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Abstract 

Safety and risk are essential components of process industries. The research objective of 

this thesis is to develop a method to measure and monitor safety in terms of real-time risk of a 

process system failure. The risk monitoring concept was developed using event trees and 

Bayesian networks. Process instrument data such as flowrate was used as a basis for the risk 

probability calculations. The risk monitoring methodology was developed and applied to the 

Williams Geismar reboiler rupture and fire in 2013. The risk level of the reboiler was examined 

based on the original design prior to failure and an updated design based on recommendations 

made by the CSB. The accident probability was decreased by 96% and risk level was reduced by 

76.9%. By plotting the risk of a process overtime, future projections of risk can be predicted and 

action can be taken to prevent accidents before they could occur. 
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1. Chapter 1: Introduction 

1.1.  Process Safety and Risk 

Safety and risk are essential components of process industries. Process safety can be 

defined the identification of process hazards of and the use of technology to prevent and 

eliminate the occurrence of accidents (Crowl & Louvar, 2011). In terms of process safety, risk is 

determined by quantifying the magnitude of loss and the likelihood of an incident. Loss can 

include human injury, environmental damage and economic loss due to damaged assets and 

reputation. Nearly all process industries involve the use of hazardous materials and have risks. 

Risk cannot be eliminated. However, risk can be minimized to an acceptable level. 

1.2.  Research Objective  

The research objective of this thesis is to develop a method to measure and monitor the 

safety in terms of real-time risk of a process system failure. This objective will be achieved in 

two parts. The first part of the thesis will explore the development of the methodology and the 

second part will apply the methodology to a case study to demonstrate real world applications.  

The methodology has used Bayesian networks method. The Bayesian networks models 

are developed and analyzed using GeNie 2.2 Academic by Bayesfusion, LLC, to model Bayesian 

Networks. (https://download.bayesfusion.com/files.html?category=Academia) 
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1.3.  Thesis Outline 

The thesis structure is as follows:  

Chapter Two presents a literature review based on safety and risk in process industries. 

Process safety monitoring and accident modelling techniques are described. Six major accidents 

within the past 10 years are also discussed here. 

Chapter Three presents the methodology for predicting the incident of an overflowing 

tank and the subsequent risk associated with various physical factors. The simple tank is 

redesigned six times to show how increasing safety measures reduced the likelihood of an 

incident and the overall risk. Chapter Four presents a real world case study where the 

methodology of chapter three is applied. The case studied is the shell and tube heat exchanger 

rupture and fire in the Williams Geismar Olefins Plant on June 13
th

 of 2013 (CSB, Williams 

Geismar Olefins Plant Reboiler Rupture and Fire Geismar, Louisiana, 2016). The risk of 

overpressure of a reboiler associated with olefins or alkenes is discussed. The risk of the heat 

exchanger operation is assessed real time. Chapter Five summarizes and concludes the impact of 

the presented work. The potential of future studies based on this work are also discussed.  

1.4.  Novelty of the Work 

The developed methodology presented here is unique and also the application of the 

methodology. This is a novel attempt to measure safety real time using risk factors. This thesis 

has presented concept in simple and easy to follow way. The case studies are also presented in 

simplified form so that readers can follow through the steps and understand the strength of the 

approach. This work put forward a new way to assess and monitor safety of process operations. 
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2. Chapter 2: Literature Review Monitoring Process Safety and Risk 

In process industries, accident modelling is used to answer these two important questions: 

why does an accident happen and how does an accident happen (Al-shanini, Ahmad, & Khan, 

Accident modelling and analysis in process industries, 2014). Risk assessments are part of 

accident modelling and are vital to the safe design, development and operation of a process. Risk 

assessments are used to determine how safe a process is and what appropriate safety measures 

should be installed to minimize any risks. Risk assessments are also used to determine which 

safety measures are the most economically feasible (Crowl & Louvar, 2011). According to a 

review completed by Chakraborty et al. there is currently no universally accepted system to 

detect early signs of safety deterioration and increase in risk (Chakraborty, 2003).  This thesis 

presents a method to measure risk of a process system in real time. 

Although there are many safety measures and models developed to make a process safer 

accidents can still occur. The term accident is used to describe an event that happens 

unexpectedly and unintentionally. Though the term accident implies that an accident is 

unexpected many have warning signs that indicate an accident will occur before it happens. 

Many accident reports indicate that there was safety performance of a process was degrading or 

non-existent prior to the event (Al-shanini, Ahmad, & Khan, Accident modelling and analysis in 

process industries, 2014). Table 2-1 describes six process accidents that have occurred in the past 

10 years. In the case of the Tesoro Martinez Sulfuric Acid Spill, the same consequence was 

experienced by two separate accidents within one month of each other.   
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Table 2-1: List of Process Industry Accidents 

Date Accident name Location Type Reason Impact 
Safety 

Factor 
Reference 

April 20, 

2010 

Macondo Well 

Blowout 

Northern Gulf 

of Mexico 

Fire, 

Explosion 

and Oil spill 

Loss of well control to release 

of Hydrocarbons to the 

platform, hydrocarbons ignited 

resulting in fire and explosions 

that sunk the platform and 

damaged well bore released oil  

11 killed, 63 

injured, severe 

environmental 

damage 

Mechanical;  

Operational 

(CSB, Investigation 

Report: Drilling Rig 

Explosion and Fire at the 

Macondo Well, 2016) 

December 

9, 2010 

AL solutions Metal 

Dust Explosion and 

Fire 

New 

Cumberland, 

West Virginia, 

USA 

Fire and 

Explosion 

titanium and zirconium 

particulates ignited in the 

blender that was processing 

zirconium 

3 killed, 1 

injured 

Mechanical  

 

(CSB, Metal Dust 

Explosion and Fire , 2014) 

June 13, 

2013 

Williams Geismar 

Olefins Plant 

Geismar, 

Louisiana, 

USA 

Fire and 

Explosion 

Overpressure of reboiler 

containing propane 

2 killed, 173 

injured 

Mechanical; 

Operational; 

Personnel 

 

(CSB, Williams Geismar 

Olefins Plant Reboiler 

Rupture and Fire Geismar, 

Louisiana, 2016) 

February 

12, 2014 

and March 

10, 2014 

Tesoro Martinez 

Sulfuric Acid Spill 

Martinez, 

California, 

USA 

Acid 

Release 

Valve failed spraying acid at 

two operators; 

Two operators sprayed when 

removing some piping 

2 seriously 

injured;  

2 seriously 

injured 

Mechanical;  

Operational 

(CSB, Tesoro Martinez 

Refinery: Process Safety 

Culture Case Study , 2016) 

October 

21, 2016 

MGPI Processing 

Inc. Chemical 

Reaction and Release 

Atchison, 

Kansas, 

USA 

Toxic 

Release  

During sulfuric acid delivery, 

operator connected the 

discharge hose to the fill line of 

the sodium hypochlorite tank. 

The chemicals mixed and 

formed a toxic cloud of chlorine 

gas, which was released to the 

surrounding areas 

140 sought 

medical 

attention, 6 

seriously 

injured  

Operational; 

Personnel 

(CSB, Key Lessons for 

Preventing Inadvertent 

Mixing During Chemical 

Unloading Operations, 

2018) 

August 31, 

2017 

Organic Peroxide 

Decomposition, 

Release, and Fire at 

Arkema  

Crosby, 

Texas, 

USA 

Toxic 

Release and 

Fire 

During a hurricane the Arkema 

plant flooded and lost power to 

the refrigeration trucks 

20 sought 

medical 

attention 

Environmental  (CSB, Organic Peroxide 

Decomposition, Release, 

and Fire at Arkema Crosby 

Following Hurricane 

Harvey Flooding, 2018) 
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According to Al-shanini et al. there are three elements of process safety: operational 

integrity, mechanical integrity and personnel integrity (Al-shanini, Ahmad, & Khan, Accident 

modelling and analysis in process industries, 2014). These elements are represented in Figure 2-

1, where the operational integrity is dependent on the mechanical integrity and both are 

dependent on the personnel integrity.  

 
Figure 2-1: The Three Elements of Process Safety 

The operational integrity of a process includes the initial design, design modifications, 

operating procedures and emergency preparedness plans. The mechanical integrity of the process 

includes material containment, maintenance and inspection and instrumental controls. The 

personnel integrity of the process includes the human aspects such as skill, work permits, 

training and communication.  

It could be argued that a fourth element of process safety could be added to. 

Environmental factors would have an impact on the other three elements of process safety. For 

example, the last accident listed in Table 2-1 was caused by environmental factors. The toxic 

release and fire at the Arkema plant in Crosby Texas was a direct result of flooding caused by 

Hurricane Harvey in 2017 (CSB, Organic Peroxide Decomposition, Release, and Fire at Arkema 

Personnel 

Mechanical  

Operational 

Process 
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Crosby Following Hurricane Harvey Flooding, 2018). The Arkema plant produced organic 

peroxides which must be refrigerated to prevent decomposition and self-ignition. The plant 

flooded during the hurricane and lost power to the refrigerated storage tanks. The peroxides were 

moved to refrigerated trucks which were also at risk of losing power. To prevent a larger 

accident, the trucks were burned in a controlled environment. It was concluded that Arkema did 

not account for that level of flooding during the plants design. It was recommended by the 

Chemical Safety Board (CSB) that the company design should consider that level of flooding in 

future designs for the plant. The environment is essential to protect but also has a negative effect 

on processes as shown in the Arkema accident example.  

When assessing environmental factors, both extreme and common weather types should 

be considered. Emergency response plans should be created with weather conditions in mind 

(IADC, 2015). It is known that weather and wind patterns influence design, especially when 

there are gaseous emissions (Crowl & Louvar, 2011). Figure 2-2 shows an updated model to 

include the impact of environmental factors on operational, mechanical and personnel integrity.  

 

Figure 2-2: Updated Process Safety Model to include Environmental Factors

Environmental 

Personnel 

Mechanical  

Operational 

Process 
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2.1.  Measuring Safety and Risk 

The safety and risk of a process system are commonly measured using factors such as 

OSHA accident and fatality rates, loss time injuries and fatal accident rates of similar industries 

(Khan, Abunada, John, & Benmosbah, 2009). All of these factors account for the after effects of 

incidents and accidents once they occur. Process safety and risk can be measured using leading 

and lagging indicators.  

Lagging indicators are a measure of process outputs.  These indicators keep track of 

previous incidents and accidents to predict the frequency and consequences of future accidents. 

Lagging indicators signify how well a process is functioning based on how goals are being met 

and how well it is preventing accidents. Lagging indicators are reactive as modifications in 

operations and goals are made after outputs change (Khan, Abunada, John, & Benmosbah, 

2009).  

Where lagging indicators measure outputs, leading indicators are a measure of process 

inputs. Leading indicators are proactive where changes to process are anticipated and 

modifications are implemented before changes to a process occur. Leading indicators can 

include: how often risk assessments are completed, how many are completed or how often 

maintenance is performed.   

Both of these indicators should be used in process industries to monitor safety and risk 

and prevent accidents (Khan, Abunada, John, & Benmosbah, 2009). If accidents can be 

anticipated and understood before they occur they can be prevented (Al-shanini, Ahmad, & 

Khan, Accident modelling and analysis in process industries, 2014). According to the study by 

Charkaborty et al. industry leaders should identify and monitor lead indicators to signal potential 
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for process safety performance degradation (Chakraborty, 2003). By monitoring lead indicators, 

the management of process systems can be improved upon.  

2.2.  Risk Assessments  

Shahri et al. stated that safety researchers agree that the greatest challenge of examining 

risk is that no prediction is completely accurate (Shahri, MahdaviNejad, & AmirKabir, 2016). 

Predicting the exact behaviour and likelihood of a particular consequence cannot be definitively 

determined. There are multiple tools and techniques available to assess risk, however, no single 

method is sufficient and a combination of methods are required. Since every operation is unique 

there is no “one size fits all” technique to complete the risk assessment. 

To complete risk assessments, accident modelling is used to create scenarios and examine 

the frequency and consequences associated with process hazards. The two most important 

questions of accident modelling are: why does an accident happen and how does an accident 

happen.  According to the literature review by Al-shanini et al. there are many different types of 

accident models across. The traditional sequential model types are: the Fault Tree Analysis 

(FTA), Event Tree Analysis (ETA), Bowtie model and Failure Mode and Effect Analysis 

(FMEA) (Al-shanini, Ahmad, & Khan, Accident modelling and analysis in process industries, 

2014).  

The fault tree analysis is a bottom-up graphical technique that is used to deduce and 

quantify the failure probability of a process system. The event tree analysis is a top-down 

graphical technique that is inductive and applies logic to determine the consequences of a 

process system. The event tree is used in the early methodology of the thesis and is described in 

detail in chapter three. The bowtie model combines the fault tree and event tree for a single 
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accident or initiating event. The failure mode and effect analysis is a step wise analysis that 

examines all potential faults of a process system and aims to prevent them.  

While the traditional models are useful for initial risk assessments they also have some 

disadvantages. Each of the traditional models are static and cannot be used to represent non-

linear or independent relationships of failures within process systems.  

A more modern approach to these models are considered dynamic sequential accident 

models (DSAM) which includes Process Hazard Prevention Accident Models (PHPAM) and 

Dynamic Risk Assessment (DRA) (Al-shanini, Ahmad, & Khan, Accident modelling and 

analysis in process industries, 2014). There are currently two models proposed that would be 

considered process hazard prevention models. The offshore oil and gas model proposed by 

Kujath et al. (Kujath, Amyotte, & Khan, 2010) and the System Hazard Identification prevention 

and prediction (SHIPP) model proposed by Samith et al. (Samith, Khan, & Amyotte, 2011).  

The offshore oil and gas model begins with examining accidents and potential loss in the 

offshore field and identifies potential failures from a managerial and occupational perspective. 

This method emphasises the responsibility of the organization to prevent accidents rather than 

place blame on an individual. This method examines the barriers from a managerial point of 

view: release prevention, ignition prevention, escalation prevention, harm prevention and loss 

prevention. This model was successfully applied to the Piper Alpha and BP Texas City refinery 

accidents (Al-shanini, Ahmad, & Khan, Accident modelling and analysis in process industries, 

2014). A limitation of this model was that it does not examine the effects of some initialing 

events for accidents such as fire or explosion propagation. The offshore oil and gas model was 

used a basis for the SHIPP model.  



10 
 

The SHIPP accident model aims to reduce accidents by evaluating hazards and predict 

and prevent them by using additional barriers based on the offshore model. The barriers 

examined in the SHIPP method are: release prevention, dispersion prevention, ignition 

prevention, escalation and emergency management. The barriers are not always physical. These 

barriers can include operating procedures and emergency response plans. This method also 

determines ways to continuously monitoring the system. This model can be used with Bayesian 

analysis to estimate the likelihood of an accident based on previous data. The SHIPP model is 

both qualitative and quantitative.  

Both the offshore and SHIPP models shared a limitation. This limitation was that some 

barriers may be illogical and unnecessary. For example the examination of ignition barriers is 

inappropriate for plants where the materials are toxic or non-flammable.  

The last accident model to be discussed in this literature review is the dynamic risk 

assessment also known as the dynamic quantitative risk assessment. The dynamic risk 

assessment uses the same methodology of the quantitative risk assessment.  
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Figure 2-3: Risk Assessment Procedure 

Quantitative risk assessments are typically completed in four steps: hazard identification, 

frequency analysis and consequence analysis, and risk analysis. The step of scenario 

development is optional (Crowl & Louvar, 2011). The risk assessment process is shown in 

Figure 2-3. The hazards or dangers of a process are identified in each step of the process. Process 

hazards are determined during a Hazard and Operability Study (HAZOP). This approach is 

structured and effective. Process drawings are used as a basis where each component of a system 

is examined and all possible deviations are determined. The hazards are applied to accident 

scenarios. In this thesis, the methodology of risk monitoring is applied to a single scenario. The 

frequency of occurrence and the consequence of the accident are combined to estimate risk. The 

estimated risk is analyzed whether it is acceptable or manageable the design or operation is 
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approved. If the risk is determined to be unacceptable, the risk must be revaluated and 

redesigned and the process is started over until the risk is acceptable.  

However, the dynamic risk assessment allows for the failure probabilities of the original 

risk assessment to be updated as new information become available or conditions change. In 

industry, quantitative risk assessments are typically completed every five years (Khan, Abunada, 

John, & Benmosbah, 2009). However, by using the dynamic risk assessment approach, the 

procedure changes and process degradation can be captured. This allows for a higher accuracy 

and continuous monitoring of risk conditions. The quantitative risk assessment uses event trees 

to determine consequence. However, Bayesian networks have become increasingly popular as 

the interdependence of accident causes are more easily mapped. 

The Bayesian Network is an approach can account for the possibility that multiple events 

may occur simultaneously to produce an accident. The Bayesian Network approach has been 

used successfully to estimate the likelihood of the occurrence of a release of LNG and the 

subsequent consequences. (Abbassi, Garaniya, & Khan, 2016). The Bayesian network approach 

was also successfully applied to the Willams Geismar reboiler accident (Guo, Khan, & Imtiaz, 

2019). The Bayesian network approach was used in the development of the methodology in 

chapter three and the case application in chapter four.  
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3. Chapter 3: Methodology 

3.1.  Overview 

In this section of the thesis, the methodology of the Bayesian Network development and 

risk monitoring system are outlined. An accident scenario, an overflowing tank, was created as a 

foundation for the methodology. First the accident probability was determined with an event tree. 

The same accident scenario was used for the created of the Bayesian network. A Bayesian 

network is developed to assess risk. The tanks safety systems were updated with additional 

safety features until the risk level was brought down to an acceptable level. This risk level is 

combined with simulated data to show the risk of the process system as a function time.  

3.2.  Event Tree Analysis 

The event tree is an inductive analysis method used commonly in risk assessments. This 

analysis method is extremely effective at determining the pathways to an accident and the 

probability of the accident occurring. All event trees will begin with an initiating event where 

final results such as failure, near miss or safe operation are determined by intermediate events. 

The intermediate events are conditions and safety features of the system. Each event can only 

have two outcomes such as true or false, success or failure and yes or no. If available, failure 

data and statistics are used to determine the probability of the final event. The disadvantages of 

an event trees are their static and linear nature. Event trees rely on accurate data and the events 

failing in a sequential order (You & Tonon, 2012). The risk associated with this accident could 

not be developed in an event tree as the inputs and outputs are not binary.  
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3.3.  Bayesian Networks 

It is argued in the literature (Marsh & Bearfield, 2008) and (Unnikrishnan, Shrihari, & 

Siddiqui, 2014) that combining event trees and Bayesian networks allows a more flexible model 

while maintaining the safety specific logic. To relax the assumption that the accident progression 

and event failures are linear, the accident scenario was modelled into a Bayesian network. 

Bayesian networks are dynamic in nature and allow for probabilities to be updated easily when 

new information is discovered. A Bayesian network is a probabilistic graphical modelling 

technique. Bayesian networks are both qualitative and quantitative which is making them 

increasingly popular for accident analysis. These networks are a combination of directed acyclic 

graphs (DAG), which are qualitative, and their conditional probabilities which are quantitative 

(Ibe, 2011). The BN is an effective way of representing interdependence between variables. 

According to (Darwiche, 2009), there are three steps to developing a Bayesian Network. 

The first step is to define the relevant variables, next the network relationships must be defined 

and finally the conditional probabilities are assigned to the variables.  

3.3.1. Defining Variables 

To predict an accident and the subsequent risk all relevant factors are considered as 

variables.  The characteristics of a variable are represented in nodes. Each characteristic have at 

least two states or more such as true and false. However, as the number of nodes increases so 

does the complexity of the network. A network can be made more manageable by reducing the 

number of nodes. The number of nodes can be reduced by combing the similar characteristics for 

the variable in a single node. If the states of the characteristics are the same and are considered 

mutually exclusive then they may be combined in a single node.  
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Consider the variable weather as an example. Weather, in this example, can be broken down into 

four characteristics: clear, windy, rainy and stormy. For the weather characteristics there are two 

states: true and false. Rather than have four nodes with two states, weather may be represented as 

a single node with four states.  

3.3.2. Network Relationships 

Once the variables are defined in nodes, the nodes are then categorized and relationships 

are mapped. Determining the relationships between nodes is also known as defining edges 

(Darwiche, 2009). There are three nodes categories: evidence, intermediate and query here are 

also three node mapping relationships: parent, child and leaf. (Darwiche, 2009). Evidence nodes 

are the input variables and are the first nodes. Evidence nodes must also be independent from 

each other. Since evidence nodes are first they are also parent nodes. Query nodes are the final 

outcomes and can be either child or leaf nodes. Child and leaf nodes are connected to a parent 

node. Intermediate nodes connect the evidence and query nodes. Only child nodes can be 

intermediate. However, a child node can also be connected to another child node. Leaf nodes do 

not have any child nodes after them.  

In terms of accident and risk analyses, only intermediate and evidence nodes can be set 

and query nodes are computational and cannot be changed.  

3.3.3. Conditional Probabilities 

Once the network relationships have been determined, the conditional probabilities are assigned. 

This is quantitative as the uncertainties are defined. The values of the conditional probabilities 

can be either objective or subjective. Objective values are ones determined from data, statistics 

and calculations. Subjective values are ones determined through an expert’s reason, beliefs and 
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experience. The conditional probabilities for this thesis are subjective (Darwiche, 2009). These 

probabilities are for predictive and demonstrational purposes. The conditional probabilities can 

be updated over time as new information becomes available. Updating the probabilities 

presented in this thesis is an area for future work. 

3.4.  Methodology 

3.4.1. Event Tree Development 

To begin development of this proposed safety and risk monitoring system, a simple open 

tank was examined. The most severe and likely hazard of an open tank is tank overflow. The 

basis for calculation and risk plotting is the flow entering the tank. The tank examined as shown 

in Figure 3-1 has two manual valves. The first valve (V-1) is on the line flowing into the tank 

and the second valve (V-2) is on the line flowing out of the tank. The probabilities displayed in 

the following event trees are hypothetical and were not collected from any database and are for 

demonstration purposes only.  

 

Figure 3-1: Simple Open Tank with Two Manual Valves 
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After the tank set up was established, an event tree as shown in Figure 3-2 was used to 

quantify the probability of an accident. The first event was the condition of the flow, if there was 

no high flow or limited flow then the tank will not overflow. If the flow was high there was an 

opportunity for the tank to overflow.  

The second event was if the operator of the manual valves noticed that the flow was high. 

For this event, either the operator notices the high flow and reduces it or the operator does not 

notice the high flow and the condition continues.  

The third event would be the operator opening valve V-2 to increase the flow leaving the 

tank to prevent an overflow or not open the valve allowing for the overflow to occur. If V-2 is 

not opened, the next event would be for the operator to close V-1 to reduce the flow to the tank 

and prevent an overflow from occurring. If the operator does not close V-1 then an overflow will 

occur.  

The “X” at the beginning of the event tree represents the flow data before the first valve. 

The high flow condition would be picked up by a sensor before the process for a specified 

threshold. The occurrences of high flow conditions over a time frame, say one day of operation, 

out of how ever many data points are collected in the time frame would be multiplied by the 

probability of an accident occurring to display the safety of the process system any given day.  
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Figure 3-2: Event Tree of Overflowing Tank with Two Manual Valves 

As discussed before, the probabilities for the events are calculated by multiplying the 

values of the branches of the event tree. A sample calculation can be found below in Figure 3-3. 

Figure 3-4 shows all of the branches with the final probabilities calculated.  

 

Figure 3-3: Sample Calculation for Top Branch of Event Tree 

High Flow
Operator 

Notices High 

Operator 

Opens Valve 

Operator 

Closes Valve 
Result

Yes 0.85 Safe 

Yes 0.95 Yes 0.55 Safe

No 0.15

Yes 0.50 No 0.45 Accident 

No 0.05 Accident 

X

No 0.50 Safe

Manual Operation
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Figure 3-4: Event Tree of Overflowing Tank with Calculated Probabilities 

The final calculated values for the branches with the same outcome can be added for a 

final probability. Therefore the probability of an overflow accident is 0.0571 or 5.71% and the 

probability of safe operation is 94.29% for this tank example.  

By improving the safety features of the tank the probability of an accident can be 

reduced. Using the same tank with a bypass pipeline added to the flow line entering the tank as 

shown in Figure 3-5. If both V-2 and V-1 were unavailable then the operator could open the 

bypass valve V-3 and reduce the flow entering the tank.  

High Flow

Operator 

Notices High 

Flow and 

Reduces the 

Flow

Operator 

Opens Valve 

V-2

Operator 

Closes Valve 

V-1

Result

Yes 0.85

P(Safe) 

0.4038X

Yes 0.95 Yes 0.55

P(Safe) 

0.0392X

No 0.15

Yes 0.50 No 0.45

P(Accident) 

0.0321X

No 0.05

P(Accident) 

0.025X

X Probability

No 0.50 P(Safe) 0.5X

Manual Operation
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Figure 3-5: Tank with Bypass Line and Three Manual Valves 

The event tree created above was updated with the additional bypass valve in Figure 3-6. 

With the calculated probabilities of the updated event tree the resulting probability of an 

overflow accident was 0.0282 and for safe operation was 0.9718. One additional safety measure 

reduced the probability of an accident for this example by 51%.  
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Figure 3-6: Event Tree of Overflowing Tank with Bypass Line and Calculated Probabilities 

3.4.2. Proposed Bayesian Network Based on Event Tree  

The first Bayesian network was developed directly from the event tree of Figure 3-2. The 

risk of the system was also examined by creating a risk network. The Bayesian networks were 

created using GeNie 2.2 Academic, a software created by BayesFusion, LLC. For the first 

model, a total of 12 nodes were used. The breakdown of the node relationships and states are 

shown in Tables 3-1 and 3-2 respectively.  

The event tree of the tank with manual valves shown in Figure 3-2 was first directly 

translated into a Bayesian network as shown in Figure 3-7. The resulting probability of an 

accident for the same tank example was the same as the initial event tree.  

High Flow

Operator 

Notices High 

Flow and 

Reduces the 

Flow

Operator 

Opens Valve 

V-02

Operator 

Closes Valve 

V-01

Operator 

Opens Valve 

V-03

Result

Yes 0.85

P(Safe) 

0.4038X

Yes 0.95 Yes 0.55

P(Safe) 

0.0392X

No 0.15 Yes 0.90

P(Safe) 

0.0289X

No 0.45

Yes 0.50 No 0.10

P(Accident) 

0.0032X

No 0.05

P(Accident) 

0.025X

X Probability

No 0.50 Safe 0.5X

Manual Operation with Bypass
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Table 3-1: Bayesian Network Node Characterization and Relationships for the Tank with 

Manual Valves 

Node Node Name Parent Child Characterization 

1 Flow Conditions N/A Operator 

notices high 

flow and 

reduces flow 

Evidence 

2 Operator notices 

high flow and 

reduces flow 

Flow Conditions Valve 2 

Conditions 

Intermediate 

3 Valve 2 Conditions Operator notices high flow 

and reduces flow 

Valve 1 

Conditions 

Intermediate 

4 Valve 1 Conditions Valve 2 Conditions Operating 

Conditions 

Intermediate 

5 Operating 

Conditions 

Valve 1 Conditions Risk Intermediate 

6 Weather N/A Environmental 

impact 

Evidence 

7 Material type N/A Environmental 

impact 

Evidence 

8 Value of asset N/A Impact Evidence 

9 Population N/A Impact Evidence 

10 Environmental 

impact 

Weather/Material Type Impact Intermediate 

11 Impact Environmental impact/ 

Population/Value of asset 

Risk Intermediate 

12 Risk Impact N/A Query 
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Table 3-2: Bayesian Network Node States 

Node Node name States 

1 Flow Conditions High Flow; No High Flow 

2 Operator notices 

high flow and 

reduces flow 

Reduces High Flow; Does Not Reduce High Flow; No High 

Flow 

3 Valve 2 Conditions Open Valve 2; Does Not Open Valve 2; No High Flow; Does 

Not Reduce High Flow 

4 Valve 1 Conditions Open Valve 2; Close Valve 1; Does Not Close Valve 1; No 

High Flow; Does Not Reduce High Flow 

5 Operating 

Conditions 

Safe; Accident 

6 Weather Clear; Windy; Rainy; Stormy 

7 Material type Normal; Flammable; Toxic; Corrosive 

8 Value of asset High; Moderate; Low 

9 Population High; Moderate; Low 

10 Environmental 

impact 

Severe; Moderate; Low 

11 Impact Severe; Moderate; Low 

12 Risk High; Moderate; Low 

 

 

Figure 3-7: Bayesian Network of the Tank with Two Manual Valves 

Once the operating condition probabilities were determined a risk matrix was developed. 

The risk matrix used for the tank case is shown in Figure 3-8. The environmental impact 

considers the type of material and the weather conditions. The types of materials include 

flammable, toxic, corrosive and normal. The term normal was used for materials that are not 

considered dangerous. The types of weather considered were clear, windy, rain and stormy. The 

term stormy was used to consider more extreme weather such as both rainy and windy weather. 
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The environmental impact, asset cost and the population of the surrounding area were considered 

for the overall impact. The population and cost of the asset were divided into high, moderate and 

low. The impact was related to the final risk. For example, the environmental impact of 

flammable materials and windy weather was given a higher severity than normal material and 

any type of weather. This matrix was combined with the final operation condition of the tank to 

give the risk for any period of time.   

 

Figure 3-8: Risk and Impact Bayesian Network 

The risk and impact network was combined with the operating condition network to 

create the overall risk for the tank operation. The combined networks are shown in Figure 3-9.   
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Figure 3-9: Operating and Risk Impact Networks Combined 

In Figure 3-9, the likelihood of an accident and the overall impact gave a high risk value 

of 3.30%. If the material is changed to flammable the high risk will increase to a value of 3.83%. 

If the material is changed to toxic and the population to high the risk will increase to 4.47%.  

3.4.3. Updated Bayesian Network Development  

To relax the linear nature of the event tree, the Bayesian network was updated to allow 

for either valve to be opened without having one of the valve actions fail. The updated Bayesian 

network for the two valve system is shown in Figure 3-10. Additional nodes were added to 

include conditions of the valves changing and if the valve action was effective enough to stop an 

overflow action.  The probability of an overflow accident for the tank is now 0.0508 or 5.08% 

and the probability for safe operation was reduced to 94.92%. The high risk probability was 

reduced to 2.94%.  
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Figure 3-10: Updated Bayesian Network of Two Valve Tank 

The two valve model of Figure 3-10 was updated to include the use of the bypass valve 

V-3 as shown in Figure 3-11.  The probability of an overflow accident for the tank with bypass 

was 0.0348 or 3.48% and the probability of safe operation was 96.52%. The high risk probability 

was again reduced to a value of 2.01%. 

 

Figure 3-11: Bayesian Network for Tank with Bypass Valve 

The original tank example was under manual operation only. To further improve safety 

and reliability and automatic control loop was added in place of the manual valves. It is thought 

by many that by automating a process system it can be made safer (Haight & Caringi, 2007).  
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The manual valves were replaced with an automatic control valve on V-2 with a level indicator 

and transmitter on the tank as shown in Figure 3-12.  

 

Figure 3-12: Tank Example with a Level Control Loop on Valve V-2 

A new Bayesian network was created for the single automated control valve in Figure 3-

13. This new network included the conditions of the level indicator and transmitter and the flow 

controller. With just the automatic valve V-2 the probability of an accident actually increased to 

4.43% with the probability of safe operation decreasing to 95.57%.  This result was not 

unexpected. This is now only one route of failure instead of three routes of failure with the 

valves. The high risk probability increased to 2.56%. 
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Figure 3-13: Bayesian Network for Automated Valve with Level Control Loop 

To continue the trend of increasing the level of automation another control loop was 

added to the tank. A flow transmitter was added to the tank on the valve V-1 as shown in Figure 

3-14.  

 

Figure 3-14: Tank with Flow and Level Control Loops 

The Bayesian network of Figure 3-13 was updated and modified to include the new flow 

control loop on V-1 as shown in Figure 3-15. The addition of another control loop further 

increased the safety of the system to 98.77% and reduced the probability of accident to 1.23%. 

By adding control loops for a simple system and removing the manual operations, the operators 
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talents and skills may be applied elsewhere (Haight & Caringi, 2007). The high risk probability 

decreased to 0.713%. 

 

Figure 3-15: Bayesian Network for Two Control Loops 

To further continue the trend of automation, all valves were made into control valves as 

seen in Figure 3-16. A flow transmitter was added to the line after the bypass line and set to 

control the bypass valve V-3 in the event that one or both of the other valves or control loops 

failed.  

 

Figure 3-16: Tank with Two Flow Control Loops and Level Control Loop 
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Figure 3-17: Bayesian Network with Two Flow Control Loops and Level Control Loop 

The Bayesian network was modified again, Figure 3-17, to include the latest flow control 

loop and improve the tank system. The probability of an accident was reduced to 1.04% and the 

probability of safe operation was increased to 98.96%. The high risk probability was decreased 

further to 0.585%. The system is now completely automated. The system could be made even 

safer by implementing an additional safety system.  

The safety system proposed would be isolated from the main control loops and be there 

as a backup to operations. The safety system would have independent isolated sensors and 

controls signals on the valves in the event the control loops failed. The proposed safety system 

can be seen in Figure 2-18. The safety system transmitters and signals are highlighted in green.  
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Figure 3-18: Tank Diagram with Safety System 

The Bayesian network for the existing control loops was updated a final time to include 

the proposed safety system in Figure 3-18. The network is set up to include the condition that if 

the control systems as a whole or the existing control sensors fail the safety system would be 

activated in Figure 3-19. There are now six sensors, three for the original control system and 

three for the safety system. The safety system is responsible for the safe shutdown operation as a 

last resort to prevent an accident. With the safety system the probability of accident was reduced 

to 0.0105% and the probability of safe operation was increased to 99.9895%.  The high risk 

probability was decreased to a final value of 0.00118%. 
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Figure 3-19: Bayesian Network for the Control and Safety System 
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A summary of all of the accident and Risk of failure is shown in Table 3-3 with a 

calculation to show the percent reduction from the original manual system.  

Table 3-3: Summary of Accident and Risk of Failure for the Tank Systems 

 Accident 

Probability 

Change in 

Accident 

Probability 

Risk of Failure Change in the 

Risk 

Manual Valve 

System 

5.08% -- 2.94% -- 

Manual System 

with Bypass 

Valves 

3.48% -31.5% 2.01% -60.4% 

Level Control 

System 

4.43% -12.8% 2.56% -49.6% 

Control System 

with Two 

Controls 

1.23% -75.8% 0.713% -86.0% 

Control System 

with Three 

Controls 

1.02% -79.9% 0.588% -88.4% 

Three Controls 

with Additional 

Safety System 

0.0203% -99.6% 0.0118% -99.8% 

 

The values of the high risk were plotted over time using random data for the instances of 

high flow rates for the tank systems. Table 3-4 shows the random data for each of the tank 

systems. Figure 3-20 shows the high risk value multiplied by the instances of high flow for each 

minute of operation. A threshold value of 0.001 or 0.1% was selected to show the minimally 

acceptable risk level.  

The tank with the safety system is the only system to be below the threshold value based 

on the original Bayesian networks.  
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Table 3-4: High Risk Probabilities over Time for Each Tank System Using High Flow Data 

Minutes High flow 

readings in a 

minute taken 

each second 

High flow 

readings in 

one minute 

Manual 

Valves 

Manual 

Valves 

with 

Bypass 

Level 

Control 

System 

Level and 

Flow 

Control 

System 

Level and Two 

Flow Control 

Systems 

Level and 

Two Flow 

Control and 

Safety System 

0 0 0 0 0 0 0 0 0 

1 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05 

2 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05 

3 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

4 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

5 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

6 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

7 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

8 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

9 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05 

10 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05 

11 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05 

12 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05 

13 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05 

14 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05 

15 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

16 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

17 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

18 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 

19 16 0.267 0.00784 0.00536 0.00683 0.00190 0.00157 3.15E-05 

20 15 0.250 0.00735 0.00503 0.00640 0.00178 0.00147 2.95E-05 
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Figure 3-20: High Risk Probabilities Plotted over 20 Minutes for Each Tank System 
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As an example of how the high risk probability changes with different physical 

conditions a sample case was used. For this tank, the risk matrix was changed to show the value 

of the asset as moderate, the population as low, the weather as clear and the material was 

changed from normal to flammable as shown in Figure 3-21. The results of the high risk change 

when the material was switched from normal to flammable in shown in Table 3-5.  

 

Figure 3-21: Risk Network with Evidence Selected for Case 
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Table 3-5: High Risk Probability of Tank Systems when Material is changed from Normal 

to Flammable 

 High Risk for Normal 

Material 

High Risk for Flammable 

Material 

Manual Valve System 1.13% 2.14% 

Manual System with Bypass 

Valves 
0.771% 1.47% 

Level Control System 0.981% 1.87% 

Control System with Two 

Controls 
0.273% 0.521% 

Control System with Three 

Controls 
0.225% 0.429% 

Three Controls with 

Additional Safety System 
0.00451% 0.00858% 

 

Using the same random data given in Table 3-4, Table 3-6 was created to show the 

probability of an accident for each of the tiers of protection with flammable material. In this 

scenario, the high risk values for the tanks with two control loops, three control loops and three 

control loops with a safety system were below the acceptable levels of risk until the weather was 

changed from clear to windy at 10 minutes. Only the safety system was below the acceptable 

risk. Since the value is so small, it will be very unlikely that the risk level will ever be above the 

threshold.  
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Table 3-6: High Risk Values for all Tank Designs with Normal Material changed to Flammable Material  

Minutes 

High flow 

readings in a 

minute taken 

each second 

High flow 

readings 

in one 

minute 

Manual 

Valves 

Manual 

Valves with 

Bypass 

Level 

Control 

System 

Level and 

Flow 

Control 

System 

Level and 

Two Flow 

Control 

Systems 

Level and 

Two Flow 

Control and 

Safety 

Systems 

0 0 0 0 0 0 0 0 0 

1 16 0.267 0.00301 0.00206 0.002616 0.000728 0.000600 1.20E-05 

2 16 0.267 0.00301 0.00206 0.002616 0.000728 0.000600 1.20E-05 

3 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05 

4 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05 

5 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05 

6 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05 

7 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05 

8 15 0.250 0.00283 0.00193 0.002453 0.000683 0.000563 1.13E-05 

9 16 0.267 0.00301 0.00206 0.002616 0.000728 0.000600 1.20E-05 

10 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05 

11 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05 

12 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05 

13 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05 

14 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05 

15 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05 

16 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05 

17 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05 

18 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05 

19 16 0.267 0.00571 0.00392 0.00499 0.00139 0.00114 2.29E-05 

20 15 0.250 0.00535 0.00368 0.00468 0.00130 0.00107 2.15E-05 
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Figure 3-22: High Risk Probability for all Tank Systems for Normal Material changed to Flammable Material 
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3.5.  Conclusion  

The work outlined in this chapter proposes a dynamic risk monitoring system for process 

industries using a Bayesian network. By increasing the safety features, the overall risk to the 

process was reduced. This method allows for the risk of a process to be monitored in real time, 

and provides an opportunity for changes to be made to the process to minimize the risk. This 

method can be applied to other process systems to monitor risk in real time.  
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4. Chapter 4: Application of Risk Monitoring Methodology to the Williams 

Geismar Reboiler Rupture and Fire Accident 

4.1.  Overview 

On June 13
th

, 2013 a reboiler on the propylene fractionator of the Williams Geismar 

Olefins Plant in Louisiana ruptured and caught fire. This accident killed two plant personal 

workers and injured 167 (CSB, Williams Geismar Olefins Plant Reboiler Rupture and Fire 

Geismar, Louisiana, 2016). The methodology presented in Chapter three was applied to this 

accident to demonstrate real world applications.  

Two safety and risk Bayesian networks were created for this case study. The first 

network created is based on the original design of the reboiler and propylene system. The second 

network created was based on an updated design using the recommendations by an investigative 

organization and the additional safety system demonstrated in Chapter three.  

The olefins plant operations and the accident are described in this chapter. 

4.2.  Case Study Background 

Olefins, also known as alkenes, are a family of hydrocarbons that have one or more 

double carbon bonds. The Williams Geismar Olefins Plant produces propylene and ethylene 

from propane and ethane, respectively.  The process for producing ethylene and propylene is 

shown in Figure 4-1 as a process flow diagram.  
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Figure 4-1: Process Flow Diagram of the Williams Geismar Plant 

First, ethane and propane enter furnaces where they are converted or cracked into 

ethylene, propylene and by-products such as methane and butadiene. These gas products are first 

cooled by heat exchangers after leaving the furnaces. The gases are then further cooled in a 

quench tower. The cooled gases are then sent to different distillation columns for separation. The 

demethanizer column removes methane. The deethanizer removes the ethane and ethylene. The 

depropanizer removes propane and propylene. The remaining gases enter a debutanizer and are 

separated into butadiene and some other aromatic compounds such as toluene and benzene. The 

ethylene, propylene, butadiene and aromatic compounds are stored and transported. The ethane 

and ethylene of the deethanizer are sent to the ethylene fractionator which separates the ethane 
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and ethylene. The ethane is recycled back to the beginning of the process. The propane and 

propylene from the depropanizer are sent to a propylene fractionator which separates the propane 

and propylene. The propane, like the ethane, is recycled to the beginning of the process.  

In the quench tower, the gases are directly contacted with quench water which is sprayed 

down from the top. The quench water is heated by the gases and is used to provide heat in other 

areas of the plant. When the quench water is used for heating in areas of the plant it is cooled. 

The quench water is further cooled by a cooling system and then recycled back to the quench 

water tower in a closed system. Since the gas is in direct contact with the water, some gas 

products are condensed in the water as oily tar products (CSB, Williams Geismar Olefins Plant 

Reboiler Rupture and Fire Geismar, Louisiana, 2016). The oily products must be removed during 

a settling process before the water is used for heating. Unfortunately, some of the oily products 

are left in the quench water.   

Each of the distillations columns requires reboilers. The reboilers are shell and tube heat 

exchangers. The heat for the reboilers is supplied by the treated quench water. The process 

streams are heated in the shell and the quench water is cooled in the tubes of the reboilers. The 

oily products in the water are known to build-up on the insides of equipment including heat 

exchanger tubes. This build-up is known as fouling. Fouling of the tubes reduces the heat 

transfer potential and decreases flow rates. When the fouling is severe, maintenance is required 

to remove the oily build up. 

The schematic for the propylene fractionator prior to the accident is shown in Figure 4-2. 

Valves one and two on the tube side are ball valves. Valves three and four on the shell side are 

gate valves. There is a control valve on the quench water system. 
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Figure 4-2: Propylene Fractionator Schematic for Williams Geismar Plant 

The propylene fractionator had two reboilers, known as Reboiler A and Reboiler B. The 

reboiler that ruptures and caught on fire was reboiler B. The process fluid on the shell side 

contained a mixture of 95% propane with the balance propylene and four carbon hydrocarbons 
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such as butane.  This thesis with refer to the propane mixture as propane. The quench water 

entered the reboiler on the tube side to heat the propane on the shell side.  

Originally, both reboilers were operated continuously in series. When maintenance on 

one or both reboilers was required the system was shutdown. In 2001, the reboilers were 

reconfigured to operate in parallel so that one reboiler could operate when the other required 

maintenance.  After this reconfiguration, the reboilers had additional valves installed so that it 

could be isolated from the system. The pressure relief devices of the reboilers were located on 

the top of the fractionator column. When reboiler was isolated from the process it was also 

isolated from the pressure relief devices. Reboiler B was isolated for 16 months using block 

valves on both the tube and shell sides (CSB, Williams Geismar Olefins Plant Reboiler Rupture 

and Fire Geismar, Louisiana, 2016). The block valves were leaking propane into the shell over 

the duration of the isolation. This leakage was unknown to the plant operators at the time. When 

a plant employee opened the gate valve on the tube side hot water inlet a Boiling Liquid 

Expanding Vapor Explosion (BLEVE) occurred. The hot water heated the propane in the shell 

and caused the liquid to boil and caused the emerging vapor to expand resulting in an explosion.  

The reboiler shell ruptured due to the increase in pressure and lack of pressure relief. Upon 

release, the propane mixture caught fire and burned for three and a half hours. (Center for 

Chemical Process Safety, 2010) 

4.3.  Methodology Application on Original Reboiler Design 

The methodology of chapter two was applied to a real world case study to show the 

applications. The accident scenario considered for this application is the overpressure of a 

reboiler. The basis for calculations is the flow of propane entering the shell.  
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The schematic for the propylene fractionator prior to the accident is shown in Figure 4-2 

was used to develop the Bayesian Network.  

An overpressure accident scenario for the reboilers would be caused by the following 

actions: overheating caused by the tube side, isolation from the pressure relief devices and 

accumulation in the shell (Guo, Khan, & Imtiaz, 2019). An increase of tube side fluid 

temperature would increase the temperature of the shell side process fluid and subsequently 

increase the pressure. The tube side fluid heat potential can increase when the flow is increased 

or the temperature of the fluid increases. If the reboiler is isolated from the pressure relief device, 

a pressure increase beyond the threshold of the equipment material will result in a rupture.  

A network based on the Olefins plant design prior to the accident is shown in Figure 4-3. 

The basis for the risk calculation is the flow rate of propane entering the reboiler. This network 

was not based on the templates of chapter three. In this network there are 21 nodes. Table 4-1 

shows the characterization and relationships of the nodes within the network. Table 4-2 shows 

the states of each of the nodes. This model involves the three main events, stated above, that 

would cause an overpressure accident of the reboiler.  
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Table 4-1: Bayesian Network Node Characterization and Relationships for the Original Reboiler Design 

Node Node Name Parent Child Characterization 

1 Propane Feed 

Conditions 

N/A Operator Notices Flow Condition Evidence 

2 Operator Notices 

Flow Condition 

Propane Feed Conditions Tube Side: Inlet Valve; Tube 

Side: Outlet Valve; Shell Side: 

Inlet Valve; Shell Side: Outlet 

Valve 

Intermediate 

3 Tube Side: Inlet 

Valve 

Operator Notices Flow Condition Overheating of Heat Exchanger Intermediate 

4 Tube Side: Outlet 

Valve 

Operator Notices Flow Condition Overheating of Heat Exchanger Intermediate 

5 Shell Side: Inlet 

Valve 

Operator Notices Flow Condition Accumulation in Shell; Isolated 

from PSV? 

Intermediate 

6 Shell Side: Outlet 

Valve 

Operator Notices Flow Condition Accumulation in Shell; Isolated 

from PSV? 

Intermediate 

7 Isolated from PSV? Shell Side: Inlet Valve; Shell Side: 

Outlet Valve 

Operating Condition  Intermediate 

8 Accumulation in 

Shell 

Shell Side: Inlet Valve; Shell Side: 

Outlet Valve 

Operating Condition Intermediate 

9 Flow Transmitter 

FT-QW Accuracy  

N/A Flow Control Signal to Valve CV-

QW 

Evidence 

10 Flow Control Signal 

to Valve CV-QW 

Flow Transmitter FT-QW 

Accuracy 

Action on Valve CV-QW Intermediate 

11 Action on Valve 

CV-QW 

Flow Control Signal to Valve CV-

QW 

Overheating of Heat Exchanger Intermediate 

12 Overheating of Heat 

Exchanger  

Change in Quench Water 

Temperature; Action on Valve CV-

QW 

Operating Condition Intermediate 

13 Change in Quench 

Water Temperature 

N/A Overheating of Heat Exchanger Evidence 

14 Operation Condition  Overheating of Heat Exchanger; Risk Intermediate 
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Node Node Name Parent Child Characterization 

Accumulation in Shell; Isolated 

from PSV? 

15 Weather N/A Environmental impact Evidence 

16 Material type N/A Environmental impact Evidence 

17 Value of asset N/A Impact Evidence 

18 Population N/A Impact Evidence 

19 Environmental 

impact 

Weather; Material type Impact Intermediate 

20 Impact Value of asset; Population; 

Environmental impact 

Risk Intermediate 

21 Risk Impact; Operation Condition N/A Query 
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Table 4-2: Bayesian Network Node States for the Original Design 

Node Node Name States 

1 Propane Feed Conditions High Flow; No High Flow; 

2 Operator Notices Flow Condition Operator Notices High Flow; Operator Does Not Notice High Flow; No High 

Flow 

3 Tube Side: Inlet Valve Tube Inlet Open; Tube Inlet Close; No High Flow 

4 Tube Side: Outlet Valve Tube Outlet Open; Tube Outlet Close; No High Flow 

5 Shell Side: Inlet Valve Shell Inlet Open; Shell Inlet Close; No High Flow 

6 Shell Side: Outlet Valve Shell Outlet Open; Shell Outlet Close; No High Flow 

7 Isolated from PSV? Yes Isolated; No Isolated; No High Flow 

8 Accumulation in Shell Yes Accumulation; No Accumulation; No High Flow 

9 Flow Transmitter FT-QW Accuracy FTQW Accurate; FTQW Inaccurate 

10 Flow Control Signal to Valve CV-QW Action Open CV-QW; Action Fail 

11 Action on Valve CV-QW CVQW Open; CVQW Not Open 

12 Overheating of Heat Exchanger QW Temperature Increase; QW Temperature Does Not Increase 

13 Change in Quench Water Temperature Yes Overheating; No Overheating; No High Flow 

14 Operation Condition Safe; Accident 

15 Weather Clear; Windy; Rainy; Stormy 

16 Material type Normal; Flammable; Toxic; Corrosive 

17 Value of asset High; Moderate; Low 

18 Population High; Moderate; Low 

19 Environmental impact Severe; Moderate; Low 

20 Impact Severe; Moderate; Low 

21 Risk High; Moderate; Low 
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Figure 4-3: Bayesian Network for Original Design of Geismar Plant 
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Based on the subjective values used in this network, the probability of an accident was 

5.60%. The probability of high risk, without any evidence selected, was 1.96%.  

The probability of high risk changed to 1.76% when the appropriate evidence was 

selected. It was assumed that the weather was clear, the population was low, the material type 

was flammable, and the cost of the asset was moderate.  

4.4.  Methodology Application on Updated Safe Reboiler Design 

The original design of the reboiler systems was poor. The CSB made recommendations 

for the plant after their investigation was concluded. Most of the recommendations made were 

based on the management of the plant. One of the recommendations made was that a pressure 

relief device should be installed on the reboiler shell and not on another piece of equipment. This 

recommendation was not unexpected. National Board of Boiler and Pressure Vessel Inspectors 

and National Board Inspection Code (NBIC) require that pressure relief devices are installed on 

all pressure vessels were the source of overpressure is internal to the vessel. At the time of the 

accident, Louisiana did not adopt this code (CSB, Williams Geismar Olefins Plant Reboiler 

Rupture and Fire Geismar, Louisiana, 2016).  

As part of the methodology of chapter three, the reboiler system was redesigned with 

safety controls.  Figure 4-4 shows the control systems of Heat Exchanger A. Since the reboilers 

are operated in parallel it was assumed that both reboilers would have the same separate control 

systems.  In this system, there are three control loops for the tube inlet valve. The tube inlet flow 

can be based on the temperature of the shell outlet in a feedback loop, the flow of the inlet itself 

in a feedback loop and the temperature and flow of the shell inlet in a feedforward loop. The 

flows of the shell outlet, shell inlet and tube outlet are controlled by flow controllers. The quench 
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water flow rate is controlled by the same flow control loop as before in Figure 4-4. A pressure 

relief device was installed on the shell of each reboiler.  

 

 

Figure 4-4: Schematic of Controls for Updated Reboiler Design 
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Similar to the final tank design of chapter three, an additional safety system was installed 

on the reboilers. For each control loops there are additional sensors and control signals separate 

from the operation in the case where a system shutdown is required. The control schematic for 

both heat exchangers is shown in Figure 4-5. 

 

Figure 4-5: Schematic of the Reboiler Design with Two Reboilers 
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Another network was developed based on the updated safety design of the reboilers 

including the safety system. Table 3-3 outlines the node characterization and the relationships. 

There are a total of 49 nodes. 

For each of the control loop transmitter nodes there are the following states: transmitter 

accurate, transmitter inaccurate, control system not operational and no high flow. For the safety 

control loop transmitters nodes there are the following states: transmitter accurate, transmitter 

inaccurate, control system not operational, control sensors operational and no high flow. For the 

control action nodes there are the following states: action success, action fail, control system not 

operation and no high flow. The safety control action nodes have the states: action success, 

action fail, control system operational, safety system not operational and no high flow. The 

nodes that are the same the original design network have the same states in this network. 
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Table 4-3: Bayesian Network Node Characterization and Relationships for Safe Design 

Node Node Name Parent Child Characterization 

1 Flow Conditions N/A Control system Condition; Safety System 

Operational 

Evidence 

2 Control system Condition Flow Conditions Safety System Operational; Flow 

Transmitter 0 Accuracy; Flow Transmitter 1 

Accuracy; Flow Transmitter 2 Accuracy; 

Flow Transmitter 3  Accuracy; Flow 

Transmitter 4 Accuracy; Temperature 

Transmitter 0 Accuracy; Temperature 

Transmitter 1 Accuracy 

Intermediate 

3 Flow Transmitter 0 

Accuracy (Tube Inlet) 

Control system Condition Flow Control 0 Signal Intermediate 

4 Flow Transmitter 1 

Accuracy (Tube Inlet) 

Control system Condition Flow Control 1 Signal Intermediate 

5 Flow Transmitter 2 

Accuracy (Tube Outlet) 

Control system Condition Flow Control 2 Signal Intermediate 

6 Flow Transmitter 3 

Accuracy  (Shell Outlet) 

Control system Condition Flow Control 3 Signal Intermediate 

7 Flow Transmitter 4 

Accuracy (Shell Inlet) 

Control system Condition Flow Control 4 Signal Intermediate 

8 Temperature Transmitter 

0 Accuracy (Tube Inlet) 

Control system Condition Temperature Control Signal 0 Intermediate 

9 Temperature Transmitter 

1 Accuracy (Tube Inlet) 

Control system Condition Temperature Control Signal 1 Intermediate 

10 Temperature Control 

Signal 0 (Tube Inlet) 

Temperature Transmitter 0 

Accuracy 

Control Action Effectiveness (Tube Side) Intermediate 

11 Temperature Control 

Signal 1 (Tube Inlet) 

Temperature Transmitter 1 

Accuracy 

Control Action Effectiveness (Tube Side) Intermediate 
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Node Node Name Parent Child Characterization 

12 Flow Control 0 Signal 

(Tube Inlet) 

Flow Transmitter 0 Accuracy Control Action Effectiveness (Tube Side) Intermediate 

13 Flow Control 1 Signal 

(Tube Inlet) 

Flow Transmitter 1 Accuracy Control Action Effectiveness (Tube Side) Intermediate 

14 Flow Control 2 Signal 

(Tube Outlet) 

Flow Transmitter 2 Accuracy Control Action Effectiveness (Tube Side) Intermediate 

15 Flow Control 3 Signal 

(Shell Outlet) 

Flow Transmitter 3 Accuracy Control Action Effectiveness (Shell Side) Intermediate 

16 Flow Control 4 Signal 

(Shell Inlet) 

Flow Transmitter 4 Accuracy Control Action Effectiveness (Shell Side) Intermediate 

17 Control Action 

Effectiveness (Shell Side) 

Flow Control 3 Signal (Shell 

Outlet); Flow Control 4 

Signal (Shell Inlet); 

Accumulation in Shell Intermediate 

18 Control Action 

Effectiveness (Tube Side) 

Flow Control 0 Signal (Tube 

Inlet); Flow Control 1 Signal 

(Tube Inlet); Flow Control 2 

Signal (Tube Outlet); 

Temperature Control 0 Signal 

(Tube Inlet); Temperature 

Control 1 Signal (Tube Inlet) 

Overheating on Tube Side Intermediate 

19 Safety System Operational Control system Condition Safety Flow Transmitter 0 Accuracy; Safety 

Flow Transmitter 1 Accuracy; Safety Flow 

Transmitter 2 Accuracy; Safety Flow 

Transmitter 3 Accuracy; Safety Flow 

Transmitter 4 Accuracy; Safety 

Temperature Transmitter 0 Accuracy; 

Safety Temperature Transmitter 1 Accuracy 

Intermediate 

20 Safety Flow Transmitter 0 

Accuracy 

Safety System Operational Safety Flow Control 0 Signal Intermediate 

21 Safety Flow Transmitter 1 

Accuracy 

Safety System Operational Safety Flow Control 1 Signal Intermediate 
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Node Node Name Parent Child Characterization 

22 Safety Flow Transmitter 2 

Accuracy 

Safety System Operational Safety Flow Control 2 Signal Intermediate 

23 Safety Flow Transmitter 3 

Accuracy 

Safety System Operational Safety Flow Control 3 Signal Intermediate 

24 Safety Flow Transmitter 4 

Accuracy 

Safety System Operational Safety Flow Control 4 Signal Intermediate 

25 Safety Temperature 

Transmitter 0 Accuracy 

Safety System Operational Safety Temperature Control Signal 0 Intermediate 

26 Safety Temperature 

Transmitter 1 Accuracy 

Safety System Operational Safety Temperature Control Signal 1 Intermediate 

27 Safety Temperature 

Control Signal 0 

Safety System Operational Safety Action Effectiveness (Tube Side) Intermediate 

28 Safety Temperature 

Control Signal 1 

Safety System Operational Safety Action Effectiveness (Tube Side) Intermediate 

29 Safety Flow Control 0 

Signal 

Safety Flow Transmitter 0 

Accuracy 

Safety Action Effectiveness (Tube Side) Intermediate 

30 Safety Flow Control 1 

Signal 

Safety Flow Transmitter 1 

Accuracy 

Safety Action Effectiveness (Tube Side) Intermediate 

31 Safety Flow Control 2 

Signal 

Safety Flow Transmitter 2 

Accuracy 

Safety Action Effectiveness (Tube Side) Intermediate 

32 Safety Flow Control 3 

Signal 

Safety Flow Transmitter 3 

Accuracy 

Safety Action Effectiveness (Shell Side) Intermediate 

33 Safety Flow Control 4 

Signal 

Safety Flow Transmitter 4 

Accuracy 

Safety Action Effectiveness (Shell Side) Intermediate 

34 Safety Action 

Effectiveness (Tube Side) 

Safety Flow Control 0 Signal; 

Safety Flow Control 1 Signal; 

Safety Flow Control 2 Signal;  

Safety Temperature Control 0 

Signal; Safety Temperature 

Control 1 Signal 

Overheating on Tube Side Intermediate 

35 Safety Action 

Effectiveness (Shell Side) 

Safety Flow Control 3 Signal; 

Safety Flow Control 4 Signal; 

Accumulation in Shell Intermediate 
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Node Node Name Parent Child Characterization 

36 Flow Control Action on 

CV-QW 

FT-QW Accuracy Overheating on Tube Side Intermediate 

37 FT-QW Accuracy N/A Flow Control Action on CV-QW Evidence 

38 Quench Water 

Temperature Increase 

N/A Overheating on Tube Side Evidence 

39 Accumulation in Shell Safety Action Effectiveness 

(Shell Side); Control Action 

Effectiveness (Shell Side) 

Operating Condition Intermediate 

40 Overheating on Tube Side Safety Action Effectiveness 

(Tube Side); Control Action 

Effectiveness (Tube Side); 

Quench Water Temperature 

Increase; Flow Control 

Action on CV-QW 

Operating Condition Intermediate 

41 Is PSV Operational? N/A Operating Condition Evidence 

42 Operating Condition Accumulation in Shell; 

Overheating on Tube Side; Is 

PSV Operational? 

Risk Intermediate 

43 Weather N/A Environmental impact Evidence 

44 Material type N/A Environmental impact Evidence 

45 Value of asset N/A Impact Evidence 

46 Population N/A Impact Evidence 

47 Environmental impact Weather; Material type Impact Intermediate 

48 Impact Value of asset; Population; 

Environmental impact 

Risk Intermediate 

49 Risk Impact; Operation Condition N/A Query 
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Figure 4-6: Bayesian Network of the Updated Reboiler Design 
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The network for the safe design is shown in Figure 4-6. The probability of accident was 

decreased to 0.249% from 5.60% and the probability of high risk was decreased to 0.501% from 

1.96%. With the same evidence selected for the original design, the high risk probability was 

decreased 0.407% from 1.76%. The probability for an overpressure accident was decreased by 

95.6% and the high risk probability was decreased 76.9% by with these additional safety 

measures.  

4.5.  Risk of Reboiler Rupture Monitored Over Time 

The risk and flow rate of propane entering the shell was plotted over time in Figure 4-7. 

Table 4-4 shows the data used to plot the risk over time.  
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Table 4-4: Sample Data for Plotting Risk of Original and Updated Design over Time 

Minutes High flow readings 

in a minute taken 

each second 

High flow 

readings in one 

minute 

Reboiler Safety Re-

Design 

Original Reboiler 

Design of 2001 

1 3 0.0500 0.000204 0.000880 

2 3 0.0500 0.000204 0.000880 

3 3 0.0500 0.000204 0.000880 

4 3 0.0500 0.000204 0.000880 

5 4 0.0670 0.000271 0.00117 

6 4 0.0670 0.000271 0.00117 

7 4 0.0670 0.000271 0.00117 

8 4 0.0670 0.000271 0.00117 

9 6 0.100 0.000407 0.00176 

10 6 0.100 0.000407 0.00176 

11 6 0.100 0.000407 0.00176 

12 6 0.100 0.000407 0.00176 

13 6 0.100 0.000407 0.00176 

14 6 0.100 0.000407 0.00176 

15 5 0.0830 0.000339 0.00147 

16 5 0.0830 0.000339 0.00147 

17 5 0.0830 0.000339 0.00147 

18 5 0.0830 0.000339 0.00147 

19 5 0.0830 0.000339 0.00147 

20 5 0.0830 0.000339 0.00147 

21 5 0.0830 0.000339 0.00147 

22 5 0.0830 0.000339 0.00147 

23 5 0.0830 0.000339 0.00147 

24 5 0.0830 0.000339 0.00147 

25 4 0.0670 0.000271 0.00117 

26 4 0.0670 0.000271 0.00117 

27 4 0.0670 0.000271 0.00117 

28 4 0.0670 0.000271 0.00117 

29 4 0.0670 0.000271 0.00117 

30 4 0.0670 0.000271 0.00117 
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Figure 4-7: Plot of Risk over Time for both Original and Updated Reboiler Design
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As shown in Figure 4-7, the risk level for the reboiler with the new design is much less 

risky as it is below the threshold. Since there are two reboilers, the data for the second could be 

used with the same matrix and its different conditions. Both reboiler overpressure risks could be 

plotted on the same graph. 

4.6.  Conclusion  

For the Williams Geismar plant, the design was highly risky. It required significant 

revision to be a safer design. Analyzing the accident using the proposed methodology it is 

observed that if a monitoring system had been put in place, an accident may not have occurred. 

This risk monitoring system only considered the event of an over pressured reboiler and does not 

consider other accident scenarios. Incorporating different accident scenarios into a single matric 

is part of further work.   
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5. Chapter 5: Conclusion and Future Work 

5.1.   Conclusions 

In conclusion, risk can be monitored in a process system over time. While event trees are 

commonly used in risk assessments, this thesis describes how event trees can be modified into 

Bayesian networks. Event trees are static and lack flexibility for accurately determining risk in a 

process system. Bayesian networks are beneficial for risk prediction as they are dynamic and can 

change in real time to more accurately reflect process operations. The risk values produced by 

these networks can be used with process data to monitor process risk in real time. A summary of 

each chapter is as follows.  

Chapter one introduces safety and risk monitoring in process systems. The research 

motivation, objectives and outline were described in this chapter.   

Chapter two describes a literature review completed on process safety and risk, 

monitoring and modelling. Different process accidents were described, as well as different 

accident modelling techniques. The risk assessment method that is becoming more popular in 

literature and industry was used in the development of the methodology in chapter three. The 

factors influence safety 

Chapter three proposes a methodology for developing a risk monitoring model using 

event tree and Bayesian networks. These networks can be used to monitor risk in real time. 

Bayesian network uses and applications were described.  A simple example of an overflowing 

tank is used as basis for the network model. The design of the tank was improved upon in six 

steps to show how the improvements in safety reduce the overall risk of the process. The risk of 

the overflowing tank was plotted over time. The Bayesian network is dynamic and is used to 
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show how changing conditions improve or worsen the risk. It was shown how the Bayesian 

network can improve the prediction of an accident over the event tree as independent factors that 

could lead to an accident could be captured. This methodology created a framework for future 

studies and the ability to apply it to cases as seen in chapter four.  

Chapter four applies the methodology developed in chapter three to a real work case. The 

reboiler rupture and fire at the Williams Geismar Olefins Plant was used a case study. The 

accident of an over pressured reboiler was used for the network. A network was created based on 

the original design of the reboilers. A second network was created after safety based design 

features were implemented on the original set up. The risk values of the original and updated 

networks were plotted over time. The conditional probabilities for the final operating conditions 

were the same for both the original and safe designs. By updating the design of the reboiler to 

include safety features and controls the accident probability was decreased by 96% and the high 

risk probability was decreased 76.9%. By plotting the risk overtime, future projections of risk for 

the plant can be predicted and action can be taken to prevent accidents before they could occur. 

5.2.  Future Work 

The methodology presented in this thesis can be improved upon by considering 

multivariate parameters. The developed methodology also needs to be tested using experimental 

data. As the values used in the Bayesian networks are subjective, the accuracy of the networks 

can be improved upon by the use of credible objective data. The methodology presented here 

shows the creation of a network based on a single accident type. In the future, the networks may 

be updated to include multiple different hazards of a process instead of a single event. The 

methodology will need to be applied to more complex case studies and if possible through lab 

and field experiments to check its applicability and usefulness.  
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