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ABSTRACT 

Introduction: While there is a good understanding of how anxiety impacts skill 

performance, we understand less about how anxiety affects the learning process. We attempted to 

create an environment that caused anxiety by having people practice the skill of preparing rope 

rescue hauling systems (3:1 & 5:1) at height. Methods: Participants were assigned to a Low 

practice group, that completed training in a general classroom setting; and a High practice group, 

that trained at a 14m height. Retention tests, to assess learning, were completed one week after 

practice. All participants were tested on the hauling systems at an elevated height and in a 

classroom setting. A checklist of each element of the hauling systems was used to assess 

configuration performance error scores. Movement time (MT) of the preparation was recorded for 

each trial. Cognitive anxiety was examined through a Likert Scale delivered after each trial. 

Somatic anxiety was observed using a Zephyr Bioharness system, which measured heart rate (HR) 

and heart rate variability (HRV). Results: Configuration performance during practice was lower 

for the High practice group compared to the Low practice group. Perceived anxiety decreased with 

practice. During retention, which reflected learning, perceived anxiety was higher for the low 

practice location (classroom) compared to the high practice (elevated) testing location. MT was 

longest for the complex 5:1 system when performing at height.  Conclusion: The current study is 

one of the first studies to assess rope rescue skills and anxiety induced by different complexities 

and environments. Performance at height, when there are cognitive challenges (the difficulty 

associated with completing the 5:1 system) is impaired. However, training at height does not 

appear to influence this effect. As well, trainees should practice all complexities or specific skills 

that need to be learned multiple times. 

Key words: task complexity, anxiety, performance, environment, training, rope rescue   
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1 Chapter 1: Review of Literature 

1.1 Introduction 

Learning is an activity that humans participate in from birth to death. As human beings, our 

lives are based on learning new skills and advancing existing skills. The skills that humans can 

learn seem to have an endless capacity. Motor learning is defined by Magill as, “the change in the 

capability of a person to perform a skill that is inferred from practice or experience and is relatively 

permanent” (2004, p. 134). Some skills can be learned implicitly, which is the unconscious 

learning of a skill (Wulf & Schmidt, 1997). However, typically to learn a skill, practice is required. 

Practice is the deliberate repetition of a skill, and it is generally the most important part of 

improving and mastering skills (Adams, 1964; Guadagnoli & Lee, 2004; Magill, 2001; Schmidt 

& Lee, 2018). Many factors influence the quality of motor learning; for example, feedback (e.g. 

Badets & Blandin, 2012), simulation environments (e.g. Walsh, Rose, Dubrowski, Ling, Grierson, 

Backstein & Carnahan, 2011), stress and anxiety (e.g. Young, St, Gibson, Partington, Partington, 

& Wetherell, 2013), the amount of practice (e.g. Guadagnoli & Lee, 2004), the type and difficulty 

of skill (e.g. Wulf & Shea, 2002), and the applicability of a practice skill to real life (e.g. Wrisberg 

& Liu,1991). Although many of these factors are well studied, some elements like anxiety and task 

complexity in motor learning require further study (e.g. Adams, 1964; Guadagnoli & Lee, 2004; 

Magill, 2001; Maran & Glavin, 2003; Mori, Carnahan, & Herold, 2015; Schmidt & Lee, 2018; 

Walsh et al., 2011; Wulf & Shea, 2002; Young et al., 2013). The properties and fundamental 

concepts of motor learning and performance are relevant to the life and work of many individuals.  

To examine motor learning, researchers typically observe performance, but performance is 

not considered motor learning. Since motor learning is immeasurable, performance measures are 

used to indicate and reflect the learning of a skill. Performance is described as, “the behavioural 
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act of executing a skill at a specific time and in a specific situation” (Magill, 2004, p.193). 

Typically, improvements in performance indicate skill learning (Luft & Buitrago, 2005). 

Performance can be measured in many ways; for example, reaction time (Henry & Rogers, 1964; 

Klapp, 1995; Magill, 2004, p.20), error measures (Magill, 2004, p.23; Schmidt, Zelaznik, 

Hawkins, Frank, & Quinn, 1979), and kinetics and kinematics (Magill, 2004, p.29). These 

dependent measures can be used to evaluate performance over multiple trials to create learning 

curves (Crossman, 1959). To measure performance and skill learning over a period of time 

researchers use retention and transfer testing to examine these effects. Retention tests are, “tests of 

a practiced skill that a learner performs following an interval of time after practice has ceased” 

(Magill, 2004, p.199). While transfer tests are, “tests in which a person performs a skill that is 

different from the skill he or she practiced or performs the practiced skill in a context or situation 

that is different from the practice context or situation” (Magill, 2004, p.201). Retention and transfer 

tests are a valid predictor of learning and many researchers have utilized these tests (e.g. 

Guadagnoli & Lee, 2004; Jarus & Gutman, 2001; Porte et al., 2007; Wrisberg & Lui, 1991; Wulf 

& Shea, 2002). While many factors influence the outcome of performance and motor learning, it 

is important to have an understanding of these factors to improve skills.  

1.2 Practice 

One of the most important factors that effectively demonstrates improvements in motor 

learning, is practice (Adams, 1964; Guadagnoli & Lee, 2004; Magill, 2001; Schmidt & Lee, 2018). 

Repetition of certain skills under a variety of conditions can allow an individual to learn a skill and 

develop into an expert. Although the amount of practice has generally been positively related to 

skill improvement, many factors also contribute to whether practice will be beneficial or not. Some 

of these factors include feedback (e.g. Badets & Blandin, 2012), the type and difficulty of skill 
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(e.g. Wulf & Shea, 2002), and the generalizability (e.g. Wrisberg & Liu,1991) and environment of 

the practice setting. Practice can be performed in a controlled laboratory/classroom setting or in a 

real-world field setting. Collectively, these variables influence the rate and degree of skill learning.  

 Individuals can use both mental and physical practice to improve motor skill learning. One 

of the functions of mental practice is that it assists the performer in psychologically preparing to 

perform a skill (Feltz & Landers, 1983). Research has shown that mental practice can enhance 

teamwork and technical skills, especially in high fidelity simulations (Arora, Aggarwal, Hull, 

Miskovic, Kneebone, Darzi & Sevdalis, 2011). Mental practice has been proposed to be a time and 

cost-effective strategy to enhance training (Arora et al., 2011). Both mental and physical practice 

were found to be equally effective during acquisition of skill development (Stebbins, 1968). For 

example, Brouziyne and Molinaro (2005) observed that a combination of mental and physical 

practice can benefit beginners performance of golf shots. Therefore, to increase an individual’s 

performance and learning, mental practice should be added so that the full benefit from physical 

practice can be realized. 

The relationship between practice and skill learning is often referred to as a law of practice 

(Newell & Rosenbloom, 1981) and mathematical models have largely represented this statement 

(Crossman 1959; Guadagnoli & Lee, 2004). The National Institute of Health (NIH, 2009) describe 

five steps of a skill proficiency scale; fundamental awareness, novice, intermediate, advanced, and 

expert. Fundamental awareness is the first step in skill learning and where knowledge and 

understanding of the basic techniques or concepts is learned. Novices can discuss terminology, 

concepts, principles and issues then utilize all the resource materials in this competency; these 

individuals typically need assistance completing the skill. Individuals with intermediate and 

advanced proficiencies can independently perform the skills. Experts have the recognized 
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authority and the ability to provide guidance, assistance with troubleshooting and answer questions 

related to this area (NIH, 2009). Experts achieve skill mastery after many years of practice, with 

researchers arguing that more than ten thousand hours of deliberate practice is needed to achieve 

mastery and expertise (Ericsson, Krampe & Tesch-Römer, 1993; Gladwell, 2008). Guadagnoli and 

Lee (2004) state that, “if skill level is related positively to the development of skill at the task, then 

larger amounts of practice will produce learners of higher skill” (p.219). In practice, many factors 

can have negative impacts on skill performance. During practice different types of praise 

(Baumeister, Hutton,  & Cairns, 1990), training environments (Kozak, Hancock, Arthur & 

Chrysler, 1993), and psychological factors (Hordacre, Immink, Ridding & Hillier, 2016) can 

impact skill performance negatively. The task, environment, and individually specific properties 

of practice has very large impacts on the quality of motor learning and performance. 

1.2.1 Specificity of Practice 

To maximize learning and performance, it is best to provide specific training that reflects 

the real-world situation. The task, individual, and learning characteristics are factors that affect the 

specificity of training (Magill & Hall, 1990). Context specificity refers to the environmental factors 

that influence remembering and learning of information (Schmidt & Lee, 2018). These 

environmental factors can affect individuals physically and emotionally, thus affecting 

performance. For example, a cold environment (Parsons, 2014, p.396) can impair an individual 

physically; conditions that include an element of fear (Rodriguez, Craske, Mineka & Hladek, 

1999) can impact an individual emotionally, thus impacting performance and learning. The 

greatest benefits from performance can be achieved if the practice that is prescribed is specific to 

the desired outcomes and context (Minett & Costello, 2015). A laboratory task has increased 

control but it can be less generalizable (Mook, 1983; Mori et al., 2015). In an occupation that has 
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a certain element of anxiety, for example firefighting, the training should incorporate a certain 

level of anxiety while learning skills to fully maximize an individual’s learning and performance. 

One approach that is used within training programs for anxious conditions is the concept of stress 

inoculation. Stress inoculation is described as training with effective coping skills prior to stress 

exposure to prepare the individual for future stressful events (Saunders, Driskell, Johnston & Salas, 

1996). This approach was originally used to assist individuals with phobias, pain and anger but 

researchers demonstrated it’s use in workplace training to minimize anxiety and maximize 

performance. Saunders and colleagues (1996) observed that stress inoculation training reduced 

state anxiety while enhacing performance under anxious conditions. This provides evidence for 

the specificity of learning principle and practicing with anxiety.  

The specificity of learning principle is described by Henry (1968) as the “best learning 

experiences are those which approximates most closely the movement components and 

environmental conditions of the target skill and context” (Schmidt & Wrisberg, 2004, p.198). The 

two components of this principle have shown how context specificity (Smith, 1998) and task 

specificity (Linn & Burton, 1994) can negatively impact performance and learning. Context 

specificity can have a large impact on performance and learning domain but these results can also 

be impacted by task specificity. The task specificity refers to whether the task being practiced is 

similar to the task that is meant to be learned. These tasks can range from simple to complex skills. 

Task difficulty is explained further below. For learning to be optimized for the individual, training 

needs to be multisensory to allow for individual learning needs (Shams & Sietz, 2008). Some 

research pertaining to the specificity of training and learning focuses on how the source of afferent 

visual information needs to be specific for optimal performance and learning (Tremblay & Proteau, 

1998). This principle has been shown in manual aiming and positioning tasks (Proteau, 1992), 
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precision walking (Proteau, Tremblay & Dejaeger, 1998), and powerlifting (Tremblay & Proteau, 

1998) and indicates that the specificity of learning hypothesis applies to various types of tasks. To 

maximize the benefits of learning through practice, environmental, individual and task specific 

factors all need to be involved in training development (Lewthwaite & Wulf, 2012).  

1.3 Simulation Training 

Motor skills can be learned in simulated environments and in applied settings. Simulation 

environments are important because they allow a degree of control and safety but they also allow 

the participant to practice in an environment that is more realistic than a classroom setting 

(Kneebone, 2009; Walsh et al., 2011). Simulation has been evolving for the last several centuries 

(Perkins, 2007) with evidence of the first involvement of medical field simulation developed by 

Abrahamson and Denson in the late 1960s (Bradley, 2006). Simulation training has many 

applications and is widely integrated into programs where skill learning is imperative, including 

healthcare, military, driving, air traffic control, first responder education, engineering, and public 

services contexts (e.g. Maran & Glavin, 2003; Mori et al., 2015; Walsh et al., 2011; Yeung, 

Dubrowski, & Carnahan, 2013; Young et al., 2013). Walsh and colleagues (2011) offer valid 

reasoning for integrating simulation training into procedural skill acquisition by explaining that 

students enhance, develop, and refine their skills through repetitive practice. Since simulations 

occur in a controlled environment, safety training can also be added as a benefit of simulation 

training (Kneebone, 2009). Another benefit includes the learner has multiple controlled practice 

attempts in a supportive and educational environment. In many cases, failure in simulation training 

is encouraged so students can review the experience and learn from their mistakes in a protected 

environment (Perkins, 2007). While simulation techniques are beginning to be used by many 

researchers as a factor in experimental design (e.g., Maran & Glavin, 2003; Mori et al., 2015; 
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Walsh et al., 2011; Yeung et al., 2013) further research needs to be performed to provide a better 

methodological base for simulation training (Bradley, 2006).  

One concept that aligns with simulation training is simulation fidelity; which is, “the degree 

to which a model or simulation reproduces the state and behaviour of a real-world object, feature 

or condition” (Hays & Singer, 1989, p.49). Low fidelity simulations are typically lower cost and 

are less like the real-world conditions; for example, classroom-based training for a skill that is 

never used in a classroom. High fidelity simulations include environments very similar to the real-

world condition; for example, simulated patients in the medical environment (Maran & Glavin, 

2003). Norman, Dore and Grierson (2012) summarized how high-fidelity simulation provides 

gains in performance and transfer learning. McGaghie and colleagues (2006) discovered that there 

was a positive relationship between number of hours of high-fidelity simulation practice and 

standardized medical evaluations. Depending how representative the simulation is to the actual 

environment, the generalizability of the study can increase or decrease and this can be vital for 

research.  

Simulation training can occur in both controlled environments as well as virtual spaces. In 

particular, firefighter training is often completed in virtual environments to minimize risk 

(Perdigau et al., 2003; St Julien, & Shaw, 2003; Tate, Sibert, & King, 1997). For example, 

Backlund and colleagues (2007) used a virtual-reality video game to enhance firefighter training. 

The authors discovered that virtual training complimented the traditional firefighter training by 

improving learning objectives while increasing self-motivation. Other work has used traditional 

firefighter training simulations to test training (Henderson, Berry, & Matic, 2007). These 

simulations involved real-life tasks that may have maximized the fidelity. Virtual reality 
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environment training offers a cost-effective solution to training but it should be accompanied with 

real-life simulation training. Kozak and colleagues (1993), describe how their real-life training 

group performed significantly better than the virtual reality training group. Therefore, a 

combination of virtual reality training and real-life training is best to increase performance and 

learning.  

Secondary factors found in simulation can have a large impact on performance and 

learning. These secondary factors include feedback, quality of instruction, simulation 

environments, stress levels, the amount of practice, and the type of skill and affect the motor 

learning of a skill. By combining the secondary factors to create a better outline for methodological 

procedures of simulation training, researchers can aim to improve training to ultimately improve 

performance and learning. Although considerable research exists with clinical and medical skill 

training, there is a lack of research in simulation training within other fields.   

1.4 Challenge Point Framework 

The challenge point framework introduced by Guadagnoli and Lee (2004) explains how 

learning is intimately related to the amount of information that is available and interpretable during 

performance, which, in turn, depends on the nominal and functional difficulty of the task 

(Guadagnoli & Lee, 2004). Nominal task difficulty refers only to the difficulty of the task and is 

impacted by both perceptual and motor performance requirements (Guadagnoli & Lee, 2004). 

Functional task difficulty refers to how challenging the task is relative to the skill level of the 

individual performing the task and to the performance conditions (Guadagnoli & Lee, 2004). This 

is important as it acknowledges that the characteristics of both the individual and the task difficulty 

must be considered. Characteristics within this framework and the motor learning field include 
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task difficulty, experience levels, practice schedules/variables, feedback, and the optimal point to 

challenge a participant to increase learning (Guadagnoli & Lee, 2004). It is important to define 

and describe these characteristics to assist with future training. This framework provides a basis 

for task difficulty and performance to learning relationships which has been lacking from previous 

research. The framework states that a certain level of informational challenge is needed for leaners 

to benefit from training. This information can be from the environment, skills, internal (from the 

individual) and external feedback (from outside sources), and arousal levels of the individuals. 

Too little, too much, or the absence of information can hinder learning. A teacher must take into 

account the skill level of an individual and task difficulty and provide an optimal amount of 

information for learning to be enhanced. By increasing the informational demands through 

functional task difficulty, performance during practice may be impeded but learning may be 

enhanced (Guadagnoli & Lee, 2004). Other manipulations of practice and retention context, or the 

environment where the skill is performed, can help increase or decrease learning. Environmental 

manipulations can impact the external and internal feedback of individuals while performing skills 

(Badets & Blandin, 2012). By performing a skill in a controlled setting, a beginner may benefit 

from this because no external feedback from the environment is affecting performance or learning. 

An expert may benefit more from performing skills in an environment that causes certain levels of 

arousal. For example, an intermediate or advanced performer may practice skills in an environment 

that causes anxiety to benefit and develop their skill learning. Guadagnoli and Lee (2004) explain 

how an optimal challenge point is needed for different individual levels and tasks. When the 

amount of potential interpretable information from the task and environment is beneficial to the 

individual, this is described as the optimal challenge point (Guadagnoli & Lee, 2004). With this in 
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mind, the current study will utilize nominal task difficulty through complexity variations and 

functional task difficulty will be manipulated through testing location.  

1.4.1 Contextual Interference (CI) 

There are many ways to arrange a practice session to improve the amount of learning that 

takes place. One of the more common approaches is called the Contextual Interference (CI) effect 

(Lee & Magill, 1983). It has been shown that random practice or unsystematic presentation of 

multiple and related versions of a skill leads to decrements in performance when compared to 

blocked or drill typed practice of a skill. However, when participants who engaged in random 

practice, perform a transfer test, they demonstrate improved learning compared to those who 

engaged in block practice (Magill & Hall, 1990). Random practice refers to several different skills 

practices in a random practice order; blocked practice refers to the same skills performed several 

times in a row. Through increasing the contextual interference of practice schedules, through 

random presentation, it is hypothesized that participants are required to engage in much deeper 

cognitive processing when practicing a skill which leads to enhanced learning (Wulf & Shea, 

2002). 

1.5 Task Complexity 

Recent research highlights the impact that skill complexity has on motor learning (Wulf & 

Shea, 2002). Defining simple and complex skills and the differences between the two  in terms of 

learning and performance is a developing area of research. Sanli and Lee (2015) used a method 

for categorizing skill complexity using the challenge point framework. The authors utilized and 

manipulated nominal and functional task difficulty to observe the effects on practice and transfer 

learning (Sanli & Lee, 2015). This study offered a basis for categorizing skill complextity. Results 
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of their work exhibited that the challenge point framework did not predict the relationship between 

simple and complex skills but provided a starting point for describing complex skills (Sanli &Lee, 

2015). Research throughout the years has focused on simple skill learning. It was previously 

thought that the principles that apply to simple skills could be generalized to all skills, including 

complex skill, but it is evident that simple and complex skill are learned differently (Wulf & Shea, 

2002). Complex skills are much more difficult to define. The motor learning of simple skills and 

complex skills are typically not achieved the same way (Wulf & Shea, 2002). Complex skill 

learning is of interest in this thesis because the skills to be learned are thought to be complex in 

nature. Various practice variables, feedback, and instruction all affect the outcome of learning both 

simple and complex skills. However, Wulf and Shea  (2002) proposed that complex skills may 

benefit more from blocked practice. Wulf and colleagues (2002) reviewed studies with complex 

skill learning and the pattern typically shown was that random practice was detrimental to learning 

complex skills. Wulf and Shea (2002) also explain how observational learning is best for complex 

skills. Observational learning is where an individual imitates a model and self-regulates their 

performance and learning (Ferrari, 1996; Pollock & Lee, 1992). Complex tasks require high 

memory demands that obscure the normally beneficial effects of CI (Wulf & Shea, 2002). It is 

evident that further research needs to be conducted on complex skill learning to fully understand 

the motor learning of complex skills.  

A study completed by Ollis, Button, and Fairweather (2005), manipulated task complexity 

when learning novel knot tying tasks. The current thesis differs by focusing on the general 

population and configuration systems that utilize certain knots. Ollis and colleagues (2005), had 

24 firefighters and 24 college students train to learn six knots with varying complexity, that are 

used within the firefighting profession (Ollis et al., 2005). They established a pre-test baseline and 
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utilized two transfer tests to examine learning. The transfer tests, one occluded visual feedback, 

and the second transfer test consisted of a novel knot tying task. The first transfer test of tying 

knots blindfolded was selected to reflect that firefighters have to tie knots within confined and 

smoke-filled/dark locations (Ollis et al., 2005). Ollis and colleagues (2005) found that practice on 

complex knots led to poorer performance during retention, compared to the group that practiced 

on the simple knots. Thus, complexity during practice is an important variable to consider when 

developing skill training.  

Psychological factors, specifically anxiety, can also accompany complex skill learning. 

Anxiety reduces the benefits of random practice schedules because participants become 

uncomfortable with variability and unpredicted contexts (Shewokis et al., 1995). A model called 

the inverted-U hypothesis (Yerkes & Dodson, 1908), explains that different complexities in tasks 

must have different and optimal levels of arousal and anxiety to be advantageous to performance 

(Eysenck, & Calvo, 1992; Martens & Landers, 1970). Therefore, for an individual to excel in 

performance the anxiety must be low for a difficult task and the anxiety must be high for easy tasks 

Yerkes & Dodson, 1908). Anxiety can have major impacts on the performance and motor learning 

of tasks with various complexities.  

1.6 Anxiety 

According to the The Mental Health Commission of Canada (2014),  anxiety disorders 

are one the most common mental illness in Canada with 9% of men and 16% of women affected 

annually. Anxiety could be used as a tool to improve performance and learning. Two types of 

anxiety have been defined. Trait anxiety refers to personality characteristics rather than the 

temporary feeling of state anxiety. Whereas state anxiety is an unpleasant emotional arousal 

toward threatening demands or dangers (Spielberger, 1972). The mental appraisal of a threat is a 
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prerequisite for the involvement of this emotion (Lazarus, 1991). State anxiety can be further 

classified into cognitive or somatic anxiety (Williams et al., 2016). Cognitive anxiety is described 

as the psychological or mental component of anxiety. (Martens et al., 1990, Spielberger, 1980). In 

contrast, somatic anxiety is observed through the physiological symptoms (Martens et al., 1990), 

often through an increase in heart rate, respiration and perspiration (Williams et al., 2016). 

Cognitive anxiety mostly hinders performance, while somatic anxiety does not have as much of 

an effect (Zeidner, 1998). Cognitive anxiety measures include the State-Trait Anxiety Inventory 

(STAI) test (Spielberger 1980, 1983) or response to a simple single question using a Likert scale 

or perceived anxiety measure (Davey, Barratt, Butow & Deeks, 2007). Somatic anxiety is typically 

measured using physiological devices like heart rate monitors (Martens et al., 1990; Zeidner, 

1998). 

Research surrounding anxiety and motor learning has demonstrated mixed findings. 

Research on task complexity and anxiety has observed detrimental and beneficial impacts on 

performance and learning (Calvo, Alamo, & Ramos, 1990; Lawrence et al., 2014; Morris, Davis, 

& Hutchings, 1981; Mueller, 1992; Mullen, Hardy, & Tattersall, 2005; Shewokis et al., 1995). As 

previously stated, task difficuty has been shown to impact anxiety levels during skill performance 

(Shewokis et al., 1995). Task complexity has been shown to have a similar effect on cognitive 

anxiety and feelings of worry (Morris, Davis, & Hutchings, 1981). Therefore, one might expect if 

participants would perform wore if they were told a task was difficult. One of the past research 

studies that observed the detrimental effects of task complexity on learning was completed by 

Calvo and colleagues (1990). They found that difficult tasks, fine tasks, trait anxiety, and cognitive 

state anxiety were associated with minor performance impairments (Calvo, Alamo, & Ramos, 

1990). Another study where anxiety was manipulated through the instructions given in golf putting 
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tasks (Mullen, Hardy, & Tattersall, 2005). Mullen and colleagues (2005) discovered that with high 

anxiety, performance was impaired. Anxiety and stress affect the learning and performance of 

motor skills (Mueller, 1992). While many studies have demonstrated anxiety and stress have a 

detrimental effect on performance (Mueller, 1992), recent research has found that practicing with 

anxiety can be beneficial to performance. Work by Lawrence, Cassell, Beattie, Woodman, Khan, 

Hardy and Gottwald (2014) discovered that when participants were already anxious in golf-putting 

tasks, they performed under conditions generating anxiety better than participants who were not 

previously introduced to anxiety. This study shows the importance of specificity of practice and 

how it can improve motor skill performance (Lawrence et al., 2014). Further, when researchers 

elicited anxiety and stress prior to training they found that after intervention self-reported stress 

and anxiety were higher than the control group (Hordacre et al., 2016). These results suggest that 

from that anxious testing conditions may effect performance but are likely not to impair learning 

(Calvo, Alamo, & Ramos, 1990; Mullen, Hardy, & Tattersall, 2005). However, these studies have 

not determined what type of conditions have detrimental or benefical effects on performance and 

learning. Future studies may benefit from the implementation of the challenge point framework 

(Guadagnoli & Lee, 2004); whereby anxiety could be modified through task difficulty, 

environment, or expertise. Anxiety typically has a negative stigma surrounding it, but adding 

anxiety to a training regime could actually help performance and learning. 

1.6.1 Anxiety and Fear of Heights 

 One explanation for increases in anxiety and stress during performance is a phobia. A 

phobia is a response to a perceived threat that is consciously recognized as dangerous (Spielberger, 

2013). A phobia results in an unpleasant emotional state consisting of both psychological and 

physiological responses such as agitation, dread, tension, and increases in heart rate, perspiration 
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and respiration. Fear and anxiety have many overlapping states that focus on threats, but are 

considered separate (Öhman, 2008). While the response to phobias have an identifiable stimulus, 

the responses to anxiety are less identifiable. Anxiety is typically a response to a phobia and is 

considered an emotion (Öhman, 2008). One study that describes anxiety and phobias examined 

the sensory and cognitive anxiety variables of acrophobia (Coelho & Wallis, 2010). Acrophobia, 

is defined as the abnormal dread of being in a high place or a fear of heights, and is one of the most 

prevalent phobias (Coelho & Wallis, 2010). Results show that a fear of heights can produce strong 

feelings of discomfort and fear in otherwise calm individuals (Coelho & Wallis, 2010). Therefore, 

a fear of heights may have an impact on the motor learning of tasks. While this phobia is often 

observed in the general population (Coelho & Wallis, 2010) there is a growing area of research 

observing the impacts of fear and anxiety on working professionals’ performance and learning. 

Many professionals are exposed to a complex combination of stressors; including fear of death 

and injury and uncertainty which can accompany acrophobia (Coelho & Wallis, 2010; Lieberman 

et al., 2006; Young et al., 2013). For example, while working at heights, firefighters must be calm 

and focused; although a fear of heights may be detrimental to their performance and endanger 

others (Young et al., 2013). Further research is needed to distinguish the role of anxiety on 

performance and learning in professionals.  

1.6.2 Anxiety in the Workplace 

Professionals can be vulnerable to anxiety and stress in a workplace environment. In 

particular, research from first responders shows high levels of stress and anxiety in the occupation 

(Brown et al., 2002; LeBlanc et al., 2005 Roy & Steptoe, 1994; Young et al., 2013). First 

responders work in dangerous settings and must be able to perform under stress (Young et al., 

2013). These environments can be life threatening, to both the people these professionals are 
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assisting and to themselves. LeBlanc and colleagues (2005) observed stress in first responder 

paramedics and found high levels of stress in clinical settings can increase human errors. The 

profession of firefighting is very diverse and firefighters must perform a variety of skills, often in 

extreme environments. Some firefighting job descriptions require these professionals to work at 

heights, on the ground, with fires, with hazardous materials, provide medical aid, and perform 

rescue/recovery operations (Ollis et al., 2005). Brown and colleagues (2002) outline the stressors 

that firefighters experience and suggested that as a profession they are not coping effectively. 

Young and colleagues (2013) examined different stressors and anxiety in the fire fighting 

profession and observed that stress levels and percieved workload are dependent on the role of the 

firefighter (Young et al., 2013). A strategy that may assist with diminishing the ocupational stress 

is more task specific training. Given the workplace demands on firefighters it is important to ensure 

that training is designed to reduce anxiety while maximizing performance (Alexander et al., 1993; 

Young et al., 2013).  

1.7 Conclusions 

The literature surrounding motor learning describes many of the secondary factors that affect 

the performance and learning of skills. The current review focused on the factors related to the 

current research. The type, amount, and specificity of practice all have major impacts on an 

individual’s ability to perform and learn skills. Simulation training was observed to be a strong aid 

in motor learning and performance. The benefits and disadvantages of training with anxiety have 

conflicting evidence. It is clear how anxiety impacts skill performance, although it is unclear about 

how anxiety affects the learning process. Skill training and professional training should incorporate 

a certain level of challenge; manipulation through anxieties, task difficulties, and environmental 

factors could lead to better skill training, better performance on the job, and better learning.   
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3.1 Introduction 

3.1.1 Background 

Rope rescue techniques can provide lifesaving safe and rapid extraction from hostile 

environments for victims and rescue crews (Brennan, 1998). A wide variety of environmental 

emergency situations require the use of rope rescue techniques including water, ice, confined 

spaces, and high-angles like towers, bridges, and tall structures. Many emergency personnel 

personnel, such as search and rescue and firefighters, undergo rope rescue training. From 2012 to 

2015, eleven fatalities occurred, in the United States, during rope rescue training and in the line of 

duty (Feder, 2016). Clearly these tasks have risks that can be anxiety provoking for trainees. Our 

work will address the role of anxiety during the learning of these rope rescue skills. 

The study of real life skills, like rope rescue, can provide insight into our understanding of 

motor learning. In turn, the theoretical study of motor learning can also inform industrial and 

emergency training protocols. Over the past half century, motor learning research has progressed 

substantially through elucidating the variables that affect practice and retention. Skill retention 

after practice is a reflection of how much learning has taken place, whereas learning is defined as 

a relatively permanent change in behaviour (Schmidt & Lee, 2018 p178).  

Practice is one of the most important factors that has been effectively shown to lead to 

improvements in motor learning, where greater amounts of practice have generally been positively 

related to skill improvement (Guadagnoli & Lee, 2004; Magill, 2001; Schmidt & Lee, 2018). 

Whether the learner benefits from the practice is influenced by factors such as the task, the 

environment, and practice characteristics.  

Motor skills can be learned in applied settings as well as in simulated environments. Benefits 

from simulation include safety and targeted training to the learners’ needs. Also, simulation allows 
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for multiple controlled practice attempts, and provides a supportive and educational environment. 

To maximize practice and learning, it is best to provide specific training that reflects the real-world 

situation (Tremblay & Proteau, 1998). Task specificity involves whether the task being practiced 

is similar to the task that is meant to be learned. To maximize the benefits of learning, 

environmental, individual, and task specific factors should be considered during practice 

(Lewthwaite & Wulf, 2012).  

One consideration when making practice realistic is that for certain industrial skills, a more 

realistic training scenario may cause anxiety, such as a firefighter training with real fire and smoke, 

marine safety training performed in open water, or rope rescue training taking place at height. We 

know very little about how practice with anxiety affects learning, but depending on certain factors, 

anxiety may be beneficial or detrimental.  Therefore, more work is needed to better understand the 

role of anxiety in order to optimize the benefits and minimize any negative effects (Calvo, Alamo, 

& Ramos, 1990; Lawrence et al., 2014; Morris, Davis, & Hutchings, 1981; Mueller, 1992; Mullen, 

Hardy, & Tattersall, 2005; Shewokis et al., 1995). Performance impairments have been shown 

when instruction and task difficulty were manipulated to increase anxiety (Calvo, Alamo, & 

Ramos, 1990; Mullen, Hardy, & Tattersall, 2005; Young et al., 2013). It was observed that anxious 

testing conditions may affect practice but are likely not to impair learning (Calvo, Alamo, & 

Ramos, 1990). Contrasting research shows that individuals may improve practice and learning 

from the arousal associated with anxiety (Lawrence et al., 2014; Alexander  et al., 1993; Tischler, 

Biberman, & McKeage, 2002). It is evident that further research needs to be completed focusing 

on complex skill learning to fully understand learning in realistic settings such as industry, health 

care, and safety training (Brydges, Dubrowski & Carnahan, 2007). 
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There are two classifications of state anxiety; cognitive and somatic (Williams et al., 2016). 

Cognitive, also known as worry anxiety, is described as the mental component of anxiety that 

includes feelings of worry and negative thoughts (Martens et al., 1990, Spielberger, 1980). Somatic 

or emotionality anxiety, is reflected by physiological symptoms (Martens et al., 1990) such as, an 

increase in heart rate, respiration and perspiration (Williams et al., 2016). It was observed that 

cognitive anxiety typically hinders performance, while somatic anxiety does not have as much of 

an effect on performance (Zeidner, 1998). Fear and anxiety have many overlapping states that 

focus on threats, but are considered to be separate (Öhman, 2008). Acrophobia, which is defined 

as the abnormal dread of being in a high place or a fear of heights, is one of the most prevalent 

phobias associated with cognitive anxiety (Coelho & Wallis, 2010).  

To measure anixety, Spielberger (1980, 1983) pioneered the state-trait anxiety inventory 

(STAI) test. However, this has since been improved on by Davey and colleagues (Barratt, Butow 

& Deeks, 2007) who proposed that a Likert scale or visual-analogue scale was quicker, easier, and 

a suitable replacement for the STAI (Davey et al., 2007).  

3.1.2 Purpose  

This study aims to address the role of anxiety during practice on learning to configure 

hauling systems. Cognitive anxiety was induced by manipulating task complexity and somatic 

anxiety was induced by requiring participants to practice at heights. Thus, the research questions 

were as follows: 

a) How does practice on hauling systems of various complexities affect skill performance 

during practice and retention?  
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b) How does practice on hauling system preparation at low and high heights affect skill 

performance during practice and retention?  

c) Is anxiety during practice and retention affected when task complexity is increased?  

d) Is anxiety during practice and retention affected when exposed to heights? 

3.2 Methodology 

3.2.1 Participants 

Participants were volunteers from the general population of St. John’s, Newfoundland and 

were considered beginners in knot-tying and hauling system preparation. Based on research 

conducted by Ollis and colleagues (2005), a statistical power analysis calculated in G*Power 

3.1.9.2, indicated that a minimum sample of ten per group was required. During the recruitment 

process, participants were asked if they, “had any experience with rock climbing or rope system 

configuration?”. If they responded yes, they were considered to have more experience than the 

general population and were excluded from the study. Exclusion criteria also included any 

neurological or physical limitations preventing the participant from climbing three flights of stairs, 

an extreme fear of heights, and/or if the participants was younger than 18 or older than 55 years. 

This reflects the typical age that a firefighter would complete this type of training. Twenty 

participants (N = 20) volunteered ranging from 19 to 48 years and were randomly assigned to one 

of the two practice groups. Participants verbally provided self-reported demographics and 

inclusion criteria. Participants received a twenty dollar coffee shop gift card as incentive for their 

participation. All procedures were approved by the Memorial University Interdisciplinary 

Committee on Ethics in Human Research (ICEHR)- 20180703. 
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3.2.2 Apparatus and Materials 

 Training and testing took place at the Marine Intitute’s Offshore Safety and Survival Centre 

in Foxtrap, Newfoundland. The environment for the training and testing included a classroom and 

an elevated location. The elevated location consisted of a three story (~ 14 m) firefighting training 

structure with grated stairs and flooring that was surrounded by railings. 

Hauling Systems 

Hauling and lowering systems are comprised of a series of knots, pulleys and devices 

assisting in high-angle rope rescue (Frank, 2010; Jackovics, 2019). Firefighters and rescue 

personnel are typically the individuals that would utilize these systems. These systems could be 

used for both hauling an individual up or lowering them to the ground (Frank, 2010). Our hauling 

systems includes single and double pulleys, carabiners, a multi-purpose device, double figure eight 

and prusik knots. The double figure eight knots are a very stable knot that are easy to take apart if 

needed. The triple-wrap prusik is bi-directional and can easily slide along the line and can be 

hauled on. The multi-purpose device is a high-efficiency pulley, with an integral rope-grab 

mechanism. This device allows it to be used as a lowering device on the main line and belay line 

systems and can be quickly changed over to a hauling system without reconfiguring the entire 

system (Frank, 2010). The complexities used were 3:1 and 5:1 (Figure 1). The 3:1 hauling system 

is considerd a simple system and the 5:1 is considered a complex system (Frank, 2010). The 3:1 

system creates a Z shape with the lines and also known as a z-rig. To configure the systems, one 

must begin with a double figure-eight knot at the load. Then a prusik with a carabiner is attached 

to a pulley and the multi-purpose device is attached to the anchor. The pulleys in the hauling 

systems utilize mechanical advantage, ultimately allowing a person to lift much more than they 

are physically capable of lifting. For example, within the 5:1 system pulling the rope 5 m will raise 
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the load 1 m or, in other terms, pulling 1 unit of tension creates 5 units of tension at the load. Many 

more complexities exist, although only two different complexities were incorporated in the present 

study due to time constraints.  

3.2.3 Dependent Variables 

Hauling system performance was evaluated by error scores and movement time (MT). To 

measure cognitive anxiety, a self-reported perceived anxiety visual-analogue scale (range 1 -10) 

was used, where higher anxiety is expressed as higher numbers (i.e. 10). Somatic anxiety was 

measured by heart rate (HR) in beats per minute (bpm) and heart rate variability (HRV) in 

milliseconds (ms) between heart beats. Increased somatic anxiety is typically expressed through 

increased HR and decreased HRV (Hoehn‐Saric, 1998).  

Configuration Performance Scores 

The number of correct responses that each participant made during the testing protocols 

was counted and identified by one of two trained evaluators, each checklist was verified by the 

expert instructor. A checklist (Figure 2) was developed by the research team to determine the 

corrects actions and errors made by the participants during practice and retention. The participant 

could perform the task either correctly, with non-critical errors (e.g. the hauling system could still 

be used but the aesthetics were not perfect), or critical errors (e.g. the hauling system could not be 

used). An example of a non-critical error in the configuration would be if the knot in the prusik 

was not offset correctly and was in the way of the carabiner. In this scenario the hauling system 

will still work, but the configuration is not optimal. An example of a critical error would be if the 

rope was not put through the multi-purpose device correctly, this could drastically interfere with 

the rescue operations and could result in the rescuer and victim falling. If a participant completed 

each component correctly, they would receive a score of eleven. Deductions from a perfect score 
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of eleven were made for non-critical errors (- 0.5 point) and critical errors (-1 point). MT was used 

to measure performance (Keele, 1968; Sanli & Lee, 2015). 

Cognitive Anxiety 

Cognitive anxiety was examined through verbal questionning and a scoring sheet. A sheet 

of paper weighted with antonyms at each end, e.g. low and high was used to measure perceived 

anxiety (Davey et al., 2007; Young et al., 2013). The perceived anxiety measure contained a ten 

number Likert scale where ten indicated that the participants felt very anxious and one indicated 

that the participants did not feel any anxiety at all. The investigators used the perceived anxiety 

measure after every trial, and participants stated how they felt after each condition. Researchers 

used the following script while administering the perceived anxiety measure, “How do you feel 

after completing this trial? Please state or point to a number on the perceived anxiety scale. Ten 

indicates that you feel very anxious and one indicates that you do not feel any anxiety at all.” The 

perceived anxiety measure was used as a quick and easy instrument to acquire the participants self-

reported anxiety (Davey et al., 2007).  

Somatic anxiety  

Physiological/somatic anxiety was evaluated using a Zephyr Bioharness heart rate monitor 

that assessed the participants heart rate (HR) in beats per minute and heart rate variability (HRV) 

in milliseconds. HR and HRV have been shown to reflect anxiety (Williams et al., 2016). The 

BioHarness (Zephyr Technology Corporation, Annapolis, MD, US) is a wireless, physiological 

monitoring device that consists of an adjustable chest strap (50 g, 50 mm width; weight 35 g, 

80x40x15 mm) and detachable transmitter unit (Johnstone et al., 2012; Kim et al., 2015). Kim and 

colleagues found the Zephyr Bioharness be an accurate method of heart rate data collection. Each 
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participant wore the Zephyr Bioharness during practice and retention. The HR and HRV was 

further analyzed at two time points; at the beginning of the trial and at one minute and thirty 

seconds into the trial. The overall average MT (M = 3.23 min ± 0.15 SD) was divided in half, 

which gave an approximate time point of one minute and thirty seconds to analyze responses after 

the trial was half complete. To remain consistent, the same half way time point was used for both 

task complexities. A ten second average was used as  a sampling window for calculations of each 

time point as a summary for the first and halfway responses to the trial. These sampling windows 

were used with the objective of observing changes in the somatic anxiety from the beginning of 

the trial to half way through the movement. 

3.2.4 Procedure 

Participants were randomly divided into two practice groups; a High practice group and a 

Low practice group. The Low practice group underwent training in a classroom setting and the 

High practice group trained at the elevated location (~ 14 m) (Figure 3). The practice training was 

performed within a group of one to four participants and retention testing was performed 

individually. The instruction during practice was completed by a trained expert (12 years) from 

the Offshore Safety and Survival Centre. The instructor utilized verbal, visual, and kinesthetic 

demonstrations of the hauling systems and its components. The instructor began by teaching each 

single component of the system to the participants and allowed them to get acquainted with the 

materials. The theory behind hauling systems, such as mechanical advantage, was taught to the 

participants and then the entire system was prepared. The first day of the study consisted of the 

practice of the hauling systems, which was completed at the respective locations that each 

participant was assigned to. Participants were given five practice attempts with feedback from the 

instructor after each attempt. During typical rope rescue training, students are only given one to 
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two practice attempts of the hauling systems, and through pilot testing individuals typically 

achieved competence of the skill after three to four practice attempts. Given this, five practice 

attempts was deemed suitable. The participants first practiced the 3:1, followed by the 5:1 because 

5:1 includes the 3:1 in the configuration. The first session took approximately three hours. The 

second session, completed five to seven days later, consisted of the retention test. For both training 

groups the retention tests were completed at the elevated location first and then in the classroom. 

For retention, participants were asked to complete each complexity of the hauling systems once in 

each environments (i.e. classroom and elevated location). The retention session took 

approximately one hour. After each trial the configuration performance scores and the MT was 

evaluated. During all trials the participants HR and HRV were continuously measured. After the 

completion of each trial (practice/retention testing) the primary investigator administered the 

perceived anxiety measure. A photograph of each hauling system configuration was taken after 

each trial to record and reviewed later as needed.  

3.2.5 Analyses 

Statistical significance was assessed at p < .05 throughout, and all analyses were conducted 

using SPSS Statistics for Windows, Version 23.0. Armonk, NY (IBM Corp, 2015). All dependent 

variables for practice were analyzed in separate 2 (Group; High, Low) x 2 (Complexity; 3:1, 5:1) 

x 5 (practice trial) mixed-design analyses of variance (ANOVA’s) with repeated measures on the 

last two factors. The retention data for each dependant variable were analyzed in separate 2 (Group; 

High, Low) x 2 (Complexity; 3:1, 5:1) x 2 (testing location; Elevated, Classroom) mixed-design 

ANOVA’s with repeated measures on the last two factors. Statistically significant ANOVA effects 

were further analyzed using the Tukeys Post-hoc method for comparing means. Sphericity 

calculations and Greenhouse-Geiser corrections were completed when necessary. 
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During practice and retention, less than 5% of the HR and HRV data collected from the 

Zephyr Bioharness was missing due to technological error. When this issue was observed, we 

checked to ensure the monitor was positioned correctly, all settings were correct and continued 

with collection.  

3.3 Results 

Participants, whose ages ranged from 19 to 48 years (M = 25.95 ± 6.47SD), were primarily 

students from Memorial University and 20% of the sample from the general population of St. 

John’s, Newfoundland. This sample represents the typical age of a trainnee that would undergo 

rope rescue training. While the majority of the rope rescue trainees in real life are males, an equal 

sample of ten males and ten females were included.  

3.3.1 Practice Results 

Performance Scores 

Configuration  

Configuration performance was rated out of eleven, with a score of eleven being considered 

100%. There were statistically significant main effects for group (F (1, 18) = 8.72, p = .009) and 

complexity (F (1, 18) = 5.96, p = .025). As well as a significant interaction between group and 

complexity (F (1, 18) = 5.01, p = .038). Tukey HSD post hoc tests revealed significant differences 

between the 3:1 system performed by the High practice group, and all other trials (Figure 5). Also, 

significant differences between each group and both complexities were observed. Participants in 

the Low practice group performed superiorly to the High practice group. 

There were statistically significant main effects for practice trial (F (2.47, 44.58) = 7.38, p < 

.001) when configuration performance was analyzed. Tukeys HSD test revealed significant 
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differences between trial one had greater errors than practice trials two, three, four and five; 

indicating that the participants’ configuration performance scores improved (Figure 4a).  

Movement Time (sec) 

 There was no statistically significant effect of group (F (1,18) = .03, p = .85) or task 

complexity (F (1, 18) = 1.34, p = .26) in the analysis of MT. As well, no significant interactions were 

found for group, complexity, or practice trial. However, there was a statistically significant main 

effect for practice trial (F (2.7, 48.61) = 8.83, p < .001). Mauchly’s test of sphericity revealed that the 

assumption of sphericity had been violated, (x2 (9) = 20.52, p = .01), and degrees of freedom were 

corrected to Greenhouse- Geiser estimates (ε = .67). Movement time decreased from practice trial 

one to practice trial five (Figure 4b). 

Anxiety Scores 

Cognitive Anxiety: Self-reported Perceived Anxiety 

 Higher values on the ten point perceived anxiety measure reflected greater perceived 

anxiety. There were no statistically significant main effects for group (F (1, 18) = 1.15, p = .29), or 

complexity (F (1, 18) = 2.8, p = .11). There was a significant main effect for practice trial (F (2.24, 

40.23) = 23.42, p < .001), as well as a significant interaction between skill complexity and practice 

trial (F (4, 72) = 3.13, p = .02). Tukey post hoc comparison revealed that for the 3:1 system, practice 

trials three, four and five were significantly less anxious than practice trials one and two. For the 

5:1 system, practice trials two, three, four and five had significantly less percieved anxiety than 

practice trial one (Figure 6).  

Somatic Anxiety: Heart Rate (HR - bpm)  
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 When HR was analyzed, there were no statistically significant main effects for group (F (1, 

18) = .68, p = .42) or complexity (F (1, 18) = .032, p = .86). However, there was a significant main 

effect of practice trial (F (4, 15) = 5.82, p < .001) as well as a significant interaction for complexity 

and practice trial (F (4, 72) = 2.72, p = .03).  Mauchly’s test indicated that the assumption of 

sphericity had not been violated for practice trial (x2 (9) = 5.034, p = .83) and complexity by 

practice trial (x2 (9) = 11.25, p = .26). Therefore, sphericity assumption values were used. Tukey 

post hoc comparisons revealed that the HR was higher for the 3:1 system between practice trial 

one and the remaining trials (Figure 7). For the 5:1, practice trial four was significantly lower than 

all the others.  

Half way through the completion of the skill, at one minute and thirty seconds, an average 

of the 10 second heart rate data was analyzed. There was no statistically significant main effect of 

group (F (1, 18) = .97, p = .34). However there was significant main effect of complexity (F (1, 18) = 

5.64, p = .03) and a main effect for practice trial (F (4, 72) = 3.44, p = .012) when HR was analyzed. 

Mauchly’s test indicated that the assumption of sphericity had not been violated for practice trial 

(x2 (9) = 2.69, p = .97). Therefore, sphericity assumption ANOVA values were used. For the 3:1 

system (M = 99.15, SE = 4.39) participants had significantly higher HR’s than when practicing the 

5:1 system (M = 96.26, SE = 4.05). Post hoc comparisons revealed the HR for practice trial one 

(M = 100.82 bpm, SE = 4.18) was higher than practice trial two (M = 96.93 bpm, SE = 4.62), three 

(M = 96. 65 bpm, SE = 4.14), four (M = 96.59 bpm, SE = 4.33), and five (M = 97.53 bpm, SE = 

4.03). No significant interactions were observed for HR. 

Somatic Anxiety: Heart Rate Variability (HRV - ms) 

 Due to technological error, HRV (ms) data was missing for one participant in the Low 

practice group (N = 9). Therefore, HRV data reflected only a part of the sample. During the first 
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10 seconds of the skill HRV was analyzed. There was no statistically significant main effect for 

group (F (1, 17) = .004, p = .95) or complexity (F (1, 17) < .00, p = .99). There was a statistically 

significant main effect for practice trial (F (2.34, 39.76) = 3.18, p = .045). Mauchly’s test indicated that 

the assumption of sphericity had been violated for practice trial (x2 (9) = 20.72, p = .014) therefore, 

degrees of freedom were corrected for using Greenhouse-Geiser estimates of sphericity (ε = .58). 

Participants HRV in practice trial one (M = 59.87 ms, SE = 5.49) was higher than practice trials 

three (M = 71.59 ms, SE = 6.65), four (M = 69.02 ms, SE = 6.337), and five (M = 67.71 ms, SE = 

7.21). No statistically significant interactions were observed.  

At one minute and thirty seconds into the skill, an average of 10 second HRV data was 

analyzed. Due to the technological error, HRV (ms) data was missing for one participant from 

each of the two groups (High practice group (N = 9) and the Low practice group (N = 9)). There 

were no statistically significant main effects for group (F (1, 16) = .32, p = .58), complexity (F (1, 16) 

= .56, p = .46) or practice trial (F (4, 64) = 1.40, p = .24), and no significant interactions were 

observed. 

3.3.2 Retention Results 

Performance Scores 

Configuration  

 There were no statistically significant main effects for group (F (1, 18) = .72 p = .40), 

complexity (F (1, 18) = .17, p = .68) or testing location (F (1, 18) = 3.61, p = .07) and no significant 

interactions were found when configuration score was analyzed.  

Movement Time (MT) 
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There was no main effect of group (F (1, 18) = .12, p = .73), but we observed a main effect 

of complexity (F (1, 18) = 15.49, p = .001), testing location (F (1, 18) = 6.82, p = .018), and an 

interaction between complexity and testing location (F (1, 18) = 9.727, p = .006). As seen in Figure 

8c, the 3:1 complexity MT was the same for both the elevated and classroom environments. 

However, for the 5:1 complexity, MT was higher for the elevated location compared to the 

classroom environment.  

Anxiety scores 

Cognitive Anxiety: Self-reported Perceived Anxiety 

 There were no statistically significant main effects of perceived anxiety for group (F (1, 18) 

= .67, p = .42) or complexity (F (1, 18) = .09, p = .77). There was a significant main effect for testing 

location (F (1, 18) = 33.18, p < .001, Figure 8a). Perceived anxiety was higher for both practice 

groups at the elevated location during retention. A significant interaction was observed between 

group and complexity (F (1, 18) = 9.04, p = .008). For the 3:1 complexity there was no difference 

between the practice groups. However, the Low practice group had higher perceived anxiety than 

the High practice group during the 5:1 complexity (refer to Figure 8b) 

Somatic Anxiety: Heart Rate (HR) 

During the first 10 seconds of the skill, analyses showed no statistically significant main 

effects for group (F (1, 18) = .89, p = .36), complexity (F (1, 18) = 1.07, p = .31) or testing location (F 

(1, 18) = 1.18, p = .29) for HR. However, there was a significant interaction for complexity and 

testing location (F (1, 18) = 5.18, p = .03). For the 3:1 complexity, HR was significantly higher 

during the elevated condition (M = 99.62, SE = 4.53) compared to the classroom condition (M = 
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93.14, SE = 5.42). For the 5:1 complexity (which was performed after the 3:1 complexity) there 

was no difference between the retention testing locations.  

 The average of 10 seconds of HR data was analyzed at one minute and thirty seconds. 

There were no statistically significant main effects for group (F (1, 18) = 3.48, p = .08), complexity 

(F (1, 18) = 2.22, p = .15) or testing location (F (1, 18) = .83, p = .37). No significant interactions were 

observed in the variables, half way through the skill. 

Somatic Anxiety: Heart Rate Variability (HRV) 

Due to technological error, HRV (ms) data from four participants from each group was 

missing (the High practice group (N = 6) and the Low practice group (N = 6)). During the first 10 

seconds of the skill HRV was analyzed. There were no significant main effects for group (F (1, 10) 

= 1.16, p = .31), complexity (F (1, 10) = 3.58, p = .08) and testing location (F (1, 10) = 4.61, p = 0.57). 

No significant interactions were observed. 

Half way through the completion of the skill, at one minute and thirty seconds, an average 

of 10 seconds of HRV data was analyzed. Due to technological error, HRV (ms) data was missing 

and the group sizes are different from the other variables (where the High practice group (N = 5) 

and the Low practice group (N = 8)). There were no statistically significant main effects for group 

(F (1, 11) = 1.31, p = .27), complexity (F (1, 11) = 1.86, p = .20) or testing location (F (1, 11) = .10, p = 

.75). No significant interactions were observed half way through the skill. 

3.4 Discussion 

In summary, participant’s configuration performance during practice and retention was not 

affected by the complexity of the hauling system. However, performance speed was affected by 

hauling system complexity during retention (Figure 8). During practice, the configuration 
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performance score was affected by practice trials and the practice group, but not during retention. 

However, MT was not affected by practice group during practice but MT was longer during 

retention tests, particularly during elevated retention. During practice, it was observed that 

complexity did not have an effect on cognitive or somatic anxiety during practice (Figure 6), but 

complexity had an impact on perceived anxiety during retention. When exposed to heights during 

practice, participants did not show significant effects on cognitive or somatic anxiety. During 

retention, perceived (cognitive) anxiety was highest during the elevated retention testing. 

Practice trial effects 

Performance (MT and configuration performance scores) and anxiety (cognitive and 

somatic) improved as a function of practice. This is important because it validates our dependent 

variables by showing that they were sensitive to practice effects (Schmidt & Lee, 2018, p234). For 

example, MT decreased as a function of practice and configuration performance scores increased 

as a function of practice. This finding also supports the notion that participants received adequate 

amount of practice on the skills that led to motor learning. There were learning curve effects for 

configuration performance, MT and perceived anxiety during the practice trials. Significant 

changes from practice trial one to the final practice trial were observed, theses changes followed a 

typical learning curve trajectory (Crossman, 1959) and explain for increases in performance and 

decreases in anxiety. The improvements in performance support the notion that deliberate practice 

increases the performance of tasks (Ericsson, Krampe & Tesch-Römer, 1993; Guadagnoli & Lee, 

2004). Note that HR and HRV for the first practice trial was different from the other remaining 

trials, which generally did not differentiate from each other. This is likely caused by greater anxiety 

on the first exposure but once participants had adapted to the skill, physiological responses of 

anxiety quickly plateaued (Brouwer, Hogervorst, Holewijn & van Erp, 2014).  
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As stated before, real-world training only requires for one to two practice attempts of each 

complexity and in the current study the five practice trials completed show continuous 

improvements in performance from practice trial one to five. Therefore, hauling system training 

should incorporate a minimum of five practice trials to benefit performance and learning. Further 

research may investigate a larger number of practice to observe whether hauling system 

performance and learning benefits from more than five practice trials. 

Height effects 

 During practice an important finding was that configuration performance scores of the Low 

practice group were significantly better than those of the High practice group. According to the 

challenge point framework (Guadagnoli & Lee, 2004), an individuals performance will suffer if 

the task difficulty is too high. We interpret that exposure to height increase task difficulty and 

reduced configuration performance. 

We expected to observe influences of height on practice performance and learning (Camm, 

Malik, Bigger, Breithardt, Cerutti, Cohen... & Lombardi, 1996; Cinaz, Arnrich, Marca & Tröster, 

2013). However, the only statistically significant effect of height on MT performance was during 

retention. It is interesting to note that practice and retention at height did not result in cognitive or 

somatic anxiety as expected. It is possible that while participants were performing at height (~ 

14m) there were enough safeguards (railings) that they may not have experienced the expected 

anxiety. Also, a self-declared fear of heights was an exclusion criterion for participation for this 

study. We chose this as an exclusion criterion because we were attempting to create a sample 

involving personnel criteria that would be typical search and rescue recruitment. Future work could 

replicate this study with individuals who have a self-declared fear of heights or personnel who are 

involved with search and rescue. In retention, there was an increase in MT at height but this was 
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independent to the type of practice environment. Its hypothesized that the added anxiety of being 

in a testing situation contributed to this effect (Eysenck, 1979). In other words, there may be a sub-

threshold anxiety caused by working at heights, this was brought to threshold (as evidence by the 

significant effect of elevated perceived anxiety during retention) when performing at heights in a 

testing environment. Our results do not support a training specificity perspective (Tremblay & 

Proteau, 1998). 

Task complexity effects 

 During practice, there was increased perceived anxiety and decreased configuration 

performance scores  for the simple 3:1 hauling system in comparison to the 5:1 hauling system. 

While this was unexpected it should be noted that the 3:1 hauling system was always practiced 

prior to the 5:1 hauling system. As a result, the participants may have become comfortable with 

the task, materials and environment by the time they performed the 5:1 (Alexander et al., 1993; 

Tischler, Biberman, & McKeage, 2002; Taylor & Asmundson, 2008). Perceived anxiety likely 

decreased for the 5:1 configuration because participants had increased familiarity with the practice 

environment and the task. This pattern was replicated with HR results during practice. Participants 

may have gotten more comfortable with each trial and complexity and felt more competent with 

their abilities (Tischler, Biberman & McKeage, 2002), which could explain the decrease in anxiety 

and increase in performance scores.  During retention, as expected, MT was longer for the complex 

5:1 hauling system. This difference was magnified when performing the 5:1 system in an elevated 

environment. An increase in anxiety in the elevated location with the more complex hauling system 

may have led to the longer MT performance observed (Eysenck, & Calvo, 1992). These MT results 

are not consistent with measures of somatic anxiety but are consistent with cognitive anxiety 

measures (Morris, Davis, & Hutchings, 1981). Task complexity can negatively affect cognitive 
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anxiety, which would explain why the Low practice group perceived the difficult 5:1 hauling 

system as producing the most anxiety (Morris, Davis, & Hutchings, 1981).  

3.5 Perspectives 

There were limitations to our study. We did not demonstrate any direct impacts from 

heights on performance or anxiety. The railings and safety barriers at the elevated location may 

have provided the participants with enough comfort that they did not experience realistic anxiety 

from that setting. Self-reported perceived anxiety was administered after every trial and it is 

possible that this measure may have lost its sensitivity over repeated exposure. Instrumentation 

issues may be apparent due to daily fluctuations in technology and self-reported scores can affect 

the internal validity (Taylor & Asmundson, 2008). The reliability of the Zephyr Bioharness was 

an issue due to the data missing for a few of the trials. The checklist utilized for the configuration 

performance scores has not yet been validated by experts and had a maximum of eleven items. 

During practice, the 3:1 complexity was practiced before the 5:1 complexity this means that some 

of the effects observed were from order rather than task complexity. The complexities were not 

counterbalance because the 3:1 must be learnt prior to the 5:1 since it is an addition onto the 3:1 

system. As well in retention, all of the elevated trials were completed before the classroom trials. 

While this was purposeful to maximize the negative effects of performing at height it did create a 

potential order effect compound. Another limitation of the current study is the limited scope of our 

samples demographics and sample size. The participants in this study were primarily students, 

with only 20% from the general population. It was assumed that this sample would be similar to 

the real rope rescue population but perhaps a wider age range and primarily males. Suggestions 

for future research include creating a high testing and training environment that appears less safe, 
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testing people who have self-declared phobias of height, and testing rope-rescue trainees so the 

results are more directly applicable to training firefighters and search and rescue. 

3.6 Conclusion 

To our knowledge, this is first studies to assess this type of firefighting (rope rescue) skills 

and anxiety induced by different complexities and environments. In the present study there was a 

relatively small sample size and the limited population demographics. Keeping this in mind, based 

on these results, training at height does not appear necessary for transfer to performing at height 

conditions and trainees need to practice the entire range of complexity. However, it is important 

that trainees get training on complex hauling systems because it has been shown that practicing 

and performing more complex hauling systems, contributes to cognitive anxiety related to 

performing at height. It is anticipated that these findings could benefit rope rescue training 

standards. The results do not support the specificity of training hypothesis in terms of height but 

do support the notion of practice for motor learning.  
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3.8 Tables 

Table 1. A. Significant main effects and interactions for practice. B. Significant main effects and 

interactions for retention. 

A. 

 F dF p 

 Configuration Score 

Group 8.72 1, 18 .009 

Complexity 5.96 1, 18 .025 

Group & Complexity  5.01 1, 18 .038 

Practice trial 7.39 4, 72 < .001 
 Perceived Anxiety 

Practice trial 23.42 2.24, 40.23 < .001 

Complexity & Practice 

trial 
3.19 3.05, 54.82 0.032 

 Movement time 

Practice trial 8.83 2.7, 48.61 < .001 
 Heart rate (10sec) 

Practice trial 5.80 4, 15 < .001 

Complexity & Practice 

trial 
2.71 4, 72 0.036 

 Heart rate (1:30) 

Practice trial 3.44 4, 72 0.012 

Complexity 5.64 1, 18 0.029 
 Heart rate variability (10 sec) 

Practice trial 3.18 2.34, 39.76 0.045 

 

B.  

 F df p 
 Perceived Anxiety 

Location 33.18 1, 18 < .001 

Group & Complexity  9.04 1, 18 0.008 
 Movement time 

Complexity 15.46 1, 18 0.001 

Location 6.82 1, 18 0.018 

Complexity & Location 9.72 1, 18 0.006 
 Heart Rate (10sec) 

Complexity & Location 5.18 1, 18 0.035 
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Table 2. A. Absolute data of mean and standard error values of non-significant variables during 

practice. B. Absolute data of mean and standard error values of non-significant variables during 

retention. 

A.  

Dependant Variable 
Independent 

Variable 
Condition Mean 

Standard 

error 

Perceived anxiety 

Group 
High 3.73 .43 

Low 3.07 .43 

Complexity 
3:1 3.60 .38 

5:1 3.20 .27 

Movement time (sec) 

Group 
High 196.62 13.23 

Low 193.21 13.23 

Complexity 
3:1 189.46 10.45 

5:1 200.37 10.50 

Heart Rate -10 sec avg (bpm) 

Group 
High 92.05 5.87 

Low 98.89 5.87 

Complexity 
3:1 95.60 4.40 

5:1 95.34 4.03 

Heart Rate - 1:30 min avg (bpm) Group 
High 93.60 5.90 

Low 101.82 5.90 

Heart Rate Variability – 10 sec avg 

(ms) 

Group 
High 66.25 8.12 

Low 67.04 8.56 

Complexity 
3:1 66.64 6.11 

5:1 66.65 5.89 

Heart Rate Variability – 1:30 min 

avg (ms) 

Group 
High 76.93 10.38 

Low 68.62 10.38 

Complexity 
3:1 71.97 7.31 

5:1 73.58 7.53 

Practice Trial 

1 68.36 6.50 

2 72.64 7.13 

3 72.64 7.95 

4 74.04 8.31 

5 72.93 8.11 
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B.  

Dependant Variable 
Independent 

Variable 
Condition Mean 

Standard 

error 

Configuration Score 

Group 
High 10.65 .08 

Low 10.75 .08 

Complexity 
3:1 10.67 .09 

5:1 10.72 .06 

Location 
Elevated 10.58 .09 

Classroom 10.81 .07 

Perceived anxiety 

Group 
High 3.27 .43 

Low 3.77 .43 

Complexity 
3:1 3.50 .31 

5:1 3.55 .32 

Movement time (sec) Group 
High 180.80 13.14 

Low 174.35 13.14 

Heart Rate -10 sec avg (bpm) 

Group 
High 91.21 6.36 

Low 99.69 6.36 

Complexity 
3:1 96.38 4.67 

5:1 94.53 4.49 

Location  
Elevated 96.91 4.14 

Classroom 94.01 5.18 

Heart Rate - 1:30 min avg (bpm) 

Group 
High 89.16 6.06 

Low 105.15 6.06 

Complexity  
3:1 99.62 4.50 

5:1 94.69 4.68 

Location 
Elevated 98.43 4.50 

Classroom 95.88 4.50 

Heart Rate Variability – 10 sec avg 

(ms) 

Group 
High 85.13 11.47 

Low 67.63 11.47 

Complexity 
3:1 81.22 9.96 

5:1 71.53 6.74 

Location 
Elevated 82.22 9.43 

Classroom 70.54 7.57 

Heart Rate Variability – 1:30 min 

avg (ms) 

Group 
High 81.67 13.44 

Low 62.05 10.63 

Complexity 
3:1 75.09 9.79 

5:1 68.63 7.88 

Location 
Elevated 70.83 8.88 

Classroom 72.89 9.38 
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3.9 Figures 

Figure 1. Pictures of 3:1 and 5:1 hauling systems. 
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Figure 2. Example of the configuration performance score checklist for the 3:1 condition. 
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Figure 3. Illustration of the procedures based on the day. Day 1 represents practice and Day 2 is 

the retention testing. 
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Figure 4. Significant main effects during practice. A. The average and standard errors for 

configuration scores of each practice trial. B. The average and standard errors for Movement 

Time (MT) in seconds based on practice trial. 
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Figure 5. The significant interaction for configuration score (out of 11) between practice group 

and task complexity, during practice.   
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Figure 6. The perceived anxiety scores (10 = very anxious, 1 = no anxiety) during each hauling 

system complexity and each practice trial. 
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Figure 7. The average HR (at first 10sec of movement) during each hauling system complexity 

and each practice trial.  
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Figure 8. Significant dependant variables during retention testing. A. The average perceived 

anxiety levels of each retention testing location. B. The perceived anxiety of each group while 

completing both complexities. C. The Movement time (MT) (seconds) based on task complexity 

and location. 
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