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Abstract

Safety and risk are essential components of process industries. The research objective of
this thesis is to develop a method to measure and monitor safety in terms of real-time risk of a
process system failure. The risk monitoring concept was developed using event trees and
Bayesian networks. Process instrument data such as flowrate was used as a basis for the risk
probability calculations. The risk monitoring methodology was developed and applied to the
Williams Geismar reboiler rupture and fire in 2013. The risk level of the reboiler was examined
based on the original design prior to failure and an updated design based on recommendations
made by the CSB. The accident probability was decreased by 96% and risk level was reduced by
76.9%. By plotting the risk of a process overtime, future projections of risk can be predicted and

action can be taken to prevent accidents before they could occur.



Acknowledgements
First, 1 would like to thank my thesis supervisors Dr. Faisal Khan and Dr. Nicola
Paltrinieri for their expertise, guidance, patience and understanding. Thank you Dr. Khan for first

igniting my interest in the study of safety and risk engineering.

| acknowledge the financial support provided by the collaboration between Norwegian
University of Science and Technology (NTNU), of Trondheim, Norway and Memorial

University of Newfoundland that made this research possible.

Finally, I would like to thank my mom and dad, Elaine and Craig, and my sister Meghan.
Their constant encouragement throughout my entire life has inspired and motivated me to do my
very best. | would also like to thank my partner and best friend Devin for his love and unfailing

support.

Thank you again,

Emily



Table of Contents

AADSTIACT ...ttt ettt [
ACKNOWIEAGEMENTS ... bbbttt b bbbt I
ST OF FIQUIES ...ttt ettt e s e bt e teese e s be e be e st e sreenbeaneesreense s v
LESE OF TADIES ...t vii
I O g o] (=] gl 1] £ [N 44 o] o PSSR 1
1.1. Process Safety and RISK .........cciiiiiiiiiiic ettt 1
1.2. RESEAICN ODJECTIVE. ...ttt bbb 1
1.3, TRESIS OULIING ..o 2
1.4, NOVEILY OF the WOTK.....cviieieieiee et 2
2. Chapter 2: Literature Review Monitoring Process Safety and RisK ..........cccccovevviiiiicinennnn, 3
2.1. Measuring Safety and RISK .........cccuoiiiiiiiic s 7
2.2, RISK ASSESSIMIENTS ...ttt bbbttt bbbttt bbb 8
3. Chapter 3: MetNOUOIOQY .......cooiuiiiiiiiiieie bbb 13
3L OVBIVIBW ...ttt bbbt bbb bbbt bt et e bbbt bbbt ene s 13
3.2, EVENE TIEE ANAIYSIS ..cuviieiiiiecie ettt ettt et te e teenbeenaesneenes 13
3.3, BayeSIan NEIWOTKS........cviiiiiiicic ettt e te e nte e sneenas 14
3.3. 1. Defining Variables. ... 14

3.3.2. Network RelationShips .........coocoiiiiiiii e 15

3.3.3.  Conditional Probabilities ............ccoiiiiiiiiiiie e 15



3.4, MEENOUOIOGY ...ttt bbbt b e bbb 16

3.4.1.  Event Tree DeVEIOPMENT .......ccco it 16
3.4.2.  Proposed Bayesian Network Based on EVENt Tree ........ccccevevvereevieiiesiecnnnn, 21
3.4.3.  Updated Bayesian Network Development ...........ccccccvveviiieiieenie e 25
3.5, CONCIUSION ...ttt b e 40

4. Chapter 4: Application of Risk Monitoring Methodology to the Williams Geismar Reboiler

RUPLUIE and FIre ACCIABNT........iiiiiiiiiiti et 41
4.1, OVEIVIBW ...ttt bbbt bbb bbbt bbbt e R e b et b e bbb e b enes 41
4.2. Case Study BaCKGrOUNG ..........coiiiiiiieiiiie et 41
4.3. Methodology Application on Original Reboiler Design............cccooveveiiieiiece e, 45
4.4. Methodology Application on Updated Safe Reboiler Design..........ccccoevvevviieieciieennenn, 51
4.5. Risk of Reboiler Rupture Monitored OVEr TIME ........cccoiiiiieiiniiiseeeee s 60
4.6, CONCIUSION ...ttt bbbttt bbbt eb s 63

5. Chapter 5: Conclusion and FULUIe WOTK ..........cccooiiiiiiiiiiieicse e 64
5.1, CONCIUSIONS ...ttt bbbt 64
5.2, FULUIE WOTK ...ttt 65

RETEIENCES ... bbbttt 66



List of Figures

Figure 2-1: The Three Elements of Process Safety ... 5
Figure 2-2: Updated Process Safety Model to include Environmental Factors............c.ccocoovvennee 6
Figure 2-3: RiSK ASSESSMENt PrOCEAUIE ........eeuviiiiiieiiieitesieeeeee et 11
Figure 3-1: Simple Open Tank with Two Manual ValVes.............ccccccoiiiiiiiiie, 16
Figure 3-2: Event Tree of Overflowing Tank with Two Manual Valves ................ccccooviiinnnn 18
Figure 3-3: Sample Calculation for Top Branch of Event Tree..........ccccovvvviiiiiincinicce 18
Figure 3-4: Event Tree of Overflowing Tank with Calculated Probabilities............ccccocvrinnnnnne. 19
Figure 3-5: Tank with Bypass Line and Three Manual ValVes...........c.ccocvviiiiciiiciencsenee, 20
Figure 3-6: Event Tree of Overflowing Tank with Bypass Line and Calculated Probabilities.... 21
Figure 3-7: Bayesian Network of the Tank with Two Manual Valves..............ccccoeviinininnnn. 23
Figure 3-8: Risk and Impact Bayesian NetWOrK...........ccccuiiiiiiiiiiieiee e 24
Figure 3-9: Operating and Risk Impact Networks Combined ............ccccoviniiiiniiciniiccee 25
Figure 3-10: Updated Bayesian Network of Two Valve Tank...........ccccccooiiriiiinciniicce 26
Figure 3-11: Bayesian Network for Tank with Bypass ValVe...........cccccovviiiniiiicncnc e 26
Figure 3-12: Tank Example with a Level Control Loop on Valve V-2........ccccooeiiiiieiiicinnne, 27
Figure 3-13: Bayesian Network for Automated Valve with Level Control LOOp ............cccueunee. 28
Figure 3-14: Tank with Flow and Level Control LOOPS........ccoveiiiiiiiininisiecee e 28
Figure 3-15: Bayesian Network for TWo Control LOOPS........cccveveirirreirnineneeseseese e 29
Figure 3-16: Tank with Two Flow Control Loops and Level Control LOOp .......cccccceveriiiirinnnee 29
Figure 3-17: Bayesian Network with Two Flow Control Loops and Level Control Loop........... 30
Figure 3-18: Tank Diagram with Safety SYStEM ..o 31
Figure 3-19: Bayesian Network for the Control and Safety System .........c.ccoovvvivieienc i 32



Figure 3-20: High Risk Probabilities Plotted over 20 Minutes for Each Tank System................ 35
Figure 3-21: Risk Network with Evidence Selected for Case ...........cccccoviiiviiiiiicinicce 36

Figure 3-22: High Risk Probability for all Tank Systems for Normal Material changed to

Flammable IMAEEITAL ...........ooeii e 39
Figure 4-1: Process Flow Diagram of the Williams Geismar Plant..............c.ccooeviiininiiinnnne 42
Figure 4-2: Propylene Fractionator Schematic for Williams Geismar Plant.................c.ccocooeneee. 44
Figure 4-3: Bayesian Network for Original Design of Geismar Plant............ccccccoviininiinnnnnne 50
Figure 4-4: Schematic of Controls for Updated Reboiler Design...........ccccovvvrieienenencienenen 52
Figure 4-5: Schematic of the Reboiler Design with Two RebOilers..........c.covcvniiciiiiiicnnnn. 53
Figure 4-6: Bayesian Network of the Updated Reboiler Design ...........cccocvevviiiiicininenicnnne 59
Figure 4-7: Plot of Risk over Time for both Original and Updated Reboiler Design .................. 62

Vi



List of Tables

Table 2-1: List of Process INAUSEry ACCIAENTS ........ccveiviiiiiiiiiieiee e 4

Table 3-1: Bayesian Network Node Characterization and Relationships for the Tank with Manual

WAIVES ..ttt h ettt b bRt Rt Rt Rt R et e R e e Rt Rt e Rt e b e et e Rt e nre e teenee e 22
Table 3-2: Bayesian Network NOUE StateS .........cccveiieiiiiiieiie e 23
Table 3-3: Summary of Accident and Risk of Failure for the Tank Systems...........c.ccocovnvnnne. 33

Table 3-4: High Risk Probabilities over Time for Each Tank System Using High Flow Data.... 34
Table 3-5: High Risk Probability of Tank Systems when Material is changed from Normal to
FIAMIMEADIE. ... bbbttt bbb 37
Table 3-6: High Risk Values for all Tank Designs with Normal Material changed to Flammable
IVIBEETTAL ...t bbbt b b bbbttt b bbb 38

Table 4-1: Bayesian Network Node Characterization and Relationships for the Original Reboiler

DS][ TS O TR P PSP TP PP PRPRORO 47
Table 4-2: Bayesian Network Node States for the Original Design.........c.ccocvvvvieieiiiencnenenn 49
Table 4-3: Bayesian Network Node Characterization and Relationships for Safe Design........... 55
Table 4-4: Sample Data for Plotting Risk of Original and Updated Design over Time............... 61

Vii



1. Chapter 1: Introduction

1.1. Process Safety and Risk

Safety and risk are essential components of process industries. Process safety can be
defined the identification of process hazards of and the use of technology to prevent and
eliminate the occurrence of accidents (Crowl & Louvar, 2011). In terms of process safety, risk is
determined by quantifying the magnitude of loss and the likelihood of an incident. Loss can
include human injury, environmental damage and economic loss due to damaged assets and
reputation. Nearly all process industries involve the use of hazardous materials and have risks.

Risk cannot be eliminated. However, risk can be minimized to an acceptable level.

1.2. Research Objective
The research objective of this thesis is to develop a method to measure and monitor the
safety in terms of real-time risk of a process system failure. This objective will be achieved in
two parts. The first part of the thesis will explore the development of the methodology and the

second part will apply the methodology to a case study to demonstrate real world applications.

The methodology has used Bayesian networks method. The Bayesian networks models
are developed and analyzed using GeNie 2.2 Academic by Bayesfusion, LLC, to model Bayesian

Networks. (https://download.bayesfusion.com/files.html?category=Academia)



1.3. Thesis Outline

The thesis structure is as follows:

Chapter Two presents a literature review based on safety and risk in process industries.
Process safety monitoring and accident modelling techniques are described. Six major accidents

within the past 10 years are also discussed here.

Chapter Three presents the methodology for predicting the incident of an overflowing
tank and the subsequent risk associated with various physical factors. The simple tank is
redesigned six times to show how increasing safety measures reduced the likelihood of an
incident and the overall risk. Chapter Four presents a real world case study where the
methodology of chapter three is applied. The case studied is the shell and tube heat exchanger
rupture and fire in the Williams Geismar Olefins Plant on June 13" of 2013 (CSB, Williams
Geismar Olefins Plant Reboiler Rupture and Fire Geismar, Louisiana, 2016). The risk of
overpressure of a reboiler associated with olefins or alkenes is discussed. The risk of the heat
exchanger operation is assessed real time. Chapter Five summarizes and concludes the impact of

the presented work. The potential of future studies based on this work are also discussed.

1.4. Novelty of the Work

The developed methodology presented here is unique and also the application of the
methodology. This is a novel attempt to measure safety real time using risk factors. This thesis
has presented concept in simple and easy to follow way. The case studies are also presented in
simplified form so that readers can follow through the steps and understand the strength of the

approach. This work put forward a new way to assess and monitor safety of process operations.



2. Chapter 2: Literature Review Monitoring Process Safety and Risk

In process industries, accident modelling is used to answer these two important questions:
why does an accident happen and how does an accident happen (Al-shanini, Ahmad, & Khan,
Accident modelling and analysis in process industries, 2014). Risk assessments are part of
accident modelling and are vital to the safe design, development and operation of a process. Risk
assessments are used to determine how safe a process is and what appropriate safety measures
should be installed to minimize any risks. Risk assessments are also used to determine which
safety measures are the most economically feasible (Crowl & Louvar, 2011). According to a
review completed by Chakraborty et al. there is currently no universally accepted system to
detect early signs of safety deterioration and increase in risk (Chakraborty, 2003). This thesis
presents a method to measure risk of a process system in real time.

Although there are many safety measures and models developed to make a process safer
accidents can still occur. The term accident is used to describe an event that happens
unexpectedly and unintentionally. Though the term accident implies that an accident is
unexpected many have warning signs that indicate an accident will occur before it happens.
Many accident reports indicate that there was safety performance of a process was degrading or
non-existent prior to the event (Al-shanini, Ahmad, & Khan, Accident modelling and analysis in
process industries, 2014). Table 2-1 describes six process accidents that have occurred in the past
10 years. In the case of the Tesoro Martinez Sulfuric Acid Spill, the same consequence was

experienced by two separate accidents within one month of each other.



Table 2-1:

List of Process Industry Accidents

Date Accident name Location Type Reason Impact IEZ{:(:(% Reference
April 20, Macondo Well Northern Gulf | Fire, Loss of well control to release 11 killed, 63 Mechanical; (CSB, Investigation
2010 Blowout of Mexico Explosion of Hydrocarbons to the injured, severe | Operational Report: Drilling Rig
and Oil spill | platform, hydrocarbons ignited environmental Explosion and Fire at the
resulting in fire and explosions | damage Macondo Well, 2016)
that sunk the platform and
damaged well bore released oil
December | AL solutions Metal New Fire and titanium and zirconium 3 killed, 1 Mechanical (CSB, Metal Dust
9, 2010 Dust Explosion and Cumberland, Explosion particulates ignited in the injured Explosion and Fire , 2014)
Fire West Virginia, blender that was processing
USA zirconium
June 13, Williams Geismar Geismar, Fire and Overpressure of reboiler 2 killed, 173 Mechanical; (CSB, Williams Geismar
2013 Olefins Plant Louisiana, Explosion containing propane injured Operational; Olefins Plant Reboiler
USA Personnel Rupture and Fire Geismar,
Louisiana, 2016)
February Tesoro Martinez Martinez, Acid Valve failed spraying acid at 2 seriously Mechanical; (CSB, Tesoro Martinez
12,2014 Sulfuric Acid Spill California, Release two operators; injured; Operational Refinery: Process Safety
and March USA Two operators sprayed when 2 seriously Culture Case Study , 2016)
10, 2014 removing some piping injured
October MGPI Processing Atchison, Toxic During sulfuric acid delivery, 140 sought Operational; (CSB, Key Lessons for
21,2016 Inc. Chemical Kansas, Release operator connected the medical Personnel Preventing Inadvertent
Reaction and Release | USA discharge hose to the fill line of | attention, 6 Mixing During Chemical
the sodium hypochlorite tank. seriously Unloading Operations,
The chemicals mixed and injured 2018)
formed a toxic cloud of chlorine
gas, which was released to the
surrounding areas
August 31, | Organic Peroxide Crosby, Toxic During a hurricane the Arkema | 20 sought Environmental | (CSB, Organic Peroxide
2017 Decomposition, Texas, Release and | plant flooded and lost power to | medical Decomposition, Release,
Release, and Fire at USA Fire the refrigeration trucks attention and Fire at Arkema Croshy
Arkema Following Hurricane
Harvey Flooding, 2018)




According to Al-shanini et al. there are three elements of process safety: operational
integrity, mechanical integrity and personnel integrity (Al-shanini, Ahmad, & Khan, Accident
modelling and analysis in process industries, 2014). These elements are represented in Figure 2-
1, where the operational integrity is dependent on the mechanical integrity and both are

dependent on the personnel integrity.

Personnel

Operational

Figure 2-1: The Three Elements of Process Safety

The operational integrity of a process includes the initial design, design modifications,
operating procedures and emergency preparedness plans. The mechanical integrity of the process
includes material containment, maintenance and inspection and instrumental controls. The
personnel integrity of the process includes the human aspects such as skill, work permits,

training and communication.

It could be argued that a fourth element of process safety could be added to.
Environmental factors would have an impact on the other three elements of process safety. For
example, the last accident listed in Table 2-1 was caused by environmental factors. The toxic
release and fire at the Arkema plant in Crosby Texas was a direct result of flooding caused by

Hurricane Harvey in 2017 (CSB, Organic Peroxide Decomposition, Release, and Fire at Arkema



Croshby Following Hurricane Harvey Flooding, 2018). The Arkema plant produced organic
peroxides which must be refrigerated to prevent decomposition and self-ignition. The plant
flooded during the hurricane and lost power to the refrigerated storage tanks. The peroxides were
moved to refrigerated trucks which were also at risk of losing power. To prevent a larger
accident, the trucks were burned in a controlled environment. It was concluded that Arkema did
not account for that level of flooding during the plants design. It was recommended by the
Chemical Safety Board (CSB) that the company design should consider that level of flooding in
future designs for the plant. The environment is essential to protect but also has a negative effect
on processes as shown in the Arkema accident example.

When assessing environmental factors, both extreme and common weather types should
be considered. Emergency response plans should be created with weather conditions in mind
(IADC, 2015). It is known that weather and wind patterns influence design, especially when
there are gaseous emissions (Crowl & Louvar, 2011). Figure 2-2 shows an updated model to

include the impact of environmental factors on operational, mechanical and personnel integrity.

Environmental

Personnel

Operational

Figure 2-2: Updated Process Safety Model to include Environmental Factors



2.1. Measuring Safety and Risk

The safety and risk of a process system are commonly measured using factors such as
OSHA accident and fatality rates, loss time injuries and fatal accident rates of similar industries
(Khan, Abunada, John, & Benmosbah, 2009). All of these factors account for the after effects of
incidents and accidents once they occur. Process safety and risk can be measured using leading

and lagging indicators.

Lagging indicators are a measure of process outputs. These indicators keep track of
previous incidents and accidents to predict the frequency and consequences of future accidents.
Lagging indicators signify how well a process is functioning based on how goals are being met
and how well it is preventing accidents. Lagging indicators are reactive as modifications in
operations and goals are made after outputs change (Khan, Abunada, John, & Benmosbah,

2009).

Where lagging indicators measure outputs, leading indicators are a measure of process
inputs. Leading indicators are proactive where changes to process are anticipated and
modifications are implemented before changes to a process occur. Leading indicators can
include: how often risk assessments are completed, how many are completed or how often

maintenance is performed.

Both of these indicators should be used in process industries to monitor safety and risk
and prevent accidents (Khan, Abunada, John, & Benmosbah, 2009). If accidents can be
anticipated and understood before they occur they can be prevented (Al-shanini, Ahmad, &
Khan, Accident modelling and analysis in process industries, 2014). According to the study by

Charkaborty et al. industry leaders should identify and monitor lead indicators to signal potential



for process safety performance degradation (Chakraborty, 2003). By monitoring lead indicators,

the management of process systems can be improved upon.

2.2. Risk Assessments

Shahri et al. stated that safety researchers agree that the greatest challenge of examining
risk is that no prediction is completely accurate (Shahri, MahdaviNejad, & AmirKabir, 2016).
Predicting the exact behaviour and likelihood of a particular consequence cannot be definitively
determined. There are multiple tools and techniques available to assess risk, however, no single
method is sufficient and a combination of methods are required. Since every operation is unique

there is no “one size fits all” technique to complete the risk assessment.

To complete risk assessments, accident modelling is used to create scenarios and examine
the frequency and consequences associated with process hazards. The two most important
questions of accident modelling are: why does an accident happen and how does an accident
happen. According to the literature review by Al-shanini et al. there are many different types of
accident models across. The traditional sequential model types are: the Fault Tree Analysis
(FTA), Event Tree Analysis (ETA), Bowtie model and Failure Mode and Effect Analysis
(FMEA) (Al-shanini, Ahmad, & Khan, Accident modelling and analysis in process industries,

2014).

The fault tree analysis is a bottom-up graphical technique that is used to deduce and
quantify the failure probability of a process system. The event tree analysis is a top-down
graphical technique that is inductive and applies logic to determine the consequences of a
process system. The event tree is used in the early methodology of the thesis and is described in

detail in chapter three. The bowtie model combines the fault tree and event tree for a single



accident or initiating event. The failure mode and effect analysis is a step wise analysis that

examines all potential faults of a process system and aims to prevent them.

While the traditional models are useful for initial risk assessments they also have some
disadvantages. Each of the traditional models are static and cannot be used to represent non-

linear or independent relationships of failures within process systems.

A more modern approach to these models are considered dynamic sequential accident
models (DSAM) which includes Process Hazard Prevention Accident Models (PHPAM) and
Dynamic Risk Assessment (DRA) (Al-shanini, Ahmad, & Khan, Accident modelling and
analysis in process industries, 2014). There are currently two models proposed that would be
considered process hazard prevention models. The offshore oil and gas model proposed by
Kujath et al. (Kujath, Amyotte, & Khan, 2010) and the System Hazard Identification prevention

and prediction (SHIPP) model proposed by Samith et al. (Samith, Khan, & Amyotte, 2011).

The offshore oil and gas model begins with examining accidents and potential loss in the
offshore field and identifies potential failures from a managerial and occupational perspective.
This method emphasises the responsibility of the organization to prevent accidents rather than
place blame on an individual. This method examines the barriers from a managerial point of
view: release prevention, ignition prevention, escalation prevention, harm prevention and loss
prevention. This model was successfully applied to the Piper Alpha and BP Texas City refinery
accidents (Al-shanini, Ahmad, & Khan, Accident modelling and analysis in process industries,
2014). A limitation of this model was that it does not examine the effects of some initialing
events for accidents such as fire or explosion propagation. The offshore oil and gas model was

used a basis for the SHIPP model.



The SHIPP accident model aims to reduce accidents by evaluating hazards and predict
and prevent them by using additional barriers based on the offshore model. The barriers
examined in the SHIPP method are: release prevention, dispersion prevention, ignition
prevention, escalation and emergency management. The barriers are not always physical. These
barriers can include operating procedures and emergency response plans. This method also
determines ways to continuously monitoring the system. This model can be used with Bayesian
analysis to estimate the likelihood of an accident based on previous data. The SHIPP model is

both qualitative and quantitative.

Both the offshore and SHIPP models shared a limitation. This limitation was that some
barriers may be illogical and unnecessary. For example the examination of ignition barriers is

inappropriate for plants where the materials are toxic or non-flammable.

The last accident model to be discussed in this literature review is the dynamic risk
assessment also known as the dynamic quantitative risk assessment. The dynamic risk

assessment uses the same methodology of the quantitative risk assessment.

10
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Figure 2-3: Risk Assessment Procedure

Quantitative risk assessments are typically completed in four steps: hazard identification,
frequency analysis and consequence analysis, and risk analysis. The step of scenario
development is optional (Crowl & Louvar, 2011). The risk assessment process is shown in
Figure 2-3. The hazards or dangers of a process are identified in each step of the process. Process
hazards are determined during a Hazard and Operability Study (HAZOP). This approach is
structured and effective. Process drawings are used as a basis where each component of a system
is examined and all possible deviations are determined. The hazards are applied to accident
scenarios. In this thesis, the methodology of risk monitoring is applied to a single scenario. The
frequency of occurrence and the consequence of the accident are combined to estimate risk. The

estimated risk is analyzed whether it is acceptable or manageable the design or operation is

11



approved. If the risk is determined to be unacceptable, the risk must be revaluated and

redesigned and the process is started over until the risk is acceptable.

However, the dynamic risk assessment allows for the failure probabilities of the original
risk assessment to be updated as new information become available or conditions change. In
industry, quantitative risk assessments are typically completed every five years (Khan, Abunada,
John, & Benmosbah, 2009). However, by using the dynamic risk assessment approach, the
procedure changes and process degradation can be captured. This allows for a higher accuracy
and continuous monitoring of risk conditions. The quantitative risk assessment uses event trees
to determine consequence. However, Bayesian networks have become increasingly popular as

the interdependence of accident causes are more easily mapped.

The Bayesian Network is an approach can account for the possibility that multiple events
may occur simultaneously to produce an accident. The Bayesian Network approach has been
used successfully to estimate the likelihood of the occurrence of a release of LNG and the
subsequent consequences. (Abbassi, Garaniya, & Khan, 2016). The Bayesian network approach
was also successfully applied to the Willams Geismar reboiler accident (Guo, Khan, & Imtiaz,
2019). The Bayesian network approach was used in the development of the methodology in

chapter three and the case application in chapter four.

12



3. Chapter 3: Methodology

3.1. Overview

In this section of the thesis, the methodology of the Bayesian Network development and
risk monitoring system are outlined. An accident scenario, an overflowing tank, was created as a
foundation for the methodology. First the accident probability was determined with an event tree.
The same accident scenario was used for the created of the Bayesian network. A Bayesian
network is developed to assess risk. The tanks safety systems were updated with additional
safety features until the risk level was brought down to an acceptable level. This risk level is

combined with simulated data to show the risk of the process system as a function time.

3.2. Event Tree Analysis

The event tree is an inductive analysis method used commonly in risk assessments. This
analysis method is extremely effective at determining the pathways to an accident and the
probability of the accident occurring. All event trees will begin with an initiating event where
final results such as failure, near miss or safe operation are determined by intermediate events.
The intermediate events are conditions and safety features of the system. Each event can only
have two outcomes such as true or false, success or failure and yes or no. If available, failure
data and statistics are used to determine the probability of the final event. The disadvantages of
an event trees are their static and linear nature. Event trees rely on accurate data and the events
failing in a sequential order (You & Tonon, 2012). The risk associated with this accident could

not be developed in an event tree as the inputs and outputs are not binary.

13



3.3. Bayesian Networks

It is argued in the literature (Marsh & Bearfield, 2008) and (Unnikrishnan, Shrihari, &
Siddiqui, 2014) that combining event trees and Bayesian networks allows a more flexible model
while maintaining the safety specific logic. To relax the assumption that the accident progression
and event failures are linear, the accident scenario was modelled into a Bayesian network.
Bayesian networks are dynamic in nature and allow for probabilities to be updated easily when
new information is discovered. A Bayesian network is a probabilistic graphical modelling
technique. Bayesian networks are both qualitative and quantitative which is making them
increasingly popular for accident analysis. These networks are a combination of directed acyclic
graphs (DAG), which are qualitative, and their conditional probabilities which are quantitative

(Ibe, 2011). The BN is an effective way of representing interdependence between variables.

According to (Darwiche, 2009), there are three steps to developing a Bayesian Network.
The first step is to define the relevant variables, next the network relationships must be defined

and finally the conditional probabilities are assigned to the variables.

3.3.1. Defining Variables

To predict an accident and the subsequent risk all relevant factors are considered as
variables. The characteristics of a variable are represented in nodes. Each characteristic have at
least two states or more such as true and false. However, as the number of nodes increases so
does the complexity of the network. A network can be made more manageable by reducing the
number of nodes. The number of nodes can be reduced by combing the similar characteristics for
the variable in a single node. If the states of the characteristics are the same and are considered

mutually exclusive then they may be combined in a single node.

14



Consider the variable weather as an example. Weather, in this example, can be broken down into
four characteristics: clear, windy, rainy and stormy. For the weather characteristics there are two
states: true and false. Rather than have four nodes with two states, weather may be represented as

a single node with four states.

3.3.2. Network Relationships

Once the variables are defined in nodes, the nodes are then categorized and relationships
are mapped. Determining the relationships between nodes is also known as defining edges
(Darwiche, 2009). There are three nodes categories: evidence, intermediate and query here are
also three node mapping relationships: parent, child and leaf. (Darwiche, 2009). Evidence nodes
are the input variables and are the first nodes. Evidence nodes must also be independent from
each other. Since evidence nodes are first they are also parent nodes. Query nodes are the final
outcomes and can be either child or leaf nodes. Child and leaf nodes are connected to a parent
node. Intermediate nodes connect the evidence and query nodes. Only child nodes can be
intermediate. However, a child node can also be connected to another child node. Leaf nodes do

not have any child nodes after them.

In terms of accident and risk analyses, only intermediate and evidence nodes can be set

and query nodes are computational and cannot be changed.

3.3.3. Conditional Probabilities
Once the network relationships have been determined, the conditional probabilities are assigned.
This is quantitative as the uncertainties are defined. The values of the conditional probabilities
can be either objective or subjective. Objective values are ones determined from data, statistics

and calculations. Subjective values are ones determined through an expert’s reason, beliefs and

15



experience. The conditional probabilities for this thesis are subjective (Darwiche, 2009). These
probabilities are for predictive and demonstrational purposes. The conditional probabilities can
be updated over time as new information becomes available. Updating the probabilities

presented in this thesis is an area for future work.
3.4. Methodology

3.4.1. Event Tree Development

To begin development of this proposed safety and risk monitoring system, a simple open
tank was examined. The most severe and likely hazard of an open tank is tank overflow. The
basis for calculation and risk plotting is the flow entering the tank. The tank examined as shown
in Figure 3-1 has two manual valves. The first valve (V-1) is on the line flowing into the tank
and the second valve (V-2) is on the line flowing out of the tank. The probabilities displayed in
the following event trees are hypothetical and were not collected from any database and are for

demonstration purposes only.

[y | b
L P |

V-1

T-1

Figure 3-1: Simple Open Tank with Two Manual Valves
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After the tank set up was established, an event tree as shown in Figure 3-2 was used to
quantify the probability of an accident. The first event was the condition of the flow, if there was
no high flow or limited flow then the tank will not overflow. If the flow was high there was an

opportunity for the tank to overflow.

The second event was if the operator of the manual valves noticed that the flow was high.
For this event, either the operator notices the high flow and reduces it or the operator does not

notice the high flow and the condition continues.

The third event would be the operator opening valve V-2 to increase the flow leaving the
tank to prevent an overflow or not open the valve allowing for the overflow to occur. If V-2 is
not opened, the next event would be for the operator to close V-1 to reduce the flow to the tank
and prevent an overflow from occurring. If the operator does not close V-1 then an overflow will

occur.

The “X” at the beginning of the event tree represents the flow data before the first valve.
The high flow condition would be picked up by a sensor before the process for a specified
threshold. The occurrences of high flow conditions over a time frame, say one day of operation,
out of how ever many data points are collected in the time frame would be multiplied by the

probability of an accident occurring to display the safety of the process system any given day.
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Manual Operation

Pl e v Openavave Closesvave !

Yes 0.85 Safe
Yes 0.95 Yes 0.55 Safe

No 0.15
Yes 0.50 No 0.45 Accident
No 0.05 Accident

X

No 0.50 Safe

Figure 3-2: Event Tree of Overflowing Tank with Two Manual Valves

As discussed before, the probabilities for the events are calculated by multiplying the
values of the branches of the event tree. A sample calculation can be found below in Figure 3-3.

Figure 3-4 shows all of the branches with the final probabilities calculated.

P(Safe) = X = 0.50 = 0.95 = 0.85

P(Safe) = 0.4038X

Figure 3-3: Sample Calculation for Top Branch of Event Tree
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Manual Operation
Operator
Notices High Operator Operator
High Flow Flow and Opens Valve Closes Valve Result
Reduces the V-2 V-1
Flow
P(Safe)
Yes 0.85 0.4038X
P(Safe)
Yes 0.95 Yes 0.55 0.0392X
No 0.15
P(Accident)
Yes 0.50 No 0.45 0.0321X
P(Accident)
No 0.05 0.025X
X Probability
No 0.50 P(Safe) 0.5X

Figure 3-4: Event Tree of Overflowing Tank with Calculated Probabilities

The final calculated values for the branches with the same outcome can be added for a
final probability. Therefore the probability of an overflow accident is 0.0571 or 5.71% and the

probability of safe operation is 94.29% for this tank example.

By improving the safety features of the tank the probability of an accident can be
reduced. Using the same tank with a bypass pipeline added to the flow line entering the tank as
shown in Figure 3-5. If both V-2 and V-1 were unavailable then the operator could open the

bypass valve V-3 and reduce the flow entering the tank.
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.

T-1

Figure 3-5: Tank with Bypass Line and Three Manual Valves

The event tree created above was updated with the additional bypass valve in Figure 3-6.
With the calculated probabilities of the updated event tree the resulting probability of an
overflow accident was 0.0282 and for safe operation was 0.9718. One additional safety measure

reduced the probability of an accident for this example by 51%.
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Manual Operation with Bypass

X Probability

Operator
Notices High Operator Operator Operator
High Flow Flow and Opens Valve Closes Valve Opens Valve Result
Reduces the V-02 V-01 V-03
Flow
P(Safe)
Yes 0.85 0.4038X
P(Safe)
Yes 0.95 Yes 0.55 0.0392X
P(Safe)
No 0.15 Yes 0.90 0.0289X
No 0.45

P(Accident)
Yes 0.50 No 0.10 0.0032X
P(Accident)
No 0.05 0.025X
No 0.50 Safe 0.5X

3.4.2. Proposed Bayesian Network Based on Event Tree

Figure 3-6: Event Tree of Overflowing Tank with Bypass Line and Calculated Probabilities

The first Bayesian network was developed directly from the event tree of Figure 3-2. The

shown in Tables 3-1 and 3-2 respectively.

risk of the system was also examined by creating a risk network. The Bayesian networks were
created using GeNie 2.2 Academic, a software created by BayesFusion, LLC. For the first

model, a total of 12 nodes were used. The breakdown of the node relationships and states are

The event tree of the tank with manual valves shown in Figure 3-2 was first directly

accident for the same tank example was the same as the initial event tree.
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Table 3-1: Bayesian Network Node Characterization and Relationships for the Tank with
Manual Valves

Node | Node Name Parent Child Characterization
1 Flow Conditions N/A Operator Evidence
notices high
flow and
reduces flow
2 Operator notices Flow Conditions Valve 2 Intermediate
high flow and Conditions
reduces flow
3 Valve 2 Conditions | Operator notices high flow | Valve 1 Intermediate
and reduces flow Conditions
4 Valve 1 Conditions | Valve 2 Conditions Operating Intermediate
Conditions
5 Operating Valve 1 Conditions Risk Intermediate
Conditions
6 Weather N/A Environmental | Evidence
impact
7 Material type N/A Environmental | Evidence
impact
8 Value of asset N/A Impact Evidence
9 Population N/A Impact Evidence
10 Environmental Weather/Material Type Impact Intermediate
impact
11 Impact Environmental impact/ Risk Intermediate
Population/Value of asset
12 Risk Impact N/A Query
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Table 3-2: Bayesian Network Node States

Node | Node name States
1 Flow Conditions High Flow; No High Flow
2 Operator notices Reduces High Flow; Does Not Reduce High Flow; No High
high flow and Flow
reduces flow
3 Valve 2 Conditions | Open Valve 2; Does Not Open Valve 2; No High Flow; Does
Not Reduce High Flow
4 Valve 1 Conditions | Open Valve 2; Close Valve 1; Does Not Close Valve 1; No
High Flow; Does Not Reduce High Flow
5 Operating Safe; Accident
Conditions
6 Weather Clear; Windy; Rainy; Stormy
7 Material type Normal; Flammable; Toxic; Corrosive
8 Value of asset High; Moderate; Low
9 Population High; Moderate; Low
10 Environmental Severe; Moderate; Low
impact
11 Impact Severe; Moderate; Low
12 Risk High; Moderate; Low
|:__ Operator Notices High Flow "?.‘ valve 2 Conditions ‘ C'm'_‘j;" - “: —
low Conditions and Reduces Flow = Operating Condition

YesHig hFlow S0%
NorighFlow S50%

The risk matrix used for the tank case is shown in Figure 3-8. The environmental impact
considers the type of material and the weather conditions. The types of materials include
flammable, toxic, corrosive and normal. The term normal was used for materials that are not
considered dangerous. The types of weather considered were clear, windy, rain and stormy. The

term stormy was used to consider more extreme weather such as both rainy and windy weather.

o)

: Openvi 40% -
YesReducef low Gﬂ'.i NoOpenv2 ™
NoReduceFiow 3‘.; { NoHighFlow 50%
| oM o [NoRedueFiow 3% >

NorighFlow

CloseVl <t
NoClosevl 3%
NoHighFlow 50% Safe %%
Accident 5%

NoReduxeFlow 3%

)

Figure 3-7: Bayesian Network of the Tank with Two Manual Valves

Once the operating condition probabilities were determined a risk matrix was developed.
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The environmental impact, asset cost and the population of the surrounding area were considered
for the overall impact. The population and cost of the asset were divided into high, moderate and
low. The impact was related to the final risk. For example, the environmental impact of
flammable materials and windy weather was given a higher severity than normal material and
any type of weather. This matrix was combined with the final operation condition of the tank to

give the risk for any period of time.

O Weather O Material Type

O  Enviromental Impact
Clear 50% m Severe 28% -I Flammable 25% l
Windy 25%|} Moderate 42%|J Toxic 25%|
Rainy 13% Low 30%( = Corrosive 25%|[l}
Stormy 13% v Normal  25% . [

O Value of Asset O Impact o Population

High 33%
Moderate 33%|

33%|l

High  S0%|J
Moderate 38%|"
B Low 2% o

.
¥
7
1)
<
m
=
m
~
~
x
4

Low Low 14%

O Risk

High  37%|J}
Moderate 38%|
tow 25%[ll

Figure 3-8: Risk and Impact Bayesian Network

The risk and impact network was combined with the operating condition network to

create the overall risk for the tank operation. The combined networks are shown in Figure 3-9.
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Figure 3-9: Operating and Risk Impact Networks Combined

In Figure 3-9, the likelihood of an accident and the overall impact gave a high risk value
of 3.30%. If the material is changed to flammable the high risk will increase to a value of 3.83%.

If the material is changed to toxic and the population to high the risk will increase to 4.47%.

3.4.3. Updated Bayesian Network Development

To relax the linear nature of the event tree, the Bayesian network was updated to allow
for either valve to be opened without having one of the valve actions fail. The updated Bayesian
network for the two valve system is shown in Figure 3-10. Additional nodes were added to
include conditions of the valves changing and if the valve action was effective enough to stop an
overflow action. The probability of an overflow accident for the tank is now 0.0508 or 5.08%
and the probability for safe operation was reduced to 94.92%. The high risk probability was

reduced to 2.94%.
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Figure 3-10: Updated Bayesian Network of Two Valve Tank

The two valve model of Figure 3-10 was updated to include the use of the bypass valve
V-3 as shown in Figure 3-11. The probability of an overflow accident for the tank with bypass
was 0.0348 or 3.48% and the probability of safe operation was 96.52%. The high risk probability

was again reduced to a value of 2.01%.
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Figure 3-11: Bayesian Network for Tank with Bypass Valve

The original tank example was under manual operation only. To further improve safety
and reliability and automatic control loop was added in place of the manual valves. It is thought

by many that by automating a process system it can be made safer (Haight & Caringi, 2007).
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The manual valves were replaced with an automatic control valve on V-2 with a level indicator

and transmitter on the tank as shown in Figure 3-12.

v
=
=
-
|
= |

V-3 V-2
T-1

Figure 3-12: Tank Example with a Level Control Loop on Valve V-2

A new Bayesian network was created for the single automated control valve in Figure 3-
13. This new network included the conditions of the level indicator and transmitter and the flow
controller. With just the automatic valve V-2 the probability of an accident actually increased to
4.43% with the probability of safe operation decreasing to 95.57%. This result was not
unexpected. This is now only one route of failure instead of three routes of failure with the

valves. The high risk probability increased to 2.56%.
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Figure 3-13: Bayesian Network for Automated Valve with Level Control Loop

To continue the trend of increasing the level of automation another control loop was
added to the tank. A flow transmitter was added to the tank on the valve V-1 as shown in Figure

3-14.

V3 ) V-2

Figure 3-14: Tank with Flow and Level Control Loops

The Bayesian network of Figure 3-13 was updated and modified to include the new flow
control loop on V-1 as shown in Figure 3-15. The addition of another control loop further
increased the safety of the system to 98.77% and reduced the probability of accident to 1.23%.

By adding control loops for a simple system and removing the manual operations, the operators
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talents and skills may be applied elsewhere (Haight & Caringi, 2007). The high risk probability

decreased to 0.713%.
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Figure 3-15: Bayesian Network for Two Control Loops

To further continue the trend of automation, all valves were made into control valves as

seen in Figure 3-16. A flow transmitter was added to the line after the bypass line and set to

control the bypass valve V-3 in the event that one or both of the other valves or control loops

failed.
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Figure 3-16: Tank with Two Flow Control Loops and Level Control Loop
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Figure 3-17: Bayesian Network with Two Flow Control Loops and Level Control Loop

The Bayesian network was modified again, Figure 3-17, to include the latest flow control
loop and improve the tank system. The probability of an accident was reduced to 1.04% and the
probability of safe operation was increased to 98.96%. The high risk probability was decreased
further to 0.585%. The system is now completely automated. The system could be made even

safer by implementing an additional safety system.

The safety system proposed would be isolated from the main control loops and be there
as a backup to operations. The safety system would have independent isolated sensors and
controls signals on the valves in the event the control loops failed. The proposed safety system

can be seen in Figure 2-18. The safety system transmitters and signals are highlighted in green.
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T-1

Figure 3-18: Tank Diagram with Safety System

The Bayesian network for the existing control loops was updated a final time to include
the proposed safety system in Figure 3-18. The network is set up to include the condition that if
the control systems as a whole or the existing control sensors fail the safety system would be
activated in Figure 3-19. There are now six sensors, three for the original control system and
three for the safety system. The safety system is responsible for the safe shutdown operation as a
last resort to prevent an accident. With the safety system the probability of accident was reduced
to 0.0105% and the probability of safe operation was increased to 99.9895%. The high risk

probability was decreased to a final value of 0.00118%.
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Figure 3-19: Bayesian Network for the Control and Safety System




A summary of all of the accident and Risk of failure is shown in Table 3-3 with a

calculation to show the percent reduction from the original manual system.

Table 3-3: Summary of Accident and Risk of Failure for the Tank Systems

Accident Change in Risk of Failure Change in the
Probability Accident Risk
Probability
Manual Valve 5.08% -- 2.94% --
System
Manual System 3.48% -31.5% 2.01% -60.4%
with Bypass
Valves
Level Control 4.43% -12.8% 2.56% -49.6%
System
Control System 1.23% -75.8% 0.713% -86.0%
with Two
Controls
Control System 1.02% -79.9% 0.588% -88.4%
with Three
Controls
Three Controls 0.0203% -99.6% 0.0118% -99.8%
with Additional
Safety System

The values of the high risk were plotted over time using random data for the instances of
high flow rates for the tank systems. Table 3-4 shows the random data for each of the tank
systems. Figure 3-20 shows the high risk value multiplied by the instances of high flow for each
minute of operation. A threshold value of 0.001 or 0.1% was selected to show the minimally

acceptable risk level.

The tank with the safety system is the only system to be below the threshold value based

on the original Bayesian networks.

33




Table 3-4: High Risk Probabilities over Time for Each Tank System Using High Flow Data

Minutes | High flow High flow Manual Manual Level Level and | Level and Two Level and
readingsina | readingsin Valves Valves Control Flow Flow Control Two Flow
minute taken | one minute with System Control Systems Control and
each second Bypass System Safety System

0 0 0 0 0 0 0 0 0

1 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05
2 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05
3 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
4 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
5 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
6 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
7 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
8 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
9 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05
10 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05
11 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05
12 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05
13 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05
14 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05
15 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
16 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
17 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
18 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
19 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05
20 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05
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Figure 3-20: High Risk Probabilities Plotted over 20 Minutes for Each Tank System
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As an example of how the high risk probability changes with different physical
conditions a sample case was used. For this tank, the risk matrix was changed to show the value
of the asset as moderate, the population as low, the weather as clear and the material was
changed from normal to flammable as shown in Figure 3-21. The results of the high risk change

when the material was switched from normal to flammable in shown in Table 3-5.

O Weather O Material Type
O  Enviromental Impact
Severe 0% et Flammable 0%
Moderate 2%| Toxic 0%
Low 98% = Corrosive 0%
Stormy 0% & Normal  100%
O Value of Asset @ Impact O Population
High 0% —™Severe 5% —High 0%
Moderate 100%| Moderate 50%| | Moderate 0%
Low 0% = tow 4%l Low  100%
O Operating Condition = Risk
— —™iHigh 1%
Safe  95% Moderate 13%||
Accident 5%/ -

Figure 3-21: Risk Network with Evidence Selected for Case
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Table 3-5: High Risk Probability of Tank Systems when Material is changed from Normal
to Flammable

High Risk for Normal High Risk for Flammable

Material Material
Manual Valve System 1.13% 2.14%
Manual System with Bypass 0.771% 1.47%
Valves
Level Control System 0.981% 1.87%
Control System with Two 0.273% 0521%
Controls
Control System with Three 0.225% 0.429%
Controls
Three Controls with 0 0
Additional Safety System 0.00451% 0.00858%

Using the same random data given in Table 3-4, Table 3-6 was created to show the
probability of an accident for each of the tiers of protection with flammable material. In this
scenario, the high risk values for the tanks with two control loops, three control loops and three
control loops with a safety system were below the acceptable levels of risk until the weather was
changed from clear to windy at 10 minutes. Only the safety system was below the acceptable
risk. Since the value is so small, it will be very unlikely that the risk level will ever be above the

threshold.
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Table 3-6: High Risk Values for all Tank Designs with Normal Material changed to Flammable Material

High flow High flow Level and Level and Level and
: readgings ina rego\dings Manual Manua_l Level Flow Two Flow Two Flow
Minutes . X Valves with Control Control and
minute taken in one Valves Control Control
each second minute Bypass System System Systems Safety

Systems

0 0 0 0 0 0 0 0 0
1 16 0.267 0.00301 0.00206 0.002616 0.000728 0.000600 1.20E-05
2 16 0.267 0.00301 0.00206 0.002616 0.000728 0.000600 1.20E-05
3 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05
4 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05
5 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05
6 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05
7 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05
8 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05
9 16 0.267 0.00301 0.00206 0.002616 0.000728 0.000600 1.20E-05
10 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05
11 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05
12 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05
13 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05
14 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05
15 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05
16 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05
17 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05
18 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05
19 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05
20 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05
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3.5. Conclusion
The work outlined in this chapter proposes a dynamic risk monitoring system for process
industries using a Bayesian network. By increasing the safety features, the overall risk to the
process was reduced. This method allows for the risk of a process to be monitored in real time,
and provides an opportunity for changes to be made to the process to minimize the risk. This

method can be applied to other process systems to monitor risk in real time.
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4. Chapter 4: Application of Risk Monitoring Methodology to the Williams

Geismar Reboiler Rupture and Fire Accident

4.1. Overview

On June 13", 2013 a reboiler on the propylene fractionator of the Williams Geismar
Olefins Plant in Louisiana ruptured and caught fire. This accident killed two plant personal
workers and injured 167 (CSB, Williams Geismar Olefins Plant Reboiler Rupture and Fire
Geismar, Louisiana, 2016). The methodology presented in Chapter three was applied to this

accident to demonstrate real world applications.

Two safety and risk Bayesian networks were created for this case study. The first
network created is based on the original design of the reboiler and propylene system. The second
network created was based on an updated design using the recommendations by an investigative

organization and the additional safety system demonstrated in Chapter three.

The olefins plant operations and the accident are described in this chapter.

4.2. Case Study Background

Olefins, also known as alkenes, are a family of hydrocarbons that have one or more
double carbon bonds. The Williams Geismar Olefins Plant produces propylene and ethylene
from propane and ethane, respectively. The process for producing ethylene and propylene is

shown in Figure 4-1 as a process flow diagram.
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Troated

Figure 4-1: Process Flow Diagram of the Williams Geismar Plant

First, ethane and propane enter furnaces where they are converted or cracked into
ethylene, propylene and by-products such as methane and butadiene. These gas products are first
cooled by heat exchangers after leaving the furnaces. The gases are then further cooled in a
quench tower. The cooled gases are then sent to different distillation columns for separation. The
demethanizer column removes methane. The deethanizer removes the ethane and ethylene. The
depropanizer removes propane and propylene. The remaining gases enter a debutanizer and are
separated into butadiene and some other aromatic compounds such as toluene and benzene. The
ethylene, propylene, butadiene and aromatic compounds are stored and transported. The ethane

and ethylene of the deethanizer are sent to the ethylene fractionator which separates the ethane
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and ethylene. The ethane is recycled back to the beginning of the process. The propane and
propylene from the depropanizer are sent to a propylene fractionator which separates the propane

and propylene. The propane, like the ethane, is recycled to the beginning of the process.

In the quench tower, the gases are directly contacted with quench water which is sprayed
down from the top. The quench water is heated by the gases and is used to provide heat in other
areas of the plant. When the quench water is used for heating in areas of the plant it is cooled.
The quench water is further cooled by a cooling system and then recycled back to the quench
water tower in a closed system. Since the gas is in direct contact with the water, some gas
products are condensed in the water as oily tar products (CSB, Williams Geismar Olefins Plant
Reboiler Rupture and Fire Geismar, Louisiana, 2016). The oily products must be removed during
a settling process before the water is used for heating. Unfortunately, some of the oily products

are left in the quench water.

Each of the distillations columns requires reboilers. The reboilers are shell and tube heat
exchangers. The heat for the reboilers is supplied by the treated quench water. The process
streams are heated in the shell and the quench water is cooled in the tubes of the reboilers. The
oily products in the water are known to build-up on the insides of equipment including heat
exchanger tubes. This build-up is known as fouling. Fouling of the tubes reduces the heat
transfer potential and decreases flow rates. When the fouling is severe, maintenance is required

to remove the oily build up.

The schematic for the propylene fractionator prior to the accident is shown in Figure 4-2.
Valves one and two on the tube side are ball valves. Valves three and four on the shell side are

gate valves. There is a control valve on the quench water system.
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Figure 4-2: Propylene Fractionator Schematic for Williams Geismar Plant

The propylene fractionator had two reboilers, known as Reboiler A and Reboiler B. The
reboiler that ruptures and caught on fire was reboiler B. The process fluid on the shell side

contained a mixture of 95% propane with the balance propylene and four carbon hydrocarbons
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such as butane. This thesis with refer to the propane mixture as propane. The quench water

entered the reboiler on the tube side to heat the propane on the shell side.

Originally, both reboilers were operated continuously in series. When maintenance on
one or both reboilers was required the system was shutdown. In 2001, the reboilers were
reconfigured to operate in parallel so that one reboiler could operate when the other required
maintenance. After this reconfiguration, the reboilers had additional valves installed so that it
could be isolated from the system. The pressure relief devices of the reboilers were located on
the top of the fractionator column. When reboiler was isolated from the process it was also
isolated from the pressure relief devices. Reboiler B was isolated for 16 months using block
valves on both the tube and shell sides (CSB, Williams Geismar Olefins Plant Reboiler Rupture
and Fire Geismar, Louisiana, 2016). The block valves were leaking propane into the shell over
the duration of the isolation. This leakage was unknown to the plant operators at the time. When
a plant employee opened the gate valve on the tube side hot water inlet a Boiling Liquid
Expanding Vapor Explosion (BLEVE) occurred. The hot water heated the propane in the shell
and caused the liquid to boil and caused the emerging vapor to expand resulting in an explosion.
The reboiler shell ruptured due to the increase in pressure and lack of pressure relief. Upon
release, the propane mixture caught fire and burned for three and a half hours. (Center for

Chemical Process Safety, 2010)

4.3. Methodology Application on Original Reboiler Design

The methodology of chapter two was applied to a real world case study to show the
applications. The accident scenario considered for this application is the overpressure of a

reboiler. The basis for calculations is the flow of propane entering the shell.
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The schematic for the propylene fractionator prior to the accident is shown in Figure 4-2

was used to develop the Bayesian Network.

An overpressure accident scenario for the reboilers would be caused by the following
actions: overheating caused by the tube side, isolation from the pressure relief devices and
accumulation in the shell (Guo, Khan, & Imtiaz, 2019). An increase of tube side fluid
temperature would increase the temperature of the shell side process fluid and subsequently
increase the pressure. The tube side fluid heat potential can increase when the flow is increased
or the temperature of the fluid increases. If the reboiler is isolated from the pressure relief device,

a pressure increase beyond the threshold of the equipment material will result in a rupture.

A network based on the Olefins plant design prior to the accident is shown in Figure 4-3.
The basis for the risk calculation is the flow rate of propane entering the reboiler. This network
was not based on the templates of chapter three. In this network there are 21 nodes. Table 4-1
shows the characterization and relationships of the nodes within the network. Table 4-2 shows
the states of each of the nodes. This model involves the three main events, stated above, that

would cause an overpressure accident of the reboiler.
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Table 4-1: Bayesian Network Node Characterization and Relationships for the Original Reboiler Design

Node Node Name Parent Child Characterization

1 Propane Feed N/A Operator Notices Flow Condition | Evidence
Conditions

2 Operator Notices Propane Feed Conditions Tube Side: Inlet VValve; Tube Intermediate

Flow Condition

Side: Outlet Valve; Shell Side:
Inlet Valve; Shell Side: Outlet
Valve

3 Tube Side: Inlet Operator Notices Flow Condition Overheating of Heat Exchanger Intermediate
Valve

4 Tube Side: Outlet Operator Notices Flow Condition Overheating of Heat Exchanger Intermediate
Valve

5 Shell Side: Inlet Operator Notices Flow Condition Accumulation in Shell; Isolated Intermediate
Valve from PSV?

6 Shell Side: Outlet Operator Notices Flow Condition Accumulation in Shell; Isolated Intermediate
Valve from PSV?

7 Isolated from PSV? | Shell Side: Inlet Valve; Shell Side: | Operating Condition Intermediate

Outlet Valve

8 Accumulation in Shell Side: Inlet VValve; Shell Side: | Operating Condition Intermediate
Shell Outlet Valve

9 Flow Transmitter N/A Flow Control Signal to Valve CV- | Evidence
FT-QW Accuracy QW

10 Flow Control Signal | Flow Transmitter FT-QW Action on Valve CV-QW Intermediate
to Valve CV-QW Accuracy

11 Action on Valve Flow Control Signal to VValve CV- | Overheating of Heat Exchanger Intermediate
CV-QW QW

12 Overheating of Heat | Change in Quench Water Operating Condition Intermediate
Exchanger Temperature; Action on Valve CV-

QW

13 Change in Quench N/A Overheating of Heat Exchanger Evidence
Water Temperature

14 Operation Condition | Overheating of Heat Exchanger; Risk Intermediate
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Node Node Name Parent Child Characterization
Accumulation in Shell; Isolated
from PSV?

15 Weather N/A Environmental impact Evidence

16 Material type N/A Environmental impact Evidence

17 Value of asset N/A Impact Evidence

18 Population N/A Impact Evidence

19 Environmental Weather; Material type Impact Intermediate

impact

20 Impact Value of asset; Population; Risk Intermediate
Environmental impact

21 Risk Impact; Operation Condition N/A Query
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Table 4-2: Bayesian Network Node States for the Original Design

Node

Node Name

States

1

Propane Feed Conditions

High Flow; No High Flow;

2 Operator Notices Flow Condition Operator Notices High Flow; Operator Does Not Notice High Flow; No High
Flow

3 Tube Side: Inlet Valve Tube Inlet Open; Tube Inlet Close; No High Flow

4 Tube Side: Outlet Valve Tube Outlet Open; Tube Outlet Close; No High Flow

5 Shell Side: Inlet Valve Shell Inlet Open; Shell Inlet Close; No High Flow

6 Shell Side: Outlet Valve Shell Outlet Open; Shell Outlet Close; No High Flow

7 Isolated from PSV? Yes Isolated; No Isolated; No High Flow

8 Accumulation in Shell Yes Accumulation; No Accumulation; No High Flow

9 Flow Transmitter FT-QW Accuracy FTQW Accurate; FTQW Inaccurate

10 Flow Control Signal to Valve CV-QW | Action Open CV-QW; Action Fail

11 Action on Valve CV-QW CVQW Open; CVQW Not Open

12 Overheating of Heat Exchanger QW Temperature Increase; QW Temperature Does Not Increase

13 Change in Quench Water Temperature | Yes Overheating; No Overheating; No High Flow

14 Operation Condition Safe; Accident

15 Weather Clear; Windy; Rainy; Stormy

16 Material type Normal; Flammable; Toxic; Corrosive

17 Value of asset High; Moderate; Low

18 Population High; Moderate; Low

19 Environmental impact Severe; Moderate; Low

20 Impact Severe; Moderate; Low

21 Risk High; Moderate; Low
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Figure 4-3: Bayesian Network for Original Design of Geismar Plant
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Based on the subjective values used in this network, the probability of an accident was

5.60%. The probability of high risk, without any evidence selected, was 1.96%.

The probability of high risk changed to 1.76% when the appropriate evidence was
selected. It was assumed that the weather was clear, the population was low, the material type

was flammable, and the cost of the asset was moderate.

4.4. Methodology Application on Updated Safe Reboiler Design

The original design of the reboiler systems was poor. The CSB made recommendations
for the plant after their investigation was concluded. Most of the recommendations made were
based on the management of the plant. One of the recommendations made was that a pressure
relief device should be installed on the reboiler shell and not on another piece of equipment. This
recommendation was not unexpected. National Board of Boiler and Pressure Vessel Inspectors
and National Board Inspection Code (NBIC) require that pressure relief devices are installed on
all pressure vessels were the source of overpressure is internal to the vessel. At the time of the
accident, Louisiana did not adopt this code (CSB, Williams Geismar Olefins Plant Reboiler

Rupture and Fire Geismar, Louisiana, 2016).

As part of the methodology of chapter three, the reboiler system was redesigned with
safety controls. Figure 4-4 shows the control systems of Heat Exchanger A. Since the reboilers
are operated in parallel it was assumed that both reboilers would have the same separate control
systems. In this system, there are three control loops for the tube inlet valve. The tube inlet flow
can be based on the temperature of the shell outlet in a feedback loop, the flow of the inlet itself
in a feedback loop and the temperature and flow of the shell inlet in a feedforward loop. The

flows of the shell outlet, shell inlet and tube outlet are controlled by flow controllers. The quench
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water flow rate is controlled by the same flow control loop as before in Figure 4-4. A pressure

relief device was installed on the shell of each reboiler.
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WXD@DI ‘
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Figure 4-4: Schematic of Controls for Updated Reboiler Design
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Similar to the final tank design of chapter three, an additional safety system was installed
on the reboilers. For each control loops there are additional sensors and control signals separate

from the operation in the case where a system shutdown is required. The control schematic for

both heat exchangers is shown in Figure 4-5.
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Figure 4-5: Schematic of the Reboiler Design with Two Reboilers
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Another network was developed based on the updated safety design of the reboilers
including the safety system. Table 3-3 outlines the node characterization and the relationships.

There are a total of 49 nodes.

For each of the control loop transmitter nodes there are the following states: transmitter
accurate, transmitter inaccurate, control system not operational and no high flow. For the safety
control loop transmitters nodes there are the following states: transmitter accurate, transmitter
inaccurate, control system not operational, control sensors operational and no high flow. For the
control action nodes there are the following states: action success, action fail, control system not
operation and no high flow. The safety control action nodes have the states: action success,
action fail, control system operational, safety system not operational and no high flow. The

nodes that are the same the original design network have the same states in this network.
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Table 4-3: Bayesian Network Node Characterization and Relationships for Safe Design

Node Node Name Parent Child Characterization
1 Flow Conditions N/A Control system Condition; Safety System Evidence
Operational
2 Control system Condition | Flow Conditions Safety System Operational; Flow Intermediate
Transmitter 0 Accuracy; Flow Transmitter 1
Accuracy; Flow Transmitter 2 Accuracy;
Flow Transmitter 3 Accuracy; Flow
Transmitter 4 Accuracy; Temperature
Transmitter 0 Accuracy; Temperature
Transmitter 1 Accuracy
3 Flow Transmitter O Control system Condition Flow Control 0 Signal Intermediate
Accuracy (Tube Inlet)
4 Flow Transmitter 1 Control system Condition Flow Control 1 Signal Intermediate
Accuracy (Tube Inlet)
5 Flow Transmitter 2 Control system Condition Flow Control 2 Signal Intermediate
Accuracy (Tube Outlet)
6 Flow Transmitter 3 Control system Condition Flow Control 3 Signal Intermediate
Accuracy (Shell Outlet)
7 Flow Transmitter 4 Control system Condition Flow Control 4 Signal Intermediate
Accuracy (Shell Inlet)
8 Temperature Transmitter | Control system Condition Temperature Control Signal 0 Intermediate
0 Accuracy (Tube Inlet)
9 Temperature Transmitter | Control system Condition Temperature Control Signal 1 Intermediate
1 Accuracy (Tube Inlet)
10 Temperature Control Temperature Transmitter O Control Action Effectiveness (Tube Side) Intermediate
Signal 0 (Tube Inlet) Accuracy
11 Temperature Control Temperature Transmitter 1 Control Action Effectiveness (Tube Side) Intermediate

Signal 1 (Tube Inlet)

Accuracy
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Node Node Name Parent Child Characterization
12 Flow Control 0 Signal Flow Transmitter 0 Accuracy | Control Action Effectiveness (Tube Side) Intermediate
(Tube Inlet)
13 Flow Control 1 Signal Flow Transmitter 1 Accuracy | Control Action Effectiveness (Tube Side) Intermediate
(Tube Inlet)
14 Flow Control 2 Signal Flow Transmitter 2 Accuracy | Control Action Effectiveness (Tube Side) Intermediate
(Tube Outlet)
15 Flow Control 3 Signal Flow Transmitter 3 Accuracy | Control Action Effectiveness (Shell Side) Intermediate
(Shell Outlet)
16 Flow Control 4 Signal Flow Transmitter 4 Accuracy | Control Action Effectiveness (Shell Side) Intermediate
(Shell Inlet)
17 Control Action Flow Control 3 Signal (Shell | Accumulation in Shell Intermediate
Effectiveness (Shell Side) | Outlet); Flow Control 4
Signal (Shell Inlet);
18 Control Action Flow Control 0 Signal (Tube | Overheating on Tube Side Intermediate
Effectiveness (Tube Side) | Inlet); Flow Control 1 Signal
(Tube Inlet); Flow Control 2
Signal (Tube Outlet);
Temperature Control 0 Signal
(Tube Inlet); Temperature
Control 1 Signal (Tube Inlet)
19 Safety System Operational | Control system Condition Safety Flow Transmitter O Accuracy; Safety | Intermediate
Flow Transmitter 1 Accuracy; Safety Flow
Transmitter 2 Accuracy; Safety Flow
Transmitter 3 Accuracy; Safety Flow
Transmitter 4 Accuracy; Safety
Temperature Transmitter O Accuracy;
Safety Temperature Transmitter 1 Accuracy
20 Safety Flow Transmitter 0 | Safety System Operational Safety Flow Control 0 Signal Intermediate
Accuracy
21 Safety Flow Transmitter 1 | Safety System Operational Safety Flow Control 1 Signal Intermediate

Accuracy
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Node Node Name Parent Child Characterization
22 Safety Flow Transmitter 2 | Safety System Operational Safety Flow Control 2 Signal Intermediate
Accuracy
23 Safety Flow Transmitter 3 | Safety System Operational Safety Flow Control 3 Signal Intermediate
Accuracy
24 Safety Flow Transmitter 4 | Safety System Operational Safety Flow Control 4 Signal Intermediate
Accuracy
25 Safety Temperature Safety System Operational Safety Temperature Control Signal 0 Intermediate
Transmitter 0 Accuracy
26 Safety Temperature Safety System Operational Safety Temperature Control Signal 1 Intermediate
Transmitter 1 Accuracy
27 Safety Temperature Safety System Operational Safety Action Effectiveness (Tube Side) Intermediate
Control Signal 0
28 Safety Temperature Safety System Operational Safety Action Effectiveness (Tube Side) Intermediate
Control Signal 1
29 Safety Flow Control 0 Safety Flow Transmitter O Safety Action Effectiveness (Tube Side) Intermediate
Signal Accuracy
30 Safety Flow Control 1 Safety Flow Transmitter 1 Safety Action Effectiveness (Tube Side) Intermediate
Signal Accuracy
31 Safety Flow Control 2 Safety Flow Transmitter 2 Safety Action Effectiveness (Tube Side) Intermediate
Signal Accuracy
32 Safety Flow Control 3 Safety Flow Transmitter 3 Safety Action Effectiveness (Shell Side) Intermediate
Signal Accuracy
33 Safety Flow Control 4 Safety Flow Transmitter 4 Safety Action Effectiveness (Shell Side) Intermediate
Signal Accuracy
34 Safety Action Safety Flow Control 0 Signal; | Overheating on Tube Side Intermediate
Effectiveness (Tube Side) | Safety Flow Control 1 Signal,
Safety Flow Control 2 Signal;
Safety Temperature Control 0
Signal; Safety Temperature
Control 1 Signal
35 Safety Action Safety Flow Control 3 Signal; | Accumulation in Shell Intermediate

Effectiveness (Shell Side)

Safety Flow Control 4 Signal;
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Node Node Name Parent Child Characterization
36 Flow Control Action on FT-QW Accuracy Overheating on Tube Side Intermediate
CV-QW
37 FT-QW Accuracy N/A Flow Control Action on CV-QW Evidence
38 Quench Water N/A Overheating on Tube Side Evidence
Temperature Increase
39 Accumulation in Shell Safety Action Effectiveness Operating Condition Intermediate
(Shell Side); Control Action
Effectiveness (Shell Side)
40 Overheating on Tube Side | Safety Action Effectiveness Operating Condition Intermediate
(Tube Side); Control Action
Effectiveness (Tube Side);
Quench Water Temperature
Increase; Flow Control
Action on CV-QW
41 Is PSV Operational? N/A Operating Condition Evidence
42 Operating Condition Accumulation in Shell; Risk Intermediate
Overheating on Tube Side; Is
PSV Operational?
43 Weather N/A Environmental impact Evidence
44 Material type N/A Environmental impact Evidence
45 Value of asset N/A Impact Evidence
46 Population N/A Impact Evidence
47 Environmental impact Weather; Material type Impact Intermediate
48 Impact Value of asset; Population; Risk Intermediate
Environmental impact
49 Risk Impact; Operation Condition | N/A Query
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The network for the safe design is shown in Figure 4-6. The probability of accident was
decreased to 0.249% from 5.60% and the probability of high risk was decreased to 0.501% from
1.96%. With the same evidence selected for the original design, the high risk probability was
decreased 0.407% from 1.76%. The probability for an overpressure accident was decreased by
95.6% and the high risk probability was decreased 76.9% by with these additional safety

measures.

4.5. Risk of Reboiler Rupture Monitored Over Time
The risk and flow rate of propane entering the shell was plotted over time in Figure 4-7.

Table 4-4 shows the data used to plot the risk over time.
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Table 4-4: Sample Data for Plotting Risk of Original and Updated Design over Time

Minutes | High flow readings High flow Reboiler Safety Re- | Original Reboiler
in a minute taken readings in one Design Design of 2001
each second minute
1 3 0.0500 0.000204 0.000880
2 3 0.0500 0.000204 0.000880
3 3 0.0500 0.000204 0.000880
4 3 0.0500 0.000204 0.000880
5 4 0.0670 0.000271 0.00117
6 4 0.0670 0.000271 0.00117
7 4 0.0670 0.000271 0.00117
8 4 0.0670 0.000271 0.00117
9 6 0.100 0.000407 0.00176
10 6 0.100 0.000407 0.00176
11 6 0.100 0.000407 0.00176
12 6 0.100 0.000407 0.00176
13 6 0.100 0.000407 0.00176
14 6 0.100 0.000407 0.00176
15 5 0.0830 0.000339 0.00147
16 5 0.0830 0.000339 0.00147
17 5 0.0830 0.000339 0.00147
18 5 0.0830 0.000339 0.00147
19 5 0.0830 0.000339 0.00147
20 5 0.0830 0.000339 0.00147
21 5 0.0830 0.000339 0.00147
22 5 0.0830 0.000339 0.00147
23 5 0.0830 0.000339 0.00147
24 5 0.0830 0.000339 0.00147
25 4 0.0670 0.000271 0.00117
26 4 0.0670 0.000271 0.00117
27 4 0.0670 0.000271 0.00117
28 4 0.0670 0.000271 0.00117
29 4 0.0670 0.000271 0.00117
30 4 0.0670 0.000271 0.00117
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High Risk Value of Reboiler Overpressure Over 30 Minutes for Original and Safe
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Figure 4-7: Plot of Risk over Time for both Original and Updated Reboiler Design
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As shown in Figure 4-7, the risk level for the reboiler with the new design is much less
risky as it is below the threshold. Since there are two reboilers, the data for the second could be
used with the same matrix and its different conditions. Both reboiler overpressure risks could be

plotted on the same graph.

4.6. Conclusion

For the Williams Geismar plant, the design was highly risky. It required significant
revision to be a safer design. Analyzing the accident using the proposed methodology it is
observed that if a monitoring system had been put in place, an accident may not have occurred.
This risk monitoring system only considered the event of an over pressured reboiler and does not
consider other accident scenarios. Incorporating different accident scenarios into a single matric

is part of further work.
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5. Chapter 5: Conclusion and Future Work

5.1. Conclusions

In conclusion, risk can be monitored in a process system over time. While event trees are
commonly used in risk assessments, this thesis describes how event trees can be modified into
Bayesian networks. Event trees are static and lack flexibility for accurately determining risk in a
process system. Bayesian networks are beneficial for risk prediction as they are dynamic and can
change in real time to more accurately reflect process operations. The risk values produced by
these networks can be used with process data to monitor process risk in real time. A summary of

each chapter is as follows.

Chapter one introduces safety and risk monitoring in process systems. The research

motivation, objectives and outline were described in this chapter.

Chapter two describes a literature review completed on process safety and risk,
monitoring and modelling. Different process accidents were described, as well as different
accident modelling techniques. The risk assessment method that is becoming more popular in
literature and industry was used in the development of the methodology in chapter three. The

factors influence safety

Chapter three proposes a methodology for developing a risk monitoring model using
event tree and Bayesian networks. These networks can be used to monitor risk in real time.
Bayesian network uses and applications were described. A simple example of an overflowing
tank is used as basis for the network model. The design of the tank was improved upon in six
steps to show how the improvements in safety reduce the overall risk of the process. The risk of
the overflowing tank was plotted over time. The Bayesian network is dynamic and is used to
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show how changing conditions improve or worsen the risk. It was shown how the Bayesian
network can improve the prediction of an accident over the event tree as independent factors that
could lead to an accident could be captured. This methodology created a framework for future

studies and the ability to apply it to cases as seen in chapter four.

Chapter four applies the methodology developed in chapter three to a real work case. The
reboiler rupture and fire at the Williams Geismar Olefins Plant was used a case study. The
accident of an over pressured reboiler was used for the network. A network was created based on
the original design of the reboilers. A second network was created after safety based design
features were implemented on the original set up. The risk values of the original and updated
networks were plotted over time. The conditional probabilities for the final operating conditions
were the same for both the original and safe designs. By updating the design of the reboiler to
include safety features and controls the accident probability was decreased by 96% and the high
risk probability was decreased 76.9%. By plotting the risk overtime, future projections of risk for

the plant can be predicted and action can be taken to prevent accidents before they could occur.

5.2. Future Work

The methodology presented in this thesis can be improved upon by considering
multivariate parameters. The developed methodology also needs to be tested using experimental
data. As the values used in the Bayesian networks are subjective, the accuracy of the networks
can be improved upon by the use of credible objective data. The methodology presented here
shows the creation of a network based on a single accident type. In the future, the networks may
be updated to include multiple different hazards of a process instead of a single event. The
methodology will need to be applied to more complex case studies and if possible through lab

and field experiments to check its applicability and usefulness.
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