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Abstract 

 

For hundreds of years, electricity supply industries have been in the hands of monopoly 

utilities, until engineers conceived the management of this industry as a challenging multi-

objective optimization problem. Multiple objectives need to interact in divergent or competing 

interests to win the competition and to deliver the electrical energy and keep the lights on. The 

most highlighted objectives are the economic dispatch of power for satisfying consumers with 

lower power bill costs, the minimum loss in transmission lines, the environmental emission 

reduction, and the reliability and stability of the voltage and generated power. The consideration 

of mentioned goals push for a tighter coordination of planning and operation scheduling in a 

power system and raises interest in using multi-objective optimization methods in power system 

applications.   

 

The Optimal Power Flow (OPF) is used to determine an optimal operating condition for power 

systems while considering the limitations and system constraints such as: generator capability, 

line capacity, bus voltages, and power flow balances.  

Among many optimization methods, the Teaching-Learning Based Optimization (TLBO) 

algorithm has gained wide acceptance in different areas of science and engineering. In this study, 

the Teaching-Learning-Based Optimization algorithm is used to optimize the Optimal Power 

Flow problem considering total fuel cost of generation, emission, voltage deviation and, active 

power transmission losses in single and multi-objective cases.  The method has been applied on 

the IEEE 30-bus and IEEE 57-bus test systems for several OPF objectives including 

minimization of fuel cost, emission, voltage deviation, and power losses, and the results reflect 

the effectiveness of the method.   

  



3 

 

Acknowledgments 

 

I would like to express my gratitude to my supervisor Dr. Benjamin Jeyasurya for his kind 

advice, guidance and constant support during my research. 

Special appreciation is given to the Natural Sciences and Engineering Research Council of 

Canada (NSERC), the School of Graduate Studies and Memorial University of Newfoundland 

for providing financial support throughout my master’s program. 

I would also like to thank Dr. Wayne Raman-Nair, Dr. Siu O’Young, Dr. Faisal Khan for the 

graduate courses they taught which helped me to fulfill my course requirements for this master’s 

program. 

I would like to dedicate my thesis to my beloved parents Hassan Rahnamafard and Zahra Seyed 

Hossein. Words cannot express my feelings for my lovely sisters Baharak and Roshank 

Rahnamafard and my supportive brother, Hossein Rahnamafard.  Thank you for your 

unconditional love and for believing in me, thank you for encouraging me in all areas of my life 

and for inspiring me to follow my dreams. 

  



4 

 

Table of Contents 

 Introduction .....................................................................................................................13 

1.1 Research Objectives ......................................................................................................... 14 

1.2 Thesis Organization ......................................................................................................... 15 

 Review of Optimization Techniques..............................................................................16 

2.0 Introduction ...................................................................................................................... 16 

2.1 Optimization .................................................................................................................... 17 

2.1.1 The Standard Form of the Optimization Problem..................................................... 17 

2.2 An Overview of Classifications of Optimization Techniques ......................................... 20 

2.2.1 Continuous Optimization versus Discrete Optimization .......................................... 20 

2.2.2 Unconstrained Optimization versus Constrained Optimization ............................... 21 

2.2.3 Single Objective or Multi Objectives Functions ....................................................... 21 

2.2.4 Deterministic Optimization versus Stochastic Optimization .................................... 21 

2.2.5 Choice of Method ..................................................................................................... 23 

2. 3 Local Optimization Algorithms ...................................................................................... 24 

2.3.1 Newton’s Method...................................................................................................... 26 

2.3.2 Unconstrained Optimization ..................................................................................... 28 

2.3.3 Constrained Optimization ......................................................................................... 29 

2.3.3.1 Penalty Method .................................................................................................. 30 

2.3.3.2 Barrier Method ................................................................................................... 30 

2.3.3.3 Sequential Unconstrained Minimization Techniques (SUMT) ......................... 31 

2.3.3.4 Lagrange Multiplier ........................................................................................... 32 

2.3.4 Non-Gradient Based Methods................................................................................... 32 

2.4 Global Optimization Algorithms ..................................................................................... 33 

2.4.1 Classification and History ......................................................................................... 34 

2.5 Teaching-Learning-Based Optimization (TLBO) algorithm ........................................... 37 

2.5.1 TLBO Overview ....................................................................................................... 37 

2.5.2 TLBO Algorithm ...................................................................................................... 39 

2.5.3 Case Study of a Constrained Optimization Problem with TLBO Algorithm ........... 42 

2.6 More Case Studies of Optimization Problems ................................................................. 46 



5 

 

2.6.1 Case Study of Unconstrained Nonlinear Optimization Problem .............................. 46 

2.6.2 Case Study of Constrained Nonlinear Optimization Problem .................................. 47 

2.6.2.1 Solution by Lagrange Multiplier Method .......................................................... 47 

2.6.2.2 Solution by Newton-Raphson Method............................................................... 49 

2.6.3 MATLAB Optimization Toolbox ............................................................................. 51 

2.6.3.2 Case Study of Multivariable Minimization Problems Using MATLAB Function 

F-mincon ........................................................................................................................ 55 

2.7 Conclusions ...................................................................................................................... 57 

 Optimal Power Flow .......................................................................................................58 

3.0 Introduction ...................................................................................................................... 58 

3.1 Power Flow ...................................................................................................................... 58 

3.1.1 Load Buses ................................................................................................................ 59 

3.1.2 Voltage Controlled Buses ......................................................................................... 60 

3.1.3 Slack Bus .................................................................................................................. 60 

3.2 Economic Dispatch (ED) ................................................................................................. 61 

3.2.1 Economic Dispatch Neglecting Losses and No Generator Limits ............................ 61 

3.2.2 Economic Dispatch Neglecting Losses and Including Generator Limits ................. 65 

3.2.3 Economic Dispatch Including Generator Limits and Losses .................................... 67 

3.2.4 Derivation of Loss Formula ...................................................................................... 72 

3.2.5 Economic Dispatch for 7-Bus Power System ........................................................... 76 

3.2.6 Economic Dispatch for 37-Bus Power System ......................................................... 79 

3.3 Optimal Power Flow ........................................................................................................ 81 

3.3.1 OPF Formulation ...................................................................................................... 81 

3.3.2 The Objective Functions ........................................................................................... 82 

3.3.2.1 Minimization of Fuel Cost of Generation (FC) ................................................. 83 

3.3.2.2 Minimization of Active Power Transmission Loss ........................................... 83 

3.3.2.3 Minimization of Reactive Power Transmission Loss ........................................ 84 

3.3.2.4 Maximization of Reactive Power Reserve Margin ............................................ 84 

3.3.2.5 Minimization of Emission Index (EI) ................................................................ 85 

3.3.2.6 Maximization of Security Margin Index (SMI) ................................................. 85 

3.3.2.7 Minimization of Voltage Deviation ................................................................... 86 



6 

 

3.3.3 The OPF Constraints ................................................................................................. 86 

3.3.3.1 Equality Constraints ........................................................................................... 86 

3.3.3.2 Inequality Constraints ........................................................................................ 87 

3.3.4 OPF Solution Methodologies .................................................................................... 88 

3.3.5 Case Study of Minimizing Cost for 7-Bus Power System ........................................ 90 

3.3.6 Case Study of Minimizing Cost for 37-Bus Power System ...................................... 92 

3.4 Security-Constrained Optimal Power Flows (SCOPF).................................................... 95 

3.4.1 Case Study of SCOPF ............................................................................................... 96 

3.5 Conclusions .................................................................................................................... 100 

 Multi-Objective Optimization......................................................................................101 

4.0 Introduction .................................................................................................................... 101 

4.1 Single Objective Optimization ....................................................................................... 101 

4.1.1 Single Objective Optimization Formulation ........................................................... 101 

4.1.2 Case Study of Single Objective Optimization ........................................................ 103 

4.2 Multi-Objective Optimization ........................................................................................ 104 

4.3 Non-Dominated and Dominated Points, Pareto Solution .............................................. 105 

4.4 Classical Multi-Objective Optimization Methods ......................................................... 109 

4.5 Weighted Sum Method .................................................................................................. 111 

4.7 Case Studies of Multi-Objective Optimization .............................................................. 112 

4.7.1 Case Study 1 ........................................................................................................... 112 

4.7.2 Case Study 2 ........................................................................................................... 114 

4.8 Conclusions .................................................................................................................... 115 

 Applying Multi-Objective Optimization Techniques for Solving Optimal Power 

Flow ....................................................................................................................................116 

5.0 Introduction .................................................................................................................... 116 

5.1 Multi-Objective Optimization Problem Formulation .................................................... 116 

5.2 Case Studies ................................................................................................................... 120 

5.2.1 IEEE 30-Bus Power System ................................................................................... 121 

Case 1: Minimization of Fuel Cost .............................................................................. 123 

Case 2: Minimization of Emission ............................................................................... 124 



7 

 

Case 3: Minimization of Voltage Deviation ................................................................ 125 

Case 4: Minimization of Active Power Transmission Loss......................................... 126 

Case 5: Two Objectives: Minimization of Fuel Cost and Emission ............................ 127 

Case 6: Two Objectives: Minimization of Fuel Cost and Voltage Deviation ............. 128 

Case 7: Two Objectives: Minimization of Fuel Cost and Real Power Loss ................ 129 

Case 8: Three Objectives: Minimization of Fuel Cost, Emission, Losses ................... 130 

Case 9: Four Objectives: Fuel Cost, Emission, Voltage Deviations and Losses ......... 131 

5.2.2 IEEE 57-Bus System............................................................................................... 137 

Case 10: Minimization of Fuel Cost ............................................................................ 138 

Case 11: Minimization of Emission ............................................................................. 139 

Case 12: Minimization of Voltage Deviation .............................................................. 140 

Case 13: Minimization of Active Power Loss ............................................................. 141 

Case 14: Two Objectives: Minimization of Fuel Cost and Emission .......................... 142 

Case 15: Two Objectives: Minimization of Fuel Cost and Voltage Deviation ........... 143 

Case 16: Two Objectives: Minimization of Fuel Cost and Real Power Loss .............. 144 

Case 17: Three Objectives: Minimization of Fuel Cost, Emission, Losses ................. 145 

Case 18: Four Objectives: Fuel Cost, Emission, Voltage Deviations and Losses ....... 146 

5.3 Comparative Study......................................................................................................... 151 

5.4 Conclusions .................................................................................................................... 153 

6. Conclusion and Future Work ......................................................................................154 

6.1 Summary of the Research and Contribution of Thesis .................................................. 155 

6.2 Recommendations of Future Work ................................................................................ 155 

References ............................................................................................................................ 157 

 

 

 

  



8 

 

List of Figures 

 

Figure 2.1:  Graphical Representation of Nonlinear Programming Problem in x-Space [5] ..... 18 

Figure 2.2:  Global and Local Optimal of a Two-Dimensional Function [5] ............................ 19 

Figure 2.3: Optimization Taxonomy [6] .................................................................................... 22 

Figure 2.4: Classification Schematic of Optimization Techniques For Engineering Systems [8]

.................................................................................................................................................... 23 

Figure 2.5: Gradient-based Optimization [9] ............................................................................. 25 

Figure 2.6: Newton’s Method Uses Curvature Information to Take a More Direct Route [10] 27 

Figure 2.7: One Dimensional Multi-Model Function [9] .......................................................... 33 

Figure 2.8: The Taxonomy of Global Optimization Algorithms [16] ....................................... 34 

Figure 2.9: Metaheuristic Classification [19] ............................................................................ 36 

Figure 2.10: Model for the distribution of marks obtained by learners taught by two different 

teachers [20] ............................................................................................................................... 38 

Figure 2.11:  Model for the distribution of marks obtained for a group of learners [20] .......... 38 

Figure 2.12: Flowchart of TLBO [20] [22] ................................................................................ 41 

Figure 2.13: Constrained function of constrained nonlinear optimization problem case study 47 

Figure 3.1:  A typical bus in a network [1] ................................................................................ 60 

Figure 3.2:  Economic Dispatch, Considering All Generators in One Shared Bus [1] .............. 61 

Figure 3.3: One line diagram for 7-Bus Power System [28] ..................................................... 78 

Figure 3.4: Economic Dispatch for a 37-bus Power System [29] .............................................. 79 

Figure 3.5: OPF solution methodologies [34]............................................................................ 89 

Figure 3.6: One Line Diagram of Optimal Power Flow for 7-Bus Power System with OPF [28]

.................................................................................................................................................... 90 

Figure 3.7: One Line Diagram of 37-Bus Power System .......................................................... 92 

Figure 3.8: One Line Diagram of 37-Bus Power System with No Control on Area [29] ......... 97 

Figure 3.9: One Line Diagram of 37-Bus Power System OPF with OPF Control on Area [29]97 

Figure 3.10: SCOPF of 37-Bus Power System [29] .................................................................. 98 

Figure 4.1: Local and Global Optimum Points [4] .................................................................. 102 

Figure 4.2: Non-dominated and dominated points [15] ........................................................... 106 



9 

 

Figure 4.3: Pareto Optimal Solution [13] ................................................................................ 107 

Figure 4.4: Objective Function Plot, Trade-Off Region is Between the Green Lines [12] ..... 108 

Figure 4.5: Pareto Optimal Front plot [12] .............................................................................. 108 

Figure 4.6: Classification of Multi-Objective Optimization Methods and the Role of Human in 

the Optimization Processes [43] .............................................................................................. 110 

Figure 4.7: Classification of Goal-Oriented Multi-Objective Optimization Methods and 

Algorithms [20] ........................................................................................................................ 111 

Figure 4.8: Optimization Toolbox Setting ............................................................................... 113 

Figure 4.9: Pareto Front of Case Study 1 ................................................................................. 113 

Figure 4.10:  Pareto Front of Case Study 2 .............................................................................. 114 

Figure 5.1: Convergence of Case 1 for IEEE 30-Bus System ................................................. 123 

Figure 5.2: Convergence of Case 2 for IEEE30-Bus System .................................................. 124 

Figure 5.3: Convergence of Case 3 for IEEE 30-Bus System ................................................. 125 

Figure 5.4: Convergence of Case 4 for IEEE 30-Bus System ................................................. 126 

Figure 5.5: Convergence of Case 5 for IEEE 30-Bus System ................................................. 127 

Figure 5.6: Convergence of Case 6 for IEEE30-Bus System .................................................. 128 

Figure 5.7: Convergence of Case 7 for IEEE30-Bus System .................................................. 129 

Figure 5.8: Convergence of Case 8 for IEEE30-Bus System .................................................. 130 

Figure 5.9: Convergence of Case 9 for IEEE 30-Bus System ................................................. 132 

Figure 5.10:  Simulation Results of Optimum Solution for IEEE-30 Bus System Single-

objective Cases......................................................................................................................... 134 

Figure 5.11: Simulation Results of Optimum Solution for IEEE-30 Bus System Multi-objective 

Cases ........................................................................................................................................ 136 

Figure 5.12: Convergence of Case 10 for IEEE 57-Bus System ............................................. 138 

Figure 5.13: Convergence of Case 11 for IEEE 57-Bus System ............................................. 139 

Figure 5.14: Convergence of Case 12 for IEEE 57-Bus System ............................................. 140 

Figure 5.15: Convergence of Case 13 for IEEE 57-Bus System ............................................. 141 

Figure 5.16: Convergence of Case 14 for IEEE 57-Bus System ............................................. 142 

Figure 5.17: Convergence of Case 15 for IEEE 57-Bus System ............................................. 143 

Figure 5.18: Convergence of Case 16 for IEEE 57-Bus System ............................................. 144 

Figure 5.19: Fitness Function Convergence of Case 17 for IEEE 57-Bus System .................. 145 



10 

 

Figure 5.20: Fitness Function Convergence of Case 18 for IEEE 57-Bus System .................. 146 

Figure 5.21: Simulation Results of Optimum Solution for IEEE 57-Bus System Single-

objective Cases......................................................................................................................... 148 

Figure 5.22: Simulation Results of Optimum Solution for IEEE-57 Bus System Multi-objective 

Cases ........................................................................................................................................ 150 

 

 

  



11 

 

List of Tables 

 

Table 2.1: Constrained and Unconstrained Optimization Classification ................................... 28 

Table 2.2: Algorithm (TLBO  pseudocode) [22] ....................................................................... 40 

Table 2.3: Initial population ....................................................................................................... 43 

Table 2.4: New values of the variables, objective function and the penalties (teacher phase) .. 43 

Table 2.5: Updated values of the variables, objective function and the penalties based on 

fitness comparison (teacher phase) ............................................................................................ 44 

Table 2.6: New values of the variables, objective function and the penalties (learner phase) .. 44 

Table 2.7: Updated values of the variables, objective function and the penalties based on 

fitness comparison ..................................................................................................................... 44 

Table 2.8: Lagrange multiplier method, constrained optimization for the case study ............... 48 

Table 2.9: Newton-Raphson method and iterative solution, Lambda= 0.4 ............................... 50 

Table 2.10:  Newton-Raphson method and iterative solution, Lambda= -2 .............................. 50 

Table 2.11: MATLAB Optimization Toolbox Commands [25] ................................................ 53 

Table 2.12: Results for Multivariable Minimization Problem Using MATLAB Function f-

mincon........................................................................................................................................ 56 

Table 3.1: Economic Dispatch Solution Neglecting Losses and Including Generator Limits [27]

.................................................................................................................................................... 67 

Table 3.2: B-Coefficients for 7-Bus Power System................................................................... 77 

Table 3.3:  Economic Dispatch Case Study for 7-Bus System .................................................. 78 

Table 3.4:  Economic Dispatch Case Study for 37-Bus System ................................................ 80 

Table 3.5: Optimal Power Flow Case Study for 7-Bus System ................................................. 91 

Table 3.6:  OPF of 7-Bus Power System, Minimizing Generation Cost ................................... 91 

Table 3.7: Optimal Power Flow Case Study for 37-Bus System ............................................... 93 

Table 3.8: OPF of 37-Bus Power System, Minimizing Generation Cost .................................. 94 

Table 3.9: Contingency Analysis and Violation List ................................................................. 98 

Table 3.10: Comparing Generators Power Output in 37-Bus Power System ............................ 99 

Table 3.11: SCOPF of 37-Bus Power System, Minimizing Generation Cost ........................... 99 

Table 5.1: Summary of case studies ........................................................................................ 120 



12 

 

Table 5.2: The Main Characteristics of The IEEE 30-Bus Test System [31] .......................... 121 

Table 5.3: Cost and Emission Coefficient of Generators for IEEE 30-bus System [31] ......... 122 

Table 5.4: Simulation Results of Optimum Solution for IEEE-30 Bus System- Single Objective 

Cases ........................................................................................................................................ 133 

Table 5.5:  Simulation Results of Optimum Solution for IEEE-30 Bus System, Multi-Objective 

Cases ........................................................................................................................................ 135 

Table 5.6:  The Main Characteristics of the IEEE 57-Bus Test System [31] .......................... 137 

Table 5.7: Cost and Emission Coefficient of Generators for IEEE 57-Bus System [31] ........ 137 

Table 5.8: Simulation Results of Optimum Solution for IEEE 57-Bus System ...................... 147 

Table 5.9: Simulation Results of Optimum Solution for IEEE-57 Bus System, Multi-objective 

Cases ........................................................................................................................................ 149 

Table 5.10: Comparison of the Simulation Results for Minimizing Fuel Cost with Different AI 

Methods.................................................................................................................................... 151 

Table 5.11: Comparison of the Simulation Results in Multi-Objective Optimization of Fuel 

Cost and Voltage Deviation, Case 5, IEEE30-Bus System ...................................................... 152 

 

 

 

 

 

 

 

  



13 

 

 

Chapter 1 

 

 Introduction 

 

Electrical energy is considered to be the most popular form of energy globally, because it can 

be transported at high efficiency and at reasonable prices [1]. For about hundreds of years, the 

electricity supply industries where in the hands of monopoly utilities, until engineers conceived 

the management of this industry as a challenging optimization problem. By increasing the size, 

complexity, and scope of these optimization problems, professional and powerful computer 

programs were designed and deployed to refine the most efficient algorithms for the planning 

and the operation of power systems. By introducing competition to the electricity supply 

industry, a single organization is no longer in charge. Multiple objectives need to interact in 

divergent or competing interests to win the competition and to deliver the electrical energy and 

keep the light on [2].  The most highlighted objectives are the economic dispatch of power for 

satisfying consumers with lower power bill costs, the reliability and stability of generated power, 

the minimum loss in transmission lines, and the security constraints in a power system.  

 

The power transmitted through transformers and transmission lines is restricted to the given 

limits, which arise due to thermal, voltage, or stability considerations. The Optimal Power Flow 

(OPF) is used to determine an optimal operating condition for power systems while considering 

the limitations and system constraints such as generator capability, line capacity, bus voltages, 

and power flow balances. Increasing the power quality and reliability, using the available 

reserves are other possible target goals in solving an OPF problem. In this study, the OPF is 

formulated as a multi-objective problem of minimizing fuel cost, emission, transmission losses, 

voltage deviation, etcetera. 
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Security Constrained Optimal Power Flow (SCOPF) is defined as an effective strategy to enforce 

the reliability criteria for the secure operating of the system. The achieved operating point 

ensures that if any possible contingency happens, the post-contingency states remain secure [3].  

       The consideration of mentioned goals push for the tighter coordination of planning and 

operation scheduling in a power system and raises interest in using multi-objective optimization 

methods in power system applications.   

       Among the many optimization methods, the Teaching-Learning-Based Optimization 

(TLBO) algorithm has gained wide acceptance among optimization researchers [4]. In this study, 

the TLBO algorithm is used to optimize the OPF problem in several single and multi-objective 

cases.  The method has been applied on the IEEE 30-bus and IEEE 57-bus test systems for 

several OPF objectives such as minimization of fuel cost, emission, voltage deviation, and power 

losses.  

 

1.1 Research Objectives 

The focus of this research is to present the application of multi-objective optimization methods 

in power system problems. Different objectives of the OPF problem have been introduced with 

constraints and limitations.  

The TLBO method is used to optimize different OPF objectives, in a single or multi-objective 

optimization problem, that reflects the performance of power systems. Furthermore, the TLBO 

algorithm has been applied to the optimization problem as an effective method.  

The principal goals of this research are summarized as follows: 

 To study applications of optimization techniques in power systems. 

 To study the constrained optimization methods and applications for Economic Dispatch 

(ED) and Optimal Power Flow(OPF).  

 To research and explore the multi-objective optimization methodologies in power system 

operations.  

 To study security constraints in power system problems. 
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 To study, analyze, and visualize the operation and planning of a power system using 

MATLAB, as a powerful computer programming software, and the PowerWorld 

simulator  

 To study the effectiveness of the Teaching-Learning-Based Optimization (TLBO) 

algorithm in the Optimal Power Flow problem for several single and multi-objective 

cases.  

1.2 Thesis Organization 

This thesis consists of 6 chapters. Chapter 2 provides a review of optimization techniques. A 

comprehensive model of optimization problems and the classification of methods are discussed. 

Local and global algorithms are introduced. In addition, the application of MATLAB 

optimization toolbox is briefly introduced to solve several case studies and illustrates the 

effectiveness of algorithms for general optimization problems. 

Chapter 3 deals with theories and principles behind three major types of problems commonly 

referred to in power systems literature as power flow, Economic Dispatch (ED) and Optimal 

Power Flow (OPF). Different formulations of ED are applied to achieve the least-cost generation 

dispatch, considering and neglecting transmission loss and generation limits. The main principles 

of the optimal power flow problem and Security Constraint Optimal Power Flow (SCOPF) are 

proposed. For each type of problem, case studies and examples are provided to illustrate the 

concepts. MATLAB and Power World simulator are used to analyze and simulate the 7-bus and 

37-bus power systems.  

Chapter 4 presents the concepts and classification of single and multi-objective optimization 

problems. The Teaching-Learning-Base Optimization (TLBO) algorithm is introduced and the 

method is implemented on a constraint optimization problem.  

Chapter 5 is concerned with optimizing 4 different objectives of the OPF problem: fuel cost, 

environmental emission, voltage deviation, and transmission losses. The constrained OPF 

problem is formulated and optimized in different scenarios, as a single objective or multi-

objective optimization problem, and the results are compared.   

Chapter 6 highlights the key contribution of the research presented in this thesis along with 

suggestions for future works.  
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Chapter 2 

 

 Review of Optimization Techniques 

 

2.0 Introduction 

 

“For since the fabric of the universe is most perfect, and is 

the work of a most wise Creator, nothing whatsoever takes 

place in the universe in which some form of maximum or 

minimum does not appear.” Leonhard Euler 1 

 

 

Many researchers have shown that humankind has the instinctive desire to make the most 

beneficial decisions and choose the optimal solution between possible options, for the purpose 

of heightening the quality of life. From the early ages of civilization until now, there have been 

ongoing struggles toward developing the core principles of optimization techniques to make the 

best choices among any inferior situation.  

There have been extensive efforts toward this aim by dedicated scientists, engineers, 

mathematicians, and philosophers, which have resulted in the development of methods, tools, 

and intelligent softwares we use today. It is imperative to discuss the major achievements in this 

area. 

This chapter draws the focus to major optimization techniques, and briefly explains the 

mathematical theory and foundations behind them. 

 

 

                                                 
1 Leonhard Euler, Introduction to De Curvis Elasticis, Additamentum I to his Methodus Inveniendi Lineas Curvas 

Maximi Minimive Proprietate Gaudentes 1744; translated on page 10- 11, "Leonhard Euler's Elastic Curves", Old 

father et al 1933. 
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2.1 Optimization  

 

Optimization is the process of maximizing or minimizing the desired objective function while 

satisfying the problem constraints. Scientists have shown that an abundant number of processes 

and structures in nature follow an optimum system status. For example, one of nature’s 

optimization processes is genetic mutation for survival. As well, the crystalline structure of metal 

sand alloys is defined by unit cells that are formed by atoms in the minimum energy positions. 

The sphere of a liquid droplet in zero gravity is the geometric form of the minimum surface area 

for a given volume. The architecture of a honeycomb is one of the most compact packaging 

structures. Many experts and managers use optimum solutions as a key in their organizations 

and businesses to strive for excellence. This attitude helps them to achieve consumer satisfaction 

by identifying optimum solutions from different feasible scenarios. A production factory would 

benefit hugely from small savings in a mass-produced part. By minimizing the weight of a 

vehicle, fuel consumption can be affected significantly and this would increase the efficiency. A 

company needs to consider the optimum number of labor resources for a maximized profit. An 

automated production line could minimize production time per item by optimizing the process 

cycle and could ultimately maximize efficiency and benefit [1]. 

The challenge of increasing the efficiency of known optimization techniques has been an 

ongoing struggle over the decades. Today, applications of optimization are found in all aspects 

of our lives. 

2.1.1 The Standard Form of the Optimization Problem 

It is important to present the standard form of optimization problems before reviewing the 

optimization methods. Optimizing a scenario in an engineering problem can be defined as 

minimizing or maximizing a function with respect to inequality and equality constraints. 

Considering real cases, the optimization model can be formed by objectives and constraint 

functions, which may be linear or nonlinear, convex or non-convex, explicit or implicit 

functions. 
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The standard form for a single-objective, non-linear, constrained optimization problem is 

provided in Equation 2.1.  

                               𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒        𝑓(𝑥)              (2. 1) 

            𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝑔𝑖 (𝑥) ≤  0        𝑖 =  1, … ,𝑚 

                                      ℎ𝑗  (𝑥) =  0         𝑗 =  1, … , ℓ 

             𝑥𝑖
𝐿 ≤  𝑥 ≤  𝑥𝑖

𝑈   

where 𝑥 =  (𝑥1, 𝑥2, . .., xn)T   is a column vector of n real-valued design variables, which are 

modified to obtain the optimal solution. In Equation 2.1 𝑓(𝑥) represents the objective (or goal) 

function, 𝑔𝑖(𝑥) is an inequality constraint and ℎ𝑗  (𝑥) stands for an equality constraint function. 

The searchable design region is determined by the upper and lower bounds, 𝑋𝑖
𝐿 and 𝑋𝑖

𝑈 , of the 

design variables, referred to as the side constraints [2]. 

Figure 2.1 represents a nonlinear, constraint optimization problem for n=2 design variables, 

where constant curves for objective function contours are drawn. The optimum is expressed by 

the highest contour that passes through the feasible region. In this example,  𝛺 = {𝑥: 𝑔(𝑥) ≤

0, ℎ(𝑥) = 0, 𝑥𝑖
𝑙  ≤ 𝑋𝑖 ≤ 𝑥𝑖

𝑢}.  𝛺, a subset of 𝑅𝑛, is called the feasible region. Vectors 𝑥𝑖
𝑙, 

𝑥𝑖
𝑢 represent the explicit lower and upper bounds on the design variables, respectively. The 

optimization problem is presented in Equation 2.2.  

                                                  Minimize 𝑓(𝑥)                                                (2. 2) 

Subject to 𝑥 ∈ Ω     

 

  
Figure 2.1:  Graphical Representation of Nonlinear Programming Problem in x-Space [5]  

             𝑥𝑖
𝐿 ≤  𝑥∗ ≤ 𝑥𝑖

𝑈   
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Figure 2.2 represents the global and local optima of a two-dimensional function. Ashok D.B [5] 

defines the mathematical definition of global and local optima in his book according to the 

following definitions [5]. 

Local Maximum:  By definition, a (local) maximum 𝑥∗ ∈ 𝕏 of an objective function 𝑓: 𝕏 →𝑅𝑛 

is an input element with    𝑓(𝑥∗) ≥ 𝑓(𝑥) for all 𝑥 neighboring 𝑥∗. 𝐼𝑓 𝕏 ⊆ 𝑅𝑛, ∀ 𝑥∗∃ 𝜀 > 0,

𝑓(𝑥∗) ≥ 𝑓(𝑥), ∀𝑥 ∈ 𝕏, |𝑥 − 𝑥∗| < 𝜀. 

Local Minimum:  A (local) minimum 𝑥∗ ∈ 𝕏 of an objective function 𝑓: 𝕏 →𝑅𝑛 is an input 

element with  𝑓(𝑥∗) ≤ 𝑓(𝑥)for all 𝑥 neighboring 𝑥∗. 𝐼𝑓 𝕏 ⊆ 𝑅𝑛, ∀ 𝑥∗∃ 𝜀 > 0 ∶  𝑓(𝑥∗) ≤

𝑓(𝑥), ∀𝑥 ∈ 𝕏, |𝑥 − 𝑥∗| < 𝜀. 

Local Optimum: A local optimum 𝑥∗ ∈ 𝕏 of an objective function. 𝐼𝑓: 𝕏 →𝑅𝑛 is either a local 

maximum or a local minimum. 

Global Maximum: A global maximum 𝑥∗ ∈ 𝕏 of an objective function. 𝐼𝑓: 𝕏 →𝑅𝑛 is an input 

element where ∀𝑥 ∈ 𝕏,   𝑓(𝑥∗) ≥ 𝑓(𝑥). 

 Global Minimum: A global minimum 𝑥∗ ∈ 𝕏 of an objective function 𝐼𝑓: 𝕏 →𝑅𝑛 is an input 

element where ∀𝑥 ∈ 𝕏,   𝑓(𝑥∗) ≤ 𝑓(𝑥). 

 

 

 
 

Figure 2.2:  Global and Local Optimal of a Two-Dimensional Function [5] 

Global algorithms are highly efficient for solving problems with integer and/or discrete 

variables. In a discrete or integer optimization problem, some or all of the design variables are 
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restricted to be an integer or discrete value. Generally, implicit functions appear in this class of 

problems. 

The side constraints in an optimization problem are commonly implemented directly on the 

algorithm rather than considering equality or inequality constraints. By definition, solving a 

constrained optimization problem is the process of optimizing an objective function with respect 

to one or more equality and/or inequality constraints, with or without side constraints. An 

equality constraint can either be violated or satisfied, while an inequality constraint can be 

violated, active, or satisfied. An active inequality constraint is one for which gj(x) = 0. An 

unconstrained optimization problem may have side constraints, while it will not be affected by 

any equality or inequality constraints [5]. 

 

2.2 An Overview of Classifications of Optimization Techniques 

Optimization techniques are used to find the best solution to the problem presented in Equation 

2.1. The approach is to form the optimum objective function by choosing the best combination 

of design variables in the searchable region while satisfying all the equality, inequality and side 

constraints. Referring to local or relative optima for some cases, more than one optimum may 

exist. 

An important step in optimizing a problem is classifying the optimization model. This section 

presents an overview of the optimization model classification for the various optimization 

problem types [6]. 

 

2.2.1 Continuous Optimization versus Discrete Optimization 

In an optimization process, the appropriate algorithm can be identified based on the nature of the 

design variables, which can be either continuous or discrete values.  In discrete optimization 

problems, the variables are only allowed to take on values from a set of discrete elements (a 

subset of integers). In a continuous optimization problem, any real value can be implemented in 

the model.  

According to the property of smoothness in a continuous function, it is feasible to derive 

information about the neighborhoods of a point, based on the provided values of the objective 
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function and constraints in that specified point. Many discrete optimization problems make use 

of generating continuous domain subsets to simplify the computation process. 

2.2.2 Unconstrained Optimization versus Constrained Optimization 

Optimization problems can be categorized based on the existence of constraints in the problem 

structure. An unconstrained optimization problem does not include any active/violated 

constraints in its model. In a constrained optimization problem, the objective function is 

supposed to be optimized with respect to one or more equality and/or inequality constraints.  

Also, in some applications, a constrained problem is reformulated by using a penalty factor in 

the objective function and an unconstrained optimization problem will arise in this case. 

2.2.3 Single Objective or Multi Objectives Functions 

The number of objective functions in an optimization problem can define another category of 

optimization methods. Single-objective optimization corresponds to the minimum or maximum 

value of a single objective function. The research of multi-objective optimization methods 

received impetus in many practical engineering fields, where the problem needs to achieve a 

compromise between two or more conflicting objective functions and finds the best set of values 

for each one of them. 

2.2.4 Deterministic Optimization versus Stochastic Optimization 

Deterministic optimization methods use accurate known data, while in a stochastic optimization 

process, the set of information is not actual (as a result of measurement error or representing 

uncertain data about a future process). 

The deterministic solutions “become computationally impracticable for problems of realistic 

size, either because the model grows too large, or because the solution procedures are too 

lengthy, or both, and heuristics provide the only viable scheduling techniques for large projects” 

[7]. In uncertain optimization methods, the uncertainty is incorporated into the mathematical 

formula of the model. 

Stochastic optimization models make use of probabilistic distribution functions through the 

feasible region of the problem (these functions are either available or can be estimated). The 
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main goal is to approach a strategy that is feasible for all possible data and optimizes the future 

efficiency of the model. Some references [4] have presented another classification of 

optimization techniques based on the nature of the equations involved in the objective function. 

The most famous methods in this category include linear/ nonlinear optimization, geometric 

optimization, and quadratic optimization. 

There are many options for classifying the most common approaches in optimization techniques. 

In the following section, a brief overview of a broad classification, as either local or global 

algorithms, is provided. Figures 2.3 and 2.4 represent two different taxonomies of optimization 

techniques [6], [8]. 

 

  

 

 

Figure 2.3: Optimization Taxonomy [6]  
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Figure 2.4: Classification Schematic of Optimization Techniques For Engineering Systems [8] 

2.2.5 Choice of Method  

Several factors should be considered in deciding which particular method to solve a given 

optimization problem. Some of these factors are [4]: 

1. The type of problem to be solved (general nonlinear programming problem, geometric 

programming problem, etc.)  

2. The availability of a ready-made computer program 

3. The calendar time required for the development of a program  
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4. The necessity of derivatives of the functions f and gj , j = 1, 2, ..., m  

5. The available knowledge about the efficiency of the method 

6. The accuracy of the solution desired  

7. The programming language and quality of coding desired 

8. The robustness and dependability of the method in finding the true optimum solution  

9. The generality of the program for solving other problems 

10. The ease with which the program can be used and its output interpreted [4]. 

2. 3 Local Optimization Algorithms 

Local optimization techniques are heuristic methods that are widely used in a variety of 

engineering problems. The optimization procedure in this classification consists of searching in 

the feasible criterion among candidate solutions by making local changes in each outcome 

solution. This strategy is continued until a set of solutions deemed to be optimal is found or a 

time boundary is met.  

Most local optimization techniques make use of gradient information to find the optimal solution. 

The popularity of these methods is due to their high efficiency, as they can solve problems with 

a large number of variables while demanding little problem-specific parameter tuning.  However, 

heuristic methods and local search algorithms do not guarantee the best optimum solution but 

attempt to yield a local optimum in the feasible region. They also have difficulties in solving 

discrete optimization problems.  

Gradient-based algorithms follow a two-step process to reach the optimum solution in most 

cases. This process can be explained using Figure 2.5 of a blindfolded boy on a hill. The boy is 

supposed to reach the highest point on the hill (maximizing the objective function) while staying 

inside the fences (satisfying the constraints and staying in feasible criterion). The design 

variables are the x and y coordinates of the boy.  
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Figure 2.5: Gradient-based Optimization [9] 

 

Based on the gradient optimization technique, the blindfolded boy can use a two-step process in 

order to reach the top of the hill (a single step in the x-direction and another step in the y-

direction), while trying to estimate his next step direction based on information gained from 

previous steps. His walk in this direction will continue until no further progress can be made, 

which may include reaching a fence. In this position, he is able to choose a new direction by 

taking another two steps inside the fences (as a feasible region). Then he can continue the process 

until he reaches the peak of the hill. This two-step iterative method of searching for the optimum 

solution can be mathematically summarized according to Equation 2. 3. 

                                                               𝑥𝑞 = 𝑥𝑞−1 + 𝛼∗𝑆𝑞                            (2. 3)      

S: Searching direction 

 𝛼∗: Optimum step size                                                                         

In this example, the first step is to use gradient information, which determines the searching 

direction ‘S’ to move. The second step provides the optimum step size, 𝛼∗, which represents the 

number of iterations that should be followed in this direction until no progress can be yielded. 

Termination of local optimization techniques can be based on different choices, such as time 

boundaries or the number of iterations. Different search directions can be applied to the 

optimization problem. A usable direction that could enhance the objective function is desired for 

an unconstrained optimization problem or a constraint optimization problem without 

active/violated constraints.  

On the other hand, the required search direction for a constraint optimization scenario with 

violated constraints is desired to overcome the constraint bounds and is called a feasible 

direction. If the problem includes active constraints and no violated constraint, the search 
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direction method should be both usable and feasible, which simply means that it should not 

violate any constraint bounds and it should improve the objective function at the same time.  

Considering the one-dimensional search, the best step size could be found through many 

different methods, including the golden section search, the Fibonacci search, and many 

variations of polynomial approximations. Then the desired technique can be combined with a 

specific gradient-based algorithm to perform the required one-dimensional search. 

Karush-Kuhn-Tucker (KKT) [5] conditions can be used to determine whether a constrained local 

optimum has been found by the presented gradient information. Karush-Kuhn-Tucker conditions 

provide the necessary conditions for a local optimum and can be summarized as:  

1. The optimum design point x⋆ must be feasible. 

2. At the optimum design point, the gradient of the Lagrangian must vanish according to 

Equation 2. 4,          

∇𝑓(𝑥∗) + ∑ 𝜆𝑗∇g𝑗
𝑚
𝑗=1 (𝑥∗) + ∑ 𝜆𝑚+𝑘∇h𝑘

𝑝
𝑘=1 (𝑥∗) = 0                                        (2. 4) 

where the Lagrange multipliers, 𝜆𝑗 ≥ 0 and 𝜆𝑚+𝑘 , are unrestricted in sign. 

3. For each inequality constraint 𝜆𝑗∇g𝑗 (X) = 0, where j = 1,...m. 

 Although the Karush-Kuhn-Tucker conditions are effective in determining the local optimum, 

their satisfaction cannot guarantee that the global optimum has been achieved [5]. 

 

2.3.1 Newton’s Method 

Newton’s algorithm is one of the classical gradient-based optimization solutions. It has been 

classified as an iterative unconstrained algorithm that is derived from a second-order Taylor 

series expansion of the objective function around the initial design point 𝑥0 according to 

Equation 2.5. 

𝑓(𝑥) ≈ 𝑓(𝑥0) + ∇𝑓(𝑥0)𝑇(𝑥 − 𝑥0) +
1

2
(𝑥 − 𝑥0)𝑇𝐻(𝑥0)(𝑥 − 𝑥0)                   (2.5) 

where 𝐻(𝑥0) is the Hessian matrix, and contains the second-order gradient information (partial 

derivatives) of the objective function in a square matrix. Differentiating Equation 2.5 with 

respect to x and setting the result equal to zero according to the Karush-Kuhn-Tucker conditions, 

the updated formula in Equation 2.6 for the current design point will result. 

𝑥 = 𝑥0 −  𝐻(𝑥0)−1∇𝑓(𝑥0)                                                        (2.6) 
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And for higher dimensions, the above iterative scheme can be generalized in Equation 2.7. 

                        𝑥𝑛+1 = 𝑥𝑛 −  𝛾𝐻(𝑥𝑛)
−1∇𝑓(𝑥𝑛)                                                 (2.7) 

Newton's method is modified to include a small step size γ ∈ (0,1).  

A presented classical form of the Newton algorithm in equation 2.6 makes use of a fixed step 

size of γ = 1 and provides the search direction (descent direction) of − 𝐻(𝑥0)−1∇𝑓(𝑥0).  

The method follows a quadratic rate of convergence, requiring a single step to reach the optimum 

point for any positive definite quadratic function. In a practical approach, Newton’s method is 

adjusted to include a one-dimensional search that enhances both the efficiency and robustness of 

the method. 

The method has a highly desirable quadratic convergence rate; meanwhile, the calculation 

process associated with finding the second-order gradient information in the Hessian matrix 

would be highly sophisticated. As a result, most gradient-based methods make use of first-order 

gradient information to simplify the method. 

Figure 2.6 represents a comparison of gradient descent route (green) and Newton's method route 

(red) for minimizing a function (with small step sizes) where Newton’s method uses curvature 

information to take a more direct (shorter) route. 

 

 

 

Figure 2.6: Newton’s Method Uses Curvature Information to Take a More Direct Route [10] 
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Table 2.1 provides a summary of the constrained and unconstrained optimization classification 

based on direct/indirect search methods. 

 

Table 2.1: Constrained and Unconstrained Optimization Classification 

    Nonlinear - Unconstrained Optimization Techniques Nonlinear - Constrained Optimization Techniques 

D
ir

e
ct

 S
ea

rc
h

 M
et

h
o

d
s 

Random Search Methods 

- Random Jumping Method 

- Random Walk Method 

- Random Walk Method with Direction Exploitation 

Grid Search Method 

Univariate Method 

Pattern Directions 

Powell’s Method 

Simplex Method 

Random Search Methods 

Complex Method 

Sequential Linear Programming (Sequential 

Unconstrained Minimization Techniques – SUMT) 

Sequential Quadratic Programming 

Zoutendijk’s Method of Feasible Directions 

Rosen’s Gradient Projection Method 

Generalized Reduced Gradient Method 

 

In
d

ir
ec

t 
S

ea
rc

h
 M

et
h

o
d

 

Gradient of a Function 

Steepest Descent (Cauchy) Method 

Conjugate Gradient (Fletcher-Reeves) Method 

Newton’s Method 

Marquardt Method 

Quasi-Newton Methods 

Davidon–Fletcher–Powell Method 

Broyden–Fletcher–Goldfarb–Shanno Method 

 

Penalty Function Method 

- Interior Penalty Function Method 

- Exterior Penalty Function Method 

Extended Interior Penalty Function Methods 

Linear Extended Penalty Function Method 

Quadratic Extended Penalty Function Method 

Penalty Function Method for Parametric Constraints 

Augmented Lagrange Multiplier Method 

  

2.3.2 Unconstrained Optimization  

There are two popular iterative methods involved in unconstrained classification of optimization 

techniques: the conjugate gradient method (also referred to as the Fletcher-Reeves) and the 

Broyden- Fletcher-Goldfarb-Shanno (BFGS) method [5] [4].  

The Fletcher-Reeves algorithm makes use of the conjugate search direction for finding the 

optimum solution of the objective function, using the information of the last iteration. The 

method produces the exact solution after a finite number of iterations and can be thought of as a 

direct method. The method efficiently minimizes a quadratic function in, at most, n steps (where 
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n is the size of the system matrix), while the computing process requires only small memory 

space. 

The BFGS method is the most efficient variable metric method that could reach the desired 

search direction by gaining the information from the previous n iterations. The method makes 

an approximation to the inverse of the Hessian matrix, 𝐻 (𝑥0)
−1 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛… . .,  and uses 

specified updates of information by gradient evaluations. The BFGS method belongs to the 

classification of Quasi-Newton methods.  

Unconstrained problems may arise when an appropriate penalty factor is implied in a constrained 

problem or the constraints are eliminated. The general form of an unconstrained problem is 

shown in Equation 2.8. 

                                                    𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)                                                   (2. 8) 

Where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇is a column vector of n real-valued design variables.  

2.3.3 Constrained Optimization 

One of the most useful approaches for solving a constrained optimization problem is to convert 

a multi-dimensional constrained problem into a series of the equivalent one-dimensional 

unconstrained problem by using penalty and barrier methods. 

Penalty methods are used to search for a feasible point that could satisfy all the constraints 

simultaneously. These techniques implement a penalty factor to the objective function, 

considering the effect of any constraint violations. Barrier methods are typically used to prevent 

the infeasible region from growing while we already have a feasible point relative to inequality 

constraints. In summary, the penalty method will drive the solution into a feasible region and the 

barrier method will keep the answer in the infeasible region (preventing from leaving the feasible 

region) [11]. 
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2.3.3.1 Penalty Method 

 

Considering the primary objective function as shown in Equation 2. 9: 

                              𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓(𝑥)                                               (2. 9) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                          𝑔𝑖(𝑥) ≤ 0,     𝑖 = 1,… . , 𝑝 

                                               ℎ𝑗(𝑥) = 0,     𝑗 = 1,… . , 𝑚 

The penalized objective function can be formulated as Equation 2. 10. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓(𝑥)                                    (2. 10) 

where 

𝐹(𝑥, 𝜌, 𝛽) = 𝑓(𝑥) + 𝑃(𝑥, 𝜌, 𝛽) 

𝑃(𝑥) =∑𝜌𝑗ℎ𝑗
2(𝑥) +∑𝛽𝑖𝑔𝑖

2(𝑥)

𝑝

𝑖=1

𝑚

𝑗=1

 

 

Then, the penalty parameters ρj and βi are given by Equation 2.11. 

ℎ𝑗 = {
0        𝑖𝑓    ℎ𝑗(𝑥) = 0 

𝜌𝑗 ≫ 0  𝑖𝑓    ℎ𝑗(𝑥) ≠ 0  
                                                         (2. 11) 

𝛽𝑖  = {
0        𝑖𝑓    𝑔𝑖(𝑥) ≤ 0  

𝛽𝑖 ≫ 0  𝑖𝑓    𝑔𝑖(𝑥) > 0   
                            

 

2.3.3.2 Barrier Method  

 

The goal of the barrier method is to prevent point x from ever approaching the boundary of the 

feasible region. The method introduces a barrier function 𝐵(𝑔(𝑥)) ≥ 0, which is differentiable 

and approaches ∞, as 𝑔𝑖(𝑥) → 0
− and  requires a start point that over satisfies the constraint. 

For example:  

   −∑ln(−𝑔𝑖(𝑥)), 𝑏(𝑥) = −∑
1

𝑔𝑖(𝑥)

𝑚

𝑗=1

𝑚

𝑗=1

 

Barrier function method is shown by Equation 2. 12. 

B(𝜀(𝑘)) =  𝑚𝑖𝑛 {𝑓(𝑥) + 𝜀(𝑘)𝑏(𝑥)} ⟹ 𝑥(𝑘)                 (2. 12) 
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s.t.  𝑔(𝑥) < 0             

Where the parameters sequence {𝜀(𝑘)}
k∈N
  satisfies the condition  

0 < 𝜀(𝑘+1) < 𝜀(𝑘) 𝑎𝑛𝑑 𝜀(𝑘)  → 0. 

2.3.3.3 Sequential Unconstrained Minimization Techniques (SUMT) 

The Sequential Unconstrained Minimization Techniques (SUMT) method, presented by Fiacco 

and McCormick [12], is used to convert the constrained problem to the equivalent unconstrained 

optimization problem. SUMT implements the penalty method in order to find a suitable initial 

point, as well as taking advantage of the barrier method to make sure that the point will over 

satisfy the inequality constraints. 

The steps of the SUMT search for the optimal solution are shown in the following sequence. 

1. Choose the following parameters 

 R Initial value for r 

 𝜃 Control rate of reduction r 

 𝜀 Satisfactory error tolerance 

 k=Iteration number (set to be initially 0) 

2. Search for an initial point 𝑥0 that could over satisfy the inequality constraints and 

boundary conditions of an bjective function while being close enough to satisfy the 

equality constraints as well. 

3. Form the barrier function 𝐵(𝑥, 𝑟), which consists of a specific term for each of the 

constraints and bounds. Combine the original form of an unconstrained objective 

function with this function to create the new objective equation. Minimize 𝐹(𝑥) =

𝑓(𝑥) + 𝐵(𝑥, 𝑟). 

4. Find the optimal point 𝑥𝑘+1 for the function  𝐹(𝑥) using the starting point 𝑥𝑘 (using 

unconstrained Non-Linear Programming(NLP) methods, such as gradient base methods). 

5. Consider the stopping conditions, 𝑖𝑓 |𝑥𝑘+1 − 𝑥𝑘| ≤ 𝜀 , then 𝑥𝑘+1 is the optimal solution 

and the cycle is over. Otherwise, reduce the value of 𝑟: 𝑟 ← 𝑟𝜃, increase the value of  

𝑘: 𝑘 ← 𝑘 + 1 and start from step 2 [12] [13]. 
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 2.3.3.4 Lagrange Multiplier 

The Lagrange multiplier method can find the solution to optimization problems with equality 

constraints (Equation 2.13). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓(𝑥)                                          (2.13) 

                    𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶   ℎ𝑖(𝑥) = 0,     𝑗 = 1, … . ,𝑚 < 𝑛                         

The Lagrange function can be formed as Equation 2.14. 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) +∑𝜆𝑗ℎ𝑗(𝑥) = 𝑓(𝑥) + 𝜆
𝑇ℎ(𝑥)

𝑚

𝑗=1

          (2.14) 

𝜕𝐿

𝜕𝑥𝑖
(𝑥∗, 𝜆∗) = 0 , 𝑖 = 1,… . , 𝑛 

𝜕𝐿

𝜕𝜆𝑗
(𝑥∗, 𝜆∗) = 0 , 𝑗 = 1,… . ,𝑚 

Where λ represents m×1 vector of Lagrange multipliers, one for each constraint, 𝑥∗ is the 

minimum solution, and 𝜆∗is a set of associated Lagrange multipliers. 

In case of a quadratic objective function and linear constraint, partial derivative could be found 

according to Equation 2.15.  

𝐿(𝑥, 𝜆) =  
1

2
𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐 + 𝜆𝑇(𝐶𝑥 − 𝑑)                      (2.15) 

𝜕𝐿

𝜕𝑥
= 𝐴𝑥 + 𝑏 + 𝐶𝑇𝜆 = 0 

𝜕𝐿

𝜕𝜆
= 𝐶𝑥 − 𝑑 = 0 

Results are presented in Equation 2.16 by the linear system, which can be solved directly. 

                                    [𝐴 𝐶𝑇

𝐶 0
] [
𝑥∗

𝜆∗
] = [

−𝑏∗

𝑑
]                        (2. 16) 

2.3.4 Non-Gradient Based Methods  

Gradient–free optimization methods are among the commonly applied numerical techniques 

used to find the local optimum of an objective function in a multidimensional space.  Powell’s 

conjugate direction method and the Nelder-Mead simplex algorithm are well-known approaches 
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in this classification. Both methods are capable of finding the local minimum in a non-linear, 

unconstrained optimization problem [14]. 

The Nelder-Mead simplex method performs a multi-dimensional search by heuristic algorithms. 

The method is efficient and the computational process is compact and robust, while it does not 

require the function to be derivate or smooth. The process simply makes use of a simplex (a 

triangle in ‘n’ dimensions) and generates a sequence of triangles in different shapes, for which 

the function values at the vertices get smaller and smaller [11]. 

 

2.4 Global Optimization Algorithms 

 “Global optimization is a branch of applied mathematics and numerical analysis that deals with 

the global optimization of a function or a set of functions according to some criteria” [15]. 

Typically, these techniques are proposed to return the best possible set of input values for which, 

the objective function generates the best optimal solution (among multiple optima), considering 

the constraints of the model.  

In Figure 2.7, the minima at x ≈-1 represent the concept of local optimal (local minimum) in 

respect to the objective function f(x), while x=0 represents a globally optimal solution (global 

minimum) for this function. Depending on the adopted method, all three points could be reached 

by local optimization methods.  

 

Figure 2.7: One Dimensional Multi-Model Function [9]  
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2.4.1 Classification and History 

Thomas Weise [16] presented a rough taxonomy of global optimization methods in his book, 

named ‘Global Optimization Algorithms- Theory and Application’ presented, shown in Figure 

2.8. Global optimization techniques are mainly classified as either deterministic or probabilistic 

algorithms. 

 

 

 

Figure 2.8: The Taxonomy of Global Optimization Algorithms [16] 
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A deterministic algorithm is a mathematical function that generally defines a unique set of 

solution to the specific set of input values in its domain. The deterministic method makes use of 

an explicit relation between the set of solution candidates and their fitness by exploring the search 

space. On the other hand, if the relation is very complicated or the search space has a large 

dimension, deterministic methods will no longer be efficient and probabilistic algorithms will be 

used to make the optimization feasible.  

 

Probabilistic methods were refined 50 years ago; the most famous branch of this family are 

known to be Monte Carlo approaches. These techniques guarantee to improve the solutions in a 

short time, while the results might not be the global answer [16]. 

Heuristics algorithms are mathematical functions used in deterministic algorithms for global 

optimization to define the processing order of candidate solutions, while probabilistic methods 

may only rely on parameters that have been chosen by heuristic algorithms [16]. 

A metaheuristic method is a higher-level procedure, proposed to generate an efficient solution 

to an optimization problem. These algorithms, which are often nature-inspired, can be applied to 

solve complex optimization problems with uncertain, stochastic, dynamic information. For 

example, evolutionary algorithms are inspired by the behavior of biological evolution, and 

candidate solutions are considered as individuals competing in a virtual environment [17] [18]. 

Figure 2.9 presents different methods in each classification of metaheuristic groups which are 

the most popular metaheuristic methods between global optimization techniques.  
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Figure 2.9: Metaheuristic Classification [19] 
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2.5 Teaching-Learning-Based Optimization (TLBO) algorithm  

2.5.1 TLBO Overview 

 Teaching-Learning-Based Optimization (TLBO) algorithm is a popular method among 

metaheuristic techniques with relatively competitive performances.   

The TLBO algorithm is a nature-inspired method proposed by Rao and colleagues [20]. This 

method is also a population-based algorithm which uses a population of solutions to proceed to 

the optimal solution. The population is considered as a group or class of learners. The most 

attracting point about the algorithm is that it does not need any algorithm-specific parameter to 

be tuned and only common controlling parameters like population size and the number of 

generations is required for its working. The method has gained wide acceptance for it’s 

simplicity and the ability to find the global or near-global optimum solutions in less number of 

function evaluations rather than other metaheuristic algorithms [21].  

 

 TLBO is inspired by the process of knowledge in the classroom environment. The method 

consists of two steps: ‘Teacher phase’ and ‘Learner Phase’. ‘Teacher Phase’ means acquiring 

knowledge from a teacher, and ‘Learner Phase’ means learning by interacting with classmates. 

The subjects offered to the learners are considered to be different design variables for the 

objective function of the optimization problem. The learners ‘result is analogous to the ‘fitness’ 

of the optimization problem [20] [22]. The teacher is considered as the best optimal solution to 

the problem in the first step. TLBO focus on the influence of the teacher on the learners and the 

influence of learners on their classmates. The learners’ results are typically represented by the 

student’s mean grade. The teacher attempts to empower the students by increasing their 

knowledge and improving their grades. This will consequently result in a better class average 

based on his or her capabilities and teaching skills. On the other hand, despite the great efforts 

made by the teacher for increasing student’s grades, the quality of students sitting in the class 

cannot be ignored as an important factor that affects their grades.  Quality of students is assessed 

through the mean value of the class population. Moreover, the teacher is responsible to make 

efforts to bring the students into a higher level of knowledge. A new teacher with better 

qualifications and skills would be required to teach the classroom at this higher level [20] [22]. 
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Some notes have reported remarkable results about TLBO outperforming ES, PSO, ABC, DE, 

and GEM on a number of benchmarks and constrained optimization problems where TLBO  

reaches better or equal optimal solutions much faster than the other methods, as reported in [22] 

[23]. 

 

Figure 2.10: Model for the distribution of marks obtained by learners taught by two different teachers 

[20] 

Figure 2.10 shows the distribution of marks achieved by the learners in two different classes 

[20]. Assuming that there are two different teachers for each class, T1 and T2, teaching the same 

subject to the same merit level learners in the classes. Curve 1 and Curve 2 represent the obtained 

marks, by learners taught by teacher T1 and T2 respectively, while both distributions are 

assumed to be normal. M1 and M2 represent the mean factors, as the main difference between 

both groups’ results. As it can be seen in Figure 2.10, Curve 2 represents better marks obtained 

by students taught by teacher T2. Clearly, the comparison indicates that a better instructor 

conducts a better mean for the results of the learners. 

The learners also improve their level of knowledge by interacting with other learners, which will 

increase their results.  

 

Figure 2.11:  Model for the distribution of marks obtained for a group of learners [20] 



39 

 

 

Figure 2.11 illustrates a normal distribution model for the marks obtained by the learner for a 

class with Curve-A having mean MA. By considering the teacher as the most knowledgeable 

person in the group, the best learner in the society will be imitated as a teacher (TA in Figure 

2.11). The teacher TA will try to improve the mean level of the class according to his or her 

teaching capabilities. Teacher TA will put maximum efforts to proceed the mean MA toward the 

new mean, MB, which is close to her or his level of knowledge depending on his or her 

capabilities; but the learners will gain the knowledge not only according to the quality of the 

teacher but also depending on the merit level of the students present in the class, which is judged 

from the mean value of the society. The quality of the students can improve to the stage MB by 

the efforts of teacher TA, where the learner requires a superior teacher with greater knowledge 

than themselves. Consequently, the algorithm will be followed by the new Curve-B with new 

teacher TB. 

2.5.2 TLBO Algorithm  

Table 2.2 presents the TLBO algorithm. As a population-based algorithm, the initial phase in 

TLBO starts with randomly generating a population of candidate solutions in the search space. 

The problem search space consists of n dimensions, and each dimension should satisfy its upper 

and lower boundaries. The process is divided into two parts namely: the ‘Teacher Phase’ and the 

‘Learner Phase’ [20] [24]. 

 

 Teacher Phase 

In this phase, the teacher tries to increase the knowledge of learners and increase the mean result 

of the class in the subject taught by him or her depending on his or her capability [20]. This 

procedure is exposed in the algorithm between lines (11–14) in Table 2.2. [22] 

 

 Learner Phase 

In this phase, the students improve their level of knowledge by interacting with other learners. 

A learner can improve his or her knowledge if the other randomly selected learner has more 

knowledge than him or her.  The procedure for the learner phase is given in lines (27-28) in 

Table 2.2 [22]. 
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Table 2.2: Algorithm (TLBO  pseudocode) [22] 

 

 
 

 

 

Figure 2.12 presents the flowchart of Teaching-Learning-Based Optimization (TLBO) 

algorithm. 
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Figure 2.12: Flowchart of TLBO [20] [22] 
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  2.5.3 Case Study of a Constrained Optimization Problem with TLBO Algorithm  

 In this case study, a constrained benchmark function of Himmelblau is solved with the TLBO 

algorithm adopted from [21]. The objective function needs to be minimized by values of 𝑥1 and 

𝑥2  considering the given constraints.  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥𝑖) = (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 − 7)2 

                                    𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑔1(𝑥) = 26 − (𝑥1 − 5)
2 − 𝑥2

2 ≥ 0, 

𝑔2(𝑥) = 20 − 4𝑥1 − 𝑥2 ≥ 0, 

−5 ≤ 𝑥1 ,  𝑥2 ≤ 5 

 

The known solution to this benchmark function is  0 for  𝑥1 = 3 and 𝑥2 = 2 and 𝑔1(𝑥) = 18  

and 𝑔2(𝑥) = 16 according to [21]. The population size is assumed to be five (numbers of 

learners). There are two design variables,  𝑥1 and 𝑥2, and one iteration as the termination 

criterion. 

 Table 2.3 presents the initial population which is randomly generated within the ranges of 

variables and provides the corresponding values for the objective function. The mean values of 

𝑥1 and 𝑥2 are calculated. The lowest value of 𝑓(𝑥) is considered as the best learner in this 

minimization problem (it is supposed as an equivalent to the teacher). The penalty factors will 

be assigned to the objective function in case of any violation to the given constraints upon to the 

designer/decision maker (in this case the penalty 𝑝1 for violation of 𝑔1(𝑥) is considered as 10 ∗

(𝑔1(𝑥))
2 and the penalty 𝑝2 for violation of 𝑔2(𝑥) is considered as 10 ∗ (𝑔2(𝑥))

2 ). The fitness 

function is called f'(x) and is formulated according to Equation 2.17 as a minimization problem 

considering the penalty factors.  The fitness function, f'(x), is called the pseudo-objective 

function. 

 

                                 𝑓′(𝑥) = 𝑓(𝑥) + 10 ∗ (𝑔1(𝑥))
2
+ 10 ∗ (𝑔2(𝑥))

2                           (2.17) 
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Table 2.3: Initial population 

𝑥1 𝑥2 𝑓(𝑥) 𝑔1(𝑥) 𝑝1 𝑔2(𝑥) 𝑝2 f'(x) 

3.220 0.403 13.13922 22.66919 0 6.7170 0 13.13922 

0.191 2.289 77.71054 -2.36600 55.9796 16.9470 0 133.69010 

3.182 0.335 14.02423 22.58265 0 6.9370 0 14.02423 

1.660 4.593 261.57319 -6.25124 390.7800 8.7670 0 652.35320 

2.214 0.867 43.64116 17.48651 0 10.2770 0 43.64116 

Mean=2.093 Mean=1.697          

 

In this step, the teacher tries to improve the mean result of the learners. The 𝑑𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒𝑚𝑒𝑎𝑛 

values for 𝑥1 and 𝑥2 are calculated by assuming the random numbers of 𝑟1 = 0.25 and 𝑟2 = 0.43 

for 𝑥1 and 𝑥2 respectively and 𝑇𝑓 = 1, shown by Equations (2.18) and (2.19): 

 

𝑑𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒𝑚𝑒𝑎𝑛(𝑥1) = 0.25 ∗ (3.22 − 2.093) = 0.2817                    (2.18) 

𝑑𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒𝑚𝑒𝑎𝑛(𝑥2) = 0.43 ∗ (0.403 − 1.697) = −0.55642             (2.19) 

 

The values under the 𝑥1 and 𝑥2 columns in Table 2.3 are added by the calculated  𝑑𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒𝑚𝑒𝑎𝑛 

values. Table 2.4 presents the new results for 𝑥1 and 𝑥2, penalties and the values of the objective 

function and pseudo-objective function. 

 

Table 2.4: New values of the variables, objective function and the penalties (teacher phase) 

𝑥1 𝑥2 𝑓(𝑥) 𝑔1(𝑥) 𝑝1 𝑔2(𝑥) 𝑝2 f'(x) 

3.50175 -0.15342 13.30313 23.7317 0 6.14642 0 13.30313 

0.47275 1.73258 94.22118 2.50217 0 16.37642 0 94.22118 

3.46375 -0.22142 12.76312 23.5909 0 6.36642 0 12.76312 

1.94175 4.03658 136.437 0.35312 0 8.19642 0 136.437 

2.49575 0.31058 39.32602 19.63227 0 9.70642 0 39.32602 

 

Completing the teacher phase of the TLBO algorithm, the results of f'(x) in Table 2.3 and 2.4 are 

compared and the best values are placed in Table 2.5.  
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Table 2.5: Updated values of the variables, objective function and the penalties based on fitness 

comparison (teacher phase) 

𝑥1 𝑥2 𝑓(𝑥) 𝑔1(𝑥) 𝑝1 𝑔2(𝑥) 𝑝2 f'(x) 

3.22 0.403 13.13922 22.66919 0 6.717 0 13.13922 

0.47275 1.73258 94.22118 2.50217 0 16.37642 0 94.22118 

3.46375 -0.22142 12.76312 23.5909 0 6.36642 0 12.76312 

1.94175 4.03658 136.437 0.35312 0 8.19642 0 136.437 

2.49575 0.31058 39.32602 19.63227 0 9.70642 0 39.32602 

 

The learner phase considers the interaction between students to improve their knowledge. In this 

example, the interaction is assumed to have a random manner. Table 2.6 shows the new values 

of 𝑥1 and 𝑥2 in the first step of learner phase while the random numbers are considered to be  𝑟1 =

0.47 for 𝑥1 and 𝑟2 = 0.33 for  𝑥2 . 

 

Table 2.6: New values of the variables, objective function and the penalties (learner phase) 

𝑥1 𝑥2 𝑓(𝑥) 𝑔1(𝑥) 𝑝1 𝑔2(𝑥) 𝑝2 f'(x) Interaction 

4.5112 -0.03576 92.96006 25.75979 0 1.99096 0 92.96006 1 & 2 

1.42356 1.26332 75.2906 11.61309 0 13.04244 0 75.2906 2 & 5 

3.57831 -0.42747 12.38652 23.79606 0 6.11423 0 12.38625 3 & 1 

2.20213 2.807 20.67471 10.29267 0 8.38448 0 20.67471 4 & 5 

2.75613 -0.919 30.24144 20.12048 0 9.89448 0 30.24144 5 & 4 

 

The results of  f'(x) in Tables 2.5 and 2.6 are compared and the best values are placed in Table 

2.7 completing the learner phase. 

 

Table 2.7: Updated values of the variables, objective function and the penalties based on fitness 

comparison 

𝑥1 𝑥2 𝑓(𝑥) 𝑔1(𝑥) 𝑝1 𝑔2(𝑥) 𝑝2 F'(x) 

3.22 0.403 13.13922 22.66919 0 6.7170 0 13.13922 

1.42356 1.26322 75.2906 11.61309 0 13.04244 0 75.2906 

3.57831 -0.42747 12.38652 23.79606 0 6.11423 0 12.38652 

2.20213 2.807 20.67471 10.29267 0 8.38448 0 20.67471 

2.75613 -0.919 30.24144 20.12048 0 9.89448 0 30.24144 

 

As can be seen from the tables, the value of f'(x) is minimized from 13.13922 at the beginning 

of iteration to 12.38652 at the end of the first iteration. The TLBO algorithm is able to reach the 

known results of this benchmark (0 for  𝑥1 = 3 and 𝑥2 = 2 and 𝑔1(𝑥) = 18  and 𝑔2(𝑥) = 16 

according to [21]) by increasing the number of iterations. Computer programs such as 
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MATLAB, can be used to execute the TLBO algorithm for solving the unconstrained and 

constrained optimization problems.  
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2.6 More Case Studies of Optimization Problems 

2.6.1 Case Study of Unconstrained Nonlinear Optimization Problem  

The goal of this case study is to minimize the presented unconstrained function, by setting the 

partial derivatives equal to zero and solving the function by parameters value. 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥1
2 + 2𝑥2

2 + 3𝑥3
2 + 𝑥1𝑥2 + 𝑥2𝑥3 − 8𝑥1 − 16𝑥2 − 32𝑥3 + 110 

Equating the first derivatives to zero, result in  

𝜕𝑓

𝜕𝑥1
= 2𝑥1 + 𝑥2 − 8 = 0 

𝜕𝑓

𝜕𝑥2
= 𝑥1 + 4𝑥2 + 𝑥3 − 16 = 0 

𝜕𝑓

𝜕𝑥3
= 𝑥2 + 6𝑥3 − 32 = 0 

[
2 1 0
1 4 1
0 1 6

] [

𝑥1
𝑥2
𝑥3
] = [

8
16
32
] 

Using MATLAB and 𝑋 = 𝐴\𝐵 command, the optimal solution for the function is resulted, 

(𝑥1̂ 𝑥2̂ 𝑥3̂) = (3 2 5) 

where the function value is: 

𝑓(3 2 5) = 2 

To see if this point is the minimum, the Hessian matrix is formed. 

𝐻(�̂�) = [
2 1 0
1 4 1
0 1 6

] 

Using MATLAB function eig(H), the eigenvalues are found to be 1.55, 4.0 and 6.45 which are 

all positive. Thus the Hessian matrix is a positive definite matrix and (3 2 5) is a minimum 

point. 
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2.6.2 Case Study of Constrained Nonlinear Optimization Problem 

2.6.2.1 Solution by Lagrange Multiplier Method 

In this case study, the main propose is to apply Lagrange multiplier method for solving 

constrained parameter optimization to determine the minimum distance from the origin of the 

‘xy’ plane to a circle described by: 

Constraint:       (𝑥 − 8)2 + (𝑦 − 6)2 = 25 

The minimum distance is obtained by minimization of the distance square, given by:  

Objective Function:       𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 

The MATLAB plot command is used to plot the circle shown in Figure 2.13 [1]. 

 

 

Figure 2.13: Constrained function of constrained nonlinear optimization problem case study 

 

Forming the Lagrange function, we obtain: 

ℓ = 𝑥2 + 𝑦2 + 𝜆[(𝑥 − 8)2 + (𝑦 − 6)2 − 25] 

 

The necessary condition for extrema are: 

𝜕ℓ

𝜕𝑥
= 2𝑥 + 𝜆(2𝑥 − 16) = 0 

(4,3) 

(12, 9) 
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2𝑥(𝜆 + 1) = 16𝜆 

𝜕ℓ

𝜕𝑦
= 2𝑦 + 𝜆(2𝑦 − 12) = 0 

2𝑦(𝜆 + 1) = 12𝜆 

𝜕ℓ

𝜕𝜆
= (𝑥 − 8)2 + (𝑦 − 6)2 − 25 = 0 

Eliminating 𝜆 from the first two equation results in: 

𝑦 =
3

4
𝑥 

Substituting in third equation yields: 

25

16
𝑥2 − 25𝑥 + 75 = 0 

The solutions of above quadratic equations are 𝑥 = 12   𝑎𝑛𝑑  𝑥 = 4 . Thus, the corresponding 

extrema are at points (4,3) with 𝜆 = 1 , and (12, 9) with 𝜆 = −3. It is clear that the minimum 

distance is at point (4,3) and the maximum is at point (12, 9). From this example, clearly, the 

minimum distance is 5, located at (4,3).To distinguish this points, the second derivatives are 

obtained and the Hessian matrix evaluated at these points are formed. The matrix with positive 

eigenvalues is a positive definite matrix and the parameters corresponds to the minimum point.  

 

 

Table 2.8: Lagrange multiplier method, constrained optimization for the case study  

 𝜆 X Y f (x) 

Minimum Distance 1 4 3 25 

Maximum Distance -3 12 9 225 
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2.6.2.2 Solution by Newton-Raphson Method  

In many optimization problems, the direct solution is not possible and the equation needs to be 

solved with iterative methods. A significantly superior method applicable for solving presented 

continues function in case study 2, is the Newton-Raphson method.  

From the first two equations, x and y are found. These are 

𝑥 =
8𝜆

𝜆 + 1
 

𝑦 =
6𝜆

𝜆 + 1
 

Substituting in third equation results in 

𝑓(𝜆) =
100𝜆2

(𝜆 + 1)2
−
200𝜆

𝜆 + 1
+ 75 = 0 

This is a non-linear equation in terms of 𝜆 and can be solved by the Newton-Raphson method. 

Δ𝜆(𝑘) =
−Δf(𝜆)(𝑘)

(
𝑑𝑓
𝑑𝜆
)
(𝑘)

 

𝜆(𝑘+1) = 𝜆(𝑘) + Δ𝜆(𝑘) 

𝑑𝑓(𝜆)

𝑑𝜆
=

200𝜆

(𝜆 + 1)3
−

200

(𝜆 + 1)2
=
−200

(𝜆 + 1)3
 

The following commands show the procedure for the solution of the given case study, solved by 

the Newton-Raphson method and an initial estimate of 𝜆 = 0.4.  

Table 2.9 and 2.10 summarize the results of this method. After five iterations the solution 

converges to 𝜆 = 1.0, 𝑥 = 4 , 𝑎𝑛𝑑 𝑦 = 3, corresponding to the minimum length. If the program 

is run with the initial estimate of −2, the solution converges to 𝜆 = −3.0, 𝑥 = 12 , 𝑎𝑛𝑑 𝑦 = 9, 

which corresponds with maximum length [1]. 
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Table 2.9: Newton-Raphson method and iterative solution, Lambda= 0.4 

 

 

 

Table 2.10:  Newton-Raphson method and iterative solution, Lambda= -2 

 

 

The following commands show the MATLAB code for this case study, Newton-Raphson method 

[1]. 

% Iterative solution Using Newton method 

iter = 0;                                  % Iteration counter 

Df = 10;                  % Error in Df is set to a high value 

Lambda = input('Enter estimated value of Lambda = '); 

fprintf('\n ') 

disp(['     Iter      Df         J       DLambda   Lambda'  ... 

'      x         y']) 

while abs(Df)  >= 0.0001                % Test for convergence 

iter = iter + 1;                           % No. of iterations 

x = 8*Lambda/(Lambda + 1); 
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y = 6*Lambda/(Lambda + 1); 

Df = (x- 8)^2 + (y - 6)^2 - 25;                     % Residual 

J = -200/(Lambda + 1)^3;                          % Derivative 

Delambda =-Df/J;                          % Change in variable 

disp([iter, Df, J, Delambda, Lambda, x, y]) 

Lambda = Lambda + Delambda;              % Successive solution 

End 
 

2.6.3 MATLAB Optimization Toolbox  

The Optimization Toolbox includes programs or m-files that can be used to solve different types 

of optimization problems. Many publications provide information on the optimization toolbox, 

including algorithms and examples for different programs [25]. 

The use of any program or m-file in the optimization toolbox requires the following steps: 

 Selecting the appropriate program or m-file to solve the specific problem at hand.  

 Formulation of the optimization problem in the format expected by MATLAB. In general, 

this involves stating the objective function in a specific form such as a “minimization” 

type and the constraints in a specific form such as “less than or equal to zero” type. 

 The distinction between linear and nonlinear constraints. 

 Identification of lower and upper bounds on design variables. 

 Setting/changing the parameters of the optimization algorithm (based on the available 

options) [4], [25]. 

Each program or m-file in MATLAB can be implemented in several ways. For illustration, the 

help commands and the response for the program f-mincon are shown below. The function f-

mincon can be used in 12 different ways as indicated below (by the help command). The 

differences depend on the available data in the mathematical model of the problem and the 

information required from the solution to the problem. In using the different function calls, any 

data missing in the mathematical model of the optimization problem needs to be indicated using 

a null vector as [ ]. Note that the response is edited for brevity [4]. 

>> help fmincon 

 FMINCON finds a constrained minimum of a function of several 

variables. 

    FMINCON attempts to solve problems of the form: 

    min F(X)  subject to:  
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 A*X  <= B, Aeq*X  = Beq  (linear constraints) 

 C(X) <= 0, Ceq(X) = 0    (nonlinear constraints) 

 LB <= X <= UB            (bounds) 

 

X=FMINCON (FUN,X0,A,B) X=FMINCON (FUN,X0,A,B,Aeq,Beq) X=FMINCON 

(FUN,X0,A,B,Aeq,Beq,LB,UB)  

X=FMINCON (FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON) 

X=FMINCON (FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)  

X=FMINCON (FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS,... 

P1,P2,...) [X,FVAL] = FMINCON (FUN,X0,...)  

[X,FVAL,EXITFLAG] = FMINCON (FUN,X0,...)  

[X,FVAL,EXITFLAG,OUTPUT]=FMINCON (FUN,X0,...) 

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =FMINCON (FUN,X0,...) 

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD]=FMINCON (FUN,X0,...) 

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN]=FMINCON 

(FUN,X0,...). 
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Table 2.11 shows some of the MATLAB Optimization Toolbox commands [25]. 

 

Table 2.11: MATLAB Optimization Toolbox Commands [25] 
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2.6.3.1 Case Study Using MATLAB Optimization Toolbox: Unconstrained Optimization with 

Objfun 

Find the minimum of the Rosenbrock’s parabolic valley function, given by: 

 

𝑓(𝑥1, 𝑥2) = 100 (𝑥2 − 𝑥1
2)2 + (1 − 𝑥1)

2 

starting from the initial point ∶  𝑋1 = {
−1.2
1.0

} , 𝑋∗ = {
1
1
} 

𝑓1 = 24.0     𝑓∗ = 0.0 

Solution  

Step 1: Writing an M-file objfun.m for the objective function. 

function f= objfun (x) 

f= 100* (x(2)-x(1) *x(1))^2+(1-x(1))^2; 

 

Step 2: Invoking the unconstrained optimization program in a new MATLAB file. 

clc  

clear all  

warning off 

x0 = [-1.2,1.0]; % Starting guess  

f=objfun(x0)  

options = optimset('LargeScale', 'off');  

[x, fval] = fminunc (@objfun,x0,options) 

 

The values of function value at the starting point is f = 24.2000. Optimization completed because 

the size of the gradient is less than the default value of the optimality tolerance. The final result 

is obtained for x =[1.0000    1.0000] where the minimum of the Rosenbrock’s parabolic valley 

function is 2.8358e-11. 
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2.6.3.2 Case Study of Multivariable Minimization Problems Using MATLAB 

Function F-mincon 

The solution of multivariable minimization problems, with inequality and equality constraints, 

using the MATLAB function f-mincon is illustrated in this section [4]. 

Find the solution of presented function starting from the initial point 𝑋1  = {0.1 0.1 3.0}
𝑇 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) = 𝑥1
3 − 6𝑥1

2 + 11𝑥1 + 𝑥3 

Subject to 

 𝑥1
2 + 𝑥2

2−𝑥3
2 ≤ 0 

4 − 𝑥1
2 − 𝑥2

2−𝑥3
2 ≤ 0 

 𝑥3 − 5 ≤ 0 

−𝑥𝑖 ≤ 0 , 𝑖 = 1 , 2 ,3 

Solution 

Step 1: Write an M-file objfun.m for the objective function. 

function f= objfun (x) 

f= x(1)^3-6*x(1)^2+11*x(1)+x(3); 

 

Step 2: Write an M-file constraints.m for the constraints. 

function [c, ceq] = constraints (x)  

% Nonlinear inequality constraints  

c = [x(1)^2+x(2)^2-x(3)^2;4-x(1)^2-x(2)^2-x(3)^2;x(3)-5; -

x(1);-x(2);-x(3)];  

% Nonlinear equality constraints  

ceq = []; 

 

Step 3: Invoke constrained optimization program (write this in new MATLAB file). 

clc 

clear all 

warning off 

x0 = [.1,.1, 3.0]; 

% Starting guess 

f=objfun (x0)  

[c, ceq] = constraints (x0) 

options = optimset ('LargeScale', 'off'); 
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[x, fval]=fmincon (@objfun, x0, [], [], [], [], [], [], 

@constraints, options)  

[c, ceq] = constraints (x) % Check the constraint values at x 

 

The results for function value and constraints at the starting point is presented in Table 2.12. 

Local minimum found that satisfies the constraints. According to solver stopping criteria details, 

the optimization completed because the objective function is non-decreasing in feasible 

directions. Constraints are satisfied within the default value of the constraint tolerance. 

Table 2.12 summarizes the results achieved with MATLAB optimization toolbox using the f-

mincon function. 

 

Table 2.12: Results for Multivariable Minimization Problem Using MATLAB Function f-mincon 

 Initial Point Optimum Solution 

 

Variables 

𝑥1 0.1 0 

𝑥2 0.1 1.4142 

𝑥3 3 1.4142 

 

 

 

Constraints  

𝑥1
2 + 𝑥2

2−𝑥3
2 ≤ 0 -8.98 0 

4 − 𝑥1
2 − 𝑥2

2−𝑥3
2 ≤ 0 -5.02 0 

 𝑥3 − 5 ≤ 0 -2 -3.5858 

−𝑥1 ≤ 0 -0.1 0 

−𝑥2 ≤ 0 -0.1 -1.4142 

−𝑥3 ≤ 0 -3 -1.4142 

𝑓(𝑥) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) = 𝑥1
3 − 6𝑥1

2 + 11𝑥1 + 𝑥3 4.041 1.4142 
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2.7 Conclusions 

 

This chapter has provided an overview of optimization techniques typically used in 

engineering optimization applications. Optimization methods are being applied in a wide 

spectrum of industries and have reached a degree of maturity with rapid advances in 

computational techniques. In recent years, large-scale engineering systems, with multi-objective 

functions and a set of constraints, can be optimized with both accuracy and efficiency.  

 

In this chapter, the mathematical principles and foundations behind the optimization 

algorithms were discussed. The methods were classified as either local or global algorithm, while 

both constrained and unconstrained optimization problems were considered. The knowledge 

behind available algorithms would help the decision-maker choose the appropriate method, 

based on the optimization case at hand. Three numerical case studies with constraint and 

unconstrained objective function have been discussed. In the next chapter, the application of 

these studies in power systems will be explained explicitly. 
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Chapter 3 

 

 Optimal Power Flow 

 

3.0 Introduction 

The Optimal Power Flow (OPF) problem has a long research history spanning more than 45 

years. A comprehensive model and formulation of the economic dispatch problem including 

voltage and operating constraints were introduced and it was later named the optimal power flow 

problem. 

The main focus of OPF studies is based on the minimization of operational cost while 

considering the system constraints. There have been some efforts to point out other objective 

functions of the OPF problem, such as minimization of active and reactive power losses, 

variation in deregulated electricity markets, voltage stability indexes and minimization of 

emission index in recent years [26]. 

The main objective of this chapter is to provide a brief review of the Economic Dispatch (ED) 

problem and introduce the lambda iteration method through a few case studies. The load flow 

problem is presented and a comprehensive model of the OPF problem with different states has 

been represented. The concept of Security Constraint Optimal Power Flow (SCOPF) in a power 

system has been discussed and simulated on two standard case studies.  

 

3.1 Power Flow 

Power flow studies are the backbone of power system analysis and design. They are 

necessary for planning and designing the future expansion of power systems as well as 

determining the best operation of existing systems. In addition, power flow analysis is required 

for many analyses, such as transient stability and contingency studies. The principal information 

obtained from a power flow study is the magnitude and phase angle of the voltage at each bus 

and the real and reactive power flow in each line. In any interconnected power system of N buses, 
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the power injections at the buses are given by a set of 2N nonlinear simultaneous equations 

presented in order by Equations 3.1 and 3.2 [1] [27]. 

𝑃𝐺
𝑘 − 𝑃𝐷

𝑘 = 𝑉𝑘∑[𝑉𝑗[𝐺𝑗
𝑘 cos(𝛿𝑘 − 𝛿𝑗) + 𝐵𝑗

𝑘 sin(𝛿𝑘 − 𝛿𝑗)]]

𝑁

𝑖=1

         (3.1) 

𝑄𝐺
𝑘 − 𝑄𝐷

𝑘 = 𝑉𝑘∑[𝑉𝑗[𝐺𝑗
𝑘 sin(𝛿𝑘 − 𝛿𝑗) − 𝐵𝑗

𝑘 cos(𝛿𝑘 − 𝛿𝑗)]]

𝑁

𝑖=1

         (3.2) 

 

Where 𝑘 = 1, 2, … ,𝑁 

𝑉𝑘 is the voltage magnitude at bus 𝑘 

𝛿𝑘 is the voltage angle at bus 𝑘 

𝑃𝐺
𝑘 is the active power generation at bus 𝑘 

𝑃𝐷
𝑘 is the active power demand at bus 𝑘 

𝑄𝐺
𝑘 is the reactive power generation at bus 𝑘 

𝑄𝐷
𝑘 is reactive power demand at bus 𝑘 

𝐺𝑗
𝑘 is the real part of (𝑘, 𝑗) element of the bus admittance matrix 

𝐵𝑗
𝑘 is the imaginary part of (𝑘, 𝑗) element of the bus admittance matrix 

Generally, the goal of power flow studies is to determine the specification of three different types 

of buses in the network. At each bus, two of four quantities 𝛿𝑖, |𝑉𝑖|, 𝑃𝑖 , and 𝑄𝑖 are specified, and 

the remaining two are calculated.  

 

3.1.1 Load Buses 

A load bus or PQ bus is a non-generator bus where the total amount of active and reactive power 

generation is zero, usually the real power and reactive power of the load are known (according 

to previous records, load forecast or measurements). The unknown quantities are 𝛿𝑖, |𝑉𝑖|, which 

need to be calculated. This  is usually a generator bus.   
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3.1.2 Voltage Controlled Buses 

At voltage controlled buses, the voltage magnitude is kept at a constant and is generally called 

the generator bus or PV bus. Both of the quantities, |𝑉𝑖| and 𝑃𝑔𝑖 , are specified and the 𝛿𝑖 and 𝑄𝑖 

are the two unknown quantities that must be determined by power flow analysis.  

 

3.1.3 Slack Bus 

At the slack bus, the voltage angle 𝛿𝑘 is set to zero as a reference for the angles of all other bus 

voltages in the network. Figure 3.1 shows a bus schematic. The voltage magnitude of the slack 

bus |𝑉𝑘|  is also specified. This bus has the ability to either absorb or supply active or reactive 

power. The other two unknown quantities,  𝑃𝐺
𝑘 and  𝑄𝐺

𝑘
 , should be calculated by power flow 

analysis [1]. 

 

Figure 3.1:  A typical bus in a network [1] 
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3.2 Economic Dispatch (ED) 

The main objective of the Economic Dispatch (ED) problem is to minimize the total fuel cost of 

generation. The problem is subject to meet a set of equality constraints with respect to load and 

generation balances. The upper and lower limits on the output of generating units would provide 

a set of inequality constraints which needs to be satisfied by the Economic Dispatch solution. 

 

3.2.1 Economic Dispatch Neglecting Losses and No Generator Limits 

The simplest scenario for solving the Economic Dispatch problem neglects transmission losses. 

In this case, the problem does not consider system configuration and line impedance [1] [27]. 

This model assumes that the system consists of only one bus where all the generators and loads 

are connected. Figure 3.2 shows the shared bus in the simplest case of Economic Dispatch. The 

Economic Dispatch is the simplest model used when the transmission distance is very short and 

the load density is very high. 

 

 

Figure 3.2:  Economic Dispatch, Considering All Generators in One Shared Bus [1] 

 

Since transmission lines are neglected, the total demand, 𝑃𝐷, is the sum of all generation. A cost 

function, 𝐶𝑖,  is assumed to be known for each plant such that the objective function (total 

production cost) is minimum and subject to the constraint as defined by the Equations 3.3 and 

3.4 [1]. 

 

Minimize   𝐶𝑡 = ∑ 𝐶𝑖 = ∑ (𝛼𝑖 + 𝛽𝑖
𝑛
𝑖=1

𝑛𝑔
𝑖=1

𝑃𝑖 + 𝛾𝑖𝑃𝑖
2)       (3.3) 

𝐶1 𝐶2 𝐶𝑛𝑔 

𝑃1 𝑃2 𝑃𝑛𝑔 

𝑃𝐷 
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Subject to:    ∑ 𝑃𝑖 = 𝑃𝐷                                                      (3.4)
𝑛𝑔
𝑖=1

 

𝐶𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 

𝑃𝐷 = total demand 

𝑃𝑖 = generation of 𝑖th plant 

𝑛𝑔 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡𝑠. 

 

A typical approach is to augment the constraints into an objective function by using the Lagrange 

multipliers according to Equation 3.5. 

 

     ℒ = 𝐶𝑡 + 𝜆 (𝑃𝐷 − ∑ 𝑃𝑖)
𝑛𝑔
𝑖=1

               (3.5) 

 

The minimum of this unconstrained function is found where the derivative of the function to its 

variables is zero (Equation 3.6). 

 

   
∂ℒ

∂Pi
= 0 ⟹  

𝜕𝐶𝑡
𝜕𝑃𝑖

+ 𝜆(0 − 1) = 0    
𝐶𝑡=𝐶1+𝐶2+⋯+𝐶𝑛𝑔       

⇒                  
∂Ct
∂Pi

=
dCi
dPi

= λ     (3.6)   

 

Therefore all units have the same incremental operating cost, denoted here by 𝜆,   in order to 

minimize the total operating cost, 𝐶𝑡.     

The coordination equation can be expressed as Equation 3.7. 

 

𝑃𝑖 =
𝜆 − 𝛽𝑖
2𝛾𝑖

                 (3.7)  
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A simple example of the economic dispatch problem neglecting losses and generation limits is 

presented below. The example is cited from the Saadat textbook [1]. 

 The fuel cost functions for three thermal plants are given by: 

 

𝐶1 = 500 + 5.3 𝑃1 + 0.004 𝑃1
2        $/ℎ𝑟 

𝐶2 = 400 + 5.5 𝑃2 + 0.006 𝑃2
2        $/ℎ𝑟 

𝐶3 = 200 + 5.8 𝑃3 + 0.009 𝑃3
2        $/ℎ𝑟 

 

Where 𝑃1, 𝑃2 , and 𝑃3 are in Megawatts (MW). The total load demand is 800 MW. Neglecting 

line losses and generator limits, the economic dispatch results and the total cost in $/hr can be 

found by using either analytical or iterative methods [1]. The analytical solution uses the 

derivative of cost functions using the Equation 3.6, in order to find the same incremental 

operating cost according to the following equation: 

𝜕𝐶1
𝜕𝑃1

= 5.3 + 0.008 𝑃1 = 𝜆 

𝜕𝐶2
𝜕𝑃2

= 5.5 + 0.012 𝑃2 = 𝜆 

𝜕𝐶3
𝜕𝑃3

= 5.8 + 0.018 𝑃3 = 𝜆 

𝜆 =
𝜕𝐶1
𝜕𝑃1

=
𝜕𝐶2
𝜕𝑃2

=
𝜕𝐶3
𝜕𝑃3

 

𝑃1 + 𝑃2 + 𝑃3 = 800 MW 

Converting the above equations to matrix form: 

[

1 1   1         0
0.008 0   0      − 1
0
0

0.012
0

  0       − 1
0.018 −1

] [

𝑃1
𝑃2
𝑃3
𝜆

] = [

800
−5.3
−5.5
−5.8

] 

 

Then the dispatch generation of each unit and the incremental fuel cost are: 

P1 = 400 MW 

P2 = 250 MW 

P3 = 150 MW 

𝜆 = 8.5  $/𝑀𝑊ℎ 
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The total fuel cost is: 

𝐶𝑇 = 𝐶1+𝐶2 + 𝐶3 

𝐶𝑇 = 500 + 5.3 (400) + 0.004 (400)2 + 400 + 5.5 (250) + 0.006 (250)2 + 200

+ 5.8 (150) + 0.009 (150)2 = 6,682.5  $/ℎ 

The iterative solution relies on the gradient method and uses an initial value for the coordination 

equation.  

In this case, the initial value is assumed to be  𝜆(1) = 6.0  $/𝑀𝑊ℎ.  To form the coordination 

equations using Equation 3.5,  we will have: 

 

𝑃1
(1) =

𝜆 − 𝛽1
2𝛾1

=
6.0 − 5.3

2 × 0.004
= 87.5000 MW 

𝑃2
(1) =

𝜆 −𝛽2

2𝛾2
=
6.0 −5.5

2×0.006
= 41.6667 MW 

𝑃3
(1) =

𝜆 − 𝛽3
2𝛾3

=
6.0 − 5.8

2 × 0.009
= 11.1111 MW 

 

Since PD = 800 MW the error ΔP is: 

 

𝛥𝑃 
(1) = 800 − (87.5 + 41.6667 + 11.1111) = 659.7222 MW 

𝛥𝜆(1) =
659.7222 

1
2 × 0.004 +

1
2 × 0.006 +

1
2 × 0.009

=
659.7222 

263.8888
= 2.5   $/𝑀𝑊ℎ 

𝜆(2) = 6.0 + 2.5 = 8.5   $/𝑀𝑊ℎ 

𝑃1
(2) =

𝜆 − 𝛽1
2𝛾1

=
8.5 − 5.3

2 × 0.004
= 400 MW 

𝑃2
(2) =

𝜆 − 𝛽2
2𝛾2

=
8.5 − 5.5

2 × 0.006
= 250 MW 

𝑃3
(2) =

𝜆 −𝛽3

2𝛾3
=
8.5 −5.8

2×0.009
= 150 MW 

𝛥𝑃 
(2) = 800 − (400 + 250 + 150) = 0 MW 
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Since 𝛥𝑃 
(2) = 0, the equality constraint is met in two iteration. Therefore, the economic 

dispatch results are:   

𝑃1 = 400 MW 

𝑃2 = 250 MW 

𝑃3 = 150 MW 

The total fuel cost is: 

𝐶𝑡 = 𝐶1 + 𝐶2 + 𝐶3

= 500 + 5.3 (400) + 0.004 (400)2 + 400 + 5.5 (250) + 0.006 (250)2

+ 200 + 5.8 (150) + 0.009 (150)2 = 6,682.5        $/ℎ𝑟 

 

3.2.2 Economic Dispatch Neglecting Losses and Including Generator Limits 

Considering the generation limits of a power plant, the power output of any generator should not 

exceed its rating, nor should it be below the necessary rating for stable boiler operations. Thus, 

the generations are restricted to lie within given minimum and maximum limits.  The problem is 

finding the real power generation for each generator such that the total fuel cost function is 

minimum, that it is subject to the equality constraint given by Equation 3.4 and the inequality 

constraints given by Equation 3.8 [1] [27].  

 

      𝑃𝑖 (𝑚𝑖𝑛) ≤ 𝑃𝑖 ≤ 𝑃𝑖 (𝑚𝑎𝑥)                 𝑖 = 1,… , 𝑛𝑔       (3.8)   

 

Where  𝑃𝑖 (𝑚𝑖𝑛) is the minimum generating limit for plant i and  𝑃𝑖 (𝑚𝑎𝑥) is the maximum 

generating limit for plant i. 

The numerical solution for an estimated 𝜆, can be found from the coordination equation which 

is presented by Equation 3.7, and iteration is continued until Equation 3.4 is satisfied. As soon 

as any plant reaches its maximum or minimum power generation limits, the plant becomes kept 

at the limit. In effect, the plant output becomes a constant, and only the unviolated plants must 

operate at an equal incremental cost [1]. 

A simple example of the economic dispatch problem neglecting losses and including generation 

limits is presented below. This example is cited form Glover’s textbook [27]. 
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An area of an interconnected power system has two fossil-fuel units operating on economic 

dispatch. The variable operating costs of these units are given by: 

 

𝐶1 = 10𝑃1 + 8 × 10−3𝑃1
2        $/ℎ𝑟         100 ≤ 𝑃𝐺1 ≤ 600 𝑀𝑊 

 𝐶2 = 8𝑃2 + 9 × 10−3𝑃2
2         $/ℎ𝑟         400 ≤ 𝑃𝐺1 ≤ 1000 𝑀𝑊 

 

Where 𝑃1 and 𝑃2 are in Mega Watts (MW). 

The goal is to determine the power output and the incremental operating cost of each unit such 

that the results could minimize the total operating cost function (𝐶𝑇), while the total load demand 

(𝑃𝐷) varies between 500MW to 1500 MW. The generating unit inequality constraints will be 

considered and transmission losses can be neglected [27]. 

At light loads, unit 2 operates at its lower limit of 400 MW, where its incremental operating cost 

is  
𝑑𝐶2

𝑑𝑃2
= 15.2  $/MWh. In this case, the additional load comes from unit1 until 

𝑑𝐶1

𝑑𝑃1
=

15.2  $/𝑀𝑊ℎ. 

𝑑𝐶1
𝑑𝑃1

= 10 + 16 × 10−3𝑃1 = 15.2  $/𝑀𝑊ℎ 

𝑃1 = 325 𝑀𝑊 

 

At this point the total power is :       𝑃𝑇 = 325 + 400 = 725 𝑀𝑊 

For 𝑃𝑇 less than 725 MW, where 𝑃1is less than 325 MW, the incremental operating fuel cost of 

the area is determined by unit 1 alone. 

At heavy loads, unit 1 operates at its upper limit of 600 MW, where its incremental operating 

cost is 
𝑑𝐶1

𝑑𝑃1
=19.6 $/MWh. Additional load comes from unit 2 for all values of  

𝑑𝐶2

𝑑𝑃2
  greater than 

19.6  $/MWhr.  At  
𝑑𝐶2

𝑑𝑃2
= 19.6 $/MWh : 

𝑑𝐶2
𝑑𝑃2

= 8 + 18 × 10−3𝑃2 = 19.60 $/𝑀𝑊ℎ 

𝑃2 = 644 MW 

 

At this point the total power is :        𝑃𝑇 = 600 + 644 = 1244  𝑀𝑊 
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For 𝑃𝑇 greater than 1244 MW, where 𝑃2 is greater than 644 MW, the incremental operating fuel 

cost of the area is determined only by unit 2 . 

For  725 MW < 𝑃𝑇 < 1244 𝑀𝑊  ,  neither of the units has reached a limit value and the 

economic dispatch solution is the same as values given in Table 3.1 [27].  

Table 3.1 summarizes the results of the economic dispatch problem which considers the 

generator limits while neglecting the transmission losses in this example [27].  

 

Table 3.1: Economic Dispatch Solution Neglecting Losses and Including Generator Limits [27] 

 

 

3.2.3 Economic Dispatch Including Generator Limits and Losses 

When transmission distances are very small and load density is very high, transmission losses 

may be neglected and the optimal dispatch of generation is achieved with all plants operating at 

the equal incremental production cost. However, in a large interconnected network where power 

is transmitted over long distances with low load density areas, transmission losses are a major 

factor and they affect the optimum dispatch of generation. One common practice for including 

the transmission line losses is to express the total transmission loss as a quadratic function of the 

generator power outputs [1] [27]. 
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The basic quadratic form is the same as Equation 3.3 while considering 3.8 and 3.9: 

 

𝐶𝑡 =∑𝐶𝑖 =∑𝛼𝑖 + 𝛽𝑖

𝑛

𝑖=1

𝑛𝑔

𝑖=1

𝑃𝑖 + 𝛾𝑖𝑃𝑖
2                 (3.3) 

𝑃𝑖 (𝑚𝑖𝑛) ≤ 𝑃𝑖 ≤ 𝑃𝑖 (𝑚𝑎𝑥)              𝑖 = 1,… , 𝑛𝑔     (3.8) 

   ∑𝑃𝑖 = 𝑃𝐷 + 𝑃𝐿

𝑛𝑔

𝑖=1

                                                 (3.9) 

Where  𝑃𝑖 (𝑚𝑖𝑛) and 𝑃𝑖 (𝑚𝑎𝑥) are the minimum and maximum generating limits for plant i 

respectively. The common approach is to augment the constraints into the objective function by 

using the Lagrange multipliers which is shown by Equation 3.10: 

 

ℒ = 𝐶𝑡 + 𝜆 (𝑃𝐷 + 𝑃𝐿 − ∑ 𝑃𝑖) +
𝑛𝑔
𝑖=1

∑ 𝜇𝑖(𝑚𝑎𝑥)(𝑃𝑖 − 𝑃𝑖(𝑚𝑎𝑥)) + ∑ 𝜇𝑖(𝑚𝑖𝑛)(𝑃𝑖 − 𝑃𝑖(𝑚𝑖𝑛)) 
𝑛𝑔
𝑖=1

𝑛𝑔
𝑖=1

)  

(3.10) 

The minimum of this unconstrained function is found where the derivative of the function to its 

variables are zero according to Equation 3.11 [1]. 

{
 
 
 
 
 

 
 
 
 
 

𝜕ℒ

𝜕𝑃𝑖
= 0

𝜕ℒ

𝜕𝜆
= 0

𝜕ℒ
𝜕𝜇𝑖(𝑚𝑎𝑥)

= 𝑃𝑖 − 𝑃𝑖(𝑚𝑎𝑥) = 0

𝜕ℒ
𝜕𝜇𝑖(𝑚𝑖𝑛)

= 𝑃𝑖 − 𝑃𝑖(𝑚𝑖𝑛) = 0

𝜕𝐶𝑡
𝜕𝑃𝑖

+ 𝜆 (0 −
𝜕𝑃𝐿
𝜕𝑃𝑖

− 1) = 0

                         (3.11) 

Also,  

                             𝐶𝑡 = 𝐶1 + 𝐶2 +⋯+ 𝐶𝑛𝑔                                              (3.12) 

                       
𝜕𝐶𝑡
𝜕𝑃𝑖

=
𝜕𝐶𝑖
𝜕𝑃𝑖
                                                                        (3.13)  

                       
𝜕𝐶𝑖
𝜕𝑃𝑖

+ 𝜆
𝜕𝑃𝐿
𝜕𝑃𝑖

= 𝜆                         i = 1, … , 𝑛𝑔              (3.14) 
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The term 
𝜕𝑃𝐿

𝜕𝑃𝑖
  in Equation 3.14 is known as the incremental transmission loss. From the 

substitution of equation  
𝜕ℒ

𝜕𝜆
= 0 in Equation 3.10, as well as consideration of Equation 3.9, 

Equation 3.14 will be derived . this equation can be simplified in the form of Equation 3.15 [1]. 

 

                            
∂Ct

∂Pi
(

1

1−
∂PL
∂Pi

)  = λ            i = 1,… , ng                       (3.15)  

or          Li
∂Ct

∂Pi
= λ                        i = 1,… , ng 

 Where 𝐿𝑖  , is known as a penalty factor of plant 𝑖 and is given by Equation 3.16: 

                                      𝐿𝑖 =
1

1 −
𝜕𝑃𝐿
𝜕𝑃𝑖

                                                              (3.16)     

 

An example of the economic dispatch problem that considers generation limits and transmission 

losses is presented below. In this example, the generators’ cost functions, the transmission loss 

model and the incremental fuel cost for the area are provided by the given information. 

An area of an interconnected power system has two fossil-fuel units operating on economic 

dispatch. The variable operating costs of these units are given by [27]: 

𝐶1 = 10𝑃1 + 8 × 10−3𝑃1
2        $/ℎ𝑟         100 ≤ 𝑃𝐺1 ≤ 600 𝑀𝑊 

𝐶2 = 8𝑃2 + 9 × 10−3𝑃2
2         $/ℎ𝑟         400 ≤ 𝑃𝐺1 ≤ 1000 𝑀𝑊 

and the transmission loss model is given by: 

 

𝑃𝐿 = 1.5 × 10
−4𝑃1

2 + 2 × 10−5𝑃1𝑃2 + 3 × 10
−5𝑃2

2 

 

Where 𝑃1 and 𝑃2 are in megawatts. The goal of this example is to determine the power output of 

each unit, the total transmission losses, the total load demand, and the total operating cost, 𝐶𝑇 , 

when the area 𝜆 = 16.00 $/𝑀𝑊ℎ.  Substituting the following model in Equation 3.15: 

𝜕𝐶1
𝜕𝑃1

 (
1

1 −  
𝜕𝑃𝐿
𝜕𝑃1

) =
10 + 16 × 10−3𝑃1

1 − (3 × 10−4𝑃1 +   2 × 10−5𝑃2)
=  16.00 
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𝜕𝐶2
𝜕𝑃2

(
1

1 −
𝜕𝑃𝐿
𝜕𝑃2

) =
8 + 18 × 10−3𝑃2

1 − (6 × 10−5𝑃2 +   2 × 10−5𝑃1)
= 16.00 

 

Rearranging the two equation: 

 

20.8 × 10−3𝑃1 + 32 × 10−5𝑃2 = 6.00 

32 × 10−5𝑃1 + 18.96 × 10−3𝑃2= 8.00 

 

 

The results will be:                         𝑃1 = 282 𝑀𝑊   ,    𝑃2 = 417 𝑀𝑊 

 

Substitution of the values in the problem loss model: 

 

𝑃𝐿 = 1.5 × 10
−4𝑃1

2 + 2 × 10−5𝑃1𝑃2 + 3 × 10−5𝑃2
2 = 19.5 𝑀𝑊 

 

Total load demand according to Equation 3.7 will be: 

𝑃𝐷  =   ∑𝑃𝑖 − 𝑃𝐿 = 𝑃1 + 𝑃2 − 𝑃𝐿 = 282 + 417 − 19.5 = 679.5 𝑀𝑊      

𝑛𝑔

𝑖=1

 

 

 

Total operating cost is:    

 

  𝐶𝑇 = 𝐶1 + 𝐶2 = 10(282) + 8 × 10
−3(282)2 + 8(817) + 9 × 10−3(417)2 = 8357 $/ℎ 

 

It is worth mentioning that this example has been solved for the case which the exact value of 𝜆 

is provided by the given information. The solution should be modified with the same approach 

as explained in the previous example, where the 𝜆 is not known but the total demanded load is 

given by the information. As explained earlier, in this case, the generators’ inequality constraints 

will be considered to find the common 𝜆. If one or more units reach their limit values, then these 

units are held at their limits and the remaining units operate at equal incremental fuel cost 𝜆. The 
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common 𝜆 for the units that are not at their limits will be used as the incremental fuel cost of the 

area. Knowing the 𝜆, the power output of each unit will be determined and consequently, the 

total transmission losses will be calculated according to the given loss model.  

  



72 

 

  3.2.4 Derivation of Loss Formula 

The system loss can be calculated according to loss coefficient or B-coefficient methods, 

developed by Kron and adopted by Kirchmayer [1]. This section explains the algorithm of B-

coefficients and includes a review of a case study.     

Assuming the total transmission losses over all buses is: 

 

               𝑃𝐿 + 𝑄𝐿 =∑𝑉𝑖𝐼𝑖
∗ =∑∑𝐼𝑖𝑍𝑖𝑗𝐼𝑖

∗

𝑛

𝑗=1

                        (3.17) 

𝑛

𝑖=1

𝑛

𝑖=1

 

 

                              𝑍𝑖𝑗 = 𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗                                              (3.18) 

Where 𝑃𝐿 and 𝑄𝐿 are the real and reactive power loss of the system.  

𝑍𝑖𝑗 is the impedance matrix 

𝐼𝑖 and 𝐼𝑗 , are the injected bus currents. 

𝑅𝑖𝑗, is the real part of the impedance matrix 

𝑍𝑖𝑗 is the imaginary part of the bus impedance matrix 

 

The bus impedance matrix is symmetrical, so the 𝑍𝑖𝑗 = 𝑍𝑗𝑖 and the real power loss equation can 

be formed as: 

                    𝑃𝐿 =∑∑𝐼𝑖𝑅𝑖𝑗𝐼𝑖
∗ = 𝐼𝑏𝑢𝑠

𝑇𝑅𝑏𝑢𝑠𝐼𝑏𝑢𝑠
∗

𝑛

𝑗=1

𝑛

𝑖=1

                     (3.19) 

 

Considering individual bus currents of each load buses vary as a constant complex fraction of 

the total load current: 

                                                        𝐼𝑙𝑘 = 𝑙𝑘𝐼𝐷                                                (3.20)                

Where  

𝑙𝑘, 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 

𝐼𝑙𝑘, 𝑖𝑠 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑏𝑢𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠,  

𝐼𝐷 , 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

Assuming bus 1 to be the reference bus (slack bus), the voltage at bus 1 can be defined by : 
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                          𝑉1 =∑𝑍1𝑖𝐼𝑔𝑖 +∑𝑍1𝑘𝐼𝐿𝑘

𝑛𝑑

𝑖=1

𝑛𝑔

𝑖=1

                            (3.21) 

Where: 

𝑛𝑔 , 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑏𝑢𝑠𝑒𝑠 

𝑛𝑑  , 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑎𝑑 𝑏𝑢𝑠𝑒𝑠 

 

Substituting Equation 3.20 into Equation 3.21 results in: 

                               𝑉1 =∑𝑍1𝑖𝐼𝑔𝑖 + 𝐼𝐷𝑇

𝑛𝑔

𝑖=1

                                 (3.22) 

Where: 

                               𝑇 = ∑ 𝑙𝑘𝑍1𝑘

𝑛𝑑

𝑘=1

                                               (3.23) 

Assuming 𝐼0 is the current flowing out of bus 1, with all other current set to be zero, then 𝑉1is: 

                                𝑉1 = −𝑍11𝐼0                                                   (3.24) 

By substituting Equation 3.24 in Equation 3.22 and Equation 3.20, the load currents become: 

              𝐼𝐿𝐾 = 𝜌𝑘∑𝑍1𝑖𝐼𝑔𝑖 +

𝑛𝑔

𝑖=1

𝜌𝑘𝑍11𝐼0                                       (3.25) 

Where: 

                                  𝜌𝑘 = −
𝑙𝑘
𝑇
                                                       (3.26) 

 

Reforming the generator currents with the above relations in matrix form results in: 

[
 
 
 
 
 
 
𝐼𝑔1
𝐼𝑔1
⋮
𝐼𝐿1
𝐼𝐿2
⋮
𝐼𝐿𝑛𝑑]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
1       0
0
⋮
0
      

1
⋮
0

…
⋯
⋱
⋯

0         0
0        0
⋮         ⋮
1       0

𝜌1𝑍11 𝜌1𝑍12 ⋯ 𝜌1𝑍1𝑛𝑔 𝜌1𝑍11

𝜌2𝑍11
⋮

𝜌𝑘𝑍11

𝜌2𝑍12
⋮

𝜌𝑘𝑍12

⋯
⋱
⋯

𝜌2𝑍1𝑛𝑔
⋮

𝜌𝑘𝑍1𝑛𝑔

𝜌2𝑍11
⋮

𝜌𝑘𝑍11]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝐼𝑔1
𝐼𝑔1
⋮

𝐼𝑔𝑛𝐿𝑔
⋮
𝐼0 ]
 
 
 
 
 

                       (3.27) 

In short form:  

                                               𝐼𝑏𝑢𝑠 = 𝐶𝐼𝑛𝑒𝑤                                                                  (3.28) 
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Substituting in Equation 3.19, Equation 3.29 forms as: 

 

                                    𝑃𝐿 = 𝐼 𝑛𝑒𝑤
𝑇 𝐶𝑇𝑅𝑏𝑢𝑠𝐶

∗𝐼𝑏𝑢𝑠
∗                                              (3.29) 

The generator current can be formed as:  

                                     𝐼𝑔𝑖 =
𝑃𝑔𝑖 − 𝑄𝑔𝑖

𝑉𝑖
∗ = 𝜓𝑖𝑃𝑔𝑖                                             (3.30) 

Where: 

                                      𝜓𝑖 =

1 − 𝑗
𝑄𝑔𝑖
𝑃𝑔𝑖

𝑉𝑖
∗                                                             (3.31) 

 

Adding the current 𝐼0 to the column vector current   𝐼𝑔𝑖 in Equation 3.30 results in: 

 

         

[
 
 
 
 
 
𝐼𝑔1
𝐼𝑔2
⋮
𝐼𝑔𝑛𝑔
𝐼0 ]
 
 
 
 
 

=

[
 
 
 
 
𝜓1
0
⋮
0
0

0 …    0  0
𝜓1
⋮
0
0

…
⋱…
…

0
⋮
𝜓1
0

0
⋮
0
𝐼0]
 
 
 
 

[
 
 
 
 
𝑃𝑔1
𝑃𝑔2
⋮
𝑃𝑔𝑛𝑔
1 ]
 
 
 
 

                                             (3.32) 

 

or in short form 

                                          𝐼𝑛𝑒𝑤 = 𝜓𝑃𝐺1                                                             (3.33) 

Where 

                                       𝑃𝐺1 =

[
 
 
 
 
𝑃𝐺1
𝑃𝐺2
⋮

𝑃𝐺𝑛𝑔
1 ]
 
 
 
 

                                                               (3.34) 

Substituting Equation 3.33 in Equation 3.29 forms in: 

 

                      𝑃𝐿 = 𝑃𝐺1
𝑇 𝜓𝑇𝐶𝑇𝑅𝑏𝑢𝑠𝐶

∗𝜓∗𝑃𝐺1
∗                                                       (3.35) 

 

The resultant matrix from equation 3.34 is in complex form so the real power loss can be derived 

as: 

                                      𝑃𝐿 = 𝑃𝐺1
𝑇 𝑅[𝐻]𝑃𝐺1

∗                                                          (3.36) 
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Where: 

                                      𝐻 = 𝜓𝑇𝐶𝑇𝑅𝑏𝑢𝑠𝐶
∗𝜓∗                                                   (3.37) 
 

H is also known as Hermitian matrix and the real part of H is found by the form 

 

                                          𝑅[𝐻] =
𝐻 + 𝐻∗

2
                                                         (3.38) 

 

The above matrix can be formed as follows: 

 

                   𝑅[𝐻] =

[
 
 
 
 
 
   𝐵 11   𝐵12 ⋯  𝐵1𝑛𝑔        𝐵01/2

    𝐵21    𝐵22  ⋯  𝐵2𝑛𝑔       𝐵02/2

   

   ⋮     ⋮       ⋱     ⋮             ⋮        

   𝐵𝑛𝑔1  𝐵𝑛𝑔2 …  𝐵𝑛𝑔𝑛𝑔   𝐵0𝑛𝑔/2

𝐵01 2⁄ 𝐵02/2 … 𝐵0𝑛𝑔/2 𝐵00 ]
 
 
 
 
 

                   (3.39) 

 

 

The power loss can be calculated according to Equation 3.40 

 

 

 

𝑃𝐿 = [𝑃𝑔1 𝑃𝑔2 ⋯ 𝑃𝑔𝑛𝑔]

[
 
 
 
 
𝐵11 𝐵12 ⋯     𝐵1𝑛𝑔

𝐵21 𝐵22 ⋯     𝐵2𝑛𝑔
⋮

 𝐵𝑛𝑔1

⋮
 𝐵𝑛𝑔2

   
 ⋱     ⋮        
  ⋯    𝐵𝑛𝑔𝑛𝑔

   

]
 
 
 
 

[
 
 
 
𝑃𝑔1
𝑃𝑔2
⋮
𝑃𝑔𝑛𝑔]

 
 
 

+ [𝑃𝑔1 𝑃𝑔2 ⋯ 𝑃𝑔𝑛𝑔]

[
 
 
 
 
 
 
𝐵01
2
𝐵02
2
⋮

𝐵0𝑛𝑔
2 ]
 
 
 
 
 
 

+ 𝐵00                                (3.40) 
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3.2.5 Economic Dispatch for 7-Bus Power System 

The main objective of the economic dispatch for the 7-bus power system [28] is minimizing the 

total generators fuel costs while considering the generators limits. Figure 3.3 shows the single 

line diagram of the 7-bus power system.  The system contains 5 generators, 5 loads, 7 buses and 

11 transmission lines. The total load demanded by this system is 760MW and 130MVA. The 

reference bus is located at bus 7. For the base case, the total generation cost is 16935.93 $/hr and 

the total transmission loss is 7.94 MW. 

Using the cost coefficients of the 5 generators in this 7-bus system, the total generation operating 

cost function is expressed by Equation 3.41 [28]: 

𝐶i(𝑃𝑔i) = (𝐴i +𝐵i𝑃𝑔i + 𝐶i(𝑃𝑔i)
2
) ∗ 𝑓c                (3.41) 

Where 

 𝑓c : fuel cost ($/Mwh) 

𝐴i : fuel cost dependent value (Mbtu/hr) 

 𝐵i, 𝐶i : coefficient of the cost model 

 

𝐶1(𝑃𝑔1) = (373.5 + 7.62𝑃1 + 0.0013𝑃1
2 ) ∗  2.04 

      𝐶2(𝑃𝑔2) = (403.61 + 7.519𝑃2 + 0.0014𝑃2
2) ∗ 2.061 

       𝐶4(𝑃𝑔4) = (253.24 + 7.836𝑃4 + 0.0013𝑃4
2 ) ∗ 2.093 

     𝐶6(𝑃𝑔6) = (388.93 + 7.573𝑃6 + 0.0013𝑃6
2) ∗ 2.139 

      𝐶7(𝑃𝑔7) = ( 194.28 + 7.771𝑃7 + 0.0019𝑃7
2) ∗ 2.574 

 

𝐶𝑇 = (373.5 + 7.62𝑃1 + 0.0013𝑃1
2 ) ∗ 2.04 + (403.61 + 7.519𝑃

2
+ 0.0014𝑃2

2) ∗ 2.061 

+ (253.24 + 7.836𝑃4 + 0.0013𝑃4
2
) ∗ 2.093

+ (388.93 + 7.573𝑃6 + 0.0013𝑃6
2) ∗ 2.139

+ ( 194.28 + 7.771𝑃7 + 0.0019𝑃7
2) ∗ 2.574 = 16459.78 ($/hr) 
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The transmission loss is calculated with B-coefficients according to Equation 3.40 and has 

formed the equality constraints. The power generation limits of each generator are considered as 

the inequality constraints. Table 3.2 provides B-coefficients for 7-bus power system solved by 

MATLAB. 

 

Table 3.2: B-Coefficients for 7-Bus Power System 

B = 

0.0212 0.0072 0.0035 0.0002 -0.004 

0.0072 0.0087 0.0018 0.0011 -0.0037 

0.0035 0.0018 0.0167 -0.0048 -0.0072 

0.0002 0.0011 -0.0048 0.0094 -0.0022 

-0.004 -0.0037 -0.0072 -0.0022 0.0103 

B0 = 0 0.0004 0.0013 -0.0009 -0.0012 

B00 = 3.22E-04 

 

According to equation 3-15 the total power loss can be calculated: 

𝑃𝐿 = [𝑃𝑔1 𝑃𝑔2 ⋯ 𝑃𝑔𝑛𝑔]

[
 
 
 
 
𝐵11 𝐵12 ⋯            𝐵1𝑛𝑔

𝐵21 𝐵22 ⋯            𝐵2𝑛𝑔
⋮

 𝐵𝑛𝑔1

⋮
 𝐵𝑛𝑔2

   
 ⋱          ⋮

⋯             𝐵𝑛𝑔𝑛𝑔

   

]
 
 
 
 

[
 
 
 
𝑃𝑔1
𝑃𝑔2
⋮
𝑃𝑔𝑛𝑔]

 
 
 

+

[𝑃𝑔1 𝑃𝑔2 ⋯ 𝑃𝑔𝑛𝑔]

[
 
 
 
𝐵01/2
𝐵02/2
⋮

𝐵0𝑛𝑔/2]
 
 
 
=  26.11 𝑀𝑊       
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Figure 3.3: One line diagram for 7-Bus Power System [28] 

 

Table 3.3 illustrates the results of the running economic dispatch solution with the MATLAB 

Optimization Toolbox and using the f-mincon function for achieving the minimum fuel cost of 

generation for the 7-bus power system. The total fuel cost is 16459.78 $/hr with loss of 26.11 

MW. Economic dispatch provides the system with the minimum generation fuel cost and the 

generation outputs are changed. 

 The results show that the active power output of generators has been changed and the total fuel 

cost has reached its minimum value. 

 

Table 3.3:  Economic Dispatch Case Study for 7-Bus System 

Generation (MW)  

Number Name Base case (MW) 
Economic Dispatch by 

MATLAB (MW) 

1 Bus-1  101.85  100  

2 Bus-2 189.26 345.09  

4 Bus-4 95.03  102.2  

6 Bus-6 200.33  238.82  

7 Bus-7 200.65  0  

Total Generation (MW) 786.11 786.11 

Total Load (MW) 760 760 

Total Loss (MW) 7.94 26.11 

Total Hourly Cost ($/hr) 16935.93 16459.78 
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3.2.6 Economic Dispatch for 37-Bus Power System 

The goal of the economic dispatch power system for the 37-bus, 9 generator power system [27] 

is to minimize total generator fuel costs while meeting the generators real power limits and the 

power flow equations. Figure 3.4 shows the 37-bus power system solved by the PowerWorld 

Simulator [28]. The total load demanded by this system is 813.70 MW and 280.7 MVAR.  

 

Figure 3.4: Economic Dispatch for a 37-bus Power System [29] 

 

Table 3.3 summarizes the results of running economic dispatch solution in order to achieve the 

minimum fuel cost of generation for the 37-bus powers system.  The results show that the active 

power output of generators has been changed and the total fuel cost has reached its minimum 

value. The software considers the transmission losses in simulation results. Economic Dispatch 

solution defines the most efficient approach with respect to total generation costs while it might 

increase the total losses or ignore some of the constraints in the system.   
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Table 3.4:  Economic Dispatch Case Study for 37-Bus System 

Generation (MW)  

Bus 

Number 
Bus Name 

Base case 

(MW) 

Economic Dispatch by 

PowerWorld(MW)   

14 WEBER69 10 0 

48 BOB69 16 0 

44 LAUF69 20 20 

50 ROGER69 42.09 42.09 

54 BLT69 106.78 106.08 

53 BLT138 140 140 

28 JO345 150 150 

28 JO345 150 150 

31 SLACK345 190.94 217.68 

Total Generation (MW)   825.8 825.8 

Total Load (MW) 813.8 813.8 

Total Loss (MW) 10.79 11.59 

Total Hourly Cost ($/hr)  15848.33 15555 
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3.3 Optimal Power Flow 

Economic dispatch ignores the limits imposed by the devices in the transmission system. This is 

a serious shortcoming in power generation scheduling. The power transmitted through 

transformers and transmission lines is restricted to lie within given limits, which arise due to 

thermal, voltage, or stability considerations. The combination of economic dispatch, with either 

the full ac power flow or a dc power flow, and enforcing the system constraints, is an efficient 

solution for optimizing the power generation.  The result is known as the Optimal Power Flow 

(OPF). There are several methods for solving the OPF problem [27]. 

3.3.1 OPF Formulation 

The mathematical formulation of the optimal power flow problem is stated as a nonlinearly 

constrained optimization problem. The problem is subject to satisfaction of nonlinear equality 

constraints and nonlinear inequality constraints. The objective function is expressed by Equation 

3.42 [3] [30]. 

 

                                           𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥, 𝑢)                                         (3.42) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     𝑔(𝑥, 𝑢) = 0 

   ℎ(𝑥, 𝑢) ≤ 0 

 

where 𝑢 is the vector of control or independent variables, 𝑥 is the vector of state or dependent 

variables. 𝑓(𝑥,𝑢) is the set of objective functions of OPF, g(𝑥,𝑢) is the set of inequality 

constraints, ℎ(𝑥,𝑢) is the set of equality constraints.  

The OPF problem has many control variables that need to be specified and subjected to a variety 

of equality and inequality constraints. These constraints include limits on all control variables, 

power flow equations, generation/load balance, branch flow limits (MW, MVAr, MVA), bus 

voltage limits, active/reactive reserve limits, generator MVAr limits, corridor (transmission 

interface) limits. 
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The OPF state variables, also called 𝑥, are defined by Equations 3.43 and the control variables, 𝑢,  

are defined by the Equation 3.44 [30] [31]. 

 

𝑥𝑇 = [𝑃𝑆𝐺 , 𝑉𝐿1…  𝑉𝐿𝑁𝐿 , 𝑄𝐺1 …𝑄𝐺𝑁𝐺 , 𝑆𝑙1 …𝑆𝑙𝑛𝑙]                                  (3.43) 

𝑢𝑇 = [𝑃𝐺2…  𝑃𝐺𝑁𝐺  , 𝑉𝐺1 …  𝑉𝐺𝑁𝐺 , 𝑄𝐶1 …𝑄𝐶𝑁𝐶 , 𝑇1…  𝑇𝑁𝑇   ]             (3.44) 

Where  

𝑃𝐺  : Active power generated at the PV buses 

 𝑉𝐺 : Voltage magnitude at PV buses 

𝑄𝐶  : Reactive power supplied by all shunt reactors 

 𝑇𝑁𝑇 : Transformer load tap changer magnitude 

𝑃𝑆𝐺  : Active power of the slack bus 

𝑉𝐿 : Voltage magnitude at PQ buses (load buses) 

𝑄𝐺: Reactive power of all generator units 

𝑆𝑙:  Transmission Line loading (Load flow) 

𝑁𝐿: Number of load buses 

𝑁𝐺: Number of generator buses (PV buses) 

NC: Number of shunt VAR compensators 

𝑁𝑇: Number of transformers  

𝑛𝑙: Number of transmission lines  

 

3.3.2 The Objective Functions 

Six objective functions have been considered for optimizing the OPF problem. These objective 

functions vary from fuel cost generation, active and/or reactive power transmission loss, reactive 

power reserve margin, security margin index, and environmental emission. Some of these 

objective functions are conflicting in nature, which makes the OPF problem complicated [30]. A 

multi-objective concept will be discussed in chapter five to solve the OPF problem. 
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3.3.2.1 Minimization of Fuel Cost of Generation (FC) 

The main objective function of the optimal power flow problem is minimizing the generation 

fuel cost of thermal units. The generation fuel cost objective function can be expressed by a 

quadratic function according to Equation 3.45. 

          𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐹𝐶 =∑𝐹𝐶𝑘(𝑃𝐺𝑘

𝑁𝐺

𝑘=1

)             (3.45) 

   𝐹𝐶𝑘(𝑃𝐺𝑘) = 𝑎𝑘𝑃𝐺𝑘
2 + 𝑏𝑘𝑃𝐺𝑘 + 𝑐𝑘            

Where 

𝐹𝐶 : Total fuel cost generation of the power system 

𝐹𝐶𝑘(𝑃𝐺𝑘) : Fuel cost function of the 𝑘𝑡ℎ generator 

𝑁𝐺  : Number of generators including the slack generator  

𝑎𝑘 : Quadratic cost coefficient of the 𝑘𝑡ℎ generator 

𝑏𝑘 : Linear cost coefficient of the 𝑘𝑡ℎ  generator 

𝑐𝑘 : basic cost coefficient of the 𝑘𝑡ℎ  generator 

𝑃𝐺𝑘 : Real power output of the 𝑘𝑡ℎ  generator. 

3.3.2.2 Minimization of Active Power Transmission Loss  

Active power transmission loss is one of the objective functions of the OPF problem. The 

problem goal is to minimize the total power loss in transmission lines and transformers in the 

network, represented by Equation 3.46 [30]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝐿 =∑𝑃𝐺𝑘 −∑𝑃𝐷𝑘

𝑁𝐺

𝑘=1

             

𝑁𝐺

𝑘=1

               (3.46) 

Where  

𝑃𝐿: Total 𝑅𝐼2 loss in the transmission lines and transformers of the network 

𝑃𝐺𝑘: Active power generation at 𝑘𝑡ℎ bus 

𝑃𝐷𝑘 : Active power demand at 𝑘𝑡ℎ bus 
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3.3.2.3 Minimization of Reactive Power Transmission Loss  

Voltage stability at load buses is particularly associated with the availability of reactive power. 

Based on this, minimizing reactive power losses is another important objective in optimal power 

flow analysis. The reactive power loss can be expressed as the difference between total generated 

reactive power and the total demanded reactive power in the network. Reactive power losses in 

a network can be minimized by the optimal scheduling of generated reactive power, transformer 

tap settings, and other compensating devices. In practice, the 𝑄𝑙𝑜𝑠𝑠is not necessarily positive. 

Equation 3.47 represents the formulation of reactive power transmission loss [30].  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑄𝑙𝑜𝑠𝑠 =∑𝑄𝐺𝑘 −∑𝑄𝐷𝑘

𝑁𝐺

𝑘=1

𝑁𝐺

𝑘=1

  ,        𝐾 = 1, … . , 𝑁𝑏            (3.47) 

Where  

𝑄𝑙𝑜𝑠𝑠 : Total reactive power transmission Loss in the power system 

𝑄𝐺𝑘 : Total reactive power generation at 𝑘𝑡ℎ bus 

𝑄𝐷𝑘 : Total reactive power demand at 𝑘𝑡ℎ bus 

3.3.2.4 Maximization of Reactive Power Reserve Margin  

Optimizing the reactive power reserves is one of the most important objectives in optimal power 

flow analyses. The amount of reactive power reserves can be assumed as a measure of the degree 

of voltage stability in a power network. With this perspective, maximizing the reactive power 

reserve margins and seeking to distribute reserves among the generators, are proposed in OPF 

studies. The objective can be achieved by minimizing the function presented by Equation 3.48. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = ∑ [
𝑄𝑘
2

𝑄𝑘 𝑚𝑎𝑥
]

𝑁𝐺

𝑘=1

                (3.48) 

Where  

𝑄𝑘 : Reactive power of 𝑘𝑡ℎ  generator 

𝑄𝑘 𝑚𝑎𝑥 : Maximum reactive power of 𝑘𝑡ℎ  generator 
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3.3.2.5 Minimization of Emission Index (EI) 

The Emission or Environmental Index (EI), is an index from the viewpoint of environmental 

conservation. The atmospheric pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) 

caused by fossil-fueled thermal units can be modeled separately. However, the OPF problem 

seeks to minimize the total (Ton/h) emission 𝐸(𝑃𝐺) of these pollutants, which can be stated by 

the following equations. As indicated, the amount of emissions is given as a function of the 

generator active power output, which is the sum of quadratic and exponential functions according 

to Equation 3.49 [30]. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝐸 =∑𝐸𝑘(𝑃𝐺𝑘

𝑁𝐺

𝑘=1

)                    (3.49) 

𝐸𝑘(𝑃𝐺𝑘) = ∑𝛼𝑘𝑃𝐺𝑘
2 + 𝛽𝑘𝑃𝐺𝑘

𝑁𝐺

𝑘=1

+ 𝛾𝑘 + 𝜔𝑖𝑒
(𝜇𝑘𝑃𝐺𝑘)    

    

𝐹𝐸 : Total emission of the power system  

𝐸𝑘(𝑃𝐺𝑘) : Emission function of  𝑘𝑡ℎ  generator 

𝛼𝑘 , 𝛽𝑘, 𝛾𝑘, 𝜔𝑖 𝑎𝑛𝑑 𝜇𝑘  : Coefficients of the 𝑘𝑡ℎ  generator 

 

3.3.2.6 Maximization of Security Margin Index (SMI) 

The last objective function is the Security Margin Index (SMI). The OPF problem seeks to 

operate all the transmission lines connected in a network to their maximum capability according 

to Equation 3.50 [30]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑀𝐼 = ∑(𝑆𝑙𝑖
𝑚𝑎𝑥 − 𝑆𝑙𝑖)

𝑁𝐺

𝑘=1

           (3.50) 
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3.3.2.7 Minimization of Voltage Deviation  

Voltage deviation is a measure of voltage quality in the power network. The index of deviation 

is also important from the security aspect. The indicator is formulated as a cumulative deviation 

of voltages for all load buses (PQ buses) in the network from a nominal value of unity. It can be 

defined mathematically as presented by Equation 3.51 [31], [32].  

      𝑉𝐷 = (∑  |𝑉𝐿𝑃 − 1|

𝑁𝐿

𝑃=1

)                     (3.51) 

𝑉𝐿𝑃: voltage at load buses 

 

  3.3.3 The OPF Constraints 

The optimal power flow problem has many control variables that are subjected to meet a variety 

of equality and inequality constraints. These control variables include generator bus voltages, 

active power in all generator units, switchable shunt reactors, and transformer tap positions. The 

OPF constraints are categorized into equality and inequality constraints. 

3.3.3.1 Equality Constraints 

The power flow equations require the net injection of the active and reactive power at each bus 

to be zero. These equations form the equality constraints of the OPF problem, reflecting the 

physics of the power system and its limitations and are presented by Equations 3.52 and 3.53. 

 

Active Power Constraints: 

𝑃𝐺
𝑘 − 𝑃𝐷

𝑘 = 𝑉𝑘∑[𝑉𝑗[𝐺𝑗
𝑘 cos(𝛿𝑘 − 𝛿𝑗) + 𝐵𝑗

𝑘 sin(𝛿𝑘 − 𝛿𝑗)]]            (3.52)

𝑁

𝑗=1

 

 

Reactive Power Constraints: 

            𝑄𝐺
𝑘 − 𝑄𝐷

𝑘 = 𝑉𝑘∑[𝑉𝑗[𝐺𝑗
𝑘 sin(𝛿𝑘 − 𝛿𝑗) − 𝐵𝑗

𝑘 cos(𝛿𝑘 − 𝛿𝑗)]]

𝑁

𝑗=1

          (3.53)          
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Where 𝑘 = 1, 2, … ,𝑁 

𝑉𝑘 : Voltage magnitude at bus 𝑘𝑡ℎ 

𝛿𝑘 : Voltage angle at bus 𝑘𝑡ℎ 

𝑃𝐺
𝑘 : Active power generation at bus  𝑘𝑡ℎ 

𝑃𝐷
𝑘 : Active power demand at bus 𝑘𝑡ℎ 

𝑄𝐺
𝑘 : Reactive power generation at bus 𝑘𝑡ℎ 

𝑄𝐷
𝑘 : Reactive power demand at bus 𝑘𝑡ℎ 

𝐺𝑗
𝑘 : Real part of (𝑘, 𝑗) element of the bus admittance matrix 

𝐵𝑗
𝑘 : Imaginary part of (𝑘, 𝑗) element of the bus admittance matrix 

 

3.3.3.2 Inequality Constraints 

Inequality constraints are a set of constraints that represent the systems operational and security 

limits and boundaries.  

Active and reactive power generation constraints for all units should be considered according to 

inequalities presented by Equation 3.54. 

 

𝑃𝐺𝑘
𝑀𝑖𝑛 ≤ 𝑃𝐺𝑘 ≤ 𝑃𝐺𝑘

𝑀𝑎𝑥                 (3.54) 

𝑄𝐺𝑘
𝑀𝑖𝑛 ≤ 𝑄𝐺𝑘 ≤ 𝑄𝐺𝑘

𝑀𝑎𝑥                            

Where, 

𝑃𝐺𝑘 : Active power generated by 𝑘𝑡ℎ generator 

𝑄𝐺𝑘 : Reactive power generated by 𝑘𝑡ℎ generator 

𝑃𝐺𝑘
𝑀𝑖𝑛: Minimum active power generated by 𝑘𝑡ℎ generator 

𝑃𝐺𝑘
𝑀𝑎𝑥: Maximum active power generated by 𝑘𝑡ℎ generator 

𝑄𝐺𝑘
𝑀𝑖𝑛 : Minimum reactive power generated by 𝑘𝑡ℎ generator 

𝑄𝐺𝑘
𝑀𝑎𝑥 : Maximum reactive power generated by 𝑘𝑡ℎ generator 

𝑃𝐺𝑖
𝑀𝑎𝑥 : Maximum MW generation by 𝑖𝑡ℎ generator 

𝑃𝐺𝑖
𝑀𝑖𝑛 : Minimum MW generation by 𝑖𝑡ℎ generator 
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Bus voltage magnitude constraints are presented by Equation 3.55. 

 

𝑉𝑘
𝑀𝑖𝑛 ≤ 𝑉𝑘 ≤ 𝑉𝑘

𝑀𝑎𝑥          (3.55) 

Where  

𝑉𝑘 : Voltage at 𝑘𝑡ℎ bus  

𝑉𝑘
𝑀𝑖𝑛 : Minimum acceptable voltage at 𝑘𝑡ℎ bus 

𝑉𝑘
𝑀𝑎𝑥 : Maximum acceptable voltage at 𝑘𝑡ℎ bus 

 

The reactive power source capacity constraint is provided by Equation 3.56. 

 

𝑄𝑐𝑘
𝑀𝑖𝑛 ≤ 𝑄𝑐𝑘 ≤ 𝑄𝑐𝑘

𝑀𝑎𝑥               (3.56) 

The transformer tap position constraints are represented by Equation 3.57.  

 

𝑇𝑘
𝑀𝑖𝑛 ≤ 𝑇𝑘 ≤ 𝑇𝑘

𝑀𝑎𝑥              (3.57) 

The line thermal limit constraints for all transmission lines are according to Equation 3.58. 

 

|𝑆𝑖| ≤ 𝑆𝑖 
𝑚𝑎𝑥                         (3.58) 

 

3.3.4 OPF Solution Methodologies 

A first comprehensive survey regarding optimal power dispatch was given by H.H. Happ [33]. 

The solution methodologies of OPF can be broadly classified into two groups; conventional 

(classical) methods and intelligent methods.  

Traditionally, conventional methods are effectively used to solve the OPF problem. Classical 

methods are based on mathematical programming techniques and can meet the requirements of 

objective functions, type of application, and nature of constraints. Mathematical formulations 

have to be simplified to find the solutions because of the extremely limited capability to solve 

real-world large-scale power system problems. Classical methods are weak in handling 

qualitative constraints. They have poor convergence, they may get stuck at local optimum, they 

can find only a single optimized solution in a single simulation run, they become too slow if the 
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number of variables is large and they are computationally expensive for the solution of a large 

system [26]. 

 To overcome the shortcomings of conventional methods, intelligent methods based on Artificial 

Intelligence (AI) have been developed in the recent past. The major advantages of the AI 

methods are their relative versatility in handling various qualitative constraints, as well as their 

ability to find multiple optimal solutions in a single simulation run. Therefore, they are quite 

suitable for solving multi-objective optimization problems. In most cases, they can converge to 

the global optimum solution at a fast rate. The other advantages of intelligent techniques are their 

ability to learn and their ability to appropriately solve non-linear modeling problems. On the 

other hand, some drawbacks, include large dimensionality and the choice of training 

methodology [26]. Figure 3.5 summarizes two classifications of OPF solution methodologies. 

 

 

Figure 3.5: OPF solution methodologies [34] 
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3.3.5 Case Study of Minimizing Cost for 7-Bus Power System 

The goal of OPF for the 7-bus power system case is to minimize generator fuel cost function 

while satisfying power flow equations, bus voltage magnitudes, the slack generator active power 

limits and specified branch flow limits (MVA). 

Figure 3.6 shows the single line diagram of the 7-bus power system and OPF results by 

PowerWorld [28]. The total load is 760MW and 130 MVAR. For the base case, the total fuel 

cost is 16939$/hr and transmission loss is 7.94MW. 

 

Figure 3.6: One Line Diagram of Optimal Power Flow for 7-Bus Power System with OPF [28] 

 

The 7-bus power system contains 12 unknown variables including 4 controllable variables and 

8 dependent variables. The controllable variables are four generators active power output. The 

dependent variables are the two bus voltage magnitudes and six phase angles. MATLAB 

Optimization Toolbox and the f-mincon function is applied to achieve the minimum generation 

cost of this power system.  

Table 3.5 summarizes the results of the optimal power flow solution for the 7-bus power system 

without considering the security constraints. Power and loss are in MW, and the cost is in $/hr. 
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The total hourly cost results for the 7-bus case is achieved 16978.74 $/hr, using MATLAB 

Optimization Toolbox, and the f-mincon function.  The results of running the case in 

PowerWorld Simulator are presented. 

 

Table 3.5: Optimal Power Flow Case Study for 7-Bus System 

Generation 

(MW)  

Number Name Base case OPF by PowerWorld   OPF by MATLAB  

1 Bus-1  101.85 127.54 127.48 

2 Bus-2 170.08 187.19 187.1 

4 Bus-4 95.03 50 50 

6 Bus-6 200.33 200.17 200.17 

7 Bus-7 200.65 200.49 205.5 

Total Generation (MW) 767.94 765.39 770.25 

Total Load (MW) 760 760 760 

Total Loss (MW) 7.94 5.24 10.25 

Total Hourly Cost ($/hr) 16935.93 16890 16978.74 

 

Table 3.6 compares the results of minimizing the total fuel cost function with economic dispatch 

and OPF methods for the 7-bus power system. Economic dispatch has the lowest cost and the 

base case has the highest cost.  The table also illustrates that the cost of the OPF is less than the 

base case but it is more expensive than the results of economic dispatch. While considering the 

transmission lines limits, OPF methods are preferred and will prevent the overloading of the line 

capacity. 

 

Table 3.6:  OPF of 7-Bus Power System, Minimizing Generation Cost 

 

 

 

Generation 

(MW) 

Bus Name Base Case (MW) Economic Dispatch (MW) OPF(MW) 

Bus-1  101.85 100 127.48 

Bus-2 170.08 345.09 187.1 

Bus-4 95.03 102.2 50 

Bus-6 200.33 238.82 200.17 

Bus-7 200.65 0 205.5 

Total Hourly Cost ($/hr) 16935.93($/hr) 16459.78($/hr) 16978.74($/hr) 
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3.3.6 Case Study of Minimizing Cost for 37-Bus Power System 

The goal of the OPF for the 37-bus, 9 generator power system [27] [28] is to minimize total 

generator fuel costs while satisfying all the power flow constraints. The power plant includes 9 

generators, 26 loads, 37 buses and 43 branches. Bus 31 is the slack bus. Figure 3.7 shows the 

single line diagram of the 37-bus power system solved by the PowerWorld Simulator [27]. 

The total load is 813.64 MW and 280.7 MVAR. The base case total fuel cost is 15848.33 $/hr 

and the transmission loss is 10.79 MW.  

 

Figure 3.7: One Line Diagram of 37-Bus Power System  
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Table 3.7 summarizes the results of running optimal power flow by the PowerWorld Simulator 

in order to minimize the fuel cost of generation for 37-bus powers system.   

 

Table 3.7: Optimal Power Flow Case Study for 37-Bus System 

Generation (MW)  

Bus Number Bus Name Base Case (MW) 
Optimal Power Flow by 

PowerWorld (MW)  

14 WEBER69 10 0 

48 BOB69 16 150 

44 LAUF69 20 150 

50 ROGER69 42.09 205.96 

54 BLT69 106.08 31.31 

53 BLT138 140 0 

28 JO345 150 42.09 

28 JO345 150 140 

31 SLACK345 190.94 106.08 

Total Generation (MW) 825.1 825.4 

Total Load (MW) 813.7 813.6 

Total Loss (MW) 10.79 11.14 

Total Hourly Cost ($/hr) 15848.33 15624 

 

Table 3.8 compares the results of minimizing the total fuel cost function with economic dispatch 

and OPF methods for the 37-bus power system. Economic dispatch reaches the lowest cost 

(15555 $/hr) and the base case has the highest cost (15848.33 $/hr).  The table also illustrates 

that the cost of the OPF is less than the base case but is more expensive than the results of the 

ED (15624 $/hr).  

The total generation cost in OPF will increase as a result of considering limits and constraints at 

each bus and transmission line. 
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Table 3.8: OPF of 37-Bus Power System, Minimizing Generation Cost 

Generation 

(MW) 

Bus Number Bus Name Base Case (MW)  ED (MW) OPF(MW) 

14 WEBER69 10 0 0 

48 BOB69 16 0 150 

44 LAUF69 20 20 150 

50 ROGER69 42.09 42.09 205.96 

54 BLT69 106.08 106.08 31.31 

53 BLT138 140 140 0 

28 JO345 150 150 42.09 

28 JO345 150 150 140 

31 SLACK345 190.94 217.68 106.08 

Total Hourly Cost ($/hr) 15848.33($/hr) 15555 ($/hr) 15624 ($/hr) 
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3.4 Security-Constrained Optimal Power Flows (SCOPF) 

A common objective of OPF problem is minimizing the total generation cost. Although it ensures 

the economic operation of power systems, it does not include contingency constraints and the 

solution might be insecure. Security constrained optimal power flow (SCOPF) is defined as an 

operating strategy to enforce (N-1) reliability criteria for the secure operating point. Any single 

contingency should not induce any further constraint violations and the design should avoid 

cascading failure of the network [35].  

The inclusion of contingencies requires some pre-contingent and post-contingent control actions. 

Pre-contingent control actions normally consider line overloads and limitation, while post-

contingent control actions are applied for reactive power control and generator outage re-

dispatch [29]. 

 Optimal power flow formulations can be modified to ensure that there are no contingency 

violations in any post-contingency states. The Security Constrained OPF (SCOPF) takes the 

form of Equation 3.59, denoted by C, with the given set of contingencies in the OPF problem 

[36] [35]. 

                                                    𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶(𝑥, 𝑢)                                              (3.59) 

Subject to satisfaction of nonlinear equality constraints: 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     ℎ(𝑥, 𝑢) = 0 

 

and nonlinear inequality constraints: 

   𝑔(𝑥, 𝑢) ≤ 0 

∀ 𝑚 ∈ 𝐶: 

   𝑔𝑚(𝑥, 𝑢) ≤ 0 

   ℎ𝑚(𝑥, 𝑢) = 0, 

 

where 𝑔𝑚and ℎ𝑚 represent the network constraints under contingency m, and are referred to as 

the security (or contingency) constraints. For example, if contingency m considers a particular 

line being out of service, then the network model in constraints 𝑔𝑚 would not contain that line 

[35].  
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A security assessment can be applied as a static security assessment or dynamic security 

assessment [37]. The study presented in this thesis will consider static security. The SCOPF 

starts the search for optimal operating point by running OPF with N constraints, then the 

contingency analysis is run to recognize the potential contingency cases. If there is no constraint 

violation in the network, the OPF will provide the optimal solution for SCOPF. If a security 

violation is induced by outages, the complete security constraint should be applied. The OPF and 

each of the contingency power flows should be re-executed until the OPF can satisfy all 

contingency constraints. The new optimal operating point ensures that the solution will be 

feasible for all contingencies under consideration. This will clearly show the concept of an 

inherent tradeoff between optimality and reliability in the network. Frequently adjusting the 

generation schedules and voltages set points will result in a less economic but more reliable 

operating solution [36] [35]. Many techniques are used to analyze the contingencies and SCOPF. 

PowerWorld Simulator has the contingency analysis function which provides the user with the 

contingency violation information. 

3.4.1 Case Study of SCOPF  

The power system with 37-bus has been considered for analyzing the SCOPF, adopted from [29]. 

The system has been slightly modified, mostly with some transmission lines enhancements and 

transformers limits to better improve its SCOPF performance. The goal for the SCOPF is to 

minimize generator fuel costs while considering the system security constraints and limitation. 

In this case, the SCOPF has focused on a single transmission line outage only.  The one-line 

diagram of the system is shown in Figure 3.8, while there is no area control enforced to the 

system. Some selected information, such as total load, total losses, current MW generation by 

each generator, and its linear cost value are presented by a table in one line diagram. Considering 

this model as the base case, the total fuel cost is 25918$/hr and the transmission losses are 40.98 

MW. The total load is 1421MW and 478.1 MVar. Total generation is 1462.3MW and 576 MVar.  
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Figure 3.8: One Line Diagram of 37-Bus Power System with No Control on Area [29] 

 

Figure 3.9 shows the same system while the area control option has been set to apply optimal 

power flow control in PowerWorld Simulator. The total load is approximately 1421 MW and the 

cost is 29752$/h. The total loss is 22.92 (Because of tolerances in the solution, the total load, 

losses, and costs might change slightly by repeating a solution with the same load scalar). 

 

Figure 3.9: One Line Diagram of 37-Bus Power System OPF with OPF Control on Area [29] 
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The formulation of SCOPF can be defined according to the set of Equations 3.38. While the 

objective function of the study will remain the same as OPF solution, the optimization problem 

will consider the necessary constraints with respect to an outage of a single transmission line. 

Figure 3.10 shows the system while the full security constrained OPF method is performed. 

 

 

Figure 3.10: SCOPF of 37-Bus Power System [29] 

Table 3.9 provides the results regarding contingency analysis and a number of violations that 

have been happened in each method. 

 

Table 3.9: Contingency Analysis and Violation List 

Control Option Number of Violations 

Base Case, with No Control Option 

 
363 

Optimal Power Flow Control 

 
19 

Security Control Optimal Power Flow 

 
7 

 

The SCOPF solution is the best possible compromise between finding an optimal solution and 

enforcing the constraints. It is found that in some situations it is not possible to enforce all the 

constraints. Otherwise, it would not be possible to find a feasible solution for the system [38]. 
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Table 3.10 compares the output power of generators in 37-bus case study while performing the 

OPF and SCOPF solution. 

 

The results of considering the outage of a single transmission line, are given in Table 3.11. Power 

is in MW, Voltage is in per unit and Cost is in $/hr. The total hourly cost for SCOPF is 30184 

$/hr with the loss of 40.88 MW. The table illustrates that the output generation of each unit and 

total fuel cost are changed during the outage to ensure the optimal and secure operation of the 

system [37]. Evidently, the cost of SCOPF (30184 $/hr) is higher than the cost of normal OPF 

(29752 $/hr) which is justifiable by the significant drop in the number of system violation from 

19 violations while using OPF to 7 violations while performing SCOPF. Hence the higher cost 

is required when the security constraints are included. All the results have been provided by 

PowerWorld Simulator. 

 

Table 3.11: SCOPF of 37-Bus Power System, Minimizing Generation Cost 

Area Summary Totals  
Base Case OPF SCOPF 

MW Mvar MW Mvar MW Mvar 

Load 1420.8 478.1 1421.1 478.1 1421.2 478.1 

Generation 1462.3 566.3 1444.6 377.4 1440.5 344.1 

Losses 40.88 235.91 22.92 51.81 18.77 19.01 

Hourly Cost($/hr) 25916 ($/hr) 29752($/hr) 30184 ($/hr) 

 

 

 

Table 3.10: Comparing Generators Power Output in 37-Bus Power System  

Number of 

Bus 
Name of Bus Base Case(MW)  OPF(MW)  SCOPF(MW)  

14 RUDDER69 0 40.46 30.04 

16 CENTURY69 23.23 26.96 100 

20 FISH69 76.14 80.24 110 

28 AGGIE345 400 400 359.87 

31 SLACK345 726.61 399.79 374.1 

37 SPIRIT69 0 140 96.57 

44 RELLIS69 58.73 60 60 

48 WEB69 0 30.34 60 

53 KYLE138 177.53 186.84 210.95 

54 KYLE69 0 80 38.98 



100 

 

3.5 Conclusions 

 

This chapter has discussed the fundamentals of Economic Dispatch (ED), Optimal Power 

Flow (OPF), and Security Constraint Optimal Power Flow (SCOPF) and the solution to solve 

them. The goal of the economic dispatch problem is to minimize the total fuel cost of generation 

while satisfying power system limitations and constraints. The problem is subject to meet a set 

of equality constraints with respect to load generation balance, while as a serious shortcoming, 

it ignores the limits imposed by the devices in the transmission system.  

The OPF, as an efficient solution to power generation scheduling, combines the economic 

dispatch with either the full ac power flow or a dc power flow, while enforces the system 

constraints. The Security Constraint Optimal Power Flow (SCOPF) includes contingency 

constraints analysis and ensures the secure operation of the system while having the same 

objective of OPF with respect to minimizing the total generation costs of the power system. It is 

important to highlight the fact that the optimal generation schedule with security constraints 

considerations will require a higher cost in comparison to other methods.  

Different case studies with respect to each concept (ED, OPF and SCOPF) are presented and 

simulated using MATLAB and PowerWorld Simulator to explain the solution methodologies. 

Case studies include standard IEEE 7-bus and IEEE 37-bus power systems.   
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Chapter 4 

 

 Multi-Objective Optimization 

 

4.0 Introduction 

The primary intention of this chapter is to provide an introduction to the general concepts and 

principles of multi-objective optimization. Then, classifications for multi-objective optimization 

algorithms are presented. 

Single-objective optimization corresponds to the minimum or maximum value of a single 

objective function. Multi-objective optimization methods receive impetus in many practical 

engineering fields, where the problem needs to achieve a compromise in the presence of trade-

offs between two or more conflicting objective functions and find the best set of values for each 

one of them. 

The first part of this chapter explains the theoretical concept of the single objective optimization 

problem and the formulation. Then, a comprehensive model of multi-objective optimization 

methods is presented. The final section deals with practical insights using two case studies. 

4.1 Single Objective Optimization 

Single-objective optimization corresponds to the minimum or maximum value of a single 

objective function. The problem could be formed by either an objective function or constraint 

functions, with linear or nonlinear, convex or non-convex, explicit or implicit characteristics.  

4.1.1 Single Objective Optimization Formulation 

By definition, a function of one variable 𝑓(𝑥) is said to have a relative or local minimum at 𝑥 =

 𝑥∗ if 𝑓(𝑥) ≤ 𝑓(𝑥∗ + ℎ) for all sufficiently small positive and negative values of ℎ. Also, a point 

𝑥∗is called a relative or local maximum if 𝑓(𝑥) ≥ 𝑓(𝑥∗ + ℎ) for all values of ℎ sufficiently close 

to zero [4].  
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A function 𝑓(𝑥) is said to have a global or absolute minimum at 𝑥∗ if 𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 in 

the domain over which 𝑓(𝑥) is defined. Similarly, a point 𝑥∗ will be a global maximum of 𝑓(𝑥) 

if 𝑓(𝑥∗) ≥ 𝑓(𝑥)  for all 𝑥 in the domain. Figure 4.1 shows the difference between the local and 

global optimum points.  

A single objective optimization problem can be formulated as finding the variable 𝑥 =  𝑥∗  in 

the interval [𝑎, 𝑏] such that 𝑥∗ minimizes the objective function 𝑓(𝑥). 

The standard form for a single-objective, non-linear, constrained optimization problem is 

provided in Equation 4.1 [4]. 

                  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒        𝑓(𝑥)              (4. 1) 

            𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝑔𝑖 (𝑥) ≤  0        𝑖 =  1, … ,𝑚 

                                       ℎ𝑗  (𝑥) =  0         𝑗 =  1, … , ℓ 

           𝑥𝐿 ≤  𝑥 ≤  𝑥𝑈  

where 𝑥 =  (𝑥1, 𝑥2, . .., xn)T   is a column vector of n real-valued design variables corresponding  

the optimal solution. In Equation 4.1, 𝑓(𝑥) represents the objective function, 𝑔𝑖 (𝑥) an inequality 

constraint and  ℎ𝑗  (𝑥) an equality constraint function. The searchable design region is defined by 

the upper and lower bounds (or side constraints), xi
L and xi

u , of the design variables. Figure 4.1 

shows the local and global optimum points for function f(x). 

 

Figure 4.1: Local and Global Optimum Points [4] 
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4.1.2 Case Study of Single Objective Optimization 

Determine the maximum and minimum values of the function  

𝑓(𝑥)  =  12𝑥5 −45𝑥4 + 40𝑥3 + 5. 

Solution:  

Since 

𝑓′(𝑥)  =  60(𝑥4   − 3𝑥3  + 2𝑥2 )  =  60𝑥2(𝑥 − 1)(𝑥 − 2), 

𝑓′(𝑥)  =  0 

𝑎𝑡      𝑥 =  0, 𝑥 =  1, 𝑎𝑛𝑑 𝑥 =  2. 

 The second derivative is 

 

 𝑓′′(𝑥)  =  60(4𝑥3   − 9𝑥2   + 4𝑥)  

 

𝐴𝑡 𝑥 =  1, 𝑓′′(𝑥)  = −60 and hence 𝑥 = 1 is a relative maximum. Therefore, 

 

 𝑓𝑚𝑎𝑥 =  𝑓(𝑥 =  1)  =  12 

 

 𝐴𝑡 𝑥 =  2, 𝑓′′(𝑥)  =  240,  and hence 𝑥 =  2 is a relative minimum. Therefore,  

 

𝑓𝑚𝑖𝑛 =   𝑓(𝑥 =  2)  = −11  

𝐴𝑡 𝑥 =  0, 𝑓′′(𝑥)  =  0  and hence we must investigate the next derivative: 

 

𝑓′′′(𝑥)  =  60(12𝑥2  − 18𝑥 + 4)  =  240        𝑎𝑡    𝑥 =  0 

 

Since 𝑓′′′(𝑥) ≠  0   𝑎𝑡 𝑥 =  0, 𝑥 =  0 is neither a maximum nor a minimum, and it is an 

inflection point [4]. 
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4.2 Multi-Objective Optimization 

The Multi-Objective Optimization Problem (MOP) involves mathematical approaches to 

minimize or maximize several objective functions simultaneously, considering a set of 

constraints. It can be used in a theoretical or practical scenario, where the decision maker seeks 

an optimal set of answers considering tradeoffs between conflicting objectives. 

There are many applications associated with the implementation of multi-optimization 

techniques, including planning, programming, operation, and engineering. Consequently, these 

applications become a benefit to economics, business and many other fields of science, all of 

which try to achieve a compromise between objectives, in order to find the optimal solution. 

Multi-optimization problems are characterized by having no unique ideal solution that can 

link competing objectives while meeting various constraints at the same time. Defining the 

priorities of the decision maker can lead to the best mathematical equality set of solutions. As a 

conceptual example of a multi-objective optimization problem, assume that we need to buy a 

flight ticket. The objectives in this decision would be the price of the ticket, a specific budget, 

the duration of the flight, the airline’s service qualities, the time limitations, baggage allowance 

and regulations, flight insurance, etc. It is clear that there is no close link between the competing 

objectives in this problem, which can lead to a unique set of answers highly dependent on the 

decision maker’s priorities.  

For solving a multi-objective optimization problem, deciding the type of solution, which can 

be either local or global, is the initial step. This step will be generally followed by choosing a 

suitable mathematical method for the intended purpose. Then, objective functions and system 

constraints should be defined explicitly. By choosing the appropriate method, results would be 

found; if the results were unsatisfactory, options or start points will be changed. This cycle will 

continue until the best answer is achieved. 

Many advanced software, such as MATLAB toolboxes, accelerate the pace of engineering 

and science. These technologies have been introduced to make mathematical computing more 

precise for this kind of application. 
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The general form of multi-objective optimization is formulated as finding the set of values for 

decision vector x according to Equation 4.2, such that:  

 

Minimizes/Maximizes          𝑓𝑚 (𝑋)              ,                          𝑚 = 1,2, . . . , 𝑀           (4.2) 

Subject to                            𝑔𝑗 (𝑋) ≥ 0      ,                            𝑗 = 1,2, …   , 𝐽           

                                           ℎ𝑘 (𝑋) = 0       ,                           𝑘 = 1,2, …   , 𝐾           

                                           𝑥𝑗  𝐿𝑜𝑤𝑒𝑟 
𝐵𝑎𝑛𝑑

(𝐿)
≤ 𝑥𝑖 ≤ 𝑥𝑗  𝑈𝑝𝑝𝑒𝑟 

𝐵𝑎𝑛𝑑

(𝑈)   ,        𝑖 = 1,2, …   , 𝑁           

 

Equation 4.2 defined 𝑓𝑚 (𝑋) as the objective function set (also called objective criteria, payoff 

functions, cost functions, or value functions); M is the number of objectives, X is a vector of 

design variables (also called decision variables), where N is the number of independent variables 

𝑥𝑛 ; 𝑔𝑗 (𝑋) and ℎ𝑘 (𝑋) are inequality and equality constraints respectively;  𝑥𝑗  𝐿𝑜𝑤𝑒𝑟 
𝐵𝑎𝑛𝑑

(𝐿)
 and  𝑥𝑗  𝑈𝑝𝑝𝑒𝑟 

𝐵𝑎𝑛𝑑

(𝑈)
 

are the restricting boundary conditions for decision variables. 

 

4.3 Non-Dominated and Dominated Points, Pareto Solution  

When comparing the solution of a single objective optimization problem, the objective 

function values will determine the superiority of one solution over another, while in a multi-

objective optimization problem this concept would be explained by the definition of dominance.     

A vector of objective functions, 𝐹(𝑥∗)∈ Z, is non-dominated if there does not exist another 

vector, 𝐹(𝑥)∈Z, such that 𝐹(𝑥)< 𝐹(𝑥∗)with at least on 𝐹𝑖 (𝑥)< 𝐹𝑖 (𝑥
∗) Otherwise, 𝐹(𝑥∗) is 

dominated. In other words, the solution X dominates Y, if X has the same or better solution for 

all the objectives (equally no worse than Y in all objectives); and also the solution presented by 

X is strictly better than Y in at least one objective function. In this case, it could be defined that 

X dominates Y or equally Y is dominated by X [13]. Figure 4.2 shows the non-dominated and 

dominated points for function 𝑓 1 and  𝑓 2 [13]. 
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Figure 4.2: Non-dominated and dominated points [15] 

 

 𝑥1  dominates 𝑥4, 𝑥4 is dominated by 𝑥1. 

 𝑥3  dominates 𝑥5, or 𝑥5 is dominated by 𝑥3. 

 𝑥3 𝑎𝑛𝑑  𝑥2 neither of the solutions dominates ( 𝑥3 and  𝑥2 are not dominated with 

respect to each other).  

 Within the entire search space in a given set of solutions, the non-dominated solution set is 

a set of all the solutions that are not dominated by any member of the solution set. The non-

dominated set of the entire feasible decision space is called the Pareto-optimal set. The boundary 

defined by the set of all point mapped from the Pareto optimal set is called the Pareto optimal 

front [13]. 

Figure 4.3 shows the Pareto-optimal solution. Many of the multi-objective optimization 

methods convert multiple objectives into a single-objective optimization function by a user-

defined procedure. This is known as a scalarized problem. Achieving an appropriate function of 

scalarization would guarantee the solutions obtained by the Pareto optimality technique [13], [3]. 
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Figure 4.3: Pareto Optimal Solution [13] 

 

The following example shows a Pareto front plot for a multi-objective function 

using fgoalattain, adopted from MATLAB tutorial [39]. 

 

Minimize:        [ 𝑓1(𝑥) ;  𝑓2(𝑥)  ]                                                                   

𝑤ℎ𝑒𝑟𝑒               𝑓1(𝑥) = √1 + 𝑥2  

                            𝑓2(𝑥) = 4 + 2√1 + ( 𝑥 − 1)2  

The two objectives in our equations are shifted and scaled versions of the convex 

function √1 + 𝑥2 . 

In this case, it can be seen by inspection that the minimum of f1(x) is 1, and the minimum 

of f2(x) is 6. Figure 4.4 plots the objective functions when the variable x varies between -0.5 and 

1.5, the two objectives have their minima at x=0 and x=1. Figure 4.5 represents the set of solution 

for Pareto optimal front. 
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Figure 4.4: Objective Function Plot, Trade-Off Region is Between the Green Lines [12] 

 

 

Figure 4.5: Pareto Optimal Front plot [12] 
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4.4 Classical Multi-Objective Optimization Methods 

Classical multi-objective optimization methods have been refined for 40 years; there have 

been many algorithms suggested by researchers in this area, considering the classification of 

different methods. Cohon [40] presented the two following types of classification for Multi-

Objective Optimization algorithms : 

 Generating methods 

 Preference-based methods 

 

In generating methods, the decision-maker should choose one solution through the generated set 

of non-dominated solutions. In this case, there is no priority affecting knowledge with the final 

decision. While considering the preference-based methods, optimization is based on some 

known preference for each one of the objectives. Hwang and Masud [41] and later Miettinen 

[42] completed and improved the above classification according to the following classes: 

 No-preference methods 

 Posteriori methods 

 Priori methods 

 Interactive methods 

 

In no-preference methods, a heuristic algorithm is used to generate a single optimal solution, 

while the objectives are not being affected by priority or importance. In posterior methods, a set 

of Pareto-optimal solutions would be generated iteratively using the preference knowledge of 

each objective. Some information about the algorithm parameter is necessary for classical 

methods to ensure generating Pareto optimal solutions [41] [42]. Mathematical programming and 

evolutionary algorithms are the two main subcategories of posterity classification. 

In priori methods, sufficient preference information is expressed before the solution process. 

Famous applications associated with this method include the utility function 

method, lexicographic method, and goal programming. 

Interactive methods of multi-objective optimization problems are iterative based algorithms 

that involve the continuous interaction of the decision maker to find the most favorable solution 

at each iteration in order to get Pareto optimal solution set of interest [42]. Figure 4.6 represents 

a classification of multi-objective optimization methods and the role of the human in the 
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optimization process. Figure 4.7 provides the classification of goal-oriented multi-objective 

optimization methods and algorithms. 

 

 

 

Figure 4.6: Classification of Multi-Objective Optimization Methods and the Role of Human in the Optimization 

Processes [43] 

 

 

 

 

 

 

 

 



111 

 

 

 

 

Figure 4.7: Classification of Goal-Oriented Multi-Objective Optimization Methods and Algorithms [20] 

 

4.5 Weighted Sum Method 

Weighted Sum (WS) is one of the most common classical approaches used for defining the 

Pareto optimal set. This method scalarizes a set of objectives into a single objective by adding 

each objective pre-multiplier by a user-defined weight factor. The weight of each factor would 

be defined by the objective relative importance in the problem [13]. 

Minimizing    f(x) = ∑ 𝑤𝑚 ∗ 𝑓𝑚(𝑥),                      m = 1,2, … ,M          (4.3)  

m

m=1

  

Subject to:                      g 𝑗(𝑋) ≤ 0                                   𝑗 = 1,2, … , 𝐽 

                      h 𝑘(𝑋) = 0                                 𝑘 = 1,2, … , 𝐾 

xi
(L)
≤ xi ≤ xi

(U)                           i = 1,2, … , N 
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In Equation (4.3), 𝑤𝑚 is defined as the weight of the 𝑚𝑡ℎ objective function, 𝑔𝑗 (𝑋) and ℎ𝑘 (𝑋) 

are inequality and equality constraints. 𝑥𝑗  𝐿𝑜𝑤𝑒𝑟 
𝐵𝑎𝑛𝑑

(𝐿)
 and  𝑥𝑗  𝑈𝑝𝑝𝑒𝑟 

𝐵𝑎𝑛𝑑

(𝑈)
 are the restricting boundary 

conditions for decision variables. 

4.7 Case Studies of Multi-Objective Optimization 

Two case studies of multi-objective optimization problems with general propose are discussed 

in this chapter which are adopted from MathWorks online website. The first case has two 

objective function and two variables, without any constraint. The second case study is a problem 

which consists of two objective functions, three variables, and two constraints. 

4.7.1 Case Study 1 

This case has a two-objective fitness function f(x), where x is also two-dimensional: objective 

functions to be minimized are: 

 

𝑓1 = 4𝑥1
6 − 2𝑥1

2 + 4𝑥1𝑥2 + 4𝑥2
6 − 𝑥1

2𝑥2
2                             

𝑓2 = 𝑥2
6 − 8𝑥1

2𝑥2
2 + 𝑥1

6 + 2𝑥1𝑥2                                             

The following function file is created before proceeding, and is stored it as mymulti1.m in 

MATLAB® path.  

 

function f = mymulti1(x) 

  

f(1) = 4*x(1)^6 - 2*x(1)^2+4*x(1)*x(2) + 4*x(2)^6 -(x(1)^2)*(x(2)^2) 

f(2) = x(2)^6 - 8*(x(1)^2)*(x(2)^2) + x(1)^6 + 2*x(1)*x(2) 

 
 

Figure 4.8 represent the  MATLAB optimization toolbox setting with respect to this case study. 

By specifying the population size of the case for 60 for two variables, and setting the lower 

bound between [-5 -5] and upper bound for [5 5], the Pareto plot has been generated and 

represented in Figure 4.9. 
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Figure 4.9: Pareto Front of Case Study 1  

 

 

Figure 4.8: Optimization Toolbox Setting 
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4.7.2 Case Study 2  

In this case, there are two constraints that should be considered in two objective functions, which 

have to be minimized are with three variables. 

𝑓1 = 𝑥1
4 + 𝑥2

4 + 𝑥3
4 

𝑓2 = 𝑥1𝑥2 (cos 𝑥3)
2  + 𝑥1𝑥3 (cos 𝑥2)

2 + 𝑥2𝑥3 (cos 𝑥1)
2 

Subject to: 

2𝑥1+𝑥2 + 𝑥3 = 10 
5 

−100 ≤ 𝑥1, 𝑥2, 𝑥3 ≤ 100 

 

By using the Weighted Sum (WS) technique, the objectives can be linearly combined as a simple 

objective function. Using the MATLAB optimization toolbox, by specifying the function 

tolerance by  1𝑒−8 , and setting the lower bound between [−100 −100 −100] and upper 

bound for [100 100 100], the Pareto plot has been generated and presented in Figure 4.1.  

 

Figure 4.10:  Pareto Front of Case Study 2 
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4.8 Conclusions 

This chapter has introduced the general concepts and principles of the single objective and multi-

objective optimization problems. The Pareto optimal solution has been introduced as a set of 

acceptable trade-off optimal solutions (non-inferior solutions). Different classifications for 

multi-objective optimization algorithms are presented. Weighted Sum (WS) method as one of 

the most common classical approaches used for defining the Pareto optimal set. Additionally, 

the MATLAB optimization toolbox is used for solving two numerical case studies presented in 

this chapter. 
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Chapter 5 

 

 Applying Multi-Objective Optimization Techniques for Solving 

Optimal Power Flow 

 

5.0 Introduction 

 

The primary propose of this chapter is to solve the Optimal Power Flow (OPF) problem as a 

multi-objective optimization problem while considering the system constraints. Teaching-

Learning Base Optimization (TLBO) algorithm is used to optimize the OPF problem in several 

single and multi-objective cases.  The method has been applied to 18 different cases on the IEEE 

30-bus and IEEE 57-bus test systems for several OPF objectives such as minimization of fuel 

cost, emission, voltage deviation, and power losses. Simulation results and comparisons 

highlight the effectiveness of the method for solving multi-objective OPF problems and relating 

the results to the performance of the power system. 

 

5.1 Multi-Objective Optimization Problem Formulation  

Four objectives of the optimal power flow problem are discussed in this section. The proposed 

objective functions are fuel cost generation, active power transmission losses, voltage deviation, 

and environmental emission. It is assumed that all the generating units are thermal with a cubic 

cost model for the fuel expressed as a cubic function of the output of the generating units. Some 

of these objective functions are conflicting in nature, which makes the OPF problem 

complicated. A multi-objective concept will be applied to solve the OPF problem [30].  

The mathematical formulation of the Optimal Power Flow problem can be stated as a nonlinear 

constrained optimization problem. The problem is subject to the satisfaction of nonlinear 

equality constraints and nonlinear inequality constraints.  
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The function is expressed by Equation 5.1 for the problem with two objective functions. 

 

                                         𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒{ 𝐹1(𝑥, 𝑢) , 𝐹2(𝑥, 𝑢),… , 𝑎𝑛𝑑 𝐹𝑛(𝑥, 𝑢) }             (5.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     𝑔(𝑥, 𝑢) = 0 

   ℎ(𝑥, 𝑢) ≤ 0 

 

The OPF problem has many control variables that need to be both specified and subjected to 

a variety of equality and inequality constraints.  

In the above equation, F is the objective function to be minimized. x is the vector of dependent 

variables (state vector), and u is the vector of independent variables (control variables) presented 

in Equations 5.2: 

 

𝑢𝑇 = [𝑃𝐺2…  𝑃𝐺𝑁𝐺  , 𝑉𝐺1 …  𝑉𝐺𝑁𝐺 , 𝑄𝐶1 …𝑄𝐶𝑁𝐶 , 𝑇1…  𝑇𝑁𝑇   ]             (5.2) 

𝑥𝑇 = [𝑃𝑆𝐺 , 𝑉𝐿1…  𝑉𝐿𝑁𝐿 , 𝑄𝐺1 …𝑄𝐺𝑁𝐺 , 𝑆𝑙1 …𝑆𝑙𝑛𝑙]                                            

 

Where  

𝑃𝐺  : Active power generated at the PV buses 

𝑉𝐺 : Voltage magnitude at PV buses 

𝑄𝐶  : Reactive power supplied by all shunt reactors 

𝑇𝑁𝑇 : Transformer load tap changer magnitude 

𝑃𝑆𝐺  : Active power of the slack bus 

𝑉𝐿 : Voltage magnitude at PQ buses (load buses) 

𝑄𝐺: Reactive power of all generator units 

𝑆𝑙:  Transmission Line loading (Load flow) 

𝑁𝐿: Number of load buses 

𝑁𝐺: Number of generator buses (PV buses) 

NC: Number of shunt VAR compensators 

𝑁𝑇: Number of transformers  

𝑛𝑙: Number of transmission lines  
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The network constraints include limits on all control variables, power flow equations, 

generation/load balances, branch flow limits (MW, MVAr, MVA), bus voltage limits, 

active/reactive reserve limits, generator MVAr limits, corridor (transmission interface) limits. 

Equations 5.3 shows the equality constraints of the power system. Inequality constraints for 

active power constraints and reactive power constraints are provided by Equations 5.4 to 5.8. 

        𝑃𝐺
𝑘 − 𝑃𝐷

𝑘 = 𝑉𝑘∑[𝑉𝑗[𝐺𝑗
𝑘 cos(𝛿𝑘 − 𝛿𝑗) + 𝐵𝑗

𝑘 sin(𝛿𝑘 − 𝛿𝑗)]]         (5.3)

𝑁

𝑗=1

 

𝑄𝐺
𝑘 − 𝑄𝐷

𝑘 = 𝑉𝑘∑[𝑉𝑗[𝐺𝑗
𝑘 sin(𝛿𝑘 − 𝛿𝑗) − 𝐵𝑗

𝑘 cos(𝛿𝑘 − 𝛿𝑗)]]

𝑁

𝑗=1

                   

Inequality Constraints: 

𝑃𝐺𝑘
𝑀𝑖𝑛 ≤ 𝑃𝐺𝑘 ≤ 𝑃𝐺𝑘

𝑀𝑎𝑥                 (5.4) 

𝑄𝐺𝑘
𝑀𝑖𝑛 ≤ 𝑄𝐺𝑘 ≤ 𝑄𝐺𝑘

𝑀𝑎𝑥                (5.5) 

𝑉𝑘
𝑀𝑖𝑛 ≤ 𝑉𝑘 ≤ 𝑉𝑘

𝑀𝑎𝑥                   (5.6) 

𝑄𝑐𝑘
𝑀𝑖𝑛 ≤ 𝑄𝑐𝑘 ≤ 𝑄𝑐𝑘

𝑀𝑎𝑥                 (5.7) 

𝑇𝑘
𝑀𝑖𝑛 ≤ 𝑇𝑘 ≤ 𝑇𝑘

𝑀𝑎𝑥                    (5. 8) 

Where:  

𝑘 = 1, 2, … ,𝑁 

𝑉𝑘 : Voltage at 𝑘𝑡ℎ bus  

𝛿𝑘 : Voltage angle at bus 𝑘𝑡ℎ 

𝑃𝐺
𝑘 : Active power generation at bus  𝑘𝑡ℎ 

𝑃𝐷
𝑘 : Active power demand at bus 𝑘𝑡ℎ 

𝑄𝐺
𝑘 : Reactive power generation at bus 𝑘𝑡ℎ 

𝑄𝐷
𝑘 : Reactive power demand at bus 𝑘𝑡ℎ 

𝐺𝑗
𝑘 : Real part of (𝑘, 𝑗) element of the bus admittance matrix 

𝐵𝑗
𝑘 : Imaginary part of (𝑘, 𝑗) element of the bus admittance matrix 

𝑃𝐺𝑘 : Active power generated by 𝑘𝑡ℎ generator 

𝑄𝐺𝑘 : Reactive power generated by 𝑘𝑡ℎ generator 

𝑄𝑐𝑘:The reactive power source capacity constraint 

𝑇𝑘: The transformer tap position constraints 



119 

 

 

 

It worth to mention that the control variables are self-constrained. The system generating 

constraints, transformer constraints, shunt VAR compensator constraints and, security 

constraints will satisfy the upper and lower boundaries of variables with aforementioned 

inequalities in solution.  

The inequality constraints of state (dependent) variables can be incorporated into the objective 

function as a quadratic penalty term. It contains the load bus voltage magnitude, the active power 

of slack bus, the reactive power of generation and line loading. In these terms, a penalty factor 

is multiplied by with the square of the disregarded value, is added to the objective function and 

any unfeasible solution is declined [44].   Equation 5.9 expresses the mathematical formulation 

of the penalty function:  

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 =  𝜆𝑃(𝑃𝐺1 − 𝑃𝐺1
𝑙𝑖𝑚)2 + 𝜆𝑉∑(𝑉𝐿𝑖 − 𝑉𝐿𝑖

𝐿𝑖𝑚)2
𝑁𝐿

𝑖=1

+ 𝜆𝑄∑(𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝐿𝑖𝑚)2

𝑁𝐺

𝑖=1

+ 𝜆𝑆∑(𝑆𝑙𝑖 − 𝑆𝑙𝑖
𝐿𝑖𝑚)2                                   (5. 9)

𝑛𝑙

𝑖=1

 

 

Where 𝜆𝑃, 𝜆𝑉, 𝜆𝑄 𝑎𝑛𝑑 𝜆𝑠  are the penalty factors and 𝑥𝑙𝑖𝑚 is the violated limit value of the 

state(dependent) variable x , Equation 5.10 expresses the limit value as follows: 

𝑥𝑙𝑖𝑚 = {
𝑥𝑚𝑎𝑥   , 𝑥 > 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛   , 𝑥 < 𝑥𝑚𝑖𝑛
                      (5. 10) 
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5.2 Case Studies 

Several case studies with single and multi-objectives have been performed to illustrate the 

effect of considering multi-objectives optimization in solving the OPF problem.  

 

 

Table 5.1: Summary of case studies 

Case no 

IEEE 30-bus system  IEEE 57-bus system 

       

Fuel Cost  Emission  
Voltage 

 Deviation  

Power  

Losses  
  

Fuel 

Cost 
Emission 

Voltage 

Deviation 

Power 

Losses 

Case 1          

Case 2           

Case 3          

Case 4          

Case 5          

Case 6          

Case 7          

Case 8          

Case 9          

Case 10          

Case 11          

Case 12         

Case 13         

Case 14          

Case 15         

Case 16         

Case 17         

Case 18              
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5.2.1 IEEE 30-Bus Power System 

The IEEE 30-bus system is the proposed system in which the line data and the bus data are given 

in [31]. Different cases are considered to evaluated and investigate the basic and complex 

objective functions. 

The system active and reactive power demands are 283.4 MW and 126.2 MW, respectively. In 

addition, the algorithms are implemented to solve all cases under the same conditions, i.e. system 

data, constraints, control variables limits. Table 5.2 provides a summary of the system 

specification.  Bus 1 is the swing bus or slack bus. In the power flow study, the rule of the slack 

bus is to balance active and reactive power in the system, while satisfying power balances 

mentioned by Equations 5.4 and 5.5. 

The first four case studies minimize the single objective functions of OPF including fuel cost, 

emission, transmission losses, and voltage deviation. The remaining cases are for multi-objective 

optimizations which are converted to single objectives with weight factors as in many previous 

studies [31]. 

 

Table 5.2: The Main Characteristics of The IEEE 30-Bus Test System [31] 

 

Items  IEEE 30-bus system 

Quantity Details 

Buses 30 Ref [31] 

Branches 41 Ref [31] 

Generators 6 Buses:1(Slack), 2, 5, 8 , 11 and 13 

   

Shunt VAR compensation 9 Buses: 10, 12, 15, 17, 20, 21, 23, 24 and 29 

Transformer with tab changer 4 Branches: 11, 12, 15 and 36 

Control Variables 24  

Connected load  283.4 MW, 126.2 MVAr 

Load bus voltage range allowed 24 [0.95- 1.05] p.u. 

 

Table 5.3 presents the cost and emission coefficient of generators for IEEE 30-bus system. 
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Table 5.3: Cost and Emission Coefficient of Generators for IEEE 30-bus System [31] 

Generator Bus a b c d e α  β γ       𝜔 𝜇 

G1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 2.857 

G2 2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 3.333 

G3 5 0 1 0.0625 14 0.04 4.258 -5.094 4.586 0.000001 8 

G4 8 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 0.002 2 

G5 11 0 3 0.025 13 0.042 4.258 -5.094 4.586 0.000001 8 

G6  13 0 3 0.025 13.5 0.041 6.131 -5.555 5.151 0.0001 6.667 

 

 

Case studies one to four provides a comparison for optimizing the single objective function 

of OPF problem including fuel cost function, emission, the active power losses in transmission 

lines, and voltage deviation separately.  
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Case 1: Minimization of Fuel Cost 

The main objective function of the optimal power flow problem is minimizing the generation 

Fuel Cost (FC) of all thermal units, presented by Equation 5.11. Table 5.4 summarizes the results 

of applying TLBO optimization technique with MATLAB on this case study.  

         𝐹𝐶 = ∑𝑎𝑖𝑃𝐺𝑖
2 +𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖                             (5.11)

𝑁𝐺

𝑖=1

 

Where 

𝐹𝐶 : Total fuel cost generation of the power system 

𝑁𝐺 : Number of generators including the slack generator  

𝑎𝑖 : Quadratic cost coefficient of the 𝑘𝑡ℎ generator 

𝑏𝑖 : Linear cost coefficient of the 𝑘𝑡ℎ  generator 

𝑐𝑖 : basic cost coefficient of the 𝑘𝑡ℎ  generator 

𝑃𝐺𝑖 : Real power output of the 𝑘𝑡ℎ  generator. 

Figure 5.1 shows the minimization of the fuel cost function with respect to the number of 

evaluation. The optimization process leads to the fuel cost of 800.7832 $/hr while satisfying all 

system constraints. 

 

Figure 5.1: Convergence of Case 1 for IEEE 30-Bus System 
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Case 2: Minimization of Emission 

The Emission or Environmental Index (EI), is an index from the viewpoint of environmental 

conservation. The atmospheric pollutants can be modeled separately. However, the OPF problem 

seeks to minimize the total (Ton/h) emission 𝐸(𝑃𝐺) of pollutants such as nitrogen oxides (NOx) 

and sulfur oxides (SOx) caused by fossil-fueled thermal units, which can be stated by the 

following equations. As indicated, the amount of emissions are given as a function of the 

generator active power output, which is the sum of quadratic and exponential functions according 

to Equation 5.12 [30]. 

𝐹(𝑥, 𝑢) = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =∑(𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖

𝑁𝐺

𝑘=1

+ 𝛾𝑖𝑃𝐺𝑖
2 ) × 0.01 + 𝜔𝑖𝑒

(𝜇𝑖𝑃𝐺𝑖)       (5.12)     

Where  𝛼𝑖 , 𝛽𝑖,  𝛾𝑘,  𝜔𝑖 𝑎𝑛𝑑 𝜇𝑖   are coefficients, provided in Table 5.3 for the IEEE 30-bus 

system. The results are presented in Table 5.4. 

 

Figure 5.2: Convergence of Case 2 for IEEE30-Bus System 

 

Figure 5.2 presents the minimization of emission function with TLBO algorithm where the 

optimization procedure provides the best output of 0.2049 ton/hr. 
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Case 3: Minimization of Voltage Deviation  

Voltage deviation is a measure of voltage quality in the power network. The index of deviation 

is also important from the security aspect. The indicator is formulated as a cumulative deviation 

of voltages for all load buses (PQ buses) in the network from a nominal value of unity. It can be 

defined mathematically as presented by Equation 5.13 [31], [32]. Figure 5.3 illustrates the 

convergence of function to the optimal solution of 0.1181 p.u after 100 times evaluations by the 

TLBO method by MATLAB. Table 5.4 provided more details about the results of implementing 

the algorithm on this case study. 

𝑉𝐷 = (∑  |𝑉𝐿𝑃 − 1|

𝑁𝐿

𝑃=1

)           (5.13) 

 

 

Figure 5.3: Convergence of Case 3 for IEEE 30-Bus System 
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Case 4: Minimization of Active Power Transmission Loss 

The objective function to minimize the active power transmission loss is defined by Equation 

5.14: 

𝑓(𝑥, 𝑢) =  𝑃𝐿𝑜𝑠𝑠 =∑𝐺𝑞(𝑖𝑗)[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 − 2𝑉𝑖𝑉𝑗 cos(𝛿𝑖𝑗)]          (5.14)

𝑚

𝑞=1

 

Where, 𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗, is the difference in voltage angle between bus 𝑖 and bus 𝑗, 𝐺𝑞(𝑖𝑗) is the 

transfer conductance of branch 𝑞 connecting the buses i and j. Figure 5.4 shows the optimization 

procedure result in the real power loss of 3.1804 MW in transmission lines. Table 5.4 provides 

the details on minimization results.   

 

Figure 5.4: Convergence of Case 4 for IEEE 30-Bus System 
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Case 5: Two Objectives: Minimization of Fuel Cost and Emission 

The goal of the objective function is to minimize both fuel cost and emission simultaneously. 

The converted single objective function will follow Equation 5.15. The weight factor 𝜆𝐸 is 

assigned the value of 1000 according to [44]. Figure 5.5 shows the convergence of the fitness 

function. For clarity, the convergence of each individual objective attaining the best fitness value 

is included in the fitness diagram for all multi-objective case studies. Table 5.5 presents the 

optimized solution for this multi-objective optimization problem. The best fuel cost value arrives 

at an increase in cost for Case 1, with the final value being 836.7029 $/hr and the ultimate value 

for emission is 0.2423 ton/hr after 100 evaluations. 

𝑓(𝑥, 𝑢) = (∑𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2

𝑁𝐺

𝑖=1

) + 𝜆𝐸 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦                         (5.15) 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =∑(𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖

𝑁𝐺

𝑘=1

+ 𝛾𝑖𝑃𝐺𝑖
2 ) × 0.01 + 𝜔𝑖𝑒

(𝜇𝑖𝑃𝐺𝑖)        

 

  

  

Figure 5.5: Convergence of Case 5 for IEEE 30-Bus System 

 

 

  



128 

 

Case 6: Two Objectives: Minimization of Fuel Cost and Voltage Deviation 

The combined objective function of the fuel cost and the voltage deviation in the network is 

expressed by Equation 5.16:  

𝑓(𝑥, 𝑢) = (∑𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2

𝑁𝐺

𝑖=1

) + 𝜆𝑉𝐷 × 𝑉𝐷 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦                   (5.16) 

𝑉𝐷 = (∑|𝑉𝐿𝑃 − 1|

𝑁𝐿

𝑃=1

) 

where the weight factor 𝜆𝑉𝐷 is assigned a value of 100 as presented in [32] and [31]. Table 5.5 

summarizes the results of implementing multi-objective optimization using TLBO algorithm 

using MATLAB and Figure 5.6 presents the convergence of fitness function in this case study. 

 

  

Figure 5.6: Convergence of Case 6 for IEEE30-Bus System 
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Case 7: Two Objectives: Minimization of Fuel Cost and Real Power Loss 

The multi-objective case of minimizing two objectives of fuel cost and real power loss is 

converted to a single objective function by considering a multiplier as  the weight factor to one 

of the objectives, expressed by Equation 5.17: 

 

𝑓(𝑥, 𝑢) = (∑𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2

𝑁𝐺

𝑖=1

) + 𝜆𝑃 × 𝑃𝐿𝑜𝑠𝑠 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦         (5.17) 

𝑃𝐿𝑜𝑠𝑠 =∑𝐺𝑞(𝑖𝑗)[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 − 2𝑉𝑖𝑉𝑗 cos(𝛿𝑖𝑗)]

𝑚

𝑞=1

                      

 

Where the value of 𝜆𝑃 is chosen as 40 according to [32], and  𝑃𝐿𝑜𝑠𝑠 is the real power loss in the 

network, 𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗, is the difference in voltage angle between bus i and bus j, and 𝐺𝑞(𝑖𝑗) is 

the transfer conductance of branch q connecting the buses i and j. Figure 5.7 shows the 

convergence of fitness function for the multi-objective optimization of OPF where the fuel cost 

reaches 836.7029 $/hr and real power loss. Table 5.5 summarizes the results of implementing 

the TLBO algorithm by MATLAB on this case study [31]. 

 

 

 

  

Figure 5.7: Convergence of Case 7 for IEEE30-Bus System 
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Case 8: Three Objectives: Minimization of Fuel Cost, Emission, Losses 

 The multi-objective case of minimizing fuel cost, emission, and real power loss is converted to 

a single objective function by multiplying a weight factor to the objectives according to Equation 

5.18.  

𝑓(𝑥, 𝑢) = (∑𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2

𝑁𝐺

𝑖=1

) + 𝜆𝐸 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝜆𝑃 × 𝑃𝐿𝑜𝑠𝑠 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦     (5.18) 

Where emission and real power loss is expressed according to Equations 5.12 and 5.14 

respectively. The weight factors are selected to balance between the objectives as 19 and 22,  for 

emission and losses, respectively [32].  Figure 5.8 illustrates the convergence of fitness function 

and Table 5.5 shows the optimized values with respect to this multi –objective optimization case. 

The fitness function convergence revealed the best values of the function to be 830.6375 $/hr, 

0.2529 ton/hr, 5.6193 MW for fuel cost, emission and losses respectively.  

 

 

Figure 5.8: Convergence of Case 8 for IEEE30-Bus System 
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Case 9: Four Objectives: Fuel Cost, Emission, Voltage Deviations and Losses 

The aim of this case is to minimize four-conflicted objectives of fuel cost, emission, voltage 

deviations and losses in the network simultaneously. The objective function is defined by 

Equation 5.19: 

𝑓(𝑥, 𝑢) = (∑𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2

𝑁𝐺

𝑖=1

) + 𝜆𝐸 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝜆𝑉𝐷 × 𝑉𝐷 + 𝜆𝑃 × 𝑃𝐿𝑜𝑠𝑠

+ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦                                                                                                          (5.19) 

Substituting related equations, the function will be expressed according to Equation 5.20.  

 

𝑓(𝑥, 𝑢) = (∑𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2

𝑁𝐺

𝑖=1

) + 𝜆𝐸 × (∑(𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖

𝑁𝐺

𝑘=1

+ 𝛾𝑖𝑃𝐺𝑖
2 ) × 0.01 + 𝜔𝑖𝑒

(𝜇𝑖𝑃𝐺𝑖))

+ 𝜆𝑉𝐷 × (∑|𝑉𝐿𝑃 − 1|

𝑁𝐿

𝑃=1

) + 𝜆𝑃

× (∑𝐺𝑞(𝑖𝑗)[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 − 2𝑉𝑖𝑉𝑗 cos(𝛿𝑖𝑗)]

𝑚

𝑞=1

) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦         (5.20) 

 

Where, 𝜆𝐸, 𝜆𝑉𝐷, and 𝜆𝑃 are the weighting factors, which are selected to balance between the 

objectives as 19, 21 and 22, respectively [32] [31]. Table 5.5 summarizes the results of 

implementing the TLBO optimization algorithm by using MATLAB on this case study. 

Figure 5.9 illustrates the convergence of fitness function, while all of the four objectives are 

considered in the multi-objective OPF optimization procedure. 
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Figure 5.9: Convergence of Case 9 for IEEE 30-Bus System 
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Table 5.4: Simulation Results of Optimum Solution for IEEE-30 Bus System- Single Objective Cases 

Parameters Min Max Case 1 Case 2  Case 3 Case 4 

PG2 (MW) 20 80 48.324 67.861 59.5179 79.755 

PG5 (MW) 15 50 21.6011 49.9999 50 49.9936 

PG8 (MW) 10 35 21.7212 34.9953 20.3846 34.9985 

PG11 (MW) 10 30 12.135 29.9999 10.9346 29.9999 

PG13 (MW) 12 40 12.0086 39.9996 21.7652 39.9798 

VG1 (p.u) 0.95 1.1 1.0757 0.9865 1.033 1.0595 

VG2 (p.u.) 0.95 1.1 1.0541 0.9781 1.0199 1.0545 

VG5 (p.u.) 0.95 1.1 1.0244 0.9573 1.0206 1.0365 

VG8 (p.u.) 0.95 1.1 1.0317 0.9664 1.0094 1.0444 

VG11 (p.u.) 0.95 1.1 1.0991 1.0847 1 1.0676 

VG13 (p.u.) 0.95 1.1 1.0758 1.0837 1.0022 1.0691 

T11 (p.u.) 0.9 1.1 1.0402 0.9407 0.992 0.9743 

T12 (p.u.) 0.9 1.1 0.9347 0.9 0.9019 1.0204 

T15 (p.u.) 0.9 1.1 1.0237 0.9599 0.9591 1.0338 

T36 (p.u.) 0.9 1.1 0.9663 0.9242 0.9716 0.996 

Qc10 (p.u.) 0 5 5 4 4 1 

Qc12 (p.u.) 0 5 3 0 4 1 

Qc15 (p.u.) 0 5 4 2 3 5 

Qc17 (p.u.) 0 5 3 5 2 5 

Qc20 (p.u.) 0 5 5 2 5 0 

Qc21 (p.u.) 0 5 4 3 3 3 

Qc23 (p.u.) 0 5 3 5 3 0 

Qc24 (p.u.) 0 5 4 4 3 5 

Qc29 (p.u.) 0 5 3 3 5 5 

Fuel Cost ($/h)   800.7832 945.8329 870.632 967.2393 

Emission (ton/h)   0.3648 0.2049 0.2644 0.2072 

Voltage Deviation (p.u.)   0.9073 0.7326 0.1181 0.6348 

Active Power Loss (MW)     9.046 3.6296 6.5758 3.1804 
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Figure 5.10:  Simulation Results of Optimum Solution for IEEE-30 Bus System Single-objective Cases 
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Table 5.5:  Simulation Results of Optimum Solution for IEEE-30 Bus System, Multi-Objective Cases 

Parameters Min Max Case 5 Case 7 Case 6 Case 8 Case 9 

PG2 (MW) 20 80 58.6876 50.6644 55.6226 52.0053 50.452 

PG5 (MW) 15 50 28.0745 21.0879 38.1331 31.9342 31.9004 

PG8 (MW) 10 35 34.9809 22.4297 34.9925 34.9939 34.9986 

PG11 (MW) 10 30 27.3498 13.3915 29.9965 25.7703 29.5358 

PG13 (MW) 12 40 26.6 12.2293 26.8853 21.9452 22.6492 

VG1 (p.u) 0.95 1.1 1.068 1.0397 1.0689 1.0718 1.0534 

VG2 (p.u.) 0.95 1.1 1.0545 1.0223 1.0564 1.0555 1.0368 

VG5 (p.u.) 0.95 1.1 1.0295 1.0188 1.0347 1.0306 1.0108 

VG8 (p.u.) 0.95 1.1 1.0397 1.0049 1.042 1.041 1.02 

VG11 (p.u.) 0.95 1.1 1.0532 1.0032 1.0652 1.0876 1.0999 

VG13 (p.u.) 0.95 1.1 1.0566 1.0157 1.0679 1.0744 1.0064 

T11 (p.u.) 0.9 1.1 0.9933 1.0118 0.9898 0.9985 1.0145 

T12 (p.u.) 0.9 1.1 1.0367 0.9007 0.9802 0.9818 1.0249 

T15 (p.u.) 0.9 1.1 1.0392 0.9911 1.0117 1.0155 0.9991 

T36 (p.u.) 0.9 1.1 0.9836 0.9588 0.9739 0.9705 0.9752 

Qc10 (p.u.) 0 5 5 5 4 5 5 

Qc12 (p.u.) 0 5 3 4 4 0 5 

Qc15 (p.u.) 0 5 5 4 5 3 5 

Qc17 (p.u.) 0 5 5 3 2 3 3 

Qc20 (p.u.) 0 5 2 5 5 1 3 

Qc21 (p.u.) 0 5 5 4 5 0 1 

Qc23 (p.u.) 0 5 5 4 3 1 5 

Qc24 (p.u.) 0 5 5 2 2 1 2 

Qc29 (p.u.) 0 5 1 2 3 2 2 

Fuel Cost ($/h)   836.7029 804.0932 859.5791 830.6375 835.9996 

Emission (ton/h)   0.2423 0.3559 0.2286 0.2529 0.2482 

Voltage Deviation (p.u.)   0.5471 0.1181 0.8726 0.7155 0.2349 

Active Power Loss (MW)     5.4242 9.772 4.5615 5.6193 5.6224 
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Figure 5.11: Simulation Results of Optimum Solution for IEEE-30 Bus System Multi-objective Cases 
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5.2.2 IEEE 57-Bus System 

The IEEE 57-bus system data [31] is considered to perform a total of 8 case studies for the 

system. Table 5.6 provides a summary of the system specification. The system active and 

reactive power demands are 1250.8 MW and 336.4 MVAR. The IEEE 57-bus test system 

constitutes of 7 generators, 80 transmission line, 17 transformers, and 3 capacitor banks as given 

in [31]. Upper and lower boundaries of voltage buses and transformer tap settings are between 

0.9 & 1.1 p.u. Table 5.7 presents the cost and emission coefficient of generators for IEEE 57-bus 

system. 

 

Table 5.6:  The Main Characteristics of the IEEE 57-Bus Test System [31] 

Items  IEEE 57-bus system 

Quantity Details 

Buses 57 Ref [31] 

Branches 80 Ref [31] 

Generators 7 Buses:1(Slack), 2, 3, 6, 8 , 9 and 12 

   

Shunt VAR compensation 3 Buses: 18, 25 and 53 

Transformer with tab changer 17 
Branches: 19, 20, 31, 35, 36, 37, 41, 46,  

    54, 58, 59, 65, 66, 71, 73, 76,  and 80 

Control Variables 33  

Connected load  1250.8 MW, 336.4 MVAr 

Load bus voltage range allowed 50 [0.94- 1.06] p.u. 

 

 

Table 5.7: Cost and Emission Coefficient of Generators for IEEE 57-Bus System [31] 

Generator Bus a b    c d e α   β γ   𝜔  𝜇 

G1 1 0 20 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 0.286 

G2 2 0 40 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 0.333 

G3 5 0 20 0.0625 13.5 0.041 6.131 -5.555 5.151 0.000001 0.667 

G4 8 0 40 0.00834 18 0.037 3.491 -5.754 6.39 0.0003 0.266 

G5 11 0 20 0.025 14 0.04 4.258 -5.094 4.586 0.000001 0.8 

G6  13 0 40 0.025 15 0.039 2.754 -5.847 5.238 0.0004 0.288 

G7 12 0 20 0.0322581 12 0.045 5.326 -3.555 3.38 0.002 0.2 
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Case 10: Minimization of Fuel Cost  

The basic objective function of this case is to optimize the fuel cost function given by 

Equation 5.11. The results are provided in Table 5.8, as considered in Case 1. Figure 5.12 shows 

the minimization of the fuel cost function with respect to the number of evaluations. The 

optimization process leads to a fuel cost of 41815 $/hr while satisfying all system constraints. 

 

 

Figure 5.12: Convergence of Case 10 for IEEE 57-Bus System 
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Case 11: Minimization of Emission 

Similar to Case 2, the focus of this case study is on minimizing the total emissions in the 

OPF optimization problem, defined by Equation 5.12. The results of the optimization procedure 

by the TLBO algorithm are presented in Table 5.8. In addition, Figure 5.13 shows the 

minimization of emission function where the optimization procedure provides the best output of 

1.0902 ton/hr. 

 

 

 

Figure 5.13: Convergence of Case 11 for IEEE 57-Bus System 
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Case 12: Minimization of Voltage Deviation 

This case discusses the same objectives as Case 4. The objective function is given by 

Equation 5.13. Table 5.8 provides information related to this case. Figure 5.14 illustrates the 

convergence of function to the optimal solution of 0.7173 p.u after 100 times evaluations by 

using the TLBO method with MATLAB. Table 5.8 provided more details about the results of 

implementing this algorithm in this case study. 

 

 

Figure 5.14: Convergence of Case 12 for IEEE 57-Bus System 
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Case 13: Minimization of Active Power Loss 

The aim of this case is to minimize the active power loss in transmission lines, as defined 

by Equation 5.14. Table 5.7 provides the coefficient and Table 5.8 shows the optimization 

results. Figure 5.13 shows the optimization procedure results in the real power loss of 13.3375 

MW in transmission lines. Table 5.8 provides the details on minimization results.   

 

 

Figure 5.15: Convergence of Case 13 for IEEE 57-Bus System 
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Case 14: Two Objectives: Minimization of Fuel Cost and Emission 

 The goal here is to minimize the fuel cost and to improve the emission function of the IEEE 

57-test system at the same time. Thus, the objective function is the same as Case 5, given by 

Equation 5.15 where 𝜆𝐸  is chosen as 1000. Figure 5.16 shows the convergence of fitness function 

and Table 5.9 presents the optimized solution of this multi-objective optimization problem. For 

clarity, the convergence of only one objective attaining the best fitness value is included in the 

fitness diagram for all multi-objective case studies. The best fuel cost value arrives at an increase 

in cost than Case 10, with final value being 41978 $/hr and for emission is 1.5153 ton/hr after 

100 evaluations. 

 

  

  

Figure 5.16: Convergence of Case 14 for IEEE 57-Bus System 
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Case 15: Two Objectives: Minimization of Fuel Cost and Voltage Deviation 

As in Case 6, this case is a multi-objective optimization problem. The main purposes of the 

problem concern minimization of the fuel cost and voltage profile enhancement, as given by 

Equation 5.16, where 𝜆𝑉𝐷 is chosen as 100.  Table 5.9 summarizes the results of implementing 

multi-objective optimization using the TLBO algorithm with MATLAB and Figure 5.17 presents 

the convergence of fitness function in this case study. 

 

  

Figure 5.17: Convergence of Case 15 for IEEE 57-Bus System 
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Case 16: Two Objectives: Minimization of Fuel Cost and Real Power Loss 

Similar to Case 7, the goal focuses on the minimization of total fuel cost while monitoring the 

real power loss. The multi-objective problem is converted to a single function by multiplying 

weight factors and is used to minimize both objective functions simultaneously according to 

Equation 5.17. Figure 5.18 shows the convergence of fitness function for a multi-objective 

optimization of OPF where the fuel cost reaches 41857 $/hr and real power losses are 15.9728 

MW. Table 5.9 summarizes the results of implementing the TLBO algorithm with MATLAB in 

this case study. 

 

 

 

  

  

  

Figure 5.18: Convergence of Case 16 for IEEE 57-Bus System 
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Case 17: Three Objectives: Minimization of Fuel Cost, Emission, Losses 

This case is similar to Case 8. It presents the compromise solution over the optimization of three 

objective functions consisting of total fuel cost, emission and real power losses at the same time. 

The problem formulation is given by Equation 5.18.  

Figure 5.19 illustrates the convergence of the fitness function and Table 5.9 shows the optimized 

values with respect to this multi-objective optimization case. The weight factors are selected to 

balance between the objectives as 19 and 22  for emission and losses, respectively [32]. The 

fitness function convergence revealed the best values of the function to be 41900 $/hr, 2.0562 

ton/hr, 16.1162MW for fuel cost, emission and losses respectively.  

 

 

Figure 5.19: Fitness Function Convergence of Case 17 for IEEE 57-Bus System 
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Case 18: Four Objectives: Fuel Cost, Emission, Voltage Deviations and Losses 

As explained in Case 9, the multi-objective case for minimizing fuel cost, emission, and real 

power losses is converted to single objective function by multiplying a weight factor to the 

objectives as expressed by Equations 5.19 and 5.20. The weight factors are selected to balance 

between the objectives as 19, 21 and 22,  for emission, voltage deviation, and losses, respectively 

[32]. Table 5.9 summarizes the results of implementing the TLBO optimization algorithm by 

using MATLAB in this case study. Figure 5.20 illustrates the convergence of fitness function, 

while all of the four objectives are considered in the multi-objective optimization procedure. 

 

 

Figure 5.20: Fitness Function Convergence of Case 18 for IEEE 57-Bus System 
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Table 5.8: Simulation Results of Optimum Solution for IEEE 57-Bus System 

Parameters Min Max Case 10 Case 11 Case13 Case 14 

PG2 (MW) 30 100 98.1603 99.445 42.3358 10.5523 

PG3 (MW) 40 140 49.1818 140 117.2235 82.5886 

PG6 (MW) 30 100 69.887 100 47.2586 98.2577 

PG8 (MW) 100 550 456.7591 302.6981 281.0804 339.6432 

PG9 (MW) 30 100 87.0398 100 59.5569 99.4843 

PG12 (MW) 100 410 364.9578 293.3467 302.397 409.1274 

V1 (p.u) 0.95 1.1 0.9852 1.0327 1.0232 0.9665 

V2 (p.u.) 0.95 1.1 0.9796 1.0212 1.0081 0.9574 

V3 (p.u.) 0.95 1.1 0.9641 1.0073 1.0123 0.9574 

V6(p.u.) 0.95 1.1 0.964 0.9887 1.0072 0.9621 

V8 (p.u.) 0.95 1.1 0.9775 0.981 1.027 0.9606 

V9 (p.u.) 0.95 1.1 0.9514 0.9649 1.0051 0.9511 

V12 (p.u.) 0.95 1.1 0.9633 0.9865 1.0219 0.988 

Qc18 (p.u.) 0 20 8.48 14.07 7.14 1.6 

Qc25 (p.u.) 0 20 22.99 25.46 12.02 19.41 

Qc53 (p.u.) 0 20 7.77 0.07 12.05 5.76 

T19 (p.u.) 0 20 0.9225 1.0895 1.1 0.9504 

T20 (p.u.) 0.9 1.1 0.9025 1.0976 0.9191 0.9002 

T31 (p.u.) 0.9 1.1 1.0323 0.9005 1.0151 0.9293 

T35(p.u.) 0.9 1.1 1.0288 1.0344 1.0003 0.9597 

T36 (p.u.) 0.9 1.1 0.9251 0.9906 1.0395 1.0342 

T37 (p.u.) 0.9 1.1 0.9638 0.9443 1.0243 0.9896 

T41 (p.u.) 0.9 1.1 0.9431 0.9472 0.9604 0.9006 

T46 (p.u.) 0.9 1.1 0.9737 0.9797 0.9183 0.9836 

T54 (p.u.) 0.9 1.1 0.9106 0.9 0.9 0.9002 

T58 (p.u.) 0.9 1.1 0.9195 0.9255 0.9475 0.9009 

T59 (p.u.) 0.9 1.1 0.9152 0.9226 0.9871 0.9094 

T65 (p.u.) 0.9 1.1 0.9246 0.9809 0.9887 0.9 

T66 (p.u.) 0.9 1.1 0.9088 0.9299 0.9006 0.9 

T71 (p.u.) 0.9 1.1 0.9372 0.9299 0.9302 0.9003 

T73 (p.u.) 0.9 1.1 0.9985 1.0069 1.0002 0.9002 

T76 (p.u.) 0.9 1.1 0.9026 1.0224 0.9787 0.9841 

T80 (p.u.) 0.9 1.1 0.956 0.9439 1.0072 0.9 

Fuel Cost ($/h)     41815 45701 50870 43223 

Emission (ton/h)   1.8921 1.0902 1.6807 1.5065 

Voltage Deviation (p.u.)   1.5192 1.2582 0.7173 1.4022 

Active Power Loss (MW)     17.9115 19.816 25.922 13.3375 
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Figure 5.21: Simulation Results of Optimum Solution for IEEE 57-Bus System Single-objective Cases 
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Table 5.9: Simulation Results of Optimum Solution for IEEE-57 Bus System, Multi-objective Cases 

Parameters Min Max Case 14 Case 15 Case 16 Case 17 Case 18 

PG2 (MW) 30 100 99.3452 97.6138 81.731 83.8276 66.1226 

PG3 (MW) 40 140 51.6008 43.9625 46.9343 49.4303 96.5192 

PG6 (MW) 30 100 88.7318 59.4725 64.3148 43.9851 56.9695 

PG8 (MW) 100 550 419.6951 464.0246 442.9978 458.6195 455.0092 

PG9 (MW) 30 100 97.8437 81.7688 86.7345 78.7001 62.1057 

PG12 (MW) 100 410 363.5859 374.0378 399.729 410 357.1104 

V1 (p.u) 0.95 1.1 0.95 0.9869 0.9648 0.9737 0.9992 

V2 (p.u.) 0.95 1.1 0.9423 0.9803 0.9598 0.9684 0.9891 

V3 (p.u.) 0.95 1.1 0.9405 0.966 0.9509 0.9579 1.0001 

V6(p.u.) 0.95 1.1 0.9566 0.9668 0.9508 0.9684 1.0051 

V8 (p.u.) 0.95 1.1 0.9781 0.9878 0.9695 0.9802 1.0191 

V9 (p.u.) 0.95 1.1 0.9548 0.9639 0.9496 0.9528 0.9881 

V12 (p.u.) 0.95 1.1 0.974 0.9837 0.9744 0.966 0.9878 

Qc18 (p.u.) 0 20 14.29 6.9 7.46 6.49 5.39 

Qc25 (p.u.) 0 20 13.5 12.55 19.23 12 24.57 

Qc53 (p.u.) 0 20 19.6 8.06 10.65 9.24 6.45 

T19 (p.u.) 0 20 0.9002 0.9001 0.9 0.905 0.9724 

T20 (p.u.) 0.9 1.1 0.9072 0.9982 0.9 0.9 1.0532 

T31 (p.u.) 0.9 1.1 0.97 0.968 0.9871 0.923 0.9526 

T35(p.u.) 0.9 1.1 0.9 1.0152 1.1 0.9076 1.0274 

T36 (p.u.) 0.9 1.1 1.0288 0.901 0.9012 0.9 0.907 

T37 (p.u.) 0.9 1.1 1.0054 0.997 0.9879 0.9098 0.9341 

T41 (p.u.) 0.9 1.1 0.9013 0.9145 0.9 0.9066 0.9311 

T46 (p.u.) 0.9 1.1 0.9489 0.9451 0.9188 0.941 0.9941 

T54 (p.u.) 0.9 1.1 0.9 0.9452 0.9055 0.9013 0.9998 

T58 (p.u.) 0.9 1.1 0.9024 0.9001 0.9126 0.9 0.9121 

T59 (p.u.) 0.9 1.1 0.9008 0.913 0.9254 0.9151 0.9712 

T65 (p.u.) 0.9 1.1 0.9063 0.9299 0.9074 0.9 0.982 

T66 (p.u.) 0.9 1.1 0.9002 0.901 0.9 0.9 0.9629 

T71 (p.u.) 0.9 1.1 0.9003 0.9041 0.9031 0.9126 0.9063 

T73 (p.u.) 0.9 1.1 1.0267 0.931 0.9857 0.9957 0.9807 

T76 (p.u.) 0.9 1.1 0.9048 0.9382 0.9405 0.9 0.9008 

T80 (p.u.) 0.9 1.1 0.9 0.9366 0.9013 0.9 0.999 

Fuel Cost ($/h)     41875 41852 41857 41900 42583 

Emission (ton/h)   1.5821 1.9748 1.8674 2.0562 1.879 

Voltage Deviation (p.u.)   1.5599 1.426 1.5042 1.78 1.5491 

Active Power Loss (MW)     17.1518 18.5264 15.9728 16.1162 17.3545 

Active Power Loss (p.u.)     17.1518 18.5264 15.9728 16.1162 17.3545 
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Figure 5.22: Simulation Results of Optimum Solution for IEEE-57 Bus System Multi-objective Cases 
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5.3 Comparative Study 

The results reported in this thesis are compared to some other Artificial Intelligent (AI) methods 

under the same control variable limits, constraints, and system data for two case studies. It 

appears from Tables 5.10 and 5.11 that the proposed method outperforms many techniques used 

to solve different OPF problems. The results are either better or comparable to those obtained by 

other techniques. This shows the efficiency of the TLBO method for finding the optimum 

solution.  

 

Table 5.10: Comparison of the Simulation Results for Minimizing Fuel Cost with Different AI Methods 

Case 1, IEEE30-Bus System 

Method Cost ($/hr) Method Description Reference 

GSA 798.67 Gravitational Search Algorithm [45] 

DSA 799.09 Differential Search Algorithm [46] 

SA 799.45 Simulated Annealing [47] 

DE 799.28 Differential Evolution [48] 

TLBO 800.48 Teaching-Learning-Based Optimization  

FPSO 800.72 Fuzzy Particle Swarm Optimization [49] 

IGA 800.80 Improved Genetic Algorithm [50] 

PSO 800.96 Particle Swarm Optimization [49] 

GAF 801.21 Fuzzy Genetic Algorithm [49] 

ICA 801.84 Imperialistic Competitive Algorithm [51] 

EGA 801.06 Enhanced Genetic Algorithm [52] 

TS 802.29 Tabu Search [53] 

MDE 802.37 Modified Differential Evolutionary Algorithm [54] 

IEP 802.46 Improved Evolutionary Programming [55] 

EP 802.62 Evolutionary Programming [56] 

RGA 804.02 Refined Genetic Algorithm [57] 

GM 804.85 Gradient Method [58] 

GA 805.94 Genetic Algorithm [57] 
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Table 5.11: Comparison of the Simulation Results in Multi-Objective Optimization of Fuel Cost and Voltage 

Deviation, Case 5, IEEE30-Bus System  

Method Cost ($/hr) 
Voltage 

Deviation(p.u.) 

Objective 

Function 
Method Description  

Reference 

TLBO 803.8268 0.09750 813.5786 Teaching-Learning-Based Optimization  

DSA 803.8274 0.09770 813.5961 Differential Search Algorithm [46] 

GSA 804.3148 0.09330 813.6417 Gravitational Search Algorithm [45] 

BBO 804.9982 0.10400 815.1982 Biogeography-Base Optimization [59] 

PSO 806.3800 0.08910 815.2900 Particle Swarm Optimization [49] 

EM 804.2600 0.12700 816.9600 Electromagnetism-Like Mechanism [60] 

DE 805.2619 0.13670 818.8319 Differential Evolution [48] 
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5.4 Conclusions  

    This chapter has presented the application of multi-objective optimization in solving the 

Optimal Power Flow(OPF) problem. The objective functions are: fuel cost function, emission, 

voltage deviation, and transmission losses. The Teaching-Learning-Based Optimization (TLBO) 

algorithm has been successfully and effectively implemented to the IEEE 30-bus and IEEE 57-

bus power system for single and multi-objective cases to reflect the performance of the power 

system. Fitness function gradually reduces in all the minimization cases. It is worthwhile to 

mention that unlike the other optimization algorithm, TLBO does not require any internal 

parameter to tune.  

Evidently, the OPF fitness function gradually reduces in all optimization cases, despite some 

irregularities occurring during the process of convergence due to the non-linear relationship of 

the objective functions with control parameters of the network.  A comparative study is provided 

to highlight the efficiency of the algorithm in comparison with other artificial intelligence 

methods.  
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Chapter 6 

 

6. Conclusion and Future Work 

 

The primary purpose of this thesis is to present the general concepts and classifications of multi-

objective optimization methods and draw the focus to its applications on power systems.  

The optimal power flow problem is a non-linear, constrained optimization problem with several 

objective functions. Multi-objective optimization has been implemented to optimize the OPF 

problem for different objective functions considering fuel cost, emission, voltage deviation, and 

power losses.  

The Teaching-Learning-Based Optimization (TLBO) algorithm is a popular method among 

metaheuristic techniques with relatively competitive performances. It is inspired by passing the 

knowledge from teacher to learners or by the interaction between the learners themselves. TLBO 

is employed to optimize the OPF problem by using MATLAB for single and multi-objective 

OPF case studies. Simulation results and comparisons highlight the effectiveness of the method 

for solving multi-objective OPF problems and reflect the performance of the power system. This 

thesis has considered four key problems for power systems: economy, environmental emission, 

voltage deviation, and transmission losses. The outcomes of the presented research reflect the 

effectiveness of approaches and potential benefits for power system planning and operation.  
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6.1 Summary of the Research and Contribution of Thesis 

 Application of multi-objective optimization in solving the optimal power flow problem has 

been presented. 

 The Teaching-Learning-Based Optimization (TLBO) algorithm has been successfully and 

effectively implemented to standard case studies for single and multi-objective cases. 

 Unlike other optimization algorithms, TLBO does not require any internal parameter to 

tune.  

 The OPF fitness function for all presented case studies gradually reduces using TLBO 

method, despite some irregularities in the process of convergence, which arises due to the 

nonlinear relationship between the objective functions and control parameters of the 

network.  

 The efficiency of TLBO method is shown with a comparative study with other intelligent 

methods for a single objective and a multi-objective case study in this thesis.  

 The ability of TLBO to provide the global optimum solutions in comparatively less number 

of function evaluations can be studied in OPF for future works. 

 

  6.2 Recommendations of Future Work 

   Some of the potential research areas for improving the performance of the algorithm in the 

future is presented in this section.  

 The concepts of learning through tutorials and self-motivated leaning can be studied in 

future research. 

 Using the adaptive teaching factor for TLBO is a new discussion for improving the 

performance of the algorithm. The adaptive teaching factor allows the students to acquire 

partial knowledge from the instructor where as in the basic TLBO the students could learn 

either everything or nothing from the presented topic [61].  

 Number of teachers on the fitness value of the objective function could be increased to 

effect the efficiency of the algorithm. 

 TLBO with a variable-population scheme can be studies for optimization problems.  
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 Experimentation of TLBO on very large-scale systems is another interesting area for future 

studies in order to show the capability and efficiency of the system for handling a system 

with large number of variables and constraints. 

 Using an adaptive penalty factor for system constraints in solving multi-objective optimal  
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