, and water) as well as many threatened habitats. This study is 

carried out at three different sites, henceforth referred to as the Avalon, Deer Lake, and Gros Morne 

pilot sites, distributed across the island of Newfoundland (Figure 4.1).  

 

Figure 4.1. General view of the wetland study areas, including the Avalon, Deer Lake, and Gros Morne 

pilot sites in NL, Canada. 
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Each pilot site is roughly 700 square kilometers in size, containing various land cover and wetland 

types. Each site is located within a different ecoregion which, according to the Ecological 

Stratification Workings Group of Canada, is “a part of a province characterized by distinctive 

regional ecological factors, including climatic, physiography, vegetation, soil, water, fauna, and 

land use” [47]. Specific ecoregions relevant to this study are the Maritime Barren ecoregion, the 

North Central ecoregion, and the Northern Peninsula ecoregion for the Avalon, Deer Lake, and 

Gros Morne sites, respectively. 

4.2.1.1. The Avalon  

The Avalon pilot site is located in the North Eastern portion of the Avalon Peninsula, in the 

Maritime Barren ecoregion. This ecoregion is characterized by a typical oceanic climate, 

experiencing foggy, cool summers and relatively mild winters [47]. Mean annual temperatures are 

around 5.5°C and mean annual precipitation ranges from 1200 to 1600mm [47]. Land cover within 

the pilot site is varied and includes extensive heathland, balsam fir forest, urban, and agriculture. 

The majority of the urban area is found in the north eastern portion of the pilot site and includes 

the city of St. John’s and the towns of Mount Pearl, Torbay, and the Goulds. Much of the southern 

portion of the site is generally inaccessible due to the lack of roadways in the area. 

4.2.1.2. Deer Lake 

The Deer Lake pilot site is located in the North portion of the island, east of the Town of Deer 

Lake. This pilot site falls within the North Central ecoregion, where summers are hot and winters 

are cold relative to that of the other pilot sites, and is typical of a more continental climate. Average 

annual rainfall is close to 1000mm [47]. Land cover includes urban, boreal forest, barrens, and 

wetlands. Urban land cover is minor and limited to some small settlements including the town of 

Howely and roads traversing the pilot site. Majority land cover includes balsam and black spruce 
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forests and peatland formations [48]. The northern portion of the site is largely inaccessible due to 

limited roadways. 

4.2.1.3. Gros Morne 

The Gros Morne pilot site can be found on the very west coast of Newfoundland, along the Gulf 

of St. Lawrence on the Great Northern Peninsula. Located within the Northern Peninsula 

ecoregion, this area, like the Avalon, has an oceanic climate with average rainfall close to that of 

1300mm [47]. This pilot site falls mostly within the low elevation areas along the coast, though as 

one travels east, elevations increase dramatically above sea level where large mountains dominate. 

Major land cover includes balsam fir and black spruce forests and low lying peatlands [48].  

All five classes of wetlands described by the Canadian Wetland Classification System, including 

bog, fen, marsh, swamp, and water [46], can be found distributed throughout the three pilot sites, 

though bog and fen tend to be the most common relative to the occurrence of swamp, marsh, and 

water. Examples of the five wetland classes and their typical vegetation cover common to the pilot 

site can be seen in Figure 4.2. Bogs (Figure 4.2a) are dominated by Sphagnum moss species. 

Ericaceous shrub species and sedge species are also common. Fens (Figure 4.2b) are dominated 

by sedges and grasses [48], and although Sphagnum moss species are often present in fens, they 

do not dominate as they do in bogs. Marshes (Figure 4.2c) are dominated by emergent aquatic 

species of sedges, rushes, and grasses. Swamps (Figure 4.2d) are primarily dominated by both tree 

and shrub Black Spruce (Picea mariana) and Tamarack (Larix laricina). Characteristic water 

(Figure 4.2e) vegetation is submerged aquatic macrophytes, including grasses and species 

belonging to the genus water lilies (Nymphaecae). 
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Figure 4.2. Ground reference photos showing the five wetland classes found within the Avalon pilot 

site: (a) bog, (b) fen, (c) marsh, (d) swamp, and (e) water. 

In-situ data were collected by field work biologists in the summers and falls of 2015 and 2016 for 

the Avalon site, and the summers of 2015 and 2016 for Gros Morne and Deer Lake. Potential 

wetland areas across the pilot sites were flagged for visitation by field workers via the visual 

analysis of high resolution Google Earth imagery. Other considerations for site visitation included 

prior knowledge of the area, accessibility via public roads, and the public or private ownership of 

lands. A total of 191, 87, and 102 wetland sites in the Avalon, Deer Lake, and Gros Morne sites 

respectively were visited and classified as bog, fen, swamp, marsh, or water, as directed by the 

Canadian Wetland Classification System. Global Positioning System (GPS) points at each site 

were collected, along with ancillary data such as notes describing dominant vegetation and 

hydrology, and photographs to aid in the wetland boundary delineation process. Wetland boundary 

delineation was conducted using ArcMap 10.3.1 where the GPS points were imported to highlight 

visited wetlands. With the aid of satellite and aerial imagery including a 50cm resolution 

orthophotograph, and 5m resolution, multi-date RapidEye imagery, polygons representing 

classified delineated wetlands were created. 

4.2.2. Reference data 

For each class, reference polygons were sorted by size and alternatingly assigned to testing and 

training groups. This was done to ensure that both the testing and the training groups had roughly 

comparable pixel counts for each class. Due to the limited amount of data and the wide variation 
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of size within each wetland class (some small, some large), random assignment could result in the 

testing and training groups having highly uneven pixel counts. This procedure ensured that both 

the testing and training groups had equal assignment of small and large wetlands polygons to allow 

for similar pixel counts and to account for the high variation of intra-wetland size. 

Table 4.1. Testing and training pixel counts for Avalon reference data. 

Class Class Description # Training 

Pixels 

# Testing 

Pixels 

Total 

Bog Peatland dominated by Spahgnum species 20650 17080 37730 

Fen Peatland dominated by graminoid species 11183 11311 22494 

Swamp Mineral wetland dominated by woody vegetation 3197 5161 8358 

Marsh Mineral wetland dominated by graminoids and 

emergent plants 10869 9685 20554 

Urban Human-made structures 66339 67853 134192 

Water Deep water areas 62927 89184 152111 

Upland Forested dry upland 73458 88947 162405 

Total   248623 289221 537844 

 

Table 4.2. Testing and training pixel counts for Deer Lake reference data. 

Class Class Description # Training 

Pixels 

# Testing 

Pixels 

Total 

Bog Peatland dominated by Spahgnum species 176626 113857 290483 

Fen Peatland dominated by graminoid species 4645 8840 13485 

Swamp Mineral wetland dominated by woody vegetation 4120 4745 8865 

Marsh Mineral wetland dominated by graminoids and 

emergent plants 12751 3246 15997 

Urban Human-made structures 11618 15281 26899 

Water Deep water areas 71722 58541 130263 

Upland Forested dry upland 48622 39670 88292 

Total   330104 244180 574284 
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Table 4.3. Testing and training pixel counts for Gros Morne reference data. 

Class Class Description # Training 

Pixels 

# Testing 

Pixels 

Total 

Bog Peatland dominated by Spahgnum species 110743 114018 224761 

Fen Peatland dominated by graminoid species 13153 8812 21965 

Swamp Mineral wetland dominated by woody vegetation 4058 3787 7845 

Marsh Mineral wetland dominated by graminoids and 

emergent plants 

 

      3201 

 

3266 

 

6467 

Urban Human-made structures 12185 14912 27097 

Water Deep water areas 53018 58530 111548 

Upland Forested dry upland 43428 39394 82822 

Total   239786 242719 482505 

 

Tables 4.1, 4.2, and 4.3 represent land cover classes and their respective pixel counts for each pilot 

site. Notably, the marsh and swamp classes tended to have the least amount of associated pixels 

across pilot sites, particularly in Deer Lake and Gros Morne. This disparity of pixel counts within 

and across pilot sites and within and across wetland classes is a result of several factors, including 

the availability of biologists for field work, the accessibility of different wetlands, and the natural 

ecology and distribution of wetlands in the area. Accordingly, there is variation in the quantity and 

quality of data for each individual class.  

Bog wetlands are particularly easy to spot via satellite imagery and in the field, and are often more 

expansive relative to other wetlands in Newfoundland and Labrador. This is due both to their 

natural formation and ecology [49] and due to the provinces climate, which facilitates extensive 

peatland formation [48]. As a result, the bog class has a larger amount of associated pixels. 

Conversely, swamps are more difficult to flag for visitation and delineation as they may look 

visually similar to that of upland forest when looking at aerial or satellite data. This is because 

swamps are forested wetlands containing substantial tree and shrub vegetation. Additionally, 

swamps tend to occur in physically smaller areas compared to that of other wetlands, such as in 
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transition zones between a wetland and other land cover types. As a result, most swamp polygons 

contained fewer pixels when compared to other wetlands types. 

4.2.3. Satellite images 

In this study, RADARSAT-2 images in the Fine resolution Quad polarization (FQ) beam mode 

provided by the Canada Center for Mapping and Earth Observation were used. Due to the small 

swath of the FQ mode, more than one image was used to cover the entire area in each pilot site. 

Specifically, three full polarimetric RADARSAT-2 datasets were used for each pilot site in order 

to examine the temporal variation in wetland ecosystems. However, all of this imagery has been 

acquired during leaf-on/ice-off season. Additionally, RapidEye optical imagery of level 3A 

products with a pixel size of 5m was used in initial segmentation [50]. The specifications of these 

data are provided in Table 4.4. 
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Table 4.4. The characteristics of satellite images used in this study. 

Pilot site Sensor Date 

(yyyy/mm/dd) 

Number of 

Images 

Mode Inc. angle 

( °) 

Nominal 

Resolution (m) 

(Range× Azimuth) 

Avalon RADASAT-2 2015/06/10 2 FQ4 22.1-24.1 5.2 × 7.6 

2015/08/21 2 FQ4 22.1-24.1 5.2 × 7.6 

 2016/07/25 2 FQ22 41.0-42.4 5.2 × 7.6 

RapidEye 2015/06/18 1 Level 3A - 5 

2015/10/22 1 Level 3A - 5 

Deer Lake RADARSAT-2 2015/06/23 2 FQ3 20.9-22.9 5.2 × 7.6 

2015/08/10 2 FQ3 20.9-22.9 5.2 × 7.6 

2015/10/18 2 FQ16 35.4-37.0 5.2 × 7.6 

RapidEye 2015/06/18 1  - 5 

Gros Morne RADARSAT-2 2015/06/16 2 FQ2 19.7-21.7 5.2 × 7.6 

2015/08/03 3 FQ2 19.7-21.7 5.2 × 7.6 

2015/10/14 3 FQ2 19.7-21.7 5.2 × 7.6 

RapidEye 2015/06/18 1 Level 3A - 5 

2015/09/06 1 Level 3A - 5 

 

4.3. Methods 

Wetland classification using PolSAR imagery has previously been conducted using both SAR 

backscatter coefficients analysis and physical scattering mechanisms of ground targets [10], [24], 

[25], [51], [52]. In this study, we proposed a new methodology to determine the appropriate weight 

for each element of the coherency matrix. The method is based on an integration of Fisher Linear 

Discriminant analysis and physical interpretation of PolSAR data. To improve the classification 

accuracy for complex land cover types, such as wetlands, weights for each element of the 

coherency matrix were determined proportional to the class separability in order to obtain the most 

discriminant feature space. In particular, three major models were defined for wetland 

classification using the following polarimetric features: (I) the scattering, covariance, and 
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coherency matrices (i.e., original features); (II) the polarimetric decomposition features; and (III) 

the modified coherency matrix obtained by the proposed method. Six, eleven, and seven scenarios 

were defined and the classification accuracies were compared within the context of Model I, II, 

and III, respectively. The proposed classification framework has three major steps outlined in 

Figure 4.3. During the pre-processing step, data conversion into the sinclair scattering matrix, 

speckle reduction, and terrain correction were applied. Next, the polarimetric features for each 

model were extracted from the pre-processed PolSAR data. This step was followed by either a 

pixel- or object-based image analysis after which the RF classifier was applied for classification. 

Finally, the results were evaluated through the use of ecological validation data. This general 

process is described in more detailed in the following sections. 

 

Figure 4.3. The flowchart of the proposed method in this study. 
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4.3.1. Pre-processing 

PolSAR images are presented in radar geometry known as slant range or ground range [53]. 

However, processing PolSAR images along with other geo-data products, such as ecological field 

data, often requires conversion to conventional map geometry. Thus, RADARSAT-2 level 1-SLC 

imagery was pre-processed using MapReady software V3.1 calibration tools provided by the 

Alaska Satellite Facility (ASF, www.asf.alaska.edu). External Digital Elevation Models (DEMs) 

released by Natural Resources Canada, with a resolution of roughly 19m, were also used for 

orthorectification (http://geogratis.gc.ca/site/eng/extraction). For the three pilot sites, all images 

were projected into UTM coordinate, particularly zone 22/row T for the Avalon area and zone 

21/row U for both the Deer Lake and Gros Morne study areas. Next, orthorectified RADARSAT-

2 images were mosaicked to generate full coverage of the three pilot sites. RapidEye level 3A 

images were also obtained terrain corrected with an accuracy of half of a pixel and delivered in 

this format. 

One of the main drawbacks of PolSAR images is the presence of speckle, which degrades the 

radiometric quality of the images and, consequently, the classification accuracy of further image 

analysis [54], [55]. Several techniques have been developed to suppress this phenomenon [56], 

[57]. In this study, an adaptive Lee filter, which has been developed based on Minimum Mean 

Square Error (MMSE) criteria, was used to suppress the effect of speckle noise. In particular, an 

adaptive Lee filter of size 9, in both range and azimuth directions, was applied to PolSAR images. 

The de-speckled PolSAR images illustrated preservation of the mean values and image 

detail/edges, while reducing the standard deviation of homogeneous targets [58].  

http://www.asf.alaska.edu/
http://geogratis.gc.ca/site/eng/extraction
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4.3.2. Feature extraction 

In this study, several polarimetric features were extracted for wetland classification. These features 

are generally divided into two main categories: the original features and the polarimetric 

decomposition features.  

4.3.2.1. Original features: Model I 

A fully polarimetric SAR sensor measures the complex scattering matrix of a medium for all 

possible combinations of transmitted and received polarization [59]. The reduced scattering vector, 

𝐬𝒓𝒆𝒅𝒖𝒄𝒆𝒅 = [𝑆𝐻𝐻  
1

√2
(𝑆𝐻𝑉 + 𝑆𝑉𝐻) 𝑆𝑉𝑉 ]

𝑇

, is calculated from the original scattering vector, 𝐬 =

[𝑆𝐻𝐻 𝑆𝐻𝑉 𝑆𝑉𝐻 𝑆𝑉𝑉  ]𝑇, by assuming the reciprocity principle (𝑆𝐻𝑉 = 𝑆𝑉𝐻), where [ ]𝑇 is an 

ordinary transpose operation. The scattering vector [𝒔] cannot characterize the distributed targets 

and is only able to characterize the coherent or pure scatterer. The distributed targets, however, are 

well characterized by the covariance [𝑪] or coherency [𝑻] matrices [60]. Therefore, the scattering, 

covariance, and coherency matrices with three, six, and six elements, respectively, were extracted 

in Model I. 

4.3.2.2. Target decomposition: Model II 

In the decomposition procedure, the backscattered PolSAR signal is deconstructed to determine 

the scattering mechanisms of the ground targets. Unlike the coherent decompositions (e.g., 

Krogager decomposition), which are only useful for man-made structures with deterministic 

targets, the incoherent decompositions determine the relative contributions from different 

scattering mechanisms. Thus, they may be more efficient for obtaining the information of natural 

scatterers [61], [62]. Accordingly, five well-known incoherent polarimetric decompositions, 

including Cloude-Pottier, Freeman-Durden, Yamaguchi, An-Yang, and Van Zyl decomposition 
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features were used in this study to evaluate the effect of different polarimetric descriptors on 

wetland classification. 

The Cloude-Pottier decomposition [63], the so-called eigenvector/eigenvalue-based 

decomposition, measures and transforms the information of distributed ground targets into 

deterministic targets. Due to the complexity of interpreting scattering vectors in their original 

representation, three secondary parameters, including entropy (H), anisotropy (A), and alpha angle 

(α), are extracted to determine the relationship between the scattering mechanisms. Entropy 

measures the randomness of a single scatterer mechanism, wherein dominant scatterers usually 

have low entropy values. Anisotropy is a complimentary component to entropy and represents the 

relative importance of the secondary and tertiary scattering mechanisms. The alpha angle indicates 

type of scattering mechanisms and ranges between 0 and 90 degrees. Alpha angle values around 

90 degrees represent dominant double-bounce scattering. By contrast, a low alpha angle represents 

dominant surface scattering. Also, an alpha angle around 45 degrees denotes dominant volume 

scattering [63]. 

 The Freeman-Durden decomposition approach determines a three-component scattering 

mechanisms of ground targets based on a physical model [64]. In this method, double-bounce 

(Dbl), volume (Vol), and surface (Odd) scattering correspond with the double-bounce scattering 

from a dihedral corner reflector, randomly oriented thin cylindrical dipoles, and first-order Bragg 

scattering, respectively [64]. The Freeman-Durden decomposition is useful for decomposing the 

scattering mechanism from naturally incoherent scatterers such as wetland ecosystems [60]. The 

Yamaguchi decomposition is a modified version of the Freeman-Durden decomposition, wherein 

the helix scattering power represents the fourth scattering mechanism. The helix term considers 

the non-reflection symmetric cases and determines the correlation between the co- and cross-pol 
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data. The helix term is of great importance for complex urban areas and may be less useful for 

natural distributed scatterers [65]. The An-Yang decomposition is a modified version of 

Yamaguchi decomposition in which de-orientation is added for analyzing PolSAR data. In this 

method, a de-orientation is first performed to the coherency matrix and the de-oriented coherency 

matrix is then decomposed to four components by the Yamaguchi decomposition [66]. Similar to 

the Freeman-Durden decomposition, the Yamaguchi and An-Yang decompositions are both 

efficient for decomposing the polarimetric scattering of natural targets, but are advantageous in 

urban areas. Thus, we included the Yamaguchi and An-Yang decompositions to better distinguish 

the urban class from other land cover types in this study. 

The Van Zyl decomposition is another modification of the Freeman-Durden decomposition that 

employs the non-negative eigenvalue decomposition [67]. Additionally, a combination of the non-

negative eigenvalue decomposition with the eigenvector decomposition is conducted to remove 

additional limitations of the model-based decomposition [67]. Although the Van Zyle 

decomposition is the eigenvector-based decomposition [68], it has descriptors very similar to that 

of model-based decompositions, including surface, double-bounce, and volume scattering with 

relatively equal strength to that of model-based decompositions (e.g., FD) [26]. 

4.3.2.3. Proposed method: Model III 

In Model III, we proposed a modified coherency matrix based on statistical and physical analysis 

of PolSAR data. In the context of polarimetric SAR image classification, each element of the 

coherency matrix (T11, T12,…, and T33) is considered as a PolSAR feature. In conventional 

classification methods, these features are equally weighted and then applied to the classification 

procedure. However, each element of the coherency matrix has a different discriminant capability. 

Feature selection is a common approach for increasing the classification accuracy of a multi-
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dimensional dataset. In most feature selection methods, features with low and moderate between-

class discriminant capability are removed and only features providing high class separability are 

incorporated into the classification [69]. However, classification using a selected number of 

features may not produce reliable results when there is high within-class diversity, as is the case 

in wetland complexes. Thus, in this study, a novel method for feature weighting of coherency 

matrix elements is proposed to increase the classification accuracy of PolSAR data in wetland 

areas. In this method, rather than selecting and, consequently, ignoring some features, the optimum 

weight assignment to features is performed according to the class discrimination power of each 

feature. This adaptive approach enhances the contribution of the most discriminating features and 

diminishes that of the least discriminating features by assigning them higher and lower weights, 

respectively. Particularly, each element of the coherency matrix (T11, T12, …, and T33) is 

weighted based on the integration of FLDA as a statistical approach and the physical interpretation 

of PolSAR features (number of features: Q=9). The FLDA technique, as a statistical approach, has 

been widely used in pattern recognition and machine learning [70]. It has been also applied as a 

feature selection approach for improving classification accuracy [71]. The FLDA reduces the 

dimension of a given statistical model by defining a new projection that decreases within-class 

diversity and increases between-class separability. Suppose that P is the number of classes in the 

image and {𝑦𝑖𝑘│k=1, 2, …, K} presents a sample of Q dimensional feature vectors in which K is 

the number of samples and i denotes the ith class. The Fisher criterion of the nth feature is 

calculated as follows: 

𝑓(𝑛) = ∑∑
(𝜇𝑖(𝑛) − 𝜇𝑗(𝑛))

2

𝜎𝑖
2(𝑛) + 𝜎𝑗

2 (𝑛)
 

𝑃

𝑗≠𝑖

𝑃

𝑖=1

 

(4.1) 
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where 𝜇𝑖(𝑛) and 𝜎𝑖
2(𝑛) are the mean and the variance of the ith class in the nth feature, respectively, 

and defined as follows:    

𝜇𝑖(𝑛) =
1

𝐾
 ∑ 𝑦𝑖𝑘(𝑛)

𝐾

𝑘=1

 
(4.2) 

𝜎𝑖
2(𝑛) =

1

𝐾 − 1
 ∑(𝑦𝑖𝑘(𝑛) − 𝜇𝑖(𝑛))

2
𝐾

𝑘=1

  

𝑛 = 1, 2, … , 𝑄  and 𝑖 = 1,2,… , 𝑃 

 

(4.3) 

where Q is the number of features (number of features: Q=9 in this study) and P is the number 

classes in the image. 

Training samples are selected by an unsupervised classification for each class and used as the input 

for the FLDA processing. More specifically, after PolSAR image pre-processing, the FLDA is 

used as a feature weighting method by incorporating the scattering models obtained by an initial 

unsupervised H/α Wishart classification [55]. The Wishart classifier is a supervised Maximum 

Likelihood Classifier (MLC) that works based on the complex Wishart distribution for PolSAR 

imagery. Lee et al. (1999) proposed the combination of the H/α decomposition and Wishart 

classifier, wherein the eight classes resulting from the H/α decomposition were used as training 

sets for the Wishart classifier (number of classes: P=8) [55]. This automated method is 

advantageous because it provides information about the inherent scattering properties for terrain 

identification while maintaining the spatial resolution in the classification procedure [55].  
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In the PolSAR imagery, one of the important properties for the eigenvalue–eigenvector 

decomposition is that the parameters are rotation-invariant and remained constant for rotation 

around the radar line of sight. For a polarimatric image, eight meaningful zones according to the 

H/α plane are defined. It is worth noting that the class numbers introduced by Lee and Pottier 

(2009) have been revised in this study as shown in Figure 4.4. 

 

Figure 4.4. Scattering plane of polarimetric entropy and mean scattering alpha angle [58]. 

Given the eight classes obtained by the initial classification, the Fisher coefficient for the first class 

is represented as follows:  

𝑓1(𝑛) = (
(𝜇1(𝑛) − 𝜇2(𝑛))

𝟐

𝜎1
2(𝑛) + 𝜎2

2 (𝑛)
) + (

(𝜇1(𝑛) − 𝜇3(𝑛))
𝟐

𝜎1
2(𝑛) + 𝜎3

2 (𝑛)
) + ⋯+ (

(𝜇1(𝑛) − 𝜇8(𝑛))
𝟐

𝜎1
2(𝑛) + 𝜎8

2 (𝑛)
) 

(4.4) 

Accordingly, eight groups of Fisher coefficients are obtained for these eight classes based on the 

scattering mechanisms of the ground targets that correspond to the H/α plane: 
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{𝑓1(1), 𝑓1(2),… , 𝑓1(9)}, {𝑓2(1), 𝑓2(2),… , 𝑓2(9)}, 

{𝑓3(1), 𝑓3(2),… , 𝑓3(9)}, {𝑓4(1), 𝑓4(2), … , 𝑓4(9)}, {𝑓5(1), 𝑓5(2),… , 𝑓5(9)},

 {𝑓6(1), 𝑓6(2),… , 𝑓6(9)},{𝑓7(1), 𝑓7(2),… , 𝑓7(9)}, {𝑓8(1), 𝑓8(2),… , 𝑓8(9)} 

(4.5) 

The Fisher coefficient for each element of the coherency matrix is obtained by summing the 

corresponding Fisher coefficients of the eight classes. For example, the Fisher coefficient that 

corresponds to the first element of the coherency matrix (𝑇11) is represented as follows: 

𝑓(1) =  𝑓1(1) + 𝑓2(1) + 𝑓3(1) + ⋯+ 𝑓8(1) 

 

(4.6) 

The Fisher coefficients for other elements of the coherency matrix can be similarly obtained. 

Specifically, the relationship between the nine Fisher coefficients and the coherency matrix 

elements can be better indicated using the following matrix format: 

𝐹 = [

𝑓(1) 𝑓(2) 𝑓(3)
𝑓(4) 𝑓(5) 𝑓(6)
𝑓(7) 𝑓(8) 𝑓(9)

] = 𝐹1 + 𝐹2 + ⋯+ 𝐹8 

 

(4.7) 

where 𝐹𝑖 (𝑖 = 1, 2, … , 8) denotes the weighting matrix for the ith class. In this step, the 

interpretation of the physical characteristics of scattering mechanisms is incorporated to the 

weighting procedure to further increase the classification accuracy. In particular, the T33 element 

of the coherency matrix primarily appears in the volumetric scattering information and is less 

prevalent in the surface and double-bounce scattering. According to the H/α plane (see Figure 4.4), 

the first, third, fourth, sixth, and eighth classes do not have volumetric scattering information. 

Thus, in the weighting procedure, the corresponding elements for these classes may be set to zero; 
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however, an increase in randomness scattering results in higher entropy values, which should be 

considered in the weighting scheme. Nevertheless, determining the weights for the first and third 

classes are straightforward and set to zero because of their lower entropy values, as follows:  

𝐹 
1 = [

𝑓1(1) 𝑓1(2) 𝑓1(3)
𝑓1(4) 𝑓1(5) 𝑓1(6)
𝑓1(7) 𝑓1(8) 𝑓1(9)

] → 𝐹∗
1 = [

𝑓1(1) 𝑓1(2) 0
𝑓1(4) 𝑓1(5) 0

0 0 0

] 
(4.8) 

𝐹 
3 = [

𝑓3(1) 𝑓3(2) 𝑓3(3)
𝑓3(4) 𝑓3(5) 𝑓3(6)
𝑓3(7) 𝑓3(8) 𝑓3(9)

] → 𝐹∗
3 = [

𝑓3(1) 𝑓3(2) 0
𝑓3(4) 𝑓3(5) 0

0 0 0

] 

(4.9) 

Assigning the corresponding weights to zero for the fourth, sixth, and eighth classes is not, 

however, the best scenario, because the entropy values of these classes are moderate to high. The 

high degree of randomness in the fourth, sixth, and eighth classes may be due to a mixture of 

different scattering mechanisms. Thus, in order to both decrease the effect of high entropy due to 

random scattering and maintain the polarimetric information of volume scattering mechanism, 

which is the dominant scattering type in the wetland complex, an adaptive weighting was 

employed for the fourth, sixth, and eighth classes. The corresponding weights for the volume 

scattering component in the aforementioned classes are determined as follows: 

𝐹4 = [

𝑓4(1) 𝑓4(2) 𝑓4(3)
𝑓4(4) 𝑓4(5) 𝑓4(6)
𝑓4(7) 𝑓4(8) 𝑓4(9)

] → 𝐹∗∗
4 = [

𝑓4(1) 𝑓4(2) (1 − �̅�4)𝑓4(3) 

𝑓4(4) 𝑓4(5) (1 − �̅�4)𝑓4(6) 

(1 − �̅�4)𝑓4(7) (1 − �̅�4)𝑓4(8) (1 − �̅�4)𝑓4(9) 

] 

(4.10) 

𝐹6 = [

𝑓6(1) 𝑓6(2) 𝑓6(3)
𝑓6(4) 𝑓6(5) 𝑓6(6)
𝑓6(7) 𝑓6(8) 𝑓6(9)

] → 𝐹∗∗
6 = [

𝑓6(1) 𝑓6(2) (1 − �̅�6)𝑓6(3) 

𝑓6(4) 𝑓6(5) (1 − �̅�6)𝑓6(6) 

(1 − �̅�6)𝑓6(7) (1 − �̅�6)𝑓6(8) (1 − �̅�6)𝑓6(9) 

] 

(4.11) 
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𝐹8 = [

𝑓8(1) 𝑓8(2) 𝑓8(3)
𝑓8(4) 𝑓8(5) 𝑓8(6)
𝑓8(7) 𝑓8(8) 𝑓8(9)

] → 𝐹∗∗
8 = [

𝑓8(1) 𝑓8(2) (1 − �̅�8)𝑓8(3) 

𝑓8(4) 𝑓8(5) (1 − �̅�8)𝑓8(6) 

(1 − �̅�8)𝑓8(7) (1 − �̅�8)𝑓8(8) (1 − �̅�8)𝑓8(9) 

] 

(4.12) 

where �̅�4, �̅�6 and �̅�8 are the mean of entropy values in the fourth, sixth, and eighth classes, 

respectively. As a result, the final weighting matrix is determined as: 

𝐹𝑡 = 𝐹1
∗ + 𝐹2 + 𝐹3

∗ + 𝐹4
∗∗ + 𝐹5 + 𝐹6

∗∗ + 𝐹7 + 𝐹8
∗∗

 (4.13) 

The modified coherency matrix (Tm) is then obtained by multiplying of the final weighting matrix 

(Ft) by the original pixel-wise coherency matrix (T) as follows: 

𝑻𝑚 = 𝐹𝑡 ⋅ 𝑻 = [

𝑓𝑡(1)𝑇11 𝑓𝑡(2)𝑇12 𝑓𝑡(3)𝑇13

𝑓𝑡(4)𝑇21 𝑓𝑡(5)𝑇22 𝑓𝑡(6)𝑇23

𝑓𝑡(7)𝑇31 𝑓𝑡(8)𝑇32 𝑓𝑡(9)𝑇33

] 

(4.14) 

where 𝑻𝑚 is the modified coherency matrix. Notably, both T and 𝐹𝑡 are Hermitian and, therefore, 

the modified coherency matrix 𝑻𝑚 also remains Hermitian. Since the total scattering power span 

should remain unchanged, the 𝑻𝑚 matrix can be normalized as follows:  

𝑻𝑚11 =
𝑓𝑡(1). 𝑇11

𝑓𝑡(1). 𝑇11 + 𝑓𝑡(5). 𝑇22 + 𝑓𝑡(9). 𝑇33
𝑆𝑝𝑎𝑛 

(4.15) 

𝑻𝑚22 =
𝑓𝑡(5). 𝑇22

𝑓𝑡(1). 𝑇11 + 𝑓𝑡(5). 𝑇22 + 𝑓𝑡(9). 𝑇33
𝑆𝑝𝑎𝑛 

(4.16) 

𝑻𝑚33 =
𝑓𝑡(9). 𝑇33

𝑓𝑡(1). 𝑇11 + 𝑓𝑡(5). 𝑇22 + 𝑓𝑡(9). 𝑇33
𝑆𝑝𝑎𝑛 

(4.17) 

The other elements of the modified coherency matrix may be similarly normalized. 
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In Model III, the modified coherency matrix and all well-known decomposition features extracted 

from the modified coherency matrix, including the Cloud-Pottier, Freeman-Durden, Yamaguchi, 

An-Yang, and Van Zyl were obtained. These features were then incorporated into different 

scenarios in Model III for wetland classification. A complete list of variable acronyms is provided 

in Table 4.5. 

Table 4.5. Acronyms of features employed in this study. 

Prefix Description Suffix Description 

CP Cloude-Pottier decomposition H Entropy 

A Anisotropy 

FD Freeman-Durden decomposition 

 

Alpha Alpha angle 

Odd Surface scattering 

VZ Van Zyl decomposition Dbl Double-bounce scattering 

Vol Volume scattering 

Yam Yamaguchi decomposition Hlx Helix scattering 

T11 First diagonal element 

 

AnY 

 

An and Yang decomposition 

T22 Second diagonal element 

T33 Third diagonal element 

T12 First off-diagonal element 

MC Modified Coherency matrix T13 Second off-diagonal element 

T23 Third off-diagonal element 
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4.3.3. Image classification 

In this study, 24 different scenarios in three main models were considered for wetland 

classification using different polarimetric features. Table 4.6 summarizes different combination of 

input features used for wetland classification. 

Table 4.6. Different scenarios employed in this study for wetland classifications. Abbreviation explanations 

are provided in Table 4.5. 

RF 

model 

Scenario 

 

Number of 

features 
Name of features 

Pixel-

based 

Object-

based 

Single- 

date 

Multi- 

 temporal 

I 1 3 Scattering Matrix  ✓   ✓   

 2 6 Covariance Matrix  ✓   ✓   

 3 6 Coherency Matrix  ✓   ✓   

 4 6 Coherency Matrix   ✓  ✓   

 5 18 Coherency Matrix  ✓    ✓  

 6 18 Coherency Matrix   ✓   ✓  

II      7      3 CP   ✓  ✓   

     8      3 FD   ✓  ✓   

    9     3 VZ    ✓  ✓   

    10    4 Yam   ✓  ✓   

    11    4 AnY   ✓  ✓   

   12    9 CP   ✓   ✓  

   13    9 FD   ✓   ✓  

   14   9 VZ    ✓   ✓  

   15   12 Yam   ✓   ✓  

   16   12 AnY   ✓   ✓  

 
  17   69 

Coherency Matrix,  CP, 

FD,   VZ,  Yam, AnY 
 ✓   ✓  

III 18 6 MC  ✓   ✓   

 19 6 MC  ✓  ✓   

 20 18 MC ✓    ✓  

 21 18 MC  ✓   ✓  

 22 48 MC , CP, FD, Yam  ✓   ✓  

 23 51 MC , VZ, Yam, AnY  ✓   ✓  

 24 69 
MC ,  CP, FD,   VZ,  

Yam, AnY 
 ✓   ✓  

 

4.3.3.1. Object-based Image Analysis 

Low spatial resolution satellite images have constrained classification approaches to pixel-based 

algorithms since the early 1970s [72]. This is because the image pixel size was kept more coarse 

than, or in the best case, the same size as the ground object. Therefore, per-pixel or sub-pixel image 
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analysis was the most common approaches in the early stages of land cover classifications using 

satellite imagery [29]. However, the advent of high spatial resolution satellite imagery has 

significantly altered the applied methodologies for land cover classification, namely Object-Based 

Image Analysis (OBIA) techniques [28]. Image segmentation is a first step in OBIA and typically 

carried out using a Multi-Resolution Segmentation (MRS) algorithm [43], [73]. Segmentation 

initiates with pixel-sized objects and gradually grows through the pair-wised merging of 

neighboring objects using pre-defined parameters. This procedure is called bottom-up image 

segmentation. The pre-defined parameters are determined by users and represent scale, shape, 

smoothness, and compactness criteria. All these mentioned parameters are combined together to 

determine a homogeneity factor until convergence criteria are met [28]. The size of image objects 

is the most important criterion in MRS analysis and determined by the scale parameter [74].  

In this study, MRS analysis was performed by eCognition Developer 9 using optical images and 

its parameters were defined by an iterative trial-and-error approach. An optical image was used in 

this step because segmentation based on SAR images produces some meaningless objects due to 

the inherent SAR speckle. Also, Myint et al. (2011) demonstrated the lack of a standard, widely 

acceptable approach to determine the optimal scale for different segmentation approaches [75]. 

Therefore, it varies according to different applications as well as the availability of different remote 

sensing imagery. As such, different scale parameters were examined to provide meaningful ground 

objects and the optimal values for scale, shape, and compactness parameters were found to be 50, 

0.05, and 0.5 in this study, respectively.   

4.3.3.2. Random Forest 

Random Forest (RF) classification is one of the most well-known ensemble learning algorithms 

and has recently gained attention for land cover classification using satellite imagery [76]. A non-



148 

 

parametric RF classifier is comprised of a group of tree classifiers used to make a prediction. The 

trees are grown through a bagging approach by random selection of training samples that are 

divided into several bags. Specifically, about two thirds of the samples, known as in-bags samples, 

are randomly selected to train the classifier; however, the remaining one third, known as out-of-

bags (oob) samples, is applied to a cross-validation procedure to evaluate the classification 

performance [42]. In this approach, some data may be used several times in the training procedure, 

while others may not be selected at all. Finally, assigning a pixel to a specific class is determined 

by the single vote of each tree classifier. The maximum vote for each pixel by tree classifiers 

specifies its class. However, an appropriate attribute should be assigned to each tree to increase 

dissimilarity between classes. 

The generalization error is defined by dividing the number of misclassified elements by the total 

number of oob elements [42]. It should be noted that the generalization error or classification 

accuracy is controlled at two different levels. Firstly, by increasing the number of trees, the 

generalization error tends to be convergent which in turn prevents the RF classifier from being 

over-fitted to the data. Secondly, RF employs the best split of a random subset of each node in 

growing trees, which causes a negligible correlation between trees and, as such, a decrease in the 

generalization error.  

 Another advantage of RF is that it provides the relative importance of each variable in the 

classification scheme and thereby, makes a flexible classification algorithm with the capability to 

handle high dimensionality datasets. For variable importance determination, RF measures the 

degradation in the classification accuracy by altering one of the input random features while 

keeping the rest of input features constant [77]. Specifically, the variable importance determines 

the influence of each input feature on the classification’s overall accuracy. Notably, the two 
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parameters, which should be adjusted to employ RF, are the number of decision trees (Ntree) and 

the number of variables (Mtry) [43]. In this study, a total number of 400 trees were selected in each 

classification model. Also, the square root of the number of input variables was selected for Mtry 

because it decreased both the computational complexity of the algorithm and the correlation 

between trees by limiting the number of input variables for a split [39]. 

4.3.3.3. Accuracy assessment 

The accuracy assessments were conducted by comparing the classified maps to the ecological 

ground truth data using confusion matrices. The common parameters extracted from the confusion 

matrix for assessing classified maps are: 1) overall accuracy; 2) kappa coefficient; and 3) user’s 

and producer’s accuracy. Overall accuracy is determined by dividing the total number of correctly 

classified pixels (diagonal elements) by the total number of pixels in the confusion matrix. The 

kappa coefficient measures the level of agreement between the classification map and the reference 

data. The producer’s accuracy illustrates the probability of a reference pixel being correctly 

classified (omission error), and the user’s accuracy indicates the probability that a classified pixel 

on the map actually illustrates that category on the ground (commission error) [78]. In this study, 

the first two assessment parameters were extracted for all scenarios in each model; however, the 

latter one was only presented for the most significant result. 

4.4. Results and discussion 

4.4.1. Inputs from Model I: original PolSAR feature 

In Model I, we investigated the original features in pixel- versus object-based and single- versus 

multi-date analysis (see Table 4.6). According to Table 4.7, the coherency matrix in the pixel-

based and single-date framework, scenario 3, resulted in a higher accuracy than its corresponding 

scattering and covariance matrices (scenarios 1 and 2). Among the original polarimetric features, 
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including the scattering, covariance, and coherency matrices, the results illustrated that the 

coherency matrix in an object-based, multi-temporal framework was superior to all other 

combinations. This is because the covariance matrix is a second order mathematical representation 

of the scattering matrix, while the coherency matrix contains physical scattering information of 

ground targets and, as such, it was found to be more successful than the other two matrices.   

Having obtained a higher accuracy via the coherency matrix, it was selected for further analysis in 

the remaining scenarios of Model I. Following the hierarchical accuracy assessment, the pixel- and 

object-based classifications were compared. It was observed that applying the object-based 

approach improved the classification accuracy by about 2% in comparison with the pixel-based 

classification (scenarios 3 versus 4). Next, two RADARSAT-2 images were added to examine the 

temporal effect. It was found that the coherency matrix in object-based and multi-temporal 

framework represented a higher accuracy than pixel-based and single-date case (scenarios 3 versus 

6). Furthermore, scenario 6 produced the most powerful combination of features among all of 

defined scenarios in Model I in terms of classification accuracy. 
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Table 4.7. Accuracy assessments of RF scenarios for wetland classification. The most accurate results are 

indicated in bold. 

 

 

RF 

model 

 

 

Scenarios 

Case study 

Avalon Deer Lake Gros Morne 

Kappa 

Coefficient 

OA 

(%) 

Kappa 

Coefficient 

OA 

(%) 

Kappa 

Coefficient 

OA (%) 

I 1 0.46 61.08 0.45 59.66 0.58 72.74 

2 0.50 65.91 0.48 62.17 0.64 76.81 

3 0.53 66.20 0.50 63.05 0.65 77.83 

4 0.58 68.43 0.54 65.22 0.68 78.96 

5 0.55 66.87 0.51 64.93 0.67 78.03 

6 0.61 69.54 0.55 66.09 0.70 79.74 

II 7 0.41 58.97 0.43 57.91 0.57 69.80 

8 0.63 72.38 0.59 70.46 0.71 81.24 

9 0.66 73.25 0.62 71.05 0.72 82.51 

10 0.62 71.91 0.58 68.88 0.67 79.02 

11 0.63 72.06 0.60 69.14 0.68 80.67 

12 0.46 61.42 0.49 59.85 0.62 73.66 

13 0.65 73.69 0.66 73.71 0.73 82.88 

14 0.66 74.78 0.66 73.96 0.74 83.49 

15 0.64 72.53 0.62 70.00 0.71 81.33 

16 0.65 72.76 0.62 70.29 0.72 81.81 

17 0.79 84.92 0.71 76.90 0.82 88.39 

III 18 0.69 73.55 0.59 69.40 0.78 85.92 

19 0.73 76.57 0.65 73.10 0.79 87.14 

20 0.71 74.28 0.62 70.99 0.75 87.05 

21 0.74 77.92 0.69 74.61 0.81 88.52 

22 0.81 85.19 0.73 78.95 0.84 90.31 

23 0.84 86.74 0.75 80.62 0.86 91.09 

24 0.85 87.11 0.76 81.04 0.89 92.17 

Note: See Table 4.6 for an overview of the features used to define the scenarios presented in Table 4.7.   
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Overall, the object-based classification (scenarios 4 and 6) showed a higher accuracy than pixel-

based classifications in all scenarios examined in Model I. Additionally, in the temporal context 

(single- or multi-date), multi-temporal, object-based classification represented a higher accuracy 

than single-date, object-based classification. Notably, temporal information is generally 

considered to be an essential factor for reducing possible confusion error when discriminating the 

main vegetation classes, particularly in the case of adequate temporal image separation [79]. This 

is due to the highly dynamic nature of wetland ecosystems, wherein the backscattering mechanism 

of each wetland class in terms of both intensity and type of scattering is strongly affected by both 

phenology and hydrological conditions [26]. For example, during the high-water season, swamp 

and marsh classes experience different conditions and, as such, have different signatures in a SAR 

image. In the swamp class, the double-bounce scattering increases due to the improved chance of 

double-bounce scattering between the water surface and tree trunks. However, the double-bounce 

scattering can decrease in the marsh wetland during this time as it is primarily converted to surface 

scattering due to increasing the water level. Conversely, when the water surface is low, the 

dominant scattering mechanism is volume scattering from vegetation canopy or upper section of 

tree for the swamp class [80]. Thus, each wetland classes can be better characterized during the 

specific time in the growing cycle. Accordingly, using multi-temporal data is helpful for better 

distinguishing wetland classes with similar structures but different phenology and flooding 

statuses [26].  

 It should be noted that multi-temporal, pixel-based classification (scenario 5) was less accurate 

than single-date, object-based classification (scenario 4). Thus, it was concluded that the 

objectification factor was more influential for the classification accuracy than the temporal factor 

in this study. This could be due to that, in the object-based framework, the segmentation analysis 
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was carried out using an optical image, which led to an improvement in the classification accuracy. 

However, in the case of pixel-based, multi-temporal classification, the inclusion of extra PolSAR 

images resulted in a lesser degree of improvement in overall accuracy due to speckle noise. These 

results were also confirmed through the visual comparison of classified maps in pixel- and object-

based frameworks (see Figure 4.5). Classification noise was observed in all pixel-based classified 

maps in Model I. 

 

Figure 4.5. A visual comparison between (a) pixel-based and (b) object-based RF classification of a 

zoomed area in the Avalon pilot site. 

As seen, unlike the pixel-based approach, the classes obtained using the object-based method are 

noiseless and neat and provide a visually appropriate depiction of both wetland and non-wetland 

classes. This was concluded based on the visual interpretation of the ecological experts familiar 

with the study areas. For example, the predominance of the urban class in the center of the zoomed 

area was better illustrated by object-based classification, which indicated less confusion between 

the urban, swamp, and upland classes. 
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In summary, using the scattering matrix in the single-date and pixel-based framework provided 

the least accurate results within all defined scenarios in Model I. In contrast, using the coherency 

matrix in the multi-temporal, object-based framework presented the most significant results in 

Model I. 

4.4.2. Inputs from Model II: Polarimetric decomposition features 

Given the results from Model I, the classification based on the coherency matrix in the context of 

object-based image analysis was carried out in Model II. Therefore, all target decompositions were 

exploited based on the coherency matrix during further analysis in Model II. Because the temporal 

analysis represented variations in the accuracy assessment and a deterministic result was not 

obtained regarding the influence of adding multi-temporal PolSAR images, we concentrated on 

different target decomposition algorithms in single- versus multiple-date frameworks in Model II. 

Particularly, the effect of multi-temporal images was further investigated for wetland classification 

using polarimetric decomposition features. 

Focusing on the target decompositions in the single-date context, VZ and FD decompositions 

(scenarios 9 and 8) represented the highest accuracies, respectively. The same results were also 

obtained from the multi-temporal analysis. More specifically, applying multi-temporal data 

increased the classification accuracy of all scenarios (12 to 16) by about 2%, while VZ and FD 

had the highest accuracies overall. However, combining the coherency matrix and all 

decomposition features in the multi-temporal classification analysis (scenario 17) significantly 

increased the classification accuracy by approximately 3% to 10% (depending on the case studies) 

compared to the latest most accurate scenario (scenario 14).  
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Generally, it was found that applying the various target decompositions to the coherency matrix 

(Model II) was more successful in terms of classification accuracy relative to the original features 

(Model I). This was the case for all decompositions, excluding CP (scenarios 7 and 12), which was 

suggestive of two issues. First, polarimetric decompositions have additional information not 

directly obtainable from the original features. This was also supported by visual comparisons 

between classified maps of Model I and II, wherein classifications based on polarimetric 

decompositions were more successful in identifying different vegetation types and discriminating 

between upland and wetland classes. Thus, it was concluded that incorporating the scattering 

mechanisms of ground targets, extracted by polarimetric decompositions, into the classification 

scheme enhanced the discrimination capability of land cover classes and, as a result, improved the 

classification accuracy. Second, it was found that polarimetric decomposition approaches based 

on the physical model (e.g., FD) were more successful in terms of improving the classification 

accuracy than the CP decomposition. This is because these decomposition approaches lie in the 

real domain and estimate the intensity of each scattering mechanism that occurs in a natural target. 

In particular, these physical model-based decompositions generate an individual and independent 

descriptor associated with each backscattering mechanism. For example, in these approaches, the 

surface scattering contains the information of water, the double-bounce scattering captures the 

information of flooded-vegetation, and the volume scattering corresponds to the upland and non-

flooded vegetation [23]. As such, they effectively determined each wetland class scattering 

patterns and, thus, yielded higher accuracies in this study [23], [25], [26]. 

In contrast, the CP decomposition is usually employed as an initial unsupervised classification (as 

used in this paper) to decompose the information of distributed targets into the scattering of 

deterministic targets, which may explain why it did not significantly contribute to improving the 
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classification accuracy [51], [55]. In particular, eigenvector-based decompositions (e.g., CP) 

determine the scattering mechanism of targets as both real and angular values. They usually 

characterize the main scattering mechanism of ground targets by either a single or several 

components and then augment this estimate using other real and/or angular descriptors, such as 

anisotropy. Vegetative density considerably attenuates the shorter wavelengths, such as C-band, 

leading to similar scattering intensities for vegetation with subtle structural differences, such as 

bog and fen wetlands [49]. Thus, herbaceous vegetation [22], [81] hinders the ability of CP alpha 

angle, entropy, and anisotropy to identify subtle differences in backscattering mechanisms when 

shorter wavelengths are employed [26]. The first, second, and third scattering mechanism for 

herbaceous vegetation are similar in nature, while they vary in intensity. Thus, the similar nature 

of scattering mechanisms in herbaceous vegetation (e.g., bog and fen) [82] and the shorter 

wavelength utilized in this study (i.e., C-band) [83] contributed to less accurate classification 

results using CP decomposition. The discrepancy of the phase centers during reflection further 

complicates the matter. This issue is particularly severe in the CP decomposition, which results in 

very noisy decomposition parameters and a less accurate classified map [84]. Overall, the 

anisotropy and entropy descriptors of the CP decomposition were less useful for discriminating 

NL herbaceous vegetation, as they were almost random and characterized by high level of noise 

content over natural scatterers environments [51]. The decomposition Yam and its modified 

version, AnY, have been demonstrated to be relatively less accurate compared to FD and VZ. The 

better performance of these approaches is expected to obtain in urban areas with complex 

structures. Nevertheless, almost all physical model-based decompositions indicated to be 

successful, while there was a relatively small difference between the accuracy obtained by those 

methods.   
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In conclusion, it was observed that applying polarimetric decompositions (Model II) was more 

successful than using the original features (Model I) in terms of classification accuracy. 

Furthermore, the inclusion of all polarimetric decomposition features in the multi-temporal 

framework provided the highest accuracy thus far (scenario 17).  

4.4.3. Inputs from Model III: the proposed method 

The objective of this section is to assess the ability of the modified coherency matrix proposed in 

this study for classification of different wetland classes. First, we evaluated the robustness and 

reliability of the modified coherency matrix in terms of preserving the polarimetric information. 

This was done because the Fisher Linear Discriminant analysis is a classical machine learning 

technique, which mainly uses the statistical information of image pixels while ignoring their 

scattering characteristics. However, the proposed methodology incorporates the scattering 

mechanisms of ground targets through the physical interpretation of different elements of the 

coherency matrix to ensure the preservation of polarimetric information. To investigate this, 

different polarimetric features of CP and FD decompositions were extracted from the original and 

modified coherency matrices and are depicted in Figure 4.6. 
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Figure 4.6. Evaluating the polarimetric information preservation by comparing (a) Cloude-Pottier 

features obtained from the original coherency matrix, (b) Cloude-Pottier features obtained from the 

modified coherency matrix, (c) Freeman-Durden features obtained from the original coherency matrix, 

and (d) Freeman-Durden features obtained from the modified coherency matrix. 

The polarimetric features obtained from the modified coherency matrix preserved the polarimetric 

information. For example, the entropy images indicate polarimetric information about the degree 

of randomness. As illustrated in Figure 4.6, the entropy feature obtained from the modified 

coherency matrix maintains the distribution of entropy values with the texture in the center of the 

zoomed area (see Figure 4.6b). Furthermore, the FD polarimetric features obtained from the 
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modified coherency matrix better distinguish different scattering mechanisms of ground targets 

relative to the original coherency matrix (Figures 4.6c and 4.6d). Thus, it was concluded that the 

polarimetric information was well preserved by applying the proposed method. Next, we evaluated 

the efficiency of the modified coherency matrix for the wetland classification.  

For better comparison of the coherency and modified coherency matrices (Model I and III), 

different scenarios in the context of pixel- versus object-based and single- versus multiple-date 

were also considered in this section. The modified coherency matrix in the pixel-based and single-

date case (scenario 18) increased the classification accuracy above 6% compared to its 

corresponding case in Model I (scenario 3). Comparatively, applying the modified coherency 

matrix in the multi-temporal object-based case (scenario 21) represented an approximate 8% 

improvement over its corresponding case in Model I (scenario 6). Scenario 21 also demonstrated 

to be more accurate than VZ decomposition (scenario 14), which was the best target decomposition 

approach determined in Model II. Following the accuracy assessment in Model III, different 

combinations of polarimetric decompositions and the modified coherency matrix were examined 

for classification. Overall, adding all polarimetric decomposition features increased the 

classification accuracy up to 10% (scenario 24 case study 1) relative to scenario 21. However, 

different combinations of polarimetric decompositions changed the classification accuracy by only 

about 2% (see scenario 22, 23, and 24). 

The classified maps of the 24th scenario for all study sites are depicted in Figure 4.7. They show 

the distribution of land cover units, wetland and non-wetland classes distinguishable at a 5m spatial 

resolution. The bog and upland classes are the most dominant wetland and non-wetland classes in 

all three pilot sites, respectively, while the marsh class is less prevalent. These observations are 
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consistent with ecological field reports and the visual interpretation of the land cover types using 

aerial and optical imagery by ecological experts familiar with the study areas. 

 

Figure 4.7. The classified maps for the 24th scenario in the three different study areas, including (a) 

Avalon, (b) Deer Lake, and (c) Gros Morne. 

The 24th scenario in the Gros Morne study area was the most significant result of all the scenarios 

for the three pilot sites (see Table 4.7). Therefore, it was selected for the further accuracy analysis. 

Figure 4.8 illustrates the relative contributions of the different input variables in the classification 

accuracy for the Gros Morne pilot site obtained by RF (scenario 24). 
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Figure 4.8. Normalized variable importance of RF classification for scenario 24 in the Gros Morne study 

area. Different variables are represented as follows: MC (blue), FD (green), VZ (purple), AnY (red), 

Yam (orange), and CP (gray). An explanation of how variables were named can be found in Table 4.5. 

FD-Vol, VZ-Vol, and MC-T33 were the most important contributing variables. It is worth noting 

that different polarimetric decomposition features in Model III were also all obtained via the 

modified coherency matrix. Overall, volumetric components of different polarimetric 

decompositions, including FD, VZ, AnY, and Yam, as well as the T33 element of the modified 

coherency matrix, were more important variables. These results were consistent with the theory 

that the volume scattering is the dominant scattering mechanism for vegetation canopies like those 

found in a wetland complex [3], [85]. Also, the volumetric scattering information is useful to 

distinguish between woody and the herbaceous wetlands [86]. Double-bounce components of the 
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scattering mechanisms in the polarimetric decompositions were the second most important 

variables (see Figure 4.8). In this study, FD-Vol was more important than VZ-Vol, while VZ-Dbl 

was more important than FD-Dbl (see Figure 4.8); overall, the VZ decomposition was the most 

successful approach amongst all decompositions in this study for differentiating vegetation classes 

in terms of OA (see Table 4.7). Based on this, it was determined that certain features were more 

important in the presence of others due to their interdependency [77]. The CP variables were less 

important, which was consistent with the classification accuracy obtained by the CP decomposition 

(see Table 4.7). 

The confusion matrix for scenario 24 (the Gros Morne case study) is presented in Table 4.8. The 

results obtained by the accuracy assessment for the wetland classified map were strongly positive, 

taking into account the complexity of the similar wetland classes, and illustrating the large number 

of pixels that were correctly classified.  
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Table 4.8. Classification confusion matrix of the most accurate scenario for the wetland classification 

(scenario 24, the Gros Morne case study). 

 

 Reference Data 

 Urban Marsh Bog Swamp Upland 
Deep-

water 
Fen Tot. 

User. 

Acc. 

C
la

ss
if

ie
d

 D
at

a
 

Urban 14231 43 8 8 19 0 502 14811 96.08 

Marsh 136 2742 50 2 721 0 705 4356 62.95 

Bog 321 14 105431 59 5026 0 545 111396 94.65 

Swamp 13 6 1205 3325 818 0 58 5425 61.29 

Upland 211 412 6498 88 32482 0 29 39720 81.78 

Deep-water 0 0 0 0 0 58530 0 58530 100.00 

Fen 0 49 826 305 328 0 6973 8481 82.22 

 Tot. 14912 3266 114018 3787 39394 58530 8812 242719  

 Prod. Acc. 95.43 83.96 92.47 87.80 82.45 100.00 79.13   

 

The highest user’s and producer’s accuracies belonged to the deep-water class at 100%. This is 

because that the dominant scattering mechanism for the deep-water class is usually specular 

scattering. When the SAR signal hits the surface of calm open water, the most of the transmitted 

signal is specularly backscattered away from the SAR sensor, resulting in very low SAR 

backscattering coefficients (𝜎0) returns [87]. This makes open water appears dark (black) in SAR 

images and, accordingly, distinguishable from other land cover types [88]. Although rough and 

turbulent water surfaces can cause part of the signal to be backscattered to the SAR sensors, this 

is negligible compared to backscattering responses of other classes. Therefore, the highest user’s 

and producer’s accuracies for the water class could be due to the lowest 𝜎0 value associated to this 
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class, which effectively contributed to discriminate the water class from other land cover types in 

this study.  

The urban and bog classes were found to be correctly classified with user’s accuracies of about 

96% and 94%, respectively, which represented the lowest commission error. The fen and upland 

classes also illustrated relatively high user’s accuracies of approximately of 82%. Overall, a 

confusion error occurred between bog, fen, and upland classes, wherein the bog class was 

misclassified as upland and, to a lesser degree, the fen class (commission error). The swamp and 

marsh class had the lowest user’s accuracy of about 61% and 63%, respectively, and the highest 

commission error of about 39% and 37%, respectively. Again, confusion error was found between 

upland, fen, and marsh classes resulting in a portion of the upland and fen classes to be erroneously 

classified as marsh. This, too, occurred for the swamp and bog wetland, wherein the bog class was 

misclassified as the swamp wetland in some cases.  

All land cover classes, excluding the fen class, had high producer’s accuracies of above 80%, 

illustrating the relatively small omission error. The producer’s accuracy for the fen class was close 

to 79% indicating slightly higher omission error compared to the other land cover types in this 

study. In particular, a portion of the fen class was misclassified as other herbaceous vegetation, 

including the marsh and bog classes.    

Overall, the greatest confusion error was observed between herbaceous vegetation (especially 

between bog and fen classes) as well as other land cover types which may be the result of several 

phenomena. First, the similar backscattering mechanisms for these classes may have influenced 

the confusion error. For example, uplands are forested dry lands with a dominant volume scattering 

mechanism similar to that of swamp wetlands during the low water season, thereby contributing 
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to the degree of confusion between these classes. Several studies reported that L-band 

outperformed shorter wavelengths (e.g., C- and X-band imagery) for wetland mapping due to 

deeper penetration of longer wavelengths [22], [88]. This is particularly true for distinguishing 

woody wetlands from other classes such as swamp and upland classes.  

The heterogeneous mixture of the landscape may also have contributed to the confusion error. 

Specifically, herbaceous vegetation in the study area is found adjacent to each other without clear 

cut borders. Also, there is a high degree of similarity between herbaceous vegetation, particularly 

when shorter wavelengths are applied (e.g., C-band), which are strongly attenuated by vegetative 

density. For example, the bog and fen classes have ecologically very similar vegetation types and 

structures; they are peatlands dominated by Spahgnum and graminoid species, respectively, and 

as such, are sometimes categorized as the same class (i.e., peatland). Furthermore, as the field 

notes illustrated, these two classes were found to be hardly distinguished from each other during 

the in-situ field data collection by biologists.  

The hydrological variation and phenology of wetland environments may also affect the accuracy 

of each wetland classes. This is because the backscattering mechanisms of different wetland 

classes vary in both intensity as well as backscattering types during low and high water seasons. 

Several studies reported the importance of using multi-temporal satellite imagery for wetland 

classification to reduce the classification uncertainty due to the highly dynamic nature of wetland 

environments [1], [26]. Since we used multi-temporal PolSAR images for this study, the 

classification error due to the hydrological variation and phenology in the wetland ecosystems 

should be negligible. However, the three PolSAR images, which have been used for each pilot site, 

may still be insufficient, taking into account the high temporal variation of the wetland ecosystem 

during the leaf-on season in NL.     
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Another important consideration when interpreting the above accuracies is the amount of in-situ 

data available for the purpose of applying the supervised classification. Generally, in the case of 

supervised classification such as RF, larger training sample sizes are recommended for obtaining 

higher classification accuracies. However, the collection of large amounts of representative 

ecological field data is often difficult. For example, insufficient amounts of field data for the marsh 

and swamp class in the Gros Morne pilot site resulted in the lower accuracies for these classes 

relative to other wetland classes (see Table 4.8). This can be attributed both to the limited time 

available for field data collection by biologists and to the natural distribution of wetland classes in 

NL. NL has a generally wet and cool climate, which is particularly suited for extensive peatland 

(bog and fen) formation. This means that bog and fen are more common than that of other wetland 

classes and, as a result, were visited more frequently and easily during the field work. Thus, the 

reason for the lower user’s accuracies for swamp and marsh may be attributed to lower amounts 

of collected in-situ data. Accordingly, this may also explain the high accuracy for deep-water, 

because the high amount of in-situ data were available for this class. Hypothetically, the accuracies 

of all classes except the deep-water class should improve upon the availability and inclusion of 

greater amounts of in-situ data. 

 The swamp wetlands also tend to occur in physically smaller areas compared to that of other 

wetlands, such as in transition zones between a wetland and other land cover types. Thus, the 

swamp wetlands may have been sparse and mixed with other wetland classes reducing the 

backscattering response significantly; they may have been also too small to be captured as a single 

object causing the lowest classification accuracy for this class. It is worth noting that the 

characteristics of wetland classes in other pilot sites (i.e., the Avalon and Deer Lake) are also 

similar to that of the Gros Morne case study, which is also confirmed by relatively similar 
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classification accuracies for these pilot sites (see Table 4.7, scenario 24). Thus, in order to reduce 

the redundancy in the accuracy assessment analysis among three case studies, the results were only 

interpreted for the Gros Morne study area. The averaged user’s and producer’s accuracies for 

wetland classes, including marsh, bog, swamp, deep-water, and fen were equal to 80.2% and 

88.6% in the Gros More region, respectively. The classified maps in Figure 4.7 and the high 

averaged producer’s accuracy of about 88% illustrated the fine separation of different wetland 

classes in the study area.   

Another accuracy assessment performed in the Gros Morne case study was backward elimination 

of the least important features in a consecutive procedure to evaluate the effect of each individual 

feature on the overall accuracy. It was observed that the overall accuracies were degraded slightly 

by removing the first 58 least important features (Figure 4.9). Conversely, the overall accuracies 

significantly decreased when only the last five features remained.  

 

Figure 4.9. Overall classification accuracies based on the number of removed features for the Gros Morne 

case study. 
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4.5. Conclusion 

Although the Newfoundland wetlands are home to a biologically diverse flora and fauna species, 

they have not been effectively investigated and monitored to date. Despite the large expanses of 

different wetland classes, including bog, fen, marsh, swamp, and the large number of diverse lakes, 

little effort has been carried out to preserve these valuable environmental resources. Therefore, 

there is an urgent need for (1) a detailed spatial distribution of different wetland classes; and (2) 

quantitative methods to map and monitor both the naturally and anthropogenic occurring changes 

in the area for an effective preservation and sustainable management of these productive 

ecosystems. 

The results of this study provide these much needed fine resolution classification maps of the 

detailed spatial distribution of wetland classes as well as other land cover types for the three pilot 

sites in Newfoundland. In particular, we proposed a new PolSAR feature, the modified coherency 

matrix, and used multi-temporal RADARSAT-2 imagery for wetland mapping. We also evaluated 

the effect of using different combinations of polarimetric features, including well-known 

polarimetric decompositions, as well as the modified coherency matrix, on the classification 

accuracy. Specifically, the efficiency of the RF classifier was investigated in 24 different scenarios 

in single- versus multiple-date and pixel- versus object-based approaches. The results of this study 

also provide new perspectives into the importance of input variables for the flexible RF classifier.  

Object-based classification was found to be better suited for differentiating wetland classes relative 

to the pixel-based classification. The inclusion of additional PolSAR data increased the overall 

classification accuracies in all three models when compared to the single-date classifications. It 

was observed, however, that objectification based on optical images was more influential on the 

accuracy of wetland classification than increasing the number of PolSAR images.  
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The main objective of this study was to investigate the efficiency of the modified coherency matrix, 

which has been established by an integration of Fisher Linear Discriminant analysis and physical 

interpretation of PolSAR data, in improving the wetland classification accuracy. Our results 

indicated that the modified coherency matrix in a multi-temporal, object-based framework 

outperformed all single polarimetric decompositions in different scenarios in terms of 

classification accuracy. This observation was significant, as it demonstrated the superior 

performance of the modified coherency matrix over all well-known polarimetric decompositions 

in terms of wetland classification accuracy. The variable importance analysis illustrated that FD-

Vol, VZ-Vol, and MC-T33 were the most important features for wetland classification. The 

analysis of variable importance also revealed that the volumetric component of polarimetric 

decompositions provided more valuable information than either double- or odd-bounce scattering 

features in the wetland complex. These results fit well with the theory of scattering mechanism in 

wetland ecosystems, wherein the volume scattering is the dominant scattering mechanism in 

vegetation canopies [60]. However, this may not hold true for other classification applications 

(e.g., urban area classification). The various features from different scenarios all contributed to 

increase the classification accuracy. Some features contributed less (i.e., CP features), while 

independent features, such as the modified coherency matrix and volumetric components of the 

different decompositions, contributed more to improve the wetland classification accuracy. The 

results of this study confirmed that the synergism of the modified coherency matrix of PolSAR 

imagery and polarimetric decomposition features in a multi-temporal framework based on the 

object-based random forest classifier is very efficient for mapping NL wetland classes.  

The fine spatial resolution maps produced in this study provide substantial information that will 

contribute to preserving the wildlife habitat of both terrestrial and aquatic species. Moreover, the 
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classified maps offer valuable baseline information for effectively understanding and monitoring 

climate and land cover changes resulting from wetland dynamics, while contributing to 

conservation plans for wetland habitats in NL.  

  



171 

 

4.6. References 

[1] J. Li and W. Chen, “A rule-based method for mapping Canada’s wetlands using optical, radar and 

DEM data,” Int. J. Remote Sens., vol. 26, no. 22, pp. 5051–5069, 2005. 

[2] L. M. Cowardin, V. Carter, F. C. Golet, and E. T. LaRoe, “Classification of wetlands and deepwater 

habitats of the United States,” US Department of the Interior, US Fish and Wildlife Service, 1979. 

[3] R. W. Tiner, M. W. Lang, and V. V Klemas, Remote sensing of wetlands: applications and 

advances. CRC Press, 2015. 

[4] M. P. F. Costa, T. S. F. Silva, and T. L. Evans, “Wetland classification,” Remote Sens. Nat. Resour. 

CRC Press. Boca Raton-FL, pp. 461–478, 2013. 

[5] J. R. Anderson, A land use and land cover classification system for use with remote sensor data, 

vol. 964. US Government Printing Office, 1976. 

[6] I. Dronova, P. Gong, L. Wang, and L. Zhong, “Mapping dynamic cover types in a large seasonally 

flooded wetland using extended principal component analysis and object-based classification,” 

Remote Sens. Environ., vol. 158, pp. 193–206, 2015. 

[7] S. L. Ozesmi and M. E. Bauer, “Satellite remote sensing of wetlands,” Wetl. Ecol. Manag., vol. 10, 

no. 5, pp. 381–402, 2002. 

[8] J.-R. B. Bwangoy, M. C. Hansen, D. P. Roy, G. De Grandi, and C. O. Justice, “Wetland mapping in 

the Congo Basin using optical and radar remotely sensed data and derived topographical indices,” 

Remote Sens. Environ., vol. 114, no. 1, pp. 73–86, 2010. 

[9] S. Rapinel, L. Hubert-Moy, and B. Clément, “Combined use of LiDAR data and multispectral earth 

observation imagery for wetland habitat mapping,” Int. J. Appl. earth Obs. Geoinf., vol. 37, pp. 56–

64, 2015. 

[10] M. Mahdianpari, B. Salehi, F. Mohammadimanesh, and M. Motagh, “Random forest wetland 

classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery,” ISPRS J. 

Photogramm. Remote Sens., vol. 130, 2017. 

[11] K. S. Schmidt and A. K. Skidmore, “Spectral discrimination of vegetation types in a coastal 

wetland,” Remote Sens. Environ., vol. 85, no. 1, pp. 92–108, 2003. 

[12] E. Adam, O. Mutanga, and D. Rugege, “Multispectral and hyperspectral remote sensing for 

identification and mapping of wetland vegetation: a review,” Wetl. Ecol. Manag., vol. 18, no. 3, pp. 

281–296, 2010. 

[13] X. Li et al., “A hybrid method combining pixel-based and object-oriented methods and its 

application in Hungary using Chinese HJ-1 satellite images,” Int. J. Remote Sens., vol. 34, no. 13, 

pp. 4655–4668, 2013. 

[14] E. S. Kasischke, K. B. Smith, L. L. Bourgeau-Chavez, E. A. Romanowicz, S. Brunzell, and C. J. 



172 

 

Richardson, “Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter 

measured from ERS-2 SAR imagery,” Remote Sens. Environ., vol. 88, no. 4, pp. 423–441, 2003. 

[15] K. O. Pope, J. M. Rey-Benayas, and J. F. Paris, “Radar remote sensing of forest and wetland 

ecosystems in the Central American tropics,” Remote Sens. Environ., vol. 48, no. 2, pp. 205–219, 

1994. 

[16] E. S. Kasischke, J. M. Melack, and M. C. Dobson, “The use of imaging radars for ecological 

applications—a review,” Remote Sens. Environ., vol. 59, no. 2, pp. 141–156, 1997. 

[17] F. M. Grings et al., “Monitoring flood condition in marshes using EM models and Envisat ASAR 

observations,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 4, pp. 936–942, 2006. 

[18] T. Ullmann et al., “Land cover characterization and classification of arctic tundra environments by 

means of polarized synthetic aperture X-and C-Band Radar (PolSAR) and Landsat 8 multispectral 

imagery—Richards Island, Canada,” Remote Sens., vol. 6, no. 9, pp. 8565–8593, 2014. 

[19] X. Zhang, W. Dierking, J. Zhang, and J. Meng, “A polarimetric decomposition method for ice in 

the Bohai Sea using C-band PolSAR data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 

8, no. 1, pp. 47–66, 2015. 

[20] T. L. Ainsworth, J. P. Kelly, and J.-S. Lee, “Classification comparisons between dual-pol, compact 

polarimetric and quad-pol SAR imagery,” ISPRS J. Photogramm. Remote Sens., vol. 64, no. 5, pp. 

464–471, 2009. 

[21] N. Morandeira, F. Grings, C. Facchinetti, and P. Kandus, “Mapping plant functional types in 

floodplain wetlands: An analysis of C-band polarimetric SAR data from RADARSAT-2,” Remote 

Sens., vol. 8, no. 3, p. 174, 2016. 

[22] F. M. Henderson and A. J. Lewis, “Radar detection of wetland ecosystems: a review,” Int. J. Remote 

Sens., vol. 29, no. 20, pp. 5809–5835, 2008. 

[23] B. Brisco, M. Kapfer, T. Hirose, B. Tedford, and J. Liu, “Evaluation of C-band polarization diversity 

and polarimetry for wetland mapping,” Can. J. Remote Sens., vol. 37, no. 1, pp. 82–92, 2011. 

[24] J. Corcoran, J. Knight, and A. Gallant, “Influence of multi-source and multi-temporal remotely 

sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern 

Minnesota,” Remote Sens., vol. 5, no. 7, pp. 3212–3238, 2013. 

[25] S. van Beijma, A. Comber, and A. Lamb, “Random forest classification of salt marsh vegetation 

habitats using quad-polarimetric airborne SAR, elevation and optical RS data,” Remote Sens. 

Environ., vol. 149, pp. 118–129, 2014. 

[26] L. F. de Almeida Furtado, T. S. F. Silva, and E. M. L. de Moraes Novo, “Dual-season and full-

polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands,” 

Remote Sens. Environ., vol. 174, pp. 212–222, 2016. 

[27] Y. Yajima, Y. Yamaguchi, R. Sato, H. Yamada, and W.-M. Boerner, “POLSAR image analysis of 



173 

 

wetlands using a modified four-component scattering power decomposition,” IEEE Trans. Geosci. 

Remote Sens., vol. 46, no. 6, pp. 1667–1673, 2008. 

[28] U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, “Multi-resolution, object-

oriented fuzzy analysis of remote sensing data for GIS-ready information,” ISPRS J. Photogramm. 

Remote Sens., vol. 58, no. 3–4, pp. 239–258, 2004. 

[29] T. Blaschke, “Object based image analysis for remote sensing,” ISPRS J. Photogramm. Remote 

Sens., vol. 65, no. 1, pp. 2–16, 2010. 

[30] M. P. F. Costa and K. H. Telmer, “Utilizing SAR imagery and aquatic vegetation to map fresh and 

brackish lakes in the Brazilian Pantanal wetland,” Remote Sens. Environ., vol. 105, no. 3, pp. 204–

213, 2006. 

[31] M. Mahdianpari, B. Salehi, and F. Mohammadimanesh, “The Effect of PolSAR Image De-speckling 

on Wetland Classification: Introducing a New Adaptive Method,” Can. J. Remote Sens., vol. 43, no. 

5, 2017. 

[32] G. H. Ball and D. J. Hall, “ISODATA, a novel method of data analysis and pattern classification,” 

Stanford research inst Menlo Park CA, 1965. 

[33] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. theory, vol. 28, no. 2, pp. 129–

137, 1982. 

[34] J. R. Jensen and K. Lulla, “Introductory digital image processing: a remote sensing perspective,” 

1987. 

[35] P. Kumar, D. K. Gupta, V. N. Mishra, and R. Prasad, “Comparison of support vector machine, 

artificial neural network, and spectral angle mapper algorithms for crop classification using LISS 

IV data,” Int. J. Remote Sens., vol. 36, no. 6, pp. 1604–1617, 2015. 

[36] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology,” IEEE Trans. 

Syst. Man. Cybern., vol. 21, no. 3, pp. 660–674, 1991. 

[37] H. Liu, H. Guo, and L. Zhang, “SVM-based sea ice classification using textural features and 

concentration from RADARSAT-2 Dual-Pol ScanSAR data,” IEEE J. Sel. Top. Appl. Earth Obs. 

Remote Sens., vol. 8, no. 4, pp. 1601–1613, 2015. 

[38] C. Huang, L. S. Davis, and J. R. G. Townshend, “An assessment of support vector machines for 

land cover classification,” Int. J. Remote Sens., vol. 23, no. 4, pp. 725–749, 2002. 

[39] P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, “Random forests for land cover 

classification,” Pattern Recognit. Lett., vol. 27, no. 4, pp. 294–300, 2006. 

[40] S. P. Healey et al., “Mapping forest change using stacked generalization: An ensemble approach,” 

Remote Sens. Environ., vol. 204, pp. 717–728, 2018. 

[41] M. Mahdianpari, B. Salehi, F. Mohammadimanesh, and B. Brisco, “An Assessment of Simulated 

Compact Polarimetric SAR Data for Wetland Classification Using Random Forest Algorithm,” Can. 



174 

 

J. Remote Sens., vol. 43, no. 5, 2017. 

[42] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. 

[43] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of applications and future 

directions,” ISPRS J. Photogramm. Remote Sens., vol. 114, pp. 24–31, 2016. 

[44] B. Ghimire, J. Rogan, and J. Miller, “Contextual land-cover classification: incorporating spatial 

dependence in land-cover classification models using random forests and the Getis statistic,” Remote 

Sens. Lett., vol. 1, no. 1, pp. 45–54, 2010. 

[45] J. Gu, J. Yang, H. Zhang, Y. Peng, C. Wang, and H. Zhang, “Speckle filtering in polarimetric SAR 

data based on the subspace decomposition,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 

1635–1641, 2004. 

[46] B. G. Warner and C. D. A. Rubec, “The Canadian wetland classification system,” Wetl. Res. Centre, 

Univ. Waterloo, Waterloo, Ontario, 1997. 

[47] I. B. Marshall, C. A. S. Smith, and C. J. Selby, “A national framework for monitoring and reporting 

on environmental sustainability in Canada,” in Global to Local: Ecological Land Classification, 

Springer, 1996, pp. 25–38. 

[48] R. South, Biogeography and Ecology of the Island of Newfoundland, vol. 48. Springer Science & 

Business Media, 1983. 

[49] W. J. Mitsch, “GOSSELINK. JG, 2000. Wetlands.” John Wiley and Sons, Inc., New York, New 

York, USA. 

[50] M. Krischke, W. Niemeyer, and S. Scherer, “RapidEye satellite based geo-information system,” 

Acta Astronaut., vol. 46, no. 2–6, pp. 307–312, 2000. 

[51] A. Schmitt and B. Brisco, “Wetland monitoring using the curvelet-based change detection method 

on polarimetric SAR imagery,” Water, vol. 5, no. 3, pp. 1036–1051, 2013. 

[52] S. Banks et al., “Contributions of Actual and Simulated Satellite SAR Data for Substrate Type 

Differentiation and Shoreline Mapping in the Canadian Arctic,” Remote Sens., vol. 9, no. 12, p. 

1206, 2017. 

[53] Y. Wang, T. L. Ainsworth, and J.-S. Lee, “Application of mixture regression for improved 

polarimetric SAR speckle filtering,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 453–467, 

2017. 

[54] L. M. Novak and M. C. Burl, “Optimal speckle reduction in polarimetric SAR imagery,” IEEE 

Trans. Aerosp. Electron. Syst., vol. 26, no. 2, pp. 293–305, 1990. 

[55] J.-S. Lee, M. R. Grunes, and G. De Grandi, “Polarimetric SAR speckle filtering and its implication 

for classification,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, pp. 2363–2373, 1999. 

[56] A. Lopes, E. Nezry, R. Touzi, and H. Laur, “Structure detection and statistical adaptive speckle 



175 

 

filtering in SAR images,” Int. J. Remote Sens., vol. 14, no. 9, pp. 1735–1758, 1993. 

[57] J.-S. Lee, T. L. Ainsworth, Y. Wang, and K.-S. Chen, “Polarimetric SAR speckle filtering and the 

extended sigma filter,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1150–1160, 2015. 

[58] J.-S. Lee, J.-H. Wen, T. L. Ainsworth, K.-S. Chen, and A. J. Chen, “Improved sigma filter for 

speckle filtering of SAR imagery,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 202–213, 

2009. 

[59] A. Freeman and S. S. Saatchi, “On the detection of Faraday rotation in linearly polarized L-band 

SAR backscatter signatures,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1607–1616, 

2004. 

[60] J.-S. Lee and E. Pottier, Polarimetric radar imaging: from basics to applications. CRC press, 2009. 

[61] V. Alberga, G. Satalino, and D. K. Staykova, “Comparison of polarimetric SAR observables in 

terms of classification performance,” Int. J. Remote Sens., vol. 29, no. 14, pp. 4129–4150, 2008. 

[62] H. McNairn, J. Shang, X. Jiao, and C. Champagne, “The contribution of ALOS PALSAR 

multipolarization and polarimetric data to crop classification,” IEEE Trans. Geosci. Remote Sens., 

vol. 47, no. 12, pp. 3981–3992, 2009. 

[63] S. R. Cloude and E. Pottier, “An entropy based classification scheme for land applications of 

polarimetric SAR,” IEEE Trans. Geosci. Remote Sens., vol. 35, no. 1, pp. 68–78, 1997. 

[64] A. Freeman and S. L. Durden, “A three-component scattering model for polarimetric SAR data,” 

IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 963–973, 1998. 

[65] Y. Yamaguchi, T. Moriyama, M. Ishido, and H. Yamada, “Four-component scattering model for 

polarimetric SAR image decomposition,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 8, pp. 

1699–1706, 2005. 

[66] W. An, C. Xie, X. Yuan, Y. Cui, and J. Yang, “Four-component decomposition of polarimetric SAR 

images with deorientation,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 6, pp. 1090–1094, 2011. 

[67] J. J. Van Zyl, M. Arii, and Y. Kim, “Model-based decomposition of polarimetric SAR covariance 

matrices constrained for nonnegative eigenvalues,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 

9, pp. 3452–3459, 2011. 

[68] J. J. van Zyl, “Application of Cloude’s target decomposition theorem to polarimetric imaging radar 

data,” in Radar polarimetry, 1993, vol. 1748, pp. 184–192. 

[69] L.-K. Soh, C. Tsatsoulis, D. Gineris, and C. Bertoia, “ARKTOS: An intelligent system for SAR sea 

ice image classification,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 1, pp. 229–248, 2004. 

[70] C. Liu and H. Wechsler, “Gabor feature based classification using the enhanced fisher linear 

discriminant model for face recognition,” IEEE Trans. Image Process., vol. 11, no. 4, pp. 467–476, 

2002. 



176 

 

[71] A. Jain and J. Huang, “Integrating independent components and linear discriminant analysis for 

gender classification,” in Sixth IEEE International Conference on Automatic Face and Gesture 

Recognition, 2004. Proceedings., 2004, pp. 159–163. 

[72] R. L. Kettig and D. A. Landgrebe, “Classification of multispectral image data by extraction and 

classification of homogeneous objects,” IEEE Trans. Geosci. Electron., vol. 14, no. 1, pp. 19–26, 

1976. 

[73] M. Baatz, “Multi resolution Segmentation: an optimum approach for high quality multi scale image 

segmentation,” in Beutrage zum AGIT-Symposium. Salzburg, Heidelberg, 2000, 2000, pp. 12–23. 

[74] D. C. Duro, S. E. Franklin, and M. G. Dubé, “A comparison of pixel-based and object-based image 

analysis with selected machine learning algorithms for the classification of agricultural landscapes 

using SPOT-5 HRG imagery,” Remote Sens. Environ., vol. 118, pp. 259–272, 2012. 

[75] S. W. Myint, P. Gober, A. Brazel, S. Grossman-Clarke, and Q. Weng, “Per-pixel vs. object-based 

classification of urban land cover extraction using high spatial resolution imagery,” Remote Sens. 

Environ., vol. 115, no. 5, pp. 1145–1161, 2011. 

[76] T. G. Dietterich, “An experimental comparison of three methods for constructing ensembles of 

decision trees: Bagging, boosting, and randomization,” Mach. Learn., vol. 40, no. 2, pp. 139–157, 

2000. 

[77] V. F. Rodriguez-Galiano, M. Chica-Olmo, F. Abarca-Hernandez, P. M. Atkinson, and C. 

Jeganathan, “Random Forest classification of Mediterranean land cover using multi-seasonal 

imagery and multi-seasonal texture,” Remote Sens. Environ., vol. 121, pp. 93–107, 2012. 

[78] R. G. Congalton, “A review of assessing the accuracy of classifications of remotely sensed data,” 

Remote Sens. Environ., vol. 37, no. 1, pp. 35–46, 1991. 

[79] T. S. F. Silva, M. P. F. Costa, and J. M. Melack, “Spatial and temporal variability of macrophyte 

cover and productivity in the eastern Amazon floodplain: A remote sensing approach,” Remote Sens. 

Environ., vol. 114, no. 9, pp. 1998–2010, 2010. 

[80] J.-W. Kim, Z. Lu, J. W. Jones, C. K. Shum, H. Lee, and Y. Jia, “Monitoring Everglades freshwater 

marsh water level using L-band synthetic aperture radar backscatter,” Remote Sens. Environ., vol. 

150, pp. 66–81, 2014. 

[81] M. P. F. Costa, “Use of SAR satellites for mapping zonation of vegetation communities in the 

Amazon floodplain,” Int. J. Remote Sens., vol. 25, no. 10, pp. 1817–1835, 2004. 

[82] K. Millard and M. Richardson, “Wetland mapping with LiDAR derivatives, SAR polarimetric 

decompositions, and LiDAR–SAR fusion using a random forest classifier,” Can. J. Remote Sens., 

vol. 39, no. 4, pp. 290–307, 2013. 

[83] L. R. Sartori, N. N. Imai, J. C. Mura, E. M. L. de Moraes Novo, and T. S. F. Silva, “Mapping 

macrophyte species in the Amazon floodplain wetlands using fully polarimetric ALOS/PALSAR 

data,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4717–4728, 2011. 



177 

 

[84] A. Schmitt, A. Wendleder, and S. Hinz, “The Kennaugh element framework for multi-scale, multi-

polarized, multi-temporal and multi-frequency SAR image preparation,” ISPRS J. Photogramm. 

Remote Sens., vol. 102, pp. 122–139, 2015. 

[85] N. Baghdadi, M. Bernier, R. Gauthier, and I. Neeson, “Evaluation of C-band SAR data for wetlands 

mapping,” Int. J. Remote Sens., vol. 22, no. 1, pp. 71–88, 2001. 

[86] L. L. Bourgeau-Chavez, K. Riordan, R. B. Powell, N. Miller, and M. Nowels, “Improving wetland 

characterization with multi-sensor, multi-temporal SAR and optical/infrared data fusion,” in 

Advances in geoscience and remote sensing, InTech, 2009. 

[87] M. C. Dobson, L. E. Pierce, and F. T. Ulaby, “Knowledge-based land-cover classification using 

ERS-1/JERS-1 SAR composites,” IEEE Trans. Geosci. Remote Sens., vol. 34, no. 1, pp. 83–99, 

1996. 

[88] T. L. Evans and M. Costa, “Landcover classification of the Lower Nhecolândia subregion of the 

Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR 

imagery,” Remote Sens. Environ., vol. 128, pp. 118–137, 2013. 

 

  



178 

 

Chapter 5. Wetland classification using simulated compact Polarimetric SAR 
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Abstract 

Synthetic Aperture Radar (SAR) Compact Polarimetry (CP) systems are of great interest for large 

area monitoring because of their ability to acquire data in a wider swath compared to Full 

Polarimetry (FP) systems and a significant improvement in information compared to single or Dual 

Polarimetry (DP) sensors. In this study, we compared the potential of DP, FP, and CP SAR data 

for wetland classification in a case study located in Newfoundland, Canada. The DP and CP data 

were simulated using full polarimetric RADARSAT-2 data. We compared the classification results 

for different input features using an object-based Random Forest classification. The results 

demonstrated the superiority of FP imagery relative to both DP and CP data. However, CP 

indicated significant improvements in classification accuracy compared to DP data. An overall 

classification accuracy of approximately 76% and 84% was achieved with the inclusion of all 

polarimetric features extracted from CP and FP data, respectively. In summary, although full 

polarimetric SAR data provide the best classification accuracy, the results demonstrate the 

potential of RADARSAT Constellation Mission (RCM) for mapping wetlands in a large 

landscape.  

Keywords: Wetland, Synthetic Aperture Radar (SAR), Compact Polarimetric (CP), Object-based 

classification, Random Forest (RF). 
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5.1. Introduction 

Wetlands are areas that experience wet conditions at least periodically during the growing season 

or permanently in all seasons, often situated between dry land and a water body tiner [1]. Wetlands 

play a vital role by providing several ecosystem services, including flood control, water balance, 

as well as food and shelter for a variety of animal and plant species. Despite these benefits, 

wetlands are poorly understood and maintained globally. For example, although 24% of the 

world’s wetlands are within Canada’s borders, an all-inclusive wetland inventory map is lacking 

in most provinces [2]. Remote sensing, as a time and cost efficient tool, provides unique techniques 

for wetland mapping and monitoring. 

Synthetic Aperture Radar (SAR) sensors are all-weather condition systems and operate 

independently of solar radiation. Furthermore, SAR penetration depths through cloud, soil, and 

vegetation make it an ideal tool for land cover mapping [3]. They are considered as a promising 

alternative to optical sensors, which are less-useful for areas with nearly permanent cloud cover 

[4]. However, SAR data alone provide less accurate classification results because most wetland 

classes, especially herbaceous vegetation, have very subtle structural differences not obtainable 

using only a single SAR channel [5], [6]. Alternatively, Full Polarimetric (FP) SAR imagery has 

been demonstrated to be useful for several wetland applications, including wetland classification 

[7]–[11], change detection [12], and water level monitoring [13]. 

A FP SAR image contains complete scattering information for each resolution cell since a FP SAR 

sensor acquires data in four channels (HH, VV, HV, and VH) and, also, measures the relative 

phase between channels. This additional phase information is of great importance for decomposing 

the SAR backscatter into different scattering types (i.e., surface, double-bounce, and volume 

scattering), which is useful to distinguish different wetland and land cover classes [15]. Thus, a FP 
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SAR sensor is constructed based on the standard linear basis (i.e., horizontal (H) and vertical (V)), 

wherein the sensor interleaves pulses with H and V polarization toward the ground targets and 

records both received polarizations simultaneously and coherently [16]. As such, the first 

disadvantage of FP is a time constraint, since two orthogonal polarizations should be transmitted 

alternately. Furthermore, such a configuration implies complexity due to doubled pulse repetition 

frequency (PRF), as well as an increase in the data rate by a factor of four compared to a single 

polarized SAR system [17]. Accordingly, the image swath width of FP SAR images is halved, 

which results in reduced coverage and an increase in satellite revisit time [16]. Finally, this 

configuration allows a limited range of incident angles compared to that of single/dual polarization 

modes [18]. 

A possible alternative that has addressed some of the limitations of FP SAR imagery, including a 

reduction of pulse repetition frequency, data volume, and system power is a Dual Polarimetric 

(DP) SAR configuration. A DP SAR sensor transmits one polarization (either H or V) and receives 

both H and V polarizations (i.e., HH/HV or VV/VH). This is the typical configuration of several 

currently operating SAR satellites such as TerraSAR-X. A DP SAR sensor has the same coverage 

as that of single polarization SAR sensor, while obtains additional information since there are two 

independent polarization channels on the receiver [16]. However, a DP SAR system is unable to 

collect full scattering information of the observed scenes relative to FP SAR sensors. Given the 

reflection symmetry hypothesis, the co- and cross-polarization channels are uncorrelated; 

therefore, the relative phase between the co- and cross-polarization channels is not available [14], 

[19]. This drawback has limited the application of DP SAR images in several remote sensing 

contexts, such as wetland classification [14].  
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An attractive alternative, which addresses most of the limitations associated with FP and DP SAR 

mode data, is a Compact Polarimetry (CP) SAR configuration. The CP SAR image is expected to 

preserve polarimetric information as close as possible to that of FP SAR mode imagery while 

mitigating the primary limitations of the FP configuration. The CP SAR configuration is similar 

to DP SAR sensor, wherein one polarization is transmitted and two coherent polarizations are 

received. Three CP configurations have been proposed in the context of Earth Observation sensors 

in the literature to date, namely: (1) 𝜋/4; (2) Circularly transmitted Circularly received (CC); and 

(3) Hybrid Polarimetry (HP) [18]. Souyris et al. (2005) first introduced the 𝜋/4 compact 

polarimetry mode (H+V), wherein the transmitted polarization is the superposition of linear 

horizontal and vertical polarization (i.e., at 𝜋/4 degree relative to H or V polarization) and two 

coherent polarizations (H and V) are received [20]. Given the symmetry properties, the 𝜋/4 SAR 

configuration has been demonstrated to maintain polarimetric information over natural targets 

[16]. However, the 𝜋/4 compact SAR configuration does not guarantee orientation invariance for 

double-bounce scattering [18], [21]. In order to address this issue, a circular polarization should 

be transmitted, wherein a backscattered field is rotationally robust in relation to the shape of the 

observed scene [18].  

The second typical CP mode is dual-circular polarization (CC) mode, wherein the SAR sensor 

transmits either a right or left circular polarization (i.e., 𝐻 ± 𝑖𝑉, where 𝑖 illustrates the complex 

identity and + and – denote left and right circular polarizations, respectively) and receives both 

right and left circular polarizations [22]. However, the CC configuration cannot be easily 

implemented, which is the main drawback of this configuration.  

Raney (2007) proposed a third CP configuration, called Hybrid Polarimetry (HP) mode, wherein 

either a right or left circular polarization is transmitted and both linear polarizations (H and V) are 
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received, while the relative phase is also retained. This configuration is also called CTLR mode 

(i.e., Circular Transmitting Linear Receiving) in the literature [21]. The CTLR configuration 

shares the same advantages as the CC mode but is easier to implement. This is because both CTLR 

and CC configurations have the same transmitting polarization (circular) and the polarimetric 

covariance matrix information only depends on the polarization basis of the transmitter. Thus, a 

circularly transmitted SAR configuration (either left or right) has the same covariance matrix as 

that of CC mode [18].  

All three CP modes are advantageous because they collect a greater amount of scattering 

information compared to single- and dual-polarization modes while covering twice the swath-

width of full polarization SAR systems [23]. Thus, CP SAR configurations reduce the complexity, 

cost, mass, and data rate of a SAR system, while preserving several advantages of a full 

polarimetric SAR system [17]. A detailed overview of the applications of CP SAR data with 

examples of ship detection, sea ice, and crop classification was presented in [24]. The potential of 

simulated CP images for wetland monitoring [25], [26], sea ice classification [27], crop 

identification [20], [28], vegetation characterization [29], and maritime applications [19] have 

been also examined. These studies have outlined the benefits and limitations of the CP SAR data. 

The efficiency of the CP configuration has been previously examined in the field of radar 

astronomy [30], [31], as well as in the Arecibo antenna for imaging the moon’s surface [32], 

wherein the CC mode has been utilized. In the Earth Observation SAR systems, the CP 

configuration has been (and will be) implemented in a number of SAR systems. Particularly, the 

Indian Mission Radar Imaging Satellite (RISAT-1) C-band, which was launched in 2012, utilizes 

the CTLR mode. Advanced Land Observing Satellite (ALOS-2) PALSAR L-band, which was 

launched in 2014, utilizes both the CTLR and 𝜋/4 compact polarimetry modes. Finally, the future 
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RADARSAT Constellation Mission (RCM) will operate in the CTLR mode [33]. Specifically, 

RCM will contain three similar C-band SAR satellites, which are anticipated to be launched 

simultaneously in 2018 providing a daily coverage over Canada with 350 km imaging swaths [34]. 

This will offer improved operational capability (e.g., ecosystem monitoring) along with a much 

shorter satellite revisit cycle, which is of great importance for monitoring highly variable 

phenomena such as wetlands ecosystem relative to RADARSAT-1 and RADARSAT-2 data [34]. 

Furthermore, CTLR compact polarimetry mode is the primary polarization option, which will be 

implemented for all RCM imaging modes [15]. 

In this study, the Random Forest (RF) [35] algorithm, in an object-based classification scheme 

[36], was applied to evaluate and compare the potential of DP, CP, and FP SAR images for wetland 

classification. One of the important characteristics of RF is that it provides a measure of variable 

importance. In this study, RF variable importance is represented by the mean decrease in accuracy 

by removing variables from the RF model for input variables extracted from CP SAR data. A 

higher value for a particular variable indicates that it is a more important parameter for 

classification. Furthermore, the less important variables may be removed from the RF model, 

which results in a decrease in processing time and possibly an improvement in model accuracy 

[15].  

Given the need for utilization of the CP data by RCM in the future and Canada’s wetland expanses, 

an assessment of the ability of CTLR SAR data for wetland classification is herein conducted using 

data simulated by RCM Compact Polarimetry Simulator developed by [24]. Thus, the primarily 

goal of this research study is to evaluate the trade-off in classification accuracy as a function of 

polarization diversity and swath width for future RCM SAR system within a wetland classification 

scheme. In particular, a series of main objectives were defined as follows: (1) determining the 
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sufficiency of detailed scattering power for complex land cover classification provided by the CP 

data; (2) comparing the classification overall accuracy using different Polarimetric SAR data, 

including DP, FP, and CP SAR data using an advanced object-based classification scheme; (3) 

evaluating the influence of incorporating correlated input features into RF as firstly investigated 

by [37]. Thus, this study provides an insight into applicability of CP SAR data, which is of great 

value for Canadian wetland classification as well as other wetlands worldwide with similar 

ecological features and vegetation types.  

In the next section, we introduce the methodology employed in this study, including the theoretical 

background, case study, data, and classification scheme. Next, we present the experimental results 

and discussion, which is followed by a summary and conclusions.  

5.2. Methodology  

5.2.1. Theoretical background  

5.2.1.1. Dual and full polarimetry  

In dual polarization (DP) SAR configuration, one polarization, either H or V, is transmitted and 

both coherent H and V polarizations are received simultaneously. The main limitation of DP SAR 

mode data is that they are not subjectable to conventional polarimetric decompositions; therefore 

DP SAR data are usually analyzed in the form of covariance matrices. In the full polarization SAR 

imaging mode, both vertically- and horizontally-polarized coherent signals are transmitted and 

received, thus generating four independent images. A commonly used mathematical representation 

of scattering information for full polarization is a 3x3 covariance matrix. Unlike dual polarization, 

polarimetric decompositions can be applied to FP SAR data, making it advantageous. The main 

purpose of polarimetric decomposition is to characterize the backscatter of distributed targets using 
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incoherent target decompositions [12]. The Cloude-Pottier, Freeman-Durden, and Yamaguchi 

decompositions are commonly used PolSAR features for land cover classification [38].  

The Cloude-Pottier is an eigenvalue/eigenvector-based decomposition, wherein eigenvectors 

characterize the scattering mechanism and eigenvalues determine the strength of the scattering 

mechanism. The Cloude-Pottier method decomposes the coherency matrix into three physically 

meaningful parameters, derived from its eigenvectors and eigenvalues. These parameters are 

entropy (H), anisotropy (A), and alpha angle (α). Entropy represents the degree of randomness and 

is utilized to determine if one or more scattering mechanisms are presented in the pixel. For 

example, lower entropy corresponds to a dominant single scattering mechanism. Anisotropy is a 

complementary to entropy and illustrates the relative importance of the secondary scattering 

mechanism. The alpha angle, which is invariant with rotation around the radar line of sight, varies 

between 0º and 90º and identifies the type of scattering mechanism. The Cloude-Pottier 

decomposition is usually applied as an initial, unsupervised classification in order to decompose 

the information of the distributed target into the scattering mechanism of deterministic targets.  

The Freeman-Durden is a physical-based, three-components scattering decomposition that 

characterizes the scattering information from naturally incoherent scatterers [39]. In particular, it 

decomposes the backscatter responses of the natural ground targets into three different 

components, including surface scattering, which is described as the first order Bragg scattering, 

double-bounce scattering, which is modeled by the scattering from a dihedral corner reflector, and 

volume scattering, which is defined as canopy scattering [40]. 

The Yamaguchi decomposition is a physical-based, four-components decomposition and an 

extended version of the Freeman-Durden decomposition, wherein a helix scattering component is 
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added to the three components of the Freeman-Durden to separate the co-pol and the cross-pol 

correlations [41]. In particular, the Freeman-Durden decomposition is based on the reflection 

symmetry condition, while the helix term in the Yamaguchi decomposition is defined for the non-

reflection symmetry cases. The helix term is generally used for scattering information of complex 

urban areas and is less useful for a naturally distributed target. Furthermore, a different probability 

distribution function is defined for the volume scattering component, which has better performance 

in forested areas. Overall, the Yamaguchi decomposition is suitable for both natural and man-made 

areas [42] and its components were used in this study. 

5.2.1.2. Compact Polarimetry 

The scattering vector of CTLR mode is given by: 

�⃗� 𝐶𝑇𝐿𝑅 =
1

√2
[𝑆𝑅𝐻 𝑆𝑅𝑉]𝑇 

(5.1) 

where, during the simulation procedure, 𝑆𝑅𝐻 = 𝑆𝐻𝐻 − 𝑖𝑆𝐻𝑉 and 𝑆𝑅𝑉 = −𝑖𝑆𝑉𝑉 + 𝑆𝑉𝐻 are defined 

using elements of FP scattering vector [21]. By assuming the reciprocity condition, a 2x2 

covariance matrix is calculated by: 

𝑪𝐶𝑇𝐿𝑅 = 2 〈�⃗� 𝐶𝑇𝐿𝑅�⃗� 𝐶𝑇𝐿𝑅

∗
〉 (5.2) 

where * denotes the transpose conjugate [27]. Thus, the covariance matrix is expressed as follows: 

𝑪𝐶𝑇𝐿𝑅 =
1

2
 [

|𝑆𝐻𝐻|2 𝑖(𝑆𝐻𝐻 .  𝑆∗
𝑉𝑉)

−𝑖(𝑆𝑉𝑉 .  𝑆∗
𝐻𝐻) |𝑆𝑉𝑉|2

] +
1

2
 [

|𝑆𝐻𝑉|2 −𝑖|𝑆𝐻𝑉|2

𝑖|𝑆𝐻𝑉|2 |𝑆𝐻𝑉|2
]

+
1

2
 [

−2ℑ (𝑆𝐻𝐻 .  𝑆∗
𝐻𝑉) (𝑆𝐻𝐻 .  𝑆∗

𝐻𝑉) + (𝑆∗
𝑉𝑉  .  𝑆𝐻𝑉)

(𝑆∗
𝐻𝐻 .  𝑆𝐻𝑉) + (𝑆𝑉𝑉 .  𝑆∗

𝐻𝑉) 2ℑ (𝑆𝑉𝑉 .  𝑆∗
𝐻𝑉)

] 

(5.3) 

As seen in Equation 5.3, the CTLR covariance matrix is expressed as a sum of three components. 

The first component has 𝑆𝐻𝐻 and 𝑆𝑉𝑉 elements (co-pol), the second component has only the 𝑆𝐻𝑉 

element (cross-pol), while the third component consists of co-pol/cross-pol correlations. Given the 

reflection symmetry assumption, the co-pol/cross-pol correlations is zero (i.e., 〈𝑆𝐻𝐻𝑆𝐻𝑉
∗ 〉 =
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〈𝑆𝑉𝑉𝑆𝐻𝑉
∗ 〉 = 0). In general, this assumption is true for natural scatterers at different frequencies. 

The simulated CP data was stored in the Stokes vector form, which characterizes the received 

scatter wave. The Stokes vector was then utilized to extract the Stokes “child” parameters, 

including the degree of polarization (m), circular polarization ratio (𝜇𝑐), and ellipticity [14]. In 

addition to CP covariance matrix, a number of decomposition features were also extracted directly 

from CP SAR mode data in this study and are presented in Table 5.1.  

Table 5.1. Polarimetric features extracted from simulated Compact Polarimetry SAR data. 

Feature Description  Symbol References 

Intensity channel Sigma naught backscatter  𝜎𝑅𝐻
0 , 𝜎𝑅𝑉

0 , 𝜎𝑅𝑅
0 , 𝜎𝑅𝐿

0  Charbonneau et al., 2010 

Covariance matrix Covariance matrix elements 𝐶11, 𝐶12, 𝐶22 Lee and Pottier, 2009 

Stokes vector Stokes vector elements 𝑔0, 𝑔1, 𝑔2, 𝑔3  Raney et al., 2012 

Wave descriptors Correlation Coefficient of RV 

and RH 
𝜌 Charbonneau et al., 2010 

 Conformity 𝜇 Charbonneau et al., 2010 

 Relative phase 𝛿 Charbonneau et al., 2010 

 Degree of polarization m Raney et al., 2012 

 Shannon Entropy Intensity 𝑆𝐸𝐼 Charbonneau et al., 2010 

 Shannon Entropy Polarimetric 𝑆𝐸𝑃 Charbonneau et al., 2010 

 Circular polarization ratio 𝜇𝑐 Charbonneau et al., 2010 

 Ellipticity of the compact 

scattered wave 
𝛼𝑠 Cloude et al., 2012 

CP decompositions Surface scattering based on m-

delta  
𝑚_𝛿_𝑠 Raney, 2007 

 Double bounce scattering based 

on m-delta  
𝑚_𝛿_𝑑𝑏  

 Volume scattering based on m-

delta  
𝑚_𝛿_𝑣  

 Odd scattering based on m-chi  𝑚_𝜒_𝑜 Raney et al., 2012 

 Even bounce scattering based on 

m-chi  
𝑚_𝜒_𝑒  

 Volume scattering based on m-

chi  
𝑚_𝜒_𝑣  

Three decomposition approaches that can directly be applied to the CTLR SAR data are 𝑚-𝑑𝑒𝑙𝑡𝑎 

[21], 𝑚-𝑐ℎ𝑖 [43], and 𝑚-𝑎𝑙𝑝ℎ𝑎 [44]. In particular, 𝑚 denotes the degree of polarization, 𝑑𝑒𝑙𝑡𝑎 (𝛿) 

indicates the relative phase between H and V channels, 𝑐ℎ𝑖 (𝜒) demonstrates the degree of 

circularity, and 𝑎𝑙𝑝ℎ𝑎 denotes the scattering mechanism parameters. Features extracted from 𝑚-
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𝑑𝑒𝑙𝑡𝑎 and 𝑚-𝑐ℎ𝑖 decompositions are comparable to those of the Freeman-Durden [24] and 

Cloude-Pottier decomposition [43], respectively. In particular, these decompositions discriminate 

backscatter waves into single-bounce scattering, double-bounce scattering, and volume scattering. 

Cloude et al. (2012) have demonstrated that the alpha parameter can be estimated when there is a 

dominant eigenvector in the coherency matrix [44]. Thus, the 𝑚-𝑎𝑙𝑝ℎ𝑎 decomposition is similar 

to that of Cloude-Pottier decomposition extracted from FP SAR data, which is applicable under 

specific conditions.   

The correlation coefficient is characterized as a measure of the width of the probability density 

function (PDF) of the Co-polarized Phase Difference (CPD) [19]. The degree of polarization was 

first utilized in CTLR SAR mode data by Shirvaney et al. (2012) to detect oil spills and man-made 

objects. Also, the conformity index is Faraday Rotation (FR) independent [45] and is useful for 

distinguishing different land surface scattering mechanisms [19]. A FR is a rotation of the 

polarization wave that propagates through the ionosphere. This rotation occurs because of the 

anisotropy in the ionosphere due to charged particles in the presence of a magnetic field. This 

index can be used as an indicator of the dominant scattering mechanism (surface, double-bounce, 

and volume scattering) [45].  

5.2.2. Case study  

Newfoundland and Labrador has a vast expanse of wetlands and each part of the province is 

characterized by specific regional ecological factors, such as climate, soil, water, vegetation, fauna, 

and land use [46]. According to the Canadian wetland classification system, all wetland classes, 

including bog, fen, marsh, swamp, and shallow-water are present in this province [2]. Wetland 

ecosystems in Newfoundland are primarily natural and undisturbed by human interferences, 

although have been little studied or understood to date. This study was carried out within a 700 
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km2 site located in the northeast portion of the Avalon Peninsula, NL, Canada (Figure 5.1). The 

Avalon area has an oceanic climate, characterized by cool, foggy summers and mild winters [47].  

 

Figure 5.1. RapidEye image, acquired on June 2015, displaying the location of the study area: Avalon 

Peninsula, Newfoundland and Labrador, Canada. 

5.2.3. Reference data  

In-situ data were collected in the summer and fall of 2015 and 2016 to both train the RF classifier 

and evaluate the accuracy of the classified maps. A total of 191 sample sites were visited over 
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multiple times during the leaf-on season and categorized as bog, fen, swamp, marsh, or shallow-

water, as directed by the Canadian Wetland Classification System. During in situ data collection, 

one or, up to three GPS points were taken per wetland site, depending on the size of each wetland, 

and stored, along with ancillary data such as notes describing dominant vegetation and hydrology, 

and photographs, to aid the wetland boundary delineation process. Next, the GPS points were 

imported to ArcMap 10.3.1 to depict visited wetlands and extract the wetland boundary. Using 

satellite and aerial imagery, including 5m resolution RapidEye imagery and a 50cm resolution 

orthophotograph, polygons indicating delineated classified wetlands were generated. For each 

class, reference polygons were sorted by size and alternatingly assigned to training and testing 

groups. We did not randomly assign the polygons to testing and training groups because of the 

limited amount of reference data. The alternative assignment procedure resulted in both groups 

having comparable pixel counts for each class and no overlap between training and testing groups 

ensured a robust accuracy assessment. Specifically, 50% of the reference data were considered for 

training the classifier and the other half was used for testing the classification performance.  

Table 5.2 represents land cover classes and their respective pixel counts. As seen, the bog class 

has the most associated pixels of the wetland classes due both to the natural formation and ecology 

[47] as well as the province climate, which facilitates extensive peatland formation [48]. In 

contrast, the swamp class has the least amount of pixels. The wetland accessibility by roadways, 

the natural ecology and distribution of wetland classes, and availability of biologists for field work 

affected the collection of in situ data for different wetland classes. Therefore, there is a variation 

in both quantity and quality of data for each individual class (see Table 5.2). Notably, the initial 

goal of the fieldwork component was to obtain a minimum mapping unit of one hectare. However, 

many of the accessible wetlands of a certain class were frequently smaller size. For example, of 
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the 191 polygons collected in the Avalon pilot site, 30 of those were swamp wetlands, of which 

only 7 were greater than 1 hectare in size. Likewise, of the 46 marsh wetlands, only 18 were greater 

than 1 hectare. These spatially small wetlands were also included in the study because, without 

them, these wetland classes would be demonstrated by a limited amount of data. 

Table 5.2. Testing and training pixel counts for Avalon reference data. 

Class Class Description 
#Training 

Pixels 

#Testing 

Pixels 
Total 

Bog Peatland dominated by Spahgnum species 20401 21466 41867 

Fen Peatland dominated by graminoid species 10972 9346 20318 

Swamp 
Mineral wetland dominated by woody 

vegetation 
2517 1480 3997 

Marsh 
Mineral wetland dominated by graminoids and 

emergent plants 
9263 7012 16275 

Shallow-water 
Mineral wetland with standing water at most 2m 

deep 
2418 1645 4063 

Urban Human-made structures 19881 18211 38092 

Deep-water Deep water areas 32609 35490 68099 

Upland Forested dry upland 22356 23562 45918 

Total   120417 118212 238629 
 

 

5.2.4. Satellite Data 

RADARSAT-2 images were acquired in Fine beam Quad (FQ) polarization mode. This imagery 

is characterized by a small swath width and thus, more than one image was needed to cover the 

entire Avalon pilot site. The images with approximately 4.7m range and 4.8m azimuth resolution 

were acquired in a descending orbit on August 21, 2015 (ice-off season). This implied that both 

the satellite imagery and field data were synchronized in this study. 



193 

 

 The Canada Centre for Remote Sensing RCM Compact Polarimetry Simulator was utilized to 

simulate the CP and DP SAR data at their respective resolutions and noise floors [24]. Specifically, 

the full polarimetric RADARSAT-2 images were applied to simulate the high resolution 5 m CP 

mode with the -19 dB NESZ using a 7x7 pixel processing window. 

5.2.5. Image Classification and Accuracy Assessment 

The object-based classification was selected due to several advantages compared to the pixel-based 

approach. Particularly, an object-based approach incorporates the shape, size, and the spatial 

relationship of image objects into the classification procedure [3]. Also, it easily fuses multiple 

sources of data, regardless of the spatial and spectral resolution of different satellite imagery. The 

object-based classification procedure applied in this study has two main steps: Multi Resolution 

Segmentation (MRS) and Random Forest (RF) image classification. 

MRS analysis is a region-merging process with the main objective of minimizing the summed 

heterogeneity between neighboring pixels [36]. MRS is usually controlled by three user-defined 

parameters, including shape, compactness, and scale [4]. More specifically, the shape and 

compactness parameters both range from 0 to 1, although the former determines both the degree 

of radiometric homogeneity and object shapes while the latter determines the degree of object 

smoothing. The scale parameter is the most important parameter in MRS analysis indicating the 

maximum acceptable heterogeneity and determines the size of the final image object [49]. These 

parameters, which are obtainable using a “trial and error” procedure, vary depending on the 

classification purpose and have great influence on the final classification results. In this study, 0.1, 

0.5, and 300 were obtained as the final parameters for shape, compactness, and scale, respectively. 
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Random Forest (RF) is one of the most powerful non-parametric classifiers for classification of 

heterogeneous areas, such as crop types and wetlands [6], [9], [10], [37], [50]. In this study, RF 

was selected for three reasons. First, it is less affected by outliers and noisy data sets, which is of 

great importance for SAR image processing, wherein the radiometric quality of images has been 

degraded by speckle [51]. Second, RF is capable of dealing with several input features, while not 

being over-fitted to the dataset. This is also demanded in this study, given several PolSAR and CP 

features, which were extracted and incorporated into the classification procedure. Finally, the most 

significant aspect of RF is that it determines the importance of each input variable. For this 

purpose, RF measures the degradation in the classification accuracy by randomly altering one of 

the input features while keeping the rest of input features constant [50]. Thus, the importance of 

each CP feature in the overall classification accuracy can be determined using the RF classifier. 

Table 5.3 represents the defined scenarios for wetland classification for FP and CP SAR data. 
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Table 5.3. The defined scenarios for FP and CP SAR data in this study. 

Data Scenario Features 

Full polarimetric SAR S1 Covariance matrix 

S2 Cloude-Pottier decomposition 

S3 Freeman-Durden decomposition 

S4 Yamaguchi decomposition 

S5 Covariance matrix, Cloude-Pottier, Freeman-

Durden, and Yamaguchi decompositions 

Compact polarimetric SAR S1 Covariance matrix 

S2 Stokes vector 

S3 m-delta decomposition 

S4 m-chi decomposition  

S5 Intensity channel, Stokes vector, Wave 

descriptors, CP decompositions 

 

The eCognition software package (V.9.0.3) was used for object-based RF classification. A total 

number of 500 trees (Ntree) were selected in each classification model and the square root of the 

number of input variables was selected for the number of variables (Mtry). The same training and 

testing points were applied to all RF models to allow for direct comparison between different 

models using varying input variables. Milard and Richardson (2015) reported that despite RF 

ability to handle high dimensional input variables, the classification accuracy remained constant 

by only applying the most important variables [37]. Thus, we evaluated the effect of using only 

important variables into the RF model for variables extracted from simulated CP data. For this 

purpose, RF classification was carried out 30 times for input variables extracted from simulated 

CP data (S5 in Table 5.3) and the variable ranking was recorded (see Table 5.4).  
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Table 5.4. The number of times each variable was determined to be among the top five most important 

variables for 30 classification models using the same input variables and training data. 

Features Removed Features # Most 

Important 

# 2nd Most 

Important 

# 3rd Most 

Important 

# 4th Most 

Important 

# 5 Most 

Important 

g0  27 3 0 0 0 

m-delta-v  2 18 1 7 1 

RR  1 2 14 3 2 

m-chi-v ✓  0 6 7 11 5 

RL  0 1 2 5 10 

m-delta-s ✓  0 0 0 0 3 

RH ✓  0 0 1 1 1 

RV ✓  0 0 1 0 3 

g3  0 0 1 2 1 

SE i  0 0 0 1 1 

m-chi-o ✓  0 0 0 0 2 

m-chi-e ✓  0 0 2 0 0 

SE p  0 0 0 0 1 

m-delta-db ✓  0 0 1 0 0 

 

The correlation between pair-wise input variables was also determined using Spearman’s rank-

order correlation [52] (see Table 5.5). As seen, a number of most important variables exhibited a 

high correlation. As reported by Millard and Richardson (2015), the classification accuracy was 

unaffected and, also, could be increased in some cases when only uncorrelated important variables 

were incorporated into the RF classification scheme [37]. This also resulted in a more time efficient 

and stable classification relative to applying all input variables into the classification model. Thus, 

two additional classifications were employed using only important variables (number of variables 

= 14) and uncorrelated important variables (number of variables = 7) extracted from simulated CP 

data.   
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Table 5.5. The correlation between pair-wise variables determined by Spearmans rank-order correlation. 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 

f1  0.14 0.02 0.14 0.24 0.07 0.05 0.93 0.92 0.79 0.84 0.10 -0.07 0.73 0.60 0.77 0.69 0.60 0.76 0.03 0.55 -0.09 

f2 0.14  -0.01 -0.08 0.07 -0.01 0.03 0.48 -0.26 0.17 0.06 0.08 -0.08 0.17 0.09 0.04 0.20 0.09 0.02 0.01 0.11 -0.12 

f3 0.02 -0.01  -0.12 0.01 0.01 0.11 0.01 0.02 0.09 -0.05 0.01 -0.01 0.10 -0.01 -0.06 0.11 -0.01 -0.06 0.01 0.02 -0.01 

f4 0.14 -0.08 -0.12  -0.49 0.28 -0.21 0.09 0.17 -0.50 0.65 -0.31 0.37 -0.55 -0.07 0.72 -0.57 -0.07 0.72 0.27 0.22 0.25 

f5 0.24 0.07 0.01 -0.49  -0.40 0.44 0.23 0.21 0.51 -0.08 0.64 -0.66 0.50 0.28 -0.15 0.50 0.27 -0.16 -0.42 0.10 -0.42 

f6 0.07 -0.01 0.01 0.28 -0.40  -0.26 0.06 0.07 -0.11 -0.20 -0.59 0.81 -0.01 -0.45 -0.32 -0.01 -0.45 -0.31 0.92 0.14 0.66 

f7 0.05 0.03 0.11 -0.21 0.44 -0.26  0.05 0.03 0.17 -0.08 0.62 -0.52 0.14 0.17 -0.12 0.16 0.17 -0.14 -0.30 -0.04 -0.28 

f8 0.93 0.48 0.01 0.09 0.23 0.06 0.05  0.72 0.76 0.77 0.12 -0.08 0.70 0.56 0.70 0.68 0.56 0.67 0.01 0.53 -0.12 

f9 0.92 -0.26 0.02 0.17 0.21 0.07 0.03 0.72  0.70 0.80 0.07 -0.03 0.64 0.54 0.73 0.59 0.54 0.73 0.05 0.49 -0.03 

f10 0.79 0.17 0.09 -0.50 0.51 -0.11 0.17 0.76 0.70  0.33 0.28 -0.29 0.97 0.56 0.23 0.96 0.56 0.21 -0.14 0.34 -0.23 

f11 0.84 0.06 -0.05 0.65 -0.08 -0.20 -0.08 0.77 0.80 0.33  -0.09 0.15 0.25 0.42 0.98 0.21 0.42 0.97 0.17 0.55 0.07 

f12 0.10 0.08 0.01 -0.31 0.64 -0.59 0.62 0.12 0.07 0.28 -0.09  -0.89 0.21 0.40 -0.19 0.20 0.40 -0.19 -0.67 0.16 -0.76 

f13 -0.07 -0.08 -0.01 0.37 -0.66 0.81 -0.52 -0.09 -0.03 -0.29 0.15 -0.89  -0.20 -0.47 0.27 -0.20 -0.47 0.26 0.84 0.06 0.85 

f14 0.73 0.17 0.10 -0.55 0.50 -0.01 0.14 0.70 0.64 0.97 0.25 0.21 -0.20  0.36 0.20 0.99 0.36 0.18 -0.04 0.23 -0.15 

f15 0.60 0.09 -0.01 -0.07 0.28 -0.45 0.17 0.56 0.54 0.56 0.42 0.40 -0.47 0.36  0.22 0.33 0.99 0.23 -0.44 0.57 -0.43 
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f16 0.77 0.04 -0.06 0.72 -0.15 -0.32 -0.12 0.70 0.73 0.23 0.98 -0.19 0.27 0.20 0.22  0.15 0.22 0.99 0.28 0.46 0.18 

f17 0.69 0.20 0.11 -0.57 0.50 -0.01 0.16 0.68 0.59 0.96 0.21 0.20 -0.20 0.99 0.33 0.15  0.33 0.11 -0.03 0.21 -0.13 

f18 0.60 0.09 -0.01 -0.07 0.28 -0.45 0.17 0.56 0.54 0.56 0.42 0.40 0.47 0.36 0.99 0.22 0.33  0.23 -0.44 0.57 -0.43 

f19 0.76 0.02 -0.06 0.72 -0.16 -0.31 -0.14 0.67 0.73 0.21 0.97 -0.19 0.26 0.18 0.23 0.99 0.11 0.23  0.26 0.45 0.16 

f20 0.03 0.01 0.01 0.27 -0.42 0.92 -0.30 0.01 0.05 -0.14 0.17 -0.67 0.84 -0.04 -0.44 0.28 -0.03 -0.44 0.26  0.07 0.74 

f21 0.55 0.11 0.02 0.22 0.10 0.14 -0.04 0.53 0.49 0.34 0.55 0.16 0.06 0.23 0.57 0.46 0.21 0.57 0.45 0.07  -0.13 

f22 -0.09 -.012 -0.01 0.25 -0.42 0.66 -0.28 -0.12 -0.03 -0.23 0.07 -0.76 0.85 -0.15 -0.43 0.18 -0.13 -0.43 0.16 0.74 -0.13  

Note: f1: g0, f2: g1, f3: g2, f4: g3, f5: Circular polarization ratio, f6: Degree of polarization, f7: Relative phase, f8: RH, f9: RV, f10: RR, f11: RL, f12: Ellipticity, 

f13: Conformity, f14: m-chi-e, f15: m-chi-v, f16: m-chi-o, f17: m-delta-db, f18: m-delta-v, f19: m-delta-s, f20: Correlation coefficient, f21: SEi, f22: SEp. 
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Kappa statistic and overall accuracy quantify the magnitude of difference between classification 

maps, however, in order to evaluate the statistical significance difference between pair-wise 

classifications, the McNemar test can be employed [53], [54]. The input parameters for the 

McNemar test are the number of grid cells that are, correctly classified by both classifications, 

incorrectly classified by both classifications, and correctly classified by the first classification but 

not the second one and vice versa [55].  

Although RF provides out of bag error for validation of classification results, we used different 

parameters for validation purposes. Particularly, Overall Accuracy (OA), Kappa coefficients (K), 

and User’s and Producer’s Accuracy (UA and PA) were measured using the testing polygons, 

which were independent of the training polygons, to ensure a robust classification accuracy 

assessment. Furthermore, the statistical difference between pair-wise classifications was also 

determined using the McNemar test.  

5.3. Results and Discussion 

In this section, the classification results obtained from DP, FP, and simulated CP SAR data are 

presented and evaluated. Table 5.6 presents the overall classification accuracies and Kappa 

coefficients for the different SAR configuration modes, which were obtained from the 

corresponding covariance matrices. 

Table 5.6. Accuracy assessment of different PolSAR imaging mode using only covariance matrix for 

wetland classification. 

Mode Feature Overall Accuracy Kappa coefficient 

DP [C2] 45.69 0.36 

CP [C2] 56.94 0.51 

FP [C3] 62.81 0.56 
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The same training and testing polygons were used for all wetland classification scenarios. As seen, 

FP and DP covariance matrix produced the highest and lowest classification accuracies, 

respectively. This is because FP uses all scattering information from the observed scene, while DP 

recorded the least amount of information among the three aforementioned modes. Importantly, the 

OA obtained using CP was higher than that of the DP (~11%) and only 6% less than that of FP. 

Since both DP and CP receive the same polarizations (i.e., linear), it was concluded that the 

transmitted polarization of the SAR signal (i.e., linear for DP and circular for CP) impacts the 

extractable information of DP and CP data. This is consistent with the results of other studies such 

as [28]. Furthermore, the McNemar test was found that the different between classified maps 

obtained by DP and CP covariance matrices were statistically significant since the 𝑝 𝑣𝑎𝑙𝑢𝑒 was 

equal to 0.0455 at the 95% confidence level. However, the different between classified maps 

obtained by CP and FP data were not quite statistically significance with a 𝑝 𝑣𝑎𝑙𝑢𝑒 of 0.0662.  

Given the highest classification results obtained from FP and CP SAR data, FP and CP were 

selected for further polarimetric decomposition analysis. Table 5.7 represents overall accuracies 

and Kappa coefficients for defined scenarios in Table 5.3. 
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Table 5.7. Overall accuracies and Kappa coefficients for features extracted from FP and CP SAR data (see 

Table 5.3 for defined scenarios). 

Data Scenarios Overall Accuracy Kappa coefficient 

F
u

ll
 P

o
la

ri
m

et
ry

 

S1 62.81 0.56 

S2 67.92 0.62 

S3 70.16 0.64 

S4 72.35 0.69 

S5 84.70 0.81 

    

C
o
m

p
ac

t 
P

o
la

ri
m

et
ry

 S1 56.94 0.51 

S2 68.42 0.62 

S3 61.33 0.58 

S4 62.95 0.59 

S5 76.78 0.71 

All polarimetric decompositions (S2, S3, S4, and S5) demonstrated higher overall accuracies 

compared to the original covariance matrix (S1). This is because polarimetric decompositions 

incorporate the scattering mechanisms of the distributed ground targets into the classification 

procedure, which improves the discrimination capability of land cover classes [12]. Among the 

three polarimetric decomposition techniques, it was observed that model-based polarimetric 

decompositions, such as Freeman-Durden and Yamaguchi (S3 and S4), were more successful in 

term of classification accuracy relative to eigenvector-based decompositions such as Cloude-

Pottier (S2). This is because the former approaches produce a single and independent descriptor 

for each backscattering mechanism, which is found to be more useful to discriminate each wetland 

scattering mechanism. For example, in the Freeman-Durden decomposition, all scattering 

information from the ground targets is captured by the three independent elements, wherein the 

surface scattering represents the intensity of open water, the double-bounce scattering represents 
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the intensity of flooded vegetation and urban areas, and finally the volume scattering represents 

the intensity of upland and non-flooded vegetation. Furthermore, the Yamaguchi decomposition 

also obtained a slightly better OA than Freeman-Durden, since it performed better in both urban 

areas and forests relative to Freeman-Durden. Conversely, the scattering mechanisms of ground 

targets are determined using both real and angular values in the eigenvector-based decompositions 

(e.g., Cloude-Pottier). Specifically, in the eigenvector-based decompositions, the main scattering 

mechanism of ground targets is determined by single or a few components and later may be 

augmented by other real/angular components. Herbaceous vegetation, as a dominant wetland type 

in the study area, considerably attenuates the shorter wavelength (e.g., C-band) producing similar 

scattering intensity for vegetation with subtle structural differences and accordingly, hampers the 

ability of Cloude-Pottier descriptors to differentiate subtle differences between herbaceous 

vegetation. Furthermore, the entropy and anisotropy layers of the Cloude-Pottier decomposition 

are characterized by very high levels of noise content over the natural scatterers such as wetland 

ecosystems [56]. This may explain the lesser success of Cloude-Pottier decomposition compared 

to the model-based decompositions in terms of classification accuracy. Nevertheless, the inclusion 

of all polarimetric features (S5) further improved the classification result up to 85%.  

As seen in Table 5.7, the classification accuracies of different scenarios for CP data were generally 

lower than the FP data; although the difference was not significant. The Stokes vector parameters 

(S2) attained the highest overall accuracy compared to all other independent scenarios of CP data 

(S1, S3, and S4). It also resulted in an improved accuracy compared to the Cloude-Pottier method 

of FP. One possible reason could be that the Stokes vector parameters are directly obtained from 

the linear combination of the polarization channels [57], which minimizes noise levels. This 

contrasts with other common polarimetric approaches, which require classification or eigenvalue 
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decomposition (e.g., Cloude-Pottier). This observation is also consistent with the results of other 

studies for crop identification [24]. For example, Charbonneau et al. (2010) reported that the 

Stokes vector parameters extracted from CP mode data attained the highest early season 

classification accuracy for crop identification [24]. They also pointed out that the classification 

accuracy for the Stoke vector parameters was even higher than that of Freeman-Durden 

decomposition in the early season and similar to the Freeman-Durden decomposition at the end of 

growing season. We believe that the Stokes vector elements have the highest polarimetric 

information content with the least amount of noise compared to other CP features. This may 

explain the highest classification accuracy obtained by Stokes vectors relative to other CP features 

in this study. Thus, the Stokes vector parameters extracted from CP data are promising features 

for wetland classification. Finally, similar to what was observed in the classification using FP data, 

the inclusion of all features extracted from the CP data (S5) improved the classification accuracy 

up to 77%. The classification maps obtained from the CP and FP SAR data (S5 for both) are 

depicted in Figure 5.2. 
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Figure 5.2. The classification maps of the Avalon study area obtained from (a) FP SAR data and (b) CP 

SAR data. 

A visual comparison between the two classified maps illustrates that both have a relatively 

acceptable detailed spatial distribution of wetland classes with a considerable agreement in most 

classes (e.g., deep-water, upland, and bog). For quantitative comparison of two classified maps 

(Figure 5.2), the confusion matrices are presented in Tables 5.8 and 5.9 for FP and CP data (S5 for 

both), respectively.  
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Table 5.8. FP confusion matrix for S5 in Table 5.3: Overall accuracy: 84.70%, Kappa coefficient: 0.81. 

  Reference Data 

  
Upland Deep-

water 

Fen Bog Swamp Shallow-

water 

Marsh Urban Tot. User. 

Acc. 

C
la

ss
if

ie
d

 D
at

a 

Upland 20014 0 611 3728 69 0 17 3119 27558 72.63 

Deep-

water 
0 35372 0 0 0 29 0 0 35401 99.92 

Fen 145 0 7940 2301 171 0 141 53 10751 73.85 

Bog 2070 0 761 14106 108 0 710 621 18376 76.76 

Swamp 92 0 23 208 1109 0 25 8 1465 75.70 

Shallow-

water 
0 118 0 366 0 1616 559 0 2659 60.77 

Marsh 659 0 11 757 23 0 5560 0 7010 79.32 

Urban 582 0 0 0 0 0 0 14410 14992 96.12 

 Tot. 23562 35490 9346 21466 1480 1645 7012 18211 118212  

 
Prod. 

Acc. 
84.94 99.67 84.96 65.71 74.93 98.24 79.29 79.13   

 

As seen in Table 5.8, deep-water was found to have the highest user’s accuracy (UA) (~100%). 

The urban class also obtained a high UA, which was approximately 96%. All wetland classes 

attained UAs above 70%, excluding shallow-water. The UAs for swamp and fen were relatively 

low, which reflects the highest commission error. However, the UA for shallow-water was found 

to be the lowest representing a high degree of commission error. In particular, herbaceous 

vegetation (i.e., bog and marsh) and deep-water were erroneously classified as shallow-water in 

some cases. This could be due to a heterogeneous mixture of these classes in the study area, which 

resulted in a confusion between these classes.  

The producer’s accuracy (PA) for all classes was higher than 75%, excluding the bog wetland. The 

PA for the bog class was approximately 66% indicating a high degree of omission error. 

Particularly, a large portion of bog was misclassified as other herbaceous vegetation as well as the 

upland class. Overall, a confusion error between herbaceous wetland classes (bog, fen, and marsh) 

occurred.  
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Table 5.9. CP confusion matrix for S5 in Table 5.3: Overall accuracy: 76.78%, Kappa coefficient: 0.71. 

  Reference Data 

  
Upland Deep-

water 

Fen Bog Swamp Shallow-

water 

Marsh Urban Tot. User. 

Acc. 

C
la

ss
if

ie
d

 D
at

a 

Upland 16109 0 730 2433 11 0 174 2549 22006 73.20 

Deep-

water 
0 34794 0 0 0 257 0 0 35051 99.27 

Fen 711 0 5689 1539 28 0 1155 31 9153 62.15 

Bog 2719 0 2584 15093 54 0 1349 3129 24928 60.55 

Swamp 26 0 161 509 1103 0 25 0 1824 60.47 

Shallow-

water 
0 696 0 0 0 1267 88 0 2051 61.77 

Marsh 238 0 182 1892 284 121 4221 9 6947 60.76 

Urban 3759 0 0 0 0 0 0 12493 16252 76.87 

 Tot. 23562 35490 9346 21466 1480 1645 7012 18211 118212  

 
Prod. 

Acc. 
68.37 98.04 60.87 70.31 74.53 77.02 60.20 68.60   

 

Generally, the UAs and PAs for the most classes were lower for CP data relative to those of FP 

data; however, the decrease was more significant for some classes. More specifically, the UAs 

were degraded by approximately of 18%, 16%, 15%, and 11% for marsh, bog, swamp, and fen, 

respectively; when CP features were included into the RF classification relative to FP features. 

The UA for shallow-water was improved of about 1% for CP compared to FP. Similar to FP SAR 

data, a high degree of confusion error was observed between herbaceous vegetation, namely bog, 

fen, and marsh.  

PAs were also reduced in most classes when CP data were used in comparison to FP data. The 

highest drop in PAs of the wetland classes was observed for fen (~24%) and shallow-water 

(~21%), while the lowest PAs occurred for the marsh and fen class. Accordingly, the high omission 

errors were observed for these two, wherein fen and marsh were largely misclassified as other 

herbaceous vegetation. Notably, the PA was improved for the bog wetland by approximately 5% 

when CP features were employed relative to FP features. For non-wetland classes, a degradation 

of up to 15% was observed in PAs, excluding the deep-water class (less than 2%). 
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 Overall, the greatest confusion error was found within herbaceous wetlands, especially the bog 

and fen classes. This is due to the highly heterogeneous nature of these classes in the field. As 

reported by field biologists during ecological field data collection, these classes were found 

adjacent to each other and identifying a clear-cut border between them was difficult. Furthermore, 

they have relatively similar backscattering mechanisms and, therefore, there is a high degree of 

similarity between these classes, especially when shorter wavelength such as C-band applied, 

which is highly attenuated by herbaceous vegetation. Moreover, some of these classes have very 

similar ecological vegetation types contributing to the degree of confusion between these classes. 

For example, bog and fen are peatlands dominated by Spahgnum and graminoid species, 

respectively, and thereby, are sometimes categorized as the same class (i.e., peatland).  

Phenology and hydrological variation of wetland ecosystems have great influence on 

discriminating different wetland classes. This is true since different wetland classes exhibit varying 

scattering mechanisms as well as intensity during low and high water seasons. For example, 

increasing the water level enhances the chance of double-bounce scattering for the swamp class. 

In contrast, increasing the water level for the marsh wetland decreases the chance of double-bounce 

scattering, wherein the double-bounce is mainly converted into the surface scattering [58]. The 

classification accuracy for all wetland classes can be increased by inclusion of multi-temporal SAR 

imagery, which reduces the confusion error due to the hydrological variation of wetland complexes 

[6].  

Another consideration in interpretation of the accuracies for wetland classes is the amount of 

ecological field data available for supervised classification. Generally, the larger training samples 

are recommended for applying a supervised classification. As seen in Table 5.2, all non-wetland 

classes (i.e., upland, urban, and deep-water) have a high amount of field data, which resulted in 



208 

 

the highest UAs and PAs for both FP and CP data. Among wetland classes, swamp and shallow-

water have the least amount of in situ data, which may explain the low accuracies for these classes 

in some cases. The least amount of ecological data for the swamp wetland is because swamps tend 

to occur in physically smaller areas compared to that of other wetlands, such as in transition zones 

between a wetland and other land cover types. As a result, most swamp polygons contained fewer 

pixels when compared to other wetlands types. Conversely, bog wetlands are more expansive 

relative to other wetland classes in the study area. This could be due to province climate, which 

facilitates extensive peatland formation [48]. Thus, the bog wetlands were more frequently visited 

during field data collection and, as such, have a larger number of associated pixels. 

As discussed earlier, one of the advantages of the RF classifier is that it provides the variable 

importance for a set of input features. Figure 5.3 depicts the variable importance of input features 

utilized for wetland classification in case of using CP SAR data. This figure was obtained by 

running the RF classification for 30 times using the same CP input features as well as the same 

training samples (see Table 5.4).  
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Figure 5.3. Normalized variable importance for the RF classification map obtained from CP SAR features 

(see Table 3, S5). Different variables are represented as follows: Stokes vector elements (green), m-delta 

decomposition (red), intensity channels (purple), m-chi decomposition (orange), and wave descriptors 

(blue). 

Analysis of variable importance for the RF classification using CP SAR features indicated that 𝑔0 

was the most important CP features for wetland classification in this study. 𝑔0 is the first element 

of Stokes vector representing the total power or intensity [43]. Other wetland classification studies 

reported the great importance of the intensity layer for discriminating different wetland classes. 
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For example, Moser et al. (2016) performed a multi-temporal classification using only the 

𝐾0 parameter (the first element of the Kennaugh matrix) obtained from dual polarimetric (HH/VV) 

TerraSAR-X data and reported the significance of the 𝐾0 parameter relative to other elements of 

Kennaugh matrix [59]. The 𝐾0 element indicates the total intensity in the Kennaugh matrix, which 

is similar to the 𝑔0 parameter in the Stokes vector.  

Charbonneau et al. (2010), also, have reported that Stokes vector parameters extracted from CP 

data provided high early-season classification accuracy for crop identification [24]. The volumetric 

component of the m-delta decomposition was the next most important variable for wetland 

mapping. The results are consistent with the theoretical concepts of scattering mechanisms, 

wherein volumetric scattering is the dominant scattering mechanism for vegetation canopies like 

those found in a wetland complex [1]. Particularly, the m-delta decomposition has relatively the 

same potential for land cover classification as the Freeman-Durden decomposition [24]. For 

example, Charbonneau et al. (2010) reported a great capacity of m-delta decomposition for crop 

identification with relatively comparable strength as Freeman-Durden [24]. Overall, the circular 

polarizations, including RR, RV, RH, and RL were found to be important features for wetland 

classification. In particular, the RR polarization is suitable for extracting information from flooded 

vegetation, which produces the highest double-bounce scattering. This is because, in the case of 

double-bounce scattering, the returned wave maintains its ellipticity, which results in the highest 

RR. In contrast, in the case of “pure surface”, the ellipticity of the return wave is inverse, which 

results in the highest RL [14]. White et al. (2017) also reported the importance of RV intensity 

feature for peatland classification during the summer time [15]. The m-chi-v feature was also found 

to be useful for wetland classification for the same reason as the m-delta-v feature. Finally, m-

delta-s was found to be important, which was also consistent with the results of other studies [8], 
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[15]. For example, White et al. (2017) reported that the surface scattering was useful for detection 

and classification of bog and fen since the canopy interference was negligible at low SAR 

incidence angles, resulted in an increase in surface scattering, which was mainly produced by bogs 

[15]. Particularly, they reported that the m-delta-s was the most important CP features when spring 

data were employed, which was not similar to what found in this study. Specifically, the surface 

scattering was dominant for the spring SAR observation (i.e., April) when the vegetative density 

was not developed and plants were short. We believe that the main difference between these two 

results could be due to time difference between satellite imageries. 

The variable importance analysis of the remaining CP features indicated the relatively similar 

contribution of other features. In particular, the wave descriptor parameters contributed slightly 

less to wetland classification than other CP features. However, some of these wave descriptors 

(e.g., the degree of polarization and conformity) were found to be important features in maritime 

applications such as oil spills detection [19].    

Previous studies reported that when RF was used for land and wetland classification repeatedly, 

the most important variables varied among different RF classifications [37]. By applying the RF 

classification 30 times, the most important variables were obtained. It was observed that the most 

important variables changed among different classification models by using same input variables 

(see Table 5.4). Next, the correlation between input variables was determined and important 

variables with a high degree of correlation were removed (r > 0.9). This allowed us to run two 

additional classifications using only the important variables (number of variables = 14) and the 

uncorrelated important variables (number of variables = 7). The overall accuracies for 

classifications obtained from all variables and important variables were 76.78% and 76.17%, 

respectively. Thus, the classification accuracy remained unchanged when only important variables 
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were applied to the classification scheme. This was significant since the variable reduction did not 

affect the classification accuracy, while resulted in obtaining an optimal classification. Millard and 

Richardson (2015), also, reported that incorporating high dimensional correlated input variables 

into the RF classification resulted in a noisy classification [37]. Surprisingly, the overall accuracy 

for classified map obtained from the uncorrelated important variable was 78.22% representing 

approximately 2% improvement relative to other classified maps. Figure 5.4 depicts the UAs and 

PAs for different land cover types obtained from different CP features, including all variables, the 

important variables, and the uncorrelated important variables. 

 

(a) 
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(b) 

Figure 5.4. (a) UAs and (b) PAs for different land cover types obtained from different CP features, 

including all variables, the important variables, and the uncorrelated important variables. 

As seen, UAs and PAs were relatively similar in RF classifications for inputs from all variables 

and the important variables. However, when only the uncorrelated important variables 

incorporated into the classification scheme, UAs and PAs improved for some classes.  

As mentioned earlier, the McNemar test was also applied in order to quantitatively determine the 

statistical difference between a pair of classifications. The McNemar test illustrated that there was 

no statistically significant difference between classified maps obtained from all variables versus 

important variables since the 𝑝 𝑣𝑎𝑙𝑢𝑒 was equal to 0.4237 at the 95% confidence level. However, 

the McNemar test illustrated a significant statistical difference between classified maps obtained 

from the important variables versus the uncorrelated important variables. Specifically, the 

𝑝 𝑣𝑎𝑙𝑢𝑒 for these classification pairs was 0.0139 at the 95% confidence level indicating the 

statistical difference between the two classified maps. 
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5.4. Summary and conclusion 

This research study evaluated the potential of simulated compact polarimetric SAR data for 

wetland classification in a study area located on the Avalon Peninsula, Newfoundland, Canada. 

Different PolSAR features were extracted from dual, full, and compact polarimetric SAR data and 

incorporated into an object-based RF classification. The overall classification accuracies 

demonstrated the superiority of the FP data for wetland classification compared to all other data 

types. However, the classification accuracy obtained from the CP features was higher than DP data 

and comparable with the results of the FP data in a few cases. More specifically, an overall 

classification accuracy of approximately 76% was achieved by including all features extracted 

from the CP data, while incorporating all features from the FP data into the classification scheme 

produced an overall accuracy of approximately 85%. However, there is a trade-off between CP 

and FP, wherein the former offers a larger swath width, shorter revisit time, less complexity, and 

acceptable information content while the latter contains all scattering information of ground targets 

and, accordingly, results in a higher classification accuracy.  

A great advantage of the RF classifier is that it determines the variable importance of input 

features. The variable importance analysis of CP features found that the first component of the 

Stokes vector (total power), circular polarizations, and the volumetric component of both m-delta 

and m-chi decompositions were the most important features for wetland classification. Millard and 

Richardson (2015) reported a variation among the important variables determined by RF even by 

using the same training data and input variables [37]. This study, also, reconfirmed the alteration 

of variable importance, thus, illustrating the significance of more elaborated analysis when RF is 

employed for the land cover classification using a large number of input features. Iterative RF 

classifications may reduce the uncertainty in predicted classes by RF. We also found the 
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importance of removing uncorrelated important variables for classification similar to Millard and 

Richardson (2015), which, surprisingly, improved the classification accuracy by about 2%.     

In summary, the FP SAR imagery provided the best classification accuracy among all SAR data 

utilized in this study. The CP outperformed DP SAR data in terms of classification accuracy while 

was less successful relative to FP for classification of most land cover types in this study. 

Nonetheless, it offers wider swath coverage and, accordingly, an improved temporal resolution, 

which, in turns, makes it an ideal tool for several remote sensing applications requiring more 

frequent observations over a larger scale such as wetland and sea ice mapping.    
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Abstract 

Despite recent advances of deep Convolutional Neural Networks (CNNs) in various computer 

vision tasks, their potential for classification of multispectral remote sensing images has not been 

thoroughly explored. In particular, the applications of deep CNNs using optical remote sensing 

data have focused on the classification of very high-resolution aerial and satellite data, owing to 

the similarity of these data to the large datasets in computer vision. Accordingly, this study presents 

a detailed investigation of state-of-the-art deep learning tools for classification of complex wetland 

classes using multispectral RapidEye optical imagery. Specifically, we examine the capacity of 

seven well-known deep convnets, namely DenseNet121, InceptionV3, VGG16, VGG19, 

Xception, ResNet50, and InceptionResNetV2, for wetland mapping in Canada. In addition, the 

classification results obtained from deep CNNs are compared with those based on conventional 

machine learning tools, including Random Forest and Support Vector Machine, to further evaluate 

the efficiency of the former to classify wetlands. The results illustrate that the full-training of 

convnets using five spectral bands outperforms the other strategies for all convnets. 

InceptionResNetV2, ResNet50, and Xception are distinguished as the top three convnets, 

providing state-of-the-art classification accuracies of 96.17%, 94.81%, and 93.57%, respectively. 

The classification accuracies obtained using Support Vector Machine (SVM) and Random Forest 

(RF) are 74.89% and 76.08%, respectively, considerably inferior relative to CNNs. Importantly, 

InceptionResNetV2 is consistently found to be superior compared to all other convnets, suggesting 

the integration of Inception and ResNet modules is an efficient architecture for classifying complex 

remote sensing scenes such as wetlands. 

Keywords: Deep learning, Convolutional Neural Network, Machine learning, Multispectral 

images, Land cover classification, Wetland, RapidEye, Full-training, Fine-tuning. 
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6.1. Introduction 

Wetlands are transitional zones between terrestrial and aquatic systems that support a natural 

ecosystem of a variety of plant and animal species, adapted to wet conditions [1]. Flood- and storm-

damage protection, water quality improvement and renovation, greenhouse gas reduction, 

shoreline stabilization, and aquatic productivity are only a handful of the advantages associated 

with wetlands. Unfortunately, wetlands have undergone variations due to natural processes, such 

as changes in temperature and precipitation caused by climate change, coastal plain subsidence 

and erosion, as well as human-induced disturbances such as industrial and residential development, 

agricultural activities, and runoff from lawns and farms [1]. 

Knowledge of the spatial distribution of these valuable ecosystems is crucial in order to 

characterize ecosystem processes and to monitor the subsequent changes over time [2]. However, 

the remoteness, vastness, and seasonally dynamic nature of most wetland ecosystems make 

conventional methods of data acquisition (e.g., surveying) labor-intensive and costly [3]. 

Fortunately, remote sensing, as a cost- and time-efficient tool, addresses the limitations of 

conventional techniques by providing valuable ecological data to characterize wetland ecosystems 

and to monitor land cover changes [4]. Optical remote sensing data have shown to be promising 

tools for wetland mapping and monitoring. This is because biomass concentration, leaf water 

content, and vegetation chlorophyll—all important characteristics of wetland vegetation—can be 

determined using optical satellite images [5]. In particular, optical remote sensing sensors collect 

spectral information of ground targets at various points of the electromagnetic spectrum, such as 

visible and infrared, which is of great benefit for wetland vegetation mapping [5]. Therefore, 

several studies reported the success of wetland mapping using optical satellite imagery [6], [7]. 
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Despite the latest advances in remote sensing tools, such as the availability of high spatial and 

temporal resolution satellite data and object-based image analysis tools [8], the classification 

accuracy of complex land cover, such as wetland ecosystems, is insufficient. This could be 

attributed to the spectral similarity of wetland vegetation types, making the exclusive use of 

spectral information insufficient for the classification of heterogeneous land cover classes. In 

addition, several studies reported the significance of incorporating both spectral and spatial 

information for land cover mapping [9]. Thus, spatial features may augment spectral information 

and thereby contribute to the success of complex land cover mapping. Accordingly, several 

experiments were carried out to incorporate both spectral and spatial features into a classification 

scheme. These studies were based on the Markov Random Field (MRF) model [10], the 

Conditional Random Field (CRF) model [11], and Composite Kernel (CK) methods [12]. 

However, in most cases, the process of extracting a large number of features, the feature 

engineering process [13], for the purpose of supervised classification is time intensive, and requires 

broad and profound knowledge to extract amenable features. Furthermore, classification based on 

hand-crafted spatial features primarily relies on low-level features, resulting in insufficient 

classification results in most cases and a poor capacity for generalization [9]. 

Most recently, Deep Learning (DL), a state-of-the-art machine learning tool, has been placed in 

the spotlight in the field of computer vision and, subsequently, in remote sensing [14]. This is 

because these advanced machine learning algorithms address the primary limitations of the 

conventional shallow-structured machine learning tools, such as Support Vector Machine (SVM) 

and Random Forest (RF) [15]. Deep Belief Net (DBN) [16], Stacked Auto-Encoder (SAE) [17], 

and deep Convolutional Neural Network (CNN) [18], [19] are current deep learning models, of 

which the latter is most well-known. Importantly, CNN has led to a series of breakthroughs in 
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several remote sensing applications, such as classification [6], segmentation [20], and object 

detection [21], due to its superior performance in a variety of applications relative to shallow-

structured machine learning tools. CNNs are characterized by multi-layered interconnected 

channels, with a high capacity for learning the features and classifiers from data spontaneously 

given their deep architecture, their capacity to adjust parameters jointly, and to classify 

simultaneously [22]. One of the ubiquitous characteristics of such a configuration is its potential 

to encode both spectral and spatial information into the classification scheme in a completely 

automated workflow [22]. Accordingly, the complicated, brittle, and multistage feature 

engineering procedure is replaced with a simple end-to-end deep learning workflow [13]. 

Notably, there is a different degree of abstraction for the data within multiple convolutional layers, 

wherein low-, mid-, and high-level information is extracted in a hierarchical learning framework 

at the initial, intermediate, and final layers, respectively [22]. This configuration omits the training 

process from scratch in several applications since the features in the initial layers are generic filters 

(e.g., edge) and, accordingly, are less dependent on the application. However, the latest layers are 

related to the final application and should be trained according to the given data and classification 

problem. This also addresses the poor generalization capacity of shallow-structured machine 

learning tools, which are site- and data-dependent, suggesting the versatility of CNNs [13]. 

Although the advent of CNN dates back to as early as the 1980s, when LeCun designed a primary 

convolutional neural network known as LeNet to classify handwritten digits, it gained recognition 

and was increasingly applied around 2010 [23]. This is attributable to the advent of more powerful 

hardware, larger datasets (e.g., ImageNet) [24], and new ideas, which consequently improved 

network architecture [19]. The original idea of deep CNNs [23] has been further developed by 

Krizhevsky and his colleagues, who designed a breakthrough CNN, known as AlexNet, a pioneer 
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of modern deep CNNs, with multiple convolutional and max-pooling layers that provide deeper 

feature-learning at different spatial scales [18]. Subsequent successes have been achieved since 

2014, when VGG [25], GoogLeNet (i.e., Inception network) [19], ResNet [26], and Xception [27] 

were introduced in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). 

The intricate tuning process, heavy computational burden, high tendency of overfitting, and the 

empirical nature of model establishment are the main limitations associated with deep CNNs [22]. 

Although some studies have argued that all deep learning methods have a black-box nature, it is 

not completely true for CNN [13]. This is because the features learned by CNNs can be visualized 

and, in particular, they are an illustration of visual concepts. There are three different strategies for 

employing current CNNs: A full-training network, a pre-trained network as a feature extractor, 

and fine-tuning of a pre-trained network. In the first case, a network is trained from scratch with 

random weights and biases to extract particular features for the dataset of interest. However, the 

limited number of training samples constrains the efficiency of this technique due to the overfitting 

problem. The other two strategies are more useful when a limited amount of training samples is 

available [28]. 

In cases of limited training data, a stacked auto-encoder (SAE) is also useful to learn the features 

from a given dataset using an unsupervised learning network [29]. In such a network, the 

deconstruction error between the input data at the encoding layer and its reconstruction at the 

decoding layer is minimized [15]. SAE networks are characterized by a relatively simple structure 

relative to deep CNNs and they have a great capacity for fast image interpretation. In particular, 

they convert raw data to an abstract representation using a simple non-linear model and they 

integrate features using an optimization algorithm. This results in a substantial decrease of 

redundant information between the features while achieving a strong generalization capacity.  
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Despite recent advances in deep CNNs, their applications in remote sensing have been 

substantially limited to the classification of very high spatial resolution aerial and satellite imagery 

from a limited number of well-known datasets, owing to the similar characteristics of these data 

to object recognition in computer vision. However, acquiring high spatial resolution imagery may 

be difficult, especially on a large scale. Accordingly, less research has been carried out on the 

classification of medium and high spatial resolution satellite imagery in different study areas. 

Furthermore, the capacity of CNNs has been primarily investigated for the classification of urban 

areas, whereas there is limited research examining the potential of state-of-the-art classification 

tools for complex land cover mapping. Complex land cover units, such as wetland vegetation, are 

characterized by high intra- and low inter-class variance, resulting in difficulties in their 

discrimination relative to typical land cover classes. Thus, an environment with such highly 

heterogeneous land cover is beneficial for evaluating the capacity of CNNs for the classification 

of remote sensing data. Finally, the minimal application of well-known deep CNNs in remote 

sensing may be due to the limitation of input bands. Specifically, these convnets are designed to 

work with three input bands (e.g., Red, Green, and Blue), making them inappropriate for most 

remote sensing data. This indicates the significance of developing a pipeline compatible with 

multi-channel satellite imagery. 

The main goals of this study were, therefore, to: (1) Eliminate the limitation of the number of input 

bands by developing a pipeline in Python with the capacity to operate with multi-layer remote 

sensing imagery; (2) examine the power of deep CNNs for the classification of spectrally similar 

wetland classes; (3) investigate the generalization capacity of existing CNNs for the classification 

of multispectral satellite imagery (i.e., a different dataset than those they were trained for); (4) 

explore whether full-training or fine-tuning is the optimal strategy for exploiting the pre-existing 
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convnets for wetland mapping; and (5) compare the efficiency of the most well-known deep CNNs, 

including DenseNet121, InceptionV3, VGG16, VGG19, Xception, ResNet50, and 

InceptionResNetV2, for wetland mapping in a comprehensive and elaborate analysis. Thus, this 

study contributes to the use of the state-of-the-art classification tools for complex land cover 

mapping using multispectral remote sensing data. 

6.2. Materials and Methods 

6.2.1. Deep Convolutional Neural Network 

CNNs are constructed by multi-layer interconnected neural networks, wherein powerful low-, 

intermediate-, and high-level features are hierarchically extracted. A typical CNN framework has 

two main layers—the convolutional and pooling layers—that, together, are called the 

convolutional base of the network [13]. Some networks, such as AlexNet and VGG, also have 

fully connected layers. The convolutional layer has a filtering function and extracts spatial features 

from the images. Generally, the first convolutional layers extract low-level features or small local 

patterns, such as edges and corners, while the last convolutional layers extract high-level features, 

such as image structures. This suggests the high efficiency of CNNs for learning spatial 

hierarchical patterns. Convolutional layers are usually defined using two components: The 

convolution patch size (e.g., 3 × 3 or 5 × 5) and the depth of the output feature map, which is the 

number of filters (e.g., 32 filters). In particular, a rectangular sliding window with a fixed-size and 

a pre-defined stride is employed to produce convoluted feature maps using a dot product between 

the weights of the kernel and a small region of the input volume (i.e., the receptive field). A stride 

is defined as a distance between two consecutive convolutional windows. A stride of one is usually 

applied in convolutional layers since larger stride values result in down-sampling in feature maps 

[13]. A feature map is a new image generated by this simple convolution operation and is a visual 
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illustration of the extracted features. Given the weight-sharing property of CNNs, the number of 

parameters is significantly reduced compared to fully connected layer, since all the neurons across 

a particular feature map share the same parameters (i.e., weights and biases). 

A non-linearity function, such as the Rectified Linear Unit (ReLU) [30], is usually applied as an 

elementwise nonlinear activation function to each component in the feature map. The ReLU 

function is advantageous relative to conventional activation functions used in traditional neural 

networks, such as the hyperbolic tangent or sigmoid functions, for adding non-linearity to the 

network [30]. The ReLU significantly accelerates the training phase relative to the conventional 

functions with gradient descent. This is because of the so-called vanishing gradient problem, 

wherein the derivatives of earlier functions (e.g., sigmoid) are extremely low in the saturating 

region and, accordingly, the updates for the weights nearly vanish. 

Due to the presence of common pixels in each window, several feature maps may be produced that 

are very similar, suggesting redundant information. Therefore, pooling layers are used after each 

convolutional layer to decrease the variance of the extracted features using simple operations such 

as the maximizing or averaging operations. The max- and average-pooling layers determine the 

maximum and mean values, respectively, using a fixed-size sliding window and a pre-defined 

stride over the feature maps and, thereby, are conceptually similar to the convolutional layer. In 

contrast to convolutional layers, a stride of two or larger is applied in the pooling layers to down-

sample the feature maps. Notably, the pooling layer, or the sub-sampling layer, generalizes the 

output of the convolutional layer into a higher level and selects the more robust and abstract 

features for the next layers. Thus, the pooling layer decreases computational complexity during 

the training stage by shrinking the feature maps. 
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As mentioned, some networks may have fully connected layers before the classifier layer that 

connect the output of several stacked convolutional and pooling layers to the classifier layer. 

Overfitting may arise in the fully connected layer because it occupies a large number of parameters. 

Thus, the dropout technique, an efficient regularization technique, is useful to mitigate or decrease 

problems associated with overfitting. During training, this technique randomly drops some neurons 

and their connections across the network, which prevents neurons from excess co-adaptation and 

contributes to developing more meaningful independent features [18]. The last layer is a 

classification layer, which determines the posterior probabilities for each category. A softmax 

classifier, also known as a normalized exponential, is the most commonly used classifier layer 

among the deep learning community in the image field. Stochastic Gradient Descent (SGD) 

optimization in a backpropagation workflow is usually used to train CNNs and to compute 

adjusting weights. This is an end-to-end learning process, from the raw data (i.e., original pixels) 

to the final label, using a deep CNN. 

6.2.1.1. VGG 

VGG network [25], the runner-up of the localization and classification tracks of the ILSVRC-2014 

competition, is characterized by a deep network structure with a small convolutional filter of 3 × 

3 compared to its predecessor, AlexNet [18]. VGG-VD group introduced six deep CNNs in the 

competition, among which two of them were more successful than the others, namely VGG16 and 

VGG19. The VGG16 consists of 13 convolutional layers and three fully connected layers, while 

the VGG19 has 16 convolutional layers and three fully connected layers. Both networks use a 

stack of small convolutional filters of 3 × 3 with stride 1, which are followed by multiple non-

linearity layers (see Figure 6.1). This increases the depth of the network and contributes to learning 
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more complex features. The impressive results of VGG revealed that the network depth is an 

important factor in obtaining high classification accuracy [28]. 

 

(a) 

 

(b) 

Figure 6.1. Schematic diagram of (a) VGG16 and (b) VGG19 models. 

6.2.1.2. Inception 

GoogLeNet, the winner of the classification and detection tracks of the ILSVRC-2014 

competition, is among the first generation of non-sequential CNNs. In this network, both depth 

(i.e., the number of levels) and width (i.e., the number of units at each level), were increased 

without causing computational strain [19]. GoogLeNet is developed based on the idea that several 

connections between layers are ineffective and have redundant information due to the correlation 

between them. Accordingly, it uses an “Inception module”, a sparse CNN, with 22 layers in a 

parallel processing workflow, and benefits from several auxiliary classifiers within the 

intermediate layers to improve the discrimination capacity in the lower layers. In contrast to 

conventional CNNs such as AlexNet and VGG, wherein either a convolutional or a pooling 

operation can be used at each level, the Inception module could benefit from both at each layer. 

Furthermore, filters (convolutions) with varying sizes are used at the same layer, providing more 

detailed information and extracting patterns with different sizes. Importantly, a 1 × 1 convolutional 
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layer, the so-called bottleneck layer, was employed to decrease both the computational complexity 

and the number of parameters. To be more precise, 1 × 1 convolutional layers were used just before 

a larger kernel convolutional filter (e.g., 3 × 3 and 5 × 5 convolutional layers) to decrease the 

number of parameters to be determined at each level (i.e., the pooling feature process). In addition, 

1 × 1 convolutional layers make the network deeper and add more non-linearity by using ReLU 

after each 1 × 1 convolutional layer. In this network, the fully connected layers are replaced with 

an average pooling layer. This significantly decreases the number of parameters since the fully 

connected layers include a large number of parameters. Thus, this network is able to learn deeper 

representations of features with fewer parameters relative to AlexNet while it is much faster than 

VGG [27]. Figure 6.2 illustrates a compressed view of InceptionV3 employed in this study. 

 

Figure 6.2. Schematic diagram of InceptionV3 model (compressed view). 

6.2.1.3. ResNet 

ResNet, the winner of the classification task in the ILSVRC-2015 competition, is characterized by 

a very deep network with 152 layers [26]. However, the main problems associated with the deep 

network are difficulty in training, high training error, and the vanishing gradient that causes 

learning to be negligible at the initial layers in the backpropagation step. The deep ResNet 
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configuration addresses the vanishing gradient problem by employing a deep residual learning 

module via additive identity transformations. Specifically, the residual module uses a direct path 

between the input and output and each stacked layer fits a residual mapping rather than directly 

fitting a desired underlying mapping [26]. Notably, the optimization is much easier on the residual 

map relative to the original, unreferenced map. Similar to VGG, 3 × 3 filters were mostly employed 

in this network; however, ResNet has fewer filters and less complexity relative to the VGG 

network [26]. Figure 6.3 illustrates a compressed view of ResNet, which was used in this study. 

 

Figure 6.3. Schematic diagram of ResNet model (compressed view). 

6.2.1.4. Xception 

Xception network is similar to inception (GoogLeNet), wherein the inception module has been 

substituted with depth-wise separable convolutional layers [27]. Specifically, Xception’s 

architecture is constructed based on a linear stack of a depth-wise separable convolution layer (i.e., 

36 convolutional layers) with linear residual connections (see Figure 6.4). There are two important 

convolutional layers in this configuration: A depth-wise convolutional layer [31], where a spatial 

convolution is carried out independently in each channel of input data, and a pointwise 

convolutional layer, where a 1 × 1 convolutional layer maps the output channels to a new channel 

space using a depth-wise convolution. 
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Figure 6.4. Schematic diagram of Xception model (compressed view). 

6.2.1.5. InceptionResNetV2 

This network is constructed by integrating the two most successful deep CNNs, ResNet [26] and 

Inception [19], wherein batch-normalization is used only on top of the traditional layers, rather 

than on top of the summations. In particular, the residual modules are employed in order to allow 

an increase in the number of Inception blocks and, accordingly, an increase in network depth. As 

mentioned earlier, the most pronounced problem associated with very deep networks is the training 

phase, which can be addressed using the residual connections [26]. The network scales down the 

residual as an efficient approach to address the training problem when a large number of filters 

(greater than 1,000 filters) is used in the network. Specifically, the residual variants experience 

instabilities and the network cannot be trained when the number of filters exceeds 1,000. 

Therefore, scaling the residual contributes to stabilizing network training [32]. Figure 6.5 

illustrates a compressed view of InceptionResNetV2 used in this study. 
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Figure 6.5. Schematic diagram of InceptionResNetV2 model (compressed view). 

6.2.1.6. DenseNet 

This network is also designed to address the vanishing gradient problem arising from the network 

depth. Specifically, all layers’ connection architectures are employed to ensure maximum flow of 

information between layers [33]. In this configuration, each layer acquires inputs from all previous 

layers and conveys its own feature-maps to all subsequent layers. The feature maps are 

concatenated at each layer to pass information from preceding layers to the subsequent layers. This 

network architecture removes the necessity to learn redundant information and accordingly, the 

number of parameters is significantly reduced (i.e., parameter efficiency). It is also efficient for 

preserving information owing to its all layers connection property. Huang et al. (2017) reported 

that the network performed very well for classifications with a small training data set and the 

overfitting is not a problem when DenseNet121 is employed [33]. Figure 6.6 illustrates a 

compressed view of DenseNet employed in this study. 

   

Figure 6.6. Schematic diagram of DenseNet model (compressed view). 
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6.2.2. Training 

6.2.2.1. Fine-Tuning of a Pre-Trained Network 

Fine-tuning of a pre-trained network is an optimal solution when a limited number of training 

samples are available. In this case, a fine adjustment is performed on the parameters of the top 

layers in a pre-trained network, while the first layers, representing general features, are frozen. 

Freezing is when weights for a layer or a set of layers are not updated during the training stage. 

Importantly, this approach benefits from the parameters learned from a network that has been 

previously trained using a specific dataset and, subsequently, adjusts the parameters for the dataset 

of interest. Accordingly, fine-tuning adjusts the parameters of the reused model, making it more 

relevant to the dataset of interest. Fine-tuning can be performed for either all layers or the top 

layers of a pre-trained network; however, the latter approach is preferred [13]. This is because the 

first layers in convnets encode generic, reusable features, whereas the last layers encode more 

specific features. Thus, it is more efficient to fine-tune those specific features. Furthermore, fine-

tuning of all layers causes overfitting due to the large number of parameters, which should be 

determined during this process [13]. As such, in this study, fine-tuning of pre-existing convnets 

was carried out only on the top three layers. These may be either the fully connected layers alone 

(e.g., VGG) or both the fully connected and convolutional layers (e.g., Xception). Accordingly, 

the fine-tuning of the top three layers allowed us to compare the efficiency of fine-tuning for both 

fully connected and convolutional layers. 

Notably, the number of input bands for these CNNs is limited to three because they have been 

trained using the ImageNet dataset; however, RapidEye imagery has five bands. Therefore, a band 

selection technique was pursued to determine three uncorrelated bands of RapidEye imagery most 

appropriate for use in CNNs. The results of this analysis demonstrated that green, red, and near-
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infrared bands contain the least redundant information and thus, they were selected for fine-tuning 

of CNNs in this study. 

6.2.2.2. Full-Training 

Full-training is feasible when a large number of training samples is available to aid in converging 

the network [22]. In this case, there is a full control on the network parameters and, additionally, 

more relevant features are produced since the network is specifically tuned with the dataset of 

interest. However, the full-training of a network from scratch is challenging due to computational 

and data strains, leading to overfitting problems. Some techniques, such as dropout layers and data 

augmentation and normalization, are useful for mitigating the problems that arise from overfitting. 

In particular, data augmentation, introduced by Krizhevsky in 2012, is a process that produces 

more training samples from existing training data using a number of random transformations (e.g., 

image translation and horizontal reflection) [18]. The main goal is that the model will never look 

at the same image twice. In particular, the model explores more aspects of the data, which 

contributes to a better generalization [13]. 

Notably, there are two different categories in the case of full-training of convnets. In the first 

category, a new CNN architecture is fully designed and trained from scratch. In this case, the 

number of convolutional, and pooling layers, neurons, the type of activation function, the learning 

rate, and the number of iterations should be determined. Conversely, the second strategy benefits 

from a pre-existing architecture and full-training is only employed using a given dataset. In the 

latter case, the network architecture and the number of parameters remain unchanged.   

In this study, the second strategy was employed. In particular, we examined the potential of a 

number of pre-existing networks (e.g., VGG, Inception, and etc.,) for classification of complex 
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land cover when they are trained from scratch using a new dataset substantially different from 

those (e.g., ImageNet) for which it was originally trained. Notably, full-training was employed for 

both three and five bands of RapidEye imagery. The full-training of three bands was performed to 

make the results comparable with those of the fine-tuning strategy. 

6.2.3. Study Area and Satellite Data 

The study area is located in the northeast portion of the Avalon Peninsula, Newfoundland and 

Labrador, Canada. Figure 6.7 shows the geographic location of the study area. 

 

Figure 6.7. A true color composite of RapidEye optical imagery (bands 3, 2, and 1) acquired on 18 

June, 2015, illustrating the geographic location of the study area. The red rectangle, the so-called 

test-zone, was selected to display the classified maps obtained from different approaches. Note that 

the training samples within the rectangle were excluded during the training stage for deep 

Convolutional Neural Networks (CNNs). 
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Land cover in the study area comprises a wide variety of wetland classes categorized by the 

Canadian Wetland Classification System (CWCS), including bog, fen, marsh, swamp, and shallow 

water [1]. Wetlands are characterized as complex species with high intra-class variance and low 

inter-class variance. Additionally, these classes are extremely different from typical objects found 

in the ImageNet dataset. Such a diverse ecological ecosystem is an ideal setting in which the 

efficiency and robustness of the state-of-the-art classification algorithms in a comprehensive and 

comparative study may be examined. Other land-cover classes found in the study area include 

urban, upland, and deep water classes. Figure 6.8 illustrates ground photo examples of land cover 

classes in this study.  

 
 

 

 

(a) (b) (c) (d) 

 
 

  

(e) (f) (g) (h) 

Figure 6.8. Ground reference photos showing land cover classes in the study area: (a) Bog; (b) fen; 

(c) marsh; (d) swamp; (e) shallow water; (f) urban; (g) deep water; and (h) upland. 

 

Two level 3A multispectral RapidEye images with a spatial resolution of five meters, acquired on 

18 June and 22 October 2015, were used for classification in this study. This imagery has five 
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spectral bands, namely blue (440–510 nm), green (520–590 nm), red (630–685 nm), red edge 

(690–730 nm), and near-infrared (760–850 nm). 

6.2.4. Training, Validation, and Testing Data 

Field data were acquired for 257 ground sites in the summer and fall of 2015, 2016, and 2017 by 

collecting Global Positioning System (GPS) points at each site. For reference data preparation, 

polygons were sorted by size and alternately assigned to testing and training groups. This resulted 

in both the testing and training groups containing equal numbers of small and large wetland 

polygons to allow for similar pixel counts and to account for the high variation of intra-wetland 

size.  

Importantly, five tiles of RapidEye optical images were mosaicked to cover the whole study 

region. The training polygons within the red rectangle (i.e., one RapidEye tile; see Figure 6.7), the 

so-called test-zone, were removed for the training of deep CNNs. In particular, all patches within 

the test-zone were only used for testing (i.e., accuracy assessment) of CNNs. Of the training sample 

data, 80% and 20% were used for training and validation, respectively. Notably, both training and 

validation were carried out using the first RapidEye image (18 June, 2015); however, the testing 

was applied only to the second RapidEye image (22 October, 2015), within the test-zone (see 

Figure 6.7, the red rectangle), to perform the robust classification accuracy assessment. 

Accordingly, the training and testing samples were obtained from independent polygons from 

distinct geographic regions using satellite imagery acquired at different times. This procedure 

prevents information leaking from the testing dataset to the model by employing two spatially and 

geographically independent samples for training and testing.  
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6.2.5. Experiment Setup 

A multispectral satellite image in three dimensions is represented as m × n × h, a 3D tensor, where 

m and n indicate the height and width of the image, respectively, and h corresponds to the number 

of channels. On the other hand, convnets require a 3D tensor as input and, accordingly, a patch-

based labeling method was used in this study because it inherently aligns with CNNs. Using this 

approach, the multispectral image was decomposed into patches, which have both spectral and 

spatial information for a given pixel, and a class label is assigned to the center of each patch [34]. 

An optimal patch size was determined using a trial-and-error procedure, by taking into account a 

spatial resolution of 5 m for the input image and the contextual relationship of the objects [35]. In 

particular, different patch sizes of 5, 10, 15, 20, 25, 30, 35, and 40 were examined, and the patch 

size of 30 was found to be the optimal value that extracts local spatial correlation within a given 

neighborhood and contains sufficient information to generate a specific distribution for each object 

in the image. Thus, we obtained 3D tensors with dimensions of either 30 × 30 × 5 (when using 5 

multispectral bands) or 30 × 30 × 3 (when using 3 multispectral bands), which have both spatial 

and spectral information at a given location. 

In the patch-based CNN, a particular class label is assigned to the given patch when a small 

rectangle in the center of that patch completely covers a single object. In this study, the training 

polygons were not rectangular, causing challenges during labeling when a patch contains more 

than one class. Accordingly, within a given patch size of 30 × 30, if an 8 × 8 rectangle covered 

only a single class (e.g., bog), then the label of this patch was assigned to that class (bog). 

Conversely, when this small rectangular window covered more than one class (e.g., both bog and 

fen), this patch was removed and excluded from further processing. Thus, the selected patches for 
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the training of convnets covered more than 50% of the object of interest and overcame the problem 

of edges that arise from multiple objects within a single patch. 

The convnets used in this study include VGG16, VGG19, InceptionV3, Xception, DenseNet121, 

ResNet50, and InceptionResNetV2. The parameters of the original deep architecture were 

maintained during both fine-tuning and full-training. However, a learning rate of 0.01 and a decay 

rate of 10−4 were selected for full-training and fine-tuning experiments. The number of iterations 

was set to be 30,000 and 100,000 for fine-tuning and full-training, respectively. Cross-entropy and 

Stochastic Gradient Descent (SGD) were selected as the loss function and the optimization 

algorithm, respectively, during processing. As mentioned earlier, a patch size of 30 was selected 

and the images were resized to 224 × 224 for VGG16, VGG19, DenseNet121, and ResNet50, as 

well as to 299 × 299 for InceptionV3, Xception, and InceptionResNetV2. All these experiments 

were implemented using Google’s library TensorFlow [36]. Table 6.1 presents the parameter 

settings and the characteristics of the deep convnets examined in this study. 

In terms of computational complexity, the full-training strategy was more time intensive relative 

to the fine-tuning. This is because, in the former, the network must be trained from scratch, wherein 

weights and biases are randomly initialized and, accordingly, more time and resources are required 

for the model to be convergent. Table 6.1 (last column) represents the processing time when full-

training of five bands (from scratch) was carried out. In order to determine the most accurate 

processing time, each network was fed by 800 images (100 images for each class) and the training 

time was measured. This procedure was repeated ten times and the average processing time for 

each network is presented in Table 6.1. 
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All experiments were carried out on an Intel CPU i7 4790 k machine with 3.6 GHz of clock and 

32 GB RAM memory. A Nvidia GeForce GTX 1080 Ti GPU with 11 GB of memory under CUDA 

version 8.0 was also used in this study. 

Table 6.1. The characteristics of deep convnets examined in this study. 

ConvNet Models Parameters (millions) Depth Processing Time * (s) 

VGG16 138 23 18 

VGG19 144 26 21 

InceptionV3 24 159 10 

ResNet50 26 168 12 

Xception 23 126 16 

InceptionResNetV2 56 572 19 

DenseNet121 8 121 14 
* Note: The processing time was calculated for training of 800 images (100 images for each class). 

6.2.6. Evaluation Metrices 

Three metrics, namely overall accuracy, Kappa coefficient, and F1-score, were used to 

quantitatively evaluate the performance of different classifiers. Overall accuracy represents the 

amount of correctly classified area for the whole image and is calculated by dividing the number 

of correctly classified pixels by the total number of pixels in the confusion matrix. The Kappa 

coefficient determines the degree of agreement between the reference data and the classified map. 

F1-score is a quantitative metric useful for imbalanced training data, and it measures the balance 

between precision and recall. Precision, also known as the positive predictive value, illustrates 

how many detected pixels for each category are true. Recall, also known as sensitivity, indicates 

how many actual pixels in each category are detected [37]. Accordingly, F1-score is formulated as 

follows: 

F1 − score =  2 ×
Precision × Recall

Precision + Recall
 (6.1) 
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Precision =
True positives

True positives + False positives
 (6.2) 

𝑅ecall =
True positives

True positives + False negatives
 (6.3) 

 

6.3. Results and Discussion 

In this study, fine-tuning was employed for pre-existing, well-known convnets, which were trained 

based on the ImageNet dataset. Figure 6.9 demonstrates the validation and training accuracy and 

loss in the case of fine-tuning of convnets using the three selected bands of RapidEye imagery. 

 

 

Figure 6.9. Comparing well-known convnets in terms of training and validation accuracy and loss 

when fine-tuning of three bands (i.e., Green, Red, and near-infrared (NIR)) was employed for 

complex wetland mapping. 

As shown, DenseNet121 has the lowest validation accuracy, followed by VGG16. Conversely, the 

Xception network has the highest validation accuracy, followed by InceptionResNetV2. The two 

convnets, namely InceptionV3 and ResNet50, show relatively equal validation accuracies. Figure 

6.10 shows the validation and training accuracy and loss in the case of training convnets from 

scratch when three bands of RapidEye imagery were employed. 
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Figure 6.10. Comparing well-known convnets in terms of training and validation accuracy and loss 

when networks were trained from scratch using three bands (i.e., Green, Red, and NIR) for complex 

wetland mapping. 

As shown, all convnets, excluding DensNet121, perform very well for wetland classification when 

validation accuracies are compared. In particular, three convnets, including InceptionResNetV2, 

Xception, and VGG19, have higher training and validation accuracies relative to the other well-

known convnets. Conversely, DenseNet121 has the lowest validation accuracy, suggesting that 

this network is less suitable for complex land cover mapping relative to the other convnets. Figure 

6.11 shows the validation and training accuracy and loss in the case of training convnets from 

scratch when five bands of RapidEye imagery were employed. 

 

 

Figure 6.11. Comparing well-known convnets in terms of training and validation accuracy and loss 

when networks were trained from scratch using five bands for complex wetland mapping. 
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The effects of increasing the number of bands are readily apparent by comparing Figures 6.10 and 

6.11. Specifically, an increase in the number of bands improves classification accuracy in all cases. 

For example, the validation accuracy for DenseNet121 was lower than 90% when only three bands 

were employed. However, by increasing the number of bands, the validation accuracy reached to 

94% for DenseNet121. InceptionResNetV2 again exhibited the highest validation accuracy, 

followed by ResNet50, Xception, and VGG19. Thus, the results indicate the significance of 

incorporating more spectral information for the classification of spectrally similar wetland classes 

(see Figures 6.10 and 6.11). 

One of the most interesting aspects of the results obtained in this study is that the full-training 

strategy had better classification results relative to fine-tuning in all cases. Previous studies 

reported the superiority of fine-tuning relative to full-training for classification of very high 

resolution aerial imagery, although full-training was found to be more accurate relative to fine-

tuning for classification of multi-spectral satellite data [38]. In particular, Nogueira et al. (2017) 

evaluated the efficiency of fine-tuning and full-training strategies of some well-known deep CNNs 

(e.g., AlexNet and GoogLeNet) for classification of three well-known datasets, including 

UCMerced land-use [39], RS19 dataset [40], and Brazilian Coffee Scenes [41]. The fine-tuning 

strategy yielded a higher accuracy for the first two datasets, likely due to their similarity with the 

ImageNet dataset, which was originally used for training deep CNNs. However, the full-training 

strategy had similar [22] or better results [38] relative to the fine-tuning for the Brazilian Coffee 

Scenes. This is because the latter dataset is multi-spectral (SPOT), containing finer and more 

homogeneous textures, wherein the patterns visually overlap substantially and, importantly, differ 

from the objects commonly found within the ImageNet dataset [22]. The results obtained from the 

latter dataset are similar to those found in our study. In particular, there is a significant difference 
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between the original training datasets of these convnets and our dataset. Fine-tuning is an optimal 

solution when the edges and local structures within the dataset of interest are similar to those for 

which the networks were trained. However, the texture, color, edges, and local structures of the 

typical objects found in the ImageNet dataset differ from the objects found in the wetland classes. 

Moreover, our dataset is intrinsically different from the ImageNet dataset used for pre-training. In 

particular, our dataset has five spectral bands, namely red, green, blue, red-edge, and near-infrared, 

all of which are essential for classifying spectrally similar wetland classes. However, the ImageNet 

dataset has only the red, green, and blue bands [38]. This could explain the differences between 

validation accuracies obtained in the case of full-training and fine-tuning (see Figures 6.9 and 

6.10). Nevertheless, the results obtained from fine-tuning are still very promising, taking into 

account the complexity of wetland classes and the high classification accuracy obtained in most 

cases. In particular, an average validation accuracy of greater than 86% was achieved in all cases 

(see Figure 6.9), suggesting the generalizability and versatility of pre-trained deep convnets for the 

classification of various land cover types. It is also worth noting that fine-tuning was employed on 

the top three layers of convnets in this study. However, the results could be different upon 

including more layers in the fine-tuning procedure. 

Having obtained higher accuracies via full-training of five bands, the classification results obtained 

from this strategy were selected for further analysis. These classification results were also 

compared with the results obtained from two conventional machine learning tools (i.e., SVM and 

RF). For this purpose, a total number of eight features were used as input features for both the 

SVM and RF classifiers. These features were Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), Red-edge Normalized Difference Vegetation Index 

(ReNDVI), and all the original spectral bands of the RapidEye image. Table 6.2 represents the 
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overall accuracy, Kappa coefficient, and F1-score using different CNNs (full-training of five 

bands), RF, and SVM for wetland classification in this study. 

Table 6.2. Overall accuracies (%), Kappa coefficients, and F1-score (%) for wetland classification using 

different deep convnets (full-training of five bands), Random Forest (RF), and Support Vector Machine 

(SVM). 

Methods Overall Accuracy Kappa Coefficient F1 

SVM 74.89 0.68 53.58 

RF 76.08 0.70 58.87 

DenseNet121 84.78 0.80 72.61 

InceptionV3 86.14 0.82 75.09 

VGG16 87.77 0.84 78.13 

VGG19 90.94 0.88 84.20 

Xception 93.57 0.92 89.55 

ResNet50 94.81 0.93 91.39 

InceptionResNetV2 96.17 0.95 93.66 

 

As seen in Table 6.2, SVM and RF have the lowest classification accuracies and F1-scores relative 

to all deep convnets in this study. Among deep convnets, InceptionResNetV2 has the highest 

classification accuracy, 96.17%, as well as the highest F1-score, 93.66%, followed by ResNet50 

and Xception with overall accuracies of 94.81% and 93.57%, as well as F1-scores of 91.39% and 

89.55%, respectively. Conversely, DenseNet121 and InceptionV3 have the lowest overall 

accuracies, 84.78% and 86.14%, as well as F1-scores, 72.61% and 75.09%, respectively. VGG19 

was found to be more accurate than VGG16 by about 3% (OA), presumably due to the deeper 

structure of the former convnet. These results are in general agreement with [42], which reported 

the superiority of ResNet relative to GoogLeNet (Inception), VGG16, and VGG19 for the 

classification of four public remote sensing datasets (e.g., UCM, WHU-RS19). 

InceptionResNetV2 benefits from integrating two well-known deep convnets, Inception and 

ResNet, which positively contribute to the most accurate result in this study. This also suggests 

that the extracted features from different convnets are supplementary and improve the model’s 
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classification efficiency. The results demonstrated that deeper networks (e.g., InceptionResNetV2) 

have a greater efficiency in extracting varying degrees of abstraction and representation within the 

hierarchical learning scheme [43]. In particular, they are more efficient in separating the input 

space into more detailed regions, owing to their deeper architecture, that contributes to a better 

separation of complex wetland classes.  

As shown in Figure 6.12, all deep networks were successful in classifying non-wetland classes, 

including urban, deep water, and upland classes, with an accuracy greater than 94% in all cases. 

SVM and RF also correctly classified the non-wetland classes with an accuracy exceeding 96% in 

most cases (excluding upland). Interestingly, all deep networks correctly classified the urban class 

with an accuracy of 100%, suggesting the robustness of the deep learning features for classification 

of complex human-made structures (e.g., buildings and roads). This observation fits well with [13]. 

However, the accuracy of the urban class did not exceed 97% when either RF or SVM was 

employed. 

SVM (OA: 74.89%) RF (OA:76.08%) DenseNet121 (OA: 84.78%) 
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InceptionV3 (OA: 86.14%) VGG16 (OA: 87.77%) VGG19 (OA: 90.94%) 

 
 

 

Xception (OA: 93.57%) ResNet50 (OA: 94.81%) InceptionResNetV2 (OA: 96.17%) 
 

  

Figure 6.12. Normalized confusion matrix of the wetland classification for different networks in this 

study (full-training of five optical bands), Random Forest (RF), and Support Vector Machine (SVM). 

The confusion matrices demonstrate that, by using the last three networks, a significant 

improvement was achieved in the accuracy of both overall and individual classes. In particular, 

InceptionResNetV2 correctly classified non-wetland classes with an accuracy of 99% for deep 

water and 100% for both urban and upland classes. ResNet50 and Xception were also successful 

in distinguishing non-wetland classes with an accuracy of 100% for urban and 99% for both deep 

water and upland. One possible explanation for why the highest accuracies were obtained for these 

classes is the availability of larger amounts of training samples for non-wetland classes relative to 

wetland classes.  

Although RF and SVM, as well as the convnets, performed very well in distinguishing non-

wetland classes, the difference in accuracy between the two groups (i.e., conventional classifiers 

versus deep networks) was significant for wetland classes. This was particularly true for the last 
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three convnets compared to SVM and RF. Specifically, the three networks of InceptionResNetV2, 

ResNet50, and Xception were successful in classifying all wetland classes with accuracies 

exceeding 80%, excluding the swamp wetland. This contrasts with the results obtained from SVM 

and RF, wherein the accuracies were lower than 74% for all wetland classes. Overall, the swamp 

wetland had the lowest accuracy among all classes using the deep convnets. As the effectiveness 

of these networks largely depends on the numbers of the training samples, the lowest accuracy of 

the swamp wetland could be attributable to the low availability of training samples for this class.  

A large degree of confusion was observed between herbaceous wetlands, namely marsh, bog, and 

fen (especially between bog and fen), when DenseNet121, InceptionV3, and VGG16 were 

employed. The largest confusion between bog and fen is possibly due to the very similar visual 

features of these classes (see Figure 6.8). These two classes are both peatland dominated with 

different species of Sphagnum in bogs and Graminoid in fens. According to field biologist reports, 

these two classes were adjacent successional classes with a heterogeneous nature and were hardly 

distinguished from each other during the in-situ field data collection.  

Overall, confusion was more pronounced among the first four deep networks, whereas it was 

significantly reduced when the last three networks were employed (see Figure 6.12). This suggests 

that the last three networks and, especially, InceptionResNetV2, are superior for distinguishing 

confusing wetland classes relative to the other convnets. For example, the classes of bog and fen 

were correctly classified with accuracies of greater than 89% when InceptionResNetV2 was used. 

Both Xception and ResNet50 were also found to successfully classify these two classes with 

accuracies of higher than 80%. Overall, the wetland classification accuracies obtained from these 

three networks were strongly positive for several spectrally and spatially similar wetland classes 

(e.g., bog, fen, and marsh) and demonstrate a large number of correctly classified pixels. 
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Cropped images of the classified maps obtained from SVM, RF, DenseNet121, and 

InceptionResNetV2 are depicted in Figure 6.13. As shown, the classified maps obtained from 

convnets better resemble the real ground features. Both classified maps, obtained from convnets 

(Figure 6.13d,e) show a detailed distribution of all land cover classes; however, the classified map 

obtained from InceptionResNetV2 (Figure 6.13e) is more accurate when it is compared with 

optical imagery (Figure 6.13a). For example, in the classified map obtained from DenseNet121, 

the fen class was misclassified as bog and upland classes in some cases (Figure 6.13d). This, too, 

occurred between shallow water and deep water; however, this was not the case when 

InceptionResNetV2 was employed. In particular, most land cover classes obtained from 

InceptionResNetV2 are accurate representations of ground features. This conclusion was based on 

the confusion matrix (see Figure 6.12) and further supported by a comparison between the 

classified map and the optical data (Figure 6.13a, e). 
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(d) (e)  

Figure 6.13. (a) True color composite of RapidEye optical imagery (bands 3, 2, and 1). A crop of the 

classified maps obtained from (b) SVM, (c) RF, (d) DenseNet121, and (e) InceptionResNetV2. 

Figure 6.14 shows two-dimensional features extracted from the last layer of the 

InceptionResNetV2 (a) and DenseNet121 (b) using the two-dimensional t-SNE algorithm [44]. 

The features from InceptionResNetV2 demonstrate a clear semantic clustering. In particular, most 

classes are clearly separated from each other; however, the feature clusters of bog and fen show 

some degree of confusion. Conversely, the features from DenseNet121 only generate a few visible 

clusters (e.g., upland and urban), while other features corresponding to wetland classes overlap 

with each other, suggesting a large degree of confusion. 
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(a) (b)  

Figure 6.14. A 2-D feature visualization of global image representation of the wetland classes using 

the t-SNE algorithm for the last layer of (a) InceptionResNetV2 and (b) DenseNet121. Each color 

illustrates a different class in the dataset. 

6.4. Conclusion 

Wetlands are characterized by complex land cover with high intra-class variability and low inter-

class disparity, posing several challenges to conventional machine learning tools in classification 

tasks. To date, the discrimination of such complex land cover classes using conventional classifiers 

heavily relies on a large number of hand-crafted features incorporated into the classification 

scheme. In this research, we used state-of-the-art deep learning tools, deep Convolutional Neural 

Networks, to classify such a heterogeneous environment to address the problem of extracting a 

large number of hand-crafted features. Two different strategies of employing pre-existing convnets 

were investigated: Full-training and fine-tuning. The potential of the most well-known deep 

convnets, currently employed for several computer vision tasks, including DenseNet121, 

InceptionV3, VGG16, VGG19, Xception, ResNet50, and InceptionResNetV2, was examined in a 

comprehensive and elaborate framework using multispectral RapidEye optical data for wetland 

classification.  

The results of this study revealed that the incorporation of high-level features learned by a 

hierarchical deep framework is very efficient for the classification of complex wetland classes. 
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Specifically, the results illustrate that the full-training of pre-existing convnets using five bands is 

more accurate than both full-training and fine-tuning using three bands, suggesting that the extra 

multispectral bands provide complementary information. In this study, InceptionResNetV2 

consistently outperformed all other convnets for the classification of wetland and non-wetland 

classes with a state-of-the-art overall classification accuracy of about 96%, followed by ResNet50 

and Xception, with accuracies of about 94% and 93%, respectively. The impressive performance 

of InceptionResNetV2 suggests that an integration of the Inception and ResNet modules is an 

effective architecture for complex land cover mapping using multispectral remote sensing images. 

The individual class accuracy illustrated that confusion occurred between wetland classes 

(herbaceous wetlands), although it was less pronounced when InceptionResNetV2, ResNet50, and 

Xception were employed. The swamp wetland had the lowest accuracy in all cases, potentially 

because the lowest number of training samples was available for this class. It is also worth noting 

that all deep convnets were very successful in classifying non-wetland classes in this study. 

The results of this study demonstrate the potential for the full exploitation of pre-existing deep 

convnets for the classification of multispectral remote sensing data, which are significantly 

different than large datasets (e.g., ImageNet) currently employed in computer vision. Given the 

similarity of wetland classes across Canada, the deep trained networks in this study provide 

valuable baseline information and tools, and will substantially contribute to the success of wetland 

mapping in this country using state-of-the-art remote sensing data. 
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Chapter 7. Large-scale wetland mapping using fusion of PolSAR and optical 

imagery6  
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Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth 

Engine Cloud Computing Platform. Remote Sensing, 11(1), p.43. 
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Abstract 

Wetlands are one of the most important ecosystems that provide a desirable habitat for a great 

variety of flora and fauna. Wetland mapping and modeling using Earth Observation (EO) data are 

essential for natural resource management at both regional and national levels. However, accurate 

wetland mapping is challenging, especially on a large scale, given their heterogeneous and 

fragmented landscape, as well as the spectral similarity of differing wetland classes. Currently, 

precise, consistent, and comprehensive wetland inventories on a national- or provincial-scale are 

lacking globally, with most studies focused on the generation of local-scale maps from limited 

remote sensing data. Leveraging the Google Earth Engine (GEE) computational power and the 

availability of high spatial resolution remote sensing data collected by Copernicus Sentinels, this 

study introduces the first detailed, provincial-scale wetland inventory map of one of the richest 

Canadian provinces in terms of wetland extent. In particular, multi-year summer Synthetic 

Aperture Radar (SAR) Sentinel-1 and optical Sentinel-2 data composites were used to identify the 

spatial distribution of five wetland and three non-wetland classes on the Island of Newfoundland, 

covering an approximate area of 106,000 km2. The classification results were evaluated using both 

pixel-based and object-based random forest (RF) classifications implemented on the GEE 

platform. The results revealed the superiority of the object-based approach relative to the pixel-

based classification for wetland mapping. Although the classification using multi-year optical data 

was more accurate compared to that of SAR, the inclusion of both types of data significantly 

improved the classification accuracies of wetland classes. In particular, an overall accuracy of 

88.37% and a Kappa coefficient of 0.85 were achieved with the multi-year summer SAR/optical 

composite using an object-based RF classification, wherein all wetland and non-wetland classes 

were correctly identified with accuracies beyond 70% and 90%, respectively. The results suggest 

a paradigm-shift from standard static products and approaches toward generating more dynamic, 



262 

 

on-demand, large-scale wetland coverage maps through advanced cloud computing resources that 

simplify access to and processing of the “Geo Big Data.” In addition, the resulting ever-demanding 

inventory map of Newfoundland is of great interest to and can be used by many stakeholders, 

including federal and provincial governments, municipalities, NGOs, and environmental 

consultants to name a few. 

Keywords: Wetland, Google Earth Engine, Sentinel-1, Sentinel-2, Random forest, Cloud 

computing, Geo-big data 
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7.1. Introduction 

Wetlands cover between 3% and 8% of the Earth’s land surface [1]. They are one of the most 

important contributors to global greenhouse gas reduction and climate change mitigation, and they 

greatly affect biodiversity and hydrological connectivity [2]. Wetland ecosystem services include 

flood- and storm-damage protection, water-quality improvement and renovation, aquatic and 

plant-biomass productivity, shoreline stabilization, plant collection, and contamination retention 

[3]. However, wetlands are being drastically converted to non-wetland habitats due to both 

anthropogenic activities, such as intensive agricultural and industrial development, urbanization, 

reservoir construction, and water diversion, as well as natural processes, such as rising sea levels, 

thawing of permafrost, changing in precipitation patterns, and drought [1]. 

Despite the vast expanse and benefits of wetlands, there is a lack of comprehensive wetland 

inventories in most countries due to the expense of conducting nation-wide mapping and the highly 

dynamic, remote nature of wetland ecosystems [4]. These issues result in fragmented, partial, or 

outdated wetland inventories in most countries worldwide, and some have no inventory available 

at all [5]. Although North America and some parts of Western Europe have some of the most 

comprehensive wetland inventories, these are also incomplete and have considerable limitations 

related to the resolution and type of data, as well as to developed methods [6]. These differences 

make these existing inventories incomparable [1] and highlight the significance of long-term 

comprehensive wetland monitoring systems to identify conservation priorities and sustainable 

management strategies for these valuable ecosystems. 

Over the past two decades, wetland mapping has gained recognition thanks to the availability of 

remote sensing tools and data. However, accurate wetland mapping using remote sensing data, 

especially on a large scale, has long proven challenging. For example, input data should be 
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unaffected/less affected by clouds, haze, and other disturbances to obtain an acceptable 

classification result [4]. Such input data can be generated by compositing a large volume of satellite 

images collected during a specific time period. This is of particular concern for distinguishing 

backscattering/spectrally similar classes (e.g., wetland), wherein discrimination is challenging 

using a single image. Historically, the cost of acquiring multi-temporal remote sensing data 

precluded such large-scale land cover (e.g., wetland) mapping [7]. Although Landsat sensors have 

been collecting Earth Observation (EO) data at frequent intervals since the mid-1980s [8], open-

access to its entire archive has occurred since 2008 [7]. This is of great benefit for land cover 

mapping on a large scale. However, much of this archived data has been underutilized to date. This 

is because collecting, storing, processing, and manipulating multi-temporal remote sensing data 

that cover a large geographic area over three decades are infeasible using conventional image 

processing software on workstation PC-based systems [9]. This is known as the “Geo Big Data” 

problem and it demands new technologies and resources capable of handling such a large volume 

of satellite imagery from the data science perspective [10]. 

Most recently, the growing availability of large-volume open-access remote sensing data and the 

development of advanced machine learning tools have been integrated with recent 

implementations of powerful cloud computing resources. This offers new opportunities for broader 

sets of applications at new spatial and temporal scales in the geospatial sciences and addresses the 

limitation of existing methods and products [11]. Specifically, the advent of powerful cloud 

computing resources, such as NASA Earth Exchange, Amazon’s Web Services, Microsoft’s 

Azure, and Google cloud platform has addressed these Geo Big Data problems. For example, 

Google Earth Engine (GEE) is an open-access, cloud-based platform for parallel processing of 

petabyte-scale data [12]. It hosts a vast pool of satellite imagery and geospatial datasets, and allows 
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web-based algorithm development and results visualization in a reasonable processing time [13]–

[15]. In addition to its computing and storage capacity, a number of well-known machine learning 

algorithms have been implemented, allowing batch processing using JavaScript on a dedicated 

application programming interface (API) [16]. 

Notably, the development of advanced machine learning tools further contributes to handling large 

multi-temporal remote sensing data [17]. This is because traditional classifiers, such as maximum 

likelihood, insufficiently manipulate complicated, high-dimensional remote sensing data. 

Furthermore, they assume that input data are normally distributed, which may not be the case [18]. 

However, advanced machine learning tools, such as Decision Tree (DT), Support Vector Machine 

(SVM), and Random Forest (RF), are independent of input data distribution and can handle large 

volumes of remote sensing data. Previous studies have demonstrated that both RF [19] and SVM 

[20] outperformed DT for classifying remote sensing data. RF and SVM have also relatively equal 

strength in terms of classification accuracies [21]. However, RF is much easier to execute relative 

to SVM, given that the latter approach requires the adjustment of a large number of parameters 

[20]. RF is also insensitive to noise and overtraining [22] and has shown high classification 

accuracies in various wetland studies [18]. 

Over the past three years, several studies have investigated the potential of cloud-computing 

resources using advanced machine learning tools for processing/classifying the Geo Big Data in a 

variety of applications. These include global surface water mapping [23], global forest-cover 

change mapping [24], and cropland mapping [25], as well as studies focusing on land- and 

vegetation-cover changes on a smaller scale [26], [27]. They demonstrated the feasibility of 

characterizing the elements of the Earth surface at a national and global scale through advanced 

cloud computing platforms. 



266 

 

Newfoundland and Labrador (NL), a home for a great variety of flora and fauna, is one of the 

richest provinces in terms of wetlands and biodiversity in Canada. Most recently, the significant 

value of these ecosystems has been recognized by the Wetland Mapping and Monitoring System 

(WMMS) project, launched in 2015. Accordingly, a few local wetland maps, each covering 

approximately 700 km2 of the province, were produced. For example, Mahdianpari et al. (2017) 

introduced a hierarchical object-based classification scheme for discriminating wetland classes in 

the most easterly part of NL, the Avalon Peninsula, using Synthetic Aperture Radar (SAR) 

observations obtained from ALOS-2, RADARSAT-2, and TerraSAR-X imagery [18]. Later, 

Mahdianpari et al. (2018) proposed the modified coherency matrix obtained from quad-pol 

RADARSAT-2 imagery to improve wetland classification accuracy. They evaluated the efficiency 

of the proposed method in three pilot sites across NL, each of which covers 700 km2 [28]. Most 

recently, Mohammadimanesh et al. (2018) investigated the potential of interferometric coherence 

for wetland classification, as well as the synergy of coherence with SAR polarimetry and intensity 

features for wetland mapping in a relatively small area in NL (the Avalon Peninsula) [28]. These 

local-scale wetland maps exhibit the spatial distribution patterns and the characteristics of wetland 

species (e.g., dominant wetland type). However, such small-scale maps have been produced by 

incorporating different data sources, standards, and methods, making them of limited use for 

rigorous wetland monitoring at the provincial, national, and global scales. 

Importantly, precise, comprehensive, provincial-level wetland inventories that map small to large 

wetland classes can significantly aid conservation strategies, support sustainable management, and 

facilitate progress toward national/global scale wetland inventories [29]. Fortunately, new 

opportunities for large-scale wetland mapping are obtained from the Copernicus programs by the 

European Space Agency (ESA) [30]. In particular, concurrent availability of 12-days SAR 
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Sentinel-1 and 10-days optical Sentinel-2 (multi-spectral instrument, MSI) sensors provides an 

unprecedented opportunity to collect high spatial resolution data for global wetland mapping. The 

main purpose of these Sentinel Missions is to provide full, free, and open access data to facilitate 

the global monitoring of the environment and to offer new opportunities to the scientific 

community [31]. This highlights the substantial role of Sentinel observations for large-scale land 

surface mapping. Accordingly, the synergistic use of Sentinel-1 and Sentinel-2 EO data offers new 

avenues to be explored in different applications, especially for mapping phenomena with highly 

dynamic natures (e.g., wetland).  

Notably, the inclusion of SAR data for land and wetland mapping is of great significance for 

monitoring areas with nearly permanent cloud-cover. This is because SAR signals are independent 

of solar radiation and the day/night condition, making them superior for monitoring geographic 

regions with dominant cloudy and rainy weather, such as Newfoundland, Canada. Nevertheless, 

multi-source satellite data are advantageous in terms of classification accuracy relative to the 

accuracy achieved by a single source of data [32]. This is because optical sensors are sensitive to 

the reflective and spectral characteristics of ground targets [33], [34], whereas SAR sensors are 

sensitive to their structural, textural, and dielectric characteristics [35]. Thus, a synergistic use of 

two types of data offers complementary information, which may be lacking when utilizing one 

source of data [36]. Several studies have also highlighted the great potential of fusing optical and 

SAR data for wetland classification [23].  

This study aims to develop a multi-temporal classification approach based on open-access remote 

sensing data and tools to map wetland classes as well as the other land cover types with high 

accuracy, here piloting this approach for wetland mapping in Canada. Specifically, the main 

objectives of this study were to: (1) Leverage open access SAR and optical images obtained from 
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Sentinel-1 and Sentinel-2 sensors for the classification of wetland complexes; (2) assess the 

capability of the Google Earth Engine cloud computing platform to generate custom land cover 

maps, which are sufficient in discriminating wetland classes as standard land cover products; (3) 

compare the efficiency of both pixel-based and object-based random forest classification; and (4) 

produce the first provincial-scale, fine resolution (i.e., 10 m) wetland inventory map in Canada. 

The results of this study demonstrate a paradigm-shift from standard static products and 

approaches toward generating more dynamic, on-demand, large-scale wetland coverage maps 

through advanced cloud computing resources that simplify access to and processing of a large 

volume of satellite imagery. Given the similarity of wetland classes across the country, the 

developed methodology can be scaled-up to map wetlands at the national-scale.   

7.2. Materials and Methods 

7.2.1. Study Area 

The study area is the Island of Newfoundland, covering an approximate area of 106,000 km2, 

located within the Atlantic sub-region of Canada (Figure 7.1). According to the Ecological 

Stratification Workings Group of Canada, “each part of the province is characterized by distinctive 

regional ecological factors, including climatic, physiography, vegetation, soil, water, fauna, and 

land use” [37]. 
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Figure 7.1. The geographic location of the study area with distribution of the training and testing 

polygons across four pilot sites on the Island of Newfoundland. 

In general, the Island of Newfoundland has a cool summer and a humid continental climate, which 

is greatly affected by the Atlantic Ocean [38]. Black spruce forests that dominate the central area, 

and balsam fir forests that dominate the western, northern, and eastern areas, are common on the 

island [37]. Based on geography, the Island of Newfoundland can be divided into three zones, 

namely the southern, middle, and northern boreal regions, and each is characterized by various 

ecoregions [39]. For example, the southern boreal zone contains the Avalon forest, Southwestern 

Newfoundland, Maritime Barrens, and South Avalon-Burin Oceanic Barrens ecoregions. St. 

John’s, the capital city, is located at the extreme eastern portion of the island, in the Maritime 

Barren ecoregion, and is the foggiest, windiest, and cloudiest Canadian city. 

All wetland classes characterized by the Canadian Wetland Classification System (CWCS), 

namely bog, fen, marsh, swamp, and shallow-water [1], are found throughout the island. However, 

bog and fen are the most dominant classes relative to the occurrence of swamp, marsh, and 
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shallow-water. This is attributed to the island climate, which facilitates peatland formation (i.e., 

extensive agglomeration of partially-decomposed organic peat under the surface). Other land cover 

classes are upland, deep-water, and urban/bare land. The urban and bare land classes, both having 

either an impervious surface or exposed soil [40], include bare land, roads, and building facilities 

and, thus, are merged into one single class in the final classification map. 

Four pilot sites, which are representative of regional variation in terms of both landscape and 

vegetation, were selected across the island for in-situ data collection (see Figure 7.1). The first 

pilot site is the Avalon area, located in the south-east of the island in the Maritime Barren 

ecoregion, which experiences an oceanic climate of foggy, cool summers, and relatively mild 

winters. The second and third pilot sites are Grand Falls-Windsor, located in the north-central area 

of the island, and Deer Lake, located in the northern portion of the island. Both fall within the 

Central Newfoundland ecoregion and experience a continental climate of cool summers and cold 

winters. The final pilot site is Gros Morne, located on the extreme west coast of the island, in the 

Northern Peninsula ecoregion, and this site experiences a maritime-type climate with cool 

summers and mild winters [40].  

7.2.2. Reference Data 

In-situ data were collected via an extensive field survey of the sites mentioned above in the 

summers and falls of 2015, 2016 and 2017. Using visual interpretation of high resolution Google 

Earth imagery, as well as the CWCS definition of wetlands, potential and accessible wetland sites 

were flagged across the island. Accessibility via public roads, the public or private ownership of 

lands, and prior knowledge of the area were also taken into account for site visitation. In-situ data 

were collected to cover a wide range of wetland and non-wetland classes with a broad spatial 

distribution across NL. One or more Global Positioning System (GPS) points, depending on the 
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size of each wetland, along with the location’s name and date were recorded. Several digital 

photographs and ancillary notes (e.g., dominant vegetation and hydrology) were also recorded to 

aid in preparing the training samples. During the first year of data collection (i.e., 2015), no 

limitation was set on the size of the wetland, and this resulted in the production of several small-

size classified polygons. To move forward with a larger size, wetlands of size >1 ha (where 

possible) were selected during the years 2016 and 2017. Notably, a total of 1200 wetland and non-

wetland sites were visited during in-situ data collection at the Avalon, Grand Falls-Windsor, Deer 

Lake, and Gros Morne pilot sites over three years. Such in-situ data collection over a wide range 

of wetland classes across NL captured the variability of wetlands and aided in developing robust 

wetland training samples. Figure 7.1 depicts the distribution of the training and testing polygons 

across the Island. 

Recorded GPS points were then imported into ArcMap 10.3.1 and polygons illustrating classified 

delineated wetlands were generated using a visual analysis of 50 cm resolution orthophotographs 

and 5 m resolution RapidEye imagery. Next, polygons were sorted based on their size and 

alternately assigned to either training or testing groups. Thus, the training and testing polygons 

were obtained from independent samples to ensure robust accuracy assessment. This alternative 

assignment also ensured that both the training (~50%) and testing (~50%) polygons had equal 

numbers of small and large polygons, allowing similar pixel counts and taking into account the 

large variation of intra-wetland size. Table 7.1 presents the number of training and testing polygons 

for each class.  
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Table 7.1. Number of training and testing polygons in this study. 

Class Training Polygons Testing Polygons 

bog 92 91 

fen 93 92 

marsh 75 75 

swamp 78 79 

shallow-water 55 56 

deep-water 17 16 

upland 92 92 

urban/bare land 99 98 

total 601 599 

 

7.2.3. Satellite Data, Pre-Processing, and Feature Extraction 

7.2.3.1. SAR Imagery 

A total of 247 and 525 C-band Level-1 Ground Range Detected (GRD) Sentinel-1 SAR images in 

ascending and descending orbits, respectively, were used in this study. This imagery was acquired 

during the interval between June and August of 2016, 2017 and 2018 using the Interferometric 

Wide (IW) swath mode with a pixel spacing of 10 m and a swath of 250 km with average incidence 

angles varying between 30° and 45°. As a general rule, Sentinel-1 collects dual- (HH/HV) or 

single- (HH) polarized data over Polar Regions (i.e., sea ice zones) and dual- (VV/VH) or single- 

(VV) polarized data over all other zones. However, in this study, we took advantage of being close 

to the Polar regions and thus, both HH/HV and VV/VH data were available in our study region. 

Accordingly, of 247 SAR ascending observations (VV/VH), 12, 120 and 115 images were 

collected in 2016, 2017 and 2018, respectively. Additionally, of 525 descending observations 
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(HH/HV), 111, 260, and 154 images were acquired in 2016, 2017 and 2018, respectively. Figure 

7.2 illustrates the number of SAR observations over the summer of the aforementioned years. 

  

Figure 7.2. The total number of (a) ascending Synthetic Aperture Radar (SAR) observations 

(VV/VH) and (b) descending SAR observations (HH/HV) during summers of 2016, 2017 and 2018. 

The color bar represents the number of collected images. 

Sentinel-1 GRD data were accessed through GEE. We applied the following pre-processing steps, 

including updating orbit metadata, GRD border noise removal, thermal noise removal, radiometric 

calibration (i.e., backscatter intensity), and terrain correction (i.e., orthorectification) [41]. These 

steps resulted in generating the geo-coded backscatter intensity images. Notably, this is similar to 

the pre-processing steps implemented in the ESA’s SNAP Sentinel-1 toolbox. The unitless 

backscatter intensity images were then converted into normalized backscattering coefficient (σ0) 

values in dB (i.e., the standard unit for SAR backscattering representation). Further pre-processing 

steps, including incidence angle correction [42] and speckle reduction (i.e., 7 × 7 adaptive sigma 

Lee filter in this study) [43], were also carried out on the GEE platform. 

Following the procedure described above, 𝜎𝑉𝑉
0 , 𝜎𝑉𝐻

0 , 𝜎𝐻𝐻
0 , and 𝜎𝐻𝑉

0  (i.e., backscatter coefficient 

images) were extracted. Notably, 𝜎𝑉𝑉
0  observations are sensitive to soil moisture and are able to 

distinguish flooded from non-flooded vegetation [44], as well as various types of herbaceous 
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wetland classes (low, sparsely vegetated areas) [45]. This is particularly true for vegetation in the 

early stages of growing when plants have begun to grow in terms of height, but have not yet 

developed their canopy [44]. 𝜎𝑉𝐻
0  observations can also be useful for monitoring wetland 

herbaceous vegetation. This is because cross-polarized observations are produced by volume 

scattering within the vegetation canopy and have a higher sensitivity to vegetation structures [46]. 

𝜎𝐻𝐻
0  is an ideal SAR observation for wetland mapping due to its sensitivity to double-bounce 

scattering over flooded vegetation [47]. Furthermore, 𝜎𝐻𝐻
0  is less sensitive to the surface roughness 

compared to 𝜎𝑉𝑉
0 , making the former advantageous for discriminating water and non-water classes. 

In addition to SAR backscatter coefficient images, a number of other polarimetric features were 

also extracted and used in this study. Table 7.2 represents polarimetric features extracted from the 

dual-pol VV/VH and HH/HV Sentinel-1 images employed in this study. Figure 7.3a illustrates the 

span feature, extracted from HH/HV data, for the Island of Newfoundland.  
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Table 7.2. A description of extracted features from SAR and optical imagery. 

Data  Feature Description Formula 

Sentinel-1 

vertically transmitted, vertically received SAR 

backscattering coefficient 
𝜎𝑉𝑉

0  

vertically transmitted, horizontally received 

SAR backscattering coefficient 
𝜎𝑉𝐻

0  

horizontally transmitted, horizontally received 

SAR backscattering coefficient 
𝜎𝐻𝐻

0  

horizontally transmitted, vertically received 

SAR backscattering coefficient 
𝜎𝐻𝑉

0  

Span or total scattering power |𝑆𝑉𝑉
 |2 + |𝑆𝑉𝐻

 |2 , |𝑆𝐻𝐻
 |2 + |𝑆𝐻𝑉

 |2 

difference between co- and cross-polarized 

observations 
|𝑆𝑉𝑉

 |2 − |𝑆𝑉𝐻
 |2 , |𝑆𝐻𝐻

 |2 − |𝑆𝐻𝑉
 |2 

ratio |𝑆𝑉𝑉
 |2

|𝑆𝑉𝐻
 |2

 , 
|𝑆𝐻𝐻

 |2

|𝑆𝐻𝑉
 |2

 

Sentinel-2 

spectral bands 2 (blue), 3 (green), 4 (red) and 

8 (NIR) 
𝐵2, 𝐵3, 𝐵4, 𝐵8 

the normalized difference vegetation index 

(NDVI) 

𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

the normalized difference water index 

(NDWI) 

𝐵3 − 𝐵8

𝐵3 + 𝐵8
 

modified soil-adjusted vegetation index 2 

(MSAVI2) 
2𝐵8 + 1 − √(2𝐵8 + 1)2 − 8(𝐵8 − 𝐵4)

2
 

 

 



276 

 

  

Figure 7.3. Three examples of extracted features for land cover classification in this study. The 

multi-year summer composite of (a) span feature extracted from HH/HV Sentinel-1 data, (b) 

normalized difference vegetation index (NDVI), and (c) normalized difference water index (NDWI) 

features extracted from Sentinel-2 data. 

7.2.3.2. Optical Imagery 

Creating a 10 m cloud-free Sentinel-2 composition for the Island of Newfoundland over a short 

period of time (e.g., one month) is a challenging task due to chronic cloud cover. Accordingly, the 

Sentinel-2 composite was created for three-months between June and August, during the leaf-on 

season for 2016, 2017 and 2018. This time period was selected since it provided the most cloud-

free data and allowed for maximum wall-to-wall data coverage. Furthermore, explicit wetland 

phenological information could be preserved by compositing data acquired during this time period. 

Accordingly, monthly composite and multi-year summer composite were used to obtain cloud-

free or near-cloud-free wall-to-wall coverage. 

 Both Sentinel-2A and Sentinel-2B Level-1C data were used in this study. There were a total of 

343, 563 and 1345 images in the summer of 2016, 2017 and 2018, respectively. The spatial 

distribution of all Sentinel-2 observations during the summers of 2016, 2017 and 2018 are 

illustrated in Figure 4a. Notably, a number of these observations were affected by cloud coverage. 
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Figure 7.4b depicts the percentage of cloud cover distribution during these time periods. To 

mitigate the limitation that arises due to cloud cover, we applied a selection criteria to cloud 

percentage (<20%) when producing our cloud-free composite. Next, the QA60 bitmask band (a 

quality flag band) provided in the metadata was used to detect and mask out clouds and cirrus. 

Sentinel-2 has 13 spectral bands at various spatial resolutions, including four bands at 10 m, six at 

20 m, and three bands at 60 m spatial resolution. For this study, only blue (0.490 µm), green (0.560 

µm), red (0.665 µm), and near-infrared (NIR, 0.842 µm) bands were used. This is because the 

optical indices selected in this study are based on the above mentioned optical bands (see Table 

7.2) and, furthermore, all these bands are at a spatial resolution of 10 m. 

 
 

Figure 7.4. (a) Spatial distribution of Sentinel-2 observations (total observations) during summers of 

2016, 2017 and 2018 and (b) the number of observations affected by varying degrees of cloud cover 

(%) in the study area for each summer. 

In addition to optical bands (2, 3, 4 and 8), NDVI, NDWI and MSAVI2 indices were also extracted 

(see Table 7.2). NDVI is one of the most well-known and commonly used vegetation indices for 

the characterization of vegetation phenology (seasonal and inter-annual changes). Using the 

ratioing operation (see Table 7.2), NDVI decreases several multiplicative noises, such as sun 

illumination differences, cloud shadows, as well as some atmospheric attenuation and topographic 
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variations, within various bands of multispectral satellite images [48]. NDVI is sensitive to 

photosynthetically active biomasses and can discriminate vegetation/non-vegetation, as well as 

wetland/non-wetland classes. NDWI is also useful, since it is sensitive to open water and can 

discriminate water from land. Notably, NDWI can be extracted using different bands of 

multispectral data [49], such as green and shortwave infrared (SWIR) [50], red and SWIR [51], as 

well as green and NIR [52]. Although some studies reported the superiority of SWIR for extracting 

the water index due to its lower sensitivity to the sub-pixel non-water component [49], we used 

the original NDWI index proposed by [52] in this study. This is because it should provide accurate 

results at our target resolution and, moreover, it uses green and NIR bands of Sentinel-2 data, both 

of which are at a 10 m spatial resolution. Finally, MSAVI2 was used because it addresses the 

limitations of NDVI in areas with a high degree of exposed soil surface. Figure 7.3b,c demonstrates 

the multi-year summer composite of NDVI and NDWI features extracted from Sentinel-2 optical 

imagery.  

7.2.4. Multi-Year Monthly and Summer Composite 

Although several studies have used the Landsat archive to generate nearly-cloud-free Landsat 

composites of a large area (e.g., [53]–[55]), to the best of our knowledge, such an investigation 

has not yet been thoroughly examined for Sentinel-2 data. This is unfortunate since the latter data 

offer both improved temporal and spatial resolution relative to Landsat imagery, making them 

advantageous for producing high resolution land cover maps on a large scale. For example, Roy 

et al. (2010) produced monthly, seasonally, and yearly composites using maximum NDVI and 

brightness temperature obtained from Landsat data for the conterminous United States [55]. Recent 

studies also used different compositing approaches, such as seasonally [53] and yearly [54] 

composites obtained from Landsat data in their analysis.  
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In this study, two different types of image composites were generated: Multi-year monthly and 

summer composites. Due to the prevailing cloudy and rainy weather conditions in the study area, 

it was impossible to collect sufficient cloud-free optical data to generate a full-coverage monthly 

composite of Sentinel-2 data for classification purposes. However, we produced the monthly 

composite (optical) for spectral signature analysis to identify the month during which the most 

semantic information of wetland classes could be obtained. A multi-year summer composite was 

produced to capture explicit phenological information appropriate for wetland mapping. As 

suggested by recent research [56], the multi-year spring composite is advantageous for wetland 

mapping in the Canada’s boreal regions. This is because such time-series data capture within-year 

surface variation. However, in this study, the multi-year summer composite was used given that 

the leaf-on season begins in late spring/early summer on the Island of Newfoundland. 

Leveraging the GEE composite function, 10 m wall-to-wall, cloud-free composites of Sentinel-2 

imagery, comprising original optical bands (2, 3, 4 and 8), NDVI, NDWI, and MSAVI2 indices, 

across the Island of Newfoundland were produced. SAR features, including 𝜎𝑉𝑉
0 , 𝜎𝑉𝐻

0 , 𝜎𝐻𝐻
0 , 𝜎𝐻𝑉

0 , 

span, ratio, and difference between co- and cross-polarized SAR features (see Table 7.2), were 

also stacked using GEE’s array-based computational approach. Specifically, each monthly and 

summer season group of images were stacked into a single median composite on a per-pixel, per 

band basis. 

7.2.5. Separability Between Wetland Classes 

In this study, the separability between wetland classes was determined both qualitatively, using 

box-and-whiskers plots, and quantitatively, using Jeffries–Matusita (JM) distance. The JM 

distance indicates the average distance between the density function of two classes [57]. It uses 

both the first order (mean) and second order (variance) statistical variables from the samples and 
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has been illustrated to be an efficient separability measure for remote sensing data [58], [59]. Given 

normal distribution assumptions, the JM distance between two classes is represented as 

𝐽𝑀 = 2 (1 − 𝑒−𝐵) (7.1) 

where B is the Bhattacharyya (BH) distance given by  

𝐵 =
1

8
 (𝜇𝑖 − 𝜇𝑗)

𝑇 (
Σ𝑖 + Σ𝑗

2
)
−1

(𝜇𝑖 − 𝜇𝑗) + 
1

2
 ln (

|(𝛴𝑖 + 𝛴𝑗)/2|

√|𝛴𝑖||𝛴𝑗|

) 
(7.2) 

where 𝜇𝑖 and Σ𝑖 are the mean and covariance matrix of class 𝑖 and 𝜇𝑗 and Σ𝑗 are the mean and 

covariance matrix of class 𝑗. The JM distance varies between 0 and 2, with values that approach 2 

demonstrating a greater average distance between two classes. In this study, the separability 

analysis was limited to extracted features from optical data. This is because a detailed 

backscattering analysis of wetland classes using multi-frequency SAR data, including X-, C-, and 

L-band, has been presented in our previous study [18]. 

7.2.6. Classification Scheme 

7.2.6.1. Random Forest 

In this study, the random forest (RF) algorithm was used for both pixel-based and object-based 

wetland classifications. RF is a non-parametric classifier, comprised of a group of tree classifiers, 

and is able to handle high dimensional remote sensing data. It is also more robust compared to the 

DT algorithm and easier to execute relative to SVM. RF uses bootstrap aggregating (bagging) to 

produce an ensemble of decision trees by using a random sample from the given training data, and 

determines the best splitting of the nodes by minimizing the correlation between trees. Assigning 

a label to each pixel is based on the majority vote of trees. RF can be tuned by adjusting two input 
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parameters [60], namely the number of trees (Ntree), which is generated by randomly selecting 

samples from the training data, and the number of variables (Mtry), which is used for tree node 

splitting. In this study, these parameters were selected based on (a) direction from previous studies 

and (b) a trial-and-error approach. Specifically, Mtry was assessed for the following values (when 

Ntree was adjusted to 500): (a) One third of the total number of input features; (b) the square root 

of the total number of input features; (c) half of the total number of input features; (d) two thirds 

of the total number of input features; and (e) the total number of input features. This resulted in 

marginal or no influence on the classification accuracies. Accordingly, the square root of the total 

number of variables was selected for Mtry, as suggested by [27]. Next, by adjusting the optimal 

value for Mtry, the parameter Ntree was assessed for the following values: (a) 100; (b) 200; (c) 

300; (d) 400; (e) 500; and (f) 600. A value of 400 was then found to be appropriate in this study, 

as error rates for all classification models were constant beyond this point. The 601 training 

polygons in different categories were used to train the RF classifier on the GEE platforms (see 

Table 7.1).  

7.2.6.2. Simple Non-Iterative Clustering (SNIC) Superpixel Segmentation 

Conventional pixel-based classification algorithms rely on the exclusive use of the 

spectral/backscattering value of each pixel in their classification scheme. This results in “salt and 

pepper” noise in the final classification map, especially when high-resolution images are employed 

[61]. An object-based algorithm, however, can mitigate the problem that arises during such image 

processing by taking into account the contextual information within a given imaging neighborhood 

[62]. Image segmentation divides an image into regions or objects based on the specific parameters 

(e.g., geometric features and scaled topological relation). In this study, simple non-iterative 

clustering (SNIC) algorithm was selected for superpixel segmentation (i.e., object-based) analysis 
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[62]. The algorithm starts by initializing centroid pixels on a regular grid in the image. Next, the 

dependency of each pixel relative to the centroid is determined using its distance in the five-

dimensional space of color and spatial coordinates. In particular, the distance integrates normalized 

spatial and color distances to produce effective, compact and approximately uniform superpixels. 

Notably, there is a trade-off between compactness and boundary continuity, wherein larger 

compactness values result in more compact superpixels and, thus, poor boundary continuity. SNIC 

uses a priority queue, 4- or 8-connected candidate pixels to the currently growing superpixel 

cluster, to select the next pixels to join the cluster. The candidate pixel is selected based on the 

smallest distance from the centroid. The algorithm takes advantage of both priority queue and 

online averaging to evolve the centroid once each new pixel is added to the given cluster. 

Accordingly, SNIC is superior relative to similar clustering algorithms (e.g., Simple Linear 

Iterative Clustering) in terms of both memory and processing time. This is attributed to the 

introduction of connectivity (4- or 8-connected pixels) that results in computing fewer distances 

during centroid evolution [62]. 

7.2.6.3. Evaluation Indices 

Four evaluation indices, including overall accuracy (OA), Kappa coefficient, producer accuracy, 

and user accuracy were measured using the 599 testing polygons held back for validation purposes 

(see Table 7.1). Overall accuracy determines the overall efficiency of the algorithm and can be 

measured by dividing the total number of correctly-labeled samples by the total number of the 

testing samples. The Kappa coefficient indicates the degree of agreement between the ground truth 

data and the predicted values. Producer’s accuracy represents the probability that a reference 

sample is correctly identified in the classification map. User’s accuracy indicates the probability 
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that a classified pixel in the land cover classification map accurately represents that category on 

the ground [63].  

Additionally, the McNemar test [64] was employed to determine the statistically significant 

differences between various classification scenarios in this study. Particularly, the main goals were 

to determine: (1) Whether a statistically significant difference exists between pixel-based and 

object-based classifications based on either SAR or optical data; and (2) whether a statistically 

significant difference exists between object-based classifications using only one type of data (SAR 

or optical data) and an integration of two types of data (SAR and optical data). The McNemar test 

is non-parametric and is based on the classification confusion matrix. The test is based on a chi-

square (𝜒2) distribution with one degree of freedom [65], [66] and assumes the number of correctly 

and incorrectly identified pixels are equal for both classification scenarios [64], 

𝜒2 =
(𝑓12 − 𝑓21)

2

𝑓12 + 𝑓21
 

(7.3) 

where 𝑓12 and 𝑓21 represent the number of pixels that were correctly identified by one classifier as 

compared to the number of pixels that the other method incorrectly identified, respectively.  

7.2.7. Processing Platform 

The GEE cloud computing platform was used for both the pixel-based and superpixel RF 

classification in this study. Both Sentinel-1 and Sentinel-2 data hosted within the GEE platform 

were used to construct composite images. The zonal boundaries and the reference polygons were 

imported into GEE using Google fusion tables. A JavaScript API in the GEE code editor was used 

for pre-processing, feature extraction, and classification in this study. Accordingly, we generated 
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10 m spatial resolution wetland maps of Newfoundland for our multi-year seasonal composites of 

optical, SAR, and integration of both types of data using pixel-based and object-based approaches.  

7.3. Results 

7.3.1. Spectral Analysis of Wetland Classes Using Optical Data 

To examine the discrimination capabilities of different spectral bands and vegetation indices, 

spectral analysis was performed for all wetland classes. Figures 7.5, 7.6 and 7.7 illustrate the 

statistical distribution of reflectance, NDVI, NDWI, and MSAVI2 values for the multi-year 

monthly composites of June, July, and August, respectively, using box-and-whisker plots.  

 

Figure 7.5. Box-and-whisker plot of the multi-year June composite illustrating the distribution of 

reflectance, NDVI, NDWI, and MSAVI2 for wetland classes obtained using pixel values extracted 

from training datasets. Note that black, horizontal bars within boxes illustrate median values, boxes 

demonstrate the lower and upper quartiles, and whiskers extend to minimum and maximum values. 

As shown, all visible bands poorly distinguish spectrally similar wetland classes, especially the 

bog, fen, and marsh classes. The shallow-water class, however, can be separated from other classes 
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using the red band in August (see Figure 7.7). Among the original bands, NIR represents clear 

advantages when discriminating the shallow-water from other classes (see Figures 7.5, 7.6 and 

7.7), but is not more advantageous for classifying herbaceous wetland classes. Overall, vegetation 

indices are superior when separating wetland classes compared to the original bands.  

 

Figure 7.6. Box-and-whisker plot of the multi-year July composite illustrating the distribution of 

reflectance, NDVI, NDWI, and MSAVI2 for wetland classes obtained using pixel values extracted 

from training datasets. 

As illustrated in Figures 7.5, 7.6 and 7.7, the shallow-water class is easily distinguishable from 

other classes using all vegetation indices. The swamp and bog classes are also separable using the 

NDVI index from all three months. Although both NDVI and MSAVI2 are unable to discriminate 

herbaceous wetland classes using the June composite, the classes of bog and fen are distinguishable 

using the NDVI index obtained from the July and August composites.  
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Figure 7.7. Box-and-whisker plot of the multi-year August composite illustrating the distribution of 

reflectance, NDVI, NDWI, and MSAVI2 for wetland classes obtained using pixel values extracted 

from training datasets. 

The mean JM distances obtained from the multi-year summer composite for wetland classes are 

represented in Table 7.3.  

Table 7.3. Jeffries–Matusita (JM) distances between pairs of wetland classes from the multi-year summer 

composite for extracted optical features in this study. 

Optical features  d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 

blue 0.002 0.204 0.470 1.153 0.232 0.299 1.218 0.520 1.498 0.380 

green 0.002 0.331 0.391 0.971 0.372 0.418 1.410 0.412 1.183 0.470 

red 0.108 0.567 0.570 1.495 0.546 0.640 1.103 0.634 1.391 0.517 

NIR 0.205 0.573 0.515 1.395 0.364 0.612 1.052 0.649 1.175 1.776 

NDVI 0.703 0.590 0.820 1.644 0.586 0.438 1.809 0.495 1.783 1.938 

NDWI 0.268 0.449 0.511 1.979 0.643 0.519 1.792 0.760 1.814 1.993 

MSAVI2 0.358 0.509 0.595 1.763 0.367 0.313 1.745 0.427 1.560 1.931 

all 1.098 1.497 1.561 1.999 1.429 1.441 1.999 1.614 1.805 1.999 

Note: d1: Bog/Fen, d2: Bog/Marsh, d3: Bog/ Swamp, d4: Bog/Shallow-water, d5: Fen/Marsh, d6: Fen/Swamp, d7: Fen/Shallow-

water, d8: Marsh/Swamp, d9: Marsh/Shallow-water, and d10: Swamp/Shallow-water. 

According to the JM distance, shallow-water is the most separable class from other wetland 

classes. In general, all wetland classes, excluding shallow-water, are hardly distinguishable from 

each other using single optical feature and, in particular, bog and fen are the least separable classes. 
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However, the synergistic use of all features considerably increases the separability between 

wetland classes, with JM values exceeding 1.4 in most cases; however, bog and fen remain hardly 

discernible in this case.  

7.3.2. Classification 

The overall accuracies (OA) and Kappa coefficients of different classification scenarios are 

presented in Table 7.4. Overall, the classification results using optical imagery were more 

advantageous relative to SAR imagery. As illustrated, the optical imagery resulted in 

approximately 4% improvements in both the pixel-based and object-based approaches. 

Furthermore, object-based classifications were found to be superior to pixel-based classifications 

using optical (~6.5% improvement) and SAR (~6% improvements) imagery in comparative cases. 

It is worth noting that the accuracy assessment in this study was carried out using the testing 

polygons well distributed across the whole study region. 

Table 7.4. Overall accuracies and Kappa coefficients obtained from different classification scenarios in this 

study. 

Classification Data composite Scenario Overall accuracy (%) Kappa coefficient 

pixel-based 
SAR S1 73.12 0.68 

Optic S2 77.16 0.72 

object-based 

SAR S3 79.14 0.74 

Optic S4 83.79 0.80 

SAR + optic S5 88.37 0.85 

The McNemar test revealed that the difference between the accuracies of pixel-based and object-

based classifications was statistically significant when either SAR (p = 0.023) or optical (p = 0.012) 

data were compared (see Table 7.5). There was also a statistically very significant difference 

between object-based classifications using SAR vs. SAR/optical data (p = 0.0001) and optical vs 

SAR/optical data (p = 0.008).  
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Table 7.5. The results of McNemar test for different classification scenarios in this study. 

Scenarios  𝝌𝟐 p-value 

S1 vs. S3 5.21 0.023 

S2 vs. S4 6.27 0.012 

S3 vs. S5 9.27 0.0001 

S4 vs. S5 7.06 0.008 

Figure 7.8 demonstrates the classification maps using SAR and optical multi-year summer 

composites for Newfoundland obtained from pixel- and object-based RF classifications. They 

illustrate the distribution of land cover classes, including both wetland and non-wetland classes, 

identifiable at a 10 m spatial resolution. In general, the classified maps indicate fine separation of 

all land cover units, including bog and fen, shallow- and deep-water, and swamp and upland, as 

well as other land cover types.  
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Figure 7.8. The land cover maps of Newfoundland obtained from different classification scenarios, 

including (a) S1, (b) S2, (c) S3 and (d) S4 in this study. 

Figure 7.9 depicts the confusion matrices obtained from different methods, wherein the diagonal 

elements are the producer’s accuracies. The user’s accuracies of land cover classes using different 

classification scenarios are also demonstrated in Figure 7.10. Overall, the classification of wetlands 

have lower accuracies compared to those of the non-wetland classes. In particular, the 

classification of swamp has the lowest producer’s and user’s accuracies among wetland (and all) 

classes in this study. In contrast, the classification accuracies of bog and shallow-water are higher 

(both user’s and producer’s accuracies) than the other wetland classes.  
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(a) (b) 

  

(c) (d) 

Figure 7.9. The confusion matrices obtained from different classification scenarios, including 

(a) S1, (b) S2, (c) S3 and (d) S4 in this study. 

Notably, all methods successfully classified the non-wetland classes with producer’s accuracies 

beyond 80%. Among the first four scenarios, the object-based classification using optical imagery 

(i.e., S4) was the most successful approach for classifying the non-wetland classes, with producer’s 
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and user’s accuracies exceeding 90% and 80%, respectively. The wetland classes were also 

identified with high accuracies in most cases (e.g., bog, fen, and shallow-water) in S4.  

 
Figure 7.10. The user’s accuracies for various land cover classes in different classification 

scenarios in this study. 

The object-based approach, due to its higher accuracies, was selected for the final classification 

scheme in this study, wherein the multi-year summer SAR and optical composites were integrated 

(see Figure 7.11). 
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Figure 7.11. The final land cover map for the Island of Newfoundland obtained from the object-

based Random Forest (RF) classification using the multi-year summer SAR/optical composite. An 

overall accuracy of 88.37% and a Kappa coefficient of 0.85 were achieved. A total of six insets 

and their corresponding optical images (i.e., Sentinel-2) were also illustrated to appreciate some of 

the classification details. 
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The final land cover map is noiseless and accurately represents the distribution of all land cover 

classes on a large scale. As shown, the classes of bog and upland are the most prevalent wetland 

and non-wetland classes, respectively, in the study area. These observations agree well both with 

field notes recorded by biologists during the in-situ data collection and with visual analysis of 

aerial and satellite imagery. Figure 7.11 also illustrates several insets from the final land cover map 

in this study. The visual interpretation of the final classified map by ecological experts 

demonstrated that most land cover classes were correctly distinguished across the study area. For 

example, ecological experts noted that bogs appear as a reddish color in optical imagery (true color 

composite). As shown in Figure 7.11, most bog wetlands are accurately identified in all zoomed 

areas. Furthermore, small water bodies (e.g., small ponds) and the perimeter of deep water bodies 

are correctly mapped belonging to the shallow-water class. The upland and urban/bare land classes 

were also correctly distinguished.  

The confusion matrix for the final classification map is illustrated in Figure 7.12. Despite the 

presence of confusion among wetland classes, the results obtained from the multi-year SAR/optical 

composite were extremely positive, taking into account the complexity of distinguishing similar 

wetland classes. As shown in Figure 7.12, all non-wetland classes and shallow-water were 

correctly identified with producer’s accuracies beyond 90%. The most similar wetland classes, 

namely bog and fen, were classified with producer’s accuracies exceeding 80%. The other two 

wetland classes were also correctly identified with a producer’s accuracy of 78% for marsh and 

70% for swamp. 
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Figure 7.12. The confusion matrix for the final classification map obtained from the object-based 

RF classification using the multi-year summer SAR/optical composite (OA: 88.37%, K: 0.85). 

7.4. Discussion 

In general, the results of the spectral analysis demonstrated the superiority of the NIR band 

compared to the visible bands (i.e., blue, green, and red) for distinguishing various wetland classes. 

This was particularly true for shallow-water, which was easily separable using NIR. This is logical, 

given that water and vegetation exhibit strong absorption and reflection, respectively, in this region 

of the electromagnetic spectrum. NDVI was found to be the most useful vegetation index. This 

finding is potentially explained by the high sensitivity of NDVI to photosynthetically active 

biomasses [48]. Furthermore, the results of the spectral analysis of wetland classes indicated that 

class separability using the NDVI index is maximized in July, which corresponds to the peak 

growing season in Newfoundland. According to the box-and-whisker plots and the JM distances, 

the spectral similarities of wetland classes are slightly concerning, as they revealed the difficulties 

in distinguishing similar wetland classes using a single optical feature, which is in agreement with 
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a previous study [43]. However, the inclusion of all optical features significantly increased the 

separability between wetland classes. 

As shown in Figure 7.9, confusion errors occurred among all classes, especially those of wetlands 

using the pixel-based classification approach. Notably, the highest confusion was found between 

the swamp and upland classes in some cases. The upland class is characterized by dry forested 

land, and swamps are specified as woody (forested) wetland. This results in similarities in both the 

visual appearance and spectral/backscattering signatures for these classes. With regard to SAR 

signatures, for example, the dominant scattering mechanism for both classes is volume scattering, 

especially when the water table is low in swamp [67], which contributes to the misclassification 

between the two. This is of particular concern when shorter wavelengths (e.g., C-band) are 

employed, given their shallower penetration depth relative to that of longer wavelengths (e.g., L-

band).  

Confusion was also common among the herbaceous wetland classes, namely bog, fen, and marsh. 

This is attributable to the heterogeneity of the landscape in the study area. As field notes suggest, 

the herbaceous wetland classes were found adjacent to each other without clear cut borders, 

making them hardly distinguishable. This is particularly severe for bog and fen, since both have 

very similar ecological and visual characteristics. For example, both are characterized by 

peatlands, dominated by ecologically similar vegetation types of Sphagnum in bogs and Graminoid 

in fens.  

Another consideration when interpreting the classification accuracies for different wetland classes 

is the availability of the training samples/polygons for the supervised classification. As shown in 

Table 7.1, for example, bogs have a larger number of training polygons compared to the swamp 
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class. This is because NL has a moist and cool climate [38], which contributes to extensive peatland 

formation. Accordingly, bog and fen were potentially the most visited wetland classes during in-

situ data collection. This resulted in the collection of a larger number of training samples/polygons 

for these classes. On the other hand, the swamp class is usually found in physically smaller areas 

relative to those of other classes; for example, in transition zones between wetland and other land 

cover classes. As such, they may have been dispersed and mixed with other land cover classes, 

making them difficult to distinguish by the classifier. 

Comparison of the classification accuracies using optical and SAR images (i.e., S1 vs. S2 and S3 

vs. S4) indicated, according to all evaluation indices in this study, the superiority of the former 

relative to the latter for wetland mapping in most cases. This suggests that the phenological 

variations in vegetative productivity captured by optical indices (e.g., NDVI), as well as the 

contrast between water and non-water classes captured by the NDWI index are more efficient for 

wetland mapping in our study area than the extracted features from dual-polarimetric SAR data. 

This finding is consistent with the results of a recent study [11] that employed optical, SAR, and 

topographic data for predicting the probability of wetland occurrence in Alberta, Canada, using 

the GEE platform. However, it should be acknowledged that the lower success of SAR compared 

to optical data is, at least, partially related to the fact that the Sentinel-1 sensor does not collect 

full-polarimetric data at the present time. This hinders the application of advanced polarimetric 

decomposition methods that demand full-polarimetric data. Several studies highlighted the great 

potential of polarimetric decomposition methods for identifying similar wetland classes by 

characterizing their various scattering mechanisms using such advanced approaches [47].  

Despite the superiority of optical data relative to SAR, the highest classification accuracy was 

obtained by integrating multi-year summer composites of SAR and optical imagery using the 
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object-based approach (see Table 7.4(S5)). In particular, this classification scenario demonstrates 

an improvement of about 9% and 4.5% in overall accuracy compared to the object-based 

classification using the multi-year summer SAR and optical composites, respectively. This is 

because optical and SAR data are based on range and angular measurements and collect 

information about the chemical and physical characteristics of wetland vegetation, respectively 

[68]; thus, the inclusion of both types of observations enhances the discrimination of 

backscattering/spectrally similar wetland classes [36]. Accordingly, it was concluded that the 

multi-year summer SAR/optical composite is very useful for improving overall classification 

accuracy by capturing chemical, biophysical, structural, and phenological variations of herbaceous 

and woody wetland classes. This was later reaffirmed via the confusion matrix (see Figure 7.12) 

of the final classification map, wherein confusion decreased compared to classifications based on 

either SAR or optical data (see Figure 7.9). Furthermore, the McNemar test indicated that there 

was a very statistically significant difference (p < 0.05) for object-based classifications using SAR 

vs optical/SAR (S3 vs. S5) and optical vs optical/SAR (S4 vs. S5) models (see Table 7.5).  

Notably, the multi-year summer SAR/optical composite improved the producer’s accuracies of 

marsh and swamp classes. Specifically, the inclusion of SAR and optical data improved the 

producer’s accuracies of marsh in the final classification map by about 14% and 11% compared to 

the object-based classification using SAR and optical imagery on their own, respectively. This, 

too, occurred to a lesser degree for swamp, wherein the producer’s accuracies improved in the 

final classified map by about 12% and 10% compared to those of object-based classified maps 

using optical and SAR imagery, respectively. The accuracies for other wetland classes, namely 

bog and fen, were also improved by about 4% and 5%, respectively, in this case relative to the 

object-based classification using the multi-year optical composite.  
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Despite significant improvements in the producer’s accuracies for some wetland classes (e.g., 

marsh and swamp) using the SAR/optical data composite, marginal to no improvements were 

obtained in this case for the non-wetland classes compared to classification based only on optical 

data. In particular, the use of SAR data does not offer substantial gains beyond the use of optical 

imagery for distinguishing typical land cover classes, such as urban and deep-water, nor does it 

present any clear disadvantages. Nevertheless, combining both types of observations addresses the 

limitation that arises due to the inclement weather in geographic regions with near-permanent 

cloud cover, such as Newfoundland. Therefore, the results reveal the importance of incorporating 

multi-temporal optical/SAR data for classification of backscattering/spectrally similar land cover 

classes, such as wetland complexes. Accordingly, given the complementary advantages of SAR 

and optical imagery, the inclusion of both types of data still offers a potential avenue for further 

research in land cover mapping on a large scale. 

The results demonstrate the superiority of object-based classification compared to the pixel-based 

approach in this study. This is particularly true when SAR imagery was employed, as the 

producer’s accuracies for all wetland classes were lower than 70% (see Figure 7.9a). Despite 

applying speckle reduction, speckle noise can remain, and this affects the classification accuracy 

during such processing. In contrast to the pixel-based approach, object-based classification 

benefits from both backscattering/spectral information, as well as contextual information within a 

given neighborhood. This further enhances semantic land cover information and is very useful for 

the classification of SAR imagery. 

As noted in a previous study [69], the image mosaicking technique over a long time-period may 

increase classification errors in areas of high inter-annual change, causing a signal of seasonality 

to be overlooked. Although this image mosaicking technique is essential for addressing the 
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limitation of frequent cloud cover for land cover mapping using optical remote sensing data across 

a broad spatial scale, this was mitigated in this study to a feasible extent. In particular, to diminish 

the effects of multi-seasonal observations, the mosaicked image in this study was produced from 

the multi-year summer composite rather than the multi-year, multi-seasonal composite. The 

effectiveness of using such multi-year seasonal (e.g., either spring or summer) composites has 

been previously highlighted, given the potential of such data to capture surface condition variations 

beneficial for wetland mapping [56]. The overall high accuracy of this technique obtained in this 

study further corroborates the value of such an approach for mapping wetlands at the provincial-

level.  

Although the classification accuracies obtained from our previous studies were slightly better in 

some cases (e.g., [18]), our previous studies involve more time and resources when compared with 

the current study. For example, our previous study incorporated multi-frequency (X-, C-, and L-

bands), multi-polarization (full-polarimetric RADARSAT-2) SAR data to produce local-scale 

wetland inventories. However, the production of such inventories demanded significant levels of 

labor, in terms of data preparation, feature extraction, statistical analysis, and classification. 

Consequently, updating wetland inventories using such methods on a regular basis for a large scale 

is tedious and expensive. In contrast, the present study relies on open access, regularly updated 

remotely sensed imagery collected by the Sentinel Missions at a 10 m spatial resolution, which is 

of great value for provincial- and national-scale wetland inventory maps that can be efficiently and 

regularly updated. 

As mentioned earlier, GEE is an ideal platform that hosts Sentinel-1 and Sentinel-2 data and offers 

advanced processing functionally. This removes the process of downloading a large number of 

satellite images, which are already in “analysis ready” formats [30] and, as such, offers significant 
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built-in time saving aspects [84]. Despite these benefits, limitations with GEE are related to both 

the lack of atmospherically-corrected Sentinel-2 data within its archive and the parallel method of 

the atmospheric correction at the time of this research. This may result in uncertainty due to the 

bidirectional reflectance effects caused by variations in sun, sensor, and surface geometries during 

satellite acquisitions. Such an atmospheric correction algorithm has been carried out in local 

applications, such as the estimation of forest aboveground biomass [70], using the Sentinel-2 

processing toolbox. Notably, Level-2A Sentinel-2 bottom-of-atmosphere (BOA) data that are 

atmospherically-corrected are of great value for extracting the most reliable temporal and spatial 

information, but such data are not yet available within GEE. Recent research, however, reported 

the potential of including BOA Sentinel-2 data in the near future into the GEE archive [10]. 

Although the high accuracies of wetland classifications in this study indicated that the effects of C 

(TOA) reflectance could be negligible, a comparison between TOA and BOA Sentinel-2 data for 

wetland mapping is suggested for future research. 

In the near future, the addition of more machine learning tools and EO data to the GEE API and 

data catalog, respectively, will further simplify information extraction and data processing. For 

example, the availability of deep learning approaches through the potential inclusion of 

TensorFlow in the GEE platform will offer unprecedented opportunities for several remote sensing 

tasks [9]. Currently, however, employing state-of-the-art classification algorithms across broad 

spatial scales requires downloading data for additional local processing tasks and uploading data 

back to GEE due to the lack of functionality for such processing at present. Downloading such a 

large amount of remote sensing data is time consuming, given bandwidth limitations, and further, 

its processing demands a powerful local processing machine. Nevertheless, full exploitation of 
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deep learning methods for mapping wetlands at hierarchical levels requires abundant, high-quality 

representative training samples. 

The approaches presented in this study may be extended to generate a reliable, hierarchical, 

national-scale Canadian wetland inventory map and are an essential step toward global-scale 

wetland mapping. However, more challenges are expected when the study area is extended to the 

national-scale (i.e., Canada) with more cloud cover, more fragmented landscapes, and various 

dominant wetland classes across the country [71]. Notably, the biggest challenge in producing 

automated, national-scale wetland inventories is collecting a sufficient amount of high quality 

training and testing samples to support dependable coding, rapid product delivery, and accurate 

wetland mapping on large scale. Although using GEE for discriminating wetland and non-wetland 

samples could be useful, it is currently inefficient for identifying hierarchical wetland ground-truth 

data. There are also challenges related to inconsistency in terms of wetland definitions at the 

global-scale that can vary by country (e.g., Canadian Wetland Classification System, New 

Zealand, and East Africa) [1]. However, given recent advances in cloud computing and big data, 

these barriers are eroding and new opportunities for more comprehensive and dynamic views of 

the global extent of wetlands are arising. For example, the integration of Landsat and Sentinel data 

using the GEE platform will address the limitations of cloud cover and lead to production of more 

accurate, finer category wetland classification maps, which are of great benefit for hydrological 

and ecological monitoring of these valuable ecosystems. The results of this study suggest the 

feasibility of generating provincial-level wetland inventories by leveraging the opportunities 

offered by cloud-computing resources, such as GEE. The current study will contribute to the 

production of regular, consistent, provincial-scale wetland inventory maps that can support 

biodiversity and sustainable management of Newfoundland and Labrador’s wetland resources.  
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7.5. Conclusion 

Cloud-based computing resources and open-access EO data have caused a remarkable paradigm-

shift in the field of landcover mapping by replacing the production of standard static maps with 

those that are more dynamic and application-specific thanks to recent advances in geospatial 

science. Leveraging the computational power of the Google Earth Engine and the availability of 

high spatial resolution remote sensing data collected by Copernicus Sentinels, the first detailed 

(category-based), provincial-level wetland inventory map was produced in this study. In particular, 

multi-year summer Sentinel-1 and Sentinel-2 data were used to map a complex series of small and 

large, heterogeneous wetlands on the Island of Newfoundland, Canada, covering an approximate 

area of 106,000 km2.  

Multiple classification scenarios, including those that were pixel- versus object-based, were 

considered and the discrimination capacities of optical and SAR data composites were compared. 

The results revealed the superiority of object-based classification relative to the pixel-based 

approach. Although classification accuracy using the multi-year summer optical composite was 

found to be more accurate than the multi-year summer SAR composite, the inclusion of both types 

of data (i.e., SAR and optical) significantly improved the accuracies of wetland classification. An 

overall classification accuracy of 88.37% was achieved using an object-based RF classification 

with the multi-year (2016–2018) summer optical/SAR composite, wherein wetland and non-

wetland classes were distinguished with accuracies beyond 70% and 90%, respectively.  

This study further contributes to the development of Canadian wetland inventories, characterizes 

the spatial distribution of wetland classes over a previously unmapped area with high spatial 

resolution, and importantly, augments previous local-scale wetland map products. Given the 

relatively similar ecological characteristics of wetlands across Canada, future work could extend 
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this study by examining the value of the presented approach for mapping areas containing wetlands 

with similar ecological characteristics and potentially those with a greater diversity of wetland 

classes in other Canadian provinces and elsewhere. Further extension of this study could also focus 

on exploring the efficiency of a more diverse range of multi-temporal datasets (e.g., the 30 years 

Landsat dataset) to detect and understand wetland dynamics and trends over time in the province 

of Newfoundland and Labrador.  
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Chapter 8. Summary, conclusions, and future outlook  

8.1. Summary 

This thesis examined the potential of various EO data, including optical (i.e., RapidEye and 

Sentinel-2) and SAR (i.e., ALOS PALSAR-2, RADARSAT-2, TerraSAR-X, and Sentinel-1) 

imagery for discriminating Canadian wetland classes, namely bog, fen, marsh, swamp, and 

shallow-water in Newfoundland and Labrador. This study compared the advantages and 

disadvantages of the aforementioned EO data and the extracted features from such data for 

distinguishing similar wetland classes. Various new techniques were introduced to improve and 

contribute to the methodologies developed in the existing literature for land cover and, in 

particular, wetland mapping.  

 The importance of employing an efficient speckle reduction method was discussed based on the 

literature review and was later supported by proposing a new speckle reduction technique for 

PolSAR data. The study also demonstrated the significance of a hierarchical classification scheme 

for discriminating complex land cover units. This is a paradigm shift that benefits from a dynamic 

classification design based on the complexity and similarity of land cover (wetland) classes, rather 

than on a single stream processing chain, which is better suited for the classification of typical land 

cover classes. The proposed approach achieved a competitive classification accuracy using single 

source EO data (i.e., only SAR images). 

This thesis also illustrated the strengths of the proposed feature weighting of PolSAR data in 

enhancing semantic land cover information. The proposed method considered both the statistical 

and physical characteristics of PolSAR data and resulted in significant improvements in overall 

classification results, as compared to those classifications based on typical PolSAR features. The 
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investigation of extracted features from simulated compact polarimetric SAR data revealed their 

ability to distinguish wetland classes with similar backscattering signatures.  

 The study also demonstrated that, compared to conventional machine learning tools, such as RF 

and SVM, deep CNNs were advantageous for the classification of complex land cover ecosystems. 

This is because the latter approaches attained significantly higher classification accuracies and 

removed the tedious process of feature engineering design. Finally, the production of the first 

provincial-scale wetland inventory map of NL revealed a paradigm-shift from standard static 

products and approaches toward generating more dynamic, on-demand, large-scale wetland 

coverage maps through advanced cloud computing resources that simplify access to and 

processing of “Geo Big Data”. 

 8.2. Conclusion 

Given both the economical and environmental benefits of wetlands [1], there have been significant 

efforts for wetland mapping and monitoring using remote sensing imagery worldwide [2]–[7]. In 

particular, the production of updated wetland inventory maps are of particular interest for 

monitoring changes and for sustainable management of these productive ecosystems [8]. This 

dissertation represents an advancement toward the cost-effective production of operational 

wetland inventory maps using advanced remote sensing tools and data. This results in several 

developed methodologies for wetland classification and beyond [9]–[14], as well as the production 

of several small-scale maps and, importantly, a provincial-scale wetland inventory map of 

Newfoundland and Labrador [15]. The specific conclusions of this study are described below. 

8.2.1. PolSAR image processing: speckle reduction  

A new speckle reduction method was proposed and its effectiveness was evaluated at two stages: 

de-speckled images and classification results [9]. The proposed de-speckling method was 
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advantageous compared to several well-known methods, including Frost [16], Kuan [17], 

enhanced Lee [18], and SARBM3D [19]. Hence, it was concluded that both contextual and pixel-

wised analysis in a Gaussian Markov Random Field (GMRF) based on a Bayesian framework are 

useful for PolSAR image de-speckling. To the best of the author’s knowledge, the effect of 

PolSAR image de-speckling on the accuracy of wetland classification was first investigated in this 

research. The results of this study revealed that speckle reduction is a crucial pre-processing step 

for PolSAR image applications.  

8.2.2. Wetland classification using PolSAR imagery 

In this thesis, two new methodologies were developed for wetland classification using data 

collected from SAR sensors, and the capabilities of the proposed methods were compared with 

those of conventional algorithms [11], [12]. The hierarchical classification algorithm proposed in 

Chapter 3 demonstrated that some wetland classes are easier to distinguish compared to others. 

For example, the shallow-water class was discriminable using only SAR backscattering analysis, 

as it had the lowest SAR responses compared to other wetland classes. Hence, it was concluded 

that the discrimination of this class does not require the exploitation of advanced polarimetric 

decomposition methods. In contrast, herbaceous wetland classes (e.g., bog, fen, and marsh) were 

found to be difficult to distinguish based only on SAR backscattering analysis and the 

discrimination of these classes requires the use of polarimetric decompositions. In Chapter 3, 

features were extracted from single-pol TerraSAR-X, dual-pol ALOS PALSAR-2, and full-pol 

RADARSAT-2 imagery. Overall, features extracted from full-polarimetry data were found to be 

better for discrimination of similar wetland classes. A total of 44 polarimetric features, including 

features from covariance and coherency matrices, the Cloude-Pottier [20], Freeman-Durden [21], 

Touzi [22], and Yamaguchi [23] decompositions, as well as Kennaugh matrix elements were 
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extracted from dual- and full-pol data and were incorporated into the final classification scheme. 

The variable importance analysis of RF revealed the superiority of extracted features from the 

Kennaugh matrix element, Yamaguchi, and Freeman-Durden decompositions for wetland 

mapping.  

Furthermore, to enhance the discrimination capability of the input data prior to their incorporation 

into the classification scheme, a new PolSAR feature, the modified coherency matrix, was 

proposed [12]. The proposed feature was developed based on both the physical and statistical 

characteristics of PolSAR data and was applied to full polarimetric RADARSAT-2 image. This is 

an adaptive feature weighting, as it increases the contribution of the most discriminant features 

and decreases that of the least separable features by assigning them higher and lower weights, 

respectively. The experimental results illustrated the superiority of the proposed approach 

compared to other well-known PolSAR features for wetland classification. Notably, the feature 

pair selected in Chapter 3 demonstrated a higher classification accuracy compared to Chapter 4 in 

the last classification scenarios of both studies for the Avalon study area. This may be attributed 

to the contribution of L-band data with deeper penetration depth in the former study, as compared 

to that of the latter, for which only C-band data were used.  

In addition to the developed methodologies of wetland mapping using currently operating SAR 

missions, we examined the transferability of existing methods to data to be collected by the 

upcoming RADARSAT Constellation Mission (RCM) [10]. Several features were extracted from 

simulated CP SAR data and their discrimination capabilities were compared with those of full- 

and dual-polarimetrtic data. The experimental results confirmed the potential of data collected 

from CP for wetland classification. Furthermore, the increased temporal frequency of image 
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acquisitions and large swath coverage of RCM further enhance its capability for operational 

applications [24].  

Overall, Chapters 3, 4, and 5 present novel approaches for classifying wetland classes and improve 

our understanding for mapping these productive ecosystems using SAR and PolSAR data.  

8.2.3. Deep Convolutional Neural Network (CNN) for wetland classification  

In this thesis, very deep CNNs were adopted for the classification of multi-spectral RapidEye 

optical imagery for the first time. One of the limitations of these deep CNNs for remote sensing 

applications is that they were originally designed to handle three input bands. This was addressed 

in this research by developing a pipeline in Python capable of handling data with more than three 

input bands [13]. Seven state-of-the-art deep CNNs, namely DenseNet121 [25], InceptionV3 [26], 

VGG16, VGG19 [27], Xception [28], ResNet50 [29], and InceptionResNetV2, were adopted for 

the classification of wetland complexes. Two strategies were carried out for training these deep 

CNNs: fine-tuning of pre-trained networks using three input bands and full-training using three- 

and five-input bands. The experimental results revealed the full-training of five input bands was 

advantageous relative to other approaches, thus confirming the significance of the developed 

technique (i.e., adoption of five input bands) for discriminating similar wetland classes.  

8.2.4. Wetland classification on large scales 

The intent of this part of research was to illustrate the capability of cloud-based computing 

resources, such as Google Earth Engine (GEE), and the significance of open access Earth 

Observation (EO) data, such as Sentinel-1 and Sentinel-2, for generating custom, on demand, 

large-scale land cover maps. Leveraging the GEE computational power and large pool of open 

access optical and SAR data collected by the Copernicus Sentinels, we produced wetland inventory 

maps of Newfoundland and Labrador and the other Canadian provinces (i.e., Alberta, British 



314 

 

Columbia, and Ontario) at a spatial resolution of 10 m. The classification maps were produced 

using optical, SAR, and the integration of both types of data. The highest classification accuracy 

was attained by compositing multi-source (optical and SAR) EO data. This is because the SAR 

signal is responsive to geometrical and physical characteristics of targets, whereas optical data are 

responsive to chemical and molecular characteristics of targets. Thus, the integration of both types 

of data was advantageous for discriminating wetland classes with similar backscatter and spectral 

signatures. The developed algorithm in GEE for processing Geo Big data clearly demonstrated the 

ability to discriminate wetland classes with various sizes accurately at a large scale (~500,531km2). 

The resulting ever-in-demand inventory map of the Atlantic provinces is of great interest to and 

can be used by many stakeholders, including federal and provincial governments, municipalities, 

NGOs, and environmental consultants. 

8.3. Future outlook 

Remote sensing data have long proven to be effective for wetland mapping and monitoring [2], 

[3], [30], yet some limitations remain. These challenges include the backscattering/spectrally 

similar signature of wetland classes, insufficient classification accuracy of wetland classes, and 

limitations of wetland mapping on large scales. While most of these limitations are addressed in 

this dissertation, some recommendations for future research are given in the following.  

All methods proposed in this thesis have been tested and applied to wetland classification (see 

Chapters 2, 3, and 4). However, more extensive testing is required to further confirm the potential 

of these developed algorithms in other applications. In addition to examining the capability of 

these methods for other wetlands globally, they have potential for classifying other complex land 

cover ecosystems, such as sea ice and crop classifications. This will further move these proposed 

methods from the research stage to the operational stage. Our comparison between data collected 
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by multi-frequency SAR sensors for wetland mapping could also be further improved (Chapter 3). 

In particular, we used single-pol TerraSAR-X, dual-pol ALOS-2, and full-pol RADARSAT-2 data, 

as these data were available at the time of this research. Although full-pol TerraSAR-X data are 

not yet available, a comparison and utilization of full-pol ALOS-2 and RADARSAT-2 offer a 

potential avenue for future research. Furthermore, the classification results obtained from 

simulated CP SAR data in this study can be validated when real CP SAR data are available by 

RCM.  

As mentioned earlier, the proposed coherency matrix was developed based on the physical and 

statistical characteristics of PolSAR data. For the statistical component, a Fisher Linear 

Discriminant Analysis (FLDA) was considered, whereas an H/α Wishart classification was used 

for physical interpretation of PolSAR data [31]. Alternative approaches, such as the physical 

interpretation of extracted features from Freeman-Durden [21] and Touzi [22] decompositions, 

could also be explored. The results of such an investigation may further deepen our knowledge of 

polarimetric decomposition techniques for wetland characterization.  

Most wetland studies have focused on the production of small-scale (regional) wetland inventory 

maps [3], [32], [33]. Although these small-scale wetland inventories are useful, they are obtained 

by applying different methodologies and incorporating various types of data, making them 

incomparable and inconsistent [1]. This study clearly demonstrated the capability of cloud 

computing resources and open access EO data for wetland mapping and monitoring [15]. Such 

investigations in other Canadian provinces, as well as at the national scale (Canada wide), should 

be increased. However, collecting country wide ground truth data with sufficient accuracy will be 

essential for such an investigation. Accordingly, to produce a comprehensive national-scale 

wetland inventory map, efforts to collect accurate ground truth data in other provinces should be 
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initiated or continued. This necessitates the incorporation of several government and non-

government organizations. Importantly, Landsat sensors have been collecting frequent EO data for 

over 30 years. These time series of EO data along with powerful cloud computing resources offer 

unprecedented opportunities for wetland change detection at provincial and national scales.     

Wetland classification using EO data has shown promising results in several studies (e.g., [2], 

[34]–[37]) with varying degrees of accuracy, depending on the type of data and applied techniques. 

In this study, the integration of multi-sensor SAR (Chapter 3) and multi-source optical and SAR 

(Chapter 7) data was found to be useful. This suggests that the inclusion of various source of EO 

data is promising and should be further examined in the future. This may include data collected by 

SAR, optical, and Light Detection and Ranging (Lidar) sensors. In addition to the expected 

improvement in overall classification accuracy by employing such a multi-sensor, multi-source 

approach, as in this thesis, it also addresses the limitations of single source (or type) of data. For 

example, the integration of optical and SAR data not only increases the sensitivity to the various 

characteristics of ground targets but addresses the limitations that may arise due to chronic cloud 

cover upon the exclusive use of optical data. Furthermore, lower ground feature detectability 

within SAR data due to the presence of speckle noise may also be addressed using this technique.  

Another area for future research is consideration of the scale effect. It is beneficial to examine the 

level of required spatial and spectral resolutions for particular applications. Higher spatial 

resolution data provide much detail of wetland classes, but is both cost- and resource-intensive. 

However, such detailed information may not be mandatory in some applications, such as wetland 

boundary identification and the temporal trends of wetlands. Thus, the most appropriate data 

resolution should be determined based on specific research objectives and questions. 
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Finally, wetland studies incorporating a multidisciplinary approach should be undertaken, as 

geography, ecology, environmental science, and remote sensing are capable of mapping and 

managing wetlands from different perspectives [38]. Given the high variability and diversity of 

wetlands worldwide, a clear management strategy is lacking in most cases, although such a 

strategy is necessary for the restoration and effective protection of wetlands. Thus, the synergistic 

use of remote sensing for wetland mapping, along with advanced technologies for wetland 

conservation and restoration and managing wetland ecological processes is one broad area to 

explore in future research. All of these avenues for future research are possible because of the 

techniques and results presented in this dissertation.  
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Appendix. Canadian wetland inventory map  

Abstract 

Detailed information on the spatial distribution of wetland classes is crucial for sustainable 

management and resource assessment. Furthermore, annually updated wetland inventories are of 

particular importance given that wetlands comprise a dynamic, rather than permanent, land 

condition. As such, satellite-derived wetland maps are greatly beneficial, as they capture a synoptic 

and multi-temporal view of landscapes. Currently, accurate, comprehensive, categorical-based, 

and repeatable wetland inventory on large-scale is in high demand. This is a challenging task given 

wetlands’ heterogeneous and fragmented landscape, the spectral similarity of differing wetland 

classes, and limitations related to processing large volumes of data, accessing cloud computing 

resources, and collecting adequate reference samples over such large-scale landscapes. Leveraging 

state-of-the-art remote sensing data and tools, this study produces a detail categorical-based 

wetland inventory map of Canada using new opportunities offered by high resolution open access 

Earth Observation (EO) data and powerful cloud computing resources. In particular, a high 

resolution 10-m wetland inventory map of Canada, covering an approximate area of one billion 

hectares, is generated using multi-year (2016-2018), multi-source (Sentinel-1 and Sentinel-2) EO 

data and a large volume of reference samples within an object-based random forest classification 

scheme on the Google Earth Engine cloud computing platform. The whole country is classified 

with an overall accuracy approaching 80% with individual accuracies varying from 74% to 84 % 

in different provinces, depending on available resources (i.e., ground truth data and intensity of 

EO data). The resulting nation-wide wetland inventory map illustrates that 19% of Canada’s land 

area is covered by wetlands, most of which are peatlands dominate in the northern ecozones. This 

represents a general increase of wetland extents in Canada (~6%) relative to past studies potentially 
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reflecting recent climate change. Importantly, the resulting ever-demanding wetland inventory 

map of Canada provides unprecedented details on the extent and status, spatial distribution, and 

landscape pattern of wetlands and, thus, is useful for many stakeholders, including federal and 

provincial governments, municipalities, NGOs, and environmental consultants. 

Keywords: Wetland, Classification, Canada, Big Data, Cloud Computing, Google Earth Engine, 

Remote Sensing, Object-based image analysis, Random Forest, Sentinel-1, Sentinel-2.  
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A.1. Introduction  

Wetlands are optimum natural ecosystems offering a variety of environmental functions, such as 

flood and storm mitigation, coastal and wildlife protection, sediment retention and stabilization, 

carbon sequestration, and soil and water conservation [1], [2]. According to Warner and Rubec 

(1997) wetlands are defined as “land that is saturated with water long enough to promote wetland 

or aquatic processes as indicated by poorly drained soils, hydrophytic vegetation, and various kinds 

of biological activity which are adapted to a wet environment”.  

Recently, significant effort has been put toward the reclamation of wetlands to fulfill human needs 

(e.g., feeding livestock and agricultural activities). Importantly, the economical and environmental 

values of wetland ecosystems were recognized after a century of wetland reclamation in American 

society by government wildlife biologists in the 1950s [2]. Since the recognition of the value of 

wetlands either as a resource or as an important ecosystem for biological and ecological production 

[4], federal, provincial, and territorial government have voiced their commitments and interests 

for monitoring environmental changes and developing sustainable strategies for wetland 

preservation in Canada [5]. Several conservation strategies were also initiated globally. For 

example, the Ramsar Convention on Wetlands, held since 1971, is among the most well-known 

initiatives, wherein the main purpose is “the conservation and wise use of wetlands globally” [6], 

[7]. As of January 2013, 163 nations, including Canada, have joined the convention and indicated 

their commitments to wetland protection globally. The Ramsar Convention’s proposed framework 

for wetland inventory provides wetland management strategies, including the use of in-situ field 

measurements and remote sensing data [8].   

Wetlands occupy approximately 14% of the total land surface of Canada, which is about 25% of 

the globally documented wetlands [9]. Wetlands in Canada can be broadly categorized into organic 
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wetlands, or peatlands, formed by the agglomeration of hydrophilic vegetation, and mineral 

wetlands, which are developed in saturated areas and contain little or no peat [9]. Peatlands are 

efficient energy balance systems, as they stored a large amount of energy within their lower layers 

[10]. Generally, the characteristics of wetlands significantly vary in space and time depending on 

climatic and physiographic conditions. As such, much effort has been devoted to designing an 

acceptable wetland classification system reflecting such diversity [4]. Accordingly, the Canadian 

National Wetland Working Group devised a classification system comprising three hierarchical 

levels, namely class, form, and type, by incorporating the characteristics of soil, water and 

vegetation. In particular, the Canadian Wetland Classification system (CWCS) includes five broad 

wetland classes, namely bog, fen, marsh, swamp, and shallow water, defined based on the overall 

genetic origin and properties of wetlands, 49 wetland forms defined based on surface morphology 

and pattern, and several wetland types defined based on vegetation physiognomy [9].   

Despite the existence of such a widely accepted classification system and vast expanses of 

wetlands in Canada, the extent and distribution of Canadian wetlands have not yet been determined 

with an acceptable degree of precision based on the CWCS definition. Although various estimates 

are available based on local- and regional-scale wetland inventories across Canada using advanced 

techniques [11]–[15], these local inventories are incomplete, partial, outdated, and are not 

intercomparable due to the incorporation of different data and methodologies and in terms of 

wetland definition.  

Baseline information on the large-scale spatial distribution of wetlands is critical for monitoring 

these productive ecosystems, obtaining information on their historic status and trends, and 

acquiring accurate inputs for carbon budget, habitat, biodiversity, and resource management 

strategies [16]. Production of nationally synoptic baseline information is of particular concern in 
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countries such as Canada, which contains such a significant portion of the world’s wetlands. 

However, wetland mapping on a large scale has long proven challenging given the expense of 

conducting nation-wide mapping and the highly dynamic and remote nature of wetland 

ecosystems. Specifically, long term monitoring of wetlands across Canada requires extensive field 

work and sustainable human involvement and financial investment [17]. In this context, the data 

obtained using remote sensing tools offer unprecedented opportunities for production of large-

scale wetland inventories. Historically, the cost of acquiring such data precluded such operational 

application on large scales, particularly in geographic regions with chronic cloud cover. Although 

the U.S. Geological Survey (USGS) has made its entire 30 m Landsat archive publicly accessible 

since 2008 [18], collecting, storing, and processing of such a time series of remotely sensed 

imagery covering three decades on a large scale are challenging using conventional image 

processing software.  

Dealing with the “geo big data” problem requires new technologies and resources that enable us 

to seamlessly extract accurate, high-level information with less user interaction [19]. In particular, 

to produce national-scale wetland and, in general, land cover maps, input data should be less 

affected by clouds, haze, shadow, and other disturbances. This can be obtained by compositing a 

time series of remotely sensed imagery over a large scale during a specific time period [20]. 

Generating such image composites and executing advanced classification algorithms on large 

scales demand a massive data storage capacity and high computational efficiency. Until very 

recently, only a limited number of research institutions and very specialized individuals were 

privileged to access such advanced resources [21]. Fortunately, new opportunities for the 

production of national-scale wetland inventories have emerged through the recent development of 

new powerful cloud-based computational frameworks, such as Google Earth Engine (GEE), the 
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availability of high-quality, open-access Earth Observation (EO) data by USGS, NOAA, and the 

European Space Agency (ESA), and advances in machine learning tools [22]. In particular, GEE 

is a cloud-based platform that contains a large repository of open access, ready-to-use geospatial 

datasets within its data catalog and offers intrinsically parallel computation services. This allows 

the manipulation of petabyte-scale archives of remotely sensed data, enabling computing, parallel 

processing, and the visualization of results through its built-in application programming interface 

(API) [23].  

Currently, Canada lacks a national wetland monitoring system [5]. Accordingly, a nation-wide 

wetland inventory map of Canada with the capability to be updated on an annual basis using a 

cost-effective approach is of increasing interest for natural resource managers and policy makers, 

as it provides opportunities for monitoring, conserving, and restoring wetlands. However, the main 

challenges of wetland mapping on a large scale include the: (1) heterogeneity of wetland 

landscapes in Canada, wherein clear-cut borders between classes are lacking; (2) spectral similarity 

of wetland vegetation classes; (3) large seasonal and annual fluctuation both temporally and 

spatially; and (4) inconsistent wetland vegetation patterns across the country, necessitating the 

existence of accurate, intensive ground-truth data. Notably, most of these limitations have been 

addressed to a feasible extent for the production of regional-scale wetland inventories by several 

recent studies either through enhancing semantic land cover information using a variety of high 

resolution, advanced EO data [14] or proposing new classification schemes appropriate for wetland 

characterization [24]. Wulder et al. (2018) first demonstrated the capability of 30-m Landsat time 

series data to produce wetland extent maps over Canada’s forested ecosystems, but for only treed 

and non-treed wetland classes, rather than wetland types based on the definition of CWCS.  
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Given the above discussion, the overarching goal of this research was to address the current 

limitations of Canadian wetland mapping by leveraging the capabilities of recent cloud-based 

computing resources and open-access high resolution EO data. In particular, the synergistic use of 

open access 12-days Synthetic Aperture Radar (SAR) Sentinel-1 and 10-days optical Sentinel-2 

Multi-Spectral Instrument (MSI) were considered in this study, as the spatial, temporal, and 

backscatter/spectral specification of these data are highly suitable for addressing the above 

mentioned limitations of wetland mapping. Incorporating multi-source EO data further enhanced 

our ability to discriminate backscattering/spectrally similar wetland classes, as complementary 

land cover information exists within this data. This is because while optical data are responsive to 

the chemical and molecular structure of vegetation, SAR is sensitive to the geometric and physical 

structure of vegetation. Furthermore, SAR is sensitive to the flooding status of vegetation, capable 

of monitoring seasonal and annual fluctuation within wetland ecosystem [25]. It is also unaffected 

by cloud cover and day/night conditions, which are additional benefits of such data for mapping 

wetlands in Canada. Importantly, the present research built upon the knowledge gained from our 

previous work and further extends our recent study, wherein the first provincial-scale wetland 

inventory map of Canada was produced [19]. In the present study, the study area was expanded to 

include the whole country (Canada-wide) and this led to the production of the first detailed 

(categorical-based) Canada wetland inventory map at a spatial resolution of 10-m with extensive 

ground truth data using state-of-the-art remote sensing tools and data.  

A.2. Methods 

A.2.1. Study area  

Canada is a vast country, covering an approximate area of one billion hectares [26] and is 

comprising 18 terrestrial ecozones, as defined by Environment and Climate Change Canada (see 
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Figure A.1; https://www.canada.ca/en/environment-climate-change/services/environmental-

indicators/extent-wetlands.html). Ecozones are representative of discrete systems with relatively 

similar geologic, climatic, landform, water, soil, and vegetation patterns [27].    

 

Figure. A.1. Map of terrestrial ecozones in Canada with the distribution of reference samples in 

different Canadian provinces (AB: Alberta, BC: British Columbia, MB: Manitoba, NB: New 

Brunswick, NL: Newfoundland and Labrador, NS: Nova Scotia, NT: Northwest Territories, NU: 

Nunavut, ON: Ontario, PE: Prince Edward Island, QC: Quebec, SK: Saskatchewan, YT: 

Yukon). 

Climates vary from cool temperate to cold arctic with coastal areas affected by oceanic weather. 

Overall, a north-south temperature and an east-west precipitation gradient affect both the 

distribution and development of wetlands across Canadian ecozones, wherein both temperature 

and precipitation decrease toward the south and west, respectively [28]. Particularly, the northern 

parts of Canada are highly seasonal, experience extensive snowfall during winter and have short 

summers. Coastal regions are generally warmer and have longer growing seasons. Central regions 

of Canada experience a continental climate with long, cold winters and hot summers.  

https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/extent-wetlands.html
https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/extent-wetlands.html
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According to Glooschenko et al. (1993), 14% of the land area of Canada is unevenly covered by 

wetlands, 88% of which is peatland. Cool and moist climates, which are the optimum conditions 

for peatland formation, account for development of the major wetlands in the boreal and subarctic 

regions of Canada. Low, poorly drained regions that were previously covered by glacial lakes are 

also suitable areas for wetland development. According to Environment and Climate Change 

Canada, the Boreal Shield, Hudson Plains, and Boreal Plains ecozones respectively contain 25%, 

21%, and 18% of Canada’s wetlands. In contrast, mountainous regions of the Arctic Cordillera (< 

0.5%) and Montane Cordillera (< 2%) are covered with very low proportions of wetlands. Notably, 

much of Canada’s wetlands are affected by permafrost. Overall, time, water chemistry, hydrology, 

the characteristics of terrain, and sedimentological processes affect wetland development [28]. 

According to the CWCS, wetlands can be categorized into five main classes, namely bog, fen, 

marsh, swamp, and shallow water. These wetland classes were considered in this study and their 

characteristics are presented in Table A.1.  
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Table A.1. The characteristic of Canadian wetland classes according to the CWCS [9], [28]. 

Wetland 

classes  

General 

characteristics  

Hydrological 

systems* 

/characteristics 

of water 

Water table  Soil [29] Dominant 

vegetation 

Bog Peatland  Ombrogenous/ 

acidy and low in 

nutrients 

At or slightly 

below the surface 

Fibrisols, 

Mesisols, and 

Organic 

Cryosols 

Sphagnum 

mosses with tree, 

shrub or treeless 

vegetation cover 

and ericaceous 

shrubs 

Fen 

 

Peatland Minerogenous/ 

nutrient-rich 

At or above the 

surface, 

fluctuating water 

table 

Mesisols, 

Humisols, and 

Organic 

Cryosols 

Graminoid 

vegetation, 

sedges, grasses, 

reeds, 

and brown mosses 

with some shrub 

cover 

Marsh Mineral wetlands Minerogenous/ 

nutrient-rich 

Periodically 

inundated by 

standing or 

slowly moving 

water 

Humisols, 

Mesisols, and 

Gleysols 

Emergent non-

woody plants 

such as rushes, 

reeds, reed-

grasses, 

and sedges. 

Swamp Peatland and mineral 

wetland 

Minerogenous/ 
nutrient-rich 

At or below the 

surface 

Mesisols, 

Humisols, and 

Gleysols 

A dense tree 

cover of 

coniferous 

or deciduous 

species and by tall 

shrubs, herbs, and 

mosses 

Shallow water Mineral wetland 

characterized by fresh to 

saline water bodies less 

than 2 m deep in mid-

summer 

 

N/A Semi-permanent 

to permanent 

standing or 

flowing water 

N/A Submerged and 

floating aquatic 

plant forms 

*Note that direct precipitation is the source of water in ombrogeneous wetlands, while minerogenous wetlands receive water and 

mineral element from groundwater or littoral sources in addition to atmospheric sources.  

In addition to wetland classes, other land cover classes are also present in the study area. For 

example, 65% of Canada's land area is covered by forested ecosystems [30]. Extensive agricultural 

activities are also common in several Canadian provinces (e.g., Manitoba). As such, other land 

cover classes were also considered in the production of the final wetland inventory map of Canada. 

These included cropland, forest, grassland/herbs, and urban/bare land. It is worth noting that these 

four non-wetland classes were obtained by aggregating other relevant classes to better align with 

the purpose of this study. For example, the forest class included three dominant forested land cover 

types in Canada, namely broadleaf, coniferous, and mixedwood. Similarly, cropland contained 
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various types of crop classes, all of which were integrated into a single class in the final product. 

The two classes of grassland and pasture were also merged into the single class of grassland/herbs 

due to their relatively similar characteristics. Finally, the urban and bare land classes, both of which 

are characterized by either an impervious surface or exposed soil, comprising bare land, rocks, 

roads, and building facilities, were combined into one single class in the final classification map.  

A.2.2. Reference sample repository 

Reference samples for training and accuracy assessment were collected from a variety of reliable 

sources. In-situ samples obtained from field campaigns are a prerequisite for developing a 

classification algorithm. Although it is assumed these data are reliable, small sample size, sampling 

bias, and inconsistent labelling systems affect their quality, especially on large-scales [31]. In this 

study, reference samples were provided from various partners/collaborators for all Canadian 

provinces (see Table A.2).  
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Table A.2. Number of reference samples in different Canadian provinces. 

 

Province 

B
o
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o
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BC 88 40 58 76 49 73 127 81 67 659 

 

AB 91 87 65 83 57 93 120 92 104 792 

 

SK 93 85 49 56 71 92 99 76 81 702 

 

MB 108 90 51 54 78 119 108 67 122 797 

 

ON 102 113 69 101 74 98 98 96 111 862 

 

QC 101 98 66 82 82 81 110 79 94 793 

 

NB 83 89 77 93 76 100 103 87 108 816 

 

NS 56 75 75 41 36 37 78 74 49 521 

 

PEI - - - - 41 29 74 68 84 296 

 

NL 141 167 146 151 39 149 133 113 33 1072 

 

YT 72 84 55 65 47 85 124 93 - 625 

 

NT 66 56 29 28 51 98 89 61 - 478 

 

NU 54 73 18 27 68 123 70 58 - 491 

Extensive pre-processing was carried out on the reference data to ensure data quality. Furthermore, 

there was inconsistency in terms of described systems for wetland classes and, as such, data were 
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re-labelled into a consistent format following the definition of wetland classes based on the CWCS 

when necessary.  

Reference samples for wetland classes were obtained in all provinces but those for non-wetland 

classes were not consistently available. For provinces where reference data for non-wetland classes 

were not available from our collaborators, the preparation of reference samples was carried out by 

visual interpretation of high-resolution Google Earth imagery, aerial photography, and annual crop 

inventories of Canadian provinces. Notably, Agriculture and Agri-Food Canada (AAFC) produces 

Canada’s Annual Space-Based Crop Inventories using multi-source EO data (optical and SAR) 

and ground-based measurements with accuracies exceeding 85% [32]. As mentioned earlier, these 

sources were only used for the preparation of reference data for non-wetland classes if required.  

Table A.2 represents the number of reference samples for wetland and non-wetland classes in 

different Canadian provinces. It should be noted that significant effort was devoted to incorporate 

only homogeneous reference polygons with sizes of 1 to 6 ha. Upon the completion of our 

reference repository, these samples were sorted based on their size and alternatively assigned to 

either training (50%) or testing (50%) groups. The training samples were used to create knowledge 

and train the classifier, wherein 20% of the 50% were used for validation and the remaining 30% 

were used for accuracy assessment. As shown in Table A.2, the availability of such reference data 

over a wide range of wetland and non-wetland classes in all Canadian provinces allowed us to 

capture variability across wetlands and provided the opportunity to produce a robust and 

comprehensive wetland training dataset.  

A.2.3. Data composites at 10-m spatial resolution 

Concurrent availability of EO data offered through the Copernicus programs by the European 

Space Agency (ESA; [33], [34]), as well as petabyte-scale storage capacity and the large-scale 
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computing capability of GEE [23], provide an unprecedented opportunity for large-scale wetland 

mapping with high temporal and spatial resolution. In this study, high spatial resolution SAR 

Sentinel-1 and Sentinel-2 A/B multispectral instrument (MSI) data were used for wetland mapping 

in Canada for the first time. All these data were accessed through the GEE data catalogue and 

processed within the GEE platform. Figure A.2 illustrates the number of Sentinel-1 and Sentinel-

2 scenes used in this study for each Canadian province.  

 

Figure A.2. Number of Sentinel-1 and Sentinel-2 scenes in each Canadian province used for 

wetland classification in this study.  

A.2.3.1. Sentinel-1 images  

A total of 13,519 C-band Level-1 Ground Range Detected (GRD) Sentinel-1 SAR images were 

accessed through GEE and used in this study. This imagery was collected in the Interferometric 

Wide (IW) swath mode with a resolution of 10 m and a swath width of 250 km between June and 

August of 2016, 2017, and 2018. Of the 13,519 images, 10,277 and 3,242 were collected with VV-

VH and HH-HV polarizations, respectively. The greater availability of VV-VH data is because 

HH-HV data were only available for the northern parts of Canada. This is due to the general 
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principle that Sentinel-1 collects single- (HH) or dual- (HH-HV) polarized data over sea ice zones 

and single- (VV) or dual- (VV-VH) polarized data over all other observation zones (e.g., lands) 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario). The spatial 

distribution of all available Sentinel-1 observations is depicted in Figure A.3.  

  

Figure A.3. The total number of (a) ascending SAR observations (VV/VH) and (b) descending 

SAR observations (HH/HV) during the summers of 2016, 2017, and 2018 in Canada. The color 

bar represents the number of collected images.  

Sentinel-1 GRD data in GEE are already subjected to several preprocessing steps. These include 

thermal noise removal, radiometric calibration, and terrain correction, resuling in the production 

of geo-coded SAR backscattering coefficient (𝜎0) images in dB 

(https://developers.google.com/earth-engine/sentinel1). An adaptive sigma Lee filter with a pixel 

size of 7x7 was then employed to suppress the effect of speckle noise and increase the number of 

looks prior to further image processing of the SAR data [35]. Further speckle noise reduction was 

accomplished by producing the multi-year seasonal median composite. In this study, SAR 

backscattering coefficient images and a number of polarimetric features were extracted from dual-

polarized HH-HV and VV-VH data (see Table A.3).  

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
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Table A.3. A description of features extracted in this study.  

 Feature description Formula 
Sentinel-1  Vertically transmitted, vertically received SAR 

backscattering coefficient  
𝜎𝑉𝑉

0  

Vertically transmitted, horizontally received SAR 

backscattering coefficient  
𝜎𝑉𝐻

0  

Horizontally transmitted, horizontally received SAR 

backscattering coefficient 
𝜎𝐻𝐻

0  

Horizontally transmitted, vertically received SAR 

backscattering coefficient 
𝜎𝐻𝑉

0  

Span or total scattering power  |𝑆𝑉𝑉
 |2 + |𝑆𝑉𝐻

 |2 , |𝑆𝐻𝐻
 |2 + |𝑆𝐻𝑉

 |2 

Ratio  |𝑆𝑉𝑉
 |2

|𝑆𝑉𝐻
 |2

 , 
|𝑆𝐻𝐻

 |2

|𝑆𝐻𝑉
 |2

 

Sentinel-2 Spectral bands 2 (blue), 3 (green), 4 (red), and 8 (NIR) 𝐵2, 𝐵3, 𝐵4, 𝐵8 

The normalized difference vegetation index (NDVI) 𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

Specifically, 𝜎𝑉𝑉
0  observations are useful for discriminating herbaceous wetland classes, especially 

in cases of sparse canopy closure [36]. 𝜎𝐻𝑉
0  observations are sensitive to the structure of vegetation, 

are produced by volume scattering within the vegetation canopy, and can contribute to 

discriminating wetland vegetation classes [37]. Given its high sensitivity to the flooding status of 

vegetation [38], 𝜎𝐻𝐻
0  is the most favorable SAR observation for wetland mapping. All extracted 

SAR features, including 𝜎𝑉𝑉
0 , 𝜎𝑉𝐻

0 , 𝜎𝐻𝐻
0 , 𝜎𝐻𝑉

0 , span, and ratio, were stacked to produce a seasonal 

Sentinel-1 data composite using the GEE’s array-based computational approach. Next, the images 

from multiple years (2016-2018) were combined.  

A.2.3.2. Sentinel-2 images  

Despite the Sentinel-2 10-day revisit cycle, creating a 10-m cloud-free Sentinel-2 composite for 

Canada over a short period of time is challenging due to chronic cloud cover. To address this 

limitation, tri-monthly composites, extending from June to August, were considered to produce 

cloud-free wall-to-wall coverage. This is an optimum period for wetland vegetation studies in 

Canada, as explicit wetland phenological information is preserved at this time and a larger number 

of cloud-free optical data are available.   
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Both Sentinel-2A and Sentinel-2B Level-1C reflectance data, the standard Sentinel-2 archive in 

GEE, were used in this study. A total of 211,926 Sentinel-2 images from the summers of 2016, 

2017, and 2018 were queried from the GEE data pool. However, some of these observations were 

contaminated with cloud coverage and were not useful. Accordingly, a selection criterion was 

applied to remove observations with cloud percentage greater than 20%, after which remained a 

total of 51,060 Sentinel-2 observations for use in this study. Next, the ‘QA60’ bitmask band (a 

quality flag band) available in the metadata was used to detect and mask out remaining clouds and 

cirrus. Figure A.4 illustrates that the spatial distribution of these clear observation vary unevenly 

across Canada.   

 

Figure A.4. The spatial distribution of Sentinel-2 data with cloud cover of less than 20% in the 

summers of 2016, 2017, and 2018 over Canada.  

For each period (June to August 2016, 2017, and 2018), five bands, namely blue, green, red, NIR, 

and a normalized difference vegetation index (NDVI; [39]) band were considered. Figure A.5 
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illustrates the NDVI feature extracted from Sentinel-2 data used as an input feature for wetland 

classification.  

 

Figure A.5. NDVI feature extracted from Sentinel-2 data.   

Each seasonal group of images were stacked into a single median composite on a per-pixel, per-

band basis, comprising four spectral bands and NDVI, by leveraging the GEE composite function. 

Notably, Sentinel-2 data from multiple years (2016-2018) were used to enhance the likelihood of 

pure cloud-free pixels over Canada (see Figure A.6).  
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Figure A.6. 10-m data-cube of Canada composited for three time-periods using 2016-2018 

Sentinel-1 and Sentinel-2 data. For each period eight Sentinel-1 features and five Sentinel-2 

features were composited.  

A.2.4. Classification scheme 

An object-based image analysis (OBIA) framework was developed for this study. This approach 

is advantageous compared to the conventional pixel-based classification that relies on the 

exclusive use of SAR backscattering/spectral information within its classification scheme, 

resulting in “salt and pepper” noise [40]. This problem, however, is addressed by employing an 

OBIA technique that takes into account contextual information within a given neighborhood [41].  

For OBIA, a simple non-iterative clustering (SNIC) algorithm was selected for superpixel (i.e., 

small clusters of connected pixels) segmentation [42]. SNIC is advantageous compared to similar 

approaches, such as simple linear iterative clustering (SLIC), as it is non-iterative, memory 

efficient, fast, and incorporates the connectivity between pixels once the algorithm is initiated. The 
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algorithm starts by centering pixels on a regular grid in the image. The dependency of each pixel 

to a centroid of interest is determined using a distance in the five-dimensional space of color and 

spatial coordinates. The algorithm adopts a priority queue of 4- or 8-connected pixels to a currently 

growing superpixel cluster to determine the next candidate pixel to be added to the cluster. This 

candidate pixel is selected based on the smallest distance from the centroid. A detailed explanation 

of the SNIC algorithm is beyond the scope of this paper; however, we refer the reader to the 

original paper [42] for further explanation. 

Random forest (RF), which has demonstrated promising results for the classification of remote 

sensing data [14], [43], [44], was selected for image classification in this study. RF is a non-

parametric classifier and is superior compared to other well-known machine learning algorithms, 

such as the decision tree (DT; Chan and Paelinckx, 2008) in terms of classifier performance and 

is easily adjustable compared to support vector machine (SVM; [45]). RF uses bootstrap 

aggregating (a bagging approach) to generate an ensemble of decision trees using a random sample 

from the given training data and specifies the best splitting of the nodes by minimizing the 

correlation between the trees. Each pixel is then labeled based on the majority vote of trees [46]. 

A complete description of the RF algorithm and its advantages for classification of remotely sensed 

data is presented by Belgiu and Drăguţ (2016). 

The RF algorithm is adjustable using two input parameters, namely the number of tress (Ntree) 

and the number of variables (Mtry). These parameters were adjusted based on our previous studies 

of wetland mapping (e.g., [19], [24]) and a trial-and-error procedure, as commonly described in 

the literature. Accordingly, a total number of 500 trees were selected for Ntree and the square root 

of the number of variables was selected for Mtry, as suggested by Breiman (2001). 
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Initially, the RF classifier was built using 50% of the training samples within the GEE platform. 

Visual assessment of the classification map was carried out through a comparison with Google 

Earth images and aerial photos (provided by collaborators and partners) where available. To 

determine user, producer, and overall accuracy in each Canadian province, an accuracy assessment 

was carried out using 20% of the testing samples (validation data). Training data were added if 

these evaluation indices were lower than 70% for a given province. In view of the complexity of 

wetland classification in Canada, this procedure was repeated 5 times, until the target accuracies 

for each province were met. The remaining 30% of testing samples were used for further 

independent accuracy assessment [48]. 

A.2.5. Accuracy assessment 

Accuracy assessment is a key element when producing land cover maps using remotely sensed 

imagery [49]. This demands high quality testing samples at suitable spatial and temporal scales 

obtained through standard methods. In this study, reference samples were available from each 

Canadian province. As such, approximately 50% of reference samples were selected for training, 

30% for testing, and 20% for validation purposes as described in detail in section 2.2. The overall 

accuracy and Kappa coefficient were measured for each province as well as for Canada as a whole.  

The areas identified as wetlands in this study were compared with available, valid wetland 

inventory maps in Canada, including [5], [28], and [50]. Notably, these studies reported only the 

general distribution of wetlands and did not produce Canada wetland maps based on the definition 

of the CWCS. Where possible, we compared the resulting classification map in this study visually 

and statistically. For example, the first study reported the distribution of wetlands in 18 Canadian 

ecozones and approximately 13% of Canada is covered by wetlands, although the accuracies of 

the wetland maps in different Canadian ecozones vary. The accuracy was greater than 90% in the 
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Hudson Plains ecoregion, whereas it reached only 70% in several northern ecozones (e.g., the 

Northern and Southern Arctic), for example. Following Environment and Climate Change Canada 

(2016), we report the distribution of wetlands classes in different Canadian ecozones for 

comparative purposes.  

A.3. Results 

Figure A.7 demonstrates the first detailed categorically-based Canada-wide wetland inventory 

map at a spatial resolution of 10 m using the object-based RF classification.     

 

Figure A.7. The first Canada-wide wetland inventory map with a spatial resolution of 10 m 

obtained from an object-based RF classification using multi-year optical/SAR composite data.  

The accuracy of our Canada-wide wetland inventory map was evaluated using independent 

reference samples. As reference data were available from each Canadian province, overall 
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accuracies and Kappa coefficients were also measured separately for different provinces (see Table 

A.4).  

Table A.4. Overall accuracies (OA) and Kappa coefficients (K) for wetland classification in 

different Canadian provinces.  

Province OA K Province OA K 

        

 

BC 77.43 0.73 

 

NS 80.88 0.76 

 

AB 82.55 0.80 

 

PEI 75.29 0.71 

 

SK 80.74 0.76 

 

NL 83.67 0.81 

 

MB 81.36 0.77 

 

YT 74.81 0.70 

 

ON 82.17 0.79 

 

NT 78.05 0.75 

 

QC 76.21 0.73 

 

NU 74.32 0.69 

 

NB 77.91 0.74 

 

CA 78.88 0.75 

As shown, overall accuracies exceed 74% in all Canadian provinces, with the lowest (~74%) and 

highest (~84%) accuracies obtained in NU and NL, respectively. The high overall accuracy in NL 

is partially due to the availability of a larger number of high quality, spatially distributed training 

samples. This is of special importance for classification of spectrally similar wetland classes. On 

the other hand, the lowest accuracy of NU could be potentially due to the limited availability of 

Sentinel-2 data in this region (see Figure A.4), as these areas experience higher cloud cover and 

snow, even in summers, compared to the other Canadian provinces and territories. Overall, the 

accuracies for several wetland dominated provinces (e.g., ON, NL, and AB) are promising and 

exceed 80%. The whole country was classified with an accuracy of approximately 79%. This 
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implies the high level of confidence in discriminating wetland classes according to the definition 

of CWCS (detailed wetland classes). Generally, the overall accuracy increases with the increasing 

level of generalization [51].  

As shown in Figure A.7, the two classes of bog and fen (peatlands) are the most dominant wetland 

classes in Canada, whereas marsh and swamp are barely classified. This is in agreement with past 

studies [28], which reported that peatlands cover 88% of Canada’s wetlands. Our study also 

identified the forest class as the most dominant of the non-wetland classes. This also agrees well 

with the results of previous studies, such as [26], and [30], who reported that 65% of Canada’s 

land area is covered by forested ecosystems.   

Overall, there is a correlation between the classification map in this study and results of previous 

studies. For example, our classification map illustrates that wetlands cover a large portion of 

Northern Ontario. This corroborates the results of previous studies (e.g., [28]), which reported that 

wetlands cover 33% of land area in Ontario. Likewise, the classification map in this study is 

visually comparable with Wulder et al. (2018) who demonstrated the annual changes in wetland 

extents in Canada’s forested ecozone between 1984 and 2016 using Landsat data. To appreciate 

some of the classification details, three insets from the final land cover map were selected (see 

Figure A.8) for further investigation.  
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Figure A.8. Three insets of the final Canada wide wetland inventory map selected from various 

Canada ecozones, including (A) Prairies, (B) Hudson Plains, and (C) Boreal Shield ecozones. 

(Top panel) The Sentinel-2 MSI color composite images, (middle panel) the object-based SNIC 

image segmentation results, and (bottom panel) the classification results.  

The visual interpretation of the final classification map by ecological and remote sensing experts 

demonstrated that most land cover classes were correctly identified across the study area. For 

example, the dominance of the urban class (gray color) in the southern part of the first (A) inset in 

Figure A.8 was accurately distinguished. The water class was also correctly identified in all three 

images. Furthermore, according to biological experts, bogs usually appear with reddish color in 

optical imagery (true color composite), and most bog wetlands were accurately identified in Figure 

A.8 (B).  Table A.5 presents the distribution of wetland classes in different Canadian ecozones.   
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Table A.5. The distribution of wetlands classes in different Canadian ecozones obtained in this 

study. Classes of bog, fen, marsh, swamp, and shallow water are represented as forest green, light 

green, yellow, orange, and blue, respectively.  

Ecoregion Wetland area Ecoregion Wetland area 

 

Arctic 

Cordillera 

  

Prairies 

 

 

Northern 

Arctic 

  

Taiga 

Cordillera 

 

 

Southern 

Arctic 

  

Boreal 

Cordillera 

 

 

Taiga Plains 

  

Pacific 

Maritime 

 

 

Taiga Shield 

  

Montane 

Cordillera 

 

 

Boreal 

Shield 

  

Hudson 

Plains 

 

 

Atlantic 

Maritime 

  

Tundra 

Cordillera 

 

 

Mixedwood 

Plains 

  

Semi-Arid 

Plateaux 

 

 

Boreal Plains 

  

Atlantic 

Highlands 
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According to Table A.5, wetlands in the Boreal Shield, Taiga Shield, and Hudson Plains (an area 

centered in northern Ontario extending into northeastern Manitoba and western Quebec) cover 

approximately 24%, 18%, and 15% of Canadian wetlands, respectively. This is in relative 

agreement with the results of the Canadian wetland extent reported by Environment and Climate 

Change Canada (2016), as they also found wetlands were dominate in both the Boreal Shield (25%) 

and Hudson Plains (21%). However, the classification map in the present study also found the 

prevalence of wetlands in the Taiga Shield Canada ecozone (18%), which is slightly higher than 

that reported in a previous study [50]. We believe that wetland distribution was underestimated in 

this ecozone in the aforementioned study, particularly in the Taiga Shield eastern area. This is also 

supported by the fact that the accuracy of wetland classification was relatively low (up to 70%) in 

this region [50]. Furthermore, Wulder et al. (2018) reported an large increase in the extent of 

wetlands in the eastern part of the Taiga Shield ecozone between 1984 and 2016, which further 

supports the results of our classification map in this area. In contrast, wetland extent is lowest in 

the most mountainous ecozones, including Arctic Cordillera, Taiga Cordillera, Boreal Cordillera, 

and Pacific Maritime, each containing less than 1% of Canada’s wetlands. Again, this is in 

agreement with distribution of wetlands reported in Environment and Climate Change Canada 

(2016). 

Another novel component of our Canada-wide wetland inventory framework is the class-based 

wetland binary masks (see Figure A.9), which offer a unique source of information about the 

distribution of wetland classes in Canada.  
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Figure A.9. Binary masks of wetland classes in different Canada’s ecozones. The dominancy of 

peatland classes in the northern ecozones is clearly visible.   

These maps are of special interest for several applications demanding generalized land cover 

information and, in particular, wetland information for modeling and reporting purposes [16]. 

Figure A.9 further confirms that the bog and fen wetland classes are the most prevalent in Canada, 

whereas marsh and swamp are less common. Furthermore, these peatland classes are generally 

distributed in the northern part of the country, especially in the Taiga Shield and Hudson Plains 

ecozones, and they are the most affected by permafrost. Swamps, however, are mostly isolated 

wetlands found in the southern regions of the boreal forest, particularly in the Boreal Plains 

ecozone. Our classification map also successfully distinguished several small water bodies. 

However, it is worth noting that the water and shallow water classes were merged into a single 

water class in the final product, as shallow water reference data were unavailable from several 

provinces.    
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Finally, to move forward with the more generalized land cover classes in Canada, we produced 10 

m binary masks of the wetland and forest classes (see Figure A.10). As shown, wetlands and forests 

are most prevalent in the northern and southern Canadian ecozones, respectively.  

 

Figure A.10. The 10 m wetland and forest binary masks of Canada. The wetland binary mask 

was generated by merging all wetland-related classes.  

A.4. Discussion 

Accurate mapping of complex and heterogeneous wetland landscapes is greatly beneficial for 

understanding dynamic land cover changes in wetland-dominated regions, such as Canada. 

Importantly, up-to-date maps of the location and extent of wetlands are essential for conservation 

and restoration of these valuable ecosystems. The recent development of open-access, high 

temporal and spatial resolution remotely sensed data provides the unique opportunity to accurately 

map wetlands on previously infeasible temporal and spatial scales. These advanced products are 

advantageous compared to traditional approaches based on interoperation of aerial photography, 
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as they be can updated annually and cover a much larger scale. To date, given the low capacity of 

typical local processing machines, most remote sensing studies have focused on the generation of 

small-scale wetland inventories [52]–[54]. Leveraging the capability of GEE, we produced the first 

categorically detailed, Canada-wide wetland inventory map using open access, regularly updated 

remotely sensed imagery collected by the Sentinel Missions at a 10 m spatial resolution. 

Importantly, we determined how wetland distribution varies among Canadian ecozones, which is 

of interest for monitoring ecosystem services that change from region to region.  

The resulting wetland inventory map in this study provides information on the trends and status of 

Canadian wetlands using standard remote sensing tools and data at the national scale. This map 

was produced through the synergistic use of complimentary optical and SAR data to take 

advantage of both types of observations in a broad-scale investigation, as suggested by a recent 

study [5]. Furthermore, the spatial distribution of Sentinel-2 data (cloud cover < 20%) over Canada 

(see Figure A.4) further affirms the necessity of incorporating SAR data for such large-scale 

monitoring, as the density of cloud free observations significantly varies from region to region. 

However, the inclusion of multi-source data addressed this limitation and offered a rich archive of 

high temporal and spatial resolution EO data, further making multi-source approaches 

advantageous for large scale remote sensing applications in Canada. Nevertheless, future studies 

also need to incorporate alternative sources of data with higher spatial and temporal resolutions 

and greater capacities. In particular, SAR data in this study were limited to dual-polarimetric data 

in all Canada ecozones (see Figure A.3). This hindered the application of advanced polarimetric 

decomposition techniques, which are of great value for discriminating wetland classes with similar 

backscattering signatures. Accordingly, Canada’s upcoming RADARSAT Constellation Mission 

(RCM), with the capability to collect sub-weekly SAR data in various polarization modes, offers 
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potential avenues for future research of large-scale wetland mapping. Likewise, airborne LiDAR 

data, although expensive and difficult to systematically acquire on large scales, can be useful to 

capture information on wetland drainage systems and the overall structure of wetland landscapes 

and, as such, may improve the characterization of Canada’s wetland ecosystems [5]. 

The Canada-wide wetland inventory map produced in this study demonstrates that approximately 

19% of Canada’s land area is covered by wetlands. This represents a 5% and 6% increase in the 

estimated extent of Canada’s wetlands compared to Glooschenko et al. (1993) and Environment 

and Climate Change Canada (2016), respectively. However, it should be noted that wetlands are 

highly dynamic landscapes and may significantly vary on seasonal, annual, and decadal bases, as 

they are water-dependent ecosystems and therefore are greatly affected by melting snow, changing 

precipitation patterns, thawing permafrost, and changing groundwater flows, for example. 

Furthermore, these aforementioned studies are relatively old and determine the extent of wetlands 

in Canada by incorporating data from various sources. For example, the Environment and Climate 

Change Canada (2016) wetland extent map illustrates wetland distribution around the year 2000 

using data obtained from 2000 to 2014. Nevertheless, the distribution of wetlands in this study 

agrees with that of Wulder et al. (2018), who reported wetlands cover approximately 18% of 

Canada’s forested ecozones during the interval of 1984 to 2016. The higher extent of Canada’s 

wetlands obtained in our study, particularly in the northern ecozones, suggests that thawing 

permafrost, and melting ice and snow contribute to increasing water levels and wetland extension. 

This increase in wetland distribution in the northern ecozones (e.g., Taiga Shield) is also supported 

by reports of extensive permafrost thaw and wetland expansion as a result of climate change [55]. 

Likewise, although wetlands in mountainous ecozones (e.g., Boreal and Taiga Cordillera) cover a 

small portion of Canada’s wetlands, our study found a general increase in their extent compared 
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to past studies (Environment and Climate Change Canada, 2016), our results are in agreement with 

the most recent research [5].  

It is also possible to increase the accuracy of our Canada-wide wetland inventory map. The greatest 

challenge to developing this national-scale wetland inventory map was collecting sufficient, 

reliable training samples to ensure reliable coding and the production of an accurate final product. 

Thus, a certain class in a particular ecozone may have a low accuracy not because of the uncertainty 

in the classification algorithm, but rather due to the poor quality of the reference data. Although 

several studies have collected training data from pre-existing, reliable land cover maps, such an 

approach is not ideal given the intrinsic errors that could propagate to the final land cover map. 

Notably, training data for all wetland classes in all Canadian provinces and territories were 

obtained from collaborators/partners; however, training data for non-wetland classes were 

acquired through the interpretation of high-resolution imagery and the AAFC annual crop 

inventory map. This could affect the accuracy of the final product in some regions. Overall, larger 

and higher quality reference training and testing samples from all presented land cover classes in 

different Canadian ecozones will improve the accuracy and ensure the robustness of the 

classification algorithm. Although costly, such field campaigns remain a necessary element to 

enrich and validate models for large-scale applications.  

Several studies have highlighted the superiority of multi-temporal remote sensing data for land 

cover classification compared to single-date images [56]. This is of particular importance for 

characterizing wetland classes with highly dynamic natures [19], [38]. In the present study, multi-

temporal, multi-source EO data were incorporated into the classification scheme to enhance 

semantic land cover information. Another strategy for incorporating temporal data for wetland 

characterization could be determining wetland changes using large multi-temporal remote sensing 
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data, which are of special interest for ecosystem services in various Canadian ecozones. This is 

possible through the availability of multi-decadal open-access Landsat data, yet such data may 

provide insufficient details for distinguishing small land cover classes, such as wetlands or regions 

subject to agricultural activities, demanding higher spatial resolution imagery. As more open-

access, high temporal and spatial resolution data collected by Copernicus Sentinels are added to 

the GEE data catalogue, these barriers are eroding and new opportunities for fine-scale land 

(wetland) cover mapping are arising.  

The approaches presented in this study are transferable to other large-scale wetland ecosystems, 

adaptable to sufficient, appropriate ecological training data, and are also suitable for other land 

cover ecosystems beyond wetlands for a range of user needs and focus domains. The baseline 

information obtained from such spatially explicit, regional trends in Canada’s wetland map 

provides a useful context for determining the causes of wetland changes and for improving our 

understanding of the mechanisms behind wetland dynamics. The resulting 10 m Canada-wide 

wetland inventory map derived from multiple sources using an advanced remote sensing tool is an 

essential starting point toward the production of global-scale wetland inventory maps. However, 

more challenges are expected for upscaling to global maps, such as collecting reliable ground-truth 

data, inconsistencies in terms of wetland definitions, and more cloud cover issues. Despite these 

barriers, the realization of a global-scale wetland inventory should be feasible given recent 

advances in the geospatial sciences.  

A.5. Conclusion 

Leveraging the computational power of Google Earth Engine and a large pool of high temporal 

and spatial resolution satellite imagery collected by Copernicus Sentinels, we have generated 

Canada’s first detail categorically-based wetland inventory map at a spatial resolution of 10 m, 
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covering an approximate area of one billion hectares, yet within a reasonable time using GEE. In 

particular, this map was produced by training a random forest classifier in an object-based 

framework using multi-year summer composites of Sentinel-1 and Sentinel-2 data.  

The 10 m Canada wetland inventory mapped a complex series of small and large, heterogeneous 

wetland classes, along with other dominant land cover classes (e.g., forest) accurately. Notably, 

the whole country was classified with accuracy approaching 80%, with accuracies varying from 

74% to 84% in different Canadian provinces and territories. The resulting Canada-wide wetland 

inventory map illustrated that wetlands cover approximately 19% of Canada’s land area. The 

results demonstrated that the Boreal Shield, Taiga Shield, and Hudson Plains comprise much of 

Canada’s wetlands, whereas wetlands are least common in mountainous ecozones. Bogs and fens 

were found to be the most dominant wetland classes in Canada, especially in the northern 

ecozones. The results also identified further expansion of wetlands in Canada’s northern 

ecoszones, potentially as a consequence of climate change.  

This study transforms low-level information of Canada’s wetland status into categorically detailed 

wetland maps, complements the previously produced national-scale Canada wetland map from 

circa 2000, and characterizes the spatial distribution of wetland classes over a previously 

unmapped area with high spatial resolution. Interesting opportunities to continually contribute to 

the classification map presented herein are also available through the launch of new satellites, such 

as RCM, that aim to provide high resolution coverage on a sub-weekly basis. Thanks to recent 

advances in geospatial science, a remarkable paradigm-shift in the field of land cover mapping is 

expected in the near future, wherein the production of standard static maps will be replaced with 

those that are more dynamic and application-specific. Such detailed and large-scale maps of 
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wetlands, for example, offer the opportunity to more closely monitor these dynamic ecosystems 

and will contribute to studies in several fields.  
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