- A

UNIVERSITY

Long-range and Secure Communication System for Remote Data

Logging and Monitoring of Micro-grids

By
Amjad Igbal

A thesis submitted to the School of Graduate Studies in partial fulfillment of the

requirements for the degree of Master of Engineering

Faculty of Engineering and Applied Sciences
Memorial University

May, 2019

St. John’s, Newfoundland and Labrador, Canada

Abstract

With the increasing renewable energy penetration in the grid system, the number of
distributed generation and remote micro-grids are also increasing. While each remote
micro-grid requires to have a sophisticated (secure, long range, low power and low cost)
communication system for the Suspervisory Control and Data Acquision (SCADA) system,
creating a research gap for devising a system with desired attributes. This research was
conducted to fill that gap by implementing a low power, low cost, secure, and a long-range
communication system for remote micro-grids. The literature review comprising the study
of twelve wireless technologies and three wired technologies was done to achieve this.
After the comparison of those technologies, LoRa communication was chosen for this
purpose. Different encryption algorithms were studied, implemented, cross-checked, and
finally advanced encryption algorithm was implemented to achieve the security of the
communication system. An algorithm was developed to generate a unique message
authentication code for each message. It enabled to identify a bit-level alteration in the
message. Further, to monitor the system remotely, data was uploaded to the server. It was
achieved by programming and configuring different gateways for this purpose. LoRa range
was improved by implementing LoRa nodes in a mesh-network structure. A hybrid, LoRa
and radio-set based system was implemented to extend its range up to 40km. Three different
system topologies were designed and implemented, and the final one was recommended
based upon the SG SCADA system requirements. The results of step-by-step designing and
implementation of the system show that this research work has significantly contributed to

develope a low-cost, secure and long-range communication system for remote micro-grids.

Acknowledgement

The author would like to express profound gratitude to his supervisor Prof. Dr M. Tariq
Igbal for his supervision and encouragement throughout the research program. It was

possible only due to his guidance, technical and moral support.

The author is also thankful to all other faculty members and students of Memorial

University of Newfoundland who played their role to enable the author to achieve this.

The author would also like to thank the Natural Sciences and Engineering Research Council

(NSERC) of Canada for providing graduate student funding for this research.

1

Table of Contents

Chapter # 1 Introduction and Literature REVIEWcoiiiiieieienc i 1
1.1 INEFOTUCTION. ...cettiieit bbbt 1
111 SBCUILY ettt sttt ettt ettt e st e e b e s be e s e et e sreesaesbeeasessesreentesteessensesrnenes 2
1.1.2 LOW POWET CONSUMPLION.eitiiiieieiieiieientesteste ettt 2
1.13 CONFIAENTIAIILY ..eveeeeeeeeereeee e 3
1.1.4 LLOW COSL ...ttt 3
1.15 AUTNOTISALION. ...ttt 3
1.1.6 AULNENTICALION ...ttt 4
1.1.7 SCAIADTIITY ...t 4
1.2 LIterature REVIBW.ot 4
121 Wireless Communication TEChNOIOGIESccevverierieieininirerereeeeee e 4
1.2.2 CITUIAN ..ttt be e 5
1.2.3 ZIGDEE ..ttt sttt aeeae e 6
1.24 WIiFi WLAN Series IEEE 802.11cocieirirerienieieieeeeeiese st 6
1.25 BIUBLOOTN ...t 7
1.2.6 1o [0 T I=1 [=1 1Y o PR 8
1.2.7 VWHEIUHR ..ottt sttt naens 8
1.2.8 Optical Wireless COmMMUNICALIONcceeveiieieieiecieceeie et 9
1.2.9 Satellite COMMUNICALION......c..coiieirieiirieireeee e 10
1210 WIMAX SerieS IEEE 802.16cccvviriririerieieeeeeeieeiee st 11
0 T T | o) GRS 11
L2012 LOR ittt bbbttt be et sreeaeen 12
1.3 Wired COMMUNICATION.ueneninie et 13
131 POWET TINE CAITIEN ...ttt 14
132 OPLICAI FIDEIS ...ttt sttt et 16
1.3.3 DSL Based Wired COMMUNICALION..........ccurirreririerieieieeeesre st 17
1.4 General Analysis of different technologies.............cooiiiiiiiiiii i 18
1.5 System Security and ENCrYPtion...... ..ot 21
151 Generating Artificial NOise Signal........c.ccceveeieriiierereeere e 21
152 Physical Layer Methodc.ooooieriiieeieee e 22

153 CryPLOGraPNY «..eeeeeeeeeieeteeeee et 22

1.6 Research Goals and ObJeCIVES.iirii i, 23
16.1 Secure COMMUNICALIONoceeierieiee ettt e e sneeneas 23
1.6.2 LLOW POWE <.ttt ettt et st st et sbe e sbe e sat e st e saneebeebeens 24
1.6.3 REQUIAN UPUALES ...ttt e 24
1.6.4 Local and Remote Data LOGQingcccveeerveeeenisieeieieeeesreseeee e seee e sre e sveenns 24
1.6.5 IMPIEMENTALION ...ttt e reenes 24

1.7 TRESIS OVEIVIBW. ... ettt ettt e e e e et e e e et e e et eeeas 25

2 Chapter # 2 Encryption Algorithms to Secure Communication System and Their
Implementation on DRF1276G LORa MOUIEc.ccveiiiiiiiieieccceee e, 27

20 S 11 0o [0t T o PP 27
211 PIIVACY .ttt sttt a ettt ettt bt 28
2.1.2 Message AUtNENTICALIONcc.ecuieieiecieeece et 28
2.1.3 INEEOEITY .ottt re et s te e b et e ere et e sbe e e e sreesaenbeereenes 28
2.14 NONFEPUDIALION. ...ttt sttt be b e 28

2.2 HardWare SEIUD.t 30

2.3 Cryptographic Algorithms on Arduino with DRF1276G LoRa Module..................... 34
2.3.1 SHITE CIPNEE .ttt st et be et e beeanas 34
2.3.2 ATFFINE CIPRNEE <ottt st e e 36
2.3.3 TranSPOSItION CIPNETc.eeeeieeeee et 38
2.34 o 1T o] T U 38
2.35 SUBSLITULION CIPNEE ...ttt ettt e a e be s 39

2.4 Breaching the Encryption Algorithms., 39

2.5 CONCIUSION. ...ttt e e 43

3 Chapter # 3 Implementation of AES and MAC to Secure Communication System for
REMOLE MICTO-GEIAS ...ttt bbb 45

3L INErOTUCTION. ... e e e e e e 45

3.2 Implementation of AES Algorithm using ESP32 and LoRa Module......................... 47
3.2.1 Adding the round key and generating a NeW Keycceveveerienencenenceieeeene 49
3.2.2 SUDSEITULE BYLES....ceeeieeeieieeiee ettt sttt et s e e e eneas 50
3.2.3 SHITEROWS ...ttt sttt et sne e 50
3.24 X COTUIMN 1.t sttt seens 51

3.8 RESUIES. e 52

B4 CONCIUSION. .ot e 59

4 Chapter # 4 Data Logging Using Different Gateways and Mesh-Network

Implementation to Improve LORARANQGE.civiiiii e, 60
O A 10T [0 od £ T) o PP 60
4.2 Local Data LOggiNg.c.ouiirie it 61
4.3 ESP-32 VS Draging GateWayS.ouiuiirint ittt e 62
4.4 Implementation of Mesh Network and Range Testing...........ccccoviviiiiiiiiininenn.n. 69
4.5 Complete System FIOW Diagram.oviniriii e e 73
4.6 CONCIUSION. ...ttt e e e e e 75

5 Chapter #5 Radio-set Based System Topologies for Longer Range Setup 76
5.1 INIrOUUCTION. ..ot e et 76
5.2 SYSIEM SHUCTUIE-L. .. e e e 77
5.3 Hardware Setup and INterfacing............coooiiiiiiii 79

5.3.1 AN 10 3 4 Y USSP 79
5.3.2 DC POWer SUPPIY LRS-150-12.........oveereeeeeereesseeseeesssesseesessesssesesssssssssesessesneens 80
5.3.3 BUIldiNg MAX 232 CIFCUILccverveeeieieieeeniesesesteeee ettt 81
5.1.1 SEttNG USR-TCP232.....cciiieeeeiteeeee ettt ettt st steea et ere et beeanas 83
5.35 Ethernet and USR-TCP232 SELtINGceoeiieeeeiiicieetecteeeecte ettt 85
5.4 SysStem SHrUCTUIe-1. e e 87
5.5 System Structure-l1.o e 89

6 Chapter#6 Summary and Recommendations...........cccccveiiieeiiereciieseese e 93
6.1 SUMMArY OF WOTK. ..., 93
6.2 Future Work RecOmmeNndationsS.ouiuiniiiiiitee e e 95
6.3 LiSt Of PUDHICAEIONS. ... e e 95

6.3.1 100 111 1=T OSSR 95
6.3.2 PUBIISHEA/ACCEPLEU. ..ottt sttt s s beereens 95
6.3.3 POSEEr PrESENTALIONccueeieiteeieeie ettt sttt et seeeneens 96

A] (=] (oSSR 97

8 Appendix A C++ code to Breach the Hill Cipher ... 104

9 Appendix B Arduino code for LoRa duplex communication.............cccccvevvieiiieennnnnn 109

10 Appendix C Flexible Arduino-code for all level nodes of mesh-network to

display/encrypt/decrypt/forward MESSAQEccivvriureiieiiieiie e 111

11 Appendix D Configuring SD card and logging data locally..............cccccceveiiennnnene, 145

Vi

12
13
14
15
16

Appendix E Send email under abnormal conditions...............ccocevviiiiciiincncnnn, 153

Appendix F LoRa Simple server for Dragino-yun using RF95...........c.cccceoiiienns 156
Appendix G Dragino-Yun as a Gateway with partial_decryption.............c.cccocve.ee. 159
Appendix H ESP_Collector Dragino Sidecccceevevveieiieieee e 164
Appendix | Configuring ESP32 as LoRa Gatewaycccccevvvevveiiveneeneiiesneseenes 166

Vii

List of Tables

Table 1-1 Comparison of Data Rate for Different Channel Length in DSL [48]c.ccccoveveienees 18
Table 1-2 Comparison of different communication technologies [5],[6],[8].[9].[49]cccevenn.en 19
Table 2-1 Alphabets with assigned numbers for mathematical calculations in encryption

1[0 [0] 1121 11 USRS 37
Table 5-1 Specifications Of the POWEE SOUICEcveiiiieiieiicie e 80

viii

List of Figures

Figure 2-1 Eavesdropper Masquerading the SCADA NEtWOrK...........covrerereiiiininieneeeee 30
Figure 2-2 System block diagram with LoRa based wireless communicationcc.cceeevennee. 31
Figure 2-3 Arduni-uno with DRF1276G Lora MOduleccoiviiiiiineieceecescse e 32
Figure 2-4 Pin diagram Of arduiN0-UNO............ccuiiiuiriinierieieieise st 33
Figure 2-5 Pin diagram of arduino uno with DRF1276G LoRa moduleccccecvveiiiiiicnnns 33
Figure 2-6 Occurrence probability of alphabets in any Sentence........cccocvveveieeve s, 35
Figure 2-7 Highest to the lowest occurrence probability of alphabets in any sentence.................. 36
Figure 2-8 Encrypted message sent from RED side Lora module..........c.cccoovvvviveiiiicve i, 42
Figure 2-9 Two-way communication between two LoRa Mmodules............cccocvvvvveieiiicccie e, 43
Figure 3-1 Flow chart of the implemented communication ProCESS.........ccevvevvevieieeeeseseerieseeans 46
Figure 3-2 Step by step 10 round AES encryption and decryption [72]ccccceveviveiievcieeiennnn, 48
Figure 3-3 Addition of round key for AES encryption [72]ccccooveviiiiiiiiiieeve e 49
Figure 3-4 Generating new key from the previous round key and data string [72]cccceveue.e. 50
Figure 3-5 Rotation of bytes in shift row operation [72]ccccoviiieiiiiiiiiice e 51
Figure 3-6 Mix column operation to increase the confusion and non-linearity [72]cccoe..... 52
Figure 3-7 Implementation of AES encryption using DRF1276G with LoRa module.................. 54
Figure 3-8 ESP32 with LoRa module used for successful implementation of AES encryption.... 54
Figure 3-9 Implementation of AES encryption using ESP32 with LoRa modulecc........ 55
Figure 3-10 A hint about large numbers to understand the size of keyspace having 2128 elements
... 55
Figure 3-11 Implementation of AES algorithm with MAC addresscccooeveiinininencnenee, 55
Figure 3-12 Time lapsed in message receiving, verifying and decrypting under different SF...... 57
Figure 3-13 Time lapsed for message encrypting and sending under different SF........................ 58
Figure 3-14 Difference of data rate and message authenticity under different SF........................ 58
Figure 3-15 Bi-directional communication range testing of ESP32 with LoRa module 59
Figure 4-1 System structure for remote data-10ggingccocveeereriieienieiierereee e 61
Figure 4-2 Configuring SD card for local-data 10gging.........ccccceoiiieiniiiene e 62

Figure 4-3 Setting ESP32 8S @ JAtEWAYcovciveiiiriieieiieiee e staeieste et sreesre e ae e raesaesneenaeseeans 64

Figure 4-4 Setting ESP32 8S @ JAtEWAYcovivveiieiiieieiieiee e steeiesteseesteseesre e esesreeraesresneeneeseeans 64
Figure 4-5 Configuration results of ESP32 aS @ QateWayccccevveivinienieeiesiesieseseesiesie e 65
Figure 4-6 ESP32 gateway sending messages with AES encryption.........c.ccccoeveveieiiieveiiecviennnn, 65
Figure 4-7 ESP32 gateway uploading data to the Things Network without encryption................ 66
Figure 4-8 A dedicated dragino-yun LORA gateWayc.cccecveieiieiieie i se e 67
Figure 4-9 Successful configuration results of dragino-yun working as a gateway 67
Figure 4-10 Dragino gateway real-time data 10ad...............ccceoiiiiiniiiieicce e 68
Figure 4-11 Uploading data to the ThingSpeak SErver ... 68
Figure 4-12 ESP32 LOR& range tESTING......c.ccuririirierierierieieeeie sttt 69
Figure 4-13 Process flow chart for an intermediate level node............ccccovviiiiininiiccee 70
Figure 4-14 Mesh network for improved LOR& FaNQgecovevvirininiieneeeee e 72
Figure 4-15 Range testing in obstacle dense area after implementing a mesh network 72
Figure 4-16 Complete SyStem QIAgramcccoiiiieiineieeeeeee e 74
Figure 5-1 System structure for topology | with broader range due to radio-set..............cc.ccevenee. 78
Figure 5-2 Data logging by implementing SyStem StruCture l...........ccocooeveveiiieiininneneeee 78
Figure 5-3 RA30H1317M based radio-set board used in this project.........cccccovevevieiieviciiecvennnn, 79
Figure 5-4 12V DC power supply to power-up the radio-set and protecting against surges......... 81
Figure 5-5 MAX232 driver circuit built to protect the controller from power surges and to provide
commON ground fOr SIGNAIS.........ccviiiiiiii ettt s re et s ae e e 82
Figure 5-6 USR-TCP-232 used in the project for serial to ethernet conversion.............cc.c.coueu.... 84
Figure 5-7 USR-TCP-232 Serial port SEtiNG.......cccovveiiiiiieieieee st 84
Figure 5-8 Internal registration setting 0f USR-TCP-232.........ccccciiveiiiiiiieiece e 85
Figure 5-9 PC ethernet setting to interface with USR-TCP-232........ccccccvvviviiiiie i, 86
Figure 5-10 Results and setting of USR-TCP232 test SOftWare..........cccocvvvveveiecic v 87
Figure 5-11 System structure for topology Il with broader range due to radio-set..............c........ 88
Figure 5-12 System structure for topology 111 with broader range due to radio-set 90
Figure 5-13 Dragino-yun I0W MEMOTY EITOTcceriruerieieieiesiesieste et 90
Figure 5-14 Data logging on the ThingSpeak server using system topology 1c.cccceevneee. 91

List of abbreviations

SG
SCADA
LoRa
RED
EM
AMI
DG
CDMA
TDMA
WIMAX
WLAN
RSS
VHF
UHF
AES
MAC
GSM
LSB
MSB
SF

SD

Smart Grid

Supervisory Control and Data Acquisition
Long Range

Remote End Device

Electromagnetic

Automatic Metering Infrastructure
Distributed Generation

Code Division Multiple Access

Time Division Multiple Access
Worldwide Interoperability for Microwave Access
Wireless Local Area Network

Received Signal Strength

Very High Frequency

Ultra High Frequency

Advanced Encryption Standard

Message Authentication Code

Global System Module

Least Significant Bit

Most Significant Bit

Spreading Factor

Secure Digital

Xi

Chapter # 1 Introduction and Literature Review

1.1 Introduction

Different techniques and setups which are being used for communication between Remote
End Devices (RED) and Supervisory Control and Data Acquisition (SCADA) unit, can be
classified in two main classes based on the medium of communication; one is wired, and
other is wireless. Further, each class has many sub-categories based on the technique
implemented for communication. Every technique has many limitations and scopes
associated with it based upon the communication medium, power consumption factor, cost
factor, security of information, reliability, authenticity, availability, strength against

electromagnetic (EM) interference and many other such factors [1].

The basic requirements of Smart Grid (SG) for adopting any specific communication
system are categorised based upon the secrecy of the data communicated [2]. The
communication may be required between Automatic Metering Infrastructure (AMI) and
distribution grid, between distribution and transmission network, between transmission
section and SCADA System (Central Control Unit) or is between the set of virtual

generation plants and SCADA System. In this thesis, it is intended to build a secure two-

way communication between Distributed Generation (DG) units and local data collector,
and then from the local data collector to the remote SCADA System. For this purpose,
different communication techniques have been discussed here and compared in Table 1.2
at the end of the chapter. The selection and implementation of communication setup have
been made based upon below given features. Due to the critical nature of control messages
and their importance in SG network, a communication system with the following features

is required [3-5]

1. Security 5. Authorisation
2. Low Power Consumption 6. Authentication
3. Confidentiality 7. Scalability

4. Low Cost

1.1.1 Security

A secured communication and data storage is required for utility companies to ensure the
controlled grid operations [5-6]. Grid control and critical information need to be protected
through encryption to resist against hackers and cyber attacks.. In the coming chapters, it

has been discussed in the details and how it has been achieved.

1.1.2 Low Power Consumption

In DG and SG, SCADA System communicates with every RED to ensure system health,
voltage profile, current value, active power and reactive power along with the other

miscellaneous messages. In this way, the communication system remains energised all the

times, and it must give optimal performance over the cost of minimum power consumption.

That is why efficiency (power consumption) is among the top deciding factors [3].

1.1.3 Confidentiality

Confidentiality is also among the prime deciding factors for the selection of a
communication system. By losing confidentiality of information a third person may get
access to edit and can corrupt the data leaving the whole system prone to hackers.
Therefore, a message signal must remain confidential between the sender and the receiver

[2-3].

1.1.4 Low Cost

In the selection and the implementation of the communication system for the SCADA
system and SG, capital/installation cost, running and maintenance cost should also be
nominal. Therefore, along with the optimal performance, the communication system

project is to be cost-effective [1,3].

1.1.5 Authorisation

After the precise selection of the communication system setup, it is necessary to authorise
only concerned personnel to access it and process the messages. The unauthorised usage
may give access to any eavesdropper to hack the system or infest any kind of interference
[5-6]. Therefore, despite having encrypted data, the channel connection must be protected

by passwords/IDs and only concerned users should have the privilege to access the data.

1.1.6 Authentication

Identification of the user account is also important to ensure whether the user is a registered
one in the system or any unauthorised user is trying to access the system information. For

which system should have a secured database of registered users [1,4].

1.1.7 Scalability

With the growing trend of Smart Grid and expanding integration of DG units in the system,
up-gradation and scalability are very common. Therefore, a communication network must
have the capability to accommodate incoming DG units and grids ensuring the security and

self-configuration [5].

1.2 Literature Review

To find and implement an optimal mean of communication which meets previously
stipulated requirements, critical analysis and comparison of all techniques is necessary. To
do that in this literature review almost all sub-categories of wired and wireless technologies
which have been either proposed or implemented in different publications/projects have

been discussed, analysed and compared.

1.2.1 Wireless Communication Technologies
Both classes of communication, either wired or wireless technology have their own scopes

and circle of applications. Here is the analysis of wireless technologies, and wired

technology will be discussed in the next section.

1.2.2 Cellular

Global System for Mobile Communication (GSM) is a wireless technology. It is the widely
used digital technology as compared to Code Division Multiple Access (CDMA), and it
uses Time Division Multiple Access (TDMA) topology for digital communication.
Currently available 2G, 3G, 4G and WiMAX which are its evolutionary forms are also
considerable options for communication purpose in smart grid network especially for
communication between RED and SCADA [7]. It will neither require any more capital
investment in infrastructure nor installation time. The most important thing is, its
accessibility in remote rural areas without additional infrastructure cost. This technology
is in practice in few utility companies, e.g. Echelon’s Energy Services Network has
implemented this project in smart meter and is using GSM and T-Mobile to collect data
accumulated in every 15 minutes interval [8]. Besides this several major cellular companies
like Silver Spring Network (SSN), Verizon and Cisco are also implementing smart meters
with embedded WiMAX chip for SG [9]. Some utilities are using smart meters with
integrated GPRS module for communication purpose and in some SG projects Universal
Mobile Telecommunication System (UMTS), Code Division Multiple Access (CDMA)
and Wideband Code Division Multiple Access (WCDMA) are also being practised [9] but,
they all have the common issue of the unavailability of the CDMA/GPRS signal [6]. The
primary concern with cellular technology is of privacy loss. Using a cellular network, a
third party gets access to the data and the probability of privacy breaching increases. An

eavesdropper for the cellular network can also masquerade the system.

1.2.3 Zigbee

Zigbee is another wireless technology being used these days. It is comparatively cheaper
in overall installation and simpler with lesser power consumption. But, at the same time, it
has a shorter range (10-100m) and low data rate. Zigbee selection has been proposed in
[10] and is very feasible for Automatic Meter Reading (AMR), home automation and for
home appliances monitoring and control. National Institute of Standards and Technology
(NIST) has approved Zigbee Smart Energy Monitoring (SEM) and Zigbee as the best
option for the SG private network [11]. Zigbee technology has introduced three devices for
its set which includes Zigbee remote device, Zigbee coordinator, and Zigbee router. Zigbee
router works as a router and can also operate directly controlling the appliance just like
Zigbee remote device controls. Multiple remote devices are controlled and interlinked
through the Zigbee coordinator bridge which ensures authenticity and security code for
each appliance. Smart meters integrated with Zigbee can control and communicate with
the integrated devices in the range of 100m consuming only 1mW power for the radio
signal transmission [9-10]. Zigbee is using 16 channels in the 2.4GHz band, and an
unlicensed spectrum, which makes it low cost, simple and suitable for the SG network. But
it cannot be used for the SCADA system of remote micro-grids only due to very short

range.

1.2.4 WiFi WLAN Series IEEE 802.11

According to [12], for SG network, a communication system with high data rate and

maximum reliability is required. To meet these requirements satisfactorily, a WLAN is a

good option because it provides high data rate with good reliability. But it is only
discouraged due to the smaller coverage area. It ensures interference-free network for
multiple users due to the use of Frequency Hopping Spread Spectrum (FHSS) and Direct
Sequence Spread Spectrum (DSSS) Technologies which use specific access techniques of
Carrier Sense Multiple Access Collision Avoidance (CSMACA). Using 2.4GHz frequency
ISM band, it provides a high data rate of up to 11Mb/s by DSS modulation technique, and
if, Orthogonal Frequency Division Multiplexing is introduced in it, then its data rate boosts
up to 54Mb/s [12-13]. By implementing Multiple Input Multiple Output [MIMO]
technique, its target is to achieve a data rate of 600Mb/s [12-13]. Despite all these features,
it is limited to remote monitoring and Home Area Network (HAN), only due to the small
coverage area of the only 100m. Therefore, it cannot be used for the SCADA system where

the range of several kilometres is required.

1.2.5 Bluetooth

Bluetooth is a wireless communication technology which eliminates the need of wired
network for short-range communication and ensures a high level of secured communication
[14]. If the communication is intended between two devices, then the topology used for it
is pico-net and integration of pico-nets leads to scatter-net which enables communication
among multiple devices (up to eight devices). The devices are first to be set in the mode of
transmitting/receiving by human intervention [14], to configure the Bluetooth

communication among eight devices within the coverage.

The scatter-net topology makes the Bluetooth suitable to set HAN and to control the home
appliances and home automation implementation in SG network. In [15], an attempt has
been made to interconnect up to 255 nodes using RugBlue and building private server but,
it also does not support more than 8 active devices at the same time. The authors of [16-
17] also recommend GPRS and Bluetooth integration based communication system for SG
units and vehicle to vehicle communication without considering its range limitations. This
technology can be used for small data transfer between two devices within 20m but not for
remote micro-grids where communication is carried out over the range of several

kilometres.

1.2.6 Radio Teletype

This technology was introduced in the 20th century and was expected to surpass the Fax
system and message sending/receiving via wireless rather than the wired network. It was
used for the communication of two electromechanical gadgets having keyboards and was
used not only sending the text messages but also for voice messages [18]. But, today this
electromechanical technology has become almost obsolete with digital technology and

micro/nano-electronics.

1.2.7 VHF/UHF

Radio Communication system has been using different frequencies for their carrier signal
to transmit the message with minimum noise effect. Radio Frequencies in the band of 30-
300MHz are Very High Frequency (VHF) waves, and those who lie in the band of 300-

3000MHz are considered Ultra High Frequency (UHF) waves. The selection of carrier

frequency depends upon the mode of modulation (Frequency, Amplitude, and Phase)
which is selected based upon the desired coverage area and data transmission rate [19].
Currently, the UK is using UHF for the communication of the SCADA system, and
frequency allocation is supervised by UK Radio Communication Agency which assigns
the carrier frequency based upon the message signal strength [20]. In UK sub-bands of
450-470MHz have been reserved for SCADA system communication and 183.5-

184.5MHz has been reserved for metering purposes.

1.2.8 Optical Wireless Communication

Optical Wireless Communication (OWC) is a technology targeting to replace existing
Radio Frequency communication [21]. EXisting RF is using a frequency band of 30kHz to
300 kHz and is precisely regulated by international and national authorities. Due to the
ubiquitous use of RF gadgets, there is band congestion despite the implementation of
different delay-division multiplexing techniques due to which OWC is under consideration
[22]. It uses sub-bands of Ultraviolet Radiation and Infrared Visible band, which are still
unlicensed and due to which OWC is becoming the counterpart of RF [23-24]. Although
OWC s still under research despite that, it is superior to RF in many aspects like
broadband, inherent security features, unregulated, free from electromagnetic interference,
low power consumption as compared to RF, free from multipath fading issue ad cheaper
optical components are the most attractive features of OWC. In Oct 2013, OWC was tested
for the ultra-long distance of 384600km (Moon to Earth) under the NASA’s Lunar Laser

Communication mission, and its results were amazing with the data rate of 622Mb/s [25].

Despite all such amazing features, it cannot be recommended for SG because it requires
high and large antennas for every unit and this technology is also still in the experimental
phase. Its implementation may lead to the bankruptcy of the project, the example of
Boulder SG project is before us which faced the financial issues by implementing optical

fibres [26-27].

1.2.9 Satellite Communication

Satellite Communication system is another technology being used for global
communication and specifically with the use of Geo-Stationary Satellites and other
dedicated satellites world has become like an interconnected village. Communication
which required either repeaters, wires or large antennas to magnify and direct the
communication signal has been bypassed in this technology, and in future it may surpass
the terrestrial communication systems [28]. Due to this unique feature, it has been widely
accepted mean of voice and data transmission, and these days few utility companies are

also using it for communication with remotely located substations in rural areas as well.

On the basis of orbit and revolution period the satellites (being used for communication)
can be categorized in three groups as Low Earth Orbit Satellite (LEOS), Middle Earth Orbit
Satellites (MEOS) and Geostationary Earth Orbit Satellites (GEOS). GEQOSs are at the
height of 35,786km at the equator of the earth due to which a delay of 1/4th second takes
place for one-way communication. LEOS are located at the height of about 1200km and
are considered the best option for communication because their communication delay is

not more than of terrestrial communication delay and that is why it is acceptable [29]. The

10

authors of [30] have discussed the pros and cons of the implementation of satellite

communication for SCADA system and have discouraged only due to high cost.

1.2.10WiMAX Series IEEE 802.16

Worldwide Interoperability for Microwave Access (WiMax) is widely accepted broadband
technology with the target to establish Wireless Metropolitan Area Network (WMAN). It
lies in the group of IEEE 802.16 with the unique feature of a high data rate for maximum
coverage area. It has achieved 70Mb/s data rate for 50km coverage area [31-32]. Its
coverage is sight dependent, whether the area lies on its Line of Sight (LOS) or not. Now
another technique of Orthogonal Frequency Division Multiplexing is being implemented
to improve the quality of coverage for off-line-of-sight areas. As WiMax is providing
efficient service even for long distance using a frequency bandwidth of 1.25MHz to
20MHz and is also known as the Last Mile Technology for remote areas [12]. Due to its
unique features, it is being considered the most reliable substitute of T1/E1 links, DSL and
PCL. Despite all these features, it cannot be proposed for the SCADA system and SG

network due to its lower penetration in the obstacles.

1.2.11 SigFox

SigFox is another popular technology used for Machine to Machine communication
(M2M). It uses the license-free band of 868MHz in Europe and 915MHz in North America
[33]. It uses Ultra Narrow Band (UNB) ranging from 0.1-0.3kHz bandwidth with
Differential Binary Phase Shift Keying (DBPSK) modulation technique at the rate of

100b/s [34]. It transmits a sequence of three messages using random frequencies to ensure

11

successful reception of the message. Even if two transmissions are lost due to any reason
(noise, interference or collision), the base station will receive a clear message [35]. But,
SigFox also has certain limitations. Its frequency bands (whether is it of 868MHz or
915MHz) are restricted to 1% Duty Cycle, which means in one hour (3600s) it can
communicate for only 36s. Further, for one package its time on air is of approximately 6s
which means it can only transmit a maximum six messages in one hour. In this way, its 24
hourly transmissions, are restricted to 140 uplink messages with the size of not more than
12bytes each, and its downlink communication is limited to only four messages, with each
message, not more than of 8 bytes [35-36]. Due to these features, it may be suitable for
applications requiring very low data rate and a limited number of messages but is not

promising for SG.

1.2.12 LoRa

In the emerging trend of M2M and Internet of Things (IoT) Low Power Wide Area
Network (LPWAN) technologies are in front line to meet the specifications, and among
these LoORaWAN is the most adopted one. It ensures outdoor connectivity of 10T devices
with the simplest network structure due to star network of end devices, gateways and

central control station and easy management [37].

LoRa uses Chirp Spread Spectrum (CSS) and GFSK modulation techniques [37]. Due to
spectrum spreading it uses the whole band of 868MHz (in Europe) and 915MHz (in North
America). To minimise the interference effect, it uses six spreading factors from SF-7 to

SF-12. Each spreading factor has its different time on air. It uses a bandwidth of 125kHz

12

of unlicensed frequency band [35]. It provides the maximum data rate of 27kb/s using CSS
and 50kb/s by FSK. In Star topology single gateway unit has the capability of
communicating with thousands of nodes located several kilometres away from the
gateway. Here are its main characteristics which make it a comparatively better option to
be adopted for SG and especially fulfils the requirements of the communication system in
SCADA system [38]. Due to the below-given features [8-49] it becomes an optimal option

for setting up a two-way communication system:

Long range

e Low power consumption

e Open nature and lesser path loss
e Receiver sensitivity

e Flexibility and low cost

e Reliability

1.3 Wired Communication

There are three main arts of communications for SCADA system which have a physical
medium of communication. It includes power line carrier (PLC), digital subscriber lines
(DSL) and Optical Fibers (OF). Although these are the most widely used till now because
sometimes long power transmission lines are also used for communication purpose and at
the receiving end communication signal is extracted using wave trappers. Along with the
power transmission lines, an Earth Shield Wire (ESW) is used to protect power lines from

lightning and sometimes ESW is also used for communication purpose. These techniques

13

are beneficial to use already existing infrastructure. But in SG, there is distributed
generation, and that is why there are no more long power transmission lines due to which
any dedicated communication system is required to encounter all problems of the
communication system and to fulfil the requirements. For this, various means of

communication have been discussed below.

1.3.1 Power line carrier

PLC is an efficient communication technique which is free from the EM interference and
Coloumb’s Cage like issues and has been in practice since the advent of the telephone in
the late 19th century [39]. In a power system, it has proven effective due to the use of
already existing infrastructure and many other attributes associated with it. Few are listed

below [40].

e No need of separate communication infrastructure, the existing electrical
infrastructure can be used for communication, whether is that an underground or
undersea.

e |t is efficient and cost effective especially in the power system because no
additional infrastructure is required.

e Itis free from antenna tempering because it remains energized at 230V

e |t faces no setting issues like antenna alignment setting

e Once the electrical infrastructure commissioning is completed the communication

system can be energized.

14

e Today, PLC can be classified into four classes based upon its modulation
techniques, data transfer rate, and PLC regulations.

e Ultra-Narrow Band PLC

e Narrow Band PLC

e Quasi Band PLC

e Broadband PLC
UNB-PLC is the oldest technique, and in the mid of 20th century, this technique was
implemented using High VVoltage Power transmission lines with frequency ranging 15kHz-
500kHz [41]. The limitation of this technique was its one-way communication. The NB-
PLC was introduced in the late 20th century, and the amplitude modulation technique was
used with a frequency range of 148kHz-500kHz to transmit the message signal through
NB-PLC. Its limitations include high power consumption, lack of reliability, and frequently
repeaters required to strengthen the signal. China has recently implemented the QB-PLC.
In this, NB-PLC and BB-PLC have been merged to achieve the optimal mean of
communication. Its carrier frequency ranges from 1MHz-10MHz with a high data rate of
approximately 2Mb/s, and it supports two-way communication which makes it suitable for
AMI and HAN purposes. The BB-PLC uses a broad band of frequency ranging from
1.8MHz-250MHz and supports a very high data rate of up to 200Mb/s. The problem
associated with QB-PLC and BB-PLC is their broader frequency band [42]. In SG PLC
has been implemented for automatic metering infrastructure (AMI) in urban areas while

other techniques and technologies are still under prototyping.

15

In [43] the author discusses the different areas for previously mentioned four categories
and their standards. According to that, each category can give optimal performance
provided that is used for a specific area of operation. For instance, LV PLC, a 3-95kHz
band is reserved for power utilities, 125-140kHz for HAN, 140-148.5kHz for security and
alarming. NB-PLC can be reserved for audio/voice communication, UNB for AMR and
BB-PLC for internet access. But, it did not address the issues of these individual bands
affected by the attenuation/amplification factor of transformers in the SG system. Its
alternate to overcome a transformer effect is to use wave trapper/filters to extract
communication signal from AC (50/60Hz) power signal but, it will not be cost effective

for a distributed generation system.

1.3.2 Optical Fibers

Optical Fibre (OF) is another wireline communication technology and is unique in many
features. It does not use any copper conductor and has a double-layer cylindrical structure
with two parts; core and cladding. Message signal (light rays) undergo from the different
angle of refraction based upon the wavelength and frequency obeying Snell’s Law for
Refractive Index and Total Internal Reflection. A light signal is lesser vulnerable to EM
interference and retains strength for relatively larger distance compared to copper-wired
PLC. A signal can be transmitted with the same quality up to 100km without any repeater
using wavelength division multiplexing technique [44]. Its future is evident in SG as well

provided it becomes cost effective.

16

Data transmission capability of this technique is exponentially growing with everyday
innovation. In 1995 its data transmission rate was 10Gb/s, in 2002 up to 40Gb/s [45] and
in 2010 data transmission at the rate of 100Gb/s was achieved [46] and in 2015 up to
200Ghb/s has been accomplished. In this way OF is rich in data rate and speed in the
communication system and has a promising future but, its installation cost is too high to be
implemented on a small scale. Usually, its cost goes high due to the extremely small
diameter of fibre core [47]. Although, different techniques have been used to make it
reasonable for a large scale system but, it is not a financially viable option for the SCADA

system of remote grids or SG network.

1.3.3 DSL Based Wired Communication

In general, DSL can be defined as the high speed wired communication system using
similar like broadband PLC (BB-PLC) with the data rate of a few kb/s to Mb/s. It uses the
existing infrastructure of copper wires of Graham Bell telephone network. Due to that, it
has been a popular mean of communication and sometimes was opted for SG as well. Its
performance is affected with increasing distance and the impact of length on data rate can
be seen from table 1.1. Due to this impact, it is discouraged for the SG/SCADA

communication system.

17

Table 1-1 Comparison of Data Rate for Different Channel Length in DSL [48]

Frequency (MHz) Bit Rate Maximum Distance (m)
30 400Mb/s 200
100 1.3Gb/s 120
200 2.5Gb/s 85
300 3.5Gb/s 70

1.4 General Analysis of different technologies

After doing the study of three different wirelines and twelve wireless technologies, a
comparison table 1.2 has been made. It can be inferred that the selection of any technology
for SCADA system is based upon the requirements of the system and considering the
merits and demerits of the communication technology. Selection of wired technology is
not a good choice for SG/SCADA especially for remote microgrids and in rural areas where
installation and continuous maintenance of the network are required. Its least flexibility
toward addition and removal of any node also discourages its implementation. After doing
a critical analysis of different wireless technologies, LoRa seems the optimal choice for the
SCADA system of remote micro-grids. Furthermore, the security of wireless
communication can be improved by implementing any encryption algorithms discussed in

the next section.

18

Table 1-2 Comparison of different communication technologies [5,6,8,9,49]

Technology

Data
Rate

Coverage

Remarks

Copper Wired PLC

2-3Mb/s

lkmto 3

Unreliable and
noisy due to
harmonics

DSL

Wired Internet

Max
1Gbl/s

100m

High capital cost
for installation
and least
flexible

Fiber Optic

Max
14Th/s

160km

Extremely high
capital cost for
installation and
least flexible for
SG

Wireless Local
Area Network

54Mb/s

200m to
400m

Short Range
Vulnerable to
EMI

Easy Installation

GSM

14.4kb/s

1km to
10km

Poor Data rate
Monthly cost
Low availability
in remote
locations

BlueTooth

250Mb/s

70-100m

Limited
Coverage

A limited
number of nodes

WifiwLAN

600Mb/s

100m

Small Coverage
Inherent
drawbacks of
Wireless Mesh
Network

Radio Teletype

100b/s

Input supply
dependent

Outdated and
analogue
Uses

19

Wireless

(0.7mV/m)

Electromechanic
al setup

e Costly setup
Optical Wireless | 622Mb/s | Unlimited e Under the
Communication experimental
phase
e Poor penetration
10-50km in obstacles due
WIMAX 75Mb/s (Line of to HF
Sight) e Inherent
1-5km (OFF drawbacks of
LOS) HF
e High Cost
Satellite e Signal fading
Communication 1Gb/s Unlimited due to snow and
rain
e Signal latency
e Poor Data rate
GPRS 170kb/s 1km to e Less reliable due
10km to voice traffic
e Low cost
Lora Depends 2km to e Power saver
upon SF 15km e Easy Installation
e Low data rate
e Short Range
Zigbee 250kb/s | 30m t0 50m e Poor Data rate
e Easy Installation
e Low cost
e High Scalability
e Low data rate
SigFox 100b/s 3-10km e Arestricted
(Urban) number of
messages per
day
e Poor Data rate
GPRS- 170kb/s 1km to e Licensed
(2G) 10km frequency band

20

Easy Installation
High- Licensed
Speed 384Kkb/s 1-10km frequency band
Downlin to Easy Installation
Cellular | k Packet | 14.4Mb/s Limited
(3G) availability
Long Licensed
Term Max 42 1-10km frequency band
Evaluati Mb/s Easy Installation
on-LTE- Limited
(4G) availability

1.5 System Security and Encryption

To ensure the privacy and security of data from the eavesdropper, free rider, forger and
many other intruders like these is also of the primary concern. Specifically, for SG SCADA
system, control commands are very critical and need to be protected from every kind of
intruders and eavesdroppers to run the system smoothly and rectify abnormal condition.
Different techniques have been implemented for data security and here is the overview of

most ubiquitous ones.

1.5.1 Generating Artificial Noise Signal

In this technique, a noise signal is also generated at the same frequency but with lower
power as compared to the message signal carrier wave. Transmitter uses two antennas each
dedicated for message signal and noise signal separately. At the receiver end and repeaters,

the message signal is extracted by eliminating noise set power [50-51].

21

In this method, an additional power consumption takes place for noise signal. The
maximum efficiency of an antenna is 50% due to which a lot of power is wasted in both
antennas and specifically in noise generator. In SG, the target is to achieve power efficient
and a secure communication system due to which this technique cannot be implemented

because of its poor power efficiency.

1.5.2 Physical Layer Method

In this technique, multiple cooperative relays are used between transmitter and receiver.
There are two cooperative protocols under use, one is Amplify-and-Forward (AF), and the
other is Decode-and-Forward (DF) [52]. AF relay node is just like a repeater; it receives a
signal and extracts from the noise and amplifies to retransmit. While in DF, the received
signal is decoded, encrypted with any other encryption algorithm and amplified for
transmission [52-53]. In this way, security is increased at every DF relay. But, after a
certain number of DF relays, the security of the encrypted message declines exponentially
because the plain text is extracted from the ciphertext at every DF node which makes it

vulnerable to the attack of an eavesdropper.

1.5.3 Cryptography

Cryptography is the most optimal way to secure the data by applying different encryption
algorithms and complicating the extraction of real message from the ciphertext. In
cryptography, a message (plaintext) is encoded in the ciphertext. Each character of
plaintext is assigned any other alphabet to complicate its decoding for the eavesdropper.

To do this, the characters of the plaintext can be:

22

a. Further shifted left/right
b. Assigned different characters for different combinations
c. Shuffled by applying a vigenere cipher technique

d. Combined in rectangles of matrices by applying playfair cipher technique.

Different encryption techniques will be applied to secure the LoRa communication in the
SCADA system based upon the security, processing time, required memory, and efficiency
of the algorithm. Anyhow a detailed description will be given in the chapter of Encryption

Algorithms.

1.6 Research Goals and Objectives

After the literature review, it becomes clear that a communication system for SG SCADA
system is required to improve in its security and use-ability. To monitor it remotely, a
remote data logging and wider range communication is also necessary to set up. Therefore,

the main goals of the thesis project are as follows

1.6.1 Secure Communication

Secured Communication is the prime objctive to achieve using LoRa based communication
for the SCADA system. Without security, the critical information of SG network becomes
accessible for every intruder. To achieve the security different encryption algorithms will
be implemented and finally, most compatible one will be implemented taking the security
requirements, processing time, and memory consumption under considerations. Different

MC, e.g. arduino, ESP32 will be tested to achieve this task.

23

1.6.2 Low Power

To build a low power system is the second objective to achieve. It will be achieved by
trying low power ICs and operation at low voltage. Finally, the combination of low power

controllers and other low power components-based setup will be devised.

1.6.3 Regular Updates

Regular updates about the system condition are also important to ensure the proper system
functionality. It will be achieved to inform the concerned personnel about system
conditions and specifically in the abnormal conditions which may be due to any fault or

harbinger of any failure.

1.6.4 Local and Remote Data Logging

Local and remote data logging is also as important as any other feature. Remote data
logging is necessary for remote monitoring, and local data logging is for data backup. It
will be achieved by logging data on any remote server, e.g. Thingspeak, and local data

logging will be achieved using SD card.

1.6.5 Implementation

Implementation of the designed system with all previously mentioned features will be done
on a prototype system. All this will be integrated after devising coding/programming and

designing optimal algorithms to achieve the requirements of the SCADA system. Research

24

outcome of this work will be a design and demonstration of a secure, low cost, low power

LoRa based communication system for remote monitoring of micro-grids.

1.7 Thesis Overview

This research work is the part of the project of NSERC Energy Storage Technology
Network (NESTnet) to address the challenges of renewable sources with the collaboration
of 15 other universities and many industries. Out of these 15 universities MUN is supposed
to work on the design and implementation of a low cost, secure and low power SCADA
system. In the research work behind this thesis, a secure, low-cost and low power
communication system with coverage of 35-40km has been developed. The thesis has the

following chapters to achieve all the features listed in section 1.7,

Chapter 1 is about the introduction of the SG SCADA system, advantages and different
challenges in the implementation of the SG SCADA system with primary focus on the
communication system. Mostly it comprises on the literature review of different
communication technologies which are in practice today. Chapter 2 is about the setting up
LoRa based bi-directional communication, encryption algorithms and their
implementation, security, and complexity to breach the algorithms. Chapter 3 is on the
implementation of Advanced Encryption Standard (AES) Algorithms, implementation of
Message Authentication Code (MAC), range testing and data rate and the results of all
these steps. Local and remote data logging, regular updates, and implementation and
interfacings of different gateways have been explained in chapter 4. Radio-based broader

range setup, serial/ethernet communication, configuration, their results and finally three

25

different system topologies have been explained in chapter 5. Chapter 6 summarizes the
project work with the merits/demerits and limitations of the devised system and identify

few methods which can help to improve the system.

26

Chapter # 2Encryption Algorithms to Secure

Communication System and Their Implementation on

DRF1276G LoRa Module

2.1 Introduction

In this chapter, LoRa based bi-directional communication system, encryption algorithms
and their implementation, security and complexity to breach the algorithms have been
discussed. Complete design and lab test results have been included.

With the growing penetration of renewable energy in grid supply, distributed generation is
increasing. Specifically, for remote communities who have added renewable energy to their
energy mix have a lack of secure and authentic communication system [54-56]. There are
many cases in which spies and enemies controlled the SCADA systems and disrupted the
power system. In 2008, the Russian army took charge of the Georgian electric grid by
controlling the SCADA system of their electric grid. According to the Wall Street Journal
report, in 2009, spies hacked the control system of the U.S electrical grid and disrupted the
system [57]. Many other articles like [58] have also highlighted the concerns about smart-

grid cybersecurity. Therefore, the communication system of an electrical grid, specifically,

27

the setup related to the SCADA system, must have strong resistance against eavesdroppers
and masqueraders. Usually, a communication system is regarded as secure if it satisfies the

following four features [59-60].

2.1.1 Privacy

The message should be encoded or encrypted such that the only authorized receiver can
read the message.

2.1.2 Message Authentication

The message should be authentic, and only the privileged nodes should be able to send the
message. Furthermore, no eavesdropper should be able to masquerade the receiver by

sending fake messages.

2.1.3 Integrity

The message received at the receiver side must exactly be the same as the sender sent.
2.1.4 Nonrepudiation

If there is any alteration in the message, whether due to the channel error or attacker’s
interference, the receiver must be able to recognize that and decline the message.

In [61-63], a few techniques have been discussed to address communication security issues.
In their proposed methods a third party is involved to ensure the security of the
communication network or setup, which depends upon the third-party network to
communicate with Remote End Devices (RED). Different encryption algorithms have been
proposed in [64-65] to secure the communication system using different cryptographic

techniques like; shift-cipher and substitution-cipher but, for a cryptanalyst, they are too

28

simple to break or other encryption algorithms proposed in [66],[67]. A cryptanalyst can
easily take control of the system and can modify the control messages as demonstrated in
Figure 2.1. In the Fig. 2.1, an eavesdropper receives the message from the SCADA unit,
and modifies the messages and control command and sends that to the remote end device
(RED) pretending to be the SCADA unit and hacks the system. In this way control
information becomes prone to the eavesdropper and loses authenticity and security.
Specifically, in a smart grid network, secure communication between the energy meters
and the SCADA system requires a low cost and a secure communication setup with
improved power efficiency. A raspberry-pi could also have been used for gateway purposes
to provide remote access, just like [69],[71] but, that consumes 3-4 times more power than
the tiny DRF1276G. In this chapter, different encryption algorithms have been
implemented to secure the communication system. After the implementation of these
algorithms, C++ programs were written to breach the encryption, and their results have

also been discussed at the end.

29

I A

v t

t

SCADA a

-=> setup > C €

k

=

r

|

®

Figure 2-1 Eavesdropper Masquerading the SCADA Network

2.2 Hardware Setup

The layout of the system has been shown in Figure-2.2. In this, each Remote End Device
(RED) has sensors and Arduino-uno with DRF1276G LoRa module. It receives data from
the sensors and encrypts. After encryption, it adds node ID in message string and sends.
The local collector node receives the LoRa messages from RED nodes and confirms
message authenticity. If the message is authentic, the collector node adds its ID along with

the RED node ID as its signatures and forwards to the SCADA unit side data collector.

30

l.-" DRF1276G —

node
I Y% N \ o
DRF1276G
/ ™, |)
{ \ ;= SCADA unit
I. DRFLZT'SG :IC_E _________ 2 data as data C— -‘“-..\
noce / collector collector .

l.-*” DRF1276G “-.i o
_ node

Figure 2-2 System block diagram with LoRa based wireless communication

On SCADA side, the collector unit receives the LoRa message, and after verifying the
signatures of remote end side data collector, it decrypts the message and sends to the
SCADA unit for processing. Similarly, for downlink communication, the SCADA side data
collector receives the message from the SCADA unit and encrypts the message. The
encrypted message is sent after the addition of the sender signatures and the target RED
node ID. The data collector DRF1276G of RED node side receives the LoRa message
verifies the signatures of the sender (SCADA side sender). After signatures verification,
the message is forwarded to the targeted RED node. If any node other than the target node
receives the message, that will ignore the message because of different IDs, and if it is the
target node, then the message will be decrypted and processed. In this way, two-way
encrypted communication is set to continue. This system structure was implemented using

Arduino-uno with LoRa module shown in Figure-2.3. It was chosen because of its user-

31

friendly nature and easy to program in Arduino IDE software. The other main advantage

of this tiny controller is that it has onboard LoRa module, unlike regular Arduino-uno for
which a separate LoRa shield is required for LoRa module interfacing. The pin diagram of
the arduino-uno and with LoRa chip have been shown in Figure 2.4 and 2.5. It has six

analog input pins to connect sensors and fourteen digital 1/0 pins (with six pins dedicated

for PWM). Its operating voltage is 3.3-5V.

% 2hoal¥ Fealp ©
20 €1z =
it

NS

- «Mrduino |
w =~ & LoRa
cio Y 0:1
pr

R mrRZpsm
3003900

BE B
L

<4 U2 pyq

B A ‘
k]

Figure 2-3 Arduni-uno with DRF1276G Lora module

32

<
288
- w
888388
RilvinbeEnlislaE s
/ N -0 OO~ © WV
M MO N NN N
ewm 3 it O Oasbpgcs
D4 402 23] co
GND []3 220
ATmega32s
VCC []4 < 210
GND []s
VCC (s
XTALYT []7
XTAL2 (8
e
B858x88a3
$: § B¢

Figure 2-4 Pin diagram of arduino-uno

12

n
PIN1

ADC) PR

PIN3

—— PDNG

THT_Male_P_

1x15 THT_Male_P_l1x15

Figure 2-5 Pin diagram of arduino uno with DRF1276G LoRa module

33

2.3 Cryptographic Algorithms on Arduino with DRF1276G LoRa

Module

Multiple encryption algorithms were implemented on the arduino DRF1276G LoRa
module to achieve the previously discussed four features of a secure and authentic
communication system for microgrid but, all cryptographic algorithms do not provide the
equal secrecy level. Their secrecy level is proportional to the key size required to breach
the encrypted text. Below are the details of the encryption algorithms which were
implemented and their resistance against any attack has also been discussed depending

upon the size of their keyspace.
2.3.1 Shift Cipher
In shift-cipher, all characters of the message are shifted by the same number. For example,

if the message is ‘abcdef’ and each character is shifted right by three characters, then after

shift ‘a’ will go to ‘d’, b’ to ‘e’ and so on as shown below.

11

Plaintext

O — o

Ciphertext
As there are only 25 possible shifts (if the message contains simple alphabets only), it
means that its key set has only 25 elements and cipher can easily be decrypted within 25
attempts [68].

In this encryption, although cipher text becomes different than actual message, it is not
difficult to break because of the limited keyspace. In the English language, all characters

have different occurrence probability in the plaintext messages. Their occurrence

34

probability helps in breaching the message. From the below-given charts in Figure 2.6 and
2.7, it can be seen that the letter ‘e’ has the highest occurrence probability followed by the
‘t’, and the letter ‘z’ has the least occurrence probability after letter ‘q.” Attempt was made
to break the encrypted message by counting the occurrence frequency of the letters and
then making some assumptions based upon those. It did not give much resistance and was
hacked after some mathematical calculations. Therefore, this algorithm has been

discouraged for the security of SCADA system.

0.14

0.12

0.1 +

0.08

0.06

0.04

0.02

abcdefghijklIlmnopgrstuvwiXxy?zZ

Figure 2-6 Occurrence probability of alphabets in any sentence

35

0.14

0.12

0.1

0.08

0.06

0.04

0.02

etaocoinshrdlcumwfagypbvk]|jxaqgz

Figure 2-7 Highest to the lowest occurrence probability of alphabets in any sentence

2.3.2 Affine Cipher

The keyspace of affine-cipher is a little bit larger than of shift-cipher. In this technique, the
ciphertext is calculated by solving linear equations under modulo 26 (because there are
only 26 alphabets). Each alphabet is assigned a certain number. Most commonly, the values
are assigned as shown in Table-2.1. There are two common conventions for assigning
number to alphabets, sometimes values are assigned from 1 to 26 and sometimes from 0 to
25. The equations used for this algorithm are first-order algebraic equations

For instance, ‘y’ indicates ciphertext number and ‘x’ indicates plaintext number then the
linear equation for this cipher becomes like:

y=a*x+b

36

where ‘a’ and ‘b’ are constants but less than ‘m’, where ‘m’ is the integer of the modulus.

Its keyspace depends upon the possible values for ‘a’ and ‘b’ and it will be:

K={(a,b) € Zm X Zm | gcd (a,m)=1}

To ensure that each ciphertext is for only one plaintext character, the gcd(a,m) must be

equal to 1 for injective ciphertext. For regular alphabets, the ‘m’ is 26 so,

Keyspace=(# of possible values for ‘a’)x(# of possible values of ‘b’)

= Keyspace = 12*26=312

The possible values for ‘a’ are twelve and for ‘b’ are twenty-six, and the encryption is

injective in nature. So, this cipher could be decrypted within 26x12=312 attempts [68].

Table 2-1 Alphabets with assigned numbers for mathematical calculations in encryption

algorithms
Letter Plaintext/Ciphertext Letter Plaintext/Ciphertext
number number

A 0 N 13

B 1 O 14

C 2 P 15

D 3 Q 16

E 4 R 17

F 5 S 18

G 6 T 19

H 7 U 20

[8 V 21

J 9 w 22

K 10 X 23

L 11 Y 24
M 12 Z 25

37

2.3.3 Transposition Cipher

In this cipher, the characters of a chosen block size are not substituted, instead they are
randomly shuffled with each other within the plaintext block e.g.

Plaintext CANADA

Ciphertext D N A A i

The security of the algorithm depends upon the size of the encryption block, and with
increasing block size, security also increases. If a block has ‘n’ characters, then the key set

will have total n! possible values [68].

2.3.4 Hill Cipher

Hill-cipher is based upon linear algebra, and its feature is that it is not an injective cipher.
It is similar to the affine cipher in the encryption/decryption structure. The only difference
is that it works on matrixes and columns of plain/ciphertext unlike characters used in the
affine-cipher. In this cipher, all characters are assigned numbers, eg. a=0, b=1 and similarly
y=24 and z=25 similar to affine cipher table. It uses an nxn square matrix as a key matrix

to get the column matrix of ciphertext from the column vector of plaintext. For example, if

the key matrix is [254 139], and ‘GA’ is to be encrypted. The respective plaintext column

will be [Z] = [8] , and after encryption the ciphertext will be [144] = [g] ‘EO’ as shown

below.

A= a1+ Tl = [l = [l = [o] cmoaze

38

The only condition for a key matrix is that it must be an invertible matrix to ensure that the

respective decryption key matrix also exists. Although, hill-cipher key space is m™ where

‘m’ is the modulo and ‘n’ is the size of the matrix but, it is vulnerable to chosen plaintext

attack [68].
2.3.5 Substitution Cipher

Substitution-cipher gives much better security than the shift and affine-cipher due to large
key size. In the implementation, it is quite similar to the shift cipher but, each plaintext
character is not shifted by the same number, eg.

Plaintext abocdef

Ciphertext d z h k a f

The first character can be substituted by any of the other 25 characters, second character
by any of the rest of 24 characters and so on. In this way possible key size becomes

K[=25x24x23......1=25!
2.4 Breaching the Encryption Algorithms

After implementing these encryption algorithms, few C++ codes were formulated to verify
the resistance of encryption algorithms. In these breaching algorithms, the advantage of
certain loopholes (e.g., the occurrence frequency of the characters and pairs) and certain
logical assumptions (e.g., type of encryption algorithm/ size of encryption block) were

made.

From the keyspace of different algorithms, it has been seen that hill-cipher is relatively

more secure than all other algorithms. Although, the keyspace of substitution is larger than

39

all others but, it is weaker than the hill-cipher due to its injective nature. Hill cipher using

2x2 matrix size has the keyspace of m"* =264=456976 possible keys. Although, it seems
very large keyspace and difficult to breach but, it was breached using C++ code given in
appendix A. Below is the example of a message encrypted using Hill Cipher and the

decrypted plaintext extracted after applying the code of appendix A.

Cipher Text:-
FUGOMRPKWODRDTJHDTHPQTIJDADFKLZDTYFWCDLIDALRPNNQVPHZDR
FMIPPSXWOSWDFUXELKMMGVOGBODEACSZJIDNDZROFMRAHAERPEAFRIT
NCZXPUDKQDITNYPFKNFBKOODBZPECFKWY XPGBEACFUQNQECCXSTGCZ
DCKGBZRQVFKBKVRIIVRBKZIJECUVANIJQVRBKQGZRBKDLECNSMGULBKYV
RIIVRGBFKKLBRGBANKOMGLCECIZRPNNGJQZDTUVKLRFECDSSFSXKLCA
HLTRWUCOFGLNSXWOBKSYKLKDXPNLWUELQEFVQMQEVSIVQMUYKLLD
HVXPBKCKCZMEFGDTNFGENYYIDOZDBHOSSCGPCKUVODBKIUFGNFYKQ

VYMIQYVBXWRPQKELWGBQTWYFJ

Plain Text:-

Themonkeyspawpartiwithoutthenightwascoldandwetbutinthesmallparlouroflaburnumvilla
theblindsweredrawnandthefireburnedbrightlyfatherandsonwereatchesstheformerwhoposse
ssedideasaboutthegameinvolvingradicalchancesputtinghiskingintosuchsharpandunnecessa
ryperilsthatitevenprovokedcommentfromthewhitehairedoldladyknittingplacidlybythefireh

arkatthewindsaidmrwhitewhohavingseenafatalmistakeafteritwastoolatewasa

40

Figure-2.8 and 2.9 also show the results of the Hill Cipher algorithm-based encryption and
the two-way communication between two LoRa modules. Figure-2.8 shows the encrypted
message sent from the LoRa node of inverter side (message sent from remote end device
side). Figure-2.9 shows the plaintext message of SCADA side and the decrypted received

message.

41

Figure 2-8 Encrypted message sent from RED side Lora module

42

ra

Sending message: Hello world! I am Inverter side sendesr
Received Message: Hello world! I am SCADA side sender

with R35I: -—-44

Sending message: Hello world! I am Inverter =side sender
Beceived Message: Hello world! I am SCARDAR =ide sender

with RSS5TI: -44

Sending message: Hello world! I am Inverter side sendsr
Received Message: Hello world! I am SCADA side sender

with RSSI: —44
Sending message: Hello world! I am Inverter =side sender
Beceived Message: Hello world! I am SCARDAR =ide sender

with RSS5TI: -44

Sending message: Hello world! I am Inverter side sendsr

Received Message: Hello world! I am SCADA side sender W

[] Autoscrol Mo line ending -~ | | 9600 baud e Clear output

Figure 2-9 Two-way communication between two LoRa modules

2.5 Conclusion

All previously discussed cryptographic techniques can be implemented for simple
communication purposes. This setup of duplex communication gave the range of 5-15km
(on/off-site) with power consumption of 500Mw (2x250mW) and cost not more than
CADGO for two units to set up a two-way communication. It was planned to use Hill Cipher
(relatively secure one) for the encryption of SCADA system messages but, after finding
some loopholes and successful attempts of breaching Hill-cipher (developing C++ code
given in the appendix) its implementation for the SCADA system has been discouraged. It

is also vulnerable to attack by any cryptanalyst due to the limited number of keys in

43

keyspace. That is why the implementation of the Advanced Encryption Algorithm (AES)
has been chosen to ensure the security of the SCADA system which not only has large key
space of 2128 possible keys but also is non-linear in nature and is flexible to change the
pattern of output by changing the number of cascaded encryption rounds. Usually, it is used
for military purposes and where extreme security is required. The arduino with DRF1276G
LoRa module cannot support the complexity of the algorithm due to its small flash size
(32kb) and CPU limitations. To implement AES, ESP32 has been used which not only has
enough flash, better CPU and low cost but also has very little power consumption 3.5-

5mw.

44

Chapter # 3 Implementation of AES and MAC to

Secure Communication System for Remote Micro-grids

3.1 Introduction

After implementing various encryption algorithms (explained in the previous chapter),
attempts were made to break them to check their security. Some C++ programs were
developed, and some online softwares (ESEnfCVPOA, Crypto Corner, CodeBreaker etc.)
were used to check their resistance. From such cross-checks and their keys-pace it was
inferred that those are not perfectly secure algorithms. Therefore, Advanced Encryption
Standard (AES) Algorithms were studied, learned and implemented. Here, AES has been
implemented first using DRF1276G LoRa module but, it did not work due to controller
limitations. Then, ESP32 was used to secure the LoRa communication by implementing
AES algorithm. The message authenticity and non-repudiation has been achieved by

implementing a 64 bit MAC address for each message regardless of message size. It gives

45

the ability to identify even a single bit change in the message which could be due to any
eavesdropper or strong electromagnetic interference.

Figure 3.1 shows the flow diagram of the process. Before sending any message, first that
is encrypted using the AES encryption algorithm, and then a 64bit unique MAC is
generated from the plaintext. Finally, the ciphertext and the MAC are concatenated and
sent. Similarly, on the receiver side, first the MAC and the ciphertext are separated, then
the MAC is verified, and then ciphertext is decrypted to process further. If the received
MAC address at the receiver end does not match with the MAC calculated from the

message then received packed would be considered suspicious and will not be executed.

Encrypt
meTsage

Plaintext Concatenate
Sender Step-3) =
message ciphertext and MAC S

'._\ \
Calculate _/) A
B4 bit MAC A

— \

N o
Decrypt Step-7)
message /

—— /
Split ciphertext and g

Receiver Step-5 MAC d

Process

plaintext
Step-8

Verify MAC

Figure 3-1 Flow chart of the implemented communication process

46

3.2 Implementation of AES Algorithm using ESP32 and LoRa Module

The AES algorithm not only has a large key set (2128 possible keys), but also is secure
from many cryptanalysis algorithms like differential cryptanalysis, integration, linear,
multiset and many others like these. So far, it is regarded as the most secure one to all
known attacks [72],[73]. The flow of the AES algorithm has been shown in figure 3.2. The
left half of the figure shows the encryption flow and the right half shows the decryption
flow. Further, these parts have been explained in the coming section. Each encryption

round has the five steps which go sequentially;

Add round key
e Substitute bytes
e Shift rows

e Mix columns

e Add round key

Similar to encryption, each decryption round also has the five steps

Add round key

e Inverse mix columns

e Inverse shift rows

e Inverse substitute bytes

e Add round key

47

Round 1

Round @

Round 10

Plaintext

I Add round key

! :

Key

—

r

Plaintext

T

— w0, 3] —I-l Add round key I

T

I Substitute bytes | |

Expand key

| Inverse sub bytes I

!

I Shift rows |

| Mix columns |

:
l—

| Add round key

— K K K —]

I Substitute bytes |

L1

I Shift rows |

| l—

I Mix columns |

|4_

I Substitute bytes |

|—

| Add round key

tp—

t—i

—

—

I Shift rows |

!

I Add round key

Ciphertext

(a) Encryption

—

?

| Inverse shift rows I

____________ L B

| Inverse mix cols |

T

— w4,7] ———» Addroundkey |

| Imverse sub bytes I

1.

| Inverse shift rows I

—

Y

| Inverse mix cols I

—»

— W[36,39] ————»| Addroundkey |

—

| Imverse sub bytes I

—

| Inverse shift rows I

T

|¢e———— wi40,43] ———] Addroundkey |
T

Ciphertext

(b) Decryption

Figure 3-2 Step by step 10 round AES encryption and decryption [72]

48

Round 10

Round @

.
=
=

&

3.2.1 Adding the round key and generating a new key

The addition of the round key has been shown in figure 3.3. It is the XOR sum of the binary
strings of the message and the key. The condition for this addition is that the length of the
message string and the key must be equal. Further, the AES encryption maps the message
into a square matrix (4x4 bytes or 32x32 bits). In key addition operation, the first 32-bits
of the message are XORed with the first column of the key matrix. The addition of key
gives the sub-round ciphertext. In figure-3.4 the generation of the round key has been
shown. For the first round, any default or input key is used, and the key for the rest of the
rounds are calculated from the previous round key, plaintext message and the seed (any
word of 4-bytes or binary string of 32-bits). The round key of the previous round is mapped
into a square matrix of 4x4 byte size elements. In the next step, each column of the key

matrix is XORed with the respective column of the word.

So0 | S0 | S0z | 502 So0 | S0 | So2 | S0z
I 1 1 1
510 510 | 512 | 512 510 51 | 512 | Bz
(k] Wi Wi | Wiz | Wisa =
r 1 1 1
530 521 | S22 | 522 530 | 520 | S22 | S22
I A 1 1
530 | 531 | 522 | 532 53p | 531 | 53,2 | 52z

Figure 3-3 Addition of round key for AES encryption [72]

49

v
PR ALY
b

Wa | Wg | Wg | W7

Figure 3-4 Generating new key from the previous round key and data string [72]

3.2.2 Substitute Bytes

After calculating the next round key and the addition of key in the previous round
ciphertext (or plaintext for the first round), each byte (the pair of HEX characters) is
replaced with the respective Rijndael’s table (a standard table of 256 values) to increase

the confusion.
3.2.3 Shift Rows
After substitution, all 16 bytes are distributed to construct a 4x4 square matrix. In the
resultant matrix, the row rotation operation is applied. It has been shown in figure 3.5
e The first row of the matrix remains unchanged

e 2" row of the matrix is rotated left by one byte

50

e 3row is rotated left by two bytes

e 4" row is rotated left by three bytes (or rotated right by one byte)

S0 | S04 | S0z | S0z m So0 | S01 | Soz2 | Soz

S510] 510 | 312 | 513 -"”"'*I I I I IH""""—* 510 | 512 | 513 | 510

Sp0| 521 | S22 | Saa |/ | \l;LL'_I—" S22 | 523 | S2.0 | Sa
L I I T 1

530 31 | B3 [Saa | — % | 533|830 531 | S22
=

Figure 3-5 Rotation of bytes in shift row operation [72]

3.2.4 Mix Column

As shown in figure 3.6, the matrix left multiplication is applied using a 4x4 matrix on the
results of the shift row operation. To get the results of multiplication by two without data
information loss is achieved in two steps. Apply left shift on the binary value of the data
and add 0 on LSB side. The second step depends upon whether the MSB was 0 or 1. The
second step has two ways depending upon the MSB value
e |f the MSB of the data was 0, then the final result of 2s multiplication remains the
same as of left shift by one bit
e |f the MSB of the data was 1, then the final result of 2s multiplication is achieved
calculating XOR sum of the results of left shift and (00011011)
The multiplication of the data by 3 is quite simple. It is the XOR sum of the 2s

multiplication and the data.

51

s
2311
Pllizan| | |
1123 =
JIEERE
—»
h J k J v $
) 1 1 1
500 | S04 | S02 | S0z 500 | 5o | %02 | 0z
I 1 1 1
S10]15%10 | 512 | 513 S10] 510 | 512 | Sz
1 1 1 1
520 | 521 | 522 | 523 520 | 521 | 522 | 523
1 1 1 1
Sa0 | 531 | 532 | 533 530 | %31 | 53,2 | 52z

Figure 3-6 Mix column operation to increase the confusion and non-linearity [72]

This algorithm not only has a large key set (2128 possible keys), but also is secure from
many cryptanalysis algorithms like differential cryptanalysis, integration, linear, multiset
and many others like these.

In the AES algorithm, for each round, a new key is derived from the previous round key
and the ciphertext of the previous round. From the test results, explained in the next section,
it could be seen that each round ciphertext is entirely different from all others which is due
to the implementation of binary level encryption. The confusion created at each round and
the propagation of confusion from one round to the next round makes it more secure. Its

complete code is provided in appendix B&C.

3.3 Results

The AES algorithm was implemented on DRF1276G, and the results have been shown in

figure 3.7 but, it did not support the AES algorithm due to small flash size (32kb), slow

52

processing and other processor limitations. It could not even execute the single round for
encryption. Therefore, ESP32 shown in figure 3.8 was used which not only supported this
algorithm but also the implementation of Message Authentication Code (MAC) as well.
The MAC has been implemented in the later sections, and the results of AES

implementation ESP32 have been shown in figure 3.9.

It can be seen from the results of the AES implementation on ESP32 that each round
ciphertext is different from the previous round. It is due to the bit level encryption. In each
block of encryption, there are 128 bits due to which 2128 possible key sets would be required
for a cryptanalyst to break this successfully. Moreover, if, any computer program is
developed to break this cipher that would also take thousands of years to perform 2128
calculations. Figure 3.10 gives a brief insight about such large numbers. Even if a
supercomputer which performs single encryption in 1ns will also take more than 60 billions
of years to break it. Therefore, its implementation for SCADA system resolves the security-
related issues and gives perfect security against eavesdropper. Figure 3.11 shows the
received message with the MAC address and the status of its authenticity. On the receiver
side, the received message is parsed into ciphertext and the MAC address then the MAC is
calculated from the received message and is compared with the received MAC. If both
MACs are equal then the message is considered authentic one and is processed; otherwise

the message is declared suspicious and is not processed.

53

pre—encrypt (plain text): 012345678 9ABCDEFD1234567T89ABCDER
Ciphet-text after 1

Ciphet-text after 2 rounds:
Ciphet-text after 3 rounds:
Ciphet-text after 4 rounds:
Ciphet-text after 5 rounds:
Ciphet-text after € rounds:
Ciphet-text after 7 rounds:
Ciphet-text after 8 rounds:
Ciphet-text after 9 rounds:

final ciphertext:

Figure 3-7 Implementation of AES encryption using DRF1276G with LoRa module

=

-
”
7

AT LS
-l({/ '////{/"

,,
P
7

Figure 3-8 ESP32 with LoRa module used for successful implementation of AES

encryption

54

pre-encrypt (plain text):

Ciphet-text
Ciphet-text
Ciphet-text
Ciphet-text
Ciphet-text
Ciphet-text
Ciphet-text
Ciphet-text
Ciphet-text

after 1 rounds:

after
after
after
after
after
after
after

after

final ciphertext:

2

LU T = = T I « T 2 B O %

rounds:
rounds:
rounds:
rounds:
rounds:
rounds:
rounds:

rounds:

0123456785ABCDEF0123456785ABCDEF
4023CABB2H4333AC463817F42853333D
471651265750TAEEFOBFE40TEBECSE1T
85C3F208€1055F9EEBT73639A0BESD3ER
F1D452604C31159F03377B2790FFER34D
S2REC59502FDBERBRAB4ASZDZBEITE4214
A0DAD2TC43FESEB4DA345FEEFAL113838
D71F17D%383AFELIFFOBELEEST040EEDS
S512E55835F96TEZFSCS544D00AEEFFALT
FE7/SBRARZEEIF246560821DBD47DT3RB2
FF73BARZEE1F2465€0821DBD47D73AB2

Figure 3-9 Implementation of AES encryption using ESP32 with LoRa module

Time for evolution of a species = 2°° years

Age of the earth = 2°? years

Bits in a terabyte drive = 2*

Cells in the human body = 2*

Amount of water in the Great Lakes = 2™ gallons
Estimate of atoms in observable universe = 2°%

Figure 3-10 A hint about large numbers to understand the size of keyspace having 2128

pre-encrypt (plain text):

Ciphertext without MAC is:

Decrypted Plaintext:
ciphertext with MAC:

Recelved MAC:
Calculated MAC:

MAC verification status:

Verified decrypted message is:

elements

01234567859ABCDEF0123456789ABCDEF

FOFDOZEETCDB2SFOSASSSFET4E46SEFED

01234567859ABCDEF0123456789ABCDEF
FOFDOZEETCDB2ZSFOSASSSFET4E465E6FES410DFCSCOSDFFECE
410DFCSC9SDFFACE

410DFCSC9SDFFACE

Message 1s authentic.

0123456785ABCDEF0123456785ABCDEF

Figure 3-11 Implementation of AES algorithm with MAC address

55

The data rate for two-way communication between two ESP32 modules depends upon the
spreading factor of the LoRa communication. Spreading factor is basically the frequency
hopping, and its range could be configured by setting the spreading factor from 7-12 for
LoRa communication. The data rate is inversely proportional to the spreading factor.
However, a higher spreading factor gives better range. Figure 3.12 and 3.13 show the graph
between the time elapsed on the sender side and receiver side. The time sampled on sender
side for the data readings includes the time taken in message encrypting and sending and
for the receiver side, the time sample includes the message air time, time taken in message
verification and decryption as well. In these graphs, the relation between spreading factor

and the data rate can be seen vividly.

Figure 3.14 shows the impact of spreading factor on the range. The range of LoRa coverage
is directly proportional to the spreading factor. From the given figure, it can be seen that
when spreading factor is seven the number of messages received and sent is equal and it

indicates three advantages

e No data loss
e Authentic messages

e No delay in messages

On the other side, when the spreading factor is twelve, the number of sent messages is

much higher than the number of received messages, and it has two drawbacks

e Messages are prone to EMI/data loss

e Messages are delayed due to a longer message on air time.

56

At the same time when the range testing was done, the higher spreading factor gave better
range coverage. For SF equal to twelve there was a successful communication link up to
4km (low range due to obstacles) despite minor obstacles as shown in figure 3.15. When
the SF was set equal to seven, the communication link was not good for the same range

and similar obstacles.

Time lapsed in receving, verifying and decrypting the message under different SF

5000

. /
/
/

/_/ =—f=Seriesl

/

g

Time (ms)
g 8 8

1500

1000

500

0 2 4] B 10 12 14
Spreading factor (SF)

Figure 3-12 Time lapsed in message receiving, verifying and decrypting under different

SF

57

Time lapsed for encrypting and sending message under different SF

o 4

2000 /
/ —f—Seriesl

Time (ms)

0 2 4 6 8 10 12 14
Spreading factor (SF)

Figure 3-13 Time lapsed for message encrypting and sending under different SF

SCADA side LoRa kit
SendevReceiver
Sending packet: ©2
Received packet: ©
Received message status
Message s suspicious

side Lo
Inverter TReceive

Figure 3-14 Difference of data rate and message authenticity under different SF

58

4 IGUENRIDGE
({CRESCENT,

o0 X ’
R Ao, St g MRS
Hema'ge'Shop@‘ 5y

Al ;

wfoundland &..

h ,Jerﬂybean Row
hop & Gallery
i

«

Figure 3-15 Bi-directional communication range testing of ESP32 with LoRa module

3.4 Conclusion

The implementation of the AES algorithm on ESP32 gives a secure, low cost (of not more
than $50 for two-way communication link), low power (with power consumption of
200mW/unit) and authentic communication setup. Its implementation with MAC address,
addresses the all requirements of the SCADA system for remote micro-grids. Further, its
on-site range is up to 15km and off-site up-to 5km which gives much better coverage as
compared to other conventional wireless communication systems based upon Zigbee,
SigFox, WiFi and others like these. Therefore, its implementation on a large scale will be

economically viable, and also completely secure from all kind of eavesdropper.

59

Chapter # 4 Data Logging Using Different

Gateways and Mesh-Network Implementation to

Improve LoRa Range

4.1 Introduction

In this chapter local and remote data logging has been achieved along with the
implementation of Mesh-network to improve the LoRa range.

The ESP32 board has only a single channel SPI bus which does not let the simultaneous
configuration of LoRa communication and the configuration of an SD card to log data
locally. Therefore, another ESP32 board was used to collect data through Rx/Tx and store
on a separate SD card. Remote data logging has been achieved by uploading data to a
server. Its block diagram has been shown in fig-4.1. In that, remote nodes send data to the
gateway to upload it to the cloud for remote access. To upload the data to a server requires
a gateway, for that ESP32 board, was programmed to work as a gateway but, it affected
the functionalities of ESP32. Further, it slowed down its processing time due to which a
dedicated Dragino-yun based gateway was tried for uploading data to a server, and it

worked fine.

60

Finally, to improve the LoRa communication range, a mesh-network was planned and
implemented. The implementation of mesh-network significantly improved the LoRa
range. The results and detailed implementations have been explained in the coming

sections.

Mode-2 g Gateway

¥
I
!
!
I
[
I
[
!
!
[
!
I
r
[
!
§

Figure 4-1 System structure for remote data-logging

4.2 Local Data Logging

The feature of local data logging was added into this system in order to have a local-data
backup mechanism and to avoid data loss due to any accidental failure in the
communication system. The data which is supposed to be coming from a local
inverter/wind turbine is time-stamped and is stored after applying the AES encryption.
Subsequently, the received data after extracting sender/receiver identity passwords and
MAC is decrypted and verified to ensure that the received message is authentic. Finally,

the data is time-stamped and stored in a separate received data file in CSV format. For the

61

local data storage, the configured SD card console has been shown in fig-4.2, and the

logged data depends upon storage size and received data rate.

5D Card Si=ze: T550HME
Listing directory: S
FILE: /Jtest.THC EIZE: 1048576
FILE: /foo.txt SIZE: 13
DIR : /my new directory 1
Creating Dir: /mydir
Dir created
Listing directory: S
FILE: /Jtest.THC EIZE: 1048576
FILE: /foo.txt SIZE: 13
DIR : /my new directory_ 1
DIE : /mydir
Eemowving Dir: /mydir
Dir remowed
Listing directory: S
FILE: /test.txt SIZE: 1048576
FILE: /foo.txt SIZE: 13
DIR : /my new directory 1
Listing directory: fmy_new_directury_l
Writing file: /byvtes.CHD
File writtemn
Lppending to file: /fbytes.LoXC

Message appended
104943576 bytes read for 2905 m=s

1048576 byvtes written for 4913 ms
Total space: Too3MB

Figure 4-2 Configuring SD card for local-data logging

4.3 ESP-32 vs Dragino Gateways

The collected data is uploaded to a server for analysis and storage. Two different gateways,
based upon ESP32 and dragino were tried to upload the data to a server but, both had
certain limitations. The programming and setting of an ESP32 board to work as a gateway

is relatively difficult because it is to be configured as a gateway through coding while a

62

dedicated dragino gateway is already available in the market with complete configuration
and is more user-friendly. On the other hand, an ESP32 based gateway is much more cost
effective and power efficient. It hardly consumes 230-300mW of power [74].

Figure 4.3 shows the successful configurations of the ESP32 board as a gateway. The
configuration and setting of an ESP32 board to operate as a gateway have been shown in
fig-4.4 and fig 4.5. In fig-4.4 is the information about the spreading factor used for data
uploading and fig-4.5 shows the general settings about which feature to be turned on or off.
The Arduino program for its configuration has been given in the appendix. The major
limitation of using ESP32 as a gateway is that when it is used as a gateway and to
encrypt/decrypt data simultaneously, its data uploading rate drastically decreases. It is vivid
from the fig-4.6 and fig-4.7. Fig-4.6 shows the message sent to the server when ESP32 was
being used to decrypt the received data and then to send to the server. It can be seen that
there is a delay sending messages to the server due to the board limitations and it causes a
lot of data loss. It could be used as a gateway for the applications where the data rate is low
but, could not be used for the SCADA system. Further, it does not have ethernet port and
connection is through WiFi. Therefore, if intended to upload decrypted data to the server
it will lose the security. Later in fig-4.7 the console window of The Things Network has
been shown in which data is being uploaded to the server. It can be seen that this window

does not show any delay because data was being uploaded without decrypting.

63

Figure 4-3 Setting ESP32 as a gateway

Setting

Figure 4-4 Setting ESP32 as a gateway

64

“$MM

mew “

\H\‘ IS h‘
Gateway Ty 30AEA4FFFF7410&Q‘
setupona:: Started |
e)
lIP address:

- 2\181
‘ Tlme-

Friday 13:54:17 ‘M
Gateway conflguratlon saved ‘
WWW Server started on

‘ port 80 ‘
JWOLED_?DDR=.“ \HM

Welcome to NESTnet
SCADA Gateway
Ready with SSID=
BELLALIANTO3S1

ﬁFQ on 915 OO Mhz

Figure 4-5 Configuration results of ESP32 as a gateway

Figure 4-6 ESP32 gateway sending messages with AES encryption

65

B! et P -
) TETHINGs CONsOLE pppicstions Getsways Suppore O NESTNET

Applications inverter_side_node > Devices £ inverter 1 > Data

APPLICATION DATA Il pause W clear

- 14:39:55 196 1 payload: 01 67 FF FF 02 68 FF
- 14:38:19 188 1 payload: 01 67 FF FF 02 68 FF
- 14:36:42 180 1 payioad: 01 67 FF FF 02 68 FF

- 14:35:05 172 1 payload: 01 67 FF FF 02 68 FF

Figure 4-7 ESP32 gateway uploading data to the Things Network without encryption

Fig-4.8 shows the dragino gateway, used for uploading data to the ThingSpeak server. Its
successful configuration and real-time load have been shown in fig-4.9 and fig-4.10. It has
WAN and LAN ethernet ports and consumes 12W power under loading conditions in active
mode and requires 12V DC for proper functioning. Dragino compensates for this excess
power consumption in terms of many other features. For example, it can serve up to 8 nodes
simultaneously by communicating with each node at a different frequency [74], while
ESP32 can support only three such nodes simultaneously. Unlike ESP32, it does not face
any processing issue due to encryption/decryption which makes it a better choice for
reliable operations.

Figure 4.11 gives the graphical view of data uploaded on the ThingSpeak server using a
dragino gateway. Data is uploaded to the ThingSpeak server once in every fifteen seconds.
ThingSpeak server gives up to eight free data fields for a single account. If the usage
exceeds that then it requires a premium account. Here in the prototype setup, three fields

were used for data logging.

66

Figure 4-8 A dedicated dragino-yun LoRa gateway

Figure 4-9 Successful configuration results of dragino-yun working as a gateway

67

dragino-1 93cd4 status- Sensor~ System~ Network~ Logout

Load Traffic Wireless Connections

Realtime Load

Figure 4-10 Dragino gateway real-time data load

Currents

1935
1950

ThingSpeak com

Dragino_LoRa

Figure 4-11 Uploading data to the ThingSpeak server

68

4.4 Implementation of Mesh Network and Range Testing

The LoRa range was tested deploying one ESP32-LoRa at Memorial University and taking
other EP32-LoRa to the Signal Hill as shown in fig-4.12. This setup supported a noise and
error-free communication for the distance of 3.85km. Although, its range is usually
obstacle dependent and during another testing it was observed that if the transmitter is at
ground floor in the house window and a receiver is taken outside in neighbouring streets,
then the communication range drastically goes down and they can communicate only up to
the distance of 500-700m (with obstacles). Later, a mesh-network topology was

implemented to address this issue, and it gave significant improvements in range.

!)
\ b .
4 GUENRIDGE™
CRESCENT,

; 3
gt W s
HE®B M-T-T-\E»F’..i

>

Figure 4-12 ESP32 LoRa range testing

Each ESP32-Lora module of the network was assigned a unique identity code to implement
a mesh topology and was also fed with the directory of all other units’ identity code

directory. Before sending a message, the message is encrypted, and MAC address is added

69

to ciphertext string. When a ciphertext string with MAC is ready to be sent, the sender adds
the target node identity code and its identification code in the string. A simple flow chart
of the processing steps at the receiver end has been shown in fig-4.13. The main steps of

this flow are:

a) Receive message
b) Compare received ID and with node ID
c) Iftrue, then verify MAC address, decrypt and execute

d) If false, then tranmit message forward

The receiver comes out of the sleep mode and receives the message. Whenever there is a

message the receiver receives the message and parses it into three parts

a) sender identity code
b) the targeted receiver identity code

c) message packet with data and MAC information

If (Received

receiver
ID== Node
D)

Figure 4-13 Process flow chart for an intermediate level node

70

In the first step, the ID of the node is compared with the targeted receiver ID. If they are
equal, this means that the node is the targeted receiver node and then the received message
packet is further parsed into an encrypted message and MAC to process further. If the
receiver ID is not equal to the targeted receiver ID, it shows that the message is for any
other node then, the message is again packed in a single string as it was received and is
forwarded to the other nodes lying in the range.

In this way, if a message is sent from the central control unit for a node which does not lie
in the range of that unit, then a node in the vicinity of the sender will receive that message
and will forward to the next nearby nodes.

A complete system flow chart has been shown in the fig-4.14 to make it easy to understand.
In this figure, a node of level-2 lies out of the range of the central node and a node of level-
1 acts as a bridge for two-way communication between the control node and level-2 nodes.
After implementing mesh topology, its range was tested for two levels of nodes, and a
significant improvement was observed. The nodes whose range was limited to 900-1000m
in the street with obstacles achieved another 500m in their coverage area, and its results
can be seen in fig-4.15. In this way, the range which was only obstacle dependent became

the function of the number of levels between the sender and the receiver as well.

71

Central Level-1

Control

Figure 4-14 Mesh network for improved LoRa range

Long Pond

Strawberry MarshRd
¥ A C Hunter Public Library

Figure 4-15 Range testing in obstacle dense area after implementing a mesh network

72

4.5 Complete System Flow Diagram

Figure 4.16 shows a complete system flow diagram for a prototype micro-grid network. It
has distributed generation shown as two different wind turbines and two solar panels which
represent the distributed power generation units. Each power generation unit has sensors
for certain measurements (current, voltage, power etc.), and is also associated with ESP32
based LoRa module which acts as a remote-end-device. Data is collected from the sensors
installed on RED and is serially transmitted to the local ESP32 modules. The ESP32
encrypts the data applying AES encryption algorithm and calculates the 64bit unique MAC
for the message and adds to the ciphertext string. After encryption and MAC addition, one
copy of the data is stored on local SD card for local data-backup, and the other copy is
transmitted to the SCADA side through LoRa communication after the addition of sender
and receiver node IDs. LoRa communication gives it better range through the mesh-
network structure and transmits to the SCADA unit. On SCADA side, the received message
is parsed into sender/receiver IDs, MAC address and the ciphertext of the message. Before
decryption and further processing first, the authenticity and integrity of the message are
verified by comparing node I1Ds and calculated/received MAC addresses. After ensuring
the message authenticity, the message is decrypted and processed. For remote data logging,
a copy of the data is sent to the gateway (ESP32/Dragino-yun) to upload data on the web.
In this way, a secure and authentic communication system for remote micro-grids has been

achieved, and data has been logged on a server to view, analyze and store data remotely.

73

Encrypt/decrypt
Add MAC/ Verify MAC
Add sender, recsiver ID/

Parse sender, receiver ID
l
ESP3 i

Decrypt/ Encrypt
Verify MAC/ Add MAC
Parse sender, receiver ID/
Add sender, receiver ID
Confirm authorization

Process and send to
gataway
Mesh
node
et
ESP32
Encrypt/decrypt
Add MAC/ Verify MAC
Add sender, recsiver ID/
Parse sender, receiver ID
Wire

..... Wirgless communication

Figure 4-16 Complete System diagram
74

4.6 Conclusion

Here, two different gateways were programmed and configured to work as a gateway to
upload data to the server. It was seen that ESP32 based gateway has less power
consumption but also has many limitations, slow processing, delay in data uploading and
loss of the data. Due to which Dragino-yun was tried to upload data to the server, and it
worked nicely without any data loss. For local data logging, an SD card was configured,
and data was stored on that but, that requires an additional ESP32 board due to the
limitations of board structure (overlapping of communication buses). Finally, to meet
applications requirements the dragino-yun based gateway was selected to upload data to
the server.

A successful mesh-network structure was implemented to improve the range of LoRa
communication and to collect data from the remote end devices. It significantly improved
the LoRa range (5km off-site and 15km on-site) and tackled with the challenge of data

collection from scattered remote end devices.

In this way a secure communication with remote data logging was achieved with cost not
more than $82 with additional $26 for every new node into the system. Single ESP32
consumes power of 200mW and the Dragino gateway consumes 4.5W and overall power
consumption was not more than 4.7W with additional 200mW for every new node. In this

way, system not only meets the requirements but also gives low cost and low power setup.

75

Chapter # 5 Radio-set Based System Topologies

for Longer Range Setup

5.1 Introduction

After the successful implementation of a secure communication system for remote
microgrids, and improved LoRa range by implementing mesh-network, the idea came
about extending its range beyond 30km to enhance the circle of applications. To achieve
this goal, a radio set was used on both sides. One on the SCADA side and other on the
remote end with the local data collector. The local data collector collects the data from
distributed Lora units, and stores data for local backup. After applying encryption and other
data security steps discussed in previous chapters, the data is serially transferred to the
MAX232 (driver for serial communication between radio-set and controller) to feed it to
the radio set. The radio-set takes 12V DC due to which MAX232, a serial communication
driver has been used to provide common ground for different voltage level signals. The
radio-set transmits the received data improving transmission range. A single layer of LoRa
modules (without mesh-network) has the range of 15km, and the radio-set has the range of

up to 25km. In this way, the integration of LoRa module and radio-set give transmission

76

range of more than 40km without the use of any mesh-network or repeater for radio-sets.

Here, three different system topologies

1) ESP32 with LoRa based communication system
2) Remote data logging using ESP32 based gateway

3) Data logging on a web-server using Dragino-yun
have been tried using radio-set.

5.2 System Structure-I

A simple diagram of the system topology applied at this stage has been shown in fig 5.1.
In this system structure, the data collected from remote sensors is fed to the dedicated
ESP32 module. The ESSP32 with LoRa, repeats the same steps of encryption, MAC
calculation, and the addition of sender/receiver IDs as was done in system structure
explained in previous chapters. After repeating those steps, the ESP32 data collector does
not transmit the message over LoRa communication; instead serially transmits to the radio-
set through MAX232. The radio set boosts the range and sends it to the far away located
other radio-set. On the receiver end, the radio-set receives the data and sends it to the USR-
TCP-232 serial to ethernet converter. The output of this converter goes to the PC where the
message is further processed. The results of data collected through this kind of system-
scheme have been shown in fig 5.2. The configuration of USR-TCP-232 has been

explained in the coming sections.

77

Ty -
"".-.-_-.-"“

7

with ‘
LoRa N
USR-TCP-232 Rad
) io
SCADA side Serial-to-Ethernet ~
PC converter

Figure 5-1 System structure for topology | with broader range due to radio-set

ESP32 ‘\\
with
LoRa
Max-232 Circuit)
(Serial Radio
Communication -set
Driver)
ESP32
o
set

Figure 5-2 Data logging by implementing system structure |

78

5.3 Hardware Setup and Interfacing

5.3.1 RA30H1317M

The circuit of the mobile radio set used in the project has been shown in fig 5.3. This mobile
radio requires 12.5V DC and consumes 25W power to transmit messages over up to 30km

in the frequency band of 135MHz-170MHz. It was chosen because it has the following

features
e Efficiency >40% e Pout=30Waltt
e Broadband frequency range 135- e 2" harmonic power = -35dB
170MHz

Figure 5-3 RA30H1317M based radio-set board used in this project

79

5.3.2 DC Power Supply LRS-150-12

Radi0-set RA30H1317M requires a power supply which can give protection against all
kind of surges and minimum voltage regulation. For message sending and receiving radio-
set draws very high current (up to 6Amp) than its normal energized state (110mA)
therefore, a DC power supply must also be able to deliver that current without voltage dip.
The DC power supply LRS-150-12 was chosen because its rated current is 12.5A, and at
full load the voltage regulation is not more than 1%. Its further specifications are given in

table 5.1, and its circuit has been shown in fig 5.4.

Table 5-1 Specifications of the power source

DC Voltage 12V
Rated current 12.5A
Current range 0~12.5A

Rated power 150W
Ripple & noise (max) 150m Vp-p
Output voltage adj. range 10.2~13.8V

Voltage regulation +-1%
Input voltage 85~132VAC

80

161-H9 BISREE3 ML \
6891 8 YRSS-4L !

c6pe3698des

Figure 5-4 12V DC power supply to power-up the radio-set and protecting against surges

5.3.3 Building MAX 232 circuit

The controller boards used in this project are ESP32 with LoRa module. Its operating
voltage range is 3.3-5V, and the radio-set which receives the message from ESP32 through

serial Rx/Tx pins operates at 12V DC. Therefore, to provide common grounds for different

81

voltage signals and to protect the controller from any unwanted surge requires a driver.

MAX232 was used to protect the boards and to provide common grounds. Its circuit was

built as shown in fig 5.5 according to its data-sheet.

Figure 5-5 MAX232 driver circuit built to protect the controller from power surges and to

provide common ground for signals

82

5.1.1 Setting USR-TCP232

On the receiver side, the received message by radio-set is sent to the PC through USR-
TCP232 converter shown in fig 5.6. It works on 5V DC and converts DB-9 signal into
ethernet. It has inbuilt TCP server and requires complete settings. After logging in to its
setting page it requires setting in two domains. First, its serial port setting is to be done as

shown in fig 5.7 mainly focusing on three categories

Baud rate:- It could be set according to the other system baud rate for proper
communication without any delay or information loss. The system baud rate of 9600 was

used in this communication setup.

Local port number:- USR-TCP232 requires its local and remote port numbers to be set.
When it is being used as a TCP server, then its local port number is to be assigned a specific
ID number from 0-65535, and when it is used as a TCP client, then its remote port number
is to be set. Based upon the port number, it interfaces with the PC, and it should also match

with the PC port number (explained in the next section) to log data.

TCP Server:- Lastly, its work mode is set by setting whether is it to work as a TCP server
or TCP client. Here it has been used as a TCP server, and its setting has been done

accordingly as shown in fig 5.7.

After its serial port setting, its internal registration setting is to be done by setting packet
type and direction. Here communication between different units was in ASCII due to which
it was set in ASCII mode shown in fig 5.8; otherwise it could be set into Binary Coded

Decimal (BCD), hex or binary.

83

ML 2eTIvE A0
il >0

:
:

-
m&
&g
:|
~ND
&
P

O 1) Do
OCSY retead Ethaenal

Figure 5-6 USR-TCP-232 used in the project for serial to ethernet conversion

Figure 5-7 USR-TCP-232 Serial port setting

84

USR

IOT Experts-

Heartbeat packet Type- |}

Register packet Typez

Registered Directionz Connect with

User Register Packetz |
Short Connection=
TCP Server-kick off old connection= v
Buffer Data Before Connectane |||
UART Set Para meter:

Figure 5-8 Internal registration setting of USR-TCP-232

5.3.5 Ethernet and USR-TCP232 setting

After the completion of USR-TCP232-302 setting, the PC ethernet port setting was done
as shown in fig 5.9. To start logging data or sending messages from PC to remote end
devices, the USR-TCP-232-test software proved very helpful. Its configuration setting has
been shown in fig 5.10. For its successful setting three things are important to be
considered. It should be set into the TCP Client (Server) mode because USR-TCP232 was
configured in TCP Server (Client) mode. Secondly, its server IP must be the same which
was set for TCP-232 device. Finally, its server port must be the same as was set in the local
port ID of the TCP server. After these settings are correctly done, the connect option
connects the serial channel for communication and data logging (message sending) starts.

Further, this software gives many additional features, e.g. logging received data into a .text

85

file, reading messages from .text file to send over this channel in a cyclic way. The time

interval between the outgoing messages can be set easily as shown in the fig 5.10.

T TR 1 T v I i " um -~
e

Figure 5-9 PC ethernet setting to interface with USR-TCP-232

Results

86

Figure 5-10 Results and setting of USR-TCP232 test software

5.4 System Structure-IlI

In this system structure, the remote-end sensor side system structure is almost the same

as the system structure-l but, the SCADA side has been improved significantly. In the
previous system, the Radio-set was serially connected with the PC through USR-TCP232-
302, and data was being logged, but its drawback was that it reserves a whole PC running
round the clock to log the data. In system-Il, as shown in the fig 5.11, a driver of serial
communication (MAX-232) collects the serial data from Radio set and feeds it to a tiny
controller ESP-32 running as a gateway. It uploads data to the server through the wifi and

eliminates the need of a PC.

87

Max-232 Circuit
(Serial
Communication

Radio
-set

Data
collector

Driver)

Data-logging on
cloud

Max-232 Circuit

Radio
(Serial

-set

E5P32asa
gateway Communication

Driver)

Figure 5-11 System structure for topology Il with broader range due to radio-set

Although, the system structure-1l seems very interesting because it simplifies the system

by eliminating the PC and making system more power efficient but, there are few

limitations of this system e.g.

e |t uses ESP32 as a gateway and uploads the decrypted data to the server through

wifi due to which data becomes vulnerable to the eavesdropper.

e An ESP32 is not a dedicated gateway but is being used for serial communication,
encryption, decryption, MAC generation, MAC verification and uploading data to

the server which make it slow. This system structure may prove very helpful if there

88

is not high traffic of two-way messages over the channel (not more than 10

messages per hour).

But, for the SCADA system of remote micro-grids, it cannot be used due to the increased
message on air time and data loss. Due to this drawback, a third system structure was

designed and implemented. It has been explained in the next section.

5.5 System Structure-I11l1

Quite similar to the previously discussed system structure, this system also has similar type
of structure on remote end but, is different in system structure for the SCADA side. Its
simplified structure has been shown in fig 5.12. There is a MAX-232 circuit which serially
connects the radio set with the ESP32 collector-dragino side. This ESP32 has been used to
collect the received data serially, to partially decrypt the received data and then send to the
dragino gateway through LoRa communication. Dragino-yun is a dedicated LoRa gateway
and does not face any time delay issues. It was also planned to feed the serial output of
MAX2232 direct to the dragino gateway without the use of ESP32 collector but, due to the

limitations given below it was not possible

a) Dragino gateway cannot decrypt the received message due to limited memory.
When it was tried a low-memory error occurred as shown in fig 5.13
b) It is built on one dragino-yun shield and one other chip for the gateway, and both

are connected through Rx/Tx pins. So, external use of Rx/Tx pins is not possible

89

Max-232 Circuit
(Serial

Coemmunication

Data
collector

Driver)

Max-232 Circuit

{Serial Radio

-zet

ESP32
collector

Communication

Driver)

ThingSpeak

Dragino
Gateway

sefver_with_encryption

////////////////////////

lastSendTime — s():
millis(); // timestamp tLhe message

tnterval = random(2000) + 1000; // 2-3
D (LoRa.available ()) 1

seconds

)
[e (LoRa.available ())
nF (LoRa .

//delay (interval

:ch uses 21390 bytes (66%) of program storage
obal variables use 1643 bytes (80%) of dynamic me

Dragine Yin + UNO or LGO1/0LG0

mAcE®T e s 6

Figure 5-13 Dragino-yun low memory error

90

Therefore, an additional ESP32 has been used as a collector to decrypt/encrypt the received
message and send the serial/LoRa received data on LoRa/Serial. The ESP32 decrypts the
data partially, and extracts a string of HEX from the encrypted string and forwards to the
dragino gateway. Finally, the dragino gateway has been used to extract the real data from

the partially decrypted message and uploads that to the server.

A prototype of the message encrypted with AES was sent from the remote end node and a
dummy data was logged on the ThingSpeak server. Data sample is logged once in every

fifteen seconds and it offers eight different fields to log under single user ID without any

charges.The results have been shown in fig 5.14.

|:| ThingSpeak“‘ Channels ~ Apps ~ Community Support ~ Commercial Use How to Buy Account = Sign Out
Channel Stats
Created: 4 months ago
Lastentry: less than a minute ago
Entries: 688
Field 1 Chart Z O &£ x Field 2 Chart F o & x

Dragino_LoRa Dragino_LoRa

3k
2k
1k
Ok

0
20:00 21:00 22:00 23:00 20 Jan 20:00 21:00 22:00 23:00 20 J:

Date Date
ThingSpaak.com ThingSpesk.com

=
=

Voltage

Current
o
= =
\

Figure 5-14 Data logging on the ThingSpeak server using system topology IlI

5.6 Conclusion

A radio-set based broader range communication system has been setup. It significantly

improves the range up to 50km. System structure-1 costs not more than $325 (Three ESP32

91

each of $26, USR-TCP-232 of $28 and LSR-150-12 with two Radio-sets each of $109.53)
including radio-sets and system structure-11&I1l cost $323 and $353 respectively. Here,
three different topologies have been tried for secure communication and data logging. Each
topology has its own circle of applications based upon merits and demerits. If data logging
is required only at the main SCADA unit then first topology works very well. Second
topology is useful for logging data on to the server to access remotely but, it has certain
limitations. It will be nice option for data logging if there is very limited number of
messages (roughly 10 messages/hr). The final one is useful if very frequent communication
is required. Then, this topology seems the optimal solution for real-time communication

and logging data on the server.

After implementing these three topologies and identifying their limitations, the System
Structure-111 shown in fig-5.12 was finalized for the SCADA system because, it meets all
system requirements and has longer range (>50km) due to radio-sets. Cascaded mesh-
topology cannot be implemented to achive this range because due to increase of cumulative
message on air time, it becomes more vulnerable to data loss and electromagnetic
interference. The finalized system consists of two radio-sets, three ESP32s, two MAX232s
circuits and one dragino gateway and costs $353 and gives range of more than 50km. It has
secure communication due to the implementation of AES algorithm. It gives message
authenticity due to the implementation of MAC. Usage of the dedicated gateway makes it
superior over System Structure-Il and it supercedes the System Structure-I due to the

feature of remote data logging.

92

Chapter # 6 Summary and Recommendations

6.1 Summary of Work

With increasing renewable energy penetration, the number of distributed generation and
remote micro-grids are also increasing. While each remote micro-grid requires to have a
sophisticated (secure, long range, low power and low cost) communication system for SG
SCADA system. It creates a research gap for devising a system with desired attributes. This
research was conducted to develop a system with the above listed features. This goal was

achieved in five research phases given below

1. Finding a low power, low cost and long range communication system.
To achieve this, the literature review comprising the study of twelve wireless
technologies and three wired technologies was done. After the comparison of those
technologies, a comparison table was constructed, and LoRa communication was
chosen for this purpose.

2. Finding and implementing a secure communication mechanism.
To achieve the security of the communication system, different encryption

algorithms were studied, implemented and cross-checked by developing C++ code

93

and using online software. Encryption was implemented on using DORJI
DRF1276G Arduino-LoRa moidules.

. Authentication of the message signals and implementation of advanced encryption
algorithms.

To authenticate the message algorithm was developed to generate a unique
message authentication code for each message. It enabled to identify a bit-level
alteration in the message. Further, AES was implemented on ESP32 to secure the
message from decryption.

Logging data on a cloud for remote monitoring and improving the LoRa range.
Data was uploaded to the server to access remotely. It was achieved by
programming and configuring two gateways for this purpose. Further, LoRa range
was improved by bringing the idea of its implementation in mesh-network
structure. This led to a low-cost ($78 +$26 for every new node and level), low
power (600mW + 200mW for every new node and level), and improved the range
by 5km on-site and 15km off-site by every new mesh-network level.

Extending the system to get longer range (50km) without data loss and
electromagnetic intergference.

It was achieved by implementing a hybrid system using LoRa and radio-system.
Considering the requirements of the SG SCADA system, three possible different
system topologies were designed and implemented. Final design of 3" topology
consists of ESP32s, Radio-sets and dragino-gateway with total cost of $353 and
power consumption of 43W. And it was recommended based upon the SG SCADA

system objectives.

94

6.2 Future Work Recommendations

There is always a possibility to make the existing work better and here are the few

recommendations.

1. A private server can be developed to eliminate any possible way of intruder’s
intervention through server side and internet.

2. After the study of the SCADA system, local controllers can be given certain
privileges to minimize the communication of critical messages and rank data based
upon data priority.

3. Local graphical user interfacing (Human Machine Interfacing) and control can be
introduced to make the system more flexible for adding/removing nodes.

4. Design a proper housing and power supply for the communication link.

6.3 List of Publications

6.3.1 Submitted

1. Amjad Igbal and M. Tariq Igbal, “Low-cost and Secure Communication System for
SCADA System of Remote Micro-grids™, accepted in the Journal of Electrical and

Computer Engineering, April 2, 2019

6.3.2 Published/Accepted

2. Amjad Igbal and M. Tariq Igbal, “Low-cost and Secure Communication System for
Remote Micro-grids using AES Cryptography on ESP32 with LoRa Module,”

presented in IEEE Electrical Power and Energy Conference (EPEC), 2018

95

3.

6.3.3

5.

Amjad Igbal and M. Tariq Igbal, “Design and Analysis of a Stand-alone PV System
for a Rural House in Pakistan,” published in the International Journal of
Photoenergy, April 24, 2019

Amjad Igbal and M. Tariq Igbal, “Thermal Modeling and Sizing of a Stand-Alone
PV System for a Rural House in Pakistan,” presented at 27" IEEE NECEC

Conference, 2018

Poster Presentation

Amjad Igbal and M. Tariq Igbal, “Low-cost and Secure Communication System for
Remote Micro-grids using AES Cryptography and ESP32 with LoRa,” presented in
poster session at Ryerson University, Toronto ON, during NESTNet 2" Annual

Technical Conference, June 19-20, 2018

96

References

[1] F.Qietal, “Optimal planning of smart grid communication network for
interregional wide-area monitoring protection and control system,” Proceedings -
2nd IEEE International Conference on Energy Internet, ICEI 2018. pp. 190-195,
2018.

[2] H.Lim,J. Ko, S. Lee, J. Kim, M. Kim, and T. Shon, “Security architecture model
for smart grid communication systems,” 2013 Int. Conf. IT Converg. Secur.
ICITCS 2013, pp. 1-4, 2013.

[3] P.Kansal, S. Member, A. Bose, and A. Infrastructure, “Smart Grid
Communication Requirements for the High Voltage Power System,” 2011 IEEE
Power Energy Soc. Gen. Meet., pp. 1-6, 2011.

[4] M.F. Aziz and N. Abdulaziz, “Prospects and challenges of renewable energy in
Pakistan,” in 2010 IEEE International Energy Conference and Exhibition,
EnergyCon 2010, 2010, pp. 161-165.

[5] Q. Yang,J. A. Barria, and T. C. Green, “Communication infrastructures for
distributed control of power distribution networks,” IEEE Transactions on
Industrial Informatics, vol. 7, no. 2. pp. 316-327, 2011.

[6] V.C. Gungor, D Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.
Hancke, “Smart grid technologies: Communication technologies and standards,”
IEEE Trans. Ind. Informatics, vol. 7, no. 4, pp. 529-539, 2011.

[7] B. Flerchinger, Robert Ferraro, Chris Steeprow, Michael Mills-Price, J.W. Knapek,
“Third-Generation Cellular and Wireless Serial Radio Communications: Field
Testing for Smart Grid Applications,” IEEE Ind. Appl. Mag., vol. 24, no. 5, pp. 10—
17, Oct. 2018.

[8] S. Supriya, M. Magheshwari, S. Sree Udhyalakshmi, R. Subhashini, and Musthafa,
“Smart grid technologies: Communication technologies and standards,” Int. J.
Appl. Eng. Res., 2015.

[9] V.C. Gungor, D Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.
Hancke, “A Survey on smart grid potential applications and communication
requirements,” IEEE Trans. Ind. Informatics, 2013.

[10] P. G. Kate and J. R. Rana, “ZIGBEE based monitoring theft detection and
automatic electricity meter reading,” in International Conference on Energy
Systems and Applications, ICESA 2015, 2016.

97

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

P. Yi, A. Iwayemi, and C. Zhou, “Developing ZigBee deployment guideline under
WiFi interference for smart grid applications,” IEEE Trans. Smart Grid, 2011.

A. Mulla, J. Baviskar, S. Khare, and F. Kazi, “The Wireless Technologies for
Smart Grid Communication: A Review,” 2015, pp. 442-447.

Y. Gu, A. Lo, S. Member, and I. Niemegeers, “Wireless Personal Networks,”
Communications, 2009.

X. Xu, X. Hu, Z. Zhu, and X. Ji, “Application and research of Bluetooth
technology in the development of the portable device for the evaluation of
myodynamia,” ITME 2011 - Proceedings: 2011 IEEE International Symposium on
IT in Medicine and Education, vol. 2. pp. 620-623, 2011.

M. Aiello, R. De Jong, and J. De Nes, “Bluetooth broadcasting: How far can we
go? An experimental study,” in 2009 Joint Conferences on Pervasive Computing,
JCPC 2009, 2009.

K. A. T. Lasagani, T. Igbal, and G. K. Mann, “Data Logging and Control of a
Remote Inverter Using LoRa and Power Line Communication,” Energy Power
Eng., vol. 10, no. 08, pp. 351-365, 2018.

M. Conti, D. Fedeli, and M. Virgulti, “B4V2G: Bluetooth for electric vehicle to
smart grid connection,” 2011, pp. 13-18.

ABB, “Utility Communications Narrowband SCADA Radio Modems,” Power and
Productivity for a Better World. [Online]. Available:
https://library.e.abb.com/public/73cal97a99448ddbc12576bd00458654/Narrowban
d SCADA Radio Modems.pdf. [Accessed: 02-Feb-2019].

Aa. Shahzad, Y. G. Kim, and A. Elgamoudi, “Secure loT Platform for Industrial
Control Systems,” in 2017 International Conference on Platform Technology and
Service, PlatCon 2017 - Proceedings, 2017.

B. Glushko, D. Kin, and A. Shar, “Gigabit optical wireless communication system
for personal area networking,” Proc. 2013 18th Eur. Conf. Netw. Opt. Commun.
NOC 2013 2013 8th Conf. Opt. Cabling Infrastructure, OC | 2013, pp. 145-148,
2013.

M. Rahaim, Thomas D. C. Little, “Interference in IM/DD optical wireless
communication networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 9, pp.
D51-D63, 2017.

M. Uysal and H. Nouri, “Optical wireless communications - An emerging
technology,” in International Conference on Transparent Optical Networks, 2014.

98

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

P.J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” in
Optical Fiber Telecommunications V1B, 2008.

S. Arnon, J. R. Barry, G. K. Karagiannidis, R. Schober, and M. Uysal, Advanced
optical wireless communication systems. 2012.

“Laser Demonstration Reveals Bright Future for Space Communication,” Dewayne
Washington NASA's Goddard Space Flight Center, Washington, 04-Mar-2016.

A. Nowicki, “Boulder’s Smart Grid Leaves Citizens in the Dark,” A Wood
Mackenzie Business, 18-Mar-2013.

D. Buterbaugh, Timothy Brown, “Boulder Strategic Networking for Power
System,” Colorado, 2010.

M. Jia, X. Gu, Q. Guo, W. Xiang, and N. Zhang, “Broadband hybrid satellite-
terrestrial communication systems based on cognitive radio toward 5G,” IEEE
Wireless Communications, vol. 23, no. 6. pp. 96-106, 2016.

M. Guimardes Castello Branco, Augusto da Rocha Gomes, “Satellite
Communication Challenges in a Fully Interconnected World,” in 2017
SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference
(IMOC), 2017, p. 5.

K. Sohraby, Daniel Minoli, Benedict Occhiogrosso, Wei Wang, “A Review of
Wireless and Satellite-Based M2M/I0T Services in Support of Smart Grids,” Maob.
Networks Appl., vol. 23, no. 4, pp. 881-895, 2017.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, H. M. Aggoune, H. Haas, S.
Fletcher and E. Hepsaydir, “Cellular architecture and key technologies for 5G
wireless communication networks,” IEEE Commun. Mag., 2014.

J. Ghetie, “Wireless Communications and Networking,” in Fixed-Mobile Wireless
Networks Convergence, 20009.

Y. Chung, Jae Young Ahn, Jae Du Huh, “Experiments of A LPWAN Tracking
(TR) Platform Based on Sigfox Test Network,” in 2018 International Conference
on Information and Communication Technology Convergence (ICTC), 2018.

N. I. Osman, Esra B. Abbas, “Simulation and Modelling of LoRa and Sigfox Low
Power Wide Area Network Technologies,” in 2018 International Conference on
Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 2018.

B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovacs, P. Mogensen, and M.
Sorensen, “Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-
IoT,” in IEEE Vehicular Technology Conference, 2017.

99

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]
[48]

F. Bonavolonta, Annarita Tedesco, Rosario Schiano Lo Moriello, Antonio Tufano,
“Enabling wireless technologies for industry 4.0: State of the art,” in 2017 IEEE
International Workshop on Measurement and Networking (M&N), 2017.

L. Vangelista, “Frequency Shift Chirp Modulation: The LoRa Modulation,” IEEE
Signal Processing Letters, vol. 24, no. 12. pp. 1818-1821, 2017.

A. Lavric, Valentin Popa, “Internet of Things and LoRa™ Low-Power Wide-Area
Networks: A survey,” in 2017 International Symposium on Signals, Circuits and
Systems (ISSCS), 2017.

A. U. Macrae and A. M. Noll, “Bell Telephone Laboratories, Incorporated: 1925-
1984 New Jersey’s innovation factory,” in Proceedings of the 2015
ICOHTEC/IEEE International History of High-Technologies and their Socio-
Cultural Contexts Conference, HISTELCON 2015: The 4th IEEE Region 8
Conference on the History of Electrotechnologies, 2015.

G. Bumiller, L. Lampe, and H. Hrasnica, “Power line communication networks for
large-scale control and automation systems,” IEEE Commun. Mag., 2010.

S. Rinaldi, P. Ferrari, A. Flammini, M. Rizzi, E. Sisinni, and A. Vezzoli,
“Performance analysis of power line communication in industrial power

distribution network,” Comput. Stand. Interfaces, 2015.

K. Sharma and L. M. Saini, “Power-line communications for smart grid: Progress,
challenges, opportunities and status,” Renewable and Sustainable Energy Reviews.
2017.

S. Galli, A. Scaglione, and Z. Wang, “For the grid and through the grid: The role of
power line communications in the smart grid,” in Proceedings of the IEEE, 2011.

A. Leonov and V. Konyshev, “From the Revolution to the Evolution: The Change
in the Character of Development of Fiber Optic Communications Technology —

And the Record Performance of 100 Gbit/s Systems as a Marker of this Change,”

2017, pp. 34-36.

G. P. Agrawal, Lightwave Technology: Telecommunication Systems. 2005.

R.J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical
communication networks,” in Proceedings of the IEEE, 2012.

C. DeCusatis, Handbook of Fiber Optic Data Communication. 2008.

J. Vodrazka, “Potential use of gigabit digital subscriber lines in hybrid access
networks,” in International Conference on Digital Technologies 2013, DT 2013,
2013.

100

[49] D. Mandell, “LoRaWAN Assumes LPWAN Leadership for IoT Gateways.” VDC
Research Insight for the Connected World, 2017.

[50] Y. Tang, W. Li, C. Xiong, J. Wei, and M. Ghogho, “Secure communications via
sending artificial noise by both transmitter and receiver: optimum power allocation
to minimise the insecure region,” IET Communications, vol. 8, no. 16. pp. 2858—
2862, 2014.

[51] A. D. Harper and X. Ma, “MIMO Wireless Secure Communication Using Data-
Carrying Artificial Noise,” IEEE Transactions on Wireless Communications, vol.
15, no. 12. pp. 8051-8062, 2016.

[52] Z.Chen, T. Jiang, and W. Zou, “A novel physical layer security communication
method based on dual base station,” 2017 17th International Symposium on
Communications and Information Technologies, ISCIT 2017, vol. 2018-January.
pp. 1-4, 2018.

[53] T. Q. Duong, “Keynote talk #1: Trusted communications with physical layer
security for 5G and beyond,” 2017.

[54] C. Mavrokefalidis, D. Ampeliotis and K.Berberidis, “A study of the communication
needs in micro-grid systems,” in General Assembly and Scientific Symposium of the
International Union of Radio Science (URSI GASS), 2017 XXXIlInd, 2017, pp. 1-4.

[55] A. Garcia-Dominguez, “Enabling SCADA cluster and cloud for smart grid using
hierarchical multicast; The PTMF framework,” in Proceedings of the IEEE
International Conference on Industrial Technology, 2015, vol. 2015-June, no.
June, pp. 218-225.

[56] H. H. and D. M. S. and M. G. and A. K. Safa, “Cyber security of smart grid and
SCADA systems, threats and risks,” in CIRED Workshop 2016, 2016, pp. 1-4.

[57] E. Bou-Harb, C. Fachkha, M. Pourzandi, M. Debbabi, and C. Assi,
“Communication security for smart grid distribution networks,” IEEE Commun.
Mag., vol. 51, no. 1, pp. 42-49, 2013.

[58] H.H.and D. M. S. and M. G. and A. K. Safa, “Cyber security of smart grid and
SCADA systems, threats and risks,” in CIRED Workshop 2016, 2016, pp. 1-4.

[59] A. Tanenbaum, ‘“Network Security,” in Computer Networks, 5th ed., PEARSON,
2011, pp. 767-790.

[60] H. Su, M. Qiu, and H. Wang, “Secure wireless communication system for smart
grid with rechargeable electric vehicles,” IEEE Commun. Mag., vol. 50, no. 8, pp.
62-68, 2012.

101

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

D. NamdeoHire, “Secured Wireless Data Communication,” Int. J. Comput. Appl.,
vol. 54, pp. 27-30, 2012.

A. A. P. R. and R. F. S. Amiruddin, “A testbed implementation of secure and
lightweight privacy preservation mechanism using scrambled Fibonacci and XOR
for ZigBee,” in Region 10 Conference, TENCON 2017 - 2017 IEEE, 2017, pp. 863—
868.

Y.-S. Tsai, C.-Y. Chu, M.-C. Li, Y.-H. Lin, and P. Chen, “Intelligent DC power
monitoring system and sensor network based on ZigBee-equipped smart sockets,”
in 2016 5th International Symposium on Next-Generation Electronics, ISNE 2016,
2016.

Aa. Shahzad, Y. G. Kim, and A. Elgamoudi, “Secure IoT Platform for Industrial
Control Systems,” in 2017 International Conference on Platform Technology and
Service, PlatCon 2017 - Proceedings, 2017.

A.V.D. M. Kayem, H. Strauss, S. D. Wolthusen, and C. Meinel, “Key management
for secure demand data communication in constrained micro-grids,” in Proceedings
- IEEE 30th International Conference on Advanced Information Networking and
Applications Workshops, WAINA 2016, 2016, pp. 585-590.

J. L. Tsai and N. W. Lo, “Secure Anonymous Key Distribution Scheme for Smart
Grid,” IEEE Trans. Smart Grid, 2016.

X. Miao and X. Chen, “Cyber security infrastructure of smart grid communication
system,” China Int. Conf. Electr. Distrib. CICED, no. Ciced, pp. 5-6, 2012.

W. Stallings, Cryptography and Network Security, vol. 139, no. 3. 2011, pp. 312-
328.

C.-S. Choi, , Jin-Doo Jeong, 1I-Woo Lee, Wan-Ki Park, “LoRa based Renewable
Energy Monitoring System with Open IoT Platform,” in International Conference
on Electronics, Information, and Communication (ICEIC), 2018, pp. 1-2.

H.-R. Lee,Won-Jong Kim,Ki-Hyuk Park,Han-Jin Cho, Chi-Ho Lin, “Development
of an easy payment system based on IoT gateway,” in International Conference on
Electronics, Information, and Communication (ICEIC), 2018, pp. 1-3

R. G. Anvekar, Rajeshwari M Banakar, Rajat R Bhat, “Design alternatives for end
user communication in IoT based system model,” in IEEE Technological
Innovations in ICT for Agriculture and Rural Development (TIAR), 2017.

W. Stallings, Cryptography and Network Security, vol. 139, no. 3. 2011, pp. 312-
328.

102

[73] P. Patil, P. Narayankar, D. G. Narayan, and S. M. Meena, “A Comprehensive

Evaluation of Cryptographic Algorithms: DES, 3DES, AES, RSA and Blowfish,”
in Procedia Computer Science, 2016, vol. 78, pp. 617-624.

[74] Dragino, “LG01 LoRa Gateway User Manual.” Dragino, pp. 22-30, 2018.

103

Appendixes Containing C++/Arduino Code

Appendix A C++ code to Breach the Hill Cipher

#include <iostream>
#include <string>
using namespace std;
int main ()
{ [* Coding Block-1: splitting string into pairs*/
while (1) { string input;
cout<<"Please input ciphertext string without SPACES and with even number of characters
"<<endl<<endl;
cin>>input;
int counter=0, string_length=input.length(),half length=string_length/2, counterl=0,
frequency_index[half_length], dummy_counter=0,freq=1, freq_index=0;
string half_string_o="", half_string_e="",0dd,even,pair[half_length];
char array_of_character[string_length];
if ((input.length()%2)==0)
{ for (counter;counter<input.length();counter++)
{ if (counter%?2==0)
{ half_string_e=half_string_e+input[counter]; }
else if (counter%2!=0)
{ half_string_o=half_string_o+input[counter];}
array_of character[counter]=input[counter];
cout<<" "<<array_of character[counter];}
cout<<endl<<"Here are the pairs of characters"<<endl;
for (counterl;counterl<half length;counterl++)
{ odd=half_string_o[counterl]; even=half_string_e[counterl];
pair[counterl]=even+odd;
cout<<pair[counterl]<<" ";}

cout<<endl:

{ /* Block-2 Frequency: Counting repetition of pairs*/

int dummy3=0;

for (dummy_counter;dummy_counter<=half length;dummy_counter++)

{ int nested_dummy=dummy_counter, frequency=0;
for(nested_dummy;nested_dummy<half_length;nested_dummy++)
{ if (pair[nested_dummy]==pair[dummy_counter])

104

frequency=frequency+1;}
frequency_index[dummy_counter]=frequency;}
cout<<"cipher block"<<" frequency"<<endl,
for (dummy3;dummy3<half_length;dummy3++)

{ cout<<" "<<pair[dummy3]<<" "<<frequency_index[dummy3]<<endl;}
/*Block-3: Decryption*/

cout<<endl<<endl<<" decryption "<<endl<<endl,

int dummy7=0, dummy8=0, p0,pl,counter6=0,plain_text_number[2],

cipher_text_number[2],key[4]={5,19,24,3};
char plain_text[2],cipher_text[2], array_of plain_text[string_length];
for (dummy7=0;dummy7<string_length;)
{ for (dummy8=0;dummy8<2;dummy8++)
{ cipher_text[dummy8]=array_of character[dummy7];
if (cipher_text[dummy8]=="A'||cipher_text[dummy8]=="a’)
cipher_text_number[dummy8]=0;
else if (cipher_text[dummy8]=="B'||cipher_text[dummy8]=="b")
cipher_text_number[dummy8]=1;
else if (cipher_text[dummy8]=="C'||cipher_text[dummy8]=='c")
cipher_text_number[dummy8]=2;
else if (cipher_text[dummy8]=="D'||cipher_text[dummy8]=="d")
cipher_text_number[dummy8]=3;
else if (cipher_text[dummy8]=="E'||cipher_text[dummy8]=="¢")
cipher_text_number[dummy8]=4;
else if (cipher_text[dummy8]=="F'||cipher_text[dummy8]=="f")
cipher_text_number[dummy8]=5;
else if (cipher_text[dummy8]=="G'||cipher_text[dummy8]=='g")
cipher_text_number[dummy8]=6;
else if (cipher_text[dummy8]=="H'||cipher_text[dummy8]=="h")
cipher_text_number[dummy8]=7;
else if (cipher_textf[dummy8]=="I'||cipher_text[dummy8]=="i")
cipher_text_number[dummy8]=8;
else if (cipher_text[dummy8]=="J'||cipher_text[dummy8]=="]")
cipher_text_number[dummy8]=9;
else if (cipher_text[dummy8]=="K'||cipher_text[dummy8]=="k’)
cipher_text_number[dummy8]=10;
else if (cipher_text[dummy8]=="L"||cipher_text[dummy8]=="I")
cipher_text_number[dummy8]=11;
else if (cipher_text[dummy8]=="M'||cipher_text[dummy8]=="m")
cipher_text_number[dummy8]=12;
else if (cipher_text[dummy8]=="N'|[cipher_text[dummy8]=="n")
cipher_text_number[dummy8]=13;

105

else if (cipher_text[dummy8]=="0O'||cipher_text[dummy8]=="'0")
cipher_text_number[dummy8]=14;
else if (cipher_text{[dummy8]=="'P'||cipher_text[dummy8]=="p")
cipher_text_number[dummy8]=15;
else if (cipher_text[dummy8]=='Q'||cipher_text[dummy8]=='q’)
cipher_text_number[dummy8]=16;
else if (cipher_text{[dummy8]=='R’||cipher_text[dummy8]=="r")
cipher_text_number[dummy8]=17;
else if (cipher_text[dummy8]=="S'||cipher_text[dummy8]=='s")
cipher_text_number[dummy8]=18;
else if (cipher_text[dummy8]=="T"||cipher_text[dummy8]=="t")
cipher_text_number[dummy8]=19;
else if (cipher_text[dummy8]=="U'||cipher_text[dummy8]=="u’)
cipher_text_number[dummy8]=20;
else if (cipher_text[dummy8]=="V'||cipher_text[dummy8]=="v")
cipher_text_number[dummy8]=21,;
else if (cipher_text[dummy8]=="W'||cipher_text[dummy8]=="w")
cipher_text_number[dummy8]=22;
else if (cipher_text[dummy8]=="X'||cipher_text[dummy8]=="x)
cipher_text_number[dummy8]=23;
else if (cipher_text[dummy8]=="Y"||cipher_text[dummy8]=="y")
cipher_text_number[dummy8]=24;
else if (cipher_text[dummy8]=="Z'||cipher_text[dummy8]=="2")
cipher_text_number[dummy8]=25;
dummy7=dummy7+1; }
pO=(cipher_text_number[0]*key[O]+cipher_text_number[1]*key[2]);
pl=(cipher_text_number[0]*key[1]+cipher_text number[1]*key[3]);
p0=p0%?26;
p1l=p1%26;
plain_text_number[0]=p0;
plain_text_ number[1]=p1;
for (counter6=0;counter6<2;counter6++)
{ if (plain_text_number[counter6]==0)
{plain_text[counter6]="a";}
else if (plain_text_number[counter6]==1)
{plain_text[counter6]="b";}
else if (plain_text_number[counter6]==2)
{plain_text[counter6]="c";}
else if (plain_text_number[counter6]==3)
{plain_text[counter6]='d";}
else if (plain_text_number[counter6]==4)

106

{plain_text[counter6]="e";}

else if (plain_text_number[counter6]==5)
{plain_text[counter6]="f";}

else if (plain_text_number[counter6]==6)
{plain_text[counter6]='g";}

else if (plain_text_number[counter6]==7)
{plain_text[counter6]="h";}

else if (plain_text_number[counter6]==8)
{plain_text[counter6]="i";}

else if (plain_text_number[counter6]==9)
{plain_text[counter6]="j";}

else if (plain_text_number[counter6]==10)
{plain_text[counter6]='k";}

else if (plain_text_number[counter6]==11)
{plain_text[counter6]="I";}

else if (plain_text_number[counter6]==12)
{plain_text[counter6]="m";}

else if (plain_text_number[counter6]==13)
{plain_text[counter6]="n";}

else if (plain_text_number[counter6]==14)
{plain_text[counter6]='0";}

else if (plain_text_number[counter6]==15)
{plain_text[counter6]="p";}

else if (plain_text_number[counter6]==16)
{plain_text[counter6]='q";}

else if (plain_text_number[counter6]==17)
{plain_text[counter6]="r";}

else if (plain_text_number[counter6]==18)
{plain_text[counter6]='s";}

else if (plain_text_number[counter6]==19)
{plain_text[counter6]="t";}

else if (plain_text_number[counter6]==20)
{plain_text[counter6]="u";}

else if (plain_text_number[counter6]==21)
{plain_text[counter6]="v";}

else if (plain_text_number[counter6]==22)
{plain_text[counter6]='w";}

else if (plain_text_number[counter6]==23)
{plain_text[counter6]="X";}

else if (plain_text_number[counter6]==24)
{plain_text[counter6]="y";}

107

else if (plain_text_number[counter6]==25)
{plain_text[counter6]="2";}}
cout<<plain_text[O]<<plain_text[1];}}}
cout<<endl;}
return 0;}

108

Appendix B Arduino code for LoRa duplex
communication

#include <SPIL.h>
#include <LoRa.h>
int counter = 0, unread_bytes=0;
char data[]="Hello world";
void setup() {
LoRa.setSPIFrequency(8E6);/*it will set controller at SMHz*/
LoRa.begin(915E6);/*it will return 1 on success and 0 on failure*/
LoRa.end();
Serial.begin(9600);
[*while (!Serial);
Serial.printIn("LoRa Sender");*/
if ('LoRa.begin(915E6)) //Checking whether the LoRa is receiving 915GHz freq or not
{ Serial.printIin("Starting LoRa failed!");
while (1);
+}
void loop() {
[*Receive packets*/
T
unread_bytes=LoRa.available();
// try to parse packet
int packetSize = LoRa.parsePacket();

109

if (unread_bytes!=0/*packetSize*/) {
/I received a packet
Serial.print("Received packet "');

/l read packet

while (LoRa.available()){

/I LoRa.onReceive(packetSize);

Serial.print((char)LoRa.read());

}

Il print RSSI of packet
Serial.print("* with RSSI ");
Serial.println(LoRa.packetRssi());

}

delay(500);

unread_bytes=0;

[*Write message*/
T
if(LoRa.available()/*unread_bytes==0 /*&& message_to_be sent!=0*/) {
Serial.print("Message packet sent: ");
Serial.printin(counter);

I/ send packet

LoRa.beginPacket();

LoRa.print(data);

LoRa.print(counter);
LoRa.endPacket();

counter++;

delay(500);
}}

110

Appendix C Flexible Arduino-code for all level nodes

of mesh-network to display/encrypt/decrypt/forward message

#include <SPIL.h>

#include <LoRa.h>
#include<Arduino.h>

#include "SSD1306.h"

#defineSS 18

#define RST 14

#define DIO 26

#define BAND 915E6 //915E®6 --
SSD1306 display (0x3c, 4, 15);

int counter = 0;

String outgoing; // outgoing message
int msgCount = 0; /I count of outgoing messages
int received_msg_count = 0; Il count of received messages

String received_message_status="""
long lastSendTime = 0; // last send time
int interval = 500; /l interval between sends

String deviceAddress="Nodel", receiverAddress="SCADA";// Device address is the
address of this device and receiver address is the address of target device

void setup() {

//************************8

pinMode (16, OUTPUT);

111

pinMode (2, OUTPUT);
digitalWrite (16, LOW); // set GP1O16 low to reset OLED
delay (50);
digitalWrite (16, HIGH); // while OLED is running, GP1016 must go high
[k ke
Serial.begin(9600);
while (!Serial); //1f just the the basic function, must connect to a computer
SPI.begin(5,19,27,18);
LoRa.setPins(SS,RST,DI0);
Serial.printin("SCADA side LoRa Sender/Receiver");
if ('"LoRa.begin(BAND)) {
Serial.printin("Error: LoRa configuring failed!");
while (1);
}

Serial.printin("LoRa setup configured successfully!™);
[k xx
display.init ();

display.flipScreenVertically ();

display.setFont (ArialMT_Plain_10);

delay (1500);

//******************888

LoRa.setSpreadingFactor(7);
}

//***
/ B R R R e S S S R R S S S R R R R R S S S S R R R R R S S S S S S
//***************************EncryptiOn BIOCk**********

//***

112

//** WO rki n g fi ne
/ dhkkkkkhkkhkkhkkkhhkkihkkhkkhhkkhhhkkihkhkkihkkhkhkkhkikhkihkhkihkkiihkiikikkx

//**it takes HEX Strlng and returns

after row-shift operation regardless of length of string
String shift_rows(String xy)
{
int i=xy.length(),j=i/32,1=0,m=0,9=0;
String st="""tu="";
for(I=0;I<i;l1++)
{
m=1%32;q=0;
if(m==0)
{st="",
for(g=0;q<8;q++)
{
tu+=xy[l];
I=1+1;
}
}
m=1%32;
if(m==8)
{
tu+=xy[l+2]; tu+=xy[l+3]; tu+=xy[l+4]; tu+=xy[l+5];
tu+=xy[l1+6]; tu+=xy[l+7]; tu+=xy[l]; tu+=xy[l+1];
I=1+8;
¥
m=1%32;

113

if(m==16)

{

tu+=xy[l+4]; tu+=xy[l+5]; tu+=xy[l+6]; tu+=xy[l+7];
tu+=xy[l]; tu+=xy[l+1]; tu+=xy[l+2]; tu+=xy[l+3];
I=1+8;

¥

m=1%32;

if(m==24)

{

tu+=xy[l1+6]; tu+=xy[l+7]; tu+=xy[l]; tu+=xy[l+1];
tu+=xy[l1+2]; tu+=xy[l+3]; tu+=xy[l+4]; tu+=xy[l+5];
I=1+7;

}
¥

return tu;

}

//**
//***

//*** WO I’kl ng n | ce I y

[[FFAFFFFFIFI I A I AR FxFXX*E takes single HEX character as input and returns binary
value

String hex2bin_(char xy)
{
String bi="";
if (xy=='0") { bi+="0000"; }
else if (xy=="1") { bi+="0001"; }
else if (xy=="2") { bi+="0010"; }

114

else if (xy=="3") { bi+="0011"; }
else if (xy=="4") { bi+="0100"; }
else if (xy=="5") { bi+="0101"; }
else if (xy=="6") { bi+="0110"; }
else if (xy=="7") { bi+="0111"; }
else if (xy=="8") { bi+="1000"; }
else if (xy=="9") { bi+="1001";}
else if (xy=="a||)xy=="A") { bi+="1010"; }
else if (xy=="b'||xy=="B") { bi+="1011";}
else if (xy=="c||xy=="C") { bi+="1100"; }
else if (xy=="d'||xy=="D") { bi+="1101";}
else if (xy=="¢'||xy=="E") { bi+="1110"; }
else if (xy=="f||xy=="F") { bi+="1111"; }
return bi;

ky

/***

/***

[[FFFFFFFI I I AR AXFXFXHEX to Binary conversion of a string
String hex2bin_string(String xy)
{

String bi="";

int j=xy.length();

for(int i=0;i<j;i++)

{

bi+=hex2bin_(xy[i]);
}

return bi;

115

ks

I kskieiaiaishnisiaissiniaisissiainiaidssinisiassiaiaiaidssiniaiaidsisiaiaiaiasisinisiaiasiainiaiaisisiaiaialasiaiaiel
I kskieiaiaishnisiaissiniaisssiainiaidssinisiassiaiaiaidssiiaiaidsisiaiaiaiasiiaiaiaissisiniaiaissiaiaiaiaisisiaiel
[[FFFFF I I KAk kg kR dk Sk kR kkkxx*Binary to HEX converter
String bin2hex_(String xy)
{
String bi="", hex="",
int k=0, 1=0,m=0,j=xy.length();
for (int i=0;i<j;i++)
{
bi+=xy[i];
+=1;
IIk=bi.length();
if (I==4)
{
if (bi=="0000") { hex+="0"; }
else if (bi=="0001") { hex+="1"; }
else if (bi=="0010") { hex+="2"; }
else if (bi=="0011") { hex+="3"; }
else if (bi=="0100") { hex+="4"; }
else if (bi=="0101") { hex+="5"; }
else if (bi=="0110") { hex+="6"; }
else if (bi=="0111") { hex+="7"; }
else if (bi=="1000") { hex+="8"; }
else if (bi=="1001") { hex+="9";}
else if (bi=="1010") { hex+="A"; }
else if (bi=="1011") { hex+="B";}

116

else if (bi=="1100") { hex+="C"; }
else if (bi=="1101") { hex+="D"; }
else if (bi=="1110") { hex+="E"; }
else if (bi=="1111") { hex+="F"; }
bi="";
1=0;
}
}

return hex;

}

//***
//***

//*** DO ne

[[FAFRFFFFI ST AR KA AR XA IR x AR R **Single character HEX to integer converter
int hex2dec_(char xy)
{
int bi=0;
if (xy=="0") { bi=0;}
else if (xy=="1") { bi=1; }
else if (xy=="2") { bi=2; }
else if (xy=="3") { bi=3; }
else if (xy=="4") { bi=4; }
else if (xy=="5") { bi=5; }
else if (xy=="6") { bi=6; }
else if (xy=="7") { bi=7; }
else if (xy=="8") { bi=8; }
else if (xy=="9") { bi=9;}

117

else if (xy=="a'||xy=="A") { bi=10; }
else if (xy=="b'||xy=="B") { bi=11; }
else if (xy=="c||xy=="C") { bi=12; }
else if (xy=="d'|[xy=="D") { bi=13; }
else if (xy=="e'||xy=="E") { bi=14;}
else if (xy=="f'||xy=="F') { bi=15; }
return bi;

}

//***

//** Dec (< 256) to H ex (tWO

charcter)*****Done
String dec2hex_string(int bi)
{
String xy="";
int p=0,0=0;
p=bi/16; q=bi%16;
if (p==0){xy="0"; }
else if (p==1){xy="1"; }
else if (p==2){xy="2"; }
else if (p==3){xy="3"; }
else if (p==4){xy="4"; }
else if (p==5){xy="5"; }
else if (p==6){xy="6"; }
else if (p==7){xy="7"; }
else if (p==8){xy="8"; }
else if (p==9){xy="9"; }
else if (p==10){xy="A"; }

118

else if (p==11){xy="B"; }
else if (p==12){xy="C"; }
else if (p==13){xy="D"; }
else if (p==14){xy="E"; }
else if (p==15){xy="F"; }
if (q==0){xy+="0"; }

else if (q==1){xy+="1"; }
else if (q==2){xy+="2"; }
else if (q==3){xy+="3"; }
else if (q==4){xy+="4"; }
else if (q==5){xy+="5"; }
else if (q==6){xy+="6"; }
else if (q==7){xy+="7";}
else if (q==8){xy+="8"; }
else if (q==9){xy+="9"; }
else if (q==10){xy+="A"; }
else if (q==11){xy+="B"; }
else if (q==12){xy+="C"; }
else if (q==13){xy+="D"; }
else if (q==14){xy+="E"; }
else if (q==15){xy+="F"; }
return xy;

¥

//***

*khhhhkhkkkhkkhkhkhihhiikikkk

I***Multiplies by 2 with input string of

H EX**

119

/ hhkkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhhkhkhhkhkhhkhihhkhkhhkhkihkhkhkkihhkhkkihkhkkihkhkkihhkhkihkhkkihhhkkirkihkkhhhkkikihkkhihkikiikikik

***Completed
String multiply_by_2(String g)
{
String yz="", zb=""",
yz=hex2bin_(g[0]);
yz+=hex2bin_(g[1]);
if(yz[0]=="0")
{for(int j=0;j<8;j++){ if(<7){yz[il=yz[i+1];}if(==7){yz[i]='0"} }}
else if(yz[0]=="1")
{
{for(int j=0:j<8:j++){if(<7){yzl]=yz[+1]:}ifG==7){yz[i]='0"} }}
if(yz[3]=="1{yz[3]='0%}
else if(yz[3]=="0){yz[3]="1";}
if(yz[4]=="1{yz[4]='0%}
else if(yz[4]=="0"){yz[4]="1";}
if(yz[6]=="1"){yz[6]="0"}
else if(yz[6]=="0"){yz[6]="1";}
if(yz[7]=="1"{yz[7]='0%}
else if(yz[7]=="0"){yz[7]='1";}
¥
int j=yz.length();
for (int k=0; k<j;k++)
{
zb+=yz[K];
}

return zb;

120

ks

/ B R R R R R R R R R R R S R R R R R R R R AR AR R R R R R AR R R R R R R R R R R AR R R R R R R R R R R R AR R R R R R R R R R AR R R R R R R R R

*khkkkhkkkkhkhik

//***

*khkkkkkkkhik

//***************************************'k'k'k'k'k'k'k'k************************

*hkkkkikkkkikkkik

/**Multiplies by 3 with input string of

H EX***

//***

****completed
String multiply_by 3(String g)
{
String yz="",zy="", zb="",;
yz=hex2bin_(g[0]);
zy=hex2bin_(g[0]);
yz+=hex2bin_(g[1]);
zy+=hex2bin_(g[1]);
Serial.printin(zy);
if(yz[0]=="0")
{for(int j=0;j<8;j++){ if(<7){yz[i]=yz[i+1];}if(==7){yz[i]='0"} }}
else if(yz[0]=="1")
{
{for(int j=0;j<8;j++){if(<7){yz[i]=yz[+11;}if(j==7){yz[i]='0"} }}
if(yz[3]=="1){yz[3]="0"}
else if(yz[3]=="0"{yz[3]="1";}
if(yz[4]=="1{yz[4]='0%}
else if(yz[4]=="0"){yz[4]="1";}
if(yz[6]=="1"){yz[6]="0%}

121

else if(yz[6]=="0"{yz[6]="1"}
if(yz[7]=="1){yz[7]='0";}
else if(yz[7]=="0){yz[7]="1";}
}
for (int k=0; k<8;k++)
{
if (yz[K]==zy[k]){yz[Kk]="0";}
else if ((yz[K]'=zy[K])&&(yz[k]=="0)) {yz[k]="1";}
zb+=yz[K];
}

return zb;

ky

/ Fdhhhhhkhkkkkhkhkhrrhhhkhkhhkhkhrrrhhhrhkhhhhrrrhrhrhkhhhhrrrrirhdhhhhhirrriihhhhiiiiix

*khkhkkkkkkhkhik

//***

*khkkkkhkkkhkkikkkikik

[[FFFFFFFI I xR XA XFXE*NpuUt is HEX string of 32 characters (16 bytes)*****Checked
for Only SO0, S10

[[******|t requires to be checked

*hhkkkhkhkkkhhkhkkhhkhkkhkhhkkhhhkkhhhkkhhhkhhkhkhhhkhkhhkhkihhkkihhkhhhkihhkkhhhkkhiikkiiikkx
String mix_column(String xy)

{
int i=0,1=0,m=0,n=0,p=0,x[16]={2,3,1,1,1,2,3,1,1,1,2,3,1,1,2}:

String ab="",bc="",ca="";
int j=xy.length();
//String ab="",bc="";

for (m;m<j;m=m+2)

{

122

ab="";
ab=xy[m];
ab+=xy[m+1];

if (m==0]|m==10||m==20||m==30) //

**MuItiply by 2

{
ab=multiply_by 2(ab);

ky

else if (i==6|[i==8|[i==18|[i==28) //****H¥srkwxkrkrsixkr® 3g
Multipligr**xxstskirx

{
ab=multiply_by 3(ab);
}
else {ab=hex2bin_(xy[m]);ab+=hex2bin_(xy[m+1]);}
bct+=ab;
}
Il zb+=yz;}
bc=bin2hex_(bc);
return bc;

}

//***

*khkkkkhkkkkikkkikik

//***

*hhhkkkkkkhik

//***************************S bOX**

*hkhkkkkkkkhik

//***

*khkkkkikkk D one

ints_box_value(int num)

123

{
int sbox[256] = {

0x63, 0x7c, 0x77, 0x7b, 0xf2, Ox6b, Ox6f, Oxc5, 0x30, 0x01, 0x67, 0x2b, Oxfe, Oxd7,
Oxab, 0x76,

Oxca, 0x82, 0xc9, 0x7d, Oxfa, 0x59, 0x47, 0xf0, Oxad, Oxd4, Oxa2, Oxaf, 0x9c, 0xa4,
0x72, 0xcO,

O0xb7, Oxfd, 0x93, 0x26, 0x36, 0x3f, Oxf7, Oxcc, 0x34, 0xa5, 0xe5, 0xfl, 0x71, 0xd8,
0x31, 0x15,

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, Oxe2, Oxeb, 0x27,
0xbh2, 0x75,

0x09, 0x83, 0x2c, Ox1a, Ox1b, Ox6e, Ox5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, Oxe3,
0x2f, 0x84,

0x53, 0xd1, 0x00, Oxed, 0x20, Oxfc, 0xb1, Ox5b, 0x6a, Oxcb, Oxbe, 0x39, Ox4a, Ox4c
0x58, 0xcf,

0xd0, Oxef, Oxaa, Oxfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, Ox7f, 0x50, 0x3c,
0x9f, Oxas8,

0x51, Oxa3, 0x40, Ox8f, 0x92, 0x9d, 0x38, 0xf5, Oxbc, Oxb6, Oxda, 0x21, 0x10, Oxff,
0xf3, Oxd2,

0xcd, 0x0c, 0x13, Oxec, 0x5f, 0x97, 0x44, 0x17, Oxc4, Oxa7, 0x7e, 0x3d, 0x64, 0x5d,
0x19, 0x73,

0x60, 0x81, 0x4f, Oxdc, 0x22, 0x2a, 0x90, 0x88, 0x46, Oxee, Oxb8, 0x14, Oxde, 0x5e,
0x0b, Oxdb,

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, Oxac, 0x62, 0x91, 0x95,
Oxe4, 0x79,

Oxe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, Ox4e, 0xa9, Ox6¢c, 0x56, 0xf4, Oxea, 0x65, 0x7a,
Oxae, 0x08,

Oxba, 0x78, 0x25, 0x2e, Ox1c, 0xa6, 0xb4, 0xc6, 0xe8, Oxdd, 0x74, Ox1f, 0x4b, Oxbd,
0x8b, 0x8a,

0x70, Ox3e, 0xh5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xh9, 0x86, 0xcl
0x1d, Ox9e,

Oxel, Oxf8, 0x98, 0x11, 0x69, Oxd9, Ox8e, 0x94, 0x9b, Ox1le, 0x87, 0xe9, Oxce, 0x55,
0x28, Oxdf,

124

0x8c, Oxal, 0x89, 0x0d, Oxbf, Oxe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54,
Oxbb, 0x16 };

return sbox[num];

}

/ kkhkkkikkhkkkikhkkikkikkikikk

*hhkkkhkhkhkkhkhkhkkhkhkhkkhkhhkkhkhhkkhhhkhhhkhkhhkhkihkhkkihkhkkihkhkhhhkkrhhkkihhkkihhkkiihkkhihkiiikk

//************************

B R R R R S R R R R R R R R R R R R S R R R R R R R AR R R R R R R R R R R AR R R R R R R R

//***** ***********************Inverse Of S_bOX*********

*hkkkhkhkkkhkkhkkkhkkhkkhkkhkkhkikkhkikkiiikkik

//***

*khkhkkk D one

int s_box_inverse(int num)
{
int rshox[256] =

{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, Oxbf, 0x40, Oxa3, 0x9e, 0x81, 0xf3,
0xd7, Oxfb

, Ox7c, Oxe3, 0x39, 0x82, 0x9b, Ox2f, Oxff, 0x87, 0x34, 0x8e, 0x43, 0x44, Oxc4, Oxde,
0xe9, Oxcb

, Ox54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, Oxee, Ox4c, 0x95, 0x0b, 0x42, Oxfa,
0xc3, Ox4e

, 0x08, 0x2e, Oxal, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b,
0xd1, Ox25

, Ox72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, Oxa4d, 0x5¢, Oxcc, 0x5d, 0x65,
0xh6, 0x92

, 0x6¢, 0x70, 0x48, 0x50, 0xfd, Oxed, 0xb9, Oxda, Ox5e, 0x15, 0x46, 0x57, Oxa7, 0x8d,
0x9d, 0x84

, 0x90, 0xd8, Oxab, 0x00, 0x8c, Oxbc, 0xd3, 0x0a, 0xf7, Oxe4, 0x58, 0x05, 0xh8, O0xb3,
0x45, 0x06

, 0xd0, 0x2c, 0x1e, Ox8f, Oxca, 0x3f, 0x0f, 0x02, 0xcl, Oxaf, Oxbd, 0x03, 0x01, 0x13,
0x8a, Ox6b

125

, Ox3a, 0x91, 0x11, 0x41, Ox4f, 0x67, Oxdc, Oxea, 0x97, Oxf2, Oxcf, Oxce, Oxf0, Oxb4,
0xe6, 0x73

, 0x96, Oxac, 0x74, 0x22, Oxe7, Oxad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, Ox1c, 0x75,
Oxdf, Ox6e

, Ox47, 0xfl, Ox1a, 0x71, Ox1d, 0x29, Oxch, 0x89, Ox6f, 0xb7, 0x62, 0x0e, Oxaa, 0x18,
Oxbe, Ox1b

, Oxfc, 0x56, 0x3e, Ox4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, Oxdb, Oxc0, Oxfe, 0x78, Oxcd,
0x5a, 0xf4

, Ox1f, Oxdd, Oxa8, 0x33, 0x88, 0x07, 0xc7, 0x31, Oxb1, 0x12, 0x10, 0x59, 0x27, 0x80,
Oxec, Ox5f

, 0x60, 0x51, Ox7f, 0xa9, 0x19, 0xb5, Ox4a, 0x0d, 0x2d, Oxe5, Ox7a, Ox9f, 0x93, 0xc9,
0x9c, Oxef

, Oxa0, 0xe0, 0x3b, 0x4d, Oxae, 0x2a, 0xf5, 0xh0, Oxc8, Oxeb, Oxbb, Ox3c, 0x83, 0x53,
0x99, 0x61

, Ox17, 0x2b, 0x04, 0x7e, Oxba, 0x77, Oxd6, 0x26, Oxel, 0x69, 0x14, 0x63, 0x55, 0x21,
0x0c, 0x7d };

return rsbox[num];

}

/ hhkkkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhhkkhhhkihhhkhhhkhhhkhhkhkhkhhkhkkhhkhkihkhkkihhhkihhkkihhkkihhkkihhkihhhkkhhihkkikiihikik

*khkkkkhkkkkikkkikik

//********************S u bst | tute

ByteS*** DO ne

String swap_with_sbox_value(String y) // input is two character hex
// output is HEX
{
char s,t;
int u=0,v=0,uv=0;
String yz="";
s=y[0];
u=hex2dec_(s);

//Serial.printin(u: "+u);

126

t=y[1];

v=hex2dec_(t);
//Serial.printin("v: "+v);
uv=u*16+v;
uv=s_box_value(uv);
yz=dec2hex_string(uv);

return yz;

}

//***

*hkkkkhkkkkikkkikik

//**************** khkhkhkhhhhkhkk khkkhkhkkhkhkhkhrrhhhkhkhhhkhkhirrhiihkhhhiiiiix DO ne

String swap_with_inverse_sbox_value(String y)
I/ input is two character hex*****xkxkakkakkkkkrkx
// Output is HEX
{
char s,t;
int u=0,v=0,uv=0;
String yz="";
s=y[0];
u=hex2dec_(s);
t=y[1];
v=hex2dec_(t);
uv=u*16+v;
uv=s_box_inverse(uv);

yz=dec2hex_string(uv);

return yz;

127

ks

/ /********

R A R AR R R R R R R R R R R AR R R R R AR R R R R A R A R R R R R R R R R R R AR R R R R

//**********

XO R* DO

ne

String xor_(String xx,String yy) // it takes binary string inputs and returns binary string
output

{
int kk=0;
String zz=""",
kk=xx.length();
for(int j=0;j<kk;j++)
{
if(xx[j]==yy[i{zz+="0"}
else if(xx[j]'=yy[i]) {zz+="1";}
}

return zz,

}

//***

*khkkkkikkkk

String generate_key(String previous_key, String dummy) // it takes HEX input and
returns HEX output

{
int index4=0,index2=0,index3=0,k=0,1=0;

String
b1=""b2=""b3=""b4=""b5=""b6=""b7="",b8=""bb="" previous_key_bin=hex2bin_st
ring(previous_key),dummy_fifth=hex2bin_string(dummy);

128

k=previous_key_bin.length();

I=k/4;

for(int j=0;j<l;j++)

{
bl+=previous_key bin[j];
index2=j+l;
b2+=previous_key_bin[index2];
index3=j+2*;
b3+=previous_key bin[index3];
index4=j+3*;
b4+=previous_key_bin[index4];

}

b5=xor_(bl,dummy_fifth);// it is actually function (b4) but, we have last 5 bytes=0000.
that is why | am taking dummy only

bb+=bin2hex_(b5);
b6=xor_(b5,b2);
bb+=bin2hex_(b6);
b7=xor_(b6,b3);
bb+=bin2hex_(b7);
b8=xor_(b7,b4);
bb+=bin2hex_(b8);

return bb;

¥

//***

*khkhhhkkkkk

//***

*khkkkkikkkk Do ne

129

String add_round_key(String X, String y) [[*********x*xpit key xor with modified data
bits

/I it takes HEX strings and returns HEX string

int gg=x.length(),hh=y.length(), kk=0;;

String xx="", yy="",zz="",
xx=hex2bin_string(x);
yy=hex2bin_string(y);
kk=xx.length();

for(int j=0;j<kk;j++)

{
ifoodil==yyliD{zz+="0"}
else if(xx[j]'=yy[i]) {zz+="1";}
}

zz=bin2hex_(zz);

return zz;

}

//***

*khkk

//***

*khkkkkk

[[FrFFFxFxFIRRGbstitutes bytes with Rajindals S-box. Input is HEX string and returns
HEX string

String substitute_bytes(String x)
{
String y=

,dummy="";
int j=x.length();

for(int i=0;i<j;i++)

130

dummy+=x[i];

dummy+=x[i+1];

i=i+1;
y+=swap_with_sbox_value(dummy);
dummy="",

ks

return vy;

ky

”***

*khkhkkkkkkhkhik

/***

*hkkkkhkkkkikkkikik

[[FFFFFFFI ISR R IR R Ax X, calculates the counter input value for given
number of rounds

String calculate_counter_value(int rounds)

{

String
initial_key="FEDCBA9876543210FEDCBA9876543210",x="0123456789ABCDEF012
3456789ABCDEF";

String dummy="ABCDEFO01",
new_key="",dummy1="0123456789ABCDEF0123456789ABCDEF";

for(int i=0;i<rounds;i++)
{

new_key=generate_key(initial_key,dummy);// it takes HEX strings as input and returns
HEX string as output

dummyl=add_round_key(x,new_key);
dummyl=substitute_bytes(dummy1l);

dummyl=shift_rows(dummyl);

131

dummyl=mix_column(dummyl); //*********xkxk Not verified yet

//***Se r | al . p r | nt(' ' C | p het
-text after ");

//***Serial pri nt(l + l) .
. l

//***Serial pri ntl n ("

rounds: "+ dummyl);
initial_key=new_key;
x=dummyl;
}

return Xx;

ky

/ Fdhhhhhkhkkkhkhkhkhhhhhkhkhkhkkhkhhhrrhhkhhkhhhhrrrhhhhhhhhirrhhhhhhhihirrhidhhhiiiiiix

*khkhkkkkkkhkhik

//** I ncrease b i nary Stri n g

size upto 128bits

String increase_size_upto_128(String x) // It checks the size of message and if, message
is less than 128bits it adds pre-zeroes

{
int m=x.length();
String y="",
if (m==128){}
else
{
m=128-m;
for(int i=0;i<m;i++)
{y+="0"}
k

y+=X;

132

return y;

}

”***

*khkkkhkkkkhkhik

/***

***Encryption
String encrypt(String message, int rounds)
{
String ciphertext="", counter_value="";
counter_value=calculate_counter_value(rounds);
message=hex2bin_string(message);
message=increase_size_upto_128(message);
counter_value=hex2bin_string(counter_value);
ciphertext=xor_(counter_value,message);
ciphertext=bin2hex_(ciphertext);

return ciphertext;

}

”***

*khhkkkkkkhkik

/***

***Decryption
String decrypt(String message, int rounds)
{
String plaintext="", counter_value="",
counter_value=calculate_counter_value(rounds);
message=hex2bin_string(message);
counter_value=hex2bin_string(counter_value);

plaintext=xor_(counter_value,message);

133

plaintext=bin2hex_(plaintext);

return plaintext;

}

/ kkhkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhhkkhkhhkhkhhkhihhkhkhhkhkhkhkhkihhkhkhhkhkkihkhkikihkkhihhkkhihkkhihkkhkihhkkhkihhkhkihhihkiik

*khkkkkikkkkikkkikik

//***

*khkkkkkkkhik

/ khkkkkhkhkkkhkhkhkkhkhkhkkhkhkhkkhkhhkhkhhkhkihkhhhkhkkihhkhkkhkhkhkihhkhkkhhkhkkihkhkkihkhkkhhkhkhhhkkrkihkkhhhkkhkihkkhihkiihkiik

*hkkkkhkkkkikkkikik

[[FrFFFxFxFI xR\ erification of message and
M AC******************************* I ncom p I ete

//**Cal cu

late 64bit MAC

String encrypt_with_ MAC(String messagel,int rounds)// It takes HEX string of <=32
characters, calculates MAC from plaintext and rounds+1

/lrounds of counter and returns concatenation of
ciphertext and MAC

{
double j=0;
int k=0;

String message=messagel, MAC="",counter_value_MAC="",message_value_MAC="",
ciphertext="", counter_value="";

message=hex2bin_string(message);
message=increase_size_upto_128(message);
for (int 1=0;i<128;i++)
{

J=1%2;

if(j==0)

{

message_value_ MAC+=message[i];

134

ki
k

counter_value=calculate_counter_value(rounds+1);
counter_value=hex2bin_string(counter_value);
for (int i=0;i<128;i++)
{
J=1%2;
if(j==0)
{
counter_value_ MAC+=counter_value[i];
}

}
MAC=xor_(counter_value_ MAC,message_value_ MAC);

MAC=bin2hex_(MAC);
ciphertext=encrypt(messagel,rounds);
ciphertext+=MAC;

return ciphertext;

}

/***

*khkkkkhkkkkikkkikik

/***

*khkkkkhkkkkikkkikik

String verify_ MAC(String messagel,int rounds)// It takes48 character HEX string,
extracts the MAC, then determines MAC from message decryption

/land checks message authenticity

{

String message="",
given_MAC="",calculated MAC="",counter_value_ MAC="",message_value_ MAC="";

135

String ciphertext="", counter_value="", verification_status="";
//*************************************Separate message and MAC
for (int i=0;i<48;i++)
{
if (i<32)
{
message+=messagel[i];
}
else if(i>31 && i<48)
{
given_MAC+=messagel[i];
}

¥
/Serial.printIn("Given_MAC: "+given_MAC);

Serial.printin("Received_MAC: "+given_MAC);
//**
message=decrypt(message,rounds);
message=hex2bin_string(message);
for (int i=0;i<128;i++)
{
if(1%2==0)
{
message_value_ MAC+=message[i];
}
}

counter_value=calculate_counter_value(rounds+1);

counter_value=hex2bin_string(counter_value);

136

for (int i=0;i<128;i++)
{
if(i%2==0)
{
counter_value_ MAC+=counter_value[i];
}
}

calculated_ MAC=xor_(counter_value_ MAC,message_value_ MAC);

if (given_MAC==""){calculated_MAC="";}
else {calculated_MAC=bin2hex_(calculated_MAC);}

Serial.printin("Calculated_MAC: "+calculated_MAC);
if(calculated_ MAC==given_MAC)
{
verification_status="Message is authentic.";
}
else if(calculated_MAC!=given_MAC)
{
verification_status="Message is suspicious";
}
return verification_status;
}

//***

*khkhkkkkkkkik

//***

*khhkkkkkkkhik

String decrypt_verified_message(String messagel, int rounds) //It takes HEX string of 48
characters, extracts the message and decrypts

137

{
String plaintext=

’ COUI’]tEI’_Va|Ue:""’ message:nn,
for (int i=0;i<32;i++)
{

message+=messagel[i];

counter_value=calculate_counter_value(rounds);

message=hex2bin_string(message);
counter_value=hex2bin_string(counter_value);
plaintext=xor_(counter_value,message);
plaintext=bin2hex_(plaintext);

return plaintext;

}

//***

*khkk

/ Fdhhhhkhkhkkkkhkhhrrhhhkhkhkkhkhhrrrhhhhkhkhhhrrrhhhhkhkhhhrrrhirhdhkhhhhirrhiihhkhhiiiiix

*khkk

[[FrFFFF I I I X FXFXTWO-Way communication
b I OCk*******************************

/ hhkkkkhkhkkkhkhkhkkhhkhkkhkhkkhhkkhkhhkkhhhkkhhhkkhhhkkhkhhkhkkhhkhkhhkhkkhhhkkhhhkkhhhkkhhhkkhkikkhkhkkhhhkkhihkkhiikkiik

*khkk

void justBridgeMeshNetwork(String message)

{
LoRa.beginPacket(); /] start packet
LoRa.print(message); /[add payload
LoRa.endPacket(); /I finish packet and send it

Serial.printin("Mesage forwarded: " + message);

¥

138

void sendMessage(String message) {
int rounds=10;

Serial.printin("pre-encrypt(plain_text): "+ message);
message=encrypt_with_ MAC(message,rounds);
Serial.printin("ciphertext with MAC: "+ message);
i
/[Serial.printIn("Sending message: " + message);
String x=deviceAddress + receiverAddress, y=X + message;

message=Y;//deviceAddress+receiverAddress+message;

Serial.printIn("Sending message: " + message);
LoRa.beginPacket(); /] start packet
LoRa.print(message); // add payload
LoRa.endPacket(); /[finish packet and send it
msgCount++; Il increment message 1D

/ hkhkkkkhkhkkkikkkkikhkkhkhkkkhkhkkhkikkiiikkikk

/* display.drawString (20, 20, "Sending packet:");
display.drawString (110, 20, String (msgCount));
display.display ();*/

//***************************

ky

void onReceive(int packetSize) {
if (packetSize == 0) return; /I if there's no packet, return

if(LoRa.available()){

String complete_incoming_message= , sender_device_address="",

receiver_device_address=""",

, Incoming =
int i=(deviceAddress.length());

int dummy_address_counter=0,sender_address_length=i,receiver_address_length=i,
rdal=0,sdal=0;

139

int sr_address_length=i*2;
while (LoRa.available()) {
if (dummy_address_counter<sr_address_length)

{

if (dummy_address_counter<sender_address_length)
{
sender_device_address+= (char)LoRa.read();
sdal=sender_device_address.length();
dummy_address_counter+=1;
}
else
{
receiver_device_address+= (char)LoRa.read();
rdal=receiver_device_address.length();
dummy_address_counter+=1;
}
}
if (dummy_address_counter>=sr_address_length)
{
incoming += (char)LoRa.read();
}

k
M

if (receiver_device_address==deviceAddress)

{

int rounds=10;

String verification_status=""",

140

Serial.printIn("ReceivedCiphertext with MAC is:"+ incoming);
verification_status=verify MAC(incoming,rounds);
received_message_status=verification_status;
if (verification_status=="Message is authentic.")
{
Serial.printin("MAC verification status: "+ verification_status);
incoming=decrypt_verified_message(incoming,rounds);
/*if((incoming[0]='0") && (incoming[1]="2"))
{

Serial.printin("Message is from 0, for 2, and has been forwarded");
sendMessage(incoming);
}
else*/
Serial.printin("Verified decrypted message is: "+ incoming);

ky

else if(verification_status=="Message is suspicious")

{

//jUStBridgeMeShNetwork(incoming); [[FeFRFF A Fd kKKK kkKkk K xkxxkxxk Added for
MESH network stk krkx

Serial.printIn("Message verification status: "+ verification_status);
Serial.printIn("Message is suspicious so, no need to process:"+ incoming);
}
T
//Serial.printIn("Received Message: "+ incoming);
Serial.printIn("with RSSI: " + String(LoRa.packetRssi()));
//Serial.printIn("Snr: " + String(LoRa.packetSnr()));

Serial.printIn();

141

/lreceived_msg_count++;

}

”********************

[*display.drawString (20, 30, "Received packet:");
display.drawString (110, 30, String (received_msg_count));
display.display ();*/

”********************

else if((receiver_device_address!=deviceAddress) &&
(rdal==(deviceAddress.length())) &&(sdal==(deviceAddress.length()))){

Serial.printin("Message is not concerned to me");
String a=sender_device_address + receiver_device_address;
complete_incoming_message=a + incoming;

justBridgeMeshNetwork(complete_incoming_message);

}
/lreceived_msg_count++;
}
received_msg_count++;
}

/***

*khhkkkkkkkhkik

”***

*khkkkkhkkkkikkkikik

”**************PrOgﬁﬂn_hﬂa"I_BOdy***************************************

*khkhhkkkkkkhkhik

”***

*hkhkkkkkkkhik

void loop() {

”*********************

142

display.clear ();

display.setTextAlignment (TEXT_ALIGN_LEFT);
display.setFont (ArialMT_Plain_10);

display.drawString (20, O, "Inverter side LoRa kit");
display.drawsString (0, 10, "Sen id");

display.drawString (30, 10, String(deviceAddress));
display.drawsString (62, 10, "/Rec id");
display.drawsString (94, 10, String(receiverAddress));
/[display.setFont (ArialMT_Plain_10);
display.drawsString (20, 20, "Sending packet:");
display.drawString (110, 20, String (msgCount));
display.drawString (20, 30, "Received packet:");
display.drawString (110, 30, String (received_msg_count));
display.drawString (10, 40, "Received message status:-");

display.drawString (20, 50, String (received_message_status));
display.display ();
ek ek ek ke
String incoming_message=""",
if (millis()-lastSendTime >interval) {
//String message = "Hello world! I am Inverter side sender”; // send a message
String message="0123456789ABCDEF0123456789ABCDEF", verification_status="";
sendMessage(message);
it
lastSendTime = millis(); I timestamp the message
interval = random(2000) + 1000; // 2-3 seconds
/lif (LoRa.available())

143

//if (LoRa.available())
onReceive(LoRa.parsePacket());
digitalWrite (2, HIGH); // turn the LED on (HIGH is the voltage level)
/[delay(interval);
/lonReceive(LoRa.parsePacket());

ks

144

Appendix D configuring SD card and logging data

locally

#include "FS.h"
#include "SD.h"
#include "SPI1.h"
#define MISO 02
#define SCK 14
#define MOSI 15
#define CS 13
#define D1 04
void listDir(fs::FS &fs, const char * dirname, uint8_t levels){
Serial.printf("Listing directory: %s\n", dirname);
File root = fs.open(dirname);
if('root){
Serial.printIn("Failed to open directory");
return;
k
if(froot.isDirectory()){
Serial.printIn("Not a directory");
return;

¥

File file = root.openNextFile();

145

while(file){
if(file.isDirectory()){
Serial.print(" DIR : ");
Serial.printin(file.name());
if(levels){
listDir(fs, file.name(), levels -1);
}

}else {
Serial.print(" FILE:");

Serial.print(file.name());

Serial.print(" SIZE:");

Serial.printin(file.size());
}

file = root.openNextFile();

¥
void createDir(fs::FS &fs, const char * path){

Serial.printf("Creating Dir: %s\n", path);
if(fs.mkdir(path)){
Serial.printIn("Dir created");

}else {
Serial.printin("mkdir failed");

¥

void removeDir(fs::FS &fs, const char * path){
Serial.printf("Removing Dir: %s\n", path);
if(fs.rmdir(path)){

146

Serial.printIn("Dir removed");

}else {

Serial.printin("rmdir failed");

¥
void readFile(fs::FS &fs, const char * path){

Serial.printf("Reading file: %s\n", path);
File file = fs.open(path);
if('file){
Serial.printIn("Failed to open file for reading");
return;
¥
Serial.print("Read from file: ");
while(file.available()){
Serial.write(file.read());

}

file.close();
}
void writeFile(fs::FS &fs, const char * path, const char * message){
Serial.printf("Writing file: %s\n", path);
File file = fs.open(path, FILE_WRITE);
if(Ifile){
Serial.printIn("Failed to open file for writing™);
return;
}
if(file.print(message)){

Serial.printIn("File written™);

147

}else {
Serial.printin("Write failed™);

}

file.close();
}
void appendFile(fs::FS &fs, const char * path, const char * message){
Serial.printf("Appending to file: %s\n", path);
File file = fs.open(path, FILE_APPEND);
if('file){
Serial.printIn("Failed to open file for appending™);
return;
}
if(file.print(message)){
Serial.printin("Message appended");

}else {
Serial.printin("Append failed");

ky

file.close();

}

void renameFile(fs::FS &fs, const char * pathl, const char * path2){
Serial.printf("Renaming file %s to %s\n", pathl, path2);
if (fs.rename(pathl, path2)) {

Serial.printIn("File renamed");

} else {

Serial.printIn("Rename failed™);

148

void deleteFile(fs::FS &fs, const char * path){
Serial.printf("Deleting file: %s\n", path);
if(fs.remove(path)){
Serial.printin("File deleted");

}else {
Serial.printIn("Delete failed");

¥
void testFilelO(fs::FS &fs, const char * path){

File file = fs.open(path);
static uint8_t buf[512];
size_tlen=0;
uint32_t start = millis();
uint32_t end = start;
if(file){
len = file.size();
size_t flen = len;
start = millis();
while(len){
size_t toRead = len;
if(toRead > 512){
toRead = 512,
}
file.read(buf, toRead);
len -= toRead;

¥

end = millis() - start;

149

Serial.printf("%u bytes read for %u ms\n", flen, end);
file.close();

}else {

Serial.printIn("Failed to open file for reading");
¥
file = fs.open(path, FILE_WRITE);
if('file){
Serial.printIn("Failed to open file for writing");
return;
¥
size ti;
start = millis();
for(i=0; 1<2048; i++){
file.write(buf, 512);
k
end = millis() - start;
Serial.printf("%u bytes written for %u ms\n", 2048 * 512, end);
file.close();
¥
void setup(){
Serial.begin(9600);
//SP1.begin(14,2,15);
SP1.begin(SCK,MISO,MOSI,CS);
/1 digitalWrite(13,LOW);
Il LoRa.setPins(SS,RST,DI0);
/1if(1SD.begin(13)){
if(SD.begin(CS)){

150

Serial.printIn("Card Mount Failed");
return;

}

uint8_t cardType = SD.cardType();

if(cardType == CARD_NONE){
Serial.printin("No SD card attached");
return;

}

Serial.print("SD Card Type: ");

if(cardType == CARD_MMC){
Serial.printin("MMC");

} else if(cardType == CARD_SD){
Serial.printin("SDSC");

} else if(cardType == CARD_SDHC){
Serial.printIn("SDHC");

}else {
Serial.printin("UNKNOWN");

}

uint64_t cardSize = SD.cardSize() / (1024 * 1024);
Serial.printf("SD Card Size: %lluMB\n", cardSize);
listDir(SD, "/", 0);

createDir(SD, "/mydir");

listDir(SD, "/", 0);

removeDir(SD, "/mydir");

listDir(SD, "I, 2);

writeFile(SD, "/hello.txt", "Hello ");
appendFile(SD, "/hello.txt", "World!\n");

151

readFile(SD, "/hello.txt");

deleteFile(SD, "/foo.txt™);

renameFile(SD, "/hello.txt", "/foo.txt");

readFile(SD, "/foo.txt");

testFilelO(SD, "/test.txt™);

Serial.printf("Total space: %lluMB\n", SD.totalBytes() / (1024 * 1024));
Serial.printf("Used space: %lluMB\n", SD.usedBytes() / (1024 * 1024));

}
void loop(){

}

152

Appendix E send email under abnormal conditions

#include <WiFi.h>
WiFiClient client;

String MakerlFTTT_Key ;
String MakerIFTTT_Event;

char *append_str(char *here, String s) { int i=0; while (*here++ = s[i]){i++;};return
here-1;}

char *append_ul(char *here, unsigned long u) { char buf[20]; return append_str(here,
ultoa(u, buf, 10));}

char post_rgst[256];char *p;char *content_length_here;char *json_start;int compi;
void setup()
{
Serial.begin(9600);
WiFi.disconnect();
delay(3000);
Serial.printIn("Starting to connect™);
WiFi.begin("BELLALIANT0351","MXPEC57EK31N88GG");
while (("(WiFi.status() == WL_CONNECTED))){
delay(300);
}
Serial.printin("Connected!");
if (client.connect("maker.ifttt.com™,80)) {
MakerlFTTT_Key ="dnJOkb5Yd5K7nPcA001N4OWx4S-tCpMaazTp3Yun7Z0";
MakerlFTTT_Event ="Email™;

153

p = post_rqst;

p = append_str(p, "POST /trigger/™);

p = append_str(p, MakerlFTTT_Event);

p = append_str(p, "/with/key/");

p = append_str(p, MakerlFTTT_Key);

p = append_str(p, " HTTP/1.1\r\n");

p = append_str(p, "Host: maker.ifttt.com\r\n™);
p = append_str(p, "Content-Type: application/json\r\n");
p = append_str(p, "Content-Length: ");
content_length_here = p;

p = append_str(p, "NN\r\n");

p = append_str(p, "\r\n");

json_start = p;

p = append_str(p, "{\"valuel\":\"");

p = append_str(p, "aikhichi7@gmail.com");

p = append_str(p, "\" \"value2\":\""");

p = append_str(p, "Sender is ESP32");

p = append_str(p, "\" \"value3\":\'""");

p = append_str(p, "Hello World: | am ESP32");//"Hello World: 1 am ESP32 | think we
can");

p = append_str(p, "\"}");

compi= strlen(json_start);
content_length_here[0] ='0" + (compi/10);
content_length_here[1] ='0" + (compi%10);
client.print(post_rgst);

Serial.printIn("Email sent");

154

}
void loop()

{
¥

155

Appendix F LoRa Simple server for Dragino-yun using

RF95

#include <Console.h>
#include <SPIL.h>
#include <RH_RF95.h>
I/ Singleton instance of the radio driver
RH_RF95 rf95;
int led = A2;
float frequency = 915.0; //868.0;
void setup()
{
pinMode(led, OUTPUT);
Bridge.begin(BAUDRATE);
Console.begin();
while (1Console) ; // Wait for console port to be available
Console.printIin("Start Sketch™);
if ('rf95.init())
Console.printIn(*init failed");
/I Setup ISM frequency
rf95.setFrequency(frequency);
/I Setup Power,dBm
rf95.setTxPower(13);

156

/I Setup Spreading Factor (6 ~ 12)
rf95.setSpreadingFactor(7);

/I Setup BandWidth, option:
7800,10400,15600,20800,31200,41700,62500,125000,250000,500000

rf95.setSignalBandwidth(125000);

/I Setup Coding Rate:5(4/5),6(4/6),7(4/7),8(4/8)
rf95.setCodingRate4(5);
Console.print(*Listening on frequency: ");
Console.printin(frequency);

}
void loop()

{
if (rf95.available())

{

// Should be a message for us now

uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];

uint8_t len = sizeof(buf);

if (rf95.recv(buf, &len))

{
digitalWrite(led, HIGH);
RH_RF95::printBuffer("request: ", buf, len);
Console.print("got request: ");
Console.printin((char*)buf);
Console.print("RSSI:);
Console.printIn(rf95.lastRssi(), DEC);
I/l Send a reply
uint8_t data[] = "And hello back to you";

157

rf95.send(data, sizeof(data));
rf95.waitPacketSent();
Console.printIn('Sent a reply");
digitalWrite(led, LOW);

}

else

{

Console.printin("recv failed");

k
¥
¥

158

Appendix G Dragino-Yun as a Gateway with
partial_decryption

#include <SPIL.h>

/I#include <RH_RF95.h>

#include <LoRa.h> [[****xxsddkkix

#include <String.h>

#include <Console.h>

#include "ThingSpeak.h"

#include "YunClient.h"

#include <math.h>

YunClient client;

//RH_RF95 rf95;

#define BAUDRATE 115200

unsigned long myChannelNumber = 578314;//20xx93;

const char * myWriteAPIKey = "76 TZK7YU7PYRA4PEY";//"B9ZxxxXXNVEBKIFY";

float frequency = 915.0;//868.0;

void setup()

{
Bridge.begin(BAUDRATE);
LoRa.begin(915ER);//***xwxkxsx
LoRa.end();/[*#** ks
Serial.begin(BAUDRATE);/[******xkx*

/IConsole.begin();// Don't use Console here, since it is conflict with the ThinkSpeak
library.

159

ThingSpeak.begin(client);
if(LoRa.begin(915EB)) //x*xsikkkkrx
{ Serial.printin("Starting LoRa failed!");
while (1);
}
Serial.printin("LoRa setup configured successfully!™);
}
I T
String incoming="";
void onReceive(int packetSize) {
if (packetSize == 0) return; /I if there's no packet, return
IIx=millis();
//Serial.printin(x);
//String incoming ="";
incoming = "";
if(LoRa.available()){
while (LoRa.available()) {

incoming += (char)LoRa.read();

¥
k

¥
T T

void loop()

{
/lint h =10;// newData[0];

// int t =15;// newData[1];

incoming = "";

160

onReceive(LoRa.parsePacket());

long h=calculate_voltage(incoming),i=calculate_current(incoming),
j=calculate_power(incoming);

/lif(incoming[0]="A") {h=5;}
/lif(incoming[1]="B") {t=0;}
/lint h =10;// newData[0];
/l'int t =15;// newData[1];
I
ThingSpeak.setField(1,h);
ThingSpeak.setField(2,1);
ThingSpeak.setField(3,j);
ThingSpeak.writeFields(myChannelNumber, myWriteAP1Key);
delay(3000);

¥
int hex2dec_(char xy)

{

int bi=0;

if (xy=="0") { bi=0; }
else if (xy=="1") { bi=1; }
else if (xy=="2") { bi=2; }
else if (xy=="3") { bi=3; }
else if (xy=="4") { bi=4; }
else if (xy=="5") { bi=5; }
else if (xy=="6") { bi=6; }
else if (xy=="7") { bi=7; }
else if (xy=="8") { bi=8; }
else if (xy=="9") { bi=9;}

161

else if (xy=="a||xy=="A") { bi=10; }

else if (xy=="b'||xy=="B") { bi=11; }

else if (xy=="c'||xy=="C") { bi=12; }

else if (xy=="d'||xy=="D") { bi=13;}

else if (xy=="¢'||xy=="E") { bi=14; }

else if (xy=="f|xy=="F") { bi=15; }
return bi;

}

long calculate_voltage(String incoming_)
{
int a=0, b=0, c=0, d=0;
a=hex2dec_(incoming_[8]);
b=hex2dec_(incoming_[9]);
c=hex2dec_(incoming_[10]);
/ld=hex2dec_(incoming_[11]);
long volt=0,a_=(a*256),b_=(b*16),c_=c;//*16"1),d_=d;
volt=a_+b_+c_;//+d_;
return volt;

}

long calculate_current(String incoming_)

{
int a=0, b=0, ¢=0, d=0;
a=hex2dec_(incoming_[12]);
b=hex2dec_(incoming_[13]);
c=hex2dec_(incoming_[14]);
d=hex2dec_(incoming_[15]);
long ampere=0,a_=(a*256),b_=(b*16),c_=c;//*16),d_=d;

162

ampere=a_+b_+c_;//+d_;

return ampere;

}

long calculate_power(String incoming_)

{

int a=0, b=0, c=0, d=0;
a=hex2dec_(incoming_[16]);
b=hex2dec_(incoming_[17]);
c=hex2dec_(incoming_[18]);
d=hex2dec_(incoming_[19]);
long power=0,a_=(a*256),b_=(b*16),c_=c;//*16),d_=d;

power=a_+b_+c_;//+d_;

return power;

ky

163

Appendix H ESP_Collector Dragino Side

#include <SPI1.h>
#include <LoRa.h>
#include<Arduino.h>
#defineSS 18
#define RST 14
#define DIO 26
#define BAND 915E6 //915EG6 --
String outgoing; // outgoing message
/l count of outgoing messages
long lastSendTime = 0; /1 last send time
int interval = 500; /I interval between sends
void setup() {
Serial.begin(115200);
while (!Serial); /1t is just the the basic function, must connect to a computer
SPI.begin(5,19,27,18);
//Serial.printIn("ESP_Collector Dragino side™);
if ('LoRa.begin(BAND)) {
//Serial.printin("Error: LoRa configuring failed!");
while (2);
}
//Serial.printIn("LoRa setup configured successfully!);
}
void sendMessage(String message) {

/[Serial.printIn("Sending message: " + message);

164

LoRa.beginPacket(); /] start packet

LoRa.print(message); /l add payload

LoRa.endPacket(); /I finish packet and send it

/ImsgCount++; /l increment message 1D
}

void onReceive(int packetSize) {
String incoming = "";
if(LoRa.available()){
while (LoRa.available()) {

incoming += (char)LoRa.read();

ky

}
void loop() {

String received="";
while(Serial.available()>0){

received=Serial.read();

}

sendMessage(received);

ky

165

Appendix | Configuring ESP32 as LoRa Gateway

Its code can be downloaded from

https://github.com/things4u/ESP-1ch-Gateway-v5.0

And can be modified to configure ESP32 as gateway after watching four youtube videos

available at

[1] https://www.youtube.com/watch?v=v3JIx7ICmnl

[2] https://www.youtube.com/watch?v=0fH80Gmgf-o

[3] https://www.youtube.com/watch?v=eZhDvsJzww]

[4] https://www.youtube.com/watch?v=sYPL85ViFPE

166

https://github.com/things4u/ESP-1ch-Gateway-v5.0
https://www.youtube.com/watch?v=v3JIx7ICmnI
https://www.youtube.com/watch?v=OfH80Gmgf-o
https://www.youtube.com/watch?v=eZhDvsJzwwI
https://www.youtube.com/watch?v=sYPL85ViFPE

