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Abstract
This thesis presents the design, implementation, and validation of a novel nonlinear-

filtering based Visual Inertial Odometry (VIO) framework for robotic navigation in GPS-

denied environments. The system attempts to track the vehicle’s ego-motion at each time

instant while capturing the benefits of both the camera information and the Inertial Mea-

surement Unit (IMU). VIO demands considerable computational resources and processing

time, and this makes the hardware implementation quite challenging for micro- and nano-

robotic systems. In many cases, the VIO process selects a small subset of tracked features

to reduce the computational cost. VIO estimation also suffers from the inevitable accu-

mulation of error. This limitation makes the estimation gradually diverge and even fail to

track the vehicle trajectory over long-term operation. Deploying optimization for the entire

trajectory helps to minimize the accumulative errors, but increases the computational cost

significantly. The VIO hardware implementation can utilize a more powerful processor

and specialized hardware computing platforms, such as Field Programmable Gate Arrays,

Graphics Processing Units and Application-Specific Integrated Circuits, to accelerate the

execution. However, the computation still needs to perform identical computational steps

with similar complexity. Processing data at a higher frequency increases energy consump-

tion significantly. The development of advanced hardware systems is also expensive and

time-consuming. Consequently, the approach of developing an efficient algorithm will be

beneficial with or without hardware acceleration. The research described in this thesis

proposes multiple solutions to accelerate the visual inertial odometry computation while

maintaining a comparative estimation accuracy over long-term operation among state-of-

the-art algorithms.

ii



This research has resulted in three significant contributions. First, this research involved

the design and validation of a novel nonlinear filtering sensor-fusion algorithm using trifo-

cal tensor geometry and a cubature Kalman filter. The combination has handled the system

nonlinearity effectively, while reducing the computational cost and system complexity sig-

nificantly. Second, this research develops two solutions to address the error accumulation

issue. For standalone self-localization projects, the first solution applies a local optimiza-

tion procedure for the measurement update, which performs multiple corrections on a sin-

gle measurement to optimize the latest filter state and covariance. For larger navigation

projects, the second solution integrates VIO with additional pseudo-ranging measurements

between the vehicle and multiple beacons in order to bound the accumulative errors. Third,

this research develops a novel parallel-processing VIO algorithm to speed up the execution

using a multi-core CPU. This allows the distribution of the filtering computation on each

core to process and optimize each feature measurement update independently.

The performance of the proposed visual inertial odometry framework is evaluated using

publicly-available self-localization datasets, for comparison with some other open-source

algorithms. The results illustrate that a proposed VIO framework is able to improve the

VIO’s computational efficiency without the installation of specialized hardware computing

platforms and advanced software libraries.
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Chapter 1

Introduction

This chapter begins by providing motivation for the research of autonomous robot navi-

gation in GPS-denied environments. The chapter provides an overview of some available

localization techniques. The chapter ends by providing the research statement, and the

expected contributions of the research described in this thesis.

1.1 Motivation - Autonomous Vehicles

In recent years, Autonomous Vehicles (AV) have seen increasing demand in many indus-

trial setting to replace traditional human-operated services. In particular Micro Aerial Ve-

hicle (MAV) type drones have taken a special role in many industrial and service sectors.

An excellent example is the employment of the MAV on an offshore oil-and-gas platform

to perform structural visual inspection of the live flare, chimney and under-deck. There

are many companies providing tele-operated drone based inspection, and such examples

are Cyberhawk [2], Microdrones [7], and The Sky Guys [11]. MAV based inspection has

improved the effectiveness and efficiency of inspections and allows performance of those

1



inspections without shutting down the system. The possibility of deploying MAVs with

Figure 1.1: Some popular MAV’s flight time for manual operation

full autonomous capability is still questionable due to many technological shortcomings.

Inspection on the offshore platforms are enhanced in constrained areas and specific en-

vironments where Global Positioning System (GPS) signals are not available or reliable.

Alternative navigation solution is required to help the MAV localize in the working environ-

ment. The employment of MAVs also gives rise to the issue of energy consumption, which

limits the flight time. Figure 1.1 presents some popular commercial MAVs with their flight

times. Recently, the maximum flight time is about 30 minutes for manual operation. On

the other hand, fully autonomous MAVs are required to perform additional processing of

data and computer algorithms such as localization, obstacle avoidance, automatic control,

optimal trajectory generation for autonomous navigation. These algorithms require more

computational resources, which in turn reduce the fight time significantly [125, 134]. With

the limited time, this is a question as to whether MAV deployment is still beneficial and

2



efficient for the industry? It is also difficult for micro- and nano- robotic systems, having a

limited payload and hardware computing capability, to operate autonomously. These short-

comings demand the development of a navigation technique in GPS-denied environments

with affordable computational cost and processing time.

1.2 Autonomous Navigation in GPS-denied Environment

1.2.1 Visual Inertial Navigation System

During recent years, multiple navigation strategies (or technologies) have been investi-

gated: wireless sensor network based localization [75], inter-robot relative measurement

[42], a motion capture system [91], as well as a visual fiducial system [106]. These strate-

gies utilize transmitter-receiver wireless communication or visual marker tracking to con-

duct relative measurements and track the vehicle trajectory. Hence, it limits the operating

space of the vehicle and requires the installation of stationary sensor nodes in the working

environment.

However, self-localization without GPS signals can be achieved using a camera image,

which contains high-dimensional measurements and rich information about the environ-

ment. One popular strategy to utilize the camera image for navigation is Simultaneous

Localization and Mapping (SLAM) [49, 77, 100]. Visual SLAM attempts to estimate both

the vehicle trajectory as well as the location of environmental landmarks with respect to a

navigation frame (Fig.1.2). SLAM utilizes optimization methods to improve the state esti-

mation accuracy while generating the map and also re-localizing when the vehicle makes

a loop closure. Multiple visual SLAM-based systems have been developed for a variety

3



Figure 1.2: Visual SLAM application

of applications in GPS-denied environments. However, the major issue of SLAM is that it

requires a considerable amount of computational resources and larger memory space. Run-

ning SLAM in hardware constrained systems is expensive and limits the applications for

long-term operations. In particular, the application of SLAM for small-scale MAV is not

an optimal solution. Additionally, the map building in SLAM is not always necessary if the

objective is to find the state which including the position and orientation of the vehicle.

Alternatively, Visual Inertial Odometry (VIO) can track the vehicle trajectory without

building the map using the camera images and Inertial Measurement Unit (IMU). This sen-

sor suite is a common choice for autonomous vehicles and robots because of its light weight

and reasonable cost. VIO navigation can be deployed as a stand-alone self-localization so-

lution or as a part of larger localization and surveying application in GPS-denied environ-

ments. The technique is also useful for indoor navigation, virtual reality and augmented-

reality applications. Some commercial VIO developer kits have been developed such as

Optor Visual Inertial Camera [9], Parrot S.L.A.M. DUNK [10], Intelr EuclidTM [4], and

4



Intelr RealSenseTM ZR300 [5]. Different camera models have been exploited in the system

design such as RGB-D [72,139], stereo [38,138], monocular [81,95] and fisheye [27,120].

The literature of visual inertial sensor fusion is vast with an increasing number of open-

source projects in recent years. Table 1.1 introduces some open-source VIO developments

receiving great attention from the robotic research community. In general, these sensor fu-

sion algorithms compromise two main functions: optimization and filtering. The optimiza-

tion function attempts to construct the sensor fusion as a nonlinear optimization problem

to extract the camera trajectories and 3D landmarks. The optimization process can achieve

the highest accuracy but demands considerable computational resources. In contrast, the

filtering function utilizes a nonlinear Kalman filter to restrict the inference process to the

latest state of the system and represents the uncertainty by the covariance matrix [53]. This

thesis describes the research which includes the filtering approach to implement a fast VIO

system.

Table 1.1: Notable open-source VIO (regular type) and SLAM-based (italic type) develop-

ments in recent years

Year VIO Developments

2007 MSCKF1.0 [95]

2012 PTAM [49]

2013 MSCKF2.0 [79], OKVIS [78]

2014 SVO [54], LSD-SLAM [48]

2015 ROVIO [24], REBiVO [133], ORB-SLAM [100]

2016 Duo-VIO [41], Kalibr [122]

2017 VI-MEAN [150], VINS-Mono [119], ORB-SLAM2 [101], VIORB [102], S-PTAM [116]

2018 Maplab [128], VI-DSO [141], Stereo MSCKF [132], ICE-BA [83]
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1.2.2 Issues Related to Visual Inertial Odometry Filtering

In general, the development of a VIO system should address some common technical is-

sues. A brief insight into each issue is summarized below:

Feature-based image processing: The system operates on the observation of the land-

mark features in the working environment, which reveals the ego-motion of the vehi-

cle [95, 124]. The observation of the same feature in multiple consecutive camera images

results in geometric constraints between these camera poses. These constraints can be

used to perform filter state correction and improve positioning accuracy. Algorithms for

feature detection and matching are applied to track the feature through multiple camera

image frames. Environmental noise and the presence of moving objects in the dynamic

environment can also negatively affect the tracking process, which in turn decreases esti-

mation accuracy. The number of tracked features is also important when considering the

performance of the visual measurement update. The low density of landmark features can

result in a small number of geometric constraints, which makes the system ineffective in

eliminating the measurement noise.

Sensor fusion algorithm: VIO is developed to track the vehicle’s ego-motion while

capturing the benefits of both the visual and inertial measurements. Although a camera

image contains high-dimensional measurements and important information about the en-

vironment, its update-rate is quite low (∼20Hz) which consequently slows the estimation

process. On the other hand, IMU measurements can track the vehicle trajectory with a

higher update-rate (100-200Hz), but with lower accuracy and a considerable amount of

uncertainty. Sensor-fusion attempts to address robust and accurate localization while cap-

turing the benefits of both the sensors. The hybrid solution can resolve the scale ambiguity
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of monocular vision, observe gravity effects and produce reliable inter-frame motion es-

timates for more aggressive and agile trajectories. In general, VIO is a highly nonlinear

problem to be resolved. The strategy to handle the system nonlinearity effects the esti-

mation error and robustness of the performance. In the scheme of a Bayesian filter with

Gaussian approximation, the Extended Kalman Filter (EKF) is a popular nonlinear fil-

tering solution for VIO sensor fusion [79, 95]. However, it is well known that the first

linearization in the EKF formulation causes several issues related to the system’s accuracy

and stability, particularly in dynamic environments. These limitations affect the quality of

VIO estimation negatively.

Hardware implementation: VIO demands heavy computation associated with image

processing and sensor-fusion at each time instant. This makes hardware implementation

quite challenging and less trivial for micro- and nano- robotic systems. It is impractical to

perform an entire-trajectory optimization due to the heavy computational load and process-

ing time. The execution needs to be fast enough to keep track of the vehicle trajectory. To

improve the computational efficiency, in many cases it is necessary to scale down the VIO

system and select a small subset of tracked landmark features. Specialized hardware solu-

tions with parallel processing capability such as Field Programmable Gate Arrays (FPGA),

Graphics Processing Units (GPU) and Application-Specific Integrated Circuits (ASIC) can

help to speed up the execution significantly [82, 126, 131, 157]. Additionally, the advent of

non-von Neumann computing architectures and devices, such as the neuromorphic process-

ing unit and quantum annealers [59,117,156], have shown the potential to perform complex

computation faster and more power-efficiently than traditional processors. However, these

specialized hardware computing platforms are some of less mature technologies and the

scope of using them for real-time applications is less likely in the near future. The hard-
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ware development for perception also requires a costly and time-consuming process. Even

if such hardware is available, the system needs to execute identical computational steps at

high frequency. This results in a decrease in processing time, but an increase in energy con-

sumption. This is not beneficial for micro robotic systems with limitations on payload and

energy storage. It may therefore be a better strategy to accelerate the computation using an

available hardware configuration.

1.3 Thesis Problem Statement

The main objective of the research described in this thesis is the development of a fast and

accurate visual inertial odometric computation methodology while maintaining compara-

tive estimation accuracy over long-term operation. Many solutions are proposed to speed

up the execution and address the following key problems:

1.3.1 Problem I: Computational Cost of Visual Measurement Model

Traditional VIO demands a considerable amount of computational resources to process

a large amount of visual data. Such methods also require the reconstruction of 3D fea-

ture points using multiple camera frames. For example, traditional VIO [95] includes 30

camera poses in its filter state to improve the reconstruction accuracy. In general VIO sys-

tems nearly 50+ feature points are tracked to correct the predicted state optimally. Hence,

the system needs to resolve 50+ optimization problems prior to completing each filter up-

date step. The reconstruction process consumes a considerable amount of computational

resources and processing time, which makes hardware implementation quite challenging.

Also, this step limits the execution of other advanced autonomous functions such as map-
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ping, object detection and fuel-optimal path planning. Especially for hardware limited

robotic systems, such as micro- and nano- robot applications, it is necessary to develop a

computationally-efficient visual measurement model for fast implementation [43, 71, 80].

Trifocal Tensor Geometry (TTG) [60] has been introduced as an efficient approach to per-

form point transfer across three consecutive camera frames. This thesis describes the re-

search which applies the TTG-based approach to predict the feature point measurements

and replace the expensive conventional approach.

1.3.2 Problem II: Nonlinear Filtering for Visual Inertial Odometry

Nonlinear systems require nonlinear sensor fusion algorithms within the new visual mea-

surement model. This sensor fusion algorithm should not increase the computational cost

significantly, and should achieve a similar or better estimation accuracy. As the research

described in this thesis focuses on the inference of the vehicle’s latest state rather than the

entire trajectory or the construction of a map, the sensor-fusion algorithm follows nonlin-

ear Kalman filtering. Geometric constraints from multiple camera views are exploited to

design the visual measurement update step.

Cubature Kalman Filter (CKF) [18] is initially applied for VIO applications. In the

literature of Kalman filtering state estimation, CKF has shown great potential to replace

EKF to handle system nonlinearity. Instead of linearizing the nonlinear models, these filters

generate a minimal set of sample points to propagate through the nonlinear functions. This

strategy produces better estimation of the mean and covariance [18].

The research described in this thesis also addresses the VIO computational efficiency

associated with Kalman filtering structure using a Cubature Information Filter (CIF) [109].
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CIF execution avoids the inverse computation of the high-dimensional innovation covari-

ance matrix, which in turn further improves computational efficiency of the VIO system.

1.3.3 Problem III: Error Accumulation over Long-term Operation

The VIO system suffers from error accumulation; one correction from a single measure-

ment cannot effectively eliminate the accumulative error existing in the camera observa-

tions. This limitation makes the filter gradually diverge and even fails to track the vehicle

trajectory over long-term operation. The VIO only produces a reliable estimation of the

vehicle trajectory in short-term operation and short-distance travel. This issue demands

the development of a VIO technique to achieve a bounded estimation error over long-term

operation. Some advanced techniques, such as global pose graph optimization [82] and

loop-closure [78], require relatively high computation and processing times to execute the

optimization procedure for the entire trajectory. They also may not be feasible to be imple-

mented in a low-cost flying platform.

In an attempt to allow the VIO to operate for a longer duration in the absence of any

map, the thesis describes research which examining two filtering solutions. The first solu-

tion implements iterated CKF, which performs multiple corrections on a single measure-

ment to optimize the latest filter state and covariance during the measurement update. The

optimization process is terminated using the Maximum Likelihood Estimate (MLE) based

criteria. The second solution integrates CKF with pseudo-ranging measurement between

the vehicle and multiple beacons. The integration follows the sequential-sensor-update ap-

proach, which in turn enables independent operation between ranging sensors and VIO

system.
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1.3.4 Problem IV: Parallel Processing to Accelerate the Computation

Conventional filtering systems are inefficient when processing massive amounts of visual

data in a serial manner during the filter measurement update. It is impractical to deploy

an additional optimization execution, which increases the computational load and process-

ing time significantly. Parallel processing with specialized hardware, such as FPGA [157],

GPU [82, 126, 151] and ASICs [131], can help to accelerate the computation effectively.

However, the development of these specialized hardware computing platforms for percep-

tion is an expensive and time-consuming process. Also, the resulting hardware is difficult

to upgrade [28]. Alternatively, the multi-core CPU has become more popular and also gen-

erally available in all regular computers. This solution was selected to enhance parallel

processing and accelerate execution.

This thesis initially implements parallel processing for VIO applications using a multi-

core CPU. We distribute the computation of the visual measurement update by strictly

assigning the computational task to each core. The distribution exploits the cubature infor-

mation filter structure and assumes that each visual feature has a different contribution to

the motion estimation. Furthermore, the system architecture is able to execute maximum

likelihood estimation based optimization for individual feature measurement, which helps

to minimize error accumulation over long-term operations.

1.4 Objectives and Expected Contributions

Objective 1: Design a nonlinear filtering algorithm using trifocal tensor geometry and

cubature Kalman filter.
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• Contribution 1: This thesis presents the development of a feature point transfer ap-

proach using TTG to replace the 3D feature point reconstruction step in the tradi-

tional VIO. The replacement helps simplify the system architecture and speed up the

estimation.

• Contribution 2: Experimental comparisons between two measurement models help

to determine the benefit of using TTG in VIO application.

• Contribution 3: A cubature Kalman filter with a spherical deterministic sampling

approach is developed for VIO application to handle the nonlinearity effectively.

• Contribution 4: A cubature information filter is developed for VIO applications.

Scheduling the computation on the information domain helps to address the system

efficiency issue associated with Kalman structure.

Objective 2: Address the VIO estimation’s error accumulation over long-term operation.

• Contribution 5: Utilize the benefit of TTG based measurement model as a non-

recursive function to enhance the optimization during the filter update step. This

strategy does not increase the system complexity significantly or require the instal-

lation of any advanced optimization library, which may not be applicable for some

particular robotic systems. This solution is suitable for self-localization projects.

• Contribution 6: Combine VIO and pseudo-ranging measurements to bound the esti-

mation error over long-term operation. The integration is enhanced with a sequential-

update approach following the standard EKF structure. This solution can be applied

for larger navigation projects.

Objective 3: Enhance parallel processing for VIO system with multi-core CPUs.
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• Contribution 7: The proposed system architecture utilizes multiple cores of a generic

computer for parallel processing. It speeds up the estimation significantly without

the installation of specialized hardware computing platforms.

• Contribution 8: A cubature information filter is extended to the field of invariant

Kalman filtering, and then applied to a VIO system. This combination helps to im-

prove the estimation accuracy and consistency. The information structure also helps

to distribute the computation effectively to multiple cores.

• Contribution 9: Optimization is also employed to minimize the error accumulation

over long-term operation. This procedure is applied independently for individual

features during parallel processing.

• Contribution 10: The experiments use various multiple-core hardware platforms with

a different number of core and computing capabilities for validation. This helps to

evaluate the efficiency when deploying more cores to accelerate the computation.

1.5 Organization of the Thesis

This thesis presents research across three different problem areas related to visual inertial

odometry. A brief outline of each chapter is described as follows:

Chapter 1 - Introduction: This chapter introduces the research motivation, the con-

sidered systems, their associated problems and the main objectives of this thesis, as well as

the proposed solutions.

Chapter 2 - Background and Literature Review: This chapter provides a brief back-

ground of visual inertial odometry. The main drawbacks of some available solutions are
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discussed, which helps to determine the main challenges for the algorithm development.

Chapter 3 - Developing Computationally-Efficient Nonlinear Cubature Kalman

Filtering for Visual Inertial Odometry: This chapter addresses objective 1 of the thesis.

A trifocal tensor geometry based measurement model is developed and compared with the

conventional model. This chapter describes in detail the development of a cubature Kalman

filter for VIO sensor fusion.

The content of this chapter is based on the following papers of the author:

• T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Developing a Cubature Multi-

State Constraint Kalman Filter for Visual-Inertial Navigation System”, Canadian

Conference on Computer and Robot Vision, May 2017

• T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Developing Computationally-

Efficient Nonlinear Cubature Kalman Filtering for Visual Inertial Odometry”, ASME

Journal of Dynamic Systems, Measurement and Control, February 2019

Chapter 4 - Accurate Visual Inertial Odometry for Long-Term Trajectory Opera-

tions without Using a Map This chapter relates to objective 2 of the thesis by proposing

two solutions. Solution 1 employs iterated CKF, which performs optimization during the

visual measurement update step. Solution 2 integrates VIO estimation with pseudo ranging

measurements.

The content of this chapter is based on the following papers of the author:

• T. Nguyen, G. K. I. Mann, A. Vardy, and R. G. Gosine, ”Likelihood-based Iterated

Cubature Multi-State-Constraint Kalman Filter for Visual Inertial Navigation Sys-

tem”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

October 2017
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• T. Nguyen, G. K. I. Mann, A. Vardy, and R. G. Gosine, ”CKF-Based Visual Iner-

tial Odometry for Long-Term Trajectory Operations”, ASME Journal of Dynamic

Systems, Measurement and Control (Under Review), 2019

Chapter 5 - Efficient Parallel Processing Solution to Accelerate Visual Inertial

Odometry Execution on a Generic Computer: This chapter relates to objective 3 of

the thesis. It details the deployment of parallel processing on a multi-core CPU and exper-

iments to evaluate the efficiency of the deployment.

The content of this chapter is based on the following paper of the author:

• T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Accelerating Visual Inertial

Odometry Using Parallel Processing and Cubature Information Filter”, IEEE/ASME

Transactions on Mechatronics, (Under Review), 2019

Chapter 6 - Conclusion: This chapter concludes the thesis by discussing the appli-

cation scenarios of the proposed VIO algorithm, its drawbacks, and potential topics that

require further investigation.
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Chapter 2

Background and Literature Review

This chapter presents background literature related to visual inertial odometry that is rel-

evant to the research. The main issues associated with the sensor fusion problem are pre-

sented along with how they are addressed by research described in the literature.

2.1 Overview of Visual Inertial Odometry

Initial approaches to fusing IMU measurements and camera images are reported in many

projects [22,55,118,123]. Motion estimation is often developed using only two consecutive

camera frames. For example, the researches [118, 123] estimated the visual displacement

between the current and previous image before combining with inertial measurements us-

ing an EKF. Similarly, Diel et al. [45] built the visual measurement update on the epipolar

geometry constraint between two images. Initial VIO developments also include multiple

SLAM-based systems as reported in [74, 107, 130]. They exploit the correlations between

multiple camera poses and 3D positions of the observed visual landmarks to produce ac-

curate localization results. The use of multiple camera frames helps to achieve higher esti-
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mation accuracy. However, performing visual SLAM in the environment with thousands of

landmark features is challenging for real-time implementation [95]. This limitation gives

rise to the need for an alternative sensor-fusion algorithm to accommodate the high volume

of data processing for real-time operation while satisfying the requirement of estimation

accuracy.

2.1.1 General System Architecture Design

Figure 2.1: General tightly-coupled VIO system architecture

Generally, VIO sensor fusion utilizes either loosely-coupled [127] or tightly-coupled

integration [95]. Loosely-coupled systems produce the odometry estimation after process-

ing IMU data and camera observations individually. This decoupling decreases the system

complexity but produces poor estimates due to the inability to estimate IMU biases [39].

Consequently, loosely-coupled systems cannot achieve the estimation accuracy and consis-

tency of the tightly-coupled system, which processes all information together. Figure 2.1

demonstrates an overview of the general architecture of tightly-coupled systems with mul-
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tiple critical parts. The front-end and back-end parts are designed to exploit the benefits of

both sensors, capture the system uncertainty, produce reliable ego-motion estimation and

achieve robust performance.

Usually, the VIO system is designed to track IMU frames. The IMU front-end utilizes

the high-frequency outputs of the gyroscope and accelerometer to predict the relative pose

of the current frame with respect to the previous frame. This IMU prediction, which has low

accuracy and a considerable amount of uncertainty, is corrected by the camera observations

of 3D feature points in the environment. The vision’s front-end focuses on tracking these

features. Multiple approaches have been applied for feature detection such as Shi-Tomasi

[71, 82, 129], Scale-Invariant Feature Transform (SIFT) [64, 88, 95], Speeded Up Robust

Features (SURF) [21, 39, 110] and Feature from Accelerated Segment Test (FAST) [132,

136]. These approaches aim to detect some specific features, which are distinctive in the

environment and robust in the cases of different lighting and presence of visual noise.

These features are tracked temporally using the KLT optical flow algorithm [89, 132] or

feature descriptor matching [64,88,110]. RANdom SAmple Consensus (RANSAC) is also

applied to reject outliers in temporal tracking. Inliers are reliable feature points, which

will be utilized in the sensor-fusion back-end. Better selection of the feature detection and

matching can help to reduce the computational requirements.

Not all features have the same contribution to motion estimation [28,159]. Motion blur

and various texture gradients can cause the feature observations to be less informative to

the filter update [114]. In reality, most VIO algorithms make a strong assumption about

all visual features having equal priority for the filter operation. The system constructs all

of them in a single composite group measurement model. However, this simplification

results in a higher-dimensional matrix of the measurement model and innovation covari-
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ance for computation [31, 33, 103, 109]. Peretroukhin et al. [112, 114] have eliminated

the static assumptions of observation uncertainty parameters. An observer is developed

to evaluate the qualitative contributions of each feature. The training phase is quite chal-

lenging to produce the best model which effectively captures the influence of individual

features on the estimation. Beside tracking visual landmark features, some projects focus

on image-intensity [160] and the straight-line feature [152,153]. These strategies are useful

for some particular environments such as corridor operation, fast-motion and low-light sit-

uation where the feature points are limited and unreliable to track. This thesis only focuses

on visual features.

The sensor fusion back-end is the main focus of this thesis. Recent literature has in-

troduced multiple publicly available datasets supporting the development of a VIO sensor

fusion algorithm. These datasets help to validate the VIO algorithm in practical conditions

with noises and moving objects. Also, using the same dataset encourages a rigorous com-

parison between VIO algorithms, which helps to determine the benefits and limitations of

each algorithm. For this purpose, recent literature has introduced multiple datasets (Table

2.1). Notably, KITTI [56] and EuRoC [26] have received special attention due to their good

documentation and ease of use. The EuRoC dataset [26] was collected by MAV in robotic

laboratory and factory, where the VIO can be verified with visual inspection activities. The

KITTI dataset [56] was collected while driving a car in city and residential areas, which

provides a basic test to the algorithm for long-term operation and long-distance travel. The

research described in this thesis utilizes these two datasets for experimental validation.
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Table 2.1: Overview of publicly-available datasets

KITTI [56] EuRoC [26] PennCOSYVIO [115] Canoe [92]

Year 2012 2016 2016 2017

Environment Outdoor Indoor In/outdoor Outdoor

Carrier Car MAV Hand-held device Canoe

Scene City-scale Factory/Lab Campus-scale River

Distance (total) ∼39km ∼800m ∼600m ∼2.7km

Camera 1 stereo RGB 1 stereo gray 4 RGB 1 stereo RGB

1 stereo gray 1 stereo gray

1 fisheye gray

IMU 1 accel/gyro 1 accel/gyro 2 accel, 2 gyro 1 accel/gyro

1 acc/gyro

GPS 1 none none 1

Ground-truth GPS/INS MoCap/Laser Visual tags GPS/INS

Accuracy ∼dm ∼mm ∼dm ∼dm
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2.1.2 Classification of Tightly-coupled VIO Algorithms

Although the VIO literature is vast, for the purpose of this research the most relevant pa-

pers can be considered along two directions as shown in Table 2.2. The first direction

corresponds to the theoretical developments and practical implementation. It results in

three groups of relevant literature. Group A completely focuses on developing novel VIO

algorithms from a theoretical viewpoint, which are implemented on a powerful computer.

These findings construct better strategies for approximating the nonlinear model, sensor-

fusing and capturing the uncertainty, which significantly improves the positioning accu-

racy. Groups B and C consider the limitations of the hardware computing platform in

their developments. Group B addresses the issue through a computationally-efficient algo-

rithm, which uses fewer resources but still satisfies the estimation accuracy. In group C,

the contributions focus entirely on the specialized hardware development to accelerate the

computation. More discussions of group B and C will be presented in section 2.3.

The second direction considers the number of camera poses contributing to the estima-

tion:

• Full-smoothing: This approach attempts to estimate the entire trajectory, all camera

poses and 3D landmarks, as a nonlinear optimization problem. This process can

guarantee the highest accuracy but requires heavy computational efforts [53, 65, 67].

In real-time operation, all the information such as the map and trajectory will grow

quickly, which makes the implementation infeasible. Selecting useful keyframes

[82,104] or parallel execution [69,96] for the optimization can help to accommodate

the heavy computational load [53].

• Fixed-lag smoothing: The fixed-lag smoothing approach is a compromise between

21



accuracy and computing efficiency, limiting the optimization within a sliding window

and marginalizing older camera poses [46, 63, 71, 78]. When setting up the system

using maximum likelihood estimation, the optimization problem is applied over a

set of recent states [23, 71]. However, determining an appropriate number for the

window length makes it challenging to meet an expected level of performance.

• Filtering: In contrast to these optimization based approaches, this subgroup restricts

the inference process to the latest state of the system and represents the uncertainty

by the covariance matrix. In practice, this approach can be upgraded to the fixed-

lag smoothing approach to achieve better estimation accuracy [53, 71] because it re-

linearizes past measurements during the smoothing process. The research described

in this thesis develops the sensor fusion algorithm following the filtering subgroup to

produce a fast VIO estimation. Some related researches will be discussed in section

2.2.

Table 2.2: The most relevant VIO papers considered in this thesis

Group A B C

Filtering [25, 28, 39, 64, 79, 87, 95, 132] [50, 58, 80] [44, 157]

Fixed-lag smoothing [46, 78] [63, 71] [41, 124]

Full smoothing [52, 102] [82] [28, 131]

VIO augmentation [73, 85, 86, 112–114]

22



2.2 Filtering Methods for VIO Algorithm

A typical example of the filtering subgroup is the multi-state constraint Kalman filter

[79, 95]. In general, MSCKF operates the standard extended Kalman filter over a slid-

ing window of multiple subsequent camera states [125]. Figure 2.2 illustrates the data

updating in this VIO system with a sliding window. The camera state has the uncertainty

as prior information. The filter estimation exploits the geometric constraints through the

observation of an identical feature in different images. The relative motion constraints be-

tween camera states are also utilized using the IMU measurements in the filter prediction.

In the visual measurement update, an inverse-depth least-squares optimization technique is

applied to compute the 3D landmark feature points using multiple camera states and cam-

era measurements over a defined sliding window [39, 95]. Then, the re-projection errors

are calculated to correct the predicted filter state [95]. This process does not account for

the prior information and relative motion constraints. Consequently, the computational cost

and system complexity are maintained at a lower level relative to the visual SLAM-based

technique, which entirely exploits all the available information [124].

Figure 2.2: Illustration of the data updating in VIO system
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MSCKF shows poor estimation accuracy and consistency, inherited from EKF imple-

mentation. Also, EKF-based VIO systems have a limited capability to handle unobservable

transformations (i.e., three Degrees of Freedom (DoF) global translation and one-DoF rota-

tion about the gravitational vector) [61]. Hesch et al. [61,62] have addressed the issue using

observability-constrained EKF, for which the Jacobian matrices were modified to explicitly

enforce the un-observability along specific directions. Bonnabel et al. [19,20] proposed the

EKF modification for nonlinear systems possessing symmetries (or invariances) to address

the inconsistent issue of the traditional EKF. Their invariant EKF is a combination of the

symmetry-preserving observer and EKF. Also, observability analyses [20, 148] have indi-

cated the absence of the invariance affects negatively to the consistency of the MSCKF

estimates. Wu et al. [148] have initially applied invariant EKF for VIO application to im-

prove the estimation consistency. However, these invariant filters still inherit the EKF’s

limitation in handling the system nonlinearity.

Alternatively, multiple solutions have been proposed to replace EKF by other advanced

nonlinear Kalman filters. The Unscented Kalman Filter (UKF) [142] was introduced as

a Jacobian-free filter, using a deterministic sampling technique to handle the nonlinear-

ity. Unlike a stochastic sampling technique employed in particle filter [40], the technique

carefully selects a minimal set of sigma points with a defined pattern to completely cap-

ture the true mean and covariance of the Gaussian random variables. These sigma points

are propagated through nonlinear functions to capture the posterior mean and covariance

accurately. This strategy can handle the nonlinearity with better estimate of mean and

covariance. Some researches [64, 70, 87] have examined UKF with VIO application and

received positive results. However, the drawbacks of UKF are in the complicated imple-

mentation. For example, the computed covariance matrix is not always guaranteed to be
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positive definite for square-root operation because of the presence of negative sigma points.

This issue may cause the filter to halt the VIO system functioning. The Cholesky factoriza-

tion approach could be applied to satisfy that condition, but it is shown to be inefficient and

not always applicable for all the cases [18]. Arasaratnam et al. [18] overcame this issue us-

ing a spherical-radial cubature rule. Their cubature Kalman filter execution better handles

the negative sigma points while improving the system accuracy and stability. Literature

also introduces the mathematical transformation of the Kalman filter to the information

domain, which improves the computational efficiency [103]. The transformation is suit-

able for some complex systems with high-dimensional measurement models or multiple

measurement updates [103, 109, 145].

Meanwhile, some researches [23,24,149,155] attempt to reformulate VIO with respect

to a local moving frame, instead of using the standard world-centric formulation. The

modification has relaxed the requirement to align the initial orientation with the global

gravitational direction. The filter estimates the landmark 3D position in the local frame,

which in turn makes the system fully observable and avoids the inconsistency inherently.

The disadvantages of this strategy are the penalty of larger uncertainty, a more complicated

system to manage these tracked features and extra computations in the filter propagation, as

discussed in [155]. In general, this robocentric strategy is still in the development process

and requires more extensive verifications with different hardware computing platforms to

determine its effectiveness.

VIO can exploit the geometric constraints between multiple camera views for the visual

measurement update. The strategy to deploy these constraints depends on the application,

which will decide the system complexity. By only using three camera views, Hartley et

al. [60] introduced trifocal tensor geometry, which has been applied popularly in some
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computer vision projects. The observation of the same feature in three consecutive im-

ages results in geometric constraints between three camera poses. These constraints can

be used to produce control commands for visual-servoing [17]. The control law was sim-

plified to enhance a fast trifocal control system while attaining global exponential stability

and robust performance. In the application to assist a driver to see through the vehicle

ahead for overtaking maneuvers, Rameau et al. [121] utilized TTG to filter out incorrect

feature matching efficiently. This procedure also extracted the fundamental matrices and

the camera trajectory to render the virtual objects. This process was similar to some visual

odometry applications [34,93]. Moreover, their method [121] employed trifocal tensor im-

age synthesis and marker-based pose estimation to generate a seamless transparency effect

from the rear car’s viewpoint. Their implementation reduced the quantity of information

communicated between vehicles and achieved good real-time performances. Overall, the

TTG employment is straightforward computation without any recursive execution. This

benefit helps to reduce the computational cost of hardware implementation.

At the same time of this thesis, other projects are also attempting to use TTG in their

VIO application, such as [64, 70]. Their initial results have confirmed the possibility of

using TTG for developing a visual measurement model. The research described in this

thesis conducts further analysis to determine the benefits of TTG employment relative to

the traditional approach. Moreover, the research also proves that the simple design of

a TTG based measurement model allows the implementation of additional optimization

within the Kalman structure. Different Kalman filtering techniques are applied to handle

the nonlinearity of measurement models such as the cubature Kalman filter, unscented

Kalman filter, cubature information filter and unscented information filter. The use of each

filter helps to improve the VIO performance in different aspects of implementation.
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2.3 VIO Hardware Implementation

This section is an overview of the related researches in group B and group C, which are

related to the VIO implementation on different hardware computing platforms.

2.3.1 Group B: Developing a Computationally-efficient VIO Algorithm

VIO demands heavy computation on image processing at each time instant, and this makes

hardware implementation quite challenging and non-trivial. Any computing platform has

limited processing and sensing capabilities, particularly those used for the embedded com-

puting hardware of wearable devices [71], cellphones [58] and micro-aerial vehicles [87].

Often, proposed algorithms are modified so that on-line computation is feasible with mi-

nor losses in estimation accuracy. For example, Guo et al. [58] carefully scaled down the

system dimension to almost half through the interpolation model in order to speed up the

processing time significantly. Additionally, the QR decomposition implementation using

the C++ Eigen library was able to reduce the computational complexity of calculating the

Jacobian matrix.

As mentioned, the full-smoothing approach applies the optimization process for the

entire trajectory, which quickly becomes infeasible as the trajectory and the map grow over

time. A down-sample process was useful in this case to include only all primary key-

frames within loop closure constraints. This process can maintain the pose graph database

at a limited size but negatively affects the quality of the estimation. For example, in the

research [44], the implementation of VINS-Mono without loop closure [119] on ODROID1

1ODROID is an embedded PC containing a hybrid processing unit. It is produced by Hardkernel Co.,

Ltd. [8] from South Korea
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requires the reduction of the number of tracked features from 150 to 100. Delmerico et

al. [44] also reported that VINS-Mono with loop closure cannot be achieved on ODROID

[82]. Similarly, the implementation of OKVIS [78] on ODROID required the reduction of

the maximum number of features from 400 to 200, the key-frame of the sliding window

from 5 to 3 and the number of IMU linked frames from 3 to 2, reported in [44].

To improve the computational efficiency in many cases, the VIO process selects a small

subset of tracked features. Carlone et al. [28] have developed a visual attention mecha-

nism that helps to determine which feature is the most relevant visual cue to maximize the

performance of the VIO system usefully. This strategy results in a smaller measurement

model and innovation covariance matrix, which in turn reduces the computational efforts

significantly. They also utilize an information filter [103] to process and evaluate the con-

tribution of each feature to the motion estimate independently. The information filter is

the mathematical transformation of the Kalman filter by taking the inverse of the covari-

ance. Using the information filter is preferable for some systems having a large number of

measurements, features or demanding a decentralized filter form [31,103,109,145]. In the

research described in this thesis, the information filter structure is utilized to distribute the

computation to a multi-core CPU.

2.3.2 Group C: Accelerating Execution Using Specialized Hardware

Group C focuses entirely on specialized hardware development and optimal system ar-

chitecture design. Nikolic et al. [105] implemented the execution of feature detection to

FPGA, and was able to reduce the computational complexity significantly. The FPGA im-

plementation also frees up computational resources for the optimization and other advanced
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tasks of the SLAM system. Instead of partial deployment, Zhang et al. [157] have fully

implemented the system in FPGA for execution. They have introduced an algorithm-and-

hardware co-design approach to significantly speed up the estimation as well as optimize

the energy consumption. Group C also includes the development of a perception module,

which houses all computing and sensing modalities. This detachable module allows testing

the VIO module independently or equipping for different robotic platforms. For example,

some researches [82,126,151] developed a perception module for aerial robots’ navigation.

The computation was conducted on mini i7 computer and NVIDIA TX1. Notably, they

utilized 256 NVIDIA CUDA GPU cores of NVIDIA TX1 to accelerate the computation

of 3D feature points, depth images and global map generation. Furthermore, Suleiman et

al. [131] fully integrated a VIO system into an ASIC based chip to eliminate costly off-chip

processing and storage. This is strong evidence that parallel computing can speed up the

computation efficiently with an affordable power budget. However, Carlone et al. [28] has

determined some drawbacks associated with these specialized hardware platforms. First,

the development of these specialized hardware consumes considerable investments and

time. Second, the resulting hardware is challenging to upgrade in the future. Third, it may

be desirable to develop a VIO framework which can systematically trade off performance

for computation. The system performance is adjusted flexibly, depending on available com-

puting resources and performance requirements in the working environment. These are the

reasons why the research described in this thesis has decided to use a generic computer for

VIO development. The availability and ease-of-use of multi-core CPU solution will help

designers develop parallel processing capability for their own VIO system.
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2.4 VIO Augmentation

The combination of VIO and other advanced sensors not only improves the long-term es-

timation accuracy but also the system performance in dynamic environments. A Light

Detection and Ranging (LIDAR) sensor can help to reduce visual drift in undesired light-

ing conditions [66,154]. This solution can improve the positioning accuracy over long-term

operation satisfactorily. However, the deployment of LIDAR can raise the issues of power

consumption and payload for micro robotic systems.

Some research projects [73, 113] have measured the global orientation from the sun-

direction estimation. Lambert et al. [73] utilized a sun sensor while Peretroukhin extracted

directly from the existing image stream. The extraction was conducted by a sun detection

model with a Bayesian convolution neural network. Although the estimation of a sun direc-

tion vector has improved vehicle trajectory tracking, that solution is not always available,

particularly during cloudy weather and nighttime. It only affects the orientation and also

requires considerable resources to train the sun detection model.

The wireless communication between the vehicle (tag) and known-location beacon (an-

chor) have been popularly applied to supplement the primary navigation system [37,66,98,

144, 146]. Such systems commonly detect the Time-Of-Arrival (TOA) of signals encoded

in the radio or acoustic waves to conduct a ranging measurement. For example, some re-

searches [99,144] have deployed Ultra-WideBand (UWB) radio modules for ranging mea-

surements. This technique suffers from systematic errors such as uncertain wave speed or

clock synchronization errors. Consequently, it cannot directly measure the true geometric

range, which is why it is called pseudo-ranging measurement [66]. By placing multiple

anchors along the vehicle trajectory, the system has an additional source of measurement
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to eliminate the drift of the VIO estimation. The effectiveness depends on the integration

technique to align many estimates [29, 144].

2.5 Summary

This chapter presented many issues associated with the development of a VIO system.

As shown in the literature, the VIO implementation requires a considerable amount of

computational resources to process a large amount of visual data. The use of more powerful

hardware computing platforms can accelerate the execution, but the process of hardware

development is costly and time-consuming. The execution of the identical algorithm at

a much higher rate also consumes more energy, which is not beneficial for micro-robotic

systems. These limitations lead to the requirement of a computationally-efficient sensor-

fusion algorithm.

The VIO literature also gives rise to the issue of error accumulation over long-term op-

eration. Additional computations for minimizing the accumulative errors increase the com-

putational cost significantly. The implementation also requires the installation of advanced

computing libraries or significant modifications to the hardware system. This limitation

motivates a better strategy to deliver that heavy computations such that the algorithm is

still computationally-efficient and feasible for current hardware configurations.
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Chapter 3

Developing Computationally-Efficient

Nonlinear Cubature Kalman Filtering

for Visual Inertial Odometry

This chapter1 presents a computationally efficient sensor-fusion algorithm for visual iner-

tial odometry. Trifocal tensor geometry is utilized for a visual measurement model and

a nonlinear deterministic-sampling based filter, known as the cubature Kalman filter, to

handle the system nonlinearity. The TTG-based approach is developed to replace the

computationally-expensive 3D-feature-point reconstruction in the conventional VIO sys-

1This chapter is based on the following publications of the author:

- T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Developing a Cubature Multi-State Constraint Kalman

Filter for Visual-Inertial Navigation System”, Canadian Conference on Computer and Robot Vision, 2017

- T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Developing Computationally-Efficient Nonlinear

Cubature Kalman Filtering for Visual Inertial Odometry”, ASME Journal of Dynamic Systems,

Measurement and Control, February 2019
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tem. This replacement has simplified the system architecture and reduced the processing

time significantly. The CKF is formulated for the VIO problem, which helps to achieve a

better estimation accuracy and a more robust performance than the conventional extended

Kalman filter. Several experiments use the publicly-available datasets for validation and

comparison with many other VIO algorithms available in the recent literature. Overall, this

proposed algorithm can be implemented as a fast VIO solution for high-speed autonomous

robotic systems.

3.1 Introduction

VIO application can range from autonomous ground robotic systems to unmanned aerial

vehicles [43, 125], and with the increasing applications, the method is required to be com-

putationally efficient for fast implementations. The traditional VIO demands a considerable

amount of computational resources to process a large amount of visual data. This method

also requires the reconstruction of 3D feature points using multiple camera frames. The

reconstruction process consumes a considerable amount of processing time, which makes

hardware implementation quite challenging. Especially for hardware limited robotic sys-

tems such as micro- and nano- robot applications, it is necessary to have an efficient VIO

algorithm for fast implementation [43, 71, 80]. Trifocal tensor geometry [60] has been in-

troduced as an efficient method for prediction of feature points in an image using three

consecutive camera frames. This chapter will address this issue while implementing the

TTG. The point transfer approach using TTG will replace the expensive conventional ap-

proach. A rigorous comparison between the two approaches helps determine the benefit of

using TTG in VIO application.
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The second contribution of this chapter is the development of the nonlinear filter for

handling the TTG-based measurement model. Recently, multiple sensor-fusing algorithms

have been introduced to improve estimation accuracy and robust performance in dynamic

environments. A benchmark comparison between these publicly-available algorithms can

be found in [44]. More recent developments of VIO algorithms, such as VINS-Mono [119]

and OKVIS [78], have better estimation accuracy compared to the traditional MSCKF

[79, 95]. However, these approaches require more computational resources to solve the

optimization problem. MSCKF still plays an important role, since it has the ability to

produce better consistency and update-rate among the variety of hardware computation

platforms [44]. This chapter exploits this property to develop the TTG-based measurement

model. MSCKF is a tightly-coupled extended Kalman filter based system operating over

a sliding window of multiple subsequent filter states. Its poor estimation accuracy is in-

herited from the standard EKF implementation. Alternatively, this chapter will employ the

cubature Kalman filter as a better solution to handle the system nonlinearity. CKF utilizes

a deterministic sampling technique and cubature rule to generate a minimal set of sample

points. Propagating these sampling points through the nonlinear functions results in a bet-

ter approximation of the mean and covariance. This chapter also employs another version

of CKF, known as the cubature information filter [109], to address the computationally-

efficient issue of the Kalman filtering structure. When mathematically transforming CKF

to the information domain, the execution avoids the computation of filter gain and the in-

verse of the high-dimensional innovation covariance matrix. Consequently, it improves the

system architecture, which consumes less computational cost and evaluates the contribu-

tion of each feature measurement independently. To summarize, this chapter makes the

following contributions.
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• This chapter presents the development of a feature point transfer approach using

TTG to replace the 3D feature point reconstruction step in the traditional VIO. The

replacement helps to simplify the system architecture and speed up the estimation.

• CKF is applied to handle the system nonlinearity. To the best of our knowledge, this

is the first employment of CKF for VIO application.

• CIF is developed to improve the overall computational cost when processing consid-

erable amounts of visual data. Experiments use publicly-available datasets to validate

the proposed algorithm as well as compare it to other advanced VIO algorithms in

the literature.

The remainder of this chapter is organized as follows. The next section presents the VIO

literature associated with the filtering approaches. Section 3.2 introduces the coordinate

system, notation, and the IMU model. Section 3.3 describes the filter state propagation.

Section 3.4 focuses on the TTG-based measurement model and compares it to the con-

ventional model. Then, section 3.5 presents experimental validation for the proposed algo-

rithm. Section 3.6 describes the formulation of CIF and its experimental validation. Finally,

some conclusions are presented in section 3.7.

3.2 System Description

3.2.1 System Coordinates and Essential Notation

The coordinate frames of the system (Fig.3.1) are defined: {G} is a global frame; {I} is

an IMU frame; {C} is a camera frame. The navigation system consists of an IMU sensor

35



and a monocular front-looking camera. The transformation of {I} with respect to {G} is

expressed by the translation matrix GpI ∈ R3 and the rotation matrix GRI ∈ SO(3). The

transformation of {C} with respect to {I} is expressed by the rotation matrix IRC and the

translation matrix IpC.

Figure 3.1: The VIO coordinate system

The rotation is operated with quaternion approach, satisfying the unit-length constraints

(3.1). The quaternion approach shows the 2-1 covering homomorphism with the rotation

group SO(3) (i.e. double covering of the rotation group). However, this problem tends not

to create any difficulty when employed for locally convergent filters. Quaternion repre-

sentations are popularly applied in many navigation projects. R(q̄1) is a function produc-

ing the rotational matrix from the quaternion q̄1. The quaternion multiplication between

q̄1 = [qw,1 qx,1 qy,1 qz,1]
T and q̄2 = [qw,2 qx,2 qy,2 qz,2]

T is computed as (3.2).

|q̄|=
√

q̄T q̄ = 1 (3.1)
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q̄1⊗ q̄2 =



qw,1qw,2−qx,1qx,2−qy,1qy,2−qz,1qz,2

qw,1qx,2 +qx,1qw,2 +qy,1qz,2−qz,1qy,2

qw,1qy,2−qx,1qz,2 +qy,1qw,2 +qz,1qx,2

qw,1qz,2 +qx,1qy,2−qy,1qx,2 +qz,1qw,2


(3.2)

This rotation matrix has essential properties of special orthogonal group SO(3) as R ∈

SO3 =̇ {R ∈ R3×3 : RT R = RRT = I, det(R) = 1}. so(3) is denoted as the tangent space

to the group SO(3)’s manifold (at the identity), and coincides with the space of skew sym-

metric matrices. The skew symmetric matrix with a vector in R3 is determined as in (5.1)

following the property: ∀a,b ∈ R3×3, [a]×b =−[b]×a.

S(ω) =


ω1

ω2

ω3


∧

=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3) (3.3)

Special Euclidean Group SE(3) is also mentioned for describing the group of 3D rigid

motion, SE(3)= {(R,p) : R ∈ SO(3),p ∈R3}. This group operations are listed as: T1T2 =

(R1R2, R1p2 +p1) and T−1
1 = (RT

1 ,−RT
1 p1).

3.2.2 IMU Sensor Model

At time k, the IMU sensor provides accelerometer and gyroscope measurements (Iam and

Iωm), which are expressed in three directions (x, y and z) with metric units in {I} frame.

Those measurements can be modeled as in (3.4).

Iam(k) = R(Iq̄G(k)) (GaI(k)− Gg)+ba(k)+na(k)

I
ωm(k) = I

ω(k)+bg(k)+ng(k)
(3.4)
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where GaI is the linear acceleration of the IMU with respect to the frame {G}; Gg denotes

the gravitational acceleration in the frame {G}; Iω is the angular velocity of the IMU in {I}

frame. ba and bg are 3×1 vectors representing the slowly-varying bias of the accelerometer

and gyroscope. The residual noise na and ng are modeled as white Gaussian noise.

3.3 IMU Filter State Propagation

3.3.1 Filter State Formation

Similar to the common approach [64,79], IMU data are used for filter state prediction. The

true state of IMU at the time k can be defined as xIMU,k =

[
GpT

I
Gq̄T

I
GvT

I bT
a bT

g

]T

,

which accords with the kinematic equations (3.5). GpI and GvI denote the IMU position

and velocity with respect to the frame {G}, respectively. nwa and nwg are 3× 1 white

Gaussian noise vectors.

Gv̇I =
GaI

G ˙̄qI =
1
2

Gq̄I⊗
[

0 IωT

]T

; GṗI =
GvI

ḃa = nwa; ḃg = nwg

(3.5)

The IMU true state is expressed by a combination of the nominal state x̂IMU,k (3.6) and

the error state x̃IMU,k (3.7). The function g(x̂IMU,k, x̃IMU,k) (3.8) is used for describing that

combination:

x̂IMU,k =

[
Gp̂T

I
G ˆ̄qT

I
Gv̂T

I b̂T
a b̂T

g

]T

(3.6)

x̃IMU,k =

[
Gp̃T

I
Gδθ T

I
GṽT

I b̃T
a b̃T

g

]T

(3.7)
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Gq̄I =
G ˆ̄qI⊗ G

δ q̄I

GpI =
Gp̂I +

Gp̃I; GvI =
Gv̂I +

GṽI

ba = b̂a + b̃a; bg = b̂g + b̃g

(3.8)

Notably, the error state follows the standard additive error definition (i.e., arithmetic dif-

ference) when describing position, velocity and IMU biases. For rotation description, the

error quaternion should not be expressed in terms of the arithmetic difference because of the

presence of unit-length constraints (3.1). In fact, those constraints make the corresponding

covariance matrix singular, which is difficult to maintain numerically during the quaternion

computation [137]. For stability, a different representation is used for the rotational error

state vector, GδθI . When combining with the nominal state (3.8), the error quaternion is

constructed from the rotational error as Gδ q̄I =

[
1 1

2
G

δθ T
I

]T

.

The VIO system is designed using the structure of MSCKF, in which the filter state

includes the current IMU state and multiple previous camera poses. In this chapter, the

point transfer approach using trifocal tensor geometry is applied for the measurement up-

date step. This approach only requires two previous camera poses in the filter state. These

camera poses are associated with two reference images, I1 and I2. Additionally, the state is

modified to include the previous IMU poses (GpI1,
Gq̄I1

; GpI2
, Gq̄I2

) instead of the camera

poses for advantageous implementation and state transition. The transformation between

them is easily obtained by using the static IMU-camera calibrated transformation.

3.3.2 Filter Propagation

For discrete-time implementation of the filter state propagation, IMU measurements (am

and ωm) are sampled with a period ∆t. Those measurements will be used for propagat-
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ing the filter state x̂k|k−1 using (3.5) and 4th order Runge-Kutta numerical integration [95].

According to the researches [64, 147], the filter error state will operate following the kine-

matic equations (3.9). Those equations can be rewritten in a form that corresponds to the

linearized continuous-time error state equation, as in (3.10).

G ˙̃pI =
GṽI

G
δ θ̇I =−S

(I
ωm− b̂g

) G
δθI− b̃g−ng

G ˙̃vI =−R(G ˆ̄qI) S
(Iam− b̂a

)
−R(G ˆ̄qI)b̃a−R(G ˆ̄qI)na

˙̃ba = nwa; ˙̃bg = nwg

(3.9)

˙̃xk = Fcx̃k +GcnIMU (3.10)

where nIMU = [ng,na,nwa,nwg]
T is the noise vector with variance σ2

g ,σ
2
a ,σ

2
wa,σ

2
wg, respec-

tively. Fc is discretized to have Fd as in (3.11). The discrete-time system noise covariance

matrix Qd can be constructed from the continuous-time system noise covariance matrix

Qc = diag(σ2
g ,σ

2
a ,σ

2
wa,σ

2
wg) as in (3.12). The values of Qc can be defined through offline

IMU sensor calibration. Finally, the state covariance matrix Pk|k−1 can be propagated by Fd

and the error process noise covariance matrices Qd , as in (3.13). More information about

the matrix structure of Fc, Fd , Qc and Qd can be found in [137, 147].

Fd = exp(Fc4t) = Id +Fc∆t +
1
2!

F2
c∆t2 + ... (3.11)

Qd =
∫

∆t
Fd (τ)GcQcGT

c FT
d (τ)dτ (3.12)

Pk|k−1 = FdPk−1|k−1FT
d +Qd (3.13)
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3.3.3 Filter Measurement Update with Cubature Rule

The cubature Kalman filter is a Jacobian-free nonlinear filter, which applies a determin-

istic sampling approach to handle the nonlinearity of the TTG-based visual measurement

model. CKF shares common properties with the unscented Kalman filter but is improved in

numerical implementation and system stability. The authors [18] have addressed the vul-

nerability of the UKF system failure associated with the negatively-weighted sigma points.

The presence of those points can halt the filter operation or even cause the system to fail

when taking the square-root operation of the covariance matrix. That vulnerable step is

improved in CKF by using Spherical-Radial Transformation (SRT) and cubature points.

CKF handles the nonlinearity by generating a set of cubature points following the

spherical-radial cubature rule. Some overview of CKF is provided as follows. Dk is denoted

as the history of measurement pairs up to time step k, while N (., .) is the conventional

symbol for a Gaussian density. In order to develop the Bayesian filter theory under Gaus-

sian domain, CKF assumes that the predictive density p(xk|Dk−1) and the filter likelihood

density p(zk|Dk) are both Gaussian, which eventually leads to a Gaussian posterior density

p(xk|Dk). Under that Gaussian-approximation assumption, the functional recursion of the

Bayesian filter is reduced to the estimate of mean and covariance of various conditional

densities, following the time and the measurement update [18]. Both prediction and update

equations have the form of computing the multi-dimensional integrals, which consist of

the non-linear function ×Gaussian such as (3.14). Those integrals are solved using cuba-

ture rules. A random variable x has mean x̂ and covariance P. Similar to the Unscented

Transform of UKF, SRT is a method to compute the statistics of a random variable x which

undergoes a nonlinear transformation, y = f (x) as in Fig.3.2. A new set of cubature points
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(s = 1,2, ...,2n) around the mean x̂ is generated to capture a number of low-order mo-

ments of the prior density p(x) with the Gaussian assumption for the prior statistics of x.

Those cubature points are propagated through the nonlinear transformation, Ys = f(Xs).

The mean and covariance of y are calculated approximately by using a weighted sample

mean Ys and the covariance of the posterior cubature points.

Figure 3.2: Illustration of the spherical-radical transformation using in CKF [18]

CKF is a straightforward implementation of SRT in the recursive estimation. If a system

has n state variables, the third-order CKF selects 2n cubature points in order to compute

the standard Gaussian weighted integral:

x̂k|k−1 =
∫
Rn

f(xk−1,uk−1)N (xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1

ẑk|k−1 =
∫
Rn

h(xk)N (xk−1; x̂k|k−1,Pk|k−1)dxk

(3.14)

If a system has n state variables, the third-order cubature Kalman filter selects 2n cuba-
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ture points in order to compute the standard Gaussian integral [18, 108]:

IN (f) =
∫
Rn

f(x)N (x; x̂,P)dx'
2n

∑
s=1

1
2n

f(x̂+Sξs) (3.15)

where the square-root factor S of the covariance P satisfies the equality P = SST . The

cubature points ξs are given by (3.16).

ξs =


√

nes s = 1,2, ...,n

−
√

nes−n s = n+1,n+2, ...,2n

(3.16)

where es ∈ Rn×1 represents the sth elementary column vector.

Using those cubature points, the measurement update step is performed to correct the

predicted state x̂k|k−1 and the associated covariance Pk|k−1. Firstly, the predicted covariance

matrix Pk|k−1 is factorized by (3.17).

Pk|k−1 = Sk|k−1ST
k|k−1 (3.17)

Next, a new set of cubature points (s = 1,2, ...,2n) is computed from the predicted state

x̂k|k−1 and the square-root factor Sk|k−1 by (3.18). Those cubature points are then evaluated

using with the nonlinear measurement model, h(.), to obtain the sampled measurement

points (3.19). The innovation covariance matrix Pzz and the cross covariance matrix Pxz

are computed in (3.20) and (3.21) prior to the Kalman gain calculation. The Kalman gain

Kk is computed with the visual measurement noise R in (3.22). Then, the measurement

residual z̃k, the posterior state and the associated covariance matrix are corrected with the

actual measurement zk from (3.23) and (3.24), respectively.

Xs,k|k−1 = Sk|k−1ξs + x̂k|k−1 (3.18)
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Zs,k|k−1 = h(Xs,k|k−1,{m1,m2,m3})

ẑk|k−1 =
2n

∑
s=1

1
2n

Zs,k|k−1

(3.19)

Pxz =
2n

∑
s=1

1
2n

(
Xs,k|k−1− x̂k|k−1

) (
Zs,k|k−1− ẑk|k−1

)T (3.20)

Pzz =
2n

∑
s=1

1
2n

(
Zs,k|k−1− ẑs,k|k−1

)(
Zs,k|k−1− ẑk|k−1

)T (3.21)

Kk = Pxz (Pzz +R)−1 (3.22)

z̃k = zk− ẑk|k−1, x̂k|k = g(x̂k|k−1,Kkz̃k) (3.23)

Pk|k = Pk|k−1−KkPzzKT
k (3.24)

Equations 3.20 and 3.21 are presented in the generic form of CKF algorithm. Meanwhile,

the VIO prediction design defines the nominal state x̃30×1 and the error state x̃27×1 with

different sizes because of the quaternion representation. Hence, 3.20 and 3.21 should be

adapted for implementation using the function (3.8). After the measurement update step is

performed, the filter needs to perform state transition. (I1, GpI1 , Gq̄I1) is replaced by (I2,

GpI2 , Gq̄I2) and (I2, GpI2 , Gq̄I2) is replaced by (I3, GpI , Gq̄I). The covariance matrix is also

updated in that order.

Figure 3.3 presents the system architecture of the proposed VIO algorithm. The Image

Processing block is assigned for feature detection and matching. Visual landmark features

are detected in images I1, I2 and I3. Multiple techniques for feature detection can be used

such as the Speed-Up Robust Feature (SURF) [21] and Scale-Invariant Feature Transform

(SIFT) [88], which have the properties of scale-invariance and rotation-invariance. In ad-

dition, the feature detection is also adaptive with the acceptable change of ambient lighting

condition, the viewpoint disparity and image noise. In this chapter, the SIFT feature is used
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Figure 3.3: System architecture of the proposed algorithm

for feature detection. These detected feature points in each image are matched together.

Due to image noise, image blur, occlusion and other environmental elements, some mis-

matched features are unavoidable. Hence, 1-Point Random Sample Consensus (RANSAC)

technique [35, 36, 64] is applied to eliminate the outliers or mismatched features. The 1-

Point RANSAC technique is an improvement on traditional RANSAC [51], which employs

camera pose information to help eliminate mismatched feature points.

3.4 Trifocal Tensor Geometry Based Measurement Model

Most of the existing VIO systems attempt to reconstruct the 3D feature points before pre-

dicting the measurements [79, 95]. In the context of Structure from Motion (SFM), many

approaches have been introduced to recover the 3D feature points from the camera images

such as two frames SFM using fundamental matrix [60], an inverse-depth least-squares

Gauss-Newton optimization [94], factorization with multi-frame SFM [135], and bundle

adjustment [140]. However, VIO implementation needs to achieve the sufficient frequency
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update rate to keep track of the vehicle under varying conditions of observation. For this

purpose, the inverse-depth least-squares Gauss-Newton optimization approach is selected

to perform the reconstruction [94, 95]. This approach can achieve the accurate reconstruc-

tion accuracy and compromise the computational cost.

Each feature is tracked through n consecutive images (Fig.3.4), which improves the op-

timization accuracy but increases the computational cost. However, it is feasible to predict

the measurements without defining the point in space or reconstructing the 3D geometry

explicitly. This chapter utilizes the relation between measurements in the images. The point

transfer using Trifocal Tensor Geometry, which only uses three consecutive images (n= 3),

is applied to compute the predicted measurements. This section describes an analysis of

the TTG-based approach and compares it to the 3D feature-point approach.

Figure 3.4: Illustration of the 3D feature-point reconstruction

3.4.1 Point Transfer Using Trifocal Tensor Geometry

u, v are denoted as pixel coordinates of the 2D feature point m. m is presented in a homoge-

neous coordinate with m̃= [u,v,1]T . The point transfer approach using TTG is summarized

by the followers. According to [60], the camera projection matrices for the three different
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Figure 3.5: Trifocal tensor incidence relation (point-line-point) for three views I1, I2, and

I3 with camera viewpoints O1, O2, and O3

views are described as in (3.25). The point-line-point correspondence (m̃1↔ l2↔ m̃3) is

established with three image views I1, I2 and I3, indicated by their viewpoints O1, O2, and

O3 (Fig. 3.5).

P1 = [I3×3|03×1]

P2 = [A|a4] = [RT
12|−RT

12t12]

P3 = [B|b4] = [RT
13|−RT

13t13]

(3.25)

GRC1 = R(Gq̄I1)
IRC; GpC1 =

GpI1 +R(Gq̄I1)
GpC

GRC2 = R(Gq̄I2)
IRC; GpC2 =

GpI2 +R(Gq̄I2)
GpC

R12 = (GRC1)
T GRC2; t12 = (GRC1)

T (GpC2−
G pC1)

(3.26)

where (R12, t12), (R13, t13), (R23, t23) are the transformations of three camera poses, which

can be computed directly from the filter state (3.26). ai and bi are the i-th columns of the

matrices P2 and P3 as well as the two epipoles a4 and b4 in the second and third views

respectively, arising from the first camera. A trifocal tensor can be formulated as (3.27):

Ti = aibT
4 −a4bT

i (3.27)
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Figure 3.6: Illustration of the TTG based approach. The red line is the point transfer using

TTG while the blue line is the feature-tracking pipeline

Having points m1 in I1, m2 in I2, and essential camera poses, it is able to predict point

m̂3 in I3 using that tensor and 2 transfers (Fig. 3.6). In transfer I, the approach attempts

to construct a line in the image I2 passing the point m2. The research [60] recommends

selecting a line, which is perpendicular to the epipolar line le: l2 = [l2,−l1,−u2l2 + v2l1]T

with le = RT
12bt12×cm̃1 = [l1, l2, l3]T . Then, transfer II uses l2 and camera matrix Kcamera

for predicting m̂3 as (3.28). Figure 3.7 demonstrates the point transfer using TTG with two

transfers.

m̂3 = Kcamera

(
∑

i
m̃1iTT

i

)
l2 (3.28)

To apply TTG based measurement model to the proposed CKF, (3.29) is used as the h(.)

function of (3.19). This function will predict the feature-point measurement in the current

image and guarantee the epipolar constraint of two images. Having the predicted measure-

ment ẑ and actual measurement z, the residual z̃ and Kalman gain K can be calculated to
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Figure 3.7: Example of point transfer using TTG. Images are obtained from KITTI dataset

[56]. The point-line-point relation, which is represented with different colours, is estab-

lished between the feature m1 in I1, the line l2 (thicker line) in I2 and the feature m3 in I3.

The feature matching is presented with the thinner line connecting three features of three

images.
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correct the predicted filter state.

h(xk,{m1,m2,m3}) =



Kcamera

(
∑

i
m̃1,iTT

i

)
l2

m̃T
2 RT

12 [t12]× m̃1

m̃T
3 RT

23 [t23]× m̃2

m̃T
3 RT

13 [t13]× m̃1


(3.29)

A mechanism to select a new camera image as a keyframe is applied using two thresh-

olds. Since the overlap region should be sufficient to track many feature points, a certain

threshold is utilized for the number of tracked features to declare a new keyframe. Addi-

tionally, if there are no motion between three cameras (P1 = P2 = P3 = [I3×3|03×1]), m̂3

becomes zero for any landmark. In this case, the approach is unable to predict the mea-

surement. Hence, the ego-motion between two camera poses should be so obvious that the

baseline is not too short. For this purpose, a threshold is set for an average parallax between

the previous keyframe and the new camera image.

3.4.2 Comparison between TTG-based Approach and 3D Feature-point

Approach

Figure 3.8 describes the structural difference between the two approaches in computing

predicted visual measurements. Both approaches use the same procedure for feature track-

ing through n camera images. The TTG-based approach operates as a straightforward

and non-recursive function. n > 3 can be set to improve the quality of feature tracking

even though the TTG-based approach only uses three camera images. Experiments are

performed with KITTI dataset and measure processing time to evaluate the benefit of the

TTG-based measurement approach. For clarification, this approach attempts to accelerate
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the computation of the predicted measurements in the Kalman filter. The benefit does not

include the acceleration of feature detection and matching.

Figure 3.8: Structure of TTG-based approach and 3D feature-point approach

Figure 3.9: The results of the predicted measurements when verifying two approaches with

KITTI dataset [56]
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This subsection compares the result of the predicted measurements using two approaches

when providing the identical inputs (i.e., feature points and predicted filter state). In

Fig.3.9, two approaches produce very close predictions of feature-points. In addition, the

average computational time is measured for the comparison (Fig.3.10) when implementing

two models in Matlab. The TTG-based approach does not need to execute the least square

Gauss-Newton optimization, which significantly decreases the computational time.

Figure 3.10: Average processing time to predict one feature in each approach

This chapter does not attempt to compare the two approaches in terms of the mea-

surement residual, which does not effect directly to the filter estimation accuracy. In the

Kalman filter, the measurement residual is used to correct the predicted filter state with a

Kalman gain (3.23). The visual measurement noise R determines the value of the Kalman

gain and how the system weights the residual in the correction step. Hence, in the next

section, the proposed VIO algorithm, which uses the TTG-based approach, is compared to

the traditional VIO algorithm, which uses the 3D feature-point approach.

52



3.5 Experimental Results

3.5.1 Experiments with KITTI Dataset

The KITTI dataset [56] was collected by a ground vehicle in residential and rural areas.

The VIO system includes a PointGray Flea2 camera with 1.4 Megapixels, 1392×512 pixel

resolution, 90◦× 35◦ opening angle and a 10Hz update rate. An IMU sensor is an OXTS

RT3003 6-axis L1L2 RTK with a resolution of 0.02m/0.1◦ and a 100Hz update rate. The

dataset also provides accurate ground truth from a Velodyne laser scanner and a GPS lo-

calization system.

The KITTI dataset has many challenges for the VIO system operation. For example,

Figs. 3.11.c and d were collected when the vehicle traveled in a forested environment on

a sunny day. The trajectory was lined with trees on both sides. Consequently, this kind of

environment made the lighting change quickly because of the sun position with respect to

the camera and the number of tree canopies along the street. This dynamic lighting condi-

tion will challenge the feature tracking of the VIO system. Additionally, Figs.3.11.a, b and

e illustrate the presence of unexpected moving objects in the camera images, such as cars

and humans, which can affect the motion estimation negatively. The feature tracking with

RANSAC based outlier rejection will eliminate such unreliable features of these moving

objects from the visual measurement update step.

As shown in Fig.3.12, the proposed CKF algorithm can track the vehicle trajectory

with satisfactory accuracy against the ground truth data. At each time instant, the vehicle

velocity, bias of accelerometer and gyroscope are continuously updated, as in Figs.3.13,

3.14 and 3.15. The update rate from camera observation is sufficient to correct the IMU

prediction as well as keep track of the vehicle trajectory.
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(a)

(b)

(c)

(d)

(e)

Figure 3.11: Some camera images in KITTI dataset [56]
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(a) (b)

(c) (d)

Figure 3.12: CKF estimation presented in Google map: (a) 2011 09 26 0095, (b)

2011 09 30 0020, (c) 2011 09 30 0033, (d) 2011 09 30 0034

55



Figure 3.13: CKF estimation of velocity in dataset 2011 09 30 0034

Figure 3.14: CKF estimation of accelerometer bias in dataset 2011 09 30 0034

Figure 3.15: CKF estimation of gyroscope bias in dataset 2011 09 30 0034
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It is useful to implement UKF [142] and compare it to CKF because both two filters

share a common property of using a weighted set of symmetric points to handle the nonlin-

earity. Table 3.1 presents the experimental results of the proposed algorithm (CKF), UKF

and EKF with Root Mean Square Error of position (RMSE) and rotation error (Ψ). The

EKF implementation is the traditional MSCKF [79, 95]. The CKF and UKF use the TTG-

based measurement model, while the EKF uses the 3D-feature point approach. The UKF

implementation employs Cholesky factorization for the square-root operation on the co-

variance matrix. The UKF-computed covariance matrix has to be guaranteed to be positive

definite. Otherwise, the negative sampling points may halt the filter operation or even cause

the system to fail [18]. The CKF implementation has overcome these issues using cuba-

ture rule and singular value decomposition to factorize the covariance matrix. The CKF

achieves better estimation accuracy than the UKF in VIO application. The CKF imple-

mentation has improved the system stability and the estimation accuracy relative to UKF.

Further examples of CKF implementation can be found in [6]. The video demonstration of

the CKF algorithm can be located at the following link: youtu.be/DuS7AKRu-7I.

The proposed algorithm is implemented with a DELL Inspiron 15 7000 computer hav-

ing Intel R© Core
TM

i7-7700HQ CPU @2.80GHz ×4 and 16GB RAM. Figure 3.16 presents

the average processing times of CKF and EKF execution. The CKF system with TTG does

not perform the 3D feature-point reconstruction, which in turn reduces the processing time

significantly. Although CKF and EKF implementations use different measurement mod-

els, it is interesting to make a comparison between CKF and EKF in terms of the Root

Mean Square Error (RMSE) positional estimation. Firstly, the CKF’s capability to han-

dle the system nonlinearity helps to improve the estimation accuracy. Secondly, the 3D

feature-point approach requires feature tracking through multiple camera images, classi-
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Table 3.1: Experimental results for KITTI datasets with different travel distance [m]

Dataset Travel CKF UKF EKF

Distance RMSE Ψ(◦) RMSE Ψ(◦) RMSE Ψ(◦)

2011 09 26 0046 46 0.2104 0.1856 0.4527 0.1807 0.2276 0.3210

2011 09 26 0095 247 1.6424 0.2228 1.6622 0.2105 1.8053 0.2415

2011 09 26 0036 738 4.3525 0.5289 5.2452 0.5387 4.8070 0.0185

2011 10 03 0047 743 5.9086 1.1535 10.5830 1.1317 24.9355 5.0962

2011 09 30 0020 766 8.4880 0.3298 12.9287 0.3364 19.9242 4.884

2011 09 30 0034 918 24.9519 0.5360 31.0495 0.5474 × ×

2011 09 30 0033 1721 20.5373 0.2322 16.6368 0.2377 51.295 0.2313

Note: EKF: Extended Kalman Filter; CKF: Cubature Kalman Filter; UKF: Unscented

Kalman Filter; ×: the filter fails to track the trajectory.
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fying reliable features into three groups: past, mature, and immature features [71]. Past

and mature features are processed by the filter update step because they reach the defined

maximum length of the sliding window. Meanwhile, the immature features are waiting

to reach the maximum length to be processed. That procedure makes the filter use fewer

measurements to correct the predicted filter state. The reduction may negatively affect the

system robustness and accuracy, especially when operating under adverse conditions (e.g.,

areas with a limited number of features). On the other hand, the TTG-based approach only

requires the feature tracks in the most recent three images of the feature-tracking pipeline.

This makes the filter update step use more measurements to operate and achieve similar ac-

curacy as the conventional approach. The experiment has also verified that the TTG-based

approach can be utilized to replace the 3D feature-point approach to simplify the system in

specific applications.

Figure 3.16: Processing time evaluation of CKF and EKF

The notable benefit of using the KITTI dataset is to verify the proposed algorithm per-
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formance for long-distance travel. In table 3.1, the last dataset 2011 09 30 0033 is the case

testing the filter estimation over long-term operation. All filters failed to track the vehicle

trajectory over 1721m travel distance. In Fig.3.12, the error accumulation (drifts) can be

observed in long-term operation. The accumulative error arises from different sources: (i)

camera calibration, (ii) sensor resolution and (iii) the front-looking monocular camera with

limited depth perception. The visual measurement update can not eliminate the accumu-

lative errors effectively. Estimation over long-term operation also encounters the recovery

issue when the camera frame is lost temporarily. The proposed algorithm does not generate

the map during operation. These 3D landmarks are not available for the system recovery.

If the camera observations (i.e., feature points) are recorded, the system can perform re-

localization. The feature points observed in the current frame can be matched with those

of the previous frames and estimate the relative transformation.

3.5.2 Experiments with EuRoC Dataset

The proposed algorithm is also verified with the EuRoC dataset [26], which is collected

by a micro aerial vehicle in the indoor environment. The sensory platform of the EuRoC

dataset operates at a higher rate than those of the KITTI dataset. The IMU signals are at

200Hz while the camera image is at 20Hz. The experiment only uses the left camera for

the visual measurement update step. The maximum travel distance of each sequence in the

EuRoC dataset is only about 100m.

Figure 3.17 attempts to compare the RMSE of the CKF’s positional estimation against

other state-of-the-art VIO algorithms such as VINS-Mono [119], ROVIO [23] and OKVIS

[78] to determine the application scenario of the proposed algorithm. More rigorous com-
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Figure 3.17: Experiments with EuRoC dataset [26]

parison and discussion of the MSCKF-based algorithm and other existing algorithms can

be found in the research [44]. In these experiments, the proposed algorithm produces

comparative estimation to other algorithms. VINS-Mono and OKVIS are classified as a

smoothing technique, which formulates the estimation as a nonlinear optimization prob-

lem [53]. VINS-Mono performs full smoothing, which estimates for the entire history of

camera poses and 3D landmarks. OKVIS limits the optimization within a sliding window

as a fixed-lag smoothing. The optimization process minimizes the re-projection error of

landmarks observed in camera frames to extract the trajectory and 3D landmarks. Conse-

quently, the OKVIS can achieve better estimation accuracy than the filtering approach but

require more computational resources to solve the optimization problem [44, 53, 90]. The

proposed algorithm is classified as a filtering approach, which only focuses on inferring the

current state directly from the sensor data. Compared to these smoothing techniques, our

computation does not attempt to solve the optimization problem and generate the map of 3D

points at each time instant, which requires fewer computational resources and processing
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times. The implementation does not require the installation of an advanced optimization

library such as Google’s Ceres solver [16]. The proposed algorithm is beneficial to micro

robotic systems having limited computational capability. Over a long-term operation, the

proposed algorithm does not have an advanced function to effectively eliminate the error

accumulation like other existing techniques such as VINS-Mono [119] and OKVIS [78].

Rather than deploying it as a stand-alone self-localization solution, the proposed algorithm

is more useful for being part of larger navigation projects such as augmenting GPS.

3.5.3 Experiments with Handheld VIO Device

The proposed algorithm is also validated with a handheld VIO device. The device includes

an Intelr RealSenseTM ZR300 VIO development kit [5] (Fig.3.18) and Intelr NUC mini

computer. The IMU frequency is about 250Hz while the colour camera image frequency is

about 20Hz. The mini computer is installed with Ubuntu 16.04, Robot Operation System

(ROS)-Kinetic and the ROS driver of ZR300 module.

A dataset is collected in the Intelligent Systems Lab, EN1037, Engineering Building,

Memorial University, shown in Fig.3.19. The ZR300 module is calibrated using the Kalibr

visual-inertial calibration toolbox [122]. The calibration provides the intrinsic parameters

of the colour camera, the IMU parameters and the transformation between the IMU frame

and camera frame, which are necessary to the VIO implementation.

VINS-Mono [119] is also applied to extract the vehicle trajectory for comparison.

VINS-Mono is an open-source VIO development, which implements a global-optimization

based approach for sensor fusion. At each time instant, VINS-Mono attempts to optimize

the entire trajectory based on the IMU data and multiple observations of the 3D feature
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Figure 3.18: A handheld VIO device

Figure 3.19: Snapshots during the experiment with the handheld VIO device
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points. When the vehicle makes a loop, VINS-Mono also activates the loop closure and

re-localization functions to minimize the accumulative errors. The employment of these

advanced functions results in the highest accuracy of the trajectory estimation, despite the

considerable computational cost. In this experiment, the estimate of VINS-Mono is utilized

as ground truth to evaluate the CKF estimation. Figures 3.20 and 3.21 shows the positional

and rotational estimation of CKF. The CKF is able to track the vehicle trajectory.

Figure 3.20: The trajectory of the handheld VIO device is estimated using the proposed

algorithm and compared with the VINS-Mono estimate. The blue line is the map of the lab

EN1037 generated by a laser scanner
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Figure 3.21: Positional and rotational estimations of the proposed algorithm and VINS-

Mono
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3.6 Cubature Information Filtering

3.6.1 Transformation to Information Domain

This chapter also applies an other variation of CKF known as the cubature information filter

for VIO applications. The CIF addresses the computationally inefficient issue associated

with Kalman structure. The CIF focuses on the information vector ŷk|k and information

matrix Yk|k instead of the state xk|k and covariance matrix Pk|k. The transformation is

expressed as (3.30).

x̂k|k−1 = Yk|k−1 \ ŷk|k−1; Pk|k−1 = Yk|k−1 \ I (3.30)

The derivation of CIF is introduced in [108] and repeated below for the reader’s conve-

nience. Generally, the mathematical transformation can be applied for the extended Kalman

filter to obtain an Extended Information Filter (EIF). At each time step of measurement

update, the filtering will evaluate the information vector contribution ik and its associated

information matrix Ik as in (3.31) and (3.32) [109], where Oh is the Jacobian of the mea-

surement model. Then, the information vector ŷk|k−1 and information matrix Yk|k−1 are

updated as in (3.33).

ik = OhT
x R−1

k (z̃k +OhT
x x̂k|k−1) (3.31)

Ik = OhT
x R−1

k Ohx (3.32)

ŷk|k = ŷk|k−1 + ik

Yk|k = Yk|k−1 + Ik

(3.33)

Despite the mentioned improvement using the information matrix, EIF still shows draw-

backs inherent in EKF: the linearization stability and the nontrivial nature of the Jacobian

matrix employment [109]. The cubature Kalman filter approach is considered at this point
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to overcome these issues. However, the CKF structure does not need to obtain the Jaco-

bian matrix of the measurement model; it cannot be directly employed in the information

filter’s framework. Alternatively, the approximation step of the linear error propagation of

the innovation covariance matrix Pzz and the error cross covariance matrix Pxz are utilized

as in (3.34) [76, 109].

Pzz ' OhxPk|k−1OhT
x

Pxz ' Pk|k−1OhT
x

(3.34)

P−1
k|k−1 and Pk|k−1 are multiplied on the right hand side of (3.31) and (3.32) to have (3.35)),

(3.37). Then, (3.34) is used to obtain (3.36) and (3.38). At each time step, the information

vector contribution ik and its associated matrix Ik are evaluated by (3.36) and (3.38) before

correcting ŷk|k−1 and Yk|k−1 by (3.33).

ik =P−1
k|k−1Pk|k−1OhT

x R−1
k

(z̃k +Pk|k−1OhT
x YT

k|k−1x̂k|k−1)

(3.35)

⇒ ik = Yk|k−1PxzR−1
k (z̃k +PT

xzY
T
k|k−1x̂k|k−1) (3.36)

Ik = P−1
k|k−1Pk|k−1OhT

x R−1
k Pk|k−1OhT

x P−T
k|k−1 (3.37)

⇒ Ik = Yk|k−1PxzR−1
k PT

xzY
T
k|k−1 (3.38)

For a system with d sensors, the CIF will evaluate the contribution of each sensor using

(3.39) and (3.40). The synthesis of all contributions is operated with the summation form.

This operation is more computationally efficient than the CKF and EKF structures, where

the integration is in multiplication form. Figure 3.22 describes the system architecture of
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CIF in the general case of multiple measurement updates.

ŷk|k = ŷk|k−1 +
d

∑
j=1

i j,k

Yk|k = Yk|k−1 +
d

∑
j=1

I j,k

(3.39)

where

i j,k = Yk|k−1P j,xzR−1
k (z̃k +PT

j,xzY
T
k|k−1x̂k|k−1)

I j,k = Yk|k−1P j,xzR−1
k PT

j,xzY
T
k|k−1

(3.40)

Figure 3.22: CIF system architecture with multiple measurement updates

It can be observed that the cubature information filter does not include the filter gain

computation and the inverse of the innovation covariance matrix Pzz, but requires the in-

verse of the covariance matrix P to compute the information matrix. Our system has a

27× 1 dimensional error filter state and f feature points. Each feature point has a 5× 1

dimensional measurement model. The maximum dimension of matrix in the information

filter to be inverted is the error filter state dimension (P27×27). In the cubature Kalman

filter, the Pzz matrix will have dynamic dimensions of 5 f ×5 f . Generally, the observation
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dimension is larger than the state dimension and it is expected to have more features to

effectively correct the predicted filter state, f ≥ 20. As a result, the inverse of P involves

less computational cost than the inverse of Pzz and the system achieves computational effi-

ciency.

3.6.2 Experiments for Cubature Information Filter

The CIF is validated with KITTI datasets. In the experiment, CIF is compared with CKF

to evaluate the benefits of transforming the system to the information domain. The results

are presented in Figs.3.23, 3.26, and 3.29 with different colours assigned for particular

algorithms: cubature Kalman filter (red), cubature information filter (blue) and ground

truth data (black). The Unscented Information Filter (UIF) (green) is also implemented

in the experiment. UIF is the mathematical transformation of UKF into the information

domain. Figs. 3.23, 3.26, and 3.29 present the tracking experimental results of the KITTI

datasets drawn on a Google map while Figs.3.24, 3.27 and 3.30 provide RMSE evaluation

of positional estimation. The proposed algorithms were able to track the vehicle trajecto-

ries with satisfactory accuracy against the ground truth data in different scenarios, espe-

cially with dataset 2011 09 30 0020 when the vehicle was making a U-turn, and dataset

2011 09 30 0033 when the vehicle was traveling with high velocity (∼45km/h) and for

a long distance (about 1.8km). Figs.3.25, 3.28 and 3.31 evaluate the satisfactory rotation

error of these filters. Also, the RMSE positional estimate error of CIF and CKF are almost

similar in Figs. 3.27 and 3.30. The CKF achieves slightly better estimation accuracy than

CIF in Fig. 3.24. When transforming into the information domain, the approximation of

the cross-covariance matrix affects the estimation accuracy at an acceptable degree.
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Figure 3.23: Experimental results drawn on Google map using dataset 2011 09 30 0034

Figure 3.24: RMSE of positional estimation with KITTI dataset 2011 09 30 0034

Figure 3.25: Rotation error evaluation of KITTI dataset 2011 09 30 0034
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Figure 3.26: Experimental results drawn on Google map using dataset 2011 09 30 0020

Figure 3.27: RMSE of positional estimation with KITTI dataset 2011 09 30 0020

Figure 3.28: Rotation error evaluation of KITTI dataset 2011 09 30 0020
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Figure 3.29: Experimental results drawn on Google map using dataset 2011 09 30 0033

Figure 3.30: RMSE of positional estimation with KITTI dataset 2011 09 30 0033

Figure 3.31: Rotation error evaluation of KITTI dataset 2011 09 30 0033
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In the experiment, the CIF achieves better estimation accuracy than the UIF. In reality,

the UIF is developed from UKF, which shows some limitations in handling negative sam-

pling points and the square-root operation of the covariance matrix [18]. CKF is designed

as a better solution to handle these limitations, which improves the system stability and

the estimation accuracy. When the CIF is developed from CKF, CIF also inherits these

improvements. In Fig. 3.23, these filters only produce accurate estimates within the first

distance of 400m. After that, the error accumulation in CIF is similar to that of CKF. The

employment of additional sensors in the scheme of the multi-sensor system will help to

minimize the error accumulation. The structure of the information filter accelerates the

computation of multiple measurement updates.

Figure 3.32: Processing time evaluation of CKF and CIF

Fig.3.32 provides the processing time measurement of executing the visual measure-

ment update step for 50 tracked features. The CIF takes less processing time (∼4%) to

update than the CKF. The transformation to the information domain for decreasing the

computation cost is verified. Also, the CIF implementation allows the independent eval-

uation of each feature’s contribution during the measurement update. This benefit helps
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to relax the assumption of the visual measurement noise, where all landmark features are

treated equally. The video demonstration of the CIF can be located at the following link:

youtu.be/8udBBHZ9NIs.

3.7 Conclusions

This chapter described the development of a computationally efficient VIO algorithm which

combined the TTG-based visual measurement model and CKF. Multiple experiments used

publicly available datasets to validate the proposed algorithm. Compared to a traditional

VIO filtering algorithm such as EKF, which extracts 3D feature points during the measure-

ment update, the proposed algorithm with TTG used fewer camera images and computa-

tional resources. The processing time of the measurement prediction step was reduced by

∼ 95% relative to the traditional computation. The CKF implementation helps to handle

the nonlinearity efficiently, which produces better estimation accuracy than EKF in VIO

application.

This chapter also highlighted the computationally inefficiency of the Kalman structure

when the VIO system processes considerable amounts of visual data. The mathematical

transformation of CKF to the information domain helps to further reduce the processing

times by ∼ 4%, while maintaining a similar computational error. Overall, the proposed

algorithm can be implemented as a fast VIO solution for micro and nano robots. Addition-

ally, the CIF structure helps to evaluate the contribution of each feature independently in

the measurement update step. This benefit motivates the employment of parallel processing

in VIO application in the following chapter.
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Chapter 4

Accurate Visual Inertial Odometry for

Long-Term Trajectory Operations

Without Using a Map

The estimation error accumulation in the conventional VIO generally does not produce

accurate long-term operation. To address this issue, two solutions, as described in this

chapter1, were developed. The first solution implements an iterated cubature Kalman fil-

ter, which performs multiple corrections on a single measurement to optimize the current

1This chapter is based on the following papers of the author:

- T. Nguyen, G. K. I. Mann, A. Vardy, and R. G. Gosine, ”Likelihood-based Iterated Cubature

Multi-State-Constraint Kalman Filter for Visual Inertial Navigation System”, IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2017

- T. Nguyen, G. K. I. Mann, A. Vardy, and R. G. Gosine, ”CKF-Based Visual Inertial Odometry for

Long-Term Trajectory Operations”, ASME Journal of Dynamic Systems, Measurement and Control (Under

Review), 2019
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filter state and covariance during the measurement update. The optimization process is

terminated using the maximum likelihood estimate based criteria. The second solution

implements CKF with additional employment of pseudo-ranging measurement between

the vehicle and multiple anchors. The integration follows the sequential-sensor-update ap-

proach, which in turn enables an independent operation between the ranging sensors and

VIO system.

4.1 Introduction

Visual inertial odometry employs the sensor fusion between IMU measurements and cam-

era’s image information to enhance the accurate estimation of the vehicle trajectory [68,

125]. Analyzing the VIO system architecture, the front-end and back-end computations

are designed to exploit the benefits of both sensors, capture the system uncertainty, pro-

duce reliable ego-motion estimation and achieve robust performance. The vision front-end

computation attempts to track 3D feature points, which is used to correct the prediction

from the IMU data. The effectiveness of the correction depends on the sensor-fusion strat-

egy. Multiple strategies have been introduced with varying requirements of hardware com-

puting resources. Such solutions include MSCKF (version 1.0 [95] and version 2.0 [79]),

VINS-Mono [119] and OKVIS [78].

VIO systems suffer from the inevitable accumulation of error. This limitation makes

the filter gradually diverge and even fails to track the vehicle trajectory over long-term

operation. VIO only produces reliable estimation of the vehicle trajectory in short-term

operation and short-distance travel. This issue obviously demands the development of VIO

techniques to minimize estimation error over long-term operation. Recent literature has
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introduced multiple approaches to reduce the accumulative error. These approaches include

global pose graph optimization [82] and loop closure [78,82]. These techniques require the

entire trajectory and map to re-localize the vehicle estimates and improve the estimation

accuracy. Such solutions demand extremely high computational load, memory utilization

and processing time for execution. These costs are challenging in real-time computation

and may not be affordable for some micro-robotic systems [44, 68, 158], having limited

hardware computing capability. For example, Delmerico et al. [44] reported the failure

to execute these advanced techniques of VINS-Mono [119] on ODROID, an embedded

PC with a hybrid processing unit [8]. Moreover, these solutions are effective only when

the vehicle makes a closed-loop trajectory to re-observe some previous landmark features.

Not all vehicle trajectories include loops to activate the loop closure. Alternatively, other

researches [23, 71] have performed a local optimization within the sliding window during

the measurement update step. Their implementations did not require the installation of

any specialized hardware computing platform or advanced optimization software library.

The effectiveness of this technique depends on the tuning parameters and the criteria to

terminate the iteration.

Having developed the tightly-coupled VIO filtering algorithm in the previous chapter,

the research described in this chapter is attempting to upgrade the VIO estimation, which

allows the filter to operate for a longer duration. This chapter proposes two filtering so-

lutions, which focus on the inference of the vehicle’s latest state rather than the entire

trajectory. For the first solution, an iterated CKF and TTG [60] based measurement model

for the VIO estimation is applied. An iteration procedure is enhanced to perform multiple

corrections on a single measurement. The process locally optimizes the estimate of the

current filter state and covariance during the visual measurement update. The system em-
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ploys maximum likelihood estimate based criteria to terminate this optimization. For the

second solution, pseudo-ranging measurements between the vehicle and multiple anchors

are implemented. The design of the integration follows the sequential-sensor-update ap-

proach, which enables operating independence between each sensor. This property allows

the system to operate even without any ranging measurement.

To summarize, this chapter describes research that makes the following contributions.

Firstly, two novel solutions associated with the VIO filtering technique to improve the es-

timation accuracy over long-term operation without using any map or the entire trajectory

are developed. Secondly, the benefit of the TTG model to enhance the optimization dur-

ing the filter update step is exploited. The implementation does not increase the system

complexity significantly or require the installation of any advanced optimization library.

This strategy is suitable for self-localization projects without using any additional sensor.

Thirdly, the combination of VIO and pseudo-ranging measurement to bound the estimation

error over long-term operation is implemented. This solution can be applied for large-scale

navigation projects. The remainder of the chapter is organized as follows. The next section

presents the issue of error accumulation. Section 4.3 describes the first solution employ-

ing iterated CKF, while section 4.4 describes the second solution using ranging sensors.

Experimental validation for each solution is also reported accordingly. Finally, section 4.5

presents some discussion and conclusions.

4.2 CKF-based VIO’s Error-Accumulation Issue

After developing the CKF-based VIO in the previous chapter, this section illustrates the

error accumulation issue. For our purpose, the experimental results with the KITTI dataset
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[56] in the previous chapter are reused. The estimation is inevitably subject to error ac-

cumulation (drift) like any other odometry estimate. Fig.4.1 presents the VIO estimation

when the vehicle travels a long distance. As in Fig.4.1, Root-Mean-Square Error is ac-

cumulated gradually. The estimation drifts from its real trajectory, which can be observed

clearly in Fig.4.1. In Fig.4.1 with dataset 2011 09 30 0034, the VIO estimation drifts about

50m after traveling 900m. Similarly, the VIO estimation drifts about 45m after traveling

1600m with dataset 2011 09 30 0033 in Fig.4.2.

Figure 4.1: Position estimation in dataset 2011 09 30 0034

The CKF-based system has employed IMU data for the filter state prediction and cam-

era images for the filter correction. The drift is mainly derived from the poor performance
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Figure 4.2: Position estimation in 2011 09 30 0033

of the camera observation. The visual measurement update step is unable to correct the

residuals completely and suppress the drift effectively. The error accumulation can come

from various sources:

(i) The camera resolution and calibration is limited to provide reliable measurements in

some particular cases such as traveling too fast.

(ii) The front-looking monocular camera has limited depth perception.

(iii) The sensor-fusing algorithm is unable to fully capture the uncertainties and eliminate

the environment noise.

The first two issues (i - ii) are associated with the hardware configuration, while the

last issue (iii) is derived from the sensor-fusing technique. Additionally, the drift increases
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unboundedly for an assumed unlimited time. The drift in orientation, which is limited to

the range [−π,π], also contributes to the drift in position. For short-term consideration

(about 1 second), the drift can be modeled as a linear motion to simplify the problem

formation [154]. In long-term consideration, the drift does not grow linearly in the traveled

distance. It can be treated as a random process and increases or decreases depending on the

errors in motion vectors [84]. Assuming that the modification of the hardware setup is not

an optimal solution, a sensor-fusing algorithm is developed, as described in the following

section, with two proposed solutions.

4.3 Solution 1: Iterated Cubature Kalman Filter

4.3.1 Maximum Likelihood Estimate Based Optimization

The previous chapter has introduced the CKF design for VIO application. Solution 1 up-

grades the visual measurement update to conduct the local optimization. The CKF and

UKF share a common property (i.e. using a weighted set of symmetric points to handle the

nonlinearity). This chapter utilizes the design of UKF based local optimization presented

in the work [143] in order to develop the iterated CKF.

Similarly, Sk|k−1 is the square-root factor of the covariance Pk|k−1, which satisfies the

equality Pk|k−1 = Sk|k−1ST
k|k−1. Cubature points (s = 1,2, ...,2n) are generated with their

particular parameters (4.1) and (4.2).

ξs =


√

nes s = 1,2, ...,n

−
√

nes−n s = n+1,n+2, ...,2n

(4.1)

Xs,k|k−1 = Sk|k−1ξs + x̂k|k−1 (4.2)
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where es ∈ Rn×1 represents the sth elementary column vector. These cubature points are

evaluated through the nonlinear measurement model to obtain the predicted measurements

(4.3). Then, the innovation covariance matrix Pzz and the cross covariance matrix Pxz can

be computed as in (4.4).

Zs,k|k−1 = h(Xs,k|k−1,{m1,m2,m3})

ẑs,k|k−1 =
2n

∑
s=1

1
2n

Zs,k|k−1

(4.3)

Pxz =
2n

∑
s=1

1
2n

(
Xs,k|k−1− x̂s,k|k−1

)(
Zs,k|k−1− ẑs,k|k−1

)T

Pzz =
2n

∑
s=1

1
2n

(
Zs,k|k−1− ẑs,k|k−1

)(
Zs,k|k−1− ẑs,k|k−1

)T
(4.4)

The iteration procedure is conducted with the TTG-based visual measurement to opti-

mize the estimated state and covariance. Generally, the estimated state x̂k|k is closer to the

filter’s true state than the predicted state x̂k|k−1. In the iteration, the estimated state x̂( j)
k|k at

jth iteration produces a better approximation to the filter true state than the estimated state

x̂( j−1)
k|k at ( j−1)th iteration. The state correction is performed as in (4.5):

x̂( j)
k|k = x̂( j−1)

k|k +K( j)
k (zk− ẑk) (4.5)

K( j)
k =

P( j)
xz

P( j)
zz +Rc

(4.6)

P( j)
k|k = P( j−1)

k|k −K( j)
k P( j)

zz (K
( j)
k )T (4.7)

When the iteration is executed, the system can compute the positive-definite covariance

matrices P( j)
k|k , P( j−1)

k|k and P( j)
zz . Assuming lim

j→∞
K( j)

k 6= 0, equation (4.7) reveals P( j)
k|k < P(i−1)

k|k

for any j = 1,2, ...,∞. However, when each element of the matrix P( j)
k|k is bounded, it also

results in lim
j→∞

P( j)
k|k = lim

j→∞
P( j−1)

k|k [143]. Additionally, it can also be inferred from (4.7) that
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lim
j→∞

K( j)
k = 0, which violates our initial assumption ( lim

j→∞
K( j)

k 6= 0). Actually, that assump-

tion cannot hold with iteration. Therefore, lim
j→∞

K( j)
k = 0. Consequently, when K( j)

k → 0

with j > N, x( j)
k|k → x( j−1)

k|k and P( j)
k|k → P( j−1)

k|k . In other words, the global convergence is

guaranteed during the iteration procedure.

∆x̂( j)
k|k = x̂( j)

k|k− x̂( j−1)
k|k (4.8)

When the state is converging, the state variation ∆x̂( j)
k|k can be evaluated as in (4.8). Ob-

viously, a predetermined threshold ρ can be set for ∆x̂( j)
k < ρ to terminate the iteration.

However, tuning that threshold ρ is challenging. Although the iteration with the threshold

ρ can achieve global convergence, it does not guarantee that the optimal value would be in

the likelihood surface.

Assuming xk|k∼N(x̂( j)
k ,P( j)

k|k) and zk∼N(ẑk,Rk), the cost function is determined within

the structure of the CKF in order to terminate the iteration:

J(x( j)
k ) = (∆x̂( j)

k|k)
T (P( j)

k|k)
−1

∆x̂( j)
k|k +(∆z( j)

k )T R−1
k ∆z( j)

k (4.9)

where

∆z( j)
k = zk− z( j)

k (4.10)

The minimum value of the cost function J can be found to determine the MLE of xk and zk

through an optimization process, which is complicated and impractical [97]. However, in

the process of the optimization, the inequality condition (4.11) is always satisfied. In other

words, J(x( j)
k ) is closer to the maximum likelihood surface than J(x( j−1)

k ). Consequently,

x( j)
k is a more accurate approximation to MLE than x( j−1)

k .

J(x( j)
k )< J(x( j−1)

k ) (4.11)
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That inequality can be used to terminate the iteration. To apply our cubature measurement

update with P( j)
k|k = S( j−1)

k|k S( j−1)
k|k , the inequality condition is rewritten as in (4.12) [143]:

(∆x̂( j)
k|k)

T (S( j−1)
k|k S( j−1)

k|k )−1
∆x̂( j)

k|k +(∆z( j)
k )T R−1

k ∆z( j)
k < (∆z( j−1)

k )T R−1
k ∆z( j−1)

k (4.12)

4.3.2 The System Architecture of Iterated CKF

To summarize, the computation of iterated CKF is presented in the algorithm 1. Figure

4.3 describes the VIO system architecture developed with iterated CKF. The IMU data is

employed for the filter state and covariance propagation. The camera observation is used

for visual measurement update. The block Image Processing executes the visual front-end

computation. The visual measurement step will be conducted with jth iteration under the

inequality condition (4.12) and maximum iteration j < N. If only one iteration is per-

formed, the iterated CKF becomes the CKF. The State Transition block guarantees the

appropriate filter state and image transition after finishing the measurement update.

Figure 4.3: The system architecture developed with iterated CKF
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Algorithm 1: Iterated CKF Algorithm

1 Filter initialization with initial state and initial covariance matrix ;

2 for k∈(1,. . .,∞) do

3 Predict the nominal state x̂k by IMU data using 4th order Runge-Kutta

numerical integration;

4 Calculate Fd and Qd ;

5 Compute the propagated state covariance Pk|k−1 ;

6 if New Image Ik then

7 Ik→ I3. Perform feature detection on I3 and match these features with

features {m1} and {m2} to have {m1}↔ {m2}↔ {m3};

8 Factorize: Pk|k−1 = Sk|k−1ST
k|k−1 ;

9 while ((Condition (4.12) is satisfied) and (j<N)) do

10 Calculate the variation rate ∆x( j)
k|k , ∆z( j)

k|k by (4.8), (4.10), respectively;

11 Generate cubature points by (4.2) ;

12 Calculate the predicted measurement and innovation covariance matrix:

(4.3)-(4.4);

13 Update state and associated covariance matrix (4.6)-(4.7) ;

14 end

15 Perform state transition and revise the covariance matrix;

16 end

17 end
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4.3.3 Experimental Validation of Solution 1

The KITTI dataset is also used for experimental validation because it allows verifying the

system performance for long-term operations with long-distance traveling. It also helps to

observe the impact of the accumulative errors as well as the effect of implementing each

solution. The estimates of these filters are presented in a GoogleTMmap with multiple

zoom-in images for comparison. The evaluation criteria are RMSE and the rotation error.

The ground truth data are obtained from GPS/IMU Inertial Navigation System (INS) data.

Figures 4.4, 4.5 and 4.6 present the experiment with dataset 2011 09 26 0087. The

vehicle travels about 290m. The UKF has faileod to track the vehicle trajectory after 50m.

The iterated CKF has less RMSE of the position estimate than the CKF. In the rotation es-

timate (Fig.4.6), the estimates of Iterated CKF and the CKF are comparative. As expected,

the INS system with only the integration of IMU data is not able to track the vehicle trajec-

tory. The fusion with the camera has improved the quality of the estimation.

Figure 4.4: Experimental results presented in Google map for 2011 09 26 0087
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Figure 4.5: RMSE evaluation in the experiment with dataset 2011 09 26 0087

Figure 4.6: Rotation errors in the experiment with dataset 2011 09 26 0087

Figures 4.7, 4.8 and 4.9 present the experiment with dataset 2011 09 30 0034. The

vehicle travels about 900m. In this case, the iterated CKF has superior performance than

the other filters. The CKF and UKF produce accurate estimates within the first distance of

200m. The employment of the optimization process has effectively decreased the estima-

tion error, somehow partly eliminating the accumulative errors. In Fig.4.7, the drift in the

performance of iterated CKF after 800m. In Fig.4.9, the rotation estimates of these filters

have similar accuracy. The iterated CKF continuously updates the bias of accelerometer

and gyroscope at each time instant as in Fig.4.10.

Figures 4.11, 4.12 and 4.13 present the experiment with dataset 2011 09 30 0033. The

vehicle travels about ∼1700m. The employment of iteration does not help to significantly

improve the estimation accuracy. In other words, the optimization step with MLE can-
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Figure 4.7: Experimental results presented in Google map for 2011 09 30 0034

Figure 4.8: RMSE in the experiment with dataset 2011 09 30 0034

Figure 4.9: Rotation errors in the experiment with dataset 2011 09 30 0034
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Figure 4.10: Iterated CKF estimation of accelerometer and gyroscope bias with dataset

2011 09 30 0034

not bring the estimate up to the likelihood surface. Considering the rotation accuracy in

Fig.4.13, all three filters have almost similar accuracy. The video demonstration of this

solution can be located at youtu.be/-8SWh-cy-Ck.
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Figure 4.11: Experimental results presented in Google map for 2011 09 30 0033

Figure 4.12: RMSE in the experiment with dataset 2011 09 30 0033

Figure 4.13: Rotation errors in the experiment with dataset 2011 09 30 0033
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4.4 Solution 2: Pseudo-range Measurements

In solution 2, pseudo-range measurements are tightly integrated with VIO, which will

bound the estimation error and correct the positional drifts. The pseudo-range measure-

ment can be established by the wireless transmission between the anchor (or beacon) and

tag units. The tag unit is mounted on the vehicle and communicates with multiple anchor

units, which are installed rigidly at known locations in the environment. The vehicle can be

passive [75] or active [98] in the communication process, depending on how many vehicles

are employed. Each pseudo-range measurement can be modeled as in (4.13):

zr,d = ||Gpa,d− GpI||2 +ζdβ (4.13)

where Gpa,d is the position of the dth anchor, GpI is the current position of the vehicle,

β is a bias of range error model, ζd is the coefficient describing the influence of β on

the pseudo-range measurement, ||.||2 is the Euclidean distance. Considering the real-time

implementation, multiple hardware modules can be employed such as Decawave [3] or

Time Domain’s P-410 UWB module [15].

4.4.1 Sequential-Sensor-Update Approach

Multiple anchors are placed along the vehicle trajectory as in Fig.4.14. In reality, multiple

pseudo-range measurements can enable the vehicle to self-localize by using either Time

Of Arrival (TOA) or Time Difference of Arrival (TDOA) measurements. In general, this

self-localization system requires at least four available ranging measurements to estimate

accurately [75, 144]. However, if the vehicle is traveling a long distance, it is difficult

to always receive enough ranging measurements to perform self-localization. Research
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described in this chapter considers the case when the ranging measurements are only used

to supplement the VIO.

Figure 4.14: Illustration of the vehicle in wireless communication process for pseudo-range

measurements

All measurements (i.e., visual and ranging measurements) can be synthesized into a sin-

gle composite group sensor with only one measurement model and similarly apply CKF for

the estimation. However, this group sensor approach assumes that all sensors have similar

update rates and that measurements are always available. This assumption does not satisfy

our system configuration when the camera and ranging sensors operate independently. The

number of available ranging sensors may vary depending on the communication process.

As a result, the sequential-sensor method is applied in this research. The sequential sensor

update approach considers each sensor’s observation as a separate and independent real-

ization. Each sensor will operate following a specific observation model, which can be

incorporated into the filter operation in a sequential manner [47]. A set of all observations
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made by the camera up to time k will be denoted by Zk
c , {zc(1), zc(2), ..., zc(k)} and

a set of all observations made by the pseudo-range sensor up to time k will be denoted

by Zk
r , {zr(1), zr(2), ..., zr(k)}. Hence, the set of all observations made by two sensors

(camera and pseudo-range) up to time k is constructed by: Zk
c,r , {Zk

c∪Zk
r}

The state prediction, computed by IMU data, is x̂k|k−1 with covariance Pk|k−1. The

camera observation will update the filter state to xk|k with covariance Pk|k. The filter state

after the camera measurement update can be denoted as xc,k|k with covariance Pc,k|k. The

Kalman gain Kr,k is calculated with variance Rr = diag[vr,vr,vr] as in (4.14). The pseudo-

range innovation is computed as (4.15) before performing the correction step (4.16). x̂k|k

with Pk|k are the estimate of VIO after the visual and pseudo-range measurement update.

Kr,k =
Pc,k|k HT

r,k

Hr,kPc,k|kHT
r,k +Rr

(4.14)

z̃r,k = zr,k−Hr,k x̂c,k|k (4.15)

x̂k|k = x̂c,k|k +Kr,kz̃r,k

Pk|k = Pc,k|k−Kr,k Hr,k Pc,k|k

(4.16)

Fig.4.15 presents the system architecture when integrating with a single pseudo-range

measurement. It can be extended for multiple pseudo-ranges. Notably, the VIO system

is the principle module, while the pseudo-range sensory system is secondary. These two

systems are independent; the pseudo-range measurement update cannot intervene in the

VIO operation. This property helps to sustain trajectory tracking, even in the case of no

communication with any anchor.

The matrix Hr,k =
∂h
∂x

∣∣∣∣
x̂k|k−1

describes how the filter states are mapped to the pseudo-

range measurement outputs, while it is computed by applying first-order Taylor series ap-

proximations to the pseudo-range model. The filter state includes three poses at times k,
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Figure 4.15: System architecture for integrating pseudo-ranging measurement

k− 1 and k− 2, which are guaranteed to satisfy the constraint of trifocal tensor geome-

try and epipolar geometry. Consequently, the pseudo-range measurement model will be

reconstructed so that it also corrects three poses at each time step.

zr,k =

[
zr,k zr,k−1 zr,k−2

]T

(4.17)

The pseudo-range sensor is employed to supplement VIO. It is important to identify and

reject pseudo-range measurement outliers before fusing with VIO. Mahalanobis distance

dk of innovation covariance Sr,k and innovation z̃r,k are measured to form the validation

measurement gate, which defines the region in the pseudo-range measurement space where

valid measurements can be found. Any measurement outside that region is considered as

an outlier and will not be integrated with VIO. The innovation covariance Sr,k is computed
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as in (4.18) before evaluating the validation gate (4.19).

Sr,k = Hr,kPc,k|kHT
r,k +Rr,k (4.18)

d2
k = z̃T

r,k Sr,k z̃r,k ≤ γG (4.19)

where γG is the gate threshold to reject the pseudo-range outliers.

4.4.2 Experimental Validation of Solution 2

The KITTI dataset is also utilized to validate solution 2. In Fig.4.16, multiple anchors are

presented as a cyan square marker. The estimation of solution 2 is denoted as VIO+Ranging.

Figs.4.16 and 4.17 shows the improvement of estimation accuracy. The use of additional

pseudo-range sensors helps to bound the estimation error over long-term operation. Addi-

tionally, in these zoom-in images of Fig.4.16, the vehicle is estimated off the road at some

specific locations. The system does not consider the issue of obstacle avoidance, which can

be solved using a laser-range sensor such as LIDAR.

4.5 Discussion and Conclusions

This section will discuss the pros and cons of the two proposed solutions, which helps to

determine the scenario application of each in terms of system accuracy and hardware im-

plementation. Solution 1 implements iterated CKF, which optimizes the latest filter state

and covariance during the measurement update. Solution 2 employs pseudo-ranging mea-

surements to bound the estimation errors.

Estimation Accuracy: The experimental results reveal how each solution can improve

estimation accuracy. Figure 4.17 evaluates the average RMSE of position estimation for
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Figure 4.16: Position estimation of dataset 2011 09 30 0034 presented on Google map

each solution. The effectiveness of solution 1 depends on the termination criteria, which

decide the number of iterations. Meanwhile, the placement of the pseudo-ranging sensors

will influence the number of required ranging corrections to bound the estimation errors,

which in turn affects the outcome of solution 2.

Figure 4.17: RMSE evaluation of position estimation between these solutions
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Hardware Implementation: Fig. 4.18 measures the average processing time between

these solutions. Both approaches can reduce error at the cost of increasing the process-

ing time. The implementation of the iterated CKF increases the processing time by about

125%, while for solution 2 the cost is reduced by 20%. The iterated CKF consumes more

processing time than the VIO+Ranging due to the dimension of the measurement model.

Solution 1 executes multiple iterations of the visual measurement update to optimize the

estimation, while solution 2 only needs about 1-3 pseudo ranging measurements. The di-

mensions of the feature-based measurement model is much larger than those of the pseudo-

range measurement model. Solution 1 increases the computational cost significantly, which

may limit applicability to micro- and nano- robot applications. To improve the computa-

tional efficiency, the system can select a small subset of tracked landmark features, which

in turn decreases the dimension of the visual measurement model. Alternatively, the im-

plementation of parallel processing can help to speed up the execution [157]. Future work

will include further investigation for optimal hardware implementation of iterated CKF.

Figure 4.18: Processing time evaluation of these solutions
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Although both solutions allow the VIO estimation to operate for a longer duration, the

hardware/software requirement of each solution is another consideration for implementa-

tion. Solution 1 with MLE-based optimization does not require the installation of advanced

optimization library such as Google’s Ceres solver [16] or CasADi [1]. It is feasible to use

the same system configuration for implementation, even with hardware constrained plat-

forms. On the other hand, solution 2 requires the setup of multiple anchors along the

vehicle trajectory. It cannot be applied to unknown environments.

Overall, both solutions allow the VIO to operate for a longer duration without using a

map or executing the optimization of the entire trajectory. A VIO developer will consider

these mentioned advantages and disadvantages of each solution, the possible hardware con-

figuration and budget limitation before selecting a solution to upgrade the available VIO

system. In general, solution 2 is more suitable for large-scale navigation projects, while

solution 1 is preferable for stand-alone self-localization projects.
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Chapter 5

Efficient Parallel Processing Solution to

Accelerate Visual Inertial Odometry

Execution on a Generic Computer

This chapter1 presents an advanced sensor-fusing algorithm for VIO with parallel process-

ing capability. Conventional systems are inefficient when processing massive amounts of

visual data in a serial manner during the filter measurement update. It is impractical to

optimize the estimation due to the high computational load and long processing times. As

each feature is processed independently in parallel, a novel algorithm is proposed to syn-

thesize individual estimation as well as to maintain the comparative estimation accuracy

1This chapter is based on the following paper of the author:

- T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Accelerating Visual Inertial Odometry Using Parallel

Processing and Cubature Information Filter”, IEEE/ASME Transactions on Mechatronics, (Under Review),

2019
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and consistency. Also, the proposed system architecture executes the individual optimiza-

tion for each feature measurement update. This helps minimize error accumulation over

a long-term operation. Experiments use multiple hardware computing platforms and pub-

licly available datasets for validation. This chapter also redefines the error correction and

builds the computation on Matrix Lie groups with invariant Kalman filtering, which helps

to achieve the consistency during operation.

5.1 Introduction

Efficiency via parallel computing. VIO demands heavy computation to process the camera

image at each time instant, and this makes hardware implementation quite challenging and

non-trivial. It is inefficient to process massive amounts of visual data in a serial manner dur-

ing the filter measurement update. As a result, it is very difficult to optimize the estimation

with minimum processing time. Parallel processing is an alternative answer to implement

the local optimization of the individual feature as well as speed up the execution. There

are many strategies to enhance parallel processing for VIO application: FPGAs [157],

GPUs [82, 126, 151] and ASICs [131]. However, the development of these specialized

hardware computing platforms for perception is an expensive and time-consuming process.

Also, the resulting hardware is difficult to upgrade [28]. Before making an investment in

these expensive solutions, it is useful to verify the VIO parallel computing on a generic

computer. At the moment, multi-core CPU is popularly available in all types of computers.

This solution is selected to enhance parallel processing and accelerate the execution. In

reality, most projects have been utilizing multi-core CPU to develop their VIO algorithm

with minimum consideration on how the hardware distributes the computation over multi-
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ple cores. Alternatively, the computational task on each core is assigned during the visual

measurement update to accelerate the VIO computation.

Figure 5.1: Parallel processing for each feature

Individual processing each visual feature. Not all features have the same contribution

to the estimation accuracy. Motion blur and various texture gradients can reduce a feature’s

positive impact on the filter update [114]. Some researches [28,112,114,159] have selected

to evaluate each feature independently during the measurement update step. For example,

Peretroukhin et al. [112, 114] have built a visual measurement noise model to predict the

noise covariance parameter for each feature at each time instant. Furthermore, Carlone

et al. [28] have developed a visual attention mechanism that measures the contribution of

each feature to the filter estimation, and then selects a suitable subset of landmark features

for the VIO operation. Consequently, the number of features is reduced positively to ap-

ply for hardware-constrained computing systems but maximize the localization accuracy.
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However, this strategy needs to distribute the computation such that the processing of many

small-scale visual measurement models does not increase the processing time significantly.

In reality, most VIO algorithms makes a strong assumption about all visual features having

equal priority to the filter. The system constructs all of them into a single composite group

measurement model to compute in the scheme of Kalman based filtering. This strategy

results in a higher-dimensional matrix of measurement model and innovation covariance,

which are not computationally efficient [31, 33, 103, 109]. In this chapter, individual fea-

tures are assumed to have a different contribution to the motion estimation, which allows a

single core to process one feature measurements independently.

Drifts over long-term operation. As mentioned in the previous chapter, the local opti-

mization within the sliding window can help to address the error accumulation issue over

long-term operation. Optimally tuning parameters and terminating the optimization pro-

cess will decide the effectiveness of the technique. The implementation does not require

the installation of any specialized hardware platform and some advanced optimization soft-

ware library. The employment of local optimization raises two interesting questions: how

to perform the local optimization for individual feature? And how to distribute the mas-

sive computation of the optimization process on multi-core CPU such that the increase in

processing time is not significant?

This chapter describes research related to distributing the VIO computation on a multi-

core CPU. The computational task is strictly assigned for each core to process each feature

independently at each time instant (Fig.5.1). The computational tasks include the visual

measurement update and local optimization process for a single feature. The synthesis of

all individual feature processing is designed to exploit the computationally efficient benefits

of CIF. To summarize, this chapter makes the following contributions.
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• Firstly, parallel processing for VIO computation is enhanced using CIF and multi-

core CPU. It speeds up the estimation significantly while maintaining a comparative

estimation error. This is proposed to be the first deployment of parallel processing

for VIO applications on a multi-core CPU solution.

• Secondly, optimization for individual feature measurement update is deployed to

minimize the error accumulation over long-term operation. Multiple corrections on

single measurement are conducted to produce optimal estimation. The implementa-

tion does not require the installation of advanced optimization software libraries such

as Google’s Ceres solver [16].

• Lastly, an efficient and easy method to accelerate the VIO execution without the in-

stallation of specialized hardware computing platforms is introduced. As this method

can be expended to other advanced hardware platforms, this is considered as the

middle step to validate the VIO parallel computing on a generic computer before

investing in specialized hardware.

The remainder of the chapter is organized as follows. The next section reviews some related

researches. Section 5.2 presents system coordinates, matrix Lie groups and the problem

formulation. The proposed filtering algorithm has two main parts: prediction and update,

which are described in section 5.3 and 5.4, respectively. Then, the system architecture is

proposed in section 5.5. Section 5.6 describes some experiments for evaluating the pro-

posed algorithm. Lastly, section 5.7 provides conclusions.
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5.2 Preliminaries

5.2.1 Matrix Lie Groups

A matrix Lie group G (G ⊂ Rd×d) is a subset of square invertible matrices possessing the

properties: I ∈ G, ∀χ ∈ G, χ−1 ∈ G, ∀χ1,χ2 ∈ G, χ1χ2 ∈ G. The group forms a smooth

manifold. A Lie algebra g is a tangent space of the group’s manifold at the identity matrix I.

In our case, a rotation matrix R has the essential properties of the special orthogonal group

SO(3): R ∈ SO3 =̇ {R ∈ R3×3 : RT R = RRT = I, det(R) = 1}. The Lie algebra so(3)

coincides with the space of skew symmetric matrices. Every vector ω ∈ R3 can produce

its skew symmetric matrix form φ∧ using the hat operator (.)∧ (5.1). In reverse, a skew

symmetric matrix can produce its vector R3 form with (.)∨ vee operator. Special Euclidean

Group SE(3) describes the group of 3D rigid motion, SE(3)= {(R,p) : R∈ SO(3),p∈R3}.

The group operation is T1T2 = (R1R2, R1p2 +p1) and T−1
1 = (RT

1 ,−RT
1 p1).

S(φ) = [φ ]∧ =


φ1

φ2

φ3


∧

=


0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 ∈ so(3) (5.1)

The exponential (exp(.)) and logarithm (log(.)) operations can be used to link (or map)

between a Lie group and its associated Lie algebra (5.2) [19, 148].

R3→ SO(3) : φ → exp(φ∧)

SO(3)→ R3 : R→ log(R)∨
(5.2)

The Lie group action is defined in the right group: χ ∼NR(χ̂,P), ξ ∼N (0,P), χ =

exp(ξ )χ̂ . Assuming χ is a random variable of the Lie group (χ ∈G), the true value χ con-

sists of the noise-free nominal value χ̂ and the error value (perturbation) ξ , where ξ follows
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the Gaussian distribution with its covariance P. Notably, the probability density function is

built on vector space Rd such that NL(., .) and NR(., .) are not Gaussian distributions.

5.2.2 Problem Formulation

The coordinate system is defined as in the previous chapter with {G} is a global frame; {I}

is an IMU frame; {C} is a camera frame. The system attempts to track the transformation

of {I} with respect to {G}. The evolution of the system state sequence χk at discrete time

k operates by: χk = f(χk−1,uk,wk), where f is the nonlinear function, uk is the input and

wk is the process noise following zero-mean white Gaussian model with covariance Qk. A

measurement zk ∈ Rnz arrives with zk = h(χk)+Vn, where Vn is the measurement noise

following zero-mean white Gaussian noise with covariance Rk.

The Bayesian filtering sequentially computes the Probability Density Function (PDF)

of the filtering ’s posterior state P(χk|z1:k) with z1:k = {z1, ...,zk}. This can be achieved

using two step processes (prediction and measurement update), when the PDF of the fil-

tering posterior state at the previous step k− 1 is available. The prediction step results in

the predictive posterior state PDF: P(χk|z1:k−1) =
∫
P(χk|χk−1)P(χk−1|z1:k−1)dχk−1. The

new measurement is used to update the predictive posterior state PDF through Bayes rules:

P(χk|z1:k) =
P(χk|z1:k−1)P(zk|χk)∫
P(χk|z1:k−1)P(zk|χk)dχk

(5.3)

The measurement vector is an uncorrelated high-dimensional vector composed of multiple

low-dimensional vectors (i.e. zk = [zT
1,k,z

T
2,k, ...,z

T
M,k]). The covariance matrix can be ap-

plied similarly: Rk = diag(R1,k,R2,k, ...,RM,k). A hardware platform with D processors is

employed to enhance parallel processing. The measurement vector can be decomposed into

D measurement vectors, which are processed in parallel: {zD
k,d}d=1, with zk =

⋃D
d=1 zk,d and
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zk,i
⋂

zk, j =∅ ∀i 6= j. The (5.3) is updated accordingly:

P(χk|z1:k) =
P(χk|z1:k−1) ∏

D
d=1P(zk,d|χk)∫

P(χk|z1:k−1) ∏
D
d=1P(zk,d|χk) dχk

(5.4)

where P(zk,d|χk) is the local measurement likelihood for each processor d. Under Gaussian

approximation, the Bayesian filter’s functional recursion will be reduced to an algebraic re-

cursion operating on means χ̂k and covariances Pk of various conditional densities encoun-

tered in the time and measurement updates within the Kalman filtering framework [18].

The estimation is expected to be consistent as a result of the invariant property. Let the

system perform on a matrix Lie group G while f is a smooth map on the group. The system

will be redefined to achieve the invariant property as introduced in [20] and repeated below

for the reader’s convenience.

Theorem 1. The smooth map on the group f satisfying equation (5.5) ⇔ There exists a

map g such that f(v,u)−1f(χ,u) = g(v−1χ,u) ∀χ,v,u. Additionally, for each u ∈ Rm,

there exists F ∈ Rd×d such that ∀ξ ∈ Rd , g(.,u) = exp(Fξ ) is wholly encoded in a simple

matrix F.

f(χv,u) = f(χ,u) f−1(I,u) f(v,u) (5.5)

The system with this property is a group affine system: χn ∈G : χk = f(χk−1,uk)exp(wk).

Similarly, the invariant Kalman filter also produces an estimation for mean χ̂k|k ∈G and co-

variance Pk|k ∈Rd×d . The right-invariant error is defined as (5.6) to compute the associated

covariance. This error is invariant for right multiplications [19]. (χ, χ̂) 7−→ (Γχ ,Γχ̂ ) for

any group element Γ ∈ G. This error will be used for measuring the discrepancy between

the true state χ and the estimate χ̂ in Lie group context. That representation will replace

the usual linear error χ̂− χ in a conventional Kalman filter, which is not an element of G.
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When f satisfies the invariant condition (5.5), theorem 1 yields (5.7).

ηk−1|k−1 = χ̂k−1|k−1χ−1
k−1, ηk|k−1 = χ̂k|k−1χ−1

k (5.6)

ηk|k−1 = f(χ̂k−1|k−1,uk)(f(χk−1,uk)exp(wk))
−1

= exp(−wk)g(ηk−1|k−1,uk)

(5.7)

The conventional Kalman filter is used to linearize the error through a first-order Tay-

lor expansion of the nonlinear functions f and h at the estimate χ̂ . However, the es-

timation error (5.6) will be an element of G and a square matrix. When χ̂ and χ are

closed, the invariant error η is close to the identity matrix I. The Lie exponential map

can provide a bijection between a neighborhood of Rd and a neighborhood of I. Conse-

quently, the estimation error can be locally approximated by an element of Rd [20]. It

results in exp(ξk|k−1) = ηk|k−1 = χ̂k|k−1χ−1
k , or χk = exp(ξk|k−1)χ̂k|k−1. It also proves

that if P(χk−1|u1:k−1,Y1:k−1) 'NR(χ̂k−1|k−1,Pk−1|k−1) then the propagated distribution

is also approximated as P(χk|u1:k,Y1:k) ' NR(χ̂k|k−1,Pk|k−1), where Qk = Cov(wk) =

Cov(−wk).

In the update step, the zk ∈ Rp is obtained as zk = Yk − h(χ̂k|k−1) + Vk = h(χ)−

h(χ̂k|k−1)+Vk. Substituting the defined invariant state estimation, zk =h(exp(ξk|k−1)χ̂k|k−1)−

h(χ̂k|k−1)+Vk is obtained. Assuming ξk|k−1 is small and exp(0) = I, a first-order Taylor

expansion in ξ ∈ Rd arbitrary allows defining Hk as (5.8).

h(exp(ξk|k−1)χ̂k|k−1)−h(χ̂k|k−1)+Vk = Hkξ +O(||ξ ||2) (5.8)

As a result, the invariant Kalman filter can be applied similarly to the conventional Kalman

filter.
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5.3 Filter State Formation and Prediction

The filter state χk consists of the IMU state and the last IMU poses: χk = (xk, C1, ..., Ci).

The IMU state is described by xk = (GpI,
GRI,

GvI, ba, bg). The previous IMU pose is de-

noted as Ci = (GpIi,
GRIi) which is associated with image Ii. The Lie group is intrinsically

employed to represent the uncertainty of the IMU state: xk = x̂k⊕ξk with ξk ∼NR(0,P).

The symbol ⊕ denotes the retraction in differentiable geometry as in (5.9) and (5.10).

Consequently, the filter true state will consist of the nominal state χ̂k = (x̂k, Ĉ1, ..., Ĉi)

and the error state χ̃ = (ξk, ξC1, ..., ξCi), which is expressed through equation χ̂ ⊕ χ̃ =

(x̂k⊕ξk, Ĉ1⊕ξC1, ..., Ĉi⊕ξCi) with ξCi = (ξpi,ξRi).

x̂k⊕ξk =



exp(ξR)
Gp̂I + Jr(−ξR)ξp

exp(ξR)
GR̂I

exp(ξR)
Gv̂I + Jr(−ξR)ξv

b̂a +ξba

b̂g +ξbg


(5.9)

Ĉi⊕ξCi =

exp(ξRi)
Gp̂Ii + Jr(−ξRi)ξpi

exp(ξRi)
GR̂Ii

 (5.10)

Prediction is used to infer the motion from the IMU measurements and the kinematic

model. The state at the time k+∆t can be computed by numerical integration. The Lie

group version of Runge-Kutta numerical integration is applied, which enables the compo-

sitions of exponentials or flows instead of commutator corrections, as well as preserves the

convergence at a higher-order numerical integration [30]. Setting ki = ∆tfIMU(Yi) for all i,
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the integration is computed:

Y1 = y0; Y2 = exp(
1
2

k1)y0

Y3 = exp(
1
2

k2)y0; Y4 = exp(k3−
1
2

k1)Y2

y 1
2
= exp(

1
2
(3k1 +2k2 +2k3− k4))y0

y1 = exp(
1
2
(−k1 +2k2 +2k3 +3k4))y 1

2

(5.11)

The filter error state will follow the linearized error-state propagation model ξ̇ = Fξ +

GnIMU + o(||ξ || ||nIMU||) with these time-varying Jacobian matrices F and G. The state

transition matrix Φ := Φ(k,k + 1) at the time k + 1 follows the ODE: d
dt Φ(k,k + 1) =

F(k)Φ(k,k+1) with condition Φ(k,k) = I at the time k. More information about the matrix

structure of F, G, Φ, Qc and Qd can be located in [148]. The discrete-time system noise

covariance matrix Qd can be constructed from the continuous-time system noise covariance

matrix Qc = diag(σ2
g ,σ

2
a ,σ

2
wg,σ

2
wa) using Qd (5.12). Finally, the state covariance matrix

Pk−1|k−1 can be propagated as in (5.13).

Qd =
∫

∆t
Φd(τ)G(τ)QcGT (τ)ΦT

d (τ)dτ (5.12)

Pk|k−1 = ΦPk−1|k−1Φ
T +Qd (5.13)

5.4 Filter Measurement Update

Deterministic sampling based filters have been proposed as a better solution to handle the

highly nonlinear model. This chapter employs CKF, which generates a weight set of sym-

metrical points to address the nonlinearity. According to [18], the Bayesian filter solution is

reduced to approximating multi-dimensional integrals, for which the integrands are of the
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form nonlinear function × Gaussian. The heart of CKF utilizes the cubature rule to find

these multi-dimensional integrals. We also have P(χk|u1:k,Y1:k)'NR(χ̂k|k−1,Pk|k−1) and

χk = exp(ξk|k−1)χ̂k|k−1 in the invariant Kalman filter. The cubature rule to approximate a

n-dimensional Gaussian weighted integral is redefined in the right group action as (5.14).

INR(f) =
∫
Rn

f(x)NR(χ; χ̂,P)dx'
2n

∑
s=1

1
2n

f(exp(Sαs)χ̂) (5.14)

where the covariance matrix Pk has its square-root factor Sk with Pk = SkST
k . If a system

has n state variables, the third-order Cubature Kalman Filter will select 2n cubature points.

The cubature point set {αs} is generated as in (5.15).

αs =


√

nes s = 1,2, ...,n

−
√

nes−n s = n+1,n+2, ...,2n

(5.15)

Where es ∈ Rn represents the sth elementary column vector. Applied to the VIO system,

these cubature points generated by using (5.15) are evaluated by (5.16) with ξk|k−1 = 027×1.

The propagated cubature points are evaluated in (5.17) before estimating the predicted

measurement (5.18).

ξs,k|k−1 = Sk|k−1αs +ξk|k−1 (5.16)

Zs,k|k−1 = h(exp(ξs,k|k−1)χ̂k|k−1,{m1,m2,m3}) (5.17)

ẑk|k−1 =
2n

∑
s=1

1
2n

Zs,k|k−1; (5.18)

Then, the posterior state and the associated covariance matrix are corrected with the actual

measurement zk and the visual measurement noise Rc as (5.19), (5.20) and (5.21).

Kk = Pxz (Pzz +Rc)
−1 (5.19)

χ̂k|k = χ̂k|k−1⊕
(
Kk(zk− ẑk|k−1)

)
(5.20)
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Pk|k = Pk|k−1−KkPzzKT
k (5.21)

However, (5.19), (5.20) and (5.21) are not computationally efficient for parallel pro-

cessing, especially with a large number of feature measurements [31, 32, 57]. The filter is

transfered to the information domain by taking the inverse of covariance (5.22). The filter

will measure information about the states of interest rather than the direct mean and its

associated covariance.

Pk|k−1 = Yk|k−1 \ I (5.22)

χ̂k|k−1 = Yk|k−1 \ ŷk|k−1 (5.23)

Yk = HT
k R−1

k Hk

yk = HT
k R−1

k (zk− ẑ j
k +HT

k x̂k|k−1)

(5.24)

In the structure of the extended information filter [32, 57], the information state con-

tribution ik and its associated information matrix Yk are calculated as (5.24). The inno-

vation covariance matrix and the cross covariance matrix can be approximated as Pzz =

HkPk|k−1HT
k and Pxz = Pk|k−1HT

k [32]. This results in (5.25) and spares the computation of

the covariance matrix. We present equation (5.25) in terms of parallel processing for each

feature f . As the filtering operates on matrix Lie groups, the correction of yk and Yk (5.26)

is necessary in the right Jacobian of G [31].

Y−k, f = Yk|k−1Pxz, f R−1
k PT

xz, f YT
k|k−1

y−k, f = Yk|k−1Pxz, f R−1
k (zk, f − ẑ j

k, f +PT
xz, f YT

k|k−1x̂k|k−1)

(5.25)

Yk, f = Ψ

(
(Y−k, f )

−1y−k, f
)−T

Y−k, f Ψ

(
(Y−k, f )

−1y−k, f
)−1

yk, f = Yk, f (log(exp(Y−1
k−1y−k )

∧))

exp(ξk|k−1)exp((Y−k, f )
−1y−k, f )

∧))∨

(5.26)
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A single feature f is observed from a set of camera poses. The feature position in the

camera frame Cip f =

[
CiX f

CiYf
CiZ f

]T

is computed from the 3D feature position Gp f

as (5.27). Assuming V f
i is the image noise vector with covariance Rc, the measurement

model is presented:

Cip f =
CiRG(

Gp f − GpCi) (5.27)

z f
i =

1
CiZ f

CiX f

CiYf

+V f
i (5.28)

5.5 System Architecture

5.5.1 Distribute Computation on Multiple Cores

Figure 5.2 illustrates the architecture of a quad-core processor having four physical cores

for computation. It also includes cache memory at three levels: L1, L2 and L3. It is a

high-speed Static Random Access Memory (SRAM) that CPU can access faster than a

regular Random Access Memory (RAM). Although a cache helps to reduce the average

cost of time and energy to access data from the main memory, its small size may limit the

computational acceleration. The deployment of parallel processing is only satisfied when

the time spent on computation significantly exceeds the time spent on transferring data

between the CPU and memory. This condition results in the minimum number of features

to distribute the computation effectively.

Figure 5.3 describes the proposed VIO system architecture. The image processing

block performs feature detection and matching, which provides reliable feature measure-

ments to correct the predicted filter state. When a new camera image arrives, the filter

is transferred to information form using (5.22) and (5.23). Then, the parallel processing
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Figure 5.2: The architecture of a multi-core CPU

initialization will prepare multiple measurement models and multiple available cores to

evaluate the contribution of each feature to the motion estimation (i.e., yk, f and Yk, f ). As-

suming the system is tracking n f features, the evaluation of the contribution of each feature

f is executed in parallel on ncore cores. Each execution is independent, while ncore is much

less than n f because of using the common multi-core computer. After individual evalu-

ation, Eq.(5.29) is applied to synthesize at an additive form. This synthesis is beneficial

when each feature requires a different processing time for evaluation and optimization.

According to the common structure of the information filter [31, 32, 57], the system also

requires the transferring back to state form for the prediction step.

ŷk|k = ŷk|k−1 +
n f

∑
f=1

yk, f ; Yk|k = Yk|k−1 +
n f

∑
f=1

Yk, f (5.29)

113



Figure 5.3: The proposed VIO system architecture where the gray blocks are executed in

parallel on a multi-core CPU

5.5.2 Optimization during Measurement Update

To address the error accumulation issue over long-term operation, the iteration procedure

is deployed for the visual measurement update, which optimizes the estimation. As dis-

tributing the computation on multiple cores, the optimization process is also applied for

each individual feature measurement. In the optimization process of a single feature f , the

estimated state χ̂k|k, f is closer to the filter true state than the predicted state χ̂k|k−1, f . In the

iteration, the estimated state χ̂
j
k|k, f at jth iteration produces a better approximation to the

filter true state than the estimated state χ̂
j−1
k|k, f at ( j−1)th iteration.

Similar to the previous chapter, the optimization during the visual measurement up-

date is built on maximum likelihood estimate. Assuming ∆z j
k, f = zk, f − ẑ j

k, f , xk|k, f ∼

NR(χ
j
k|k, f ,P

j
k|k, f ) and zk, f ∼ (ẑ j

k, f ,Rc), the cost function is determined in the state do-

main (5.30). Since (Y( j−1)
k, f )−1 = S( j−1)

k, f (S( j−1)
k, f )T , the cost function can be rewritten in

114



information domain as (5.31). During the optimization process, the inequality condition

J(χ̂ j
k|k, f ) < J(χ̂ j−1

k|k, f ) is always satisfied, where J(χ̂ j
k|k, f ) is closer to the maximum likeli-

hood surface than J(χ̂ j−1
k|k, f ). χ̂

j
k|k, f is a more accurate approximation of MLE than χ̂

j−1
k|k, f .

The inequality is used for terminating the iteration.

J(χ̂ j
k|k, f ) =(∆χ̂

j
k|k, f )

T (S( j−1)
k, f (S( j−1)

k, f )T )−1(∆χ̂
j
k|k, f )

+(∆z j
k, f )

T R−1
c ∆z j

k, f

(5.30)

J(χ̂ j
k|k, f ) = (∆χ̂

j
k|k, f )

T Y( j−1)
k, f ∆χ̂

j
k|k, f +(∆z j

k, f )
T R−1

c ∆z j
k, f (5.31)

Figure 5.4: The iteration process for feature f measurement update on one core

5.6 Experimental Validation

This section introduces a method to implement the VIO parallel processing easily with pop-

ular software. For this purpose, the implementation utilizes the parallel computing

toolbox in MATLAB, which provides many advantages to convert the original serial-

computing code to the parallel-computing code. Algorithm 1 presents pseudo code to im-

plement parallel processing. The usual for-loop is replaced by the parfor-loop, where
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each loop iteration will process one feature in nondeterministic order. Hence, the origi-

nal code needs to be modified such that each parfor-loop iteration is independent. The

library also allows the implementation of a while-loop inside the parfor-loop. The

while-loop is the place where the optimization procedure is implemented for each feature

measurement update. The synthesis of all individual feature evaluations (Yk, f and yk, f ) is

performed using (5.29). The proposed algorithm is evaluated in terms of the estimation

error and the processing time in the experiments with some publicly available datasets.

Algorithm 2: Pseudo code for parallel processing

1 Function parfor(Yk|k−1, yk,k−1, zk, f , χ̂
j
k|k, f , Rc):

2 while (inequality condition is satisfied) do

3 Compute ẑ j
k, f and evaluate Yk, f , yk, f

4 Evaluate the cost function J(χ̂ j
k|k, f )

5 Check inequality condition

6 end

7 return Yk, f , yk, f

The proposed algorithm is implemented on different hardware computing platforms: a

generic laptop, a mini PC kit and a powerful desktop. The technical specifications of these

hardwares are described in Table 5.1. Thanks to the hyper-threading application, two log-

ical processing units (a.k.a. cores) are deployed on one physical core when implementing

parallel processing. The maximum number of logical cores is 8 (laptop), 8 (Intel R©NUC)

and 24 (desktop). The experiment helps determine whether the deployment of parallel

processing is beneficial to the VIO system.
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Table 5.1: Technical specifications of hardware platforms

Laptop Mini PC kit Desktop

Device Model Inspiron 15 Intel R©NUC Precision

7000 NUC7i7BNH T5500

CPU model Intel R©Core
TM

Intel R©Core
TM

Intel R© Xeon R©

i7-7700HQ [14] i7-7567U [13] x5680 [12]

# of Physical Cores 4 4 12

# of Logical Cores 8 8 24

CPU Cache (MB) 6 4 12

Processor Based 2.8 3.5 3.33

Frequency (GHz)

Bus Speed (GT/s) 8 4 6.4

RAM (GB) 16 16 48
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For our purpose, the KITTI dataset [56] is utilized to verify the proposed algorithm. On

average, 40024 bytes are sent to one core for processing, and 85632 bytes are received. The

parallel implementation can be evaluated using two criteria: speed-up (5.32) and efficiency

(5.33) [111].

Speedup =
Tserial

Tparallel
(5.32)

Efficiency =
Speedup

Ncore
(5.33)

where Tserial is the processing time of serial computation; Tparallel is the processing of par-

allel computation; Ncore is the number of cores used in parallel computing. The evaluation

helps to determine whether the use of more cores is efficient to accelerate the computation.

Figure 5.5: Speed-up and efficiency evaluation on laptop and mini PC kit without optimiza-

tion process

In Figs.5.5, 5.6 and 5.7, the use of more cores has accelerated the computation. For

example, the processing time of the laptop implementation has decreased by 29.0% with 4

cores and by 38.1% with 8 cores, compared to serial processing. That speed-up is smaller
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Figure 5.6: Speed-up and efficiency evaluation on laptop and mini PC kit with optimization

process

Figure 5.7: Speed-up and efficiency evaluation on desktop
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than the ideal speed-up of a factor of 4 on 4 cores, and a factor of 8 on 8 cores. Similar

results are observed in the experiments with Intel R©NUC and desktop. In the desktop evalu-

ation (Fig.5.7), even though the implementation deploys 24 logical cores for execution, the

processing time is not reduced significantly compared to that of 8 cores. This phenomenon

happens because of parallel overhead, which includes the time for transferring data to each

core and back using limited cache memories. The parallel overhead results in a decrease of

acceleration efficiency when employing more cores for computation.

According to the theoretical structure of the information filter [32, 57], the prediction

step uses covariance (P) while the update step employs information matrix (Y). The system

architecture (Fig.5.3) requires the unavoidable transferring between the covariance matrix

and information matrix, which may increase the processing time. However, the experi-

mental results with the computational acceleration have shown that the transfer does not

dismiss the parallelization benefits. The deployment of more cores also results in an in-

crease in power consumption. For example, the laptop consumes 3.8W (serial), 42.1W (4

cores) and 36.6W (8 cores). Compared to serial processing, the power consumption has

increased 2.1× with 4 cores and 2.6× with 8 cores. Hence, the deployment of more cores

may negatively affect the power consumption of the vehicle. In addition, the implementa-

tion of the information filter requires the transfer between the state and information form,

as in Fig.5.3. Despite the transfer, the parallel computing on the information domain is able

to accelerate the VIO computation.

The KITTI dataset allows verifying the system performance in a long-term operation

with long-distance traveling. It also helps to observe the impact of the accumulative errors

as well as the effect of implementing the optimization for each feature measurement up-

date. In the KITTI dataset 2011 09 30 0034, the vehicle travels about 900m at 25km/h.
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Root mean square error and rotation error are used to evaluate the estimation accuracy per-

formance. The iterated CIF keeps track of the vehicle trajectory (Fig.5.8) and continuously

updates the IMU bias (Fig.5.12) and the vehicle velocity (Fig.5.11), In this case, the it-

erated CIF has a superior performance than does the CKF filter. The employment of the

optimization process has effectively eliminated the accumulative errors and decreased the

estimation errors. In Fig.5.10, the rotation estimates of these filters have similar accuracy.

Figure 5.8: Position estimates of the KITTI dataset 2011 09 30 0034

Figures 5.13, 5.14 and 5.15 present the experiment with dataset 2011 09 30 0033. The

vehicle travels in a loop about ∼1800m at ∼45km/h. Considering the RMSE evaluation

(Fig.5.14), both filters show almost comparative estimations in this case. The employment

of optimization does not help to improve the estimation effectively. The optimization step
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Figure 5.9: RMSE evaluation for dataset 2011 09 30 0034

Figure 5.10: Rotation error evaluation for dataset 2011 09 30 0034

Figure 5.11: Iterated CIF estimation of velocity with dataset 2011 09 30 0034
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Figure 5.12: Iterated CIF estimation of the accelerometer bias and gyroscope bias with

2011 09 30 0034

with MLE cannot bring the estimate up to the likelihood surface due to the measurement

noise. The MLE based termination criteria are not powerful enough to cover most of the

situations. Considering the rotation accuracy in Fig.5.15, two filters have similar accuracy.
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Figure 5.13: Position estimates of the KITTI dataset 2011 09 30 0033

Figure 5.14: RMSE evaluation for dataset 2011 09 30 0033

Figure 5.15: Rotation error evaluation for dataset 2011 09 30 0033
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The proposed algorithm is also verified with the EuRoC dataset [26] (Fig.5.16), which

is collected in an indoor environment using an unmanned aerial vehicle. The EuRoC dataset

only allows the verification within a short distance (about 100m per sequence). In Figures

5.17 and 5.18, the iterated CIF estimation is compared with VINS-Mono [119], which is a

global-optimization based approach with a loop closure function. In the RMSE evaluation

of positional estimation, the iterated CIF accuracy is comparable to the VINS-Mono in the

experiment. VINS-Mono performs full smoothing, which estimates for the entire history

of camera poses and 3D landmarks. The proposed algorithm is classified as a filtering

approach, which only focuses on inferring the current state directly from the sensor data.

Compared to VINS-Mono, our computation does not attempt to solve the optimization

problem and generate the map of 3D points at each time instant, which requires fewer

computational resources and processing times. The implementation does not require the

installation of an advanced optimization library such as Google’s Ceres solver [16]. The

proposed algorithm is beneficial to micro robotic systems having limited computational

capability.

Figure 5.16: RMSE evaluation for 11 sequences of EuRoC dataset [26]
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Figure 5.17: Experimental results of EuRoC dataset V1 02 medium with RMSE evaluation

of positional estimation
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Figure 5.18: Experimental results of EuRoC dataset MH 04 difficult with RMSE evalua-

tion of positional estimation
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The proposed algorithm can be implemented in specialized hardware platforms such

as GPU. The structure of GPU offers more degrees of parallelism with hundreds of cores.

However, the GPU communicates with the host CPU via the PCI Express bus, which lim-

its the data transfer rate. Consequently, the use of more core in GPU cannot achieve an

expected efficiency of speeding up despite the utilization of many cores. Programming for

the GPU is also challenging to achieve peak execution performance.

5.7 Conclusions

This chapter presented the parallel processing implementation for visual inertial odometry

with a multiple-core CPU. The visual measurement update utilizes the CIF to distribute the

computation to multiple cores and evaluates the contribution of each feature to the motion’s

estimation. When processing each feature independently, the iteration process is applied

to perform MLE based optimization. This helps to minimize the error accumulation and

improve the estimation accuracy over long-term operation. The deployment of more cores

significantly reduces the processing time of the expensive optimization process.

In order to evaluate the efficiency of the parallel processing, the proposed algorithm is

implemented on different hardware computing platforms with 4 to 24 cores. The limitation

of data transfer on the multi-core CPU structure prevented the system from achieving the

ideal speed-up. Additionally, the system also requires more power consumption, which

limits its usefulness for some micro- or nano- robot applications.

To handle the system nonlinearity, the CIF has generated a minimal set of sampling

points, which are propagated through the nonlinear functions. This strategy results in a

better approximation of the mean and covariance. The filter design follows the invariant
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Kalman filtering, which in turn achieves the system’s consistency. The algorithm estimation

is comparable to other available algorithms.

Overall, the expensive visual measurement update of VIO is distributed on multiple

cores, which in turn accelerates the computation. The acceleration was verified on a generic

computer with a popular MATLAB parallel computing toolbox. This easy setup suggests

a method to test the VIO parallel processing before deploying it on specialized hardware

computing platforms.
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Chapter 6

Conclusion and Outlook

This chapter summarizes the main contributions of the research described in this thesis and

a number of possible extensions to the research are discussed.

The primary concentration of this research was to address the sensor fusion problem

associated with visual inertial odometry in GPS-denied environments. This research has

led to multiple implementations of a cubature Kalman filter-based solution to reduce the

system complexity, improve computational efficiency and guarantee an acceptable error of

estimation. The research was based on three primary objectives:

1. To design a nonlinear filtering algorithm for VIO sensor fusion using a straightfor-

ward TTG-based visual measurement model,

2. To address the error accumulation of the VIO estimation over long-term operation,

3. To enhance parallel processing for VIO computation with multi-core CPUs.

The research contributions related to each objective are summarized in the following sec-

tions.
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6.1 Research Summary Based on Objective I

For the first objective, a VIO sensor fusion algorithm to integrate IMU data and camera

information was developed. After an extensive literature review, it was concluded that the

number of features, the number of camera poses, and the procedure to predict the visual

measurement dramatically affect the system complexity and computation cost of execu-

tion [68, 125]. At each time instant, for one landmark feature, the system needs to per-

form a least square Gauss-Newton optimization to estimate the 3D feature point before

predicting the visual measurement. To reduce the computational cost in many cases, the

VIO process selected a small subset of features. The point transfer approach using TTG

was able to predict the visual measurement using only three camera frames. To this end,

a visual measurement model based on TTG was developed, which was a non-recursive

highly-nonlinear function. In the experimental comparison, the TTG-based measurement

model and the traditional model produced similar predictions of the visual measurements

when provided the same inputs. For the development of the VIO sensor fusion system,

the CKF was formulated for VIO application to handle the system nonlinearity. The pro-

posed algorithm was validated by a set of publicly-available datasets and compared with

other existing VIO algorithms. Additionally, CIF for VIO applications was developed.

CIF implementation avoided the inverse computation of the high-dimensional innovation

covariance matrix. This step helped to further improve computational efficiency. Overall

this algorithm was implemented as a fast VIO solution for high-speed autonomous robotic

systems.
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6.2 Research Summary Based on Objective II

Secondly, the error accumulation in the VIO estimation due to noise in camera measure-

ment was addressed. This made the estimation error diverge over long-term operations.

As shown in the literature, global pose graph optimization and loop closure were the most

common techniques to minimize the accumulative errors. However, these techniques de-

manded relatively high computational resources and processing time, which was contrary

to objective 1 in terms of computational efficiency. To this end, instead of optimizing for

the entire trajectory, optimization was performed for the latest filter state and covariance

during the measurement update. The success of the solution was verified by practical ex-

periments; it allowed the filter to operate for a longer duration. This solution was suitable

for the self-localization project and did not require any map or the installation of advanced

optimization library software. For larger navigation projects, the second solution was devel-

oped to integrate the VIO estimation with pseudo-ranging measurement. The experimental

results showed that the integration helped to bound the estimation errors over long-term

operations.

6.3 Research Summary Based on Objective III

The third objective of this research was to speed up the VIO execution through hardware

technique. In the literature, many advanced hardware computing platforms have been em-

ployed to perform parallel processing [157]. However, the availability of these specialized

hardware is limited and most researchers utilize generic multi-core computers to develop

their algorithms. Also, the multiple-core computer is becoming increasingly popular in
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robotic systems. A multi-core CPU was used for parallel processing. Individual features

were processed independently, which in turn reduced the processing time significantly.

The filtering structure also utilized an invariant Kalman filter, which achieved consistent

performance. The proposed algorithm was validated using various multi-core hardware

platforms, such as the general laptop, mini desktop (Intel R©NUC) and powerful-computing

desktop. Moreover, the iteration procedure was applied to minimize the error accumulation

of the VIO estimate over long-term operation. This application did not increase the pro-

cessing time significantly, due to the deployment of parallel processing, while guaranteeing

similar estimation errors and stability.

6.4 Summary of Contributions

To summarize, this thesis describes research that made the following key contributions in

visual inertial odometry, fulfilling all of the outlined research objectives.

1. Contributions related to Objective I:

• A design of a straightforward visual measurement model using trifocal tensor

geometry.

• A comparison between the traditional measurement model and the TTG-based

measurement model.

• A novel formulation of a cubature Kalman filter for VIO application.

• A novel formulation of a cubature information filter for VIO application.

2. Contributions related to Objective II:
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• A solution to address the VIO error accumulation for a self-localization project

using an iterated cubature Kalman filter.

• A solution to address the VIO error accumulation for larger localization projects

using ranging measurements.

3. Contributions related to Objective III:

• A novel approach to accelerate VIO execution using multi-core CPU.

• An application of an invariant cubature information filter for VIO applications.

• A solution to perform local optimization within a VIO filtering system to ad-

dress the error accumulation over long-term operation.

• Validation of the proposed algorithm on different hardware multi-core comput-

ing platforms (4 to 24 cores) to evaluate the efficiency of the acceleration.

This work described in this thesis was awarded:

• Wally Read Best Young Professionals Paper in Newfoundland Electrical and Com-

puter Engineering Conference, St.John’s, Newfoundland, November 15, 2017.

• First prize of poster presentation in Annual Research Day, Faculty of Engineering &

Applied Science, Memorial University, 2017.

• Second prize of video presentation in Annual Research Video Communications Award,

Faculty of Engineering & Applied Science, Memorial University, 2016.

This research led to the following scientific articles:
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1. T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Developing Computationally-

Efficient Nonlinear Cubature Kalman Filtering for Visual Inertial Odometry”, ASME

Journal of Dynamic Systems, Measurement and Control, February 2019.

2. T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Accelerating Visual Inertial

Odometry Using Parallel Processing and Cubature Information Filter”, IEEE/ASME

Transactions on Mechatronics, (Under Review), 2019.

3. T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”CKF-Based Visual Inertial

Odometry for Long-Term Trajectory Operations”, ASME Journal of Dynamic Sys-

tems, Measurement and Control (Under Review), 2019.

4. T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Likelihood-based Iterated Cu-

bature Multi-State-Constraint Kalman Filter for Visual Inertial Navigation System”,

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oc-

tober 2017.

5. T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Developing Moving Hori-

zon Estimation Based Ranging Measurement for Supporting Vision-Aided Inertial

Navigation System”, ASME Dynamic Systems amd Control Conference (DSCC),

November 2017.

6. T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Developing a Cubature Multi-

State Constraint Kalman Filter for Visual-Inertial Navigation System”, Canadian

Conference on Computer and Robot Vision (CRV), May 2017.

7. T. Nguyen, G. K. I. Mann, A. Vardy, R. G. Gosine, ”Computationally-Efficient Visual

Inertial Odometry for Autonomous Vehicles”, IEEE Newfoundland Electrical and
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Computer Engineering Conference (NECEC), November 2017.

6.5 Future Research Directions

The research presented in this thesis has a number of potential extensions. These future

developments aim at improving its practicality in real-world applications.

Visual inertial navigation applied for hardware-constrained systems: Micro robotic

systems have limitations of CPU, memory and power resources. The implementation of the

computationally-efficient VIO algorithm allows the system to self-localize in GPS-denied

environment and operate in longer duration. Also, the proposed VIO can be applied for

some virtual reality and augmented-reality applications with mobile and wearable devices

such as smart phone and Google Glass. The implementation will address the issue of

robust recovery, observability constraints and initialization schemes for particular devices.

Depending on the specific application, future research also investigates the case when the

system is unable to perform visual measurement update temporarily, such as a hovering

state of a micro aerial vehicle.

Integration with other advanced sensors: The proposed VIO can be employed in

larger navigation projects, where there are supports from other advanced sensors. Combi-

nation with these sensors, such as LIDAR and laser range, can help to improve the esti-

mation accuracy and robust performance in a dynamic environment. The effectiveness of

the combination depends on the strategy to align multiple estimations [29, 144]. A future

research direction could focus on developing the synthesis algorithm. It can be constructed

as an optimization problem or in the scheme of Kalman filtering for multi-sensor systems.

In the first option, all sensors have a similar role in the system with different constraints.
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The optimizer may require considerable computational resources for execution. The failure

of one sensor may greatly affect to the estimation results. The Kalman filter based structure

provides the greater flexibility in the system operation. The VIO will play the primary role

of the navigation system and receive support from other sensors.

Improving the visual measurement update: Experimental results have illustrated the

benefit of using local optimization to improve estimation accuracy over long-term oper-

ation. The optimization can be performed in the absence of a map. As mentioned in

chapter 4, the effectiveness of the optimization depends on the criteria to terminate the it-

eration procedure. Future research can be undertaken to develop better strategies for local

optimization within the VIO system. On the other hand, the use of more than 3 camera

images is another possibility to improve filter performance. This modification results in

more reliable feature points for the filter update. Additionally, more TTG based geometric

constraints can be utilized when designing the visual measurement model.

Parallel processing for each feature point: Future studies can expand the parallel-

processing approach to process each feature more effectively and select features which

contribute most to the trajectory estimation. In a dynamic environment, the contribution of

each feature to the filter estimation is not identical due to different observation uncertainty

parameters [112, 114]. These parameters were assumed to be identical in the filter im-

plementation. This assumption can be removed using the structure of parallel processing.

Each feature would be processed independently with different measurement noise parame-

ters, which can be defined using an observation-covariance estimator or machine learning.

Additional computation would led to the requirement for a training phase and an increase

of computational cost. This issue should also be considered in future research.
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