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ABSTRACT 

Petrophysical and geomechanical properties of the formation such as Young’s modulus, bulk 

modulus, shear modulus, Poisson’s ratio, and porosity provide characteristic description of the 

hydrocarbon reservoir. It is well-established that static geomechanical properties are good 

representatives of reservoir formations; however, they are non-continuous along the wellbore, 

expensive and determining these properties may lead to formation damage. Dynamic 

geomechanical formation properties from acoustic measurements offer a continuous and non-

destructive means to provide a characteristic description of the reservoir formation. In the absence 

of reliable acoustic measurements of the formation, such as sonic logs, the estimation of the 

dynamic geomechanical properties becomes challenging. Several techniques like empirical, 

analytical and intelligent systems have been used to approximate the property estimates. These 

techniques can also be used to approximate acoustic measurements thus enable dynamic estimation 

of geomechanical properties. This study intends to explore methodologies and models to 

dynamically estimate geomechanical properties in the absence of some or all acoustic 

measurements of the formation. The present work focused on developing empirical and intelligent 

systems like artificial neural networks (ANN), Gaussian processes (GP), and recurrent neural 

networks (RNN) to determine the dynamic geomechanical properties. The developed models serve 

as a cost-effective, reliable, efficient, and robust methods, offering dyanmic geomechanical 

analysis of the formation. This thesis has five main contributions: (a) a new data-driven empirical 

model of estimating static Young’s modulus from dynamic Young’s modulus, (b) a new data-

driven ANN model for sonic well log prediction, (c) a new data-driven GP model for shear wave 
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transit time prediction, (d) a new dynamic data-driven RNN model for sonic well log reproduction, 

and (e) an assessment on the ANN as a reliable sonic logging tool.  

Keywords: Sonic transit time, Well logs, Artificial neural networks, Rock formation properties, 

Recurrent neural networks and Gaussian processes 
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Chapter 1 Introduction 

 Background 

Energy deposits can be found in the earth’s crust as several energy sources (Buffett, 2016; 

Majorowicz et al., 2013; McMahonSean et al., 2016; Miller et al., 2016). These sources of energy 

range from thermal energy, geothermal energy, coal and nuclear, to hydrocarbons and other fossil 

fuel energy (Sagan, 1972; Stringer, 2008; Viswanathan, 2016; Vivoda, 2009). Natural gas and 

petroleum production are expected to grow more than 35% in the next 20 years (IEA International 

Energy Agency, 2016). Reservoir formations containing oil and gas are often located deep 

underground within the earth under high overburden pressure and temperatures (Santarelli et al., 

1989; Song et al., 2013). Investments and management in the exploration and production of 

resources from these formations require forward prediction of the formation properties and their 

alteration under naturally or artificially induced operations (den Brok et al., 1997). The flow of 

fluids through porous media formations such as oil and gas reservoirs alter the rock properties of 

the formation (Hernandez-Uribe et al., 2017; Holt et al., 2000; Nouri et al., 2005; Song et al., 2013; 

Younessi et al., 2013).  Conducting investigations directly on reservoir formations may not always 

be feasible due to their accessibility deep within the earth. For this reason, samples of the reservoir 

formation are cored, extracted and transported to laboratories to subject them to the desired 

investigations. Unconsolidated sandstones are very fragile and crumble easily during coring (Mese 

and Tutuncu, 1997). Even so, during the coring, extraction, and transportation of the formation 

cores, the cores are exposed to severe damage (Holt et al., 2000). The results of these tests such as 

triaxial compressional and cyclic loading test to determine geomechanical deformation properties 

are very dependent on the pressures under which the tests are conducted (Ma et al., 2013). 
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Laboratory tests for formation properties obtained from the stress-strain relationship are referred 

to as static formation properties. To determine the stress-strain relationship of the formation, the 

formation must be subjected to deformation that exceeds the elastic region of the formation (Fjær, 

2009; Harouaka et al., 1995; King and Jing, 2001; Ravazzoli et al., 2003). Such procedures are 

destructive and therefore costly; countless samples are destroyed and lost in the process.  

An alternative to the destructive static derived deformation properties is dynamically estimated 

geomechanical deformation properties. Dynamic formation properties are properties estimated 

from the sonic velocity or transit time measurements of the formation (Fjær, 2009). Static and 

dynamic estimations of geomechanical formation properties do not present the same values for a 

particular property in the same formation (Fjær, 2009; Holt et al., 2012; Mockovčiaková and 

Pandula, 2003; Svitek and Republic, 2014). The difference has been reported to be due to 

microcracks, porosity, void spaces and saturating fluid amongst others (Onalo et al., 2018b). 

Therefore, differences in static and dynamic derived formation properties are higher in 

unconsolidated and weaker formations.  

Dynamic tests are less expensive and non-destructive in comparison to static tests. They do not 

require the specimen to be destroyed during each test, therefore a new specimen is not always 

required. Fewer formation samples can be used to carry out several formation evaluation 

investigations. Dynamic formation geomechanical properties require accurate and reliable acoustic 

measurements for the precise evaluation of the formation, however, acoustic measurements are 

not available in all reservoir formation during exploration and development to perform these 

formation evaluations (Mullen et al., 2007; Schön, 2015). For example, in reservoir formations 

where sonic logging tools have obtained false acoustic measurements. This may be due to 

irregularities in the borehole like washout (Onalo et al., 2018a). In scenarios where the logging 
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tool is stuck or damaged in-hole, it becomes costly to pull out and re-run the logging tool due to 

the large depth range; thus, acoustic measurements may not be available throughout the entire well 

sections (Ramcharitar and Hosein, 2016). Moreover, in older offset wells which have been logged 

with older generation logging tools, not all array of acoustic measurements is obtainable (Paillet, 

1985; Pickett, 1963; Tixier et al., 1975). Typical borehole compensated logging tools measure the 

compressional wave transit time, but do not measure the shear wave transit time (Akhundi et al., 

2014; Nourafkan and Kadkhodaie-Ilkhchi, 2015). This limits the quality of elastic formation 

properties that can be estimated from the dataset, hence, a limitation in the formation evaluation 

quality. The critical question remains, how then can accurate and reliable data required to make 

these dynamic geomechanical properties for formation evaluation assessment be obtained? 

Intelligent systems have been used in many engineering industries to solve highly complex non-

linear problems due to their high precision and accuracy (Rajabi et al., 2010). Intelligent systems 

have succeeded where other empirical and analytical techniques have not been so successful 

(Ibrahim and Potter, 2004; Rajabi and Tingay, 2013; Rezaee et al., 2007; Sbiga and Potter, 2017; 

Zendehboudi et al., 2012). 

In this research study, we investigate and evaluate suitable techniques to provide reliable data for 

the estimation of the geomechanical dynamic properties for formation evaluation during field 

exploration and development. The aim of the research is to provide safe, efficient and reliable 

techniques for providing tools for proper field management and strategic planning from readily 

available field data, instantaneously. 
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 Research Questions 

The most reliable method of determining formation properties is through experimental analysis of 

samples acquired from reservoir formations. This method is expensive, discrete and static. 

Alternatively, dynamic estimation provides a safe, non-destructive means of continuous 

determination of the formation properties. This work is focused on dynamic estimation, attempting 

the following questions: 

• Can static petrophysical properties be estimated from dynamic petrophysical properties 

for a better description of the reservoir formation? 

• In the absence of compressional and shear acoustic measurements, how can 

geomechanical properties like sanding potential be estimated? 

• In offset wells where compressional acoustic measurements are available, what technique 

can be suggested to estimate the shear wave acoustic transit time to determine the 

formation petrophysical properties? 

• What other techniques can be recommended to reproduce and validate sonic well logs 

where real well logs are questionable? 

• Is ANN a reliable tool for sonic log prediction? 

 Motivation 

Lack of static, laboratory derived formation properties should not be a limiting factor in the 

determination of the properties of the formation.   Though this challenge is often surmounted by 

using acoustic measurements to estimate the dynamic formation properties, the absence of actual 

measured acoustic data should also not be an impediment.   The research aims to investigate 
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techniques of acquiring and validating sonic logs and their dynamically estimated formation 

properties through the use of empirically derived correlations and intelligent systems 

 Objectives of the Research 

Six research questions mentioned in section 1.2 led to formulate key objectives: 

• To establish that a static formation property (Young’s Modulus) can be estimated from its 

dynamic counterpart by developing a model to predict the static property from the dynamic 

property. 

• To develop a model to estimate compressional and shear wave transit time to determine 

sanding potential of a reservoir formation. 

• To develop a model to estimate shear wave transit time with available compressional wave 

time logs. 

• To improve predictability and reproduction of previous sonic log determination models. 

• To assess the suitability of these dynamic data driven techniques for industry use. 

 Novelty and contributions 

The novelty and the contributions are presented in chapter 2 and are summarized as follows: 

• A new data-driven model to estimate the static Young’s modulus of a formation from its 

dynamic Young’s modulus and a lithology dependent parameter. 

• A new data-driven methodology for determining the sanding potential of a formation using 

artificial neural network as an intelligent system. 



6 

 

• A new data-driven model to determine shear wave transit time in offset wells using a 

Gaussian process distribution system. 

• A new data-driven model to estimate the sequential sonic well log data in reservoir 

formations using a recurrent neural network as an improved intelligent system. 

• An assessment to determine the suitability of ANN as a reliable sonic logging tool. 

 Organization of thesis 

A manuscript style format has been adopted in preparing this thesis. The outline of the thesis and 

each chapter is presented as follows: 

Chapter 2 presents the concepts, contributions and innovations of the thesis for the determination 

of dynamic petrophysical and geomechanical properties for reservoir evaluation. 

Chapter 3 presents a review of relevant literature which has not been presented in the subsequent 

chapters. 

Chapter 4 presents an empirically derived model for estimating static Young's modulus from 

dynamic Young's modulus from laboratory data. This paper improves on previously established 

models by including a lithology dependent variable. This chapter has been published in the 

JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING 171 (2018): 394-402. 

HTTPS://DOI.ORG/10.1016/J.PETROL.2018.07.020 

Chapter 5 presents a model to determine the likelihood of a formation to sanding in the absence of 

compressional and shear wave transit time. The technique used is a back propagation artificial 

neural network. This chapter has been published in the JOURNAL OF PETROLEUM SCIENCE 

AND ENGINEERING 2018. HTTPS://DOI.ORG/10.1016/J.PETROL.2018.06.072 

https://doi.org/10.1016/j.petrol.2018.07.020
https://doi.org/10.1016/j.petrol.2018.06.072
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Chapter 6 presents a model estimating the formation shear wave transit time when compressional 

transit time and other well logs are available for the estimation of mechanical formation properties. 

The technique used is a Gaussian process regression. This chapter has been reviewed by the 

supervisory committee and has been submitted to the JOURNAL OF PETROLEUM 

EXPLORATION AND PRODUCTION TECHNOLOGY. 

Chapter 7 presents a dynamic model for estimating and reproducing sonic well logs. Actual well 

logs are presented in the study from the Norwegian continental shelf and the Niger Delta. This 

chapter has been published in the JOURNAL OF PETROLEUM SCIENCE AND 

ENGINEERING 2019. 

Chapter 8 presents an assesment of artificial neural network models as a reliable technique to 

provide sonic well logs where acoustic measurement data are missing or have been damaged. This 

chapter has been reviewed by the supervisory committee and has been submitted to the JOURNAL 

OF PETROLEUM SCIENCE. 

Chapter 9 presents the summary, conclusions and recommendations of this thesis. 

The appendixes present other outputs during the research period in collaboration with other 

students that have resulted in publications  

Appendix 1 presents a reservoir model to investigate Effect of Na+ and SO4
2 on sandstone and 

carbonates during low water salinity injection. This appendix has been published in FUEL 

JOURNAL 2018. FUEL 232, 362–373. HTTPS://DOI.ORG/10.1016/J.FUEL.2018.05.161” 

https://doi.org/10.1016/j.fuel.2018.05.161
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Appendix 2 presents a new empirical model for the estimation of shear wave velocity in 

siliciclastic rocks which can be applied to any geological region. This appendix has been submitted 

to the JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING 2018. 
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Chapter 2 Novelty and contribution 

The novelty and contribution of this research are in the area of safe, inexpensive and reliable 

dynamic formation evaluation for the exploration and development of reservoir formations. The 

highlights of these novelties and contributions are presented in Figure 2.1 and summarized below: 

 

Figure 2.1 Outline of research contribution and novelty 

• A novel and innovative model to estimate static Young’s modulus. The model is novel and 

outperforms previously established empirical models. The major step forward is the 

inclusion of a lithology-porosity dependent parameter which constrains the estimations of 

the novel model to improve the accuracy of the model. The significance of such a novel 

model is that it presents the industry with a model to describe a more reliable static 

formation property (static Young’s modulus). This allows for better characteristic 
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description of the formation for formation evaluation. This contribution is presented in 

chapter 4. 

• An innovative intelligent system sanding prediction model. The model is based on the 

dynamic determination of compressional and shear sonic transit time in the absence of 

reliable acoustic measurements. The model is data-driven by real well logs from the Niger 

Delta of West Africa. The novel model intelligent system is an artificial neural network 

which is the first model to combine gamma-ray, formation bulk density and shale volume 

predictively to determine the sonic logs. This contribution and significance of this model 

are that it provides real-time ability for engineers to make on the spot decision of the 

likelihood of the formation to sand thereby enabling the engineers to make quick, efficient 

and effective formation evaluation for field development. This contribution is presented in 

chapter 5. 

• An innovative shear sonic wave transit time model. The model is based on Gaussian 

process and is data driven by real well logs from a sandstone formation located in the Niger 

Delta. The significance of model is that in many offset wells which have not been logged 

by logging tools capable of acquiring shear wave transit time, the data can be completed to 

provide dynamic descriptions of the formation characteristic properties for formation 

evaluation. This contribution is presented in chapter 6. 

• An innovative dynamic sonic logging model. The model is based on an intelligent system 

known as Non-linear autoregressive with exogenous input recurrent neural network. The 

model is data driven by sequential log data from the Norwegian continental shelf and the 

Niger Delta. The model provides a means of validating and producing existing sonic logs 
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with the knowledge of either gamma-ray or neutron logs from the same formation. This 

contribution is presented in chapter 7. 

• In chapter 8, an innovative assessment of the reliability of artificial neural networks (ANN) 

as a reliable tool for providing sonic well logs where well log data is missing or damaged. 

The assessment provides a critical look into the limitations, pitfalls and shortcoming of 

ANN as a technique especially in its growing use in the oil and gas industry. The 

assessment also resents some challenges often encountered in the development of the ANN 

models. 

 

Figure 2.2  demonstrates  how each of the scientific contribution and task are integrated and 

developed to form a wholistic and a significant body of knowledge during this research.
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Figure 2.2  Tasks Integration and Scientific Contribution
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Abstract 

In the absence of static geomechanical formation properties or readily available cores to perform 

these destructive and expensive static tests, dynamic geomechanical estimations provide a reliable 

and inexpensive alternative. A review of properties, compressional and shear sonic velocities, is 

presented to evaluate how they are acquired, how their estimations can be improved and what 

alternatives exist peradventure the sonic data or tool is corrupted The relationship between the 

geomechanical formation properties and acoustic wave energy traveling through the earth has been 

used by scientists to explore and determine reservoir formation properties like formation lithology, 

fluid saturation, formation strength, porosity, and clay content. It is not always possible to acquire 

direct estimations from every area of the prospective formation; therefore, empirical estimations 

like those developed by Tosaya, Castagna, and Ebert-Phillip have been used to estimate the values 

of the ratio of the velocities.  This chapter reviews the evolution of the estimations of 

compressional velocity, shear velocity, and their ratio in different formations. It is observed that 

although the compressional and shear wave velocity are functions of porosity, their ratio is not a 

function according to previous equations. This may not be the case according to field data 

analyzed. The main aim of this chapter is to investigate previously established means of calculating 

compressional and shear wave velocity to provide a characteristic description of reservoir 

formations. In addition, brief descriptions of typical rock properties of interest in the oil and gas 

industry and well logs are presented to aid the reader understand the material in the subsequent 

chapters. 
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 Introduction 

Acoustic wave energy propagating through rock formations in the earth have proven to be very 

strong, and reliable methods for defining, and characterizing formation properties. Some of the 

properties which acoustic waves energy propagating through the formations have been used to 

identify include: lithology, density, fluid saturation, and dynamic elastic constants like bulk 

modulus and modulus of rigidity (Zoback, 2010). The characteristic properties of the wave energy 

that are used to estimate the formation rock properties tend to be one or more of the following: 

velocity, frequency, slowness, amplitude, attenuation, and quality factor (Khazanehdari and 

Mccann, 2005). This review lays emphasis on the acoustic wave energy velocities because this is 

the most commonly observed characteristic property used in such investigations. 

 Types of acoustic waves 

There are four main types of acoustic waves, two body waves namely: compressional and shear 

waves, surface waves, namely: Rayleigh and Stoneley waves (Pickett, 1963). In this article, we 

shall focus on body waves. 

Compressional waves (P-waves) are also known as primary or pressure waves. They travel along 

the body in the direction of the body’s particle motion. P-waves have the fastest arrival times from 

an acoustic energy source. In rock formations that are saturated with fluids, P-waves travels 

through both the solid and the liquid (Hamada, 2004).  

Shear waves (S-waves) are also known as secondary. They travel across the body in a direction 

that is perpendicular to the body’s particle of motion; therefore, S-waves are transverse in nature. 

S-waves are the second fastest waves; however, they do not travel through fluids in a saturated 

porous media (rock formation). They only travel in the solid because fluids do not shear. 
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Compressional waves and shear waves are of particular interest in the oil and gas industry for 

formation evaluation. Sonic tools which contain source pulse transmitters and signal receivers can 

be found in logging tool assemblies for wireline and “logging while drilling” (LWD) operations. 

The information from these logging tools can be interpreted at the surface real time to identify the 

porosity, lithology, density, overpressure, fluid saturation, and other formation rock properties 

(Mavko et al., 2003). The values of the acoustic wave energy response vary not only with the 

lithology, and fluid saturation/content but also with depth. This is to say that, within a homogenous 

rock formation, the acoustic wave energy transmitted is uniform. Changes in the pore geometry, 

mineralogy, confining pressure, porosity, clay content, pore pressure, consolidation, temperature, 

and cementation alter the response of the acoustic wave energy transmitted through a formation 

(Han et al., 1986).   

 Background 

Researchers over the years have proposed several empirical, and analytical equations/solutions to 

estimate, and predict the relationship between acoustic wave energy and other rock properties.  

Compressional wave attributes like the velocity are the most commonly used attribute of the wave 

energy transmitted through the formations because they flow through the solid matrix and 

formation fluid. Over time, researchers observed that the shear waves also responded considerably 

to changes in the formation (Castagna et al., 1985). This proved to be very useful to well log 

analysis in oil and gas exploration (Hamada et al., 2004).   

 Compressional Wave Velocity 

The velocity of the waves traveling parallel to the direction of particle motion in the formation is 

probably the most studied attribute of acoustic wave energy and was originally the only attribute 

of interest in the formation evaluation (Picket 1963). One of the earliest investigations of 
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compressional wave velocity is seen in the work by Wyllie in 1956. Sonic pulse measuring velocity 

technique (transmitter) was used to investigate the changes in compressional wave velocity due to 

changes in the formation fluid (brine, oil, gas), salinity, saturation, and temperature (Wyllie et al., 

1956). Wyllie was able to relate wave velocity with porosity through equation (3.1) and included 

the density in equation (3.2). 

1

𝑣
=

𝜑

𝑣𝑚𝑎
+

1 − 𝜑

𝑣𝑓𝑙
 (3.1) 

 

1 + 𝐺

𝑣2
= [

𝜑

𝑣𝑚𝑎
2𝜌𝑚𝑎

+
(1 + 𝐺)(1 − 𝜑)

𝑣𝑓𝑙
2𝜌𝑓𝑙

] ∗ (𝜑𝜌𝑚𝑎 + (1 − 𝜑)𝜌𝑓𝑙 

(3.2) 

 𝜑=porosity, 𝑣= velocity, 𝐺=shear modulus and 𝜌= density, while the subscripts ma and fl indicate 

attributes of the matrix and fluid respectively 

Wyllie’s investigations show that velocity increases as the porosity reduced with increasing depth. 

Velocity reduces in porous media as the saturation of the fluid reduces except in cases where the 

effluent is replaced with a denser fluid. Biot (1941) and Gassmann (1951) theory suggests that the 

elastic constants, particularly the Biot’s coefficient, bulk modulus and shear modulus also vary 

with fluids in the interconnected pores (effective porosity) (Biot, 1941; Gassmann, 1951). Birch 

in 1960 furthers the research by transmitting wave energy at pressures up to 12 Kilobars in 

metamorphic and igneous rocks. His research shows that velocity increases with increasing 

pressure, but he does not consider sedimentary rocks or the effects of porosity (Birch, 1960). Birch 

later demonstrated that at low pressures, velocity is a function of porosity, composition, and 

anisotropy, but at higher pressures, it is more of a function of density and atomic weight. In 

homogenous or isotropic formations with the same atomic weight, velocity has a linear relationship 
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with porosity (Birch, 1961). Most elastic constants can be estimated if at least two of the elastic 

constast of the formation are known. Birch suggested that these estimations were only valid if the 

formations test were performed at the same pressure and temperature. However, above 10 kilobars 

and 6000C, the effects of temperature and pressure can be neglected. Porosity across formations 

while drilling is not constant; Raymer, Hunt, & Gardner (1980) described this change by the “lack 

of compaction factor” (Cp) which is related to the apparent porosity term used in Wyllie's equation 

by equation (3.3): 

𝜑𝑐 =
𝜑

𝐶𝑝
 (3.3) 

Raymer, Hunt, & Gardner (1980) proposed different equations to characterize different ranges of 

porosity as follows: 

Less than 37% porosity 

𝑣𝑝 = (1 − 𝜑)2𝑣𝑚𝑎 + 𝜑𝑣𝑓𝑙 (3.4) 

∆𝑡𝑝<37 = 106/𝑣𝑝 (3.5) 

Between 37% - 47% porosity 

∆𝑡𝑝37−47 =
0.47 − 𝜑

0.1
∆𝑡𝑝<37 +

𝜑 − 0.37

0.1
∆𝑡𝑝>47 

(3.6) 

Greater than 47% porosity 

∆𝑡𝑝>47 = √
𝜑𝜌∆𝑡𝑓𝑙

2

𝜌𝑓𝑙
+

(1 − 𝜑)𝜌∆𝑡𝑚𝑎
2

𝜌𝑚𝑎
 

(3.7) 

∆𝑡= travel time 
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In 1982, Tosaya investigated the dependence of compressional waves on clay content. Clay content 

is observed to have a lower effect on the compressional velocity than porosity (Tosaya and Nur, 

1982). Tosaya (1982) proposes the following equation: 

𝑣𝑝 = −2.4𝐶 − 8.6𝜑 + 5.8 (3.8) 

𝐶= clay content  

Equation (3.8) illustrates a linear relationship between compressional velocity and clay content in 

consolidated formations, but the compressional-velocity of unconsolidated sandstone formation 

deviates from this trend and are lower than predicted. Beside the porosity of the formation, the 

clay microporosity increases the void fillable by formation fluids to further reduce the velocity 

(Kowallis et al., 1984). Kowallis, Jones and Wang (1984) proposed equation (3.9) for Dry West 

Delta Sandstone: 

𝑣𝑝 = −5.7𝐶 − 9.2𝜑 + 5.6 (3.9) 

 Shear Wave Velocity 

In 1943, Birch (1960) refers to earlier research he performed on S-waves at elevated temperatures 

to buttress the fact that secondary waves velocity has been around for a long time. Pickett’s work 

with shear waves may very well be one of the cornerstone discoveries in the use of shear waves in 

formation evaluation. Pickett observed that previous research only focused on the first arrival time 

of the wave energy, but they neglected they secondary and following wave arrivals. He believed 

that these could be categorized in such a way that a trend could be established. This led to the 

famous porosity estimation from sonic well logs based on the compressional waves and the ability 

to identify possible lithological intervals along a well. They were also able to observe that fractures 
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in the formations affected the travel time of the wave energy. This resulted in a reduction in the 

velocity and signal amplitude which was greater in the shear-wave than in the compressional-

waves, again proving that the potential of shear waves. Though he did not provide an empirical 

correlation, the graphs, and charts from his laboratory experiments were utilized as benchmarks 

for slope and trends in clean sandstone, dolomite, limestone and limy sandstone (Pickett, 1963). 

The fluid considered in Pickett 1963 is the borehole fluid; he did not consider the formation fluid 

content or saturation. Nur and Simmons 1969 also validated Birch’s work in their investigations, 

which showed that the velocities are higher at higher pressures. Laboratory investigation of seismic 

velocity under ambient conditions; therefore, underestimate the velocities found in reservoir 

formations. In saturated formations, the reduction in the primary velocity is less and assumed to 

be negligible in shear-velocity. Pickett’s work proves otherwise; the effect of saturating the pores 

with fluid can be observed more closely in the amplitude of the arrival wave. A formation can have 

matrix pore porosity and porosity of the cracks or fractures. It was observed that the velocity of 

saturated granite was higher in cores with cracks than those with pores (Nur and Simmons, 1969). 

It would be logical to conclude that the matrix porosity is part of the grain structure of the 

formation, thus, their bulk modulus is much higher than the formation. A similar observation 

should be observed when confining pressure is increased. The elastic constants are observed to be 

similar in dry formation and saturated formations and can be expressed as functions of the 

velocities (Nur and Simmons, 1969). 
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𝐾 = (𝑣𝑝
2 −

4

3
𝑣𝑠

2)𝜌 (3.10) 

 

𝐺 = 𝑣𝑠
2𝜌  

(3.11) 

𝐾= bulk modulus,  𝐺= shear modulus, 𝑣𝑝= compressional velocity and 𝑣𝑠=shear velocity 

In 1976, Toksoz, Cheng, and Timur narrowed the effects of pore shape and sizes in the formation 

in sandstone and limestone for brine, water, oil, kerosene, gas and air; their results validate Nur 

and Simmons conclusions. In addition. They observed that gas velocities were lower than brine 

velocities round the pores; however, the amplitude or frequency of the response was not 

considered. At temperatures before freezing point, the velocities increased significantly to close 

the pores (Toksöz et al., 1976). Wang’s investigation demonstrates the reverse; increase in 

temperature reduces the velocity (Wang and Nur, 1986). The compression reflection coefficient 

was found to be: 

𝑅 =
𝑣𝑝𝑓𝑙𝜌𝑓𝑙 − 𝑣𝑝𝑚𝑎𝜌𝑚𝑎 

𝑣𝑝𝑓𝑙𝜌𝑓𝑙 + 𝑣𝑝𝑚𝑎𝜌𝑚𝑎 
 (3.12) 

  

According to Gregory (1977), the Faust equation can be used to estimate velocity as a function of 

the age of the rock formation: 

𝑣 = 𝐽 √(𝑧𝑇)
6

  (3.13) 

𝐽= 125.3, 𝑧= depth (m) and 𝑇 = age (years) 
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 Gregory (1977) expresses Geertsma (1961) compressional-velocity as a function of velocity at a 

frequency of zero and infinity in equations (3.14) and (3.15): 

𝑣𝑝 = {
1

𝜌𝑏
[(

𝛽

𝑐𝑠
+

4

3
𝐺𝑏) +

(1 − 𝛽)2

(1 − 𝜑 − 𝛽)𝑐𝑠 + 𝜑𝑐𝑓
]}

0.5

 (3.14) 

𝑣𝑝 = {(
𝛽

𝑐𝑠
+

4

3
𝐺𝑏) + [

𝜑𝜌𝑏
𝐾𝜌𝑓

⁄ + (1 − 𝛽)(1 − 𝛽 −
2𝜑
𝑘

)

(1 − 𝜑 − 𝛽)𝑐𝑠 + 𝜑𝑐𝑓
] ∗

1

𝜌𝑏(1 −
𝜌𝑓

𝜌𝑏

𝜑
𝑘

)
}

0.5

 (3.15) 

𝑐𝑠, 𝑐𝑏, 𝑐𝑓= matrix, bulk, fluid compressibility,  𝛽 =
𝑐𝑠

𝑐𝑏
 and 𝐺𝑏=dry shear modulus 

Similar to porosity, clay content in a formation affects the velocity, it reduces the velocity in 

seismic waves (Minear, 1982). Minear (1982) observed that the reduction in velocity occurred 

more in laminated and structural clay, but the reduction was negligible in dispersed clay.  Perhaps, 

this is due to the mobility of the dispersed clay in the formation. It is likely that the dispersed clay 

is randomly oriented (on average) and opposed to laminated clay that is strongly oriented.  The 

orientation results in an expression of the anisotropy of the clay minerals. The dispersed clay does 

not adhere to the pore surface and are free to flow is the pore fluid. Tosaya (1982) updated equation 

(3.8), and includes shear velocity  (Tosaya, 1982) in equation (3.16) and (3.17): 

𝑣𝑝 = −2.4𝐶 − 8.6𝜑 + 5.8 (3.16) 

𝑣𝑠 = −2.1𝐶 − 6.3𝜑 + 3.7 (3.17) 

Domenico modifies equation (3.1) to include two new constants; A and B: 
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1

𝑣
= 𝐴 + 𝐵𝜑 (3.18) 

𝐴 =
1

𝑣𝑚𝑎
 (3.19) 

𝐵 =
1

𝑣𝑓𝑙
−

1

𝑣𝑚𝑎
 

(3.20) 

A is the inverse of the matrix velocity, while B is the change of the velocity with porosity. His 

work notes that the rate of change with porosity is greater in shear wave velocity (Domenico, 

1984). Similar to the Tosaya, Castagna (1985) proposed equation (3.21) and (3.22) based 

laboratory investigation on sandstones (Castagna et al., 1985): 

𝑣𝑝 = −2.21𝐶 − 9.4𝜑 + 5.81 (3.21) 

𝑣𝑠 = −2.04𝐶 − 7.07𝜑 + 3.89 (3.22) 

 Han, Nur, & Morgan (1986) conducted their investigation at 40 Mpa, and 1 Mpa pore pressure, 

and proposed equation for shaley sandstones: 

𝑣𝑝 = −2.18𝐶 − 6.93𝜑 + 5.59 (3.23) 

𝑣𝑠 = −1.89𝐶 − 4.91𝜑 + 3.52 (3.24) 

In geomechanics, effective pressure(𝑃𝑒) is the difference between the pore pressure and the total 

overburden pressure when the Biot coefficient is assumed to be unity (Zoback, 2010). Velocity 

increases as the effective pressure is increases. Eberhart‐Phillips, Han, & Zoback (1989) described 

this relationship in equation (3.25) and (3.26): 
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𝑣𝑝 = −1.73√𝐶 − 6.94𝜑 + 5.77 + 0.446(𝑃𝑒 − 𝑒−16.7𝑃𝑒) (3.25) 

𝑣𝑠 = −1.57√𝐶 − 4.94𝜑 + 3.70 + 0.361(𝑃𝑒 − 𝑒−16.7𝑃𝑒) (3.26) 

More recently, Ramcharitar & Hosein (2016) proposed the following empirical model which 

included the density of the formation: 

∆𝑡𝑝 = 19𝐶 − 0.0066𝜑 + 139𝑍 − 18𝜌 + 153 (3.27) 

∆𝑡𝑠 = 33𝐶 − 0.0052𝜑 + 159𝑍 + 205𝜌 + 2.89∆𝑡𝑝 (3.28) 

 Compression to Shear Wave Ratio 

The ratio of the velocities can be an effective tool in determining changes in the reservoir 

formations. The ratio of compressional: shear-velocity is less than 2 in consolidated sands but 

greater in some unconsolidated sands. During the production of reservoir fluids, the reservoir 

pressure shifts below the bubble point over time; velocity ratio is observed to reduce, indicating a 

liberation of gas into the formation (gas saturation is increased) (Gregory, 1977). Tatham (1982) 

suggest that this ratio is constant in isotropic formations; therefore, any variation would indicate a 

change in lithology. Furthermore, cracks in the formation are observed to cause deviations in these 

values, indicating that the ratio can be used to indicates the presence of faults, and cracks in a 

formation.  

(
𝑣𝑝

𝑣𝑠
)

2

=
2(1 − 𝜗)

1 − 2𝜗
=

𝑘

𝜗
+

4

3
 (3.29) 

𝜗= Poisson’s ratio 
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Velocity ratios in some formations as observed include Limestone – 1.9, Dolomite – 1.8, and 

Sandstones – 1.6 – 1.75. The equation (3.29) results in a ratio of 1.732 when 𝜗 is 0.25 for a typical 

sandstone specimen (Tatham, 1982). Similarly, Poisson’s ratio in these formations include: 

Limestone – 0.29-0.33, Dolomite – 0.27-0.29, and Sandstone – 0.17- 0.26 (Domenico, 1984). 

Investigations by Castagna (1985) show that this ratio decreases with increasing compressional-

velocity. The relationship between compressional and shear velocity in mudrocks follows a linear 

trend, which is given by equation (3.30) 

𝑣𝑝 = 1.16𝑣𝑠 + 1.36 (3.30) 

But for clean sandstone equation (3.31) was proposed, while for a sandstone containing clay, 

equation (3.32) was proposed: 

𝑣𝑝

𝑣𝑠
= 1.33 +

0.63

3.89 − 7.07𝜑
 (3.31) 

𝑣𝑝

𝑣𝑠
= 1.08 +

1.63

3.89 − 2.04𝐶
 

(3.32) 

We observe that the porosity term is ignored in equation (3.32); this is because Castagna assumed 

that shaley sandstones had no porosity. It was also observed that the ratio reduced with saturation 

(Castagna et al., 1985). Han, Nur, & Morgan (1986) suggested that the relationship could be 

represented by equation (3.33) in dry formations. 
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𝑣𝑝

𝑣𝑠
= 0.43𝐶 + 0.56𝜑 + 1.55 (3.33) 

𝑣𝑝 = 1.26𝑣𝑠 + 1.07 (3.34) 

Nonetheless, this did not explain the effect of saturating the formation with fluids; therefore, Han 

proposed a new function ‘D’ that represented the difference between saturated and dry sample 

formations. The new function is expressed as a function of porosity and clay content: 

𝐷 = (
𝑣𝑝

𝑣𝑠
)

𝑠

− (
𝑣𝑝

𝑣𝑠
)

𝑑

= 0.47𝐶 + 0.36𝜑 + 0.018 (3.35) 

Fluid saturation type can lead to a deviation in the equation, thus, It is assumed that brine was the 

saturated fluid (Han et al., 1986). Saturation fluid type (brine, light hydrocarbon, heavy 

hydrocarbon, paraffin and wax) is a very important factor in formations where the temperature and 

pressure vary especially with production, injection or enhanced oil recovery (EOR) operations. 

Velocity reduces by up to 50% in heavy hydrocarbons with an increase in temperature; in contrast, 

this reduction is negligible in gas-saturated formations (Wang and Nur, 1986).  It can be observed 

by equation (3.25) and (3.26) that as the effective pressure is increased, the ratio is reduced. This 

indicates a greater effect on shear wave energy by the effective pressure in comparison to 

compressional wave energy. Miller and Stewart (1991) proposed that in the absence of density 

logs, sonic velocity in sandstones and limestone can be estimated through empirical correlations 

as seen in the proposed equation for sandstones: 
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𝑣𝑝 = 1.25𝑣𝑠 + 1076 (3.36) 

 Khazanehdari & Mccann (2005) investigates low shale sandstones in the North Sea with pressures 

up to 40 Mpa in several fluids. They described the ratio in brine for one of the wells by the 

following equation: 

𝑣𝑝 = 1.598𝑣𝑠 + 69.35 (3.37) 

Similar models were developed by William (1990), Vernik et al. (2002), Xu and white (1995); 

however, the porosity was found to not be a function of the velocity ratio (Mavko et al., 2003).  

The ratio of the squares of the velocities is seen to have a linear slope which may be even more 

sensitive than the velocity ratio to formation lithology and saturating fluid. Krief, Garat, 

Stellingwerf, & Ventre (1990) describes the relationship as follows: 

𝑣𝑝
2 − 𝑣𝑝𝑓𝑙

2

𝑣𝑠
2

=
𝑣𝑝𝑚𝑎

2 − 𝑣𝑝𝑓𝑙
2

𝑣𝑠𝑚𝑎
2

 (3.38) 
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 Rock Formation Properties 

 Porosity 

Porosity is a critical parameter to be considered when evaluating reservoir formations with pore 

volume to store the reservoir fluids and more so, conduct reservoir representative investigations 

(Ahmed, 2006; Fjaer, 2008). The most common method of estimating the porosity of a specimen 

in the laboratory is derived from its definition; the ratio of pore volume to the bulk volume of the 

sample (Ahmed et al., 2013; Civan, 2015; Davis et al., 2002; Johansen, 2008). For regular and 

even shaped samples, the bulk volume can be estimated using standard volumetric relationships; 

however, for irregular and uneven samples, Archimedes principle can be adopted (Huerta et al., 

2005; Loverude et al., 2003). This is achieved by immersing the sample in a fluid of known density 

and volume; the volume of the fluid displaced after the immersion of the sample is equivalent to 

the volume of the sample (Heron et al., 2003; Loverude et al., 2003). The use of sophisticated 

equipment like mercury porosimeter has been utilized in the estimation of the void spaces and pore 

distribution of a sample; however, the size of the part of the investigated sample is limited (Chatzis 

and Dullien, 1981; Moscou and Lub, 1981; Turturro et al., 2017). The result of the mercury 

porosimeter can be applied to the rest of the sample in cases where the sample is homogeneous 

(Kuila et al., 2014). However, in samples where the formation is largely heterogeneous, other 

techniques are applied (Okolo et al., 2015). A common method of estimating the pore volume in 

the laboratory is by using Archimedes theory; the dry mass of a porous sample can be eliminated 

from the wet mass of the sample saturated in a fluid of known density (Heron et al., 2003; Huerta 

et al., 2005). The relationship between density and mass is then applied to estimate the volume of 

the connected pores in the formation.  The methodology used for estimating density and porosity 

in the laboratory is presented below. 
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𝜌𝑢𝑛𝑠𝑎𝑡 =
𝑀𝑢𝑛𝑠𝑎𝑡−𝑎𝑖𝑟

𝑀𝑢𝑛𝑠𝑎𝑡−𝑎𝑖𝑟 − 𝑀𝑢𝑛𝑠𝑎𝑡−𝑤𝑎𝑡𝑒𝑟
 (3.39) 

𝜌𝑠𝑎𝑡 =
𝑀𝑠𝑎𝑡−𝑎𝑖𝑟

𝑀𝑠𝑎𝑡−𝑎𝑖𝑟 − 𝑀𝑠𝑎𝑡−𝑤𝑎𝑡𝑒𝑟
 (3.40) 

𝑀𝑝 = 𝑀𝑠𝑎𝑡−𝑎𝑖𝑟 − 𝑀𝑢𝑛𝑠𝑎𝑡−𝑎𝑖𝑟 (3.41) 

𝑉𝑝 =
𝑀𝑝

𝜌𝑤
 (3.42) 

𝑀𝐵 = 𝑀𝑠𝑎𝑡−𝑎𝑖𝑟 − 𝑀𝑢𝑛𝑠𝑎𝑡−𝑤𝑎𝑡𝑒𝑟 (3.43) 

𝑉𝐵 =
𝑀𝐵

𝜌𝑤
 (3.44) 

𝜑 =
𝑉𝑝

𝑉𝐵
 

(3.45) 

Porosity can also be estimated from grain size distribution and the packing arrangement of the 

grains in the sample (Dick et al., 2017). Dynamic porosity can be estimated from sonic logs, 

gamma-ray logs and neutron density logs for larger samples such as wells during exploration; 

nonetheless, along with neutron magnetic resonance, they can be used in the laboratory when 

appropriately sized (Goldberg and Gurevich, 1998; Gruber et al., 2011; Hernández et al., 2000; 

Ouchiyama and Tanaka, 1984; Ouchlyama and Tanaka, 1986; Ramamoorthy et al., 1997).  

 Permeability and Fluid Flow 

The pores in reservoir formations and specimen serve as storehouses for fluids such as water and 

hydrocarbon in petroleum reservoirs (Dake, 2008, 1996). In a petroleum reservoir, apart from the 

total amount of recoverable oil, the quality of the field is often described in terms of the 

permeability and flow rate (Tiab and Donaldson, 2015). The pressure in petroleum reservoirs 



36 

 

decreases as the reservoir is being produced due to the pressure difference between the reservoir 

and the surface, thereby forcing the Fluid flow to the surface (Rivière, 2008). Investigation of the 

in-situ response of the fluid in reservoir formations can be observed from the permeability of the 

formation (Jackson et al., 1989). Permeability is dependent on the amount of stress applied to the 

specimen, the higher the applied stress, the lower the permeability value. This is due to the closure 

of the pores and fractures to reduce the overall accessible flow path (Han and Dusseault, 2003). 

The effective porosity of specimen determines the flow path and channels; this can be different 

depending on the flow conditions simulated in the laboratory (Tiab and Donaldson, 2015). 

Idealistic assumptions of linear and radial flow are the most commonly simulated scenarios in the 

laboratory; yet, this is not obtainable realistically due to the irregularity of the flow regimes and 

boundaries (Economides and Boney, 2000). The most popular method for describing fluid flow in 

porous media formation is by Darcy’s law (Ahmed, 2006; Dake, 2008). For a specimen with a 

fluid flowing parallel in a single direction across a constant cross-sectional area, Darcy’s linear 

flow equation is as follows (Ahmed and McKinney, 2005): 

𝑘 = −
𝑄 ∗ 𝜇 ∗ 𝐿

𝐴 ∗ ∆𝑃
 

(3.46) 

For a specimen with fluid flowing into the center in a circular pattern, Darcy’s radial flow is as 

follows (Ahmed and McKinney, 2005): 

𝑘 =
𝑄 ∗ 𝜇 ∗ ln (

𝑟𝑒
𝑟𝑤

⁄ )

2𝜋ℎ ∗ ∆𝑃
 

(3.47) 

Darcy’s law is only valid for steady state, the laminar viscous flow of incompressible fluids in 

homogenous specimen because if any of the above listed conditions are not valid, then the results 

tend to be erroneous (Ahmed, 2006; Ahmed and McKinney, 2005). For turbulent flow regimes 
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and multiphase fluids modifications to Darcy’s equation, more so, for complex flow systems, 

Navier-stokes equations are applied (Andrade et al., 1997). Although these complex flow systems 

exist in nature, they are challenging to simulate under laboratory conditions; thus, they are 

simulated with computerized flow models to solve the complex coupled flow equations 

(BuKhamseen and Ertekin, 2017; Chin et al., 2002). The models do not account for fractures in 

the specimen; fracture as little as 0.02 µm can drastically alter the flow path, porosity, and 

permeability of the reservoir specimen. In such cases, the cubic law is applied (Witherspoon et al., 

1980). 

𝑄/∆ℎ = 𝐶(2𝑏)3 (3.48) 

𝐶 is a constant that depends on the geometry and fluid properties. The permeability of gas in the 

reservoir tends to be higher than the permeability of liquids in the reservoir by a factor close to 2 

due to the Klingenberg effect (Wang et al., 2017). This is should be taken into consideration for 

investigations of gas flow in the reservoir samples. Although the relationship between permeability 

and porosity is not very clear, it is understood that porosity and permeability are directly 

proportional (Ramandi et al., 2016). Kozeny correlation describes this relationship in a reservoir 

by combining Poiseuille’s equation (3.49) with Darcy’s equation (3.46) as follows: 

𝑄 = (
𝑛𝜋𝑟4

8𝜇
)

∆𝑃

𝐿
 

(3.49) 

𝑘 = (
𝑛𝜋𝑟4

8𝐴
) 

(3.50) 

𝑘 =
𝜑𝑟2

8
 

(3.51) 
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The flow pathways are often straight and parallel as assumed in many models; a parameter known 

as tortuosity accounts helps minimize the effect of the irregular flow paths (Ozgumus et al., 2014). 

Tortuosity is the ratio of actual flow pathway length to the ideal flow pathway length assuming the 

specimen was absent. Tortuosity can be estimated from the Kozeny equation as follows: 

𝜏 =
𝜑𝑑𝑡

2

32𝑘
 

(3.52) 

𝑑𝑡 - channel diameter, 𝑘 – permeability, 𝜏- tortuosity 

Carman modifies this equation by introducing the Kozeny constant which takes into account the 

effects of the tortuosity to produce to Kozeny-Carman permeability equation (3.53) (Ozgumus et 

al., 2014). 

𝑘 =
𝜑𝑑ℎ

2

16𝑘𝑘
 

(3.53) 

𝑑ℎ =
4𝜑

𝐴0(1 − 𝜑)
 

(3.54) 

𝑑ℎ - pore hydraulic diameter, 𝐴0 - fluid-solid interfacial area to the solid volume ratio, 𝑘𝑘 - Kozeny 

constant. 

For investigations of samples of equal porosity of about 36%, the permeability was different by 

factors of up to 1000 due to the presence of clay (Ozgumus et al., 2014). Other factors that affect 

the permeability of the reservoir specimen exist and should be noted or made constant to ensure 

the quality of the laboratory investigations is not compromised. 
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 Rock strength 

The force applied per unit area of a specimen is referred to as the stress applied to the specimen; 

the stress value at which the specimen fails is referred to as the strength of the specimen (Fjaer, 

2008). The specimen can fail in compression or tension. When a force or load is applied to a 

specimen, the specimen will deform elastically before the peak failure stress is reached (Zoback, 

2010). Any deformation within this region is largely reversible with the exception of any region 

beyond the yield point (Bjorlykke, 2010). Unconfined compressive strength (UCS) direct test, 

confined compressive strength (CCS) direct test and Brazilian indirect tests are the most common 

laboratory test performed to determine the resistance of a specimen to deformation. Coates (1964) 

classifies the unconfined compressive strength of rocks less than 35 MPa as weak rocks, rocks 

between 35 MPa and 170 MPa as strong rocks and rocks grater than 170 MPa as very strong rocks 

(Coates, 1964). In North America, Rocks with less than 50 MPa strength can be considered as low 

strength rocks, and less than 25 MPa as low-low strength rocks (Deere and Miller, 1966). The 

shape of the sample largely affects the strength of the material during testing (Thuro et al., 2001). 

For this reason, a lack of consistency can be observed when conducting strength tests of the same 

specimen (Hawkins, 1998); therefore, it is recommended as per the American Society for Testing 

and Materials (ASTM) standard that the length should be at least two times more than the diameter 

for compressive test whereas the ratio of 1:1 is acceptable for Brazilian test (ASTM, 2010, 2008; 

ASTM C39, 2016; Astm D3148-02, 2002).   

 Sonic wave velocities 

Sonic wave velocities of the specimen are used to obtain dynamic rock mechanical properties of 

the specimen such as elastic modulus, shear modulus, density, porosity, and strength (Ding et al., 

2014; Fjær, 2009a; Geyer and Myung, 1970; Horsrud, 2001; I. Myung and P. Helander, 1972; 
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Lacy, 1997; Takahashi and Tanaka, 2010; Vasconcelos et al., 2008). In contrast to other rock tests 

such as UCS for strength and mercury porosimeter for porosity, sonic wave velocity measurements 

are non-destructive; hence, tests are carried out without destroying the specimen (Najibi et al., 

2015; Yale and Swami, 2017). In the field, sonic well logs are generated using monopole and 

dipole sonic logs with multiple transmitters and receivers to measure the transit time of one feet 

interval into the formation; Whereas in the laboratory, this is achieved by laboratory transmitters 

which send out sonic pulses through the specimen (Fjær, 2009a; Morcote et al., 2010; Pickett, 

1963; Vasconcelos et al., 2008); It is relatively simple and economical (Vasconcelos et al., 2008).  

Compressional (primary) wave velocity and shear (secondary) wave velocity are the most 

frequently measured sonic wave velocities; most dynamic rock mechanical estimations employ 

one or both of the velocities in their correlations (Ba, 2015; Chang et al., 2006; Eberhart‐Phillips 

et al., 1989; Fabricius et al., 2007; Ramcharitar and Hosein, 2016; Wang et al., 2001; Zoback, 

2010).  For example, some empirical estimations of UCS for sandstone and shale in the Gulf of 

Mexico (GOM) is presented as follows (Chang et al., 2006; Zoback, 2010): 

𝐺𝑂𝑀 𝑆𝑎𝑛𝑑𝑠𝑡𝑜𝑛𝑒: 𝑈𝐶𝑆 = 3.87exp (1.14 ∗ 10−10𝜌𝑣𝑝
2) (3.55) 

𝑁𝑜𝑟𝑡ℎ 𝑆𝑒𝑎 𝑆ℎ𝑎𝑙𝑒: 𝑈𝐶𝑆 = 7.97𝐸0.91 (3.56) 

𝑆ℎ𝑎𝑙𝑒: 𝑈𝐶𝑆 = 7.22𝐸0.712 (3.57) 

The elastic constants are estimated from the acoustic wave velocity and matrix bulk density (Tixier 

et al., 1975).  

𝐸 =
𝑣𝑠

2𝜌(3𝑣𝑝
2 − 4𝑣𝑠

2)

(𝑣𝑝
2 − 𝑣𝑠

2)
 

(3.58) 
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𝐺 = 𝑣𝑠
2𝜌 (3.59) 

𝜗 =
(𝑣𝑝

2 − 2𝑣𝑠
2)

2(𝑣𝑝
2 − 𝑣𝑠

2)
  

(3.60) 

𝜆 = 𝜌(𝑣𝑝
2 − 2𝑣𝑠

2) (3.61) 

𝐾 =
𝜌(3𝑣𝑝

2 − 4𝑣𝑠
2)

3
 

(3.62) 

For sandstone and shale, compressional velocity less than 3000 m/s is a considered a weak poorly 

consolidated sand (Fjær, 2009b; Tronvoll et al., 1997). Local calibration of empirical estimations 

of rock strength from sonic wave velocities is recommended due to the insufficiency of the 

empirical relations to accurately predict all formation from different locations (Wang et al., 2001). 

The general trend of for compressional velocity to increase with an increase in strength and a 

reduction in porosity; however, the relationship with permeability is unclear. In addition, the 

presence of cracks, faults, and fluid saturation affect the measured values of the sonic wave 

velocity; therefore, experiments should be designed to be consistent in order to achieve accurate 

values (ASTM, 2005; Vasconcelos et al., 2008). 

 Formation Density  

Formation bulk density is very essential in determining the mechanical rock properties of a 

formation. In the laboratory, with small sized cores, bulk density may be estimated by a simple 

mass to volume ratio calculation of the core sample. However, in the field during hydrocarbon 

exploration, this is not feasible. Several logs are measured while drilling; a typical set of logs while 

drilling includes formation density logs, neutron-porosity log, sonic logs, gamma-ray log and 

resistivity log. Formation density log estimates the formation bulk density and is perhaps the most 
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essential log measured while drilling because it can be used to estimate the formation total porosity, 

identify fluid content and identify different lithologies. In shale-free formation, the formation 

density can be used to estimate the total formation porosity if the matrix grain-grain density and 

saturating fluid density are known. Fluid content can be determined by combining the density and 

resistivity log in a density vs resistivity plot to determine the water-bearing formations 

Birch (1961) was one of the first to establish a relationship between bulk density and 

compressional sonic velocity from laboratory experimental data by plotting the compressional 

velocity against the density of ultramafic rocks and serpentine rocks (Birch, 1961, 1960). The plot 

suggests that density is a function of compressional velocity. Higher bulk density resulted in a 

higher compressional velocity, and the relationship was observed to be exponential in ultramafic 

rocks, but linear in rock consisting mainly of plagioclase feldspar. Faust (1953) confirmed that 

compressional velocity and bulk density both increase with the degree of compaction, effective 

stress and burial depth; but did not capture the trend with shear velocity (Faust, 1953). Density 

was also found to be a function of shear velocity (Bailey, 2012; Brocher, 2005; Dey & Stewart, 

1997; Mavko et al., 2003; Miller & Stewart, 1991; Miller & Stewart, 1990; Takahashi, Mukerji, 

& Mavko, 2000; Tatham, 1982; Vernik, Fisher, & Bahret, 2002). Some works by Stewart Miller 

suggest that shear velocity is more closely related to density than compressional velocity (Dey and 

Stewart, 1997; Quijada and Stewart, 2007). Since density, compressional and shear wave velocities 

increase with depth, it is analogous to say that density is a function of compressional velocity and 

shear velocity.  

Previous empirical estimation of bulk density from sonic logs attempted to express density as a 

function of compressional velocity by fitting formation density log data to a polynomial or linear 

regression. Ludwig et al. (1970) plotted the Nafe-Drake curve density versus compressional 
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velocity but did not establish a relationship between density and compressional wave (Ludwig, 

1970). Brocher (2005) derived a polynomial regression to fit the Nafe-Drake Curve by Ludwig 

(1970). The polynomial regression in equation (3.63) can be used to estimate density from 

compressional velocity and is valid for compressional velocity from 1.5 km/s to 8.5 km/s (Brocher, 

2005). 

𝜌 = 𝐴𝑉𝑝 − 𝐵𝑉𝑝
2+𝐶𝑉𝑝

3 − 𝐷𝑉𝑝
4 + 𝐸𝑉𝑝

5 (3.63) 

Where A=1.6612, B=0.421, C=0.0671, D=0.0043 and E=0.000106 

Gardiner et al (1974) established a range of relationships between rock mechanical properties, their 

composition and the environment from laboratory and field experiments. They found that in 

sedimentary rocks density was a power function of compressional velocity according to equation 

(3.64).  

𝜌 = 𝐴𝑉𝑝
𝐵 (3.64) 

Where A= 0.31 in km/s and 0.23 in ft/s, and B= 0.25. Brocher (2005) reports A to be 1.74 for his 

dataset which is valid in continental and tectonic active plates. 

Gardiner’s equation is valid for brine saturated clastic rocks from 1.5 km/s to 6.1 Km/s 

compressional velocity.  Perhaps, one of the most applied estimations of bulk density from sonic 

well logs in the petroleum industry is the Gardiner equation (3.64). Barton (1986) investigated 

density prediction from compressional velocity. 

Miller and Stewart (1991) proposed the following equations for sandstones: 
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𝜌 = 0.019𝑉𝑝
0.58 (3.65) 

𝜌 = 0.049𝑉𝑠
0.5 (3.66) 

𝜌 = 𝑏𝑉𝑝
𝑎(𝑐 + 𝑑𝑉𝑠) (3.67) 

Where a, b, c, and d are constants which are dependent on the formation. 

Lindseth (1979) derived a linear relationship between density and impedance from which density 

can be estimated as follows. 

𝜌 =
𝑉𝑝 − 𝑑

𝑐𝑉𝑝
 (3.68) 

Where c and d are constants (0.308 and 3460 respectively) with velocity in m/s. 

Christensen and Mooney (1995) suggest that the relationship between density and compressional 

velocity is linear in equation (3.69). Their equation is valid for compressional velocity from 5.5 

km/s to 7.5 km/s (Christensen and Mooney, 1995).  

𝜌 = 𝐴𝑉𝑝 + 𝐵 (3.69) 

Where A= 0.3601 and B= 0.541 

Godfrey et al. (1997) also suggest that the relationship between density and compressional velocity 

is linear in equation (3.70). Their equation is valid for compressional velocity from 5.9 km/s to 7.1 

km/s (Godfrey et al., 1997). 

𝜌 = 𝐴𝑉𝑝 + 𝐵 (3.70) 

Where A= 0.70761 and B= 2.4372 
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 Well Logs 

 Gamma-ray log (API) 

Gamma-ray logs measure the level of natural radioactive minerals in the formation. Minerals emit 

natural radioactive gamma rays. A gamma ray log measures these emissions, and therefore, the 

gamma-ray log can be used to identify different lithologies along the well. It is measured in g.API. 

Shales typically have high radioactivity due to the presence of clay minerals like thorium, 

potassium and uranium, while sands have low radioactivity values. The gamma-ray log in 

combination with the resistivity log can be used to identify potential hydrocarbon reservoir 

formations along the well (Rolon et al., 2009).   

 Bulk density log (RHOB) 

The formation bulk density log measures the scatter gamma ray from the loss of energy due to the 

interaction of the emitted gamma ray and the formation (Asquith and Gibson, 2004). This is 

achieved by deploying a gamma-ray source like cesium-137 or cobalt-60 into the formation. The 

electron density of the formation is given by the high energy Compton scattering. The lower energy 

photoelectric effect aids in providing better reasoning for lithology indication. The tool has a 

shallow depth of investigation. Bulk density is measured in g/cc. The bulk density is a function of 

the formation lithology, formation fluid (saltwater = 1.1 g/cc, freshwater = 1 g/cc, oil = 0.8 g/cc 

and gas = 0.7 g/cc), and porosity. A formation density log is a porosity log; hence, it can be used 

to calculate the density derived porosity (Rolon et al., 2009). 

𝜙𝑑𝑒𝑛 =
𝜌𝑚𝑎 − 𝜌𝑏

𝜌𝑚𝑎 − 𝜌𝑓𝑙
 (3.71) 

Density logs are used to identify evaporites, gas bearing formations and lithology and to determine 

the density of the hydrocarbon (Khandelwal and Singh, 2010). In combination with the neutron-
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density log, it can be used to identify gas bearing formations as well. Shale formations emit 

radiations which can lead to errors in the reading of the formation density tool; therefore, in shaley 

formations, the density-sonic log plot is used to determine shale porosity. 

 Deep resistivity log (RESD) 

Resistivity logs measure the level of electric conductivity of the formation fluids. More 

specifically, the resistivity log measures the resistance of the formation fluids to the flow of electric 

currents through the formation. It is measured in ohm.m. Water tends to have a low resistance to 

electric currents, but hydrocarbons have a high resistance to electric current; therefore, the 

resistivity log is used to differentiate oil-bearing formations from water-bearing formations. 

Together with the gamma-ray log, potential hydrocarbon bearing reservoirs can be identified. The 

mud during drilling can affect the reading of the resistivity due to the invasion of the mud fluid. 

To correct for this, shallow, medium and deep resistivity logs are measured during logging 

operations by adjusting the length of the tool’s electrode (magnetic deeper) (Asquith and Gibson, 

2004; Bhatt, 2002; Rolon et al., 2009; Schön, 2015).  

 Neutron log (NPHI) 

The hydrogen ion concentration in a formation is measured by the neutron log to give an indication 

of the porosity in clean, shale-free water or hydrocarbon bearing formations; this porosity is known 

as the neutron porosity. The tool measures the amount of energy loss from the collision of the 

neutrons with hydrogen ions (protons). The neutron porosity log in combination with the gamma-

ray and resistivity log is used to identify gas bearing formations. Similarly, identification of the 

gas zones along the well can help prevent blowout and kick in the well. This is because neuron 

porosity measures the hydrogen ions in water and oil which are much higher than the hydrogen 

density of gas in the formation. Hence, the neutron log is lower in gas-bearing formations and is 
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known as the gas effect (Khandelwal and Singh, 2010). This is a porosity log, and as such, the 

neutron porosity can be estimated as follows (Schön, 2015). 

𝜙𝑁 = 𝜙 ∗ 𝜙𝑁,𝑓𝑙 + (1 − 𝜙) ∗ ((1 − 𝑉𝑠ℎ) ∗ 𝜙𝑁,𝑚𝑎 + 𝑉𝑠ℎ ∗ 𝜙𝑁,𝑠ℎ) (3.72) 

 Shale Volume (Vsh) 

This is the measure of the volume of shale in the formation and can be estimated from the gamma-

ray log. 

𝑉𝑠ℎ =
𝐺𝑅 − 𝐺𝑅𝑚𝑖𝑛

𝐺𝑅𝑚𝑎𝑥 − 𝐺𝑅𝑚𝑖𝑛
 (3.73) 

 Total porosity (PHIT) 

The total porosity is the volume of the all the pore spaces saturated by water, hydrocarbon, and 

gas in the formation, both mobile and immobile. It includes interconnected pore and non-connected 

pores trapped with the formation. Secondary porosity and fracture porosity are also included in the 

total porosity estimation. 

 Effective porosity (PHIE) 

This is the measure of the total pore spaces with the exception of the water attached to the clay; 

therefore, the volume of clay is subtracted from the total porosity to derive the effective porosity. 

𝑃𝐻𝐼𝐸 = 𝑃𝐻𝐼𝑇 − 𝑉𝑠ℎ (3.74) 

 Compressional wave sonic transit time log (DTCO) 

The compressional wave sonic transit log measures the time it takes for a compressional sonic 

wave to travel through a foot of the formation along the axis of the borehole (Tixier et al., 1975). 

It is also known as the slowness of the compressional travel wave and is measured in µsec/ft 
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(inverse of velocity). The compressional wave sonic travel time can be measured with a borehole 

compensated (BHC) sonic tool or dipole sonic tool consisting of one or more ultrasonic 

transmitters and two or more receivers. 

 Shear wave sonic transit time log (DTSM) 

The shear wave sonic transit time log measures the time it takes for a shear sonic wave to travel 

through a foot of the formation. It is also known as the slowness of the shear travel wave and is 

measured in µsec/ft. The shear wave sonic travel time cannot be measured with a borehole 

compensated sonic tool; it is measured with the dipole or array sonic tool, consisting of transmitters 

and receivers. Less than 1% of wells in most fields acquire their sonic logs with a dipole sonic 

tool; hence, many offset wells lack shear wave travel time logs (Mullen et al., 2007). 
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 Conclusions 

Compressional and shear wave velocity are found to be functions of lithology and fluid saturation. 

These can be observed by lithology and fluid dependent properties like density and porosity. The 

velocities increase as the porosity reduces. The trend is thought to be a linear function by 

researchers, but this may not be the case. The velocity ratio is assumed to not be a function of 

porosity according to most empirical correlations, but this review suggests otherwise; it reduces 

with the increase of porosity. 

Compressional and shear wave velocity is observed to be a function of clay content in sandstone, 

but a less critical dependency in comparison to porosity and density. In addition, the microporosity 

of clays increases the reduction in the velocities. A specific trend was not observed for velocity 

ratio with clay content. 

Compressional wave velocities are observed to be a function of effective pressure. As the effective 

pressure increases, the velocities increase. A similar relationship is observed for formation density 

and overburden pressure. The velocity ratio is observed to reduce with increasing effective 

pressure, which signifies that there is a greater change in shear-velocity with effective pressure. 

Compressional and shear waves can be very effective tools in the lithological identification of 

formations and determination saturation fluid. Gas saturated formations are observed to have lower 

velocities in comparison to liquid saturated formations. 

The velocity ratio is observed to be a more sensitive value to the formation lithology and saturating 

fluid type. More so, the ratio of the square of the velocities has not been critically investigated in 

literature, but may prove to be more sensitive, and an effective tool for formation property 

identification. 
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The inclusion of all parameters and factors that affect the velocities and their ratio may not be 

feasible; nevertheless, the inclusion of critical properties in empirical correlations will reduce the 

margin of error in empirical estimations.  

The use of well logs indicative of these lithology and fluid dependent properties bridge the gap of 

hard to reach reservoir formations where cores may not be readily available. The well logs provide 

a means of having continuous data along the formation for formation evaluation. 

As technology evolves, other methods of improving the empirical and analytical techniques for 

estimating sonic velocities, well logs and formation properties should be investigated.  

The objective of this research will be to investigate techniques of improving current empirical and 

analytical geomechanical formation properties through dynamic methods. Intelligent systems like 

artificial neural networks, support vector machines, Gaussian processes and recurrent neural 

networks will be evaluated for use in this research. 
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Abstract 

Accurate estimation of rock mechanical properties such as static Young’s modulus is very critical 

to reducing the risks associated with exploration and production activities. Ideally, the 

determination of the rock static Young’s modulus will require experimental studies to be 

conducted on core data taken from the formations of interest. Where core data are not available 

(possibly due to economic reasons), the static Young’s modulus is often estimated from the 

dynamic Young’s modulus using empirical relationships since dynamic Young’s modulus can 

easily be obtained from the petrophysical data. The higher the formation porosity, the greater the 

difference between the static and dynamic Young’s modulus. The existing empirical relationships 

are lithology specific and they are suitable over the porosity range to which they have been 

derived. Therefore, the generalization of these relationships may produce erroneous results. To be 

applicable to various lithologies and porosity range, a new relationship between static and dynamic 

Young’s modulus is being proposed. The new model incorporates a lithology-porosity dependent 

parameter. The model is purely empirical based on the analysis of extensive laboratory data 

obtained from the literature. Comparisons are then made with the existing relations using statistical 

analysis. The results show that the newly proposed model outperformed all previously established 

models. 

 

Keywords: Young’s modulus, geomechanics, reservoir, drilling, formation characterization. 
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 Introduction 

Theoretical and experimental investigations of mechanical properties of rocks have suggested that 

static Young’s Modulus (E) is the most critical parameter for carrying out geomechanical analysis 

on rocks (Al-Shayea, 2004; Elkatatny et al., 2018; King, 1983; Najibi et al., 2015; Yale and Swami, 

2017). Al-Shayea (2004); Lacy (1997); Pan et al. (2010); Yale and Swami (2017) (Kılıç and 

Teymen, 2008; Zhou et al., 2015). Accurate prediction of static Young’s Modulus is very essential 

for reducing the risk associated with exploration and production operations. Young’s modulus has 

been used to estimate formation properties to determine sweet spots and hydrocarbon reservoir 

locations (Zong et al., 2013). Young’s modulus has been used in forward prediction of formation 

properties to determine potential wellbore failure (Ohen, 2003; Rahimi and Nygaard, 2014). In 

difficult to produce reservoirs like unconventional gas fields, Young’s modulus has been used to 

determine the elasticity of the reservoir and its potential for enhanced oil recovery (Goodway et 

al., 2010). Static Young’s modulus has also found applications in hydrofracturing jobs where the 

fracture size and aperture are important to the quality of the design for hydrofracturing treatments 

(Yale and Jamieson, 1994). The quality of well-logging data during exploration can also be 

investigated with the estimates of Young’s modulus (Balarabe and Isehunwa, 2017; McCann and 

Entwisle, 1992; Mullen et al., 2007; Onalo et al., 2018; Tixier et al., 1975) Young’s modulus has 

been used in the characterization of rocks for disposal of hazardous and waste materials 

(Appendino et al., 2004; King, 1983). Young’s modulus has been used to characterize underground 

mines to ensure the mines do not collapse under the miners-workers during mineral excavations 

(Ghasemi et al., 2018; Hahn et al., 2017; McCann and McCann, 1977).  Static Young’s modulus 

(Es) is usually estimated from uniaxial and triaxial tests under drained conditions. This allows the 
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rock mechanical properties to be characterized without the influence of the pore fluids (Lacy, 1997; 

Yale and Jamieson, 1994).  

Ideally, core samples from the actual formations of interest must be acquired to determine the 

Static Young’s Modulus in the laboratory. These laboratory tests are expensive and destructive. 

However, it is not always possible to acquire core samples at every point in the well; therefore, the 

information is often not continuous along the wellbore (Onalo et al., 2018). In hole sections where 

core data are not available, static Young’s modulus is usually estimated from the dynamic Young’s 

modulus (Ed) using empirical relationships since dynamic Young’s modulus can easily be obtained 

from the petrophysical data.  Estimation of  static Young’s modulus  from dynamic Young’s 

modulus provides a cheaper, non destructive and continuous log of data along the well path (Fjaer 

et al., 1989; Yale and Jamieson, 1994; Jaeger et al., 2007; Fjaer, 2008; Mavko et al., 2009; Holt et 

al., 2012; Al-Ameri and Al-Kattan, 2012; Najibi et al., 2015b; Yale and Swami, 2017). Dynamic 

Young’s Modulus can be estimated from a complex relationship of the compressional and shear 

wave velocity. (Yale and Jamieson, 1994). The dynamic modulus often overpredicts the static 

Young’s Modulus (Eissa and Kazi, 1988; King, 1983). King (1983) attributes this to the presence 

of microcracks because the extent of the strain is a function of these microcracks. The values of 

dynamic modulus differ with magnitudes of up to 70% from the static modulus (Yale and 

Jamieson, 1994). If a material is perfectly elastic, the drained dynamic modulus should be close or 

approximately equal to the drained static moduli (Ledbetter, 1993).  

The major reasons for this discrepancy in the measurement of static and dynamic Young’s moduli 

can be summarized into the following groups (Yale and Swami, 2017): 
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1 – The degree of compaction is determined by several factors including the presence of cracks, 

porosity, density, cementation and consolidation. As the pore spaces in the formation increase, the 

porosity increases and so the potential extent of strain increases; this suggests that Young’s 

modulus is inversely proportional to the porosity. This is similar to the presence of cracks, 

microcracks and fracture; they all indicate an increase or decrease in the total porosity of the 

formation. In contrast to porosity, the density, cementation and consolidation are directly 

proportional to the elastic moduli. Yale and Jamieson (1994) observed that the cementing material 

between the matrix grain controls the lithological table that they established during their 

investigations. This implies that with more cementing of the material, the stiffer and denser the 

material becomes; hence higher the elastic moduli of the formation. For example, dolomite cement 

is stiffer than calcite cement, thus it has a higher elastic modulus.  

2- Rocks under in-situ condition are under some form of in-situ stress prior to any stress induced 

by human activities (Zoback, 2010). The confining pressure and overburden stress determine the 

extent of consolidation and are grouped together because they determine the stiffness of the 

material. The deeper the formation, the higher the overburden stress and confining pressure are. 

Most reservoir formations and truly confined formations may be found at depths of more than 

6000 feet (Ramcharitar and Hosein, 2016); which in turn signifies higher values of Young’s 

modulus.  

3 - Fluid saturation has been observed to decrease the static Young’s modulus; however, an 

increase is observed in the dynamic Young’s modulus (Yale and Jamieson, 1994). This supports 

the notion that the disparity in both moduli increases with fluid saturation.  
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4 – The discrepancy has been attributed to the amplitude and frequency of the strain. Static moduli 

are measured at high strains to a hundredth value (10-2) while dynamic moduli are measured at 

lower strains of a millionth value (10-5) (Al-Shayea, 2004).  

5- In addition, the method and equipment used to conduct the experiments do not always provide 

the same results, even after calibration (Yale and Swami, 2017). A typical example is seen in the 

work of Al-Shayea (2004) where the static modulus estimated by the secant and tangent method 

varies. The discrepancy is less than 20%, but nonetheless, this presents inconsistency in 

estimations and model development attempts. Apart from the method and equipment variation, the 

measured static values of different loading and unloading cycles are not equal (Al-Shayea, 2004; 

Fiona and Cook, 1995). This may be due to the fact that during each loading and unloading, 

microcracks are closed and opened, leading to permanent deformation, even though the formation 

has not been loaded to failure. Therefore, it would be expected that the relationship should be a 

function of these parameters. It may not be possible to measure all these parameters simultaneously 

in an economic and efficient manner. However, the degree of disparity in the correlations can be 

reduced by including parameters that represent one or more of these factors. 

Estimating static Young’s Modulus from dynamic Young’s Modulus has been attempted by many 

but it is very challenging (Mavko et al., 2009). There have been several correlations developed to 

capture the relationship indicating linear, power, logarithmic and polynomial relationships 

between static and dynamic moduli. 

King (1983) conducted static investigations on 174 dry and saturated samples of metamorphic and 

igneous rocks from the Canadian Shield Association (CSA) with low porosity (1 – 8 %), and 
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developed a linear relationship between the static and dynamic moduli of these measurements as 

follows: 

𝐸𝑠 = 1.26𝐸𝑑 − 29.5 (4.1) 

Eissa and Kazi (1988) conducted investigations on a wider set of 342 specimens and suggested the 

following linear relationship: 

𝐸𝑠 = 0.74𝐸𝑑 − 0.82 (4.2) 

Equation (4.2) was found to be inadequate for weak formations with poorly consolidated grains 

(Morales and Marcinew, 1993). 

Heerden (1987) on the contrary, states that the relationship is exponential. Heerden (1987) 

performed tests on 18 specimens and developed a power relationship from 14 of these cores.  

𝐸𝑠 = 𝑎𝐸𝑑
𝑏 (4.3) 

where the constant a range from 0.097-0.152 and b ranges from 1.29059-1.22688 depending on 

the amount of stress applied.  

Najibi et al. (2015) conducted experiments on 45 limestone specimens from two fields in Iran and 

also proposed a power model to represent the relationship between the local static and dynamic 

Young’s modulus. The power model is presented as follows: 

𝐸𝑠 = 0.014𝐸𝑑
1.96 (4.4) 

Some researchers have also described the relationship using polynomial models. Lacy (1997) 

proposed different equations for sandstones and shale for estimating Young’s modulus to enable 



72 

 

the successful design of fracture jobs. The following equation was suggested to be suitable for all 

formations: 

𝐸𝑠 = 0.278𝐸𝑑
2 + 0.422𝐸𝑑 (4.5) 

More recently, Yale and Swami (2017) fitted a polynomial regression analysis to over 50 data sets 

to develop the following equation. 

𝐸𝑠 = 0.001447𝐸𝑑
2 + 6.928𝐸𝑑 − 1.177 (4.6) 

Other researchers have investigated the relationship between the logarithms of the static and 

dynamic Young’s modulus. Savich (1984) indicated that the relationship between the logarithms 

of the moduli varies with the formation. The formation can be grouped into four categories: 1 - 

sedimentary carbonate rocks, 2 - igneous rocks, 3 - gneiss and metamorphic schists and 4 - clastic, 

silts, sandstones, siltstones and tuff. The general equation is presented in equation (4.7): 

𝑙𝑜𝑔 𝐸𝑠 = 𝐴𝑜 + 𝐴1 𝑙𝑜𝑔 𝐸𝑑 (4.7) 

where Ao and A1 are constants that are dependent on the type of lithology. Eissa and Kazi (1988) 

also proposed a relationship between the logarithms of the moduli and went a step further to 

include the density term in equation (4.8): 

𝑙𝑜𝑔𝐸𝑠 = 0.77𝑙𝑜𝑔𝜌𝐸𝑑 + 0.02 (4.8) 

A list of previously established estimations of static Young’s Modulus from dynamic Young’s 

Modulus found in the literature is presented in Table 4.1.  

Table 4.1. A list of existing static Young’s Modulus equations found in the literature 
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SN Author Equation Lithology  

1 Candy (2010) 
𝐸𝑠 =

ln(𝐸𝑑 + 1) ∗ (𝐸𝑑 − 1)

4.5
 

Soft & hard 

rocks 

2 Wang (2000) 𝐸𝑠 = 𝐸𝑑 − 15.2 Sandstone 

3 King (1983) 𝐸𝑠 = 1.263𝐸𝑑 − 29.5 Igneous 

4 Belikov (1970) 𝐸𝑠 = 1.137𝐸𝑑 − 9.685 Granite 

5 McCan (1992) 𝐸𝑠 = 0.69𝐸𝑑 − 6.4 Granite 

6 Eissa (1988) 𝐸𝑠 = 0.74𝐸𝑑 − 0.82 Sandstone 

7 Eissa-Den (1988) 𝑙𝑜𝑔𝐸𝑠 = 0.77𝑙𝑜𝑔𝜌𝐸𝑑 + 0.02 Sandstone 

8 Lacy (1997) 𝐸𝑠 = 0.278𝐸𝑑
2 + 0.422𝐸𝑑 Sandstone, 

shale, 

limestone, 

dolomite 

& silt 

9 Nor & Wang (1999) 𝐸𝑠 = 1.153𝐸𝑑 − 15.2 Hard rock 

10 Van Herdeen (1987) 𝐸𝑠 = 0.139𝐸𝑑
1.411 Sandstone, 

quartzites, 

norites & 

magnetite 
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11 Yale (2017) 𝐸𝑠 = 0.001447𝐸𝑑
2 + 6.928𝐸𝑑

− 1.177 

Variety 

12 Ameen et al. (2009) 𝐸𝑠 = 0.54𝐸𝑑 − 12.852 Limestone 

13 Morales & Marcinew 

(2009) 

𝐸𝑠 = 0.956𝐸𝑑 − 0.69 Sandstone 

14 Ohen (2003) 𝐸𝑠 = 0.015𝐸𝑑
2.739 (𝑝𝑠𝑖) Sands 

15 Fei et al. (2016) 𝐸𝑠 = 0.564𝐸𝑑 − 3.4941 Sandstone 

 

The major downfall of previous models is mainly that they can not be applied extensively to a rock 

column. This is because they are lithology specific and can only be applied to a particular porosity 

range under certain confining pressure regimes. This makes the application of the existing 

empirical relations limited in terms of estimating the static Young’s Modulus over any existing 

rock column. The negative consequences of such estimations can lead to poor determination and 

analysis of mechanical rock properties; therefore, they should not be used of rock formations with 

varying lithology, porosity and effective pressure regimes.  

The main objective of this study is to develop a data-driven model that can be used to estimate 

static Young’s moduli that is simple, inexpensive and non-destructive, irrespective of the 

formation type, lithology and porosity range thereby making the model universal.  
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 Methodology  

The approach used in this paper is largely empirical. Laboratory measurements of core data from 

different regions of the world and lithologies are used to derive the new empirical relationship 

between the static and dynamic Young’s modulus. The dataset covers a wide range of regions (the 

Gulf of Mexico, USA, Canada, Iran, Saudi Arabia, Venezuela, the former Soviet Union, South 

Africa, and the North Sea), formations (sandstones, shales and carbonates), porosity range and 

confining pressures. This will make the model to be applicable universally. Table 4.2 summarizes 

the sources of the data used in this paper.  

Table 4.2. Sources of data used for the study 

Sn Source Region Lithology  

1 Najibi et al. (2015) Iran Limestone 

2 Yale and Jamieson 

(1994) 

Kansas Dolomite, Dolostone, Limestone, 

Mudstone, silt w/dolomite, Siltstone 

3 Elkatatny et al. 

(2018) 

 Dolomite, Dolomitized grain stone, 

Calcite, Lime Mudstone & Sandstone 

4 Price et al. (1994) Nevada Tuff 

5 Heerden (1987) South Africa Norite, Sandstone, Quartzite & 

Magnetite 
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6 Deere and Miller 

(1966) 

Washington, Oregon, New 

York, Virginia, 

Pennsylvania, Minnesota, 

Missouri, Idaho, Vermont, 

Colorado, Bavaria, 

Georgia, Wisconsin, Ohio, 

Tennessee, Arizona, New 

Jersey and Nevada 

Basalt, Diabase, Dolomite, Gnesis, 

Granite, Limestone, Marble, 

Quartzite, Sandstone, Schist &Tuff 

7 Lacy (1997) USA Sandstone, Dolomites, Siltstones, 

Limestone & Shale 

8 Al-Tahini et al. 

(2004) 

Saudi Arabia Sandstone 

9 Mockovčiaková 

and Pandula (2003) 

Slovakia and Czech 

Republic 

Andesite, Amphibolite, Dolomite, 

Granite, Limestone, Siderite, 

Sandstone, Marble, Magnesite, 

Norite, Diabase & Slate 

10 Morales and 

Marcinew (1993) 

Venezuela, Canada, 

Alaska, and the North Sea 

Sandstones 

Synthetic Sandstones: Sinclair, Berea 

& Brown 

11 Al-Shayea, (2004) Iran, Saudi Arabia, Canada 

and USA 

Limestone 
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The dataset is plotted to depict the relationship between the static and dynamic Young’s Modulus 

in Figure 4.1. To generalize the data, the initial approach was to perform linear, exponential and 

quadratic regression on all the available data. irrespective of the region, lithology, porosity and 

confining pressure. The equations generated from the exponential, linear and polynomial equations 

are presented in equation (4.9), (4.10) and (4.11) respectively. 

𝐸𝑠 = 8.1357𝑒0.0253𝐸𝑑  (4.9) 

𝐸𝑠 = 0.7134𝐸𝑑 + 1.9584 (4.10) 

𝐸𝑠 = 0.0031𝐸𝑑
2 + 0.3831𝐸𝑑 + 7.9818 (4.11) 

 

Figure 4.1. Plot of static and dynamic Young’s modulus 
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The exponential regression model had a coefficient of determination of 0.56 as illustrated in Figure 

4.1 a and the linear regression model had a coefficient of determination of 0.74 as illustrated in 

Figure 4.1 b. The polynomial has been limited to a two-order polynomial regression model to 

produce a quadratic regression model. The quadratic regression model result provided the best fit 

to the data points with a coefficient of determination of 0.76, as illustrated in Figure 4.1 c. 

 

Figure 4.1 a. Exponential regression of the dataset 
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Figure 4.1 b. Linear regression of the dataset 

 

Figure 4.1 c. Quadratic regression of the dataset 
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new parameter that accounts for the lithology, porosity and confining pressure becomes evident. 

Elkatatny et al. (2018); Lacy (1997); Yale and Swami (2017) suggested that static and dynamic 

Young’s moduli are functions of density. Density is also affected by lithology, porosity and 

confining pressure changes. To prove this assumption, a plot of all datasets with corresponding 

density values were plotted in Figure 4.2. Figure 4.2 illustrates that Young’s modulus increases as 

the density increases; however, the relationship is non-linear. As a quality check to ensure that the 

150 data points used were representative of the entire 350 data points, a polynomial regression 

analysis was performed on the dataset. The polynomial regression model remained unchanged, 

indicating that the more than 150 data points were representative of the total data set. 

 

Figure 4.2. Density versus static and dynamic Young’s modulus 
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density because it accounts for formation porosity and lithology. This means that any model that 

does not take porosity, lithology and confining pressure into consideration is not accurate. The 

newly proposed model is proposed equation based on the analysis of laboratory data, and is 

presented as follows: 

𝐸𝑠 = 0.3361𝐸𝑑𝜌0.8 − 2.4603 (4.12) 

The proposed model was applied to the dataset and the results are shown in a cross-validation plot 

in Figure 4.3. 

 

Figure 4.3 Validation of the measured and predicted static modulus 
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 Results and discussion 

To test the performance of the newly proposed model a comparative study of the proposed model 

and other previously established models was conducted. In Figure 4.4, the measured static Young’s 

modulus is plotted against the dynamic Young’s modulus. In addition, the static Young’s modulus 

estimated from the dynamic static modulus of several previous correlations is also plotted Figure 

4.4. It also emphasizes whether the static Young’s modulus from any of the previous correlations 

adequately represents the trend observed between the measured static and dynamic moduli. Figure 

4.4 suggests that the relationship between the static and dynamic moduli is not likely to be a power 

relationship nor an exponential function of the dynamic modulus, as had been suggested by Ohen 

(2003).  Linear relationships and trendlines could be observed from the plot in Figure 4.4, but the 

linear trendline was not consistent throughout the data points. At lower values of Young’s 

modulus, less than 35 GPa, a linear relationship could be established; however, this linear 

relationship could not accurately represent data points above 35 GPa. Therefore, a quadratic fit 

was chosen to better represent the dataset. This was validated by the coefficient of determination 

obtained from the power, linear and quadratic fit regressions; the quadratic regression had the 

highest determination coefficient of approximately 0.75. The quadratic regression trendline is 

represented by the solid black line that passes through the data points in Figure 4.4. Most of the 

tested models stray from the fitting line substantially. Models by Heerden (1987), Lacy (1997), 

Yale and Swami (2017) and Eissa and Kazi  (1988) seemed to be the closest fit to the quadratic 

trendline and thus provided a better representation of the data moduli relationship. The proposed 

new model outperformed all the previous models including the quadratic regression model with a 

coefficient of determination of approximately 0.95. 
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Figure 4.4. Measured and predicted static correlations from dynamic Young’s modulus 
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Figure 4.5. Cross plot of static modulus predicted from correlating the measured static modulus 
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and Kazi  (1988) was 16%, 17% and 17% respectively. The proposed new model presents a 

coefficient of determination of 0.95, an RMSE of 4.14, an AAE of 3.38 and an AEP of 13%. The 

proposed model outperformed all the previous models, including the quadratic regression model, 

on all statistical measures quantifying the predictions efficiency. 

A summary of the determination of coefficient, root mean square error, average absolute error and 

average percentage error of all the models are presented in Table 4.3. 

Table 4.3. Summary of statistical comparative analysis 

Sn Source of Equation R2 RMSE AAE AEP 

1 Candy (2010) 0.76 9.93 7.25 0.25 

2 Wang (2010) 0.76 11.14 10.03 0.42 

3 King (1983) 0.70 27.14 25.30 0.92 

4 Belikov (1970) 0.74 12.69 10.20 0.35 

5 McCan (1992) 0.74 8.57 6.65 0.32 

6 Elissa (1988) 0.74 6.12 4.06 0.17 

7 Elissa Den (1988) 0.40 10.63 9.66 0.43 

8 Lacy (1997) 0.71 6.44 4.21 0.17 

9 Nor & Wang (1999) 0.73 9.56 6.99 0.23 

10 Van Herdeen (1987) 0.76 6.37 4.75 0.16 

11 Yale (2017) 0.75 5.62 4.17 0.19 
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12 Ameen et al. (2009) 0.26 9.85 7.46 0.38 

13 Morales & Marcinew 

(2009) 

0.40 24.07 19.44 0.55 

14 Ohen (2003) 0.56 27.39 16.69 0.52 

15 Fei et al. (2016) 0.74 12.95 10.30 0.31 

16 Quadratic regression 0.76 5.68 4.33 0.20 

17 New Model 0.95 4.14 3.38 0.13 
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 Sensitivity and Uncertainty Analysis 

To test the sensitivity of the proposed model to uncertainties that can be generated during the 

process of acquiring the input data, Monte Carlo simulations have been performed on the data set. 

The sensitivity of dynamic Young’s Modulus and density are considered and finally, a combined 

simulation is run to investigate the combined effect of the uncertainties of both dynamic Young’s 

Modulus and density in the estimation of the static Young’s Modulus. 

Firstly, to test the sensitivity of the proposed model to the dynamic Young’s Modulus, an 

uncertainty of -/+ 10% is simulated in the input data while other input parameters are kept constant. 

A total of 1001 Monte Carlo simulations are run on the data, after which, the root mean square 

error, average absolute error and average percentage errors are recalculated. The results of the 

dynamic Young’s Modulus Monte Carlo simulation are presented in Table 4.4. 

Table 4.4. Dynamic Young’s Modulus from Monte Carlo simulation  

  RMSE AAE AEP (%) 

Average 4.69 3.75 14.34 

Min 4.04 3.29 12.81 

Max 5.39 4.23 15.95 
Similarly, a Monte Carlo simulation of 1001 runs is performed on the proposed model by varying 

the density input data. The uncertainty of the density is simulated to be -/+ 10%. Based on the 

results of the 1001 simulation, the RMSE, AAR and AEP are calculated. The minimum and 

maximum values are also presented in  Table 4.5. 

Table 4.5. Density from Monte Carlo simulation 

  RMSE AAE AEP (%) 

Average 4.51 3.63 14.02 

Min 4.04 3.23 12.65 

Max 5.05 4.05 15.45 
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Finally, a combined Monte Carlo simulation is performed on the data by randomly varying the 

density and the dynamic Young’s modulus. The results of the simulation are presented in Table 

4.6.  

Table 4.6. Combined from Monte Carlo simulation 

  RMSE AAE AEP (%) 

Average 5.00 3.97 14.95 

Min 4.24 3.40 13.11 

Max 5.81 4.48 16.68 

The analysis of the Monte Carlo simulation sensitivity analysis presented above in Table 4.4, Table 

4.5 and Table 4.6 suggest that although the model is sensitive to density and dynamic Young’s 

Modulus, the proposed model is more sensitive to the dynamic Young’s modulus. A greater 

uncertainty in the dynamic Young’s Modulus resulted in greater errors and uncertainties in the 

estimation of the static Young’s Modulus. Table 4.6 shows that the error margin and uncertainty 

is increased when both density and dynamic Young’s Modulus input data contain uncertainties.  

The initial statistical analysis performed on the data set provided RMSE, AAE and AEP of 4.14, 

3.38 and 13% respectively. By including a -/+ 10% uncertainty to the dynamic Young’s Modulus, 

the average RMSE, AAE and AEP of 1001 random simulations provided 4.69, 3.75 and 14% 

respectively. Similarly, by including a -/+ 10% percent uncertainty to the density, the average 

RMSE, AAE and AEP of 1001 random simulations provided 4.51, 3.63 and 14% respectively. In 

addition, by combining the uncertainties to both the density and dynamic Young’s Modulus, the 

average RMSE, AAE and AEP of 1001 random simulations provided 5, 3.97 and 15% 

respectively. The change in the statistical analysis is less than 10% in each case thereby 

demonstrating the robustness of the model to be applied in the estimation of static Young’s 

Modulus with reasonable certainty of the results. 
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 Conclusion 

In this study, a new model to estimate the static modulus from Young’s modulus considering a 

lithology-porosity dependent variable is proposed. The model is tested on a dataset compiled from 

different sources covering a wide range of lithologies from different parts of the world. Therefore, 

the model can be applied widely in the various geological setting for several lithologies. 

The present study demonstrates that previous models for estimating static Young’s modulus from 

the dynamic modulus do not adequately capture the non-linear relationship between the static and 

dynamic relationship. 

The performance of the proposed model is compared to existing models from different sources. 

The coefficient of determination, the root mean square, the average absolute error, and average 

percentage error are used to statistically analyze the predictions from all models. The proposed 

model outperforms all the previous existing models. 

The proposed model is robust and provides reasonable estimates of static Young’s Modulus with 

even with combined uncertainties from the input data. Using the proposed model, engineers will 

have a more reliable method of estimating static modulus from dynamic modulus to determine the 

mechanical properties of a formation for geomechanical analysis.  

It is recommended that the proposed model should be tested on formations in different parts of the 

world irrespective of the lithology. Precise initial estimates can save companies substantial 

amounts in cost, time and personnel over the course of drilling several wells in a region. 

To improve the proposed model, other formation specific dependent parameters like confining 

pressure and fluid saturation may be included in the analysis.  
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Nomenclature 

𝐾 Bulk modulus (MPa) 

𝑅2 Coefficient of determination 

𝑉𝑝 Compressional velocity (km/s) 

Δ𝑡𝑐 Compressional wave travel time (µsec/ft) 

𝐸𝑑 Dynamic Young’s modulus (GPa) 

𝜌, 𝜌𝑏 Formation density (g/cc) 

Δ𝑡𝑓𝑙 Formation fluid compressional wave travel 

time (µsec/ft) 

MAE Mean absolute error 

MPE Mean percentage error 

Δ𝑡𝑙𝑜𝑔 Measured compressional wave travel time 

(µsec/ft) 

𝜗 Poisson’s ratio 

RMSE Root mean square error 

𝐺 Shear modulus (MPa) 

𝑉𝑠 Shear velocity (km/s) 

Δ𝑡𝑠 Shear wave travel time (µsec/ft) 

𝐸𝑠 Static Young’s modulus (GPa) 

𝐸 Young’s modulus (MPa) 
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Abstract 

Near wellbore failure during the exploration of hydrocarbon reservoirs presents a serious concern 

to the oil and gas industry. To predict the probability of these undesirable phenomena, engineers 

study the mechanical rock properties of the formation such as Young’s modulus, Bulk modulus, 

shear modulus and Poisson’s ratio. Conventionally, these are measured indirectly using the 

established petrophysical relationship from sonic wave velocities which can be obtained from 

sonic well logs. Unfortunately, reliable sonic well logs are not always available due to poor 

borehole conditions (wash out), damaged tools and offset well data. Most offset well log data are 

not acquired with dipole sonic tools; they are acquired with a borehole compensated logging tool. 

This limits the application of the acoustic measurements to estimate the mechanical rock 

properties.   

In this study, a three-layer feedforward multilayered perceptron artificial neural network model is 

presented. This model aims to estimate compressional wave transit time and shear wave transit 

time using real gamma-ray and formation density logs. The validation of the model is confirmed 

on an oil and gas offshore shaley sandstone reservoir located in West Africa. The results of the 

validation show that the model presented in this study can be used to determine the sanding 

potential of the formation without carrying compressive geoscientific analysis in the absence of 

sonic well logs. The developed model effectiveness is tested by comparing the predicted results 

with results obtained from the measured well log. The paper provides a tool to give preliminary 

recommendations of the likelihood of the formation to produce sand. Implementation of the 

proposed model would serve as a cost-effective and reliable alternative for the oil and gas industry. 

Keywords: Artificial neural network, Sand production, wellbore failure, well log, sonic velocity 
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 Introduction   

Petroleum remains one of the most important sources of energy in the world and will continue to 

play a vital role in the world energy mix in the near future. The drive to produce more hydrocarbons 

to increase production from hydrocarbon reservoirs is crucial, due to the increasing demand for 

energy and the rising global population. Sanding, wellbore stability and collapse can lead to a 

reduction in both production and injection (Kalgaonkar et al., 2017). According to Bianco and 

Halleck (2001), clastic formations represent 90% of the world’s hydrocarbon reservoirs, of which 

70% may be in reservoirs prone to sand production and wellbore failure (Balarabe and Isehunwa, 

2017; Bianco and Halleck, 2001).  Hence, the ability to increase production from these reservoirs 

is often limited by the wellbore stability and collapse from the production of sand  (Ranjith et al., 

2014). The Gulf of Guinea, Gulf of Mexico, Alberta, Niger Delta and Iran are some of the regions 

where these phenomena have been reported (Aadnoy et al., 2013; Najibi et al., 2015; Perera et al., 

2017; Santarelli et al., 1989). Sand production and wellbore failure present major challenges for 

the petroleum industry (Ranjith et al., 2013). The consequences of neglecting sand production in 

hydrocarbon reservoirs include the damage of mechanical equipment like the wellhead, Christmas 

tree, tubing hangers, valves, separators, casing pipes and flowlines (Balarabe and Isehunwa, 2017). 

This results in the limitation of the injection rate, production rate, well collapse, well plugging and 

even the total abandonment of a well (Perera et al., 2017). The oil and gas industry dedicates a 

huge amount of resources to tackle sand production and near wellbore failure (Ranjith et al., 2013). 

Sand control techniques such as sand screening, gravel packing, expandable screens and chemical 

sand consolidation increase the operating cost of hydrocarbon reservoirs (Kalgaonkar et al., 2017). 

Remedial operations, equipment repair and workover interventions lead to costly downtime during 
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drilling, completion, production and injection operations (Balarabe and Isehunwa, 2017; Ukaonu 

et al., 2017).  

The formation strength, stress-state, and failure mechanism around the wellbore often provide 

good indications of the susceptibility of the formation to sand production and wellbore failure 

(Alloush et al., 2017; Balarabe and Isehunwa, 2017; Geertsma, 1985; Perera et al., 2017). Tixier 

et al. (1975) proved that sonic velocity measurements are able to provide accurate, reliable and 

continuous indications of the formation strength and mechanical rock properties through several 

correlations.  Santarelli et al. (1989) suggested that simple log analysis on well log data is useful 

in predicting sand production when the full wave sonic data are available (McPhee et al., 2014). 

Wu et al. (2006) conducted a geo-mechanical study to predict wellbore instability and sanding; 

their results buttress the need for reliable petrophysical and rock mechanical properties. Very 

recently, Ukaonu et al. (2017) proposed using the relationship between formation strength and 

porosity from compressional sonic logs as a reliable real-time indication of sanding in hydrocarbon 

reservoirs in the Niger Delta. Balarabe and Isehunwa (2017) developed a sand prediction model 

from the mechanical rock properties estimated from sonic logs to serve as an effective management 

tool for reservoir development. 

Mechanical rock properties are some of the most important factors affecting wellbore stability and 

sanding (Tariq et al., 2017; Zeynali, 2012). In combination with the formation density, the 

formation sonic velocity is perhaps the most reliable and common indirect method for estimating 

rock mechanical properties of a formation. This may be due to the fact that they are both functions 

of lithology, saturating pore fluid, overburden pressure, porosity and clay content (Castagna et al., 

1985; Eberhart‐Phillips et al., 1989; Gardner et al., 1974; Hossain et al., 2012; Raymer et al., 

1980; Wyllie et al., 1956). One of the primary advantages of indirect estimations of mechanical 
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rock properties from sonic velocity is their success in weakly consolidated formations where other 

direct measurements have failed (Fjær, 2009; Tixier et al., 1975). However, in the absence of sonic 

logs, how do we obtain sonic velocity measurements for mechanical rock property estimations for 

the various studies and operations? Geologists and engineers try to predict the values from 

correlations, models and offset data from adjacent wells. Some popular estimations of sonic 

velocity using empirical techniques include the models of Castagna et al. (1985), Han et al. (1986), 

Eberhert-Phillip et al. (1989) (Castagna et al., 1985; Eberhart‐Phillips et al., 1989; Han et al., 

1986). More recent research has shown that more accurate predictions of formation sonic velocity 

could be estimated from neural networks (Ramcharitar and Hosein, 2016).  

Models derived from systems which attempt to mimic the process by which the human brain solves 

complex problems are often referred to as intelligent systems (Asoodeh and Bagheripour, 2012). 

Intelligent systems have been used to improve the prediction and accuracy of sonic wave velocity 

prediction where sonic logs have been lost due to poor storage, poor logging, failure of logging 

instruments and bad hole condition (Akhundi et al., 2014; Al-Dousari et al., 2016; Aleardi, 2015; 

Asoodeh and Bagheripour, 2014, 2013; Bagheripour et al., 2015; Cranganu and Bautu, 2010; 

Kazatchenko et al., 2006b, 2006a; Maleki et al., 2014; Rajabi et al., 2010; Rajabi and Tingay, 

2013; Rezaee et al., 2007; Zoveidavianpoor et al., 2013).  

The application of artificial neural networks in the petroleum industry is rapidly growing because 

of their ability to predict complex non-linear relationships by a parallel computing scheme that 

resembles the process in the human brain (Prieto et al., 2016; Saputro et al., 2016; Verma et al., 

2012). ANN has been used to generate petrophysical properties like formation density for reservoir 

characterization in wells where the density log was only run for a short interval in the well due to 

the financial implications (Long et al., 2016). ANN models have been developed to estimate 
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Young’s modulus and Poisson’s ratio from density and sonic logs (Tariq et al., 2017). Elkatatny 

et al. (2017) adopted the same model to estimate the static Poisson’s ratio to be used in analyzing 

the stress-state in formations where it is not possible to extract cores continuously for static 

laboratory testing. Ketmalee and Bandyopadhyay (2018) employed ANN to predict sanding from 

sonic and density logs, thereby evaluating the sanding risk from producing reservoirs. The 

application of ANN in the petroleum industry as presented is vast and there are still more emerging 

areas in which ANN can be used as a tool to aid predictions and analysis. 

Ramcharitar and Hosein (2016) developed a 10-hidden layer artificial neural network using depth, 

porosity, clay content and bulk density to estimate compressional and shear interval travel times. 

They concluded that results from the ANN model presented lower absolute average errors when 

compared with the empirical correlations developed and were thus more appropriate for 

mechanical rock properties estimations. 

In older offset wells and in the absence of sufficient reliable data well logs, gamma ray and 

formation bulk density logs can be used to train and develop effective models for predicting the 

sonic velocities to determine the mechanical rock properties for sand prediction, as proposed in 

this study. Recently, Tariq et al. (2017) proposed empirical correlations from ANN models to 

estimate sonic wave velocity from density, gamma ray and neutron porosity; the model is adapted 

from the original model (Tariq et al., 2016). Unlike the proposed model in this study, in the absence 

of the neutron porosity or sufficient data, the models become inapplicable.  

The paper aims to provide a simple but robust ANN model for field engineers to determine the 

compressional wave and shear wave transit time during hydrocarbon exploration from limited well 

logs, and without knowledge of the porosity of the formation. The results of these predictions can 
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be used as a reliable tool to predict geomechanical reservoir properties including the sanding 

potential of the reservoir. The main objective of the paper is to provide a rugged method to 

determine the sanding potential of a formation in the field in real-time with limited data or where 

sonic logs are not available. The significance of this model to the industry is that limited log data 

will not have to be transmitted offsite for geoscientific analysis for initial determination of the 

likelihood of sand production thereby reducing cost and time of exploration operations 

Table 5.1 highlight the difference between the current work and the following intelligent system 

articles. 

The chapter is structured as follows: section 5.2 introduces the concept of ANN and how the 

algorithm is applied to train the model. In section 5.3, the methodology to develop the ANN 

architecture is presented. The proposed model is also applied to a case study in section 5.4 and 

used to estimate the rock mechanical properties. The results of the model predictions are analyzed 

in section 5.5. The conclusions based on the analysis are finalized in section 5.6. 
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Table 5.1. The differences between the current work and the following intelligent system articles 

S/N Articles   Intelligent System Formation Type  Input data  Output data 

Nos of 

layers  Area of Application  Region 

1 Rajabi et al.(2010) 

Genetic Algorithm 

Fuzzy logic 

Neuro-Fuzzy 

technique Carbonate 

NPHI, RHOB & 

RESD 

Compressional 

velocity, 

Shear wave 

velocity, & 

Stoneley wave 

velocity 5 

Petrophysical, 

geophysical & 

geomechanical 

studies Iran 

2 

Maleki et al. 

(2014)  

Support Vector 

Machine, 

Back Propagation 

Neural Network Carbonate 

DTCO, RHOB & 

GR 

Shear wave 

velocity 3 

Estimation of rock 

formation 

mechanical 

properties Iran 

3 

Zoveidavianpoor 

(2014) 

Artificial Neural 

Network 

Adaptive Neuro-

fuzzy Inference 

System Carbonate  

Depth, GR, NPHI & 

RHOB 

Compressional 

wave velocity 4 & 5 

 Prediction of p-

wave 

Middle 

Eastern 

4 

Rajabi and Tingay 

(2013)  

Genetic Algorithm 

Shales 

Sandstone GR, RHOB & NPHI 

Compressional 

velocity 

Shear wave 

velocity  N/A 

 Rock mechanical 

properties Australia 

Mamdani fuzzy 

inference 

systems 

Shales 

Sandstone GR, RHOB & NPHI 

Bulk Modulus 

Young's 

Modulus, 

Shear Modulus, 

Poisson's Ratio  N/A 

 Rock mechanical 

properties Australia 

Adaptive Neuro-

fuzzy Inference 

System Carbonate 

Porosity logs (DT, 

NPHI & 

RHOB) 

Bulk Modulus 

Young's 

Modulus, 

Shear Modulus, 

Poisson's Ratio  N/A 

 Rock mechanical 

properties Australia 
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5 

Asoodeh and 

Bagheripour 

(2012) 

Genetic Algorithm 

Fuzzy logic 

Neuro-Fuzzy 

technique Carbonate 

NPHI, RHOB, 

RESD & Vsh 

Compressional 

velocity, 

Shear wave 

velocity, & 

Stoneley wave 

velocity 3 

Improvement of 

sonic velocity 

predictions Iran 

6 Aleardi (2015) 

Genetic Algorithm 

(GA) Shale-sand 

Depth, GR, RHOB 

and RESD  

Shear wave 

velocity  N/A 

Prediction 

Optimization    N/A 

Genetic Algorithm 

(GA) Shale-sand 

Depth, GR & 

RHOB  

Compressional 

wave velocity  N/A 

Prediction 

Optimization    N/A 

Genetic Algorithm 

(GA) Shale-sand Depth, Vp & RESD  

Shear wave 

velocity  N/A 

Prediction 

Optimization    N/A 

7 

Rezaee et al. 

(2007) 

Fuzzy logic 

Neuro-Fuzzy Sandstone 

Vp, GR, FDC, 

RESD & NPHI 

Shear wave 

velocity  N/A 

Reservoir 

characterization Australia 

8 

Cranganu and 

Bautu (2010) 

Gene Expression 

Programming sandy shales GR, RESD 

Compressional 

wave velocity  N/A 

Estimating the 

presence of 

overpressure zones Oklahoma 

9 

Zoveidavianpoor 

et al. (2013) 

Artificial Neural 

Network Carbonate 

Depth, GR, NPHI & 

RHOB 

Compressional 

wave velocity 3 

 Reservoir 

exploration & 

development 

activities 

Middle 

Eastern 

10 

Akhundi et al. 

(2014) 

Artificial Neural 

Network Carbonate 

Vp, NPHI, GR, 

RHOB & RESD 

Shear wave 

velocity 3 

 Geo-mechanical, 

petrophysical & 

geophysical 

studies Iran 

11 

Asoodeh and 

Bagheripour 

(2014)  

Alternative 

Condition 

Expectation 

Stimulated Neural 

Network 

(ACESNN) Carbonate 

NPHI, Vp, RHOB 

& RESD 

Shear wave 

velocity 3 

 Geo-mechanical, 

geophysical, & 

reservoir 

characterization 

studies Iran 
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12 

Al-Dousari et al. 

(2016) 

General Regression 

Neural Network 

(GRNN) 

Sandstones, 

shaley sands & 

carbonate 

Porosity, clay 

content, grain 

density, 

permeability & 

cementation 

exponent 

Shear wave 

velocity 4 

 Predict shear wave 

velocity 

Broad 

spectrum 

General Regression 

Neural Network 

(GRNN) 

Sandstones, 

shaley sands, & 

carbonate 

Compressional 

wave velocity 

Shear wave 

velocity 4 

 Predict shear wave 

velocity 

Broad 

spectrum 

13 

Kazatchenko et al. 

(2006b) 

Joint Inversion 

Technique Carbonate 

∆tp, micro-

resistivity, total 

porosity & density 

Shear wave 

velocity  N/A 

Reconstructing 

double porosity 

carbonate formations Mexico 

14 

Bagheripour et al. 

(2015) 

Support Vector 

Regression (SVR) Carbonate 

∆tp, RHOB, NPHI, 

RT, PEF, RS & GR 

Shear wave 

velocity  N/A 

 Geomechanical & 

geophysical studies Iran 

15 

Ramcharitar and 

Hosein (2016) 

Artificial Neural 

Network 

Unconsolidated 

Sandstone 

Porosity, clay 

content & bulk 

density 

DTCO & DTSH 

(Independently)  10 

Rock mechanical 

properties Trinidad 

16 Tariq et al. (2017) 

Artificial Neural 

Network Limestone GR, NPHI & RHOB 

DTCO & DTSH 

(Independently) 3 

Construction of earth 

models N/A 

17 Tariq et al. (2016) 

Feed forward 

Neural Network & 

Radial Basic 

Function Carbonate GR, NPHI & RHOB 

DTCO & DTSH 

(Independently) 3 

Rock elastic 

parameters N/A 

18 Current work 

Artificial Neural 

Network 

Sandstone and 

shale GR, RHOB & Vsh DTCO & DTSM 3 Sanding Potential  

West 

Africa 
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 Artificial Neural Network (ANN) 

ANN is a robust and effective computational tool for establishing relationships between complex 

non-linear parameters without much knowledge of the system structure. ANN probably started in 

the 1940s (Buhulaigah et al., 2017). ANN uses strong, complex and parallel correlations that 

provide a mathematical approximation for these non-linear relationships by imitating the behavior 

of the system’s input and output data (Chitsazan et al., 2015; Prieto et al., 2016). ANN imitates 

behavioral patterns; thus,  ANN can grow and learn to develop and establish non-linear patterns 

between input and output data, even for systems with no known mathematical relationship (Azizi 

et al., 2016). Historical data are effective resources for ANN because they provide examples from 

which ANN can learn from previous scenarios and past experiences (Ashtiani and Shahsavari, 

2016).  

The artificial neural network can be classified by the input data feeding direction into feedforward 

and feedback neural networks. Feedforward networks are used more often in engineering 

applications (Benardos and Vosniakos, 2007; Mhaskar, 1993; Razavi and Tolson, 2011; Sperduti, 

2015). Feedforward neural ANNs are further sub-classified as a single-layer perceptron, multilayer 

perceptron and radial basis function neural networks (Gardner and Dorling, 1998; Razavi and 

Tolson, 2011).  A perceptron can be viewed as interconnected neurons (nodes) through which 

functions (signals) are transmitted through the network chain. 

 Multi-layer perceptron artificial neural network  

A class of feedforward ANN is the multilayer perceptron ANN. A multilayer perceptron network 

is made up of an input layer, hidden layers and an output layer; more than two layers is typical for 

ANN (Basheer and Hajmeer, 2000; Gardner and Dorling, 1998; Prieto et al., 2016; Schmidhuber, 

2015). A multilayer perceptron neural network consists of a network of interconnected neurons 
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between the input and output layers; these interconnected neurons map out and establish 

relationships between the vectors in the layers (Dorofki et al., 2012; Gardner and Dorling, 1998). 

The multilayered perceptron modeling process involves the resolution of the respective weights to 

approximately establish the relationship between the input and output layer. The initial weights 

are a set of random values to begin the cycle (Gardner and Dorling, 1998). The calculated errors 

at the end of each epoch are plotted to determine the smallest error using the gradient descent 

technique. The initialized weights are passed through activation (transfer) functions for the forward 

pass and the errors backpropagated to reinitialize the weights. The activation transfer functions 

common applied are logistic, hyperbolic tangent and pure linear functions (Dorofki et al., 2012).  

A major advantage of multilayer perceptron is that they can learn; therefore, they can be trained to 

determine simple and complex non-linear pattern functions. However, the network must be 

furnished with reliable data for the input and target layers that adequately represent the existing 

relationship between the parameters in the provided dataset. In addition,  the ANN is generalized 

so that it is suitable for use with a similar data format (Chitsazan et al., 2015; Gardner and Dorling, 

1998). A detailed and comprehensive breakdown of how feedforward ANNs are developed with 

examples has been presented in literature (Adedigba et al., 2017; Chitsazan et al., 2015; Gardner 

and Dorling, 1998; Lawrence et al., 1997; Ruck et al., 1990; White and Rosenblatt, 1963). A 

summary of the implementation of the ANN in the proposed model is presented in section 5.3.3. 
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 Methodology to develop the ANN model 

The framework for the proposed methodology is presented in Figure 5.1 

 

Figure 5.1. Proposed ANN model methodology flowchart 



110 

 

 Data collection and determination for ANN  

The data for the proposed methodology is obtained from actual well logs. Firstly, the data is 

analyzed to identify the suitable depth range that provides an accurate representation of the well. 

The chosen interval for the network was 7100 feet to 8400 feet. The data contains the depths, 

caliper, resistivity, bulk density, gamma ray, neutron and sonic logs. 

 Quality assurance and quality checks (QAQC) 

Quality assurance and quality control (QAQC) were performed on the well log dataset to ensure 

the reliability of the data. Firstly, shallow sections of the data with null sets were removed from 

the dataset. Secondly, washout and key-seat sections were eliminated by cross-referencing with 

the caliper logs for adjacent formation sections. Poisson’s ratio was used as a final quality check 

to ensure all data fell within possible Poisson’s ratio estimates.  

 ANN model and architecture 

The general architecture to be implemented for the proposed model is presented in Figure 5.2. The 

neural network model is a three-layered feedforward artificial neural network which uses a 

backpropagation algorithm. The ANN is made up of three layers, input, hidden and output layers. 

Advances in deep space learning have provided the ability to create more than one hidden layer in 

between the input and output layer, though an extra computational cost (Prieto et al., 2016). The 

input layer consists of three inputs vectors (X1, X2, X3) while the output layer consists of two 

output vectors (Y1 and Y2). The hidden layer is made up three hidden layers. The sigmoid function 

used on the first sub-hidden layer is a logsig function while the hyperbolic tangent function is used 

for the second sub-hidden layer and output hidden layer. For training, cross-validation and testing, 

the Levenberg-Marquardt optimization function is used with the mean square error (MSE) loss 

function. The main features of the ANN architecture are presented in Table 5.2. 
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Table 5.2. Main features of the proposed ANN model 

ANN model Parameters 

Training method Feedforward backpropagation 

Input data Well log data 

Number of layers 3 

Output data Sonic well log data 

Optimization algorithm Levenberg-Marquardt 

Activation function Logsig-Tansig-Tansig 

Loss function MSE 

 

 Learning and training of the ANN 

In order for the ANN to adequately capture the relationship, linear or non-linear, that exists within 

the dataset, the neural network must be trained with a sample dataset. The purpose of training the 

ANN is to allow the network to locate the best permutation sequence of weights and their 

corresponding input vectors that offer the closest fit to the corresponding target vector (Gardner 

and Dorling, 1998; Ma et al., 2017; Rolon et al., 2009). The ANN teaches itself by learning; the 

learning can be supervised, unsupervised or reinforced. In supervised learning, the network is 

provided with input data and target data for the output data. The target data serve as a guide and 

correction for the network; hence, the term supervised. With the target values available to the 

neural network, the ANN is able to attempt to establish the tightest fit to the data. Supervised 

learning remains the most common methodology adopted for most applications (Khandelwal and 

Singh, 2010; Rolon et al., 2009; Saputro et al., 2016). Backpropagation is the most common 

supervised neural network; it is adopted in many operationally driven and geological systems. The 

backpropagation algorithm is implemented firstly with a forward activation for the target solution, 

and then a backward propagation to reinitialize the weight from the computed error gradient. This 

is done in two sweeps (Adedigba et al   2017). The backpropagation algorithm determines the 

epoch with the least errors by calculating the local error gradient and locating the minimum point 
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on the error surface (Chen et al., 2017; Chitsazan et al., 2015). The local error gradient descent 

learning for the implementation of the backpropagation algorithm is an iterative process which is 

corrected with the help of adjustable parameters such as the learning rate and momentum term 

(Gardner and Dorling, 1998). The error function can be determined with performance functions 

such as mean square error (MSE), sum square error (SSE) and mean absolute deviation (MAD) 

which are back-propagated into the network to re-initialize the weights (Adedigba et al., 2017; 

Ashtiani and Shahsavari, 2016; Hsu et al., 1995). 

For the proposed ANN to learn the best permutation sequence between the input and target vectors, 

the well log data are sub-divided into a training set, a validation set and a test set. 70% of the input 

well log data is used to train the ANN model, 15% is used to validate the model and 15% is used 

to test the ANN model.  

The steps used to develop and implement the proposed model are summarized below: 

1. Determine the architecture of the ANN: This involves establishing the number of layers that 

adequately predicts the corresponding pattern recognition. The neurons in each layer must 

also be determined at this stage.  The schematic of the proposed ANN architecture is presented 

in Figure 5.2. 

2. Select network vectors and data: The input vector and data for the network and target data are 

specified. A range of input data available for the model is presented in Figure 5.3.  

3. Initialize the weight values of the input parameters and biases: The initial values are initially 

assumed and redistributed as a continuous process of the learning and growth of the network. 
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4. Propagate the input vector or data: The input vector is propagated through the neural network 

to estimate the output data. 

5. Compute error: The error between the target value and output values is calculated by 

calculating their differences. The error function of each set point is determined. 

6. Back pass the error terms: The error term is passed back into the neural network  

7. Update network: The neural network is updated based on the error function determined in 

order to reduce the error between the target and output values. 

8. Repeat all stages: The weights and biases are re-initialized to begin the loop again. This 

process is cycled until the limiting criteria are reached. This can be the minimum error, 

validation step or the number of cycles, known as epochs. 

 

Figure 5.2. Schematic of the proposed ANN architecture 
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 Generalization of the ANN 

The essence of using a reliable dataset to develop an ANN model is the ability to generalize the 

model so that it is applicable to a dataset outside the data used to train the model. The proposed 

model is trained with a section of the dataset and generalized by applying the model to estimate 

the desired properties from a different section of the dataset. 

 Case Study 

The proposed methodology framework in section 5.3 is applied to an actual well log dataset. The 

case study presented in this work is actual well log data from an offshore oil and gas well located 

in West Africa. Information containing the details and location of the offshore well has not been 

made public due to confidentiality and proprietary issues. However, for interested users, the well 

log data is presented in Figure 5.3 and Table 5A 1 in Appendix 5A. The input data available from 

the well log dataset are presented below. 
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Figure 5.3. Well Log Data 
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 Input parameters  

• Gamma ray log (GR) 

• Bulk density log (RHOB) 

𝜙𝑑𝑒𝑛 =
𝜌𝑚𝑎 − 𝜌𝑏

𝜌𝑚𝑎 − 𝜌𝑓𝑙
 (5.1) 

• Deep resistivity log (RESD) 

• Neutron log (NPHI) 

𝜙𝑁 = 𝜙 ∗ 𝜙𝑁,𝑓𝑙 + (1 − 𝜙) ∗ ((1 − 𝑉𝑠ℎ) ∗ 𝜙𝑁,𝑚𝑎 + 𝑉𝑠ℎ ∗ 𝜙𝑁,𝑠ℎ) (5.2) 

• Shale Volume (Vsh) 

𝑉𝑠ℎ =
𝐺𝑅 − 𝐺𝑅𝑚𝑖𝑛

𝐺𝑅𝑚𝑎𝑥 − 𝐺𝑅𝑚𝑖𝑛
 (5.3) 

• Total porosity (PHIT) 

• Effective porosity (PHIE) 

𝑃𝐻𝐼𝐸 = 𝑃𝐻𝐼𝑇 − 𝑉𝑠ℎ (5.4) 

 Output parameters 

• Compressional wave sonic transit time log (DTCO) 

• Shear wave sonic transit time log (DTSM) 

 Selection of Models 

Several models were developed to determine the best model for carrying out on the spot 

determination of compressional transit time and shear transit time to be used to determine the 

likelihood of the formation to sand. All the models developed were trained, tested and validated. 
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The well log data set is divided into three sections based on best practices. 70% of the data was 

used for training, 15% was used for testing and the rest of the data was used to validate the model. 

The training set is used to compute the gradient and predict the weight values and biases. The 

validation set is used to certify the precision and generalization capability of the developed 

network in the process of the training. The test set is used to verify the performance of the network.  

The coefficients of determination (R2) of 0.9904, 0.9957 and 0.993 were obtained for the training 

set, testing set and validation set respectively. The results obtained showed the model fits your 

data. The proposed ANN Model 

Based on the ANN architecture proposed in section 5.3.3, different combinations of input vectors 

were studied. Gamma-ray, density log, and shale volume were observed to adequately predict the 

sonic transit time from the well log data. Thus, they were chosen as input vectors for the ANN 

model and applied to the ANN framework in Figure 5.2. The adopted ANN framework for this 

case study is presented in Figure 5.4. 

 

Figure 5.4. Schematic diagram of ANN architecture for sonic interval travel time 
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 Estimated Formation Mechanical Properties 

Most rock elastic constants and mechanical rock properties can be obtained directly from the sonic 

wave interval travel time through the formations. The correlations commonly used to determine 

these properties in isotropic and homogeneous formation are presented below (Mullen et al., 2007; 

Tixier et al., 1975). 

5.4.4.1 Young’s Modulus (E) 

The ratio of the uniaxial stress to strain is known as Young's modulus. It is the measure of the 

stiffness of the formation, its ability to resist uniaxial deformation and compression. It is estimated 

from sonic transit time by equation (5.5). 

𝐸 =
𝜌

∆𝑡𝑠
2 ∗ (

3∆𝑡𝑠
2 − 4∆𝑡𝑐

2

∆𝑡𝑠
2 − ∆𝑡𝑐

2 ) ∗ 1.34 ∗ 1010 
(5.5) 

5.4.4.2 Bulk Modulus (K) 

The ratio of hydrostatic stress to the volumetric strain is given by the bulk modulus and can be 

estimated from the sonic transit times using equation (5.6). The bulk modulus measures the ability 

of the formation to resist hydrostatic deformation and compression (Fjaer, 2008). 

𝐾 = 𝜌 ∗ (
3∆𝑡𝑠

2 − 4∆𝑡𝑐
2

3∆𝑡𝑠
2 ∗ ∆𝑡𝑐

2 ) ∗ 1.34 ∗ 1010 (5.6) 

5.4.4.3 Shear Modulus (G) 

The shear modulus measures the ability of the formation to resist shear deformation and is 

estimated from the sonic transit time using equation (5.7). It is also known as the modulus of 

rigidity (Fjaer, 2008). 
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𝐺 =
𝜌

∆𝑡𝑠
2 ∗ 1.34 ∗ 1010 (5.7) 

5.4.4.4 Sonic Porosity: 

One of the common uses of the sonic interval travel time through a formation during well logging 

is the estimation of porosity, known as sonic porosity. Porosity from sonic logs can be estimated 

from Wyllie’s time-average equation (Wyllie et al., 1956). 

𝜙𝑠 =
Δ𝑡𝑙𝑜𝑔 − Δ𝑡𝑚𝑎

Δ𝑡𝑓𝑙 − Δ𝑡𝑚𝑎
 (5.8) 

 However, Raymer-Hunt et. al. (1980) modified Wyllie’s equation to account for compaction 

(Raymer et al., 1980). 

𝜙𝑠 =
5

8
∗

Δ𝑡𝑙𝑜𝑔 − Δ𝑡𝑚𝑎

Δ𝑡𝑙𝑜𝑔
 (5.9) 

Wyllie’s porosity model fails to provide accurate estimations in unconsolidated or loosely 

consolidated formations. To compensate for this error, a term known as the compaction factor (𝐶𝑝) 

is added to the equation. 

𝜙𝑠 =
Δ𝑡𝑙𝑜𝑔 − Δ𝑡𝑚𝑎

Δ𝑡𝑓𝑙 − Δ𝑡𝑚𝑎
∗

1

𝐶𝑝
 (5.10) 

𝐶𝑝 =
Δ𝑡𝑠ℎ

100
 (5.11) 

Table 5.3. Interval Travel times of some formations and fluids (after (Asquith and Gibson, 2004)) 

Formation/Fluid Interval travel time (µsec/ft) 

Sandstone 51 – 55.5  

Limestone 47.6 

Dolomite 43.5 

Freshwater 189 

Saltwater 185 
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Table 5.3 presents the interval travel time of some formations. The presence of hydrocarbon and 

gas can alter the measured values of the interval travel time by increasing the measured value 

(Nourafkan and Kadkhodaie-Ilkhchi, 2015; Tixier et al., 1975). This leads to errors in the derived 

sonic porosity. To correct for this increase, the convention is to multiply the derived sonic porosity 

by 0.7 for gas and by 0.9 for oil.  

5.4.4.5 Sanding potential:  

According to Tixier et al. (1975), sanding potential (𝜔) can be determined from the product of the 

shear modulus and bulk modulus. If the product is greater than 0.8 Mpsi2, then the probability of 

sand production is said to be highly unlikely; however, if the product is less than 0.7 Mpsi2, then 

the probability of sanding is said to be highly likely (Tixier et al., 1975; Veeken et al., 1991). 

Therefore, high values of sanding potential are desirable. 

𝜔 = G ∗ K (5.12) 

In this study, the unconfined compressive strength was not estimated from the sonic velocities 

because generalization of the unconfined compressive strength (UCS) correlation tends to be 

highly inconsistent from region to region. A correlation valid in the Gulf of Mexico may fail totally 

in the Alberta sands; therefore, adequate care must be taken prior to selecting the best correlation 

for a particular region. Najibi et al. (2015) provide a comprehensive list of possible UCS 

correlations that could be used to estimate unconfined compressive strength from sonic logs. 
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 Results and discussion 

 Sonic transit time log estimation 

The primary objective of developing the ANN model is to provide a reliable tool capable of 

developing sonic transit time logs in the absence of reliable sonic well logs with a limited number 

of well log data. The recommended input well logs for the ANN model are gamma ray and 

formation density logs, from which the shale volume can be calculated. The actual values from the 

well logs are given in Table 5A 1. A sample of the target measured sonic log data and the predicted 

output sonic transit log data is presented in Table 5.5. It may be observed that the predicted sonic 

transit time demonstrates a close match with actual measured values. This is further evident in 

Figure 5.5, where the measured and ANN predicted compressional wave sonic transit time is 

plotted versus depth on the left-hand side. On the right-hand side of Figure 5.5, the measured and 

ANN predicted shear wave sonic transit times is plotted versus depth. Figure 5.5 confirms a closer 

match of the measured and ANN predicted values for compressional wave sonic transit time than 

for shear wave sonic transit time. This may be due to the fact that ANN input vectors like bulk 

density are affected by both the matrix and the saturating fluid. The compressional wave travels 

through both the matrix and saturating fluid of the formation; however, the shear wave travels only 

through the matrix of the formation. Perhaps input parameters that are affected by only the matrix 

(matrix density, porosity) would provide a better fit for shear wave sonic transit time prediction. 

The model fails to predict accurately a section (7200 – 7400 feet) of the shear sonic log; however, 

this has been left in this paper to draw attention to this section. This could be as a result of the 

presence of gas or formation anisotropy, especially as a result of clay. The measurement of sonic 

transit time varies depending on the orientation of the clay anisotropy along its path. The difference 

in the match is not so evident in the cross-plot comparison of measured compressional transit time 
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with ANN compressional transit time in Figure 5.6, and the cross-plot comparison of measured 

compressional transit time with ANN compressional transit time in Figure 5.7. To further provide 

a qualitative analysis of the model prediction, the root mean square error (RMSE), the mean 

absolute error (MAE) and the average percentage error (MPE) are calculated for the model. The 

RMSE was 2.62 and 5.29, while the MAE was 2.14 and 3.77 for compressional and shear transit 

time respectively. The MPE was 3% for both compressional and shear transit time. A summary of 

the mean average error and mean percentage error of the sonic logs and mechanical rock properties 

is presented in Table 5.4. 

Table 5.4. Summary of statistical analysis 

Formation property RMSE MAE MPE 

DTCO 2.62 2.14 0.03 

DTSC 5.29 3.77 0.03 

Young’s modulus 0.21 0.15 0.04 

Bulk modulus 0.28 0.21 0.09 

Shear modulus 0.13 0.08 0.05 

Sonic porosity 0.01 0.01 0.06 

Sanding potential 0.50 0.38 0.09 

 

The ANN model provides an alternative of using overgeneralized empirical correlations which are 

not robust enough to be applied to every well. The ANN is relatively cheap, cost-effective and 

computationally less rigorous than other well log data analysis tools. Due to the dynamic nature 

of the well log matching, severe deviations from the ANN predicted values should be investigated 

for formation anomalies. 
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Table 5.5. Sample measured sonic well log and ANN derived values 

Depth (ft) 

DTCO (µsec/ft) DTSM (µsec/ft) 

Measured Predicted Measured Predicted 

8142.00 93.45 91.60 160.15 161.88 

8142.50 93.27 93.06 159.73 164.44 

8201.50 71.81 68.32 122.82 111.49 

8205.00 82.57 80.39 142.48 139.20 

8205.50 82.37 78.61 143.04 135.20 

8207.00 83.20 80.10 142.78 138.56 

8207.50 83.96 81.32 142.68 141.23 

8209.00 82.85 81.55 142.01 141.75 

8209.50 82.73 82.31 141.88 143.39 

8248.00 83.78 86.56 152.76 152.26 

8248.50 83.00 87.26 150.86 153.66 

8249.00 82.93 85.30 147.91 149.70 

8249.50 83.18 84.28 145.73 147.58 

8250.50 83.11 82.21 144.74 143.18 

8252.00 83.63 83.95 147.76 146.90 

8301.50 67.41 70.03 117.19 115.34 

8302.00 68.02 70.44 115.69 116.29 

8302.50 69.26 70.95 115.58 117.46 

 



124 

 

 

Figure 5.5. Depth vs Interval Travel Time 

 

Figure 5.6. Comparison of measured and predicted compressional wave travel time 
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Figure 5.7. Comparison of measured and predicted shear wave travel time 

 Formation Mechanical Property Prediction 

The effectiveness of the ANN model as a reliable and cost-effective alternative to an actual sonic 

well log is demonstrated by comparing the estimations of the typical rock mechanical properties 

that are estimated from sonic logs in the oil and gas industry. The results of the mechanical rock 

properties estimations are presented in Table 5.6.  
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Table 5.6. Sample measured well log and ANN derived mechanical rock properties 

Dept (ft) 

Young’s Modulus Bulk Modulus  Shear Modulus Sonic Porosity Sanding Potential 

Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted 

8142.0 2.9 2.89 1.88 2.05 1.17 1.14 0.25 0.25 2.19 2.34 

8142.5 2.9 2.79 1.87 1.97 1.17 1.1 0.25 0.26 2.18 2.17 

8201.5 5.42 6.36 3.48 3.52 2.18 2.65 0.14 0.1 7.59 9.34 

8205.0 3.82 4.01 2.52 2.67 1.53 1.6 0.2 0.19 3.85 4.28 

8205.5 3.81 4.23 2.56 2.76 1.52 1.7 0.2 0.18 3.89 4.70 

8207.0 3.79 4.04 2.46 2.68 1.52 1.62 0.2 0.19 3.74 4.34 

8207.5 3.76 3.89 2.37 2.62 1.52 1.55 0.21 0.19 3.60 4.06 

8209.0 3.86 3.9 2.49 2.63 1.55 1.56 0.2 0.19 3.87 4.10 

8209.5 3.86 3.81 2.5 2.59 1.55 1.52 0.2 0.19 3.88 3.93 

8248.0 3.41 3.36 2.64 2.35 1.33 1.33 0.21 0.22 3.50 3.13 

8248.5 3.49 3.31 2.68 2.32 1.36 1.31 0.2 0.22 3.65 3.04 

8249.0 3.6 3.48 2.62 2.41 1.42 1.38 0.2 0.22 3.70 3.34 

8249.5 3.66 3.57 2.53 2.46 1.45 1.42 0.2 0.21 3.67 3.49 

8250.5 3.69 3.77 2.5 2.55 1.47 1.5 0.2 0.2 3.67 3.83 

8252.0 3.56 3.58 2.52 2.46 1.41 1.42 0.21 0.21 3.55 3.51 

8301.5 5.96 5.93 4.02 3.38 2.38 2.45 0.11 0.12 9.54 8.31 

8302.0 6.02 5.84 3.8 3.36 2.44 2.41 0.11 0.12 9.26 8.09 

8302.5 5.95 5.72 3.54 3.32 2.44 2.36 0.12 0.13 8.62 7.84 
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These values are used to produce cross-plot comparisons of the measured versus ANN model 

estimates of the mechanical rock properties. The Young's modulus is presented in Figure 5.8; the 

root mean square error, the mean absolute error and mean percentage error were 0.21, 0.15 and 

4% respectively. Typical values of Young’s modulus in sandstone formation are between can be 

found in Table 5.7 (Deere and Miller, 1966; Nauroy, 2011). The values in the case study vary from 

2.7 Mpsi to 6 Mpsi, with a majority of the values less than 4.7 along the well. This suggests that 

the formation is moderately weak and well consolidated. The stress state of the formation expected 

can also be assumed for initial analysis. A moderately high confining stress state that is capable of 

confining the formation into a consolidated state would thus be expected upon further 

geomechanical investigation. 

Table 5.7. Formation classification table 

Formation classification 

Ed (GPa) Ed (Mpsi) (Deere and Miller, 1966) Nauroy (2011) 

Very weak formation Poorly consolidated formation <1 

0.145 

weak formation Poorly cemented formation 5 - 10 

0.725 - 1.45 

Moderately weak formation Consolidated formation 10 – 50 

1.45 - 7.25 

Hard formation Highly consolidated formation 50 - 100 

7.25 - 14.5 

Very hard formation Hard formation >100 >14.5 
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Figure 5.8. Comparison of measured and predicted Young’s modulus 

Most of the predicted bulk modulus values did not fall on the perfect linear trendline. Nevertheless, 

the root mean square error was found to be 0.28, the mean absolute error was found to be 0.21, 

while the mean percentage error was 9%. The trendline is also seen to be very close to the unity 

line, indicating that the predictions are not biased positively or negatively. 

The values of the bulk modulus presented in Figure 5.9 suggests that the formation has a moderate 

resistance to external pressure, and more specifically, stresses induced from drilling or production 

operations. The presence of liquid hydrocarbon or water may increase the bulk modulus; therefore, 

the values may also be initially indicative of a gas hydrocarbon-bearing formation. High 

compressibility may be desirable to squeeze more hydrocarbon out of the fluid pore space where 

the failure can be controlled. Compaction and subsidence may be challenges not expected to be 

encountered in such formations; hence, surface facilities may be designed to cater to this scenario 

over time. 
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Figure 5.9. Comparison of measured and predicted bulk modulus 

The analysis of the cross plot of the shear modulus in  Figure 5.10 revealed the root mean square 

error to be 0.13, the mean absolute error to be 0.07 and the mean percentage error to be 

approximately 5%. The shear modulus of quartz has been reported to be approximately 44 GPa 

while clay is approximately 6.85 GPa at confining pressures between 5 MPa and 40 MPa (Lee, 

2005). The shear modulus values presented in Figure 5.10 are significantly lower, which is in line 

with the observed Young’s modulus and shear modulus in the case study. This confirms that the 

formation is moderately susceptible to both compressional and shear deformation; thus, wellbore 

failure is not anticipated during controlled exploration. The completion engineer is able to 

anticipate and plan an effective completion program to ensure the well is intact after initial drilling 

and ready for production.  
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Figure 5.10. Comparison of measured and predicted shear modulus 

The sonic porosity presented in Figure 5.11 mainly ranges between 0.15 to 0.25, confirming that 

the formation is potentially a good reservoir with significant pore volume to store the desired 

hydrocarbons. The statistical model analysis showed that RMSE = 0.01, MAE = 0.01 and MPE = 

5.8%. The values of the sonic porosity in the case study are similar to the values obtained from the 

density porosity logs and neutron porosity logs, which help to validate the authenticity of the 

model. 
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Figure 5.11. Comparison of measured and predicted sonic porosity  

 The sanding potential of the well is also estimated and plotted in Figure 5.12. The model analysis 

demonstrated that the root mean square error was 0.5, the mean absolute error was 0.37 and the 
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Figure 5.12 Comparison of measured and predicted sanding potential 

The application of the proposed methodology on the well log data is a major step forward. To the 

best of the authors’ knowledge, there is no available ANN model which predicts sonic travel transit 
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can vary based on the training algorithm, the training method and transfer functions. A higher 

number of neurons or layers does not guarantee a better model; therefore, adequate time should be 

dedicated to determining a suitable architecture.  Most importantly, there is no set rule on how an 

ANN derived model should be designed or developed to get the best results (Adedigba et al., 2017). 

For this reason, it is recommended to adopt simple ANN architecture except in cases where 

complex correlations will better describe the existing structure between the input and target values 

(Franses and Draisma, 1997). Noteworthy is that increasing the number of input vectors or data is 

not synonymous with a better prediction as it is possible to overfit the data. 
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 Conclusions  

The present study has demonstrated the use of an artificial neural network in modeling sonic transit 

time logs from limited well log data. In this study, an ANN is proposed as a robust and reliable 

tool to define sonic logs from gamma ray and formation density logs. The proposed methodology 

provides the oil and gas industry with the following advantages: 

• The ANN model offers a solution to estimating sonic transit time from old wells with 

missing well log data, erroneous data due to faulty or damaged tools, and lost tools in a 

well. 

• The ANN model offers a solution where there is no sufficient well log dataset to develop 

formation property log tables for a geological area. 

• The ANN model offers a considerably cheaper alternative to running actual sonic logging 

tools like borehole compensated and dipole sonic logging tools. 

• The ANN model provides an alternative to using empirical correlation and offset data to 

determine shear wave velocity for calculating rock mechanical properties. 

The ANN model accurately predicts whether the well has a high sanding potential value meaning 

the probability of sanding is low. This is consistent with actual field observations. The well is an 

actual well with very little sanding issue, as accurately predicted by the ANN model. 

 In general, the modeling flexibility of the ANN allows for the prediction of various kinds of 

relationship from well logs that cannot be readily determined from other correlations. The 

effectiveness of the proposed ANN is demonstrated by estimating parameters which can also be 
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measured with sonic logs. The ANN model is recommended for establishing relationships for 

formation evaluation and characterization, especially for properties with no existing correlation. 

By adopting the proposed methodology, engineers will be able to estimate sonic transit times with 

a limited amount of well log data. The application of this models is that it provides field engineers 

with a means of determining the potential of a formation to produce sand in real time without 

having to send the data for comprehensive analysis by the geoscientists, thereby enabling the 

engineers to make quick, efficient and effective recommendations for field development. 

 As future work, compressional wave transit time could be added or combined with the available 

well logs to improve the estimation of shear wave sonic transit time. This would be useful for 

offset wells with only compressional wave transit time or logs from borehole compensated sonic 

logs. 
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Nomenclature 

RHOB Bulk density log (g/cm3) 

𝐾 Bulk modulus (Mpsi) 

DTCO Compressional wave travel time (µsec/ft) 

Δ𝑡𝑐 Compressional wave travel time (µsec/ft) 

RESD Deep resistivity log (ohm.m) 

PHIE Effective porosity log (m3/m3) 

𝜙𝑑𝑒𝑛 Electron density porosity (g/cc) 

𝜌𝑓𝑙 Fluid density (g/cc) 

𝜌, 𝜌𝑏 Formation density (g/cc) 

Δ𝑡𝑓𝑙 Formation fluid compressional wave travel 

time (µsec/ft) 

Δ𝑡𝑚𝑎 Formation matrix compressional wave travel 

time (µsec/ft) 

𝐺𝑅𝑚𝑖𝑛 Gamma-ray in clean sandstone 

𝐺𝑅𝑚𝑖𝑛 Gamma-ray in shale  

GR Gamma-ray log (gAPI) 

𝐺𝑅 Gamma-ray log reading 

𝜌𝑚𝑎 Matrix density (g/cc) 

MAE Mean absolute error 

MPE Mean percentage error 

Δ𝑡𝑙𝑜𝑔 Measured compressional wave travel time 

(µsec/ft) 

𝜙𝑁 Neutron porosity 

NPHI Neutron porosity 

𝜙𝑁,𝑓𝑙 Neutron response of the fluid 

𝜙𝑁,𝑚𝑎 Neutron response of the matrix 

PEF Photoelectric factor  

𝜗 Poisson’s ratio 

𝜙 Rock porosity 

w Sanding potential (Mpsi2) 

Vsh Shale volume 

RS Shallow resistivity  

𝐺 Shear modulus (Mpa) 

DTSM Shear wave travel time (µsec/ft) 

Δ𝑡𝑠 Shear wave travel time (µsec/ft) 

𝜙𝑠 Sonic porosity 

PHIT Total porosity log (m3/m3) 

RT True resistivity  

𝐸 Young’s modulus (Mpsi) 
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Appendix 5A 

Table 5A 1. 100 feet of the Actual well log data 

Depth 

(ft) 

DTCO 

(µsec /ft) 

DTSM 

(µsec /ft) 

GR 

(gAPI) 

PHIE 

(m3/m3) 

PHIT 

(m3/m3) 

RESD 

(ohm.m) 

RHOB 

(g/cm3) 
Vsh 

7105.5 88.00 153.67 64.37 0.17 0.20 16.16 2.33 0.23 

7106 88.02 152.38 76.51 0.16 0.19 10.32 2.34 0.23 

7109 91.04 149.02 42.23 0.18 0.20 44.99 2.25 0.17 

7114 88.03 147.53 50.99 0.14 0.18 77.66 2.34 0.22 

7117.5 85.88 145.78 45.08 0.16 0.18 43.15 2.35 0.19 

7118 85.81 146.32 42.53 0.16 0.18 38.45 2.36 0.17 

7118.5 86.00 146.54 47.95 0.15 0.18 32.54 2.35 0.18 

7119 86.28 146.56 53.50 0.16 0.18 30.01 2.35 0.18 

7123 87.05 149.10 61.06 0.17 0.18 26.11 2.32 0.05 

7123.5 88.93 147.39 41.34 0.17 0.18 25.01 2.29 0.05 

7124 89.98 146.47 41.79 0.18 0.19 28.79 2.27 0.06 

7124.5 92.44 146.55 40.36 0.18 0.19 27.95 2.26 0.07 

7125 93.21 147.25 38.47 0.18 0.19 37.42 2.24 0.10 

7128 90.75 150.21 52.98 0.15 0.18 23.49 2.35 0.24 

7129 87.33 148.71 46.24 0.14 0.17 20.12 2.33 0.20 

7129.5 87.69 147.15 36.27 0.15 0.17 41.30 2.30 0.16 

7130 87.98 146.06 38.50 0.16 0.18 49.40 2.28 0.17 

7169.5 87.98 152.68 101.59 0.18 0.21 5.06 2.30 0.24 

7170 87.29 152.64 68.93 0.17 0.20 6.14 2.31 0.20 

7170.5 86.88 150.06 63.38 0.18 0.20 9.91 2.32 0.16 

7171 85.66 147.95 60.89 0.18 0.20 9.60 2.33 0.15 

7171.5 84.76 148.87 57.77 0.17 0.19 8.53 2.32 0.14 

7172.5 84.02 149.44 54.37 0.18 0.20 9.30 2.32 0.14 
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7174 82.74 146.39 47.10 0.19 0.21 14.60 2.29 0.15 

7174.5 83.07 144.42 49.75 0.20 0.22 14.42 2.27 0.14 

7183.5 82.72 138.27 35.57 0.17 0.19 7.46 2.30 0.16 

7184 81.67 135.44 34.51 0.17 0.20 6.90 2.30 0.21 

7184.5 80.45 134.74 36.59 0.16 0.19 3.77 2.33 0.26 

7185 80.31 134.00 38.00 0.14 0.18 3.07 2.36 0.26 

7186.5 76.76 132.61 41.48 0.14 0.17 2.83 2.38 0.22 

7187 76.39 132.16 37.75 0.15 0.18 1.77 2.37 0.19 

7187.5 76.36 131.70 34.48 0.16 0.18 1.61 2.36 0.18 

7196 78.87 133.43 50.05 0.12 0.15 3.01 2.41 0.23 

7196.5 80.23 132.51 52.98 0.12 0.15 2.91 2.41 0.24 

7197 80.31 134.23 43.74 0.13 0.16 2.85 2.38 0.24 

7197.5 78.82 135.85 44.86 0.14 0.17 2.91 2.36 0.21 

7198 77.03 135.97 49.16 0.15 0.17 2.88 2.36 0.18 

7199 74.78 134.92 51.35 0.13 0.15 2.93 2.40 0.13 

7199.5 74.77 135.20 47.85 0.13 0.15 3.37 2.40 0.14 

7200 75.92 134.16 49.01 0.12 0.15 3.62 2.41 0.17 

Disclaimer 

The well log data presented in this study is solely for educational purposes. To ensure the confidentiality and prevent any proprietary 

issue, the source of the data has been withheld. The authors take no liability for linking this data to any source, group, persons or 

organizations. 
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Chapter 6 Data Driven Model for Shear wave Transit Time Prediction  
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Abstract 

Shear wave velocity in conjunction with compressional wave velocity provides a cost-effective 

and efficient non-destructive tool for estimating the mechanical rock properties of reservoir 

formations. In the exploration and production of oil and gas reservoirs, shear wave velocity is 

obtained from sonic well logging of the formation transit time. The shear wave velocities are used 

to provide continuous evaluation of the reservoir formation. However, shear sonic logs are not 

acquired in all oil and gas exploration wells. More so, many offset wells are not run with the most 

recent sonic logging tools capable of measuring both shear and compressional sonic transit times 

due to the relatively high costs of running such equipment. Such offset wells lack shear wave 

velocity measurements  

In this study, an exponential Gaussian process regression model is presented. The model accurately 

predicts the shear wave transit times in the formations which lack reliable shear wave transit time 

measurements. The proposed model is developed from five predictors namely: depth, density, 

porosity, gamma-ray and compressional transit time. The shear sonic transit time predictions are 

used to calculate the dynamic Young’s Modulus and Poisson’s Ratio of a reservoir formation. A 

sensitivity analysis is conducted to compare the results of the measured and predicted Young’s 

Modulus and Poisson’s Ratio of the formation. The proposed model provides a reliable and cost-

effective tool for the oil and gas formation evaluation. 

Keywords: Gaussian process, exploration, sonic log, well logging, velocity, reservoir formation 
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 Introduction   

Sonic well logs have been around since the 1900’s in the petroleum industry (Alford et al., 2012; 

Doh and Alger, 1958). Over the years, geologists, petrophysicist, and petroleum engineers have 

come to see the reliability and usefulness of sonic well logs in the exploration and production of 

hydrocarbon reservoirs. Onalo et al. (2018a) use an artificial neural network to predict the 

compressional and shear wave sonic logs along a wellbore from a producing well. Drilling 

engineers use sonic data to improve drilling efficiency and reduce target offset margins (Alford et 

al., 2012). The transmission of the sonic wave through the formation, “sonic well logging”, 

provides valuable data such as compressional transit time and shear transit time that is used in 

formation evaluation (Minear and Fletcher, 1983). Sonic logging was the first tool that provided 

the industry with a means to estimate formation porosity without knowledge of the fluid saturation 

(Raymer et al., 1980). As far back as 1958, researchers like  Doh and Alger (1958) perceived 

formation porosity estimation to be the major advantage of sonic logs. The transit arrival times of 

the sonic waves have evolved and now being used for formation porosity determination, lithology 

identification, fluid saturation indication, formation strength characterization, hydrocarbon 

indication, and much more (Khazanehdari and Mccann, 2005; Williams, 1990). This is due to the 

fact that the sonic transit interval times are affected by reservoir properties that include 

compaction, porosity, anisotropy density, lithology, cementation, consolidation, overburden stress 

and pore pressure (Khazanehdari and Mccann, 2005; Krief et al., 1990; Thomsen, 1986; Toksöz 

et al., 1976; Williams, 1990). A good understanding of how these properties change over the life 

of the reservoir is essential for proper reservoir planning, development and management 

(Khazanehdari and Mccann, 2005). 
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Well-calibrated and reliable sonic logging tools are necessary to acquire accurate measurements 

of the compressional and shear wave transit time, otherwise, the formation evaluations and 

estimation become false and misleading (Onalo et al., 2018a). This may result in the development 

of non-potential reservoirs and the abandonment of potential reservoir formations. Sonic logging 

tools have also evolved over the years. From single transmitters and receivers to two-receivers to 

compensate for discrepancies from the transmission source due to the borehole and mud. This 

known as the borehole effect. (Doh and Alger, 1958). The spacing between the receivers is usually 

about one feet to ensure proper description of the transit formation medium. To correct the errors 

generated as a result of the irregularities of the borehole, borehole compensated sonic tools were 

developed (Kokesh et al., 1965). To further improve the quality of the sonic measurements, array 

sonic logging tools were adopted that contains an array of transmitters and receivers (Hsu et al., 

1987). The above mentioned sonic logging tools are mainly monopole sonic logging as they do 

not provide measurements of the shear wave especially in fast formations (Alford et al., 2012; 

Harrison et al., 1990). Fast formations are formations in which the shear wave response of the 

formation arrives at the receivers before the compressional wave response of the wellbore fluid. 

In situations where the compressional wave response of the borehole fluid arrives before the shear 

wave response of the formation, the formation is known as a slow formation. More modern sonic 

logging tools include dipole sonic and multipole sonic logging tools which are capable of 

measuring both compressional and shear wave properties directly or indirectly by generating 

flexural waves (Alford et al., 2012; Market and Canady, 2006).  

Shear wave transit time is vital for many geophysical and engineering analysis including, seismic 

interpretations and bright spot analysis (Greenberg and Castagna, 1992a; Onalo et al., 2018b). The 

lack of shear wave transit time data limits the amount of valuable relationships and correlations 
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that can be derived from sonic logging especially for lithology identification, fluid saturation 

identification and porosity estimation (Domenico, 1984; Onalo et al., 2018a). Shear wave transit 

time alone is not sufficient to provide a full description of the diversity across the reservoir 

formation (Greenberg and Castagna, 1992a). 

Empirical relationships have been developed to estimate the shear wave velocity from 

compressional wave velocity in situations where the shear wave data were missing (Bailey, 2012; 

Castagna et al., 1985; Domenico, 1984; Eberhart‐Phillips et al., 1989; Gardner et al., 1974; 

Greenberg and Castagna, 1992b; Hamada, 2004; Han et al., 1986; Jorstad et al., 1999; Krief et al., 

1990; Lee, 2006; Miller and Stewart, 1990, 1974; Oloruntobi et al., 2018; Ramcharitar and Hosein, 

2016; Raymer et al., 1980; Takahashi et al., 2000; Vernik et al., 2002). Though these estimations 

provide simple correlation for quick estimations, they are not as robust as modern day machine 

learning techniques that have been applied in several engineering applications (Kumar et al., 2014; 

Nourafkan and Kadkhodaie-Ilkhchi, 2015; Ramcharitar and Hosein, 2016; Reichel et al., 2012). 

Gaussian process (GP) is a powerful technique for predicting and modeling complex mathematical 

and engineering data-driven problems. GP involves defining a finite vector space function of 

infinite dimension over a Gaussian distribution. GP has been used in many engineering 

applications due to its flexibility to model non-linear complex patterns between dataset variables 

(MacKay, 2005). GP has been adopted in solving many engineering and real-life problems because 

of their ability to handle data in various forms and sizes (Ebden, 2008). GP regression has been 

used to predict Young’s modulus of jointed formations from the formation joint roughness 

parameter, inclination, frequency and elastic modulus (Kumar et al., 2014). Deformations around 

the reservoir formations are non-linear (Yin et al., 2009). GP-based models have been used to 

predict non-linear time deformations around mining tunnels and caves from prior of past formation 
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deformation history as training sample data (Su, 2009). More recently, the rock strength of intact 

formations has been predicted from the in-situ stresses acting on the formation (Huang et al., 2017). 

GP has been used to stabilize multivariate geological data to optimize the computational efficiency 

in the geostatistical analysis (Silva and Deutsch, 2016). GP has been used to model regions with 

potential ore deposits in geostatistical modeling by locating regions with high probabilistic errors 

(Adeli et al., 2017). A GP that was used to develop 3D models of heterogeneities in reservoir 

formations with the aim of better portraying the permeability and potential production index 

(Dubrule and Damsleth, 2001). 

In reservoir modeling, GP has been used to classify the uncertainties associated with the reservoir 

formation properties (Iglesias et al., 2013). A Gaussian continuum process model has been 

developed to model the reservoir stimulation by induced seismicity to improve reservoir 

permeability (Izadi and Elsworth, 2014).  History matching is an essential aspect of reservoir 

modeling which involves a lot of trial and error (Abdollahzadeh et al., 2012). Abdollahzadeh et al. 

(2012) used a set of Gaussian-based process algorithm estimations to provide optimized solutions 

to continuous history matching for numerical reservoir models. 

Gaussian-based process has been used in the hydrocarbon indication to distinguish between 

hydrocarbon bearing formations and water-bearing formations  (Williams, 1990). Reservoir fluids 

have been characterized using GP models (Rostami et al., 2013). The total organic carbon (TOC) 

of shale gas reservoirs have been estimated using GP regression for reservoir characterization (Yu 

et al., 2016). Rostami and Khaksar Manshad (2013) developed a GP regression to determine the 

amount of asphaltene precipitation from crude oil using the properties of the crude oil like 

hydrocarbon composition, temperature, pressure, specific gravity and solvent molecular weight 
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establishing which crude oil properties played a higher role in determining the likelihood of 

asphaltene precipitation.  

Considering the success that Gaussian-based processes have had in several petroleum engineering 

applications, the objective of the paper is to develop a reliable model that predicts shear wave sonic 

logs using a Gaussian-based process from available well log data. The importance of such a model 

to the industry is invaluable for offset wells that have been drilled and logged without dipole or 

multipole sonic logging tools and therefore do not have the corresponding shear wave sonic logs. 

Also, in formations where the inaccurate log data have been obtained due to damaged equipment 

or calibration (human) error. Sonic logs are essentials components for drilling, exploration and 

reservoir management. The shear wave sonic logs provide a means of accurate continuous 

predictions of the reservoir properties for better reservoir planning and management. 

This paper comprises of seven sections. A brief introduction to GP is introduced in section 6.2. In 

section 6.3, the methodology for the model development is presented. The model is applied to a 

case study in section 6.4. The results are presented in section 6.5. A sensitivity analysis is also 

conducted in section 6.6. In section6.7, the conclusions from the study are highlighted. 
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 Gaussian Process (GP) 

Modeling complex engineering problems present a real challenge in the petroleum industry. The 

GP is a probabilistic modeling technique that is nonparametric, meaning that, the prior is placed 

in space and the actual distribution that fits the data is not known before the initialization (Huang 

et al., 2017; Kuss and Rasmussen, 2006). GP has been recognized as a promising data mining 

technique in machine learning due to its ability to handle large amounts of data (Han and Kamber, 

2010). GP is generally classified into supervised and unsupervised. Simply put, supervised GP 

involves establishing functions of input datasets used for the training to predict the corresponding 

output dataset (Rostami et al., 2013). In unsupervised, there is no prediction as there are no target 

output dataset or prior history to establish functions from. Nonetheless, this is a very useful 

functionality for classifying large datasets. When the GP is used for prediction, it is referred to as 

a GP regression. On the other hand, if the GP is used for classification, it is referred to as GP 

classification (Rostami et al., 2013). GP captures set finite random variables attempting to 

represent them by a joint Gaussian distribution; this process is known as the GP regression 

(Rasmussen, 2004). GP is defined fully by their mean and covariance functions (Seeger, 2004). 

Gaussian process-based models are highly capable of establishing non-linear relationships from 

non-parametric data and deriving algorithms for future predictions (Abdollahzadeh et al., 

2012).GP is highly universal and can be adapted to various problems presented; however, the care 

must be taken to select the best covariance, kernel and hyperparameters describing the multi-

dimensional distribution (Kuss and Rasmussen, 2006). 
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 Gaussian process theory 

A description of the GP is presented below; however, a more detailed explanation can be found in 

Rasmussen (2004) and Williams and Rasmussen (2006).  

Assume a set of data is provided in the following format (Kumar et al., 2014): 

𝐷 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛 , 𝑥𝑖 ∈ 𝑅𝑑𝑎𝑛𝑑 𝑦𝑖 ∈ 𝑅 (6.1) 

𝑥𝑖 = input data, 𝑦𝑖= output data, n = number of data points, 𝑅 = 1-dimensional vector space, 𝑅𝑑= 

d-dimensional vector space. In this study, the input data are depth (ft), RHOB (g/cc), PHIT, GR 

(GAPI) and DTCO (µs/ft). The output is DTSM (µs/ft). Mathematically: x = [depth, RHOB, PHIT, 

GR and DTCO] and y = [DSTM].  

The GP can be defined by the mean (m(x)) and the covariance function (k(x, x’)) for the function 

(f(x)) (Rostami and Khaksar Manshad, 2013). 

m(x) = E[f(x)] (6.2) 

k(x, x′) = E[(f(x)] − m(x))(f(x′) − m(x′))], 𝑥 𝑎𝑛𝑑 𝑥′ ∈ 𝑅𝑑 (6.3) 

Thus, the GP is written as follows (Rostami et al., 2013) 

f(x) = GP(m(x), k(x, x′)) (6.4) 

The GP regression is then expressed similarly to a linear regression with the main function and 

Gaussian noise (𝜀 ) function as follows (Yu et al., 2016):  

y = f(x) + ε (6.5) 

The Gaussian noise has a mean of 0 and a variance of 𝜎. 
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ε~N(0, σ) (6.6) 

For a new input data set (x∗) and output data set (y∗), the GP prior distribution is given as follows 

(Kumar et al., 2014): 

(
y

y∗
) ~N(0, k∗) (6.7) 

k∗ = [
k k(x, x∗)

k(x, x∗)T k(x∗, x∗)
] (6.8) 

k(x, x∗) = the covariance between the training inputs data and test input data; k(x, x∗)T = the 

transpose of k(x, x∗); k(x∗, x∗) = the covariance of the test data. 

Thus, the mean and variance of the posterior Gaussian distribution of (y∗) can be written as follows 

respectively (Yu et al., 2016): 

m∗ = k(x, x∗)Tk−1y (6.9) 

𝜎∗ = k(x∗, x∗) − k(x, x∗)T k−1y k(x, x∗) (6.10) 

 Covariance and kernel Function 

The covariance function can be defined by the kernel functions in order to provide better response 

across the dataset to which they are similar (Ebden, 2008).  A set of kernel functions or 

hyperparameters (𝜃 = {𝜎𝑓 , 𝜎𝑙}) parameterizes the covariance function. The kernel functions are 

needed to reduce the error and improve the accuracy by smoothening the data set predictions. The 

dependency of the covariance function is written as k(x, x′|𝜃). Most problems can be presented as 

GP distribution; however, the accuracy and efficiency are improved by the kernel and 

hyperparameter functions. Therefore, to ensure an adequate model is attributed to a problem, the 
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most suitable kernel function that describes the non-linear relationship should be chosen. 

Although,  Ebden (2008) suggests that squared exponential kernel is the popular choice, in this 

study the following set of kernel functions are explored to provide a justification for the model 

selection (Matlab Documentation, 2018). 

6.2.2.1 Exponential kernel: 

𝑘(𝑥𝑖 , 𝑥𝑗|θ) = 𝜎2
𝑓exp [−

(𝑥𝑖 − 𝑥𝑗)𝑇(𝑥𝑖 − 𝑥𝑗)

𝜎𝑙
] (6.11) 

𝜎𝑓 = the standard deviation, 𝜎𝑙 = the characteristic length and a = positive scale mixture parameter 

6.2.2.2 Squared exponential kernel: 

𝑘(𝑥𝑖, 𝑥𝑗|θ) = 𝜎2
𝑓exp [−

1

2
(
(𝑥𝑖 − 𝑥𝑗)𝑇(𝑥𝑖 − 𝑥𝑗)

𝜎2
𝑙

)] (6.12) 

6.2.2.3 Matern 5/2 kernel: 

𝑘(𝑥𝑖 , 𝑥𝑗|θ) = 𝜎2
𝑓(1 +

√5(𝑥𝑖 − 𝑥𝑗)𝑇(𝑥𝑖 − 𝑥𝑗)

𝜎𝑙

+ (
√5(𝑥𝑖 − 𝑥𝑗)𝑇(𝑥𝑖 − 𝑥𝑗)

√3𝜎𝑙

)

2

) exp [−(
√5(𝑥𝑖 − 𝑥𝑗)𝑇(𝑥𝑖 − 𝑥𝑗)

𝜎𝑙
)] 

(6.13) 

6.2.2.4 Rational quadratic kernel: 

𝑘(𝑥𝑖, 𝑥𝑗|θ) = 𝜎2
𝑓 [1 + (

(𝑥𝑖 − 𝑥𝑗)𝑇(𝑥𝑖 − 𝑥𝑗)

2𝑎𝜎2
𝑙

)

−𝑎

] (6.14) 

The process of finding the most suitable values of the hyperparameters is the GP regression 

learning that illustrates how the GPR trains the model to define the problem with the least errors 

(Huang et al., 2017).  
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 Model Development Methodology 

The framework of the proposed model development and testing is presented in Figure 6.1. 

 

Figure 6.1. Framework for the proposed model development  

 Data collection and preparation 

The data required for the proposed methodology are actual well logs. The data should contain the 

relevant logs required for the proposed model namely: depth (ft), RHOB (g/cc), PHIT, GR (GAPI), 

DTCO (µs/ft) as input predictors and DTSM (µs/ft) as the target response.  
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 Quality assurance and quality checks (QAQC) 

Quality assurance and quality control (QAQC) were performed on the suite of well logs to ensure 

the reliability of the data. Firstly, the logs are analyzed to identify null readings where the logging 

tools failed to accurately record the corresponding measurements. Secondly, the sections were 

washout and key-seat sections were observed were removed for the model development by 

referencing with the caliper logs for adjacent formation sections. Poisson’s Ratio calculations 

where used to ensure only valid sections were represented in the dataset.  

 Gaussian process model development 

For the model development, well log data from 2850 ft to 6000 ft and from 8000 ft to 12500 ft of 

a sandstone reservoir is used to build and train the model. To test the model, the section from 6000 

ft to 8000 ft is used to test the model. The prepared data is formatted to match the initial model set 

up with five predictors and one response. The actual target response is presented in Figure 6.2. 
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Figure 6.2. Actual target response 

 The GP distribution is applied to the dataset; however, the kernel function that best represents the 

distribution function is not known. Therefore, a set of kernel functions were applied to the data set 

to ascertain which kernel function was able to best smoothen the dataset and provide the least 

errors. The squared exponential kernel, exponential kernel, Matern 5/2 kernel and rational 

quadratic kernel were applied to the dataset. Each GP model and kernel function were trained by 

constantly updating the hyperparameters until the best match describing the well log correlation 

was reached by the respective models.  
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 Gaussian process selection 

The test results of each model are presented in Table 6.1. In Figure 6.3, the prediction response of 

each model is presented. All models performed well and were able to represent the data with a 

relatively high degree of accuracy; however, the exponential GP regression model seemed to better 

follow the actual plotted response (see  Figure 6.2) more closely. The predicted responses of the 

models are plotted against the actual responses in a cross plot in Figure 6.4 to validate the model 

prediction accuracy. All the tested models alluded have coefficients of determination (R2) of 0.99. 

This proved that GP regressions were highly capable of predicting the responses and would thus 

provide relatively sufficient models. Nonetheless, the coefficient of determination could not be 

used as a basis for the selection of the optimum GP regression model. Therefore, the errors of the 

models were plotted in Figure 6.5 and the exponential GP regression model presented the least 

error through the dataset. 

 

Figure 6.3. The response of the tested GP model 
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Figure 6.4 Cross-plot of the tested GP models 

 

Figure 6.5. Errors of the tested GP models 
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The exponential GP model had the least root mean square (RMSE) with a value of 11.147. This 

was followed by the Matern 5/2 GP model with an RMSE = 12.718, then the rational quadratic 

Gaussian model with an RMSE = 12.786. The squared exponential Gaussian model, though 

popular, presented the highest error with an RMSE = 13.774. The mean square error (MSE) and 

mean average error (MAE) follow the same trend with the root mean square error. A summary of 

the results of the tested models is presented in Table 6.1. The exponential Gaussian regression 

model was selected as the best of the four models tested. In Table 6.2, the properties of the features 

of the selected model are presented, 

Table 6.1. Summary of the results of the GP regression model selection 

Model type RMSE R-squared MSE MAE 

Exponential GPR 11.147 0.99 124.26 6.6046 

Squared Exponential GPR 13.774 0.99 189.71 8.0162 

Matern 5/2 GPR 12.718 0.99 161.74 7.4618 

Rational Quadratic GPR 12.786 0.99 163.48 7.5401 

 

Table 6.2. Main features of the proposed GP regression model 

Parameter Feature  

Model type Exponential 

Basis function constant 

Use isotropic kernel automatic 

Kernel scale automatic 

Sigma automatic 

Standardize true 

Optimize numeric parameters true 
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Observations 17526 

Predictors 5 

Response 1 

 

 Generalization of the GP 

GP machine learning is adaptive in nature and can be generalized for datasets in a similar format 

as the original training data. To validate and ensure that the proposed model is generalized, it is 

applied to the section of the well log data that was omitted in the development of the model in 

section 6.4. 
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 Application of the developed Model  

The proposed shear wave transit time model is validated by applying the proposed model to actual 

well logs. The well log data presented in this study is a 2000 feet section, from 6000 feet to 8000 

feet of an actual oil and gas sandstone reservoir This is an improvement to most studies conducted 

on a section of only several hundred feet. The location and details of the well log data have been 

withheld in this study due to protect the privacy and confidentiality of the logging company. 

Nevertheless, the first 100 feet of the data is presented in the Appendices in Table 6.3 for interested 

users. A plot of the well log data available for the study is presented in Figure 6.6. 
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Figure 6.6. Available well log data 
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 Results and discussion 

 Shear Sonic transit time log estimation 

The primary objective of developing a Gaussian-based process regression model from well log 

data is to provide a tool adequate enough to furnish reliable shear sonic transit time logs in wells 

from offset wells run with monopole sonic logging tools. More so, in wells with corrupted datasets 

or erroneous readings from faulty equipment. In Figure 6.7, the measured shear sonic transit log 

is plotted against the depth profile of the wells used for the case study from 6000 feet to 8000 feet. 

This is followed by a plot of the shear sonic transit log along the same depth in Figure 6.7. The 

predicted shear sonic log closely matches the measured shear sonic log values. The most disparity 

is seen from 6010 feet to 6050 feet with less than a 5% difference in value. What is very intriguing 

is that the proposed model is relatively conservative in the sense that it tries to follow the measured 

shear sonic log trend, without going out of the measured shear sonic log boundaries in the well. 

This ensures that analysis conducted using the models are reliable and safe as they do not venture 

away from or to the extreme boundary scenarios of the formation. To further depict the success of 

the model in predicting the shear sonic transit log from the well logs proposed in the previous 

section, a cross-validation plot of the predicted shear sonic transit time versus the measured shear 

sonic transit time log is presented in Figure 6.8. The proposed model does a good job of almost 

matching the measured shear sonic logs with a coefficient of determination of 0.9923. The trend 

line in Figure 6.8 also falls on the perfect unity slope line the figure thereby portraying a non-bias 

in the predictions of the proposed model. The results show that the proposed model achieves the 

desired objective of the proposed model by accurately predicting shear sonic transit log of the well. 
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Figure 6.7. Shear wave transit time versus depth 
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Figure 6.8. Predicted shear wave transit time versus measured shear wave transit time 
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 Predicting Dynamic Geomechanical properties 

In this section illustrate the common uses of sonic logs in the evaluation of formation mechanical 

properties. To illustrate these uses, the dynamic Young's Modulus and Poisson’s Ratio are 

estimated from the measured sonic logs and compared the dynamic Young's Modulus and 

Poisson’s Ratio estimated from the proposed model sonic log predictions. 

 Dynamic Young’s Modulus 

Young’s Modulus commonly known as the modulus of elasticity because it is a measure of the 

stiffness of the formation can be estimated using equation (6.15) (Mullen et al., 2007).  

𝐸 =
𝜌

∆𝑡𝑠
2 ∗ (

3∆𝑡𝑠
2 − 4∆𝑡𝑐

2

∆𝑡𝑠
2 − ∆𝑡𝑐

2 ) ∗ 1.34 ∗ 1010 (6.15) 

The results of the estimation of dynamic Young’s Modulus from the measured sonic logs and 

proposed model predicted sonic logs are presented and compared in Figure 6.9. The cross-

validation of the Young's Modulus from the predicted and measured sonic logs presented in Figure 

6.9 show very good agreement with a coefficient of determination of 0.9953. The trendline line 

through the zero intercept of the measured and predicted estimations matches the perfect slope 

increases indicating unbiased in the predictions. As the dynamic Young’s Modulus increases, the 

deviation from the perfect slop increases. The estimation from the proposed model sonic logs 

slightly underpredicts Young’s Modulus from approximately 40 GPa to 70 GPa. The highest 

deviation is observed at a depth of 7480-7490 feet with the average dynamics Young’s Modulus 

of 55 GPa and 50 GPa which both signify a good consolidation at such depths for measured and 

predicted respectively. 
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Figure 6.9. Cross-validation plot of predicted and measured dynamic Young's Modulus 

 Poisson’s Ratio (PR) 

Poisson’s Ratio is another rock mechanical property that is estimated during formation evaluation. 

It is literally the ratio of the lateral to the vertical strain of a specimen and is estimated from sonic 

logs as follows (Mullen et al., 2007). 

𝜗 = 0.5 ∗ (
∆𝑡𝑠

2 − 2∆𝑡𝑐
2

∆𝑡𝑠
2 − ∆𝑡𝑐

2 ) (6.16) 

The results of the estimation of Poisson’s Ratio from the measured sonic logs and proposed model 

predicted sonic logs are presented and compared in Figure 6.10. The cross-validation of the 

Young's Modulus from the predicted and measured sonic logs presented in Figure 6.10 portrays a 

good match with a coefficient of determination of 0.9413. The trendline line through the zero 

intercept of the measured and predicted estimations almost perfectly follows the perfect unity slope 

line indicating a general non-bias in the predictions. As the Poisson’s Ratio increases, the deviation 
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from the perfect slop decreases. The estimations from the proposed model overpredict points of 

Poisson’ Ratio values below 0.25. The accuracy of the estimations from the predicted model is 

increased as the formation weakens. 

 

Figure 6.10. Cross-validation plot of predicted and measured Poisson’s Ratio 

The main reason why the Young’s Modulus and Poisson’s Ratio predictions are reasonably 

accurate is that of the accuracy of the Shear Velocity predictions which are then used in the 

theoretical and empirical relationships given in Equations (6.15) and (6.16). In general, both 

estimation of Young’s Modulus and Poisson’s Ratio from the measured and predicted sonic logs 

allude to a good agreement in the sensitivity analysis. Therefore the model can be used in place of 

actual sonic logs with a high confidence level. 
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 Conclusions  

The present study has demonstrated that in the absence of shear sonic transit logs, a GP regression 

model can be used to model the shear sonic logs from the depth, density, gamma-ray, porosity and 

compressional transit time logs. The new model can be particularly useful in wells where accurate 

or continuous shear wave transit times are missing or where borehole compensated sonic tool has 

not been used. 

The proposed GP model development offers the following benefits to the oil and gas industry: 

• The GP model offers operators with offset wells that only contain compressional sonic 

wells a reliable tool to predict the shear sonic log for better formation evaluation analysis. 

• The GP model provides a cost-effective and safe tool to operators by offering a reliable 

means of predicting shear transit time in a field instead of carrying out more expensive 

diploe and multipole sonic logging on several wells in the field. This leads to cost savings 

and human (work hours) reduction leading to higher days without accidents (Day since last 

accident or hazard exposure) on projects.  

• The Gaussian model provides a cheap method of establishing mechanical rock formation 

property tables for several geographical regions and geological settings. 

• The GP model provides a calibration and validation tool for cross-checking already 

measured and acquired sonic shear logs from sonic loggers that may be faulty or run in 

complicated hole sections. 

The GP model accurately predicts shear sonic time log for the case study with an R2 of 0.99. The 

model is also used to estimate some mechanical formation properties namely; Young’s Modulus 
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and Poisson’s Ratio in a sensitivity analysis. The results are compared to the same mechanical 

rock properties using the measured sonic logs. The coefficients of determination between the 

measured and predicted sonic logs used for the estimations of Young’s Modulus and Poison’s 

Ratio are 0.99 and 0.94 respectively. 

Generally, the GP models are highly efficient in recognizing non-linear patterns with complex 

dataset including well logs used in the oil and gas industry as is evident in this study. GP models 

are recommended for developing non-parametric correlations between other well log dataset of 

interest. 

The present study provides the oil and gas industry with a roadmap for estimating shear sonic well 

logs and also validating measured shear sonic transit time logs. Future work can be done to 

estimate both compressional and shear sonic transit logs from a Gaussian model, thereby 

eliminating the need to run countless expensive sonic logging tools in the formation. The 

significance of such a future model will be highly valuable in terms of cost saving gains and man-

hours resources that could potentially be saved. 

  

  



180 

 

Acknowledgment   

The authors thankfully acknowledge the financial support provided by the Natural Science and 

Engineering Council of Canada and the Canada Research Chair (CRC) Tier I Program, the 

Hibernia Management and Development Company (HMDC), Chevron Canada, and Innovate NL 

for the support without which this work could not have been performed.



181 

 

Nomenclature 

RHOB Bulk density log (g/cm3) 

DTCO Compressional wave travel time (µsec/ft) 

Δ𝑡𝑐 Compressional wave travel time (µsec/ft) 

RESD Deep resistivity log (ohm.m) 

PHIE Effective porosity log (m3/m3) 

𝜙𝑑𝑒𝑛 Electron density porosity (g/cc) 

𝜌𝑓𝑙 Fluid density (g/cc) 

𝜌, 𝜌𝑏 Formation density (g/cc) 

Δ𝑡𝑓𝑙 Formation fluid compressional wave travel 

time (µsec/ft) 

Δ𝑡𝑚𝑎 Formation matrix compressional wave travel 

time (µsec/ft) 

𝐺𝑅𝑚𝑖𝑛 Gamma-ray in clean sandstone 

𝐺𝑅𝑚𝑖𝑛 Gamma-ray in shale  

GR Gamma-ray log (gAPI) 

𝐺𝑅 Gamma-ray log reading 

𝜌𝑚𝑎 Matrix density (g/cc) 

MAE Mean absolute error 

MPE Mean percentage error 

Δ𝑡𝑙𝑜𝑔 Measured compressional wave travel time 

(µsec/ft) 

𝜙𝑁 Neutron porosity 

𝜙𝑁,𝑓𝑙 Neutron response of the fluid 

𝜙𝑁,𝑚𝑎 Neutron response of the matrix 

𝜗 Poisson’s Ratio 

𝜙 Rock porosity 

Vsh Shale volume 

DTSM Shear wave travel time (µsec/ft) 

Δ𝑡𝑠 Shear wave travel time (µsec/ft) 

𝜙𝑠 Sonic porosity 

PHIT Total porosity log (m3/m3) 

𝐸 Young’s Modulus (MPa) 
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Appendices  

Table 6.3. 50 feet of available well log data for the study 

Depth (ft) DTCO (µs/ft) DTSM (µs/ft) GR (gAPI) PHIT (m3/m3) RHOB (g/cc) 

6000.00 131.82 324.03 87.14 0.19 2.32 

6000.50 133.00 349.97 87.44 0.20 2.31 

6001.00 134.20 363.23 86.52 0.20 2.30 

6001.50 133.26 342.61 86.24 0.20 2.31 

6002.00 131.83 312.74 86.66 0.19 2.32 

6002.50 130.86 304.08 85.50 0.18 2.33 

6003.00 130.94 304.68 84.60 0.18 2.33 

6003.50 129.35 315.31 85.13 0.18 2.34 

6004.00 129.85 338.09 85.31 0.18 2.33 

6004.50 131.38 363.53 87.60 0.19 2.32 

6005.00 133.30 379.96 88.31 0.19 2.32 

6005.50 133.26 379.00 91.86 0.19 2.32 

6006.00 132.83 373.47 92.08 0.19 2.32 

6006.50 132.59 361.99 89.04 0.19 2.32 

6007.00 131.24 358.47 86.43 0.18 2.34 

6007.50 131.50 361.11 88.95 0.17 2.35 

6008.00 132.92 371.02 94.94 0.17 2.36 

6008.50 132.07 374.90 97.52 0.17 2.36 

6009.00 133.00 378.18 95.00 0.17 2.35 

6009.50 133.95 379.63 89.53 0.18 2.34 

6010.00 133.47 350.07 85.95 0.18 2.33 

6010.50 133.49 332.87 84.92 0.19 2.32 

6011.00 134.39 346.93 85.52 0.19 2.31 

6011.50 133.68 367.18 84.63 0.19 2.32 

6012.00 133.95 363.88 82.08 0.18 2.33 

6012.50 132.86 356.71 86.91 0.18 2.34 

6013.00 132.95 363.06 93.85 0.18 2.34 

6013.50 131.60 342.72 94.98 0.19 2.32 

6014.00 131.81 316.72 91.16 0.19 2.31 

6014.50 131.79 311.10 85.44 0.20 2.31 

6015.00 131.07 307.31 82.28 0.19 2.31 

6015.50 132.31 310.24 77.20 0.19 2.31 

6016.00 131.97 322.17 77.37 0.19 2.32 

6016.50 130.74 364.35 83.84 0.19 2.31 

6017.00 132.42 385.76 86.86 0.20 2.30 

6017.50 133.16 387.82 86.94 0.21 2.29 

6018.00 133.07 372.00 82.35 0.20 2.30 
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6018.50 132.27 335.59 81.35 0.20 2.30 

6019.00 131.38 323.30 80.80 0.20 2.30 

6019.50 131.01 318.53 80.37 0.20 2.31 

6020.00 130.82 319.37 82.46 0.19 2.32 

6020.50 130.81 330.04 80.39 0.19 2.32 

6021.00 130.69 366.92 82.67 0.19 2.32 

6021.50 131.93 373.65 81.17 0.19 2.31 

6022.00 131.37 366.63 87.45 0.19 2.31 

6022.50 130.85 326.51 88.73 0.19 2.31 

6023.00 131.18 315.40 92.32 0.19 2.31 

6023.50 128.95 315.07 91.10 0.19 2.31 

6024.00 130.31 319.97 91.63 0.19 2.32 

6024.50 130.17 323.64 89.42 0.19 2.32 

6025.00 129.66 317.45 86.47 0.19 2.32 

6025.50 129.85 321.53 82.90 0.19 2.31 

6026.00 130.95 333.50 81.50 0.20 2.30 

6026.50 130.85 341.21 82.07 0.20 2.31 

6027.00 131.47 336.61 83.38 0.19 2.31 

6027.50 132.42 332.92 85.78 0.19 2.32 

6028.00 132.36 324.53 87.77 0.19 2.32 

6028.50 132.19 320.65 91.52 0.19 2.32 

6029.00 132.28 315.04 91.68 0.19 2.32 

6029.50 132.71 313.44 87.51 0.19 2.32 

6030.00 132.55 316.99 85.33 0.19 2.32 

6030.50 132.35 324.50 87.06 0.19 2.32 

6031.00 131.76 357.34 92.97 0.19 2.33 

6031.50 132.15 396.80 95.18 0.19 2.33 

6032.00 131.76 401.90 95.50 0.19 2.33 

6032.50 132.21 402.31 95.32 0.19 2.32 

6033.00 133.53 406.33 93.26 0.20 2.31 

6033.50 134.37 413.76 89.90 0.20 2.29 

6034.00 135.44 404.15 89.06 0.21 2.28 

6034.50 135.84 398.00 91.33 0.21 2.28 

6035.00 131.67 392.08 96.32 0.21 2.28 

6035.50 130.85 387.02 97.00 0.20 2.29 

6036.00 130.95 354.82 96.31 0.20 2.30 

6036.50 129.68 339.62 88.86 0.20 2.31 

6037.00 129.51 329.55 83.93 0.19 2.32 

6037.50 125.87 307.18 77.83 0.19 2.32 

6038.00 126.05 292.21 78.55 0.19 2.31 

6038.50 122.92 284.44 79.17 0.19 2.31 
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6039.00 125.14 290.37 81.78 0.19 2.32 

6039.50 128.86 307.30 84.62 0.19 2.33 

6040.00 128.77 322.01 82.73 0.18 2.34 

6040.50 129.55 365.22 83.52 0.18 2.34 

6041.00 130.52 354.40 84.58 0.18 2.33 

6041.50 130.84 315.02 89.45 0.19 2.32 

6042.00 131.80 356.62 93.99 0.19 2.32 

6042.50 132.12 322.97 92.13 0.19 2.31 

6043.00 130.62 317.84 89.23 0.19 2.32 

6043.50 128.64 310.26 84.82 0.18 2.33 

6044.00 126.87 309.84 84.66 0.18 2.34 

6044.50 126.66 305.22 82.88 0.18 2.34 

6045.00 127.37 299.49 80.86 0.18 2.33 

6045.50 128.29 305.08 81.14 0.19 2.32 

6046.00 129.59 311.22 82.66 0.19 2.32 

6046.50 129.64 320.78 85.12 0.19 2.33 

6047.00 129.81 327.75 82.91 0.18 2.33 

6047.50 129.74 352.66 82.84 0.18 2.34 

6048.00 130.00 358.57 81.03 0.18 2.34 

6048.50 130.38 324.24 81.19 0.18 2.33 

6049.00 131.37 323.73 81.31 0.19 2.32 

6049.50 132.51 377.43 84.68 0.20 2.31 

6050.00 132.55 386.24 91.19 0.20 2.31 

6050.50 132.55 393.98 90.16 0.19 2.31 

6051.00 132.75 399.55 88.44 0.19 2.32 

 

Table 6.4. Sensitivity analysis data (Dynamic Young’s Modulus and Poisson’s Ratio) 

Depth (ft) Measured Ed (GPa) Predicted Ed (GPa) Measured PR Measured PR 

6000.00 5.71 5.55 0.40 0.40 

6000.50 4.92 4.91 0.42 0.42 

6001.00 4.58 4.76 0.42 0.42 

6001.50 5.13 5.06 0.41 0.41 

6002.00 6.10 5.69 0.39 0.40 

6002.50 6.45 5.87 0.39 0.40 

6003.00 6.44 5.54 0.39 0.41 

6003.50 6.08 5.67 0.40 0.41 

6004.00 5.33 5.62 0.41 0.41 

6004.50 4.63 5.37 0.42 0.41 

6005.00 4.24 4.94 0.43 0.42 

6005.50 4.26 4.59 0.43 0.42 
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6006.00 4.38 4.70 0.43 0.42 

6006.50 4.66 4.87 0.42 0.42 

6007.00 4.78 5.16 0.42 0.41 

6007.50 4.74 4.93 0.42 0.42 

6008.00 4.52 4.62 0.43 0.42 

6008.50 4.43 4.74 0.43 0.42 

6009.00 4.33 4.52 0.43 0.43 

6009.50 4.28 4.45 0.43 0.43 

6010.00 4.97 5.01 0.41 0.41 

6010.50 5.44 5.24 0.40 0.41 

6011.00 5.01 4.91 0.41 0.41 

6011.50 4.52 4.94 0.42 0.41 

6012.00 4.63 4.99 0.42 0.41 

6012.50 4.83 4.81 0.42 0.42 

6013.00 4.66 4.54 0.42 0.43 

6013.50 5.16 4.65 0.41 0.42 

6014.00 5.94 5.30 0.40 0.41 

6014.50 6.12 5.16 0.39 0.41 

6015.00 6.28 5.46 0.39 0.41 

6015.50 6.17 5.57 0.39 0.40 

6016.00 5.78 5.66 0.40 0.40 

6016.50 4.58 5.07 0.43 0.42 

6017.00 4.09 4.67 0.43 0.42 

6017.50 4.03 4.66 0.43 0.42 

6018.00 4.37 4.96 0.43 0.41 

6018.50 5.32 5.19 0.41 0.41 

6019.00 5.70 5.42 0.40 0.41 

6019.50 5.88 5.60 0.40 0.40 

6020.00 5.87 5.56 0.40 0.41 

6020.50 5.54 5.86 0.41 0.40 

6021.00 4.54 5.41 0.43 0.41 

6021.50 4.37 5.14 0.43 0.41 

6022.00 4.53 5.16 0.43 0.41 

6022.50 5.63 5.48 0.40 0.41 

6023.00 5.99 5.44 0.40 0.41 

6023.50 6.02 5.88 0.40 0.40 

6024.00 5.86 5.70 0.40 0.40 

6024.50 5.75 5.78 0.40 0.40 

6025.00 5.95 5.92 0.40 0.40 

6025.50 5.79 5.56 0.40 0.41 

6026.00 5.39 5.39 0.41 0.41 
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6026.50 5.17 5.32 0.41 0.41 

6027.00 5.32 5.22 0.41 0.41 

6027.50 5.43 5.43 0.41 0.41 

6028.00 5.71 5.17 0.40 0.41 

6028.50 5.83 5.12 0.40 0.41 

6029.00 6.01 5.16 0.39 0.41 

6029.50 6.06 5.27 0.39 0.41 

6030.00 5.95 5.44 0.39 0.41 

6030.50 5.71 5.37 0.40 0.41 

6031.00 4.78 4.75 0.42 0.42 

6031.50 3.92 4.25 0.44 0.43 

6032.00 3.83 4.34 0.44 0.43 

6032.50 3.81 4.30 0.44 0.43 

6033.00 3.72 4.24 0.44 0.43 

6033.50 3.57 4.22 0.44 0.43 

6034.00 3.70 4.19 0.44 0.43 

6034.50 3.81 4.08 0.43 0.43 

6035.00 3.94 4.32 0.44 0.43 

6035.50 4.06 4.52 0.44 0.43 

6036.00 4.80 4.76 0.42 0.42 

6036.50 5.23 5.43 0.41 0.41 

6037.00 5.55 5.76 0.41 0.40 

6037.50 6.36 6.56 0.40 0.39 

6038.00 6.94 6.65 0.39 0.39 

6038.50 7.31 7.25 0.39 0.39 

6039.00 7.04 6.93 0.39 0.39 

6039.50 6.34 6.15 0.39 0.40 

6040.00 5.85 5.67 0.40 0.41 

6040.50 4.63 5.22 0.43 0.42 

6041.00 4.88 5.41 0.42 0.41 

6041.50 6.04 5.56 0.40 0.41 

6042.00 4.78 4.75 0.42 0.42 

6042.50 5.74 5.14 0.40 0.41 

6043.00 5.93 5.66 0.40 0.40 

6043.50 6.25 6.02 0.40 0.40 

6044.00 6.30 6.28 0.40 0.40 

6044.50 6.48 6.31 0.40 0.40 

6045.00 6.66 6.48 0.39 0.39 

6045.50 6.42 6.35 0.39 0.39 

6046.00 6.17 5.94 0.40 0.40 

6046.50 5.86 5.95 0.40 0.40 
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6047.00 5.64 5.77 0.41 0.40 

6047.50 4.94 5.25 0.42 0.42 

6048.00 4.79 5.25 0.42 0.42 

6048.50 5.75 5.65 0.40 0.41 

6049.00 5.73 5.58 0.40 0.40 

6049.50 4.28 4.79 0.43 0.42 

6050.00 4.10 4.68 0.43 0.42 

 

Disclaimer 

The well log data presented in this paper is strictly for educational application. To protect the 

confidentiality and avoid any proprietary issue, the origin of the data has been withheld. The 

authors accept no liability for relating this data to any source, group, persons or organizations. 
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Abstract 

The lack of acoustic measurements places severe limitations on the application of well log data to 

analyze rock physics. In such conditions, other petrophysical data can be used to predict the shear 

and compressional sonic travel time. This study presents a novel data-driven model based on a 

nonlinear autoregressive neural network with exogenous (NARX) input to estimate the shear and 

compressional sonic travel time due to its ability to accurately determine nonlinearity in sequential 

and temporal data. The architecture of the model comprises three-layers and ten hidden neurons 

with gamma ray log as exogenous inputs. The proposed NARX methodology is developed using 

11 wells, six from the Norwegian continental shelf and five from West Africa. The results show 

that the wells provide sufficiently accurate predictions of the actual sonic well logs using the 

NARX model. The predicted sonic logs are used to estimate formation property parameters like 

sonic ratio, sonic difference, sonic porosity, and Poisson’s ratio. This paper proves NARX is an 

affordable, efficient and accurate means to reproduce sonic well logs for formation evaluation. 

Keywords: Recurrent neural network, intelligent systems, well log, sonic log prediction 
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 Introduction   

Well logs have proven to be very valuable in the petroleum industry due to their use in reservoir 

evaluation (Avseth and Odegaard, 2004; Krief et al., 1990; Minear and Fletcher, 1983; Onalo et 

al., 2018b; Reichel et al., 2012). With the help of well log data, engineers have been able to predict 

with reasonable certainty the type of formation being encountered, the fluids in the formation, the 

rock mechanical properties, wellbore stability and potential hydrocarbon plays (Asquith and 

Gibson, 2004; Ellis, 2003; Lindseth, 1979; Luffel and Guidry, 1989; Oloruntobi et al., 2018; Onalo 

et al., 2018a; Reichel et al., 2012; Schön, 2015; Williams, 1990; Wisniak and Jing, 2001). Sonic 

logs, along with density and neutron logs, are referred to as porosity logs; therefore, sonic logs can 

be used as a check and validation tool of other porosity logs (Ellis, 2003; Pickett, 1963; Raymer 

et al., 1980; Wyllie et al., 1956). Sonic logs have been used to develop stratigraphic correlations 

identifying the different lithological beds along the formation (Domenico, 1984; Miller and 

Stewart, 1990). The ratio of compressional to shear sonic log has been reported to be more sensitive 

to lithology and fluid changes (Bailey, 2012; Domenico, 1984; Eastwood and Castagna, 1983; 

Hamada, 2004; Han et al., 1986; Tatham, 1982). Sonic logs can be used to estimate the formation 

pore pressure and identify overpressure zones by observing a sudden increase in sonic transit time 

in shale formations (Saleh et al., 2013; Walls et al., 2000). Cracks and fractures can be identified 

using sonic logs (Hsu et al., 1987; Iy et al., 1976; Lacy, 1997; Onalo et al., 2018b; Tatham, 1982).  

In the absence of sonic logs or where the readings are erroneous due to faults inherent in the sonic 

logging tool or in formations where sonic logs have not been run due to financial constraints, there 

is a need for reliable and accurate methods of estimating these logs for formation evaluation (Onalo 

et al., 2018a). In such scenarios, empirical correlations have been deployed (Bailey and Dutton, 

2012; Castagna et al., 1985; Eberhart‐Phillips et al., 1989; Gregory, 1977; Hossain et al., 2012; 



199 

 

Johnston and Christensen, 1993; Miller and Stewart, 1991, 1974). However, empirical correlations 

have limitations in terms of their accuracy and specificity to certain lithologies and geographical 

regions (Onalo et al., 2018a; Ramfcharitar and Hosein, 2016).  

Machine learning and intelligent systems have been employed in several industries, including the 

petroleum industry to help analyze data, find patterns and predict target variables (Adedigba et al., 

2017; Onalo et al., 2018a). Such machine learning techniques and intelligent systems range from 

using artificial neural networks (ANN), to generic algorithms (GA), to particle swarm optimization 

(PSA), to fuzzy logic (FL), to neuro-fuzzy inference system (ANFIS) and to recurrent neural 

networks (Akin et al., 2008; Ali Ahmadi and Golshadi, 2012; Asadisaghandi and Tahmasebi, 2011; 

Ashoori et al., 2010; Babakhani et al., 2015; Derakhshanfard and Mehralizadeh, 2018; Huang et 

al., 2003; Iturrarán-Viveros and Molero, 2013; Kelechukwu et al., 2013; Riazi et al., 2014; 

Sheremetov et al., 2014; Vaferi et al., 2014). Some examples of the intelligent systems that have 

been developed to solve several problems in the industry are presented in Table 7.1. 

Table 7.1: Examples of intelligent systems used in the petroleum industry 

S/N Reference  

Intelligent 

System or 

Method 

Input data Output data Application 

1 
Smaoui and 

Garrouch (1997) 

Karhunen-Lorve-

ANN (KLANN) 

Effective porosity 

mean pore size, 

weight fractions 

Permeability 

Estimation of 

permeability in 

tight sands 

2 
Huang et al. 

(2003)  
BPANN 

Molecular weight, 

reservoir 

temperature, and 

concentrations  

CO2 Minimum 

miscibility 

pressure 

Impure and pure 

CO2 minimum 

miscibility 

pressures oil 

prediction 

3 
Akin et al. 

(2008)  

Feedforward 

neural network 

(FFNN) 

SP, RHOB, GR, 

deep resistivity 

and NPHI 

Pore type 

Population of the 

reservoir with 

multiphase flow 

functions 
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4 
Ashoori et al. 

(2010) 

Artificial Neural 

Network (ANN) 

Dilution ratio, 

temperature and 

molecular weight 

of alkanes 

Asphaltene 

precipitation 

Asphaltene 

precipitation 

prediction 

5 

Asadisaghandi 

and Tahmasebi, 

(2011) 

Back propagation 

learning 

algorithms 

(BPLA) 

Oil relative 

density (API), 

temperature, 

relative gas 

gravity (γg) and 

solution gas oil 

ratio (Rs) 

Formation 

volume factor 

bubble point 

(Bob) and 

bubble point 

pressure (Pb) 

PVT oil 

properties 

estimation 

6 
Ali Ahmadi and 

Golshadi (2012) 

Hybrid genetic 

algorithm and 

particle swarm 

optimization 

(HGAPSO), 

feedforward 

neural network 

(FFNN), GA and 

PSO 

Pressure & 

Temperature 

Amount of 

asphaltene 

precipitation 

Asphaltene 

precipitation 

7 
Kelechukwu et 

al. (2013)  

Feedforward 

neural network 

(FFNN) 

Temperature 

differential, flow 

rate and residence 

time 

Wax 

deposition 

Paraffin wax 

problems during 

hydrocarbon 

production 

8 
Sheremetov et 

al. (2014) 

Nonlinear 

autoregressive 

neural network 

with exogenous 

input (NARX) 

Maximum depth 

of completed 

intervals, latitude, 

longitude, bottom-

hole flowing 

pressure, fracture 

permeability, 

VDOL and VLIS  

Flow rate 

Modeling of 

naturally 

fractured 

reservoir 

9 
Vaferi et al. 

(2014) 

Artificial neural 

network (ANN) 

Oil saturation 

Temperature, fluid 

density, porosity, 

pressure and bulk 

density  

Thermal 

conductivity 

(TC) 

Evaluation of the 

efficiency of the 

thermal EOR and 

reservoir thermal 

simulation 

10 
Riazi et al. 

(2014) 

Particle swarm 

optimization 

(PSO), generic 

algorithm (GA), 

& imperialist 

Competitive 

Algorithm  

Temperature & 

pressures 

Hydrate 

formation 

Prevention of 

hydrate formation 

11 
Masoudi et al. 

(2014) 

Conventional cut-

off-based method 

and ANN 

Shale volume, 

porosity and water 

saturation 

Net pay 
Pay zone 

determination 
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12 
Babakhani et al. 

(2015) 

Multilayer 

perceptron neural 

network 

(MLPNN) 

Critical pressure, 

critical 

temperature, 

molecular weight, 

temperature & 

composition 

Pressure 

Hydrate pressure 

of binary 

mixtures 

estimation 

13 
Masoudi et al. 

(2015) 

Bayesian 

Network (BN) 

and K2 algorithm 

RHOB, GR, DT, 

resistivity, PEF 

Porosity, 

permeability, 

vug and 

fracture, and 

net pay 

Petrophysical 

reservoir 

characterization 

14 
Salehinia et al. 

(2016) 

NARX, 

Hammerstein-

Wiener (HW), 

Adaptive Neuro-

Fuzzy Inference 

System (ANFIS) 

Temperature, 

resistivity, oil 

density, specific 

gravity and bubble 

point pressure 

Density and 

oil formation 

volume factor 

Reservoir fluid 

characterization 

15 
Masoudi et al. 

(2017) 

Fuzzy 

membership 

function 

GR, RHOB, 

NPHI, and DT 

Vertical 

resolution 

Volume of 

investigation 

study 

16 
Masoudi et al. 

(2018) 

Hybrid 

clustering-fuzzy 

arithmetic 

algorithm 

NPHI, DT and 

RHOB 

Porosity, 

permeability 

and water 

saturation 

Quantification of 

uncertainty in 

estimations 

17 

Derakhshanfard 

and 

Mehralizadeh 

(2018) 

Radial basis 

function neural 

network 

(RBFNN) 

FeO3, NiO, ZnO, 

TiO2, & WO3 

nanoparticles 

Viscosity 

The effect of 

temperature and 

mass fraction of 

nanoparticles on 

crude oil viscosity 

18 
(Zhang et al., 

2018) 

Long Short-term 

Memory (LSTM) 

Micro potential 

and gradient 

difference, 

caliper, SP and 

GR 

Acoustic log, 

borehole 

compensated 

sonic and 

density  

Well auto 

completion and 

missing synthetic 

logs generation 

19 Current work NARX RNN NPHI & GR Sonic logs 
Formation 

evaluation 

Onalo et al. (2018a) provide a comprehensive list of intelligent systems that have been developed 

to predict sonic logs. Previous neural networks used in the estimation of sonic logs have been 

mostly fully connected neural networks, which involves taking input data only from the same depth 

as the output data; the previous neural networks are not able to store memory of previous iterations 

(Zhang et al., 2018). 
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An advancement of these neural networks is recurrent neural networks (Zhang et al., 2018). 

Recurrent neural networks have a memory capacity and are therefore able to include previous data 

and iterations in their development for a better model (Bianchi et al., 2017). Bhatt and Helle (2002) 

were able to improve an artificial neural network model for facies identification from well logs by 

using a recurrent neural network. However, in recent times, not a lot of effort and research has 

gone into the development of recurrent neural networks in the industry besides minor scale tasks 

(Sak et al., 2014). Recently, Zhang et al. (2018) utilized a long short-term memory recurrent neural 

network (LSTM) to develop synthetic logs, thereby demonstrating the viability of recurrent neural 

networks in the estimation of sonic well logs.  

The main objective of this paper is to develop a simple, yet robust, recurrent neural network model 

to accurately estimate sonic logs with the least amount of input data (well log). The results of these 

predictions can be used in place of actual sonic well logs for the evaluation of reservoir formations. 

The industrial significance of this model is that in scenarios where sonic logs data are not 

continuous and where there are missing data, costly sonic well logging tools would not have to be 

deployed, thereby reducing the operational cost of acquiring reliable sonic log data for formation 

evaluation. 
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 Recurrent Neural Network (RNN) 

RNN is a special category of neural networks capable of handling dynamic and spatial nonlinear 

dependencies (Bianchi et al., 2017). RNNs have demonstrated significant success in prediction, 

pattern identification and filtering of dynamic data (Obst and Riedmiller, 2012). An intrinsic 

characteristic of neural networks is that neural networks try to imitate the brain's ability to develop 

and establish patterns among variables (Onalo et al., 2018a). Complex network maps are created 

between the input elements, neurons and output elements by implementing certain activation 

functions (Hammer, 2000). RNNs are able to process sequential data better than feedforward 

neural networks due to the cyclic connections that RNNs establish (Sak et al., 2014). This allows 

the RNN to develop independent temporal activation functions even without input data. Hence, 

the term dynamic (Lukoševičius and Jaeger, 2009) The transfer functions are applied over each 

sequential input datum to predict the desired output. In addition, at each time step, RNN considers 

previous inputs, output and computational weight functions which are mapped through the hidden 

layer neurons (Bianchi et al., 2017). This demonstrates the superior quality of the RNN to store 

information, indicating a memory function. The memory capacity of RNN is not infinite; it is 

limited in size, depending on the specific RNN model adopted (Weston et al., 2015). Some RNN 

which capture the nonlinearity and dynamic nature of a dataset in neural networks include Elman, 

long short-term memory, gated recurrent unit, echo state network and nonlinear autoregressive 

RNNs (Bianchi et al., 2017).  In this study, a nonlinear auto-regressive RNN model with exogenous 

inputs is proposed for the dynamic prediction of sequential sonic well log data from minimal well 

logs. 
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 Nonlinear auto-regressive with exogenous inputs (NARX) 

The NARX model refers to a dynamic RNN developed after nonlinear discrete-time models 

(Leontaritis and Billings, 1985; Siegelmann et al., 1997). In contrast to other RNNs, NARX does 

not depend on the entire internal network state to establish long-term dependencies, but on the 

output feedback (Menezes Jr and Barreto, 2008). NARX is based on autoregressive models that 

have an external estimator and regressor (Matlab Documentation, 2018). The NARX state is 

controlled by the set of tapped delay lines (TDL), usually two, one for the input vector and one for 

the output vectors (Siegelmann et al., 1997). The TDL contains the current and past time-step data. 

In NARX, when the predicted output is fed back as input into the neural network to estimate the 

new output, this is referred to as a parallel architecture, as shown Figure 7.1 (Menezes and Barreto, 

2008). In series-parallel architecture, the actual output, which is available for the training, is used 

directly as inputs to estimate the output as illustrated in Figure 7.2.  

xt

T

D

L

T

D

L

N

A

R

X

yt (estimated)

 

Figure 7.1: Parallel NARX architecture  

In the parallel architecture, once the network parameters have been learned and established by the 

network, or in scenarios where the output is missing or incomplete, the output can be disconnected. 
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Figure 7.2: Series-parallel NARX architecture 

This presents a major advantage of the NARX network. In addition, two taped layered delay lines 

of  NARX models enable them to apply the gradient descent techniques to learn long-term 

temporal dependencies of large datasets (Diaconescu, 2008; Menezes and Barreto, 2008). In many 

instances, NARX has been equated to Turing machines (Bianchi et al., 2017; Diaconescu, 2008; 

Siegelmann et al., 1997). These models are very efficient at predicting and estimating the value of 

dynamic time series data; they converge and generalize data faster than other RNN (Çoruh et al., 

2014). 
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 Methodology to develop the NARX model 

The outline for the suggested methodology is presented in Figure 7.3 

Start

Step 1: Well log data gathering

Step 2: QAQC gathered well log data 

Step 3: Determine NARX architecture and attributes 

Step 4: Estimate time delayed output (y1 & y2) 

Step 5: Update NARX input layer with yt-2 for t time steps

Step 6: Repeat step 4 & 5 until minimum error function is reached

End

Step 7: Select new input well log and repeat from step 4

Step 8: Select best NARX model for sonic well log estimation

 

Figure 7.3: Proposed NARX model methodology flowchart 
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 Collection and determination of data for NARX 

In order to investigate the suitability of the NARX model for the prediction of sonic well logs, 

actual well log data is needed for the development of the models. Well logs from eleven wells 

were acquired, six from Norway and five from West Africa. The data contains the respective 

depths, sonic, bulk density, gamma ray, caliper, resistivity and neutron logs. 

 Quality assurance and quality control (QAQC) 

The well log data have had quality assurance and quality control (QAQC) performed on all the 

selected datasets that have been used in this study to ensure that the data were reliable and accurate. 

Caliper logs were used to eliminate borehole irregularities, key seats and wash out sections where 

the tools may have generated false readings. Shallow sections of the data without the 

corresponding required logs were also eliminated from the dataset. Poisson’s ratio was used to 

quality check the well log data to ensure the data were within acceptable limits, except in cases 

were anisotropic formations were suspected.  

 Development of NARX model architecture 

An illustration of the proposed NARX model is presented in Figure 7.4. 

 

Figure 7.4: Proposed NARX network model adopted from MATLAB documentation 
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The proposed NARX architecture chosen for this study is a parallel architecture with three layers 

and 10 hidden neurons which has been implemented using MATLAB. The NARX model is a 

three-layer recurrent neural architecture implemented by a feedforward neural network. The 

NARX layers consist of input, hidden and output layers. The input layer is made up of one or two 

inputs matrices (𝑥𝐺𝑅 ∈ 𝑥𝑡) while the output layer is made up of two output matrices 

( 𝑦𝐷𝑇𝐶  𝑎𝑛𝑑 𝑦𝐷𝑇𝑆  ∈ 𝑦𝑡). The data should be configured for the input and target layers, which 

includes the normalization of the data to values ranging between 0 - 1. 

The output equation can be written as follows (Bianchi et al., 2017): 

𝑦𝑡 = 𝑓(𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡−2, 𝑦𝑡−1, 𝜆) (7.1) 

Where f () is the nonlinear function, 𝜆 are trainable hyperparameters, 1 and 2 represent the dx and 

dy which are the input and output time delays respectively. 

Therefore, the input layer would consist of the two tapped delay lines (TDL) as follows: 

𝑖𝑡 = [
(𝑥𝑡−2, 𝑥𝑡−1)𝑇

(𝑦𝑡−2, 𝑦𝑡−1)𝑇]

𝑇

 (7.2) 

The following equations govern the output network (Bianchi et al., 2017) 

ℎ𝑡[1] = 𝑓(𝑖𝑡, 𝜃𝑖) (7.3) 

ℎ𝑡[2] = 𝑓(ℎ𝑡−1[1], 𝜃ℎ[1]) (7.4) 

𝑦𝑡 = 𝑔(ℎ𝑡−1[2], 𝜃𝑜) (7.5) 

𝜆 = {𝜃𝑖 , 𝜃ℎ , 𝜃𝑜} (7.6) 
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𝜃𝑖 = {𝑤𝑖
ℎ1, 𝑏ℎ1} (7.7) 

𝜃𝑜 = {𝑤ℎ2
𝑜 , 𝑏𝑜} (7.8) 

𝜃ℎ = {𝑤ℎ1
ℎ2, 𝑏ℎ} (7.9) 

Where g () is a linear function applied to the output of the last hidden layer to produce the output, 

ℎ𝑡[1] is the first hidden layer at time t; w and b are the weight and bias of the neuron connections 

(𝜃) for the respective layers. 𝑤𝑖
ℎ1 is the weight for the h1 with a previous layer-i. 

The Levenberg-Marquardt function is used as the optimization function for the feedforward 

network hidden layer to train, validate and test the model. The loss error function is updated based 

on the mean square error (MSE) performance. The main features of the NARX architecture are 

presented in Table 7.2. 

Table 7.2. Main features of the proposed NARX model 

NARX model Parameters 

Network architecture Parallel Feedforward 

Input data Gamma-ray and/or neutron porosity 

Number of layers 3 

Number of neurons 10 

Input time delay 2 

Output time delay 2 

Output data Sonic well log data 

Optimization algorithm Levenberg-Marquardt 

Loss function MSE 

 

 Learning and training of the NARX 

The process by which the model updates the current inputs, previous inputs and outputs to predict 

future outputs is referred to as the learning process of the model. The model learns with the aim of 

minimizing the loss function, including the differential error between the outputs (actual and 
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estimated) and regularization parameters (Bianchi et al., 2017). The proposed model uses a 

dynamic feed forward back propagation algorithm to determine the gradients. Dynamic 

backpropagation algorithms are more complex than static backpropagation because the error 

surfaces of dynamic networks are more complicated and could be stuck in a local minima 

(Diaconescu, 2008). The input data set should be analyzed to avoid overfitting. The Levenberg-

Marquardt algorithm is applied to the model for fast convergence of the model. This is especially 

beneficial in real-time predictive models. For the proposed NARX model development, the gamma 

ray is initialized as input to the first model.  

 Generalization of the NARX 

Generalization of a model is an important feature of any model. The developed model must be 

able to adequately describe the relationship in the training dataset such that, the relationship is 

applicable for a dataset outside the training dataset. If the model successfully describes the 

relationship in the training dataset but fails to validate and test the model on an external dataset, 

the model is said to be poor. To avoid this, the dataset has been divided into three sets namely, 

training (70%), validation (15%) and testing (15%). In addition, a 5-V fold cross-validation is 

applied to the dataset to improve the model. This involves the partitioning of the data in five 

random equal subsets where four sets are used to train, and one is used to validate the model (Arlot 

and Celisse, 2010). More so, the methodology is applied to different well logs from different 

geographical regions. 
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 Results and discussion 

To test and validate the proposed NARX model presented in section 7.3, real well log data from 

actual reservoir formations have been gathered. Recently, Equinor, an operator in the North Sea 

and Volve license partners released subsurface and operating data to the public from the Volve 

field located in the Norwegian continental shelf. Six wells from the field have been selected for 

this study along with five well from West African fields. All the well from the Nigerian reservoirs 

are from different fields located onshore and offshore in Nigeria. Details of the wells are presented 

in Table 7.3. 

Table 7.3. Available Well Data Summary 

Well  Log interval (ft) Lithology Well type  Location 

1A 8592 - 11949 Shale - sand Oil Offshore North Sea Norway 

1B 9839 - 11235 Shale - sand Water Offshore North Sea Norway 

11A 8474 - 12215 Shale - sand Oil  Offshore North Sea Norway 

11T2 8474 - 14807 Shale - sand Oil Offshore North Sea Norway 

14 9128 - 12175 Shale - sand Oil Offshore North Sea Norway 

4 9064 - 11395 Shale - sand Water Offshore North Sea Norway 

AJ 2856 - 12563 Shale - sand Gas condensate Offshore Nigeria 

AS 7974 - 10392 Shale - sand Gas Onshore Port-Harcourt Nigeria 

EJ 1023 - 8095 Shale - sand Gas Onshore Port-Harcourt Nigeria 

KC 6033 - 16608 Shale - sand Oil Offshore Port-Harcourt Nigeria 

OK 8983 - 16161 Shale - sand Oil Offshore Warri Nigeria 

 

 

 Model development and calibration 

Well 1A of the Volve field has been used for the calibration of the model applying the parameters 

presented in Table 4.2. The details of this well are described in section 7.5.1. The model is 

developed using the Levenberg-Marquardt (LM) algorithm; however, the LM model performance 

has been compared with the performance of the Bayesian Regularization (BR) algorithm using the 

same input parameters. This is to verify that the model has not been overtrained which is a major 
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problem with small data using LM algorithm due to the fact that LM stops once MSE has been 

minimized (Demuth et al., 2008). BR, on the contrary, provides a suitable generalization of the 

model by continually optimizing the weights and bias. The performance of the models is analyzed 

based on the MSE and is presented in Figure 7.5 and summarized in Table 4.4. 

 

Figure 7.5. LM and BR model performance 

The iteration stops as rightly pointed out once the MSE of verification set minimized at 57 epochs 

for Levenberg-Marquardt. For BR, it continued until the set maximum number of iterations (1000). 

However, the overall MSE value for the LM and BR algorithm are very similar indicating the LM 

was not over trained. 

Table 7.4. Model Development and calibration    

 Model Stage Datapoints MSE MSE 

Training algorithm      Levenberg-Marquardt 

Bayesian-

Regularization 

GR1A Training 7150 0.038 0.038 

  Validation 1532 0.032   

  Testing  1532 0.038 0.034 

  All 10214 0.032 0.032 
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 Model parameter selection 

The simulation package used in the development of the NARX model provides standard network 

architectural parameters to help new users build reliable models. Users can optimize these 

parameters such as layers, time delays and neurons. To demonstrate this, the base LM model which 

contains 10 neurons is compared with models containing 5 and 20 neurons respectively. The MSE 

performance is also provided in Figure 7.6. Figure 7.6 shows that 10 neurons perform better than 

the 5 and 20 neurons. Similarly, the number of time delays in the base model is two. It is compared 

with 5- and 10-time delays, and the performance of the models is seen in Figure 7.7. Figure 7.7 

points to 5-time delays as the better choice. However, the two-time delay has been chosen for 

further model development to simulate less available reliable data in the field. 
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Figure 7.6. Model parameter selection based on the number of hidden layer neurons 
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Figure 7.7. Model parameter selection based on the number of time delays 

 Model testing and validation 

To test the calibrated model, the model is applied to external data from ten wells.  Five wells are 

from the Volve field located in the Norwegian continental shelf and five wells, each from different 

fields, are found in West Africa. Both the LM and BR models are applied to test the robustness of 

each model. A summary of the test and validation is presented in Table 7.5. The Models are named 

as follows. For example GR1B means model developed with Gamma ray exogenous input from 

well 1B. 

Table 7.5. Testing of the model on external data 

Training 

algorithm    

Levenberg-

Marquardt 

Bayesian 

Regularization 

Model Datapoints MSE MSE 

GR1B 3808 0.39 0.42 

GR11A 11084 0.45 12.46 

GR11T2 18721 0.41 12.14 

GR14 6094 0.258 2.55 

GR4 4246 0.38 0.38 



216 

 

GRAJ 17526 1604.23 3535.22 

GRAS 4273 14.97 29.58 

GREJ 16923 2869.43 5624.42 

GRKC 16608 11.59 21.15 

GROK 16161 0.46 0.48 

 

As postulated, the model accurately models the sonic logs in the Volve field in Norway but with 

less accuracy in the wells located in the West African region. However, Well-OK was modeled 

accurately by the model. The model fails in wells AJ and EJ. This could be due to the fact that the 

calibration model is from a well located in the Volve field. This suggests that localized models can 

be developed with more well data from a particular field thereby eliminating the need for 

continuous sonic logging in new wells in the same field. This confirms that both compressional 

and shear travel time logs are sequential and temporal in formation sonic logging. It can also be 

observed that the LM based models outperformed the BR models in all wells; therefore, LM is 

recommended for subsequent models in this paper. 
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 Case study 

In an attempt to provide the reader with the use of such models, a demonstration of sonic formation 

evaluation has been conducted on three wells namely, 1A, 1B and OK. 

 First Case study - Well 1A. 

The well used for the first case study is referred to as Well 1A, corresponding to wellbore name – 

15/9-F-1A of the Norwegian Volve field. The operators state that the well is an observation well 

drilled into a sandstone formation from the Jurassic age Hugin formation. It is an offshore well 

with a water depth of 91 meters and a total depth of 3240 meters. The fluid content of the reservoir 

formation is oil; therefore, it is referred to as an oil observation well. For this study, an interval of 

8600 feet to 11900 feet has been chosen (Equinor, 2018a). The well log data gathered for the study 

are presented in Figure 7.8 and the data can be accessed via the Equinor website (Equinor, 2018b). 

The NARX model framework described in section 7.3 is utilized on the well log data. The target 

values for the NARX model include a matrix containing the sonic compressional travel time and 

sonic shear travel time logs of the formation.  
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Figure 7.8. Well 1A log data 
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The predicted sonic log from the NARX model is plotted over the measured sonic log versus the 

corresponding formation depth in Figure 7.9. Figure 7.9 denotes that the model accurately follows 

the measured trend of the sonic logs for Well A. 

 

Figure 7.9. Measured and predicted sonic well logs versus depth 
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Figure 7.10. Well 1A formation evaluation properties 
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Table 7.6. Statistical analysis of Well 1A formation evaluation properties 

Formation 

property 
MSE AAE 

DTS/DTC 0.000 0.002 

DTS-DTC 0.049 0.116 

Sonic 

porosity 
0.000 0.001 

Poisson 

ratio 
0.000 0.001 

The sonic formation evaluation properties for well A are illustrated in Figure 7.10. Table 7.6 shows 

that the MSE and AAE for the sonic parameters are reasonably low. Evaluation based on Figure 

7.8 and Figure 7.10 shows that the top section is a shaley water saturated formation from 8600 feet 

to 9100 feet, hence, the increase in sonic difference and sonic ratio. 8600 feet to 10200 feet is 

comprised of a sandstone reservoir formation with typical sonic ratios of 1.7 – 1.8 (Domenico, 

1984; Tatham, 1982). The sonic porosity reduction is as a result of compaction with depth. 

 

 Second Case study -Well 1B 

The investigated well in the second case study is referred to as Well 1B and corresponds to the 

wellbore name 15/9-F-1 B of the Volve field in Norway. The well is an injection water well, 

located offshore in the North Sea. The formation is also a water saturated sandstone (Equinor, 

2018a). The well log data for Well 1B is presented in   

Figure 7.11 and can also be found on the Equinor website (Equinor, 2018b). Logging of this well 

begins at about 9842 feet up until about 11155 feet. An interval from 10240 feet to 10390 feet has 

been quality checked for this study. The NARX model framework is applied to Well 1B using 
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gamma ray logs as the exogenous input log to reproduce the sonic logs of the well. However, 

several sections of the gamma ray well log data have been intentionally omitted as highlighted in  

Figure 7.11 to simulate missing data. Figure 7.12 suggests that the NARX model with gamma ray 

logs as exogenous inputs which have missing data to predict sonic well logs is feasible, as shown 

by the success of the model. Furthermore, the predictions confirm that sonic well logs are 

sequential along the wellbore and thus, their predictions can be better modeled with time sequential 

techniques. The sonic formation evaluation properties for Well 1B are illustrated in  

Figure 7.13. The MSE and AAE of Well 1B sonic parameters are provided in Table 7.7, indicating 

minimal errors between the model predicted parameters and actual sonic log parameters.   
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Figure 7.11. Well 1B well log data 
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Figure 7.12. Measured and predicted sonic well logs versus depth 

 

Figure 7.11 and  

Figure 7.13 indicate a water saturated shaley formation from the top of the well section to 10300 

feet, where a sandstone reservoir begins with possibly hydrocarbon, present for 20 feet. This 

section appears to be denser with lower porosity. The lower section of the formation appears to be 

water saturated shaley sands.  
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Figure 7.13. Well 1B formation evaluation properties 
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Table 7.7. Statistical analysis of Well 1B formation evaluation properties 

Formation 

property 
MSE AAE 

DTS/DTC 0.000 0.004 

DTS-DTC 0.157 0.265 

Sonic 

porosity 
0.000 0.001 

Poisson 

ratio 
0.000 0.001 

 

 Third Case study – Well OK 

The third case study well is marked as Well OK, to ensure that the success of the NARX model 

observed in the Volve field is not only applicable to the Norwegian continental shelf. A formation 

in the Niger Delta basin of West Africa is chosen as the third case study and called Well OK. The 

well investigated in this case study is an offshore oil well located in a shaley-sandstone formation. 

An interval of 9000 feet to 13000 feet of well log data has been made available for this study. Due 

to proprietary issues and to respect the confidentiality of the owners of the well, further details of 

the well have not been made public in this study.  

Similar to the previous case studies, the different configurations of the NARX model framework 

are applied to Well OK. The results of the prediction of the optimum NARX model are plotted for 

the measured sonic logs versus the depths in Figure 7.15. This points to the fact that the model is 

also sufficient and accurate in that field in West Africa. The sonic formation evaluation properties 

for Well OK are presented in Figure 7.16. The sonic parameters’ statistical properties like MSE 

and AAE for Well OK are provided in Table 7.8, demonstrating a close match between the 

model predicted parameters and actual sonic log parameters.  Figure 7.14 and  

Figure 7.16 suggest a shaley formation with interbedded sands saturated with water to a depth of 

about 10900 feet. A water-saturated sandstone reservoir is seen from 11000 feet to 11500 feet. A 
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100-foot interval of potential hydrocarbon sandstone reservoir play begins around 12100 feet. The 

sonic ratio and difference suggest this also. In addition, the sonic porosity suggests a normal 

compaction trend with depth. 
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Figure 7.14. Well OK well log data 
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Figure 7.15. Well OK measured and predicted sonic well logs versus depth 
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Figure 7.16. Well OK formation evaluation properties 
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Table 7.8. Statistical analysis of Well OK formation evaluation properties 

Formation 

property 
MSE AAE 

DTS/DTC 0.000 0.003 

DTS-DTC 0.512 0.290 

Sonic 

porosity 
0.000 0.001 

Poisson’s 

ratio 
0.000 0.001 

 

The application of the suggested framework methodology on the well log data is a significant step 

forward. The authors are not aware of any NARX RNN model which reproduces sonic logs from 

neutron and/or gamma ray logs. Nevertheless, the application of RNN comes with certain 

challenges. Learning the long-term dataset dependencies presents a challenge of the model over 

time; therefore, the training optimization might become limited (Salehinejad et al., 2017). RNNs 

are still subject to vanishing and exploding gradient issues. Although more data and deep networks 

enhance memory function, the challenge becomes obvious when previous data beyond the memory 

capacity have to be reintroduced back into the network (Bianchi et al., 2017). Overfitting is another 

challenge encountered in RNN development; however, this is often addressed with regularization 

techniques such as activation preservation, dropout and activation stabilization (Salehinejad et al., 

2017). The tested models capture the complexity and diversity in their respective reservoir 

formations. However, care must be exercised in applying the model to other geological settings 

different from those presented in this paper. The codes and data format have been provided to aid 

interested users. A sample of the codes used to develop the models has been provided in the 

supplementary data for potential users. The essence of the three case studies, codes and sample 
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data provided in this paper is to encourage learning and the extension of the model by other 

researchers with access to more data to test the methodology on their formations.    
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 Conclusions  

The current study has confirmed that compressional and shear sonic logs are sequential data that 

can be accurately modeled with recurrent neural networks. Particularly, the NARX model proved 

to be highly capable of predicting and reproducing sonic logs of reservoir formations with one or 

two exogenous inputs.  

The results of the NARX model applied to all wells has shown the efficiency of the model as an 

effective and reliable dynamic technique for reproducing actual sonic well logs.  

. The suggested methodology offers the petroleum industry benefits such as: 

• The NARX model proffers a solution to estimating sonic logs where there are missing well 

log data sections. 

• The NARX model offers the ability to reproduce and regenerate sonic well logs for the 

recalibration and quality check of actual sonic logs. 

• The NARX model provides a cheap and efficient solution for formations where sonic 

logging has not been budgeted for, due to economic or time constraints. 

• The NARX model provides the ability to determine several sonic derived formation 

property evaluation parameters to analyze reservoir formations. 

In general, recurrent neural networks such as NARX are very efficient at determining nonlinear 

patterns in sequential and temporal data. Sonic well logs are no exception. In place of running 

several sonic logging tools when erroneous or misleading sonic data have been recorded or where 

the sonic logging tools have been damaged, the NARX RNN model presented in this study can be 

an economical and risk-free method of accurately reproducing the sonic well logs of the formation.   
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Nomenclature 

ANN Artificial neural network 

RHOB Bulk density log (g/cm3) 

𝐾 Bulk modulus (Mpsi) 

DT Travel time (µsec/ft) 

DTC or DTCO (Δ𝑡𝑐)  Compressional travel time (µsec/ft) 

𝑦𝐷𝑇 Compressional sonic log target data 

RESD Deep log resistivity (ohm.m) 

Denpo (𝜙𝑑𝑒𝑛) Electron density porosity (g/cm3) 

𝐺𝑅𝑚𝑖𝑛 Gamma ray in clean sandstone 

𝑥𝐺𝑅 Gamma ray input data 

𝐺𝑅𝑚𝑖𝑛 Gamma ray in shale  

𝐺𝑅 Gamma ray log (gAPI) 

𝑥𝑡 Input layer 

𝜌𝑚𝑎 Density of matrix (g/cm3) 

AAE Absolute average error 

MPE Mean percentage error 

Δ𝑡𝑙𝑜𝑔 Measured compressional travel time (µsec/ft) 

𝑥𝑁 log input data 

NPHI (𝜙𝑁) Neutron porosity 

𝜙𝑁,𝑓𝑙 Neutron response of the fluid 

𝜙𝑁,𝑚𝑎 Neutron response of the matrix 

NARX Nonlinear autoregressive neural network with 

exogenous 

PEF Photoelectric factor  

𝜗 Poisson’s ratio 

RNN Recurrent neural network 

𝜙 Porosity of rock 

Vsh Volume of shale 

𝐺 Shear modulus (Mpa) 

𝑦𝐷𝑇𝑆 Shear sonic log target data 

DTS or DTSM (Δ𝑡𝑠) Shear wave travel time (µsec/ft) 

𝜙𝑠 Sonic porosity 

TDL Tapped delay lines 

𝐸 Young’s modulus (Mpsi) 
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Appendix: Supplementary data and information  

Supplementary data and information which include sample well log data which contains the input 

and output data, the model predictions and sonic formation evaluation properties are presented in 

this document. The full data can be found on Equinor website (Equinor, 2018b). A sample code 

has also been provided for potential users. 

Table 7.9. Actual and predicted sonic evaluation properties of 10 feet of well 1A 

Depth 

(ft) 
Sonic ratio Sonic difference  Sonic porosity  Poisson's ratio  

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

8600.16 2.08 2.08 97.41 97.56 0.27 0.27 0.35 0.35 

8600.49 2.07 2.07 97.16 97.08 0.27 0.27 0.35 0.35 

8600.82 2.07 2.07 96.89 96.85 0.27 0.27 0.35 0.35 

8601.14 2.06 2.06 96.15 96.55 0.27 0.27 0.35 0.35 

8601.47 2.05 2.05 95.41 95.37 0.27 0.27 0.34 0.34 

8601.80 2.04 2.04 94.67 94.63 0.28 0.28 0.34 0.34 

8602.13 2.03 2.03 94.26 93.90 0.28 0.28 0.34 0.34 

8602.46 2.02 2.02 93.85 93.82 0.28 0.28 0.34 0.34 

8602.78 2.02 2.02 93.45 93.43 0.28 0.28 0.34 0.34 

8603.11 2.01 2.01 93.27 93.03 0.28 0.28 0.34 0.34 

8603.44 2.01 2.01 93.11 93.08 0.28 0.28 0.34 0.34 

8603.77 2.01 2.01 92.94 92.92 0.28 0.28 0.34 0.34 

8604.10 2.01 2.01 92.93 92.75 0.28 0.28 0.34 0.34 

8604.42 2.01 2.01 92.93 92.87 0.28 0.28 0.34 0.34 

8604.75 2.01 2.01 92.92 92.89 0.28 0.28 0.34 0.34 

8605.08 2.01 2.02 92.80 92.90 0.28 0.28 0.34 0.34 

8605.41 2.01 2.01 92.65 92.66 0.28 0.28 0.34 0.34 

8605.74 2.01 2.01 92.51 92.49 0.28 0.28 0.34 0.34 

8606.06 2.01 2.01 92.40 92.34 0.28 0.27 0.34 0.34 

8606.39 2.01 2.01 92.31 92.26 0.28 0.28 0.34 0.34 

8606.72 2.01 2.01 92.21 92.16 0.28 0.28 0.34 0.34 

8607.05 2.00 2.01 91.85 92.07 0.28 0.28 0.33 0.34 

8607.38 2.00 2.00 91.40 91.46 0.28 0.28 0.33 0.33 

8607.70 1.99 1.99 90.96 90.96 0.28 0.28 0.33 0.33 

8608.03 1.97 1.98 90.26 90.52 0.29 0.28 0.33 0.33 

8608.36 1.96 1.96 89.46 89.59 0.29 0.29 0.32 0.32 

8608.69 1.95 1.95 88.66 88.70 0.29 0.29 0.32 0.32 
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8609.02 1.93 1.93 87.72 87.89 0.30 0.30 0.32 0.32 

8609.34 1.91 1.91 86.72 86.82 0.30 0.30 0.31 0.31 

8609.67 1.90 1.90 85.71 85.75 0.31 0.31 0.31 0.31 

8610.00 1.88 1.88 85.01 84.76 0.31 0.31 0.30 0.30 

8610.33 1.88 1.87 84.49 84.36 0.31 0.31 0.30 0.30 

8610.66 1.87 1.87 83.97 84.03 0.32 0.32 0.30 0.30 

8610.98 1.86 1.86 83.83 83.53 0.32 0.32 0.30 0.30 

 

Sample MATLAB generated code for modeling sonic well logs 

A sample of a MATLAB generated code of the modeling is presented below. The input data for 

the model are neuron logs and the output data are compressional and shear wave sonic logs. 

Code 

% The solution of an Autoregression task with an Exogenous Input with a NARX Neural Network 

% The script has been generated by MATLAB Neural Time Series application 

% 03-Aug-2018 23:57:19 

% 

% The variables are defined as follows: 

% 

%   Anp – The input time series. 

%   Adtds – The feedback time series. 

  

X = tonndata(Anp,true,false); 

T = tonndata(Adtds,true,false); 

  

% 'trainlm' training function is chosen 

 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  

% Model creation 

inputDelays = 1:2; 

feedbackDelays = 1:2; 

hiddenLayerSize = 10; 

net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn); 

  

% Training and simulation data preparation  

[x,xi,ai,t] = preparets(net,X,{},T); 

  

% Divide the data for training, validation and testing 

net.divideParam.trainRatio = 70/100; 
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net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

% Network training 

[net,tr] = train(net,x,t,xi,ai); 

  

% Network testing 

y = net(x,xi,ai); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

  

% Network view 

view(net) 

  

% Plots 

figure, plotperform(tr) 

figure, plottrainstate(tr) 

figure, ploterrhist(e) 

figure, plotregression(t,y) 

figure, plotresponse(t,y) 

figure, ploterrcorr(e) 

figure, plotinerrcorr(x,e) 

  

% Closed Loop Network 

netc = closeloop(net); 

netc.name = [net.name ' - Closed Loop']; 

view(netc) 

[xc,xic,aic,tc] = preparets(netc,X,{},T); 

yc = netc(xc,xic,aic); 

closedLoopPerformance = perform(net,tc,yc) 

  

% Step-Ahead Prediction Network 

nets = removedelay(net); 

nets.name = [net.name ' - Predict One Step Ahead']; 

view(nets) 

[xs,xis,ais,ts] = preparets(nets,X,{},T); 

ys = nets(xs,xis,ais); 

stepAheadPerformance = perform(nets,ts,ys) 
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Abstract 

Artificial neural networks (ANN) have increasingly been used to estimate sonic well logs in the 

oil and gas industry because running sonic logging tools downhole is challenging, costly, and time-

consuming.  

ANN models are seen as reliable, cost-effective and efficient alternative. However, the challenges 

associated with ANN models for sonic well prediction are not well understood and considered. 

This paper is meant to shed light on these important topics. The paper is focused on highlighting 

the challenges and pitfalls encountered in the development of ANN models for sonic well log 

prediction. The points are explained with the help of a case study of developing sonic logs for a 

well located on the Norwegian continental shelf. Recommendations are suggested to resolve some 

of the challenges encountered in ANN model development. 

 Keywords: Artificial neural network, sonic well log, challenges, transit time, prediction 
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  Introduction   

Reliable, continuous and accurate data are invaluable for formation evaluation when using well 

logs (Deo et al., 2009). Formation evaluation analysis performed based on quantitative 

measurements of the well logs of a reservoir formation is associated with a certain degree of error 

and uncertainty (Gimbe and Lippard, 2015; Yashrakshita, 2013). Formation evaluation is based 

on the inherent characteristic properties of the formation such as bulk density, acoustic travel time, 

resistivity, hydrogen index and gamma rays (Onalo et al., 2018a). From these measurements, 

porosity, volume of shale, permeability, fluid saturation and geomechanical elastic properties are 

deduced (Akin et al., 2008; Derakhshanfard and Mehralizadeh, 2018; Elkatatny et al., 2018; 

Kazatchenko et al., 2006a; Maleki et al., 2014; TAO and KING, 1993; Yashrakshita, 2013; 

Zendehboudi et al., 2012, 2014). Uncertainties may originate from input data, well logging tools, 

calibration charts for the tools (especially when quality checks have not been performed), 

equations and methodologies used to estimate the well log properties and irregularities in the 

borehole (Al-Ameri and Al-Kattan, 2012; Asquith and Gibson, 2004; Balarabe and Isehunwa, 

2017; Kohli and Arora, 2014; William R. Moore, 2011; Williams, 1990). Additionally, the 

petrophysical measurements from logging tools are not direct measurements of the formation’s 

geomechanical properties; hence, another degree of error and uncertainty is introduced (Moore et 

al., 2011). These uncertainties lead to errors in the well logs used for formation evaluation and 

petrophysical interpretations during exploration and development. 

Apart from the errors in the acquired well logs from a reservoir formation, gaps in the data may 

exist in certain regions along the entire length of the wellbore (Yu et al., 2008). In other wells, the 

entire formation may not be logged deliberately, due to financial constraints or regions of particular 

interest (Mullen et al., 2007). When data from these sections are required for further field 
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development and analysis, the missing well logs are inferred from adjacent well logs and offset 

wells (Lopes and Jorge, 2017; Yu et al., 2008). This leads to more uncertainty and error generation. 

Alternatively, well logging tools may be deployed to re-log the missing well log section; however, 

this presents additional cost and environmental risks (Lopes and Jorge, 2017). Logs are not run at 

all depth and especially not along shallow sections. This is mainly due to the fact that these sections 

do not represent the zones of interest and are not potential hydrocarbon reservoirs (Ramcharitar 

and Hosein, 2016).  

The data required to infer the values of the missing well log regions are not always available due 

to the fact that the full suite of possible well logs may not have been logged and therefore are not 

available for indirect estimation or completion of the missing logs (Saggaf and Nebrija, 2000). For 

example, many offset wells that contain compressional wave sonic logs do not have corresponding 

shear wave sonic logs (Hossain et al., 2012; Mullen et al., 2007; Nourafkan and Kadkhodaie-

Ilkhchi, 2015; Onalo et al., 2018a). Estimating these logs for geomechanical analysis and 

formation evaluation has been the central focus of a plethora of research (Anemangely et al., 2017; 

Greenberg and Castagna, 1992; Henning, 2000; Jørstad et al., 1999; Maleki et al., 2014; Rezaee et 

al., 2007). The petro-physicist and engineer must assess if the errors and uncertainties present in 

the available data are negligible enough to carry out reliable interpretation and evaluation of the 

reservoir’s formation (Moore et al., 2011; Onalo et al., 2018b). Alternatively, they must find 

techniques that can help resolve these challenges by providing useable well logs for their analysis. 

To solve these challenges inherent in the use of well logs for formation evaluation, interpretation 

and analysis, several methods have been used, such as empirical correlations, intelligent systems 

and hybrid models (Al-Dousari et al., 2016; Asoodeh and Bagheripour, 2013; Bagheripour et al., 

2015; Bahrpeyma et al., 2015; Bhatt, 2002; Cranganu and Bautu, 2010; Ibrahim and Potter, 2004; 
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Kazatchenko et al., 2006b; Maleki et al., 2014; Rajabi et al., 2010; Rajabi and Tingay, 2013; Rolon 

et al., 2009; Saputro et al., 2016; Sbiga and Potter, 2017; Ukaonu et al., 2017). In particular, 

artificial neural networks are gaining popularity for estimating and reproducing missing logs 

(Khandelwal and Singh, 2010; Kohli and Arora, 2014; Onalo et al., 2018a; Verma et al., 2012).  

It is assumed that the reader is familiar with ANN techniques and its use in the petroleum industry. 

For example, Handhal (2017) was able to deduce missing sonic, neutron, and density well logs in 

an oil field located in Southern Iraq by developing an artificial neural network (ANN); Handhal 

emphasized the high synthesizing capability of ANN. Saputro et al. (2016) developed a model to 

predict porosity from sonic and gamma ray logs using ANN. Rolon et al. (2009) analyzed the 

properties of four reservoir wells using synthetic well logs that were developed from an ANN 

model. Kohli and Arora (2014) estimated the permeability of three reservoir formations using 

gamma ray, density, resistivity, and porosity logs as inputs.  

Although ANN is a powerful computational tool to model nonlinear complex relationships, 

researchers are beginning to recognize that it has its shortcomings and pitfalls, such as overfitting 

and over parametrization of weights and bias (Chitsazan et al., 2015; Shahin et al., 2009). Ma et 

al. (2017) attempted to resolve some of the issues by introducing a principal component analysis 

(PCA) to classify the lithology and integrated this into the ANN model. This improved the 

selection of relevant data for model development. Yu et al. (2012) took the use of ANN a step 

further by generating an algorithm to select the best well logs and intervals for training the ANN 

in order to improve the accuracy of ANN model predictions. Very recently, Onalo et al. (2018a) 

developed an ANN model to predict compressional and shear wave sonic logs from a combination 

of gamma rays, formation bulk density, and the volume of shale. The results of the model were 

used for on the spot field analysis of sanding potential and geomechanical properties. However, 
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similar to other researchers mentioned above, several challenges and limitations were observed 

during the development of the ANN models. Some of these challenges are discussed in this work. 

The aim of this paper is to highlight and discuss some of the challenges and pitfalls often 

encountered in the development of ANN models for sonic well prediction. Although the 

application in this paper is for sonic well log prediction, similar challenges are encountered in the 

prediction of other well logs using this tool. The objective of the paper is to buttress the need for 

solutions and possible future directions to resolve these challenges so as to improve ANN as a 

viable technique for the oil and gas industry. To do this, the following assumptions have been 

made: 

• As researchers, the authors have used ANN techniques for data-driven modeling in the oil 

and gas industry; nevertheless, the authors understand that ANNs have limitations. 

• The reader understands ANN and is familiar with its use in the petroleum industry, 

including some of the published work by the authors (Adedigba et al., 2017; Khakzad et 

al., 2011; Onalo et al., 2018a). 

• The current work is not to provide a critique of ANN; but to provide a direction for its 

future use as a means to interpret and interpolate well logs as well as predict formation 

properties from well log data. 

• The application of ANN for formation evaluation in this study has genuine bases; therefore, 

the work does not comment or criticize the validity of ANN for this application. 

The paper has been divided into four sections. The first section introduces the problems and need 

for ANN. The second section considers the application of ANN to an actual well in a case study. 
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The third section discusses the challenges that were encountered in the development of the ANN 

model. The fourth section provides a summary of the conclusions from the investigation. 
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  Case Study 

In this case study, ANN has been applied to predict the sonic logs of the Volve field located on the 

Norwegian continental shelf. The data is made available through the recent release of subsurface 

data by Equinor to the public in order to aid academicians in their research efforts. The well 

considered in this case study is well-15/9-F-1A in the Volve field in Norway. The well is located 

in a sandstone formation under water of up to 91 meters depth. The reservoir is considered to be 

an oil reservoir due to its fluid content and was initially drilled as an observation well (Equinor, 

2018). For the purpose of this study, a controllable dataset size from 3400 to 3650 meters is 

considered. The control section is predominately water saturated sandstone; however, potential oil 

reservoirs can be observed in Figure 8.1 at depths of 3435, 3480 and 3530 m respectively. The 

input data available for the ANN model development is presented in Figure 8.1. The statistical 

distribution of the data, showing the maximum, minimum, mean and range of the well log data 

used for the case study is presented in Table 8.1. 

Table 8.1 Statistical representation of the well log data 

  

Depth 

(m) 

Caliper 

(in) 

GR 

(API) NPHI 

RHOB 

(g/cm3) 

RT 

(ohm.m) VSH 

DTC 

(µs/ft) 

DTS 

(µs/ft) 

Max 3640.00 8.87 126.90 0.41 2.93 29.49 1.00 93.41 186.09 

Min 3429.40 8.47 10.35 0.05 2.24 0.19 0.01 58.71 96.90 

Mean 3534.70 8.65 52.20 0.16 2.50 2.40 0.36 75.02 129.57 

Range 210.60 0.41 116.55 0.35 0.69 29.30 0.99 34.70 89.19 
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Figure 8.1. Well log data from Well 15/9-F-1A, Volve Field, Norway (Equinor, 2018) 
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 Development of ANN model 

A base model is established to serve as a model for comparison to help the reader observe the 

changes as the parameters are adjusted during the model development. Consider a scenario where 

there is available data, meaning that all the available well log data provided can be used for the 

model development. The multilayered perceptron artificial neural network (MLP-ANN) is applied 

to the entire dataset using the backpropagation algorithm. The base model is a three-layered 

network with 10 neurons. The logistic activation function has been applied to the dataset. 70% of 

the data was used for training while 30% was used for validation and testing of the models. For 

easy identification of the model developed, the input data are abbreviated as follows: gamma ray 

- GR, neutron porosity – N, resistivity – RT, depth – Dep, bulk density – RHOB, and volume of 

shale – VSH. A summary of the features in the initial model is presented in Table 8.2. 

Table 8.2. The features of the base model 

Main features of the model Parameters 

Architecture of the network Feedforward 

Input data All (GR, N, Dep, RT, RHOB, VSH) 

Number of layers 3 

Number of neurons 10 

Activation function Logistic 

Training algorithm Backpropagation 

Output data Compressional and shear sonic transit time 

Optimization algorithm Levenberg-Marquardt 

Performance function MSE 

The results of the model indicate that the coefficient of determination of the model is 0.991 and 

the MSE is 15.52 overall. This alludes to a sufficiently accurate model; however, caution should 
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be exercised because the results provide the overall performance of the model based on the output 

vector (combined compressional and shear sonic logs). It is useful to extract the individual values 

of the model prediction for a cross-validation. To demonstrate this, the individual cross-validation 

of the model is presented in Figure 8.2. 

 

Figure 8.2. Cross-validation of All-model 

The R2 of compressional sonic transit log and shear sonic transit log is 0.844 and 0.904 

respectively. This is lower than the overall output vector R2 presented by the model initially. This 

also applies to the MSE; however, since this is only for demonstration, the overall output vector is 

used as the basis for comparison except when it is necessary to explain a challenge or short coming 

of ANN. 
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 Challenges and limitations of ANN model development 

In this section, some of the challenges, shortcomings and pitfalls which were encountered during 

the model development are presented. In addition, some shortcomings which have been reported 

to be issues encountered when developing ANN models by other researchers are also presented.  

 Input data 

The input data plays a significant role in model definition. All the data available in the well log 

dataset are not always available in most wells. The full suite of logs is not always run; sometimes, 

the data contain errors or missing sections. The most suitable selection of data in one well may 

very well differ in another well, but determining this for a particular region will prove useful for 

wells in that region. It is voluminous and unnecessary to consider all permutations of the available 

well log data set; hence, an input layer with three input well logs is considered for the development 

of models with limited data where only three input well logs are available and reliable. Applying 

the same training parameters as in the base model, several combinations of input well logs were 

considered. A summary of the models is presented in Table 8.3. A legend for the models can be 

found in the nomenclature.  

Table 8.3. Summary the model performance based on the selected input data 

Sn Model Stage R2 MSE Epoch 

1 
GRRHOBVSH  

(Gamma ray, density and shale volume)  

Training 0.968 55.83 

7 
Validation 0.966 58.99 

Testing 0.963 69.83 

Overall 0.967 58.99 

2 
GRRHOBN 

(Gamma ray, density and neutron) 

Training 0.974 45.78 

8 
Validation 0.973 48.60 

testing 0.974 47.23 

Overall 0.974 48.59 

3 
GRRHOBRT 

(Gamma ray, density and resistivity) 

Training 0.976 42.98 
65 

Validation 0.970 51.75 
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Testing 0.960 72.15 

Overall 0.973 51.75 

4 
GRRHOBDep 

(Gamma ray, density and depth) 

Training 0.977 41.90 

47 
Validation 0.979 36.72 

Testing 0.969 54.28 

Overall 0.976 36.72 

5 
GRNDep 

(Gamma ray, neutron and depth) 

Training 0.986 25.48 

36 
Validation 0.981 35.09 

Testing 0.985 27.88 

Overall 0.985 35.08 

6 
GRNRT 

(Gamma ray, neutron and resistivity) 

Training 0.973 48.26 

11 
Validation 0.976 43.18 

Testing 0.977 39.55 

Overall 0.974 43.18 

7 
GRNVSH 

(Gamma ray, neutron and shale volume) 

Training 0.972 50.05 

41 
Validation 0.972 51.76 

Testing 0.971 53.07 

Overall 0.972 51.75 

8 
DepGRRT 

(Depth, gamma ray and resistivity) 

Training 0.977 41.08 

24 
Validation 0.976 41.61 

Testing 0.975 45.12 

Overall 0.977 41.62 

9 
DepGRVSH 

(Depth, gamma ray and shale volume) 

Training 0.972 50.41 

39 
Validation 0.973 50.38 

Testing 0.972 49.87 

Overall 0.972 50.38 

10 
NRHOBRT 

(Neutron, density and resistivity) 

Training 0.971 51.98 

11 
Validation 0.974 45.73 

Testing 0.964 68.11 

Overall 0.970 45.73 

11 
NRHOBDep 

(Neutron, density and depth) 

Training 0.982 32.91 

27 
Validation 0.981 34.30 

Testing 0.978 41.54 

Overall 0.980 34.30 

12 
NRHOBVSH 

(Neutron, density and shale volume) 

Training 0.974 46.83 

13 
Validation 0.975 43.14 

Testing 0.974 48.98 

Overall 0.974 43.14 

13 
NRTVSH 

(Neutron, resistivity and shale volume) 

Training 0.975 45.00 

32 Validation 0.977 41.23 

Testing 0.974 46.07 



261 

Overall 0.975 41.23 

14 
NRTDep 

(Neutron, resistivity and depth) 

Training 0.989 19.85 

50 
Validation 0.989 19.28 

Testing 0.989 20.67 

Overall 0.989 19.28 

 

Table 8.3 suggests that NRTDep-model had the best performance of the models tested with an 

overall R2 of 0.989 and MSE of 19.28 respectively. NRTDep-model is considered as the base 

model henceforth for comparative consistency.  

ANNs are good approximators and are probably able to provide a solution for almost any dataset. 

To develop a good model, the input data must be selected carefully. Data which describe subtle 

changes in the target data are usually a good choice for model development (Gardner and Dorling, 

1998; Shahin et al., 2009). Often, there may be more than one input data; different input data, 

suggesting changes in the target data at different points in the training may proffer a better solution 

when combined to form an input vector. For sonic well prediction, different input data vectors 

have been considered. Examples include gamma ray, neutron, density, volume of shale (Akhundi 

et al., 2014; Kazatchenko et al., 2006b; Khandelwal and Singh, 2010; Kohli and Arora, 2014; Ma 

et al., 2017; Maleki et al., 2014; Onalo et al., 2018a; Ramcharitar and Hosein, 2016; Rolon et al., 

2009; Zoveidavianpoor et al., 2013). However, there is no consensus on the best set of input data 

for prediction of sonic well logs.   

 Target data 

For the ANN model developed from the case study, compressional sonic transit time and shear 

sonic transit time were concurrently predicted as the target data.  
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ANN models are capable of estimating more than one output target data at a time. Depending on 

the objective of the model, the target data is set. When the objective is speed and quick analysis, a 

set of target data may be combined to form a target vector for quick and on the spot analysis. In 

contrast, when the objective is accuracy, separate models may be developed with their target data 

forming the basis of each model. The model results can be analyzed individually. The target data 

of a sonic well log may be compressional sonic transit time, shear sonic time and/or Stoneley sonic 

transit time (Rajabi et al., 2010). These can be combined to suit the objective of the model. For 

geomechanical formation analysis, compressional and shear sonic logs are usually sufficient and 

can be the target data (Khandelwal and Singh, 2010; Kohli and Arora, 2014; Onalo et al., 2018a; 

Ramcharitar and Hosein, 2016). In offset wells, where compressional sonic logs are available, only 

shear sonic logs are required for model predictions (Akhundi et al., 2014; Asoodeh and 

Bagheripour, 2014; Kazatchenko et al., 2006b; Maleki et al., 2014). Another pitfall of BP is that 

the more dimensions or input data introduced into the model, the larger the dataset required to 

describe the model; this increases convergence time (Gardner and Dorling, 1998). 

 Data quality 

The data in the case study have been quality checked by filtering the noise observed. Without this 

initial step, any result from the model would be misleading. Details of this process can be found 

in literature (Oloruntobi et al., 2018; Onalo et al., 2018a).  

ANN models may appear to model a given problem and pass the optimization criteria in the 

training data and sometimes, even the validation data, but still fail when applied to a fresh set of 

test data. One of the reasons for this ANN shortcoming is the quality of the data. The data may 

contain errors or false readings, which are carried into the model development and training. For 

example, during the acquisition of well log data, irregular wellbore surfaces are sources of error 
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which must be monitored to access the suitable data for model development. Pad type tools such 

as density and resistivity logs, which measure the distance of a rock property from the surface of 

the wellbore, produce erroneous results when the drilling mud and mud filter cake limit the contact 

between the tool and the formation (Bjorlykke, 2010). These false readings are noise in the data 

and need to be filtered from the data prior to use. 

  Data size 

The initial model was developed with 2107 data points; however, the developer must decide if the 

data size considered is sufficient or if the model can be developed with a small data size. To 

investigate the influence of the data size on the model developed, datasets of 500 and 100 are 

developed based on the same parameters as the base model. The results are presented in Table 8.4. 

Table 8.4. Model performance summary based on data size 

Sn Model (Size)   R2 MSE Epoch Samples 

1 2107 

Training 0.989 19.85 

50 

1475 

Validation 0.989 19.28 316 

Testing 0.989 20.67 316 

Overall 0.989 19.28 2107 

2 500 

Training 0.997 6.26 

48 

350 

Validation 0.996 8.91 75 

Testing 0.998 5.4 75 

Overall 0.998 8.91 500 

3 100 

Training 0.999 0.03 

50 

75 

Validation 0.999 0.06 15 

Testing 0.999 0.06 15 

Overall 0.999 0.06 100 

At first glance, it appears that reducing the data size improves the performance of the model. This 

is true if this is the only dataset possible for sonic well prediction i.e. if the data size is 

representative of the problem. To investigate this, the model must be tested for generalization. 
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ANN is a data-driven technique that relies heavily on the dataset presented for the training and 

development of the model. The data must be representative and include an extensive description 

of the problem (Gardner and Dorling, 1998). If the data are not representative of the problem or 

too few, the model will fail to generalize the problem and will not be able to handle a new dataset. 

On the other hand, if the data are too copious, the model might be subjected to overfitting. Caution 

should be exercised when training ANN models; a data set which has been trained may indicate 

good results in the training, validation and testing and still be poor in generalization. This begets 

another question. How should the training, validation and testing data size be decided? If this is 

done randomly, representative data may be omitted in the training data, which will reduce the 

model’s performance (Gardner and Dorling, 1998). Some researchers take a trial and error, fuzzy 

clustering or self-organizing approach to dividing the data (Dorofki et al., 2012; Shahin et al., 

2009). MATLAB documentation recommends 70% for training, 15% for validation and 15% for 

testing. This is consistent with recommendations found in the literature (Basheer and Hajmeer, 

2000; Chen et al., 2017; Dorofki et al., 2012). To reduce the risk of not having a representative 

dataset for model training, they can be divided into exclusive subsets, which are trained separately; 

the results are analyzed for convergence. If they are similar, then the confidence level is said to be 

high and the data are representative of the problem. This is known as the V-fold cross-validation 

(Gardner and Dorling, 1998; Matlab Documentation, 2018).  

 Generalization of the ANN 

Generalization refers to the ability of a model to adequately model the underlying relationship that 

has been observed in a training dataset and use the modeled relationship to determine output values 

of a different dataset exclusive of the training data set (Chitsazan et al., 2015). The ability of the 

developed model to generalize based on the available data is evaluated based on the models 
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presented in Table 8.4.  The results are shown in Figure 8.3. As depicted in Figure 8.3, although 

the models appeared to have good performance values as the data size was reduced, when the 

models were applied to the entire dataset, they performed poorly. The dataset most likely does not 

account for the lithology, which may have different relationships. This alludes to the fact that the 

smaller datasets were not representative of the problem; in this case, the input well logs used to 

predict the compressional and shear transit logs were not representative of the entire reservoir 

formation.  

From a well logging perspective, formation interval dependent variables like the pressure regime 

(overpressure), fluid saturation, lithology, temperature, stress, porosity and permeability vary 

along the wellbore. If the dataset selected does not contain datasets with these variables, then the 

model will fail to adequately represent the formation. Thus, it may be prudent to assume that 

different ANN models could be considered for different lithologies and only combined if separate 

modeling indicates that it is appropriate to develop one model. 
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Figure 8.3. Cross-validation of models based on data size generalization 

Generalization is essential to any model development and should be of high priority when 

developing predictive ANN models. With the aim to improve the generalization capability of 

models, developers fall into the trap of increasing the number of data and neurons; unfortunately, 

this may not solve the problem. The model identifies all previously existing training patterns and 
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parameters in the training data set and applies them blindly to the new dataset, thereby leading to 

overfitting (Gardner and Dorling, 1998).  The idea of dividing the dataset into training data, 

validation data and test data has the aim of improving the ability of the model to generalize unseen 

data (Briggs and Circi, 2017). Sometimes the dataset is also divided into batches to help with the 

generalization. 

  Model Architecture 

The architecture applied for model development in the case study is a three-layered network with 

10 neurons. This has been selected based on best industry practices. In most networks, the initial 

challenge that becomes obvious to the developer is the architecture of the model. Many researchers 

admit to adopting a trial and error basis when trying to select the best architecture for the model 

(Briggs and Circi, 2017; Gardner and Dorling, 1998). This is due to the fact that there are no hard 

and fast rules or procedures for developing an ANN model. 

8.3.1.1  Model neurons 

Although 10 neurons were selected for the development of the base model, based on past 

experiences, choice of the number of neurons in each layer is evaluated. The number of neurons 

considered in the evaluation is 1, 5, 10 and 20, to give a representative variation from the base case 

of 10 neurons. The summary of the evaluation is presented in Table 8.5. It may be tempting to 

assume that by increasing the number of neurons, the performance of the model can be improved. 

Although this may be accurate to some extent, if errors exist in the model, then the reverse will be 

the case. In this case study, the data have been quality checked prior to evaluation. Increasing the 

number of neurons increases the number of epochs and thus, the speed of convergence. Therefore, 

it is redundant to keep increasing the number of neurons infinitely. 
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Table 8.5 Summary of model performance based on the number of neurons 

Sn Number of neurons Stage R2 MSE Epoch 

1 1 

Training 0.967 58.97 

6 
Validation 0.967 57.48 

Testing 0.963 67.39 

Overall 0.966 57.48 

2 5 

Training 0.985 26.26 

21 
Validation 0.986 25.93 

Testing 0.982 32.07 

Overall 0.985 25.93 

3 10 

Training 0.989 19.85 

50 
Validation 0.989 19.28 

Testing 0.989 20.67 

Overall 0.989 19.28 

4 20 

Training 0.992 14.31 

125 
Validation 0.991 14.73 

Testing 0.992 15.41 

Overall 0.992 14.73 

 

As they are the building blocks of ANN, selecting the appropriate number of neurons is critical to 

successful ANN model development. The number of neurons is dependent on the actual problem, 

the data available and the noise present in the data. Few neurons will cause the BP algorithm not 

to converge at the minimum error function surface, which will lead to underfitting. Excess neurons 

will render the BP algorithm redundant, which will cause overfitting (Elkatatny et al., 2017; Van 

der Aalst et al., 2010). Limiting the number of neurons and layers has been used to reduce the 

tendency for the model to overfit the dataset by filtering data that are considered to be noisy and 

ignoring them (Gardner and Dorling, 1998).  
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8.3.1.2  Model Layers 

The model presented in the case study has been developed with one hidden layer, making a total 

of three layers; however, the hidden layers can be increased to give a better description of the 

relationship. For this case study, one, two and three hidden layers have been considered.  

 The results are presented in Table 8.6. Increasing the number of layers does not necessarily 

increase the accuracy of the model, as can been seen in Table 8.6. The model performance suggests 

that a model with two hidden layers provides a better predictive model.  

Table 8.6 Summary of model performance based on the number of layers 

Sn Number of hidden layers Stage R2 MSE Epoch 

1 1 

Train 0.967 

57.48 6 
Validation 0.967 

Test 0.963 

Overall 0.966 

2 2 

Train 0.990 

21.13 130 
Validation 0.988 

Test 0.987 

Overall 0.989 

3 3 

Train 0.979 

36.41 38 
Validation 0.980 

Test 0.977 

Overall 0.979 

 

ANN architectures typically consist of neurons in the input, hidden and output layers of the 

networks (Shahin et al., 2009). For simple and less complex problems, a three-layer network is 

often sufficient to produce a smooth function (Gardner and Dorling, 1998). This implies an input 

layer, a hidden layer and an output layer. 
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  Training of ANN models 

The manner and method ANN models adopt in adjusting and updating the weights assigned to the 

neurons in the layers is known as the training of the model (Briggs and Circi, 2017; Shahin et al., 

2009). The training algorithm considered in this work is the backpropagation algorithm, which is 

a first-order algorithm. MATLAB offers a range of training optimization algorithm options for the 

development of ANN models that adopt a backpropagation algorithm. The Levenberg-Marquardt 

second order optimization algorithm was applied to the case study.  

MATLAB offers other second order algorithms to optimize the training, such as Bayesian 

regularization (BR) and the scaled conjugate gradient (SCD) technique. The second order 

algorithms significantly increase the training speed of the models, optimize the selection of the 

learning rate and momentum and prevent overfitting (Kayri, 2016; Wilamowski and Yu, 2010). 

LM optimizes by trying to reduce the sum of the square error function (Sapna et al., 2012). LM is 

considered to be the fastest; however, it requires more memory (Matlab Documentation, 2018). 

BR incorporates a probability distribution of a combination of the weights and square errors and 

attempts to reduce the error function (Kayri, 2016). Conjugate gradient descent techniques have 

been known to reduce the iterative process of the first order algorithm (Møller, 1993). SCD is a 

faster alternative to the line search technique, where the learning rate does not have to be estimated 

at each iteration. This is achieved by using a scaling mechanism The main advantage of SCD is 

that model parameters like rate and momentum do not need to be defined by the developer (Møller, 

1993). Selecting the best training optimization algorithm is again dependent on the problem at 

hand. 

To evaluate how this feature can be an issue in model development, these optimization algorithms 

were applied to the base model. The results are presented in  
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 Table 8.7 

 Table 8.7. Summary of model performance based on the optimization algorithm 

Sn Training optimization algorithm Stage R2 MSE Epoch 

1 Levenberg-Marquardt 

Training 0.989 19.85 

50 
Validation 0.989 19.28 

Testing 0.989 20.67 

Overall 0.989 19.28 

2 Bayesian regularization 

Training 0.991 16.48 

213 
Validation 0 0 

Testing 0.990 16.48 

Overall 0.990 17.01 

3 Scaled conjugate gradient 

Train 0.972 49.48 

56 
Validation 0.973 47.54 

Training 0.968 57.57 

Overall 0.972 47.54 

Besides the training optimization function, the following should also be considered when training 

a model. 

8.3.2.1 Activation function 

Selecting and deciding which activation function to use is often confusing. It is recommended to 

use bounded functions to increase the level of control over the output (Gardner and Dorling, 1998). 

More importantly, for BP, the function must be differentiable. MATLAB offers the logistic 

function, hyperbolic tangent function and purelin functions (Matlab Documentation, 2018). The 

logistic and hyperbolic tangent functions are non-linear functions, but the purelin, a linear function 

can be applied to the last output layer (Matlab Documentation, 2018). Normalizing the input data 

(0 – 1) is a redundant practice as the ANN adjusts the data based on the weights and bias; the data 

can be divided by the standard deviation to standardize the data (Chen et al., 2017; Gardner and 

Dorling, 1998). 
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8.3.2.2 Training parameters 

Adjusting the learning rate and momentum help when training a model. The learning rate 

determines the step size the algorithm or activation function employs in updating in the model. A 

small learning rate will result in a longer convergence time; however, a large learning rate may 

result in the model failing to converge at the minimum error surface. The learning momentum is 

another training parameter which can help prevent the model from getting stuck at a false local 

error gradient minimum. It considers a portion or percentage of the previous layer in updating the 

next layer. Decreasing the learning rate has been found to aid models that fail to converge either 

due to instability or oscillation over a local error surface minimum (Gardner and Dorling, 1998). 

8.3.2.3 Performance criteria 

Depending on the actual problem and the reason behind developing the model, the performance 

criteria must be established prior to development. If the emphasis is on speed, then training speed 

should be monitored and optimized in model development; however, this may reduce model 

accuracy and generalization capacity. The size of the data and dimensionality may also be reduced 

to improve speed. However, if the emphasis is accuracy, then the reverse is true. Developers may 

decide to use the coefficient of determination as the basis for selecting the better model. This is 

sometimes statistically misleading. Hence, the regression coefficient should be combined with the 

selected error function to ascertain the model performance. Another important aspect of deciding 

the performance criteria is deciding when the model ends, the stopping criteria (Jaksa et al., 2008). 

This can be based on the number of epochs, the error function, or cross-validation; otherwise, the 

model training may run infinitely. A common fix is to select the limit for each performance 

stopping criterion so that the model ends whenever any of the criteria is reached. For the models 
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presented in this study, there was no time limitation; however, 1000 Epochs, MSE of 0 or 6 

validation checks, whichever occurred first ended the model. 

8.3.2.4 Epoch 

The epoch refers to the number of iterations it takes for the ANN model to converge to a solution; 

that is, to find the global minimum error surface. Lower epochs are more desirable provided the 

models are equally or more accurate than models with more epochs. Levenberg-Marquardt often 

provides the models with the least epochs because Levenberg-Marquardt tends to solve faster as 

observed in  

 Table 8.7 Table 8.5 also alludes to the fact that the more neurons in the model architecture, the 

more the number of epochs. This is due to the fact that the algorithm becomes more complicated 

with more neurons that have to be solved to reach a solution. Hence, if adding more neurons does 

not improve the model, the model should not be slowed down by adding more neurons (epochs). 

 Repeatability 

ANN models are difficult to repeat and regenerate. Even when the all model parameters are kept 

constant, the weight initialization process selects random values to initiate the training of the 

model. To demonstrate this, the base model is repeated three times and the results are shown in 

Table 8.8. It can be observed that none of the performance parameters are repeated in the repeat 

models. Although the model deviations are not severe in this case, it is recommended that as soon 

as a representative model is developed, the model should be saved, as the probability of obtaining 

the same model is slim. 

Table 8.8 Summary of model performance based on model repetition 

Sn Repeatability models   R2 MSE Epoch 
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 1 A 

Training 0.989 19.85 

50 
Validation 0.989 19.28 

Testing 0.989 20.67 

Overall 0.989 19.28 

 2 B 

Training 0.989 20.27 

110 
Validation 0.986 23.48 

Testing 0.988 20.73 

Overall 0.988 23.48 

 3 C 

Training 0.990 18.64 

111 
Validation 0.990 18.90 

Testing 0.989 19.99 

Overall 0.990 18.90 

MLP randomly selects the initial weights and adjusts the weights based on the feedback error 

signal sweep. As a result of this, most model training is not repeatable. The training takes a 

different path each time during the gradient descent to reach the local error minimum surface. A 

model that has just been trained and developed can be retrained, but the performance results and 

the weights will vary at each iteration. This is one of the reasons that ANN is referred to as a black 

box (Adedigba et al., 2017; Gardner and Dorling, 1998; Prieto et al., 2016). Jaksa et al. (2008) 

suggest that this is a major limitation of ANN as it limits model transparency and hence, the 

extraction of valuable knowledge from the model. 

  Uncertainty 

Though uncertainty has been identified as a challenge of ANN models, attempts can be made to 

quantify the uncertainty using Monte Carlo simulation (Onalo et al., 2018b; Yashrakshita, 2013). 

The weights, bias and prediction of the ANN model present difficulties in obtaining consistent 

models, even when all model developments are kept constant. However, this is beyond the scope 

of this work. The aim of this work is to show that this challenge exists. 

According to Chitsazan et al. (2015), the source of the uncertainty found in ANN is mainly 

associated with weights, bias, and inputs. The ANN structure also contributes significantly to the 
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uncertainty. Unfortunately, uncertainty in ANN models is rarely quantified due to the nature of the 

task (Jaksa et al., 2008). Whenever it is possible, it is important to identify the individual sources 

of uncertainty, and if possible, quantify them (Chitsazan et al., 2015; Wagener and Gupta, 2005). 

At the very least, this limitation should be stated in the development of the model. Optimization 

with the Bayesian technique has been suggested by some researchers as a means to improve the 

uncertainty in ANN development (Jaksa et al., 2008; Shahin et al., 2009). 

In general, there is no one way or consensus on how to go about training every model. ANN models 

may never be able to overcome all these challenges. Combining ANN techniques with other 

techniques such as genetic algorithms, fuzzy logic and PCA to form ANN hybrids may provide 

more accurate models which do not suffer from these challenges (Akhundi et al., 2014; Asoodeh 

and Bagheripour, 2014, 2013, 2012; Babakhani et al., 2015; Bagheripour et al., 2015; Bianchi et 

al., 2017; Chung et al., 2014; Cranganu and Bautu, 2010; Kadkhodaie-Ilkhchi et al., 2009; Maleki 

et al., 2014; Zoveidavianpoor, 2014). Genetic algorithms are reported to not suffer from the black 

box syndrome; hence, knowledge extraction from the model is possible. Therefore, the models can 

be built upon and improved (Shahin et al., 2009; Waszczyszyn and Słoński, 2010). A summary of 

the challenges and pitfalls discussed in the paper is presented in Table 8.9. 
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 Conclusions  

ANN in its current form may not be the most appropriate tool for well log prediction in the 

petroleum industry. ANN suffers from many challenges and pitfalls of which the developer must 

be conscious. 

In this study, a case study is presented to demonstrate the use of ANN models in sonic well log 

prediction in the petroleum industry. An actual oil field (Volve field) located in the Norwegian 

continental shelf has been evaluated in the study. 

Some of the challenges and pitfalls encountered in the development of ANN for the case study are 

evaluated and discussed.  

 Table 8.9. A list of the challenges and limitations discussed 

Sn Challenges and limitations 

1 Input data 

2 Target data 

3 Data quality 

4 Data size 

5 Generalization 

6 

Model Architecture 

• Neurons 

• layers 

7 

Training  

• Activation function 

• Training parameters 

• Performance criteria 

8 Repeatability 

9 Uncertainty 

In addition, some of the recommended solutions to some of the common issues are presented. 

 In general, ANNs are highly capable, robust and reliable computing tools for sonic well log 

prediction; however, to remain relevant, the technique of choice when estimating sonic logs, the 
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current challenges and pitfalls need to be resolved. Otherwise, other techniques may with time 

surpass the functionality of ANN. Hybrid models that resolve some of the pitfalls of ANN may be 

the way forward. It is recommended that researchers look to resolving these pitfalls and challenges 

encountered in ANN model development.   
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Nomenclature 

ANN Artificial neural network 

BP Backpropagation 

BR Bayesian regularization 

RHOB Bulk density log (g/cm3) 

DTC Compressional wave travel time (µsec/ft) 

RES or RT Deep resistivity log (ohm.m) 

Dep Depth (m) 
DepGRRT Depth, gamma ray and resistivity input well logs 
DepGRVSH Depth, gamma ray and shale volume input well logs 

GR Gamma ray log (gAPI) 
GRRHOBDep Gamma ray, density and depth input well logs 
GRRHOBN Gamma ray, density and neutron input well logs 
GRRHOBRT Gamma ray, density and resistivity input well logs 
GRRHOBVSH Gamma ray, density and shale volume input well logs 
GRNDep Gamma ray, neutron and depth input well logs 
GRNRT Gamma ray, neutron and resistivity input well logs 
GRNVSH Gamma ray, neutron and shale volume input well logs 

All  Gamma ray, neutron, depth, resistivity, density and shale volume 

LM Levenberg-Marquardt 

MAE Mean absolute error 

MPE Mean percentage error 

MLP Multi-layer perceptron 

NPHI or N Neutron porosity (m3/m3) 
NRHOBDep Neutron, density and depth input well logs 
NRHOBRT Neutron, density and resistivity input well logs 
NRHOBVSH Neutron, density and shale volume input well logs 
NRTDep Neutron, resistivity and depth input well logs 
NRTVSH Neutron, resistivity and shale volume input well logs 

SCD Scaled conjugate descent 

Vsh Shale volume 

DTS Shear wave travel time (µsec/ft) 

RT True resistivity (ohm.m) 
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Chapter 9 Summary, Conclusions and Recommendations 

 Summary 

This work has investigated the use intelligent systems such as artificial neural networks, recurrent 

neural networks, and Gaussian process regression to provide the input parameters for dynamic 

geomechanical properties of reservoir formation. The investigations led to the development of data 

driven models. The dataset includes laboratory data and well logs from real reservoir formations. 

The developed models have been developed to integrate and address the knowledge gap and 

incorporate the dynamic nature of real-life sequential data. 

The thesis presents innovative data-driven models to evaluate geomechanical formation properties 

such as bulk modulus, Young’s modulus, Poisson’s ratio, porosity, shear modulus, and sanding 

potential dynamically. This provides safer, inexpensive and continuous measurements of the 

formation properties along the wellbore of the reservoir formation. These models serve as effective 

tools to facilitate formation evaluation for strategic decisions, analysis and development of 

potential reservoir formations. 

 Conclusions 

 A new static Young’s modulus prediction model for formation evaluation  

This study has developed a model for predicting a critical geomechanical property – Young’s 

modulus. Static Young’s modulus represents the actual characteristic deformation property of the 

formation better than the dynamically estimated Young’s modulus. The reasons for this have been 

established in this study. However, static Young’s modulus is destructive and costly; core samples 

are not always readily accessible. Dynamic static Young’s modulus, on the other hand, is less 

expensive, non-destructive, and continuous along a wellbore of the formation. A novel model is 
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developed to estimate static Young’s modulus from the more easily obtainable dynamic Young’s 

modulus by using multilinear analytical regression.  

The study outperforms all previously established analytical models by including a lithology 

dependent parameter to account for the discrepancy observed in the values of static versus dynamic 

Young's modulus. A sensitivity analysis of the model is conducted using Monte Carlo simulation. 

 A new data-driven sonic well log prediction model for sanding potential evaluation 

This study has developed a model to instantaneously predict compressional and shear wave transit 

time logs. The model assists field engineers in the initial assessment for the likelihood of a 

formation to sanding during reservoir formation exploration and evaluation. The model is 

developed using a new configuration of the artificial neural network. Artificial neural networks 

are complex intelligent systems capable of deciphering and mimicking non-linear complex pattern 

among the network variables; therefore, ANN is able to bridge the non-linear relationship observed 

in the well logs. 

The study integrates multilayer perceptron network using a backpropagation algorithm to define 

the relationship between the well logs. The relationship defines by the model is used to predict the 

compressional and shear sonic well logs. Gamma-ray and formation bulk density are sufficient 

well logs inputs for the successful deployment of the model. The model is applied to assess sanding 

potential determination model to ascertain the probability of the formation to produce sand during 

exploration and development. This is a step forward due to the ability of the model to provide real-

time data for immediate assessment of formation to sanding thereby eliminating the need to send 

data offsite for complex geophysical compilations. 
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 A new data-driven model shear transit time prediction model for field development 

This study developed a shear wave transit time prediction model using Gaussian process 

regression. Gaussian processes are intelligent systems based on Gaussian distribution that are 

capable of establishing non-linear patterns and relationships between variables of interest. In this 

study, exponential Gaussian process regression is used because of its high accuracy and precision 

in estimating the shear wave necessary for better formation evaluation in offset wells that lack 

shear wave measurements. The model is data-driven with real well log data from a sandstone 

formation in the Niger Delta. 

In this study, five predictors are used to improve the accuracy and efficiency needed as input in 

formation property estimations like Poisson’s ratio. Poisson’s ratio is very sensitive and delicate 

to input dynamic measurements, hence the need for such a robust model. Poisson’s ratio is used 

as a calibration and quality check tool in formations with questions data due to this sensitive. 

Values of Poisson’s ratio are strictly between 0 and 0.5 except for cases where anisotropy is 

established, then negative values are observed. 

 A new dynamic data-driven model for sonic well log prediction for formation 

evaluation 

This study has developed a dynamic sonic well log prediction model for formation evaluation 

using a recurrent neural network. The study is an improvement to the previously developed sonic 

log model using the artificial neural network. Recurrent neural networks are networks with the 

capability of ANN and the added capability to storage memory. This allows such networks store 

values of previously established relationships for forward prediction and determination of 

nonlinear complex relationships between variables, in this case, reservoir formation well logs. The 
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model is data-driven and uses data from the Norwegian continental shelf and the Niger Delta. Both 

formations are sandstone formations 

In this study, a special type of recurrent neural network is considered known as non-linear 

autoregressive with exogenous input recurrent neural network. The architecture provides a highly 

accurate and robust model to predict the sonic well logs by using past predictions with exogenous 

input to predict current and future sonic logs. Different combination of gamma-ray and neutron 

logs are used as exogenous inputs for the model. The model estimations are subsequently used to 

evaluate real reservoir formation by estimating some sonic dynamic formation evaluation 

properties namely, sonic ratio, sonic difference, sonic porosity, and Poisson’s ratio. The model 

presents a unique tool for the assessment of reservoir formations from exploration and 

development which is safe and inexpensive. 

 An assessment of ANN as a reliable sonic well logging tool. 

The study provides an assessment of the suitability and reliability of ANN for producing well logs. 

Although ANN is gaining a lot of attention and is quite a popular technique to estimate well logs 

where data is missing, it has its inherent shortcomings, which are not often discussed in the 

literature.  

In this study, the methodology for developing a base case ANN model is presented with a case 

study. The challenges often encountered in the development of such ANN models are then 

discussed and evaluated as seen in the developed model. The shortcomings and pitfalls are exposed 

by demonstrating the weakness of the base model and subsequent models derived from the base 

model. The study suggests that though ANN is a robust and reliable tool for predicting sonic logs, 

there are many pitfalls to which inexperienced developers are likely to encounter. The study also 
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alludes to the fact that there are no hard and fast rules to determining the best model for sonic well 

logging. The best ANN models for a particular formation are often arrived at through iterations, 

best practices and past experiences. Th study provides some guidance and suggestion as to how to 

overcome some of the challenges and shortcoming of ANN models as a sonic well logging tool. 

 Recommendations 

This research has endeavored to introduce novel and innovative concepts to provide safe, reliable 

and inexpensive techniques of providing tools for formation evaluation. However, several 

knowledge gaps and scope of work that could be further addressed include, but are not limited to: 

• Models to establish relationships between dynamically estimated formation properties and 

static formation properties should be investigated to provide more reliable formation 

properties that are more descriptive of the characteristics of the formation. 

• Intelligent systems present a unique opportunity to advance the estimation and prediction 

of many complex processes in the petroleum industry. Further study should be conducted 

to investigate the applicability of these intelligent systems to previously established 

analytical methods such as genetic algorithms. 

• The performance and error functions of these models should be investigated and compared 

to other data-driven models and analytical techniques. 

• Modeling the universal applicability of model in different geographical location and setting 

could be further investigated. The formation considered in this research has mainly focused 

on sandstone formation, but carbonate formations should also be considered. 
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• Modeling of uncertainty should be investigated more closely. The range of the input data 

varies depending on the data being considered. The extremities within the range should be 

considered to ensure that the models are robust and efficient, hence, capable of handling 

large data sets. 

• Selection of input arguments should be considered independently for selected formations 

different geological settings. The selection of input data that provides the best prediction 

may vary depending on the formation being considered. 

• Generalization of these models should be investigated to ensure the suitability of the 

models as predictive validation and quality check tools in reservoir formation evolution for 

field development and management. 

• The models proposed here are reliable and robust; however, they inherit both aleatory and 

epistemic uncertainty. It is important to understand and consider these uncertainties as part 

of the formation properties evaluation.  

• Validation of developed models should be conducted with real-life data to enhance 

generalization, suitability and reliability of data-driven models. 
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Appendixes 

During the course of the research, we collaborated with other researchers and co-authored the 

publications presented in this appendix. 
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A.1  Modeling Investigation of Low Salinity Water Injection in Sandstones 

and Carbonates: Effect of Na+ and SO4
2-  

Preface 

A version of this chapter has been published in the Fuel Journal 2018. Cleverson Esene is the 

primary author and performed the simulation. Co-author David Onalo conducted the literature 

review and wrote the introduction section of the paper. Co-author Dr. Sohrab Zendehboudi 

reviewed and prepared the final draft of the paper. He provided valuable insights on necessary 

sections to include to make the work publishable.  Co-author Dr. Lesley James as a subject matter 

expert of enhanced oil recovery provided technical guidance on key areas to investigate in the 

simulation study. Co-author Dr. Stephen Butt provided technical assistance and review of the 

paper. Cleverson Esene and I carried out most of the analysis. The first draft of the manuscript 

was prepared by Cleverson Esene and I, and subsequently revised the manuscript, based on the 

feedback from the co-authors and also a peer review process by Cleverson Esene.  
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Abstract 

Low salinity water injection (LSWI) has gained great attention as a promising enhanced oil 

recovery (EOR) method with numerous advantages (e.g., economic and environmental aspects), 

compared to other conventional chemical EOR methods. For the past two decades, a number of 

laboratory studies have been performed by researchers to understand the main pore-scale 

mechanisms of oil displacement during LSWI; however, further experimental and modeling 

research works are required to comprehend the LSWI governing mechanisms. The focus of this 

paper is to investigate important aspects such as oil recovery mechanisms, oil-water wettability 

alterations, changes in pH of formation water, and mineral reaction (dissolution/precipitation) 

which occur during LSWI in sandstones and carbonates. To explore the effect of ion-exchange, a 

compositional model is developed with the aid of laboratory data by Computer Modelling Group 

(CMG) where Na+ and SO4
2- are used as interpolants to model LSWI in sandstones and carbonates 

cores respectively. 

Keywords: Low Salinity Water Injection (LSWI), Precipitation and Dissolution, Ionic-Exchange, 

Sandstones, Carbonates, Oil Recovery Factor. 
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A.1.1. Introduction  

Post-primary oil production drive may leave behind up to 85% of the proven reserves in a 

petroleum formation. Water flooding can reduce the amount of oil saturation to nearly 60% and 

low salinity water injection (LSSWI) may produce an extra 15%  so that about 40% of the residual 

oil can be recovered [1,2]. It appears that LSSWI is becoming one of the most popular enhanced 

oil recovery (EOR) technique, based on the literature [3–9]. This is probably due to the low cost 

associated with its implementation when compared to other EOR techniques. Low salinity water 

is referred to smart water, ion-engineered water, and advanced ion management water in various 

research studies by many researchers; however, the methodology and mechanisms behind the 

increase in oil recovery remain the same [9,10]. The mechanisms responsible for the increased oil 

recovery have been identified to be wettability alteration, double layer expansion, multicomponent 

ionic exchange, fines migration, and mineral dissolution [3,6,8–19]. However, the dominant 

mechanisms for the oil recovery increase still remain a subject of debate among researchers. The 

above mechanisms alter the rock-brine-oil equilibrium from its inherent state so that they might 

modify important properties such as permeability and wettability to improve the oil recovery. 

Wettability alteration appears to be the most widely accepted dominant mechanism for low salinity 

water injection [4,7,13,18–24].  

These are a few mathematical modeling on LSWI in the open sources where contradictions and 

vital limitations are found in them. For instance, Altahir et al. [25] studied the LSWI strategy in 

carbonates in core-flood experiments by considering the improved oil recovery and pH increase; 

however, they did not take into consideration the changes in the composition of the rock [25]. 

Vajihi et al. [26] also investigated LSWI oil recovery and residual oil saturation in core-flood 

where ions exchange and effect of the flowrate were not discussed in their work [26]. Didier et al. 
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[27] suggested that pH is the key factor in wettability alteration in Fontainebleau and Ottawa 

sandstones. The results show that oil adhesion occurs at pH values of higher than 6 – 8.  Other 

research works concluded that the oil adhesion experiences at pH values lower than 6 – 8 (for 

instance, a pH of 4) [27].  In another work, Al-Shalabi and Sepehrnoori [9] suggest that more 

modeling research works need to be conducted in carbonates than sandstones because it is assumed 

that the mechanisms that controls the wettability alteration in sandstone is known – clay, but the 

mechanism is not known in carbonates. 

The composition and salinity of the low salinity water are not constant and universal in all 

formations across the world. Hence, systematic studies need to be carried out to determine the 

optimum salinity and concentration of the selected low salinity water. During laboratory 

investigation of sandstone and carbonate cores, as the salinity of the LSWI is reduced, there is an 

increase in the oil recovery; however, after a certain threshold value, there is no significant increase 

in the oil recovery upon further reduction of salinity in the LSWI process.  This suggests that there 

is an optimum salinity and concentration for the various formations under LSWI. It was observed 

that the optimum salinity can range for sandstones, a reduction in LSWI salinity of up to 100% to 

give salinities as low 100 to 2000 ppm is possible [28,29], but for carbonates, 50% reduction in 

LSWI salinity yields LSWI of 1000 to 5000 ppm [6,8,12,15,30,31] for effective low salinity water 

injection schemes.  

A balance of adsorption capacity, cation exchange capacity, and pH window for clay is necessary 

to evaluate the effectiveness of LSWI in sandstones [17]. In core flood experiments conducted by 

Zhang and Morrow [2], up to 33% increase was observed in Berea sandstone which contained 

clay, while no significant increase was observed in clay-free Berea sandstone when the brine with 

1% salinity was injected. In sandstones with kaolinite clay, fines migration due to the desorption 
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of kaolinite clay from the mixed-wet sandstone surface is suggested as the mechanism responsible 

for the increased oil recovery by LSWI [32]. An increase in the injection pressure and a reduction 

in permeability are often accompanied with the increased oil recovery in core flood experiments 

[33,34].  There are a limited number of research investigations on the formation damage during 

LSWI in the open sources [35]. Typical pH values of 4-6 are attainable in sandstone reservoirs; 

the pH in the formation increases as the low salinity water is injected in formations due to cation 

exchange of the effluent and clay anion surfaces; however, a pH value greater than 10 is seldom 

encountered due to the inherent CO2 in the hydrocarbon-bearing formations, which acts as a pH 

buffer [32]. During laboratory investigation of LSWI, the concentration of divalent ions such as 

Ca2+ and Mg2+ in the effluent were lowered,  leading to an increase in oil recovery; however, when 

the cores were pre-flushed with NaCl to remove the divalent ions, there was no significant oil 

recovery [32]. The ions contribute to the electric surface charge and an electric double layer is 

formed. The expansion of the electric double layer has also been suggested as the dominant 

mechanism that considerably affects the oil recovery over the LSWI process [30,36]. This can be 

measured by the zeta potential of the surface.  

More than half of the proven oil reserves are found in carbonates. Efficient exploitation and 

recovery of these reserves are challenging due to the low permeability and porosity of the porous 

system, particularly the matrix blocks [6]. The dominant mechanism in carbonates may be 

attributed to the wettability alteration of the mixed to oil-wet formations to more water-wet 

formations, leading to a higher oil production. Monovalent and divalent ions that alter the rock-

brine equilibrium are referred to potential determining ions and the mechanism behind their 

alteration in the formation is known as a multicomponent ionic exchange. Austad et al. [16] 

investigated the effect of seawater salinity on oil recovery  in the Ekofisk field as a highly fractured 
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carbonate reservoir. The surface charge is positive with Ca2+ in equilibrium with the formation 

brine at a pH value of 7-8. Ekofisk seawater has a Ca2+ ion concentration less than half of the 

formation brine concentration. When the seawater is injected into the formation, Ca2+ is desorbed 

from the surface into the injected water to balance the rock-brine equilibrium; but the desorption 

alters the rock-oil equilibrium. The negatively charged carboxylic components (R-COO-) attached 

to the Ca2+ are desorbed, leading to an increase in the crude oil mobility and eventually an increase 

in the amount of oil recoverable.  SO4
2- ions can also promote the desorption of carboxylic oil 

components from the carbonate surface by adsorbing Ca2+ to produce CaSO4 [13,20,37–39].  

Enhanced oil recovery is also attributed to the rock dissolution [40,25,41], though Austad et al. 

[42] suggested that the rock dissolution is not necessary for increased oil recovery based on a series 

of experimental runs. The initial wettability, salinity, ions present, and wetting phase are the 

critical parameters that influence wettability alteration, production mechanism, and oil recovery.  

In the laboratory scale in the absence of Ca2+ and Mg2+, an increase in SO4
2- concentration of the 

injected fluid fails to improve the oil recovery, implying that divalent potential determining cations 

are needed to improve oil recovery through SO4
2- adsorption [16,43–45].  Based on the literature, 

there are no numerical studies to discuss about the production behavior/trend of LSWI in 

carbonates and sandstones. To the best of our knowledge, the effects of mineral dissolution and 

precipitation have not been numerically investigated in the previous related research works. 

Wettability alteration appears to be the dominant mechanism for LSWI; however, there has not 

been a sufficient number of numerical compositional studies in the literature to validate this claim 

because of the difficulty to entirely capture ion exchange by most commercial simulators. Other 

phenomena, which occur during LSWI, such as the change in the local pH in the formation water, 

ionic-exchange, and mineral reactions (in carbonates) have not been studied adequately.  
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In this paper, a compositional simulation model was built employing the CMG-GEM module to 

study the effect of concentration of sodium ion (Na+) and sulfate (SO4
2-) in sandstones and 

carbonates, respectively. The first step is to build a fluid model with CMG-Winprop such that the 

fluid properties such as saturation pressure, gas/oil ratio, formation volume factor, relative oil 

volume, and oil density are tuned to match the available experimental data for the reservoir fluids. 

Then, the matched fluid model is imported into a 1-D generic reservoir and the initial ionic 

compositions of the brine are provided from the laboratory analysis. The simulation model uses 

Na+ and SO4
2- ions for ion exchange in sandstone reservoir and carbonate reservoir, respectively. 

Na+ and SO4
2- concentrations in the sandstone and carbonate are altered to find the impact of the 

ion concentration on pH, mineral precipitation and dissolution, and oil recovery.  
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A.1.2. Theoretical analysis: ion exchange in lswi  

There is a chemical equilibrium between the ionic concentration of the connate water or 

the initial formation water and the ions which are adsorbed onto the clay surface in the reservoir 

[47].  

Figure A1. 1 shows a typical representation of clay mineral, ionic bridge, oil and typical ions to 

describe the important interaction mechanisms in LSWI 
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Figure A1. 1. Schematic representation of clay mineral, ionic bridge, oil and typical ions to 

describe the important interaction mechanisms in LSWI (Modified after Lager et al. [32] 

The polar oil components are bound to the clay surface in the presence of an ionic bridge 

which lies between the actual clay and oil.  This makes the rock preferentially oil wet as shown 

in  

Figure A1. 1in a molecular level. Once the low salinity water is injected, it causes the ion exchange 

between the monovalent ions and divalent ions (e.g., Na exchanging with Ca). During this ionic 

exchange, the oil is released from the divalent ions and becomes producible. This reduces the 

overall residual oil saturation and causes a shift in wettability to more water wet rock. 
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Injecting water with an ionic concentration, which is different from the original formation water, 

causes a chemical reaction and an ionic exchange. There are two typical ionic exchange reactions 

which can occur during LSWI.  The reactions involve the alkali and alkali earth metals particularly 

sodium, calcium, and magnesium as given below [47]. 

 

 where X represents the clay mineral in the reservoir rocks. The above reactions are 

reversible, implying that the monovalent ions are exchanged with divalent ions during LSWI.  

For instance, Na+ is taken by the exchanger and Ca2+/Mg2+ are freed to represent the forward 

reactions (see Equations (A1 1) and (A1 2). In this case, the oil initially bounded on Ca and Mg 

(as shown in  

Figure A1. 1) is released, causing the rock surface to become more water wet. Similar to the 

chemical reactions, ion-exchange reactions can be defined by the equilibrium constant as 

represented by the following expression: 

K Na/Ca = 
[a( Ca2+

)]
0.5

a(Na−X)

a(Na+)[a(Ca−X2)]0.5 
 

(A1 3) 

K Na/Mg = 
[a( Mg2+

)]
0.5

a(Na−X)

a(Na+)[a(Mg−X2)]0.5 
 

(A1 4) 

Na+ +
1

2
(Ca − X2) ⥫  (Na − X) +

1

2
Ca2+ (A1 1) 

Na+ +
1

2
(Mg − X2) ⥫  (Na − X) +

1

2
Mg2+ (A1 2) 
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in which, a stands for the activity. The activity of ith component (ai) is related to the activity 

coefficient (
i
) through the following equation: 

 

where mi refers to the molality of component i. 

Substituting Equation (A1 5) into Equations (A1 3) and (A1 4) results in Equations (A1 6) and 

(A1 7) to determine the equilibrium constant, as shown below: 

The activity coefficient of sodium and calcium ions in the aqueous phase can be calculated by the 

Debye-Huckel model or by the B-dot model; however, the evaluation of the activity coefficient of 

Na-X, Ca-X2 and Mg-X2, which correspond to Na+, Ca2+ and Mg2+ on the exchanger surface, is 

not an easy task. Therefore, the selectivity coefficient is used by CMG instead of the equilibrium 

constant, as introduced by Equations (A1 8) and (A1. 9):  

(Na-X), (Ca-X2), and (Mg-X2) stand for the equivalent fraction of Na+/Ca2+and Na+/Mg2+ on 

the exchanger, respectively. The selectivity coefficient, which is a function of operational 

ai = 
i
mi   (A1 5) 

K Na/Mg = 
[m( Mg2+

)]
0.5

m(Na−X)

m(Na+) [m(Mg−X2)]0.5 
   x     

[( Mg2+
)]

0.5
(Na−X)

(Na+) [(Mg−X2)]0.5 
 

(A1 6) 

K Na/Ca = 
[m( Ca2+

)]
0.5

m(Na−X)

m(Na+) [m(Ca−X2)]0.5 
   x      

[( Ca2+
)]

0.5
(Na−X)

(Na+) [(Ca−X2)]0.5 
               

(A1 7) 

  

              K’ Na/Mg = 
[m( Mg2+

)]
0.5

(Na−X)

m(Na+) [(Mg−X2)]0.5 
   x     

[( Mg2+
)]

0.5

(Na+)  
 

(A1 8) 

          K’ Na/Ca = 
[m( Ca2+

)]
0.5

(Na−X)

m(Na+) [(Ca−X2)]0.5 
   x     

[( Ca2+
)]

0.5

(Na+)  
 

(A1. 9) 
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conditions, is used, since they can be measured unlike equilibrium constants which are 

thermodynamic variables. Hence, K’ Na/Ca and K’ Na/Mg are estimated using the experimental 

measurements. Appelo, et al. [48] reported the selectivity coefficient between Na+ and many ions 

which are used in the CMG simulation package.  

In CMG-GEM, all component moles are represented as moles per grid block volume. The total 

moles of Na-X, Ca-X2, and Mg-X2 in a grid block are VNNa-X, VNca-X2 , and VNMg-X2 , respectively; 

where V is the grid block volume. For any value of cation exchange capacity in the grid block, the 

following equation needs to be satisfied 

 VNNa-X    +   VNca-X2    + VNMg-X2     =   V(CEC) (A1 10) 

 

In a control volume (see Figure A1. 2), the material balance equation for the ion of charge i+ that 

includes ion exchange with an exchanger X in the aqueous phase is expressed by Equation (A1 

11); 

 

Figure A1. 2 A control volume/element of a 3-D flow in directions x, y, and z 
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Taq
u yiw

u (Pn+1 +  −
aq
u gh ) +  Diaq

u yiaq
u + VRi,aq

n+1   + VRi,mn
n+1 +  qi

n+1

−
V

t
((Ni,aq

n+1 − Ni−x
n+1) − (Ni,aq

n − Ni−x
n ) = 0,     

(A1 11) 

Where T = Transmissibility; y = mole fraction, P = pressure, g = acceleration due to gravity, h = 

height, D= Diffusivity, V = grid block volume, R = reaction rate, q = injection, VRj,aq
n+1  = Intra 

aqueous reaction rate, VRj,mn
n+1  = Mineral dissolution/precipitation, n + 1 =  implicit time step for 

grid block, u = explicit time step for grid block, N = Number of moles of mineral and i =1 …nth 

represents the number of components. 

Running CMG, the governing equations are solved simultaneously along with the phase, chemical, 

and ion-exchange equations through using Newton’s method. 
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A.1.3. Model development 

This section illustrates the main steps to obtain the fluid and rock properties and to conduct the 

modeling simulations using CMG 

A.1.3.1. Fluid Behavior Modeling 

To create a fluid model used for the simulation of LSWI, various steps should be taken (see Figure 

A1. 3).  Fluid composition given in Table A1. 1 1 and Table A1. 2 is first used to build an EOS 

model using Peng Robinson equation of state to represent the original reservoir fluid. The EOS 

model is then tuned against the experimental data of Constant composition expansion (CCE), 

Constant volume depletion (CVD), and Differential liberation (DL) after which a flash process of 

the reservoir fluid at standard condition of 60oF and 14.7psia is simulated. A good match is 

obtained between the experimental and modeled fluid properties. Figure A1. 3 depicts the flow 

chart to illustrate how the fluid model is built for this simulation. 
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Figure A1. 3 Flowchart to prepare the EOS fluid model 

PVT Data. Laboratory experiments were conducted for Saturation Pressure, Constant 

Composition Expansion test and Differential Liberation test. From the laboratory experiments, the 

total Gas Oil Ratio (GOR), Saturation Pressure, Formation Volume Factor (FVF) and API Gravity 

are 247 scf/stb, 740 Psi, 1.18, 40.0 respectively. The oil viscosity used for this study is 0.65 cP 

measured at bubble point. These experiments were added to the CMG - Winprop model to obtain 

an idea of how close the current EoS is to modeling the observed fluid behavior. The supplied data 

for reservoir oil fluid compositions/heavy fractions, separator test results, constant composition 

START 

Build EOS model of reservoir fluid using PR 1978 

Tune the EOS against CCE and DL, CVD experimental 

data 

Check if viscosity, saturation 

pressure, GOR, FVF and API 

Generate GEM EOS model for stock tank oil at T, P for 

simulation 

END 

NO 

YES 
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test results, differential liberation test results are all used for tuning the EoS to match the fluid 

behavior. The fluid compositions and the laboratory heavy fraction analysis utilized in this study 

are provided in Table A1. 1 and Table A1. 2 which are available in Computer modeling Group, 

2017 [46]. 

Table A1. 1 Black oil composition [46] 

Component Mole %  

CO2 0.1183 

N2 0.0016098 

C1 0.1154103 

C2 0.060058 

C3 0.0647635 

i-C4 0.0221657 

n-C4 0.047551 

i-C5 0.0328152 

n-C5 0.0370254 

C6 0.065135 

 

Table A1. 2. Laboratory heavy fraction analysis for C7 – C30+ [46] 

Components Mole,% Molecular weight, g/gmol Specific gravity 

C7 0.084205 91.931365 0.7400 

C8 0.098941 103.11563 0.74659 

C9 0.078385 113.43017 0.8129 

C10 0.051514 132.0084 0.7937 

C11 0.031329 147 0.7930 

C12 0.021299 161 0.8040 
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C13 0.019318 175 0.8150 

C14 0.014488 190 0.8260 

C15 0.013374 206 0.8360 

C16 0.010649 222 0.8430 

C17 0.00904 237 0.8510 

C18 0.009659 251 0.8560 

C19 0.008173 263 0.8610 

C20 0.005325 275 0.8660 

C21 0.003963 291 0.8710 

C22 0.00322 300 0.8760 

C23 0.002353 312 0.8810 

C24 0.001981 324 0.8850 

C25 0.001857 337 0.8880 

C26 0.001857 349 0.8920 

C27 0.001981 360 0.8960 

C28 0.002105 372 0.8990 

C29 0.002105 382 0.9020 

C30+ 0.064516 400 0.9700 

 

Peng Robinson equation of state is employed to construct the fluid model through using the fluid 

compositions where the regression procedure on experimental constant composition expansion, 

constant volume depletion, differential liberation, and separator test is carried out. Figure A1. 4 

shows the phase envelope to characterize the fluid used in this modeling/simulation work. 
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Figure A1. 4. Pressure-temperature (P-T) diagram of the modeled reservoir fluid. 

The comparison between the initial GOR, final GOR and the experimental data is shown in Figure 

A1. 5 (after regression).  

 

Figure A1. 5. Comparison of measured gas oil ratio (GOR), initial GOR (before tuning), and 

final GOR (after tuning) 

As can be seen in Figure A1. 5, an improvement is achieved to match the experimental GOR by 

tuning the Pc and Tc of the heavier components during regression procedure. The similar 
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comparisons between the experimental and the final parameter for the fluid are shown in Figure 

A1. 6 for the relative oil volume and Figure A1. 7 for the saturation pressure. Based on the 

comparison (showing relatively small error), it can be concluded that the modeled fluid behaves 

the same as the real reservoir fluid. 

 

Figure A1. 6. Comparison of measured relative oil volume (ROV), initial ROV (before tuning) 

and final ROV (after tuning) 
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Figure A1. 7. Comparison of measured Psat, initial Psat (before tuning) and final Psat (after 

tuning) 

Tuning the EOS model to attain a good matching between the modeling results and available 

experimental data, Table A1. 3 shows the reduction in error percentage (through comparing the 

values before and after tuning) for a part of important fluid properties used in this research work. 

This final error reduction percentage between the before and after tuning results shows that a valid 

match has been obtained through the regression analysis carried out using the Winprop EoS 

module in CMG.   

Table A1. 3. Experimental and modeled fluid properties 

Property/Data Experimental Before tuning After tuning Error reduction 

Psat, psi 740.0000 740.040 736.70 0.4 % 

GOR, scf/stb 247.000  247.000  248.881 0.4 % 

FVF, bbl/stb 1.180  1.140  1.159 1.3 % 

API 40.000 41.000 40.009 0.25  
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The main source of error is through Plus fraction splitting of the grouped/lumped heavy carbon 

fractions. Through the lumping of the carbon fractions, technique such as Kays mixing rule is 

employed to determine the resultant properties such as critical temperature, critical pressure, 

acentric factor, and mole fraction. This process is accompanied with a degree of error which is 

unassociated with pure and single carbon number. 

A.1.3.2. Reservoir Modeling 

 

Figure A1. 8. A simple approach to develop GEM reservoir compositional model for LSWI 

START 

Define a GEM 1-D reservoir grid 

Import the Winprop - GEM EOS matched fluid model 

Define initial formation water salinity in the components wizard  

END 

Define two sets of relative-permeability curve from measured data (for low 

and high salinity cases). Interpolation between these curves will be carried 

out.  

( 

Input reservoir properties  

Define initial conditions, wells, time steps, boundary conditions, and 

injected brine composition for the injector well and run the simulation 
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We consider a 1-D model to simulate a core flood displacement test with CMG-GEM 

compositional simulator. The steps taken to build the compositional generic reservoir model for 

LSWI simulation are represented in a flowchart as demonstrated in Figure A1. 8. 

A core of length 2.87 ft and a diameter of 0.1228 ft is considered to replicate the core dimensions 

used for a water flood experiment conducted by CMG [46]. The total grid of 50 is used in the I-

direction and 1grid in J and K directions.  The reservoir porosity is 0.24. The matrix permeability 

(km) and fracture permeability (kf) are 11.43 mD and 1000 mD, respectively. Figure A1. 9 shows 

a schematic representation of the 1-D compositional generic model which is built in CMG-GEM 

to study important aspects of LSWI. 

 

 

 

 

 

Figure A1. 9. Schematic of the 1-D model structure 

The injector well is constrained by an injection flow rate of 0.00150956 bbl/day and by a maximum 

bottom hole flowing pressure (BHP) of 4000 psi. A minimum BHP of 2515 psi is considered for 

the producer well. The finite difference method is used (as a mathematical strategy) by CMG to 

discretize the conservation mass or/and momentum equations of the oil and water/brine phases 

during the LSWI process. The mass balance equations are written for the fracture and matrix 

domains which are discretized in an adaptive-implicit manner for each grid block.  The equations 

Nx = 1, 2,3….50,  = 0.24, km = 11.43 mD, kf = 1000 

2.87 ft. 

INJ 

Well rate:  0.00150956 

PROD 

Min BHP:      2515 psi 
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are then solved interactively by CMG where the primary constraints are used for the convergence 

purpose. 

Input Data. To construct a 1-D numerical reservoir model, the model properties, which were used 

by Computer modeling Group for their experimental investigation of 1-D laboratory core flood, 

were employed in the current simulation work.  Reservoir properties (for sandstone and carbonate) 

and the laboratory end-point relative permeability data are tabulated in Table A1. 4 and Table A1. 

5, respectively. Also, the plot of the resultant relative permeability versus water saturation used 

for this study is shown in Figure A1. 10. 

Table A1. 4 Model properties [46] 

Parameter  Field unit SI unit 

Initial Reservoir pressure 2515 psi 17.23 x 10-6 N/m2 

Permeability  11.43 mD (Matrix) 

1000 mD (Fracture)  

1.12 x 10-14 m2 

9.86 x 10-13m2 

Matrix Porosity  0.24 0.24 

Fracture porosity  1.00 1.00 

Initial oil saturation  0.80 0.80 

Connate Water saturation  0.20 0.20 

Cross sectional area  0.01185ft2 0.00110m2 

Grid thickness 0.10888 ft 0.01011m 

 

Table A1. 5. Laboratory end-point relative permeability data [46] 

Description/Parameter  Value 

Property Damage 

phenomena  Endpoint saturation:   Connate water 0.20 

Endpoint saturation :  Residual oil  0.29 

Endpoint saturation: Irreducible oil for gas  0.37 
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Endpoint saturation :  critical gas 0.03 

Relative permeability at connate water 0.30 

Relative permeability at irreducible oil 0.20 

Exponent for calculating Krow  3.00 

 

 

 

Figure A1. 10. Relative Permeability curve 

Brine Water Analysis. This section presents the laboratory water analysis of the formation water 

with total dissolved salt of 245980 ppm as listed in Table A1. 6 (as a part of the input date in the 

simulator). The total Na+ and SO4
2- ions originally present in the formation water are 68520 ppm 

and 612 ppm, respectively. Figure A1. 11 illustrates the simulation runs to study the effect of Na+ 

and SO4
2- on the oil recovery in the sandstone and carbonate. 
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Figure A1. 11. Design of simulation runs to understand the impact of Na+ and SO4
2- in the LSWI 

process 

Table A1. 6. Initial laboratory formation water compositions/mineral volume fractions [46] 

Component/ion Formation water  

Calcium           Ca2+ 18492 ppm 

Magnesium     Mg2+        2320 ppm 

Strntium        Sr2+     1880 ppm 

Sodium            Na+        68520 ppm 

Potassium        K+       4050 ppm 

Barium             Ba2
+          2.5 ppm 

Bicarbonate      HCO3
-               0 

Brine water 

Na+ concentration  SO4
2- 

68.50 

kppm 

3.5 

kppm 

0.020 

kppm 

0.08 

kppm 

0.50 

kppm 

0.10 

kppm 

15.00 

kppm 

Sandstone Carbonate

e 

0.065 

kppm 
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Carbonates      CO3
2-      0 

Chloride          Cl-      150060 ppm 

Sulphate          SO4
2-         612 ppm 

Hydroxide       H+         0 

Boron              Br2
+          43.7 ppm 

Total dissolved salts (TDS) 245980 ppm 

pH 5.22 

Volume fraction of calcite 0.5 

Volume fraction of dolomite 0.5 

 

Boundary and Initial Conditions. There are two types of boundary condition implemented by 

CMG for the solution of PDE’s; namely, Newman and Dirchelet (or fixed pressure) boundary 

conditions. These boundary conditions are the set of constraints (primary and secondary) which 

are defined as the input into the simulator in terms of BHP and well flow rates. The initial brine 

compositions and the measured relative permeability for the high and low salinity conditions are 

defined as a set into CMG and the interpolation will be carried out for the salinity values between 

the limits. 

Although CMG model has been validated with the experimental data and the results have been also 

compared with other commercial simulators such as PHREEQC, concluding the model is suitable 

or applicable as a tool for the study of LSWI, it is only capable of modeling low salinity water 

injection in sandstones by using Na+ as an interpolant between the low salinity relative 

permeability curve and high salinity relative permeability curve. Only Ca2+ or SO4
2- can be used 

as an interpolant for modeling in carbonates. Hence, the complexities of ion exchange during this 

process cannot be effectively captured. 
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Modeling Wettability Alteration 

The effect of wettability alteration during low salinity water injection is modeled by the shifting 

of relative permeability curves. Typically, two sets of relative permeability curves are defined in 

this study as input to represent high salinity (625000 Kppm) and low salinity conditions (1 Kppm) 

as shown in Figure A1. 12. Interpolation between these two curves is usually carried out by the 

interpolant. The interpolant is the equivalent ionic fraction on the rock surface and these relative 

permeability curves are usually measured from the laboratory experiments [46] which serve as 

input during numerical modeling. 

 

Figure A1. 12. Experimental high and low Salinity relative permeability curves [46]. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

at
iv

e 
P

er
m

ea
b

il
it

y

Saturation

Low Salinity

Krw

High Salinity

Kro

High Salinity

Krw

Low Salinity

Kro



325 

 

A.1.4. Results and discussion 

This section presents the main results obtained from LSWI simulation runs, with focus on the 

important mechanisms/phenomena during the recovery process. 

A.1.4.1. Effect of LSWI on Oil Recovery in Sandstone and Carbonate. 

 Figure A1. 13 shows the effect of pore volume of LSWI on recovery factor for the sandstone 

reservoir at various concentrations of Na+ ions where the Na+ concentrations of 68.52 kppm,15.00 

kppm, 3.50 kppm, and 0.50 kppm are examined.  

 

Figure A1. 13. Oil recovery versus injected pore volume and Na+ concentration 

It is observed that the ultimate oil recovery factor increases from 51 % to 68 % by decreasing Na+ 

concentration in the injected brine from 68.52 kppm to 0.5 kppm after injecting 4.0 pore volumes 

of brine into the reservoir. Indeed, the highest recovery factor is attained with a concentration of 

3.5 kppm for Na+. 
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 Further decrease of Na+ concentration below 3.5 Kppm provides no improvement in the oil 

recovery as illustrated in Figure A1. 14 which shows the ultimate recovery factor after 4.0 injected 

PV. Further reduction in the Na+ concentration does not lead to further increment in the ultimate 

oil recovery due to the subsequent reductions of Na+ ions in the injected brine. As the Na+ 

concentration in the injected brine is reduced, the brine-rock equilibrium is altered and Na+ on the 

surface of the formation must be desorbed thereby releasing the formation Na+ to balance the 

equilibrium state. This desorption of Na+ from the sandstone surface leads to a replacement by a 

divalent ion to attain a new ionic bridge equilibrium state. This phenomenon causes the polar oil 

components attached to divalent ion to be released. At a certain point in the reduction Na+ in the 

injection brine, there will be no more free ions on the formation surface to balance the reduction 

of Na+ in the effluent. At this point, a further reduction in Na+ will not lead to higher oil recovery. 

In our simulations, this occurred at 3.5 Kppm.  

 

 

Figure A1. 14. Final oil recovery for different Na+ concentration in the sandstone case 
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The impact of concentration of SO4
2- ions on the oil recovery in the carbonate is investigated where 

the SO4
2- concentration varies from 0.02 kppm to 0.10 kppm, as demonstrated in Figure A1. 15. It 

is observed that the ultimate recovery increases from 53.4% to 66 % if the concentration of SO4
2- 

in the injected brine lowers from 0.1 kppm to 0.02 kppm where 4 pore volumes of injected brine 

are used in the LSWI. 

 

Figure A1. 15. Oil recovery factor by altering S042- concentration 

As clear from Figure A1. 16 which shows the ultimate recovery factor, the variation of RF with 

SO4
2- concentration does not follow a similar trend as observed in sandstone. As depicted in Figure 

A1. 15, RF increases when SO4
2- concentration decreases from 0.1 kppm to 0.08 kppm; however, 

the recovery factor decreases if the SO4
2- concentration lowers further after 0.08 kppm. This 

observation has been debatable by many researchers. According to the experimental investigation 
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conducted by (Chinedu , 2008) on the effect of rock wettability on oil recovery for secondary and 

tertiary oil recovery process, it was reported that there is a critical low salinity at which injecting 

SO4
2- gives the highest increase in contact angle. Hence, there is a critical salinity that yields the 

optimum oil recovery. The critical salinity in this study is 0.08kppm.    

 

Figure A1. 16. Ultimate oil recovery versus the magnitude of SO42- concentration 

According to Figure A1. 15, a sensitivity analysis is required to determine the optimum 

concentration of SO4
2- that offers the highest ultimate oil recovery in the carbonate. In this research 

work, the optimum SO4
2- concentration is 0.08 Kppm, as the highest ultimate oil recovery of 72% 

is attained at this particular concentration after 4.0 pore volumes of injected brine. Further 

reduction in the concentration yields lower recovery factor as depicted in Figure A1. 15. 

Effect of LSWI on pH. For sandstone, the initial pH of formation water increases after 2.5 days 

under LSWI operation. The increase in the local pH is because more proton ions are released 

during the exchange of monovalent ion of Na+ and Ca-X2, leading to the release of Ca2+ ions in the 

formation water.  In this study, the local pH during LSWI for sandstone varies from 5 to 9, 5 to 8, 
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and 5 to 7.13 for 3.5 kppm, 15 kppm, and 62.52 kppm of Na+ concentration respectively, as shown 

in Figure 17. 

 

 

Figure A1. 17. 3D representation of pH change in sandstone for A(3.5 kppm), B(15 kppm), and 

C (62.52 kppm). 
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Figure A1. 17 and Figure A1. 18 show the variation of pH with Na+ concentration for the sandstone 

case. It is observed that there is a gradual increase in the pH while decreasing the salinity. As the 

Na+ concentration in the injected brine is reduced, there is an ionic exchange between a monovalent 

ion and a divalent ion which are mainly between Na+ and Ca-X2 or Na+ and Mg-X2 respectively. 

This phenomenon will cause a release of Na+ into the injected brine and formation water in other 

to attain a new ionic equilibrium. The release of Na+ with protons ions will cause an increase in 

the local pH of the formation. In this study, the local pH during LSWI for sandstone varies from 

(5 to 9), (5 to 8), and (5 to 7.13) for 3.5 Kppm, 15 Kppm and 62.52 Kppm of Na+ concentration 

respectively as shown in Figure A1. 18. It can also be observed that the lower the salinity of Na+ 

concentration in the injected brine, the higher the increase in the local pH because more Na+ will 

be released from formation water to remedy this deficiency and this will, in turn, increase the pH. 

 This increase in pH during LSWI contributes to the overall effective mechanism of increasing the 

recovery factor in sandstone, because the injected water behaves like an alkaline solution which is 

capable of decreasing the interfacial tension between oil and water phases.  
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Figure A1. 18. pH change in sandstone versus Na+ concentration 

 

For the carbonate case as shown in Figure A1. 19 and Figure A1. 20, there is no increase in the pH 

even though there is also a release of proton ions during ion exchange. This is due to the fact that 

an increased solubility of CO2 (liberated from CaCO3) in the aqueous phase is experienced with 

decreasing the salinity which results in the formation of a weak acid and bicarbonates of HCO3
2- . 

This will cancel the proton effect according to the following reaction as shown in Equation (A1. 

12), where the bicarbonates act as a buffer. 
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Figure A1. 19. 3D representation of pH change in carbonate for A (0.1 kppm), B (0.08 kppm), 

and C (0.065 kppm) 
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Figure A1. 20. pH change in carbonates in terms of SO42- 

H2Oaq + CaCO3s
 Haq

+ + HCO3
2−

aq
+ Caaq

2+ (A1. 12) 

Hence the resultant increase in pH during LSWI for carbonates is only about ±1 units for every 

±10000ppm increase or reduction of salinity. Thus, pH has no predominant effect on altering 

interfacial tension in carbonate reservoirs so that it does not appreciably contribute to change in 

the total oil recovery.  

A.1.4.2. Effect of LSWI on Mineral Dissolution and Precipitation. 

Figure A1. 21 and Figure A1. 22 depict property distance plots to demonstrate the calcite 

precipitation and dolomite dissolution, respectively, during LSWI through a cross-section of (1, 1, 

1 – 25, 1, 1) along I- direction. It should be noted that the sign convention, used by CMG, is -ve 

for precipitation and +ve for dissolution. Low salinity favors more precipitation as seen in Figure 

A1. 21. This behavior/mechanism is further explained by the following equation: 

Calcite + H+ Ca++ + HCO3
2−

 (A1. 13) 

During the low salinity injection and in the presence of CO2, the gas will be favorably dissolved 

into water and HCO3
2−

is formed when Ca2+ ions are surplus. It shifts Equation (A1. 13) to the left 
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side, causing precipitation of calcite. According to Figure A1. 21 the amount of precipitated calcite 

is very small.  Even though the equilibrium rate cannot be measured by CMG during the simulation 

run, there was evidence of precipitation in the property distance plot. This phenomenon should not 

be overlooked as the precipitation of calcites in some cases might occur faster in the presence of 

catalytic ions in the formation water, resulting in considerable influence on porosity, permeability, 

and total oil recovery.   

 

Figure A1. 21. Effect of LSWI on mineral (calcite) precipitation in carbonates. 



335 

 

 

Figure A1. 22. Influence of LSWI on mineral (dolomite) dissolution in carbonates 

 

Similarly, Figure A1. 22 demonstrates the dolomite dissolution in the carbonate system as low 

salinity favors dissolution of dolomite. This behavior is illustrated by the following reaction:  

Dolomite + 2H+ Ca++ + 2HCO3
2−

+ Mg++ (A1. 14) 

Based on Equation (A1. 14), there is surplus of H+ ions, but there is deficiency of HCO3
2−

 and Ca++. 

The deficiency and surplus cause that the reaction moves to the right side to dissolve more 

dolomite. The equilibrium rate of this reaction is not known as this parameter cannot be measured 

with CMG. However, Figure A1. 22 reveals the occurrence of the dissolution process in carbonate 

cases. 

 LSWI is identified as a prominent EOR technique where microscale investigation of this process 

is needed to capture the important recovery mechanisms that result in considerable changes in oil 
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saturation distribution and oil and rock properties. To further understand the detailed physics at 

both micro and micro scales, the systematic experimental and modeling works seem necessary.   

This study provides further insight of the LSWI process through conducting numerical simulation 

of LSWI as an EOR method. CMG-GEM is only capable of modeling low salinity water injection 

in sandstones by using Na+ as an interpolant between the low salinity relative permeability curve 

and high salinity relative permeability curve. Only Ca2+ or SO4
2- can be used as an interpolant for 

modeling in carbonates. Therefore, during this study, the main challenge was to capture LSWI 

using a different ion aside Na+, Ca2+ or SO4
2- as an interpolant. However, to a large extent, it gives 

considerably good results when compared to experimental and other numerical commercial 

simulators such as PHREEQC. 

In this study, we confirm that wettability alteration is one of the dominant mechanisms for 

additional recovery during LSWI process. Furthermore, we conclude that an increase in pH 

represents another important mechanism for additional oil recovery in sandstone reservoirs. Most 

importantly, it was found that there are two vital phenomena including mineral dissolution and 

precipitation occurring in sandstone and carbonates over LSWI, respectively which are capable of 

changing the reservoir properties and causing flow assurance problems (pore throat plugging), 

consequently leading to further operating expenditures during production operations.   
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A.1.5. Conclusions 

LSWI as an EOR technique leads to an improvement in conventional water flooding processes. 

Moreover, it exhibits more advantages, compared to other chemical EOR Process in terms of its 

relatively low capital cost, environmental impact, and relative ease of field implementation. This 

research work presents modeling simulation of LSWI for sandstones and carbonates to investigate 

variation of pH, calcite precipitation, dolomite dissolution, recovery mechanisms, and oil recovery 

factor over the production process. The following conclusions are drawn based on the results: 

• A decrease in salinity content for a sandstone reservoir offers a considerable increase in 

the oil recovery factor until a critical salinity below which no significant change occurs in 

the recovery factor. 

• Analyzing the recovery data of carbonate reservoirs, there is an optimum salinity which 

gives the maximum oil recovery; further decrease behind this particular salinity lowers the 

recovery factor.  

• The impact of the local pH (while increasing this parameter) is more noticeable in 

sandstone reservoirs, compared to carbonates. This factor coupled with wettability 

alteration provides effective/higher driving force for LSWI operation in sandstones. It is 

known that an increase in pH reduces the oil-water interfacial tension and consequently the 

residual oil saturation (Sor), leading to a greater oil recovery. 

• No considerable improvement in oil recovery from carbonates is noticed with increasing 

local pH, due to the formation of bicarbonates HCO3
2−

 which neutralizes the proton H+. 

Hence, the main driving force causing higher oil recovery with low salinity injection in 

carbonates is the wettability alteration. This occurs due to the release of divalent ions which 



338 

 

cause a shift in the oil-water relative permeability curve towards more water wet porous 

system. 

• The effect of mineral reactions including both precipitation of calcite and dissolution of 

dolomite is important during LSWI even though the reaction rate is low. Nevertheless, 

under favorable conditions in the presence of catalytic ions, the mineral dissolution and 

precipitation can occur at a much faster rate which can appreciably change reservoir 

properties and hence affect oil recovery. 

• Further modeling and experimental investigations are recommended to systematically 

study the influence of mineral reactions as this may be a dominant factor affecting oil 

recovery in the presence of bicarbonates and other catalytic ions in the formation water.  
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Nomenclatures 

Acronyms  

CEC             Cation Exchange Capacity 

LSWI    Low Salinity Water Injection 

EOR  Enhanced Oil Recovery 

CMG  Computer Modelling Group 

TDS            Total Dissolved Salt 

R.F              Recovery Factor 

Na  Sodium  

Ca                Calcium  

Kppm           Kilo parts per million 

mD               milli Darcy 

SO4
2-               Sulphate ion 

Na+              Sodium ion  

Ca2+             Calcium ion 

Mg2+           Magnesium ion 

R-COO-      Carboxylic components 



340 

 

CO2               Carbon dioxide  

N2 Nitrogen gas 

C1 - C30+ Hydrocarbon chain compounds 

Psat Saturation Pressure 

GOR Gas Oil Ratio 

EoS                Equation of State 

FVF Formation Volume Factor 

API American Petroleum Institute 

BHP Bottom Hole Pressure 

CCE              Constant Composition Expansion 

CVD           Constant Volume Depletion 

DL              Differential Liberation 

ROV           Relative Oil Volume 

Variables and parameters 

V          Grid block volume (m3) 

u           Darcy velocity (ft/day) 

P           Pressure (Psia) 

T          Transmissibility 

R          Reaction rate (moles/m3) 
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a          Activity  

D         Diffusivity  

M         Molality       

N          Number of moles of mineral  

K’        Selectivity coefficient  

h          height       

Krow     Oil water relative permeability 

𝑞𝑖         Injection and production rate of component i (m3/s) 

g           Acceleration due to gravity 

K          Equilibrium constant 

f           fugacity (-) 

X           exchanger  

na          Aqueous component 

y           mole fraction 

VRj,aq
n+1   Intra aqueous reaction rate 

VRj,mn
n+1   Mineral dissolution/precipitation 
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Greek letters 

ρ         Mass density (
𝐾𝑔

𝑚3) 

µ         Viscosity (centipoise) 

𝜙         Porosity (-) 


i
       Activity coefficient  

∆       Difference operator 

 

Subscripts 

aq          Aqueous  

w           Water 

mn        Mineral component 

 

Superscripts  

u =n     Explicit time step for grid block 

n+1      Implicit time step for grid block 
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A.2 A New Shear Wave Velocity Prediction Technique for Clastic Rocks 

Preface 

A version of this chapter has been submitted to the journal of petroleum science and engineering 

2018. The concept was developed by Olalere Oloruntobi and David Onalo. Olalere Oloruntobi is 

the primary author. Co-author David Onalo conducted part of the literature review and helped in 

the initial analysis, development of the model and draft of the paper. Co-author Dr. Sunday 

Adedigba reviewed and provided technical advice for the concept of paper. Co-author Dr. Raghu 

Chunduru reviewed and provided technical advice for the concept of paper.  Co-author Dr. Lesley 

James provided technical assistance and review for the paper. Co-author Dr. Stephen Butt 

provided technical assistance, review and development of the concept of the paper. The manuscript 

was prepared by Olalere Oloruntobi, and subsequently revised the manuscript, based on the 

feedback from the co-authors and also a peer review process. 
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Abstract  

Theoretical and experimental investigations of elastic wave propagation in sedimentary rocks have 

shown that shear wave velocity is strongly correlated to compressional wave velocity because most 

of the factors that affect the shear wave velocity also affect the compressional wave velocity. In 

areas where shear wave velocity logs are not available, empirical relations based on regression 

analyses are often used to estimate the shear wave velocity from the compressional wave velocity. 

However, most of the existing empirical relationships were developed mainly for consolidated 

rocks and they are lithology specific. When applied over a long lithological column that consists 

of several stratigraphic units, the existing empirical relations may produce inaccurate estimates. In 

this paper, a new shear wave velocity prediction technique that can be applied to a wide range of 

lithologies (clean and non-clean/mixed-lithology formations) and formation strengths (loose, 

unconsolidated and consolidated formations) in clastic environments is being proposed. Model’s 

development is based on the combination of laboratory and in situ measurements obtained from 

different depositional environments. The model is validated using wireline log data acquired from 

three wells in the Tertiary Deltaic System of the Niger Delta basin. The well data covers a wide 

range of fields, formations, pressure regimes and depths. In the new model, the shear wave velocity 

is expressed as a function of compressional wave velocity and formation bulk density. The 

accuracy of the new shear wave velocity prediction model is quantified using statistical analysis. 

An excellent agreement is observed between the predicted shear wave velocity and the actual shear 

wave velocity measurements.  

 

Keywords: Shear velocity, Compressional velocity, Empirical relation, Well logs, Formations. 
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A.2.1. Introduction 

The advent of advanced dipole sonic logging tools allows the measurements of shear and 

compressional wave velocities in soft and hard formations. This greatly extends the application of 

acoustic measurements to rock/reservoir modeling. For a given lithology, the ratio of 

compressional velocity (Vp)  to shear velocity (Vs) can be used to identify the formation fluid type 

(Hicks and Berry 1956; Kuster and Toksöz 1974; Gregory 1976;  Tatham and Stoffa 1976;   

Robertson and Pritchett 1984; Ensley 1985; Williams 1990; Brie et al. 1995; Hamada 2004; 

Kozlowski et al. 2017). Since the ratio of compressional to shear velocity varies significantly with 

formation fluid type and differential pressure, this parameter can be very useful in seismic 

monitoring of producing reservoirs (Khazanehdari and McCann, 2005). The ratio of compressional 

to shear velocity has also been used to identify and predict the onset of abnormally high formation 

pressure (Dvorkin et al. 1999; Li et al. 2000; Walls et al. 2000; Ebrom et al. 2006; Saleh et al. 

2013). Moreover, Information about rock compressional and shear wave velocities can be used for 

lithology identifications (Pickett 1963; Nations 1974; Kithas, 1976; Tatham 1982; Eastwood and 

Castagna 1983; Domenico 1984; Rafavich et al. 1984; Miller and Stewart 1990; Johnston and 

Christensen 1993;  Potter et al. 1996). Fabricius et al. (2007) used the combination of 

compressional and shear wave velocities to estimate the formation permeability in carbonate rocks. 

Attempts have also been made to improve the prediction of formation bulk density from the 

combination of compressional and shear wave velocities (Miller and Stewart 1991; Ursenbach  

2001; Ursenbach, 2002). Compressional and shear wave velocities are perhaps the most important 

input parameters required to estimate the rock mechanical properties (Tixier et al. 1975; Coates 

and Denoo 1980; Potter and Foltinek 1997; Ohen 2003; Chang et al. 2006; Ameen et al., 2009; 

Najibi et al., 2015). These properties are required for wellbore stability analyses, compaction and 
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subsidence, hydraulic fracturing, perforation strategy and sand production prediction. Other 

applications of compressional and shear wave velocities data include porosity determination, 

seismic interpretation, bright spot analyses, amplitude variation with offset (AVO) analyses and 

prospect evaluation. 

From the acoustic logging perspective, most of the offset well data were acquired with a 

borehole compensated sonic log which could largely measure the compressional wave velocity. 

Moreover, in the present-day wells, acquisition of shear velocity logs in drilled wells is not so 

common possibly due to economic reasons. The lack of shear wave velocity log data in the 

majority of the offset and present-day wells imposes severe limitations on the applications of 

acoustic measurements to rock physics. In areas where shear wave velocity log data are not 

available, they are often estimated from the compressional wave velocity using empirical relations. 

Even if the shear wave velocity log is run in a well, comparison with its prediction from other well 

log data can be used as a quality control tool. In this paper, shear and compressional velocities are 

expressed in kilometers per second (km/s), and formation density is expressed in grams per cubic 

centimeter (g/cm3) unless otherwise stated.  

The relationship between the shear wave velocity and compressional wave velocity has 

long been established. Carroll (1969) established a power relationship between the shear and 

compressional wave velocities for volcanic and granitic rocks based on laboratory acoustic 

experiments conducted on 62 core samples (Equation (A2. 1). In Carrol’s model, the shear and 

compressional wave velocities are expressed in kilofeet per second (kft/sec). Lee (2010) suggested 

that at low effective stress, the relationship between the shear and compressional wave velocities 

for unconsolidated sediments can also be described by a power law. 
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Vs = 0.937562Vp
0.81846 

(A2. 1) 

Castagna et al. (1985) developed an empirical relation based on in-situ sonic and field seismic 

measurements in mudrocks (Equation (A2. 2). The mudrock model is one of the most widely used 

empirical relations for clay formations (Jørstad et al. 1999).    

Vs = 0.862Vp − 1.172 
(A2. 2) 

Han et al. (1986) proposed another popular linear empirical relation for brine saturated well-

consolidated sandstone and shaly sandstone formations based on several laboratory ultrasonic 

experiments conducted on cores taken from Gulf of Mexico wells and quarries at differential 

pressures between 5 to 40 MPa (Equation (A2. 3). The rock porosities vary from 3% to 30% and 

the volume of clay vary between 0% to 55%.  

Vs = 0.79Vp − 0.85 
(A2. 3) 

Based on Hamilton et al. (1970) and Hamilton (1971) data set, Krishna et al. (1989) proposed a 

linear relationship between shear and compressional velocities for brine-saturated shallow marine 

sediments based on in-situ measurements in offshore San Diego, California (Equation (A2. 4), 

where shear and compressional velocities are expressed as meters per second (m/s).  

Vs = 2.924Vp − 4170.9 
(A2. 4) 

Williams (1990) expressed the ratio of compressional velocity to shear wave velocity as a function 

of shear wave travel time for water-bearing sandstone and shale formations (Equation (A2. 5). For 

sandstone formations, the regression coefficients C and D are 1.182 and 0.00422 respectively. For 

shale formations, the regression coefficients C and D are 1.276 and 0.00374 respectively. 

However, mathematical manipulation of Williams’s model will give a linear relationship. The 
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velocities and the sonic travel time in Williams’s model are in feet per micro-second and micro-

seconds per foot respectively. 

Vp

Vs
= C + D∆ts     

(A2. 5) 

Krief et al. (1990) observed a quasi-linear relationship between the square of shear wave velocity 

and square of compressional wave velocity in consolidated clean sandstone and shaly sandstone 

formations (Equation (A2. 6), where Q and R are regression coefficients. 

Vs
2 = QVp

2 − R    
(A2. 6) 

Jørstad et al. (1999) also proposed a best-fit least-squares linear regression model for shaly sands 

in a Tertiary turbidite system (Equation (A2. 7). In the model of Jørstad et al. (1999), shear and 

compressional wave velocities are expressed in meters per second (m/s).  

Vs = 0.89662Vp − 1166.5   
(A2. 7) 

Vernik et al. (2002) proposed nonlinear empirical relations for partially consolidated and 

consolidated water bearing sandstone and shale formations (Equation (A2. 8). For sandstone 

formations, the values of M, N and H are 1.267, 0.372 and 0.00284 respectively and for shale 

formations, the values of M, N and H are 0.79, 0.287 and 0.00284 respectively).  

Vs = √−M + NVp
2 + HVp

4     
(A2. 8) 

Brocher (2005) developed a nonlinear (polynomial fit) relation for a wide variety of common 

lithologies using ultrasonic laboratory, well logs, vertical seismic profiling (VSP) and field 

tomography data for rocks with velocities in the range of 1.5 < Vp < 7.5 km/s (Equation (A2. 9). 
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Vs = 0.7858 − 1.2344Vp + 0.7949Vp
2 − 0.1238Vp

3 + 0.0064Vp
4       

(A2. 9) 

Ojha and Sain (2014) established a second order polynomial fits for shallow marine sediments 

found at depth of 277 feet to 899 feet below the sea floor in Kerala-Konkan basin on the west cost 

of India (Equation (A2. 10), where P, Q and R are constant parameters. 

Vs
2 = PVp

4 − QVp
2 +  R      

(A2. 10) 

There are other empirical relationships that have been developed for various formations in clastic 

environments. Majority of these empirical relationships are linear and Table A2. 1 provides the 

summary. Shear wave velocity can also be estimated from other petrophysical data (Tosaya 1982; 

Castagna et al. 1985; Han et al. 1986; Eberhart-Phillips et al. 1989; Miller and Stewart 1990). 

During the last few decades, several researchers have also attempted to predict the shear wave 

velocity from well log data using artificial intelligent methods (Rezaee et al. 2007; Rajabi et al., 

2010; Asoodeh and Bagheripour 2012; Maleki et al. 2014; Bagheripour et al. 2015; Nourafkan and 

Kadkhodaie-Ilkhchi 2015;  Al-Dousari et al. 2016; Anemangely et al. 2017). However, shear wave 

velocity predictions from compressional wave velocity data are the most reliable because most 

factors that affect compressional velocity also affect shear velocity (Xu and White, 1995).  

Table A2. 1. Other empirical relationships 

S/N Model Equation Remarks 

 

1 

 

Miller and Stewart 

(1991) 

 

Vs = 0.8Vp − 861            (A2. 11) 

(Vs and Vp are in m/s) 

Developed from consolidated brine-

saturated clean sandstones and shaly-

sandstones based on cores taken from 

Gulf of Mexico wells and quarries. 
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2 

Greenberg and 

Castagna (1992) 

Vs = 0.80416Vp − 0.85588  

(A2. 12) 

Developed for consolidated clean sands 

Vs = 0.76969 Vp − 0.86735 

(A2. 13) 

Developed for consolidated clean shales 

 

3 

Mabrouk and 

Pennington (2009) 
Vs = Vp√

𝜈−0.5

𝜈−1
                 (A2. 14) 

Developed for consolidated clean sands. 

The Poisson’s ratio 𝜈 is obtained from 

Anderson et al. (1973). 

 

 

 

4 

 

 

 

Hossain et al. 

(2012) 

Vs = 0.95Vp − 1.27         (A2. 15) Derived for glauconitic greensand in the 

North Sea using isoframe model. 

Vs = 0.76Vp − 0.76         (A2. 16) Derived for glauconitic greensand in the 

North Sea using core data. 

Vs = 0.86Vp − 0.96         (A2. 17) Derived for glauconitic greensand in the 

North Sea using well log data. 

5 Bailey and Dutton 

(2012) 

Vs = 0.75Vp − 562.5      (A2. 18) 

(Vs and Vp are in m/s) 

Developed for consolidated Kimmeridge 

Clay formation in the North Sea. 

6 Lee  (2013) Vs = 0.59Vp − 0.6           (A2. 19) Developed for unconsolidated Shallow 

Sediments in the Gulf of Mexico. 

 

The majority of the existing empirical relations between shear and compressional wave velocities 

were developed mainly for a specific lithology. When applied over a long lithological column that 

consists of several stratigraphic units, the existing empirical relations may produce inaccurate 

results due to the high degree of variability in the relationships between shear and compressional 

wave velocities for different lithologies. Empirical relations that work very well for brine saturated 

clean sandstone or shaly-sandstone formations may perform poorly in shale formations and vise 

versa. Moreover, most of the available empirical relations in the open literature were developed 
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for consolidated rocks and their applications to unconsolidated formations (compressional velocity 

less than 2.3 km/s) may produce inaccurate estimates (Ramcharitar and Hosein 2016). In this 

paper, attempt is made to develop a simple new shear wave prediction model that can be applied 

to a wide range of lithologies, rock strengths and depths in clastic environments. The new model 

can be applicable to shallow marine sediments, unconsolidated and consolidated formations.  
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A.2.2. Model Development 

Laboratory investigations on brine saturated porous rocks have shown that shear wave velocity is 

directly proportional to the compressional wave velocity (Castagna et al. 1985; Han et al. 1986). 

From the elastic theory, shear wave velocity is also related to the square root of the formation bulk 

density (Hamada 2004). There are several ways to combine the above two conditions. One of the 

possible ways is to expressed shear wave velocity as a function of  
Vp

√ρ
. In general, shear wave 

velocity increases with the function   
Vp

√ρ
. To be applicable to any type of formation strengths (loose 

sediments, unconsolidated and consolidated formations), a power law relationship is proposed 

between the shear wave velocity and the function   
Vp

√ρ
 (Equation (A2. 20). The assumption of a 

power law relationship follows a reasoning that the majority of empirical relations between rock 

strength and rock petrophysical properties in clastic rock environments follow either a power law 

or exponential relationship (Chang et al. 2006). When applied over consolidated rocks at short 

intervals or rocks in the deeper sections of a sedimentary basin where the formation density is 

relatively constant, Equation (A2. 20) will reduce to Carroll’s model (Equation 1). 

Vs = A [
Vp

√ρ
]

𝑚

 
(A2. 20) 

When the shear wave velocity is zero (as it is in fluids: oil, water or gas), the formation bulk density 

and compressional wave velocity will have non-zero positive values. Hence, Equation (A2. 20) is 

not adequate to describe the above physical condition. Therefore, a modified power law relationship 

is proposed (Equation (A2. 21) which considers the above condition.  

 



357 

 

Vs = A [
Vp

√ρ
]

𝑚

− B 
(A2. 21) 

To determine the values of the constant parameters A, B and m, Equation ((A2. 21) is calibrated 

to laboratory and in situ measurements obtained from different geographical locations. The 

calibration data covers a wide range of lithologies, formation strengths and effective stresses. This 

allows the new model to cover a wide range of conditions usually found at shallower and deeper 

depths of a sedimentary basin. Table A2. 2 provides the source of the data used in calibrating 

Equation ((A2. 21).  

Table A2. 2. Type and source of the data used for calibration. 

S/N Type Formations Source 

1 Laboratory  

(5 and 30 MPa DP) 

Consolidated brine saturated clean and shaly 

sandstone formations obtained from Gulf of 

Mexico (GOM) wells and quarries in USA.  

 

Han et al. (1986) 

2 Laboratory  

(3 and 7 MPa CP) 

Consolidated and unconsolidated brine saturated 

glauconic greensand formations obtained from 

the Nini oil field in the North Sea. 

 

Hossain et al. (2012) 

3 Laboratory  

(1 and 20 MPa DP) 

Water saturated loose clean beach sand. Prasad (2002) 

4 Borehole seismic Water saturated shallow loose sediments at 50 to 

70 ft in the Niger Delta. 

Ajayi et al. (2014) 

 

By fitting Equation ((A2. 21) to the data set presented in Table A2. 2, the values of the parameters 

A, B and m are determined to be 2.41, 2.35 and 0.70 respectively (Equation (A2. 22). 
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Vs = 2.41 [
Vp

√ρ
]

0.70

− 2.35    
(A2. 22) 

Figure A2. 1 shows the plot of the predicted shear velocity derived from Equation ((A2. 22) versus 

the measured shear wave velocity obtained from the data set presented in Table A2. 2 along with 

the histogram of the residual. There is an excellent agreement between the predicted and measured 

shear wave velocities with a remarkable narrow trend despite the data were obtained from various 

regions with different lithologies. The inclusion of the formation bulk density normalizes the 

lithology effect and perturbs the estimates closer to the measured values. The maximum deviation 

is  ±0.20 km/s with root-mean-square error (RMSE) of 9.2% and coefficient of determination (R2) 

value of 0.98. 

 

 

Figure A2. 1 Comparison of predicted and measured shear wave velocities. 
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A.2.3. Field Examples 

To further demonstrate the applicability of the new shear wave velocity prediction model, three 

wells from the tertiary deltaic system in the Niger Delta Basin are considered as the case studies. 

The Niger Delta Basin is an extensional rift basin that consists of Tertiary clastic sediments with 

thickness up to 12 km (Doust and Omatsola 1990; Oloruntobi et al. 2018). It is located in the Niger 

Delta and the Gulf of Guinea along the west of central Africa, covering an area of about 75,000 

km2 (Evamy et al. 1978). The sequence stratigraphy of the basin consists of Benin formations, 

Agbada formations and Akata formations in descending order (Short and Stauble 1967; Avbovbo 

1978b; Adewole et al. 2016). The Benin formations consist of mainly top medium to coarse-

grained continental sands. The Agbada formations consist of an alternating sequence of sands and 

shales. All commercial productions of oil and gas in the basin are from deltaic sandstones of 

Agbada formations. The Akata formations consist of mainly under-compacted marine shales. The 

wells presented in this paper only penetrate the Benin and Agbada formations. The geothermal 

gradient varies across the Niger Delta basin. Based on the average surface temperature of 74°F,  

the geothermal gradient varies between 1.2 – 3.0oF per 100 feet (Avbovbo, 1978b). The basin’s 

structural trapping mechanisms are growth faults associated with rollover anticlines (Daukoru 

1975). The Niger Delta sands have good porosity and permeability (sands with porosity higher 

than 25% and permeability in the Darcy range are not uncommon). In this paper, all depths are 

with respect to true vertical depth (TVD) below the mean sea level (MSL). Figure A2. 2 shows the 

location map of the three wells. Well A is an exploratory gas well, located about 70 km northwest 

of Port Harcourt in the onshore region of the basin. The well was drilled to a total depth of 11,894 

ft in the 6’’ hole section. However, the required wireline log data were only acquired in the 8 ½’’ 

hole section of the well. The well penetrated both the normally pressured and overpressure 
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intervals with the onset of overpressure at 8,220 ft. Well B is an exploratory oil well, located about 

94 km southeast of Port Harcourt in the offshore depo-belt of the basin. The well was drilled to a 

total depth of 11,554 ft in the 12 ¼’’ hole section. The required wireline log data were acquired in 

the 12 ¼’’ hole section of the well. The subsurface pressure regime of well B is normal over the 

entire intervals being penetrated. Well C is an appraisal oil well, located about 65 km southwest 

of Bomadi in the offshore region of the basin. The well was drilled to a total depth of 8,115 ft in 

the 8 ½’’ hole section. The required wireline log data were acquired over the entire sections of the 

well (8 ½’’ pilot hole, 12 ¼’’ hole and 8 ½’’ main hole). The subsurface pressure regime of well 

C is normal from below the seabed to the well total depth. 
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Figure A2. 2. Location map for well A, B and C 

Table A2. 3 provides the summary of the well data. The well data covers a wide range of fields 

(onshore and offshore), formations (sand, shaly-sand, shale, consolidated and unconsolidated), 

depths (1,024 – 11,499 ft) and pressure regimes (normal and overpressure). Figure A2. 3 to Figure 

A2. 5 display the suite of wireline log data that were acquired in the three wells. The measured 

data consist of gamma-ray, shear and compressional slowness, formation bulk density, caliper, 

neutron porosity, formation deep resistivity and formation pore pressure. The log data frequency 
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is between 0.25 – 0.5 ft. Although all the necessary environmental corrections (effects of hole size, 

borehole rugosity, tool stand-off, mud type, filter cake thickness, etc.) have been applied to the log 

data, the inclusion of the caliper logs will help to identify the likely regions of poor wellbore 

conditions which may result in poor data acquisition/measurements. Further quality checks on the 

input data were performed using the possible Poisson’s ratio values (0 – 0.5), compression velocity 

of seawater (1.61 km/s) and compressional velocity of sandstone matrix (5.49 km/s). Well C 

contains the shear wave velocity, compressional wave velocity and formation bulk density data in 

the shallowest unconsolidated formations where there is a general lack of acoustic and nuclear 

(Compton scattering) measurements across the industry due to the difficulty of acquiring such logs 

in large diameter boreholes. The log data in the topmost sections of Well C were acquired in the 8 

½’’ pilot hole that was drilled for shallow gas investigations prior to opening up the well to a bigger 

hole size for normal drilling operations.  

Table A2. 3. The well data summary 

Name Log Interval Location Well Type Lithology Available log data 

Well A 7,975 – 10,392 ft Onshore Gas well Shale - Sand 
Gamma-ray, Vs, Vp, RHOB, 

Neutron, Caliper, & ILD  

Well B 8,300 – 11,499 ft Offshore Oil well Shale - Sand 
Gamma-ray, Vs, Vp, RHOB, 

Neutron, Caliper, & ILD  

Well C 1,024 – 8,094 ft Offshore Oil well Shale - Sand 
Gamma-ray, Vs, Vp, RHOB, 

Neutron, Caliper, & ILD  
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Figure A2. 3. Measured petrophysical data for well A. 
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Figure A2. 4. Measured petrophysical data for well B. 
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Figure A2. 5. Measured petrophysical data for well C
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A.2.4. Discussion 

Figure A2. 6 shows the comparison of predicted and measured shear wave velocity against depth 

for the three wells. The shear wave velocity is computed using Equation ((A2. 22). An excellent 

agreement is observed between the shear wave velocity estimates and the actual shear wave 

velocity measurements (log). The new model is able to predict the shear wave velocity across 

different stratigraphic units (clean and non-clean/mixed-lithology formations) with good accuracy 

due to the inclusion of lithology-dependent parameter. Accurate shear wave velocity predictions 

are also observed in the consolidated (well A, B and deeper sections of well C) and unconsolidated 

formations (shallowest sections of well C) due to the nature of the model and inclusion of 

additional compaction-dependent parameter. The new model appears to work well in gas, oil and 

water-saturated rocks. In gas/light hydrocarbon saturated rocks as compared to brine filled rocks, 

the compressional velocity and formation bulk density will decrease while the shear velocity will 

slightly increase (Toksöz et al. 1976). Since the new shear wave velocity prediction model contains 

both compressional velocity and formation bulk density terms, and the fact that the formations are 

consolidated (well A), it is possible that these two properties counteract such that the predicted 

shear wave velocity slightly increases in gas filled rocks when compared to brine filled rocks. The 

new model also produces good estimates in normally pressured and overpressured intervals (well 

A) since the model is developed from data that covers a wide range of effective stresses. Even for 

rocks that contain microcracks, Equation ((A2. 22)  can still be applicable. For consolidated rocks 

that contain microcracks, changes in effective stress will cause significant changes in 

compressional wave velocity with negligible changes in formation bulk density. Under this 

condition, shear wave velocity in the new model will respond only to compressional wave velocity 

until the effective stress is high enough to close all the microcracks. 
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Figure A2. 6. Comparison of predicted and measured (log) shear wave velocities profile. 
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Figure A2. 7 to Figure A2. 9 show the cross-plots of the predicted shear wave velocity versus the 

measured (log) shear wave velocity using Equation (A2. 20) (new model), Equation (A2. 2) 

(Castagna et al. 1985), and Equation (A2. 3) (Han et al. 1986). The error distribution charts are 

also provided along with the cross-plots. The models of Castagna and Han have been selected for 

comparison because they are the most widely used empirical relations. More so, large number of 

the experimental data used to calibrate the new model in this paper were obtained from Han. For 

the new model, the plots again show an excellent agreement between the measured (log) and 

predicted shear wave velocities with remarkable non-scattered trends and normal error 

distributions.  The new model produces lower RMS errors (Table A2. 4), lower maximum 

deviations (MD) and better distributions than the most widely used empirical relations. In general, 

the new model outperforms the most widely used empirical relations. 

Table A2. 4.  Comparison of RMSE and maximum deviation for different models.  

Name 

New Model Han et al. 1986 Castagna et al. 1985 

RMSE MD RMSE MD RMSE MD 

Well A 7% 

±0.20 

km/s 

12% 

±0.30 

km/s 

12% ±0.50 km/s 

Well B 9% 

±0.20 

km/s 

9% 

±0.30 

km/s 

12% ±0.45 km/s 

Well C 7% 

±0.15 

km/s 

12% 

±0.20 

km/s 

11% ±0.35 km/s 
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Figure A2. 7Comparison of predicted and measured (log) shear wave velocities for well A 
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Figure A2. 8. Comparison of predicted and measured (log) shear wave velocities for well B 
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Figure A2. 9. Comparison of predicted and measured (log) shear wave velocities for well C 
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A.2.5. Conclusion 

Data obtained from different geographical locations have been used to develop and validate the 

new shear wave velocity prediction model. The model is developed primarily for clastic 

formations. The new model incorporates an additional lithology-compaction dependent parameter, 

making it suitable for consolidated and unconsolidated rocks. The model appears to work well for 

multiple stratigraphic units (clean sands, clean shales and non-clean/mixed-lithology formations) 

in clastic environments. In the case study wells, the new model also appears to predict the shear 

wave velocity fairly accurately in gas, oil and water saturated rocks. The statistical analysis shows 

that the accuracy of the new shear wave velocity prediction model is quite high with low root-

mean-square errors, low maximum deviations and normal error distribution curves. In general, 

there is an excellent agreement between the measured and predicted shear velocities. The nature 

of the new model (modified power law) and the inclusion of the density term improve the accuracy 

of the shear wave prediction. The new shear wave velocity prediction model does not cover 

carbonate and evaporite environments. Separate models may need to be developed for these 

environments. 
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Nomenclature 

RHOB Bulk density log (g/cm3) 

K Bulk modulus (MPa) 

Vp Compressional wave velocity (km/s) 

CP Confining pressure 

ILD Deep resistivity (ohms.m) 
oF Degree Fahrenheit 

DP Differential pressure 

ft feet 

ρb Formation bulk density (g/cc) 

MD Maximum deviation 

PU Porosity unit 

G Shear modulus (MPa) 

Δts Shear transit time in microseconds per foot (μsecond/ft) 

Vs Shear wave velocity (km/s) 
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