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Abstract 

 

Optimal Power Flow (OPF) is one the most basic problems in power system analysis. In the 

last decades many studies have been done to provide a robust and fast solution for OPF. The 

main goal of the Optimal Power Flow problem is determining an operating point that minimizes 

the power system objectives such as generation cost, emission or power loss.  

The conventional optimization algorithms for Optimal Power Flow are centralized algorithms. 

These conventional centralized algorithms encounter two challenges. First, most times the 

generation units in a power network belong to different owners that do not want to share their 

confidential information with other power generation companies. Second, when the number of 

buses significantly increase the optimization problem will be very complicated. In these cases, 

finding the optimal solution takes time and in some cases even the solution does not converge.   

 
 In order to solve the large-scale Optimal Power Flow problem in power networks and deal 

with the problems brought by the system size, distributed parallel processing algorithms, which 

are known distributed optimization techniques, are sought. In distributed parallel algorithms, 

each processor tries to solve a sub-problem independently based on limited information 

communication.  

 This research discusses a consensus-based Alternating Direction Method of Multipliers 

(ADMM) approach for solving the OPF problem. In distributed optimization, the whole power 

system should be split into some partitions. Sub-problems which are related to partitions should 

be solved by their assigned local processors in parallel. The local processors have to be 

networked.  In the proposed distributed optimization technique, the optimal point of the whole 

system can be obtained throughout the ADMM iterative process. In this thesis, ADMM 
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implementation on an OPF problem for some IEEE cases has been presented and the optimal 

solution obtained by ADMM and MATPOWER (a MATLAB base program) are compared.   
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1. Introduction to Thesis 

Chapter 1  

 

Introduction to Thesis  

 

 
1.1. Research Background 

Every year the size of power networks will be larger and larger. As a result, the power system 

problems are getting more complicated. Importance of providing an optimization technique to 

deal with these sophisticated power system problems is increasing.  

In the last decades many optimization techniques for Optimal Power Flow (OPF) have been 

presented. The main goal of all proposed techniques in the literature is finding a better solution 

efficiently. Many studies are dedicated to using metaheuristic optimization techniques 

including genetic algorithm, particle swarm optimization, simulated annealing, ant colony 

optimization, bacterial foraging technique, imperial competition algorithm, etc. for solving 

Optimal Power Flow.  

One of the most interesting methods to solve OPF is using distributed optimization technique 

that many researchers have paid attention in the last few years. The main idea of using 

distributed optimization for OPF is to split the main power system into some sub-systems and 

to solve them independently by local computers and then integrate the results of the sub-

systems to find the optimal solution of the main problem.  
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1.2. Research Objective 

The main objectives of this thesis are listed as follows: 

 To understand the analytical and stochastic optimization techniques and their 

differences and multi objective optimization concepts.  

 To study the formulation of Economic Dispatch and Optimal Power Flow and their 

equality and inequality constraints. 

 To study different objectives of Optimal Power Flow problem and their formulation. 

 To review the required mathematics for distributed optimization such as Lagrangian 

function, Duality theory, linear and quadratic programming, Augmented Lagrangian 

function and Alternating Direction Method of Multipliers. 

 To demonstrate how the power system can be split into some partitions to be suitable 

for distributed optimization technique.  

 To implement proposed splitting concept on some IEEE cases.  

 To reformulate ADMM to solve AC-OPF and DC-OPF in a distributed fashion.  

 To create sub-problems and their constraints and assigning them to local processor in 

order to solve them in parallel.   

 To present the steps for solving the AC-OPF and DC-OPF by consensus optimization 

along with typical 6-bus and 3-bus power system, respectively.  

 To present the communication strategies between local processors in a distributed 

manner. 

 To implement the proposed algorithm on some IEEE cases and compare the results 

with conventional techniques.  
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1.3. Organization of the thesis 

This thesis has been organized such that introduction to optimization, Economic Dispatch (ED) 

and Optimal Power Flow (OPF) formulations are discussed in early chapters and distributed 

optimization techniques and its application to AC and DC Optimal Power Flow problem is 

discussed in later chapters. In Chapter 2, a short review of classical optimization techniques is 

presented.  Also, the results of applying these techniques to Economic Dispatch (ED) are 

provided. In Chapter 3, the Optimal Power Flow problem and its constraints are discussed in 

detail. In Chapter 4, required background for distributed optimization and some mathematical 

approach for optimization such as linear and quadratic programming, Kuhn-Tucker, 

Lagrangian method of multipliers, and Alternating Direction Method of Multipliers (ADMM) 

have been presented. In Chapter 5, the ADMM is reformulated for the Optimal Power Flow 

problem. The approaches for partitioning the power system to be suitable for solving by 

ADMM is discussed in detail. Also, the suitable form of distributed optimization for AC-OPF 

and DC-OPF has been explained through some typical power systems and the communication 

strategies between local processors are presented. 

 In Chapter 6, the proposed algorithm presented in Chapter 5 has been applied on some IEEE 

case studies and results are compared with the conventional solutions. Chapter 7 concludes the 

thesis by highlighting the key contribution of this approach and presenting various suggestions 

for future works. 
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2. Review of Classical Optimization Techniques 

Chapter 2  

 

Review of Classical 

Optimization Techniques 

 

 
2.1. Introduction  

In the real world, many problems exist that need to be optimized. The main goal of optimization 

is finding all feasible solutions which correspond to minimizing or maximizing all specified 

objectives while satisfying all constraints of the problem.  Fundamentally, all optimization 

problems could be classified into two categories: Single-objective optimization methods that 

involve a single objective function which result in a single solution, and multi-objective 

optimization technique that considers several conflicting objectives simultaneously. In this 

case, there is not a certain single optimal solution, but a set of alternatives, with different trade-

offs, which is called Pareto optimal solutions. Despite the existence of multiple Pareto optimal 

solutions, only one of these solutions is acceptable. In this chapter, the most important classical 

methods of optimization are presented. 
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2.2. Problem Formulation  

In order to optimize a problem, the problem must first be modeled. Creating an appropriate 

mathematical model for an optimization problem is as important as the optimization method 

itself. This research is not about modeling of the problems thus modeling aspects have not been 

considered in this thesis.  

Typically, a comprehensive model of optimization problem can be presented as follows:  

Minimize or Maximize 

𝐹1(𝑥1, 𝑥2, … , 𝑥𝑛)                                                                                                                                            

𝐹𝑖(𝑥1, 𝑥2, … , 𝑥𝑛)       𝑖 = 1, 2, … , 𝑚                                                                                                 (2.1) 

𝐹𝑚(𝑥1, 𝑥2, … , 𝑥𝑛)                                                                                                                                           

Subject to  

Equality Constraints         𝐺𝑗(𝑥1, 𝑥2, … , 𝑥𝑛) = 0                     𝑗 = 1, 2, … , 𝑝                            (2.2) 

Inequality Constraints      𝐻𝑘(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 0                 𝑘 = 1, 2, … , 𝑞                            (2.3) 

Where:  𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} are 𝑛 independent variables that will be obtained by applying 

optimization technique. 

𝐹 = { 𝐹1, … , 𝐹𝑚} are 𝑚 objective functions that need be minimized or maximized. 

𝐺 = {𝐺1, … , 𝐺𝑝} are 𝑝 equality constraints that should be satisfied.  

𝐻 = {𝐻1, … , 𝐻𝑞} are 𝑞 inequality constraints that should be satisfied.  

In the case that (𝑚 = 1), the problem known as single objective optimization problem. In the 

case that (𝑚 > 1), the problem known as a multi objective optimization problem.  
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In case, there are not any equality or inequality constraints the problem is known as 

Unconstrained Optimization Problem. If there is at least one constraint, the problem is 

classified as a Constrained Optimization Problem. Practically, in engineering problems, most 

cases are Constrained Multi-Objective Optimization Problems.  

2.3. Optimization Techniques  

Many optimization algorithms are available to engineers. However, many methods are 

appropriate only for certain types of problems. Thus, it is important to be able to recognize the 

characteristics of a problem in order to identify an appropriate solution technique. Within each 

class of problems, there are different minimization methods, varying in computational 

requirements, convergence properties, and so on. Optimization problems are classified 

according to the mathematical characteristics of the objective function, the constraints, and the 

control variables. The most important characteristic is the nature of the objective function [1]. 

These classifications are summarized in Table 2-1. 

Table 12-1: Classification of Objective Functions 

Characteristic Property Classification 

Number of 

Variables 

One Univariate Optimization 

Two or more Multivariate Optimization 

Type of 

Independent 

Variables 

Continuous Continuous Optimization 

Integers or binary Integer Optimization 

Problem 

Function 

Both Continuous and Integer Mixed Integer Optimization 

Linear Function of Independent Variables Linear Optimization 

Quadratic Function of Independent Variables Quadratic Optimization 

Nonlinear Function of Independent Variable Nonlinear Optimization 

Problem 

Formulation 

With Constraints Constrained Optimization 

Without Constraints Unconstrained Optimization 
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2.4. Classification of Optimization Techniques  

Optimization Techniques can be classified into two specific categories: Analytical Methods 

and Metaheuristic Optimization Algorithms.  

2.4.1. Analytical Methods 

These methods are based on classical methods such as gradient method, line search technique, 

Lagrange multiplier method, Newton-Raphson optimization technique and Karush-Kahn-

Tucker method. Most of the classic methods are based on derivation concepts and are 

applicable to convex functions. These algorithms usually present some inconveniences due to 

the danger of convergence, algorithmic complexity, long execution time and generation of a 

weak number of non-dominated solutions.  

Figure 2-1 illustrates convex function versus non-convex function. In convex functions, there 

is just one optimal point that is the global solution, while non-convex functions have many 

local optimal points that the global solution is one of them.  

 

Figure 12-1: Comparison Between Convex and Non-convex Functions 
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2.5. Metaheuristic Optimization Algorithms 

These algorithms are based on the evolutionary techniques such as the Genetic Algorithm (GA) 

[1], Particle Swarm Optimization (PSO) [2], Simulated Annealing (SA) [3], Imperial 

Competition Algorithm (ICA) [4], and Ant Colony Optimization (ACO) [3]. In these methods, 

an initial trial solution is selected, either using at random or common sense, and the objective 

function is evaluated. A move is made to a new point (second trial solution), and the objective 

function is evaluated again. If it is smaller than the value for the first trial solution, it is retained, 

and another move is made. The process is repeated until the minimum is found. 

Evolutionary Techniques can be used in the following cases:  

 The objective function is non-Convex. 

 The number of variables and constraints is large. 

 The problem functions (objective or constraint) are highly nonlinear. 

 The problem functions (objective or constraint) are implicit in terms of the 

decision/control variables making the evaluation of derivative information difficult. 

 

2.5.1. The Basic Concept of Particle Swarm Optimization  

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart in 1995. PSO is 

based on swarm behavior such as fish and bird schooling in nature. Many algorithms (such as 

ant colony algorithms and virtual ant algorithms) use the behavior of the so-called swarm 

intelligence. Though particle swarm optimization has many similarities with genetic algorithms 

and virtual ant algorithms, it is much simpler because it does not use mutation/crossover 

operators or pheromone. Instead, it uses the real-number randomness and the global 
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communication among the swarm particles. In this sense, it is also easier to implement as there 

is no encoding or decoding of the parameters into binary strings as those in genetic algorithms. 

This algorithm searches a space of an objective function by adjusting the trajectories of 

individual agents, called particles, as the piecewise path formed by positional vectors in a 

quasi-stochastic manner. The particle movement has two major components: a stochastic 

component and a deterministic component. The particle is attracted toward the position of the 

current global best while at the same time it has a tendency to move randomly. When a particle 

finds a location that is better than any previously found locations, then it updates it as the new 

current best for particle 𝑖. This is a current best for all 𝑛 particles. The aim is to find the global 

best among all the current best until the objective no longer improves or after a certain number 

of iterations [3]. 

2.5.2. The Basic Concept of Simulated Annealing  

Simulated Annealing (SA) is a random search technique for global optimization problems. It 

mimics the annealing process in material processing when a metal cools and freezes into a 

crystalline state which has minimum energy and larger crystal size so as to reduce the defects 

in metallic structures. The annealing process involves the careful control of temperature and 

cooling rate (often called annealing schedule). The application of simulated annealing into 

optimization problems is presented in [3]. Since then, there have been extensive studies. Unlike 

the gradient-based methods and other deterministic search methods which have the 

disadvantage of being trapped into local minima, the main advantage of the simulated 

annealing is its ability to avoid being trapped in local minima. In fact, it has been proved that 

the simulated annealing will converge to its global optimality if enough randomness is used in 

combination with very slow cooling. 
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Generally speaking, this is equivalent to dropping some bouncing balls over a landscape, and 

as the balls bounce and lose energy, they settle down to some local minima. If the balls are 

allowed to bounce enough times and loose energy slowly enough, some of the balls will 

eventually fall into the global [3]. 

2.5.3. The Basic Concept of Genetic Algorithms  

Genetic Algorithms (GAs) are general-purpose search techniques based on principles inspired 

by the genetic and evolution mechanisms observed in natural systems and populations of living 

beings. Their basic principle is the maintenance of a population of solutions to a problem 

(genotypes) in the form of encoded individual information that evolves in time. A Genetic 

Algorithm for a particular problem must have the following five components: 

 A genetic representation of a potential solution to the problem. 

 A way to create an initial population of potential solutions. 

 An evaluation function that plays the role of the environment, rating solutions in terms 

of their “fitness.” 

 Genetic operators that alter the composition of children. 

 Values for various parameters that the GA uses (population size, probabilities of 

applying genetic operators, etc.) 

A genetic search starts with a randomly-generated initial population within which each 

individual is evaluated by means of a fitness function. Individuals in this and subsequent 

generations are duplicated or eliminated according to their fitness values. Further generations 

are created by applying GA operators. This eventually leads to a generation of high-performing 

individuals [1]. 
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2.5.4. The Basic Concept of Imperial Competition Algorithm 

Imperial Competition Algorithm (ICA) originally proposed by Atashpaz and Lucas [4], ICA is 

a population-based meta-heuristic search technique. In ICA, each member of the population is 

called a country and specified by a vector containing the problem variables. Some of the best 

countries are selected as imperialists, and the other countries are colonies of these imperialists. 

According to their power, all the colonies are distributed among the imperialists. An imperialist 

along with its colonies is called an empire. 

Based on the assimilation policy, each colony moves towards the relevant imperialist by a 

deviation from the connecting line between the colony and its imperialist. 

In order to escape local optima, ICA makes use of a revolution operator. This operator 

randomly selects some countries and replaces them with new random positions. As a colony 

moves towards an imperialist, there is the possibility that the colony will reach a position with 

better quality than that of the imperialist. In this case, the imperialist and the colony change 

their positions and the algorithm will be continued using this new country as the imperialist. 

The most important process of ICA is the imperialistic competition in which all the empires 

attempt to take the possession of the colonies of the other empires and control them. Through 

the imperialistic competition the power of the weaker empires will decrease, and consequently, 

the power of the stronger ones will increase. This process is modeled by picking one of the 

weakest colonies of the weakest empires and creating a competition among all the empires to 

possess this colony. In this competition, based on its total power, each empire has the 

probability of taking the possession of the colony.  

During the imperialistic competition, powerless empires collapse in the imperialistic 

competition and the corresponding colonies will be divided among the other empires. Moving 
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colonies toward imperialists continuously and perform imperialistic competition during the 

search process. When the number of iterations reaches a pre-defined value, the search process 

stops [4]. 

2.6. Multi-Objective Optimization  

Most of the optimization problems have only a single objective. Practically, multiple objectives 

need to optimize simultaneously. For instance, increasing the performance of a system while 

trying to minimize the cost at the same time. In this case, we are dealing with multi-objective 

optimization problems. 

Multi-objective optimization problems, unlike single objective problems, do not necessarily 

have an optimal answer that minimizes all the objective functions simultaneously. In practice, 

different objectives may conflict with each other. This means that the optimal parameters of 

some objectives might make the optimality of other objectives worse.  Many methods have 

been introduced for multi-objective optimization. The weighted sum method is one of them.  

2.6.1. Weighted Sum Method 

In the weighted sum method, among all objectives, a tradeoff or a certain balance of objectives 

need to be chosen. Finding a scalar-valued function that represents weighted combinations of 

all objectives is one of the most popular approaches. A simple way to construct this scalar 

function is to use the weighted sum formula as follows:  

𝐹 = ∑ 𝛼𝑖𝑓𝑖

𝑛

𝑖=1

(�̅�)                                                                                                                                (2.4) 

 Where  

�̅� : is an independent variable vector. 
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𝐹 : is the obtained single objective problem. 

𝛼𝑖 : are the coefficient of objective functions. 

𝑛 : is the number of objective functions. 

By using the weighted sum technique, a multi-objective problem including 𝑛 objectives 

converts to a single objective problem.  

 

2.7. Application of Optimization in Economic Dispatch Problem  

2.7.1. Economic Dispatch Problem (EDP) 

Economic Dispatch is a dynamic problem for minimizing fuel cost of thermal units while 

considering power system constraints which should iteratively be solved by changing the load 

demand in the network. Different methods have been proposed for solving this problem in the 

least possible time. 

 The fuel cost function for thermal units is a quadratic convex function. Considering valve 

loading effect, a sinusoidal term with limited range is added to this quadratic function which 

makes the fuel cost function non-convex. 

The purpose of economic dispatch is calculating the power generated by thermal units for 

satisfying demand and network losses in order to minimize the total fuel cost of thermal units.  

2.7.2. Cost Function of Thermal Units with Multiple Fuels 

 Each thermal unit has a unique cost function that shows the cost for any specific active power 

that is generated by unit. Equation (2.5) shows the thermal units’ fuel cost model with multiple 

fuel types. Considering the loading effect adds a sinusoidal term to a quadratic function. In 
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Equation (2.5), 𝐹𝐶𝑖(𝑃𝑖) is fuel a cost of 𝑖th thermal unit and 𝑎𝑖,𝑘 , 𝑏𝑖,𝑘 , 𝑐𝑖,𝑘, 𝑒𝑖,𝑘, 𝑓𝑖,𝑘  are 

coefficients of 𝑘th fuel in the 𝑖th generator. In a multiple fuel model, certain fuel is used in 

each thermal unit depending on the produced power of each thermal unit [5]. 

𝐹𝐶𝑖(𝑃𝑖) =

{
 
 
 
 
 

 
 
 
 
 𝑎𝑖,1𝑝𝑖

2 + 𝑏𝑖,1𝑝𝑖 + 𝑐𝑖,1 + |𝑒𝑖,1 sin (𝑓𝑖,1( 𝑝𝑖
𝑚𝑖𝑛 − 𝑝𝑖))|

 𝑝𝑖
𝑚𝑖𝑛 ≤ 𝑝𝑖 ≤ 𝑝𝑖,1             𝑓𝑢𝑒𝑙 𝑡𝑦𝑝𝑒 1

𝑎𝑖,2𝑝𝑖
2 + 𝑏𝑖,2𝑝𝑖 + 𝑐𝑖,2 + |𝑒𝑖,2 sin (𝑓𝑖,2( 𝑝𝑖

𝑚𝑖𝑛 − 𝑝𝑖))|

     𝑝𝑖 ,1 ≤ 𝑝𝑖 ≤ 𝑝𝑖,2                  𝑓𝑢𝑒𝑙 𝑡𝑦𝑝𝑒 2      
.
.
.

𝑎𝑖,𝑘𝑝𝑖
2 + 𝑏𝑖,𝑘𝑝𝑖 + 𝑐𝑖,𝑘 + |𝑒𝑖,𝑘 sin (𝑓𝑖,𝑘( 𝑝𝑖

𝑚𝑖𝑛 − 𝑝𝑖))|

𝑝𝑖 ,𝑘−1 ≤ 𝑝𝑖 ≤ 𝑝𝑖
𝑚𝑎𝑥         𝑓𝑢𝑒𝑙 𝑡𝑦𝑝𝑒 𝑘

                                         (2.5) 

The purpose of EDP is minimizing thermal units costs based on Equation (2.6). 

𝑀𝑖𝑛 𝑇𝐶(𝑃) = ∑ 𝐹𝐶𝑖(𝑝𝑖)           

𝑁

𝑖=1

                                                                                                 (2.6) 

𝑃 = [𝑝1, 𝑝2, … , 𝑝𝑁]                                                                                                                         (2.7) 

 Where: 

 𝑇𝐶(𝑃) is the total cost of thermal units. 

 𝑁 is the number of thermal units. 

𝑝𝑖 is indicated power of  𝑖th generator that needs to be optimized.  

2.7.3. Economic Dispatch Constraints  

 One of the EDP constraints is the equality of summation of load demand and power loss with 

total generated power of all thermal units. Equation (2.8) shows this constraint: 
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∑ 𝑝𝑖

𝑁

𝑖=1

= 𝑃𝐷 + 𝑃𝐿                                                                                                                               (2.8) 

In which  𝑃𝐷 , 𝑃𝐿 show consumed power and power line losses of network, respectively.  

Another constraint is the power boundary of units which has been presented in Equation (2.9) 

in which (𝑝𝑖
𝑚𝑖𝑛 , 𝑝𝑖

𝑚𝑎𝑥) is power bound of 𝑖th generator.  

𝑝𝑖
𝑚𝑖𝑛 ≤ 𝑝𝑖 ≤ 𝑝𝑖

𝑚𝑎𝑥                                                                                                                             (2.9) 

The total network loss is expressed by a quadratic function of generators' output power as 

Equation (2.10): 

𝑃𝐿 = ∑ ∑ 𝑝𝑖

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝐵𝑖𝑗𝑝𝑗 + ∑ 𝐵0𝑖𝑝𝑖 + 𝐵00  

𝑁𝑔

𝑖=1

                                                                                  (2.10) 

In which 𝐵𝑖𝑗 is 𝑖𝑗th element of the B coefficient matrix.  

 

2.7.4. Prohibited Operating Zones’ Constraints 

Errors in generators, pumps, boilers, and other equipment may create instability in a certain 

range of generator output power. Due to these errors, the generator is prohibited from power 

generation in that area. This matter results in a non-continuous fuel cost function. The 

prohibited operating zones (POZs) create constraint (2.11) for EDP.  

𝑝𝑗 ∈

{
 

 

  

𝑝𝑗
𝑚𝑖𝑛   ≤  𝑝𝑗  ≤ 𝑝𝑗

𝐿𝐵1

𝑝𝑗
𝑈𝐵𝐾−1 ≤ 𝑝𝑗 ≤ 𝑝𝑗

𝐿𝐵𝐾

𝑝𝑗
𝑈𝐵𝐾   ≤  𝑝𝑗  ≤ 𝑝𝑗

𝑚𝑎𝑥

      𝑗 = 1, . . , 𝑁𝑔                                                                           (2.11) 

Figure 2-2 shows a typical fuel cost function considering valve effect, prohibited operating 

zone, and multiple fuel types.  
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Figure 22-2: Fuel Cost Curve with Considering Multi-fuel and POZ 

 

2.7.5. Case Study of Economic Dispatch (PowerWorld Simulator) 

A 7-bus power system including 5 thermal units has been considered as a case study. Figure 2-

3 demonstrates the power system in PowerWorld Simulator.  

 

 
Figure 32-3: Seven-bus Power System in The PowerWorld Simulator 

 

This case study has 5 generators that have to supply 760 MW. The total fuel cost function is 

provided by Equation (2.12) as follows:  
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𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ 𝑎𝑖𝑝𝑖
2 + 𝑏𝑖𝑝𝑖 + 𝑐𝑖

5

𝑖=1

                                                                                                           (2.12) 

 Where  

𝑎1 = 0.0013 /  𝑎2 = 0.00136/   𝑎3 = 0.00134  /   𝑎4 = 0.00131/  𝑎5 =   0.00194      

𝑏1 = 7.62     /  𝑏2 = 7.52        /   𝑏3 = 7.84          /   𝑏4 = 7.57        /  𝑏5 =   7.77      

𝑐1 = 761.94/  𝑐2 = 831.84  /   𝑐3 = 530.03     /   𝑐4 = 831.92   /  𝑐5 =   500.08 

 

The system equality and inequality constraints are as follows: (all numbers are in MW)   

𝑝1 +  𝑝2 +  𝑝3 +  𝑝4 +  𝑝5 =   760                                                                                           (2.13) 

100 < 𝑝1 < 400                                                                                                                             (2.14) 

150 <  𝑝2 < 500                                                                                                                            (2.15) 

 50 <  𝑝3  < 200                                                                                                                           (2.16) 

150 <  𝑝4 < 500                                                                                                                           (2.17) 

  0   <  𝑝5 < 600                                                                                                                           (2.18) 

In order to solve this case study, the MATLAB toolbox has been used. To compare the answers 

of the problem, two solutions “fmincon” and “genetic algorithm” have been applied. The 

obtained results for each optimization technique are as follows: 

By applying “fmincon”, the total cost is C$9425.6, and active powers are as follows:  

𝑝1 =  179.77MW,  𝑝2 =  208.60MW,    𝑝3 = 92.31MW,  𝑝4 = 197.48MW,     𝑝5 = 81.80MW   

  when “Genetic Algorithm (GA)” has been used, the obtained total cost is the same as 

“fmincon” while active powers are not same. GA results are as follows:  
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𝑝1 = 181.38MW,     𝑝2 = 206.94MW,      𝑝3 = 94.60MW,       𝑝4 = 192.70MW,      𝑝5 = 84.35MW 

Due to the total cost of these techniques are equal both obtained active power can be used 

without any priority.           

2.7.6. The Second Case Study for the Economic Dispatch Problem 

A case study including 10 thermal units with 3 types of fuel and valve loading effect has been 

considered [5]. Table 2-2 represents the coefficients of multiple fuel cost functions. The total 

demanded power of the system is 2700MW. Optimal points for 10 units are presented in Table 

2-3. These optimal points are obtained by solving the EDP with, the briefly presented methods, 

Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The optimal power and total 

cost of the thermal units are presented in Table 2-3 [5]. 
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In Table 2-2, the unit of all generation powers is MW. Also, the unit of coefficients 𝑎, 𝑏 are 

$
𝑀𝑊2⁄ , $ 𝑀𝑊⁄ , respectively.  

 

Table 22-2: Coefficients of Multiple Fuel Cost Functions [5] 

 

Table 32-3: Optimal Point Obtained by Some Metaheuristic Algorithms 

GA PSO Variables 

219.996 225.573 p1 (MW) 

212.701 208.224 p2 (MW) 

283.739 278.806 p3 (MW) 

240.521 238.027 p4 (MW) 

282.313 282.414 p5 (MW) 

240.579 239.639 p6 (MW) 

293.085 285.427 p7 (MW) 

240.311 239.092 p8 (MW) 

406.980 425.586 p9 (MW) 

279.775 277.212 p10 (MW) 

2700 2700 Total Power (MW) 

624.963 624.304 Total Cost ($) 
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2.7.7. The Third Case Study for Economic Dispatch  

This power system includes forty power generation units with valve-point loading effects. The 

power loss is ignored in this case study. The demanded power is considered 10500 MW and 

the system information is obtainable from [6]. Because of the high dimension, this case study 

is challenging and obtaining the global optimum is time-consuming and difficult. In order to 

provide a bird’s eye view on most of well-known metaheuristic techniques, the performance 

of the most familiar stochastic optimization techniques including  ICA [4], HBMO [6], 

CHBMO [6], IHBMO [6], MPSO [8], DEC-SQP [8], PSO-SQP [8], FCASO [9], BBO [9], 

SOH-PSO [10], IFEP [11], MFEP [11], PAA [12], ESO [13], PSO-LRS [14], IGA [15], GA 

[10], PSO [10], NPSO [16], ST-HDE [17], HDE [8], EP-SQP [18], PSO-GM [19], TS [20], 

ACO [20], NPSO-LRS [14], APSO [14], SOH-PSO [17] and CSO [18] in terms of minimum, 

mean and maximum costs have been listed in Table 2-4. 

The question that comes to mind is how the problem can be solved when the number of 

generating units is many times higher than 40. Clearly, results obtained by one processor in the 

case that there is a very large number of generating units have a low accuracy, and in some 

cases solution cannot even be converged. This matter shows the importance of using distributed 

optimization techniques that will be discussed in the next chapters.  
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Table 42-4: Comparison Between Stochastic Optimization Techniques 

Maximum cost ($/h) Mean cost ($/h) Minimum cost ($/h) Algorithm 

121846.04 121640.28 121430.45 MuICA 

123174.96 122625.46 122297.90 ICA 

- 122100.74 121865.63 CASO 

121939.74 121851.77 121639.38 HBMO 

121939.74 121851.77 121639.38 CHBMO 

121711.85 121589.18 121517.8 IHBMO 

- - 122252.27 MPSO 

- 122295.13 122174.16 DEC-SQP 

- 122295.13 122094.67 PSO-SQP 

- 122082.59 121516.47 FCASO 

- - 121479.50 BBO 

- - 121501.14 SOH-PSO 

125740.63 123382.00 122624.35 IFEP 

- 123489.47 122647.57 MFEP 

122243.18 122243.18 122243.18 PAA 

123143.07 122558.45 122122.16 ESO 

123461.67 122558.45 122035.79 PSO-LRS 

123334.00 122811.41 121915.93 IGA 

- - 121819.25 GA 

123467.40 122513.91 122513.91 PSO 

122995.09 122221.30 121704.73 NPSO 

- 122304.30 121698.51 ST-HDE 

- 122304.30 121698.51 HDE 

- 122379.63 122323.97 EP-SQP 

123219.22 122398.38 121845.98 PSO-GM 

122424.81 122590.89 122288.38 TS 

121930.58 122048.06 121811.37 ACO 

122981.59 122209.31 121664.43 NPSO-LRS 

122912.39 122153.67 121663.52 APSO 

122446.30 121853.57 121501.14 SOH-PSO 

122844.53 

 

121936.19 121461.67 CSO 
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2.8. Conclusion 

This chapter has introduced classical optimization techniques for finding the optimal solution 

of a formulated problem. Modern optimization techniques based on metaheuristic search 

algorithms such as particle swarm optimization, simulated annealing, genetic algorithm and 

imperial competition algorithm have been described briefly. In addition, weighted sum, as one 

of the most basic techniques for Multi-objective optimization, has been presented. The 

formulation of the Economic Dispatch Problem, including the cost curve as the objective 

function and the prohibited operating zone as optimization constraints, has been explained.  

Due to the main goal of this chapter was introducing classical optimization techniques for 

solving power system problems, the results of applying some classical techniques to 3 different 

case studies have been presented and compared.  
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3. Optimal Power Flow Studies for Power Systems 

Chapter 3  

Optimal Power Flow Studies 

for Power Systems 

 

3.1. Introduction to Power Flow 

The flow of electrical power in any interconnected electrical system is termed load flow. A  

Load Flow Study is conducted to calculate the voltages at the various buses. The load flow 

study, one of the most basic and fundamental problems in the power system,  concerns solving 

a set of static nonlinear equations. The load flow problem is formulated on the basis of 

Kirchhoff’s laws in terms of voltages’ amplitude and voltage phase at each node, and active 

and reactive power injections in the system.  

Power systems typically have 3 different kinds of buses. Table 3-1 shows the types of buses 

and their associated known and unknown values. 
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Table 53-1: Power System Buses Classification 

Type of Buses Specified Quantities Quantities to be Determined 

Generation or P-V Bus P, |V| Q, δ 

Load or P-Q Bus P, Q |V|, δ 

Slack or Reference Bus |V|, δ P, Q 
 

 

Where 

P is the active power of the generator  

Q is the reactive power of the generator  

|V| is the amplitude of the voltage bus   

 δ  is the phase angle of the voltage bus 

3.1.1. Slack or Reference Bus 

The slack bus in a power system emits or absorbs the active or reactive power. The magnitude 

and phase angle of the voltage are specified in the slack bus. The phase angle and magnitude 

of the voltage is usually set at zero and one per unit, respectively. The active and reactive power 

of this bus is usually determined through the solution of the load flow. 

3.1.2. Generation Bus 

The voltage magnitude and active power for the generation buses are specified, and the reactive 

power generation and voltage phase angle still have to be computed. The generation bus is also 

called the P-V bus, and in this kind of bus the voltage magnitude is maintained at a constant 

specified value by injection of reactive power.  

 



26 

 

3.1.3. Load Bus 

In the load bus, also called the P-Q bus, the active and reactive power are specified, and the 

magnitude and phase angle of the voltage are to be computed.  

 To summarize, for a load flow problem, the active power and voltage magnitudes are specified 

values for load buses; the active and reactive power demands are also given. One generator bus 

is taken as the reference bus, with a specified voltage magnitude and phase angle. The problem 

is to find the reactive power generation and phase angles at the generating buses along with the 

voltage magnitudes and their angles at the load buses.  

 

3.2. Power Flow Equations 

Power flow studies are the backbone of power systems analysis. The principal information 

obtained from a power flow study is the magnitude and phase angle of the voltage at each bus 

and once all voltages and angles are available, the real and reactive power flow through 

transmission lines can be calculated. In any power system within 𝑁 buses, the power injections 

at the buses can be defined by a set of 2𝑁 nonlinear equations. 

  𝑃𝐺
𝑘 − 𝑃𝐷

𝑘 = 𝑉𝑘 ∑ [𝑉𝑗[𝐺𝑗
𝑘 cos(𝛿𝑘 − 𝛿𝑗) + 𝐵𝑗

𝑘 sin(𝛿𝑘 − 𝛿𝑗)]]

𝑁

𝑖=1

                                             (3.1) 

𝑄𝐺
𝑘 − 𝑄𝐷

𝑘 = 𝑉𝑘 ∑ [𝑉𝑗[𝐺𝑗
𝑘 sin(𝛿𝑘 − 𝛿𝑗) − 𝐵𝑗

𝑘 cos(𝛿𝑘 − 𝛿𝑗)]]

𝑁

𝑖=1

                                              (3.2) 

Where 𝑘 = 1, 2, … , 𝑁. 

𝑉𝑘 is the voltage magnitude at bus 𝑘𝑡ℎ. 

𝛿𝑘 is the voltage angle at bus 𝑘𝑡ℎ. 
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𝑃𝐺
𝑘 is the active power generation at bus 𝑘𝑡ℎ. 

𝑃𝐷
𝑘 is the active power demand at bus 𝑘𝑡ℎ. 

𝑄𝐺
𝑘 is the reactive power generation at bus 𝑘𝑡ℎ. 

𝑄𝐷
𝑘 is the reactive power demand at bus 𝑘𝑡ℎ. 

𝐺𝑗
𝑘 is the real part of element (𝑘, 𝑗) of the bus admittance matrix. 

𝐵𝑗
𝑘 is the imaginary part of element (𝑘, 𝑗) of the bus admittance matrix. 

Figure 3-1 shows a generic bus in a power system. 

 

 

Figure 43-1: A Typical Bus in A Power System 

 

3.3. Optimal Power Flow 

For electric power systems with thermal generation units, an important economic operation 

function is Optimal Power Flow (OPF). In contrast to the load flow problem, where active 

power generations are specified, for Optimal Power Flow, the optimal generations are sought 

to optimize the OPF objectives, such as the operating cost of the power system.  

The OPF problem seeks to find an optimal profile of active power along with voltage 

magnitudes. The aim is minimizing the total operating costs of an all-thermal electric power 

system while satisfying network security constraints. OPF is a more realistic formulation than 
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the conventional economic dispatch, which does not account for the operating constraints of 

the network. 

3.4. Optimal Power Flow Formulation 

Based on the number of considered objectives, the Optimal Power Flow problem can be 

formulated mathematically as a nonlinear constrained optimization problem. The OPF problem 

has many control variables that need to be specified and subjected to a variety of equality and 

inequality constraints. The control variables are defined by the equation below  in the form of 

a vector that is called �̅�. Optimal Power Flow state variables, which are called 𝑥, are defined 

as follows [1].  

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑓𝑙𝑜𝑤 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:      �̅� = [𝑉𝐿
𝑡,   𝜃𝑡,   𝑃𝑆𝐺 ,   𝑄𝐺

𝑡 ]                                  (3.3) 

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑓𝑙𝑜𝑤 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:      �̅� = [𝑄𝑐
𝑡,   𝑇𝐶𝑡,   𝑉𝐺

𝑡,   𝑃𝐺
𝑡]                             (3.4)  

Where  

𝑄𝑐
𝑡 is the reactive power supplied by all shunt reactors. 

𝑇𝐶𝑡 is the transformer load tap changer magnitudes. 

𝑉𝐺
𝑡 is the voltage magnitude at the PV buses. 

𝑃𝐺
𝑡  is the active power generated at the PV buses. 

𝑁𝐿 is the number of the load buses. 

𝑁𝐺  is the number of the generator buses (PV buses). 

𝑉𝐿 is the voltage magnitude at the PQ buses (load buses). 

𝜃  is the voltage angles of all buses, for the slack bus  𝜃 is considered zero. 
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𝑃𝑆𝐺  is the active power of the slack bus. 

𝑄𝐺  is the reactive power of all generator units. 

3.4.1. The Objective Functions 

The Optimal Power Flow problem has typically six objective functions. These functions are 

fuel cost generation, active and/or reactive power transmission loss, reactive power reserve 

margin, security margin index, and emission index. As fuel cost is the main objective of  the 

Optimal Power Flow problem, in this research, only the fuel cost has been considered as 

objective function. Some of these objective functions are conflicting in nature, which is what 

makes the OPF problem complicated. As such, a multi-objective optimization method needs to 

be applied to solve the OPF problem [1]. 

 

3.4.2. Minimization of Generation Fuel Cost (GFC) 

The main objective function of the Optimal Power Flow problem is minimizing the Generation 

Fuel Cost of thermal units. The Generation Fuel Cost objective function can be expressed by a 

quadratic function as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐹𝐶 = ∑ 𝐹𝐶𝑘(𝑃𝐺𝑘

𝑁𝐺

𝑘=1

) = ∑ 𝑎𝑘𝑃𝐺𝑘
2 + 𝑏𝑘𝑃𝐺𝑘

𝑁𝐺

𝑘=1

+ 𝑐𝑘                                                 (3.5) 

Where:  

𝑇𝐹𝐶 is the total fuel cost of the power system. 

𝐹𝐶𝑘(𝑃𝐺𝑘) is the fuel cost function of the 𝑘𝑡ℎ generator. 

𝑁𝐺is the number of generators including the slack generator.  

𝑎𝑘 and 𝑏𝑘 are  the quadratic and linear cost coefficient of the 𝑘𝑡ℎ generator. 
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𝑐𝑘 is the basic cost coefficient of the 𝑘𝑡ℎ  generator. 

𝑃𝐺𝑘 is the real power output of the 𝑘𝑡ℎ  generator. 

3.4.3. Minimization of Active Power Transmission Loss (APTL) 

Active Power Transmission Loss (APTL) is the second objective function for the Optimal 

Power Flow problem. The primary goal of this problem is to minimize power loss throughout 

the power network, an objective that can be represented by the following equations. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐴𝑃𝑇𝐿 = ∑ 𝑃𝐺𝑘 − ∑ 𝑃𝐷𝑘

𝑁𝐺

𝑘=1

𝑁𝐺

𝑘=1

                                                                                         (3.6) 

Where  

𝑃𝐺𝑘 is the active generated power at the 𝑘𝑡ℎ bus. 

𝑃𝐷𝑘 is the active demanded power at the 𝑘𝑡ℎ bus. 

𝐴𝑃𝑇𝐿 represents the total 𝑅𝐼2 loss in the transmission lines and transformers of the network. 

 

3.4.4. Minimization of Reactive Power Transmission Loss (RPTL) 

In the Optimal Power Flow problem, the Reactive Power Transmission Loss (RPTL) as an 

objective function needs to be minimized. The reactive power loss can be expressed by the 

difference between all generated reactive power and all demanded reactive power in the power 

system. It should not be forgotten that reactive power loss is not necessarily positive. The 

following equation represents the Reactive Power Transmission Loss.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑅𝑃𝑇𝐿 = ∑ 𝑄𝐺𝑘 − ∑ 𝑄𝐷𝑘

𝑁𝐺

𝑘=1

𝑁𝐺

𝑘=1

                                                                                       (3.7) 
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Where  

𝑅𝑃𝑇𝐿 represents the total Reactive Power Transmission Loss in the power system. 

𝑄𝐺𝑘 is the reactive generated power at the 𝑘𝑡ℎ bus. 

𝑄𝐷𝑘 is the reactive demanded power at the 𝑘𝑡ℎ bus. 

 

3.4.5. Maximization of Reactive Power Reserve Margin (RPRM) 

Maximizing the Reactive Power Reserve Margins (RPRM) and seeking to distribute the reserve 

among the generators is one of the Optimal Power Flow objectives. This objective can be 

converted to a minimization problem and stated by the following function. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑅𝑃𝑅𝑀 = ∑ [
𝑄𝑘

2

𝑄𝑘 𝑚𝑎𝑥
]

𝑁𝐺

𝑘=1

                                                                                                 (3.8) 

Where  

𝑄𝑘 is the reactive power of the 𝑘𝑡ℎ  generator. 

𝑄𝑘 𝑚𝑎𝑥 is the maximum reactive power of the 𝑘𝑡ℎ  generator. 

 

3.4.6. Minimization of Emission Index (EI) 

The Emission or environmental Index (EI) is taken as the index from the viewpoint of 

environmental conservation. Atmospheric pollutants like nitrogen oxides (NOx) and sulfur 

oxides (SOx) caused by fossil-fueled thermal units can be modeled separately. However, the 

OPF problem seeks to minimize the total (Ton/h) emission 𝐸(𝑃𝐺) of these pollutants, which 

can be stated by the following equations. As indicated, the amount of emissions is given as a 
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function of the generators’ active power output, which is the sum of the quadratic and 

exponential functions [1]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐸 = ∑ 𝐸𝑘(𝑃𝐺𝑘

𝑁𝐺

𝑘=1

) = ∑ 𝛼𝑘𝑃𝐺𝑘
2 + 𝛽𝑘𝑃𝐺𝑘

𝑁𝐺

𝑘=1

+ 𝛾𝑘 + 𝜁𝑘𝑒𝜆𝑘𝑃𝐺𝑘                                 (3.9) 

Where  

𝑇𝐸 is the total emission of the power system.  

𝐸𝑘(𝑃𝐺𝑘) is the emission function of the  𝑘𝑡ℎ  generator. 

𝛼𝑘 , 𝛽𝑘, 𝛾𝑘,  𝜁𝑘  𝑎𝑛𝑑 𝜆𝑘  are the coefficients of the 𝑘𝑡ℎ  generator. 

 

3.4.7. Maximization of Security Margin Index (SMI) 

The last objective function is the Security Margin Index (SMI). The OPF problem seeks to 

operate all the transmission lines connected in a network to their maximum capability [1].  

 

3.5. The Optimal Power Flow Constraints 

For any nonlinear constrained optimization problem such as OPF, two types of constraints, 

equality and inequality, can typically be defined. For the Optimal Power Flow problem, the 

equality constraints are active and reactive power balances.  

The inequality constraints of the optimal power flow problem are active and reactive power 

generation boundaries, the reactive power source capacity boundary, the transformer tap 

position range, and the line thermal limit for all transmission lines. 
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In order to represent a practical model of the Optimal Power Flow problem with the required 

accuracy, objective functions that have been subjected to some constraints should be 

considered.  

3.5.1. Equality Constraints 

Equality constraints of the Optimal Power Flow problem refer to the physics of the power 

system. These constraints indicate that the total injection of the active and reactive power at 

each bus is zero.  

3.5.2. Active Power Constraints 

Equation (3.10) states that the total active power in all power system buses is zero.  

𝑃𝐺
𝑘 − 𝑃𝐷

𝑘 = 𝑉𝑘 ∑ [𝑉𝑗[𝐺𝑗
𝑘 cos(𝛿𝑘 − 𝛿𝑗) + 𝐵𝑗

𝑘 sin(𝛿𝑘 − 𝛿𝑗)]]

𝑁

𝑖=1

                                             (3.10) 

Where 𝑘 = 1, 2, … , 𝑁. 

𝑉𝑘 is the voltage magnitude at bus 𝑘𝑡ℎ. 

𝛿𝑘 is the voltage angle at bus 𝑘𝑡ℎ. 

𝑃𝐺
𝑘 is the active power generation at bus 𝑘𝑡ℎ. 

𝑃𝐷
𝑘 is the active power demand at bus 𝑘𝑡ℎ. 

𝐺𝑗
𝑘 is the real part of element (𝑘, 𝑗) of the bus admittance matrix. 

𝐵𝑗
𝑘 is the imaginary part of element (𝑘, 𝑗) of the bus admittance matrix. 

 

3.5.3. Reactive Power Constraints 

Equation (3.11) indicates that the total reactive power in all power system buses is zero.  
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𝑄𝐺
𝑘 − 𝑄𝐷

𝑘 = 𝑉𝑘 ∑ [𝑉𝑗[𝐺𝑗
𝑘 sin(𝛿𝑘 − 𝛿𝑗) − 𝐵𝑗

𝑘 cos(𝛿𝑘 − 𝛿𝑗)]]

𝑁

𝑖=1

                                           (3.11) 

Where 𝑘 = 1, 2, … , 𝑁. 

𝑉𝑘 is the voltage magnitude at bus 𝑘𝑡ℎ. 

𝛿𝑘 is the voltage angle at bus 𝑘𝑡ℎ. 

𝑄𝐺
𝑘 and 𝑄𝐷

𝑘 are the reactive power generation and power demand at bus 𝑘𝑡ℎ. 

𝐺𝑗
𝑘 is the real part of element (𝑘, 𝑗) of the bus admittance matrix. 

𝐵𝑗
𝑘 is the imaginary part of element (𝑘, 𝑗) of the bus admittance matrix. 

3.5.4. Inequality Constraints 

In order to present the limitations of the power system components, such as generators, 

transmission lines, and transformers, as well as system security, the inequality constraints of 

the OPF should be presented. The Optimal Power Flow inequality constraints are as follows: 

3.5.5. Bus Voltage Magnitude Constraints 

In the power system, the voltage of all buses, whether load buses or generations buses, is 

restricted by lower and upper limits as follows: 

𝑉𝑘
𝑀𝑖𝑛 < 𝑉𝑘 < 𝑉𝑘

𝑀𝑎𝑥                                                                                                                          (3.12) 

Where  

𝑉𝑘 is the voltage at the  𝑘𝑡ℎ bus. 

𝑉𝑘
𝑀𝑖𝑛 is the minimum acceptable voltage at the 𝑘𝑡ℎ bus. 

𝑉𝑘
𝑀𝑎𝑥 is the maximum acceptable voltage at the 𝑘𝑡ℎ bus. 
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3.5.6. Active and Reactive Power Generation Constraints for all Units 

All power system generators have limitations for their generated power. Hence, the active and 

reactive power output of each generator in the power system is restricted by lower and upper 

limits. The below equations represent the boundaries of active and reactive power.  

 

𝑃𝐺𝑘
𝑀𝑖𝑛 < 𝑃𝐺𝑘 < 𝑃𝐺𝑘

𝑀𝑎𝑥                                                                                                                        (3.13) 

𝑄𝐺𝑘
𝑀𝑖𝑛 < 𝑄𝐺𝑘 < 𝑄𝐺𝑘

𝑀𝑎𝑥                                                                                                                       (3.14) 

Where: 

𝑃𝐺𝑘 is the active power generated by the 𝑘𝑡ℎ generator. 

𝑄𝐺𝑘 is the reactive power generated by the 𝑘𝑡ℎ generator. 

𝑃𝐺𝑘
𝑀𝑖𝑛 is the minimum active power generated by the 𝑘𝑡ℎ generator. 

𝑃𝐺𝑘
𝑀𝑎𝑥 is the maximum active power generated by the 𝑘𝑡ℎ generator. 

𝑄𝐺𝑘
𝑀𝑖𝑛 is the minimum reactive power generated by the 𝑘𝑡ℎ generator. 

𝑄𝐺𝑘
𝑀𝑎𝑥 is the maximum reactive power generated by the 𝑘𝑡ℎ generator. 

𝑃𝐺𝑖
𝑀𝑎𝑥 is the specified maximum MW generation by the 𝑖𝑡ℎ generator. 

𝑃𝐺𝑖
𝑀𝑖𝑛 is the specified minimum MW generation by the 𝑖𝑡ℎ generator. 

3.5.7. Reactive Power Source Capacity Constraints 

In power systems, capacitors play the role of reactive power sources. They inject reactive 

power into the power network to maintain system stability. As a reactive power source, these 

capacitors are restricted by upper and lower reactive power limits.  
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3.5.8. Transformer Tap Position Constraints 

In all transformers, the magnitude of the load tap changer is a discrete variable that can be 

changed by a specific increment. Load tap changing transformers also have a maximum and 

minimum tap ratio which can be adjusted.  

3.5.9. Line Thermal Limit Constraints for All Transmission Lines 

Considering the stability of the power system, the power flow over a transmission line must 

not exceed a specified maximum.  

 

3.6. A Case Study for Optimal Power Flow  

As an example, the IEEE 30-bus case study which its information extracted from [21] has been 

considered. This system includes 6 generators, 4 tap-changing transformers and 2 capacitor 

banks leading to 17 decision variables: 5 variables for the active power of the generators (the 

first generator considered as a slack generator), 6 variables for the voltage of the generation 

buses, 4 variables for tap changers, and finally 2 variables for capacitor banks.  For this case 

study, the OPF problem is solved by Genetic Algorithm, Particle Swarm Optimization and 

Simulated Annealing by considering fuel cost as objective function and active power, reactive 

power, bus voltage, and phase angle boundaries as inequality constraints. Active and reactive 

power balances are considered as the equality constraints for this case study.  

The cost function of each generator has been considered as Equation (3.15).  

𝐹𝐶𝑖(𝑃𝐺𝑖
) = 𝑎𝑖𝑃𝐺𝑖

2 + 𝑏𝑖𝑃𝐺𝑖
+ 𝑐𝑖 + |𝑒𝑖 sin (𝑓𝑖(𝑃𝐺𝑖

𝑚𝑖𝑛 − 𝑃𝐺𝑖
))|                                             (3.15) 

The optimization vector for this case study is defined as follows:  
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𝑥 = [𝑃𝐺2
, … , 𝑃𝐺6

, 𝑉𝐺1
, … , 𝑉𝐺6

, 𝑇1, … , 𝑇4, 𝑄1, 𝑄2]                                                                        (3.16) 

Figure 3-2 shows the topology of the case study. The system information including the 

coefficients of generator, power limits, and prohibited operating zone are also listed in Table 

3-2. 

 

Figure 53-2: Schematic Diagram of IEEE 30-bus Power System 

 

 

Table 63-2: Information for IEEE 30-bus Power System 

Generator 1 2 3 4 5 6 

a ($ 𝑀𝑊2⁄ ) 0.00375 0.0175 0.0625 0.0083 0.025 0.025 

b($ 𝑀𝑊⁄ ) 2 1.75 1 3.25 3 3 

C 0 0 0 0 0 0 

D 18 16 14 12 13 13.5 

E 0.037 0.038 0.04 0.045 0.042 0.041 

Pmin (MW) 30 20 15 10 10 12 

Pmax (MW) 250 80 50 35 30 40 

Prohibited 

Zone 

[55,66], [80-120] [21-24], [45-55] [30-36] [25-30] [25-28] [24-30] 

Bus Number 1 2 5 8 11 13 
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In this case study, bus 1 is considered as the slack bus and the limitations of bus voltage, 

transformer tap, and compensator reactive power are set to 0.95v< V <1.05v, 0.91< T <1.05, 

and 1 Mvar < QC < 20 Mvar, respectively. 

Table 3-3 shows the minimum fuel cost of the system determined by 3 different well-known 

metaheuristic techniques including GA, PSO, SA.  

 

Table 73-3: Fuel Cost of The System by 3 Different Solutions 

Best Algorithms 

838.17 ($/h) Genetic Algorithm (GA) 

835.47 ($/h) Particle Swarm Optimization 

(PSO) 
836.53 ($/h) Simulated Annealing (SA) 

 

 

Table 3-4 shows the final results of all optimization variables by Genetic Algorithm.  

Table 83-4: The Results of The Case Study Solved by The Genetic Algorithm 

PG1(MW) PG2(MW) PG5(MW) PG8(MW) PG11(MW) 

219.7597 26.5523 15.7443 10.1166 10.0267 

PG13(MW) VG1(p.u.) VG2(p.u.) VG5(p.u.) VG8(p.u.) 

12.025 1.0199 1.0091 1.0223 1.0362 

VG11(p.u.) VG13(p.u.) T6-9 T6-10 T4-12 

1.0181 1.0450 0.96 0.94 1 

T27-28 QC1(MVAR) QC2(MVAR) COST($/h) 

1.02 11 11 821.1647333 
 

 

3.7. Conclusion 

In this chapter, first, a short review about power flow equations has been presented. Then, all 

buses of the power system have been explained. Also, the objective function and constraints of 

optimal power flow have been introduced. Finally, multi-objective techniques for solving the 

optimal power flow problem have been explained.  
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Also, in this chapter the results of solving the Optimal Power Flow problem on 30-bus IEEE 

power system by Genetic Algorithm, Particle Swarm Optimization, and Simulated Annealing 

has been presented and compared. This comparison shows that the results of all techniques are 

almost close thus depend on the flexibility of the algorithms and their running time any of them 

can be used. 
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4. Distributed Optimization Techniques 

Chapter 4  

Distributed Optimization 

Techniques 

 

4.1. Introduction  

Conventional optimization algorithms are the most common methods for solving the economic 

dispatch and optimal power flow for power systems. Conventional algorithms can be solved 

by one computing center; in these techniques, all of the calculations should be solved by one 

processor. There are three challenges that conventional algorithms encounter. The first 

challenge is the size of the power system; when it becomes extremely large with more 

generation and loads, this results in high communication and computation costs because all 

data have to be transmitted to and processed by the central processor. Second, when the power 

system is large, there are many buses in the system, and this results in a bigger optimization 

problem that needs more processing time to be solved. Third, in some cases, the distribution 

network in a power system belongs to different owners. Due to security concerns, they might 

refuse to share some of their private data.  
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In order to solve power system optimization problems with large data sets and security 

concerns, distributed optimization algorithms are desired [22]. In these decentralized 

algorithms, the main optimization problem should be split into sub-problems. Each sub-

problem is assigned to an agent to solve independently based on limited information 

communication. In distributed optimization, it has been assumed that each agent only knows 

its neighbors’ information, and despite conventional optimization methods, communication 

errors and delays in multi-agent systems are not taken into account. 

Distributed power system computing employed Alternating Direction Method of Multipliers 

(ADMM) as one of the well-known distributed optimization methods [23]. This chapter will 

discuss, the distributed optimization technique and methods of splitting problems into sub-

problems.  

4.2. Basic Definitions  

4.2.1. Norms  

For each vector 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]   the ℓ1 − 𝑁𝑜𝑟𝑚   and ℓ2 − 𝑁𝑜𝑟𝑚   can be defined as 

follows:  

ℓ1 − 𝑁𝑜𝑟𝑚:                   |𝑋| = ∑|𝑥𝑖|          

𝑛

𝑖=1

                                                                                  (4.1) 

ℓ2 − 𝑁𝑜𝑟𝑚 ∶            ‖𝑋‖ = √∑|𝑥𝑖|2
𝑛

𝑖=1

                                                                                        (4.2) 

4.2.2. Convex Functions 

Typically, functions can be divided into two classes: convex and non-convex functions. 

Convex functions play a significant role in defining the cost or utility function and problem 

constraints. 
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A convex function is defined using the following definition. 

A function 𝑓: ℝ𝑛 ⟹ ℝ is convex if domain 𝑓 is convex  

Where 

 𝑥𝑖 , 𝑥𝑗𝜖 domain 𝑓 and 0 ≤ 𝛿 ≤ 1 . 

𝑓(𝛿𝑥𝑖 + (1 − 𝛿)𝑥𝑗) ≤ 𝛿𝑓(𝑥𝑖) + (1 − 𝛿)𝑓(𝑥𝑗)                                                                          (4.3)           

Also, the function 𝑓: ℝ𝑛 ⟹ ℝ is strictly convex if the inequality in (4.3) holds strictly for 0 <

𝛿 < 1 . Figure 4-1 represents a typical convex and nonconvex function.  

 

Figure 64-1: Convex vs Non-convex Function 

 

4.3. Convex Optimization Problems 

In order to better understand the convex optimization problem, consider the following 

minimizing optimization problem including equality and inequality constraints. 

min 𝑓(𝑥)                                                                                                                                              (4.4) 

subject to
  𝑔𝑖(𝑥) ≤ 0    𝑖 = 1, … , 𝑞

 ℎ𝑖(𝑥) = 0    𝑖 = 1, … , 𝑝
                                                                                                         

where 
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 𝑓(𝑥): ℝ𝑛 ⟹ ℝ  is the objective function. 

and,  𝑔𝑖(𝑥): ℝ𝑛 ⟹ ℝ  for 𝑖 = 1, … , 𝑝 , and  ℎ𝑖(𝑥): ℝ𝑛 ⟹ ℝ  for 𝑖 = 1, … , 𝑞 are inequality 

and equality constraint functions, respectively. 

The set defined by the presented constraints is referred to as the feasible set. The goal is to find 

a solution that minimizes the objective function while belonging to the feasible set. In order to 

do this, there must exist an 𝑥 that satisfies all constraints. The obtained solution  𝑥  is called a 

feasible solution.  

The problem (4.2) is called a convex optimization problem if:  

 the functions 𝑓(𝑥) and  𝑔𝑖(𝑥) for 𝑖 = 1, … , 𝑞  are convex; 

 the functions  ℎ𝑖(𝑥) = 0  for 𝑖 = 1, … , 𝑝  are affine. 

In order to understand the meaning of affine functions as an equality constraint, a linear 

function from ℝ𝑛 ⟹ ℝ𝑚 space is presented in the form of  𝑓(𝑣) = 𝐴𝑣, while affine  functions 

are expressed by  𝑓(𝑣) = 𝐴𝑣 + 𝑏 where 𝐴  is an arbitrary 𝑚 × 𝑛 matrix and 𝑏 is an 

arbitrary 𝑚 × 1 matrix. Further, ℝ can be replaced by any field. 

The optimization problem can be classified into different categories, for instance, based on the 

convexity of the feasible set and the cost function, or according to the characteristics of the 

cost and inequality constraints. 

To be more specific, convex optimization problems are categorized into several subcategories. 

  

4.4. Linear Programming  

An optimization problem is called linear if both the objective function and the equality and 

inequality constraints are all affine. These linear programs (LPs) can be written as follows: 
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min  𝑐𝑇𝑥 + 𝑑                                                                                                                                    (4.5)                                                                                   

subject to    
 𝐴𝑥 ≤̀ 𝑎    

 𝐵𝑥 = 𝑏    
                                                                                                                              

where 𝑐 ∈ ℝ𝑛, 𝑑 ∈ ℝ, 𝐴 ∈ ℝ𝑞×𝑛, 𝑎 ∈ ℝ𝑞 , 𝐵 ∈ ℝ𝑝×𝑛  and 𝑏 ∈ ℝ𝑝 . Also, the notation ≤̀ 

refers to element-wise inequality. 

 

4.5. Quadratic Problems 

Many engineering problems have a convex quadratic cost or utility function.  Quadratic 

programming (QPs) refers to optimization problems with the discussed objective function and 

affined equality and inequality constraint functions. QPs can be presented as follows:  

min  
1

2
𝑥𝑇𝑃𝑥 + 𝑄𝑇𝑥 + 𝐶                                                                                                                 (4.6)                                                                           

subject to    
 𝐴𝑥 ≤̀ 𝑎    

 𝐵𝑥 = 𝑏    
                                                                                                                                              

where 𝑃 ∈ 𝕊+
𝑛  which 𝕊+

𝑛  is a set of 𝑛 × 𝑛 positive semidefinite matrices, 𝑄 ∈ ℝ𝑛,   𝑐 ∈ ℝ , 𝐴 ∈

ℝ𝑞×𝑛, 𝑎 ∈ ℝ𝑞  , 𝐵 ∈ ℝ𝑝×𝑛  and 𝑏 ∈ ℝ𝑝 . The notation ≤̀ refers to element-wise inequality. 

Note that by considering 𝑃 = 0, the quadratic programming problem can be converted to a 

Linear programming problem.  

 

4.5.1. Quadratic Programming with Convex Quadratic Inequality Constraints 

For the quadratic programming problem, simple inequality constraints can be presented in the 

form of convex quadratic inequality constraints. Equation (4.7) represents the quadratic 

programming problem with convex quadratic inequality constraints. 
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min  
1

2
𝑥𝑇𝑃𝑥 + 𝑄𝑇𝑥 + 𝑐                                                                                                               (4.7)                                                                                      

subject to    

1
2 𝑥𝑇𝑃𝑐𝑥 + 𝑄𝑐

𝑇𝑥 + 𝐶𝑐   ≤ 0  

 𝐵𝑥 = 𝑏    
                                                                                             

where 𝑃, 𝑃𝑐 ∈ 𝕊+
𝑛 ,  𝑄𝑐

𝑇 ∈ ℝ𝑛,   𝐶𝑐 ∈ ℝ , 𝐴 ∈ ℝ𝑞×𝑛, 𝐵 ∈ ℝ𝑝×𝑛  and 𝑏 ∈ ℝ𝑝 .  

This problem is referred to as a constrained quadratic programming.  

 

4.6. Method of Lagrangian Multipliers 

The Method of Lagrangian Multipliers (MLM)  is a technique for finding the local maxima 

and minima of a function with equality constraints. The advantage of MLM is that it solves the 

optimization problem without explicit parameterization of the problem constraints. 

The Method of Lagrangian Multipliers can be used to solve challenging differentiable 

constrained optimization problems. 

The method is based on isolating any possible singular point of the solution set of the 

constraining equations in order to find all the stationary points of the Lagrange function; then 

it needs to be verified which of those stationary points and singular points are the global 

maxima of the objective function. 

For the equality constrained optimization problem in the form of Equation (4.8): 

min 𝐹(𝑥)                                                                                                                                           (4.8)                                                                                               

subject to  ℎ𝑖(𝑥) = 0    𝑖 = 1, … , 𝑝                                                                                                        

By defining 𝜆 as a vector of Lagrange multipliers as 𝜆 = [𝜆1, 𝜆2, … , 𝜆𝑝], the Lagrangian 

function can be expressed by Equation (4.9). 

https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Constraint_(mathematics)
https://en.wikipedia.org/wiki/Parameterization
https://en.wikipedia.org/wiki/Singular_point_of_an_algebraic_variety
https://en.wikipedia.org/wiki/Stationary_point
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𝐿(𝑥, 𝜆 ) =  𝐹(𝑥) + ∑ 𝜆𝑖
𝑝
𝑖=1 × ℎ𝑖(𝑥)                                                                                                (4.9)             

Solving ∇𝑥,𝑦,𝜆 𝐿(𝑥, , 𝑦, 𝜆 ) = 0  can result in all local minima or maxima of the objective 

function by taking into account all equality constraints.  

In order to better understand, consider the example below: 

𝑀𝑖𝑛        𝑓(𝑥, 𝑦 ) = 𝑥 + 𝑦      𝑠. 𝑡.    g(x, y) = 𝑥2 + 𝑦2 − 1                                                     (4.10)  

First, the Lagrangian function should be defined: 

𝐿(𝑥, 𝑦, 𝜆 ) =  𝑥 + 𝑦 −   𝜆(𝑥2 + 𝑦2 − 1)                                                                                    (4.11)                                             

The Gradient of 𝐿(𝑥, 𝑦, 𝜆 ) can be defined as follows:  

∇𝑥,𝑦,𝜆 𝐿(𝑥, , 𝑦, 𝜆 ) = (
𝜕𝐿

𝜕𝑥
,
𝜕𝐿

𝜕𝑦
,
𝜕𝐿

𝜕𝜆
)                                                                                                  (4.12)                                                          

By considering ∇𝑥,𝑦,𝜆 𝐿(𝑥, , 𝑦, 𝜆 ) equal to zero, the following set of equations can be 

obtained.  

∇𝑥,𝑦,𝜆 𝐿(𝑥, , 𝑦, 𝜆 ) = 0 ⇒ (1 − 2𝜆𝑥, 1 − 2𝜆𝑦, 𝑥2 + 𝑦2 − 1) = 0                                       (4.13) 

{

1 − 2𝜆𝑥 = 0                                                                        

1 − 2𝜆𝑦 = 0        ⟹ 𝑥 =  
±√2

2
   , 𝑦 =

±√2

2
    , 𝜆 =

±1

√2

𝑥2 + 𝑦2 − 1 = 0                                                               

                                                        (4.14)  

 

Now, two local minima of the function have been found. By comparing the value of the 

function at these two stationary points, 𝑓 (
−√2

2
,
−√2

2
) = −√2  as the global minimum of the 

problem can be found.  
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4.7. Kuhn–Tucker Conditions 

Most optimization problems have inequality constraints. In this case, Kuhn-Tucker conditions 

can be used in order to solve the problem by using the Lagrangian method. The optimal point 

is reached if the Kuhn–Tucker conditions are met. These can be stated as follows: 

min 𝑓(𝑥)                                𝑥 = [𝑥1, … , 𝑥𝑛]                                                                               (4.15)                                           

subject to
  𝑔𝑖(𝑥) ≤ 0    𝑖 = 1, … , 𝑞

 ℎ𝑖(𝑥) = 0    𝑖 = 1, … , 𝑝
                                                                                                       

The Lagrange function can be formed by Equation (4.16) as follows: 

𝐿(𝑥, 𝜆, 𝜇 ) =  𝑓(𝑥) + ∑ 𝜆𝑖

𝑝

𝑖=1

× ℎ𝑖(𝑥) + ∑ 𝜇𝑖

𝑞

𝑖=1

× 𝑔𝑖(𝑥)                                                       (4.16)  

Consider (�̂�, �̂�, �̂�) as an optimal point that should satisfy all Kuhn-Tucker conditions. These 

conditions have been presented as follows:  

 
𝜕𝐿

𝜕𝑥𝑖
(�̂�, �̂�, �̂�) = 0      𝑓𝑜𝑟     𝑖 = 1,2, … , 𝑛                                                                        (4.17) 

 ℎ𝑖(�̂�) = 0                    𝑓𝑜𝑟     𝑖 = 1,2, … , 𝑝                                                                     (4.18)                                              

 𝑔𝑖(�̂�) ≤ 0              𝑓𝑜𝑟     𝑖 = 1,2, … , 𝑞                                                                           (4.19) 

  �̂�𝑖𝑔𝑖(�̂�) = 0  , �̂�𝑖 ≥ 0    𝑓𝑜𝑟 = 1,2, … , 𝑞                                                                     (4.20) 

 

4.8. Slack Variable Method 

Kuhn-Tucker conditions can be applied to problems that have inequality constraints. Using a 

slack variable is another technique which transforms the inequality constraints into equality 

constraints.  
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In this method, 𝜃 = [𝜃1, 𝜃2, … , 𝜃𝑞] has been defined. The inequality constraints that need to be 

satisfied  (  𝑔𝑖(𝑥) ≤ 0    𝑖 = 1, … , 𝑞)   can be modified to (  𝑔𝑖(𝑥) + 𝜃𝑖
2 = 0 ). 

Since    𝑔𝑖(𝑥) = −𝜃𝑖
2  ≤ 0  the inequality constraints of the problem (4.4) are automatically 

satisfied. 

By applying this method, all of the problem constraints are equality constraints. Thus, the 

Lagrangian method for equality constrained problems may now be applied: 

𝐿(𝑥, 𝜆, 𝜇 , 𝜃) =  𝑓(𝑥) + ∑ 𝜆𝑖

𝑝

𝑖=1

× ℎ𝑖(𝑥) + ∑ 𝜇𝑖

𝑞

𝑖=1

× (𝑔𝑖(𝑥) + 𝜃𝑖
2)                                        (4.21) 

where  𝜆𝑖 and 𝜇𝑖 are  respective Lagrange multipliers. The associated necessary conditions for 

a minimum at 𝑥 are as follows:  

𝜕𝐿

𝜕𝑥𝑖
=

𝜕𝑓(𝑥)

𝜕𝑥𝑖
+ ∑ 𝜆𝑖

𝑝

𝑖=1

×
𝜕ℎ𝑖(𝑥)

𝜕𝑥𝑖
 +  ∑ 𝜇𝑖

𝑞

𝑖=1

×
𝜕𝑔𝑖(𝑥)

𝜕𝑥𝑖
                 𝑖 = 1,2, … , 𝑛                     (4.22) 

𝜕𝐿

𝜕𝜃𝑖
= 2𝜆𝑖𝜃𝑖 = 0                        𝑖 = 1,2, … , 𝑞                                                                               (4.23) 

𝜕𝐿

𝜕𝜆𝑖
= 𝑔𝑖(𝑥) + 𝜃𝑖

2  = 0          𝑖 = 1,2, … , 𝑝                                                                                (4.24) 

𝜕𝐿

𝜕𝜇𝑖
= ℎ𝑖(𝑥) = 0                     𝑖 = 1,2, … , 𝑞                                                                                (4.25) 

The system expressed by Equations (4.22-25) represents a system of 𝑛+2q+p simultaneous 

non-linear equations. The answer obtained by solving these equations might be the global 

solution of the problem.  
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4.9. Duality Theory  

The duality solution is a useful technique for some structural optimization problems. It is also 

employed in the development of the augmented Lagrange multiplier method to be discussed 

later. 

The dual function of 𝐿(𝑥, 𝜆) can be stated as follows:  

ℎ( 𝜆) = minimize
𝑥

 𝐿(𝑥, 𝜆)                                                                                                             (4.26) 

The minimization problem (4.18) can be converted to a maximization problem as follows:  

maximize
𝜆

ℎ( 𝜆) = maximize
𝜆

 {minimize
𝑥

 𝐿(𝑥, 𝜆)}                                                               (4.27)      

Consider the problem of minimizing the generation costs of two power plants connected to a 

10MW load as presented in Figure 4-2. 

 

Figure 74-2: A Power Plant with 2 Generation Units 

The total generation cost of power plants modeled by Equation (4.28): 

𝑇𝐶(𝑝1, 𝑝2) = 𝐶(𝑝1) + 𝐶(𝑝2) = 𝑝1
2 + 2𝑝1 + 1 + 𝑝2

2 + 4𝑝2 + 3                                          (4.28) 

subject to:     𝑝1 + 𝑝2 = 10                                                                                                          (4.29) 

The Lagrangian function can be presented as follows. 

𝐿(𝑝1, 𝑝2, 𝜆) = 𝑝1
2 + 2𝑝1 + 1 + 𝑝2

2 + 4𝑝2 + 3 +  𝜆(𝑝1 + 𝑝2 − 10)                                     (4.30) 
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Thus,  

𝜕𝐿

𝜕𝑝1
= 2𝑝1 + 2 + 𝜆 = 0 → 𝑝1 =

−𝜆 − 2

2
                                                                                 (4.31) 

𝜕𝐿

𝜕𝑝2
= 2𝑝2 + 4 + 𝜆 = 0 → 𝑝2 =

−𝜆 − 2

4
                                                                                (4.32) 

𝜕𝐿

𝜕𝜆
= 𝑝1 + 𝑝2 − 10 = 0 → 𝑝1 + 𝑝2 = 10                                                                               (4.33) 

By inserting (4.31) and (4.32) in (4.33), all parameters 𝑝1 , 𝑝2 , 𝜆 can be found as follows: 

𝜆 = −13  ,          𝑝1 =  
11

2
𝑚𝑤,     𝑝2 = 

9

2
𝑚𝑤                                                                        (4.34) 

 To solve the problem with the duality method, the optimal value of  𝑝1 , 𝑝2, which are presented 

by 𝜆 in Equations (4.31) and (4.32), should be inserted in the Lagrangian function to form the 

dual function that is called ℎ(𝜆): 

ℎ(𝜆) = (
−𝜆 − 2

2
)2 + 2 (

−𝜆 − 2

2
) + 1 + (

−𝜆 − 4

2
)2 + 4 (

−𝜆 − 4

2
) + 3 

+ 𝜆 ((
−𝜆 − 2

2
) + (

−𝜆 − 4

2
) − 10) = −2𝜆2 − 52𝜆 − 4 = 0                                            (4.35) 

Then, by the definition of the duality theorem:  

maximize
𝜆

ℎ( 𝜆) = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (−2𝜆2 − 52𝜆 − 4 )                                                             (4.36)  

The necessary condition for maximizing ℎ( 𝜆)  is  

𝜕ℎ( 𝜆)

𝜕𝜆
= 0 →  

𝜕ℎ( 𝜆)

𝜕𝜆
= −4𝜆 − 52 = 0 → 𝜆 = −13                                                     (4.37)  

Now, by taking  𝜆 = −13,  obtained from (4.37), and inserting 𝜆 in (4.31) and (4.32) the value 

of  𝑝1 , 𝑝2  can be reached. 
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 The optimal power values of the generation units are 𝑝1 = 11
2⁄ 𝑚𝑤,     𝑝2 = 9 2⁄ 𝑚𝑤.  

As expected, the results obtained by applying the Lagrangian method and using Duality Theory 

are the same.  

4.10. Augmented Lagrangian Method of Multipliers 

The augmented Lagrangian method is a practical solution to obtain the optimal point of 

constrained optimization problem. This method combines the classical Lagrangian method 

with the penalty function approach. In the multiplier methods, both of these approaches are 

combined to give an unconstrained problem which is not ill-conditioned. 

As an introduction to the multiplier method, consider the equality constrained problem (4.4). 

The augmented Lagrange function is introduced as follows:  

𝐿(𝑥, 𝜆, 𝜌 ) =  𝑓(𝑥) + ∑ 𝜆𝑖

𝑞

𝑖=1

× ℎ𝑖(𝑥) + ∑ 𝜌

𝑞

𝑖=1

× ℎ𝑖
2(𝑥)                                                          (4.38) 

Specifically, the unconstrained objective is the Lagrangian of the constrained problem, with an 

additional penalty term (the augmentation). 

 

4.11. Alternating Direction Method of Multipliers 

 The Alternating Direction Method of Multipliers (ADMM) is a type of augmented Lagrangian 

algorithm which may be implemented in distributed computational environments. 

In order to understand ADMM, consider the convex minimization model with linear constraints 

and an objective function which is the sum of two separable functions: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1(𝑥1) + 𝑓2(𝑥2)                                                                                                        (4.39)  

https://en.wikipedia.org/wiki/Constraint_(mathematics)
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Lagrange_multipliers#The_strong_Lagrangian_principle:_Lagrange_duality
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Subject to  𝐴1𝑥1 + 𝐴2𝑥2 = 𝑏                                                                                                                    

Thus, the augmented Lagrangian function for (4.39) can be stated as follows:  

L𝑐(𝑥1, 𝑥2, 𝜆) = 𝑓1(𝑥1) + 𝑓2(𝑥2) + 𝜆𝑇(𝐴1𝑥1 + 𝐴2𝑥2 − 𝑏) +
𝑐

2
‖𝐴1𝑥1 + 𝐴2𝑥2 − 𝑏‖2   (4.40)    

Note that the problem has at least one optimal solution.  

Despite the method of multipliers, the alternating direction method of multipliers minimizes 

approximately L𝑐(𝑥1, 𝑥2, 𝜆) in an iterative order:  

{
 
 

 
 𝑥𝑘+1

1 ≔ arg 𝑚𝑖𝑛
𝑥1

L𝑐(𝑥𝑘
1, 𝑥𝑘

2, 𝜆𝑘)                

𝑥𝑘+1
2 ≔ arg 𝑚𝑖𝑛

𝑥1
L𝑐(𝑥𝑘+1

1 , 𝑥𝑘
2,  𝜆𝑘)           

 𝜆𝑘+1 =  𝜆𝑘 + 𝑐(𝐴1𝑥𝑘+1
1 + 𝐴2𝑥𝑘+1

2 − 𝑏) 

                                                                                (4.41)                                                          

 The main idea of ADMM is that each of the smaller minimization problems can be solved 

more efficiently. This technique is the base of distributed optimization.  

 

4.12. Coupled Optimization Problems and Structure Exploitation 

In distributed parallel algorithms, each agent is trying to solve a sub-problem independently 

based on limited communicated information. Alternating direction method of multipliers 

(ADMM) is a distributed optimization method that has been adopted in distributed power 

system computing. The main focus of this research is applying distributed optimization based 

on ADMM to optimal power flow.  

Consider the optimization problem 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) that can be separated to the form of (4.42): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1(𝑥1) + 𝑓2(𝑥2)+ . . . + 𝑓𝑖(𝑥𝑖) + ⋯ + 𝑓𝑛(𝑥𝑛)                                                     (4.42)  

Subject to       𝑥𝑖 − 𝑧 = 0                                                                                                                            
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where 𝑧 is a common global variable for all 𝑥𝑖. This problem is called a global consensus 

problem. The augmented Lagrangian method of multiplier for conesus optimization can be 

expressed as (4.43).  

L𝑐(𝑥1, … , 𝑥𝑛 , 𝜆, 𝑐) = ∑ 𝑓𝑖

𝑛

𝑖=1

(𝑥𝑖) + ∑ 𝜆𝑖
𝑇(𝑥𝑖 − 𝑧)

𝑛

𝑖=1

+ ∑
𝑐

2
 ‖𝑥𝑖 − 𝑧‖

2
𝑛

𝑖=1

                              (4.43) 

Some iterative steps based on 𝑘 as following must be performed to solve this augmented 

Lagrangian function. These are as follows: 

{
 
 

 
 𝑥𝑘+1

𝑖 ≔ arg 𝑚𝑖𝑛
𝑥𝑖

𝑓𝑖(𝑥𝑖) + 𝜆𝑖
𝑘𝑇

(𝑥𝑖 − 𝑧𝑘) + 
𝑐

2
 ‖𝑥𝑖 − 𝑧𝑘‖

2
       

𝑧𝑘+1 ≔ 
1

𝑛
∑ (𝑥𝑘+1

𝑖 −
1

𝑐
𝜆𝑖

𝑘)                                                      𝑛
𝑖=1  

𝜆𝑖
𝑘+1 = 𝜆𝑖

𝑘 + 𝑐(𝑥𝑘+1
𝑖 − 𝑧𝑘+1)                                                        

                                             (4.44)              

To clarify the method of multipliers, consider the following examples: 

 

4.13. A Case Study for Method of Multipliers 

Consider Figure 4-2, the total generation cost of power plants modeled by Equation (4.45). 

𝑇𝐶(𝑝1, 𝑝2) = 𝐶(𝑝1) + 𝐶(𝑝2) = 𝑝1
2 + 2𝑝1 + 1 + 𝑝2

2 + 4𝑝2 + 3                                         (4.45) 

subject to:  𝑝1 + 𝑝2 = 10                                                                                                             (4.46) 

The augmented Lagrangian function can be presented as follows. 

𝐿(𝑝1, 𝑝2, 𝜆, 𝑐) = 𝑝1
2 + 2𝑝1 + 1 + 𝑝2

2 + 4𝑝2 + 3 +  𝜆(𝑝1 + 𝑝2 − 10) 

+
𝑐

2
 ‖𝑝1 + 𝑝2 − 10‖2                                                                                                                   (4.47) 

Thus,  
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𝜕𝐿

𝜕𝑝1
= 2𝑝1 + 2 + 𝜆 + 𝑐(𝑝1 + 𝑝2 − 10) = 0                                                                              (4.48) 

𝜕𝐿

𝜕𝑝2
= 2𝑝2 + 4 + 𝜆 + 𝑐(𝑝1 + 𝑝2 − 10) = 0                                                                             (4.49) 

By utilizing (4.48) and (4.49), parameters 𝑝1 , 𝑝2  and 𝜆  can be found as follows: 

𝑝1 =
11𝑐 − 𝜆 − 2

2 + 2𝑐
   &     𝑝2 =

9𝑐 − 𝜆 − 4

2 + 2𝑐
                                                                                 (4.50) 

Also, 𝜆 can be updated by  

𝜆𝑘+1 = 𝜆𝑘 − 𝑐(𝑝1 + 𝑝2 − 10)                                                                                                       (4.51) 

By presenting the iterative formula, the below equations can be found.  

𝑝1
𝑘+1 =

11𝑐 − 𝜆𝑘 − 2

2 + 2𝑐
                                                                                                                    (4.52) 

𝑝2
𝑘+1 =

9𝑐 − 𝜆𝑘 − 4

2 + 2𝑐
                                                                                                                      (4.53) 

𝜆𝑘+1 = 𝜆𝑘 + 𝑐(𝑝1
𝑘 + 𝑝2

𝑘 − 10)                                                                                                     (4.54) 

Considering 𝑘 = 0, 𝜆 = 0 , 𝑐 = 1   as initial values the iterative process can be started.  

In this case in the first step by utilizing (4.52) and (4.53) the value of 𝑝1 and 𝑝2 can be obtained 

1.25𝑚𝑤 and 2.25𝑚𝑤.  

Utilizing (4.54), the value of 𝜆  will be -6.5.  

In the second step, by inserting the new value of 𝜆, the value of  𝑝1 and 𝑝2 will be 2.875𝑚𝑤 

and 3.875𝑚𝑤. In iterative process when 𝑘  reaches to 18, the best answer for 𝑝1 and 𝑝2 will 

be 4.5𝑚𝑤 and 5.5𝑚𝑤. After this iteration, the value of  𝜆  is fixed at -13. Figure 4-3 shows the 

optimal power at each iterations. 
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Figure 84-3: The Power of Thermal Units in ADMM 

To be more efficient, in each iteration the value of 𝑐 can be increased. This added step will 

reduce the number of iterations required for getting the best answer.  

In this case, by applying 𝑐𝑘+1 = 𝛼𝑐𝑘  and 𝛼 = 2, the optimal power can be determined after 6 

iterations. Figure 4-4 shows this matter.  

 

Figure 94-4: The Power of Units by Considering Updated c 
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4.14. A Case Study for ADMM 

As a real example, take a 7-bus power system including 5 thermal units has been considered 

as a case study. The power network demand is 𝑝𝑑  𝑚𝑤.  

The total fuel cost function is provided by Equation (4.55) as follows:  

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ 𝑎𝑖𝑝𝑖
2 + 𝑏𝑖𝑝𝑖 + 𝑐𝑖

5

𝑖=1

                                                                                                            (4.55) 

 Where  

𝑎1 = 0.0013 /  𝑎2 = 0.00136/   𝑎3 = 0.00134  /   𝑎4 = 0.00131/  𝑎5 =   0.00194      

𝑏1 = 7.62     /  𝑏2 = 7.52        /   𝑏3 = 7.84          /   𝑏4 = 7.57        /  𝑏5 =   7.77      

𝑐1 = 761.94/  𝑐2 = 831.84  /   𝑐3 = 530.03     /   𝑐4 = 831.92   /  𝑐5 =   500.08 

𝑝𝑑 = 760𝑚𝑤 

The load balance equality constraint is as follows:  

∑ 𝑝𝑖

5

𝑖=1

= 𝑝1 +  𝑝2 +  𝑝3 +  𝑝4 +  𝑝5 =  𝑝𝑑                                                                                (4.56) 

In order to solve this case study, Augmented Lagrangian method of multipliers has been 

applied, and the Equation presented in (4.57) is obtained.  

𝐿(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝜆, 𝑐) = ∑ 𝑓𝑖(𝑝𝑖) = ∑ 𝑎𝑖𝑝𝑖
2 + 𝑏𝑖𝑝𝑖

+ 𝑐𝑖

5

𝑖=1

5

𝑖=1

+ 𝜆 (∑ 𝑝
𝑖

5

𝑖=1

− 𝑝
𝑑
)                              

+
𝑐

2
 ‖∑ 𝑝

𝑖

5

𝑖=1

− 𝑝
𝑑
‖

2

                                                                                                                        (4.57) 

The iterative relations for generated power by thermal units are as follows:  
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𝑝1
𝑘+1 ≔ arg 𝑚𝑖𝑛

𝑝1

𝑓1(𝑝1) + 𝜆 (∑ 𝑝𝑗
𝑘

5

𝑗=1

− 𝑝
𝑑
) +

𝑐

2
 ‖∑ 𝑝

𝑗

5

𝑗=1

− 𝑝
𝑑
‖

2

                                       (4.58) 

𝑝2
𝑘+1 ≔ arg 𝑚𝑖𝑛

𝑝2

 𝑓2(𝑝2) + 𝜆 (∑ 𝑝𝑗
𝑘

5

𝑗=1

− 𝑝
𝑑
) +

𝑐

2
 ‖∑ 𝑝

𝑗

5

𝑗=1

− 𝑝
𝑑
‖

2

                                     (4.59) 

𝑝3
𝑘+1 ≔ arg 𝑚𝑖𝑛

𝑝3

𝑓3(𝑝3) + 𝜆 (∑ 𝑝𝑗
𝑘

5

𝑗=1

− 𝑝
𝑑
) +

𝑐

2
 ‖∑ 𝑝

𝑗

5

𝑗=1

− 𝑝
𝑑
‖

2

                                    (4.60) 

𝑝4
𝑘+1 ≔ arg 𝑚𝑖𝑛

𝑝4

𝑓4(𝑝4) + 𝜆 (∑ 𝑝𝑗
𝑘

5

𝑗=1

− 𝑝
𝑑
) +

𝑐

2
 ‖∑ 𝑝

𝑗

5

𝑗=1

− 𝑝
𝑑
‖

2

                                    (4.61) 

𝑝5
𝑘+1 ≔ arg 𝑚𝑖𝑛

𝑝5

𝑓5(𝑝5) + 𝜆 (∑ 𝑝𝑗
𝑘

5

𝑗=1

− 𝑝
𝑑
) +

𝑐

2
 ‖∑ 𝑝

𝑗

5

𝑗=1

− 𝑝
𝑑
‖

2

                                    (4.62) 

𝜆𝑘+1 = 𝜆𝑘 + 𝑐 (∑ 𝑝𝑗
𝑘+1

5

𝑗=1

− 𝑝
𝑑
)                                                                                            (4.63) 

By initializing 𝑘 = 0,  𝑝
d

= 760 and 𝑝𝑖
0, 𝑖 = 0,1, … ,5, and utilizing Equations (4.58-63), the 

final result of the system can be obtained as follows:  

𝑝1 =  179.7MW,  𝑝2 =  208.6MW,    𝑝3 = 92.3MW,  𝑝4 = 197.4MW,     𝑝5 = 81.8MW   

      

4.15. Topologies of The ADMM Based Distributed Optimal Power Flow 

Applicable topologies for optimal power flow can be categorized into distributed optimal 

power flow by the central controller, and, fully decentralized optimal power flow.  
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 The conventional communication strategy of distributed ADMM employes a central 

controller. In this method, coupled variables of individual subsystems are transmitted to the 

central controller. The central controller computes the global variables and sends updated 

variables back to each subsystem. Local controllers in each subsystem can calculate multipliers 

by utilizing received parameters. In the next chapter, reformulation of optimal power flow in 

order to be suitable for solving by ADMM based distributed optimization will be discussed in 

details.  

4.16. Convergence of Alternating Direction Method of Multipliers 

In an optimization problem, the convergence of the solution in the iterative process to the 

optimal point is significant. The convergence of Alternating Direction Method of Multipliers 

(ADMM) can be specified regarding the primal residual.  

‖𝑟𝑘+1‖2
2 = ‖𝜆𝑘+1 − 𝜆𝑘‖2

2 ≤ 𝜀                                                                                                       (4.64) 

Utilizing Equation (4.41) and substituting in (4.64), the final form of stopping criteria can be 

found.  

‖𝑟𝑘+1‖
2

2
= ‖𝜆𝑘+1 − 𝜆𝑘‖

2

2
  = ‖𝑐(𝐴1𝑥𝑘+1

1 + 𝐴2𝑥𝑘+1
2 − 𝑏)‖2

2 ≤ 𝜀                       (4.65) 

where 𝜀  is the predefined threshold and can be defined by any small value depending on the 

problem and the required accuracy.  

4.17. Conclusion 

In this chapter, the augmented Lagrangian method and Alternating Direction Method of 

Multiplier algorithm for systems including two and more than two separable functions have 

been discussed and related iterative steps were presented. To understand the concept of these 



59 

 

techniques more clearly, two power systems, 2-bus and 7-bus have been presented and solved 

by these methods.  

Most of the distributed optimization applications based on the Alternating Direction Method 

of Multipliers such as the optimal power flow problem include multiple separable objective 

functions with equality and inequality constraints.  The presented ADMM based distributed 

optimization for solving multiple separable objective functions can be applied in these cases.  

In the next chapter, ADMM based distributed optimization will be adjusted in the case of 

solving a real model of optimal power flow.  
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5. Applying Distributed Optimization Technique on Optimal 

Power Flow 

Chapter 5 

Applying Distributed 

Optimization Technique on 

Optimal Power Flow 

5.1. Introduction  

As discussed in previous chapters, Optimal Power Flow (OPF) determines the minimum 

operation costs of power networks by dispatching generation resources to supply power 

demands. In its most realistic form, the OPF is a non-linear, non-convex problem, which 

consists of both binary and continuous variables. Fundamentally, implementation of realistic 

OPF includes thousands of variables and therefore it is difficult and in many cases will not 

converge because in its realistic form it is a complicated optimization problem. Typically, in 

large scale power systems, in order to reduce the complexity of the system, the simplified 

version of optimal power flow that is called DC-OPF can be used. DC-OPF is an approximation 

of AC-OPF for obtaining the optimal real power dispatch solution of the entire power system.  
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DC-OPF considers the power flows in a linearized form, the power flow limits of the lines, as 

well as active power.  This chapter focuses on applying the distributed optimization technique 

to the optimal power flow problem. 

In recent years, distributed optimization as an efficient technique for solving large scale 

problems has been applied [22]. This technique has many advantages in the solving of OPF in 

comparison with traditional centralized OPF. Because all detailed system information should 

be collected by the central computing station, the traditional centralized OPF needs high speed 

communication infrastructures, but in distributed OPF, the problem is wisely split to small 

scale sub-problems for local subsystems to solve in a distributed manner and only limited 

information should be transmitted to local computing stations during the optimization 

procedure. 

On the other hand, in the distributed OPF, local subsystems are not required to disclose their 

confidential information to other local subsystems. Also, distributed OPF is more flexible and 

scalable with respect to system changes than centralized operations, especially in view of the 

fact that topologies of electric power and communication infrastructures are more dynamic in 

smart grids. 

 Distributed OPF is more robust than traditional OPF. In the centralized optimization, the 

performance of the entire system depends on the main computing station and the system will 

be disrupted when the main computer goes offline. Also, unlike traditional OPF, distributed 

OPF can be solved asynchronously via individual local computers. In this case, with the failure 

of certain local computers, other local controllers can continue their normal routines. In 

addition, accurate results will be finally achieved once the failed computers come back into 

service.  
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The chapter aims to show how the distributed optimization can be implemented on the AC-

OPF and DC-OPF. Also, in this chapter, the communication strategies between local 

processors and the concept of splitting the power system into sub-systems has been presented.  

 

5.2. A Short Review on Distributed Optimization for Optimal Power Flow 

Over the last few years, power system operation studies have explored the application of 

distributed optimization to various power system problems, including distributed economic 

dispatch (ED) [24], distributed OPF [25], and distributed unit commitment [22]. Some 

fundamental methods are Lagrangian Relaxation (LR) [26], and Alternating Direction of 

Multipliers [27]. A dynamic multiplier-based Lagrangian Relaxation approach for solving ED 

in a fully decentralized manner has been presented in [28]. Alternating Direction Method of 

Multipliers (ADMM), as an appropriate and efficient method for Optimal Power Flow, is 

presented in [29]. 

The DC-OPF model, as a simplified version of OPF, is a convex problem with linear 

constraints. The ADMM approach can guarantee global convergence of DC-OPF [30].  

Generally speaking, in some cases the convergence criterion may not hold. In these cases, by 

modification of the power system decomposition, the converging problem can be solved. 

Strategies for subsystem partitioning play a key role in convergence performance of the 

distributed power system problems. Practically, for applying distributed optimization to 

extremely large power systems, having information about the subsystem partitions will 

enhance the computational performance.  
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5.3. Reformulation of ADMM for Solving the OPF 

In order to solve OPF by ADMM, the optimal power flow problem should be reformulated. 

For this purpose, a typical 6-bus power system, which is split into two areas, which are named 

A and B, has been considered.  Each area only needs to consider its part and solve its 

constrained objective function. The system constraints can be classified into local and global 

constraints. Over an iterative process these areas update their decision variables in a parallel 

manner.  

 

Figure105-1: A Typical 6-bus Power System for ADMM 

 

In this typical model buses 1-4 are connected to a generator and are generating buses, and buses 

5 and 6 are considered load buses. Figure 5-1 demonstrates buses 1, 2 and 5, and buses 3, 4 
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and 6 in areas A and B, respectively.  Also, as Figure 5-1 shows, the overlapped area includes 

transmission lines between buses 1 and 3, and buses 2 and 4, which are called 𝑇𝐿13 , 𝑇𝐿24 .  

The system buses are indexed by 𝑖  as bus number, where 𝑖 = 1, … ,6.   

Let 𝑌 be the branch admittance matrix, where 𝑉�̅� and 𝐼�̅� are voltage and current injection at bus 

𝑖, respectively. 

The net power injection equations at bus 𝑖 can be stated as follows: 

𝑆𝑖 = 𝑉�̅�  × 𝐼�̅�
∗
                                                                                                                                        (5.1)  

𝑃𝑖(𝑉, 𝜃) = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗))

𝑁

𝑗=1

                                                       (5.2) 

𝑄𝑖(𝑉, 𝜃) = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗))

𝑁

𝑗=1

                                                       (5.3) 

Also,  

𝐼�̅� = ∑ 𝑌𝑖𝑗  × 𝑉�̅�

𝑁

𝑗=1

                                                                                                                                (5.4) 

where  

𝐼𝑖 as injected current to bus 𝑖 can be derived by 𝑌𝑖𝑗  and 𝑉�̅� as stated in Equation (5.4).  

𝐺 is the conductance matrix, which is defined by 𝐺𝑖𝑗 = 𝑅𝑒(𝑌𝑖𝑗) as the real part of the 

admittance matrix. 

𝐵 is the susceptance matrix, which is defined by 𝐵𝑖𝑗 = 𝐼𝑚(𝑌𝑖𝑗)  as the imaginary part of the 

admittance matrix. 

The Optimal Power Flow’s objective function can be formulated as follows: 
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min
𝑥

∑ 𝐶(𝑃𝑔𝑖)

𝑁

𝑖=1

                                                                                                                                  (5.5)    

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     𝑃𝑔𝑖  < 𝑃𝑔𝑖 < 𝑃𝑔𝑖 

                         𝑄𝑔𝑖  < 𝑄𝑔𝑖 < 𝑄𝑔𝑖 

                         𝑉𝑖  < 𝑉𝑖 < 𝑉𝑖 

                         𝜃𝑖  < 𝜃𝑖 < 𝜃𝑖 

                         𝑃𝑔𝑖 − 𝑃𝑑𝑖 = 𝑃𝑖(𝑉, 𝜃) 

                         𝑄𝑔𝑖 − 𝑄𝑑𝑖 = 𝑄𝑖(𝑉, 𝜃) 

Where  

𝐶(𝑃𝑔𝑖) is the cost of 𝑖𝑡ℎ generator.  

𝑃𝑔𝑖 is the active power generated by 𝑖𝑡ℎ generator and 𝑃𝑔𝑖  and 𝑃𝑔𝑖 are upper and lower 

boundaries  of active power, respectively.  

𝑄𝑔𝑖 is the reactive power generated by 𝑖𝑡ℎ generator, and 𝑄𝑔𝑖  and  𝑄𝑔𝑖  are upper and lower 

boundaries of reactive power, respectively.  

𝑉𝑖 is the voltage magnitude of  𝑖𝑡ℎ bus, and 𝑉𝑖 and  𝑉𝑖  are upper and lower boundaries of voltage 

magnitude, respectively.  

𝜃𝑖 is the voltage angle of  𝑖𝑡ℎ bus, and 𝜃𝑖 and  𝜃𝑖   are upper and lower boundaries of voltage 

angle, respectively.  

𝑃𝑑𝑖 and 𝑄𝑑𝑖 are the active and reactive demanded power at 𝑖𝑡ℎ bus, respectively.  

𝑥 is the optimization variable that is defined by Equation (5.6).  
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𝑥 = [ 𝑃�̅� 𝑄𝑔
̅̅̅̅      �̅� �̅�]                                                                                                                     (5.6)                                       

where   

 𝑃�̅� and 𝑄𝑔
̅̅̅̅   are 𝑁𝑔 × 1 vectors which show active and reactive power generated by all 

generators, respectively. (𝑁𝑔 is the number of generators that for the aforementioned typical 

system is 4.) 

�̅� and �̅�  are  𝑁 × 1 vectors which represent voltage magnitude and angle of all buses, 

respectively. (In the presented system, because it is a 6-bus system, 𝑁 is 6.)  

The real OPF problem is a non-convex problem because of its nonlinear equality constraints.  

5.3.1. Partitioning of The Proposed System 

The described 6-bus network which is shown in Figure 5-1 is partitioned into 2 areas: Area A 

which is colored blue, and Area B which is colored red. The area enclosed by the green dotted 

line is the intersection area, which is called the overlapping area or consensus area.  

Area A includes buses 1, 2 and 5, and all transmission lines inside this area as well as the 

branches in the overlapping area (𝑇𝐿13 , 𝑇𝐿24).  

Area B includes buses 3, 4 and 6, and all transmission lines inside area B as well as the branches 

(𝑇𝐿13 , 𝑇𝐿24) in the consensus area.  

Table 95-1: Information of Partitioned Areas 

 Area A Area B Consensus Area 

Own Buses 1, 2, 5 3, 4, 6 1, 2, 3, 4 

Boundary Buses 1, 2 3, 4 - 

Branches 𝑇𝐿12, 𝑇𝐿15,  𝑇𝐿25 𝑇𝐿34, 𝑇𝐿36, 𝑇𝐿46 𝑇𝐿13, 𝑇𝐿24 
 

 



67 

 

Each area determines the active and reactive power of its generators, voltage magnitudes, and 

angles of all of its own buses.  

Area A deals with the buses belonging to Area B in the consensus area as voltage sources and 

determines their voltage magnitudes and angles. In this case, the power injection equality of 

buses 3 and 4 can be neglected.  

On the other side, Area B treats buses 1 and 2, which belong to area A but are connected to the 

overlapping area as the boundary buses. For its own buses, power injection equations will be 

imposed as equality constraints while considering buses 1 and 2 as two voltage sources. 

Both areas will decide the voltage magnitudes and phase angles for the buses in the overlapping 

area. Thus, the voltage angles of buses 1, 2, 3, and 4 will be considered as local variables to 

achieve consensus.  

5.3.2. Forming Local Sub-problems  

The main OPF problem is partitioned into two areas. Thus, two sub-problems for solving by 

the local computing station can be formed. Consider 𝑥𝐴 , 𝑥𝐵 as optimization variables of 

partitions A and B, respectively.  

𝑥𝐴 = [𝑃𝑔1𝐴
 , 𝑃𝑔2𝐴

 , 𝑄𝑔1𝐴
 , 𝑄𝑔2𝐴

 , 𝑉1𝐴
, 𝑉2𝐴

, 𝑉5𝐴
, 𝑉3𝐴

, 𝑉4𝐴
, 𝜃1𝐴

, 𝜃2𝐴
, 𝜃5𝐴

, 𝜃3𝐴
, 𝜃4𝐴

]                    (5.7) 

𝑥𝐵 = [𝑃𝑔3𝐵
 , 𝑃𝑔4𝐵

 , 𝑄𝑔3𝐵
 , 𝑄𝑔4𝐵

 , 𝑉1𝐵
, 𝑉2𝐵

, 𝑉6𝐵
, 𝑉3𝐵

, 𝑉4𝐵
, 𝜃1𝐵

, 𝜃2𝐵
, 𝜃6𝐵

, 𝜃3𝐵
, 𝜃4𝐵

]                  (5.8)  

Also, all variables which are related to the overlapping area are denoted by 𝑧 and are defined 

as follows:  

𝑧 = [𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝜃1, 𝜃2, 𝜃3, 𝜃4]                                                                                                      (5.9) 

 

The default values of 𝑉  and 𝜃 are considered as the initial value of global variable 𝑧.  

The decision variable vectors 𝜆  for partitions A and B are defined as 𝜆𝐴 and 𝜆𝐵, respectively.  
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The initial value of ρ is considered 20.  

The vector 𝑧, which indicates global variable in overlapping area, is related to consensus local 

variables as follows: 

𝑥𝑐𝐴 = 𝑧                                                                                                                                               (5.10)                          

𝑥𝑐𝐵 = 𝑧                                                                                                                                               (5.11)                        

 

Where  

𝑥𝑐𝐴 and 𝑥𝑐𝐵 are consensus local variables in partition A and B, respectively.  

 

5.3.3. The partitioned objective functions  

To solve the main OPF problem, the sub-problems A and B should be created. As discussed 

earlier about ADMM, the objective function for partition A can be defined as follows:  

𝐿𝜌𝐴(𝑥𝐴, 𝑧𝑘 , 𝜆𝐴
𝑘)  = ∑ 𝑓𝑝𝑖(𝑃𝑔𝑖)

𝑖=1,2

+ (𝜆𝐴
𝑘)𝑇(𝑥𝑐𝐴 − 𝑧𝑘) +

𝜌

2
‖𝑥𝑐𝐴 − 𝑧𝑘‖2

2                               (5.12) 

Where 

𝑘 is number of iterations.  

Inequality constraints for 𝐿𝜌𝐴(𝑥𝐴, 𝑧𝑘 , 𝜆𝐴
𝑘) are as follows:  

𝑃𝑔𝑖  < 𝑃𝑔𝑖 < 𝑃𝑔𝑖                      𝑖 = 1,2                                                                                             (5.13) 

𝑄𝑔𝑖  < 𝑄𝑔𝑖 < 𝑄𝑔𝑖                     𝑖 = 1,2                                                                                           (5.14) 

𝑉𝑖  < 𝑉𝑖 < 𝑉𝑖                    𝑖 = 1,2,5,3,4                                                                                          (5.15) 

𝜃𝑖  < 𝜃𝑖 < 𝜃𝑖                   𝑖 = 1,2,5,3,4                                                                                           (5.16) 
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Equality constraints for sub-problem A are as follows:  

𝑃𝑔𝑖 − 𝑃𝑑𝑖 = 𝑃𝑖(𝑉, 𝜃) = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗))

𝑁

𝑗=1

   𝑖 = 1,2,5          (5.17) 

𝑄𝑔𝑖 − 𝑄𝑑𝑖 = 𝑄𝑖(𝑉, 𝜃) = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) 

𝑁

𝑗=1

 𝑖 = 1,2,5         (5.18) 

 

Similarly, the objective function of partition B can be expressed as follows:  

𝐿𝜌𝐵(𝑥𝐵, 𝑧𝑘, 𝜆𝐵
𝑘)  = ∑ 𝑓𝑝𝑖(𝑃𝑔𝑖)

𝑖=3,4

+ (𝜆𝐵
𝑘 )𝑇(𝑥𝑐𝐵 − 𝑧𝑘) +

𝜌

2
‖𝑥𝑐𝐵 − 𝑧𝑘‖2

2                              (5.19) 

 

Inequality constraints for 𝐿𝜌𝐵(𝑥𝐵, 𝑧𝑘, 𝜆𝐵
𝑘 ) are as follows:  

𝑃𝑔𝑖  < 𝑃𝑔𝑖 < 𝑃𝑔𝑖                      𝑖 = 3,4                                                                                            (5.20) 

𝑄𝑔𝑖  < 𝑄𝑔𝑖 < 𝑄𝑔𝑖                     𝑖 = 3,4                                                                                          (5.21) 

𝑉𝑖  < 𝑉𝑖 < 𝑉𝑖                     𝑖 = 3,4,6,1,2                                                                                        (5.22) 

𝜃𝑖  < 𝜃𝑖 < 𝜃𝑖                    𝑖 = 3,4,6,1,2                                                                                          (5.23) 

 

Equality constraints for sub-problem B are as follows:  

  𝑃𝑔𝑖 − 𝑃𝑑𝑖 = 𝑃𝑖(𝑉, 𝜃) = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗))𝑁
𝑗=1    𝑖 = 3,4,6      (5.24) 

𝑄𝑔𝑖 − 𝑄𝑑𝑖 = 𝑄𝑖(𝑉, 𝜃) = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) 

𝑁

𝑗=1

 𝑖 = 3,4,6         (5.25) 

In iterative process for Part A, at each step 𝑘, Partition A computes the new value for 𝑥𝑐𝐴, 

which is called 𝑥𝑐𝐴
𝑘+1. Similarly, Partition B finds the optimal solution 𝑥𝑐𝐵

𝑘+1.  

As previously discussed, the decision variables of ADMM can be updated by Equations (5.26-

28). 
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𝑧𝑘+1 =
𝑥𝑐𝐴

𝑘+1 + 𝑥𝑐𝐵
𝑘+1

2
                                                                                                                      (5.26) 

𝜆𝐴
𝑘+1 = 𝜆𝐴

𝑘 + 𝜌( 𝑥𝑐𝐴
𝑘+1 − 𝑧𝑘+1)                                                                                                      (5.27) 

𝜆𝐵
𝑘+1 = 𝜆𝐵

𝑘 + 𝜌( 𝑥𝑐𝐵
𝑘+1 − 𝑧𝑘+1)                                                                                                     (5.28) 

By defining the small value of 𝜀, when Equation (5.29), which is the primal residual, is satisfied 

the iterative process can be terminated.  

‖𝜆𝑘+1 − 𝜆𝑘‖2
2 ≤ 𝜀                                                                                                                                (5.29)   

                

5.3.4. Summarized ADMM Steps  

To summarize, the steps of ADMM for a 6-bus case study, are stated as follows: 

i. Set initial values for 𝜀,  𝜌, 𝑥𝐴 and 𝑥𝐵. 

ii. Set initial value of global variable vector 𝑧 and variables  𝜆𝐴 and 𝜆𝐵 at each partition.  

iii. Create sub-problems A and B.    

iv. Continue with the following steps while the error is higher than 𝜀. 

v. Calculate 𝑥𝐴 by minimizing the objective function A. 

vi. Calculate 𝑥𝐵 by minimizing the objective function B. 

vii. Update 𝑥𝑐𝐴
𝑘+1 with the 𝑥𝐴 obtained in the previous step.  

viii. Update 𝑥𝑐𝐵
𝑘+1with the  𝑥𝐵 obtained in the previous step.  

ix. Update 𝑧𝑘+1 with the  𝑥𝑐𝐴
𝑘+1 and 𝑥𝑐𝐵

𝑘+1.  

x. Update 𝜆𝐴
𝑘+1 and 𝜆𝐵

𝑘+1 by Equations (5.27) and (5.28), respectively.  

xi. Change 𝑘 to 𝑘 + 1. 

xii. Go to step (iv) to check the termination condition.  

xiii. When the process is terminated the optimal solution will be reached.  
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5.4. Power System Partitioning  

Power system partitioning plays a key role in solving OPF in a distributed manner. The global 

variable vector, called 𝒛, should be transmitted between local computing stations. In order to 

increase the performance of the solution, the number of global variables should be reduced. 

Practically, a lower number of global variables results in reduced information exchange 

between sub-systems and causes smaller numbers of iterations.  

In order to reduce the number of general variables, the system should be decomposed to sub-

systems with a minimum of coupling nodes. This enhances the performance of the introduced 

distributed approach.  

Figure 5-2 illustrates the 14-bus IEEE system [21]. This typical model is split into two 

partitions in two different ways, models 1 and 2. As Figure 5-2 shows, in model 1, the system 

is partitioned into 𝐴1 and 𝐵1, and just 5 buses (4, 5, 6, 7, 9) are marked by red circles as coupling 

nodes. While in model 2, the system is partitioned into 𝐴2 and 𝐵2, and there are 8 coupling 

buses (2, 3, 4, 5, 6, 11,12, 13) which are marked by red circles.  

The vector of global variables for partitioning models 1 and 2, denoted by 𝒛𝟏 and 𝒛𝟐, 

respectively, are as follows: 

 

𝑧1 = [𝑉4, 𝑉5, 𝑉6, 𝑉7, 𝑉8, 𝜃4, 𝜃5, 𝜃6, 𝜃7, 𝜃8]                                                                                 (5.30) 

𝑧2 = [𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉11, 𝑉12, 𝑉13, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃11, 𝜃12, 𝜃13, ]                               (5.31) 

 

Therefore, due to smaller global variable size, partitioning model 1 is more efficient and has 

fewer coupling nodes.  
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Figure115-2: Comparison between Two Power System Partitioning 

To deal with larger power systems, more partitions have to be considered. In these cases, a 

power system expert should partition the system by considering the structure of the power 

system.  Figure 5-3 demonstrates a 30-bus IEEE system that is partitioned into three different 

sub systems A, B, and C.  

 

Figure125-3: Partitioning of  The 30-bus IEEE System into 3 Sub-systems 
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By considering the size of the power system, which is related to the number of buses and the 

number of processors, for solving the main problem by local processor related to each partition 

in parallel, the system can be partitioned  into 𝑵 sub-systems. Figure 5-4 demonstrates the 39-

bus 10-generator IEEE power system which is partitioned into 4 subsystems A, B, C, D.  

 

Figure135-4: IEEE 10-generator 39-bus Power System 

 

By considering the IEEE 39-bus power system with ten generators as one problem (see Figure 

5-4), the obtained objective function includes the active power of generators 1 to 10. Thus, the 

optimization vector for this case can be as follows:  

𝑝 = [𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10 ]                                                                            (5.32) 

By splitting the power system into 4 partitions, the optimization vector of part 𝝃 , which is 

shown by 𝑝𝜉 , where 𝜉 = 𝐴, 𝐵, 𝐶, 𝐷, is as follows:  
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𝑝𝐴 = [𝑝𝐴1, 𝑝𝐴2, 𝑝𝐴3 ]                                                                                                                  (5.33) 

𝑝𝐵 = [𝑝𝐵4, 𝑝𝐵5, 𝑝𝐵6, 𝑝𝐵7 ]                                                                                                        (5.34) 

𝑝𝐶 = [ 𝑝𝐶8, 𝑝𝐶10 ]                                                                                                                        (5.35) 

𝑝𝐷 = [𝑝𝐷9]                                                                                                                                    (5.36) 

After splitting the main problem into four partitions, by assigning 4 processors (one for each 

sub-problem); which are connected in order to transmit the voltage and phase of the boundary 

buses; the problem can be solved in parallel.  

 

5.5. Distributed DC-OPF Based on ADMM 

5.5.1. DC-OPF  

Because of the complexity, AC power flow algorithms are not fast but they have high 

calculation precision. In a real power system analysis, the calculation precision is not very 

important. The greatest concern is the calculation speed, especially for a large-scale power 

system.  

The AC power flow model results in non-convex optimization problem that can be difficult to 

directly handle when using the distributed optimization technique. Therefore, many algorithms 

have focused on linear approximations and convex relaxations of AC power flow equations. 

The most commonly used linear approximation is the DC power flow model, which is based 

on the following assumptions: 

a. Reactive power flows can be neglected. 

b. The lines are lossless and shunt elements can be neglected, thus (G ≈ 0) 

c. The voltage magnitudes at all buses are approximately equal, so |Vi| ≈ 1 at all buses 

d. Angle differences between connected buses are small such that  

𝑠𝑖𝑛(𝜃𝑖 − 𝜃𝑗) = 𝜃𝑖 − 𝜃𝑗 , where 𝑖   and   𝑗 are system buses.  
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By applying these assumptions, Equations (5.37-38) can be transformed to the Equations (5.39) 

as demonstrated in the following equations.  

 

AC Optimal Power Flow equality constraints are given by the following equations: 

𝑃𝐺
𝑘 − 𝑃𝐷

𝑘 = 𝑉𝑘⏟
1

∑ [𝑉𝑗⏟
1

[𝐺𝑗
𝑘

⏟
0

cos(𝛿𝑘 − 𝛿𝑗) + 𝐵𝑗
𝑘 sin(𝛿𝑘 − 𝛿𝑗)⏟        

𝛿𝑘−𝛿𝑗

]]

𝑁

𝑖=1

                                            (5.37) 

𝑄𝐺
𝑘 − 𝑄𝐷

𝑘
⏟    

0

= 𝑉𝑘 ∑ [𝑉𝑗[𝐺𝑗
𝑘 𝑠𝑖𝑛(𝛿𝑘 − 𝛿𝑗) − 𝐵𝑗

𝑘 𝑐𝑜𝑠(𝛿𝑘 − 𝛿𝑗)]]

𝑁

𝑖=1

                                (5.38) 

 

DC Optimal Power Flow equality constraints: 

𝑃𝐺
𝑘 − 𝑃𝐷

𝑘 = 𝐵𝑗
𝑘(𝛿𝑘 − δj)                                                                                                     (5.39) 

Also, the fuel cost as objective function of optimal power flow is presented in linear form 

through the following equation:  

∑ 𝑎𝑘𝑃𝐺𝑘

𝑁𝐺

𝑘=1

+ 𝑏𝑘                                                                                                                            (5.40)  

 

5.6. Fully Decentralized DC-OPF by ADMM 

5.6.1. 3-partition Typical Power System 

To simplify the explanation of distributed DC-OPF, a three-bus system (shown in Figure 5-5) 

is considered. ADMM can be applied to solve the DC-OPF in a distributed fashion. The 

illustrated system in Figure 5-5 is decomposed into three subsystems: 𝑃1, 𝑃2, and 𝑃3. 

Buses 𝑎, 𝑏 and 𝑐 are known boundary buses. Bus 𝑏 is connected to buses 𝑎 and 𝑐 by 

transmission lines. 𝜃𝑎 , 𝜃𝑏 and 𝜃𝑐 are phase angles of boundary buses a, b and c, respectively.  
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Each subsystem has its variables and constraints which are called local variables and local 

constraints of that subsystem.  

 
Figure145-5: A typical 3-partition 3-bus Power System 

 

The DC-OPF model presents an objective function that considers local variables and local 

constraints. The objective function for a subsystem is based solely on the information of local 

generators and demand. In DC-OPF, the inequality constraints are based on local variables. On 

the other hand, subsystems are coupled with each other via power flows on tie lines. Thus, 

constraints which are containing power flows of tie lines are global constraints. These 

constraints are not naturally separable.  

To make the problem suitable for the Alternating Direction Method of Multipliers, in the 

proposed algorithm which is the basis of the distributed optimization, phase angles of boundary 

buses in each partition are duplicated in their adjacent subsystems.   

As shown in Figure 5-5: 

 𝜃𝑎 in subsystem 𝑃1 is duplicated in adjacent subsystem 𝑃2 as 𝜃𝑎
𝑃2. 

 𝜃𝑏 in subsystem 𝑃2 is duplicated in adjacent subsystems 𝑃1 and 𝑃3,  as 𝜃𝑏
𝑃1 and 𝜃𝑏

𝑃3 , 

respectively.  

 𝜃𝑐 in subsystem 𝑃3 is duplicated in adjacent subsystem 𝑃2 as 𝜃𝑐
𝑃2. 
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For each subsystem, the phase angle of boundary buses and the variables which are duplicated 

from other subsystems are called coupling variables.  

Duplicating boundary bus angle variables, equality constraint of DC-OPF can be transformed 

into functions of local variables and coupling variables. 

In order to keep the duplicated coupling variables in each subsystem equal, the vector of global 

variable 𝑧 can be defined.  

The global variables corresponding to subsystem 𝑛 is  presented by 𝑧𝑛. 

For this 3-partition power system, 𝑧1, 𝑧2 and 𝑧3 can be expressed as follows:  

 𝑧1  is defined for guaranteeing coupling variables between partition 𝑃1 and partition 𝑃2 

are equal.  

 𝑧2  is defined for guaranteeing coupling variables between partition 𝑃2 and partitions 

𝑃1 and  𝑃3 are equal.  

 𝑧3  is defined for guaranteeing coupling variables between partition 𝑃3 and partition  𝑃2 

are equal.  

𝜃𝑎 − 𝑧1 = 0,          𝜃𝑎
𝑃2 − 𝑧1 = 0                                                                                                   (5.41) 

𝜃𝑏 − 𝑧2 = 0,          𝜃𝑏
𝑃1 − 𝑧2 = 0,           𝜃𝑏

𝑃3 − 𝑧2 = 0                                                              (5.42) 

𝜃𝑐 − 𝑧3 = 0,          𝜃𝑐
𝑃2 − 𝑧3 = 0                                                                                                  (5.43) 

 

By defining these global variables, the DC-OPF model can be reformulated into a separable 

form which is suitable for the distributed optimization.  

All variables of nth subsystem are indicated by xn, which are classified into local variables xn̅̅ ̅  

and coupling variables xn ⃡  . 

Local variables xn̅̅ ̅ includes generation dispatches and bus angles in nth subsystem, except 

boundary buses and coupling variables. 



78 

 

Coupling variables xn ⃡   includes phase angle variables of boundary buses in nth subsystem and 

duplicated phase angle variables of boundary buses in adjacent subsystems. 

 

In the distributed DC-OPF problem, the objective function of the entire system can be 

represented as the summation of objectives for all individual subsystems. 

min
x

∑ Cn(xn)

N

n=1

                                                                                                                                  (5.44) 

subject to ∶                   xn ∈ χn    ∀n ∈ N                                                                                     (5.45) 

                                         xn ⃡  − zn = 0    ∀n ∈ N                                                                            (5.46) 

 

xn satisfies constraints in nth subsystem which is represented as xn ∈ χn, where:  

N is the number of sub-systems. 

Cn(xn)  represents the objective function of nth subsystem.  

χn is set of all constraints of nth subsystem. 

 

5.6.2.   Augmented Lagrangian Function for DC-OPF 

The augmented Lagrangian function for the presented 3-partition power system (Figure 5.3) 

can be expressed as follows:  

min
𝑥,𝑧

𝐿𝜌 (𝑥, 𝑧, 𝜆) = ∑ [Cn(xn) + 𝜆𝑛
𝑇 . ( xn ⃡  − zn) + (

𝜌

2
) . ‖xn ⃡  − zn‖2

2]

𝑁

𝑛=1

                                 (5.47) 

𝑥𝑛
𝑖+1 = arg min

xn∈χn

(Cn(xn) + 𝜆𝑛
𝑇 . xn + (

𝜌

2
) . ‖xn ⃡  − zn

𝑖‖
2

2
)  ∀n ∈ N                                         (5.48) 

𝑧1 =
(𝜃𝑎  + 𝜃𝑎

𝑃2)

2
                                                                                                                             (5.49) 

 𝑧2 =
(𝜃𝑏  +  𝜃𝑏

𝑃1 + 𝜃𝑏
𝑃3)

3
                                                                                                               (5.50) 
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𝑧3 =
(𝜃𝑐  +  𝜃𝑐

𝑃2)

2
                                                                                                                            (5.51) 

𝜆𝑛
𝑖+1 = 𝜆𝑛

𝑖 +  𝜌. (xn ⃡  
𝑖+1

− zn
𝑖+1)       ∀n ∈ N                                                                             (5.52) 

 

 

The variables of the preceding equations are defined as follows:  

𝜆𝑛
𝑖  are Lagrangian multipliers at 𝑖𝑡ℎ iteration.  

𝜌 is a predefined positive parameter. 

𝑖  is the 𝑖𝑡ℎ iteration of the distributed optimization.  

The 𝑖𝑡ℎ  iteration of the distributed DC-OPF process includes steps of (5.48-52). 

The equation (5.48) for individual subsystems can be solved in parallel in a distributed manner.  

 

 

5.6.3. Termination Criteria  

 

The algorithm should be terminated when primal and dual residuals in each subsystem 𝑛 are 

less than pre-defined values 𝜀1 and 𝜀2, respectively.  

‖𝑟𝑛
𝑖+1‖

2

2
= ‖𝜆𝑖+1 − 𝜆𝑖‖

2

2
≤ 𝜀1                                                                                                           (5.53) 

‖𝑠𝑛
𝑖+1‖

2

2
= ‖𝑧𝑛

𝑖+1 − 𝑧𝑛
𝑖‖

2

2
≤ 𝜀2                                                                                                      (5.54) 

Where  

𝑟𝑛
𝑖+1 is the primal residual at 𝑖𝑡ℎ  iteration. 

𝑠𝑛
𝑖+1 is the dual residual at 𝑖𝑡ℎ  iteration.  
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5.7. Communication Strategies for DC-OPF  

Having an efficient communication strategy seem to be necessary for the presented iterative 

procedure. The communication strategies between local processors can be classified into two 

major classes: (1) Distributed DC-OPF with central processor and (2) Fully Decentralized DC-

OPF. 

 

5.7.1. Distributed DC-OPF with the Central Controller 

The most conventional communication strategy of distributed Alternating Direction Method of 

Multipliers is based on considering the central processor. In this method, all coupling variables 

of individual subsystems should be sent to the central processor. The central processor 

calculates the global variable 𝑧 and sends updated 𝑧𝑖+1 back to each subsystem 𝑛. After 

receiving 𝑧𝑖+1, the local processor of each subsystem 𝑛  can calculate 𝜆𝑛. The communication 

strategy for the presented model is illustrated in Figure 5-6.   

 

 

Figure155-6: Communication Strategy Based on Central Processor 
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5.7.2 Fully Decentralized DC-OPF by ADMM 

 

In order to have a fully decentralized DC-OPF approach, leading variables and subsystems 

should be defined. Leading variables are defined as the original phase angle variables (not the 

duplicated ones) and the leading subsystem is defined as the subsystem where the leading 

variables are located. 

In this data exchange strategy, values of duplicated variables are sent to the leading subsystems. 

The local processor of the leading subsystem computes the global variable 𝑧 and sends updated 

𝑧𝑖+1 back to corresponding subsystems. The communication procedure of the example is 

illustrated in Figure 5-7. The data exchange of the fully decentralized algorithm is much 

smaller than that of conventional communication strategy. Also, in this communication 

strategy the system is not dependent on the central controller. Figure 5-7 demonstrates the fully 

decentralized communication strategy. 

 

 

Figure165-7: Fully Decentralized Communication Strategy For DC-OPF 

 

 



82 

 

5.8. Conclusion  

In this chapter, the ADMM-based distributed optimization technique for solving the AC OPF 

problem is discussed using a 2-partition 4-bus power system. Also, the reformulation of 

optimal power flow, which is appropriate for solving by ADMM, has been presented. Power 

system wisely partitioning as a key factor in distributed optimization is explained. 

 Since applying AC OPF on large-scale power systems makes the problem very complicated. 

A linearized form of optimal power flow, which is called DC-OPF, is introduced. Because DC-

OPF is a convex problem with linear constraints, the proposed consensus-based ADMM 

algorithms can guarantee global convergence. The application of the proposed distributed 

consensus-based ADMM algorithms to DC-OPF is discussed along a 3-partition power system.  

Also, using central controller and fully decentralized optimization as possible communication 

strategies between local processors are introduced and compared.  
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6. Case Studies and Results 

Chapter 6 

Case Studies and Results 

 

 

6.1. Introduction  

In this chapter, the proposed distributed optimization technique based on Alternating Direction 

Method of Multipliers is applied to some IEEE case studies.  

The first case study is the 14-bus IEEE power system which has five generators. This IEEE 

case has been split into two partitions and optimized by two local processors in parallel. The 

obtained results of the proposed algorithm for this case study are compared with outputs of the 

conventional method. Also, the ADMM is applied to IEEE 30-bus 6-generator case study and 

the outputs for this case study is compared with MATPOWER results.  

The 118-bus IEEE power system has been presented as a large-scale power system and it is 

split into 3 partitions with 17 coupling nodes to be suitable for distributed optimization by 3 

local processors in parallel.  
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6.2. The First Case Study (IEEE 14-Bus System) 

In order to demonstrate the results of the ADMM method, the 14-bus IEEE power system with 

5 generator extracted from MATPOWER has been considered [30].  

Figure 6-1 demonstrates the single line diagram of the case study. To make the OPF problem 

suitable for the proposed approach the case study is split into two partitions which are named 

A and B.  

Area A includes buses 1 to 5 and the generators are connected to buses 1, 2, and 3.  

Area B includes buses 6 to 14 and the generators are connected to buses 6 and 8.  

 
Figure176-1: IEEE 14-bus Case Study Split into Two Partitions 

 

Buses 4, 5, 6, 7 and 9 are boundary buses in the overlapping area between two partitions. The 

global variable vector which is related to voltage amplitude and the phase angle of the buses, 

which are located in the consensus area, is presented through the equation (6.1).  
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𝑧 = [𝑉4, 𝑉5, 𝑉6, 𝑉7, 𝑉9, 𝜃4, 𝜃5, 𝜃6, 𝜃7, 𝜃9]                                                                                           (6.1) 

The global optimization vectors for partitions A and B which are called 𝑥𝐴 and 𝑥𝐵 are presented 

as follows:  

𝑥𝐴 = [𝑃𝑔1𝐴
 , 𝑃𝑔2𝐴

 , 𝑃𝑔3𝐴
 𝑄𝑔1𝐴

 , 𝑄𝑔2𝐴
 , 𝑄𝑔3𝐴

, 𝑉1
𝐴
, 𝑉2𝐴

, 𝑉3𝐴
, 𝑉4𝐴

, 𝑉5𝐴
, 𝑉6𝐴

, 𝑉7𝐴
, 𝑉9𝐴

, … 

 𝜃1𝐴
, 𝜃2𝐴

, 𝜃3𝐴
, 𝜃4𝐴

, 𝜃5𝐴
, 𝜃6𝐴

, 𝜃7𝐴
, 𝜃9𝐴

]                                                                                           (6.2)                                               

                               

 

𝑥𝐵 = [𝑃𝑔6𝐵
 , 𝑃𝑔8𝐵

 , 𝑄𝑔6𝐵
 , 𝑄𝑔8𝐵

 , 𝑉4𝐵
, 𝑉5𝐵

, 𝑉6𝐵
, 𝑉7𝐵

, 𝑉8𝐵
, 𝑉9𝐵

, 𝑉10𝐵
, 𝑉11𝐵

, 𝑉12𝐵
, 𝑉13𝐵

, 𝑉14𝐵
 , …  

 𝜃4𝐵
, 𝜃5𝐵

, 𝜃6𝐵
, 𝜃7𝐵

, 𝜃8𝐵
, 𝜃9𝐵

, 𝜃10𝐵
, 𝜃11𝐵

, 𝜃12𝐵
, 𝜃13𝐵

, 𝜃14𝐵
]                                                       (6.3)                                

 

Equations (6.4) and (6.5) define 𝑥𝑐𝐴 and 𝑥𝑐𝐵 which are consensus local variables in partitions 

A and B, respectively. 

𝑥𝑐𝐴 = [𝑉4𝐴
, 𝑉5𝐴

, 𝑉6𝐴
, 𝑉7𝐴

, 𝑉9𝐴
, 𝜃4𝐴

, 𝜃5𝐴
, 𝜃6𝐴

, 𝜃7𝐴
, 𝜃9𝐴

]                                                            (6.4) 

 𝑥𝑐𝐵 = [𝑉4𝐵
, 𝑉5𝐵

, 𝑉6𝐵
, 𝑉7𝐵

, 𝑉9𝐵
, 𝜃4𝐵

, 𝜃5𝐵
, 𝜃6𝐵

, 𝜃7𝐵
, 𝜃9𝐵

]                                                            (6.5) 
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The sub-problem of sub-system partitions A and B of this case study are expressed as follows:  

 

    

   min
𝑥𝐴

𝐿𝜌𝐴(𝑥𝐴, 𝑧𝑘, 𝜆𝐴
𝑘)  = ∑ 𝑓𝑝𝑖(𝑃𝑔𝑖)

𝑖=1,2

+ (𝜆𝐴
𝑘)𝑇(𝑥𝑐𝐴 − 𝑧𝑘) +

𝜌

2
‖𝑥𝑐𝐴 − 𝑧𝑘‖2

2                      (6.6)  

          𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑃𝑔𝑖 − 𝑃𝑑𝑖 = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗))

𝑁

𝑗=1

     𝑖 = 1, … ,5                           (6.7) 

𝑄𝑔𝑖 − 𝑄𝑑𝑖 = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) 

𝑁

𝑗=1

      𝑖 = 1, … ,5                        (6.8) 

𝑃𝑔𝑖  < 𝑃𝑔𝑖 < 𝑃𝑔𝑖          &           𝑄𝑔𝑖  < 𝑄𝑔𝑖 < 𝑄𝑔𝑖                          𝑖 = 1,2,3                             (6.9) 

𝑉𝑖  < 𝑉𝑖 < 𝑉𝑖          &          𝜃𝑖  < 𝜃𝑖 < 𝜃𝑖                                 𝑖 = 1,2,3,4,5,6,7,9                  (6.10) 

 

 

 

min
𝑥𝐵

𝐿𝜌𝐵(𝑥𝐵, 𝑧𝑘, 𝜆𝐵
𝑘)  = ∑ 𝑓𝑝𝑖(𝑃𝑔𝑖)

𝑖=3,4

+ (𝜆𝐵
𝑘)𝑇(𝑥𝑐𝐵 − 𝑧𝑘) +

𝜌

2
‖𝑥𝑐𝐵 − 𝑧𝑘‖2

2                      (6.11) 

              𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑃𝑔𝑖 − 𝑃𝑑𝑖 = 𝑃𝑖(𝑉, 𝜃) = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗))

𝑁

𝑗=1

   𝑖 = 6, . . ,14      (6.12) 

𝑄𝑔𝑖 − 𝑄𝑑𝑖 = 𝑄𝑖(𝑉, 𝜃) = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) 

𝑁

𝑗=1

 𝑖 = 6, . . ,14     (6.13) 

𝑃𝑔𝑖  < 𝑃𝑔𝑖 < 𝑃𝑔𝑖       &     𝑄𝑔𝑖  < 𝑄𝑔𝑖 < 𝑄𝑔𝑖                                                       𝑖 = 6,8          (6.14) 

𝑉𝑖  < 𝑉𝑖 < 𝑉𝑖        &        𝜃𝑖  < 𝜃𝑖 < 𝜃𝑖                         𝑖 = 4,5,6,7,8,9,10,11,12,13,14       (6.15) 

Problem B 

Problem A 
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In this step two local processors are assigned to sub-systems A and B.  

The decision variables of the ADMM can be updated by the formula which are presented in 

Chapter 5. For updating these multipliers, we have made a communication network between 

two processors to transmit their consensus local variables. Figure 6-2 demonstrates the local 

processors and their problems.  

 

Figure186-2: The Local Processors for IEEE 14-Bus Case Study 

 

For this case study, by running the presented problems on both processors and updating global 

variables in a MATLAB code, the active and reactive powers of generators connected to buses 

in partition A and B have been found. Table 6-1 represents the obtained results of the processor 

A and B.  

To verify the obtained results, this case study is solved by “runopf “command in MATPOWER. 

The results of MATPOWER are provided in Table 6-1.  

The fuel cost for MATPOWER and the proposed algorithm are 8081 $/h and 8080 $/h, 

respectively. The results of the proposed method are close to the MATPOWER results.  
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Table106-1: Obtained Results of Processor A for 14-bus IEEE Case 

Part A MATPOWER Distributed 

Optimization 

Part B MATPOWER Distributed 

Optimization P Gen1 (KW) 194,330 194,300 P Gen6 (kw) 0 0 

Q Gen1 (Kvar) 0 0 Q Gen6 (kvar) 11,550 11,490 

P Gen2 (KW) 36,720 36,710 P Gen8 (kw) 8,490 8,470 

Q Gen2 (Kvar) 23,690 23,520 Q Gen8 (kvar) 8,270 8,230 

P Gen3 (KW) 28,740 28,740    

Q Gen3 (Kvar) 24,130 24,270    
 

 

 

6.3. The Second Case Study (IEEE 30-Bus System) 

As the second case study, the 30-bus IEEE power system is considered. The system information 

of this case study has been extracted from MATPOWER [30].  

Figure 6-3 illustrates the partitioned single line diagram of the IEEE 30-bus power system. 

Area A includes buses 1 to 4 and 12 to 15 and generators which are connected to buses 1, 2, 

and 13.  

Area B includes buses 5 to11 and 16 to 30 and generators which are connected to buses 5, 8, 

and 11.  
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Figure196-3: Single Line Diagram of 30-bus IEEE Power System 

 

As Figure 6-3 shows, all buses which are located in the overlapping area that is indicated by 

the green dotted border are boundary buses. In this case study buses 2, 4, 5, 6, 12, 15, 16, and 

18 are boundary buses.  

Note that, the number of buses in consensus can be changed depending on splitting shape of 

the single line diagram. It is important to split the system to have minimum size of global 

variable vector.  
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For this case study as explained for the IEEE 14-bus case study, the local optimization vector 

of each area, the consensus local variables of each area and the global optimization variable 

can be formed.  

By splitting the problem into two areas, two sub-problems can be extracted that should be 

individually solved by one local processor.  

In order to review the sub-problems of each local processor, consider the following equations:  

 

min
𝑥𝐴𝑟𝑒𝑎

 ∑ 𝑓𝑝𝑖(𝑃𝑔𝑖)

𝑖=1,2

+ (𝜆𝐴𝑟𝑒𝑎
𝑘 )𝑇(𝑥𝑐𝐴𝑟𝑒𝑎 − 𝑧𝑘) +

𝜌

2
‖𝑥𝑐𝐴𝑟𝑒𝑎 − 𝑧𝑘‖2

2                                       (6.16) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

  

{
 
 

 
 𝑃𝑔𝑖 − 𝑃𝑑𝑖 = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗))

𝑁

𝑗=1

𝑄𝑔𝑖 − 𝑄𝑑𝑖 = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) 

𝑁

𝑗=1

                                            (6.17) 

 {
𝑃𝑔𝑖  < 𝑃𝑔𝑖 < 𝑃𝑔𝑖 

𝑄𝑔𝑖  < 𝑄𝑔𝑖 < 𝑄𝑔𝑖

                                                                                                                         (6.18) 

{
𝑉𝑖  < 𝑉𝑖 < 𝑉𝑖

𝜃𝑖  < 𝜃𝑖 < 𝜃𝑖   
                                                                                                                               (6.19) 

To summarize the equations of each sub-problem, Tables 6-2 and Table 6-3 are presented.  

For partition A, by substituting Area in Equation 6.16 with A, the main objective of sub-

problem A can be found. Table 6-2 represents the i index in Equations (6.17-19) which are 

constraints of the sub-problem A for the 30-bus IEEE power system. Similarly, Table 6-3 

demonstrates the 𝑖 index in Equations (6.17-19) which are constraints of the sub-problem B for 

the case study. 
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Table116-2: Information of Sub-problem A for 30-bus IEEE Power System 

In
d
ex

 

E
q
u
atio

n
 

N
u
m

b
er 

B
u
s 

N
u
m

b
er 

𝑖 6.17 1,2,3,4,12,13,14,15, 

𝑖 6.18 1,2,13 

𝑖 6.19 1,2,3,4,5,6,12,13,14,15,16,18 
 

 

 

Table126-3: Information of Sub-problem B for 30-bus IEEE Power System 

In
d
ex

 

E
q
u
atio

n
 

N
u
m

b
er 

B
u
s 

N
u
m

b
er 

𝑖 6.17 5,6,7,8,9,10,11,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 

𝑖 6.18 5,8,11 

𝑖 6.19 2,4,5,6,7,8,9,10,11,12,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 
 

 

The global section of this case study which updates the global optimization vector and 

Lagrangian multipliers vector is the same as the first case study. The following equations show 

the iterative formula for updating vectors:  

𝑧𝑘+1 =
𝑥𝑐𝐴

𝑘+1 + 𝑥𝑐𝐵
𝑘+1

2
                                                                                                                       (6.20) 

𝜆𝐴
𝑘+1 = 𝜆𝐴

𝑘 + 𝜌( 𝑥𝑐𝐴
𝑘+1 − 𝑧𝑘+1)                                                                                                       (6.21) 

𝜆𝐵
𝑘+1 = 𝜆𝐵

𝑘 + 𝜌( 𝑥𝑐𝐵
𝑘+1 − 𝑧𝑘+1)                                                                                                      (6.22) 

By running this case study on local processors, the obtained results of the processors which are 

assigned to partition A and B are presented in Table 6-4 and 6-5.  
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Table136-4: 30-bus IEEE Power System Results Obtained by Processor A 

 

Variable ADMM Variable ADMM 

P1 (MW) 178.28 Q1 (MVAR) -2.983 

P2 (MW) 48.301 Q2 (MVAR) 41.837 

P13 (MW) 12.514 Q13 (MVAR) 33.118 

V1 (p.u.) 1.06 𝜃1 (Deg) 0 

V2 (p.u.) 1.045 𝜃2 (Deg) -3.608 

V13 (p.u.) 1.071 𝜃13 (Deg) -10.409 

Load (MW) 292.81 cost ($/h) 802 

 

Table146-5: 30-bus IEEE Power System Results Obtained by Processor B 

 

Variable ADMM Variable ADMM 

P5 (MW) 20.924 Q5 (MVAR) 27.676 

P8 (MW) 21.061 Q8 (MVAR) 22.467 

P11 (MW) 11.736 Q11 (MVAR) 29.534 

V5 (p.u.) 1.01 𝜃5 (Deg) -10.301 

V8 (p.u.) 1.025 𝜃8 (Deg) -8.116 

V11 (p.u.) 1.082 𝜃11 (Deg) -8.783 

Load (MW) 292.81 cost ($/h) 802 

 

For implementing this case study, we should use two connected local computers but because 

of the hardware limitation, for this simulation, two different MATLAB programs; one for 

problem A as program of processor A and another one for problem B as the program of 

processor B; have been executed simultaneously on one computer.  

By combining information from Tables 6-4 and 6-5 the active power and reactive power of all 

generators of the 30-bus IEEE case study are available.  
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To show the performance of the ADMM in solving this case study, this system is run by 

MATPOWER. The results of MATPOWER and results obtained by the proposed technique 

have been presented in Table 6-6.  

Table156-6: Comparison between the Results of ADMM and MATPOWER 

Variable MATPOWER ADMM Variable MATPOWER ADMM 

P1 (MW) 176.28 178.28 Q1 

(MVAR) 

-12.02 -2.983 

P2 (MW) 48.79 48.301 Q2 

(MVAR) 

30.63 41.837 

P5 (MW) 21.48 20.924 Q5 

(MVAR) 

29.48 27.676 

P8 (MW) 22.07 21.061 Q8 

(MVAR) 

46.89 22.467 

P11 (MW) 12.19 11.736 Q11 

(MVAR) 

5.41 29.534 

P13 (MW) 12 12.514 Q13 

(MVAR) 

2.8 33.118 

V1 (p.u.) 1.06 1.06 𝜃1 (Deg) 0 0 

V2 (p.u.) 1.047 1.045 𝜃2 (Deg) -3.52 -3.608 

V5 (p.u.) 1.02 1.01 𝜃5 (Deg) -10.157 -10.301 

V8 (p.u.) 1.029 1.025 𝜃8 (Deg) -7.965 -8.116 

V11 (p.u.) 1.06 1.082 𝜃11 (Deg) -8.32 -8.783 

V13 (p.u.) 1.06 1.071 𝜃13 (Deg) -9.679 -10.409 

Load 

(MW) 

292.81 292.81 cost ($/h) 802.1 802 
 

 

As Table 6-6 shows, for 292MW load, the hourly cost of both ADMM and MATPOWER 

are approximately the same at 802 ($/h).  

 

6.4. The Third Case Study (IEEE 118-Bus System) 

Due to the main application of the proposed algorithm in solving large scale optimal power 

flow for power systems, the 118-bus IEEE power system [21] has been considered as third case 

study.  
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To understand better, the single line diagram of the 118-bus IEEE power system has been 

provided. Figure 6-4 illustrates the 118-bus IEEE power system. 

 

 
Figure206-4: Single Line Diagram of The 118-bus IEEE Power System 
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In order to solve the third case study by the proposed distributed optimization technique, the 

118-bus system has been split into 3 partitions which are named A, B, and C.  

 
Figure216-5: 3-partition 118-bus IEEE Power System 
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Figures 6-6, 6-7, and 6-8 demonstrate sub-systems A, B, and C, respectively.  

 

Figure226-6: The First Partition of 118-bus IEEE ( Sub-system A) 

 

 

 

Figure236-7:The Second Partition of 118-bus IEEE ( Sub-system B) 
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Figure246-8: The Third Partition of 118-bus IEEE ( Sub-system C) 

 

By splitting the whole power system into 3 partitions, 3 different consensus area are created.  

The overlapping area between partitions A and B is named 𝐶𝐴𝐵. This consensus area includes 

4 buses (3, 15, 19, 34). The voltage amplitude and the phase angle of these boundary buses in 

both partitions A and B should be the same. Thus the global vector between these two partitions 

has 8 elements.  

Similarly, the overlapping area between partitions A and C is named 𝐶𝐴𝐶. This area has 4 buses 

(22, 24, 30, 38). The global vector between these two partitions has 8 elements.  

The overlapping area between partitions B and C which is named 𝐶𝐵𝐶. This area includes 9 

buses (47, 49, 60, 61, 62, 64, 65, 66, 69). The voltage amplitude and the phase angle of these 

boundary buses in both partitions B and C should be the same. As a result, the global vector 

between these two partitions has 18 elements.  
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After forming the sub-problems for these three partitions, we have to consider three local 

processors. Figure 6-9 shows the diagram of the communication network between local 

processors.  

 

Figure256-9: Communication Network between Sub-problems of 118-bus IEEE 

 

Each processor should send its consensus local variable vector to the other processors through 

the communication platform.  

By running all 3 local processors in parallel, the results of the system can be found. While 

previous case studies have 2 processors, this case study has 3 processors and it makes the 

problem complicated. In this research because of the complexity of the third case study which 

comes from having 3 processors that should work in parallel, we did not apply the proposed 

technique on the case study.  For this case study, only the application of the presented technique 

to this problem has been described conceptually. 

  

6.5. Conclusion 

In this chapter, the proposed algorithm has been applied to the 14-bus IEEE power system and 

the 30-bus IEEE power system. For both cases the system was split into two partitions. Also, 
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we used MATPOWER to solve both cases and the results of MATPOWER were compared 

with the proposed technique.  

In the third case study, the 118-bus IEEE power system as a large-scale power system was 

considered. This case study was split into three partitions, and due to the complexity of the 

problem only the ADMM algorithm is described conceptually for this case study. 

This chapter shows that for all case studies the obtained results by the proposed algorithm are 

approximately the same as the MATPOWER results. Because of the nature of the proposed 

algorithm, it can be used for any size power system while other conventional algorithms only 

can apply to limited-size power systems.  
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7. Conclusion and Future Works 

Chapter 7 

Conclusion and Future 

Works 

 

7.1. Conclusion 

In this thesis, after providing a short review of the Optimal Power Flow and distributed 

optimization, the reformulated version of Alternating Direction Method of Multipliers as a 

basis of distributed optimization has been presented. The steps for applying the proposed 

algorithm to AC-OPF including splitting the whole power system into sub-systems, creating 

the OPF problem for each partition, providing the communication strategy between local 

processors and finally solving the main Optimal Power Flow problem in parallel have been 

discussed in detail.  

Also, the ADMM technique has been applied to DC-OPF along with the 3-partition typical 

power system and all the steps ranging from forming the sub-problems to integrating the 

answers to get the final results have been presented.  

In order to show the performance of the proposed algorithm, presented distributed optimization 

technique has been applied on some IEEE cases and the results are compared with the 
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conventional optimization technique. The comparison between the solution of the 

MATPOWER and the proposed algorithm shows that the output of both methods are 

approximately equal. Ability of solving bigger power system problems by distributed 

optimization technique is the main advantage of the proposed algorithm. By applying the 

provided algorithm in this study to any OPF problem, regardless of its size the OPF problem 

can be solved by some local processors in parallel. 

 

7.2. Contribution of the research 

To summarize, in this research the distributed optimization technique has been used for solving 

optimal power flow problem. The research contributions are listed as follows:  

 The concept of distributed optimization and the ADMM method for solving distributed 

optimization problems has been presented.  

 The reformulated version of Alternating Direction Method of Multipliers which is 

suitable for Optimal Power Flow has been provided.  

 In this research, two 6-bus and 3-bus power systems are considered as a typical model 

to show how the ADMM can be reformulated for AC and DC optimal power flow and 

determine the iterative steps of solving these systems.  

 ADMM based distributed optimization technique for AC-OPF by considering fuel cost 

as objective functions; active and reactive power balance as equality constraints; and 

boundary of active power, reactive power, bus voltages, and phase angle of bus voltages 

as inequality constraints have been presented along with the 6-bus 2-partition typical 

power system. 
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 ADMM based distributed optimization technique for DC-OPF by considering fuel cost 

as objective functions and active power balance as equality constraints has been 

discussed through a 3-bus 3-partition typical power system.  

 Two different communication strategies between local processors including using a 

central controller for communication between local processors and fully decentralized 

communication method have been explained.  

 The power system partitioning for 14-bus, 30-bus, 118-bus IEEE power systems has 

been presented.  

 The proposed approach has been applied on some IEEE cases and the obtained results 

are compared with conventional algorithms.  

7.3. Future works 

In this thesis, applying distributed optimization technique based on ADMM to AC and DC 

Optimal Power Flow has been effectively discussed. The following studies are possible future 

works related to this thesis topic: 

 Application of ADMM algorithm to other power system problems, such as Economic 

Dispatch and Unit Commitment. 

 Considering more objectives for OPF and apply distributed optimization to multi-

objective functions. 

 Apply ADMM to OPF by considering security constraints of the power network.  

 Applying the proposed algorithm to dynamic Optimal Power Flow.  

 Making the approach robust against communication networks failures. 

 Developing the algorithm to increase its robustness for the case that one of the local 

processors goes offline.  

 Developing the proposed algorithm for solving OPF problems with uncertainties. 
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 Reducing the size of the global variable in the consensus area. 

 Analyzing the effectiveness of the algorithm by changing the number or the size of the 

partitions.  

 Developing the communication strategies between local computers to make it smarter 

and more convenient.  

 Analyzing the performance of the algorithm by varying the Lagrangian multiplies and 

studying the effect of getting different initial values to Lagrangian coefficients. 

 Applying other optimization techniques for solving local sub-problems.  

 Reducing the computational time of the individual sub-systems.   
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