

Long-range and Secure Communication System for Remote Data

Logging and Monitoring of Micro-grids

By

Amjad Iqbal

A thesis submitted to the School of Graduate Studies in partial fulfillment of the

requirements for the degree of Master of Engineering

Faculty of Engineering and Applied Sciences

Memorial University

May, 2019

St. John’s, Newfoundland and Labrador, Canada

ii

Abstract

With the increasing renewable energy penetration in the grid system, the number of

distributed generation and remote micro-grids are also increasing. While each remote

micro-grid requires to have a sophisticated (secure, long range, low power and low cost)

communication system for the Suspervisory Control and Data Acquision (SCADA) system,

creating a research gap for devising a system with desired attributes. This research was

conducted to fill that gap by implementing a low power, low cost, secure, and a long-range

communication system for remote micro-grids. The literature review comprising the study

of twelve wireless technologies and three wired technologies was done to achieve this.

After the comparison of those technologies, LoRa communication was chosen for this

purpose. Different encryption algorithms were studied, implemented, cross-checked, and

finally advanced encryption algorithm was implemented to achieve the security of the

communication system. An algorithm was developed to generate a unique message

authentication code for each message. It enabled to identify a bit-level alteration in the

message. Further, to monitor the system remotely, data was uploaded to the server. It was

achieved by programming and configuring different gateways for this purpose. LoRa range

was improved by implementing LoRa nodes in a mesh-network structure. A hybrid, LoRa

and radio-set based system was implemented to extend its range up to 40km. Three different

system topologies were designed and implemented, and the final one was recommended

based upon the SG SCADA system requirements. The results of step-by-step designing and

implementation of the system show that this research work has significantly contributed to

develope a low-cost, secure and long-range communication system for remote micro-grids.

iii

Acknowledgement

The author would like to express profound gratitude to his supervisor Prof. Dr M. Tariq

Iqbal for his supervision and encouragement throughout the research program. It was

possible only due to his guidance, technical and moral support.

The author is also thankful to all other faculty members and students of Memorial

University of Newfoundland who played their role to enable the author to achieve this.

The author would also like to thank the Natural Sciences and Engineering Research Council

(NSERC) of Canada for providing graduate student funding for this research.

iv

Table of Contents

1 Chapter # 1 Introduction and Literature Review .. 1

1.1 Introduction...1

1.1.1 Security .. 2

1.1.2 Low Power Consumption ... 2

1.1.3 Confidentiality ... 3

1.1.4 Low Cost .. 3

1.1.5 Authorisation .. 3

1.1.6 Authentication .. 4

1.1.7 Scalability... 4

1.2 Literature Review…………………………………………………………………………..4

1.2.1 Wireless Communication Technologies .. 4

1.2.2 Cellular ... 5

1.2.3 Zigbee .. 6

1.2.4 WiFi WLAN Series IEEE 802.11 .. 6

1.2.5 Bluetooth .. 7

1.2.6 Radio Teletype ... 8

1.2.7 VHF/UHF... 8

1.2.8 Optical Wireless Communication .. 9

1.2.9 Satellite Communication .. 10

1.2.10 WiMAX Series IEEE 802.16 ... 11

1.2.11 SigFox .. 11

1.2.12 LoRa ... 12

1.3 Wired Communication……………………………………………………………………13

1.3.1 Power line carrier ... 14

1.3.2 Optical Fibers ... 16

1.3.3 DSL Based Wired Communication .. 17

1.4 General Analysis of different technologies……………………………………………….18

1.5 System Security and Encryption………………………………………………………….21

1.5.1 Generating Artificial Noise Signal ... 21

1.5.2 Physical Layer Method .. 22

v

1.5.3 Cryptography ... 22

1.6 Research Goals and Objectives…………………………………………………………...23

1.6.1 Secure Communication .. 23

1.6.2 Low Power ... 24

1.6.3 Regular Updates ... 24

1.6.4 Local and Remote Data Logging ... 24

1.6.5 Implementation .. 24

1.7 Thesis Overview…………………………………………………………………………..25

2 Chapter # 2 Encryption Algorithms to Secure Communication System and Their

Implementation on DRF1276G LoRa Module .. 27

2.1 Introduction……………………………………………………………………………….27

2.1.1 Privacy ... 28

2.1.2 Message Authentication ... 28

2.1.3 Integrity .. 28

2.1.4 Nonrepudiation ... 28

2.2 Hardware Setup…………………………………………………………………………...30

2.3 Cryptographic Algorithms on Arduino with DRF1276G LoRa Module…………………34

2.3.1 Shift Cipher .. 34

2.3.2 Affine Cipher ... 36

2.3.3 Transposition Cipher .. 38

2.3.4 Hill Cipher.. 38

2.3.5 Substitution Cipher .. 39

2.4 Breaching the Encryption Algorithms…………………………………………………….39

2.5 Conclusion………………………………………………………………………………...43

3 Chapter # 3 Implementation of AES and MAC to Secure Communication System for

Remote Micro-grids ... 45

3.1 Introduction……………………………………………………………………………….45

3.2 Implementation of AES Algorithm using ESP32 and LoRa Module…………………….47

3.2.1 Adding the round key and generating a new key ... 49

3.2.2 Substitute Bytes .. 50

3.2.3 Shift Rows .. 50

3.2.4 Mix Column ... 51

3.3 Results…………………………………………………………………………………….52

vi

3.4 Conclusion………………………………………………………………………………..59

4 Chapter # 4 Data Logging Using Different Gateways and Mesh-Network

Implementation to Improve LoRa Range………………………………………………...60

4.1 Introduction……………………………………………………………………………….60

4.2 Local Data Logging……………………………………………………………………….61

4.3 ESP-32 vs Dragino Gateways…………………………………………………………….62

4.4 Implementation of Mesh Network and Range Testing……………………………………69

4.5 Complete System Flow Diagram………………………………………………………….73

4.6 Conclusion………………………………………………………………………………...75

5 Chapter # 5 Radio-set Based System Topologies for Longer Range Setup 76

5.1 Introduction……………………………………………………………………………….76

5.2 System Structure-I………………………………………………………………………...77

5.3 Hardware Setup and Interfacing…………………………………………………………..79

5.3.1 RA30H1317M .. 79

5.3.2 DC Power Supply LRS-150-12 .. 80

5.3.3 Building MAX 232 circuit ... 81

5.1.1 Setting USR-TCP232 ... 83

5.3.5 Ethernet and USR-TCP232 setting .. 85

5.4 System Structure-II………………………………………………………………………..87

5.5 System Structure-III………………………………………………………………………89

6 Chapter # 6 Summary and Recommendations.. 93

6.1 Summary of Work………………………………………………………………………...93

6.2 Future Work Recommendations…………………………………………………………..95

6.3 List of Publications………………………………………………………………………..95

6.3.1 Submitted ... 95

6.3.2 Published/Accepted .. 95

6.3.3 Poster Presentation ... 96

7 References... 97

8 Appendix A C++ code to Breach the Hill Cipher .. 104

9 Appendix B Arduino code for LoRa duplex communication.................................... 109

10 Appendix C Flexible Arduino-code for all level nodes of mesh-network to

display/encrypt/decrypt/forward message ... 111

11 Appendix D Configuring SD card and logging data locally 145

vii

12 Appendix E Send email under abnormal conditions .. 153

13 Appendix F LoRa Simple server for Dragino-yun using RF95 156

14 Appendix G Dragino-Yun as a Gateway with partial_decryption 159

15 Appendix H ESP_Collector Dragino Side ... 164

16 Appendix I Configuring ESP32 as LoRa Gateway .. 166

viii

List of Tables

Table 1-1 Comparison of Data Rate for Different Channel Length in DSL [48] 18

Table 1-2 Comparison of different communication technologies [5],[6],[8],[9],[49] 19

Table 2-1 Alphabets with assigned numbers for mathematical calculations in encryption

algorithms .. 37

Table 5-1 Specifications of the power source .. 80

ix

List of Figures

Figure 2-1 Eavesdropper Masquerading the SCADA Network ... 30

Figure 2-2 System block diagram with LoRa based wireless communication 31

Figure 2-3 Arduni-uno with DRF1276G Lora module .. 32

Figure 2-4 Pin diagram of arduino-uno .. 33

Figure 2-5 Pin diagram of arduino uno with DRF1276G LoRa module 33

Figure 2-6 Occurrence probability of alphabets in any sentence ... 35

Figure 2-7 Highest to the lowest occurrence probability of alphabets in any sentence 36

Figure 2-8 Encrypted message sent from RED side Lora module ... 42

Figure 2-9 Two-way communication between two LoRa modules ... 43

Figure 3-1 Flow chart of the implemented communication process .. 46

Figure 3-2 Step by step 10 round AES encryption and decryption [72] .. 48

Figure 3-3 Addition of round key for AES encryption [72] .. 49

Figure 3-4 Generating new key from the previous round key and data string [72] 50

Figure 3-5 Rotation of bytes in shift row operation [72] ... 51

Figure 3-6 Mix column operation to increase the confusion and non-linearity [72] 52

Figure 3-7 Implementation of AES encryption using DRF1276G with LoRa module.................. 54

Figure 3-8 ESP32 with LoRa module used for successful implementation of AES encryption 54

Figure 3-9 Implementation of AES encryption using ESP32 with LoRa module 55

Figure 3-10 A hint about large numbers to understand the size of keyspace having 2^128 elements

 ... 55

Figure 3-11 Implementation of AES algorithm with MAC address .. 55

Figure 3-12 Time lapsed in message receiving, verifying and decrypting under different SF 57

Figure 3-13 Time lapsed for message encrypting and sending under different SF 58

Figure 3-14 Difference of data rate and message authenticity under different SF 58

Figure 3-15 Bi-directional communication range testing of ESP32 with LoRa module 59

Figure 4-1 System structure for remote data-logging .. 61

Figure 4-2 Configuring SD card for local-data logging ... 62

x

Figure 4-3 Setting ESP32 as a gateway ... 64

Figure 4-4 Setting ESP32 as a gateway ... 64

Figure 4-5 Configuration results of ESP32 as a gateway .. 65

Figure 4-6 ESP32 gateway sending messages with AES encryption ... 65

Figure 4-7 ESP32 gateway uploading data to the Things Network without encryption 66

Figure 4-8 A dedicated dragino-yun LoRa gateway .. 67

Figure 4-9 Successful configuration results of dragino-yun working as a gateway 67

Figure 4-10 Dragino gateway real-time data load .. 68

Figure 4-11 Uploading data to the ThingSpeak server .. 68

Figure 4-12 ESP32 LoRa range testing .. 69

Figure 4-13 Process flow chart for an intermediate level node.. 70

Figure 4-14 Mesh network for improved LoRa range ... 72

Figure 4-15 Range testing in obstacle dense area after implementing a mesh network 72

Figure 4-16 Complete System diagram ... 74

Figure 5-1 System structure for topology I with broader range due to radio-set 78

Figure 5-2 Data logging by implementing system structure I .. 78

Figure 5-3 RA30H1317M based radio-set board used in this project .. 79

Figure 5-4 12V DC power supply to power-up the radio-set and protecting against surges 81

Figure 5-5 MAX232 driver circuit built to protect the controller from power surges and to provide

common ground for signals.. 82

Figure 5-6 USR-TCP-232 used in the project for serial to ethernet conversion 84

Figure 5-7 USR-TCP-232 Serial port setting ... 84

Figure 5-8 Internal registration setting of USR-TCP-232 .. 85

Figure 5-9 PC ethernet setting to interface with USR-TCP-232 .. 86

Figure 5-10 Results and setting of USR-TCP232 test software ... 87

Figure 5-11 System structure for topology II with broader range due to radio-set 88

Figure 5-12 System structure for topology III with broader range due to radio-set 90

Figure 5-13 Dragino-yun low memory error ... 90

Figure 5-14 Data logging on the ThingSpeak server using system topology III 91

xi

List of abbreviations

SG Smart Grid

SCADA Supervisory Control and Data Acquisition

LoRa Long Range

RED Remote End Device

EM Electromagnetic

AMI Automatic Metering Infrastructure

DG Distributed Generation

CDMA Code Division Multiple Access

TDMA Time Division Multiple Access

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

RSS Received Signal Strength

VHF Very High Frequency

UHF Ultra High Frequency

AES Advanced Encryption Standard

MAC Message Authentication Code

GSM Global System Module

LSB Least Significant Bit

MSB Most Significant Bit

SF Spreading Factor

SD Secure Digital

1

1 Chapter # 1 Introduction and Literature Review

1.1 Introduction

Different techniques and setups which are being used for communication between Remote

End Devices (RED) and Supervisory Control and Data Acquisition (SCADA) unit, can be

classified in two main classes based on the medium of communication; one is wired, and

other is wireless. Further, each class has many sub-categories based on the technique

implemented for communication. Every technique has many limitations and scopes

associated with it based upon the communication medium, power consumption factor, cost

factor, security of information, reliability, authenticity, availability, strength against

electromagnetic (EM) interference and many other such factors [1].

The basic requirements of Smart Grid (SG) for adopting any specific communication

system are categorised based upon the secrecy of the data communicated [2]. The

communication may be required between Automatic Metering Infrastructure (AMI) and

distribution grid, between distribution and transmission network, between transmission

section and SCADA System (Central Control Unit) or is between the set of virtual

generation plants and SCADA System. In this thesis, it is intended to build a secure two-

2

way communication between Distributed Generation (DG) units and local data collector,

and then from the local data collector to the remote SCADA System. For this purpose,

different communication techniques have been discussed here and compared in Table 1.2

at the end of the chapter. The selection and implementation of communication setup have

been made based upon below given features. Due to the critical nature of control messages

and their importance in SG network, a communication system with the following features

is required [3-5]

1. Security

2. Low Power Consumption

3. Confidentiality

4. Low Cost

5. Authorisation

6. Authentication

7. Scalability

1.1.1 Security

A secured communication and data storage is required for utility companies to ensure the

controlled grid operations [5-6]. Grid control and critical information need to be protected

through encryption to resist against hackers and cyber attacks.. In the coming chapters, it

has been discussed in the details and how it has been achieved.

1.1.2 Low Power Consumption

In DG and SG, SCADA System communicates with every RED to ensure system health,

voltage profile, current value, active power and reactive power along with the other

miscellaneous messages. In this way, the communication system remains energised all the

3

times, and it must give optimal performance over the cost of minimum power consumption.

That is why efficiency (power consumption) is among the top deciding factors [3].

1.1.3 Confidentiality

Confidentiality is also among the prime deciding factors for the selection of a

communication system. By losing confidentiality of information a third person may get

access to edit and can corrupt the data leaving the whole system prone to hackers.

Therefore, a message signal must remain confidential between the sender and the receiver

[2-3].

1.1.4 Low Cost

In the selection and the implementation of the communication system for the SCADA

system and SG, capital/installation cost, running and maintenance cost should also be

nominal. Therefore, along with the optimal performance, the communication system

project is to be cost-effective [1,3].

1.1.5 Authorisation

After the precise selection of the communication system setup, it is necessary to authorise

only concerned personnel to access it and process the messages. The unauthorised usage

may give access to any eavesdropper to hack the system or infest any kind of interference

[5-6]. Therefore, despite having encrypted data, the channel connection must be protected

by passwords/IDs and only concerned users should have the privilege to access the data.

4

1.1.6 Authentication

Identification of the user account is also important to ensure whether the user is a registered

one in the system or any unauthorised user is trying to access the system information. For

which system should have a secured database of registered users [1,4].

1.1.7 Scalability

With the growing trend of Smart Grid and expanding integration of DG units in the system,

up-gradation and scalability are very common. Therefore, a communication network must

have the capability to accommodate incoming DG units and grids ensuring the security and

self-configuration [5].

1.2 Literature Review

To find and implement an optimal mean of communication which meets previously

stipulated requirements, critical analysis and comparison of all techniques is necessary. To

do that in this literature review almost all sub-categories of wired and wireless technologies

which have been either proposed or implemented in different publications/projects have

been discussed, analysed and compared.

1.2.1 Wireless Communication Technologies

Both classes of communication, either wired or wireless technology have their own scopes

and circle of applications. Here is the analysis of wireless technologies, and wired

technology will be discussed in the next section.

5

1.2.2 Cellular

Global System for Mobile Communication (GSM) is a wireless technology. It is the widely

used digital technology as compared to Code Division Multiple Access (CDMA), and it

uses Time Division Multiple Access (TDMA) topology for digital communication.

Currently available 2G, 3G, 4G and WiMAX which are its evolutionary forms are also

considerable options for communication purpose in smart grid network especially for

communication between RED and SCADA [7]. It will neither require any more capital

investment in infrastructure nor installation time. The most important thing is, its

accessibility in remote rural areas without additional infrastructure cost. This technology

is in practice in few utility companies, e.g. Echelon’s Energy Services Network has

implemented this project in smart meter and is using GSM and T-Mobile to collect data

accumulated in every 15 minutes interval [8]. Besides this several major cellular companies

like Silver Spring Network (SSN), Verizon and Cisco are also implementing smart meters

with embedded WiMAX chip for SG [9]. Some utilities are using smart meters with

integrated GPRS module for communication purpose and in some SG projects Universal

Mobile Telecommunication System (UMTS), Code Division Multiple Access (CDMA)

and Wideband Code Division Multiple Access (WCDMA) are also being practised [9] but,

they all have the common issue of the unavailability of the CDMA/GPRS signal [6]. The

primary concern with cellular technology is of privacy loss. Using a cellular network, a

third party gets access to the data and the probability of privacy breaching increases. An

eavesdropper for the cellular network can also masquerade the system.

6

1.2.3 Zigbee

Zigbee is another wireless technology being used these days. It is comparatively cheaper

in overall installation and simpler with lesser power consumption. But, at the same time, it

has a shorter range (10-100m) and low data rate. Zigbee selection has been proposed in

[10] and is very feasible for Automatic Meter Reading (AMR), home automation and for

home appliances monitoring and control. National Institute of Standards and Technology

(NIST) has approved Zigbee Smart Energy Monitoring (SEM) and Zigbee as the best

option for the SG private network [11]. Zigbee technology has introduced three devices for

its set which includes Zigbee remote device, Zigbee coordinator, and Zigbee router. Zigbee

router works as a router and can also operate directly controlling the appliance just like

Zigbee remote device controls. Multiple remote devices are controlled and interlinked

through the Zigbee coordinator bridge which ensures authenticity and security code for

each appliance. Smart meters integrated with Zigbee can control and communicate with

the integrated devices in the range of 100m consuming only 1mW power for the radio

signal transmission [9-10]. Zigbee is using 16 channels in the 2.4GHz band, and an

unlicensed spectrum, which makes it low cost, simple and suitable for the SG network. But

it cannot be used for the SCADA system of remote micro-grids only due to very short

range.

1.2.4 WiFi WLAN Series IEEE 802.11

According to [12], for SG network, a communication system with high data rate and

maximum reliability is required. To meet these requirements satisfactorily, a WLAN is a

7

good option because it provides high data rate with good reliability. But it is only

discouraged due to the smaller coverage area. It ensures interference-free network for

multiple users due to the use of Frequency Hopping Spread Spectrum (FHSS) and Direct

Sequence Spread Spectrum (DSSS) Technologies which use specific access techniques of

Carrier Sense Multiple Access Collision Avoidance (CSMACA). Using 2.4GHz frequency

ISM band, it provides a high data rate of up to 11Mb/s by DSS modulation technique, and

if, Orthogonal Frequency Division Multiplexing is introduced in it, then its data rate boosts

up to 54Mb/s [12-13]. By implementing Multiple Input Multiple Output [MIMO]

technique, its target is to achieve a data rate of 600Mb/s [12-13]. Despite all these features,

it is limited to remote monitoring and Home Area Network (HAN), only due to the small

coverage area of the only 100m. Therefore, it cannot be used for the SCADA system where

the range of several kilometres is required.

1.2.5 Bluetooth

Bluetooth is a wireless communication technology which eliminates the need of wired

network for short-range communication and ensures a high level of secured communication

[14]. If the communication is intended between two devices, then the topology used for it

is pico-net and integration of pico-nets leads to scatter-net which enables communication

among multiple devices (up to eight devices). The devices are first to be set in the mode of

transmitting/receiving by human intervention [14], to configure the Bluetooth

communication among eight devices within the coverage.

8

The scatter-net topology makes the Bluetooth suitable to set HAN and to control the home

appliances and home automation implementation in SG network. In [15], an attempt has

been made to interconnect up to 255 nodes using RugBlue and building private server but,

it also does not support more than 8 active devices at the same time. The authors of [16-

17] also recommend GPRS and Bluetooth integration based communication system for SG

units and vehicle to vehicle communication without considering its range limitations. This

technology can be used for small data transfer between two devices within 20m but not for

remote micro-grids where communication is carried out over the range of several

kilometres.

1.2.6 Radio Teletype

This technology was introduced in the 20th century and was expected to surpass the Fax

system and message sending/receiving via wireless rather than the wired network. It was

used for the communication of two electromechanical gadgets having keyboards and was

used not only sending the text messages but also for voice messages [18]. But, today this

electromechanical technology has become almost obsolete with digital technology and

micro/nano-electronics.

1.2.7 VHF/UHF

Radio Communication system has been using different frequencies for their carrier signal

to transmit the message with minimum noise effect. Radio Frequencies in the band of 30-

300MHz are Very High Frequency (VHF) waves, and those who lie in the band of 300-

3000MHz are considered Ultra High Frequency (UHF) waves. The selection of carrier

9

frequency depends upon the mode of modulation (Frequency, Amplitude, and Phase)

which is selected based upon the desired coverage area and data transmission rate [19].

Currently, the UK is using UHF for the communication of the SCADA system, and

frequency allocation is supervised by UK Radio Communication Agency which assigns

the carrier frequency based upon the message signal strength [20]. In UK sub-bands of

450-470MHz have been reserved for SCADA system communication and 183.5-

184.5MHz has been reserved for metering purposes.

1.2.8 Optical Wireless Communication

Optical Wireless Communication (OWC) is a technology targeting to replace existing

Radio Frequency communication [21]. Existing RF is using a frequency band of 30kHz to

300 kHz and is precisely regulated by international and national authorities. Due to the

ubiquitous use of RF gadgets, there is band congestion despite the implementation of

different delay-division multiplexing techniques due to which OWC is under consideration

[22]. It uses sub-bands of Ultraviolet Radiation and Infrared Visible band, which are still

unlicensed and due to which OWC is becoming the counterpart of RF [23-24]. Although

OWC is still under research despite that, it is superior to RF in many aspects like

broadband, inherent security features, unregulated, free from electromagnetic interference,

low power consumption as compared to RF, free from multipath fading issue ad cheaper

optical components are the most attractive features of OWC. In Oct 2013, OWC was tested

for the ultra-long distance of 384600km (Moon to Earth) under the NASA’s Lunar Laser

Communication mission, and its results were amazing with the data rate of 622Mb/s [25].

10

Despite all such amazing features, it cannot be recommended for SG because it requires

high and large antennas for every unit and this technology is also still in the experimental

phase. Its implementation may lead to the bankruptcy of the project, the example of

Boulder SG project is before us which faced the financial issues by implementing optical

fibres [26-27].

1.2.9 Satellite Communication

Satellite Communication system is another technology being used for global

communication and specifically with the use of Geo-Stationary Satellites and other

dedicated satellites world has become like an interconnected village. Communication

which required either repeaters, wires or large antennas to magnify and direct the

communication signal has been bypassed in this technology, and in future it may surpass

the terrestrial communication systems [28]. Due to this unique feature, it has been widely

accepted mean of voice and data transmission, and these days few utility companies are

also using it for communication with remotely located substations in rural areas as well.

On the basis of orbit and revolution period the satellites (being used for communication)

can be categorized in three groups as Low Earth Orbit Satellite (LEOS), Middle Earth Orbit

Satellites (MEOS) and Geostationary Earth Orbit Satellites (GEOS). GEOSs are at the

height of 35,786km at the equator of the earth due to which a delay of 1/4th second takes

place for one-way communication. LEOS are located at the height of about 1200km and

are considered the best option for communication because their communication delay is

not more than of terrestrial communication delay and that is why it is acceptable [29]. The

11

authors of [30] have discussed the pros and cons of the implementation of satellite

communication for SCADA system and have discouraged only due to high cost.

1.2.10 WiMAX Series IEEE 802.16

Worldwide Interoperability for Microwave Access (WiMax) is widely accepted broadband

technology with the target to establish Wireless Metropolitan Area Network (WMAN). It

lies in the group of IEEE 802.16 with the unique feature of a high data rate for maximum

coverage area. It has achieved 70Mb/s data rate for 50km coverage area [31-32]. Its

coverage is sight dependent, whether the area lies on its Line of Sight (LOS) or not. Now

another technique of Orthogonal Frequency Division Multiplexing is being implemented

to improve the quality of coverage for off-line-of-sight areas. As WiMax is providing

efficient service even for long distance using a frequency bandwidth of 1.25MHz to

20MHz and is also known as the Last Mile Technology for remote areas [12]. Due to its

unique features, it is being considered the most reliable substitute of T1/E1 links, DSL and

PCL. Despite all these features, it cannot be proposed for the SCADA system and SG

network due to its lower penetration in the obstacles.

1.2.11 SigFox

SigFox is another popular technology used for Machine to Machine communication

(M2M). It uses the license-free band of 868MHz in Europe and 915MHz in North America

[33]. It uses Ultra Narrow Band (UNB) ranging from 0.1-0.3kHz bandwidth with

Differential Binary Phase Shift Keying (DBPSK) modulation technique at the rate of

100b/s [34]. It transmits a sequence of three messages using random frequencies to ensure

12

successful reception of the message. Even if two transmissions are lost due to any reason

(noise, interference or collision), the base station will receive a clear message [35]. But,

SigFox also has certain limitations. Its frequency bands (whether is it of 868MHz or

915MHz) are restricted to 1% Duty Cycle, which means in one hour (3600s) it can

communicate for only 36s. Further, for one package its time on air is of approximately 6s

which means it can only transmit a maximum six messages in one hour. In this way, its 24

hourly transmissions, are restricted to 140 uplink messages with the size of not more than

12bytes each, and its downlink communication is limited to only four messages, with each

message, not more than of 8 bytes [35-36]. Due to these features, it may be suitable for

applications requiring very low data rate and a limited number of messages but is not

promising for SG.

1.2.12 LoRa

In the emerging trend of M2M and Internet of Things (IoT) Low Power Wide Area

Network (LPWAN) technologies are in front line to meet the specifications, and among

these LoRaWAN is the most adopted one. It ensures outdoor connectivity of IoT devices

with the simplest network structure due to star network of end devices, gateways and

central control station and easy management [37].

LoRa uses Chirp Spread Spectrum (CSS) and GFSK modulation techniques [37]. Due to

spectrum spreading it uses the whole band of 868MHz (in Europe) and 915MHz (in North

America). To minimise the interference effect, it uses six spreading factors from SF-7 to

SF-12. Each spreading factor has its different time on air. It uses a bandwidth of 125kHz

13

of unlicensed frequency band [35]. It provides the maximum data rate of 27kb/s using CSS

and 50kb/s by FSK. In Star topology single gateway unit has the capability of

communicating with thousands of nodes located several kilometres away from the

gateway. Here are its main characteristics which make it a comparatively better option to

be adopted for SG and especially fulfils the requirements of the communication system in

SCADA system [38]. Due to the below-given features [8-49] it becomes an optimal option

for setting up a two-way communication system:

• Long range

• Low power consumption

• Open nature and lesser path loss

• Receiver sensitivity

• Flexibility and low cost

• Reliability

1.3 Wired Communication

There are three main arts of communications for SCADA system which have a physical

medium of communication. It includes power line carrier (PLC), digital subscriber lines

(DSL) and Optical Fibers (OF). Although these are the most widely used till now because

sometimes long power transmission lines are also used for communication purpose and at

the receiving end communication signal is extracted using wave trappers. Along with the

power transmission lines, an Earth Shield Wire (ESW) is used to protect power lines from

lightning and sometimes ESW is also used for communication purpose. These techniques

14

are beneficial to use already existing infrastructure. But in SG, there is distributed

generation, and that is why there are no more long power transmission lines due to which

any dedicated communication system is required to encounter all problems of the

communication system and to fulfil the requirements. For this, various means of

communication have been discussed below.

1.3.1 Power line carrier

PLC is an efficient communication technique which is free from the EM interference and

Coloumb’s Cage like issues and has been in practice since the advent of the telephone in

the late 19th century [39]. In a power system, it has proven effective due to the use of

already existing infrastructure and many other attributes associated with it. Few are listed

below [40].

● No need of separate communication infrastructure, the existing electrical

infrastructure can be used for communication, whether is that an underground or

undersea.

● It is efficient and cost effective especially in the power system because no

additional infrastructure is required.

● It is free from antenna tempering because it remains energized at 230V

● It faces no setting issues like antenna alignment setting

● Once the electrical infrastructure commissioning is completed the communication

system can be energized.

15

● Today, PLC can be classified into four classes based upon its modulation

techniques, data transfer rate, and PLC regulations.

● Ultra-Narrow Band PLC

● Narrow Band PLC

● Quasi Band PLC

● Broadband PLC

UNB-PLC is the oldest technique, and in the mid of 20th century, this technique was

implemented using High Voltage Power transmission lines with frequency ranging 15kHz-

500kHz [41]. The limitation of this technique was its one-way communication. The NB-

PLC was introduced in the late 20th century, and the amplitude modulation technique was

used with a frequency range of 148kHz-500kHz to transmit the message signal through

NB-PLC. Its limitations include high power consumption, lack of reliability, and frequently

repeaters required to strengthen the signal. China has recently implemented the QB-PLC.

In this, NB-PLC and BB-PLC have been merged to achieve the optimal mean of

communication. Its carrier frequency ranges from 1MHz-10MHz with a high data rate of

approximately 2Mb/s, and it supports two-way communication which makes it suitable for

AMI and HAN purposes. The BB-PLC uses a broad band of frequency ranging from

1.8MHz-250MHz and supports a very high data rate of up to 200Mb/s. The problem

associated with QB-PLC and BB-PLC is their broader frequency band [42]. In SG PLC

has been implemented for automatic metering infrastructure (AMI) in urban areas while

other techniques and technologies are still under prototyping.

16

In [43] the author discusses the different areas for previously mentioned four categories

and their standards. According to that, each category can give optimal performance

provided that is used for a specific area of operation. For instance, LV PLC, a 3-95kHz

band is reserved for power utilities, 125-140kHz for HAN, 140-148.5kHz for security and

alarming. NB-PLC can be reserved for audio/voice communication, UNB for AMR and

BB-PLC for internet access. But, it did not address the issues of these individual bands

affected by the attenuation/amplification factor of transformers in the SG system. Its

alternate to overcome a transformer effect is to use wave trapper/filters to extract

communication signal from AC (50/60Hz) power signal but, it will not be cost effective

for a distributed generation system.

1.3.2 Optical Fibers

Optical Fibre (OF) is another wireline communication technology and is unique in many

features. It does not use any copper conductor and has a double-layer cylindrical structure

with two parts; core and cladding. Message signal (light rays) undergo from the different

angle of refraction based upon the wavelength and frequency obeying Snell’s Law for

Refractive Index and Total Internal Reflection. A light signal is lesser vulnerable to EM

interference and retains strength for relatively larger distance compared to copper-wired

PLC. A signal can be transmitted with the same quality up to 100km without any repeater

using wavelength division multiplexing technique [44]. Its future is evident in SG as well

provided it becomes cost effective.

17

Data transmission capability of this technique is exponentially growing with everyday

innovation. In 1995 its data transmission rate was 10Gb/s, in 2002 up to 40Gb/s [45] and

in 2010 data transmission at the rate of 100Gb/s was achieved [46] and in 2015 up to

200Gb/s has been accomplished. In this way OF is rich in data rate and speed in the

communication system and has a promising future but, its installation cost is too high to be

implemented on a small scale. Usually, its cost goes high due to the extremely small

diameter of fibre core [47]. Although, different techniques have been used to make it

reasonable for a large scale system but, it is not a financially viable option for the SCADA

system of remote grids or SG network.

1.3.3 DSL Based Wired Communication

In general, DSL can be defined as the high speed wired communication system using

similar like broadband PLC (BB-PLC) with the data rate of a few kb/s to Mb/s. It uses the

existing infrastructure of copper wires of Graham Bell telephone network. Due to that, it

has been a popular mean of communication and sometimes was opted for SG as well. Its

performance is affected with increasing distance and the impact of length on data rate can

be seen from table 1.1. Due to this impact, it is discouraged for the SG/SCADA

communication system.

18

Table 1-1 Comparison of Data Rate for Different Channel Length in DSL [48]

Frequency (MHz) Bit Rate Maximum Distance (m)

30 400Mb/s 200

100 1.3Gb/s 120

200 2.5Gb/s 85

300 3.5Gb/s 70

1.4 General Analysis of different technologies

After doing the study of three different wirelines and twelve wireless technologies, a

comparison table 1.2 has been made. It can be inferred that the selection of any technology

for SCADA system is based upon the requirements of the system and considering the

merits and demerits of the communication technology. Selection of wired technology is

not a good choice for SG/SCADA especially for remote microgrids and in rural areas where

installation and continuous maintenance of the network are required. Its least flexibility

toward addition and removal of any node also discourages its implementation. After doing

a critical analysis of different wireless technologies, LoRa seems the optimal choice for the

SCADA system of remote micro-grids. Furthermore, the security of wireless

communication can be improved by implementing any encryption algorithms discussed in

the next section.

19

Table 1-2 Comparison of different communication technologies [5,6,8,9,49]

Technology Data

Rate

Coverage Remarks

Copper Wired PLC

2-3Mb/s

1km to 3

km

● Unreliable and

noisy due to

harmonics

DSL

Wired Internet

Max

1Gb/s

100m

● High capital cost

for installation

and least

flexible

Fiber Optic

Max

14Tb/s

160km

● Extremely high

capital cost for

installation and

least flexible for

SG

Wireless Local

Area Network

54Mb/s

200m to

400m

● Short Range

● Vulnerable to

EMI

● Easy Installation

GSM

14.4kb/s

1km to

10km

● Poor Data rate

● Monthly cost

● Low availability

in remote

locations

BlueTooth

250Mb/s

70-100m

● Limited

Coverage

● A limited

number of nodes

WifiWLAN

600Mb/s

100m

● Small Coverage

● Inherent

drawbacks of

Wireless Mesh

Network

Radio Teletype

100b/s

Input supply

dependent

● Outdated and

analogue

● Uses

20

Wireless

(0.7mV/m) Electromechanic

al setup

Optical Wireless

Communication

622Mb/s

Unlimited

● Costly setup

● Under the

experimental

phase

WiMAX

75Mb/s

10-50km

(Line of

Sight)

1-5km (OFF

LOS)

● Poor penetration

in obstacles due

to HF

● Inherent

drawbacks of

HF

Satellite

Communication

1Gb/s

Unlimited

● High Cost

● Signal fading

due to snow and

rain

● Signal latency

GPRS

170kb/s

1km to

10km

● Poor Data rate

● Less reliable due

to voice traffic

Lora

Depends

upon SF

2km to

15km

● Low cost

● Power saver

● Easy Installation

● Low data rate

Zigbee

250kb/s

30m t0 50m

● Short Range

● Poor Data rate

● Easy Installation

SigFox

100b/s

3-10km

(Urban)

● Low cost

● High Scalability

● Low data rate

● A restricted

number of

messages per

day

GPRS-

(2G)

170kb/s

1km to

10km

● Poor Data rate

● Licensed

frequency band

21

Cellular

● Easy Installation

High-

Speed

Downlin

k Packet

(3G)

384kb/s

to

14.4Mb/s

1-10km

● Licensed

frequency band

● Easy Installation

● Limited

availability

Long

Term

Evaluati

on-LTE-

(4G)

Max 42

Mb/s

1-10km

● Licensed

frequency band

● Easy Installation

● Limited

availability

1.5 System Security and Encryption

To ensure the privacy and security of data from the eavesdropper, free rider, forger and

many other intruders like these is also of the primary concern. Specifically, for SG SCADA

system, control commands are very critical and need to be protected from every kind of

intruders and eavesdroppers to run the system smoothly and rectify abnormal condition.

Different techniques have been implemented for data security and here is the overview of

most ubiquitous ones.

1.5.1 Generating Artificial Noise Signal

In this technique, a noise signal is also generated at the same frequency but with lower

power as compared to the message signal carrier wave. Transmitter uses two antennas each

dedicated for message signal and noise signal separately. At the receiver end and repeaters,

the message signal is extracted by eliminating noise set power [50-51].

22

In this method, an additional power consumption takes place for noise signal. The

maximum efficiency of an antenna is 50% due to which a lot of power is wasted in both

antennas and specifically in noise generator. In SG, the target is to achieve power efficient

and a secure communication system due to which this technique cannot be implemented

because of its poor power efficiency.

1.5.2 Physical Layer Method

In this technique, multiple cooperative relays are used between transmitter and receiver.

There are two cooperative protocols under use, one is Amplify-and-Forward (AF), and the

other is Decode-and-Forward (DF) [52]. AF relay node is just like a repeater; it receives a

signal and extracts from the noise and amplifies to retransmit. While in DF, the received

signal is decoded, encrypted with any other encryption algorithm and amplified for

transmission [52-53]. In this way, security is increased at every DF relay. But, after a

certain number of DF relays, the security of the encrypted message declines exponentially

because the plain text is extracted from the ciphertext at every DF node which makes it

vulnerable to the attack of an eavesdropper.

1.5.3 Cryptography

Cryptography is the most optimal way to secure the data by applying different encryption

algorithms and complicating the extraction of real message from the ciphertext. In

cryptography, a message (plaintext) is encoded in the ciphertext. Each character of

plaintext is assigned any other alphabet to complicate its decoding for the eavesdropper.

To do this, the characters of the plaintext can be:

23

a. Further shifted left/right

b. Assigned different characters for different combinations

c. Shuffled by applying a vigenere cipher technique

d. Combined in rectangles of matrices by applying playfair cipher technique.

Different encryption techniques will be applied to secure the LoRa communication in the

SCADA system based upon the security, processing time, required memory, and efficiency

of the algorithm. Anyhow a detailed description will be given in the chapter of Encryption

Algorithms.

1.6 Research Goals and Objectives

After the literature review, it becomes clear that a communication system for SG SCADA

system is required to improve in its security and use-ability. To monitor it remotely, a

remote data logging and wider range communication is also necessary to set up. Therefore,

the main goals of the thesis project are as follows

1.6.1 Secure Communication

Secured Communication is the prime objctive to achieve using LoRa based communication

for the SCADA system. Without security, the critical information of SG network becomes

accessible for every intruder. To achieve the security different encryption algorithms will

be implemented and finally, most compatible one will be implemented taking the security

requirements, processing time, and memory consumption under considerations. Different

µC, e.g. arduino, ESP32 will be tested to achieve this task.

24

1.6.2 Low Power

To build a low power system is the second objective to achieve. It will be achieved by

trying low power ICs and operation at low voltage. Finally, the combination of low power

controllers and other low power components-based setup will be devised.

1.6.3 Regular Updates

Regular updates about the system condition are also important to ensure the proper system

functionality. It will be achieved to inform the concerned personnel about system

conditions and specifically in the abnormal conditions which may be due to any fault or

harbinger of any failure.

1.6.4 Local and Remote Data Logging

Local and remote data logging is also as important as any other feature. Remote data

logging is necessary for remote monitoring, and local data logging is for data backup. It

will be achieved by logging data on any remote server, e.g. Thingspeak, and local data

logging will be achieved using SD card.

1.6.5 Implementation

Implementation of the designed system with all previously mentioned features will be done

on a prototype system. All this will be integrated after devising coding/programming and

designing optimal algorithms to achieve the requirements of the SCADA system. Research

25

outcome of this work will be a design and demonstration of a secure, low cost, low power

LoRa based communication system for remote monitoring of micro-grids.

1.7 Thesis Overview

This research work is the part of the project of NSERC Energy Storage Technology

Network (NESTnet) to address the challenges of renewable sources with the collaboration

of 15 other universities and many industries. Out of these 15 universities MUN is supposed

to work on the design and implementation of a low cost, secure and low power SCADA

system. In the research work behind this thesis, a secure, low-cost and low power

communication system with coverage of 35-40km has been developed. The thesis has the

following chapters to achieve all the features listed in section 1.7,

Chapter 1 is about the introduction of the SG SCADA system, advantages and different

challenges in the implementation of the SG SCADA system with primary focus on the

communication system. Mostly it comprises on the literature review of different

communication technologies which are in practice today. Chapter 2 is about the setting up

LoRa based bi-directional communication, encryption algorithms and their

implementation, security, and complexity to breach the algorithms. Chapter 3 is on the

implementation of Advanced Encryption Standard (AES) Algorithms, implementation of

Message Authentication Code (MAC), range testing and data rate and the results of all

these steps. Local and remote data logging, regular updates, and implementation and

interfacings of different gateways have been explained in chapter 4. Radio-based broader

range setup, serial/ethernet communication, configuration, their results and finally three

26

different system topologies have been explained in chapter 5. Chapter 6 summarizes the

project work with the merits/demerits and limitations of the devised system and identify

few methods which can help to improve the system.

27

2 Chapter # 2 Encryption Algorithms to Secure

Communication System and Their Implementation on

DRF1276G LoRa Module

2.1 Introduction

In this chapter, LoRa based bi-directional communication system, encryption algorithms

and their implementation, security and complexity to breach the algorithms have been

discussed. Complete design and lab test results have been included.

With the growing penetration of renewable energy in grid supply, distributed generation is

increasing. Specifically, for remote communities who have added renewable energy to their

energy mix have a lack of secure and authentic communication system [54-56]. There are

many cases in which spies and enemies controlled the SCADA systems and disrupted the

power system. In 2008, the Russian army took charge of the Georgian electric grid by

controlling the SCADA system of their electric grid. According to the Wall Street Journal

report, in 2009, spies hacked the control system of the U.S electrical grid and disrupted the

system [57]. Many other articles like [58] have also highlighted the concerns about smart-

grid cybersecurity. Therefore, the communication system of an electrical grid, specifically,

28

the setup related to the SCADA system, must have strong resistance against eavesdroppers

and masqueraders. Usually, a communication system is regarded as secure if it satisfies the

following four features [59-60].

2.1.1 Privacy

The message should be encoded or encrypted such that the only authorized receiver can

read the message.

2.1.2 Message Authentication

The message should be authentic, and only the privileged nodes should be able to send the

message. Furthermore, no eavesdropper should be able to masquerade the receiver by

sending fake messages.

2.1.3 Integrity

The message received at the receiver side must exactly be the same as the sender sent.

2.1.4 Nonrepudiation

If there is any alteration in the message, whether due to the channel error or attacker’s

interference, the receiver must be able to recognize that and decline the message.

In [61-63], a few techniques have been discussed to address communication security issues.

In their proposed methods a third party is involved to ensure the security of the

communication network or setup, which depends upon the third-party network to

communicate with Remote End Devices (RED). Different encryption algorithms have been

proposed in [64-65] to secure the communication system using different cryptographic

techniques like; shift-cipher and substitution-cipher but, for a cryptanalyst, they are too

29

simple to break or other encryption algorithms proposed in [66],[67]. A cryptanalyst can

easily take control of the system and can modify the control messages as demonstrated in

Figure 2.1. In the Fig. 2.1, an eavesdropper receives the message from the SCADA unit,

and modifies the messages and control command and sends that to the remote end device

(RED) pretending to be the SCADA unit and hacks the system. In this way control

information becomes prone to the eavesdropper and loses authenticity and security.

Specifically, in a smart grid network, secure communication between the energy meters

and the SCADA system requires a low cost and a secure communication setup with

improved power efficiency. A raspberry-pi could also have been used for gateway purposes

to provide remote access, just like [69],[71] but, that consumes 3-4 times more power than

the tiny DRF1276G. In this chapter, different encryption algorithms have been

implemented to secure the communication system. After the implementation of these

algorithms, C++ programs were written to breach the encryption, and their results have

also been discussed at the end.

30

Figure 2-1 Eavesdropper Masquerading the SCADA Network

2.2 Hardware Setup

The layout of the system has been shown in Figure-2.2. In this, each Remote End Device

(RED) has sensors and Arduino-uno with DRF1276G LoRa module. It receives data from

the sensors and encrypts. After encryption, it adds node ID in message string and sends.

The local collector node receives the LoRa messages from RED nodes and confirms

message authenticity. If the message is authentic, the collector node adds its ID along with

the RED node ID as its signatures and forwards to the SCADA unit side data collector.

31

Figure 2-2 System block diagram with LoRa based wireless communication

On SCADA side, the collector unit receives the LoRa message, and after verifying the

signatures of remote end side data collector, it decrypts the message and sends to the

SCADA unit for processing. Similarly, for downlink communication, the SCADA side data

collector receives the message from the SCADA unit and encrypts the message. The

encrypted message is sent after the addition of the sender signatures and the target RED

node ID. The data collector DRF1276G of RED node side receives the LoRa message

verifies the signatures of the sender (SCADA side sender). After signatures verification,

the message is forwarded to the targeted RED node. If any node other than the target node

receives the message, that will ignore the message because of different IDs, and if it is the

target node, then the message will be decrypted and processed. In this way, two-way

encrypted communication is set to continue. This system structure was implemented using

Arduino-uno with LoRa module shown in Figure-2.3. It was chosen because of its user-

32

friendly nature and easy to program in Arduino IDE software. The other main advantage

of this tiny controller is that it has onboard LoRa module, unlike regular Arduino-uno for

which a separate LoRa shield is required for LoRa module interfacing. The pin diagram of

the arduino-uno and with LoRa chip have been shown in Figure 2.4 and 2.5. It has six

analog input pins to connect sensors and fourteen digital I/O pins (with six pins dedicated

for PWM). Its operating voltage is 3.3-5V.

Figure 2-3 Arduni-uno with DRF1276G Lora module

33

Figure 2-4 Pin diagram of arduino-uno

Figure 2-5 Pin diagram of arduino uno with DRF1276G LoRa module

34

2.3 Cryptographic Algorithms on Arduino with DRF1276G LoRa

Module

Multiple encryption algorithms were implemented on the arduino DRF1276G LoRa

module to achieve the previously discussed four features of a secure and authentic

communication system for microgrid but, all cryptographic algorithms do not provide the

equal secrecy level. Their secrecy level is proportional to the key size required to breach

the encrypted text. Below are the details of the encryption algorithms which were

implemented and their resistance against any attack has also been discussed depending

upon the size of their keyspace.

2.3.1 Shift Cipher

In shift-cipher, all characters of the message are shifted by the same number. For example,

if the message is ‘abcdef’ and each character is shifted right by three characters, then after

shift ‘a’ will go to ‘d’, ‘b’ to ‘e’ and so on as shown below.

Plaintext a b c d e f

Ciphertext d e f g h i

As there are only 25 possible shifts (if the message contains simple alphabets only), it

means that its key set has only 25 elements and cipher can easily be decrypted within 25

attempts [68].

In this encryption, although cipher text becomes different than actual message, it is not

difficult to break because of the limited keyspace. In the English language, all characters

have different occurrence probability in the plaintext messages. Their occurrence

35

probability helps in breaching the message. From the below-given charts in Figure 2.6 and

2.7, it can be seen that the letter ‘e’ has the highest occurrence probability followed by the

‘t’, and the letter ‘z’ has the least occurrence probability after letter ‘q.’ Attempt was made

to break the encrypted message by counting the occurrence frequency of the letters and

then making some assumptions based upon those. It did not give much resistance and was

hacked after some mathematical calculations. Therefore, this algorithm has been

discouraged for the security of SCADA system.

Figure 2-6 Occurrence probability of alphabets in any sentence

36

Figure 2-7 Highest to the lowest occurrence probability of alphabets in any sentence

2.3.2 Affine Cipher

The keyspace of affine-cipher is a little bit larger than of shift-cipher. In this technique, the

ciphertext is calculated by solving linear equations under modulo 26 (because there are

only 26 alphabets). Each alphabet is assigned a certain number. Most commonly, the values

are assigned as shown in Table-2.1. There are two common conventions for assigning

number to alphabets, sometimes values are assigned from 1 to 26 and sometimes from 0 to

25. The equations used for this algorithm are first-order algebraic equations

For instance, ‘y’ indicates ciphertext number and ‘x’ indicates plaintext number then the

linear equation for this cipher becomes like:

 y=a*x+b

37

where ‘a’ and ‘b’ are constants but less than ‘m’, where ‘m’ is the integer of the modulus.

Its keyspace depends upon the possible values for ‘a’ and ‘b’ and it will be:

K={(a,b) ϵ Zm x Zm | gcd (a,m)=1}

To ensure that each ciphertext is for only one plaintext character, the gcd(a,m) must be

equal to 1 for injective ciphertext. For regular alphabets, the ‘m’ is 26 so,

Keyspace=(# of possible values for ‘a’)x(# of possible values of ‘b’)

 Keyspace = 12*26=312

The possible values for ‘a’ are twelve and for ‘b’ are twenty-six, and the encryption is

injective in nature. So, this cipher could be decrypted within 26x12=312 attempts [68].

Table 2-1 Alphabets with assigned numbers for mathematical calculations in encryption

algorithms

Letter Plaintext/Ciphertext

number

Letter Plaintext/Ciphertext

number

A 0 N 13

B 1 O 14

C 2 P 15

D 3 Q 16

E 4 R 17

F 5 S 18

G 6 T 19

H 7 U 20

I 8 V 21

J 9 W 22

K 10 X 23

L 11 Y 24

M 12 Z 25

38

2.3.3 Transposition Cipher

 In this cipher, the characters of a chosen block size are not substituted, instead they are

randomly shuffled with each other within the plaintext block e.g.

Plaintext C A N A D A

Ciphertext D N A C A A

The security of the algorithm depends upon the size of the encryption block, and with

increasing block size, security also increases. If a block has ‘n’ characters, then the key set

will have total n! possible values [68].

2.3.4 Hill Cipher

 Hill-cipher is based upon linear algebra, and its feature is that it is not an injective cipher.

It is similar to the affine cipher in the encryption/decryption structure. The only difference

is that it works on matrixes and columns of plain/ciphertext unlike characters used in the

affine-cipher. In this cipher, all characters are assigned numbers, eg. a=0, b=1 and similarly

y=24 and z=25 similar to affine cipher table. It uses an nxn square matrix as a key matrix

to get the column matrix of ciphertext from the column vector of plaintext. For example, if

the key matrix is [
5 19

24 3
], and ‘GA’ is to be encrypted. The respective plaintext column

will be [
𝐺
𝐴

] = [
6
0

] , and after encryption the ciphertext will be [
4

14
] = [

𝐸
𝑂

] ‘EO’ as shown

below.

[
𝐺
𝐴

] => [
5 19

24 3
] ∗ [

6
0

] = [
30

144
] = [

4
14

] = [
𝐸
𝑂

] (𝑚𝑜𝑑 26)

39

The only condition for a key matrix is that it must be an invertible matrix to ensure that the

respective decryption key matrix also exists. Although, hill-cipher key space is 𝑚𝑛2
where

‘m’ is the modulo and ‘n’ is the size of the matrix but, it is vulnerable to chosen plaintext

attack [68].

2.3.5 Substitution Cipher

Substitution-cipher gives much better security than the shift and affine-cipher due to large

key size. In the implementation, it is quite similar to the shift cipher but, each plaintext

character is not shifted by the same number, eg.

Plaintext a b c d e f

Ciphertext d z h k a f

The first character can be substituted by any of the other 25 characters, second character

by any of the rest of 24 characters and so on. In this way possible key size becomes

|K|=25x24x23……1=25!

2.4 Breaching the Encryption Algorithms

After implementing these encryption algorithms, few C++ codes were formulated to verify

the resistance of encryption algorithms. In these breaching algorithms, the advantage of

certain loopholes (e.g., the occurrence frequency of the characters and pairs) and certain

logical assumptions (e.g., type of encryption algorithm/ size of encryption block) were

made.

From the keyspace of different algorithms, it has been seen that hill-cipher is relatively

more secure than all other algorithms. Although, the keyspace of substitution is larger than

40

all others but, it is weaker than the hill-cipher due to its injective nature. Hill cipher using

2x2 matrix size has the keyspace of 𝑚𝑛2
=264=456976 possible keys. Although, it seems

very large keyspace and difficult to breach but, it was breached using C++ code given in

appendix A. Below is the example of a message encrypted using Hill Cipher and the

decrypted plaintext extracted after applying the code of appendix A.

Cipher Text:-

FUGOMRPKWODRDTJHDTHPQTJDADFKLZDTYFWCDLJDALRPNNQVPHZDR

FMIPPSXWOSWDFUXELKMMGVOGBODEACSZJJDNDZROFMRAHAERPEAFJT

NCZXPUDKQDITNYPFKNFBKOODBZPECFKWYXPGBEACFUQNQECCXSTGCZ

DCKGBZRQVFKBKVRIIVRBKZJECUVANJQVRBKQGZRBKDLECNSMGULBKV

RIIVRGBFKKLBRGBANKOMGLCECIZRPNNGJQZDTUVKLRFECDSSFSXKLCA

HLTRWUCOFGLNSXWOBKSYKLKDXPNLWUELQEFVQMQEVSJVQMUYKLLD

HVXPBKCKCZMEFGDTNFGENYYIDOZDBHOSSCGPCKUVODBKIUFGNFYKQ

VYMJQYVBXWRPQKELWGBQTWYFJ

Plain Text:-

Themonkeyspawpartiwithoutthenightwascoldandwetbutinthesmallparlouroflaburnumvilla

theblindsweredrawnandthefireburnedbrightlyfatherandsonwereatchesstheformerwhoposse

ssedideasaboutthegameinvolvingradicalchancesputtinghiskingintosuchsharpandunnecessa

ryperilsthatitevenprovokedcommentfromthewhitehairedoldladyknittingplacidlybythefireh

arkatthewindsaidmrwhitewhohavingseenafatalmistakeafteritwastoolatewasa

41

Figure-2.8 and 2.9 also show the results of the Hill Cipher algorithm-based encryption and

the two-way communication between two LoRa modules. Figure-2.8 shows the encrypted

message sent from the LoRa node of inverter side (message sent from remote end device

side). Figure-2.9 shows the plaintext message of SCADA side and the decrypted received

message.

42

Figure 2-8 Encrypted message sent from RED side Lora module

43

Figure 2-9 Two-way communication between two LoRa modules

2.5 Conclusion

All previously discussed cryptographic techniques can be implemented for simple

communication purposes. This setup of duplex communication gave the range of 5-15km

(on/off-site) with power consumption of 500Mw (2x250mW) and cost not more than

CAD60 for two units to set up a two-way communication. It was planned to use Hill Cipher

(relatively secure one) for the encryption of SCADA system messages but, after finding

some loopholes and successful attempts of breaching Hill-cipher (developing C++ code

given in the appendix) its implementation for the SCADA system has been discouraged. It

is also vulnerable to attack by any cryptanalyst due to the limited number of keys in

44

keyspace. That is why the implementation of the Advanced Encryption Algorithm (AES)

has been chosen to ensure the security of the SCADA system which not only has large key

space of 2128 possible keys but also is non-linear in nature and is flexible to change the

pattern of output by changing the number of cascaded encryption rounds. Usually, it is used

for military purposes and where extreme security is required. The arduino with DRF1276G

LoRa module cannot support the complexity of the algorithm due to its small flash size

(32kb) and CPU limitations. To implement AES, ESP32 has been used which not only has

enough flash, better CPU and low cost but also has very little power consumption 3.5-

5mW.

45

3 Chapter # 3 Implementation of AES and MAC to

Secure Communication System for Remote Micro-grids

3.1 Introduction

After implementing various encryption algorithms (explained in the previous chapter),

attempts were made to break them to check their security. Some C++ programs were

developed, and some online softwares (ESEnfCVPOA, Crypto Corner, CodeBreaker etc.)

were used to check their resistance. From such cross-checks and their keys-pace it was

inferred that those are not perfectly secure algorithms. Therefore, Advanced Encryption

Standard (AES) Algorithms were studied, learned and implemented. Here, AES has been

implemented first using DRF1276G LoRa module but, it did not work due to controller

limitations. Then, ESP32 was used to secure the LoRa communication by implementing

AES algorithm. The message authenticity and non-repudiation has been achieved by

implementing a 64 bit MAC address for each message regardless of message size. It gives

46

the ability to identify even a single bit change in the message which could be due to any

eavesdropper or strong electromagnetic interference.

Figure 3.1 shows the flow diagram of the process. Before sending any message, first that

is encrypted using the AES encryption algorithm, and then a 64bit unique MAC is

generated from the plaintext. Finally, the ciphertext and the MAC are concatenated and

sent. Similarly, on the receiver side, first the MAC and the ciphertext are separated, then

the MAC is verified, and then ciphertext is decrypted to process further. If the received

MAC address at the receiver end does not match with the MAC calculated from the

message then received packed would be considered suspicious and will not be executed.

Figure 3-1 Flow chart of the implemented communication process

47

3.2 Implementation of AES Algorithm using ESP32 and LoRa Module

The AES algorithm not only has a large key set (2128 possible keys), but also is secure

from many cryptanalysis algorithms like differential cryptanalysis, integration, linear,

multiset and many others like these. So far, it is regarded as the most secure one to all

known attacks [72],[73]. The flow of the AES algorithm has been shown in figure 3.2. The

left half of the figure shows the encryption flow and the right half shows the decryption

flow. Further, these parts have been explained in the coming section. Each encryption

round has the five steps which go sequentially;

• Add round key

• Substitute bytes

• Shift rows

• Mix columns

• Add round key

Similar to encryption, each decryption round also has the five steps

• Add round key

• Inverse mix columns

• Inverse shift rows

• Inverse substitute bytes

• Add round key

48

Figure 3-2 Step by step 10 round AES encryption and decryption [72]

49

3.2.1 Adding the round key and generating a new key

The addition of the round key has been shown in figure 3.3. It is the XOR sum of the binary

strings of the message and the key. The condition for this addition is that the length of the

message string and the key must be equal. Further, the AES encryption maps the message

into a square matrix (4x4 bytes or 32x32 bits). In key addition operation, the first 32-bits

of the message are XORed with the first column of the key matrix. The addition of key

gives the sub-round ciphertext. In figure-3.4 the generation of the round key has been

shown. For the first round, any default or input key is used, and the key for the rest of the

rounds are calculated from the previous round key, plaintext message and the seed (any

word of 4-bytes or binary string of 32-bits). The round key of the previous round is mapped

into a square matrix of 4x4 byte size elements. In the next step, each column of the key

matrix is XORed with the respective column of the word.

Figure 3-3 Addition of round key for AES encryption [72]

50

Figure 3-4 Generating new key from the previous round key and data string [72]

3.2.2 Substitute Bytes

 After calculating the next round key and the addition of key in the previous round

ciphertext (or plaintext for the first round), each byte (the pair of HEX characters) is

replaced with the respective Rijndael’s table (a standard table of 256 values) to increase

the confusion.

3.2.3 Shift Rows

 After substitution, all 16 bytes are distributed to construct a 4x4 square matrix. In the

resultant matrix, the row rotation operation is applied. It has been shown in figure 3.5

• The first row of the matrix remains unchanged

• 2nd row of the matrix is rotated left by one byte

51

• 3rd row is rotated left by two bytes

• 4th row is rotated left by three bytes (or rotated right by one byte)

Figure 3-5 Rotation of bytes in shift row operation [72]

3.2.4 Mix Column

 As shown in figure 3.6, the matrix left multiplication is applied using a 4x4 matrix on the

results of the shift row operation. To get the results of multiplication by two without data

information loss is achieved in two steps. Apply left shift on the binary value of the data

and add 0 on LSB side. The second step depends upon whether the MSB was 0 or 1. The

second step has two ways depending upon the MSB value

• If the MSB of the data was 0, then the final result of 2s multiplication remains the

same as of left shift by one bit

• If the MSB of the data was 1, then the final result of 2s multiplication is achieved

calculating XOR sum of the results of left shift and (00011011)

The multiplication of the data by 3 is quite simple. It is the XOR sum of the 2s

multiplication and the data.

52

Figure 3-6 Mix column operation to increase the confusion and non-linearity [72]

This algorithm not only has a large key set (2128 possible keys), but also is secure from

many cryptanalysis algorithms like differential cryptanalysis, integration, linear, multiset

and many others like these.

In the AES algorithm, for each round, a new key is derived from the previous round key

and the ciphertext of the previous round. From the test results, explained in the next section,

it could be seen that each round ciphertext is entirely different from all others which is due

to the implementation of binary level encryption. The confusion created at each round and

the propagation of confusion from one round to the next round makes it more secure. Its

complete code is provided in appendix B&C.

3.3 Results

The AES algorithm was implemented on DRF1276G, and the results have been shown in

figure 3.7 but, it did not support the AES algorithm due to small flash size (32kb), slow

53

processing and other processor limitations. It could not even execute the single round for

encryption. Therefore, ESP32 shown in figure 3.8 was used which not only supported this

algorithm but also the implementation of Message Authentication Code (MAC) as well.

The MAC has been implemented in the later sections, and the results of AES

implementation ESP32 have been shown in figure 3.9.

It can be seen from the results of the AES implementation on ESP32 that each round

ciphertext is different from the previous round. It is due to the bit level encryption. In each

block of encryption, there are 128 bits due to which 2128 possible key sets would be required

for a cryptanalyst to break this successfully. Moreover, if, any computer program is

developed to break this cipher that would also take thousands of years to perform 2128

calculations. Figure 3.10 gives a brief insight about such large numbers. Even if a

supercomputer which performs single encryption in 1ns will also take more than 60 billions

of years to break it. Therefore, its implementation for SCADA system resolves the security-

related issues and gives perfect security against eavesdropper. Figure 3.11 shows the

received message with the MAC address and the status of its authenticity. On the receiver

side, the received message is parsed into ciphertext and the MAC address then the MAC is

calculated from the received message and is compared with the received MAC. If both

MACs are equal then the message is considered authentic one and is processed; otherwise

the message is declared suspicious and is not processed.

54

Figure 3-7 Implementation of AES encryption using DRF1276G with LoRa module

Figure 3-8 ESP32 with LoRa module used for successful implementation of AES

encryption

55

Figure 3-9 Implementation of AES encryption using ESP32 with LoRa module

Figure 3-10 A hint about large numbers to understand the size of keyspace having 2^128

elements

Figure 3-11 Implementation of AES algorithm with MAC address

56

The data rate for two-way communication between two ESP32 modules depends upon the

spreading factor of the LoRa communication. Spreading factor is basically the frequency

hopping, and its range could be configured by setting the spreading factor from 7-12 for

LoRa communication. The data rate is inversely proportional to the spreading factor.

However, a higher spreading factor gives better range. Figure 3.12 and 3.13 show the graph

between the time elapsed on the sender side and receiver side. The time sampled on sender

side for the data readings includes the time taken in message encrypting and sending and

for the receiver side, the time sample includes the message air time, time taken in message

verification and decryption as well. In these graphs, the relation between spreading factor

and the data rate can be seen vividly.

Figure 3.14 shows the impact of spreading factor on the range. The range of LoRa coverage

is directly proportional to the spreading factor. From the given figure, it can be seen that

when spreading factor is seven the number of messages received and sent is equal and it

indicates three advantages

• No data loss

• Authentic messages

• No delay in messages

On the other side, when the spreading factor is twelve, the number of sent messages is

much higher than the number of received messages, and it has two drawbacks

• Messages are prone to EMI/data loss

• Messages are delayed due to a longer message on air time.

57

At the same time when the range testing was done, the higher spreading factor gave better

range coverage. For SF equal to twelve there was a successful communication link up to

4km (low range due to obstacles) despite minor obstacles as shown in figure 3.15. When

the SF was set equal to seven, the communication link was not good for the same range

and similar obstacles.

Figure 3-12 Time lapsed in message receiving, verifying and decrypting under different

SF

58

Figure 3-13 Time lapsed for message encrypting and sending under different SF

Figure 3-14 Difference of data rate and message authenticity under different SF

59

Figure 3-15 Bi-directional communication range testing of ESP32 with LoRa module

3.4 Conclusion

The implementation of the AES algorithm on ESP32 gives a secure, low cost (of not more

than $50 for two-way communication link), low power (with power consumption of

200mW/unit) and authentic communication setup. Its implementation with MAC address,

addresses the all requirements of the SCADA system for remote micro-grids. Further, its

on-site range is up to 15km and off-site up-to 5km which gives much better coverage as

compared to other conventional wireless communication systems based upon Zigbee,

SigFox, WiFi and others like these. Therefore, its implementation on a large scale will be

economically viable, and also completely secure from all kind of eavesdropper.

60

4 Chapter # 4 Data Logging Using Different

Gateways and Mesh-Network Implementation to

Improve LoRa Range

4.1 Introduction

In this chapter local and remote data logging has been achieved along with the

implementation of Mesh-network to improve the LoRa range.

The ESP32 board has only a single channel SPI bus which does not let the simultaneous

configuration of LoRa communication and the configuration of an SD card to log data

locally. Therefore, another ESP32 board was used to collect data through Rx/Tx and store

on a separate SD card. Remote data logging has been achieved by uploading data to a

server. Its block diagram has been shown in fig-4.1. In that, remote nodes send data to the

gateway to upload it to the cloud for remote access. To upload the data to a server requires

a gateway, for that ESP32 board, was programmed to work as a gateway but, it affected

the functionalities of ESP32. Further, it slowed down its processing time due to which a

dedicated Dragino-yun based gateway was tried for uploading data to a server, and it

worked fine.

61

Finally, to improve the LoRa communication range, a mesh-network was planned and

implemented. The implementation of mesh-network significantly improved the LoRa

range. The results and detailed implementations have been explained in the coming

sections.

Figure 4-1 System structure for remote data-logging

4.2 Local Data Logging

The feature of local data logging was added into this system in order to have a local-data

backup mechanism and to avoid data loss due to any accidental failure in the

communication system. The data which is supposed to be coming from a local

inverter/wind turbine is time-stamped and is stored after applying the AES encryption.

Subsequently, the received data after extracting sender/receiver identity passwords and

MAC is decrypted and verified to ensure that the received message is authentic. Finally,

the data is time-stamped and stored in a separate received data file in CSV format. For the

62

local data storage, the configured SD card console has been shown in fig-4.2, and the

logged data depends upon storage size and received data rate.

Figure 4-2 Configuring SD card for local-data logging

4.3 ESP-32 vs Dragino Gateways

The collected data is uploaded to a server for analysis and storage. Two different gateways,

based upon ESP32 and dragino were tried to upload the data to a server but, both had

certain limitations. The programming and setting of an ESP32 board to work as a gateway

is relatively difficult because it is to be configured as a gateway through coding while a

63

dedicated dragino gateway is already available in the market with complete configuration

and is more user-friendly. On the other hand, an ESP32 based gateway is much more cost

effective and power efficient. It hardly consumes 230-300mW of power [74].

Figure 4.3 shows the successful configurations of the ESP32 board as a gateway. The

configuration and setting of an ESP32 board to operate as a gateway have been shown in

fig-4.4 and fig 4.5. In fig-4.4 is the information about the spreading factor used for data

uploading and fig-4.5 shows the general settings about which feature to be turned on or off.

The Arduino program for its configuration has been given in the appendix. The major

limitation of using ESP32 as a gateway is that when it is used as a gateway and to

encrypt/decrypt data simultaneously, its data uploading rate drastically decreases. It is vivid

from the fig-4.6 and fig-4.7. Fig-4.6 shows the message sent to the server when ESP32 was

being used to decrypt the received data and then to send to the server. It can be seen that

there is a delay sending messages to the server due to the board limitations and it causes a

lot of data loss. It could be used as a gateway for the applications where the data rate is low

but, could not be used for the SCADA system. Further, it does not have ethernet port and

connection is through WiFi. Therefore, if intended to upload decrypted data to the server

it will lose the security. Later in fig-4.7 the console window of The Things Network has

been shown in which data is being uploaded to the server. It can be seen that this window

does not show any delay because data was being uploaded without decrypting.

64

Figure 4-3 Setting ESP32 as a gateway

Figure 4-4 Setting ESP32 as a gateway

65

Figure 4-5 Configuration results of ESP32 as a gateway

Figure 4-6 ESP32 gateway sending messages with AES encryption

66

Figure 4-7 ESP32 gateway uploading data to the Things Network without encryption

Fig-4.8 shows the dragino gateway, used for uploading data to the ThingSpeak server. Its

successful configuration and real-time load have been shown in fig-4.9 and fig-4.10. It has

WAN and LAN ethernet ports and consumes 12W power under loading conditions in active

mode and requires 12V DC for proper functioning. Dragino compensates for this excess

power consumption in terms of many other features. For example, it can serve up to 8 nodes

simultaneously by communicating with each node at a different frequency [74], while

ESP32 can support only three such nodes simultaneously. Unlike ESP32, it does not face

any processing issue due to encryption/decryption which makes it a better choice for

reliable operations.

Figure 4.11 gives the graphical view of data uploaded on the ThingSpeak server using a

dragino gateway. Data is uploaded to the ThingSpeak server once in every fifteen seconds.

ThingSpeak server gives up to eight free data fields for a single account. If the usage

exceeds that then it requires a premium account. Here in the prototype setup, three fields

were used for data logging.

67

Figure 4-8 A dedicated dragino-yun LoRa gateway

Figure 4-9 Successful configuration results of dragino-yun working as a gateway

68

Figure 4-10 Dragino gateway real-time data load

Figure 4-11 Uploading data to the ThingSpeak server

69

4.4 Implementation of Mesh Network and Range Testing

The LoRa range was tested deploying one ESP32-LoRa at Memorial University and taking

other EP32-LoRa to the Signal Hill as shown in fig-4.12. This setup supported a noise and

error-free communication for the distance of 3.85km. Although, its range is usually

obstacle dependent and during another testing it was observed that if the transmitter is at

ground floor in the house window and a receiver is taken outside in neighbouring streets,

then the communication range drastically goes down and they can communicate only up to

the distance of 500-700m (with obstacles). Later, a mesh-network topology was

implemented to address this issue, and it gave significant improvements in range.

Figure 4-12 ESP32 LoRa range testing

Each ESP32-Lora module of the network was assigned a unique identity code to implement

a mesh topology and was also fed with the directory of all other units’ identity code

directory. Before sending a message, the message is encrypted, and MAC address is added

70

to ciphertext string. When a ciphertext string with MAC is ready to be sent, the sender adds

the target node identity code and its identification code in the string. A simple flow chart

of the processing steps at the receiver end has been shown in fig-4.13. The main steps of

this flow are:

a) Receive message

b) Compare received ID and with node ID

c) If true, then verify MAC address, decrypt and execute

d) If false, then tranmit message forward

The receiver comes out of the sleep mode and receives the message. Whenever there is a

message the receiver receives the message and parses it into three parts

a) sender identity code

b) the targeted receiver identity code

c) message packet with data and MAC information

Figure 4-13 Process flow chart for an intermediate level node

71

In the first step, the ID of the node is compared with the targeted receiver ID. If they are

equal, this means that the node is the targeted receiver node and then the received message

packet is further parsed into an encrypted message and MAC to process further. If the

receiver ID is not equal to the targeted receiver ID, it shows that the message is for any

other node then, the message is again packed in a single string as it was received and is

forwarded to the other nodes lying in the range.

In this way, if a message is sent from the central control unit for a node which does not lie

in the range of that unit, then a node in the vicinity of the sender will receive that message

and will forward to the next nearby nodes.

A complete system flow chart has been shown in the fig-4.14 to make it easy to understand.

In this figure, a node of level-2 lies out of the range of the central node and a node of level-

1 acts as a bridge for two-way communication between the control node and level-2 nodes.

After implementing mesh topology, its range was tested for two levels of nodes, and a

significant improvement was observed. The nodes whose range was limited to 900-1000m

in the street with obstacles achieved another 500m in their coverage area, and its results

can be seen in fig-4.15. In this way, the range which was only obstacle dependent became

the function of the number of levels between the sender and the receiver as well.

72

Figure 4-14 Mesh network for improved LoRa range

Figure 4-15 Range testing in obstacle dense area after implementing a mesh network

73

4.5 Complete System Flow Diagram

Figure 4.16 shows a complete system flow diagram for a prototype micro-grid network. It

has distributed generation shown as two different wind turbines and two solar panels which

represent the distributed power generation units. Each power generation unit has sensors

for certain measurements (current, voltage, power etc.), and is also associated with ESP32

based LoRa module which acts as a remote-end-device. Data is collected from the sensors

installed on RED and is serially transmitted to the local ESP32 modules. The ESP32

encrypts the data applying AES encryption algorithm and calculates the 64bit unique MAC

for the message and adds to the ciphertext string. After encryption and MAC addition, one

copy of the data is stored on local SD card for local data-backup, and the other copy is

transmitted to the SCADA side through LoRa communication after the addition of sender

and receiver node IDs. LoRa communication gives it better range through the mesh-

network structure and transmits to the SCADA unit. On SCADA side, the received message

is parsed into sender/receiver IDs, MAC address and the ciphertext of the message. Before

decryption and further processing first, the authenticity and integrity of the message are

verified by comparing node IDs and calculated/received MAC addresses. After ensuring

the message authenticity, the message is decrypted and processed. For remote data logging,

a copy of the data is sent to the gateway (ESP32/Dragino-yun) to upload data on the web.

In this way, a secure and authentic communication system for remote micro-grids has been

achieved, and data has been logged on a server to view, analyze and store data remotely.

74

Figure 4-16 Complete System diagram

75

4.6 Conclusion

Here, two different gateways were programmed and configured to work as a gateway to

upload data to the server. It was seen that ESP32 based gateway has less power

consumption but also has many limitations, slow processing, delay in data uploading and

loss of the data. Due to which Dragino-yun was tried to upload data to the server, and it

worked nicely without any data loss. For local data logging, an SD card was configured,

and data was stored on that but, that requires an additional ESP32 board due to the

limitations of board structure (overlapping of communication buses). Finally, to meet

applications requirements the dragino-yun based gateway was selected to upload data to

the server.

A successful mesh-network structure was implemented to improve the range of LoRa

communication and to collect data from the remote end devices. It significantly improved

the LoRa range (5km off-site and 15km on-site) and tackled with the challenge of data

collection from scattered remote end devices.

In this way a secure communication with remote data logging was achieved with cost not

more than $82 with additional $26 for every new node into the system. Single ESP32

consumes power of 200mW and the Dragino gateway consumes 4.5W and overall power

consumption was not more than 4.7W with additional 200mW for every new node. In this

way, system not only meets the requirements but also gives low cost and low power setup.

76

5 Chapter # 5 Radio-set Based System Topologies

for Longer Range Setup

5.1 Introduction

After the successful implementation of a secure communication system for remote

microgrids, and improved LoRa range by implementing mesh-network, the idea came

about extending its range beyond 30km to enhance the circle of applications. To achieve

this goal, a radio set was used on both sides. One on the SCADA side and other on the

remote end with the local data collector. The local data collector collects the data from

distributed Lora units, and stores data for local backup. After applying encryption and other

data security steps discussed in previous chapters, the data is serially transferred to the

MAX232 (driver for serial communication between radio-set and controller) to feed it to

the radio set. The radio-set takes 12V DC due to which MAX232, a serial communication

driver has been used to provide common ground for different voltage level signals. The

radio-set transmits the received data improving transmission range. A single layer of LoRa

modules (without mesh-network) has the range of 15km, and the radio-set has the range of

up to 25km. In this way, the integration of LoRa module and radio-set give transmission

77

range of more than 40km without the use of any mesh-network or repeater for radio-sets.

Here, three different system topologies

1) ESP32 with LoRa based communication system

2) Remote data logging using ESP32 based gateway

3) Data logging on a web-server using Dragino-yun

have been tried using radio-set.

5.2 System Structure-I

A simple diagram of the system topology applied at this stage has been shown in fig 5.1.

In this system structure, the data collected from remote sensors is fed to the dedicated

ESP32 module. The ESSP32 with LoRa, repeats the same steps of encryption, MAC

calculation, and the addition of sender/receiver IDs as was done in system structure

explained in previous chapters. After repeating those steps, the ESP32 data collector does

not transmit the message over LoRa communication; instead serially transmits to the radio-

set through MAX232. The radio set boosts the range and sends it to the far away located

other radio-set. On the receiver end, the radio-set receives the data and sends it to the USR-

TCP-232 serial to ethernet converter. The output of this converter goes to the PC where the

message is further processed. The results of data collected through this kind of system-

scheme have been shown in fig 5.2. The configuration of USR-TCP-232 has been

explained in the coming sections.

78

Figure 5-1 System structure for topology I with broader range due to radio-set

Figure 5-2 Data logging by implementing system structure I

79

5.3 Hardware Setup and Interfacing

5.3.1 RA30H1317M

The circuit of the mobile radio set used in the project has been shown in fig 5.3. This mobile

radio requires 12.5V DC and consumes 25W power to transmit messages over up to 30km

in the frequency band of 135MHz-170MHz. It was chosen because it has the following

features

• Efficiency >40%

• Broadband frequency range 135-

170MHz

• Pout=30Watt

• 2nd harmonic power = -35dB

Figure 5-3 RA30H1317M based radio-set board used in this project

80

5.3.2 DC Power Supply LRS-150-12

Radi0-set RA30H1317M requires a power supply which can give protection against all

kind of surges and minimum voltage regulation. For message sending and receiving radio-

set draws very high current (up to 6Amp) than its normal energized state (110mA)

therefore, a DC power supply must also be able to deliver that current without voltage dip.

The DC power supply LRS-150-12 was chosen because its rated current is 12.5A, and at

full load the voltage regulation is not more than 1%. Its further specifications are given in

table 5.1, and its circuit has been shown in fig 5.4.

Table 5-1 Specifications of the power source

DC Voltage 12V

Rated current 12.5A

Current range 0~12.5A

Rated power 150W

Ripple & noise (max) 150m Vp-p

Output voltage adj. range 10.2~13.8V

Voltage regulation +-1%

Input voltage 85~132VAC

81

Figure 5-4 12V DC power supply to power-up the radio-set and protecting against surges

5.3.3 Building MAX 232 circuit

The controller boards used in this project are ESP32 with LoRa module. Its operating

voltage range is 3.3-5V, and the radio-set which receives the message from ESP32 through

serial Rx/Tx pins operates at 12V DC. Therefore, to provide common grounds for different

82

voltage signals and to protect the controller from any unwanted surge requires a driver.

MAX232 was used to protect the boards and to provide common grounds. Its circuit was

built as shown in fig 5.5 according to its data-sheet.

Figure 5-5 MAX232 driver circuit built to protect the controller from power surges and to

provide common ground for signals

83

5.1.1 Setting USR-TCP232

On the receiver side, the received message by radio-set is sent to the PC through USR-

TCP232 converter shown in fig 5.6. It works on 5V DC and converts DB-9 signal into

ethernet. It has inbuilt TCP server and requires complete settings. After logging in to its

setting page it requires setting in two domains. First, its serial port setting is to be done as

shown in fig 5.7 mainly focusing on three categories

Baud rate:- It could be set according to the other system baud rate for proper

communication without any delay or information loss. The system baud rate of 9600 was

used in this communication setup.

Local port number:- USR-TCP232 requires its local and remote port numbers to be set.

When it is being used as a TCP server, then its local port number is to be assigned a specific

ID number from 0-65535, and when it is used as a TCP client, then its remote port number

is to be set. Based upon the port number, it interfaces with the PC, and it should also match

with the PC port number (explained in the next section) to log data.

TCP Server:- Lastly, its work mode is set by setting whether is it to work as a TCP server

or TCP client. Here it has been used as a TCP server, and its setting has been done

accordingly as shown in fig 5.7.

After its serial port setting, its internal registration setting is to be done by setting packet

type and direction. Here communication between different units was in ASCII due to which

it was set in ASCII mode shown in fig 5.8; otherwise it could be set into Binary Coded

Decimal (BCD), hex or binary.

84

Figure 5-6 USR-TCP-232 used in the project for serial to ethernet conversion

Figure 5-7 USR-TCP-232 Serial port setting

85

Figure 5-8 Internal registration setting of USR-TCP-232

5.3.5 Ethernet and USR-TCP232 setting

After the completion of USR-TCP232-302 setting, the PC ethernet port setting was done

as shown in fig 5.9. To start logging data or sending messages from PC to remote end

devices, the USR-TCP-232-test software proved very helpful. Its configuration setting has

been shown in fig 5.10. For its successful setting three things are important to be

considered. It should be set into the TCP Client (Server) mode because USR-TCP232 was

configured in TCP Server (Client) mode. Secondly, its server IP must be the same which

was set for TCP-232 device. Finally, its server port must be the same as was set in the local

port ID of the TCP server. After these settings are correctly done, the connect option

connects the serial channel for communication and data logging (message sending) starts.

Further, this software gives many additional features, e.g. logging received data into a .text

86

file, reading messages from .text file to send over this channel in a cyclic way. The time

interval between the outgoing messages can be set easily as shown in the fig 5.10.

Figure 5-9 PC ethernet setting to interface with USR-TCP-232

Results

87

Figure 5-10 Results and setting of USR-TCP232 test software

5.4 System Structure-II

In this system structure, the remote-end sensor side system structure is almost the same

as the system structure-I but, the SCADA side has been improved significantly. In the

previous system, the Radio-set was serially connected with the PC through USR-TCP232-

302, and data was being logged, but its drawback was that it reserves a whole PC running

round the clock to log the data. In system-II, as shown in the fig 5.11, a driver of serial

communication (MAX-232) collects the serial data from Radio set and feeds it to a tiny

controller ESP-32 running as a gateway. It uploads data to the server through the wifi and

eliminates the need of a PC.

88

Figure 5-11 System structure for topology II with broader range due to radio-set

 Although, the system structure-II seems very interesting because it simplifies the system

by eliminating the PC and making system more power efficient but, there are few

limitations of this system e.g.

• It uses ESP32 as a gateway and uploads the decrypted data to the server through

wifi due to which data becomes vulnerable to the eavesdropper.

• An ESP32 is not a dedicated gateway but is being used for serial communication,

encryption, decryption, MAC generation, MAC verification and uploading data to

the server which make it slow. This system structure may prove very helpful if there

89

is not high traffic of two-way messages over the channel (not more than 10

messages per hour).

But, for the SCADA system of remote micro-grids, it cannot be used due to the increased

message on air time and data loss. Due to this drawback, a third system structure was

designed and implemented. It has been explained in the next section.

5.5 System Structure-III

Quite similar to the previously discussed system structure, this system also has similar type

of structure on remote end but, is different in system structure for the SCADA side. Its

simplified structure has been shown in fig 5.12. There is a MAX-232 circuit which serially

connects the radio set with the ESP32 collector-dragino side. This ESP32 has been used to

collect the received data serially, to partially decrypt the received data and then send to the

dragino gateway through LoRa communication. Dragino-yun is a dedicated LoRa gateway

and does not face any time delay issues. It was also planned to feed the serial output of

MAX2232 direct to the dragino gateway without the use of ESP32 collector but, due to the

limitations given below it was not possible

a) Dragino gateway cannot decrypt the received message due to limited memory.

When it was tried a low-memory error occurred as shown in fig 5.13

b) It is built on one dragino-yun shield and one other chip for the gateway, and both

are connected through Rx/Tx pins. So, external use of Rx/Tx pins is not possible

90

Figure 5-12 System structure for topology III with broader range due to radio-set

Figure 5-13 Dragino-yun low memory error

91

Therefore, an additional ESP32 has been used as a collector to decrypt/encrypt the received

message and send the serial/LoRa received data on LoRa/Serial. The ESP32 decrypts the

data partially, and extracts a string of HEX from the encrypted string and forwards to the

dragino gateway. Finally, the dragino gateway has been used to extract the real data from

the partially decrypted message and uploads that to the server.

A prototype of the message encrypted with AES was sent from the remote end node and a

dummy data was logged on the ThingSpeak server. Data sample is logged once in every

fifteen seconds and it offers eight different fields to log under single user ID without any

charges.The results have been shown in fig 5.14.

Figure 5-14 Data logging on the ThingSpeak server using system topology III

5.6 Conclusion

A radio-set based broader range communication system has been setup. It significantly

improves the range up to 50km. System structure-1 costs not more than $325 (Three ESP32

92

each of $26, USR-TCP-232 of $28 and LSR-150-12 with two Radio-sets each of $109.53)

including radio-sets and system structure-II&III cost $323 and $353 respectively. Here,

three different topologies have been tried for secure communication and data logging. Each

topology has its own circle of applications based upon merits and demerits. If data logging

is required only at the main SCADA unit then first topology works very well. Second

topology is useful for logging data on to the server to access remotely but, it has certain

limitations. It will be nice option for data logging if there is very limited number of

messages (roughly 10 messages/hr). The final one is useful if very frequent communication

is required. Then, this topology seems the optimal solution for real-time communication

and logging data on the server.

After implementing these three topologies and identifying their limitations, the System

Structure-III shown in fig-5.12 was finalized for the SCADA system because, it meets all

system requirements and has longer range (>50km) due to radio-sets. Cascaded mesh-

topology cannot be implemented to achive this range because due to increase of cumulative

message on air time, it becomes more vulnerable to data loss and electromagnetic

interference. The finalized system consists of two radio-sets, three ESP32s, two MAX232s

circuits and one dragino gateway and costs $353 and gives range of more than 50km. It has

secure communication due to the implementation of AES algorithm. It gives message

authenticity due to the implementation of MAC. Usage of the dedicated gateway makes it

superior over System Structure-II and it supercedes the System Structure-I due to the

feature of remote data logging.

93

6 Chapter # 6 Summary and Recommendations

6.1 Summary of Work

With increasing renewable energy penetration, the number of distributed generation and

remote micro-grids are also increasing. While each remote micro-grid requires to have a

sophisticated (secure, long range, low power and low cost) communication system for SG

SCADA system. It creates a research gap for devising a system with desired attributes. This

research was conducted to develop a system with the above listed features. This goal was

achieved in five research phases given below

1. Finding a low power, low cost and long range communication system.

To achieve this, the literature review comprising the study of twelve wireless

technologies and three wired technologies was done. After the comparison of those

technologies, a comparison table was constructed, and LoRa communication was

chosen for this purpose.

2. Finding and implementing a secure communication mechanism.

To achieve the security of the communication system, different encryption

algorithms were studied, implemented and cross-checked by developing C++ code

94

and using online software. Encryption was implemented on using DORJI

DRF1276G Arduino-LoRa moidules.

3. Authentication of the message signals and implementation of advanced encryption

algorithms.

To authenticate the message algorithm was developed to generate a unique

message authentication code for each message. It enabled to identify a bit-level

alteration in the message. Further, AES was implemented on ESP32 to secure the

message from decryption.

4. Logging data on a cloud for remote monitoring and improving the LoRa range.

Data was uploaded to the server to access remotely. It was achieved by

programming and configuring two gateways for this purpose. Further, LoRa range

was improved by bringing the idea of its implementation in mesh-network

structure. This led to a low-cost ($78 +$26 for every new node and level), low

power (600mW + 200mW for every new node and level), and improved the range

by 5km on-site and 15km off-site by every new mesh-network level.

5. Extending the system to get longer range (50km) without data loss and

electromagnetic intergference.

It was achieved by implementing a hybrid system using LoRa and radio-system.

Considering the requirements of the SG SCADA system, three possible different

system topologies were designed and implemented. Final design of 3rd topology

consists of ESP32s, Radio-sets and dragino-gateway with total cost of $353 and

power consumption of 43W. And it was recommended based upon the SG SCADA

system objectives.

95

6.2 Future Work Recommendations

There is always a possibility to make the existing work better and here are the few

recommendations.

1. A private server can be developed to eliminate any possible way of intruder’s

intervention through server side and internet.

2. After the study of the SCADA system, local controllers can be given certain

privileges to minimize the communication of critical messages and rank data based

upon data priority.

3. Local graphical user interfacing (Human Machine Interfacing) and control can be

introduced to make the system more flexible for adding/removing nodes.

4. Design a proper housing and power supply for the communication link.

6.3 List of Publications

6.3.1 Submitted

1. Amjad Iqbal and M. Tariq Iqbal, “Low-cost and Secure Communication System for

SCADA System of Remote Micro-grids”, accepted in the Journal of Electrical and

Computer Engineering, April 2, 2019

6.3.2 Published/Accepted

2. Amjad Iqbal and M. Tariq Iqbal, “Low-cost and Secure Communication System for

Remote Micro-grids using AES Cryptography on ESP32 with LoRa Module,”

presented in IEEE Electrical Power and Energy Conference (EPEC), 2018

96

3. Amjad Iqbal and M. Tariq Iqbal, “Design and Analysis of a Stand-alone PV System

for a Rural House in Pakistan,” published in the International Journal of

Photoenergy, April 24, 2019

4. Amjad Iqbal and M. Tariq Iqbal, “Thermal Modeling and Sizing of a Stand-Alone

PV System for a Rural House in Pakistan,” presented at 27th IEEE NECEC

Conference, 2018

6.3.3 Poster Presentation

5. Amjad Iqbal and M. Tariq Iqbal, “Low-cost and Secure Communication System for

Remote Micro-grids using AES Cryptography and ESP32 with LoRa,” presented in

poster session at Ryerson University, Toronto ON, during NESTNet 2nd Annual

Technical Conference, June 19-20, 2018

97

7 References

[1] F. Qi et al., “Optimal planning of smart grid communication network for

interregional wide-area monitoring protection and control system,” Proceedings -

2nd IEEE International Conference on Energy Internet, ICEI 2018. pp. 190–195,

2018.

[2] H. Lim, J. Ko, S. Lee, J. Kim, M. Kim, and T. Shon, “Security architecture model

for smart grid communication systems,” 2013 Int. Conf. IT Converg. Secur.

ICITCS 2013, pp. 1–4, 2013.

[3] P. Kansal, S. Member, A. Bose, and A. Infrastructure, “Smart Grid

Communication Requirements for the High Voltage Power System,” 2011 IEEE

Power Energy Soc. Gen. Meet., pp. 1–6, 2011.

[4] M. F. Aziz and N. Abdulaziz, “Prospects and challenges of renewable energy in

Pakistan,” in 2010 IEEE International Energy Conference and Exhibition,

EnergyCon 2010, 2010, pp. 161–165.

[5] Q. Yang, J. A. Barria, and T. C. Green, “Communication infrastructures for

distributed control of power distribution networks,” IEEE Transactions on

Industrial Informatics, vol. 7, no. 2. pp. 316–327, 2011.

[6] V. C. Güngör, D Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.

Hancke, “Smart grid technologies: Communication technologies and standards,”

IEEE Trans. Ind. Informatics, vol. 7, no. 4, pp. 529–539, 2011.

[7] B. Flerchinger, Robert Ferraro, Chris Steeprow, Michael Mills-Price, J.W. Knapek,

“Third-Generation Cellular and Wireless Serial Radio Communications: Field

Testing for Smart Grid Applications,” IEEE Ind. Appl. Mag., vol. 24, no. 5, pp. 10–

17, Oct. 2018.

[8] S. Supriya, M. Magheshwari, S. Sree Udhyalakshmi, R. Subhashini, and Musthafa,

“Smart grid technologies: Communication technologies and standards,” Int. J.

Appl. Eng. Res., 2015.

[9] V. C. Güngör, D Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.

Hancke, “A Survey on smart grid potential applications and communication

requirements,” IEEE Trans. Ind. Informatics, 2013.

[10] P. G. Kate and J. R. Rana, “ZIGBEE based monitoring theft detection and

automatic electricity meter reading,” in International Conference on Energy

Systems and Applications, ICESA 2015, 2016.

98

[11] P. Yi, A. Iwayemi, and C. Zhou, “Developing ZigBee deployment guideline under

WiFi interference for smart grid applications,” IEEE Trans. Smart Grid, 2011.

[12] A. Mulla, J. Baviskar, S. Khare, and F. Kazi, “The Wireless Technologies for

Smart Grid Communication: A Review,” 2015, pp. 442–447.

[13] Y. Gu, A. Lo, S. Member, and I. Niemegeers, “Wireless Personal Networks,”

Communications, 2009.

[14] X. Xu, X. Hu, Z. Zhu, and X. Ji, “Application and research of Bluetooth

technology in the development of the portable device for the evaluation of

myodynamia,” ITME 2011 - Proceedings: 2011 IEEE International Symposium on

IT in Medicine and Education, vol. 2. pp. 620–623, 2011.

[15] M. Aiello, R. De Jong, and J. De Nes, “Bluetooth broadcasting: How far can we

go? An experimental study,” in 2009 Joint Conferences on Pervasive Computing,

JCPC 2009, 2009.

[16] K. A. T. Lasagani, T. Iqbal, and G. K. Mann, “Data Logging and Control of a

Remote Inverter Using LoRa and Power Line Communication,” Energy Power

Eng., vol. 10, no. 08, pp. 351–365, 2018.

[17] M. Conti, D. Fedeli, and M. Virgulti, “B4V2G: Bluetooth for electric vehicle to

smart grid connection,” 2011, pp. 13–18.

[18] ABB, “Utility Communications Narrowband SCADA Radio Modems,” Power and

Productivity for a Better World. [Online]. Available:

https://library.e.abb.com/public/73ca197a99448ddbc12576bd00458654/Narrowban

d SCADA Radio Modems.pdf. [Accessed: 02-Feb-2019].

[19] Aa. Shahzad, Y. G. Kim, and A. Elgamoudi, “Secure IoT Platform for Industrial

Control Systems,” in 2017 International Conference on Platform Technology and

Service, PlatCon 2017 - Proceedings, 2017.

[20] B. Glushko, D. Kin, and A. Shar, “Gigabit optical wireless communication system

for personal area networking,” Proc. 2013 18th Eur. Conf. Netw. Opt. Commun.

NOC 2013 2013 8th Conf. Opt. Cabling Infrastructure, OC I 2013, pp. 145–148,

2013.

[21] M. Rahaim, Thomas D. C. Little, “Interference in IM/DD optical wireless

communication networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 9, pp.

D51–D63, 2017.

[22] M. Uysal and H. Nouri, “Optical wireless communications - An emerging

technology,” in International Conference on Transparent Optical Networks, 2014.

99

[23] P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” in

Optical Fiber Telecommunications V1B, 2008.

[24] S. Arnon, J. R. Barry, G. K. Karagiannidis, R. Schober, and M. Uysal, Advanced

optical wireless communication systems. 2012.

[25] “Laser Demonstration Reveals Bright Future for Space Communication,” Dewayne

Washington NASA’s Goddard Space Flight Center, Washington, 04-Mar-2016.

[26] A. Nowicki, “Boulder’s Smart Grid Leaves Citizens in the Dark,” A Wood

Mackenzie Business, 18-Mar-2013.

[27] D. Buterbaugh, Timothy Brown, “Boulder Strategic Networking for Power

System,” Colorado, 2010.

[28] M. Jia, X. Gu, Q. Guo, W. Xiang, and N. Zhang, “Broadband hybrid satellite-

terrestrial communication systems based on cognitive radio toward 5G,” IEEE

Wireless Communications, vol. 23, no. 6. pp. 96–106, 2016.

[29] M. Guimarães Castello Branco, Augusto da Rocha Gomes, “Satellite

Communication Challenges in a Fully Interconnected World,” in 2017

SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference

(IMOC), 2017, p. 5.

[30] K. Sohraby, Daniel Minoli, Benedict Occhiogrosso, Wei Wang, “A Review of

Wireless and Satellite-Based M2M/IoT Services in Support of Smart Grids,” Mob.

Networks Appl., vol. 23, no. 4, pp. 881–895, 2017.

[31] C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, H. M. Aggoune, H. Haas, S.

Fletcher and E. Hepsaydir, “Cellular architecture and key technologies for 5G

wireless communication networks,” IEEE Commun. Mag., 2014.

[32] J. Ghetie, “Wireless Communications and Networking,” in Fixed-Mobile Wireless

Networks Convergence, 2009.

[33] Y. Chung, Jae Young Ahn, Jae Du Huh, “Experiments of A LPWAN Tracking

(TR) Platform Based on Sigfox Test Network,” in 2018 International Conference

on Information and Communication Technology Convergence (ICTC), 2018.

[34] N. I. Osman, Esra B. Abbas, “Simulation and Modelling of LoRa and Sigfox Low

Power Wide Area Network Technologies,” in 2018 International Conference on

Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 2018.

[35] B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovacs, P. Mogensen, and M.

Sorensen, “Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-

IoT,” in IEEE Vehicular Technology Conference, 2017.

100

[36] F. Bonavolontà, Annarita Tedesco, Rosario Schiano Lo Moriello, Antonio Tufano,

“Enabling wireless technologies for industry 4.0: State of the art,” in 2017 IEEE

International Workshop on Measurement and Networking (M&N), 2017.

[37] L. Vangelista, “Frequency Shift Chirp Modulation: The LoRa Modulation,” IEEE

Signal Processing Letters, vol. 24, no. 12. pp. 1818–1821, 2017.

[38] A. Lavric, Valentin Popa, “Internet of Things and LoRaTM Low-Power Wide-Area

Networks: A survey,” in 2017 International Symposium on Signals, Circuits and

Systems (ISSCS), 2017.

[39] A. U. Macrae and A. M. Noll, “Bell Telephone Laboratories, Incorporated: 1925-

1984 New Jersey’s innovation factory,” in Proceedings of the 2015

ICOHTEC/IEEE International History of High-Technologies and their Socio-

Cultural Contexts Conference, HISTELCON 2015: The 4th IEEE Region 8

Conference on the History of Electrotechnologies, 2015.

[40] G. Bumiller, L. Lampe, and H. Hrasnica, “Power line communication networks for

large-scale control and automation systems,” IEEE Commun. Mag., 2010.

[41] S. Rinaldi, P. Ferrari, A. Flammini, M. Rizzi, E. Sisinni, and A. Vezzoli,

“Performance analysis of power line communication in industrial power

distribution network,” Comput. Stand. Interfaces, 2015.

[42] K. Sharma and L. M. Saini, “Power-line communications for smart grid: Progress,

challenges, opportunities and status,” Renewable and Sustainable Energy Reviews.

2017.

[43] S. Galli, A. Scaglione, and Z. Wang, “For the grid and through the grid: The role of

power line communications in the smart grid,” in Proceedings of the IEEE, 2011.

[44] A. Leonov and V. Konyshev, “From the Revolution to the Evolution: The Change

in the Character of Development of Fiber Optic Communications Technology —

And the Record Performance of 100 Gbit/s Systems as a Marker of this Change,”

2017, pp. 34–36.

[45] G. P. Agrawal, Lightwave Technology: Telecommunication Systems. 2005.

[46] R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical

communication networks,” in Proceedings of the IEEE, 2012.

[47] C. DeCusatis, Handbook of Fiber Optic Data Communication. 2008.

[48] J. Vodrazka, “Potential use of gigabit digital subscriber lines in hybrid access

networks,” in International Conference on Digital Technologies 2013, DT 2013,

2013.

101

[49] D. Mandell, “LoRaWAN Assumes LPWAN Leadership for IoT Gateways.” VDC

Research Insight for the Connected World, 2017.

[50] Y. Tang, W. Li, C. Xiong, J. Wei, and M. Ghogho, “Secure communications via

sending artificial noise by both transmitter and receiver: optimum power allocation

to minimise the insecure region,” IET Communications, vol. 8, no. 16. pp. 2858–

2862, 2014.

[51] A. D. Harper and X. Ma, “MIMO Wireless Secure Communication Using Data-

Carrying Artificial Noise,” IEEE Transactions on Wireless Communications, vol.

15, no. 12. pp. 8051–8062, 2016.

[52] Z. Chen, T. Jiang, and W. Zou, “A novel physical layer security communication

method based on dual base station,” 2017 17th International Symposium on

Communications and Information Technologies, ISCIT 2017, vol. 2018–January.

pp. 1–4, 2018.

[53] T. Q. Duong, “Keynote talk #1: Trusted communications with physical layer

security for 5G and beyond,” 2017.

[54] C. Mavrokefalidis, D. Ampeliotis and K.Berberidis, “A study of the communication

needs in micro-grid systems,” in General Assembly and Scientific Symposium of the

International Union of Radio Science (URSI GASS), 2017 XXXIInd, 2017, pp. 1–4.

[55] A. García-Domínguez, “Enabling SCADA cluster and cloud for smart grid using

hierarchical multicast; The PTMF framework,” in Proceedings of the IEEE

International Conference on Industrial Technology, 2015, vol. 2015–June, no.

June, pp. 218–225.

[56] H. H. and D. M. S. and M. G. and A. K. Safa, “Cyber security of smart grid and

SCADA systems, threats and risks,” in CIRED Workshop 2016, 2016, pp. 1–4.

[57] E. Bou-Harb, C. Fachkha, M. Pourzandi, M. Debbabi, and C. Assi,

“Communication security for smart grid distribution networks,” IEEE Commun.

Mag., vol. 51, no. 1, pp. 42–49, 2013.

[58] H. H. and D. M. S. and M. G. and A. K. Safa, “Cyber security of smart grid and

SCADA systems, threats and risks,” in CIRED Workshop 2016, 2016, pp. 1–4.

[59] A. Tanenbaum, “Network Security,” in Computer Networks, 5th ed., PEARSON,

2011, pp. 767–790.

[60] H. Su, M. Qiu, and H. Wang, “Secure wireless communication system for smart

grid with rechargeable electric vehicles,” IEEE Commun. Mag., vol. 50, no. 8, pp.

62–68, 2012.

102

[61] D. NamdeoHire, “Secured Wireless Data Communication,” Int. J. Comput. Appl.,

vol. 54, pp. 27–30, 2012.

[62] A. A. P. R. and R. F. S. Amiruddin, “A testbed implementation of secure and

lightweight privacy preservation mechanism using scrambled Fibonacci and XOR

for ZigBee,” in Region 10 Conference, TENCON 2017 - 2017 IEEE, 2017, pp. 863–

868.

[63] Y.-S. Tsai, C.-Y. Chu, M.-C. Li, Y.-H. Lin, and P. Chen, “Intelligent DC power

monitoring system and sensor network based on ZigBee-equipped smart sockets,”

in 2016 5th International Symposium on Next-Generation Electronics, ISNE 2016,

2016.

[64] Aa. Shahzad, Y. G. Kim, and A. Elgamoudi, “Secure IoT Platform for Industrial

Control Systems,” in 2017 International Conference on Platform Technology and

Service, PlatCon 2017 - Proceedings, 2017.

[65] A. V. D. M. Kayem, H. Strauss, S. D. Wolthusen, and C. Meinel, “Key management

for secure demand data communication in constrained micro-grids,” in Proceedings

- IEEE 30th International Conference on Advanced Information Networking and

Applications Workshops, WAINA 2016, 2016, pp. 585–590.

[66] J. L. Tsai and N. W. Lo, “Secure Anonymous Key Distribution Scheme for Smart

Grid,” IEEE Trans. Smart Grid, 2016.

[67] X. Miao and X. Chen, “Cyber security infrastructure of smart grid communication

system,” China Int. Conf. Electr. Distrib. CICED, no. Ciced, pp. 5–6, 2012.

[68] W. Stallings, Cryptography and Network Security, vol. 139, no. 3. 2011, pp. 312-

328.

[69] C.-S. Choi, , Jin-Doo Jeong, Il-Woo Lee, Wan-Ki Park, “LoRa based Renewable

Energy Monitoring System with Open IoT Platform,” in International Conference

on Electronics, Information, and Communication (ICEIC), 2018, pp. 1–2.

[70] H.-R. Lee,Won-Jong Kim,Ki-Hyuk Park,Han-Jin Cho, Chi-Ho Lin, “Development

of an easy payment system based on IoT gateway,” in International Conference on

Electronics, Information, and Communication (ICEIC), 2018, pp. 1–3

[71] R. G. Anvekar, Rajeshwari M Banakar, Rajat R Bhat, “Design alternatives for end

user communication in IoT based system model,” in IEEE Technological

Innovations in ICT for Agriculture and Rural Development (TIAR), 2017.

[72] W. Stallings, Cryptography and Network Security, vol. 139, no. 3. 2011, pp. 312-

328.

103

[73] P. Patil, P. Narayankar, D. G. Narayan, and S. M. Meena, “A Comprehensive

Evaluation of Cryptographic Algorithms: DES, 3DES, AES, RSA and Blowfish,”

in Procedia Computer Science, 2016, vol. 78, pp. 617–624.

[74] Dragino, “LG01 LoRa Gateway User Manual.” Dragino, pp. 22–30, 2018.

104

Appendixes Containing C++/Arduino Code

8 Appendix A C++ code to Breach the Hill Cipher

#include <iostream>

#include <string>

using namespace std;

int main ()

{ /* Coding Block-1: splitting string into pairs*/

 while (1) { string input;

cout<<"Please input ciphertext string without SPACES and with even number of characters

"<<endl<<endl;

cin>>input;

int counter=0, string_length=input.length(),half_length=string_length/2, counter1=0,

frequency_index[half_length], dummy_counter=0,freq=1, freq_index=0;

string half_string_o="", half_string_e="",odd,even,pair[half_length];

char array_of_character[string_length];

if ((input.length()%2)==0)

{ for (counter;counter<input.length();counter++)

 { if (counter%2==0)

 { half_string_e=half_string_e+input[counter]; }

 else if (counter%2!=0)

 { half_string_o=half_string_o+input[counter];}

 array_of_character[counter]=input[counter];

 cout<<" "<<array_of_character[counter];}

 cout<<endl<<"Here are the pairs of characters"<<endl;

for (counter1;counter1<half_length;counter1++)

{ odd=half_string_o[counter1]; even=half_string_e[counter1];

pair[counter1]=even+odd;

cout<<pair[counter1]<<" ";}

cout<<endl;

{ /* Block-2 Frequency: Counting repetition of pairs*/

int dummy3=0;

for (dummy_counter;dummy_counter<=half_length;dummy_counter++)

{ int nested_dummy=dummy_counter, frequency=0;

 for(nested_dummy;nested_dummy<half_length;nested_dummy++)

 { if (pair[nested_dummy]==pair[dummy_counter])

105

 frequency=frequency+1;}

 frequency_index[dummy_counter]=frequency;}

cout<<"cipher block"<<" frequency"<<endl;

for (dummy3;dummy3<half_length;dummy3++)

{ cout<<" "<<pair[dummy3]<<" "<<frequency_index[dummy3]<<endl;}

 /*Block-3: Decryption*/

cout<<endl<<endl<<" decryption "<<endl<<endl;

int dummy7=0, dummy8=0, p0,p1,counter6=0,plain_text_number[2],

cipher_text_number[2],key[4]={5,19,24,3};

 char plain_text[2],cipher_text[2], array_of_plain_text[string_length];

for (dummy7=0;dummy7<string_length;)

{ for (dummy8=0;dummy8<2;dummy8++)

 { cipher_text[dummy8]=array_of_character[dummy7];

 if (cipher_text[dummy8]=='A'||cipher_text[dummy8]=='a')

 cipher_text_number[dummy8]=0;

 else if (cipher_text[dummy8]=='B'||cipher_text[dummy8]=='b')

 cipher_text_number[dummy8]=1;

 else if (cipher_text[dummy8]=='C'||cipher_text[dummy8]=='c')

 cipher_text_number[dummy8]=2;

 else if (cipher_text[dummy8]=='D'||cipher_text[dummy8]=='d')

 cipher_text_number[dummy8]=3;

 else if (cipher_text[dummy8]=='E'||cipher_text[dummy8]=='e')

 cipher_text_number[dummy8]=4;

 else if (cipher_text[dummy8]=='F'||cipher_text[dummy8]=='f')

 cipher_text_number[dummy8]=5;

 else if (cipher_text[dummy8]=='G'||cipher_text[dummy8]=='g')

 cipher_text_number[dummy8]=6;

 else if (cipher_text[dummy8]=='H'||cipher_text[dummy8]=='h')

 cipher_text_number[dummy8]=7;

 else if (cipher_text[dummy8]=='I'||cipher_text[dummy8]=='i')

 cipher_text_number[dummy8]=8;

 else if (cipher_text[dummy8]=='J'||cipher_text[dummy8]=='j')

 cipher_text_number[dummy8]=9;

 else if (cipher_text[dummy8]=='K'||cipher_text[dummy8]=='k')

 cipher_text_number[dummy8]=10;

 else if (cipher_text[dummy8]=='L'||cipher_text[dummy8]=='l')

 cipher_text_number[dummy8]=11;

 else if (cipher_text[dummy8]=='M'||cipher_text[dummy8]=='m')

 cipher_text_number[dummy8]=12;

 else if (cipher_text[dummy8]=='N'||cipher_text[dummy8]=='n')

 cipher_text_number[dummy8]=13;

106

 else if (cipher_text[dummy8]=='O'||cipher_text[dummy8]=='o')

 cipher_text_number[dummy8]=14;

 else if (cipher_text[dummy8]=='P'||cipher_text[dummy8]=='p')

 cipher_text_number[dummy8]=15;

 else if (cipher_text[dummy8]=='Q'||cipher_text[dummy8]=='q')

 cipher_text_number[dummy8]=16;

 else if (cipher_text[dummy8]=='R'||cipher_text[dummy8]=='r')

 cipher_text_number[dummy8]=17;

 else if (cipher_text[dummy8]=='S'||cipher_text[dummy8]=='s')

 cipher_text_number[dummy8]=18;

 else if (cipher_text[dummy8]=='T'||cipher_text[dummy8]=='t')

 cipher_text_number[dummy8]=19;

 else if (cipher_text[dummy8]=='U'||cipher_text[dummy8]=='u')

 cipher_text_number[dummy8]=20;

 else if (cipher_text[dummy8]=='V'||cipher_text[dummy8]=='v')

 cipher_text_number[dummy8]=21;

 else if (cipher_text[dummy8]=='W'||cipher_text[dummy8]=='w')

 cipher_text_number[dummy8]=22;

 else if (cipher_text[dummy8]=='X'||cipher_text[dummy8]=='x')

 cipher_text_number[dummy8]=23;

 else if (cipher_text[dummy8]=='Y'||cipher_text[dummy8]=='y')

 cipher_text_number[dummy8]=24;

 else if (cipher_text[dummy8]=='Z'||cipher_text[dummy8]=='z')

 cipher_text_number[dummy8]=25;

 dummy7=dummy7+1; }

 p0=(cipher_text_number[0]*key[0]+cipher_text_number[1]*key[2]);

 p1=(cipher_text_number[0]*key[1]+cipher_text_number[1]*key[3]);

 p0=p0%26;

 p1=p1%26;

 plain_text_number[0]=p0;

 plain_text_number[1]=p1;

 for (counter6=0;counter6<2;counter6++)

 { if (plain_text_number[counter6]==0)

 {plain_text[counter6]='a';}

 else if (plain_text_number[counter6]==1)

 {plain_text[counter6]='b';}

 else if (plain_text_number[counter6]==2)

 {plain_text[counter6]='c';}

 else if (plain_text_number[counter6]==3)

 {plain_text[counter6]='d';}

 else if (plain_text_number[counter6]==4)

107

 {plain_text[counter6]='e';}

 else if (plain_text_number[counter6]==5)

 {plain_text[counter6]='f';}

 else if (plain_text_number[counter6]==6)

 {plain_text[counter6]='g';}

 else if (plain_text_number[counter6]==7)

 {plain_text[counter6]='h';}

 else if (plain_text_number[counter6]==8)

 {plain_text[counter6]='i';}

 else if (plain_text_number[counter6]==9)

 {plain_text[counter6]='j';}

 else if (plain_text_number[counter6]==10)

 {plain_text[counter6]='k';}

 else if (plain_text_number[counter6]==11)

 {plain_text[counter6]='l';}

 else if (plain_text_number[counter6]==12)

 {plain_text[counter6]='m';}

 else if (plain_text_number[counter6]==13)

 {plain_text[counter6]='n';}

 else if (plain_text_number[counter6]==14)

 {plain_text[counter6]='o';}

 else if (plain_text_number[counter6]==15)

 {plain_text[counter6]='p';}

 else if (plain_text_number[counter6]==16)

 {plain_text[counter6]='q';}

 else if (plain_text_number[counter6]==17)

 {plain_text[counter6]='r';}

 else if (plain_text_number[counter6]==18)

 {plain_text[counter6]='s';}

 else if (plain_text_number[counter6]==19)

 {plain_text[counter6]='t';}

 else if (plain_text_number[counter6]==20)

 {plain_text[counter6]='u';}

 else if (plain_text_number[counter6]==21)

 {plain_text[counter6]='v';}

 else if (plain_text_number[counter6]==22)

 {plain_text[counter6]='w';}

 else if (plain_text_number[counter6]==23)

 {plain_text[counter6]='x';}

 else if (plain_text_number[counter6]==24)

 {plain_text[counter6]='y';}

108

 else if (plain_text_number[counter6]==25)

 {plain_text[counter6]='z';}}

 cout<<plain_text[0]<<plain_text[1];}}}

cout<<endl;}

return 0;}

109

9 Appendix B Arduino code for LoRa duplex

communication

#include <SPI.h>

#include <LoRa.h>

int counter = 0, unread_bytes=0;

char data[]="Hello world";

void setup() {

 LoRa.setSPIFrequency(8E6);/*it will set controller at 8MHz*/

 LoRa.begin(915E6);/*it will return 1 on success and 0 on failure*/

 LoRa.end();

 Serial.begin(9600);

 /*while (!Serial);

 Serial.println("LoRa Sender");*/

 if (!LoRa.begin(915E6)) //Checking whether the LoRa is receiving 915GHz freq or not

 { Serial.println("Starting LoRa failed!");

 while (1);

 } }

void loop() {

 /*Receive packets*/

 //////////////////////////////////

 unread_bytes=LoRa.available();

 // try to parse packet

 int packetSize = LoRa.parsePacket();

110

 if (unread_bytes!=0/*packetSize*/) {

 // received a packet

 Serial.print("Received packet '");

 // read packet

 while (LoRa.available()){

 // LoRa.onReceive(packetSize);

 Serial.print((char)LoRa.read());

 }

 // print RSSI of packet

 Serial.print("' with RSSI ");

 Serial.println(LoRa.packetRssi());

 }

 delay(500);

 unread_bytes=0;

 /*Write message*/

 ///////////////////////////////////

 if(LoRa.available()/*unread_bytes==0 /*&& message_to_be_sent!=0*/) {

 Serial.print("Message packet sent: ");

 Serial.println(counter);

 // send packet

 LoRa.beginPacket();

 LoRa.print(data);

 LoRa.print(counter);

 LoRa.endPacket();

 counter++;

 delay(500);

} }

111

10 Appendix C Flexible Arduino-code for all level nodes

of mesh-network to display/encrypt/decrypt/forward message

#include <SPI.h>

#include <LoRa.h>

#include<Arduino.h>

#include "SSD1306.h"

#define SS 18

#define RST 14

#define DI0 26

#define BAND 915E6 //915E6 --

SSD1306 display (0x3c, 4, 15);

int counter = 0;

String outgoing; // outgoing message

int msgCount = 0; // count of outgoing messages

int received_msg_count = 0; // count of received messages

String received_message_status="";

long lastSendTime = 0; // last send time

int interval = 500; // interval between sends

String deviceAddress="Node1", receiverAddress="SCADA";// Device address is the

address of this device and receiver address is the address of target device

void setup() {

//************************8

 pinMode (16, OUTPUT);

112

 pinMode (2, OUTPUT);

 digitalWrite (16, LOW); // set GPIO16 low to reset OLED

 delay (50);

 digitalWrite (16, HIGH); // while OLED is running, GPIO16 must go high

 //*****************

 Serial.begin(9600);

 while (!Serial); //If just the the basic function, must connect to a computer

 SPI.begin(5,19,27,18);

 LoRa.setPins(SS,RST,DI0);

 Serial.println("SCADA side LoRa Sender/Receiver");

 if (!LoRa.begin(BAND)) {

 Serial.println("Error: LoRa configuring failed!");

 while (1);

 }

 Serial.println("LoRa setup configured successfully!");

//***************

display.init ();

 display.flipScreenVertically ();

 display.setFont (ArialMT_Plain_10);

 delay (1500);

 //******************888

LoRa.setSpreadingFactor(7);

}

 //***

//***

//***************************Encryption_Block**********

//***

113

//** Working fine

//**

//**it takes HEX string and returns

after row-shift operation regardless of length of string

String shift_rows(String xy)

{

 int i=xy.length(),j=i/32,l=0,m=0,q=0;

 String st="",tu="";

 for(l=0;l<i;l++)

 {

 m=l%32;q=0;

 if(m==0)

 { st="";

 for(q=0;q<8;q++)

 {

 tu+=xy[l];

 l=l+1;

 }

 }

 m=l%32;

 if(m==8)

 {

 tu+=xy[l+2]; tu+=xy[l+3]; tu+=xy[l+4]; tu+=xy[l+5];

 tu+=xy[l+6]; tu+=xy[l+7]; tu+=xy[l]; tu+=xy[l+1];

 l=l+8;

 }

 m=l%32;

114

 if(m==16)

 {

 tu+=xy[l+4]; tu+=xy[l+5]; tu+=xy[l+6]; tu+=xy[l+7];

 tu+=xy[l]; tu+=xy[l+1]; tu+=xy[l+2]; tu+=xy[l+3];

 l=l+8;

 }

 m=l%32;

 if(m==24)

 {

 tu+=xy[l+6]; tu+=xy[l+7]; tu+=xy[l]; tu+=xy[l+1];

 tu+=xy[l+2]; tu+=xy[l+3]; tu+=xy[l+4]; tu+=xy[l+5];

 l=l+7;

 }

 }

 return tu;

}

//**

//***

//*** Working nicely

//***********************It takes single HEX character as input and returns binary

value

String hex2bin_(char xy)

{

 String bi="";

 if (xy=='0') { bi+="0000"; }

 else if (xy=='1') { bi+="0001"; }

 else if (xy=='2') { bi+="0010"; }

115

 else if (xy=='3') { bi+="0011"; }

 else if (xy=='4') { bi+="0100"; }

 else if (xy=='5') { bi+="0101"; }

 else if (xy=='6') { bi+="0110"; }

 else if (xy=='7') { bi+="0111"; }

 else if (xy=='8') { bi+="1000"; }

 else if (xy=='9') { bi+="1001";}

 else if (xy=='a'||xy=='A') { bi+="1010"; }

 else if (xy=='b'||xy=='B') { bi+="1011"; }

 else if (xy=='c'||xy=='C') { bi+="1100"; }

 else if (xy=='d'||xy=='D') { bi+="1101"; }

 else if (xy=='e'||xy=='E') { bi+="1110"; }

 else if (xy=='f'||xy=='F') { bi+="1111"; }

 return bi;

}

//***

//***

//*******************HEX to Binary conversion of a string

String hex2bin_string(String xy)

{

 String bi="";

 int j=xy.length();

 for(int i=0;i<j;i++)

 {

 bi+=hex2bin_(xy[i]);

 }

 return bi;

116

}

//***

//***

//***********************************Binary to HEX converter

String bin2hex_(String xy)

{

 String bi="", hex="";

int k=0, l=0,m=0,j=xy.length();

 for (int i=0;i<j;i++)

 {

 bi+=xy[i];

 l+=1;

 //k=bi.length();

 if (l==4)

 {

 if (bi=="0000") { hex+="0"; }

 else if (bi=="0001") { hex+="1"; }

 else if (bi=="0010") { hex+="2"; }

 else if (bi=="0011") { hex+="3"; }

 else if (bi=="0100") { hex+="4"; }

 else if (bi=="0101") { hex+="5"; }

 else if (bi=="0110") { hex+="6"; }

 else if (bi=="0111") { hex+="7"; }

 else if (bi=="1000") { hex+="8"; }

 else if (bi=="1001") { hex+="9";}

 else if (bi=="1010") { hex+="A"; }

 else if (bi=="1011") { hex+="B"; }

117

 else if (bi=="1100") { hex+="C"; }

 else if (bi=="1101") { hex+="D"; }

 else if (bi=="1110") { hex+="E"; }

 else if (bi=="1111") { hex+="F"; }

 bi="";

 l=0;

 }

 }

 return hex;

}

//***

//***

//***Done

//****************************single character HEX to integer converter

int hex2dec_(char xy)

{

 int bi=0;

 if (xy=='0') { bi=0; }

 else if (xy=='1') { bi=1; }

 else if (xy=='2') { bi=2; }

 else if (xy=='3') { bi=3; }

 else if (xy=='4') { bi=4; }

 else if (xy=='5') { bi=5; }

 else if (xy=='6') { bi=6; }

 else if (xy=='7') { bi=7; }

 else if (xy=='8') { bi=8; }

 else if (xy=='9') { bi=9;}

118

 else if (xy=='a'||xy=='A') { bi=10; }

 else if (xy=='b'||xy=='B') { bi=11; }

 else if (xy=='c'||xy=='C') { bi=12; }

 else if (xy=='d'||xy=='D') { bi=13; }

 else if (xy=='e'||xy=='E') { bi=14; }

 else if (xy=='f'||xy=='F') { bi=15; }

 return bi;

}

//***

//**Dec (<256) to Hex (two

charcter)*****Done

String dec2hex_string(int bi)

{

 String xy="";

 int p=0,q=0;

 p=bi/16; q=bi%16;

 if (p==0){xy="0"; }

 else if (p==1){xy="1"; }

 else if (p==2){xy="2"; }

 else if (p==3){xy="3"; }

 else if (p==4){xy="4"; }

 else if (p==5){xy="5"; }

 else if (p==6){xy="6"; }

 else if (p==7){xy="7"; }

 else if (p==8){xy="8"; }

 else if (p==9){xy="9"; }

 else if (p==10){xy="A"; }

119

 else if (p==11){xy="B"; }

 else if (p==12){xy="C"; }

 else if (p==13){xy="D"; }

 else if (p==14){xy="E"; }

 else if (p==15){xy="F"; }

 if (q==0){xy+="0"; }

 else if (q==1){xy+="1"; }

 else if (q==2){xy+="2"; }

 else if (q==3){xy+="3"; }

 else if (q==4){xy+="4"; }

 else if (q==5){xy+="5"; }

 else if (q==6){xy+="6"; }

 else if (q==7){xy+="7"; }

 else if (q==8){xy+="8"; }

 else if (q==9){xy+="9"; }

 else if (q==10){xy+="A"; }

 else if (q==11){xy+="B"; }

 else if (q==12){xy+="C"; }

 else if (q==13){xy+="D"; }

 else if (q==14){xy+="E"; }

 else if (q==15){xy+="F"; }

 return xy;

}

//***

//***Multiplies by 2 with input string of

HEX**

120

//***

***Completed

String multiply_by_2(String g)

{

 String yz="", zb="";

 yz=hex2bin_(g[0]);

 yz+=hex2bin_(g[1]);

 if(yz[0]=='0')

 {for(int j=0;j<8;j++){ if(j<7){yz[j]=yz[j+1];}if(j==7){yz[j]='0';}}}

 else if(yz[0]=='1')

 {

 {for(int j=0;j<8;j++){if(j<7){yz[j]=yz[j+1];}if(j==7){yz[j]='0';} }}

 if(yz[3]=='1'){yz[3]='0';}

 else if(yz[3]=='0'){yz[3]='1';}

 if(yz[4]=='1'){yz[4]='0';}

 else if(yz[4]=='0'){yz[4]='1';}

 if(yz[6]=='1'){yz[6]='0';}

 else if(yz[6]=='0'){yz[6]='1';}

 if(yz[7]=='1'){yz[7]='0';}

 else if(yz[7]=='0'){yz[7]='1';}

 }

int j=yz.length();

for (int k=0; k<j;k++)

{

 zb+=yz[k];

}

return zb;

121

}

//***

//***

//***

//**Multiplies by 3 with input string of

HEX***

//***

****completed

String multiply_by_3(String g)

{

 String yz="",zy="", zb="";

 yz=hex2bin_(g[0]);

 zy=hex2bin_(g[0]);

 yz+=hex2bin_(g[1]);

 zy+=hex2bin_(g[1]);

 Serial.println(zy);

 if(yz[0]=='0')

 {for(int j=0;j<8;j++){ if(j<7){yz[j]=yz[j+1];}if(j==7){yz[j]='0';}}}

 else if(yz[0]=='1')

 {

 {for(int j=0;j<8;j++){if(j<7){yz[j]=yz[j+1];}if(j==7){yz[j]='0';} }}

 if(yz[3]=='1'){yz[3]='0';}

 else if(yz[3]=='0'){yz[3]='1';}

 if(yz[4]=='1'){yz[4]='0';}

 else if(yz[4]=='0'){yz[4]='1';}

 if(yz[6]=='1'){yz[6]='0';}

122

 else if(yz[6]=='0'){yz[6]='1';}

 if(yz[7]=='1'){yz[7]='0';}

 else if(yz[7]=='0'){yz[7]='1';}

 }

 for (int k=0; k<8;k++)

{

 if (yz[k]==zy[k]){yz[k]='0';}

 else if ((yz[k]!=zy[k])&&(yz[k]=='0')) {yz[k]='1';}

 zb+=yz[k];

 }

return zb;

}

//***

//***

//*******************input is HEX string of 32 characters (16 bytes)*****Checked

for 0nly S00, S10

//******It requires to be checked

String mix_column(String xy)

{

 int i=0,l=0,m=0,n=0,p=0,x[16]={2,3,1,1,1,2,3,1,1,1,2,3,1,1,2};

 String ab="",bc="",ca="";

 int j=xy.length();

 //String ab="",bc="";

 for (m;m<j;m=m+2)

 {

123

 ab="";

 ab=xy[m];

 ab+=xy[m+1];

 if (m==0||m==10||m==20||m==30) //

**Multiply by 2

 {

 ab=multiply_by_2(ab);

 }

 else if (i==6||i==8||i==18||i==28) //********************* 3s

multiplier***************

 {

 ab=multiply_by_3(ab);

 }

 else {ab=hex2bin_(xy[m]);ab+=hex2bin_(xy[m+1]);}

 bc+=ab;

 }

 // zb+=yz;}

bc=bin2hex_(bc);

return bc;

}

//***

//***

//***************************Sbox**

//***

*******Done

int s_box_value(int num)

124

{

int sbox[256] = {

0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7,

0xab, 0x76,

0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4,

0x72, 0xc0,

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8,

0x31, 0x15,

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27,

0xb2, 0x75,

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3,

0x2f, 0x84,

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,

0x58, 0xcf,

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,

0x9f, 0xa8,

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff,

0xf3, 0xd2,

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d,

0x19, 0x73,

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e,

0x0b, 0xdb,

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95,

0xe4, 0x79,

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a,

0xae, 0x08,

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd,

0x8b, 0x8a,

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1,

0x1d, 0x9e,

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55,

0x28, 0xdf,

125

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54,

0xbb, 0x16 };

return sbox[num];

}

//*****************

**

//************************

//***** ***********************Inverse of S-box*********

//***

*******Done

int s_box_inverse(int num)

{

int rsbox[256] =

{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3,

0xd7, 0xfb

, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde,

0xe9, 0xcb

, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa,

0xc3, 0x4e

, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b,

0xd1, 0x25

, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65,

0xb6, 0x92

, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d,

0x9d, 0x84

, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,

0x45, 0x06

, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13,

0x8a, 0x6b

126

, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4,

0xe6, 0x73

, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75,

0xdf, 0x6e

, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18,

0xbe, 0x1b

, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd,

0x5a, 0xf4

, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80,

0xec, 0x5f

, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9,

0x9c, 0xef

, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53,

0x99, 0x61

, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21,

0x0c, 0x7d };

return rsbox[num];

}

//***

//********************Substitute

Bytes***Done

String swap_with_sbox_value(String y) // input is two character hex

 // output is HEX

{

 char s,t;

 int u=0,v=0,uv=0;

 String yz="";

s=y[0];

u=hex2dec_(s);

//Serial.println("u: "+u);

127

t=y[1];

v=hex2dec_(t);

//Serial.println("v: "+v);

uv=u*16+v;

uv=s_box_value(uv);

yz=dec2hex_string(uv);

return yz;

}

//***

//**************** ********** *************************************Done

String swap_with_inverse_sbox_value(String y)

 // input is two character hex*******************

 // Output is HEX

{

 char s,t;

 int u=0,v=0,uv=0;

 String yz="";

s=y[0];

u=hex2dec_(s);

t=y[1];

v=hex2dec_(t);

uv=u*16+v;

uv=s_box_inverse(uv);

yz=dec2hex_string(uv);

return yz;

128

}

//********

//**********

XOR*Do

ne

String xor_(String xx,String yy) // it takes binary string inputs and returns binary string

output

{

 int kk=0;

 String zz="";

kk=xx.length();

 for(int j=0;j<kk;j++)

 {

 if(xx[j]==yy[j]){zz+="0";}

 else if(xx[j]!=yy[j]) {zz+="1";}

 }

 return zz;

}

//***

//**************Generate

key**Done

String generate_key(String previous_key, String dummy) // it takes HEX input and

returns HEX output

{

 int index4=0,index2=0,index3=0,k=0,l=0;

 String

b1="",b2="",b3="",b4="",b5="",b6="",b7="",b8="",bb="",previous_key_bin=hex2bin_st

ring(previous_key),dummy_fifth=hex2bin_string(dummy);

129

 k=previous_key_bin.length();

 l=k/4;

 for(int j=0;j<l;j++)

 {

 b1+=previous_key_bin[j];

 index2=j+l;

 b2+=previous_key_bin[index2];

 index3=j+2*l;

 b3+=previous_key_bin[index3];

 index4=j+3*l;

 b4+=previous_key_bin[index4];

 }

 b5=xor_(b1,dummy_fifth);// it is actually function (b4) but, we have last 5 bytes=0000.

that is why I am taking dummy only

 bb+=bin2hex_(b5);

 b6=xor_(b5,b2);

 bb+=bin2hex_(b6);

 b7=xor_(b6,b3);

 bb+=bin2hex_(b7);

 b8=xor_(b7,b4);

 bb+=bin2hex_(b8);

 return bb;

}

//***

//***

********Done

130

String add_round_key(String x, String y) //************bit key xor with modified data

bits

 // it takes HEX strings and returns HEX string

{

 int gg=x.length(),hh=y.length(), kk=0;;

 String xx="", yy="",zz="";

 xx=hex2bin_string(x);

 yy=hex2bin_string(y);

 kk=xx.length();

 for(int j=0;j<kk;j++)

 {

 if(xx[j]==yy[j]){zz+="0";}

 else if(xx[j]!=yy[j]) {zz+="1";}

 }

 zz=bin2hex_(zz);

 return zz;

}

//***

//***

//************substitutes bytes with Rajindals S-box. Input is HEX string and returns

HEX string

String substitute_bytes(String x)

{

 String y="",dummy="";

 int j=x.length();

 for(int i=0;i<j;i++)

131

 {

 dummy+=x[i];

 dummy+=x[i+1];

 i=i+1;

 y+=swap_with_sbox_value(dummy);

 dummy="";

 }

 return y;

}

//***

//***

//*****************************It calculates the counter input value for given

number of rounds

String calculate_counter_value(int rounds)

{

 String

initial_key="FEDCBA9876543210FEDCBA9876543210",x="0123456789ABCDEF012

3456789ABCDEF";

 String dummy="ABCDEF01",

new_key="",dummy1="0123456789ABCDEF0123456789ABCDEF";

 for(int i=0;i<rounds;i++)

 {

 new_key=generate_key(initial_key,dummy);// it takes HEX strings as input and returns

HEX string as output

 dummy1=add_round_key(x,new_key);

 dummy1=substitute_bytes(dummy1);

 dummy1=shift_rows(dummy1);

132

 dummy1=mix_column(dummy1); //************* Not verified yet

//***Serial.print("Ciphet

-text after ");

 //***Serial.print(i+1);

 //***Serial.println("

rounds: "+ dummy1);

 initial_key=new_key;

 x=dummy1;

 }

 return x;

}

//***

//**Increase binary string

size upto 128bits

String increase_size_upto_128(String x) // It checks the size of message and if, message

is less than 128bits it adds pre-zeroes

{

 int m=x.length();

 String y="";

 if (m==128){}

 else

 {

 m=128-m;

 for(int i=0;i<m;i++)

 {y+="0";}

 }

 y+=x;

133

 return y;

}

//***

//***

***Encryption

String encrypt(String message, int rounds)

{

 String ciphertext="", counter_value="";

 counter_value=calculate_counter_value(rounds);

 message=hex2bin_string(message);

 message=increase_size_upto_128(message);

 counter_value=hex2bin_string(counter_value);

 ciphertext=xor_(counter_value,message);

 ciphertext=bin2hex_(ciphertext);

 return ciphertext;

 }

//***

//***

***Decryption

String decrypt(String message, int rounds)

{

 String plaintext="", counter_value="";

 counter_value=calculate_counter_value(rounds);

 message=hex2bin_string(message);

 counter_value=hex2bin_string(counter_value);

 plaintext=xor_(counter_value,message);

134

 plaintext=bin2hex_(plaintext);

 return plaintext;

 }

//***

//***

//***

//***************Verification of message and

MAC*******************************Incomplete

//**Calcu

late 64bit MAC

String encrypt_with_MAC(String message1,int rounds)// It takes HEX string of <=32

characters, calculates MAC from plaintext and rounds+1

 //rounds of counter and returns concatenation of

ciphertext and MAC

{

 double j=0;

 int k=0;

 String message=message1, MAC="",counter_value_MAC="",message_value_MAC="",

ciphertext="", counter_value="";

 message=hex2bin_string(message);

 message=increase_size_upto_128(message);

 for (int i=0;i<128;i++)

 {

 j=i%2;

 if(j==0)

 {

 message_value_MAC+=message[i];

135

 }

 }

 counter_value=calculate_counter_value(rounds+1);

 counter_value=hex2bin_string(counter_value);

 for (int i=0;i<128;i++)

 {

 j=i%2;

 if(j==0)

 {

 counter_value_MAC+=counter_value[i];

 }

 }

 MAC=xor_(counter_value_MAC,message_value_MAC);

 MAC=bin2hex_(MAC);

 ciphertext=encrypt(message1,rounds);

 ciphertext+=MAC;

 return ciphertext;

}

//***

//***

String verify_MAC(String message1,int rounds)// It takes48 character HEX string,

extracts the MAC, then determines MAC from message decryption

 //and checks message authenticity

{

 String message="",

given_MAC="",calculated_MAC="",counter_value_MAC="",message_value_MAC="";

136

 String ciphertext="", counter_value="", verification_status="";

//*************************************Separate message and MAC

 for (int i=0;i<48;i++)

 {

 if (i<32)

 {

 message+=message1[i];

 }

 else if(i>31 && i<48)

 {

 given_MAC+=message1[i];

 }

 }

 //Serial.println("Given_MAC: "+given_MAC);

 Serial.println("Received_MAC: "+given_MAC);

 //**

 message=decrypt(message,rounds);

 message=hex2bin_string(message);

 for (int i=0;i<128;i++)

 {

 if(i%2==0)

 {

 message_value_MAC+=message[i];

 }

 }

 counter_value=calculate_counter_value(rounds+1);

 counter_value=hex2bin_string(counter_value);

137

 for (int i=0;i<128;i++)

 {

 if(i%2==0)

 {

 counter_value_MAC+=counter_value[i];

 }

 }

 calculated_MAC=xor_(counter_value_MAC,message_value_MAC);

 if (given_MAC==""){calculated_MAC="";}

 else {calculated_MAC=bin2hex_(calculated_MAC);}

 Serial.println("Calculated_MAC: "+calculated_MAC);

 if(calculated_MAC==given_MAC)

 {

 verification_status="Message is authentic.";

 }

 else if(calculated_MAC!=given_MAC)

 {

 verification_status="Message is suspicious";

 }

 return verification_status;

}

//***

//***

String decrypt_verified_message(String message1, int rounds) //It takes HEX string of 48

characters, extracts the message and decrypts

138

{

 String plaintext="", counter_value="", message="";

 for (int i=0;i<32;i++)

 {

 message+=message1[i];

 }

 counter_value=calculate_counter_value(rounds);

 message=hex2bin_string(message);

 counter_value=hex2bin_string(counter_value);

 plaintext=xor_(counter_value,message);

 plaintext=bin2hex_(plaintext);

 return plaintext;

}

//***

//***

//*****************Two-way communication

block*******************************

//***

void justBridgeMeshNetwork(String message)

{

 LoRa.beginPacket(); // start packet

 LoRa.print(message); // add payload

 LoRa.endPacket(); // finish packet and send it

Serial.println("Mesage forwarded: " + message);

}

139

void sendMessage(String message) {

 int rounds=10;

 Serial.println("pre-encrypt(plain_text): "+ message);

 message=encrypt_with_MAC(message,rounds);

 Serial.println("ciphertext with MAC: "+ message);

 ////////////////////////

 //Serial.println("Sending message: " + message);

 String x=deviceAddress + receiverAddress, y=x + message;

 message=y;//deviceAddress+receiverAddress+message;

 Serial.println("Sending message: " + message);

 LoRa.beginPacket(); // start packet

 LoRa.print(message); // add payload

 LoRa.endPacket(); // finish packet and send it

 msgCount++; // increment message ID

//***************************

 /* display.drawString (20, 20, "Sending packet:");

 display.drawString (110, 20, String (msgCount));

 display.display ();*/

 //***************************

}

void onReceive(int packetSize) {

 if (packetSize == 0) return; // if there's no packet, return

 if(LoRa.available()){

 String complete_incoming_message="", incoming = "", sender_device_address="",

receiver_device_address="";

 int i=(deviceAddress.length());

 int dummy_address_counter=0,sender_address_length=i,receiver_address_length=i,

rdal=0,sdal=0;

140

int sr_address_length=i*2;

 while (LoRa.available()) {

 if (dummy_address_counter<sr_address_length)

 {

 if (dummy_address_counter<sender_address_length)

 {

 sender_device_address+= (char)LoRa.read();

 sdal=sender_device_address.length();

 dummy_address_counter+=1;

 }

 else

 {

 receiver_device_address+= (char)LoRa.read();

 rdal=receiver_device_address.length();

 dummy_address_counter+=1;

 }

 }

 if (dummy_address_counter>=sr_address_length)

 {

 incoming += (char)LoRa.read();

 }

 }

 ///////////////////////////////////

 if (receiver_device_address==deviceAddress)

 {

 int rounds=10;

 String verification_status="";

141

 Serial.println("ReceivedCiphertext with MAC is:"+ incoming);

 verification_status=verify_MAC(incoming,rounds);

 received_message_status=verification_status;

 if (verification_status=="Message is authentic.")

 {

 Serial.println("MAC verification status: "+ verification_status);

 incoming=decrypt_verified_message(incoming,rounds);

 /*if((incoming[0]='0') && (incoming[1]='2'))

 {

 Serial.println("Message is from 0, for 2, and has been forwarded");

 sendMessage(incoming);

 }

 else*/

 Serial.println("Verified decrypted message is: "+ incoming);

 }

 else if(verification_status=="Message is suspicious")

 {

 //justBridgeMeshNetwork(incoming); //**************************** Added for

MESH network**************

 Serial.println("Message verification status: "+ verification_status);

 Serial.println("Message is suspicious so, no need to process:"+ incoming);

 }

 //////////////////////////////////

 //Serial.println("Received Message: " + incoming);

 Serial.println("with RSSI: " + String(LoRa.packetRssi()));

 //Serial.println("Snr: " + String(LoRa.packetSnr()));

 Serial.println();

142

 //received_msg_count++;

}

//********************

 /*display.drawString (20, 30, "Received packet:");

 display.drawString (110, 30, String (received_msg_count));

 display.display ();*/

//********************

else if((receiver_device_address!=deviceAddress) &&

(rdal==(deviceAddress.length()))&&(sdal==(deviceAddress.length()))){

Serial.println("Message is not concerned to me");

String a=sender_device_address + receiver_device_address;

complete_incoming_message=a + incoming;

justBridgeMeshNetwork(complete_incoming_message);

}

//received_msg_count++;

}

received_msg_count++;

}

//***

//***

//**************Program_Main_Body***************************************

//***

void loop() {

 //*********************

143

 display.clear ();

 display.setTextAlignment (TEXT_ALIGN_LEFT);

 display.setFont (ArialMT_Plain_10);

 display.drawString (20, 0, "Inverter side LoRa kit");

 display.drawString (0, 10, "Sen id");

 display.drawString (30, 10, String(deviceAddress));

 display.drawString (62, 10, "/Rec id");

 display.drawString (94, 10, String(receiverAddress));

 //display.setFont (ArialMT_Plain_10);

 display.drawString (20, 20, "Sending packet:");

 display.drawString (110, 20, String (msgCount));

 display.drawString (20, 30, "Received packet:");

 display.drawString (110, 30, String (received_msg_count));

 display.drawString (10, 40, "Received message status:-");

 display.drawString (20, 50, String (received_message_status));

 display.display ();

 //*********************

 String incoming_message="";

 if (millis()-lastSendTime >interval) {

 //String message = "Hello world! I am Inverter side sender"; // send a message

 String message="0123456789ABCDEF0123456789ABCDEF", verification_status="";

 sendMessage(message);

 ////////////////////////

 lastSendTime = millis(); // timestamp the message

 interval = random(2000) + 1000; // 2-3 seconds

 //if (LoRa.available())

 }

144

 //if (LoRa.available())

 onReceive(LoRa.parsePacket());

 digitalWrite (2, HIGH); // turn the LED on (HIGH is the voltage level)

 //delay(interval);

 //onReceive(LoRa.parsePacket());

}

145

11 Appendix D Configuring SD card and logging data

locally

#include "FS.h"

#include "SD.h"

#include "SPI.h"

#define MISO 02

#define SCK 14

#define MOSI 15

#define CS 13

#define D1 04

void listDir(fs::FS &fs, const char * dirname, uint8_t levels){

 Serial.printf("Listing directory: %s\n", dirname);

 File root = fs.open(dirname);

 if(!root){

 Serial.println("Failed to open directory");

 return;

 }

 if(!root.isDirectory()){

 Serial.println("Not a directory");

 return;

 }

 File file = root.openNextFile();

146

 while(file){

 if(file.isDirectory()){

 Serial.print(" DIR : ");

 Serial.println(file.name());

 if(levels){

 listDir(fs, file.name(), levels -1);

 }

 } else {

 Serial.print(" FILE: ");

 Serial.print(file.name());

 Serial.print(" SIZE: ");

 Serial.println(file.size());

 }

 file = root.openNextFile();

 }

}

void createDir(fs::FS &fs, const char * path){

 Serial.printf("Creating Dir: %s\n", path);

 if(fs.mkdir(path)){

 Serial.println("Dir created");

 } else {

 Serial.println("mkdir failed");

 }

}

void removeDir(fs::FS &fs, const char * path){

 Serial.printf("Removing Dir: %s\n", path);

 if(fs.rmdir(path)){

147

 Serial.println("Dir removed");

 } else {

 Serial.println("rmdir failed");

 }

}

void readFile(fs::FS &fs, const char * path){

 Serial.printf("Reading file: %s\n", path);

 File file = fs.open(path);

 if(!file){

 Serial.println("Failed to open file for reading");

 return;

 }

 Serial.print("Read from file: ");

 while(file.available()){

 Serial.write(file.read());

 }

 file.close();

}

void writeFile(fs::FS &fs, const char * path, const char * message){

 Serial.printf("Writing file: %s\n", path);

 File file = fs.open(path, FILE_WRITE);

 if(!file){

 Serial.println("Failed to open file for writing");

 return;

 }

 if(file.print(message)){

 Serial.println("File written");

148

 } else {

 Serial.println("Write failed");

 }

 file.close();

}

void appendFile(fs::FS &fs, const char * path, const char * message){

 Serial.printf("Appending to file: %s\n", path);

 File file = fs.open(path, FILE_APPEND);

 if(!file){

 Serial.println("Failed to open file for appending");

 return;

 }

 if(file.print(message)){

 Serial.println("Message appended");

 } else {

 Serial.println("Append failed");

 }

 file.close();

}

void renameFile(fs::FS &fs, const char * path1, const char * path2){

 Serial.printf("Renaming file %s to %s\n", path1, path2);

 if (fs.rename(path1, path2)) {

 Serial.println("File renamed");

 } else {

 Serial.println("Rename failed");

 }

}

149

void deleteFile(fs::FS &fs, const char * path){

 Serial.printf("Deleting file: %s\n", path);

 if(fs.remove(path)){

 Serial.println("File deleted");

 } else {

 Serial.println("Delete failed");

 }

}

void testFileIO(fs::FS &fs, const char * path){

 File file = fs.open(path);

 static uint8_t buf[512];

 size_t len = 0;

 uint32_t start = millis();

 uint32_t end = start;

 if(file){

 len = file.size();

 size_t flen = len;

 start = millis();

 while(len){

 size_t toRead = len;

 if(toRead > 512){

 toRead = 512;

 }

 file.read(buf, toRead);

 len -= toRead;

 }

 end = millis() - start;

150

 Serial.printf("%u bytes read for %u ms\n", flen, end);

 file.close();

 } else {

 Serial.println("Failed to open file for reading");

 }

 file = fs.open(path, FILE_WRITE);

 if(!file){

 Serial.println("Failed to open file for writing");

 return;

 }

 size_t i;

 start = millis();

 for(i=0; i<2048; i++){

 file.write(buf, 512);

 }

 end = millis() - start;

 Serial.printf("%u bytes written for %u ms\n", 2048 * 512, end);

 file.close();

}

void setup(){

 Serial.begin(9600);

 //SPI.begin(14,2,15);

 SPI.begin(SCK,MISO,MOSI,CS);

 // digitalWrite(13,LOW);

 // LoRa.setPins(SS,RST,DI0);

 //if(!SD.begin(13)){

 if(!SD.begin(CS)){

151

 Serial.println("Card Mount Failed");

 return;

 }

 uint8_t cardType = SD.cardType();

 if(cardType == CARD_NONE){

 Serial.println("No SD card attached");

 return;

 }

 Serial.print("SD Card Type: ");

 if(cardType == CARD_MMC){

 Serial.println("MMC");

 } else if(cardType == CARD_SD){

 Serial.println("SDSC");

 } else if(cardType == CARD_SDHC){

 Serial.println("SDHC");

 } else {

 Serial.println("UNKNOWN");

 }

 uint64_t cardSize = SD.cardSize() / (1024 * 1024);

 Serial.printf("SD Card Size: %lluMB\n", cardSize);

 listDir(SD, "/", 0);

 createDir(SD, "/mydir");

 listDir(SD, "/", 0);

 removeDir(SD, "/mydir");

 listDir(SD, "/", 2);

 writeFile(SD, "/hello.txt", "Hello ");

 appendFile(SD, "/hello.txt", "World!\n");

152

 readFile(SD, "/hello.txt");

 deleteFile(SD, "/foo.txt");

 renameFile(SD, "/hello.txt", "/foo.txt");

 readFile(SD, "/foo.txt");

 testFileIO(SD, "/test.txt");

 Serial.printf("Total space: %lluMB\n", SD.totalBytes() / (1024 * 1024));

 Serial.printf("Used space: %lluMB\n", SD.usedBytes() / (1024 * 1024));

}

void loop(){

}

153

12 Appendix E Send email under abnormal conditions

#include <WiFi.h>

WiFiClient client;

String MakerIFTTT_Key ;

String MakerIFTTT_Event;

char *append_str(char *here, String s) { int i=0; while (*here++ = s[i]){i++;};return

here-1;}

char *append_ul(char *here, unsigned long u) { char buf[20]; return append_str(here,

ultoa(u, buf, 10));}

char post_rqst[256];char *p;char *content_length_here;char *json_start;int compi;

void setup()

{

 Serial.begin(9600);

 WiFi.disconnect();

 delay(3000);

 Serial.println("Starting to connect");

 WiFi.begin("BELLALIANT0351","MXPEC57EK31N88GG");

 while ((!(WiFi.status() == WL_CONNECTED))){

 delay(300);

 }

 Serial.println("Connected!");

 if (client.connect("maker.ifttt.com",80)) {

 MakerIFTTT_Key ="dnJOkb5Yd5K7nPcAoo1N4OWx4S-tCpMaazTp3Yun7Z0";

 MakerIFTTT_Event ="Email";

154

 p = post_rqst;

 p = append_str(p, "POST /trigger/");

 p = append_str(p, MakerIFTTT_Event);

 p = append_str(p, "/with/key/");

 p = append_str(p, MakerIFTTT_Key);

 p = append_str(p, " HTTP/1.1\r\n");

 p = append_str(p, "Host: maker.ifttt.com\r\n");

 p = append_str(p, "Content-Type: application/json\r\n");

 p = append_str(p, "Content-Length: ");

 content_length_here = p;

 p = append_str(p, "NN\r\n");

 p = append_str(p, "\r\n");

 json_start = p;

 p = append_str(p, "{\"value1\":\"");

 p = append_str(p, "aikhichi7@gmail.com");

 p = append_str(p, "\",\"value2\":\"");

 p = append_str(p, "Sender is ESP32");

 p = append_str(p, "\",\"value3\":\"");

 p = append_str(p, "Hello World: I am ESP32");//"Hello World: I am ESP32 I think we

can");

 p = append_str(p, "\"}");

 compi= strlen(json_start);

 content_length_here[0] = '0' + (compi/10);

 content_length_here[1] = '0' + (compi%10);

 client.print(post_rqst);

 Serial.println("Email sent");

 }

155

}

void loop()

{

 }

156

13 Appendix F LoRa Simple server for Dragino-yun using

RF95

#include <Console.h>

#include <SPI.h>

#include <RH_RF95.h>

// Singleton instance of the radio driver

RH_RF95 rf95;

int led = A2;

float frequency = 915.0; //868.0;

void setup()

{

 pinMode(led, OUTPUT);

 Bridge.begin(BAUDRATE);

 Console.begin();

 while (!Console) ; // Wait for console port to be available

 Console.println("Start Sketch");

 if (!rf95.init())

 Console.println("init failed");

 // Setup ISM frequency

 rf95.setFrequency(frequency);

 // Setup Power,dBm

 rf95.setTxPower(13);

157

 // Setup Spreading Factor (6 ~ 12)

 rf95.setSpreadingFactor(7);

 // Setup BandWidth, option:

7800,10400,15600,20800,31200,41700,62500,125000,250000,500000

 rf95.setSignalBandwidth(125000);

 // Setup Coding Rate:5(4/5),6(4/6),7(4/7),8(4/8)

 rf95.setCodingRate4(5);

 Console.print("Listening on frequency: ");

 Console.println(frequency);

}

void loop()

{

 if (rf95.available())

 {

 // Should be a message for us now

 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];

 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))

 {

 digitalWrite(led, HIGH);

 RH_RF95::printBuffer("request: ", buf, len);

 Console.print("got request: ");

 Console.println((char*)buf);

 Console.print("RSSI: ");

 Console.println(rf95.lastRssi(), DEC);

 // Send a reply

 uint8_t data[] = "And hello back to you";

158

 rf95.send(data, sizeof(data));

 rf95.waitPacketSent();

 Console.println("Sent a reply");

 digitalWrite(led, LOW);

 }

 else

 {

 Console.println("recv failed");

 }

 }

}

159

14 Appendix G Dragino-Yun as a Gateway with

partial_decryption

#include <SPI.h>

//#include <RH_RF95.h>

#include <LoRa.h> //*************

#include <String.h>

#include <Console.h>

#include "ThingSpeak.h"

#include "YunClient.h"

#include <math.h>

YunClient client;

//RH_RF95 rf95;

#define BAUDRATE 115200

unsigned long myChannelNumber = 578314;//20xx93;

const char * myWriteAPIKey = "76TZK7YU7PYR4PEY";//"B9ZxxxxxNVEBKIFY";

float frequency = 915.0;//868.0;

void setup()

{

 Bridge.begin(BAUDRATE);

 LoRa.begin(915E6);//**********

 LoRa.end();//*************

 Serial.begin(BAUDRATE);//**********

 //Console.begin();// Don't use Console here, since it is conflict with the ThinkSpeak

library.

160

 ThingSpeak.begin(client);

 if(!LoRa.begin(915E6)) //**************

 { Serial.println("Starting LoRa failed!");

 while (1);

 }

 Serial.println("LoRa setup configured successfully!");

}

///

String incoming="";

void onReceive(int packetSize) {

 if (packetSize == 0) return; // if there's no packet, return

 //x= millis();

 //Serial.println(x);

 //String incoming = "";

 incoming = "";

if(LoRa.available()){

 while (LoRa.available()) {

 incoming += (char)LoRa.read();

 }

}

}

//

void loop()

{

 //int h =10;// newData[0];

 // int t =15;// newData[1];

 incoming = "";

161

 onReceive(LoRa.parsePacket());

 long h=calculate_voltage(incoming),i=calculate_current(incoming),

j=calculate_power(incoming);

 //if(incoming[0]="A") {h=5;}

 //if(incoming[1]="B") {t=0;}

 //int h =10;// newData[0];

 // int t =15;// newData[1];

 //

 ThingSpeak.setField(1,h);

 ThingSpeak.setField(2,i);

 ThingSpeak.setField(3,j);

 ThingSpeak.writeFields(myChannelNumber, myWriteAPIKey);

 delay(3000);

}

int hex2dec_(char xy)

{

 int bi=0;

 if (xy=='0') { bi=0; }

 else if (xy=='1') { bi=1; }

 else if (xy=='2') { bi=2; }

 else if (xy=='3') { bi=3; }

 else if (xy=='4') { bi=4; }

 else if (xy=='5') { bi=5; }

 else if (xy=='6') { bi=6; }

 else if (xy=='7') { bi=7; }

 else if (xy=='8') { bi=8; }

 else if (xy=='9') { bi=9;}

162

 else if (xy=='a'||xy=='A') { bi=10; }

 else if (xy=='b'||xy=='B') { bi=11; }

 else if (xy=='c'||xy=='C') { bi=12; }

 else if (xy=='d'||xy=='D') { bi=13; }

 else if (xy=='e'||xy=='E') { bi=14; }

 else if (xy=='f'||xy=='F') { bi=15; }

 return bi;

}

long calculate_voltage(String incoming_)

{

 int a=0, b=0, c=0, d=0;

 a=hex2dec_(incoming_[8]);

 b=hex2dec_(incoming_[9]);

 c=hex2dec_(incoming_[10]);

 //d=hex2dec_(incoming_[11]);

 long volt=0,a_=(a*256),b_=(b*16),c_=c;//*16^1),d_=d;

volt=a_+b_+c_;//+d_;

return volt;

}

long calculate_current(String incoming_)

{

 int a=0, b=0, c=0, d=0;

 a=hex2dec_(incoming_[12]);

 b=hex2dec_(incoming_[13]);

 c=hex2dec_(incoming_[14]);

 d=hex2dec_(incoming_[15]);

 long ampere=0,a_=(a*256),b_=(b*16),c_=c;//*16),d_=d;

163

ampere=a_+b_+c_;//+d_;

return ampere;

}

long calculate_power(String incoming_)

{

int a=0, b=0, c=0, d=0;

 a=hex2dec_(incoming_[16]);

 b=hex2dec_(incoming_[17]);

 c=hex2dec_(incoming_[18]);

 d=hex2dec_(incoming_[19]);

 long power=0,a_=(a*256),b_=(b*16),c_=c;//*16),d_=d;

power=a_+b_+c_;//+d_;

return power;

}

164

15 Appendix H ESP_Collector Dragino Side

#include <SPI.h>

#include <LoRa.h>

#include<Arduino.h>

#define SS 18

#define RST 14

#define DI0 26

#define BAND 915E6 //915E6 --

String outgoing; // outgoing message

 // count of outgoing messages

long lastSendTime = 0; // last send time

int interval = 500; // interval between sends

void setup() {

 Serial.begin(115200);

 while (!Serial); //It is just the the basic function, must connect to a computer

 SPI.begin(5,19,27,18);

 //Serial.println("ESP_Collector Dragino side");

 if (!LoRa.begin(BAND)) {

 //Serial.println("Error: LoRa configuring failed!");

 while (1);

 }

 //Serial.println("LoRa setup configured successfully!");

}

void sendMessage(String message) {

 //Serial.println("Sending message: " + message);

165

 LoRa.beginPacket(); // start packet

 LoRa.print(message); // add payload

 LoRa.endPacket(); // finish packet and send it

 //msgCount++; // increment message ID

}

void onReceive(int packetSize) {

 String incoming = "";

if(LoRa.available()){

 while (LoRa.available()) {

 incoming += (char)LoRa.read();

 }

 }

}

void loop() {

 String received="";

while(Serial.available()>0){

 received=Serial.read();

 }

 sendMessage(received);

 }

166

16 Appendix I Configuring ESP32 as LoRa Gateway

Its code can be downloaded from

https://github.com/things4u/ESP-1ch-Gateway-v5.0

And can be modified to configure ESP32 as gateway after watching four youtube videos

available at

[1] https://www.youtube.com/watch?v=v3JIx7ICmnI

[2] https://www.youtube.com/watch?v=OfH80Gmgf-o

[3] https://www.youtube.com/watch?v=eZhDvsJzwwI

[4] https://www.youtube.com/watch?v=sYPL85ViFPE

https://github.com/things4u/ESP-1ch-Gateway-v5.0
https://www.youtube.com/watch?v=v3JIx7ICmnI
https://www.youtube.com/watch?v=OfH80Gmgf-o
https://www.youtube.com/watch?v=eZhDvsJzwwI
https://www.youtube.com/watch?v=sYPL85ViFPE

