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Abstract

In this dissertation, we focus on the development and analysis of time-delayed
mathematical models to represent real world applications in biology and epidemiol-
ogy, especially, population growth and disease spread. Throughout five projects, we
establish then analyze the models using various theorems and methods in the liter-
ature, such as, the comparison principle and the method of fluctuations, to study
qualitative features of the models including existence and uniqueness of solutions,
boundedness, steady states, persistence, local, and global stability, with respect to
the adult/basic reproduction number R 4/R, which is a key threshold parameter.

Firstly, we discuss ecological models in Chapters 2—4. In Chapter 2, we derive a
single species—fish model with three stages: juveniles, small adults and large adults
with two harvesting strategies depending on the size and maturity. We study the pop-
ulation extinction and persistence with respect to R 4 and find that the over-harvesting
of large matured fish after a certain age can lead to population extinction under cer-
tain circumstances. Numerically, we investigate the influence of harvesting functions
and discuss the optimal harvesting rates. In Chapter 3, we develop a model for the
growth of sea lice with three stages such that the development age for non-infectious
larvae to develop into infectious larvae relates to the size of adult population size. As
a beginning, we describe the nonlinear dynamics by a system of partial differential
equations, then, we transformed it into a system of delay differential equations with
constant delay by using the method of characteristics and an appropriate change of
variables. We address the system threshold dynamics for the established model with
respect to the adult reproduction number, including the global stability of the triv-
ial steady state, persistence, and global attractivity of a coexistence unique positive
steady state. As a case study, we provide some numerical simulation results using
Lepeophtheirus salmonis growth parameters. To explore the biological control of sea
lice using one of their predators, “cleaner fish”, we propose a model with predator-
prey interaction at the adult level of sea lice in Chapter 4. Mathematically, we address
threshold dynamics with respect to the adult reproduction number for sea lice R4 and
the net reproductive number of cleaner fish Ry, including the global stability of the
trivial steady state when R, < 1, global attractivity of the predator-free equilibrium
point when Ry > 1 and Ry < 1, persistence and coexistence of a unique positive

steady state when R; > 1 and Ry > 1. Furthermore, we discuss the local stability
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of the positive equilibrium point and investigate the Hopf bifurcation. Numerically,
we compare between two cleaner fish species, goldsinny and ballan wrasse, as a case
study.

For epidemiological models, in Chapter 5, we propose an SEIRD model for Ebola
disease transmission that incorporates both the transmission of infection between the
living humans and from the infected corpses to the living individuals, with a con-
stant latent period. Through mathematical analysis, we prove the globally stability
of the disease-free and a unique endemic equilibria with respect to Ry. Moreover,
we find that the long latent period or low transmission rate from infectious corpses
may reduce the spread of Ebola. In Chapters 6, we consider the influence of seasonal
fluctuations on disease transmission and develop a periodic infectious disease model
where asymptomatic carriers are potential sources for disease transmission. We con-
sider a general nonlinear incidence rate function with the asymptomatic carriage and
latent periods. We implement a case study regarding the meningococcal meningitis
disease transmission in Dori, Burkina Faso. Our numerical simulation indicates an
irregular pattern of epidemics varying in size and duration, which is consistent with
the reported data in Burkina Faso from 1940 to 2014.

In summery, in population growth models, we find that the basic reproduction ratio
depends on maturation time, indicating that this key parameter can play an important
role in population extinction and persistence. In disease transmission model, we
understand that latent period can play a positive role in eliminating or slowing a

disease spread.
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Chapter 1
Introduction and Preliminaries

Mathematical models are widely used in the natural sciences (such as physics and
biology), engineering disciplines, and social sciences (such as economics, sociology and
political science). Eykhoff (1974) defined a mathematical model as “a representation
of the essential aspects of an existing system (or a system to be constructed) which
presents knowledge of that system in usable form” [195]. Mathematical modelling
provides an explanation and prediction of the behavior of ecosystems and helps to
obtain new theoretical knowledge of nature, and can play an important role in helping
to quantify possible disease control strategies by focusing on the important aspects of
a disease. Mathematical models can take many forms, including differential equations,
statistical models, game theory models, and so on.

Delay differential equations (DDEs) have become popular in ecological and epi-
demiological models, such as the study of age-structured populations growth and
epidemics. In nature, individuals in a population differ from each other in age, life
cycle stage, and other physiological characteristics. Sometimes, these differences play
critical roles in population dynamics [70]. In the literature, there has been a fair
amount of work on modeling age-structured populations using DDEs in various set-
tings [7-0, 11,206,506, 71,102,122, 137,154,164, 178]. For example, in [7-9,71,178], the
authors considered a fixed time delays in their models. Distributed maturation delays
were assumed in [11,26,56]. In [122)154], the authors used time-dependent delays
in the proposed models. The authors in [102, , 164] have posed models in which
maturation is determined by the consumption of a threshold amount of resource.

Mathematical epidemiology has a long history, going back to the smallpox model
of Daniel Bernoulli in 1760. Much of the basic theory was developed between 1900 and



1935, and there has been steady progress since that time. More recently, models have
been used to assist in the evaluation of the effect of control measures and formulation
of policy decisions. Mathematical models for the spread of an infectious disease in a
population are depending on many factors: patterns of contacts among infectious and
susceptible individuals; the latency period from being infected to becoming infectious;
the duration of infectiousness; and the immunity period [15,89]. Usually, DDEs
are used to model such periods in disease transmission mechanisms. For example,
in [120,159,200,201], the authors studied Malaria disease transmission. The spread of
Lyme disease has bean discussed in [57,199]. Further, in the literature, many authors
proposed general compartmental models with time-delays. For instance, in [212],
a disease transmission model of SEIRS type with distributed delays in latent and
temporary immune periods is discussed. The authors found that distributed delays

can change the dynamics and destabilize the endemic steady state.

In the following, we introduce some terminologies and theories related to delay dif-
ferential equations. Then we present results for basic reproduction ratios for periodic

compartmental models with time delay.

1.1 Brief review of delay differential equations

For a given tp € J C Rand 7 > 0, let C = C([to — 7,t0], R™) and C* = C([ty —
7,to], R%). Then (C,C%) is an ordered Banach space equipped with the maximum
norm [|¢[| = >[4l where

Il =, max16:(0)

0€(to—T,t

for any ¢ = (¢1,...,¢,) € C. For any given continuous function u(t) € C([ty —
7, (], R™) with ¢ > tg, we define u;, € C for each t > to by u () = u(t+0), 0 € [to—7, to].
For D Cc R" let Cp = C([to—T, 1], D) denote the set of continuous functions mapping
[to — 7, 10] into D.

A general type of DDE is in the following form

Z'(t) = f(t,xy). (1.1)



With n discrete delays, 71, ...,7,, (1.1) can be written as
2(t) = f(ta(t), 2t — 1), .. 2lt — 7). (1.2
In this case, the above 7 is max{r,...,7,}.

For a given ¢g := ¢y(t) € Cp, the initial value problem associated with (1.1) is

() = f(t,x), t>to
Ty, = Qo, (1.3)

Definition 1.1.1. A function x(t) is said to be a solution of (1.3) on [to — T, 3] if
there are ty and B such that © € C([to — 7, 5], D), [to — 7, 5] C R, and x(t) satisfies
(1.3) on [ty — T, 5].

Theorem 1.1.1. [7/, Lemma 2.1.1] Finding a solution of the IVP (1.3) is equivalent

to solving the integral equation

() =¢w®+/ﬂwm%,%§t§&
..’L‘to = ¢0.

Definition 1.1.2. Let f : J xCp - R" and let S C J x Cp. Then f is Lipschitz on
S if there exists a constant L > 0 such that

[f(t,0) = f(t,9)] < Lllo — 4

whenever (t,¢), (t,¢) € S.

Theorem 1.1.2. (Local Existence) [7/, Theorem 2.2.1] Assume J x Cp is an open
set inRx C, and f: JxCp — R™ is continuous on its domain. If (ty, po) € J x Cp,
then there exists a solution of the initial value problem (1.3) passing through (to, ¢o)
on [ty — 7,1y + 9) for some § > 0.

Theorem 1.1.3. (Uniqueness) [7/, Theorem 2.2.2] Suppose J x Cp is an open set
mRxC, and f:JxCp — R" is continuous and Lipschitz on each compact set of
J x Cp. Then there exists a unique solution of the initial value problem (1.3) passing
through (to, ¢o) for any (to, ¢o) € J x Cp.



The interval [tg—7, t9+6) described in Theorem 1.1.2 is called the maximal interval

of existence of the solution of (1.3).

Theorem 1.1.4. [109, Theorem 5.2.1] Let Cp is open. Assume that whenever ¢ €
Cp satisfies ¢ > 0, ¢;(0) = 0 for some i and t € R, then fi(t,¢) > 0. If p € Cp
satisfies ¢ > 0 and ty € R, then the solution x(t) > 0, through (to, ¢), for all t > t,

in its mazimal interval of existence.

Definition 1.1.3. f is said to be quasimonotone if for any ¢ < ¥ with ¢;(ty = (1)
for some i, then fi(t,¢) < fi(t,v) for each t.

Theorem 1.1.5. [100, Theorem 5.1.1] Let f,g : J x Cp — R™ be continuous and
Lipschitz on each compact set of J x Cp, and assume that either f or g is quasi-
monotone. Assume also that f(t,¢) < g(t,¢) for all (t,¢) € J x Cp. If (to, ),
(to,¥) € J x Cp satisfy ¢ < 1), then

z(t,to, ¢, f) < x(t, to, v, 9)

holds for all t > to for which both are defined.

Assume (1.1) is autonomous system, that is,

(1) = flw). (1.4
Then an equilibrium point of (1.4) is a constant solution z(t) = z* that satisfies
fa*) =0,
Definition 1.1.4. Assume x* is an equilibrium point of (1.4). Then

i. x* is said to be stable if for any € > 0, there is a § := d(€) such that ||pg — z*|| <
for t € [ty — T,to] implies |x(t, po) — x*| < € for all t > to. Otherwise, it is called

unstable.

1. x* is said to be asymptotically stable if it is stable and x* is attractive, that is, there

is m such that ||¢o — x*|| < n fort € [ty — 7, to] implies limy_,oo |(t, po) — z*| = 0.

iti. x* is said globally asymptotically stable if it is stable and limy_, |2(t, o) — z*| =0
for all ¢pg € Cp



The general form of a linear autonomous system is
2/ (t) = L(xy) (1.5)

where L : C' — R" is continuous and linear. By the Riesz Representation Theorem,
the linear operator L can be expressed in an integral form, in the sense that, there

exists an n X n matrix-valued function
n(-) : (—00,0] — R"

whose components are bounded variation such that

0

L(¢)—/¢(9)dn(0> forany ¢ € C.

The characteristic equation corresponding to the linear autonomous system (1.5)

18
0

A(\) =det [ A, — /e’\edn(e) =0 (1.6)
where I, is the n x n identity matrix [176].
The local stability of the equilibrium point z* of (1.4) can be determined by
the stability of zero equilibrium of the corresponding linearized system, by setting
u=x—z".

For linear autonomous DDEs system with discrete delays, 71,..., T,
¥(t) = Ax(t) + ) Bu(t — ),
i=1

the characteristic equation (1.6) becomes

A (N) = det ()\In A=Y Bie_”i> — 0.

i=1



1.2 Basic reproduction ratios

In infectious disease models, a very important threshold quantity for disease survival
is the basic reproduction ratio (number), denoted by Ry. In epidemiology, Ry is the
expected number of secondary cases produced by one infected individual introduced
into a population of susceptible individuals [51, 193, 217]. In general, when Ry is
introduced for an epidemic model, the disease cannot invade if Ry < 1 and can invade
if Rg > 1. In this section, we present the theory of basic reproduction ratios for
periodic compartmental models with time delay developed in [217].

Let ty = 0 and consider a linear and periodic functional differential system
u'(t) = F(t)u, — V(t)u(t), t >0, (1.7)

where F(t) : C — R™is amap and V(t) is a continuous nxn matrix function on R, and
both F(t) and V(t) are T—periodic in ¢ for some real number 7' > 0. In (1.7), F(t)u;
describes the newly infected individuals at time ¢ evolving over the time interval
[t — 7,t] and the internal evolution of individuals in the infectious compartments
(e.g., natural and disease-induced deaths, and movements among compartments) is

governed by the linear ordinary differential system:

du_

- = —V(Ou(t). (1.8)

Let Z(t,s) be the evolution operator associated with the system (1.8), that is, Z(¢, s)
satisfies

%Z(t,s) =-V(t)Z(t,s), Vt > s, and Z(s,s) =1, Vs €R

and w(Z) be the exponential growth bound of Z(t, s), that is,
w(Z) =inf {&: IM > 1 such that |Z(t+s,s)|| < Me*" Vs € R,t >0} .
It is clear that, for any ¢ > s and s € R
Z(t,s)=e" Jevmydn,

Assume that

(H1) Each operator F(t) is positive in the sense that F(t)C* C R’}.



(H2) Each matrix —)V(t) is cooperative, and w(Z) < 0.

Let C7 be the ordered Banach space of all T—periodic functions from R to R",
which is equipped with the maximum norm and the positive cone Cf = {v € Cr :
v(t) > 0,Vt € R}. Then the basic reproduction ratio Ry is the spectral radius of the

linear operator on Cr

[Lo](t) = /Z(t,t —5)F(t—s)v(t —s+-)ds, v e Cr,
0
that is, Ry = p(L).

Let P(t) be the solution maps of the linear system (1.7) on C, that is, P(t)¢ =
v(t,¢), t > 0, where v(t,¢) is the unique solution of (1.7) satisfying vy = ¢ € C.
Then P := P(T) is the Poincaré (period) map associated with the system (1.7). The
following result indicates the instability and local stability of the zero solution for

periodic system (1.7).

Theorem 1.2.1. [217, Theorem 2.1] Ro — 1 has the same sign as p(P) — 1. Thus,
the zero solution in (1.7) is locally asymptotically stable if Ry < 1, and unstable if
Ro > 1.

When (1.7) is autonomous system
W' (t) = Fug — Vu(t), (1.9)
the basic reproduction ratio Ry is the spectral radius of the matrix Fy! [217, Corol-
lary 2.1].
1.3 Uniform persistence

In this section, we present a general persistence theory for infinite dimensional systems
due to Hale and Waltman [75] and Smith and Zhao [171].

1.3.1 Hale and Waltman theory

Let X be a complete metric space with metric d and suppose that T'(t) : X — X,
t > 0, satisfies
T0)=1and T(t+s) =T(t)T(s) for t,s > 0,



and T'(t)x is continuous in ¢ and z.
The distance d(z,Y") of a point x € X from a subset Y of X is defined by

d(z.Y) = inf d(z.y).

Recall that the positive orbit 4" (z) through z is defined as v*(z) = 5o {T'(t)z},
and its omega limit set is w(x) = (50 Uz, {T(¢)2}. Define W*(M) the stable set of

a compact invariant set M as
W (M) ={z:z € X,w(z) #0,w(x) C M}

Suppose that X is an open and dense set in X with X°UX, = X and X°NX, =0
and T'(t) satisfies

T(t): X° — X% and T(t) : Xo — Xo. (1.10)
Theorem 1.3.1. [75, Theorem 4.1] Suppose T(t) satisfies (1.10) and we have the
following:
(i) There is a ty such that T(t) is compact for t > to;
(ii) T'(t) is point dissipative in X ;

(iii) A = U,ea, w(z) is isolated and has an acyclic covering M = UL, My, where
Ay is the global attractor of T(t) restricted to Xy and w(x) is the omega-1limit

set;
(iv) For each M; € M, W*(M;) N X° = 0 where W* is the stable manifold of M;.

Then T (t) is uniformly persistent with respect to X°, that is, there is an n > 0 such
that for any x € X°,
liminf d (T'(t)z, Xo) > 7.

t—00
For the case in which T'(t) is only asymptotically smooth, the following theorem

can be viewed as a corollary of the preceding theorem.

Theorem 1.3.2. [75, Theorem 4.2] Suppose T(t) satisfies (1.10) and we have the
following:

(i) T(t) is point dissipative in X ;



(i) y"(U) is bounded in X if U is bounded in X where v*(z) is the positive orbit
through x;

(iii) T'(t) is asymptotically smooth;

(iv) A = U,eca,w(x) is isolated and has an acyclic covering M = Ule M, where
Ay is the global attractor of T(t) restricted to Xo and w(x) is the omega-1limit

set;
(v) For each M; € M, W*(M;) N X° = 0 where W* is the stable manifold of M;.

Then the conclusion of Theorem 1.5.1 is valid.

1.3.2 Smith and Zhao theory

Suppose X be a complete metric space with metric d and Xy C X an open set.. Let
f: X — X be a continuous map. Define 90Xy = X\ X, and My = {z € 90X, :
f™(z) € 0Xy, ¥n > 0}, which may be empty.

Let ® is a semiflow on X. A generalized distance function p for ® is a continuous

function p : X — [0, 00) satisfying:
p(P4(x)) > 0 for t > 0 if either p(x) = 0 and = € X or if p(x) > 0.

® is said to be uniformly persistent with respect to (Xo, 90Xy, p) if there exists n > 0
such that
inf lim p (®4(x)) > n

t—00

for all z € X,.

Theorem 1.3.3. [/71, Theorem 3] Let p be a generalized distance function for the
semiflow ®(t) : X — X with ®(t) Xy C Xo for all t > 0. Assume that

(i) ®(t) : X — X has a global attractor A;

(i) There exists a finite sequence M = {M,..., My} of disjoint, compact, and

isolated invariant sets in 0X, with the following properties:

(a) UmEMg W(m) C Uf:l Mi;
(b) No subset of M forms a cycle in 0Xo;
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(¢c) Each M; is isolated in X ;
(d) Ws(M;)Np~(0,00) =0 for each 1 <i < k.

Then there exists n > 0 such that

inf lim p (®4(x)) > n

t—00

for all x € X,.

The aim of this thesis is to develop and analyze time-delayed mathematical models
arising from real-world-applications related to the natural time-lags on the population
growth and disease spread. More specifically, modeling age-structured population, and
infectious disease at the population level, to understand population dynamics. The
rest of this dissertation is organized as follows. In Chapter 2, we develop a model for a
single species-fish with three stages: juveniles, small adults and large adults, and two
harvesting strategies depend on size and maturity. Chapter 3 is devoted to the study
the growth process and the dynamical behavior of sea lice population. In Chapter
4, we study the growth of sea lice while one of their predators, “cleaner fish”, exists
by proposing a model with predator-prey interaction at the adult level of sea lice. In
Chapter 5, we propose a model that incorporates both the transmission of infection
between the living humans and from the infected corpses to the living individuals, with
a constant latent period of Ebola. In Chapter 6, we analyze an infectious disease model
under the influence of seasonal fluctuations (all parameters are time-dependent) with
a general nonlinear incidence rate function and consideration of the asymptomatic
carriage and latent periods. A brief summary and some future works are presented in
Chapter 7



Chapter 2

A Stage-Structured Mathematical
Model for Fish Stock with

Harvesting

2.1 Introduction

Humans have harvested fish from the ocean for thousands of years, and there has
been a dramatic increase in the amount of fish taken from the sea since 1960. In
2006, a team of researchers in a study based on an analysis of regional and global
fisheries data over the past 50 years, foresaw that by the year 2048 commercial fishers
will have almost nothing left to catch [97,129]. Keeping a sustainable fisheries and
sustainable flow are the fundamental goals of most fisheries management. One of the
key factors to manage and preserve genetic diversity of fish stocks, where a group of
fish of the same species live in the same geographic area and mix enough to breed
with each other when mature [97, 109], is optimal harvesting of fish resources which
maximizes the average catch of fish and does not reduce stock’s abundance over time.
Harvesting, one of the most important parts of fish farming, is often underequipped
and poorly planned, and hence leads to the destruction of the resource. To sustain
catches and abundance levels, management of fish populations can be based on several
alternative means of strategic catch regulation.

Stock harvesting strategies are the plans for adjusting management options in re-
lation to the status of the fish stock. The two most common harvest strategies are

maturity selectivity and size preference because catching juveniles is not allowed per
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fishing regulations [19,50]. Many of the world’s fisheries use size-selective harvesting,
because of gear design, targeting incentives of fishers, or management regulations.
For instance, size-selectivity has been implemented to harvest British Columbia pink
salmon (Oncorhynchus gorbuscha) since 1950 [127]. Also gillnets were used for catch-
ing striped bass in Maryland during the 1950s [124]. On the other hand, maturity
selectivity occurs when fisheries target a stock spawning grounds since juveniles and
adults are spatially segregated during spawning [107,145]. Spawning grounds are the
areas of water where female fish lay eggs and male fish spread sperm over the eggs.
Using maturity selectivity, it is possible to target both small and large matured fish
and avoid juveniles due to the segregation. An illustration of maturity selectivity
is given in Figure 2.1. For example, in the last 50 years the northeast Arctic cod
have been caught around spawning grounds at the Lofoten archipelago and north-
wards [02, 141]. Maturity-selective harvesting had been used to catch the Norwegian
spring-spawning herring (Clupea harengus) at their spawning grounds on the west
coast of Norway during the 20th century [54,55]. In general, harvesting based on

maturity is less common than size selectivity in world fisheries.

Spawning ground

Wi AR R

Figure 2.1 Tllustration of maturity-selective harvesting.

There has been a fair amount of work on modeling populations with various life
history stages [7,8, 10,23, 31-35,58,67,120,211]. For instance, Aiello and Freedman
proposed a stage-structured model of single species with two life stages, immature
and mature and with a constant time from birth to maturity in [7]. Yuan [211]

considered a prey-predation model concerning the interactions between phytoplankton
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and herbivorous zooplankton with a maturation time in predators and additional
effect of zooplankton predation by a constant fish population, studied the stability
and bifurcation with or without the maturation time delay. In [67], Gourley and Lou
formulated a predator-prey model at the larval rather than adult level to control the
Asian longhorned beetle Anoplophora glabripennis by one of its natural predators
and discussed the stability of equilibria and persistence of the predator. Fang et
al. [8] proposed a system of distributed delay equations for a system population of
larvae and adults and established its positivity, boundedness, stability and uniform
persistence. In [35], Brauer and Soudack studied the harvesting of predators in a
predator—prey system as an optimal control problem with to maximize the long—term
yield. In [33], Brauer discussed a nonlinear age-dependent population growth model
with constant-Rate Harvesting. A three-stage structured SEIR epidemic model is
discussed in [23].

As pointed out in [79], in marine habitats, preferential removal of larger individuals
of a species has been shown to have a negative effect on its demography, life history
and ecology. Moreover, size selectivity has shown a reduction in both age and size
at puberty in several exploited fish populations, indicating the phenotypic plasticity
or genetic changes in the organisms (population). Overusing the size selectivity for
large fish will drive the population to become so small and lose its genetic variability
because there are not enough individuals in the gene pool to carry the variety of
traits that were once found in the population [97,112]. In the natural world, many
species go through two or more life stages as they proceed from birth to death. For
instance, mammalian populations exhibit two distinct stages: immature and mature,
while mosquito species go through four distinct stages during their life cycle. Unlike
birds and mammals, most of fish can continue growing in length and weight after
they have reached sexual maturity [206]. In this chapter we consider a fish stock with
spawning region and classify the single species fish into three-stages (juveniles, small
adults and large adults). We assume harvesting based on two harvesting strategies,
maturity selectivity and size selectivity, where the difference is that under maturity
selectivity small fish are allowed to be caught on the spawning ground.

The purpose of the work is to investigate the dynamical behavior of the system
and discuss the effect of harvesting. As a starting point, we use the McKendrick-
von-Foerster equation to construct a simple equation for each class, then by using

the technique of integration along characteristics, we reduce each equation to a delay
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differential equation for the number of fish in each category. With two growth peri-
ods (from juvenile to small adult and from small to large adult), mathematically, the
proposed model has several time delay terms and the equations are coupled with each
other which is different from the other models those in the literature e.g., [23,58,67].
The complexity of the model does not allow us to reduce the equations with respect
to the matured fish to a single equation, which enhances the difficulties of theoretical
analysis although we can derive the adult reproduction number R 4 which is a thresh-
old parameter that determines the persistence and extinction of the population. We
further study the local and global stability of £y = (0,0,0) when R4 < 1 and prove
population persistence when R 4 > 1 indicating the survivability of some or all species
in an ecosystem. In addition, we provide a condition for the existence of a unique
positive equilibrium, implying that the three groups of fish (juvenile, small and large
matured fish) can exist in certain ideal environment, from biological point of view.
Numerically, we investigate the influence of harvesting functions, discuss the optimal
harvesting rates by addressing a relative maximum region and explore the effect of
periodic coefficients on the dynamical system.

This chapter is organized as follows: in Section 2.2, we present the model system by
deriving a delay differential equation for each population category. In Section 2.3, we
discuss the well-posedness property by verifying the non-negativity and boundedness
of the solutions with reasonable initial data. The adult reproduction number R 4 is
calculated in Section 2.4. In Section 2.5, we study the local and global stability of the
trivial equilibrium point when R4 < 1; prove the population persistence and explore
the existence of a unique positive equilibrium point when R4 > 1; and address the
relation between R4 and either the harvesting functions or the time delay periods
7 and w. In Section 2.6, we investigate the influence of harvesting functions on the
positive equilibrium point, discuss the optimal harvesting rates and explore the effect
of periodic coefficients on the dynamical system. The summary and discussion are

given in Section 2.7.

2.2 Model derivation

In fish life history, juveniles mature to small adults first and then keep growing to a
large size [79, 115]. We consider a fish stock in which individuals are classified into

three size classes: immature I(t), small adults S(t), and large adults L(t). Since
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it is possible for fishers to target only the matured fish, regardless of size, during
spawning on stock spawning grounds [107, 145], we assume harvesting for both the
small and large mature classes and there is no competition between different groups
for two reasons: (i) the growth of immature and mature fish depends on different
levels of food resources, for instance, in bluegill and Pacific salmon species, adults
do not compete directly with juveniles [1,53]; (ii) the harvesting of small and large
matured fish can reduce their population sizes, and hence, more resources/spaces
become available to the reaming matured fish. Let 7 be the maturation time and w
be the time to reach large size after maturation, that is, juveniles become small size
adults at age 7 and reach a large size at age 7 + w.

Denote u(t,a) as the density of fish of age a at time ¢. The total number of

juveniles, small and large matured fish is, at time ¢, respectively,

I(t) = / ult,a)da, S(t) = 7wu(t,a)da and L(t) = +/Oou(t,a)da.

First, we derive a functional differential equation to address variation of the number of
juveniles I(t) at time ¢. Using the McKendrick-von-Foerster age-structured equation,

we have

ou(t,a) N ou(t,a)
ot da

to describe the loss of juveniles either through natural death with per-capita mortality

= —pu(t,a) — al(t)u(t,a) for a < T, (2.1)

rate py; or through crowding and competition between juveniles which depends on
the total population size of the immature individuals, as presented by «l(t). When
spawner numbers are high, juveniles mortality rate increases sharply due to severe
competition among juveniles for space and food, e.g., coho salmon species [196].

Then the total number of juveniles satisfies

T

d;_(tt) _ / wda _ / (—mu(t,a) — al(t)ult, a) — W) da

= _Mll(t) — O./IQ(t) + U<t7 0) - u(t7 7—)’

where u(t,0) is the egg laying rate of matured fish which is taken to be a function

b(S, L) of the total number of mature population. Thus

u(t,0) = b(S(t), L(t)). (2.2)
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A simple choice of b(S(t), L(t)) is by (S(t)) + ba (L(t)) where by (S(t)) (b2(L(t))) are
egg laying rates of small (large) matured fish. For example, by (S(t)) = r.S(t) and
b (L(t)) = roL(t) where 7y, ro are the fecundity rates of maturing small, large fish
respectively [107, 115].

Next, to calculate u(t, 7), define V¢(a) = u(€ + a,a). Then,

—(ur + al(§ +a)) V¥(a).

dV&(a)  [Ou(t,a) = Ou(t,a)
da _[ ot * Ja }

t=¢+a

Thus, V&(a) = V&(0 exp{ [ (ur+al(€+n))d } When a = 7, £ =t — 7 and
0
t > 7, we obtain

T

u(t,7) = u(t — 7,0) exp —/(u[+al(t—7+n))dn

By using (2.2), for ¢t > 7, we have

T

u(t, 7)) =b(S({t—7),L(t — 7)) exp —/(,u[—I—aI(t—T—FU))dn . (2.3)

The right-hand side in (2.3) is the rate at which juveniles mature into small adults.

Therefore, we have the following equation with respect to the juveniles population,

— = b(S(t), L(t)) — prI(t) — al?(t)

b (S(t — ), L(t — 7)) exp { — / (i +al()dy . (24)

t—1

where the integral f al(n)dn represents the accumulated death of juveniles due to

t—7

competition between ¢t — 7 and ¢t. Thus, the exponential term in (2.4) corrects the

birth rate at the earlier time ¢t — 7. Equation (2.4) can also be written in the integral
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equation form

t t

szfw&&mem —/wﬁﬂmmm . (2.5)

t—1 £
Similarly for the groups of small and large matured fish, we have

Ju(t,a) n Ju(t,a)

o oo = —hsu(t.a) = Hi(S(t)u(t.a) for 7 <a<7+w,  (26)
a“gtv a) + au((?tc; a) _ —pru(t,a) — Hy(L(t))u(t, a) for 7 +w < a, (2.7)

respectively, where corresponding to the small/large matured fish, pg/u;, is natural
death rate with the per-capita mortality and the function H;(-) (i = 1,2) represents
the harvesting which depends on the total population size of S(t)/L(t). For instance,
H;(z) = kjx + d; with constants k; and d; (i = 1,2) [208].

Assuming that no individual dies at the very moment when it becomes adult or

reaches large size, using a similar procedure, we can obtain

t

b L A MS@—ﬂJﬁ—wnwp-—/Uu+aHmMn

—Hy(S(1))S(t) — psS(t) — ult, 7+ w),

and, for t > 7 + w,

T+w

u(t, 7 +w) =u(t —w, T) exp —/(u5+H1(S(t—w—T+n)))d77

.
By using (2.3), for t > 7 + w, we have

t—w

u(t, 7+ w) = b(S(t — (7 +w)), L{t — (v +w))) exp { — / (1 + oI (n)) di
t—(T4w)
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t

Biologically, the integral [ H; (S(n))dn represents accumulated removal of small
t—w

mature individual due to harvesting between ¢t —w and t. The rate of reaching a large

size mature individual at time ¢, u(¢, 7 +w) depends on a previous generation over the
earlier time interval [t —(7+w), t] including four factors: b(S(t—(7+w)),L(t—(T7+w))),

the egg laying rate at time ¢t — (7+w); e #7 e #s¥ the probability of surviving natural
t—w
death; exp< — [ al(n)dn p, the survival probability due to competition among
t—(74w)

¢

juveniles in [t—(7+w), t—w]; and exp { | —H (S(n))dn}, the probability of surviving
t—w

due to harvesting of small matured fish in [t — w, t].

Thus, the equation with respect to the small matured fish becomes

WO y(s(e- il -r)ew {— / (s + aT() dn} ~ usS(E) — Hy(S()S(0)
 B(S(t— (), L~ (@) exp | — / (ui+al()dn s (29)
t—(r4w)
exp {— /t (s + Hi (S(n))) dn} :
Alternatively (2.9) can be rewritten as
S@) = t/T> b(S(&), L(§)) exp { g/JrT(M + Oéf(ﬁ)dﬂ)} exp { ] (us + Hl(S(ﬂ))dﬁ)}dﬁ- (2.10)
Parallelly,
O n) - mEm)Le) 211)
b (S(— (7 +w)), Lt — (7 + ) exp { — / (1 + () d
t—(rtw)

t

exp —/(us+H1 (S(m))) dn

t—w

Up to now, the age-structured system of equations (2.1),(2.6) and (2.7) can be reduced
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to the following system:

t—(74w)

MO b (s),L0) — (1) — ()
t
b (S(t - 1), L(t — 7)) exp {— [ - atny dn} , (2.12)
iU b(S(t—ﬂ,L(t—T))exp{— / (u1+aI(n))dn}—usS(t)—Hl(S(t))S(t)
t—T
t—w
b8 () Lt — (@) epd [ utally }
t—(T4w)
t
exp{ / (ns + Hy (S }
O prn) - mre)Le)
(S (T @) Lt T+ epd [ (u+alm)d }

t
exp { / (ns + Hy (S
t—w

An architecture of the model (2.12) is given in Fig. 2.2.

2.3 Well-posedness property

3
Denote C' := C([—7 — w,0),R?). For ¢ = (¢1, 9, ¢3) € C, define ||¢]] = > ||l

i=1
where

illoo = i(0)] -
I6illoe = , o 16:(0)]

Then C'is a Banach space and C* = {¢ € C': ¢;(0) > 0,Vi € {1,2,3},0 € [-T—w, 0]}
is a normal cone of C' with nonempty interior in C'. For any given continuous function
u = (up,ug,uz) : [-7 —w,() — R® with ¢ > 0, we define u; € C for each t > 0 by
u(0) = (ur(t 4+ 0),ua(t + 0),us(t + 0)) for all 6 € [—7 — w, 0].

There are two versions of our model, system (2.12) and the one consisting of (2.5),

(2.10) and (2.11). The two systems are equivalent for the class of initial data of the
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Egg laying
Egg laying
I(t) 1S 0
After 7 time After w time
Natural death Natural death Natural death
& & &
Death due to crowding Harvesting Harvesting

and competition

Figure 2.2 Model diagram.

form

(pr + aga(n)) dn » do

—

X={0€Ct 00 = [Hoa0)n®)exp ] -

—T

T

(o1 + i (n)dn)

—T

and ¢,(0) = / b(p2(0), p3(0)) exp ¢ —

—(T4w)

%\j} 5

0

exp —/(M5+H1(¢2(77))d77) do

0+1

From the biological point of view, we assume all the functions in the model system

(2.12) are continuous and differentiable over Rt and satisfy the following hypotheses

(A;) The harvesting function H;(z) > 0 for x > 0, H;(0) > 0 (i = 1,2) and satisfies
one of the following;:

(a) nondecreasing for all x > 0; or (b) strictly increasing for all x > 0.

(A2) The egg laying rate function b(S, L) > 0 and % >0, g—z >0 for all (S,L) €
Ry xR,y U{(0,0)}, 6(0,0) =0, b(S,0) >0 for S >0, b(0,L) > 0 for L > 0 and

there exists an increasing function B such that b(S(t), L(t)) < B (S(t) + L(t))
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for (S, L) € Ry x R4, B(0) = 0 and satisfies one of the following:

(a) B is strictly sub-homogeneous (strictly sublinear), that is, for any p € (0, 1),
x>0, B(px) > pB(z); or

(b) B is sub-homogeneous (sublinear), that is, for any p € (0,1), x > 0,
B(pz) = pB(x).

We can view (A,) as a mathematical interpretation of the biological factor that the
growth of the population is slower than exponential, so we restrict the growth rate
function with the sub-homogeneous condition.

The following theorem demonstrates that the solutions of (2.12) are nonnegative
and bounded.

Theorem 2.3.1. Suppose hypotheses (A1) and (As)-(a), or (A1)-(b) and (As)-(b)
are satisfied, and ¢ € X with ¢2(0) > 0. Then system (2.12) has a unique solu-
tion (I(t), S(t), L(t)) that satisfies 1(t) > 0, S(t) > 0 and L(t) > 0 for all t > 0.

Furthermore, the solution is ultimately bounded in C.

Proof. For any ¢ € X, we define F(¢) = (F1(¢), F5(9), Fg(gb))T, where

Fi(¢) = b(42(0),¢3(0)) — pre1(0) — g1 (0)?
0
b (Ga(—7), ds(—7)) exp {— [ +a¢1(n)dn},

0

R6) = b<¢2<—r>,¢3<—r>>exp{— /

—T

hrt a¢1<n>dn} ~ uséa(0) — Hi (6(0)) 62(0)

—Ww

—b<¢2<—f—w>,¢3<—r—w))exp{— /

—T—w

Br + ad (n)dn}

exp {— /i s + Hi (¢2(n)) dn} ;

By(0) = b(@(—r—w>,¢3<—r—w>>exp{_ /

—T—w

K1+ ad (n)dn}

0
exp {—/ ps + Hi (d2(n)) dn} — pr¢3(0) — Ha (¢3(0)) ¢#3(0).

—w

Note that X is closed in C' and for any ¢ € X, F(¢) is continuous and Lipschitz in
¢ in each compact set in R x X. By [71, Theorem 2.2.3], it follows that (2.12) has a
unique solution u(t, ¢) through (0, ¢) on its maximal interval [0, o) of existence.

Since F3(¢) > 0 when ¢ € X with ¢3(0) = 0, thus L(¢) is nonnegative for all
t €[0,0), ie., L(t) > 0, see [169, Theorem 5.2.1]. To prove the positivity of S(t),
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from ¢,(0) > 0 and the continuity of solutions, suppose there exists ¢ € [0,0) such

that S(¢) = 0 and S(t) > 0 for t € (0,%). Thus, by (As3), we have b(S(t), L(t)) > 0
for t € (0,%). Then, it follows from the integral form (2.10) that S(#) > 0, which is a
contradiction. Therefore, S(¢) > 0 for all ¢ € [0,0). I(t) > 0 is straightforward from
(2.5) and the positivity of S(t). Therefore, the solution of the system (2.12) satisfies
I(t) >0, S(t) >0 and L(t) > 0 for t € [0,0).

Now we prove the boundedness. Let T > 0 be sufficiently large. First, assume
that L(t — 7 —w) =0 for t > T+ 7 +w. Then from the second equation in (2.12) and
(Ay), when t > T + 7 + w, we have

ds(t)
dt

IN

b(S(t~7).0)exp {— [ al(n))dn} ~ nsS(t) ~ Hy(S@)S()

t

B(S(t - 7)) exp {— [+ at) dn} — usS() — Hi(SM)S().  (213)

t—T1

IN

The boundedness of S(t) in (2.13) and I(t) can be proved by arguments similar to
those in the proof of [58, Theorem 2.1].

Assume L(t — 7 —w) # 0 for t > T+ 7+ w. If L(¢) is unbounded, then for a real
number K > 0, L(t) > K for t > Tj and some Ty > T + 7 + w. It then follows from
S(t) > 0 and the assumption (A;) that 0 < H;(-) < H;(S(t) + L(t)) for i = 1,2 and
t > Ty, hence; there exist ¥; > 0 and v5 > 0 such that ¢; < _ M) <1 and

Hi(S(t)+L(t)) —

¥y < % < 1. Let ¥ = min{d,v2} and H(S(t) + L(t)) = min{H;(S(t) +

L(t)), Hy(S(t) + L(t))}, it then follows from the second and third equations in (2.12)
that

CSWM)+ L) < bS(E—7),L(t 7)) — min s, s} (S + L)
—Hy(S)S — Hy(L)L,

B(S(t —7)+ Lt — 7)) — min {jus, pe} (S(t) + L(1))

—IH(S(t) + L(O)(S(t) + L(1),

IN

for t > Ty. Consider the equation

du(t)
dt

= Blu(t — 7)) — min {pg, j } u(t) — OH (u(t))u(t). (2.14)
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Let CF = C([-7,0),[0,00)). Define g : C¥ — R and §: Ry — R by

9(¢) = B(é(—7)) — min{us, ur}¢(0) — IH(4(0))9(0),
g(u) = B(u) — min {ug, pr}u — 9H (u)u.

Clearly, g > 0 when ¢(0) = 0.

Claim 1. When either (i) (A4;) and (Ay)-(a); or (ii) (A;)-(b) and (Az)-(b) is
satisfied, both ¢ and g are strictly sub-homogeneous.

We prove Claim 1 for §. A similar proof works for g. Assume (i) ((ii)) is satisfied
then,

g(pu) = B(pu) — pmin{us, ps}tu — pdH (pu)u
> (=) pB(u) — pmin{us, ps}tu — pdH (pu)u
> (>) pB(u) — pmin{pus, pstu —pdH(u)u = pg(u).

Thus, ¢ is strictly sub-homogeneous. By [219, Theorem 3.2], (2.14) admits a globally
asymptotically stable equilibrium which attracts all positive solutions. Therefore, any
solution of equation (2.14) is bounded, that is, there exist T > Ty and M > 0 such
that u(t) < M for t > T. By the comparison principle, S(t) + L(t) must be bounded

which is a contradiction. Therefore,

limsup S(t) < M and limsup L(t) < M. (2.15)
t——+00 t——+o00
From (2.5) and using the reverse Fatou lemma (see e.g., [04]), we have

t

limsup I(t) < 1imsup/b(S(§),L(§))d§
t—+o00 t——+oo 2

T

< /limsup (b(S(t—¢),L(t—¢)))de <1b(M,M) := K. (2.16)

t—+o00

By (2.15) and (2.16), we have 0 = 400 (see e.g., [71, Theorem 2.3.1]). Thus, all the

solutions exist globally, and are ultimately bounded. O
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2.4 The adult reproduction number

From the system (2.12) it is easy to see that the equilibrium E, = (0,0,0) always
exists for all values of the parameters. When one of the classes is zero, the others
become zeros. That is, Ejy is the only boundary equilibrium point. The linearization
of (2.12) at Ejy is

ds(t

% = by MITS(t—7) + e MTL(t — 7) — (us + Hy(0))S(t) (2.17)
,bse_ﬂl-re—(#s+H1(0))ws(t —r—w)— ble_MTe_(“S"'Hl(O))WL(t Cr—w),

M = b e*#I're*(/JerHl(O))ws(t —r— w) + 1)167”1787(“5+H1(0))WL(7§ L w)

dt s
—(pr + H2(0))L(2),
where by = —angS’L) and b = —8b£9SL’L) . To calculate the average number of
(070) (070)

adults produced by one adult over its life span, we consider the decoupled equations

for mature classes, S(t) and L(t) in (2.17), which can be rewritten as

d
%A(t) =MA({t—7)+ MA(t — 7 —w) — M3A(t), (2.18)
with
¢ bee MIT  bje=HIT H
Alt) - S(t) o= | e e My = s + Hi(0) 0
L(t) 0 0 0 wur, + Ha(0)
_bsefuﬂe*(,usﬂql(o))w _ble*MTe*(uerHl(U))w
and My =
bse HTe(hstHL(O)w ) o=prTe—(ns+H1(0))w

In (2.18), A(t) is the total number in the adult classes, and My A(t—7)+ My A(t—7—
w) is the newly mature individuals at time ¢ which depends on the adult individuals
over the time interval [t—7—w, t|. Further, the internal evolution of mature individuals

through natural death is governed by the linear ordinary differential system:

d
EA(t) = —M3A(t). (2.19)
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Let oy = (A, A2)" be the number of classes S(t) and L(t) at t = 0, then from (2.19)
the distribution of the remaining population at time ¢ > 0 is
JZ{(t) = eiMstJZ{().

The total number of newly matured individuals is

o0 o0 o0 o0
d = /Mld(th)dt+ / Mgd(thfw)dt:/Mle_”13(t_7)d0dt+ / MaeMa(t=m=w) o7t

T4w T T+w

Due to the nonsingularity of the matrix M3, we have
o = (M, + My) M3 .

Adopting the concept of the basic reproduction number from literature (see e.g.,
[51,105,207,217]), the matrix (M; + M), which tracks new mature individuals, is

positive. Then the next generation operator is

bse*H[T(l_e*(HS+H1(O))W) ble*”IT(l—e*(“S+Hl(0))w)

_ -1 _ us+H1(0) pr+H>(0)
MO - (Ml + M2>M3 - bse—pITe—(uS+H1(0))w blefu]Tef(usﬁ»Hl(O))w 9
ps+H1(0) pr+H2(0)

and hence, the spectral radius of the matrix M, is called the adult reproduction
number for system (2.12) denoted by R 4, that is,

9b(s,L) (e=HIT — e=niT e~ (ns+H1(0)w) 9b(S,L) e—H1Te—(ns+H1(0))w
a5
(0,0) + (0,0)

Rs =
A NS"’Hl(O) /1'L+H2(0)

(2.20)

For simplicity, in the rest of the chapter, we assume that
ps = pir, = pa, Hi(0) = Hy(0) := Ha
and the egg laying rate function b(S, L) has the form
b(S(t), L(t)) = by (S(t)) + b2 (L(2))

with b1(0) = b2(0) = 0, where b1(S(t)) (b2(L(t))) is egg laying rate of small (large)

matured fish. Thus, the adult reproduction number becomes

W (0) (e — emrimem mat Ay 4l (0)em T e (hatHa)

R
4 pa + Hy

(2.21)
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Biologically, b (0) (65(0)) is the number of eggs produced by one small (large) ma-

tured fish per unit time, is the life expectancy of matured fish, e~#17—(ratHa)w

1

pa+Ha

is the survival rate of an individual from immature to large mature period and

e~M7(1 — e~ (matHa)w) ig the probability of matured fish to be in the small size class.

Yy (0) (e HIT—e~HITe~(hatH A)w)
pa+Ha

Therefore, is the average number of adults produced by one
blz(())e—ujfe—(uA+HA)w
pa+HAa

number of adults produced by one large matured fish over its expected lifetime.

small matured fish over its expected lifetime and is the average

As we know, usually the adult reproduction number R 4 is a threshold parame-
ter that determines the persistence and extinction of a population. Obviously, R
depends on maturation time (7), the growth time to certain size of fish (w) and the
initial harvesting value (H4). The detailed relations will be discussed in the following

section.

2.5 Population persistence and extinction

In the real world, mature small fish produce fewer eggs than large fish (see e.g.,

(80,94, 157]). Thus, it is natural to assume that
(C1) b1(0) < b5(0).

About the stability of the trivial steady state Ej, we have the following result:

Theorem 2.5.1. When R4 < 1 and (Cy) holds, Ey in (2.12) is locally asymptotically
stable. When R4 > 1, Ey is unstable.

Proof. At the point (0,0,0) in (2.12), the corresponding characteristic equation is
AN T,w) =N+ p) AN+ pa+ Ha) QN 7,w) =0, (2.22)
where

Q(A7 T, Ld) = A + Ha + HA - bll (O)eiuﬂ—eikf
—(b5(0) — b’l(O))e_“”e_(“f‘JrHA)“’e_M”w). (2.23)

Since A = —py and A = —(ua+ Ha) are negative roots in (2.22), it suffices to consider
the roots in Q(\, 7,w) = 0. First, if R4 < 1, then Q(0,7,w) > 0, implying A = 0
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is not a root of the characteristic equation. Now, by contradiction, assume there is
aroot A =z + iy in Q(\, 7,w) = 0 with > 0. The real part of Q(\,7,w) = 0 for
A=x 41y is

r = —pua— Ha+b(0)e "7 cos(Ty)e™™
+ ((0) = B(0)) eI cos (7 e+,

Since R4 < 1, we have
B (0)e M7 + (b,(0) — by (0)) e M Te BatHAY <4 H
Thus,

z < —=bi(0)e ™7 (1 — cos(ty)e ™)
— (0) — B (0)) €H7e O (1 cos((r+ wy)e ).

When (C;) holds, the right-hand side in the above inequality is always negative
because x > 0 and 1 — cos(y)e™* > 0 for any y € R, which leads to a contradiction.
Hence all the eigenvalues in (2.22) have negative real parts, implying Fjy is locally
asymptotically stable.

When R4 > 1, Q(0,7,w) = (ta+Ha)(1—Ra) < 0. Since Q(\, 7,w) is continuous
with respect to A and /\h}olo Q(\, 7,w) = 400, there exists A > 0 such that Q(\, 7,w) =
0. Therefore (0,0,0) is unstable in system (2.12) when R4 > 1. O

Remark 2.5.1. The system (2.17) is not a cooperative system, here we need the

condition (CY) to ensure the local stability of Fo when R4 < 1.

Remark 2.5.2. Theorem 2.5.1 can be obtained from [217, Theorem 2.1 and Corollary
2.1].

Given additional restriction
(Cy) bi(S) < b1(0)S and by(L) < b5(0)L,

we can discuss the global stability of Ejy.

Theorem 2.5.2. When R4 < 1 and (C1)-(Cy) hold, Ey is globally asymptotically
stable.
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Proof. Let tyg > 0 be sufficiently large. Since (Cy) holds, from (2.10) and the third
equation in (2.12), for t >ty + 7 + w, we have

t—7
() < T (b1 (0)S(€) + b (0)L(&)) e~ Wat == gg,
t—(74w)
dL(t) (At HA)w (3 /
0 < e MTem WAt A (5 1(0)S(t — 7 — w) + bo'(0)L(t — 7 —w)) — (ma + Ha)L(2).
Adopting the idea of comparison theory from [67, 169, 197], we can claim that, any

solution (S(t), L(t)) is bounded above by the solution of the linear system

Ui(t) = / e HIT ((bll(o))U1(§) I (bzl(o))UQ(g))e*(MA‘FHA(O))(thfﬁ)dg’
t—(T+w)
%t(t) — e_#ITe_(MA+HA(O))w ((bl/(O))Ul(t—T—w) + (bZI(O))UQ(t—T—UJ)) (2.24)

—(pa + H4(0))Ua(t)

such that (S(0), L(6)) < (U1(0),Ux(0)) for all 6 € [ty,to + 7+ w]. Notice that system

(2.24) has a unique solution when

to+w
U(to+7+w) = / e (b (0)UL(€) + (by! (0)) Uy (€)) e~ ratHaO)=7=8) ge

to

To prove the claim, let € > 0 and consider the linear system

t—T1
U(t) = e ((by(0) + ) U1c(€) + (b2 (0) + €)Une (§)) e~ 1t HAONE=T=8) e
t—(T+w)
LUZ“) e 1T e WatHAOD ((b,"(0) + &) Ure(t — 7 — w) + (b2'(0) + €)Une(t — T — w)]2.25)

—(pa + Ha(0))Uze(2)

with (U1c(0), U< (9)) := (U1(0) +¢,Us(0) + ¢) for all § € [to, ty + 7+ w]. It is enough
to prove that for any sufficiently small positive e, S(t) < U1.(t) and L(t) < Usc(t) for
all t > to+ 7+ w with (S(0), L(0)) < (Ui(0),Us(0)) for all 0 € [to,to + 7+ w]. If
this is false for some e, then there exist a T} € (to + 7 +w, 00) such that S(t) < Uy.(¢)
and L(t) < Us.(t) for all t € [ty + 7+ w, 1), and S(T1) = Ur(T1) or L(Ty) = Us.(T1).
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Assume S(7T7) = Uy(T}) holds. From the first equation in (2.25), we have

Ty —T
Uls(Tl) = / e HIT ((61/(0) + E)Ula(§> + (b2/(0) + E)Uge(f)) e*(MA*FHA(O))(thfg)dé-

T —(14w)
Ty —7

> / e ((b'(0) 4+ €)S(€) + (b2(0) + £)S(§)) e~ WAt HAONE=T=0) ge > (),
T1—(74w)

which is a contradiction. When L(T}) = Us(T}), then % 2 a2 1y, must hold.
But from the second equation in (2.25), we have

dUQa
dt

= e MTem (matHaAO)w ((1,7(0) + ) Ui (Th — 7 — w) + (b2 (0) + &) Use (T — 7 — w))
=T

—(pa + Ha(0))Usz (T1)
> e tTem At HaO)w ((5,/(0) 4+ €)S(T1 — 7 — w) + (b2 (0) + &) L(Ty — 7 — w))

i HAO)LT) 2 |

These contradictions imply that no such 77 can exist for any sufficiently small € > 0.

Letting ¢ — 0, we have S(t) < Uy(t) and L(t) < Us(t) for all t > ¢y + 7 + w with
(S(0), L(0)) < (U1(0),Ux(0)) for all 6 € [tg,to + T + w].

Solutions of system (2.24) are in the form (Uy(t), Us(t)) = (c1, c2)e™ (see e.g. [58])
where \ satisfies (A 4+ pa + Ha)Q(\, 7,w) = 0 where @ is given in (2.23). We know
from the proof of Theorem 2.5.1 that all roots have negative real parts if R4 < 1 and
(Cy) holds. Hence, (Uy(t),Us(t)) — (0,0) as ¢ — oo. Thus, (S(t), L(t)) — (0,0) as
t — o0.

From (2.5) and using the reverse Fatou lemma (see, e.g., [(1]), we have

T

limsup I(t) < /limsup (b1(S(t —&)) + ba(L(t — £)))dE = 0.

t—+o00 t—-+o0

Thus, tlim I(t) = 0. Hence, Ejy is globally attractive, which, together with the local
—00

stability of Fjy established in Theorem 2.5.1, confirms the global asymptotic stability

of Ey when R4 < 1 and both (C;) and (Cg) hold. This completes the proof. O

Uniform persistence is an important concept in population dynamics which de-
scribes the survival of some or all species in an ecosystem. Now, we study the system

persistence and discuss the existence of a unique positive equilibrium point.
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Theorem 2.5.3. If R4 > 1, (2.12) is uniformly persistent, in the sense that, there
is a positive number n > 0 such that every solution in system (2.12) with ¢ € X,
¢2(0) > 0 or ¢3(0) > 0 for some 6 € [—7 —w, 0], satisfies

lim inf(1(), S(¢), L(¢)) = (1,7, n)-

t—o00

Proof. Define
X' ={pec X :¢a(0) >0 or ¢3(6) >0 for some 6 € [—7 — w, 0]}

and
Xo=X\Xo={p € X:¢0) = p3(0) =0 for all 0 € [—7 — w, 0]}

In the following, we verify the conditions in [75, Theorem 4.2]. Let ®(t), t > 0, be
the solution semiflow of model system (2.12). Notice that X" is an open and dense
set in X with X°U Xy = X and X°N X, = 0. From (2.10) and (2.11), we have
P(1)X° C X% and ®(t) Xy C X,. (i) has been confirmed in Theorem 2.3.1. Noticing
that the bounds in (2.15) and (2.16) are all independent of initial functions, hence,
condition (ii) is verified [207]. (iii) It follows from [104, Theorem 2.2.8] that ®(t) is
asymptotically smooth. For condition (iv) it is clear that A = { £y}, and it is isolated.
Thus, the covering M is {Ep}, which is acyclic because there is no orbit connecting
Ey to itself in X.
Finally, to verify (v), we prove the following claim.

Claim 2. W#(Ep) N X% = 0.
By contradiction, suppose that there exists a solution in X° such that

tlgglo I(t) =0, tlLIglo S(t) =0, tlgglo L(t) =0.
Thus, for sufficiently small § > 0, there exists ¢; > 0 such that 0 < I(t) < 0,
0<S(t)<dand 0 < L(t) < fort >t +7+w.
For i = 1,2, fix a small ¢; > 0. Since glﬂlg%@ = 1;/(0), in a neighborhood of Ej, we
have
bi(S(?))

S(t)

ba(L(t))
L(t)

— b’l(O)‘ < ¢ and

Set € = max{ey, € }.
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Since R4 > 1, then under hypothesis (A;), we have

(b/l (0) — 5)6—(#1+6a)7 (1 _ e—(#A+HA(5))w) + (b/z(()) _ 6)6_(“I+5O‘)Te_(“A+HA(5))“’
pa + Ha(9)

Rase = >1

where H(0) = max{H(5), H2(0)}.
For t > t; + 7 + w, we obtain, from (2.10) and the third equation in (2.12), that

t—1

S(t) > / e*(P«Ith;a)T ((bll(o) _ E)S(ﬁ) + (bgl(O) _ 6)L(s))e*(HA‘FHA(ts))(thfg)dé’
t—(7+w)
%it) > e‘(#1+5a)76—(HA+HA(5))w ((bll(o) *E)S(thfw) + (bg/(O) *G)L(t*T*M)XQ.in)

—(pa + Ha(0))L(t).

Consider the following linear system

t—7
Vit) = e HIHOT ((b1/(0) — )V (€) + (b2'(0) — €)Va(§)) e HaTHALNI=T=8) g,
t—(T4w)
d\;zt(t) e~ (BrH8e)T = (pat+HA(8)w (017 (0) —e)Vi(t — 7 —w) + (b2'(0) — )Va(t — T —w)) (2.27)

—(pa + Ha(8)Va(t).
Since Rasc > 1, the characteristic equation of system (2.27)

A+ pa + Ha(9) (A+ pa + Ha(8) — (B — €)(0)e~HrHo0)mem
—(by(0) — by (0))e~ rrHoT e (ratHa@)w=A(r+w)) —

has a positive real eigenvalue, which is a contradiction to tlirgo (S(t), L(t)) = (0,0).
Thus, we have W*(Ey) N X° = (), confirming condition (vii).

Now, by [75, Theorem 4.2], there exists a n; > 0 such that li{gglf d(®(t)p, Xo) > m
for any ¢ € X° implying that the S and L components of the solution with initial
function ¢ € X satisfy

liminf(S(t), L(t)) > (1, m)-

t—o00

From (2.5) and (2.16), we have

t

liminf I(¢) > hnninf/b(S(g),L(5))e—(uszuK)(t_g)al5

t—-+o00 t——+o0
t—7
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T

= liminf / b(S(t— €), Lt — €))eWrtaK)ge
0

. f _ 5(771 771) —

> (pr+aK)€ g ’ — e tak)Ty .

_1§gn¢gof/b(n1,n1)e dg Lok (1—e ) =1
0

Choose n = min{n;,n2}. This completes the proof. ]

Now, we study the relation of R 4 with respect to 7, w and Hy. It is clear that the

longer maturation period (7) decreases R 4 and can drive the population to extinction

because O(Z)%_TA = —purRa < 0. Furthermore, if we denote
1 b b Y —(pa+Ha)w
i A+ Ha

which is valid with (C;), then R4 > 1 (the population persists) if and only if 7 < k(w).
The delay related domain of population persistence is {(w,7) € Ry X Ry : 7 < k(w)}.
When w is fixed, R4 > 1 when 7 < 7 = k(w). By fixing the value of 7, R4 > 1

L (e—“ﬂ(bg(mba(m)

when w < w* =

ma+Ha pa+H4—b) (0)e HIT

in Fig. 2.3a. With respect to w, when (C;) holds, 284 = —(b,/(0) — b,'(0))e~#17

e~ atHa(0)w < (0 and Jgngo Ra = m—;,:zé; := R*. Thus, longer time period (w)
decreases R4 when by'(0) > b,'(0) and R4 = R* completely loses its dependence on
w when by'(0) = b,'(0). Actually, when by'(0) = b,’(0), both mature classes (small and

large) are treated as one group (mature class), R4 is related only to the maturation

) if w* is valid. k(w), 7" and w* are shown

time (7) and w becomes redundant. Consequently, the influence of w on the population
persistence is determined in two cases: (i) when R* > 1, the population persists
for all w > 0 (the blue line in Fig. 2.3b); (ii) when R* < 1, w* exists such that
Ra < 1 for w > w*, that is, large w leads to extinction (the red line in Fig. 2.3b).
Notice that Hy > 0. If H4 = 0, R4 is independent of the harvesting functions H;
(¢ = 1,2) in (2.21). Thus, under the assumption (A;) (i = 1,2), the choice of the
harvesting functions will not drive the population to extinction but can change the
structure of the fishery resource for sure. While when H, > 0, it is easy to check
(b (0) by’ (O))we=H1Te= (AT HAODS  m,

ORa _ _ .
that S = TRAL i < 0, hence, the population is at

risk of dying out when H 4 is large enough (see Fig. 2.4). Biologically, the maturation

age of fish (7) depends on environmental factors and genetic changes [112] while most

of fish can continue growing in length and weight after they have reached sexual
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maturity [206]. Normally, large w leads to a large size fish. Therefore, through the
theoretical analysis, in size-selective harvesting, when fish are left to grow until they
reach a preferred specific (large) size, we find that the value of w should be lower than
w* (if it exists) for population persistence. In real life, w* is out of our control because
it depends on natural parameters, such as the per-capita mortality rate pg/pg for
small/large matured fish. On the other hand, we can control the initial harvesting
value H 4, by keeping it small enough which has important consequences for population

persistence.

(a) The delay related don.lain of (b) Ra vs w (blue line R* > 1, red line
population persistence k(w) in (2.28). R* < 1).

Figure 2.3 The relationship between R4, 7 and w.

Figure 2.4 R4 vs Hy.

In view of the uniform persistence result, Theorem 2.5.3, we cannot guarantee the
existence of a positive steady state because of the uncertainty about the convexity
of X. However, with an additional condition, we have the following result for the

existence of a unique positive equilibrium point.



34
Theorem 2.5.4. Let R4 > 1 and
(Cs) prpaeta? > (et —1) (eM” —1).

Then, a positive equilibrium point E* = (I*,S*, L*) exists and is unique.
Proof. Let (I*,S*, L*) be a positive steady state. Define

_ x(pr + ox)
exp {(ur + ax)r} — 1

and g(y) = y(pa + Hi(y))

f(z) 1 —exp{—(ua+ Hi(y))w}

Then it follows from the first and second equations in (2.12) that
JI7) = exp{=(pr + al*)T} (b:(57) + b2(L7)) = g(S7). (2.29)

Now, in the (z,y) plane, we prove that functions f(x) and g(y) intersect at a unique

point. First, we rewrite g as

y
w k((pa + Hi(y))w)’

9(y) =

where k(y) = (1 —e¥)/y. Since k(y) is decreasing and H;(y) is nondecreasing or
increasing for y > 0, g(y) is increasing for y > 0 and ¢(0) = 0 while f(0) = 0 and
S, T =0

Claim 3. There exists a unique & > 0 such that f(z) < f(2) for all z € (0, 00).

To prove Claim 3, it is enough to show that % = 0 has exactly one positive root since
f is smooth enough, f(0) =0, f(x) > 0 and xEToo f(z) =0.

df (x) fi(x) = falx)

dz (exp{(ps + az)r} — 1)

where
fi(z) = (pr + a2 — prr)z — o?ra®) exp {(pr + az)t} and fo(z) = pr + 20

% = 0 if and only if fi(z) = fo(x). For fi(z), it is easy to see that f1(0) = pret”
and zgrlloo fi(x) = —oo. We can check that f; is concave down for x > 0 and there is
a unique intersection point, &, between f; and fs, since f5 is increasing for all x > 0
and f2(0) = pr < f1(0) (see Fig. 2.5a).

Notice that f(0) =0, f(0) = 42— > 0, f is positive for z > 0 and lim f(z) =0.

BT
et —1 z—+00
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fa(x)

> The intersection point ; )
at &

fi(z)

(a) fi(x) and fa(z). (b) f(x) and g(y).

Figure 2.5 Intersection points.

Thus, f has exactly one extreme value at & > 0 satisfying f(z) < f(&) for all z € (0,-
o0). This proves the claim.

From Claim 3, we know that f is increasing in (0, Z) and decreasing in (Z, +00).

df M dg o paeta®
— = and —— = —
dr|,_, et™—1 dyl,—q e —1
Thus, if
/’LI e:U‘AW — 1

e —1° paeraw’
there exists exactly one point (Z,9) satisfying f(Z) = g(y) because g(y) is increasing
for y > 0, f(0) = g(0) = 0 and yEToog@) = +00 (see Fig. 2.5b), which implies that
there exists a unique (I*,5*) satisfying f(I*) = g(S*). Now we prove the uniqueness
of L*. From the third equation in (2.12), we have

(b1 (™) + ba(L7)) exp {— (s + al ")} exp {—(ps + Hi(S"))w} = L*(pa + Ha(L")).
Hence, from (2.29), we obtain
9(5™) exp{—(ps + Hi(S"))w} = L*(pa + Ha(L")). (2.30)

Since the left-hand side of the latter equation is positive and the right-hand side

function h(z) = z(pua + Ha(2)) has the properties h(0) = 0, - > 0 and liin h(z) =
Z—r+00

+00, there exists exactly one positive solution in L* satisfying (2.30). This completes

the proof. m
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The condition (Cs) is equivalent to

(1 — e—HIT) (e—ul‘l' _ e—#IT—MAw)
e HIT > .
\/ Hr Hna

Biologically, 1 — e™7 is the probability of being in the immature period and % is

l—e HIT
mr
is the time period of the small mature class. The term

the average lifespan of juveniles. Thus, is the time period of the immature

class. Parallely, <= 27747
e M7 is the survival rate of individuals from the immature to small mature periods.
Therefore, the condition (Cs) means that the survival rate of juveniles becoming small
matured fish is higher than the geometric mean of the time period of juveniles and

that of the small mature class.

2.6 Numerical simulations

In this section, we explore the influence of various harvesting function forms on the
positive steady state, discuss the optimal harvesting rates and address the effect of

periodic coefficients on the dynamical system.

2.6.1 Effect of harvesting functions

First, we investigate the influence of different harvesting functions on the positive
equilibrium point. Without loss of generality, we choose the egg laying rate function
to be linear, b;(z) = max (i = 1,2). Hypothesis (A3)-(b) requires the harvesting

functions to be strictly increasing. Thus, we test harvesting function forms in linear

Hi(l)(x) = k;z + d and nonlinear Hz.(Q)(x) = 195 (i = 1,2) [208]. We adopt the
parameter values g, fa, 71, 72, 7, w from [107] and « from [76] which are given in

Table 2.1, and choose the other parameters as in Table 2.2.

Parameter LT o 1 T9
Value 0.4 year—! (0.2,0.3) year! 0.8 year! 1 year™!
Parameter T w a
Value 1 year 1.25 year 0.05

Table 2.1 Parameter values for the model (2.12).

When we fix ua = 0.25, the adult reproduction number R4 = 244 > 1 (Ra =
2.54 > 1) with Hi(l) (HZ@)) and (Cs) holds. Then the positive equilibrium point is
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Parameter & ko d a; ay ¢ Cy
Value 0.05 0.1 0.01 02 03 05 04

Table 2.2 Parameter values for the model (2.12).

(4.87,3.28, 3.91) and (2.53,1.74,1.76) with H"” and H®, respectively. Although
theoretically, we could not analyze the local stability of the positive equilibrium point
E* due to the complexity of the linearization system of (2.12) at E*, numerically,
the local stability of £* with the harvesting functions HZ-(l) and HZ-(Q) is shown in
Fig. 2.6. On the other hand, when there is no harvesting (the harvesting terms in
(2.12) are zeros), the positive equilibrium point is (18.62,9.56,25.94). We can notice
that harvesting affects the sustainability of the population and different harvesting
functions have different impacts on the population.

20 . . 5 10 e - ; 30¢

8

..

0 i i L 0 i R . 0 i P’
0 10 20 t 30 40 50 60 0 10 20 30 40 50 60 0 10 20 t 30 40

Figure 2.6 Time series with linear egg laying rate functions and linear (solid red
lines) /nonlinear (dashed blue lines) harvesting functions/no harvesting (dotted green
lines).

In addition, we can conjecture that when R4 > 1 and (Cj) holds, the unique
positive equilibrium is not only locally asymptotically stable but also globally asymp-
totically stable (Fig. 2.7).

Figure 2.7 Global stability of E* = (4.87,3.28,3.91) under different initial conditions.
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2.6.2 Optimal harvesting rates

In fisheries management, the maximum sustainable yield is used to describe the high-
est average catch that does not reduce a stock’s abundance over time. In general, the
harvesting function depends on the harvesting rate, and the optimal harvesting rate
maximizes the sustainable yield. Mathematically, the harvest is sustainable when the
population eventually reaches a positive steady state. So to find the optimal harvest-
ing rates it suffices to maximize the harvesting terms in the mathematical model at a
positive equilibrium point (see e.g., [77,145,174,208]). Let hy, ha be the harvesting rate
of small, large matured fish, respectively, and denote H;(S(t),hy) := Hy(S(t)) and
Hy(L(t), hy) := Hy(L(t)) to emphasize the dependence on h; (i = 1,2). It is clear from
(2.29) and (2.30) that the value of the positive equilibrium point E* = (I*,S*, L*)
depends on hy and hs as well. Then, the sustainable yield in (2.12) is

T(hy, he) = Hy(S*(hys ha), ha)S™ (hn, he) + Ha(L*(hy, ho), ho)L*(hy, ha). (2.31)

To calculate the optimal harvesting rates, we need to find values of h; and hs that

maximize I'(hq, he). From

ar OH, O0H;0S* 05*  OHy OL* oL*
— = *+ H1(S*,h L* + Hy(L* ho)— =
ohy <8h1 HPTE am)s S )+ g B (LT he) g =0,
or OHy O0H OL* oL* O0H; 0S* os*
— = L* + Ho(L*, h + Hiy(S*, h)— =
Dhs (am oL 8h2) L h) ot g any 0 TS )G =0,
2
and D(hy, hy) = %% - (%) , we know that the critical point (h}, h}) is a rela-
tive (local) maximum if 2- = 9L =0, D(h}, hd) > 0 and o°r < 0.
(focal) Ol O lng ) (A, h2) O | (g )
Theoretically, it is impossible to find an explicit form of S*(hy, he) and L*(hy, hy) be-
, — | altndn | msayan
cause of the exponential terms, e *~ and e v in (2.12), even when

we choose linear egg laying rate function b;(x) = r;x and linear harvesting function
H;(z) = hjxz + d. In the following, we use numerical methods to find an optimal
harvesting rates h] and h;. Fixing all the parameters and choosing Hi(l)(x) with a

released value h;, i = 1,2, given in Table 2.2, we see that (2.31) becomes

Ty (hy, hg) = hiS™ (hy, ho) + ho L (hy, ha) + d(S*(hy, ha) + L*(hy, hy)).
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We can see that, in Fig. 2.8a, the peak of the surface I'y(hq, hy) occurs in the region
Q1 = {(h1,h2)]0.02 < hy; < 0.3, 0.01 < hy < 0.03} which is shown in Fig. 2.8b (the
orange shaded region). Similarly, with Hi@)(a:), the sustainable yield is

h1S*%(hy, hs) hoL**(hy, hs)

[o(hy, he) = '
2(h1, h2) 1+0.55"(hy,ha) 1+ 0.4L" (hy, hy)

Consequently, the optimal harvesting rates lie in the region Qs = {(hy,h2)|hy >
0,hy > 0,—0.526h; +0.01 < hy < —0.677hy + 0.18} (the green shaded region in Fig.
2.9b). Although targeting large fish (size-selective harvesting) is preferable for many
of the world’s fisheries, our model predicts that a maximum sustainable yield happens
when there is harvesting for both large and small matured fish since in this maximum
region either hy; or hy is nonzero. Therefore, we can foresee that an appropriate
variety portion in harvesting the two classes of matured fish can produce a maximum
sustainable yield, in the sense that, targeting large fish in the whole stock while
catching small matured fish is also reasonable in the stock spawning grounds. This
can decrease the rate of catching large fish and lead to a balance in the size, structure,
and distribution of the population with a maximum sustainable yield. Due to the fact
that, catching large fish is allowed in the whole stock while catching small matured
fish only happens in the stock spawning grounds, in general h; < hy. Therefore, the
optimal harvesting rates should be chosen from the mesh shaded regions € or
in Fig. 2.8b and 2.9b, with respect to the harvesting functions H'"(z) or Hi(Q) (x),

respectively.

hy=hy

0.03

>y
o~
1
AN
N

0.01

0.02 0.3 hy

(a) T'1(hq, ho) (b) Relative maximum region

Figure 2.8 The sustainable yield with linear harvesting functions.
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ha=h,
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(a) T'a(hq, he) (b) Relative maximum region

Figure 2.9 The sustainable yield with nonlinear harvesting functions.

2.6.3 Periodic coefficients

Spawning is one of the most significant reproductive phases in fish life cycle which
has a direct impact on the population size, continuation and survival of the species.
The term “spawning season” is referred to the period of ovulation or spermiation in
a population. A majority of fishes all over the world are seasonal spawner. This
is related to environmental factors, such as, temperature and rainfall. For example,
in the Indian sub-continent, a vast majority of the freshwater fishes spawn at the
time of heavy rainfall [6]. Harvesting, as a method of exploitation and management
of fishery resources, often has a direct relationship to demographic variation and
population fluctuations. To discuss the effect of seasonal fluctuations on the dynamical
system, we assume that the egg laying rate function for small and large matured fish
is by = r1(t)S(t), by = ro(t)L(t) and the harvesting functions are Hy = kq(¢)S(¢t) + d,
Hy = ko(t)L(t) + d with annually periodic time-dependent fecundity and harvesting

rates, respectively, where

r1(t) = 0.2(cos(2mt) +4) year™',  ry(t) = 0.25(sin(27t) + 4) year™ !,
k1(t) = 0.025(cos(2nt) 4+ 2) year ™,  ky(t) = 0.05(sin(2nt) + 2) year .  (2.32)

Notice that the average value for ¢ > 0 is, respectively, r1 = 0.8, ro = 1, k; = 0.05
and ko = 0.1, which are the same as in Fig. 2.6, then the average adult reproduction

number R4 = 2.44 > 1. The upper row of Fig. 2.10 shows the existence of a positive
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periodic solution and the three classes become oscillatory around the values of E*
arising from constant parameters. When we increase 7 from 1 to 3.5 and w from
1.25 to 2.5, the average adult reproduction number R, decreases to 0.85 < 1. The
lower row of Fig. 2.10 shows the extinction of all classes, which is consistent with our
analysis when the average adult reproduction number R4 < 1 and all parameters are
constants. We would like to mention that the adult reproduction ratio of time-delayed
models with periodic coefficients can be obtained theoretically by using the method
developed by Zhao in [217], although the explicit value is only possible by numer-
ical approximation, using the algorithms developed by Bacaér in [19] for instance.
In general, the adult reproduction number of the time-averaged autonomous system
may coincide with the adult reproduction ratio of the periodic model or underesti-

mate/overestimate population persistence [195].

opI(t) | — S(t) ‘

4
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Figure 2.10 Time series for I(t), S(¢) and L(t) with periodic functions in (2.32).

2.7 Discussion

Mathematical models can provide an important approach to understanding the risk
of human exploitation on fish resources. In this chapter, we have proposed a growth
model of a fish stock with three stages: juveniles, small adults and large adults, and
introduced two harvesting strategies: maturity and size selectivity. The maturity

selectivity is based on targeting matured fish in the stock spawning grounds, while in
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the whole stock, size selectivity is used to catch large fish. From the dynamical point
of view, we have studied the qualitative features of the system, such as existence and
uniqueness of solutions, boundedness, equilibrium points, persistence, and stability,
with respect to the adult reproduction number R4. We also have addressed some
important ecological features, such as the adult reproduction number and the optimal
harvesting rates.

In many of the world’s fisheries, size-selective harvesting is preferable, where the
large individuals of fish are preferentially taken. However, this action has a negative
effect on the population demography, life history and genetics. This is consistent
with what we have explored in this chapter that overharvesting large matured fish
after a certain age can lead to population extinction under certain circumstances
(e.g. R* < 1). Through our theoretical model analysis, we have found the adult
basic reproduction number R4 decreases when either maturation period 7 or initial
harvesting value H, increases, and hence, large value of either 7 or H, leads to
population extinction. R4 completely loses its dependence on w when by'(0) = b,’(0)
and it decreases for long time period w when by'(0) > b;'(0). In addition, we have found
that when R* > 1, the population persists for any value of w since R4 > R* > 1.
In this case, targeting large matured fish does not affect the population persistence.
While when R* < 1, large w leads to population extinction. Hence, there exists w*
such that R4 > 1 when w < w*. Although theoretically, harvesting large matured
fish before age 7 + w* can help the population to persist, in the real life, we cannot
control w because it depends on natural parameters-the per-capita mortality rates for
small and large matured fish.

In the numerical study, we have explored the sustainable yield I'(hy, hy) and found
that its maximum occurs when there is harvesting for both large and small matured
fish. We have addressed a relative maximum region for I' which contains the optimal
harvesting rates hj, hj. In real-life application, we suggest using two harvesting
strategies, in the sense of targeting large fish in the whole stock while allowing small
matured fish to be caught in the stock spawning grounds. Also, we should choose the
harvesting rate of large fish to be bigger than the harvesting rate of small matured
fish due to the fishing region size. In this scenario, we can guarantee a balance in the
size, structure, and distribution of the population with a maximum sustainable yield.

In [107,145], the authors used ordinary differential equations to study a stage-

structured (size-structured) aquatic ecosystem population model with the assumption
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that the immature individuals can mature early or late and then continue growing to
become large matured individuals. However, there is no indication about the effect
of two important criteria in fishery regulations on the population: age at puberty
and age at large size. In general, in a structured population model based on age, the
state of the population depends on its time history. A realistic approach is to use
delays to incorporate the history of the population into a mathematical model [27].
In this chapter, we have considered the ages 7, the maturation age, and w, the time
to reach large size after maturation (7 + w is the age at large size), and we have
built a time lagged model and studied their influence on the population dynamics.
In addition, it is shown in [145] that the basic (adult) reproduction number depends
on the average fecundity rate of an individual in different size mature classes and the
average time spent on each class. Meanwhile in our model, we have found that the
basic reproduction ratio depends on both time periods 7, w and the initial harvesting
value Hy (see (2.20) and (2.21)), indicating that these key parameters can play an
important role in population extinction and persistence.

Recently, an ecosystem-based fisheries management strategy “balanced harvest-
ing” has been suggested in several studies to increase yields, and is calling for harvest-
ing all species and sizes in an ecosystem in proportion to their productivity [37,61,108].
However, in [37], Burgess et. al mentioned that some aspects of balanced harvesting
are controversial, like its call for extensive harvesting of juveniles, and clarified that
implementation steps towards balanced harvesting are still premature until it has a
clear definition in both conceptually and practice. Also they addressed some impor-
tant questions to evaluate balanced harvesting. For instance, what sizes should be
off limits to fishing? What sizes should be fished to maximize yields? What are the
ecological benefits of balanced harvesting and how do we value these? We believe our
model may help to answer some of these questions and create a better understating
of balanced harvesting. More precisely, we have studied balanced harvesting in the
sense of allowing the catching of matured fish regardless of size and avoiding juveniles.
Also based on the importance of knowing fish age for stock assessments and by taking
into consideration the relation between fish age and size [31], we have allowed fishing
at age greater than 7 and identified an age 7+ w* for population persistence with an

optimal harvesting rates for the maximum sustainable yield.



Chapter 3

Sea Lice Model with Stage

Structure

3.1 Introduction

Since the 1970s, salmon production in farms has increased exponentially throughout
Canada, Chile, Ireland, Norway and Scotland. The number of farmed salmon was
growing from a few thousand tonnes in 1980 to about 2.5 million tonnes in 2014. Sea
lice infection became one of the major threats on farmed salmon during the past 40
years [3,151]. Sea lice are marine ectoparasites that feed on the mucus and tissue of
salmonids. In salmon-producing countries, salmon lice are responsible for many out-
breaks of disease in salmonid aquaculture, causing enormous economic losses in the
salmon aquaculture industry and costing millions of dollars annually [3,162]. Accord-
ing to the Atlantic Salmon Federation, the costs of fighting sea lice is growing. For
instance, in Norway, there was an increase of 32.5% in the cost of sea lice mitigation.
Therefore, it is essential to develop mathematical models to predict the variations in
sea lice abundance.

Since the first age-structured population model designed by McKendrick in 1926
[128], there has been a fair amount of work on modeling populations with various
stages of life history [0, 7-9, 102, 118, 122 154, 156, 164, 166-168,211]. For example,
the authors proposed a stage-structured model of single species with two life stages,
immature and mature and with a constant time from birth to maturity in [7]. In
[5], the authors formulated and analyzed a single-species growth model with stage-

structure consisting of immature and mature stages for the effects of toxicants with
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constant maturation time delay. In [211], the author considered a prey-predation
model with a maturation time in predator, studied the stability and bifurcation with
or without the maturation time delay. In [122,151], parasite life stage models were
derived with periodic delays due to the seasonally varying temperature on parasite
maturation. The basic reproduction ratio is introduced and the long-term behavior
of solutions is investigated in [122]. In a series of papers [164, 166—168], Smith has
discussed a single species population model with two classes, immature and mature,
where the immature individuals grow at a non-constant rate. In [164], he assumed a
competition between adults and juveniles; and the maturation rate of the juveniles
depends on the density of adults, in the sense that, as the adult population increases,
the rate of maturation of juveniles decreases, which causes juveniles to remain in the
juvenile stage longer and therefore be exposed to increased mortality. In [166], he
assumed the maturation rate of the larvae depends on the food density in which the
maturation rate increases as the food density increases. Recently, in [102], the authors
used Smith’s techniques to derive a nutrient-phytoplankton-zooplankton model where
the maturation rate of the juvenile zooplankton (predator) depends on the quantity
of phytoplankton (prey).

The sea louse exhibits several distinct life stages in two separate phases: the
free-living phase and the parasitic phase. In general, during the life cycle of a sea
louse, eggs hatch into a non-infectious free-living nauplius, then after 2 to 14 days
this nauplius moults into an infective copepodid and starts searching for a host. Once
attached to a host, the copepodid feeds on the mucous and skin of the host and begins
to develop into a parasitic sea louse, i.e., the stage of sea lice attached to the fish. In
this chapter, we assume the growth of sea lice through three stages: non-infectious
larvae and infectious larvae in the free-living phase, adults in the parasitic phase, and
the development age for non-infectious larvae to develop into infectious larvae depends
on the size of adult population size, in the sense that, a larger mature population is
more favorable than a smaller one for facilitating development. Biologically, this is
reasonable, since the growth of immature and matured sea lice depends on different
levels of food resources. In nature, nauplii and copepodids are non-feeding and live
on their energy reserves [29], while adult sea lice feed on the mucus, skin tissue, and
the blood of fish [60]. The main goal of this work is to model the growth process and
study the dynamical behavior of sea lice population. As a starting point, we adopt

the idea from Smith’s work [164,167,16%] to construct a system of partial differential
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equations (PDE) to describe the dynamics, then by using the technique of integration
along characteristics, we reduce the system to threshold delayed differential equations
system (TDE). By the changing variables suggested in [164, 167, 168], we remove
the state-dependent delay in (TDE) and transform it into a standard time-delayed
differential equations (DDE). Based on the proposed delay mathematical model DDE,
we study the nonlinear dynamics in the system including the threshold dynamics with
respect to the adult reproduction number R under biologically reasonable conditions.

The rest of the chapter is organized as follows: in Section 3.2, we propose a PDE
system to describe the population dynamics of sea lice, solve the PDE model to con-
struct a system of threshold type delay TDE, and transform the obtained TDE system
into a DDE with constant delay.. In Section 3.3, we discuss the well-posedness prop-
erty by verifying the non-negativity and boundedness of the solutions with reasonable
initial data, calculate the adult reproduction number R, and address the local stabil-
ity of the trivial equilibrium point. In Section 3.4, we establish the threshold dynamics
for the system in terms of R, by proving the global stability of the trivial equilib-
rium point when R, < 1, sea lice persistence, coexistence and global attractivity of
positive steady state when R, > 1, and discuss the sensitivity of R, with respect to
the related parameters. In Section 3.5, we present some numerical simulations using
Lepeophtheirus salmonis growth as a case study. Finally, conclusion and remarks are

drawn in Section 3.6.

3.2 The mathematical model

We model the growth of sea lice on salmon farms by using the idea of age structure.
As we know, the sea louse life cycle has two distinct phases, the free-living (immature)
phase and the parasitic phase, we assume the immature population in the free-living
phase is split into two classes: non-infectious larvae “nauplii” and infectious larvae
“copepodids”, and the parasitic phase includes “adult sea lice” live over the surface
of the fish and can move among the host fish [11, 117]. We include the copepodid
stage in the immature phase due to the crucial role in sea louse life cycle. According
to [112,143], the copepodid larva is the invasive stage which transforms, on reaching
the fish skin, to chalimus larvae, which are attached to the fish skin by an invasive
frontal filament. It perhaps the most important stage in the life cycle of sea louse

since it leaves the free-living phase and becomes parasitic after crossing this stage.
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Let A(t) and C(t) denote the adult parasites and copepodids population sizes at
time ¢, respectively. We assume that the nauplii are not identical but differ in their
“level of development” () which represents the age. The development level varies
between x = 0 (newborn non-infectious larvae) and = = m (infectious larvae); an
nauplius attaining infective level (age) m immediately enters the copepodid population
and becoming infectious individual. In general, the free-living nauplii take from 2
to 14 days to molt into the infective copepodid stage [12,95]. Let u(t,z) denote
the density of nauplii at development level z and time ¢. Thus, at time ¢, when

r € [x1,m5] C [0,m], the number of nauplii is fxxf u(t,z)dz. Adopting the idea

from [164, 167, 168], we assume the rate fl—f depends on the current adult parasites
population size:

dz

5 = P A®) (3.1)

where P : [0,00) — [Py, 00), for some Py > 0, is continuously differentiable function

and satisfies the following property:

(Ql) P(O) :Po>07 hm P(s):Poo <OOand dP(s) > 0.

5—00 ds =

Biologically, this means a larger mature population is more favorable than a smaller
one for facilitating development [164].

Parasitic sea lice is disrupting salmon farms around the world and inescapable part
of salmon aquaculture. Generally speaking in a salmon farm, the salmon eggs are
fertilized and raised on hatcheries. Then, the smolt (juvenile salmon) are transferred
to floating sea cages or net pens (salmon farms) until they are harvested [2,99].
In other words, salmon can be introduced to sea cages or pens at most times of the
year [151]. To avoid the waste of productivity and to make more profits, the population
of farmed salmons would be kept around the best suitable number. Therefore, we
assume the number of salmon (host) in the salmon farm is constant H.

Based on the above assumptions, we propose the following equations to model the

interaction among the three species for t > 0 and 0 < z < m.

% + P (A(1)) a“gg;x) = —pnult, z), (3.22)
O~ P(AW) ult,m) — peO(1) — FHO(), (3.2)
% _ BHO(t) — paA(l), (3.20)

P (A(t)) u(t,0) = b(A(t)), (3.2d)
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where ., z € {N,C, A}, is the mortality rate of nauplii, copepodids and adult par-
asites, respectively; [ is the infection rate; and b(-) is the egg laying rate function of
adult sea lice. An architecture of the model (3.2) is given in Figure 3.1. We will refer
to system (3.2) as the PDE model.

Appropriate initial conditions for the PDE model are:

C(0)=Cy, A(0)= Ay, u(0,2)=wup(x),

where Cy, Ag are nonnegative real numbers and wug is a nonnegative continuous func-
tion on the interval [0, m].
From the view points in biology and analysis, we assume that the function b is

continuous and differentiable, and satisfies the following property:

(Q2) b(0) =0, b(s) > 0 for s > 0, %(:) > 0 and there exists an increasing function
B such that b(s) < B(s) for s > 0, B(0) = 0, and for any 9 € (0,1), s > 0,
B(¥s) > ¥B(s) (i.e. B is strictly sub-homogeneous).

We can view (Q2) as a mathematical interpretation of the biological factor that the
growth of the population is slower than exponential, so we restrict the growth rate

function with sub-homogeneously condition.

parasite infection
growth

A(t) T ——C@)

parasite development
birth

(molting)

1 mortality mortality

H

Figure 3.1 Schematic chart of the PDE model.
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Next, we reduce the system (3.2) into a threshold delay system with a state-
dependent delay. From (3.1), we have

Let ty > 0 be the first time after which the non-infectious larvae population (nauplii)

present at ¢t = 0 has become infectious (copepodids), that is,

to

(to) = / P (A(n)) dn = m.

0

Then the characteristic curve in (3.2a) is
C={(z,t):0<t<typand z =r(t)}.

We divide the strip S = [0, 00) x [0, m] into two regions,

When (t,z) € 51, the development level of the nauplius at t = 0 is  — r(¢). When
(t,z) € S, the nauplius has a development level 0 at time ¢ — 7(¢, ) where 7(t, x)

satisfies
¢

/ P (A())dn = .

t—7(t,x)

For t > to, let 7(¢t) := 7(¢t,m). Clearly, 7(t) satisfies

/ P (A(n))dn = m (3.3)

t—7(t)

and 7(ty) = to since r(tg) = m. Then 7(¢) is the duration for the nauplii cohort

becoming infectious larvae (z = m) at time ¢. See Figure 3.2.
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m

(0,2 —7(t))s

(t—7(t),0) (t—7(t,2),0) t

Figure 3.2 Hlustration of 7(¢,z) and 7(¢).

Following [164], we use the method of characteristics to obtain

(t.2) { up(x — r(t))e #~t  for (t,z) € Sy,
L) =N bAt=rt) —pyr(te
m@ pN(t) for (t,l’) S SQ.

In particular, when x = m, we have

{ ug(m —r(t))e ¥t for 0 <t < t,
u(t,m) =

BA(=(1) —unr
m@ uNT () for t > to.

Thus, for 0 < ¢ < tg, the system (3.2) becomes

O~ P(AW) wolm — r(1)e™ — peCi(t) ~ BHO(),
W~ BHOW) — A, (3.4)
dr

with C'(0) = Cy, A(0) = Ap and r(0) = 0. Notice that ¢, is determined as the solution
of r(tg) = m.

For ¢t > ty, the system (3.2) becomes

c b(A(t — (1))
= = P (A(1)) P(A(t—7(1)))
% = BHC(t) — uaA(d), (3.5b)

e "N — e C(t) — BHO(1), (3.52)
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t

/ P (A(n))dn=m, (3.5¢)

t—7(t)

with initial data for ¢ € [0,¢y] given by the solution of (3.4). It is clear that (3.5) is a
threshold delay differential system (TDE) because of the threshold condition and that
7(t) is a state-dependent delay due to the dependence of A(-) in (3.5¢). The biological
interpretation is that the time spent by the nauplii cohort becoming copepodids at
time ¢ (7(t)) depends on the past history of adult population size (A(-)). We will refer
to system (3.5) as the TDE model.

To remove the state-dependent delay in (3.5) and transform it into a standard
time-delayed model, for ¢t > 0, let

T = /P(A(n))dn, (3.6a)
C(t), A(T) = A(t). (3.6b)

Then 0 <t <ty corresponds to 0 < T" < m, and system (3.4) becomes

T

c 1 C(T)
ar - W (m —T)exp —MNO/WCZU - (MC+5H)W>
A [BHC(T) - AT (3.7)

dr P (A(T))

with C(0) = Cy and A(0) = Ay.
When ¢ > ty, i.e., T > m, it follows from (3.3) and (3.6a) that

t—7(t)

T-m= [ PG,

and hence,

T . 0 1
Tt)=t—(t—7(t) = _/ mdn:_/ P A"
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where Ar(0) = A(T 4+ 6), —m < 6 < 0. This implies that 7(¢) turns into a state-
independent delay. Therefore, for 7" > m, (3.5) becomes a functional differential

system in the form

dC BAT=m) o (T

T ~ P(A(T —m))© 0 = (e +BH) 5 (A(T))’ (3.8a)
dA 1

a7 ~ PLA(T) [BHC(T) — paA(T)], (3.8b)

where the initial data for T € [0,m] is given by the solution of (3.7) and 7 is defined
on C* = O([_mv 0]»R+) by

We will refer to system (3.8) as the DDE model.

We would like to mention that Smith showed that the solution of the DDE model
defines a solution of the TDE model for t > t, by appropriate change of variables
[164,165]. In the rest of the chapter, we work on the DDE models (3.8) by applying

the standard theory for delay differential equations, see e.g. [74, 169, 218].

3.3 Well-posedness property and the adult repro-

duction number
First, we verify the well-posedness property for the system (3.7) when 0 < T < m.

Proposition 3.3.1. Suppose hypotheses ((1)-((2) are satisfied. — Then system
(5.7) has a unique nonnegative bounded solution (C(T), A(T)) with the initial value
(Co, Ag) € R2. Furthermore, if Co > 0 and Ay > 0, then the solution is strictly

positive.

Proof. From the properties of P given in (@), the function is locally Lipschitz for
any closed bounded set in R. Thus, it follows from [73, Theorem 1.3.1] that system
(3.7) admits a unique solution (C(T), A(T)) through an initial value (Cy, Ag) € R%

with the maximal interval of existence [0, &) for some & > 0.
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From (3.7) and comparison principle (see, e.g. [170, Theorem B.1}), we have
T sH
Mo +
c(T)y > C — [ =————=df » >0
") = G = [ 20

T
HA
A(T) > Apexp —/—d9 > 0.
0=~ Pla@)

Furthermore, for any 7' € [0, m],

T

C(T) < C’0+/u0(m—9)d0 < 0.
0

Therefore

A(T) < A0+6H/%d9 < 0.

Thus, all solutions are bounded and exist for any 7' € [0,m]|. The strictly positive

solution when Cy > 0 and Ay > 0 is clear. O

To analyze (3.8) mathematically, let X := C([0,m], R?) and X = C([0,m],R3).
For ¢ = (61,62) € X, denote 8] = Y2, |6/l with (|61l = max_ncoco [64(6).
Then, (X,X™) is an ordered Banach space and X* is a normal cone of X with
nonempty interior in X. For any given continuous function z : [0,04) — R? with
o4 > 0, we define z, € X for t > m by 27(0) = 2(T — 0) for all 6§ € [0,m].

Denote the initial data set for system (3.8) by

Do — { d e Xt :(h1(0),02(0)) is a solution of (3.7) for § € [0, m)] }
) with (1(0), 62(0)) = (Co, 4y) ’

then the well-posedness property for the system (3.8) is followed.

Theorem 3.3.1. Suppose hypotheses (()1) and (@) are satisfied. Then, for any
¢ € Dx, the system (3.8) has a unique nonnegative solution z(T, ¢) with the initial
condition zg = ¢, and all solutions are ultimately bounded. Furthermore, z(T, ¢) is
strictly positive when C(m) > 0 and A(m) > 0.
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Proof. Given ¢ € Dx, we define G(¢) = (G1(¢), Go(¢)), with

_5(@2(0) i) _ ¢1(=m)
“O =P 6,0) (e + BH) B (gu=m)y
Ga(0) = gy [P (=) = pacn(m)].
where .
. 1
7(¢2) = / Pl

It is easy to see that Dy is closed in X, G(¢) is continuous and is Lipschitz in ¢ in
cach compact set in Dx. By [7, Theorem 2.2.3] there is a unique solution in (3.8) on
its maximal existence interval [0, o,) through ¢ for any ¢ € Dy.

Furthermore, for any ¢ € Dx with ¢;(m) = 0, it is obvious that G;(¢) > 0 for
i =1,2. Thus ¢;(T") > 0 for all t € [0,0,), i = 1,2, see [169, Theorem 5.2.1]. Thus
all the solutions of (3.8) are nonnegative for any t € [0, 0,). More precisely, it is easy
to see that when ¢ € Dy,

C(T) > C(m) exp {/%d@} .

m

Thus, C(T) > 0 when C(m) > 0. The positivity of A(T') can be obtained as in
Proposition 3.3.1 when A(m) > 0.

Now we prove the boundedness. From (3.8), we have

;i_; < b<“4(7];0_ m) _ £C(r) - BH%,
‘;;; < BH% — g—: (T).

Thus, )
% < %Ob (A(T —m)) = 5 (C(T) + A(T).

Since b is an increasing function and C(7") > 0, we have

WA B0 (€T = m) + AT = m)) = - (€(T) + AT)).
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1 _
< = B(C(T —m) + AT —m)) — - (C(T) + A(T)),

2} P

where i = min {uc, pia}-

Consider the delay differential equation

dv 1 it
CY BT —m)) — L), .
o =SB —m) - Lu() (39)

Since the function B is strictly sub-homogeneous and j—; o = 0, it follows from [219,
Theorem 3.2 that (3.9) admits a globally asymptotically stable equilibrium which
attracts all positive solutions. Therefore, C + A is bounded, and hence, any solution
of (3.8) is bounded due to the non-negativity of C and A. Thus, o, = 400 (see
e.g., [71, Theorem 2.3.1]). Hence, all the solutions exist globally, and are ultimately
bounded. O

Remark 3.3.1. Theorem 5.5.1 implies that there exists T1 > 0 and M > 0 such that
0<C(T)< K and 0 < A(T) < K forT > T;.

As we know, the adult reproduction number is an important index to measure the
individual expected lifetime reproduction. In the following, we calculate the adult
reproduction number for sea lice (R;) and prove that R is a threshold value for the
stability of the zero solution of system (3.8).

Since b(0) = 0, it is easy to see that the equilibrium Ey = (0,0) always exists in

(3.8) for all values of the parameters. The linearization of (3.8) at Ej is

dc B(0) —exm _netBH,

T - B 7o A(T —m) 2) (1),
dA  BH Hha
T = ?OC(T) B (T). (3.10)

System (3.10) can be rewritten as

diTJ(T) =M, J(T —m) — M, J(T), (3.11)
with
T (0)e R H
J(T) = o ,I\/Jh:i 0 b(0)e 7 and I\/JIQZi pe + 0 0 :
A(T) Blo 0 Po| —BH  pa
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In (3.11), J(T) is the number of the sea lice population, and M J (7' —m) is the new
sea lice individuals at time T" evolving over the time interval [T — m, T]. Further, for
time T' > m, the internal evolution of sea lice population, through natural deaths and

movements between classes, is

SO =e0 7,

from L J(T) = —M, J(T) with initial #,, = (J1, /)" at T = m.
The total number of the new sea lice individuals is

o0

7 = / M, Z(T —m)dT = / M, e MM 7 AT

m

Due to the nonsingularity of the matrix My, we have

S =My M, .

Then the next generation operator is

_YOBH_ SEE PO ZE
M, = MlMgl = =3 (nc+BH)pa 1A ,
PO O 0
and hence, the spectral radius of the matrix My, denoted by R (see e.g., [217, Corol-

lary 2.1]), is called the adult reproduction number for sea lice, that is,

VOBH = (3.12)

Ry = —————e¢
palpc + BH)

Biologically, #LA gives the average lifespan of adult sea lice and &'(0) is the number

of eggs produced by one matured sea louse per unit time which will survive from the

.
free-living phase to the parasite phase with the probability of BH_.~% . Note

nec+BH
that this probability is the surviving probability in both immature stages, the nauplii
Aem
stage <e 7o ) and copepodid stage (Hcﬁ 53 H). Therefore, R is the average number

of adult sea lice that a single adult sea louse can produce in its expected lifespan.
About the stability of the trivial steady state Fy = (0,0), we have the following

result:
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Theorem 3.3.2. When Ry <1 and (Q1)-(Q:) hold, Ey in (3.8) is locally asymptot-
ically stable. When Rs > 1, (0,0) is unstable.

Proof. The characteristic equation of (3.10) is

e ™ =10. (3.13)

Ao(V) :A2+(UA+MC+BH) sy laluc +BH) Y(O)BH =tum

23 Iz P2

Thus

pa po + BHY V(0)BH —pym
<)\+PO) (/\—f— 2) )— P2 e Pooe .

The latter equation is equivalent to

—A+1 ——— A+ 1| =Re ™
(MA pe + BH

Assume there exists a zero in Ag(A) = 0 with Re(A) > 0, then

P,
—0/\+1‘21, ’
Hna

Py
pe + BH

)\4—1‘21 and ‘e*’\m|§1.

Therefore, when R, < 1, we have

1) (i 1) > R
—A+1 ———A+1])| > |Ree™™™
‘(NA pue + BH | |

which leads to a contradiction. Hence all the eigenvalues in (3.13) have negative real
parts, implying (0, 0) is locally asymptotically stable.
From (3.13), when R4 > 1, it is clear that

Since Ag()) is continuous and /\lim Ag(A\) = +oo0, there exists A > 0 such that Ag(\) =
—00
0. Therefore (0,0) is unstable in system (3.10) when R4 > 1. O

Remark 3.3.2. Theorem 3.5.2 can be obtained from [217, Theorem 2.1 and Corollary
2.1].

In the next section, we establish the threshold dynamics for the system (3.8) in

terms of the adult reproduction number for sea lice.
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3.4 Threshold dynamics

In order to use the comparison principle to study the global dynamics of system (3.8),
we need to make sure the solution semiflow of (3.8) is eventually strongly monotone
and strongly order preserving (see [109, Chapter 5]). Therefore, we choose Z =
R x C([0,m],R), ZT =R, x C([0,m],Ry), Then (Z, Z") is an ordered Banach space.
For a continuous function z : [0,00) x [0,00) — R? and T' > m, we define the solution
semiflow 2p(+) : Z — R? of (3.8) by

27(Cm, 0) = (21(T), 22(T — 6)) VO € [0,m]
where C,,, = C(m) = z1(m). We choose the initial data set for (3.8) in the following set:

D, ¢o = (Cm,®) € Z*: Cpy =11 (m) and ¢(6) = 12(6) ¥ 6 € [0,m] where
z (11(0),12(0)) is a solution of (3.7) for § € [0,m] with (11(0),42(0)) = (Co, Ag) |

The following result can be proved as Theorem 3.3.1.

Lemma 3.4.1. For any ¢, € Dz, system (5.8) admits a unique bounded nonnegative solu-

tion zp(¢p,) on [m,00) with 2y, = ¢,.

In the following, we will discuss the sea lice population dynamics with respect to R;.

Given additional restriction

—BN™ —HN™
B)

(Ky) b(s) e P <V (0) e Po s,
we can discuss the global stability of (0, 0).
Theorem 3.4.1. Assume that Rs < 1, (Q1), (Q2) and (K;i) hold. Then
(i) No positive equilibrium exists in (3.8);
(i) Eg = (0,0) of system (3.8) is globally asymptotically stable for any ¢, € Dy.

Proof. (i) By contradiction, assume a positive equilibrium (C*, A*) exists. Then, from (3.8)

b(A*) exp { ;TX*A)[ } _ e +5§fH) HA g2, (3.14)

When R < 1 and (K;) holds, we have

we have

Vo) e BT A > b e { S | = et D e

PAY) 5H A*>b(0)e P A",

which is a contradiction. Therefore, no A* > 0 exists and satisfies (3.14), hence, the positive

equilibrium does not exist.
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(i) We use the method of fluctuations (see e.g. [306,187,213]) to prove that the limit

supremum of C(T') and A(T) is zero when T' — oo. In order to use this method, we let

C> =limsupC(T) and A> = limsup A(T).

T—o0 T—o0
By [0, Lemma 4.2], there exist two sequences o, — oo and &, — 00 as n — 0o, such that
di
lim C(ay,) =C, dac =0, Vn>1;
n—00 dT | _
=a,
dA
i = A®, == =0, Vn>1. :
nh_)rgloA(mn) A%, a7 |, 0, Vn>1 (3.15)
Let n > 1. From (3.8), we have
dc b(Alon —m)) _, 24 Clay)
0 = _— = — € IU’NT( (an)) — _|_ H —_—,
0T |y, ~ P (Al —m) (e +51) B (Afa)
dA 1
) = ———— |fH n) — n)| -
0 dT _— P(A(Kn)) [ﬂ C(’V‘; ) /J‘AA(K )]
Notice that lim P (A(a, —m)) = lim P (A(ay)) since lim «, = oo. Since b(s)eigg)m is
n—o00 n—o00 n—o0

increasing function , we have

0 = lim (b (A(an —m)) e*wf(v“(%») ~ (e + BH)C® < b(A%) ePAS) — (ue + BH)C™,
0 = BH li_>m C(kn) — paA® < BHC™ — g A>.
Hence ) B
e
C¥<—nb(A®)ePA®) and A® < —C*.
po + BH A=) HA

Since Rs < 1 and (Q2)-(K1) hold, we have

SRR S </3HCOO> expd ot L V(0)SH =m0 _R.C™.
po+BH \ pa P (%Cm) (he + BH) pa

Thus, (1 — Rs)C*® < 0. When Ry < 1, C*° = 0 since 0 < C(T'), and hence, A>® = 0.
Therefore :FIEI;O<C(T)’A(T)) = (0,0). That is, Ey = (0,0) is globally attractive in (3.8),
which, together with the local stability of Ey established in Theorem 3.3.2, confirms the
global asymptotic stability of Ej.

O
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Obviously, (K;) is equivalent to

R
P —BN™
% S b/(()) e pI(\J] .

Cpnm
Biologically, '(0) e Po  represents the new recruited copepodids after the egg laying at
t = 0. Thus, (K;) means that, as time going (¢ > 0) the proportion of the new recruited

—um

(A)e P
A

copepodids (b to the total number of adult sea lice population is less than initial.

Therefore, the sea lice population cannot survive since each adult produces less than one
adult sea lice in its expected lifespan (Rs < 1).

Uniform persistence is an important concept in population dynamics which describes
the survival of some or all species in an ecosystem. When Ry > 1, we can study the system
persistence and discuss the existence and global attractivity of a unique positive equilibrium

point.

Theorem 3.4.2. If Ry > 1 and (Q1)- (Q2) hold, (3.8) is uniformly persistent, in the sense
that, there is a positive number n > 0 such that every solution in system (3.8) with ¢, € Dy
such that Cp, > 0 and ¢(m) > 0, satisfies

limn inf(C(T), A(T)) > (n,7).

Proof. Let
Zo={¢. € Dz : Cp >0 and ¢(m) > 0,}
0Zy=Z\ Zy={d. € Dz : Cp =0o0r ¢(m)=0.}
and
Ny = {d)c €Dy zT(¢>C) (S GZO,T > m}
Since }liino «fl(;&) = b;&(?), in a neighborhood of A = 0, there exists a small ¢ > 0 such
that

o) AP(A) ~ PR

b b b
© €< A < ©) +e. (3.16)

We have the following claim:

Claim 1. There exists a §(e) > 0, such that for any ¢, € Zo,

limsup |27 (Crns @) — Eol| = 8(e).

T—o0

By contradiction, suppose that limsup ||27(1),) — Ep|| < d(€) for some v, € Zy. Thus, there
T—o0
€

exists T > m such that |A(T)| < d(e) for T' > Ty + m. Hence, (3.16) is satisfied.
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From (3.8), we obtain

@ (b/(o)—e)eWA(T—m)—MC(T),

diT Po PO
dA BH BA
T > WC(T) — ?O.A(T). (3.17)

Since the system obtained from (3.17) by replacing > with = is quasimonotone and irre-
ducible, it is sufficient to consider only the real roots of the characteristic equation because
any complex roots would have smaller real part than the largest real root (see [169, Theorem

5.5.1]).
The characteristic equation is

Al()\) _ )\2 + (MA + pe +6H> A+ HA (NC’ +5H) _ <b/(0) _ 6) €$ﬂH —Am _ 0. (318)

Py PZ P P (So(e)

Let Ai(e) be the principle eigenvalue. When e¢ = 0, it is clear that A;(0) =

%&mm (1—Rs) < 0 when R, > 1. Hence, there exists A > 0 such that Aj(A) = 0

because Aj(A) is continuous and AILH;O A1(N) = 400. Thus A(0) > 0, and A(e) > 0 for
sufficiently small € > 0 due the continuity of ;.

It follows that there exists a solution V(T) = eMOT¢ where ¢ is the positive eigenfunc-
tion associated with A;(e), V and ¢ are vectors with two components. Since C(T') > 0 and
A(T) > 0 for all T' > m, the comparison theory (see e.g., [L69, Theorem 5.1.1]) implies that
there exists a small £ > 0 such that (C(T), A(T))T > £eM©OT¢ for all T > Ty + m. Since
A1(e) > 0, we have %EEO(C(T), A(T)) = +o0. This contradicts the boundedness of solutions
to system (3.8).

Let w(¢,) be the omega limit set of the orbit z7(¢,) through ¢, € Dy.

Claim 2. U{w(¢.) : ¢, € No} = (0,0).
Let ¢, € Ng. If C(T') = 0, then from (3.8b), we have

dA . pa

T = By A(T).

By the comparison theory, we get A(T) — 0 as T — oo. Parallelly, when A(T) = 0, it

follows from (3.8a) that

dC *—MC—’_BHC

T = 2 (7).

Thus, C(T) — 0 as T — oo. This proves the claim.
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Define a continuous function p: Dz — R4 by

p(de) = min{Cp, é(m)}v Vo, € Dz.

It is clear that p=1(0,00) C Zy and if p(¢,) > 0 then p(z7(¢,)) > 0 for all T > m. By
Claim 2, we get that for any forward orbit of zp in Ny converges to (0,0), by Claim 1, we
conclude that W#((0,0))NZy = (), where W* (0,0) is the stable manifold of (0, 0), and there

is no cycle in My from (0,0) to (0,0). By [171], it then follows that there exists > 0 such

that 1171}1 inf(C(T'), A(T)) > (n,n) for all ¢ € Zy, which implies the uniform persistence. This
—00

completes the proof. 0

Obviously, Rs > 1 implies that m must be less than

B, (V0P
M = <MA(uc+ﬁH) ' (3.19)

Therefore to guarantee the persistence of sea lice, the infection age m should be appropriately
low.
To discuss the survival steady state of sea lice, we assume that the function b(A) is

concave with respect to the variable A , i.e.

(K2) ¥"(A) <0 for A > 0 and there exists A** > 0 such that b(A) > paA for A € (0, A*)
and b(A) < paA for A > A

Biologically, the condition (K2) may be interpreted as a consequence of saturation effects,
in the sense that, the egg laying rate (b(A)) starts faster than linearly (u4.4) until the adult
sea lice population reaches a high level A**. Then, as the number of adult sea lice becomes
higher (A > A*), the egg laying rate will respond more slowly than linearly to the increase
in A.

With the additional condition (Ks3), we have the following result for the existence of a

unique positive equilibrium point.

Proposition 3.4.1. Assume Ry > 1, (Q1)-(Q2) and (K3) hold. Then system (3.8) has a

unique positive equilibrium point E* = (C*, A*).

Proof. 1f (C*, A*) is a positive equilibrium point in (3.8). Then, we have C* = ££A* and
A* satisfies

b (A*) exp { ;Z‘l“g } _ lue +ﬁiIH V1A g (3.20)

From (3.20), we define
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When (Q;) and (Q2) hold, we get
9(0) =h(0) =0, ¢'(A)>0, N(A)>0

and since Rs > 1, we obtain

b/(o) > g/(o) _ b/(O) exp { _ﬂ;(/;‘]\/'} > (MC +ﬁi[H) KA _ h/(())

Obviously, h(A) > paA for A > 0. Thus, when (Ks) holds, there exists A** < A** such
that

b(A) > h(A) for A € (0, A**) and b(A) < h(A) for A > A™.

It is clear that b(A) > g(A) for A > 0 when (Q) holds. Since ¢’(A) > 0, g and h intersect at
exactly one point at A* such that A* < A** (see Figure 3.3). Consequently, C* = ’é—fIA*. O

PN |

A* A'::’ A

Figure 3.3 Intersection points.

To discuss the global attractivity of the positive steady state E* = (C*,.A*), we need

the following assumption:

b(s) expd — AN
(K3) The function %‘:’(5)}

given in Theorem 3.4.2 and K is the upper bound given in Remark 3.3.1.

is decreasing in s € [n, K] where 7 is the lower bound

Theorem 3.4.3. Assume Rs > 1, (Q1)-(Q2) and (K3)-(K3) hold. Then

lim (C(T), A(T)) = (C*, A")

T—o0

for any ¢, € Dy such that Cp, > 0 and ¢(m) > 0.
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Proof. We use the method of fluctuations (see e.g., [36,187,213]) to prove the global attrac-
tivity of (C*,.A*) in (3.8). Let

C*® =limsupC(T), Cx = liminf C(T), A = limsup A(T) and Ay = lijgn inf A(T).
—00

T—o0 T—o0 T—o00
By [36, Lemma 4.2], there exist four sequences af, — oo and x?, — oo (i = 1,2) as n — oo,
such that
lim C(al) =C*, lim C(a?)=C ac =0 VYn>1i=1,2
n—00 n ’ n—o00 n oo dT T=at - o
. 1 o 1 2 dA .
lim A(k,) =A%, lim A(k;) = Ax, —5 =0 Vvn>1,i=1,2. (3.21)
n—o0 n—o0 dT' | p_,.2

From the boundedness and persistence of solutions, we know that 0 < n < Coo < C*® < K
and 0 < < A < A® < K. Let n > 1. From (3.8a) and (3.21), we have

) —mpN )
0 < b(A*)exp {P(.AOO)} (e + BH)C™, (3.22a)
0> b(Ax) exp { ;ZZMN) } — (uc + BH)C™, (3.22D)
00 —MUN i
0 < oyexp { 5 e+ (322)
—mypiy
0> b(Ax) exp {P(Aoo)} — (pe + BH)Cxo. (3.22d)
In view of (3.8b) and (3.21), we obtain
0 < BHC™ — 4 A, (3.23a)
0> pBHCx — p1aA™, (3.23b)
0 < BHC™® — paAs, (3.23¢)
0> BHCx — ptaAso. (3.23d)
From (3.23b) and (3.22d), we get
00 ﬁH { —mun }
> P (A . 3.24
= Tie+ 5 P () .

Parallelly, from (3.23c) and (3.22a) , we have

_ BH
Ao < (nc + BH)pa

b(A™) exp {;aﬁjf) } . (3.25)
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It follows from (3.23a), (3.22a) and (3.23d), (3.22d), respectively, that

S BH 00 —mun
< (ho + Al)ia b(A>) exp {P(AOO) } , (3.26a)
BH —MN
2 Gt 4 B (200)
For notational simplicity, we define
_ pH —mun
H(s) = e+ Bia b(s) exp{ Ps) } , Vse (0,K]. (3.27)
Then, (3.25), (3.24) and (3.26) yield
A > H(Ax), A < H(A®) and A H(A®) > AYH(Ax). (3.28)

It is easy to see that (i) @

s € [n, K] when (Q1)-(Qz2) hold.

is decreasing when (K3) holds; (ii) H(z) is increasing in

Adopting the idea of the property (P) in [213], we can prove the following claim.
Claim 3. Let ki,ko € [0, K]. If k1 > H(ka), ko < H(k1) and koH(k1) > kiH(k2) then
k1 = ko.

By contrary, suppose ki # ko. If k1 < k3, then due to the monotonicity of H(s), we
have H (k1) < H(ks) < k1. Since k1 < ko < H(k1), we get

k1 > H(ky) > Ky,

which is a contradiction. When &y > ko, then

Hik) _ H(ka)
ki = ko

yields koH (k1) < kyH(k2). With the condition ko (k1) > k1H(k2), one obtains k1 = ko, a

contradiction. This proves the claim.

Claim 3 and (3.28) imply that A* = A,. From (3.22a) and (3.22d), we have

— 1 _
(Aso) exp {P(TKV) } < Coo S < (A% exp { P(T%V) } .

.
pc + BH

Hence, C*®° = C,. Thus,
lim (C(T), A(T)) = (C*, A")
T—o0

for any ¢, € Dz with C,, > 0 and d(m) > 0. O



66

As we know, R is a key parameter for population persistence and extinction. Next, we
discuss the sensitivity of Ry with respect to the related parameters uy, pc, pa, 8, H and
m.

First, we discuss the relationship of Rs with respect to the mortality rates. For S €

{un, pe, palt, it is easy to check that 887?; <0, lim Ry =0, and
S—o0

b(0)8H B(0) —uam
im Ry = COBH o m= YOS e hm Ry = oo
pN—0F palpc + BH) po—0t pa pa—0F

We understand that, (i) if R* < 1 (R** < 1), the sea lice population dies out for even
small mortality rate uny > 0 (uc > 0) (the blue line in Figures 3.4a — 3.4b); (ii) if R* > 1

(R** > 1), there exist the critical values

e
/ / P —
Py v'(0)BH ) = b'(0)e Po ,LLABH

COU LS I (R e
N = (MA(M0+BH) pa

_ v(0)pH AT
= uo+pme such

that R, < 1 for pa > p (Figure 3.4c). Therefore, any large mortality rate puy, pc or pa

such that Ry > 1 for puny < pjy (pe < pe). Similarly, there exists p

leads to the sea lice extinction (Figure 3.4). Biologically, the environmental salinity affects

such mortality rates. The increasing of salinity level results the decreasing of uy, pe and

MA[ y 0y ]

(a) Rs v.s un (b) Rs v.s uc (¢) Rs v.8 pia
Figure 3.4 The relationship between R and the mortality rates.

To see the influence of the infection development age m, notice that, %7;3 = —‘%Rs <0,

lim Ry =R*and lim Rs; = 0. Therefore, when R* < 1, the population will be extincted
m—0+ m—00
no matter at what age (m) the nauplii are developed (the blue line in Figure 3.5a). While
when R* > 1, mpyax exists (given in (3.19)) and the population persists for m < mpax
(the red line in Figure 3.5a). In nature, water temperature has an impact on nauplius
development age (m). The increasing on the temperature can promote the development age

m [177].
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The effect of the infection rate § on R, is opposite. When R** > 1, there exists the

critical
e

g = -
(b’(O)ePO — MA) H

such that Ry < 1 for 8 < *. Thus, large f leads to population persistence (the red line

in Figure 3.5b). If R** < 1, the sea lice population dies out for any 5 > 0. Biologically,
currents, salinity and light assist copepodids in finding a host, that is, increasing £ [412].
Obviously, from the expression of R, the relationship of R with respect to H is equivalent

to the one with respect to .

R*>1[

(a) Rs v.sm (b) Ry v.s B

Figure 3.5 The relationship between Rg, m and f3.

3.5 Numerical simulations

In this section, we provide some numerical simulation results using Lepeophtheirus salmonis
growth as a case study with appropriate parameters from the literature.

Lepeophtheirus salmonis is a species of sea lice which is a serious problem in salmon
aquaculture and causes substantial economic losses on salmon farms [13]. We assume that

the egg laying rate function for sea lice is the generalized Michaelis-Menten growth function

28]

Bis
b(s) = 2
()= 5o (3.29)
with 0 < r <1, and choose
his + ho
P(s) = ——= 3.30

where By, Bg and h; (i = 1,2,3,4) are positive constants. It is easy to check that b/'(0) = g—;.
According to [84, 133], the number of eggs per clutch is 592 eggs and the production rate
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of egg string is between 0.0476 — 0.0576 day~!. Therefore, the number of eggs produced by

one matured sea louse per day is
the number of eggs per clutch x the production rate of egg string.

Thus, % € (28.1792,34.0992) egg per day. We adopt the parameter values uy, pc, pa,
B and m from the literature which are given in Table 3.1. Due to the lack of data in the

literature we choose the other parameters as in Table 3.2 for simulation illustration.

Parameter g—; un & po A m 6]
Dimension egg per day day~! day~! day  fish per day

Value | 28.1792 — 34.0992 0.02—0.13 00102 2—14 0.001 —0.1
Reference [84,133] [154] [154]  [42,95] [34]

Table 3.1 Parameter values for the model (3.8).

Parameter | hy hy hs hy
Value 1 01 1 0.3

Table 3.2 Parameter values for the model (3.8).

Fixing By = 28.2, By = 1, r = 0.7 (in (3.29)), un = 0.05, pc = 0.07, pa = 0.15,
B = 0.01 and H = 500. Then we can calculate mpy,x = 34.82. Hence, for any m given in
Table 3.1, Rs > 1 always holds, so a unique globally attractive positive equilibrium point
E* = (C*, A¥) exists. Figure 3.6 shows that the number of adult sea lice stabilize at a high
constant level A* ~ 840.126 and copepodids stabilize at C* =~ 25 when m = 10.

30~ 1400 -
1200 °,

1000

o Srmes e —

) S
O 24t :{ 800 - =
22 600;
20 . ) . 400E ) ) ) )
50 100 150 200 7 50 100 150 200
T T
(a) Time series C(T) (b) Time series A(T')

Figure 3.6 The global attractivity of E* = (25.2038,840.126) under different initial
condition. m = 10 and Ry = 41.4 > 1.
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From mathematical point of view, the above simulations mean that the suggested bi-
ological parameters in the literature may help Lepeophtheirus salmonis to persist. This is
consistent with the realistic situation of sea lice in the nature. Since C* = 44 A*, from
Proposition 3.4.1, we can explore the effects of parameter variations (un, pe, pa, 5) on
the magnitude of A* numerically. We allow one of the parameters S € {f, un, e, ta} to
vary from Table 3.1 while keep the others fixed as in Figure 3.6. We can observe that the
increasing of (un, pc, pa) decreases A* in different degrees (See Figures 3.7a — 3.7c). The
value of A* is highly sensitive with small pa. Figure 3.7d indicates that the high infec-
tion rate [ promotes the magnitude of A*, and hence, reduces the magnitude of C* since
C* = g—f_}A*. This is biologically consistent, because when the infection rate is high, more
copepodids attach to salmon which decreases the population of copepodids and increases
the population of adults. The relationship between A* and m (H) is equivalent to the one
with un (8).

Finally, we would like to mention that solving the TDE model (3.5) numerically can
be done by transforming the time series resulting from solving the DDE model (3.8) using
(3.6). We got the same time series as in Figure 3.6 by discretizing (3.6a) using a trapezoidal

rule.

3.6 Discussion

As marine ectoparasite sea lice are responsible for most disease outbreaks on salmon farms
which is causing enormous monetary losses. In this paper, we have proposed a stage-
structured mathematical model to study the nonlinear dynamics of sea lice. We have divided
the immature phase into two stages: non-infectious larvae (nauplii) and infectious larvae
(copepodids), and considered one stage in the parasitic phase (adult sea lice). In the sea
lice population, we assume that there is no competition between immatures and adults since
each one feeds on different levels of food resources, consequently a a larger adults population
is more convenient than a smaller one for facilitating development, that is, the development
age for a nauplius to become a copepodid relates on the size of adults population. Based on
Smith’s work, we have described the dynamics by a system of partial differential equations
(PDE), transformed the PDE model into a delay differential equation with a state-dependent
threshold-type delay (TDE) and a delay differential equation with a state-independent delay
(DDE), by mathematical techniques and appropriate change of variables. Once establishing
the mathematical model, we have discussed the well-posedness of the model by proving the
existence, uniqueness, non-negativity and boundedness of the solutions theoretically which
are important features for ecological models. Then mathematically, we have calculated the

adult reproduction number R4 which is a fundamental concept in growth models. From the
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Figure 3.7 The relationship between A* and the related parameters.

dynamical point of view, we have studied the equilibrium points, persistence, local stability
and global attractivity with respect to Rs.

Through our theoretical analysis, we have found that the adult reproduction number
Rs depends on deferent parameters related to the natural environment, implying that some
parameters (un, pc, pa, m, §) can play important role in the population extinction and per-
sistence since the adult reproduction number R4 decreases as any mortality rate (un, pio, pa)
or the infection development age (m) increases. While the infection rate 8 has an opposite
effect on R,. For instance, low salinity density and high water temperature increase the
mortality rates and the development age, respectively [306,39,95,177].

In the numerical study, based on biological parameters in the literature we have presented
a case study regarding Lepeophtheirus salmonis dynamics, and found that the suggested

biological parameters in the literature may help Lepeophtheirus salmonis to persist, which
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is the realistic situation of Lepeophtheirus salmonis in the nature. In real-life, Lepeophtheirus
salmonis have high reproductive capacity allowing them to persist. Recently, the control
of sea lice is one of the top priorities in aquaculture research, see e.g., [119, , ], so
understand the sea lice dynamics is essential, as a part of the control process of these
parasites. Theoretically, controlling the spreading of sea lice equates to decreasing the value
of Rs below to 1. However, in the real world, it is almost inapplicable because of the high
dependence of natural parameters. Furthermore, in the numerical simulations, we have
noticed that the mortality rate p4 has a significant effect on the steady state of sea lice
population (A*). Therefore, targeting the adult sea lice can play a major role in controlling
sea lice, for instance, the use of the natural predator “cleaner fish” as a biological controller
of sea lice [18,162]. On the other hand, we have predicted that /3 plays a critical role
in decreasing the steady state of copepodids population (C*). For example, the chemical
compound hydrogen peroxide is used to kill the copepodids directly or detach them from
the salmon skin surface [119, 189], i.e., decreasing (3, and hence, controlling the adult sea
lice indirectly.

In the literature, although sea lice growth is studied through field experiments, mathe-
matical analysis and dynamical modeling are lacked. As we know that an important aspect
of population dynamics is to study the long-term behavior of modeling systems. Intuition
alone is not sufficient to fully grasp the population dynamical behavior. Instead an ex-
plicit mathematical description of population growth and its dynamics allows for testing
and predicting the behavior theoretically and in computer simulations. That is one of the
main contribution in our current work. In real world application, fish scientists may use
the theoretical results of the proposed model to study the growth of sea lice and develop

strategies or polices to control it.



Chapter 4

A Stage-Structured Model for the
Biocontrol of Sea Lice Using
Cleaner Fish

4.1 Introduction

In salmon-producing countries, such as Norway and Canada, threats of sea lice are a sub-
stantial concern since sea lice can limit the growth of salmon and increase the mortality of
them. These parasites attach to salmon and feed on their mucus and tissue, thereby in-
creasing farming costs and reducing the value of the product. Attempting chemical control
on sea lice in salmon farms has provoked an often acrimonious debate with environmental
organizations. In 1980, a Norwegian fish biologist Asmutid Bjordal did the first field tri-
als on controlling sea lice using cleaner fish rather than chemicals, since then, the use of
cleaner fish has became attractive because of its environmental benefits and the economic
cost [17,190]. For instance, 30 farm sites in Scotland were using 150,000 wrasse by 1994 [98]
and nowadays Norway alone uses around 5 million cleaner fish per year [17]. Economically,
the cost of acquisition of cleaning fish is less than chemical treatment due to the relatively
high cost of the latter and the large manpower requirements of bath treatments [118, 190].

Biological control (biocontrol) is defined as the control of pests and weeds using other
living organisms [ 10]. From the view point of mathematical modeling, biocontrol can be
represented as predator-prey model, host—parasite model or competition model, which are
central topics in ecology. Various mathematical models have been proposed to study the
impact of biological control strategies in different scenarios [13,67,121,110,180]. For instance,

in [67], the authors proposed a time-delayed model, with a predator-prey interaction, for
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controlling of the Asian longhorned beetle Anoplophora glabripennis by its natural predators,
the cylindrical bark beetle Dastarcus longulus. In [121], an ordinary differential equations
model was developed to control malaria by using larvivorous fish. A biological control for
schistosomiasis by the introduction of a competitor snail species was investigated in [13].
Using cleaner fish to control of sea lice has bean discussed by ecologists in field experiments
[18,90,148,162]. In these experiments, sea lice were counted over randomly collected salmon
when no cleaner fish existed, then did the same process with cleaner fish again. For example,
in [48], the authors investigated the use of two cleaner fish, corkwing and goldsinny wrasse,
in controlling sea lice infestations on two commercial fish farms off the west Irish coast.
In [148], the authors discussed the efficiency of lumpfish for sea lice control.

In the literature, although controlling sea lice by cleaner fish is studied through field
experiments e.g. [12,68], little mathematical analysis has been carried out to understand the
dynamical behaviors of sea lice. In this work, we extend the growth model (3.2) in Chapter
3 to a predator-prey interaction at the adult level of sea lice and we study the dynamical
behavior of sea lice population in the present of a control agent. As a starting point, we
describe the dynamics of sea lice and cleaner fish by a system of partial differential equations,
then by using the technique of integration along characteristics and a particular changing
of variables, we transform it into a standard time-delayed model. Based on the proposed
delayed mathematical model, we derive the reproduction numbers for the adult sea lice (Ry)
and cleaner fish (R¢). Then, we study the threshold dynamics in the system with respect to
Rs and Ry under biologically reasonable conditions. In addition, we discuss the coexistence
of a unique positive equilibrium, implying both sea lice and cleaner fish can coexist, from
biological point of view. Then, we study the local stability of the positive equilibrium point,
discuss possible oscillations or stability change analytically, we investigate the occurrence of
Hopf bifurcations, and explore the direction and stability of the Hopf bifurcation.

The rest of the chapter is organized as follows: in Section 4.2, we formulate the model
from the growth of sea lice procedure and the interaction with cleaner fish and discuss the
well-posedness property of the model by verifying the non-negativity and boundedness of
the solutions with reasonable initial data. In Section 4.3, we calculate the adult reproduc-
tion number for sea lice Rs and the net reproductive number of cleaner fish Ry, establish
the threshold dynamics of the model in terms of Rs and Ry. In Section 4.4, we explore the
coexistence and stability of positive steady state, investigate the occurrence of Hopf bifur-
cations, and identify the direction and stability of the Hopf bifurcation. In Section 4.5, we
carry out a case study for comparing two cleaner fish species and investigate the oscillation

behavior. Finally, conclusion and remarks are drawn in Section 4.6.
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4.2 Model Formulation

The purpose of this section is to formulate a mathematical model for controlling of sea
lice by one of its natural predators, “cleaner fish”. In nature, cleaner fish (W(t)), such as
wrasses, have been observed removing parasite sea lice from salmon (see e.g. [17,98, 111]).
Assuming that cleaner fish feed only on parasitic stage of the sea lice, based on the model
3.2, we describe the interaction among the two species (sea lice and cleaner fish) for ¢ > 0

and 0 < x < m, in the following way:

w + P (A(t)) %T) = —unu(t,x),

% = P(A(t) u(t,m) — peC(t) = BHC(t),

% = BHC(t) — paA(t) — W(£) At F(A(L)), (4.1)
% = AW () A®) F(A®) = pw W (2),

P (A®)) u(t,0) = b(A(t)),

where ppy is the mortality rate cleaner fish; v € (0, 1] denotes cleaner fish food-conversion
efficiency (the efficiency of turning food into offspring); and f(-) is the per-prey-per-predator
predation rate of cleaner fish on sea lice, so that the product A(t)f(A(t)) is the per-predator
predation rate (i.e., the ‘functional response’) [3, 10,17, 139]. An architecture of the model
(4.1) is given in Figure 4.1. We will refer to system (4.1) as the PDE model.

Appropriate initial conditions for the PDE model are:

C(0) =Cy, A(0)=Ay, W) =Wy u(0,z)=mwuo(x),

where Cy, Ag and W are nonnegative real numbers and ug is a nonnegative continuous
function on the interval [0, m].
From the view points in biology and analysis, we assume that the function f is continuous

and differentiable, and satisfies the property:
(Q3) f(s)>0fors>0, lim f(s)>0, lim f(s) =0, w > 0and lim sf(s) = Foo > 0,
s—0+ S—r00 S—00

where sf(s), as s = A, represents the number of mature sea lice that one cleaner fish
consumes, so Fiy; represents cleaner fish satiation (the maximum number of sea lice consumed
per one cleaner fish) and Slirglo f(s) = 0 means that when the amount of food available in
the ecological system (sea lice density) is very large, the chance of a given sea louse being
killed by cleaner fish is very low. The properties of f in (Q3) allows a unified treatment for

many fundamental functional response in ecology, some examples are listed in Table 4.1.
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’ f(S) ‘ Sf(s) ‘ Parameters Functional response ‘ Ref. ‘
1_{;(18 —1f5qs a : the attack rate Holling type II [ ]
&W? n>2 I :qu” ¢ : the handling time Holling type III [ ]
o(1—e~2%) _ o: hunting success
— L—e™ Ivlev type
s of ) «: the maximal predation rate P [ ]

Table 4.1 Examples of function f.

By using the technique of integration along characteristics, we can reduce the system
(4.1) to a system of threshold delayed differential equations (TDE). More specifically, for
t > tp, the system (4.1) becomes

O = P (aw) AT ) — oo - pC)
% — BHC(t) — paA(t) — W) A(t) F(A(L)),
B — W (1) AW S (AW) — W (1), (42)
t
| Plamydn=m.
t—7(t)

with initial data for ¢ € [0,¢g] given by the solution of the system

I~ P AW wolm — (1) — (1) - BHC(D)
% = BHC(t) — paA(t) — W(H)A®) f(A(t)),

dc%/ = AW)AQR)f(A®R)) — pwW (1),

dr

with C'(0) = Cy, A(0) = Ag, W(0) = Wy and r(0) = 0.

By changing of variables technically we can remove the state-dependent delay in (4.2)
and transform it into a standard time-delayed model (4.3), here we omit the procedure. For
t >0, let

T = /P (AMm)dn,  C(T)=C@®), AT)=A®), WT)=W(Q).
0

Then system (4.2) becomes



mortality
predation
parasite infection
i growth |
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Figure 4.1 Schematic chart of the PDE model.

dC  b(A(T—m)) rar) C(T)
= PAT—m)© ket BH) p oy

fc%f _ P(j(m [BHC(T) — paA(T) — W(T)A(T) f(A(T))],
aw 1
o~ Py W OADIAD) — W),

where 7 is defined on CT = C([-m,0],Ry) by

0
o 1
) ‘4 P o)

and the initial data for T € [0,m] is given by the solution of the system

dc

dT
dA

ar
aw

dr

T

= uo(m—T)GXP{—MN/P(j(n))dn}—(Nc+ﬁH)P(CVE§%>),

0

1
= 5 (AT) [BHC(T) — paA(T) — W(T)A(T)f(A(T))],

1
a7 ) [YW(T)A(T) f(A(T)) — pwW(T)],
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(4.3a)
(4.3b)

(4.3¢)
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with C(0) = Cp, A(0) = Ag, W(0) = Wy. We will refer to system (4.3) as the DDE model.
In the rest of the manuscript, we mainly work on the model (4.3) by applying the standard
theory for delay differential equations, see e.g. [74,169,218], based on the conclusions given
by Smith in [164, 165].

Next, we demonstrates that the solutions of model (4.4) are nonnegative and bounded
when 0 < T <m.

Proposition 4.2.1. Suppose hypotheses (Q1)-(Qs) are satisfied.  Then system (4.4)
has a unique nonnegative bounded solution (C(T), A(T),W(T)) with the initial value
(Co, Ag, Wy) € R3. Furthermore, if Cy > 0, Ag > 0 and Wy > 0, then the solution is

strictly positive.

Proof. From the properties of P and f given in (@) and (Q3), both functions are lo-
cally Lipschitz for any closed bounded set in R. Thus, it follows from [73, Theorem 1.3.1]
that system (4.4) admits a unique solution (C(T), A(T),W(T)) through an initial value
(Co, Ag, Wy) € R3. with the maximal interval of existence [0,¢) for some & > 0.

Now we prove the non-negativity of the solution. For T' € [0,m], it is clear from the
third equation in (4.4) that

T
VA0 f (A(9)) — pw
W(T) = Wyexp / df » > 0.
H=ther | R ae)
From the first equation in (4.4) and comparison principle (see, e.g. [170, Theorem B.1]), we
have
T -
He +
C(T) > Cyexp —/dH > 0.
" | PlAw)
Hence,

T
Ay > dyewp | - [POLOOL 1)
0

Furthermore, for any T € [0, m],

T T
g (m — e
C(T)§6’0+0/u0(m 0)df < oo and W(T)gWO/P(A(G))d0<oo.

0
Therefore
C(9)

T
A(T) < AO+BH/P(A(0))d0 < 0.
0
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Thus, all solutions are bounded and exist for any 7" € [0, m]. The strictly positive solution
when Cy > 0, Ag > 0 and Wy > 0 is clear. O

To analyze (4.3) mathematically, let X := C([0,m],R?) and X* = C([0,m],R3). For
b = (61,02, 03) € X, denote ¢l| = X2, [ dilloe with [dilloc = maxo<osm |6:(6)]. Then,
(X, X™) is an ordered Banach space and X is a normal cone of X with nonempty interior
in X. For any given continuous function z : [0,04) — R3 with o, > 0, we define z; € X for
t > m by zr(0) = z(T — 0) for all § € [0,m)].

Denote the initial data set for system (4.3) by

Dy — { ¢ e Xt :(p1(0),2(0), d3(0)) is a solution of (4.4) for 6 € [0, m] }
with (¢1(0), ¢2(0), ¢3(0)) = (Co, 4o, Wa) ’

then the well-posedness property for the system (4.3) is followed.

Theorem 4.2.1. Suppose hypotheses (Q1), (Q2) and (Q3) are satisfied. Then, for any
¢ € Dx, the system (/.3) has a unique nonnegative solution z(T, ¢) with the initial condition

20 = ¢, and all solutions are ultimately bounded. Furthermore, z(T, @) is strictly positive
when C(m) >0, A(m) > 0 and W(m) > 0.

Proof. Given ¢ € Dx, we define

G(¢) = (G1(9), Ga(9), G3(9)),

with
G1(6) = A e ) (o + BH) o s,
Gal) =y H1 () = =) = Ga(—m)en(m) (6a(—m)]
Gal0) =y 10—l —m) (a(m) = ()]
with o
#(62) :4 mda

It is easy to see that Dy is closed in X, G(¢) is continuous and is Lipschitz in ¢ in each
compact set in Dx. By [74, Theorem 2.2.3] there is a unique solution in (4.3) on its maximal
existence interval [0, 04) through ¢ for any ¢ € Dy.

Furthermore, for any ¢ € Dx with ¢;(m) = 0, it is obvious that G;(¢) > 0 for i = 1,2, 3.
Thus ¢;(T") > 0 for all t € [0,04), ¢ = 1,2, 3, see [169, Theorem 5.2.1]. Thus all the solutions



79

of (4.3) are nonnegative for any ¢ € [0,04). More precisely, it is easy to see that when

¢ € Dx,
T

Mc+5H

C(T) > C(m)exp PAWD)

m
Thus, C(T') > 0 when C(m) > 0. The positivity of A(T") and W(T') can be obtained as in
Proposition 4.2.1 when A(m) > 0 and W(m) > 0.

Now we prove the boundedness. From (4.3), we have

% . W - ]‘%cm - ﬂﬂ%a
W W(T);lgggf@ ) _ W),
Thus, -
AELZEN) < 20 (AT = m)) = L (€T + AT) + W(T)).

Since b is an increasing function, C(T) > 0 and W(T') > 0, we have

dC+A+W) 1 fi
TETT S T m AT ) WT— ) = (€0 + AD) W),
< ;OB (€T —m) + AT —m) + WT —m)) — £ (e(T) + A(T) + W(T),

where IEL = min {/1’07 KA, MW}
Consider the delay differential equation

% _ ;OB( (T —m)) — Lo (4.5)
Since the function B is strictly sub-homogeneous and ‘% vep = 0, it follows from [219,
Theorem 3.2] that (4.5) admits a globally asymptotically stable equilibrium which attracts
all positive solutions. Therefore, C + A+ W is bounded, and hence, any solution of (4.3) is
bounded due to the non-negativity of C, A and W. Thus, o4 = +o0 (see e.g., [74, Theorem
2.3.1]). Hence, all the solutions exist globally, and are ultimately bounded. O

Remark 4.2.1. Theorem 4.2.1 implies that there exists Ty > 0 and M > 0 such that
0<CT <K, 0<AT)<K and 0 <W(T) < K forT >T;.

Comparing with Chapter 3, by introducing the cleaner fish to the model (3.2) we have

changed the model from a population growth model to a predator-prey interaction model.
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This is more realistic from the biological perspective since each species has enemies in the
nature. The model (4.3) with cleaner fish may produce oscillations in the population size of
both cleaner fish and sea lice. Mathematically, this interaction influences the dynamics of
the cleaner fish and sea lice populations, including the equilibria and their stability. Some
of the results, such as well-posedness property and persistence, still hold for systems (4.3)
although different mathematical techniques are used in the proof. From the view point of
real world application, studying the outcomes of interactions among species is important for

the biologists to understand the structure of different communities and their sustained.

4.3 Reproduction numbers and threshold dynam-
ics

In this section, we discuss the adult reproduction number of the prey population (sea lice)
and the net reproductive number of the predator population (cleaner fish), and further
explore the threshold dynamics for the system (4.3) in terms of the reproduction numbers.
Since b(0) = 0, it is easy to see that the equilibrium Ey = (0,0,0) always exists in (4.3)
for all values of the parameters.
The linearization of (4.3) at Ey is

R (1) e + BH

ﬁ = PO e Fo A(T_m)—TC<T),

dA  BH _ Ba

= g o) A, (4.6)
aw

ar —pwW(T).

Since the third equation in (4.6) is decoupled, the adult reproduction number for sea
lice, denoted by R, is the same as in Chapter 3. Consequently,
V(0)H — zenm
Ry = —DOBH o (47)
palpc + BH)
which represents the average number of offspring reaching adulthood from a single adult
over its life span, biologically.
With the condition (Kz), we have the following result for the existence of a steady
state with W = 0, which we refer to as the predator-free equilibrium (or cleaner fish-free

equilibrium).

Proposition 4.3.1. Assume Rs > 1, (Q1)-(Q2) and (K3) hold. Then system (4.3) has a
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unique equilibrium point Ey = (C5, A},0) where Ci = ££ A5 and A} satisfies

i
— H
b(A}) exp{ P?:S} _ e +Bi[ MAA’{. (4.8)

Obviously, for the existence of Ej, it is necessary, but is not sufficient, that Rs > 1, that
is, the value of m must be relatively small, i.e., m < Mmpyax Where mpay is defined in (3.19).
From the biological point of view, in prey-predator interaction, at a steady prey popu-

lation (sea lice), the net reproductive number of the predator population (cleaner fish), Ry,

Ry Food-conversion " Cleaner fish " Life expectancy
T efficiency predation rate of cleaner fish ’

is

see e.g., [15,40]. As we know, from the model (4.1), that the food-conversion efficiency is =,
Af(A) is the number of mature sea lice that one cleaner fish consumes, that is, cleaner fish
predation rate and uLw is the average lifespan of cleaner fish. Therefore, at the steady state

of adult sea lice population A}, we have

1
Ry :=vx Ajf(A]) x —. (4.9)
Bw

In other words, the net reproductive number of cleaner fish R is the expected number of
new cleaner fish that can be produced by one cleaner fish over its lifespan when the sea lice
population is stable.

Next, we study the stability of the trivial steady state Ey. It is easy to check that the

characteristic equation of (4.6) is

(A4 pw)Ag(A) =0

where Ag()\) is defined in (3.13). Since A = —pup is a negative root, the stability of Ej is
determined by the roots of Ag(A) = 0. It then follows from Theorem 3.3.2 that the following
result holds.

Theorem 4.3.1. When Ry, < 1 and (Q1)-(Q2) hold, Ey = (0,0,0) in (4.3) is locally
asymptotically stable. When Rs > 1, Ey = (0,0,0) is unstable.

In order to use the comparison principle to study the global dynamics of system (4.3), we
need to make sure the solution semiflow of (4.3) is eventually strongly monotone and strongly
order preserving (see [169, Chapter 5]). Therefore, we choose Y = R x C([0, m],R) x R,
Y+ =R; xC([0,m],Ry) xR;. Then (Y,Y ™) is an ordered Banach space. For a continuous

function 2 : [0,00) x [0,00) % [0,00) — R3 and T > m, define the solution semiflow 27(:) :
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Y — R3 of (4.3) by
210 (Cim, 0, Win) = (21(T), 22(T — 0), 23(T)) V0 € [0,m]

where Cp,, = C(m) = 21(m) and W,,, = W(m) = 23(m). We choose the initial data set for
(4.3) in the following set:

_ ey = (Cmad;v W) €Yt : Cp = 1/;1(771), 113(9) = 1&2(9) Vv 6 € [0,m] and Wy, = 1[)3(771) where
YT (91(0), 92(6), 3(6)) is a solution of (4.4) for 8 € [0,m] with (1 (0),12(0), P3(0)) = (Co, Ao, Wo) ’

The following result can be proved as Theorem 4.2.1.

Lemma 4.3.1. For any ¢,,, € Dy, system (4.3) admits a unique bounded nonnegative

solution 21 (de,,) on [m,00) with 2y, = ¢, -
With the condition (K;), we can discuss the global stability of Ey = (0,0,0).

Theorem 4.3.2. If R, <1, (Q1)-(Q2) and (K;i) holds, then Ey = (0,0,0) of system (4.3)
is globally asymptotically stable for any ¢.,, € Dy .

Proof. From (4.3a) and (4.3b), we have

A _ AT =m) a0y C0)

dT ~ P(A(T —m)) P(A(T))’
< P(j(T)) BHC(T) — paA(T)) (4.10)

When R, < 1, we know that (0,0) is a globally attractive equilibrium point in the system
obtained from (4.10) by replacing < with =, see Theorem 3.4.1. By the comparison principle
(see e.g., [169, Theorem 5.1.1]) and the non-negativity of C(7") and A(T'), we obtain

lim C(T) =0 and lim A(T) = 0.

T—o0 T—o0

Denote ®(T)(¢,,,) = 27(d.,,) be the solution semiflow associated with (4.3). Let w =
w(¢ey) be the omega limit set of ®(7'). By [218, Lemma 1.2.1], w is an internally chain
transitive set for ®(7"). Thus, w = {(0,0)} x @ for some w C R. It is easy to see that

(0,0, W) = (0,0, 8(W,,))

where ®(T) is the solution semiflow associated with the equation

D _
AT P,

WI(T). (4.11)
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Since w is an internally chain transitive set for ®(7T), it easily follows that @ is an internally
chain transitive set for ®.

Obviously {0} is globally asymptotically stable for (4.11), we get w N W# (0) # @), where
W#(0) is the stable manifold of 0. Thus, @ = {0} (see e.g., [85, Theorem 3.2 and Remark
4.6] or [218, Theorem 1.2.1]). Therefore, we have w = {(0,0,0)}, and hence

lim (C(T), A(T), W(T)) = (0,0,0).

T—o0
Together with the local stability of (0,0,0), we obtain the global asymptotic stability of

(0,0,0).
U

From the biological point of view, if Ry < 1, the sea lice population cannot survive since
an adult sea lice produces on average less than one secondary adults, and hence, the cleaner
fish population may extinct due to the lack of food resource (adult sea lice).

Now we discuss the global attractivity of the predator-free equilibrium E; = (C*, A*,0).

Theorem 4.3.3. Assume Ry > 1, Ry <1, (Q1)-(Q3) and (K)-(K3) hold. Then

lim (C(T)v'A(T)’W<T)> = (Ci Tv())

T—00
for any ¢.,,, € Dy such that C,, > 0, d(m) > 0.

Proof. From Theorem 3.4.3, when R > 1, (Cf, A}) is a globally attractive equilibrium point

in the system

dC _ YA =m)) —unitar) _ (. 4 gy —S0) (4.12a)

dT ~ P (A(T —m)) P(A(T))

dA 1

AT =~ PA(T)) [BHC(T) — paA(T)] - (4.12b)
By the comparison principle (see e.g., [169, Theorem 5.1.1]), we obtain

limsupC(T') < C7 and limsup A(T) < Aj.

T—oo T—oo

Next, we prove W(T) — 0 as T" — oo when Ry < 1. Let T, be sufficiently large, from
(4.3c), we get

1
paPo

YATf(A]) —
P

AW _ AL (AT — g p _
P TR UCE FW(T) =~ (1= Ry) WIT)
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for T > Ty. Therefore
limsup W(T') < 0.

T—o0
Hence,
lim W(T') =0

T—oo
due to the non-negativity of W.
Hence, the limiting system of system (4.3) is same as (4.12). Thus, the omega limit set

of the solution semiflow ®(7") of system (4.3) is w = @ x 0 for some w C R x R.

Claim 1. © ¢ {(0,0)}U{(0,7) : g # 0} U{(z,0) : T # 0}.
By contrary, first, assume w C {(0,7) : § # 0}. Then

lim C(T) = 0.
T—00
When Rg > 1, the solutions of (4.12) satisfies lijglinf(C(T),A(T)) > (i, m) for some
—00
positive number 77 > 0 from Theorem 3.4.2. Thus,

C@)]

iy [ DA —m))
P(A(T))

BAT —m)) o DA —m))
Tose | P (A(T — m))

To5e P (A(T — m))

1b(m) {muzv}
> — ex > 0.
2 Poo P P(nl)

e~HNT(AT) _ (ue + BH) e~ HNT(AT)

Let T3 > 0 be sufficiently large. Then it follows from (4.12a) that

dC  1b(m) —mpyN
= s T > T;.
1T > 5 P exp P i) > 0, VT > 1Tjy

Therefore, C(T') — oo as T — oo, a contradiction.
Now, assume that @ C {(z,0) : £ # 0}. Then

lim A(T) = 0.

T—o0

Let Ty > 0 be sufficiently large. Then it follows from (4.12b) that

dA _1BHm
ar ~ 2 P

> 0, VT > Ty.

Therefore, A(T) — oo as T' — oo, which contradicts the boundedness of solutions. This

proves the claim.
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For any ¢.,, € Dy, we have
(Cn, #,0) = ((Cpn, ), 0)

where ®(T) is the solution semiflow associated with system (4.12). By [218, Lemma 1.2.1],
w is an internally chain transitive set, and hence, @ is an internally chain transitive set for P.
Since (Cf, A7) is a globally attractive in (4.12) and from Claim 1, we get wNW* (C§, A7) # 0,
where W*# (Cj, A7) is the stable manifold of (C},.A}). Then it follows from [218, Theorem
1.2.1] (or [85, Theorem 3.2 and Remark 4.6]) that @ = (C},.A}). This proves that w =
(Cf, A7, 0). Consequently,
Jim (C(T), A(T), W(T) = (¢}, A7,0)

for any ¢.,, € Dy with C,, > 0, q@(m) > 0, that is, (C{,.A},0) is globally attractive. This
completes the proof. O

Uniform persistence is an important concept in population dynamics which describes

the survival of both species in an ecosystem. Now, we study the persistence of system (4.3)
when Ry > 1 and Ry > 1.

Theorem 4.3.4. Assume Rs > 1, Ry > 1, (Q1)-(Q3) and (Kz)- (K3) hold. Then there
exists a positive number ny > 0 such that every solution in system (4.3) with ¢, € Dy,
Cr >0, ¢(m) >0 and W, > 0, satisfies

lim inf(C(T), A(T), W(T)) > (12,2, 12)-

T—o0
Proof. Let
Yo = {¢oy € Dy : Cm >0, ¢p(m) >0 and W, > 0},
Yl = {¢CW S Dy : Cm = 0},
Yo = {¢ey € Dy : é(m) =0},
Ys; = {¢CW €Dy : W, = 0},
and

My = {¢.,, € Dy : 27(¢.,) € 0Yy, T > m}

where 0Yy =Y \ Yy =Y UY, U Ys.
. ' : o bA) V() . .
For ¢ = 1,2, fix a small ¢; > 0. Since }llglo TP = B and }tlinoAf(A) =0, in a
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neighborhood of A = 0, we have

AP(A) Py

‘ b(A) b’(O)‘ < e and |Af(A)| < ez, (4.14)

respectively. Set ¢g = max{ej,ea}. Using the similar arguments as those in Claim 1 in
Chapter 3, we have
Claim 2. There exists a dp(ep) > 0, such that for any ¢,,, € Yo,

limsup | 27(ée,y,) — Eoll > do(eo)-

T—o0

By contradiction, there exists Tg > m such that |A(T)| < do(eo) for T > Ts + m, then,
(4.14) is satisfied.

From (4.3), we obtain

> (T a)e WA - m - M),

dar o) 2

dA BH HA €0

s 2 o) -2 ar) - 2w, 4.15
dT P((So(éo)) P ( ) Py ( )
dA pw

a7 > — P W.

The characteristic equation of the system obtained from (4.15) by replacing > with = is

(A + %)Al()\) —0

where Aq(\) is defined in (3.18). Therefore, the principle eigenvalue Ay(ep) > 0 for suffi-
ciently small ¢y > 0. Consequently, there exists a solution \7'2(T) = e*2(0)T( where ( is the
positive eigenfunction associated with Az(eg), 172 and CA are vectors with three components.
By the comparison theory, there exists a small ¢, > 0 such that (C(T), A(T), W(T)) >
loe? )T for all T > Tg 4+ m. Thus, Tli_r}r;O(C(T),A(T),W(T)) = oo, This contradicts the

boundedness of solutions to system (4.3). This proves the claim.

Since Alin}l Af(A) = A f(A}), in a neighborhood of A = A7, there exists a small e3 > 0
—A7

such that
(A —ea < Af(A) < ATf(A]) + €4 (4.16)

Claim 3. There exists a 01(e3) = 61 > 0, such that for any ¢,,, € Yy,

limsup ||27(¢,,,) — E1]| > d1(e3).
T—o0
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By contradiction, suppose that limsup ||27(¢,,,) — E1| < 61(e3) for some 1,,,, € Yo. Thus,
T—o0

there exists Ty > m such that |A(T) — Aj| < d1(e3) for T" > T7 + m. Hence, (4.16) is
satisfied.

From (4.3), we have

dc — (pc + BH)

aT ~ PAT = oyt

dA pH 1A ATf(A]) + €3

e T e T T M (T T
aw ATF(ATD) — e _ Hw

i > (P ha P )

The characteristic equation of the system obtained from (4.17) by replacing > with = is

~ pe + BH A  AAD - o _
A2d) = (H P(A; —61(53))> (“ PA; —61(63))> (A TP +o1(e) T PAT _51(63))) 0.

Rp—1 . . .
When €3 =0, then A = m is a positive root in Ay(\) = 0 when Ry > 1. Hence, the
principle eigenvalue is positive. By similar arguments as those in proof of Claim 5 we see
that the (C(T), A(T),W(T)) — oo as T — o0, a contradiction.

Let @(¢,,,) be the omega limit set of the orbit Z7(¢,,,) through v € Dy.
Claim 4. U{&(0e) + Gory € Mo} = Eg U Ej.

For any ¢.,, € My, we have Z7(¢.,,) € Y1 or 27(¢.,) € Ya or 2p(¢,,,) € Y3. If
Z2r(peyy) € Y1, ie., C(T) =0, then from (4.3b) we get

dA +W(T) f(A(T))
ar = AT (MA Py )

By the comparison theory, we get A(T) — 0 as T'— oco. It then follows from (4.3c) that

aw _ —pw
— < —W(T).
dI' = Py WIT)
Hence, W(T) — 0 as T — .
Parallelly, when 27(¢,,,) € Y2, i.e., A(T) =0, it follows from (4.3a) and (4.3c) that

dc 7_Mc+ﬁHC

aw  —uw

(T) and ﬁ = ?0

respectively. Thus, C(T') — 0 and W(T') — 0 as T — oo.
If 27 (ppy) € Y3, ie.,, W(T') =0, then (4.3) becomes (3.8). Since Rs > 1, (Q1)-(Q3) and
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(K2)-(K3) hold, it follows from Theorem 3.4.3 that (C(T),A(T)) — (C},A}) as T — <.
Hence, | {@(¢.yy) : Goyy € Ma} = Eo U Ep. Thus the claim holds.
Define a continuous function p : Dy — Ry by

p(beyy) = min{Cp, ¢(m), Wi}, Yo, € Dy.

It is clear that p~1(0,00) C Yp and if p(¢.,,) > 0 then p(37(¢.,,)) > 0 for all T > m. By
Claim 4, we get that for any forward orbit of 27 in My converges to £y or Eq, by Claim 2 and
3, we conclude Ey or E; are two isolated invariant in Y, and (W*(Ep) UW*(E1))NYy =0
and no subset of {Ep, E1} form a cycle in 9Yy. By [171], it then follows that there exists
n2 > 0 such that li:r’rgioréf(C(T),A(T),W(T)) > (12,12, 1m2) for all (Cp, d, Win) € Yo, which
implies the uniform persistence. This completes the proof.

O

In the following, we address the relation of the net reproductive number Ry with respect
to the related parameters (uw, v and m). As we know from (4.9), Ry is determined by
different parameters, such as up, v and implicitly by m through the dependency of Aj.
Obviously, Ry is linear with respect to . For the mortality rate uy, it is easy to check
that,

ORy

— <0, lim Ry = oo, lim R;=0.
Opw pw —0F pw =00

Therefore, there exists fiyy such that Ry > 1 for pw < aw and Ry < 1 for uw > jiw
(Figure 4.2a) and large puy leads to the cleaner fish extinction. A similar influence by m is
shown in Figure 4.2b. Theoretically, fiy and m depends on A7, and hence, they are related
to the natural parameters of sea lice. From the biological perspective, the use of cleaner
fish with long enough lifespan (i.e. small py) can help to maintain Ry at a relatively high
level. When the development process is too long, food resource (adult sea lice) for cleaner
fish decreases which can lead to cleaner fish extinction.

Further, we can investigate the relation between Ry and Ry when the development age
m varies. Obviously, R, depends explicitly on m from (4.7) and R relates to m implicitly
via Aj from (4.9). Figure 4.3 illustrates the population dynamics in system 4.3, with respect
to Rs, Ry and m, that is characterized in Theorem 4.3.2, 4.3.3 and 4.3.4. We can view in
Figure 4.3 that, as m increases both Ry and R decreases. More specifically: i) for small
m, the adult/net reproduction number R;/Ry is above 1, then both sea lice and cleaner
fish can survive (the green segment); ii) with increasing m, Ry becomes below 1 while R
remains above 1, hence, sea lice survive and cleaner fish extinct (the blue segment); iii) for
large enough m, both R, and Ry are below 1, then, both species extinct (the red segment).

From the biological point of view, when R is larger (> 1), an adult sea lice produces more
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(a) Ry v.s pw

Figure 4.2 The relationship between R and pw, or m.

m

Hw

m

(b) Ry v.sm
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secondary adults on average, that is, more food resource for the cleaner fish, and hence, R

becomes larger.

[ i 5 Sea lice and -
. : cleaner fish coexist _—"
Kl W <
x. ” 5
L N qcx?
. ~ (\‘\\
E /// \N\(\e
-—-—-—:—-_- - — i — - — - — — — - —
Sea lice survive 4

Sea lice |
and
cleaner fish /4
extinct

and cleaner fish extinct

Rs

Figure 4.3 Ry v.s Ry.

4.4 Existence and stability of the positive steady

state

In this section, we examine the existence and local stability of positive equilibrium point

with respect to the age m, investigate the occurrence of Hopf bifurcations and identify the

direction and stability of the Hopf bifurcation.
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Firstly, the conditions to ensure the coexistence of both species, sea lice and cleaner fish,

are provided in the following:

Proposition 4.4.1. Assume Rs > 1, Ry > 1, (Q1)-(Q3) and (K3) hold. Then there exists a
unique positive equilibrium point Eo = (C5, A5, W5) in system (3.8). Furthermore, C5 < Cf
and A3 < A} where C; and A} are related to the steady state Ey = (Cy, A7, 0).

Proof. Assume Ey = (C5, A5, W) is a positive steady state. Then it follows from (3.8) that
E satisfies

b (A3) exp { ;TXS } = (uc + BH)C3, (4.18a)
BHCy = paA; + Wy A3 f(A3), (4.18b)
VAL (A3) = pw (4.18¢)

For notational simplicity, we define F(s) = sf(s). Then, it follows from (4.18¢c), (Qs),
Rs > 1, and F(0) = 0 that there exist a unique positive value A3 such that

0<As=F"! (“VV) < Aj
Y

Clearly, C5 is uniquely determined by (4.18a). Thus,

vBH

Wy= —"
2 pw (nc + BH)

(9 (A3) = h(A3))
where g and h are defined in the proof of Proposition 3.4.1. Since g(s) > h(s) for s € (0, A7),
we get W5 > 0.

Finally, when (Q1)-(Qz2) hold, it follows from (4.18a) and (3.20) that

. g(A3) g(A7) .
Co = < =C
> pc+BH T po+pH T

O

Proposition 4.4.1 implies that when Ry > 1, C5 < Cf and A5 < Aj, implying the
theoretical prediction matches the ecological factor that the cleaner fish is considered as a
control agent for the sea lice. In other words, the introduction of cleaner fish can reduce
the population size of sea lice. Thus, the researchers in marine biology may use the model
to study the efficiency of cleaner fish as delousing agents or to compare the efficiency of
removing sea lice among different cleaner fish species.

To analyze the stability of the positive equilibrium point Ey = (C3, A5, W), we linearize
(4.3) at Es, by setting y1 =C —C5, y2 = A — A} and y3 = W — W5, then the linearization
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is:

0
d
% = a11y1(T)+a12y2(T)+b12y2(T—m)+Cl2/?J2(T+9)d‘9’
—m
dys
T a1 y1(T) + azoya(T) + azsys(T), (4.19)
dys
72 = T T
aT az2y2(T) + assys(T),
where
_ —(pc +BH) _ (pc + BH)C3 P'(A3) _ d [b(s) Sy
S TP T R Tl e
pnb(A3) P (A7) e pH A3 f(A3)
= P(AZ 0 = 0 =—- 0
Pz T TRy T T TRy T
_ L d(sf(s)) _ W5 d(sf(s)) _
aze = P(A) pa+Ws e <0, azg = PG ds |y >0, azz =0.
The characteristic equation corresponding to (4.19) is
0
Q(\,m) =det | X[ — My — Mae™™ — M; / eMdh | =0 (4.20)
—m
where
all al2 0 0 b12 0 0 C12 0
My=1 ag ax a3 [, Ma=] 0 0 0 | andMz=| 0 0
0 azx O 0 0 O 0 O

It is easy to check that
Q(0,m) = ajrazgasz > 0.

Thus, A = 0 is not a root in (4.20), so (4.20) can be rewritten as
QN m) =X+ P A2+ oA+ p3 + (oA +q1) e ™ =0, (4.21)
where

p1 = —(a11 +az) >0, p2=ajax — a2a2 — a23a32,

p3 = a11G23as2 — a12¢21, o = —azbiz, ¢ = agciz > 0. (4.22)
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Without delay (m = 0), in Q(\,0), the Routh-Hurwitz stability criterion (see e.g., [11])

leads to the following result.
Proposition 4.4.2. At m = 0, the positive equilibrium point Ey = (C5, A5, W) is locally

asymptotically stable if and only if

p2 +qo > 0, and p1(p2 + qo) > p3s + q1.

When m > 0, one notices that the coefficients in Q(\, m) depend on m since m is involved
in C; and W;. We use the methods similar to those in [24,212] to discuss the existence of
the critical values of m where possible oscillations or stability change may occur. Suppose
A = iv (v > 0) is a purely imaginary root of (4.21). Substituting it into (4.21) and separating

the real and imaginary parts, we obtain:

2 .
p3 —p1v° = —qovsinmv — qp cosmr,

pov — 3 = —qovcosmy + ¢ sinmu. (4.23)

Squaring and adding both equations of (4.23) lead to
(p3 — p1V2)2 + (pav — V3)2 = (qov)* + 4i. (4.24)
Therefore, the solutions of (4.24) are the roots in
H(z) =23 +112° + Iz + 13 =0, (4.25)

with z = v2 and

h=pi—2ps, lo=p3—2pp3 —q5 and I3 =p3 —¢f.
To explore the existence of positive real roots in (4.25), we use Descartes’ Rule of Signs (see

e.g., [173]) and the sign of the discriminant (see e.g., [93])
D := 1212 4 18111513 — 2712 — 4313 — 413, (4.26)

Regarding the sign of I; (i = 1,2,3) and D, there are some different cases which is summa-
rized in Table 4.2.

That no positive real root exists in H(z) = 0 for m € (0,Mmax), implies no any root
with the form A = iv exists in (4.21). Thus, changing the value of the delay cannot move

eigenvalues across the imaginary axis, i.e. no stability change may occur.
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Number of positive roots
Case Sign Sign Sign D>0 D=0 D <0
lh Iy I3
1 + + + 0 0 0
e e I I I
2 1
3 Al e e distinct repeated 0
3 2 distinct
4 B ™ B distinct (one repeated root) 1

Table 4.2 Number of positive real roots in (4.25).

Proposition 4.4.3. If Ey = (C5,
stable (unstable) for any feasible time delay m > 0 when one of the following holds for all

5, W3) is stable (unstable) for m = 0, then it remains

m > 0:

(i)l; >0 (i=1,2,3); (ii) D <0, and I3 > 0;

Assume that (4.25) has one simple root v := v(m). Following [21], iv(m*) := iv* is a

root in (4.21) if and only if m* is a zero of a function S,, for some n € N where

O(m) + 2nmw

Sp(m) =m — o)

n €N, (4.27)

with 6(m) € [0, 27) such that

qov (p3V - P1V3) +q1 (p3 - p1V2)
- @ + @t
q1 (p3V - p11/3) — qoV (]93 - p1V2)
agv* + at

cosf(m) = ;

sinf(m) =

To investigate the occurrences of stability change at the positive equilibrium point Fs
when m = m*, taking derivation with respect to m in (4.21) and substituting A\(m) = iv*

leads to
o A(m) -1 ~ 3pivt 4 (2pF — pap1 — 3ps) v2 — 2p1ps + paps — 43 _ K@)
dm R @+ ¢ @+
A=iv™ v=v
where

K (v) = 3piv* + (2p7 — pap1 — 3p3) v° — 2p1ps + paps — 4. (4.29)
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Since ng*Z +¢? > 0, we have

CWm))}l

dm

sign {C (v*)} = sign Re{

e d(Re{A<m>}>' 3

dm

Therefore, we have the following claim.

Claim 5. Assume v* is a root in (4.25). Then

g { 4080 Q)

dm

‘ } = sign {IC (v*)} (4.30)
m=m*
where K is given in (4.29).

When (4.25) has simple roots, the eigenvalue A(m) crosses the imaginary axis from left
to right (right to left) if sign {Re{A(m)}} < 0 (> 0) in a neighborhood of m = m* and

g { 408 D)

0 0
dm ‘m—m*} ~ (< )’

which is called “the transversality\crossing condition” because the eigenvalues cross the

imaginary axis with non-zero speed. Therefore, a change in stability may occur at Ej.

Summarizing the above analysis, we have the following result.

Proposition 4.4.4. Assume (4.25) has one simple positive real root v*. Then, the following
holds:

i. If E5 is stable (unstable) when m = 0 and K(v*) > 0 (K(v*) < 0), then it remains

stable (unstable) for m € (0,m*); and then becomes unstable (stable) for m > m*,

it. If E5 is stable (unstable) when m = 0 and K(v*) < 0 (K(v*) > 0), then it remains
stable (unstable) for all m > 0;

Furthermore, the system (3.8) undergoes a Hopf bifurcation at E5 when m = m*.

As we see in Table 4.2, it is possible for (4.25) to have: i) two or three root; ii) one
positive real root with double multiplicity, say 2 = 2, that is, H(2) = H/(2) = 0. For case
(i), the occurrence of stability switches and a periodic-doubling may occur when m varies.
For case (ii), A = £i is not a simple root in (4.21). In this case, the bifurcation is called a
degenerate Hopf bifurcation [66]. These are out of the scope of this work and we leave them
for future research.

Next, we investigate the direction of the Hopf bifurcation and the stability of the bifur-
cating periodic solutions by using the normal form and the center manifold theory developed
by Hassard et al. [78].
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Let "
20~ [ s e
t—m
Then i 1 1
dt — P(A(t)) P(A(t—m))’
with Z(0) = %. Hence, system (3.8) is equivalent to the system
dc _ b(A(t—m) 70 C)
o= me IO — (ue + BH) PA®D)’
dT 1 1
dt — P(A(t))  P(A(t—m))’ -
%‘ -5 (; 7 IFHC) = paA(t) = WA FAW)),
W s (jl(t)) AWO)A) FAD) — V(D))

It is clear that the positive equilibrium point in (4.32) is E* = (C3,Z*, A5, W5) where

* m
"= rlay-

Let u = (ul’u27u37u4)

T:=(Cc(t),Z(t), A(t),W(t)) — E*. Then the third order Taylor

expansion of the system (4.32) is

d
d—‘; = Jju(t) + Jou(t — m) + F (u(t), u(t — m)), (4.33)
where
air —pnb) az 0 0 0 by O
0 0 Pl 0 00 —PL o0
u]]l = * 3 JQ = * 5
a1 0 az2 a3 00 0 O
0 0 ags 0 0 0 0 0
and F = (Fy, Fy, F3, Fy)" where
Fi(u(t),u(t —m)) = dyu3(t) + dizui(t)us(t) + dzzu3(t) + cizui(t —m)

eagun(t)uz(t —m) + dygous (t) + dizgu (H)u3(t) + dyzaud(t)
m) + cazua(t)ud (t — m) + chozus (t)us(t — m),
d35u3(t) + 33u3(t —m) + disgud(t) + 3a3u3(t —m),

digur ()us(t) + dizud(t) + d3gus(t)ua(t) + diszu (t)u3(t)

+diszui (t) + digqu3(t)ua(t),

1 .3
+egagus(t —
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Fy(u(t),u(t —m)) = dszu3(t) + dggus(t)ua(t) + diszud(t) + dyggus(t)us(t),
with
2 +BH)CE —
d%ZZMTNbgv d%?):_(MC"i'/BH)P*l’ déf&:_(uc g ) 2P*27 C§3:%b2> 053: ngia
H +BH)C:
d%m = —QMTNbgv d%33 = _%Pf) d§33 = —%Pf’ C%,sg = %bi’,
0%23 = P%Nb}m d§3 = %P*Z, Cg:s = —d§3, d§33 = %Pf’, 0333 = _d:%s:s»d?s = BHp*l»

A3y = S P2 — Pl (uw + Wi fl), diy=—gl, diy=BHP? diy =—¢°,
- _ - " W
sy = ZPOS3 — IPL 2 —AP2 (uw + Wi fl), diy =152 (POf2+2PLfl),  diy =gl

Ws _
diss = T52 (POf2+3PHf2+3P2fL),  disy =792, chyy = —4ND2,

where, for £ =0,1,2, 3,

d* 1 d® [ b(s) .
A ¢ _ < NI
b= <P(8)> Ay T <P(3)> s= AL o
d’ d*
ff = @ (Sf(s)”s:fl;’ gf = @ <81§((§))) s:_A*'

Since m > 0, we rescale the time by ¢ — L to normalize the delay in (4.33) and
introduce a perturbation parameter m = m* + p with u € R, then (4.33) can be rewritten
as a functional differential equation in the phase space C := C ([71,0],]1%4), at the Hopf

bifurcation point m = m*,

du

S = (ut ) Iu(e) + (p+ ) Ju(t — 1) + (u m)F (a(0), u(t - 1)),

= Lu(w) + F(uyg, p), (4.34)
where L, : C — R? is the linear operator
Lu(9) = (m” + p)[716(0) + J2¢(~1)];
and the non-linear operator F : C' x R — R* is
F(¢, ) = (m* + p)F (¢(0), p(=1))-

By the Riesz representation theorem, the linear operator L, can be expressed in an integral

form, in the sense that, there exists an n X n matrix-valued function

0(,m) : [-1,0 = R
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whose components are bounded variation such that

0
L) = [dn0.00(6) forany e C.
21

In fact, we can choose

dn (0, ) = (p+m*)[116(0) + J16(0 + 1)),
0, 6#£0
where § is the Dirac delta function 6 (6) = { 1’ ; a 07 :
For ¢ € C' ([~1,0],R?), define

%(9”, -1<6<0,
— 0
Alu)e = [ dntr,m)otr), 6=0,
and
v ~1<6<0,
WO Foow, e=o.

Thus, (4.34) is equivalent to the operator-differential equation
u = A(p)ug + R(p)uy. (4.35)

Following the idea used in Hassard et al. [78] we compute the center manifold Cy at the
Hopf bifurcation value. Let x4 = 0 and suppose that the eigenvector g of A(0) corresponding
to the eigenvalue iv*m* is of the form ¢(#) = ¢(0)e™ ™% and ¢(0) := (q1, g2, ¢3, qa)" satisfies

(w*a — 0 - Jge—i”*m*) 4(0) = (0,0,0,0)7.
The direct computation leads to

. i * *
7U*a22+i(v*2+a23a32) iP} (176 e ) —as2i
q1 = v*ag1 ’ L= q3 =1, 4 = —%

The eigenvector of the adjoint operator A* corresponding to eigenvalue —iv*m* is of the
form ¢*(s) = Dye™” ™S, where ¢ = (1,12, 3, 4) with (see e.g., [175])

1 = qa, P2 = @3, V3 = qa, Yy =q1
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and )
D = {21, + 215 + (biodsts — Pla3) e}

Next we use the right and left eigenvectors ¢(f) and ¢*(s) of operator A(0) to compute
coordinates (z,w) describing the center manifold Cy at pu = 0.
Suppose u; is a solution of (4.35) at pu = 0, then (4.35) can be rewritten with a new

variables:

2(t) = (¢,
w(t,0) = u(0) —2(0)q(0) —2(0)7(0) = u:(0) — 2 Re {2(0)q(0)} . (4.36)

On the center manifold Cy, we have

)

2 —
w(t,0) = W(=,%,0) = Wao(6) 5 + Wia(6)2% + Won(6) 5 + -+,
where z and z are local coordinates for center manifold Cy in the direction of ¢* and g*.
Note that W is real if u; is real. We consider only real solutions.
For any real solution u; € Cy of (4.35), it follows from (4.36), by rigorous and tedious

computations, that

z={(¢",w) = w'm'z+(¢"(0),F(W(z,z60)+2 Re{z(6)q(0)},0))
= w'm'z+7(0)F (W(z,20)+2 Re{2(0)q(0)},0)
© s+ 7" (0)Fo (2, 2)
Cxx 22 _ z2 2%z
= wmz+gws to11zz+goeo5 +921— +---
2 2 2
with
920 = 2m*D (uFLh+ @3F o+ Fon + 1 Fh),
g1 = m*D(uFL + @sFL + @Fo + 0 Fr) (4.37)
go2 = 2m*D (uFL + ¢3F% + F o + 1 F )
921 - 2m*D (Q4]:Z122 + q3F322 + Q2]:325 + QI-F325) 9
where

1 _ 41 2 1 1 2 1 2 —i2v*m* 1 —iv*m* 2 42 2 2 2 —i2v*m*
‘/_'.22 = d22(]2 + d13Q1QS + d33Q3 + C33(G3€ + C93G243€ s .FZZ = d33(]3 + C334q3€ s

F = d3squgs + A543 + daqzqn,  Fh = disds + digsaa,
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2 - — 2 2 _ L. _ ik k
Tl = 2dyqo|” + diz (@133 + 31a3) + 2d330q3]” + 2chs]as|® + ¢33 ((&q;»,ew ™t Gyqze ) :
2 2 _ _ 2 _ _
FZ = 2d30qs)* + 233lqsl” =0, T2, = dis (133 + Tuas) + 2d3slqs|” + dis (q334 + T3a)
2 — — —_ _ S0y K K
]:;lz = 2d§3|‘13| + d§4 (9304 + G394) , .7:222 = d§3q§ + c§3q§eﬂ” e,

*

* 1 - =~ _iv'm
+ ¢c93G2Qse )

le2 = dby73 + di30,3 + 3333 + chsqze ™"
}?2 = di37,q3 + d3373 + 3403, ]:212 = d3333 + d343374,
Fhay = diy [2WD(0) + W5 (0)] + iy [20W17(0) + W5 (0)]
1 1
+dly |50 + W8 © + a0 + P o)]
el 205 W (1) + e WD (1)
1 _ iv*m* 2 1 _ 3 —iv*m* 2 3
+ by [2q3e Wi (0) + 5@ Wa (—1) + gse ™™ ™ Wi (0) + qgwfﬁ(—l)}
+ 3d39003Go + diss [(ﬁél - 2q1|q3|2} + 3d3334373
+ 3chsgq3ase ™ + chag [qg%e—zw*m* + 2612|CI3|2} + Cpo3 [qg%ew*m* + 2Q3|Q2|26_w*m*} ,

22z

P2, = & 20w (0) + GW(0)] + By 2057 WD (1) + e WD (1)
+ 3d3330373 + 3c333q3a3¢ ",
1 1
Fh, = diy [quwéé)m) + 50 Wa (0) + sy (0) + WY (oﬂ
d3 9 W(S) = W(s) d3 2 dl 2— 92 2
+ d33 | 2g3W117(0) + @3sWoy' (0) | + 3d333935 + d3z4 | 4304 + 2q4lqs]
r 1 1
+ di [0+ 2a1las) + s [2q3W§§)(0) + 5@ (0) + Wiy (0) + W) (0)}

-7:;122 = d3 Q3W1(f)(0) + q_3W2(3)(0)} + d33 [CI§Q4 + 2CI4|(]3|2}

—
[\

1 1 : .
iy | 58 Ws (0) + 58Wao (0) + @iy (0) + s Wiy <0>} + 3353033,

where
1911 - QGIL o s
W11(9) = e q(o)elv m*0 + U*m*q(o)e w*m*0 + Ko,
7:20 Py o ¥ ’L._207 iy * e ¥ Sy o
[/[/20(9) = v*gm* q(o)ew m*6 + ﬁq(o)e w*m*0 + K'1€2w m 9’

with the four dimensional vectors K7 and Ko satisfy

<2iU*I4 —J1 - J2€_2w*m*> K, = —*}—22,
m

(J1 + J2) Ko Fez,

m*
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where F,2 = (.leg,ffg,]:fg,fjg)T and F.z = (Fl, F&, F&, F)T.
Finally, we can obtain the most important quantity:
C1(0) = L g20911 — 2g11]* — }|go2|2 + 92
2u*m* 3 2
Let
Re {C1(0)}
= "= 4.38
H2 Re {N(m*)}’ (4.38)
B2 = 2Re{C1(0)},

where A(m) = Ar(m) +iX;(m) is a solution of characteristic equation corresponding to the

linear system 22 = Jyu(t) + Jou(t — m) satisfying Ag(m*) = 0 and A;(m*) = v*.
By using the general theory of Hopf bifurcation, we know that the direction of the Hopf
bifurcation is determined by the sign of s and the stability of the bifurcating periodic

solutions is determined by the sign of S [78,175,204]. Hence, we have the following result.

Theorem 4.4.1. Assume that the system (4.32) undergoes a Hopf bifurcation at E* when
m = m”*. Then we have the following:

(i) If p2 > 0 (u2 < 0), then the Hopf bifurcation occurs as m crosses m* to the right (to the
left);

(i) If B < 0 (B2 > 0), then the bifurcating periodic solutions are orbitally stable (unstable).

Due to the complexity of the system, we cannot provide the explicit form of us and (5o
with respect to the system parameters, instead, we will calculate them numerically in the

following section.

4.5 Numerical simulations

In this section, we carry out a case study for two cleaner fish species with appropriate
parameters from the literature. Then, we explore the stability of Fy and existence of periodic

solution.

4.5.1 A case study.

Aquarium studies have found that some kinds of wrasse species (type of cleaner fish) can
remove mobile sea lice (Lepeophtheirus salmonis) from salmon in production cages, such as
goldsinny (Ctenolabrus rupestris), rock cook (Centrolabrus exoletus), ballan wrasse (Labrus

bergylta), cuckoo wrasse (Labrus miztus) and corkwing (Crenilabrus melops) [21]. In this
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subsection, we study the efficacy of two different species of cleaner wrasses, goldsinny and
ballan wrasse, on controlling sea lice in salmon farms based on our proposed model.

First, for the Lepeophtheirus salmonis population, we fix the parameters as in Figure 3.6,
then the predator-free equilibrium point is £y = (C{, A7, 0) where Cf ~ 25 and A} ~ 840.126
from (3.20).

Now, for the cleaner fish population, we assume that the functional response in the

system (3.8) is Holling type II

as

F(s) = sf(s) = 1o

where a is the attack rate (searching efficiency) and ¢ is the handling time (see e.g., [87]).
In ecology, the attack rate and the handling time can be measured as (see e.g., [22]),

The number of prey items consumed by a predator during a period of searching time
a =

)

(4.39)

The searching time x The density of prey items

The total time - The searching time

The number of prey items consumed by a predator during a period of searching time

In the field experiments, goldsinny showed more efficiency in removing adult sea lice from
salmon than ballan wrasse [48, 162] although goldsinny is smaller than ballan wrasse in the
size. More clearly, goldsinny consumed a mean of 46 lice per wrasse per day in cages of
500 salmon [18] while ballan wrasse consumed 23 lice per wrasse per day in average [162].
We assume the search time is 0.6 day (the total time is one day in these experiments), and
to test the efficiency of a cleaner fish for controlling sea lice, we measure the number of
sea lice without and with the control agent cleaner fish, separately. We take the density
of prey items in (4.39) as density of adult sea lice (A} = 840.126) without predator and
use pw = ersmn to approximate the mortality rate of cleaner fish since the lifespan
of goldsinny and ballan wrasse is 17 and 25 years, respectively, [163]. To guarantee the
coexistence of Fy, we choose 7 such that F(A})y > pw, that is, Ry > 1. Together with
(4.39), we can approximate the parameters values which is listed in Table 4.3. Therefore, the
net reproductive number for goldsinny and ballan wrasse is R*% = 1.713 and R%* = 1.210,

respectively.
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Parameter a q 0% Uw

Dimension | Sea lice per day ~ Day Dimensionless Day~!

Goldsinny 0.0913 0.0198 0.000009 0.00016
Ballan wrasse 0.0456 0.0415 0.000009 0.00011

Table 4.3 Parameter values for the model (4.3).

For simulations, we choose initial data as Cy = 5, Ag = 10 and Wy = 2. We can see that
in the goldsinny case, A% = 300.491 and C5 = 18.3387, that is, it causes 64.23% reduction
in the population size of adults sea lice and 27.23% of copepodids, when no clear fish exists
(A} = 840.126 and C; = 25). Taking ballan wrasse as the cleaner fish, one can calculate
A% = 543.919 and C5 = 22.0507, and hence, the reduction is 35.26% in the adults and
12.51% in copepodids population size. The numerical computation indicate that, goldsinny
is more aggressive predator than ballan wrasse and causes a dramatically reduction in the
adult sea lice (Figure 4.4) which is consistent with the theoretical analysis since R} >Ry
The simulation result has good agreement with the field experiments. The reasons might
be that cleaner fish can be intimidated by salmon since salmon become irritated and turn
over by the presence of adult sea lice [30, 160]. So the smaller size of goldsinny gives more

flexibility to approach salmon and remove the adult sea lice.

B T e o O S N SR | 1
20 600
515 | S a00
S =
o [T % 1 =l 4/ | A
i Ballan wrasse | | 200~ Ballan wrasse
Goldsinny | Goldsinny
9 : ‘ ‘ ] 0
50 100 150 200 T e w0 am
T T
(a) Time series C(T) (b) Time series A(T)

Figure 4.4 The sea lice population dynamics after introducing cleaner fish Cy =5, Ag = 10
and Wy = 2. Green line: ballan wrasse, blue line: goldsinny.

4.5.2 Stability of FE.

To capture the oscillation behavior at Ey := Es(m) and possible stability switch, we keep

the sea lice parameters as those used in Figure 4.4, take

0.7s

—0.4 —0.165 F(s)= ——"
pw , ¥ : (s) 1T 028"
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and let m be varied.
When m = 0, we have Ry = 187.344 > 1, Ry = 1.02915 > 1, and

P2+ qo = —2.88684 < 0, p1(p2 + qo) = —58.5469 < p3 + q1 = 0.159243,

in (4.22), i.e., the condition in Proposition 4.4.2 does not hold, implying that E5(0) =
(5.6,114.3,39.3) is unstable and oscillations occur (see Figure 4.5). From Proposition 4.4.4,
when m > 0, we can predict that F3(m) remains unstable and the occurrence of periodic
solution may occur when m < m* for some m* > 0, then becomes stable as m > m*
is increased. To find m*, we plot S,,(m) defined in (4.27) in Figure 4.6 and obtain m* =~
10.63. We can further discuss the stability and direction of the bifurcating periodic solutions
following Theorem 4.4.1. Numerically, we have v(m*) = v* &~ 0.23 and Re {\'(m*)} < 0 from
(4.25) and (4.30), respectively, and calculate goo = 0.14036 — 0.1613894, g1 = —0.278289 —
0.31439%, gop = —0.17569 + 0.119498i and g1 = —0.88805 — 10.3024¢ in (4.37). Thus,
C1(0) = —0.444186 — 5.245174, implying pue < 0 and B2 < 0 in (4.38). Hence, the Hopf
bifurcation occurs as m crosses m* to the left and the bifurcating periodic solutions are
orbitally asymptotically stable. To see the changes of the dynamical behavior of orbits
with respect to m, first, we choose m = 2 < m*, then Ry = 138.788 > 1 and Ry =
1.02883 > 1. Thus, a positive steady state FEo(2) = (5.08,114.28,34.86) exists, unstable,
and an oscillations appear (see Figure 4.7). Then, we increase the infection development age
time m = 14 > m™*, which results the break of the limit cycle, and the system approaches to
a stable steady state Fo(14) = (2.79,114.28,15.92) (see Figure 4.8). To see the influence of
m on the amplitude of the population size of system 3.8, we plot the difference between max
and min of the solutions of system 3.8 as m varies. Figure 4.9 shows that the amplitude of
the oscillations decreases as m increases until it reaches zero when m > m*. All of these are
consistent with our prediction. Furthermore, we can notice in Figure 4.7 that high points
in adult sea lice and copepodids numbers occur before peaks in the cleaner fish number.
Biologically, abundance of mature sea lice leads to more egg production, and hence, high
level of copepodids. On the other hand, when the number of predators (cleaner fish) is low,
the prey (adult sea lice) population rises in size. While the food source (adult sea lice)
increases, the number of predators increases. When there are enough predators, the prey
numbers decline. With a lack of food source, the number of predators crashes and the cycle

repeats.



104

1250. 55.
1000. s, =
=
=

o 35.

%

= s00. 25.
250. 15.Q
Cl
0. 5. ~—

1000 1200 7400 1600 7800 2000

Figure 4.5 Time series of system (3.8) with m = 0. A(T)/red, C(T') /blue and W(T')/green.
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Figure 4.6 Function S, (m) (n =1,2,3).

4.6 Discussion

Recently, the control of sea lice becomes one of the top priorities in aquaculture research
due to the high reproductive capacity of sea lice. In salmon farms, the biological control of
sea lice using cleaner fish is more attractive than using chemicals because of its environmen-
tal benefits and cost-effective [17, 118, 190]. Many ecologists studied controlling sea lice by
cleaner fish via field experiments without a mathematical modeling. In this paper, we have
studied a stage-structured model for biocontrol of sea lice by introducing one of its natural
predators cleaner fish. We have considered two stages in the immature phase of sea lice and
one stage in mature phase of sea lice, and assumed predator-prey interaction at the adult
level of sea lice. From the dynamical point of view, we have studied the qualitative features
of the system, such as existence and uniqueness of solutions, boundedness, equilibria, per-
sistence, and stability, with respect to the adult reproduction number for sea lice Rs and
the net reproductive number of cleaner fish Ry.

As a case study, based on our proposed model, we have discussed the efficacy of two dif-
ferent species of cleaner wrasses, goldsinny ( Ctenolabrus rupestris) and ballan wrasse (Labrus

bergylta), on controlling sea lice. Our numerical simulation has shown that, goldsinny causes
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Figure 4.7 Time series (a) and phase portrait (b) of system (3.8) with m = 2. A(T)/red,
C(T)/blue and W(T') /green. The green dot represents E2(2) = (5.08,114.28,34.86).
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Figure 4.8 Time series (a) and phase portrait (b) of system (3.8) with m = 14. A(T)/red,
C(T)/blue and W(T')/green. The green dot represents Es(14) = (2.79,114.28,15.92).

64.23% reduction in the population size of adults sea lice and 27.23% of copepodids, com-
paring with those without any cleaner fish, while ballan wrasse causes a reduction of 35.26%
in the adults and 12.51% in copepodids population size. This indicates that goldsinny is
more aggressive predator than ballan wrasse and causes a dramatically reduction in the
adult sea lice, which is consistent with the field experiments.

Through the theoretical analysis of the model, we understand that the net reproductive
number of cleaner fish R exceeds 1, implying an rise in the cleaner fish population, hence,
larger Ry is more effective for sea lice control. In real world application, fish biologists in
salmon farms may use the theoretical results of the proposed model to develop strategies or
polices to improve the efficiency of the control agent, for example, by (i) Use intermittent
dietary supplements for cleaner fish to increase their attack rate. In general, if cleaner

fish are fed too much, they may not eat sea lice and tend to ignore the salmon [162], (ii)
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Figure 4.9 The amplitude of the population size when m increases.

Monitor the number of cleaner fish in salmon farms, in the sense that, keep appropriate ratio
between the number of salmon and cleaner fish. In nature, when the number of cleaner fish
is large enough, the competition between them increases, i.e., many cleaner fish may clean
one salmon at the same time, which leads the salmon to resist the cleaner fish, and hence,
decreases the number of consumed adult sea lice [162]. From a mathematical point of view,
in to our model, (i) and (ii) mean the value Af(A), in (4.3b), is small. More specifically, in
the case study, this implies that the attack rate becomes smaller (see (4.39)). Theoretically,
using cleaner fish with long enough lifespan (i.e. larger Ry) is more effective for sea lice
control. However, in nature, most cleaner fish have lifespans much longer than a salmon
farm production cycle (2 years), thus, cleaner fish mortality during a production cycle is
negligible. We hope that this paper would lead to a better understanding of the biological

control of sea lice and provide useful conceptual tools for this important subject.



Chapter 5

A Time-Delayed Epidemic Model

for Ebola Disease Transmission

5.1 Introduction

Ebola virus disease, or simply Ebola, is a disease of humans and other non-human primates
(gorillas, chimpanzees and duikers) caused by Ebola virus (EBOV) which belongs to the
family Filoviridae. The virus originates in fruit bats and jumps to humans through an
intermediate animal, such as chimpanzees [158, 172]. Ebola first appeared in 1976 in two
outbreaks, one in Sudan, and the other in Democratic Republic of Congo. Since then it has
resurfaced in Africa several times, for example, in 1994 in Ivory Coasty and Gabon; and in
2000 in Uganda. The outbreak in West Africa (Guinea, Liberia and Sierra Leone) in March
2014, is the largest and most complex Ebola outbreak. During this outbreak, Ebola has
infected around 27678 people, roughly 11267 of whom have died [183]. According to Centers
for Disease Control and Prevention (CDC) and World Health Organization (WHO), Ebola
can be spread through human-to-human transmission via direct contact with the blood,
secretions, organs or other bodily fluids (including but not limited to urine, saliva, sweat,
feces, vomit, breast milk, and semen) of infected people, and with surfaces and materials
(e.g., bedding and clothing) contaminated with these fluids [182, 184].

The mathematical study of infectious disease dynamics is an important aspect of in-
vestigating the spread of infections. Compartmental models are the most frequently used
to describe the epidemiology of infectious diseases, where the total population is usually
divided into a finite number of discrete categories, for example, the classical SEIR model
with four stages of susceptible, infected but not yet infectious, infectious and recovered is

discussed in [52, 83]. Multiple epidemiological models have been proposed to predict the
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spread of Ebola in West Africa [10,155,203,205]. In [16], the author used SEIR model to
estimate the basic reproduction numbers of Ebola during the 2014 outbreak in West Africa.
The maximum estimation of the basic reproduction number was 1.51 for Guinea, 2.53 for
Sierra Leone and 1.59 for Liberia. In [155], the authors divided the population into six
compartments: susceptible, exposed, infectious, hospitalized, funeral and removed. They
found that increased contact tracing, improved infection control, or a combination of the two
can have a substantial impact on the number of Ebola cases. In [203], a model consisting
of susceptible, exposed, infectious, contaminated deceased, isolated infectious and removed
categories was proposed to indicate that isolating the infectious cases with average time
less than three days between the appearance of symptoms and isolation, and the efficiently
monitoring of the contact traced incubating infected cases are the most important elements
for containment of Ebola within a short time. A SEIRD model (susceptible, exposed, in-
fectious, recovered and dead but still infectious) was studied in [205]. They found robustly
that inferences that don’t account for post-death transmission tend to underestimate the
basic reproductive number, in other words, large amounts of post-death transmission imply
larger reproductive numbers.

In the real world, for many diseases such as Ebola, when adequate contact with an
infectious individual happen, a susceptible individual becomes infected but is not yet in-
fectious. This individual remains in the exposed class for a certain latent period before

becoming infectious. Such period in disease transmission can be modelled by a delay dif-

ferential equation. For example, in [10] an SEIRS epidemic model with a constant latent
and immune periods is presented. In [194], the authors proposed a general mathemati-
cal model for a disease with a latent period and relapse. In [212], a disease transmission

model of SEIRS type with distributed delays in latent and temporary immune periods is
discussed. The authors studied the threshold property of the basic reproduction number Ry
and the dynamical properties of the disease-free/endemic equilibrium points with general
and particular probability distributions in both periods.

In West Africa it is common to contact with the bodies and fluids of persons who
have died, where family and community members often touch and wash the body of the
deceased in preparation for funerals [136,152]. Since Ebola virus can survive for several days
at room temperature in body fluids [181], one of the main infection pathways is through
preparation of corpses for burial. In this chapter, we propose a model that incorporates
both the transmission of infection between the living humans and from the infected corpses
to the living individuals with a constant latent period. From the viewpoint of dynamics, we
discuss the existence and stability of equilibrium points and give numerical simulations to
show the theoretical results and explore the dynamical behavior of the disease under varied

environments. The main difference of this work, from the literature e.g. [16,155,203,205], is
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that those models are all given by ordinary differential equations which neglected the effect of
latent period. However, the latent period has a profound effect on the generation time, and
hence epidemic growth (see e.g, [135]). Moreover, although there are some contain analysis
on the basic reproduction number Ry previously, which offer some interesting insights into
Ebola transmission in humans and show some numeric results, in this work, in addition to
the mathematical derivation of Ry, we determine the local and global dynamics of the model
analytically with respect to the basic reproduction number Rj.

The rest of this chapter is organized as follows. In Section 5.2, we present the model and
discuss its well-posedness by verifying the non-negativity and boundedness of the solutions
with reasonable initial data. In Section 5.3, we calculate the basic reproduction number
Ry; discuss the global stability of the disease-free equilibrium when Ry < 1; explore the
existence of a unique endemic equilibrium when Ry > 1 and show the local stability under
certain condition. In Section 5.3, we prove the persistence of infection when Ry > 1 and
study the global stability of the endemic equilibrium in a special case of the model by
considering a limiting system of the model and then using the Lyapunov functional and
LaSalle invariance principle. In Section 5.4, numerical simulations are given to demonstrate

the theoretical results and explore the disease transmission with the variation of seasonality.

5.2 Mathematical model and the well-posedness

property

Motivated by the model in [205], we consider the transmission of infection between the living
humans and from the infected corpses to the living individuals in which the latent period

of Ebola is incorporated.

We consider the size of the population N(¢) is divided into susceptible, exposed (in-
fected but not yet infectious), infectious, recovered individuals and infected corpses who are
nonetheless infectious, with class sizes denoted by S(t), E(t), I(t), R(t) and D(t), respec-
tively. Let 7 be the latent period, c¢ the probability of transmission of infection from an
infectious human to a susceptible individual when a contact occurs, and d the probability
of transmission of infection from an infectious corpse to a susceptible individual. Therefore,

the rate of new infected individuals at time ¢ is

S(t)I(t) S(t)D(t)
c N +d NG

If i is the natural death rate, then the probability that an individual survives in the

latent period [t — 7,t] is e #7. Hence, the rate of individuals surviving in the latent period
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7 and becoming infectious at time ¢ is

Sit—1)I(t—7) S(t—71)D(t—7)

“TNe-n ¢ T Ne-n o ¢
Thus we have the following delayed model:
as@) S)I(t) | S(t)D(t)
. - AN N W
dE(t) CS(t)I(t) N dS(t)D(t) B CS(t —7)I(t— T)G,M
dt N(t) N(t) N(t—1)
S(t—7)D(t—71) -
—dwe — pE(t),
T = S e AP D s, G
MO~ o1y - )
DO = (et 9)10) -0,

where N(t) = S(t) + E(t)+ 1(t)+ R(t) + D(¢), A is the recruitment rate, J is an additional
death rate due to infection by Ebola, % is the average duration of the infectious period, with
recovery rate p, and the average period of infectiousness after death in human corpses is %

All the parameters are positive constants. An architecture of the model (5.1) is given in

Figure 5.1.
m
R >
A
p
4 4
A > I gl
—>» S E » I » D —>
A .
»

Figure 5.1 Schematic diagram of Ebola transmission.

By choosing a reasonable initial condition, we can find the implicit solution of the dif-

ferential equation for E(t) in (5.1) in the following result.
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Lemma 5.2.1.

= / ]i((?)(cl(e)+dD(0))e‘“(t‘9)d9

t

is the implicit solution for E(t) in system (5.1) with the initial condition

/ N () 9 ) +dD(8))e!dd.

Proof. From the second equation in system (5.1), we have

et (4 b)) = et (3010 + ap) - et (ST @i =7y 4 an(e - 1))

By integrating on both sides of the equation, we get

eME(t) — E(0) = /(%(d(ewdma))ew) do
0

- /t <Ji((99::)) (cI(0—7)+dD(0 — T))eu(e—r>) a0

O/t(]i((? cI(6) + dD(6))e" )de_ t/T(;((ge))(c[(eHdD(‘g))eW)de

_ / (ji((?)(d(e)wp(e))eﬂ‘))de/O(fj((?)( I(@)+dD(6))e“9) do.

-7 -7

0
Hence, if £(0) = | 33

-7

(cI(0) + dD(0))er?ds, then E(t) = f G (e1(0) + dD(0))e= (=0 do. O
t—7
5
Denote C := C([-7,0),R5). For ¢ = (¢1, 2, b3, b4, p5) € C, define ||o]| = > &l oo
=1

where

illoo = i(0)] -
61l = s, 1650)

Then C is a Banach space and CT = {¢p € C : ¢;(0) > 0,Vi € {1,2,3,4,5},60 € [-7,0]}
is a normal cone of C' with nonempty interior in C. For any given continuous function
u = (u1,uz,us,uq,us) : [—7,¢) — R with ¢ > 0, we define u; € C for each t > 0 by
u(0) = (ur(t + 0),ua(t + 0),us(t + 0),us(t + 6),us(t + 6)) for all § € [—,0].
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Taking the initial data for system (5.1) as the form
0

5
Xe=10ECT: Y 0(s) 2 € Vs € [ 0] on(0) = [ | AL
= o > ()

ds

for small & € (0, W), where the form for ¢2(0) follows from Lemma 5.2.1. Note that
the denominators N (¢) and N (¢ — 7) in the system (5.1) do not approach to zero as t — co.

It is clear that,
dN (t)
dt

> A — max{u, y}N(t).

For the system dl:igf) = A —max{u, v}u(t), the equilibrium point

A du |
max{p,y}’ dt lu=¢

m is globally asymp-

totically stable. This implies that for any 0 < £ < = A —max{pu,v}¢ > 0.

So if u(0) > &, then u(t) > £ for all t > 0.

The following theorem demonstrates that the solutions of model (5.1) are nonnegative and
bounded.

Theorem 5.2.1. For any ¢ € X, system (5.1) has a unique nonnegative solution u(t, ¢)

satisfying ug = ¢. Furthermore, the solution is ultimately bounded in C. More precisely,

< (c+d)A Ae ™ HT(c+d)
> e

. A 1e .
thj& sup S(t) < o tlggo sup E(t) it =M, thj& sup R(t) <

oM i (p+0) M
o and tli)rgo sup D(t) < ~=—.

i <
» Jim sup I(t) <

Proof. For any ¢ € X¢, we define F(¢) = (F1(9), F2(¢), F3(¢), Fu(¢), F5(¢))", where

Flo) = A- C¢15(0)¢3(0) B d¢15(0)¢5(0) i (0),
;@(0) ;@'(0)
F2(¢) — C¢15(0)¢3(0) +d¢15(0)¢5(0) - C¢1(5_T)¢3<_T) B d¢1(5_7—)¢5(_7-> 7M¢2(0)7
;@(0) ;@(0) ;@(—7) ;fﬁi(—T)
Fy) = ACTDBED AT s)es0),

é bi(—7) ;‘51¢i<—r>
Fi(¢) = pd3(0) — upa(0),
F5(¢) = (4 9)93(0) —~v95(0).

Note that X¢ is closed in C' and for any ¢ € X¢, F(¢) is continuous and Lipschitz in ¢
in each compact set in R x Xz. By [74, Theorem 2.2.3], it follows that system (5.1) has a

unique solution u(t, ¢) through (0, ¢) on its maximal interval [0, () of existence.
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Fori=1,3,4,5, obviously Fj(¢) > 0 when ¢ € X¢ with ¢;(0) = 0, thus the solutions u;(t, ¢)
are nonnegative for all ¢t € [0,() see [169, Theorem 5.2.1]. wua(t,¢) > 0 is straightforward

from Lemma 5.2.1.

Moreover, from @ = A — uS(t) — pBE(t) — pl(t) — pR(t) — vD(t), we have

dN(t
dt( ben- min{u, y}N(1).
By the standard comparison argument and because y = m is globally asymptotically
stable in the system d%—gf) = A — min{y, y}y(t), we have
A
lim sup N(t) < ——F———.
=500 min{p, v}

Thus, S(t), E(t), I(t), R(t) and D(t) are bounded on ¢ € [0,(). Hence, [74, Theorem 2.3.1]

implies that ( = co. That is, all the solutions exist globally, and are ultimately bounded.
More precisely, now in (5.1), from the first equation, we have %Et) < A —puS(t), so

; A : 1) D(t) : :
tlgglo sup S(t) < h Using the fact that N <1, O < 1 for all ¢ in the second and third

equations, we get

T < LD po),
%t) - W_(Mwé)l(t)

Hence, lim sup E(t) < (DA and lim sup I(t) < Ae #(etd) . D, Then it follows that,
t—o0 H t—o0

p(p+up+9)
from the forth and fifth equations

RO < prt — urie)

and D
t
% < (p+ )M —yR(1),
<

(p+0)M
< M O

respectively. Thus, lim sup R(¢) < 2% and lim sup D(t)
t—00 H t—00

5.3 Disease-related equilibrium points and basic
reproduction number

From the system (5.1) it is easy to see that the class F, I and D are disease-related, when
E(t)=1(t)=D(t) =0, S(t) = % and R(t) = 0, that is, the disease-free equilibrium (DFE)
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B = (%, 0,0,0,0) always exists for all values of the parameters.

The linearization of (5.1) at Ej is

WU~ —erwy - an(t) - n(0),

%it) = cl(t) +dD(t) —ce M I(t —7) —de™""D(t — T) — pE(t),

%(tt) = ce It =7)+de "Dt —7) = (p+ p+0)I(t), (5.2)
MO p1t) — uR(),

DU~ (ut 9)10) ¥D(0).

To calculate the basic reproduction number, we consider the equations for the diseased

classes in system (5.2), which can be rewritten as

d
$Y(t) =AY (t — 1) — BY (t), (5.3)
where
E(t) 0 —ce M —de HT i —c —d
Yt)=| I(t) |, A=|0 ce T  de kT and B=|0 p+pu+d 0
D(t) 0 0 0 0 —(up+0) ~

Let Yo = (y1,42,93)" be the number of classes E(t), I(t) and D(t) at ¢ = 0, then from (5.3)
the distribution of the remaining population of classes E(t), I(¢t) and D(¢) at time ¢ > 0 is

Y(t) = e By,

The total number of newly infected individuals is

Y= / AY(t —7)dt = / Ae By odt = AB71Y,

due to the nonsingularity of the matrix B. Then it follows that, the next infection operator

is
—(yetd(ptd))e™ T —deHT

1 ( ch(lé)ﬂlg?) 5 R

Mo — -1 _ yetd(p e HT de HT

0= AB 0 Y(pFu+o) ¥
0 0 0

In literature (see e.g., [L05]), the basic reproduction number Ry for system (5.1) is the
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spectral radius of the matrix My, which is

(e dp ) et et dut d)e )

R = .
‘ Y (p+p+9) pru+d  y(p+p+9)

Biologically, e #7 is the survival rate of infected individual in latent period, “TH is the num-

ber of the death from one infected individual and m is the average period of infected
, ;j;_:(; is the number of newly infected in-
dividuals that arise from one infectious individual and 95— (#+9)

v(p+p+9)
infected individuals that arise from one infectious corpse. From the point view of epidemi-

individual to recover/survive or die. Therefore

is the number of newly

ology, if the basic reproduction number Ry > 1, then each individual is causing more than

one infection, so the disease will take hold and when Ry < 1 the disease will die out.

Therefore, in order to reduce the spread of the disease, we need to restrict the value of
Ry below 1 by controlling the related parameters. For example, for the fixed parameters
¢, w, 0, p and ~y, first, notice that % = —uRy < 0 for all 7 > 0, implying the reproduction
number decreases as the latent period increases. Hence, we may try to extend the duration

of latent to slow Ebola spread by prescription drug or control measures. On the other side,
ORy _ e M7 (uto)
od — ~y(ptu+d)
transmission rate d small to reduce the spread of Ebola, one of the control manner is dispose

> 0, Ry increases as the value of d increases. Therefore, we need to keep the

of human remains either by cremation or burial. Mathematically, it is straightforward to

obtain:

1 yetd(p+0) y((pt+ptd)er” —c)
Lemma 5.3.1. Ry <1 when 7 > ;ln (W) ord < TR

Figure 5.2 provides us the relation of the basic reproduction Ry with respect to the

latent period 7 and the transmission rate d.

Ry Ry

Ry >1

Ry<1

Ry vs T Ry vs d dvs T

Figure 5.2 The relationship between Ry, 7 and d.

The following mathematical result is consistent with the biological interpretation.

Theorem 5.3.1. The disease-free equilibrium Ey of system (5.1) is locally asymptotically
stable if Ry < 1 and it is unstable if Ry > 1.
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Proof. At the DFE point (%, 0,0,0,0) in (5.1), the corresponding characteristic equation is

ANT) = A+ pw)’h(A,7) =0 (5.5)
where
AAT) = A+ p+u+8) (N+7) = (Ae ™ + (ey +d(u+6)) e ) e . (5.6)
Since A = —p is a negative root in (5.5), it suffices to consider the roots in h(\,7) = 0.
From

hO0,7) =v(p+p+6) — (ey +d(p+6)) e =~(p+p+6)(1 - Ro),

it is apparent that if Ry > 1, then h(0,7) < 0. Since h(A, 7) is continuous with respect to A
and ,\ILHQO h(\,7) = 400, there exists A > 0 such that h(\,7) = 0. Therefore (%,0,0,0,0) is
unstable in system (5.1) when Ry > 1.

Now, when Ry < 1, we need to show that all the eigenvalues in h(A,7) = 0 have negative

real parts. First, note that any eigenvalue in h(\,7) = 0 satisfies
A +p+u+08)(A+7) = (Ae™ + (ey +d(u+06) e ) e,

which is equivalent to
A A THTOA
( + 1) < + 1) = (ce 24 R0> e,
p+0+p v pEo+py

A A ce HT A
— 1) (2 H+1) =Ry ([ —————C 1) eV,
<p+5+u )(7 ) 0<RMp+6+m7 )

Assume there exists a zero in h(A,7) = 0 with Re(\) > 0, then

That is,

A
— 41 >1, ‘e_)‘T <1
p+o+u
and
‘)\—1—1' >‘ ce ' A+1‘
gl Ro(p+6+mp)y
due to Ry > %. Therefore, when Ry < 1, we have

A A ce KT A
2 1) (241 >Re—”<+1>',
‘<p+5+u ><7 )‘ ‘ 0 Ro(p+6+pu)y

which leads to a contradiction. Hence all the eigenvalues in (5.5) have negative real parts,



117

implying F; is locally asymptotically stable. O
Remark 5.3.1. Theorem 5.3.1 can be obtained from [217, Theorem 2.1 and Corollary 2.1].
In addition, we can prove that,

Theorem 5.3.2. If Ry < 1, the disease-free equilibrium Ey of system (5.1) is globally
asymptotically stable.

Proof. Let tg > 0 be sufficiently large, since N(t — 7) > 0 and S(t —7) < N(¢t — 7) for any
t > to + 1, it then follows from the third and fifth equations in system (5.1) that

d.;i(tt) < c(l+o)e "It —71)+d(1+o1)e " D(t—1)— (p+p+0)I(1),
DU (a1 - 20(0), (5.7)

for sufficiently small o1 > 0.

Consider the following linear system

mgw — (14 a)e Vit — 1)+ d(1+ 01)e P Va(t — 1) — (p+ p + O)VA(t),
d?t(t) = (4 0)Vi(t) —YVa(t). (5.8)

Let Ai(o1) be the principle eigenvalue of system (5.8). To prove that Aj(o1) < 0, first,
we show that system (5.8) is quasimonotone and irreducible. Then Theorem 5.5.1 in [169]
guarantees us that it is sufficient to consider only the real roots of the characteristic equation

of (5.8) because any complex roots would have smaller real part than the largest real root.

In fact in (5.8), ¢(14+01)e ¥ Vi(t—7)+d(1+01)e *Va(t—7) — (p+p+9)Vi(t) is increasing
as a function of the delayed variable V;(t—7) (i = 1,2) and (u+6) Vi (t) —yVa(t) is increasing
with respect to Vi(t), thus, from the results in [169], system (5.8) is quasimonotone. To

prove that system (5.8) is irreducible, it is enough to show that the matrix

A c(l4+o1)e " —p—p—35 d(l+4o0y)e M
pw+o -

is irreducible, which is straightforward since the directed graph associated with the matrix

A is strongly connected (see e.g. [106]).

The characteristic equation of (5.8) is

AN = A+ p+p+0) (A+7) = (L+01) (Ae™ + (ey +d(p+6)) e ) e = 0.
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When o1 = 0, it is clear that A1(0) > 0 when Ry < 1. Hence, all real roots are negative

because lim Aj(\) — oo and
A—ro0

AJ(N) =22+ (erA+ 7 (ey +d(p+6))) e 4 (ot i+ 8+ ) — eI > 0

ce— (A+u)T ce KT

for A > 0 because e S s < Ry < 1. Thus, A\1(0) < 0. Due to the continuity of
A1, A1(o1) < 0 for sufficiently small o1 > 0.

It follows that there exists a solution U (t) = e* (Dt of (5.8) , where ¢y is the positive
eigenfunction associated with A1(o7), U_'i and ¢ are vectors with two components. Since
I(t) > 0and D(t) > 0 for all ¢ > 0 in (5.7), the comparison theory implies that there exists
a small 1 > 0 such that (I(t), D(t))" < £1eM@tgg for all t > ty. From Aj(o1) < 0, we
have tllglo (I(t),D(t)) = (0,0). By the theory of asymptotically autonomous semiflows (see
e.g., [185]), it follows that

A

tlim (S(t), E(t),I(t),R(t),D(t)) = <,0,0,0,0> .
o0 I

That is, F7 is globally attractive if Ry < 1, which, together with the local stability of Fy

established in Theorem 5.3.1, confirms the global asymptotic stability of the disease-free

equilibrium F; when Ry < 1. This completes the proof. 0

To discuss the dynamical behavior of the system (5.1) when Ry > 1, first, we have the

result about the existence of endemic (disease-present) equilibrium.

Theorem 5.3.3. If Ry > 1, then system (5.1) has a unique endemic equilibrium point
Ey = (S*, E*, I*, R*, D*) with 0 < §* < %, E*>0,I*>0, R* >0 and , D* > 0.

Proof. If the positive equilibrium (S*,E*,I* R* D*) in system (5.1) exists, then S*, E*  I'*
R* and D* must satisfy

A cS*I* B dsS*D* LSt — 0
S+ B+ +R+D* S+ E+I +R+D " -
(1 — e H7)eS*I* (1 — e~h7)dS* D* .
—ul™ =0, 5.9
S+EB+ I +R+D  SrB+F+R 1DV (5:9)
ce PTS*T* de *T5*D*

—(p+pu+d)I* = 0,
pl" — pR* = 0,
(u+0)I* —yD* = 0.
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In (5.9) from the forth and fifth equations, we get

R =21 and D*=FT0p (5.10)
p v

Hence, the remaining three equations become

A—g(S* E*, I") — pnS* = 0,
(1—e#)g(S*,E*, I*) —pE* = 0, (5.11)
e MTg(S*,E*, I")— (p+p+0)I* = 0,

where S I 1 dStD
c * *+ * )%
EF T = .
IS ) = e e Ty D
By (5.10), we have
o(S% B* ") = p(ye+d(p+0)) S*I*

pryS* + pyE* + (02 + py +yp + pd) I*
From the first and third equations of (5.11), we obtain

. A—pus
(pHpto)er

Clearly, if S* > % then I'* < 0, that is, the positive equilibrium does not exist. Therefore,
if the positive equilibrium Es exists, then 0 < S* < % Notice that g(S*, E*, I*) = (p+ u+
d)elTI*, it follows from the second equation of (5.11) that

(L—e")g(S* E*I7) _ (A—e")et(p+p+6)I" _ (1—e ") (A —pS")

E* = = .
I I I

Hence, both sides in the third equation in (5.11) must be functions of S*. Define

G(S*) = g(S"E",I")—(p+pu+0)eI"
pS* (A — pS™) (ye + d(p + 9)) N
py (p+p+0)ermS* + (v (et — 1) (p+ p+0) + p2 + py + py + pé) (A — pS*)

where

A = plye+dp+96) >0, B=py(p+p+d)e” >0,
C = (™ =1D)(p+p+0)+pu* + py+py+pd) >0,
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D = A(fy(e’”—1)(p+u+6)+u2+/w+pfy+u6) > 0.

From

AS* .
(B-C)S*+D

A —pS* >0,
it is easy to see that S* = ﬁ is unique and positive because Ry > 1 and
A—B+C=py(p+pu+06) (" Ry — 1)+ p® 4+ py + py + pd > 0.

Therefore we can obtain the unique endemic equilibrium, in terms of Ry,

A(y(p+p+6)(e" —1)+ plp+p+6) +796)

S* ,
p(y(p+ p+6) (Roer™ — 1) + p(p + p + 6) +79)
o Ay(p+p+6)(e" —1)(Ro—1)
= : (5.12)
1 (y(p+ 1+ 0) (Roer™ — 1) + plp + p+ 6) +79)
Y(p+ p+98) (Roer™ — 1) + p(p + p+6) + 70’
R — Avp(Rg — 1)
e (v(p+ e+ 6) (Roer™ — 1) + pu(p + pu + 0) +76)’
Dt — A(p+0) (Ro — 1)
Y(p+ p+0) (Roet™ — 1) + pu(p + p +0) + 76
Furthermore, we have N* = §* + E* + I* + R* + D* = RyS*. O

Therefore, from Theorems 5.3.1-5.3.3, we understand that system (5.1) has at most
two equilibria. More precisely, there is only disease-free equilibrium Fq which is globally
asymptotically stable when Ry < 1 and an additional unique endemic equilibrium FEs when

Ry > 1. When Ry =1, Eq and Es coalesces into one point.

Next we discuss the local stability of the endemic equilibrium FE5. The linearized system of
(5.1) at Fy is

dfh(f) — A S() + aE () + asl(t) + anR(t) + aisD(t),
d%]gt) = —(a11 + u)S(t) — (a12 + M)E(t) — a13I(t) — algR(t) — a15D(t),
+e (a1 + p)S{t—7)+e *apE{t—T1)+e *asl(t — 1),
+e *agR(t — 1)+ e *as D(t — 1), (5.13)
MU (ot i+ )10) — e (an + WS~ 7) — P ar B 7),
—e*‘”algl(t — T) — e*’”amR(t — 7‘) — e*’”alg,D(t — T),
dR(t)

— pI(t) - (),
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dD(t)
— = (W+OI) —D(),
where
" A1 -Ry) p " A —pS” " _A—pS e . A—pS* d
11 — ROS* RO, 12 — ROS* , 413 — ROS* R[)’ 15 — ROS* RO'

The characteristic equation of (5.13) is

O (A7) = (4w (POLT) + Q1)) =0,

(5.14)
where
P\ T) = A3+ A102 + Ao\ + A3,
Q()\, 7‘) = .Bl)\2 + BQ/\ + Bg,
with
Av=prp+oty+d, A=(+tp+d)(v+E)+1, Ay=2ltatdh
By = =57, By=tp (g —p) - (LEO“ +v(p+p+ 6)) :
§)e HT de HT
By = M (& — ) — P (A =) — o+ p+9).
Obviously, it suffices to consider the roots in
P\ 7T) 4+ Q(\ 1)e ™ =0. (5.15)

Note that

P0,7) +Q(0,7) = A3+ B3

(5.16)
A yoe TP p(p+d)e M
2 5—

<S* u) <7(p+u)+’y o + e >0

since Rp > 1, e < 1land 0 < §* < % Thus, A = 0 is not a root in (5.15).
When 7 =0

P(X\,0) 4+ Q(A,0) = N + (A1 + B1) A* + (A2 + Ba) A+ A3 + B3 = 0.

(5.17)
DuetoR0>p+7fL+5andRo>1,wehave
A A 7
A1+B127+§>0, As+ By > §—,LL p+u+5+§ >0 (5.18)
0

and Az + By > 0 from (5.16).
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In addition,

(A1 +By) (A2 +By) > <é}*_u> <’Y+S*>(p+u+6)
= (ﬁ*u) (v(p+u+6)+”(’;{:5)>

5) — 0
> (2 p) (vornroy+ DTN gy
S* Ry

Thus, Es is locally asymptotically stable when 7 = 0 by Routh-Hurwitz stability criterion.

When 7 > 0, we assume that A = iw (w > 0) is a root in (5.15), then by a straightforward

calculation, w must satisfy
wl + (A} — 24 — BY) w* + (A3 — 241 A3 — B3 +2B1Bs)w? + (A3 — B3) =0.  (5.19)

Through the tedious computation, we have

A 2
A§—2A2—B%>72+<> >0

S*
and
_ —uT A
A2 2A Ay + 2B By — B > o THEN Ny m e (A
R() S*
—2uT A A 9
ee ) ,
2 e s (2) -
+ 2 (5* u>+(p+u+ ) ((S> u)
AN 2 2 cySe T (A
or — P i —
+<S*) (v" = w%) + 72 (5* u)
and

Ag — Bg = (A3 + B3)<A3 — Bg)

yoe hT <A >+(7—u)(p+u+5)A>_

Ry \S* S

> (A3 + Bs) (w(p+u+5)+ o

By Descartes’ Rule of Signs (see e.g., [173]), equation (5.19) has no positive roots w? if all

the coefficients are positive. Therefore, if

(Pt 1+ 0) (nt0)(y — pe ™ (A )

Ro o M

cybe 2T [ A pee 2T (A
22— | — — 2 — —
TR (S* M) R H
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+(p+ p+0)? ((ﬁ)Q - /f) + (;)2(72 —p?) >0 (5.20)

and

Y (p+ p+6) +

Ry S+ S*

~NSe—hT (g} ) LO=mptptod (5.21)

no any root with the form A\ = iw exists in (5.19). In other words, all the eigenvalues in
(5.15) have negative real parts when 7 > 0. Therefore, F; is locally asymptotically stable
and the variation of the time delay 7 cannot destroy this stability.

Summarizing the above analysis, we have proven the following theorem.

Theorem 5.3.4. When Ry > 1, the endemic equilibrium FEo of system (5.1) is locally
asymptotically stable if (5.20) and (5.21) hold. A obviously local stability condition is vy > p.

Remark 5.3.2. Biologically, the condition v > u means the infectiousness rate after death
i human corpses is higher than the natural death rate. In nature, this condition always
holds because the Ebola virus survived period in body fluids of the infectious corpses (%) 1s

Just for a few days [181], which is obviously shorter than the life expectancy.

5.4 System persistence

Persistence is a significant property in population dynamics. In this section, we study the

persistence of the system and discuss the global stability of the endemic equilibrium.

Theorem 5.4.1. If Ry > 1, the disease is uniformly persistent in (5.1), in the sense that,
there is a positive number 19 > 0 such that every solution in system (5.1) with ¢ € X,
¢3(0) > 0 or ¢5(0) > 0 for some 0 € [—7,0], satisfies

liminf(I(t), D(t)) > (10,M0)-

t—o00

Proof. Define
X0 ={p€ X : ¢3(0) > 0 or ¢5(0) > 0 for some 0 € [—7,0]}

and
Xo = Xg \Xo = {¢ S Xg : ¢3(9) = ¢5(0) =0 for all 6 € [*T, 0]}

In the following, we verify the conditions in [75, Theorem 4.2]. Let ®(¢), t > 0, be the

solution semiflow of model system (5.1). Notice that X° is an open and dense set in X
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with X% U X = X¢ and X N Xy = 0. It follows from Theorem 5.2.1 that ®(¢#)X" c X°.
Further, for any ¢ € X, it follows from the third and fifth equations in (5.1) that I(¢,¢) =0
and D(t,¢) = 0 for all ¢ > 0. (i) has been confirmed in Theorem 5.2.1. Noticing that the
bounds in Theorem 5.2.1 are all independent of initial functions, hence, condition (ii) is
verified [207]. (iii) It follows from [104, Theorem 2.2.8] that ®(¢) is asymptotically smooth.
For condition (iv) it is clear that A = {F;}, and it is isolated. Thus, the covering M is
{E1}, which is acyclic because there is no orbit connecting F; to itself in X.
Finally, to verify (v), we prove the following claim.
Claim 1. W*(Ey) N X° = 0.

By contradiction, suppose that there exists a solution in X° such that

. A . . . .
tli>rgv S(t) = o tliglo Et) =0, tliglo 1) =0, tliglo R(t) =0, tligloD(t) =0
Thus, for sufficiently small § > 0, there exists ¢; > 0 such that ‘S(t) - %‘ <6, 0< E(t) <,
0<I(t)<d§,0<R(t)<dand 0< D(t) <0 for t > 7+ #.
Fix a small € > 0. Since lim(g g 1 r D)~ E, m =1, in a neighborhood of E;, we

have

S
S+E+I+R+D

1‘<€,

ie.,
S

l—e< <1l+e 5.22
““SyrE+I+R+D - T° (5-22)

From the third and fifth equations in system (5.1) we obtain

%Eft) > c(l—ee"I(t—7)+d(l—€)e " D(t—71)—(p+p+0)I1),
%ﬁt) = (u+6)I(t) —yD(1), (5.23)
for t > 7+ t3.

Consider the following linear system

O = 1= Qe It =)+ d(1 — e D7)~ (p it 0)I()
W = o)) D), (5.24)

for sufficiently small € > 0. Similar to the process in Theorem 5.3.2, we know the system

(5.24) is quasimonotone and irreducible. Let A2(e) be the principle eigenvalue of system
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(5.24). First, we consider the following system of ordinary differential equations

WL (1= e — (ot i+ ) 1a(1) +d(1 — e (1)
Wo — (ot oynt) — ), (5.25)

The characteristic equation of (5.25) is
AN =N+ (p+p+d+y—ce ") A+v(p+p+68) —(1—€) (cy+d(p+5)e ™ =0.

When e = 0, it is clear that Ay(0) < 0 when Ry > 1. Thus the principle eigenvalue
is positive in (5.25). By [169, Corollary 5.5.2], we have A\2(0) > 0. Thus, Aa(e) > 0 for
sufficiently small € > 0 due the continuity of As.

Thus, there exists a solution Us (t) = et of (5.24), where o is the positive eigen-
function associated with A2 (e€). Since I(t) > 0 and D(t)) > 0 for all ¢ > 0 in (5.23), the com-
parison theory implies that there exists a small £5 > 0 such that (I(¢), D(t))T > fye?2(Itg
for all ¢ > ¢;. Since A2(e) > 0, we have tlirglo(l(t),D(t)) = 400, This contradicts
lim (1), D(®)) = (0,0).

Now, by [75, Theorem 4.2], there exists a 19 > 0 such that ligglfd(q)(t)qs, Xo) > no
for any ¢ € X° implying that the I and D components of the solution with initial function
¢ € X0 satisfy

liminf(S(t), L(t)) > (1o, m0)-

t—o00

O

When Ry > 1, we know Fs exists and is at least locally asymptotic stable when v > pu.

Moreover, we have the following result about its global stability.

Theorem 5.4.2. Assume that u = ~ in system (5.1). If Ry > 1, then for any
¢ € Xe with ¢3(0) > 0 or ¢5(0) > 0 for some § € [—7,0] the endemic equilibrium
Ey = (S*, E*, I*, R*, D*) is globally asymptotically stable.

Proof. When p =+, we have
dN (t)
dt

= A — uN(1). (5.26)

Since all solutions of system (5.1) are bounded (see Theorem 5.2.1) and N* = % is globally
asymptotically stable for system (5.26), we consider the following decoupled equations in

the limiting system (see, e.g., [131,186,202])

dWi(t)
dt

= A-— CIW1 (t)Wg(t) — dIW1 (t)W5(t> — uWy (t),
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dV‘;:’;(t) = e MWyt = )W3(t —7) + d'e Wit — T)Ws(t —7)
—(p+ i+ ) Wi(h), (5.27)
dw;i ® _ (1 + 0)W3(t) — pWs(2),

where ¢ = ¢, d' = dT“ and W1, W3, W5 are related to S, I, D, respectively.

Let Cf = C ([—T, 0], Ri”r) By similar arguments as in Theorem 5.2.1, it follows that for any

¢ € Cf, all the solutions of (5.27) exist globally, and are unique, nonnative and ultimately

bounded, thus lim sup Wi(t) < 2, lim sup Wi(t) < M and lim sup Ws(t) < WM - That
t—o0 K7 t—o0 t—o0 v

is, C{ is a positively invariant for system (5.27). Further, the system (5.27) is uniformly

persistent by the same arguments in Theorem 5.4.1. That is, there is a positive number

71 > 0 such that
llgélolf (W?) (ta w)7 W5(t7 r(/))) 2 (7717 771>

for any 1 = (11,12, 3) € Cf with ¥2(8) > 0 or ¥3(#) > 0 for some 6 € [—7,0].

To lift the dynamics of the limiting system (5.27) to the main system (5.1), define

K= {(’(/)1, 1/)2,’403) € Cfr nh_I}ng (W1(tn + 9), W3(tn + 9), W5(tn + 9))

= (11,v2,93) for some t, — 00,0 € [—7,0]}.

It is easy to see that x is a nonempty and compact subset of C’fr . By the continuous-time
version of [218, Lemma 1.2.2], we know that  is an internally chain transitive set for the

solution semiflow of (5.27) on Cy".

Let (Wi(t, ), Wa(t, ), Ws(t, ) = (Wi(t), Ws(t), Ws(t)) for any ¢ € Cf with ¢2(0) >
0 or ¥3(0) > 0 for some 0 € [—7,0] and E3 = (W], W5, WZ) be the positive equilibrium

point in (5.27). We construct a Lyapunov function
V(t) = Vi(t) + WFW3EVa(t) + dWEWEVs(t),

where

Wi(t) — Wi ln <MI;1/?)> + el (Ws(t) —Wsln <W;Iii)>>

dWFW o (Ws(t)
e (0 () )

e - [ (B0,

Vi(t)

t—7
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¢
Wi (6)Ws5(6)
Va(t) = H| ——————=)ds,
o = [P e
with the function H(z) = x —1—1In(z). It is easy to check that H(x) > 0 for all z € (0, c0)
and H(x) = 0 if and only if z = 1. By the boundedness and persistence of solutions, we

know that V' (¢) is well defined for large ¢.

From (5.27), it is easy to see that Es satisfies the following relations

d/ * * 6 *
A= Wi = CWIWE + dWIWE, e (p+p+ ) = dwi 4+ VW - (et O Wy
ws W:
To calculate dvl along (5.27), we have, % = gv‘[/}l % T g“/{}g aws | gv“/} dzitfa with
oV dWi 1% , )
= |1~ A — pWi(t) — W () Ws(t) — d Wy () Ws(t
oW, dt ( W1(t)>( pWi(t) — Wi () Ws(t) () Ws(t))
Wi Wi(t)
- i) (-5)
T < Wi(2) Wy
Wi(O)Ws(t)  Wr | Ws(t)
/ *W* 1 _ _ 1
+c Wy 3( WiW; Wl(t)+ Wi
Wi)Ws(t) Wy Ws(t))
+d WiWE (1 — LAMEL L ),
P Wl W5 Wl(t) W5
Vi dWs Wi\ ,
= - t— t— d t— t—
W5 dt < Ws(t) (Wi(t —7)Ws(t — 1)+ d Wi (t — T)W5(t —7)
—e"" (p+ p+ ) Wal(t))
Ws(t) Wit —7)Ws(t —7)
_ IYX7* T * 1
cW1W3< Wi + W
_Wl(t—T)Wg(t—T)>
WiWs(t)
W3(t) Wl(t—T)Wg,(t—T)
! * * 1
+d' W] W5< W + ThalF
_Wl(t—T)Wg’,(t—T)Wé")
WiWEWs(t) ’
oVh dWs
= 0) Ws(t) Wis(t
oWy dt ( )> (1 + 6) W5(t) —yW5(1))

T 3(t)  Ws(t)  WEWs(t)
Wi < Wi Wz WiWs(t)
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Similarly,
% _ Wl(t)Wg(t) . Wl(t — T)Wg(t — 7’) T ln Wl(t — T)Wg(t — 7')
dt WiWs WiW; W1 (8)Ws(t) ’
% _ Wl(t)Wg,(t) B W1<t — T)W5(t — T) tln Wl(t — T)W5(t — T)
dt Wiwe WiWe Wi (t)Ws(t)
Thus,
dv _ o, WF ()
dt |(5.27) e (1 Wl(t)> (1 Wy )
P wr W1(t—T)W3(t—’7’) Wl(t—’r)Wg,(t—T)
+eWIWs (2‘ Mo Wiws ““( Wi (O Ws(0) >)
’ * * _ Wl* _ WgWg(t) _ Wl(t—T)W{)(t—T)Wg
# Wi (3 (O WiWa(h) Wi WE Ws(0)
Wit —1)Ws(t — 1)
()
Notice that e Wi (t)
1— —1 1— 2 ><0, 5.28
(- wi) (1) < (>2%)
9 _ Wl* _Wl(t—T)Wg(t—T) 1 <W1(t—T)W3(t—T))
Wi (t) WiWs(t) Wi (t)Ws(t)
Wi ) <W1(t—r>W3<t—T>>
= _ - H <0 5.29
(s Wi ) S (529)

and

oo Wi WEWA() | Walt—n)Ws(t — D)Wy I(Wl(t—T)W5(t—T)>
)

W) WEWs(E) W;WEWs(t) Wi (t)Ws(t)
_ Wl* . WgW3(t) . Wl(t - T)W5(t - ’7')1/1/?;k
= (i)~ (W)~ (

A0 s (t) TRAR0 > < 0. (5.30)

Therefore, % (5.27) <

0.
Let G = {(W1(t), Ws5(¢), W5(1)) : %‘(5.27) =0} and G be the largest invariant set in G.

Claim 2. G = {Es}.

From (5.28-5.30), it is easy to see that ‘%‘(5_27) = 0 if and only if

Wi(t) = W, Wit — )Wt — 7) = WiWs(2),
W5W3<t) = W§W5<t), Wl(t — T)W5(t — 7')VV5K = WfWgW?,(t)
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From WZWs(t) = WiWs(t) and the third equation in (5.27), we have d%i(t) = 0, implying
that Wi5(t) is a constant, so is W3(t). Since W1 (t) = W, by the uniqueness of the positive
equilibrium, we then conclude that W3(t) = Wi and Ws(t) = Wz. Therefore, G = {E3}.

Thus the claim holds.

By the LaSalle invariance principle (see e.g. [74, Theorem 5.3.1]), E3 is globally attrac-
tive, that is,

lim (Wi(t, 1), Ws(t, ¢), Ws(t,)) = (W1, W3, Wy)

t—o00

for any ¢ € Cf with ¥2(0) > 0 or 13(8) > 0 for some 6 € [—7,0]. By the theory of
chain transitive sets (see e.g. [218]) and the internally chain transitive set x for the solution
semiflow of (5.27) on C;, we can lift the global attractivity for system (5.27) to the system
(5.1). Thus,

lim (S(t,9), 1(t,0). D(t,9)) = (5", ", D")

for any ¢ € X with ¢2(6) > 0 or ¢3() > 0. Using the theory of asymptotically autonomous

semiflows (see e.g., [185]), it follows that
lim u(t,0) = (5", E*,I*. R, D").

That is, (S*, E*, I*, R*, D*) is globally attractive, which, together with the local stability
of Fs established in Theorem 5.3.4, confirms the global asymptotic stability of the endemic
equilibrium FEs. This completes the proof. O

5.5 Numerical simulations

To illustrate our theoretical results obtained in the previous sections and to explore the
disease transmission with the variation of seasonality, we provide numerical simulations of
model (5.1) with parameters values taken from the literature.

Note that the value of A and p can be calculated by using the life expectancy, the total

human population and applying

1
~ The life expectancy x 365

1
and
A = p x The total human population.

First, when we choose the latent period 7 = 5, A = 554.80, u = 0.000047, ¢ = 0.05, d =
0.20, 6 = 0.130, v = 0.5 and p = 0.05, then the basic reproduction number Ry = 0.567 < 1,
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Parameter Dimension Values Source

A Humans x Day~! 189 — 555 -

c Day ! 0.05 —0.25 [205]
d Day~! 0.20 — 0.71 [205]
1 Day~! 0.000044 — 0.000060 -

) Day~* 0.084 — 0.135 [16]
y Day ™! 0.17 — 0.50 [205]
0 Day~! 0.045 — 0.095 [16]
T Day 2-21 [184]

Table 5.1 Parameters value for the model (5.1).

implying that the disease-free equilibrium E; = (1.18 x 107,0,0,0,0) is globally asymptoti-
cally stable which is shown in Figure 5.3. To see the influence of the transition rate d, we
only increase the value of d to 0.5007 and 0.75 and all the other parameters are the same
as those used in Figure 5.3, which produces Ry = 1 and Ry = 1.3608 > 1, respectively.
When Ry = 1, theoretically we may not provide the stability without additional informa-
tion, while numerically, Figure 5.4a shows that it is possible for the disease-free equilibrium
to be locally asymptotically stable. When Ry = 1.3608 > 1, from Figure 5.4b, we can ob-
serve the long-term dynamics behavior displaying the persistence of the infectious and the
local stability of the endemic equilibrium point Fy = (5.12 x 10%, 1566, 1740, 1.9 x 105, 452).
To see the influence of the latent period, we keep all the parameters same (except 7) as
in Figure 5.4b and increase 7 from 5 to 12 and 21 consequently, the basic reproductive
number Ry decreases from 1.3608 to 1.3604 and 1.3598, respectively. Figure 5.5 shows the
decreasing of infectious population in the first epidemic peak in Figure 5.4b with the same

initial condition, showing the effect of raising the latent period.

Next, to demonstrate that the endemic equilibrium is globally asymptotically stable when
i =~ and Ry > 1 obtained in Theorem 5.4.2, we take u = v = 0.125 as the average of
¢ = 0.00006 and v = 0.25, and choose A = 362.84, 7 = 10, ¢ = 0.25,d = 0.71,0 = 0.084
and p = 0.090, then Ry = 1.377 > 1, and choose different initial history functions as
#'(0) = (10 sin 46 x 10%, —6.30 + 150, 50 +80, 12 — 0, 2¢? +12) and ¢’ (9) = (10%? +5.5 x
10, 6+50, 26 sin #420, —0.30+10, —7sin §+8), § € [~10,0] (see Figure 5.6), we can observe,
from Figure 5.7, that the endemic equilibrium Es = (2171.5,521.72,87.58,63.06,146.43) is

globally asymptotically stable even the initial conditions are not constants.

Now, we compare our model prediction with real data of Ebola infectious/death cases in
Guinea. In Figure 5.8, the blue line shows the model prediction and the red circles shows
the real data, the data fitting is based on the data from Jan 26, 2015 to December 29, 2015,

see [183]. For the period from January 2015 to June 2015, the cumulative number of Ebola
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Figure 5.3 The disease-free equilibrium is globally asymptotically stable under different
initial condition. d = 0.20, Ry = 0.567 < 1.

infectious/death cases is increasing, then it becomes steady until December 2015, due to
the interruption of Ebola transmission by WHO, by reducing the risk of human-to-human
transmission from direct or close contact with people with Ebola symptoms, particularly
with their bodily fluids (reducing ¢); and applying outbreak containment measures, including
prompt and safe burial of the dead (reducing d), identifying people who may have been in
contact with someone infected with Ebola and monitoring their health for 21 days (extending
7), see [184]. In January 2016 WHO declared the end of the outbreak of Ebola virus
disease. We can see that the model is predicting the stabilization of the number of Ebola

infectious/death cases. The simulation result has good agreement with the real data.

Finally, to discuss the effect of climate change (e.g. seasonality) on Ebola transmission.
First, we choose A = 189.75, 1 = 0.000044, 7 = 6, § = 0.125,7 = 0.17, p = 0.049, ¢ = 0.15
and d = 0.45, the basic reproduction number Ry = 2.763 > 1, implying that the endemic
equilibrium point (S*, E*, I'*, R*, D*) = (595000 , 981.28, 939.57, 1046300, 691.1) is locally
asymptotically stable (Theorem 5.3.4), Figure 5.9 gives an good agreement. Now, instead
of constant transmission rates ¢ and d, we take two periodic time-dependent transmission
rates ¢1(t) = 0.15(1 4 sin27t) and d;(t) = 0.45(1 + cos 2wt). Notice that the average value
of ¢1(t) and d;(t) over the interval [0, c0) are ¢ = 0.15 and d = 0.45 (same as in Figure 5.9),
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respectively, then we can observe in Figure 5.10 that the infectious population (green line)
becomes oscillatory around the infectious values I* and D* (red line). Biologically, as the
temperature changes seasonly, the number of infectious population is varied. Actually, if we
keep all the parameters same (except ¢ and d) as in Figure 5.4c and change ¢ and d by a
periodic time-dependent transmission rates ca(t) = 0.05(1 + sin27t) and da(t) = 0.75(1 +
cos 27t) with the average value over the interval [0, 00) are ¢ = 0.05 and d = 0.75 (same as in
Figure 5.4), respectively, the dynamical behavior is given in Figure 5.11 which is similar to
Figure 5.10, i.e. the infectious population becomes oscillatory around the infectious values
that arise from constant transmission rates. We can see that the behavior of the model with
constant transmission rates or periodic time-dependent transmission rates is similar, in the
sense that, when the endemic equilibrium point exists with constant transmission rates, a

positive periodic solution exists with periodic time-dependent transmission rates.

5.6 Discussion

Ebola virus disease is a disease of humans and other non-human primates (gorillas, chim-
panzees and duikers) caused by Ebola virus (EBOV) which is belong to the family Filoviri-

dae. The virus is originate in fruit bats and jump to humans through an intermediate
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Figure 5.5 The effect of raising the latent period.
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Figure 5.6 The initial history functions ¢’(6) and ¢! (9).

animal, such as gorillas. Ebola first appeared in 1976 in two outbreaks, one in Sudan, and
the other in Democratic Republic of Congo, since then it has resurfaced in Africa several
times. The last outbreak in 2014 in West Africa (Guinea, Liberia and Sierra Leone) was
the largest and most complex outbreak. In this chapter, we have considered an SEIRD
model where the population of the humans is described by a system of susceptible, exposed,
infectious, recovered individuals and infected corpses who are nonetheless infectious.

In epidemiology, the basic reproduction number the basic reproduction number Ry is
fundamental concept. Mathematically, we have calculated Ry and discussed the global
dynamics of the model with respect to Ry. Furthermore, we have investigated the relation
between the basic reproduction number Ry and the parameters 7 and d. We have shown
that Ry is a decreasing function for 7 and increasing for d. From disease control point of
view, to reduce the spread of the Ebola, we need to extend the duration of latent and/or

dispose of human remains by cremation or burial.
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infectious/death cases in Guinea (red circles). Parameters: ¢ = 0.23,d = 0.28,

= 0.000048, A = 554.80, § = 0.12, 7 = 3.5, v = 0.25 and p = 0.065
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Chapter 6

A Periodic Disease Transmission
Model with Asymptomatic

Carriage and Latency Periods

6.1 Introduction

For certain infectious diseases, there are individuals who have been infected and are able to
transmit their illness but do not display any symptoms. These individuals are called “asymp-
tomatic carriers”. They are a potential source for transmission of some diseases including
Typhoid Fever, HIV, Epstein-Barr Virus (EBV), Clostridium difficile and Chlamydia, etc.
Since the asymptomatic carriers are common and invisible, they can have serious long term
health consequences. For example, in sexually transmitted diseases (STD), Chlamydia is
the most common treatable STD, but three-quarters of all women, and half of all men, with
chlamydia have no STD symptoms. Some scientists call STDs as “the hidden epidemic” [38].
According to World Health Organization (WHO) report, up to 5 — 10% of population may
be asymptomatic carriers of Meningococcal disease, which is spread by person-to-person
contact through respiratory droplets of infected people. Although asymptomatic carriage
of some diseases is common in patients staying in health care facilities, the importance of
asymptomatic carriers with regard to disease transmission is unclear. In [153], the authors
suggest that asymptomatic carriers of epidemic and non-epidemic C. difficile strains have
the potential to contribute significantly to disease transmission in long-term care facilities,
some clinical factors, may be predictive of asymptomatic carriage. In [101], asymptomatic
carriers of Plasmodium falciparum serve as a reservoir of parasites for malaria transmis-

sion. Identification and treatment of asymptomatic carriers within a region may reduce the
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parasite reservoir and influence malaria transmission in that area.

Over the last decades, mathematical models have been extensively used to study the
dynamics of infectious diseases transmission. After 1990, because of the public health sig-
nificance, the influence of carriers on the dynamics of infectious diseases transmission has
received research attention in the mathematical modeling literature [192]. Carriers have
been incorporated in a variety of epidemic models, e.g., hepatitis B virus with carriers was
discussed in [130,215], meningococcal meningitis was investigated in [01, 191], a general
mathematical models that incorporates disease carriers were studied in [63, 96, 100, 134].
Time delays have been included in a variety of epidemic models such as SEIR, SEIRS and
SIR, etc [10,23,25,40,41,69,82,88,159,212]. For instance, in [23], the authors presented
a two delays SEIR epidemic model, one delay is the latent period and the second delay
is the time taken by an infectious individual to be removed from the infection. In [159],
the authors studied a delayed Ross-Macdonald model for Malaria Transmission. A disease
transmission model of SEIRS type with distributed delays in latent and temporary immune
periods was discussed in [212].

In the real world, periodicity and other oscillatory behaviors have been observed in the
incidence of many infectious diseases, including measles, influenza and chickenpox, etc. The
appearance of such oscillatory behaviors is mostly due to seasonal changes in environmental
factors such as temperature and humidity [I11, 161]. Many researchers in the field have
shown great interest in seasonal fluctuations in epidemic models with and without delay
[117,119,120,214]. For instance, a periodic SIS epidemic model with maturation delay
was investigated in [I19]. In [120], a malaria transmission model with periodic birth rate
and age structure for the vector population was proposed. In [214], the authors studied a
nonautonomous SEIRS epidemic model.

To the best of our knowledge, all the mathematical models study involving disease
carriers e.g., [63,91,90, , , , |, are all given by autonomous or nonautonomous
ordinary differential equations which neglected the effect of latent period. However, the
latent period has a profound effect on the generation time, and hence epidemic growth [135].
In the present work, we propose a periodic disease transmission model with asymptomatic
carriage and latency periods. In addition to normal latent period in exposed class (see e.g.,
[88,125,212]), we introduce another time delay to represent the time-lag that asymptomatic
carriers take to develop the disease symptoms (the asymptomatic carriage latency period).

The main goal of this work is to analyze a seasonal fluctuation infectious disease model
with a general nonlinear incidence rate function and with consideration of the asymptomatic
carriage and latent periods. Based on the proposed mathematical model, we derive the basic
reproduction ratio Rg mathematically and study the threshold dynamics with respect to Ro

under biologically reasonable hypotheses. The rest of this chapter is organized as follows: in
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Section 6.2, we propose a periodic compartmental epidemic model with nonlinear incidence
rate function and two constant delays by stage-structure derivation. In Section 6.3, we
discuss the well-posedness property by verifying the non-negativity and boundedness of the
solutions with reasonable initial data. The basic reproduction ratio Rg is calculated in
Section 6.4. In Section 6.5, we establish the threshold dynamics for the system in terms
of the basic reproduction ratio by proving the global attractivity of the disease-free state
when R < 1, coexistence of endemic state and disease persistence when Rg > 1. In Section
6.6, we explore the uniqueness of the endemic state when all coefficients are constants. In
Section 6.7, we present numerical algorithm to calculate the basic reproduction ratio Rg; do
a case study regarding the meningococcal meningitis disease transmission; and discuss the
sensitivity of Ro (the time-average basic reproduction ratio [R]) with respect to the latent

periods and carriers related parameters.

6.2 Model derivation

We consider a compartmental model with two latent periods where the total population of
size N(t) is divided into six categories: (i) Two disease-free classes: susceptible (S(t)) and

recovered (R(t)); (ii) Four disease-related classes:

e Exposed class (E(t)): individuals are infected but not yet infectious. This class is

related to the latent period of the infectious diseases [125,212];

e Asymptomatic carrier class (C(t)): individuals are infectious but not showing any
disease symptoms [91, 125]. In this class, individuals are unaffected by the disease

themselves;

e Carrier-latent class (E°(¢)): adopting the idea behind the stage E, we introduce this
stage to represent individuals who are developing the disease symptoms. This class is

related to the time period that asymptomatic carriers take to show symptoms;

e Ill class (I(t)): individuals are infectious and showing disease signs and symptoms

[91,125].

We assume that the new infected susceptible individual remains in an exposed class for a
certain latent period 7y, then part of them, with the proportion p, move into asymptomatic
carrier class and others (proportion of 1 — p) become ill, with the infection rate (incidence
rate) function f(¢,S(t),C(t),I(t)), which depends on time ¢ and variables S(¢), C(t) and
I(t). Usually, asymptomatic carriers take time to show symptoms. We called this time-

lag as the asymptomatic carriage latency period 5. Biologically 72 > 7. ¢(t) is the
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transmission rate of the asymptomatic carrier C(¢) to ill class I(¢) (through E€(t)) at which
asymptomatic carriers take time 7o to show symptoms, 6(¢) is disease-related death rate
and the recover rate is r(t). Asymptomatic carriers can loss the carriage and return to the
susceptible class at a rate y(t). We further assume that there is a natural death rate ()
for all the compartments, A(¢) is the recruitment rate into the population. The interaction

and corresponding transmission diagram among the six classes is given in Figure 6.1.

p(t) p(t)
o q(t)
t » Bt
(1) "
T2
P
At)
— 5 » Bt |
f
l—p
1(t) 1(t)
r(t)
I(t) > R(t)
p| o) p(t)
Figure 6.1 Disease Transmission Diagram.
We use the McKendrick-von Foerster equation (see e.g., [125]) to derive functional differ-

ential equations for the disease-related categories (E, C', E° and I), by assuming that each
infected individual in these categories has an “infection age” which represents the length of
time that the individual has infected. In other words, we consider an epidemiological model
with age-structure for the disease. More precisely for the branch ¥ — C' — E° — I, once
a susceptible individual is infected, the infection age (a) is @ > 0. The individual becomes
asymptomatic carrier at infection age a = 71, then starts to develop symptoms at a = a for
some G > 71, and finally becomes ill (infectious with symptoms) after time 79, that is, at
infection age a = a + 3. An illustration is given in Figure 6.2.

Let e(t,a) be the density of infected individuals at time ¢ with infection age a in the
exposed class. Thus, at time ¢, when a € [0, 7], the number of individuals in the exposed

class is

E(t) = /0 " e(t, a)da. (6.1)
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Figure 6.2 The disease-related categories with their corresponding infection age 7, @ and
a + T9.

To derive a functional differential equation to address the variation of the number of indi-

viduals in the exposed class at time ¢, we use the McKendrick von-Foerster equation

aeg;“) 4 ae((;;a) — _u(b)e(t, a), (6.2)

to describe the evolution of the density e(¢,a), where p(t) is the loss of infected individuals
through natural death.
The population with zero infection age in the exposed class should be the population of

new infected at time ¢, therefore

e(t,0) = f(t,5(1),C(1), 1(t))-
Differentiation of (6.1) and using (6.2) yield

dE(t)

o = THOE®R) —e(t,n1) +e(t,0) = f(£,5(2),C(t), [(2)) — u(t) E(2) — e(t, 7).

To evaluate the value of e(t, 1), denote e¢(a) = e(a + £, a), then

deg(a) _Je  de
da ot Taa pnla+&)eg(a),

implying
ee(a) = eg(0)e o HiHEds,

Let a = 11, then £ =t — 71. From
ei—r(a)=e(t—7+a,a) and e (0)=e(t—7,0),

we have

e(t,m) = f(t — 11, 8(t — 1), C(t — 1), I(t — 71))e Ji-m 1O (6.3)
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Finally we obtain the differential equation for E(t),

dE(t . — I n
) 10,50, €0, 10)~ f(1=71,(1=72), O =), Tt —r))e™ 041y ().
(6.4)
Equation (6.4) can also be written in the integral equation form
t
E(t) = / F(s,5(s),C(s), I(s)) e~ Js nmdng, (6.5)
t—71

Parallelly, let é(t,a) be the density of individuals in the asymptomatic carrier class.

Then, for a € [r1,a] for some a > 71, the equation

Gégt, a) | aég;a) — (ult) 4180t a). .

describes the loss of infected individuals through natural death p(¢) and returning to the

susceptible class v(t). The population of the asymptomatic carrier can be expressed by
a
c@t) = / é(t,a)da. (6.7)
T1

Therefore,

Tat /a[—(u(t+7(t))é(t7a)_aé(at(;a)]da

T1

da

= (M(t)+7(t))/aé(t,a)da/a 0é(t, a)

1 1 da
= —(ut) +1())C(t) — é(t,a) + é(t, 7).

As we know, the population in C(¢) comes from the exposed class with the proportion
p, hence é(t, 1) = pe(t, 71). We assume the number of individuals transfer from C to E€, at

time ¢ and age a, is a proportion ¢(¢) of C' and independent on the infection age, that is

é(t,a) = q(t)C(1),

although it might overestimate the value of é(¢,4a).
It then follows from (6.3) that

dC(¢)

— = ) 1 (E)C() + pe(t,m) — a()C(H)
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= pf(t—m,80—7),C(t —71), I(t — Tl))e*ff_fl p(n)dn
—(u(t) +q(t) + (@) C(2). (6.8)

Analogously, we denote €°(t,a) as the density of individuals in the carrier-latent class.
Then, when a € [a,a + 72|, the number of individuals in the carrier-latent class can be
expressed by

a+To
E“(t) —/ e“(t, a)da. (6.9)
a
Similarly, we have
0ec(t,a) n 0ec(t,a)
ot da

The number of individuals in the carrier-latent class with infection age a = a is the new

= —pu(t)e(t, a). (6.10)

individuals transmitted from asymptomatic carrier class at time ¢, thus
e“(t,a) = é(t,a) = q(t)C(t).

Equation (6.9) can be converted into

dE°(t)
dt

= —p(t)E(t) — e°(t,a + 1) + €(t, &),

by computing the derivative with respect to time ¢ and using (6.10). Using the same

procedure to evaluate the value of e“(t,a + 12) yields
t
€(t,a+72) = qlt — 72)C(t — m)e Ji=ra MOV,

Therefore,

dE“(t)
dt

= g()O(t) — qlt — 1) Ot — o) = "W _ Ly Be(r). (6.11)

Alternatively (6.11) can be rewritten as

t
EC(t) = / q(s)C(s)e™ Js nmidn g, (6.12)

t—T1o

Let €(t,a) be the density of individuals in the ill class. Then the population of ill

individuals can be expressed by

I(t) = / &t a)da, (6.13)
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and é(¢, a) satisfies

0é(t,a) . 0é(t,a)

ot 5a = W) +r(t) +o(t))e(t, a) (6.14)

where (r(t) + 0(t))é(t, a) represents the loss of infected individuals through recovering and
disease-related death. Then,

T 0e(t,a)

Y w4+ sy 10— [P

T1

From the definitions of e(t,a) and e°(¢,a), the population in the infectious class includes
two parts, one from “direct” exposed infective class and another from “indirect” infective

transmitted from asymptomatic carrier latent class, thus

é(t a):{ (1—p)e(t,a) 7-1<a§d+7_2
7 (1—ple(t,a) + e“(t,a) a+m <a.

Since p(t) is bounded, we have e(t, 00) = €°(t,00) = 0. Consequently, we obtain

o o0

= (M(t)JrT(t)Jré(t))I(t)(1p)/aeg(;a)da / aec{gz@da

T1 a+T1o

dI
dt

= (L= (=7 S(t = 1), Ot =), (¢ = m))e imn MO
q(t — ) Ot — o) = DN _ () 1 r(t) + 6(8)) 1(1). (6.15)

Adopting the simplest demographic structure of the population under consideration [113,

], we have the following equations for the susceptible and recovered classes:

%1(:) = At) —p@®)S®) — f(.5(1),C1), 1) +~#)C(1),
d%ﬁ” — r(OI(t) — p()R(). (6.16)

Combining the equations (6.4), (6.8), (6.11), (6.15) and (6.16), the disease transmission
dynamics with asymptomatic carrier and two latent periods can be described by the following

nonautonomous delay differential equations

ds(t)

D) A
dt

dE(t) — | w(mdn

S =1 50,00, 1) = £(t =1, S(t = 1), C(t = 1), It = m))e ™

(t) = p(@)S(t) = f(t,5(t), C(#), I(t)) +~(H)C(2),
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W E(),
dC'(t) *t_fi w(m)dn

W) (e —m, St = 7). Cl—m) L= = = (ult) + a(t) +1(B)CAO),

c - ft (n)d
O —gct) — gt - )0 e =" B, (6.17)
— f unya
d;—(tt) =1-p)ft—7,St—7),Clt =), It —7))e ™ e
- j w(n)dn
Lt —m)Ct—m)e = — () +r(t) + () (H),
M) —ri)100) - )R,

As we know, more realistic epidemic model should involve the fluctuation of seasonality
[117,119,120,214]. In the following, we focus our attention on the model (6.17) with periodic

coefficients. For any positive, T-periodic continuous function g(t), we set

* — max ¢g(t) and ¢' = min g(t),
g te[ovT]g() g te[oyT]g()

and assume that all time-dependent coefficients satisfy

(Hy) A(t), u(t), o(t), r(t), q(t) and ~(t) are all continuous periodic and positive functions
with period T

Although the incidence rate is usually chosen as a standard bilinear form, there is a variety
of reasons to incorporate a nonlinear incidence rate, e.g., saturation effect and heterogeneous
mixing environment [103]. In the model, we prefer to take a general nonlinear T'—periodic (in
t) incidence form f(t,S(t),C(t),1(t)), for some real number T > 0, satisfying the following

biological feasible condition:
(Hs) f(t,S,C,I) is a nonnegative C'-function with the following properties:

(i) f(¢,0,C,I) =0 and f(¢,5,0,0)=0forallteR, S>0,C >0and I > 0;

(i) HLSCDH o ALSCD o o ESED o o for all (¢,5,C,1) € R x R3,

which allows a unified treatment for all important biological cases. The commonly used
forms of f include f(¢,S(¢),C(t),I(t)) = (B(t)C(t) + ~v(¢t)I(t))S(t), a bilinear incidence

rate [96,188]. For some disease models without the consideration of asymptomatic carrier,
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f(t,S(t),C(t),I(t)) = f(t,S(t),I(t)) have the following forms

f@&,S@),I(t)) = B@)IE#)™S()" (m,n are positive parameters [115,116]);
f@&,S@),I1(t) = m (incorporate the saturation of infective [210]);

(Combination of the above two forms [116])(6.18)

£, 80,10y = SOHITOE

Further, it is easy to see that the function h(t,7) := e~ Ji—r 0D 31 the model (6.17) is also
T—periodic in ¢t. Therefore the model (6.17) is an T'—periodic and time-delayed system.

Given the hypotheses (H;) and (H3), in the following, we will mainly work on the system
(6.17).

6.3 Well-posedness property

To analyze (6.17) mathematically, let 7 = max{r, 2} = 72, X := C([-7,0],R%) and X =
C([_T? O]’ Ri) For ¢ = (¢1a ¢2a ¢3a ¢4a ¢5a ¢6) € X’ denote ||¢H = ?:1 ||¢ZHOO with H¢1HOO =

max_,<p<o |¢i(0)|. Then, (X, X™T) is an ordered Banach space and X is a normal cone of
X with nonempty interior in X. For any given continuous function u : [—7,04) — RS with
o4 > 0, we define u; € X for ¢t > 0 by u;(0) = u(t + 0) for all § € [—7,0].

We choose the initial data in the following set:

Dx = {¢ e Xt : g0 f - f(9, 01(9), ¢3(19),¢4(19))e*f3u(n)dnd19,
61(0) = [, a(@)ds()e 7 1My}

Then we have the following result to demonstrate the nonnegativity and boundedness of the
solution in (6.17).

Theorem 6.3.1. For any ¢ € Dx, under the hypotheses (Hy) and (Hs), the system (6.17)
has a unique nonnegative solution u(t, ») with the initial condition ug = ¢, and all solutions
are ultimately bounded and uniformly bounded. In addition, the solution semiflow ®(t) =

uy(+) : Dx — RS has a compact global attractor and
c 6 c AY
=S, E,C,E S [,R)eRL:0< S+ E+C+E+I+R< —
o

is positively invariant for (6.17).
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Proof. Given ¢ € Dx, we define

G(tv ¢) = (Gl (tv ¢)7 G?(ta ¢)7 GS(tv (b)? G4(t7 ¢)7 GS(t7 ¢)7 GG(ta ¢))7
with

Gi(t, ¢) =A(t) — pu(t)¢1(0) — f(t, ¢1(0), ¢3(0), $5(0)) +v(£)$3(0)),

- f w(mdn

GQ(ta (b) :f(t’ le(o)a ¢3(O)a ¢5(0)) - f(t - 71, (Z)l(_Tl)u ¢3(_7_1)a ¢5(—7‘1))€ o
— 1(t)$2(0),

- ft w(n)dn

Gs(t,¢) =pf(t — 11, 01(=71), d3(—=71), ¢5(—71))e ™™
—q(t)3(0) — (y(t) + p(t))p3(0),

- ft w(m)dn

Ga(t, 9) =q(t)$3(0) — q(t — T2)P3(—T2)e 77 — u(t)¢4(0),

- j u(mdn

Gs(t,¢) =(1 —p)f(t — 11, 01(-71), p3(~71), p5(~71))e ™

- ft p(n)dn
+q(t — m)p3(~T2)e T2 = (r(t) +6(t + p(t))¢5(0),

Go(t, @) =r(t)¢s(0) — u(t)¢s(0).

It is easy to see that Dx is closed in X, G(t,¢) is continuous and is Lipschitz in ¢ in
each compact set in R x Dx. Therefore, there is a unique solution in (6.17) on its maximal
existence interval [0, 04) through (0, ¢) for any ¢ € Dx.

Furthermore, for any ¢ € Dx with ¢;(0) = 0, it is obvious that G;(t,¢) > 0 for
i =1,3,5,6. Thus ¢;(t) > 0 for all t € [0,04), i = 1,3,5,6, see [169, Theorem 5.2.1].
d2(t) > 0 and ¢4(t) > 0 are straightforward from (6.1) and (6.12), respectively. Thus all
the solutions of (6.17) are nonnegative for any t € [0,04).

Adding the six equations in (6.17) yields that the total population N(t) = S(t)+ E(t) +
C(t) + E(t)° + I(t) + R(t) satisfies

AN (t)

S = M) — mON () - SOI() < M) — pON(). (6.19)

Under hypothesis (H;), the equation

%t(t) — A(t) — u(B)N (). (6.20)



147

has a unique globally asymptotically stable positive T'—periodic solution (see e.g. [217])
t
N*(t) = e~ Jo nmydn N(0) + / eJo A (5)ds (6.21)
0
where

. o= Jo nln)dn T s
N(0) = ————— / eJo 1M A () ds. (6.22)
1 — ¢ Jo w(mdn )
Thus,
lim (N (t) — N*(t)) = 0.

Therefore all the solutions are ultimately bounded and exist globally (o = 00) (see e.g., [74,
Theorem 2.3.1]). Moreover, from (6.19) and (6.20), we obtain

AN (t)
dt

< A% — N (t).

For the system dz—(tt) = A" — ply(t), the equilibrium % is globally asymptotically stable.
Thus, if N(t) > %, % < 0. Hence, all the solutions are uniformly bounded and the
solution semi-flow ®(¢) is point dissipative on Dx. By [72, Theorem 3.4.8], it follows that

®(t) admits a compact global attractor in Dx. Furthermore,
c 6 c A"
=<5, ECEILR)cR,:0<S+E+C+E+I+R< o

is positively invariant set for (6.17). O

6.4 The basic reproduction ratio

The disease-related classes include either exposed, ill, asymptomatic carrier or carrier-latent
ie., E, I, C and E°. To find the disease-free state, letting £ = I = C' = E° = 0, we then

get R =0 and
ds(t)
dt
Hence, there is only one disease-free T'— periodic state Ei(t) = (5*(¢),0,0,0,0,0) where
S*(t) = N*(t) is given in (6.21) which is the positive T'—periodic solution of (6.20).

Now, we introduce the basic reproduction ratio for system (6.17) according to the theory

= A(t) — u()S(1). (6.23)
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developed by Zhao in [217]. In the linearized system of (6.17) at E(t), the following disease-

related subsystem is decoupled from others:

%ﬁt) = pa1(t)C(t — 1) + pa(t)I(t — 1) — by (t)C(t) (6.24)
d-;igf) =(1=p)ai(t)C(t—71)+ (1 —p)ag(t)I(t — 1) + a3(t)C(t — 72) — ba(t)I(t)
where

af(t—Tl,S*(t—Tl),0,0) o 8f<t—T1,S*(t—7'1),0,0)
50 , az(t) = h(t,m) 31 ;

ag(t) = h(t,72)q(t = 72), bi(t) = p(t) + q(t) +7(t) and ba(t) = p(t) + r(t) +0(2).

al(t) = h(t, Tl)

Let

pai(t) pas(t) 0 0

],m)—[ ],ww—[““) | ]
(=P (1= ploa(t aslt) 0 0 (o)

Then we can rewrite (6.24) as

Fa(t) =

du(t)
dt

= F(t)u(t — 1) + Fo(t)u(t — m2) — V(t)u(t),

where u(t) = (C(t), I(t))T.
Let Xo = C([—7,0],R?) and Z(t, s) be the evolution operator associated with the system

du — _V(t)u(t), that is, Z(t,s) satisfies

%Z(t,s) =-V()Z(t,s), Vt > s, and Z(s,s) =1, Vs € R.

Thus, for any ¢t > s, any s € R

— [ba(ydn
Z(t,s) = e~ s vimdn — | €7 0

since V(t) is a diagonal matrix.
We define F(t) : Xo — R? by

o ( a2 ) _ ( pa®d(-n) +paa)da(-m) ) |
P2 (1=p) a1i(t)p1(—71) + (1 — p) az2(t)p2(—71) + as(t)d1(—T2)
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Clearly, —V is cooperative and it follows from the hypotheses (H;)-(Hs) that F(t) is positive
in the sense that F(¢) X5 C R? where X5 = C([—7,0],R2). Let Cr be the ordered Banach
space of all T—periodic functions from R to R?, which is equipped with the maximum norm
and the positive cone Cf = {v € Cr : v(t) > 0,Vt € R}. Then we can define a linear

operator on Ct by

(o]

[Lo](t) = /Z(t,t —s5)F(t—s)v(t—s+-)ds, veCr.
0
It then follows from [217] that the basic reproduction ratio Rg = p(L), the spectral radius

of L. In periodic environments, the definition of Ry can be biologically interpreted as the
asymptotic per generation growth rate [20].

Clearly, we can write the linear operator L as

l11 + L2
[Lo] (t) =
lo1 + Loo
where

fjmwm

b1 = pai(t — s)vi(t — s — 11)ds,

bz(n)dn
(1 =plar(t — s)vi(t —s —11) + a3t — s)v1(t — s — 12)) ds,

bz(n)dn
—plag(t — s)va(t — s — 1 )ds.

o0
— /e t—s
t
f (n)dn
/ - pas(t — s)va(t — s — 11)ds,
0
Further, we can simplify the notation as
T [ b n
i = /e tmstm pai(t —s+1)vi(t — s)ds == /Ku(t, s)vr(t — s)ds.

T1

Similarly

(o] o0
lis = /Klg(t, $)ve(t — s)ds and log = /Kgg(t, s)va(t — s)ds
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with, for s > 7,

t
- [ bi(pdn
Ki1(t,s) =par(t —s+m)e =5 ,

t
= [ biu(m)dn
Kia(t, 8) = pas(t — s +11)e =5+ |
t
— [ ba(n)dn
Koo(t,s) = (1 —p)as(t —s+1)e =t ,

and K;j(t,s) =0 for s <7, 4,5 € {1,2}.

The integration f2; depends on both time delays 71 and 75. Since 79 > 71, we have

F ] ba(n)dn
621 — /6 t—s (1 —_ p)al(t — S)Ul(t — S — Tl)ds
0

T = ] batan
+ /e ts asz(t — s)vi(t — s — m2)ds

0
t

— [ ba(m)dn
= /e t—stTy (I =p)ai(t — s+ m)vi(t — s)ds

T1

00 o0
— [ b2(n)dn
+ /e t=s+72 az(t — s+ m2)vi(t — s)ds = /KQl(tv s)vi(t — s)ds
0

T2

with
t t
- [ ba(m)dn -/ ba(mdn
(I1-p)ar(t—s+m7)e 7=t +as(t—s+m)e T2 if s> 79,
Koy (ta S) = - jt ba(n)dn
(1-plai(t—s+m)e ‘=5t if 7 <s<mo,
0 if s< .

Therefore, the specific form of the linear operator L becomes

TKH(t, s)vr(t — s)ds + }OKlg(t, s)va(t — s)ds o0
[Lv](t) =] & % = /IC(t, s)v(t — s)ds
J Ko (t, s)vi(t — s)ds + g Kao(t, s)va(t — s)ds 0

(6.25)
with
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We would mention that, even though we cannot find the explicit form of Ry = p(L) in
general, we will provide a numerical algorithm to obtain an approximation value of Ry in
Section 6.7.

To demonstrate that Rg — 1 is a threshold value for the stability of the zero solution
of system (6.24), let P(t) be the solution maps of the linear system (6.24) on Xo, that is,
P(t)¢ = v(t,d), t >0, where v(t, ¢) is the unique solution of (6.24) satisfying vy = ¢ € Xo.
Then P := P(T) is the Poincaré map associated with the system (6.24). By [217, Theorem
2.1] or [199, Lemma 1], we have the following result which indicates the instability and local
stability of (0,0) in (6.24).

Theorem 6.4.1. Ry — 1 has the same sign as p(P) — 1. Thus, (0,0) in (6.24) is locally
asymptotically stable if Ryg < 1, and unstable if Ry > 1.

Now, we discuss the solution corresponding to p(P). Since F(t) > 0, it follows from [74,
Theorem 3.6.1] and [169, Lemma 5.3.2] that for each ¢t > 27, the linear operator P(t) is
compact and strongly positive on X2. Choose an integer ng > 0 such that ngZT > 27. Since
P = P(noT), [114, Lemma 3.1] implies that p(P) is a simple eigenvalue of P having a
strongly positive eigenvector and the modulus of any other eigenvalue is less than p(P).
Summarizing the above analysis and by argument similar to those in the proof of [209,
Proposition 2.1], we have the following result which illustrates a practical form of a positive
solution that related to p(P).

Lemma 6.4.1. Let p(P) be the spectral radius of P. Then p(P) is a positive eigenvalue
of P with a positive eigenfunction. Moreover, v(t) = V(t)eM is a solution of (6.24), where
A= W and V (t) is positive T—periodic function ¥Vt > 0.

6.5 Threshold dynamics

In this section, we establish the threshold dynamics for the system in terms of the basic

reproduction ratio.

Since the S, C and I equations are decoupled in (6.17), it suffices to study the following

T —periodic system:

%gt) =A(t) = p(®)S(t) — f(t,S(t), C(), (1)) + () C(B),
— ] uwe
%it) =pf(t =7, 5(t —7),C(t —71), [(t = m))e T (u(t) + q(t) +~(1)C(t),

(6.26)
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- f u(m)d
%Sf):(1—p)f(t—ﬁ,S(t—71),C(t—71),](t_71))e o3, Hmen
- ft w(n)dn
+q(t —m2)C(t —m2)e 77 — (u(t) +r(t) +6(t)I(t).

When a time-delayed system admits the comparison principle, the powerful theory of mono-

tone semiflows can be applied to study the global dynamics, see, e.g., [169, ]. How-
ever, if the system is not monotone, the global stability is a challenging research topic.
Therefore, to make sure the solution semiflow of (6.26) is eventually strongly monotone
and strongly order preserving (see [169, Chapter 5]), we choose Y1 = C(]—71,0],R) x
C([_T%OLR) X C([—Tl,O],R), Y1+ = C([_T170]7R+) X C([_TQ’O]aRJr) X C([_Tlao]’RJr)’
Yo = {t = (1, 42,40) € Vi ¢ ¢h2(0) > 0 and 45(0) > 0} and 9y = Y1 \ Yp = {v) € Vi :
12(0) = 0 or 93(0) = 0}. Then (Y,Y;") is an ordered Banach space and Yj is an open set
relative to Y7. For a continuous function @ : [—71, 00) X [~72,00) X [~71,00) — R and t > 0,
define the solution semiflow W(t) = @;(-) : Y1 — R3 of (6.26) by

11(91,92,63) = (al(t+61),ﬂ2(t+92)7ﬂ3(t+93)) V(91,92,93) S [—Tl,O] X [—7’2,0] X [—7’1,0} .

The following result can be proved as Theorem 6.3.1.

Lemma 6.5.1. For any v € Y1+, system (6.20) admits a bounded unique nonnegative
solution u(t, ) on [0,00) with Gy = 1.

To see the consistency between Theorem 6.3.1 and Lemma 6.5.1, let 4(¢, 1) be the unique
solution of (6.26) satisfying g = ¢ € X;” = C([-, 0],R%) where 7 = max{r,} = 7.
For any ¢ € X; and ¢ € Yi" with ¢1(61) = 1(61) (V61 € [-71,0]), Pa(6) = 2(62)
(V0 € [—72,0]) and ¥3(03) = ¥3(03) (Vb3 € [—71,0]), we have (¢, ) = @(t, 1), where
and @; are solutions of system (6.26) satisfying (@); = ¢; and (dg); = ¥ (i € {1,2,3}),
respectively, because of the uniqueness of solution and the structure of the model, i.e.
the history functions for S(t), C(t) and I(t) are defined on [—7,0], [—72,0] and [—7,0],
respectively.

Now, we show that a threshold value for the stability of (0,0) in (6.24) on Xy is the
same as that on Yo = C([—72,0],R) x C([-71,0],R). For any given ¢t > 0, let G(t) be the
time map of the linear periodic system (6.24) on Y, that is, G(t) = z(t,¢), where z(t, ¢)
is the unique solution of (6.24) with zy = é € Y3. By similar arguments as in the proof

of [122, Lemma 3.8], we have the following result which shows the stability equivalence.

Lemma 6.5.2. The two Poincare maps P(T) : Xo — Xo and G(T) : Yo — Ya have the
same spectral radius, that is, p(P(T)) = p(G(T)).

In general, the global stability analysis of the endemic state in the epidemic models
is often very difficult, and even impossible sometimes, because the dynamics are highly
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nonlinear. A dynamical behavior “permanence” implies that the disease will be maintained
globally, irrespective of the initial composition. Even if the endemic equilibrium is unstable,
the disease will last forever, possibly with perpetual oscillation or chaotic fluctuation [179].
Since the solutions in (6.26) are bounded, then “permanence” and “persistent” are equivalent

(see, e.g. [214]). With the additional assumption:
0%f(t,S,C, 1) 8%f(t,8,C, 1) 0%f(t,S,C, 1)
. < < <
(Hs) Son S0, s <0, SIS0, VEER, §>0, 0 >0, 1>0,

we can obtain the following results about the disease persistence in the system (6.26) and
the global attractivity of (S*(¢),0,0). A biological interpretation of (H3) can be found

in [103].

Theorem 6.5.1. When Ro > 1 and (Hy) — (Hs) hold, then (6.26) admits at least one
positive periodic solution Ea(t) = (5*(t), C*(t),I*(t)), and there exists a positive constant
m > 0 such that any solution (S(t,),C(t, 1), I(t,)) in (6.26) satisfies

lim inf(C(t,%), I(t,x)) > (91,71)

t—>00

for any ¥ € Yy.

Proof. Let Q(t)y = Wi(v) and @ = Q(T). Hence, {Q(t)};5, is an T'—periodic semiflow on
Yy and Q" = Q(nT) for all n > 0. Denote E; = (S§,0,0), where Si(0) = S*(0), V6 €
[—71,0], then Q(F;) = E.

Since Rp > 1, we have p(G) > 1. Based on (6.24), let G¢ be the Poincaré map of the

following perturbed linear periodic system

dUL ()
dt

dUs(t
dt

= pale(t)Ul(t — 7'1) —|—pa26(t)U2(t — 7'1) — bl(t)Ul(t),

~—

:(1 — p)ale(t)Ul(t — 7'1) + (1 — p)aze(t)Ug(t — 7'1) + ag(t)Ul(t — 7'2) (627)

— ba(t)Ua(2).

where

ale(t) _ h(t, Tl)af(t,s*(tafé—l)fe,e,e) and CLQE(t) _ h(t, Tl)af(t,s*(tgl‘rl)*é,eﬁ).

Since liII(l] p(Ge) = p(G) > 1, we can fix a small number € > 0 such that p(G¢) > 1. We know
€e—

lim
Y—Eq

Uy () — \I/t(El)H = 0 uniformly for ¢ € [0,T7], then there exists ¢ < 0 such that

Sp—e<S(t,y) <Sy+e 0<C(t, ) <e 0<I(t) < e whenever

o5 <e
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for t € [0,T]. Then, the mean value theorem for two variables and (/) imply that

F(t,S(t),C(t), I(t)) > f(t,Si—e, C(t), I(t)) = %(t, Si—e,C, f)C(t)+%§(t, Sg—e,C,1I(t)
with some C € (0,¢), I € (0,¢). From (Hs3) we have
f(t,S(),C(t), 1)) > %(t, St —€,6,€)C(t) + %(t, St — e e, €)I(t) (6.28)

for t € [0, T7.

Claim 1. limsup |Q"(E}) — E1|| > € for any ¢ € Y;.
n—oQo
By contradiction, suppose that limsup ||Q™(E;) — Ei|| < € for some ¢ € Y. Thus, there
n—o0

exists M; > 0 such that |Q"(E;) — Ei|| < e for all n > M, implying that, for any
t—71o>MT,t=1t+nT withn > M; and ¢’ € [0,T],

e = v = ||we (var@) - vo (var(E)|
o (o) - 0 (5)] <<

Therefore, for t — 1 > M T, in (6.26), we have, from (6.28)

%ﬁ” > paie(t)C(t — 1) + pagc(t)I(t — 1) — b1 (t)C(2),
0 (1= P =) + (1= Pase(I(t = 1) + as(OC(t — 72) — ba(8) (1)

For (6.27), there exists a positive T'—periodic function V¢(t) = (Vi¢(t), Vae(t)) such that
Ud(t) = Vi(t)ert is a solution with \. = w. By the comparison principle ( [169,
Theorem 5.1.1]) there exists K7 such that (C(t),I(t)) > K U(t). Let t = nT, n > 1, then,
U.(nT) = V.(nT)e*™ and (C(nT), [(nT)) > K1U.(nT). Thus lim (C(nT), I(nT)) = o0

due to A > 0, a contradiction.

Claim 2. My = {E1} with My = {4 € Yy : Q"(¢)) € dYy, t > 0}.
Clearly, {E1} € My. To prove My C {E1}, it suffices to prove My\{E;} = 0. First, notice

that from the second and third equations in (6.26), we have

dC(t)
dt

> (1) +9() + 700 and T > () 4 o0 + 50100,
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Consequently

—Oft(u(n)+Q(n)+w(n))dn —Oft(u(n)+r(n)+5(n))dn

C(t) > 2(0)e >0 and I(t) > ¢3(0)e >0. (6.29)

Let ¢ € dYp\{E}, for the case, ¥(0) = 0 and 13(0) > 0, we have I(t,) > 0 for t > 0
from (6.29). From the first equation in (6.26) and (), it follows that 92 > —(u(t)S(t) +

f(t, S, %, %)) Consequently, by Theorem 6.3.1 and the mean value theorem, we have
45 > —(u(t) + g—é(t, 8, %, %))S(t) where § € (0, %), and hence, there exists ¢p such that

S(t,v) > 0 for all t > tg. Choose an integer ny > 1 such that nyT > to + 71, then
%’t:an > 0. Therefore, there exists t; > n1T such that C(¢,¢) > 0 for ¢t € [nT,t1].
Thus (S(¢,v), C(t,v), I(t,v)) ¢ 0Yy. Same proof valid when 12(0) > 0 and v3(0) = 0.

Hence, My = {E1}. Moreover, |J w(t)) = E;. Therefore, any forward orbit of ¥(t) in
YEMy

My converges to E.

By the acyclicity theorem on uniform persistence for maps [218, Theorem 1.3.1 and
Remark 1.3.1], it follows that @ : Y7 — Y7 is uniformly persistent with respect to (Yg, 9Yy).
Thus, [218, Theorem 3.1.1] implies that the periodic semiflow ¥ : Y7 — Y} is also uniformly
persistent with respect to (Yp,0Yp). It then follows from [216, Theorem 3.1] that system
(6.26) admits at least one T'—periodic solution Es(t) = (S(t,v*), C(t,¥*), I(t,4*)) with
¥* € Yp. From [123, Theorem 4.5] we know that @ : Y1 — Y7 has a compact global attractor
Ty. Therefore, Iy = Q(Iy) = ¥ (T'g) and 12(0) > 0 and 3(0) > 0 for any ¢ € I'g. Thus,

11(0) > 0 due to the invariance of T'y. Let I'y = |J ¥;(T), then ;(0) > 0 for all
t€l0,7
Y ey (i =1,2,3). Moreover, I'y C Y and tli)m d (W, (¢p),T'1) =0 for all ¢ € Yy. Define a

continuous function « : Y7 — Ry by

#(¢) = min{tp2(0),3(0)}, Vi) € V1.
Since I'; is a compact subset of Yy, we have

inf — mi > 0.
Jgplﬁ(w) Imin K(Y)

Consequently, there exists n; > 0 such that
lim inf min (S(¢, ), C(t, ), I(t,v)) = liminf & (P4 (¢)) > n1, YV € Y.
t—o00 t—o00

In particular, lign inf min E(¢) > n1, and hence, E2(t) > 0 for all ¢ > 0. This implies that
—00

Es(t) is a positive T—periodic solution. O
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Theorem 6.5.2. When Ry < 1 and (H;) — (H3) hold, (S*(t),0,0) is globally attractive for
system (6.26) in Y+

Proof. Since }il’% p(G¢) = p(G) < 1, we can fix a small number ¢ > 0 such that p(G¢) < 1.
—
From the global stability of S*(¢) in (6.23), there exists My > 0 such that

S*(t) — ¢ < S(t) < S*(t) + ¢

for all t — 71 > M,T. The mean value theorem for two variables and (H2)-(H3) imply that

of 1, o Of o
F(t,S(0,C(0), 1(0) < 5 5(8,57(0) +€,0,000(0) + S(1,57(1) +€,0,0) ().

Therefore, for t — 7 > M>T, we have

dflf) < parc(t)C(t — 1) + pasc () I(t — 1) — bi(t)C(2), (6.30)
dizit) <1 =p)ac(H)Ct —71) + (1 = plagc (It — 1) + az(t)C(t — 12) — ba(£)I(2).
where

Gf(t,S*(t B 7—l) + <7070)
oC

af(t75*(t 7 Tl) + Cvoao)
ol

aic(t) = h(t,m) and asc(t) = h(t, 1)

In (6.30) (replace < by =), there exists a positive T—periodic function f/g(t) =
(Vie(t), Vae(t)) such that We(t) = Vi(t)e! is a solution with A\ = m where G
is the Poincaré map of the perturbed linear periodic in (6.30). Choose a sufficiently large
number Ky > 0 such that (C(t),1(t)) < KoWe(t) for all t € [MoT — 7, MyT|. Thus, the
comparison theorem for delay differential equations ( [169, Theorem 5.1.1]) implies that
(C(t),1(t)) < KoWe(t) for all t > M>T, and hence, tlggo (C(t),1(t)) = (0,0).

Therefore, the system (6.26) is asymptotic to the limiting system

s

o = At —pu(®)S@) (6.31)

when tlirn (C(t),I(t)) = (0,0). Note that S*(¢) is a global attractive solution of (6.31).
—00

Next, we use the theory of internally chain transitive sets (see e.g., [215]) to prove

lim ((S(t), C(t), I(t)) — (S*(t),0,0)) = 0.

t—o00

Let ¢ € Y7 and w = w(¢) be the omega limit set of Q™(¢). Since (C(t),1(t)) — (0,0) as
t — 00, w=w x (0,0). We first claim that @ # {0}. If @ = {0}, then li_r>n S(nT, ) = 0.
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Thus, there exists T > nT such that

1 -
A(t) — p(t)S(t) > §A(t) > 0, vt >T
Hence, from (6.31), we have
ds 1 -
— > Al t>T.
T
This implies that S(¢) — oo ast — oo, a contradiction. It is easy to see that Q" (¢1,0,0) =
(Q™(¢1),0,0) where Q is the periodic solution semiflow of (6.31). By [218, Lemma 1.2.1], w

is an internally chain transitive set for (), and hence, @ is an internally chain transitive set
for Q. Since & # {0} and S is a globally stable fixed point for Q in C([—71,0],R), we have
ONW3(Ss) # 0, where W3(Sg) is the stable set of S§. By [218, Theorem 1.2.1] we then get
@ = S;. This proves w = (53, 0,0), and hence,

lim ((S(2), C(t),1(t)) — (5%(t),0,0)) = 0.

t—o00

That is, (5*(t),0,0) is globally attractive. This completes the proof.
O

We remark that one of the most important questions in mathematical studies of epi-
demics is the possibility of the eradication of disease. In general, the global dynamics analysis
of the disease-free state is enough to answer the question, because it give us information on

the global behavior of this state, irrespective of the initial conditions [179].

After we understand the dynamics of (6.26) which is a subsystem of (6.17), we now
deduce the dynamics for the other three variables E(t), E(t) and R(t). To discuss the
system (6.17), first, notice that the integral form of E(t) and E€(¢) in (6.5) and (6.12) can

be written as

E(t) = / F(t—5,5(t—5),0(t—s),I(t — s))e Jima g,
0

T2
E4(t) = / gt — $)C(t — s)e™ Jimspmdngg
0

respectively.

Clearly when Ry < 1 and (H;) — (H3) hold, we have

lim (E(t), E°(t), R(t)) = (0,0,0).

t—o00
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When Ry > 1 and (H;) — (H3), it follows from Theorem 6.5.1 that (6.17) admits at least
one positive periodic solution Eo(t) = (S*(t), E*(t),C*(t), E€ (t), I*(t), R*(t)) with

t) = /f(t — 5, S5 (t—8),C*(t — 8), I*(t — s))e s Mg 5

T2
B (t) = / gt — )C* (t — s)e™ Jmsmng ~ o
0

t
R*(t) = R(0)eJo #()ds / el 1mdny. () 1% (s)ds > 0.
0

Let Y = C([—71,0], R) xRxC([—72, 0], R)xRx C([—71, 0], R) xR, Y+ = C([—71, 0], Ry )X
Ry x C([—72,0],Ry) x Ry x C([—71,0],Ry) x Ry,

Dy = {7’[} €Y (0) = fEn F(0,1(9), Y3 (9), Pa (1)) e Jo Hmdngyg,
$a(0) = [°,, a(@)ds(@)e T Mgy},

Y = {¢ € Dy : 1j3(0) > 0 and ¢5(0) > 0} and 9Y = Dy \ Y = {¢) € Dy : ¢3(0) =
0 or ¢5(0) = 0}. Then we have the following result for system (6.17).

Theorem 6.5.3. Assume (H,) — (Hs) hold

(i) when Ry < 1, then

lim [(S(¢), E(t),C(t), E°(t),I(t), R(t)) — (S*(¢),0,0,0,0,0)] =

t—o0
m DY N
(i) when Ro > 1, then (6.17) admits at least one positive periodic solution

*

(S™(t), B (1), C(t), E° (t),I7(t), R*(t))
and there exists a positive constant na > 0 such that any solution (S(t,q/;), E(t,zﬁ),
C(t,9), B(t,0), I(t,9), R(t,)) in (6.17) satisfies

lim inf(C(t,1), I(t,)) > (12,72)

t—o00

for any @/3 ey.
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6.6 Uniqueness of the epidemic state with con-

stants coefficients

It is known that the analysis to prove the uniqueness of the endemic state is a challenging
topic in nonautonomous epidemic models. In this section, we show the coexistence of a
unique endemic state when (6.17) is an autonomous system with all constants coefficients
and f(¢,5,C,I) = f(S,C,TI), then the basic reproduction ratio Rg with discrete delays

becomes explicit (see [217, Corollary 2.1])

1, T+VT2+4D
[Ro] = p(Fy + P)V 1) = —————— (6.32)
with
—ur O —ur1 O %) —p(T1+T
_pe (00 A-pemH (00 o pag (50,0 )
qa+y+p T+ 04 p ’ (q+v+m)(r+0+np)

where % is the global asymptotic stable equilibrium of %{ =A—uN(t).
Beside the disease-free equilibrium F; = (%, 0,0), to examine the existence of the positive

equilibrium point Fy = (S§*, C*, I'*) in (6.26), we have to solve

f(S,C,I) = A—puS+~+C, (6.33a)

pe *Tf(S,CI) = qC+ (v +p)C, (6.33b)

(1 —ple #f(S,C, 1) = (r+d6+p)l—qe*C. (6.33¢)

Motivated by [103], in order to find the conditions to guarantee the existence of positive

solutions in (6.33), first of all, we have I = Al%fC from (6.33b) and (6.33c), where

gty tup . gqeTHm 40+ p

A =
1 p— 3

By denoting ¢(S,C) = f(S,C, ’41%3‘420), then

89(5, C) o Gf A1 + A2 8f
oc — aC As oI’

929(S, C) O2F A1+ As) P A+ As ,0%f
acz  ~ aczt T a4, acoi T4 Var
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Consequently, (6.33) yields

g(Sa C) = Alca
A—pS+~C A C. (6.34)

2
When (H3) holds, by contradiction, we can prove that % < A since 2 g(ci’c) < 0.

Otherwise, if there is a C7 > 0 satisfies % > Aj, there must exist a Cy € (0,C4) such
that 89(5502) = g(S,CHg’:g(S,O) = A; from ¢(S,0) = 0 and (6.34). Therefore, the following
proposition holds.

Proposition 6.6.1. Under the hypothesis (Hy) — (Hs), if the endemic equilibrium point Es

exists, we have
af(S*,C*, I*) . A1+ Ay OF(S*,C*, T¥)
oC As ol

where the strict equality holds only if

SAla

02f(S, AHA2C,0) 9P f(S,452C,0) 92 f(S, 4420, 0)

500 = 5001 = 572 =0 for all S >0,C > 0.

Similar to the proof given in [103] with more complicated analysis and computation, we
know that, under the hypothesis (Hy) — (Hj), the condition

af(%,0,0) LAt A af(%,0,0)

A .
oC A ol ! (6.35)

is sufficient to ensure the existence and uniqueness of such endemic equilibrium point Es
from (6.33a) by noting that v < A; since 0 < p < 1 and e ™ < 1.
Furthermore, in the expression of the basic reproduction number [Ry],
1 af(5,0,0)

T D = 6 —HT1
" (q+7+u)(r+5+u)[(r+ + pipe oC
af(%,0,0)

oI ]

+((g+ 7+ m) (L= p)e ™ + pge M)

_ pe K1 3f(%,0,0) n A+ A 8]0(%7070)]
g+y+u  OC A3 oI
4, oac A a1

(6.36)

The condition (6.35) yields 7'+ D > 1 which is sufficient to have [Ro] > 1. Therefore,
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Theorem 6.6.1. Given the assumptions (Hs) — (Hs). If [Ro] > 1, then the positive equi-
librium point Ey = (S*,C*,I*) exists in (6.26) and is uniquely determined in (6.33). Con-
sequently, a unique endemic equilibrium point (S*, E*, C*, E<* I*  R*) exists in (6.17) with
E* = L(1—e ) f(S*,C* 1), B* = 4(1— e #)C* and R* = LI*.

6.7 Numerical computation and simulation

In this section, firstly, we present numerical algorithm to calculate the basic reproduction
ratio Rg. Secondly, we do a case study regarding the meningococcal meningitis disease
transmission in Dori, Burkina Faso. Thirdly, we discuss the sensitivity of Rg ([Ro]) with

respect to the latent period 7 and some key parameters related to carriers including s, p,
7(t) and ¢(2).

6.7.1 Calculation of R
For any v € Cr, we can rewrite the infection operator in (6.25) as

(m+1)T

/OOIC v(t —s)ds = i / K(t,s)v(t — s)ds
0

= mT

3
o

K(t,s +mT)v(t —s —mT)ds

Il
Me 1M
St —y O T—

K(t, s+ mT)v(t — s)ds = /G;C(t, s)v(t — s)ds

3
Il
=)

(6.37)

with -
Gi(t,s) = Z K(t,s +mT). (6.38)
m=0

It is clear that, when (H;)— (H2) hold, there exist Ky > 0 and ay > 0 such that ||[Y (¢, s)|| <

Kye v(t=5) for all ¢ > s with s € R. Hence, we may approximate Gx by a finite sum

(See [146])
Gr(s,t) ~ Y K(t,s+mT) (6.39)
for some integer My > 0. We would like to mention that, due to the exponential decay of the

terms in the summation in (6.38), the large value of My is unnecessary [116]. To apply the
numerical algorithm in [116], we partition the interval [0, 7] uniformly into n subintervals
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[ti,tiy1] with t; = % for i =0,...,n — 1 and use the trapezoidal rule to approximate the

integral in (6.37) with Gx(s,t) in (6.39). Then R ~ L p(A) where A is 2n x 2n matrix

Gc(to, to) Gr(to,tn—1) - <o Gil(to,ta) G (to, t1)
Gi(t1,t1) Gx(t1,10) <o Gt ts) G (t1,t2)
A= Gi(t),t;) Gi(tj,tis1) -+ Grl(tj,to) -+ Grltjtiza)  Grlt ti)
G (tn-2,tn—2) Gr(tn—2,tn—3) -- e oo Grltp—a,to) Grltn—2,tn—1)
L GIC(tn—lvtn—l) G}C(tn—Qvtn—Q) G}C(tn—lytl) G}C(tn—lvto)

with Gi(t,t0) = (Gx(tj, to) + Gr(tj, 1)) and j =0,...,n — 1.

6.7.2 A case study

To apply the model to realistic example, we study the transmission of meningococcal menin-
gitis disease, a major public health problem in a large area of sub-Saharan Africa, known
as the meningitis belt, the area of Africa that lies south of the Sahara desert and stretches
from Senegal to Ethiopia. According to WHO, meningococcal meningitis is a bacterial form
of meningitis caused by the bacterium Neisseria meningitidis, a serious infection of the thin
lining that surrounds the brain and spinal cord. The bacteria are transmitted from person-
to-person through droplets of respiratory or throat secretions from carriers such as sneezing
or coughing on someone.

In Burkina Faso, a landlocked country in West Africa, the annual number of meningitis
cases is shown in Figure 6.3, recorded from 1940 — 2014, which exhibits an oscillatory
behavior, although with irregular patterns of epidemics varying in size and duration [1,91].
The observed behavior can be related to environmental factors, particularly the Harmattan
(a dry and dusty trade wind that blows across the region during the dry season).

For the case study, we choose a town in northeastern Burkina Faso named as Dori.
According to the 2012 World Bank report, the life expectancy in Burkina Faso is 55.86
year. So we choose the natural death rate u(t) = u = 1/55.86 = 0.018 year—!. The total
population in Dori is 21078 (2006), that is, the recruitment rate A(t) = A = 21078 x u ~ 379
people per year.

In general, the incidence rate function f can be chosen in different forms with condi-
tion (Hs). For simplicity and following the literature, we take f(¢,S,C,I) = fi(t,S,C) +
fa(t, S, 1) [91,125]. Let B(t) be the transmission rate. Typically, asymptomatic carriers are



163

Annualmberf
cas@urkirfaso

45000
40000
35000
30000
25000
20000
15000
10000

5000

1940 1950 1960 1970 1980 1990 2000 2010

Figure 6.3 Annual number of reported suspected meningitis
cases in Burkina Faso, 1940-2014.

infectious at a reduced transmission rate {5(t) (I € (0,1)) [125]. We choose

BH)SE)I(t)
1+ asl(t)

fi(t,8,C) = m and  fa(t,5,1) =
with [ = 0.8, ; = 0.07 and ay = 0.05 [210]. In general, the transmission rate is between
50 — 200 year—! [01]. To estimate a periodic 3(t), we first notice that usually the meningitis
incidence is the lowest during rainfall season and it increases to reach the highest during
the dry season in most districts of the meningitis belt due to dust winds, cold nights and
upper respiratory tract infections [132,192]. Now, based on the inverse relation between
rainfall and disease transmission, we assume that there is a higher transmission rate in the
most dry period and it decreases as the average precipitation increases. From the recorded
average precipitation per month in Dori from 2000 to 2012 (Figure 6.4, the data are taken
from www.worldweatheronline.com), we see that the rainy season lasts approximately
four months from June to September. Hence, we take the lowest disease transmission as

1 1 in January (the red dots in

50 year™", occurring in August and the highest, 200 year™
Figure 6.5 represent the transmission value per month). Consequently, we obtain a one
year periodic function f;(t) = 128.333 + 52.0374 cos(2nt) 4+ 50.3707 sin(27t) (Figure 6.5a).
In [91], the authors assume ((t) = Bo(1 4 B cos(2nt)) with 81 € (0,0.975). Using this form
of 3(t), we have found that the best fit function is B(t) = 126.667(1 + 0.384506 cos(27t))
(Figure 6.5b). Obviously, the error is higher than using 3 (¢).

According to WHO for meningococcal meningitis disease, the latent (latent) period (71)

is 2—10 days (0.0055—0.0274 year). The duration of carriage (72) is 1—3 months (0.083—0.25
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Figure 6.5 Transmission rate function.

1

year) [91,192]. The rate at which carriers become ill is between 0.1 — 52 year™ ', we take

q(t) = qo(1 + q1 cos(2nt)) with ¢1 € [0,0.975] [91]. In the following numerical simulation
we choose 71 = 0.008, 75, = 0.083, qop = 30, g1 = 0.5; and assume that 20% of infected

susceptible individuals become carriers (i.e. p = 0.2); and all the other parameters are

1 and

chosen from literature as constants r(t) = r = 52 year™!, §(t) = § = 5.2 year™
y(t) = v = 20 year—! [91]. Thus, Ro ~ 2.5371 by using the provided algorithm in Section
6.7.1 with n = 500 and Mx = 10. The numerical simulation result shows the disease
persistence and oscillatory behavior with irregular patterns in size and duration (Figure
6.6), which has good agreement with the behavior of the real data (Figure 6.3), although
we cannot fully recover Figure 6.3 due to the lack of data for each town there. In fact the

pathogenesis of meningococcal meningitis disease is not fully understood [65].

6.7.3 Sensitivity of Ry and [Rg]

In this subsection, we study the sensitivity of Rg ([Ro]) with respect to the latent period
71 and carriers related parameters 1o, p, v and ¢(t). We keep all parameters value as in

Figure 6.6 except p = 0.051 and p = 0.4 to obtain a value for Ry closing to one to study
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Figure 6.6 Time series C(¢) and I(¢). S(0) = 15000, E(0) = 30, C(0) = 20, EC(0) = 5,
I(0) =20 and R(0) = 5.

the influence of these parameters on controlling the infectious disease.

First, with constant coefficients, from the explicit formula for [Rg] in (6.32), we know

O[Ro] _ E<T+T2+—2D> o, IRd___—wb__
o 2 VI?+4D/) " O9n  VTP44D
ORo] 1( LT ) pe ' [Ro]  petm
afc 2 VT2 +4D) a+v+u VT2 +aDg+y+p
and for s € {v,p,q},
O[R(}] 1 oT oD
e = v (Rl + 50
with
O peme 0D ey
O e’ O s g+’
or . fo fr oD qfre Hmtm) 0
aw (q+7+u_r+6+u>’ [ R R R R
T pleett o 0D phe ) _gap
dq (g+y+m? 0q reddn (gt

where g—é (%,0,0) = fo and % (%,0,0) = fr. Based on the above relations, Table 6.1
summarizes the conditions for increasing [Ryg].

From epidemiological view point, control the outbreak of disease implies to decrease
the value of [Rg] below to 1. Thus it is clear that the longer latency periods (71,72) or
the larger portion of return to susceptible class from carrier () decrease [Ro], while [Rg]
increases under one of the following circumstances: 1) higher transmissibility with respect

to the carrier class (f¢), 2) a great portion (or probability) to develop carriage with either
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Parameter Condition

Ti, To Reduce 7 or 7
fc Increase f¢
¥ Reduce ~
Increase p and one of the following conditions holds
p . f f .. afre=h
(i) q+$+u = r+6l+u or (if) [Ro] < fI(Q+”/+MI)—fC(7"+5+N)
q Increase ¢ and the condition (iii) [Ro] < e*“m}{—é% holds
Table 6.1 Conditions for increasing [Ro].
e HT1 fC

is larger than

e=HTLf;
r+o+p
(condition (i)) or when [Ro| is small enough (condition (ii)), 3) condition (iii) holds and

the number of newly infected individuals that arise from one carrier e

the number of newly infected individuals that arise from one infectious individual

higher transmission rate from asymptomatic carrier latency period to ill class occurs (q).
To compare between [Ro] in the autonomous system and the basic reproduction number
in the periodic system (6.17) Rg, we take the average value of [f;] = % fOT B1(t)dt = 128.333
and [g] = 30 in Figure 6.6 over the interval [0, 7] to calculate [Ro], use the algorithm given
in Section 6.7.1 to illustrate the sensitivity of Rg with respect to 71 and 7. First, with fixed
75 = 0.8, we observe that both Ry and [Rg] decrease when 11 increases (Figure 6.7a). Simi-
lar behavior is shown in Figure 6.7b for fixed 7 = 0.2 and variable 79. These are consistent
with the fact that long latent period leads to less infection spread. The latent period can be
extended by, for example, prescription drug or control measures. On the other hand, we ob-
serve that the curve of [Ry] is below the curve of Rg for 7 < 75 and above it when 7 > 73,
see Figure 6.7b. This shows that the time-average basic reproduction number [Ro] under-
estimates the disease transmission risk when the asymptomatic carriage period is short and
overestimates it when asymptomatic carriage duration is long enough. While [Rg] overesti-
mates Ry when 71 varies (see Figure 6.7a). In general, the time-average basic reproduction
ratio [Ro| may coincide with the basic reproduction ratio R or underestimate/overestimate

infection risks [195].
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Figure 6.7 The graph of R and [Ro] when 71, 7o varies. u = 0.051, p = 0.4 and the other
parameters as in Figure 6.6.

6.8 Discussion

The periodicity in epidemic models reflect the disease dynamics that often occur in the real
world, which can be used to explain the biological mechanisms for the emergence of disease
outbreaks in a population systems. In this chapter, considering a general nonlinear incidence
rate function, we have proposed a stage-structured periodic disease transmission model with
asymptomatic carriage and two latency periods, one is the latent period of the disease and
another is the time-lag that asymptomatic carriers take to develop the disease symptoms.
To derive the model, we have used the McKendrick-von Foerster equation by introducing the
infection age in the disease-related classes. Then, by the method of characteristics, we have
obtained a system of functional differential equations. After formulating the model, first,
we have discussed the well-posedness of the model by proving the existence, uniqueness,
non-negativity and boundedness of the solutions theoretically.

In epidemiology, the basic reproduction ratio Ry is fundamental concept. Using the
theory in [217], we have found that R is the spectral radius of a linear operator on the
space of continuous periodic functions, and discussed the global dynamics of the model by
studying the global attractivity of the disease-free state when Ry < 1 and disease persis-
tence when R > 1. Furthermore, we have investigated the sensitivity of Ry and [Ro] with
respect to some key parameters including 71, 72, p, v and ¢(¢). Using the explicit formula
for [Ro], we have found that [Ro| decreases when either 7y, 7 or v increases. While it
increases with respect to p, ¢ under certain conditions. Numerically, we have found similar
relationships between Ry and the latency periods. From disease control point of view, we
understand that latent period can play a positive role in eliminating or slowing a disease

spread. Further, we have seen that the epidemic might happen when a large proportion of
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infected individuals becomes carriers, i.e. hidden infectious individuals, under certain con-
ditions (e.g., condition (i)). On the other hand, in the simplified time-averaged autonomous
system, we have shown that [Ro] underestimates the infection risk for short asymptomatic
carriage period and overestimates it when asymptomatic carriage duration is long enough.
While it overestimates the infection risk for 7.

As a case study, based on the fact that the transmission of meningococcal meningitis in
sub-Saharan Africa is greatly influenced by the climatic factor for rainfall, we have estimated
the periodic transmission rate function and calculated the basic reproduction ratio Ry =
2.5371 using the monthly average precipitation in Dori. Our numerical simulation has
indicated an irregular patterns of epidemics varying in size and duration, which is consistent
with the reported data in Burkina Faso from 1940 to 2014. This irregularity might be
related to the interactions with the disease carriers (beside the ill individuals) and the
seasonal variation in disease transmissibility [91]. One of the most challenging issues for
meningococcal meningitis is that the pathogenesis of this disease is not fully understood since
its first discovery in 1805 [65]. We hope that with the involvement of asymptomatic carriers

the presented research can give some insight in understanding the disease transmission.



Chapter 7
Summary and Future Works

In this chapter, we briefly summarize the main results in this thesis and propose some

problems for future investigations.

7.1 Research summary

In this thesis, we study the dynamics of time-delayed mathematical models in ecology and
epidemiology.

Mathematical models can provide an important approach to understand the risk of hu-
man exploitation on fish resources. In Chapter 2, we proposed a mathematical model for a
single species fish stock with three-stage structure: juveniles, small adults and large adults
with two harvesting strategies for mature classes: maturity and size selectivity. We inves-
tigated the dynamical behavior of the model and discussed the effect of harvesting. After
we proved the existence and uniqueness of bounded solutions, we calculated the adult re-
production number R4 for the model mathematically. Then, we obtained the local and
global stability of the trivial equilibrium (0,0,0) when R4 < 1, and discussed the popula-
tion persistence and existence of a unique positive equilibrium (I*,S* L*) when R4 > 1.
Numerically, we investigated the influence of harvesting functions, discussed the optimal
harvesting rates, which is important ecological features, and explored the effect of periodic
coefficients on the dynamical system.

Sea lice infection is one of the major threats in the marine fishery, especially for farmed
salmon. In Chapter 3, we proposed a mathematical model for the growth of sea lice which is
one of the major threats in the marine fishery, especially for farmed salmon. We considered
three stages in sea louse lifespan: non-infectious immature, infectious immature and adults

where the level of non-infectious immature development depends on the size of the adult
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population. We described the nonlinear dynamics by a system of partial differential equa-
tions, then, we transformed it into a system of delay differential equations with constant
delay by mathematical techniques and an appropriate change of variables. We addressed
the system threshold dynamics for the established model with respect to the adult repro-
duction number R, including the global stability of the trivial steady state (0,0) when
Rs < 1, persistence and global attractivity of a coexistence unique positive steady state
(C*, A*) when R, > 1. We provided some numerical simulation results using Lepeophtheirus
salmonis growth as a case study with appropriate parameters from the literature.

Treatment of sea lice has become one of the top priorities in aquaculture research, due
to their responsibility for most disease outbreaks on salmon farms and causing enormous
monetary losses. In Chapter 4, we proposed a mathematical model for biological control of
sea lice by introduction of one of its natural predators “cleaner fish” as a dynamical systems
approach. We classified the growth of sea lice population into three stages: non-invasive
immature, invasive immature and adults, and assumed predator prey interaction at the
adult level of sea lice. Through mathematical analysis, we addressed threshold dynamics
with respect to the adult reproduction number for sea lice R and the net reproductive
number of cleaner fish Ry, including the global stability of the trivial steady state when
Rs < 1, global attractivity of the predator-free equilibrium point when Ry > 1 and Ry < 1,
persistence and coexistence of a unique positive steady state when Ry > 1 and Ry > 1.
We discussed the local stability of the positive equilibrium point and investigated the Hopf
bifurcation. Numerical simulations were provided to present a case study for comparing
between two cleaner fish species, goldsinny and ballan wrasse, and show the oscillation
behavior.

In Chapter 5, we considered an SEIRD model where the population of the humans is
described by a system of susceptible, exposed, infectious, recovered individuals and infected
corpses who are nonetheless infectious. We discussed the non-negativity, boundedness of
solutions, equilibria, permanence, the local and global stability. The basic reproduction
number Ry was obtained and it determined the dynamics of the model. We proved that the
disease-free equilibrium (%, 0,0,0,0) is globally stable and the disease dies out when Ry < 1;
and the infection always persists and a unique endemic equilibrium (S*, E*, I*, R*, D*) exists
when Ry > 1. We also showed that the endemic steady state is locally asymptotically
stable under certain condition and globally asymptotically stable in a special case of the
model. Moreover, we studied the relation between the basic reproduction number Ry and
the parameters 7 and d. We showed that Ry is a decreasing function for 7 and increasing for
d, which means, to reduce the spread of the Ebola, we need to extend the duration of latent
and/or dispose of human remains by cremation or burial. We gave numerical simulations

to demonstrate the theoretical results and show the relation between Ry and the number of
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infectious individuals.

In Chapter 6, we studied the global dynamics of a periodic disease transmission model
with two delays in latent and asymptomatic carriage periods. We first derived the model
system with a general nonlinear incidence rate function by stage-structure. Then, we iden-
tified the basic reproduction ratio Rg for the model and presented numerical algorithm to
calculate it. We obtained the global attractivity of the disease-free state (5*(t),0,0,0,0,0)
when Ry < 1 and discussed the disease persistence when Ry > 1. We also explored the
coexistence of endemic state in the nonautonomous system and proved the uniqueness with
constants coefficients. Numerical simulations were provided to present a case study regard-
ing the meningococcal meningitis disease transmission and discussed the influence of carriers

on Ry.

7.2 Future works

In proposing the mathematical model in Chapter 2, we assumed that the rate of change of
age/size with respect to time is a constant 1. Meanwhile, we understand that such a rate is
normally density-dependent in reality, which results in the mathematical system/model as
nonlinear ordinary differential equations being coupled to a partial differential equation [102,

]. Can we transform the system with mixed (age and stage/size) structure into functional
differential equations where the delay may be of threshold type or state dependent? And, if
so, how? This will be one of the most challenging topics in our future research. Furthermore,
it will be interesting to study how seasonal fluctuations in harvesting affect population size
and behavior. Spatial structure can also be added to identify spatial patterns and their
relationships to ecological behaviors.

In Chapter 3, further work may include consideration of wild salmon. Sea lice from
salmon farms have been suggested to be possible threats facing wild salmon. Studies showed
that the heaviest infections of wild salmon are limited to the areas with a high concentration
of salmon farms. More precisely, besides adult salmons which are natural hosts for the sea
louse species, high density of sea lice has been found on juvenile salmons which is rare to
occur in areas with no salmon farms [18, 138]. It will be interesting to derive a spatial-
temporal infection (by sea lice) model for wild salmon associated in space and time when
the wild salmon pass through areas containing salmon farms.

Efficient sea lice control remains one of the most important challenges for the salmon
farming industry [148]. Further work in Chapter 4 may include: i) consideration of immi-
gration and emigration in the model: Salmon farms may become infested by sea lice from
wild salmon and become point sources for sea lice [11]. In the presence of adult sea lice,

salmon become irritated and turn over, hence, cleaner fish can be intimidated by salmon and
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leave the salmon farms [30, 160]. Extension of our framework to include immigration of sea
lice and emigration of cleaner fish is an interesting future work; ii) modify the model with
periodic coefficients: cleaner fish works only during the day [48,162]. It will be interesting to
study how daily fluctuations of functional response affect the population size and behavior
of sea lice and cleaner fish.

In Chapters 5 and 6, it will be interesting to consider vaccination, which plays an effective

role of preventing infectious diseases and is a powerful tool in the public-health control.
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