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Abstract 

Low-power electronic applications are normally powered by batteries, which have to deal with 

stringent lifetime and size constraints. To enhance operational autonomy, energy harvesting from 

ambient vibration by micro-electromechanical systems (MEMS) has been identified as a promising 

solution to this universal problem. In this thesis, multiple configurations for MEMS-based 

piezoelectric energy harvesters are studied. To enhance their performances, automated design and 

optimization methodologies with minimum human efforts are proposed. Firstly, the analytic 

equations to estimate resonant frequency and amplitude of the harvested voltage for two different 

configurations of unimorph MEMS piezoelectric harvesters (i.e., with and without integration of 

a proof mass) are presented with their accuracy validated by using finite element method (FEM) 

simulation and prototype measurement. Thanks to their high accuracy, we use these analytic 

equations as fitness functions of genetic algorithm (GA), an evolutionary computation method for 

optimization problems by mimicking biological evolution. By leveraging the micro-fabrication 

process, we demonstrate that the GA can optimize the mechanical geometry of the prototyped 

harvester effectively and efficiently, whose peak harvested voltage increases from 310 mV to 1900 

mV at the reduced resonant frequency from 886 Hz to 425 Hz with the highest normalized voltage 

density of 163.88 among the alternatives. 

With an intention of promoting uniform stress distribution along the piezoelectric cantilever 

and providing larger area for placing proof masses, in this thesis a T-shaped cantilever structure 

with two degrees-of-freedom (DOF) is proposed. Thanks to this special configuration, a 

considerable amount of stress/strain can be obtained from the tip part of the structure during the 

vibration, in addition to the anchor region. An analytic model for computing the frequency 



 

 

response of the proposed structure is derived, and the harvester performance is studied analytically, 

numerically and experimentally. 

The conventional MEMS energy harvesters can only generate voltage disadvantageously in a 

narrow bandwidth at higher frequencies. Therefore, in this thesis we further propose a piezoelectric 

MEMS harvester with the capability of vibrating in multiple DOF, whose operational bandwidth 

is enhanced by taking advantage of both multimodal and nonlinear mechanisms. The proposed 

harvester has a symmetric structure with a doubly-clamped configuration enclosing three proof 

masses in distinct locations. Thanks to the uniform mass distribution, the energy harvesting 

efficiency can be considerably enhanced. To determine the optimum geometry for the preferred 

nonlinear behavior, we have also used optimization methodology based on GA. The prototype 

measurements demonstrate that our proposed piezoelectric MEMS harvester is able to generate 

voltage at 227 Hz (the first mode), 261.8 Hz (the second mode), and 286 Hz (the third mode). 

When the device operates at its second mode frequency, nonlinear behavior can be obtained with 

extremely small magnitude of base excitation (i.e., 0.2 m/s2). Its normalized power density (NPD) 

of 595.12 (W·cm-3·m-2·s4) is found to be superior to any previously reported piezoelectric MEMS 

harvesters in the literature.  

In this dissertation, we also propose a piezoelectric MEMS vibration energy harvester with 

the capability of oscillating at ultralow (i.e., less than 200 Hz) resonant frequency. The mechanical 

structure of the proposed harvester is comprised of a doubly clamped cantilever with a serpentine 

pattern associated with several discrete masses. In order to obtain the optimal physical aspects of 

the harvester and speed up the design process, we have utilized a deep neural network, as an 

artificial intelligence (AI) method. Firstly, the deep neural network was trained, and then this 

trained network was integrated with the GA to optimize the harvester geometry to enhance its 



 

 

performance in terms of both resonant frequency and generated voltage. Our numerical results 

confirm that the accuracy of the network in prediction is above 90%. As a result, by taking 

advantage of this efficient AI-based performance estimator, the GA is able to reduce the device 

resonant frequency from 169Hz to 110.5Hz and increase its efficiency on harvested voltage from 

2.5V to 3.4V under 0.25g excitation.  

To improve both durability and energy conversion efficiency of the piezoelectric MEMS 

harvesters, we further propose a curve-shaped anchoring scheme in this thesis. A doubly clamped 

curve beam with a mass at its center is considered as an anchor, while a straight beam with proof 

mass is integrated to the center of this anchor. To assess the fatigue damage, which is actually 

critical to the micro-sized silicon-based piezoelectric harvesters, we have utilized the Coffin-

Manson method and FEM to study the fatigue lifetime of the proposed geometry comprehensively. 

Our proposed piezoelectric harvester has been fabricated and its capability in harnessing the 

vibration energy has been examined numerically and experimentally. It is found that the harvested 

energy can be enlarged by a factor of 2.66, while this improvement is gained by the resonant 

frequency reduction and failure force magnitude enlargement, in comparison with the conventional 

geometry of the piezoelectric MEMS harvesters.
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Chapter 1    Introduction                                                               

Energy harvesting has become an interesting field of research in recent few years with a target 

of meeting energy requirements for low-power electronic applications, such as implantable 

biosensors [1][2], consumer electronics [3], military equipment [4], and wireless sensor networks 

(WSN) [5][6]. Normally only batteries are used to power the aforementioned devices that feature 

low power consumption. However, size limitation and recharging necessity prevent a capability of 

autonomy. Due to these concerns, more efforts are striving to replace the batteries with more 

efficient power solutions that have no lifetime worries. The energy harvesting from ambient 

resources is the key of this technology.  

Portability, as an important factor in many practical applications, is strongly demanded. The 

level of portability is identified by device dimension and lightness. High portability promises easy 

deployment and reduced interfacing cost. The micromachining technology is known as one major 

method for producing portable devices. By using lithography and etching techniques to expose the 

designed patterns on silicon surface, this technology can manufacture micrometer-sized or even 

smaller mechanical parts. Several processing methods for micromachining fabrication, such as 

bulk micromachining [7], surface micromachining [8], and LIGA [9], have been proposed. 

Micromachining has been interpenetrating several disciplines (e.g. medicine, optics, mechanical 

and electrical engineering). Likewise, integrated circuits (IC) can be fabricated with similar 

procedures. Advanced design automation methods can enhance the fabrication quality and circuit 

performance by considering the electronic device parasitic effects [10] and manufacturability 

issues [11]. Due to similarity in the fabrication, micromachining and microelectronics can be 
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integrated to offer micro-electro-mechanical-system (MEMS), a practical micro-system with high 

portability and reliability [12]. 

The available natural harvestable energy in outdoor environment includes solar, thermal and 

vibrations. Solar power system is one of the most usual methods of energy harvesting [13]. Since 

high solar energy conversion efficiency is highly dependent on surface area of solar cells in 

addition to availability of sunlight, MEMS or other portable devices, which may not gain the best 

profit from solar energy due to their inherent tiny physical size, require other ambient energy 

sources. Electricity generation associated with thermal is another approach for MEMS or other 

portable energy harvesters. The temperature difference between two various materials can offer 

electrical power, for example thermocouples [14]. However, large temperature gradient is not 

feasible for the MEMS or other portable devices with miniature sizes [15]. 

Table 1 presents ambient harvestable energy sources including solar, wind, thermal, and fluid 

(i.e., water drop) [16][17]. As an important factor for expressing power conversion capability, 

power density is also listed in Table 1 for evaluation purpose. The comparison among power 

densities of ambient energy sources shows that solar cells have the highest power conversion 

potential when sunshine is abundant. Nevertheless, it may deliver unsatisfactory performance in 

some applications due to lack of sufficient sunlight [18]. Furthermore, because of low power 

conversion efficiency in thermal and fluid flow sources as well as difficulty in fabrication, they 

are not highly qualified for popular energy harvesting. Under such a condition, wind flow (i.e., 

vibration) may be considered as one promising candidate. A successful example of wind energy 

harvesting is wind farms. The large-scale wind turbines, which have been known for centuries, can 

generate kilowatts or even higher electrical power for on-grid systems or even form wind power 

plants [19]. 
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Table 1. The harvestable ambient energy sources. 
 

Ambient Source Power Density 

Solar in outdoor 100 mW/cm2 

Wind at 4.47 meter/second (m/s) speed 10.4 mW/cm3 

Thermal at ∆T = 5 °C 60 uW/cm2 

Water drop with size of 0.35 mL at 3.43 m/s speed 30.67 uW/cm2 

 

 

The vibrations may be harvested from wind flow [20], water stream [21], blood pressure [22], 

or road traffic [23]. To convert vibrations to electricity, electromagnetic-, electrostatic-, and 

piezoelectric-based techniques have been proposed as feasible solutions to MEMS or portable 

vibration energy harvesters. Since the functionality of the electromagnetic generators is based on 

magnetic field strength, a big permanent magnet, which may unfortunately degrade device 

portability degree [24], is normally required to achieve high energy conversion efficiency. The 

electrostatic-based technique can offer a highly compact energy harvester. However, for 

polarization of capacitor’s plates, utilizing a high external bias voltage [25] or electret material [26] 

seems to be necessary, which virtually prevents them from forming standalone energy harvesters. 

In contrast, the piezoelectric-based technique, thanks to the piezoelectric material deposition 

compatibility with micromachining process and the independence from external voltage supply, 

has attracted more attention in building up MEMS-based vibration energy harvesters [27][28]. 

The regular MEMS process flows, such as sputtering, material deposition, etching, etc., can 

readily build a tiny integrated vibration energy harvester with ultra-light weight based on 

piezoelectric-base technique. Thus, the portability can be significantly improved. Fig. 1 illustrates 

a complete MEMS process flow for manufacturing a piezoelectric-based micro-scale wind (i.e., 
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vibration) energy harvester [29]. Firstly, silicon oxide is grown on silicon wafer (Fig. 1A). At the 

next step, Pt/Ti is deposited as a bottom electrode by DC magnetron. The PZT material, which is 

commercially available as sol-gel, is deposited. Then on its top, Pt/Ti is deposited again for top 

electrode as shown in Fig. 1B. Afterwards certain required shape can be patterned by etching 

process to form a whole chip as depicted in Figure 1C. In Fig. 1D, the final chip structure of the 

energy harvester after several backside and frontside silicon etching steps is depicted. 

 

Fig. 1. MEMS process fabrication flow. (A) Silicon on insulator (SOI) wafer with buried oxide layers. (B) Bottom and 

top electrodes deposited and piezoelectric material sandwiched between them. (C) Required pattern on electrodes. (D) 

Backside and frontside silicon etching has been performed with piezoelectric cantilever structure and proof mass 

released. 
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The rest of the thesis is organized as follows. Chapter 2 reviews vibration-based energy 

harvesting techniques by the portable and MEMS harvesters for low-power applications. Chapter 

3 describes a design and optimization method for efficiency improvement of the unimorph 

piezoelectric energy harvesters. In Chapter 4, a multi-objective optimization methodology, which 

can enhance the harvested voltage and reduce the operational resonant frequency of the MEMS 

harvesters, is proposed. In Chapter 5, a T-shaped piezoelectric structure with the capability of 

harnessing a considerable amount of stress/strain from the tip part of the structure besides the 

anchor region is proposed. In order to broaden the operational frequency of MEMS harvesters, in 

Chapter 6 we present a nonlinear multi-mode structure. In Chapter 7 a design automation technique 

based on artificial intelligence is discussed. And a new structure for improving fatigue lifetime and 

the corresponding analysis method is presented. Conclusions are drawn in Chapter 8, which is 

followed by a discussion about future work in Chapter 9.   
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Chapter 2    Portable Energy Harvesters for Low-

Power Applications 

In this chapter, the recent developments of portable vibration energy harvesters for low-power 

electronic applications, which include energy harvesting techniques, energy harvesting mechanical 

mechanisms and their physical dimensions, will be discussed in Sections 2.1-2.3, respectively. 

Then in Section 2.4 the power management systems, which make the portable energy harvesting 

devices usable in real applications, will be discussed. The major work in this chapter has been 

formally documented in one journal paper (as listed in the Appendix [Journal-1]). 

2.1. Agile Vibration Energy Harvesting 

Techniques 

The generation of milliwatt electrical power from vibration (e.g., wind flow energy) is 

relatively new compared to the conventional high power generating techniques. The wind 

harvesting devices normally consist of fixed components and active parts, which are vibrated by 

mechanical power of wind flow. Scalable in size, these energy harvesters can offer milliwatt output 

power. The quantity of generated power depends on system size and wind flow velocity in the 

ambient environment. Theoretically the mechanical power available from a cross sectional area 

between wind flow and energy harvesting devices can be expressed by [30]: 

P =
1

2
A ρ V3 , (1) 

where A is the cross sectional area in m2,  is the density of flow that might be air or water density 

in kg/m3, and V is the velocity of the flow in m/s. Albert Betz concluded that a wind turbine 

theoretically cannot convert more than 59% of the kinetic energy of wind to mechanical energy, 
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which is known as Betz limitation [31]. Considering this limitation, power coefficient (Cp) and 

efficiency (ηg) of a generator can be inserted into (1), which can be rewritten as follows, 

P =
1

2
A ρ V3Cp ηg . (2) 

To realize the energy conversion modelled in (2), the following three main steps during 

electric power generation should be completed by an energy harvester:  

(1) Collect the mechanical stresses from ambient sources, which are applied to the mechanical 

active part of the harvester;  

(2) The kinetic energy offered by wind as vibration sources is converted to electrical energy; 

(3) Process the generated power to make it as DC voltage and store it in a super-capacitor cell.  

A variety of performance metrics have been utilized for evaluating the capability of energy 

harvesting in terms of energy conversion from mechanical to electrical power. Some of these 

Figure of Merits (FOMs), such as charge constant (d) and voltage constant (g), are only related to 

piezoelectric materials, while the geometry size of energy harvesters is not taken into account [32]. 

To include more factors, Aktakka et al. [33] proposed normalized power density times bandwidth 

as a FOM. Although this metric indeed is a comprehensive FOM, most of the published papers in 

the literature provide insufficient information about bandwidth that their proposed devices can 

achieve. A straightforward multiplication between normalized power density and bandwidth may 

fail to provide a comparison for the largest pool of the existing harvesters. Therefore, in this chapter 

we use the normalized power density, which is defined below, as one FOM: 

Pdensity =
P𝑚

Volume ×  V
   , (3) 



 

8 

 

where Pm is the measured electrical peak power, Volume is the volume of the harvester, and V is 

the wind speed. Moreover, the power coefficient 𝐶𝑝, which is more relevant in the context of non-

linear wind velocity with reference to the amount of harvested power, is considered as another 

FOM in this chapter. It can be defined as [34]: 

Cp =
P𝑚

0.5 × ρair × A× V3 
 . (4) 

To convert ambient vibration (including wind energy) to electricity, piezoelectric- [18], 

electromagnetic- [35], and electrostatic-based [36] techniques have been introduced in the 

previous research. Among them, each technique has its distinct advantages as well as 

disadvantages. The electrostatic-based technique can build up a tiny energy harvester if using 

micromachining process. Therefore, this technique is quite useful for MEMS-based energy 

harvesters. Certain analytic modeling methods [37] can be used to formulate the coupling and 

substrate capacitance in the micrometer or nanometer technologies. However, to function well, 

such energy harvesters need to manage a large initial voltage (as bias voltage) or electret [25] for 

supplying electrical charges between capacitor plates. In contrast, the piezoelectric- and 

electromagnetic-based techniques, which are more often used for portable wind energy harvesting, 

need no external power sources. 

Theoretically the power produced by the piezoelectric-based technique can be expressed by: 

1

2
× σ2 ×

K2

2c
 , (5) 

where σ is the applied stress, K is the coupling coefficient, and c is the elastic constant. As shown 

in the analytic equation above, amount of the harvested power is dependent on several parameters, 

such as the applied stress on piezoelectric materials provided from ambient vibrations, the coupling 

coefficient and the elastic constant. Both the coupling coefficient and elastic constant are related 
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to piezoelectric material properties. It is obvious that enhancing the applied stress on piezoelectric 

materials can produce more energy [38]. 

Similarly, power generation with the electromagnetic-based technique can be theoretically 

estimated by:  

1

2
×
 B2

μ0
, (6) 

where B is the magnetic field and µ0 is the magnetic permeability constant of free space. Since 

there is a nonlinear relationship between the generated power and electromagnetic field, enhancing 

the magnetic field strength is one effective way for increasing the produced power [39]. Arroyo et 

al. [40] investigated both piezoelectric- and electromagnetic-based techniques theoretically and 

experimentally. According to the provided information in this study, the piezoelectric generators 

have low coupling coefficient and low loss coefficient, while the electromagnetic generators have 

high coupling coefficient and high resistive loss coefficient. Furthermore, the study of scaling 

effect in this work shows that, different from the commonly accepted hypothesis, the power density 

of the electromagnetic-based generators does not necessarily decrease in proportion to their 

volumes. 

The amount of the produced power by the electrostatic-based generators can be calculated by 

(7): 

1

2
× ε0 × E2, (7) 

where ε0 is the electrical permittivity of free space and E is the electric field. Therefore, magnitude 

of the generated power is strongly determined by the strength of the electric field, which is in turn 

up to the magnitude of bias voltage or electret [41]. The comparison between electrostatic- and 
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piezoelectric-based generators, as presented by Elliot et al. in [42], shows that the electrostatic-

based technique performs better than the piezoelectric-based technique at low acceleration 

scenarios due to lower energy losses, while the piezoelectric-based technique outperforms the 

electrostatic-based technique at high acceleration operating conditions. However, the MEMS scale 

piezoelectric-based energy harvesters at very high accelerations may have lower performance due 

to the dielectric breakdown limit of piezoelectric materials. Thus, the electrostatic-based technique 

is preferred for MEMS energy harvesters if a very high acceleration operating condition is 

expected. In the following sub-sections, each power generation technique will be discussed in more 

detail. 

2.1.1. Piezoelectric-Based Generators 

Due to dichotomy behaviour, piezoelectric materials have been utilized in many type of 

sensors and actuators [43][44]. There are different natural crystal classes capable of 

piezoelectricity, among which three are more commonly utilized in micromechanical systems. 

They include zinc oxide (ZnO) as a MEMS transducer [45], aluminium nitride (AlN) for thin film 

depositing [46], and Pb(ZrxTi1−x)O3 (PZT) as an active material [47]. Among them, PZT is the 

most popular option for power conversion due to its high electromechanical coupling factor as 

defined below, 

K2 =
Electrical Energy converted

Mechanical energy applied
≅
(
d31

s11
)
2

ε33
, 

(8) 

where K is the electromechanical coupling factor, d31 is the piezoelectric constant, ε33  is the 

dielectric constant, and s11 is the mechanical compliance coefficient. For a better comparison, the 

relative electromechanical coupling factors for three major types of piezoelectric materials are 
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listed in Table 2 [48]. We can see that PZT has more than double electromechanical coupling 

factor over AIN or ZnO. Therefore, this type of piezoelectric materials has been widely used for 

power generation in portable energy harvesting devices [49]: 

Table 2. Relative electromechanical coupling factors for three different piezoelectric materials. 

ZnO AlN PZT 

0.34 0.47 1 
 

 

The equivalent circuit of piezoelectric generators, which expresses both mechanical and 

electrical parts, is depicted in Fig. 2 [50]. At input of this circuitry, external excitation force F is 

applied. The mechanical branch has one resonant impedance element (Z), which is dependent on 

stiffness of mechanical resonator and mechanical branch mass. The transformation ratio is equal 

to N=Cpzh33, where Cpz is the clamped capacitance of piezoelectric material mainly measured when 

piezoelectric layer is not deformed and h33 is the ratio between piezoelectric coefficient and 

mechanical compliance. On the right side, the transformer and clamped capacitance illustrate 

power conversion in energy harvesters with U (voltage) presented as output [51].  

 

Fig. 2. Equivalent circuit of the piezoelectric-based generators. 

For the first time, Carroll introduced a small energy harvester for collecting energy from water 

flow based on piezoelectric material [30]. In comparison with the conventional energy harvesters 

such as wind turbines [52], its size, which was significantly reduced, can offer great portability to 

a variety of applications. Equation (2) theoretically and the experimental data from [30] 

empirically show that the amount of the generated electrical power is highly dependent on 
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harvester dimension and flow speed. In parallel with size reduction for a goal of increasing 

portability, drop of the output power amplitude is prevalent. To overcome this issue, some research 

has been conducted to apply different structures or materials to magnify the conversion results 

[53][54]. 

2.1.2. Electromagnetic-Based Generators 

The amount of induced voltage in the electromagnetic coil can be computed by [55]: 

U = −N
dϕ

dt
 , (9) 

where U is the generated voltage, N is the number of turns, and 𝜙 is the total flux linkage. The 

flux density is highly dependent on magnetic field, which is given by 

ϕ = B A sinθ , (10) 

where B is the magnetic field, A denotes the perpendicular area to the magnetic field, and  is 

the angle at which the magnetic field contacts the coil. 

The equivalent circuit for explaining the working principle of the electromagnetic-based 

generators is displayed in Fig. 3 [56]. Similar to the piezoelectric equivalent circuit, a mechanical 

force F as input is applied to a mechanical resonator with resonant impedance (Z). A transformer 

can convert mechanical power to electrical power with ratio N following N= BL/Ze, where L is the 

length of the wire that constitutes the coil and Ze is the coil impedance. The coil impedance is 

relevant to the inductance and resistance of the coil [51]. The conversion result from mechanical 

energy to electricity is depicted by U (voltage) in Fig. 3. 
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Fig. 3. Equivalent circuit of the electromagnetic-based generators. 

The interaction between wind flow and moveable part of an electromagnetic energy harvester 

can provide relative motion, which is bound to produce electrical power. Based on the flux density 

change in proportion to the conductor location change, several wind flow energy harvesters have 

been devised. Weimer et al. [57] proposed a circular electromagnetic wind energy harvester for 

the axial-flux alternator, where the rotor included 8 neodymium magnets in an alternating pole 

configuration (as shown in Fig. 4) and the stator was manufactured with two separate copper wire 

coils having 1250 turns. The diameter of the stator and rotor plates is 76.2 mm. The wind flow can 

rotate the rotor plate, which induces electrical voltage in copper wires. The maximum harvested 

electrical power in this study at the highest wind speed (8.94 m/s) is 651 W. 

 

Fig. 4. Rotor and stator for the axial-flux alternator. 
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A Helmholtz-resonator-based electromagnetic energy scavenger was introduced by Kim et al. 

[58]. The simplified schematic of the proposed Helmholtz resonator-based energy harvesting is 

depicted in Fig. 5. This Helmholtz resonator has a chamber, which is simply filled with gas (air), 

with an open neck in the middle. The air inside the chamber has spring behavior and the air inside 

the neck acts as mass. Thus, this system can be modeled by a second-order differential equation. 

To increase the efficiency, a diaphragm (membrane) is attached to the bottom wall of the resonator 

with a magnet fixed on this diaphragm. While fluidic oscillation happens for the diaphragm due to 

mechanical energy of wind flow, the magnet attached to the diaphragm vertically vibrates inside 

the coil. This devised energy harvester includes two parts, a cylindrical chamber with 19 mm 

diameter and 5 mm height, and a neck on top of the chamber with 3 mm diameter and 5 mm height. 

It could produce peak to peak voltage output of 4 mV at 5 m/s wind velocity. However, the power 

conversion efficiency of the proposed wind energy harvester was quite low even at high wind 

speed. Thus, it may not function very well for practical applications. 

 

Fig. 5. Schematic diagram of the Helmholtz resonator-based energy scavenger. 

Another configuration that can function well is to use coils as moveable component and 

consider magnets as the fixed part of electromagnetic generators. Feasibility of an energy 

harvesting system based on wind-induced vibration of bridge cables was investigated by Jung at 
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al. [59]. In this study, an electromagnetic-based generator was introduced to harvest wind-induced 

vibration energy due to interaction between wind flow and cables. The proposed device, as 

depicted in Fig. 6, includes a big circular magnet with an opening in the center. The proposed 

energy harvester has a suspended coil, which is connected to a spring. The ambient vibrations 

cause oscillation to the coil, which can induce the relative motion inside the magnet. In comparison 

with the other research work, the proposed device in this study can provide greater magnetic flux 

due to use of a big magnet compound (enclosing the fixed magnet and moving coil). With 80 mm 

diameter and 10 mm thickness, the utilized circular magnet could generate magnetic flux density 

of 0.5 Tesla. The experimental results showed that this device could generate 27.14 mW RMS 

power at 5.4 m/s wind speed. 

 

Fig. 6. Schematic diagram of the wind-induced energy harvesting system. 

By comparing the existent piezoelectric and electromagnetic techniques above, we can see the 

presented equivalent circuits for both approaches are almost the same. As illustrated in Fig. 2 and 

Fig. 3, the output impedance is capacitive for the piezoelectric generators and resistive for the 

electromagnetic generators. For adapting load impedance, the electromagnetic-based generators 

need a load impedance of some kilo ohm, whereas the piezoelectric-based generators require a 

load impedance in mega ohm range. Furthermore, the damping factor for the piezoelectric 
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generators is constant because the used piezoelectric material has unchangeable surroundings. 

However, the electromagnetic-based generators have varied damping factor, which may change 

along with electromagnetic or resistive load variation. Furthermore, a minimum deformation in 

the electromagnetic-based generators has to be required, which means the wind flow should be 

strong enough to provide such a minimum deflection. 

2.1.3. Electrostatic-Based Generators 

Another technique for electrical power generation from ambient environment is electrostatic 

method, whose operation is based on a capacitive structure created by two standalone electrodes. 

The gap between both electrodes can be filled with air, vacuum, or any dielectric materials [60]. 

The variation of capacitance, which takes place by moving one of the electrodes, is able to convert 

mechanical vibration to electricity by charge-discharge cycles or electret. This type of generators 

can be categorized into two groups [61]: (1) Electret-free electrostatic generators, whose 

functionality is dependent on external bias voltage [25]; (2) Electret-based electrostatic generators, 

which are able to directly turn ambient vibration to electricity thanks to electret utilization on the 

surface of one or both electrodes. Electrets are the dielectric material with a capability of keeping 

electric field and surface potential inside the structure for years just like the magnets in the 

electromagnetic-based generators [62]. Figure 7 illustrates the electret-based generator and its 

equivalent circuit, where 𝑄𝑒 is the electret charge, 𝑄 is the sum charge between counter (movable) 

electrode and fixed electrode, R is the load resistance, 𝐶(𝑡) is the capacitance of the electrostatic 

energy harvester, and 𝑈𝑒 is the surface voltage on electret [63]. The relative motion of the counter 

electrode leads to variable capacitance, which induces electrical current through load. 
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Fig. 7. (A) Schematic view of the electret-based electrostatic energy harvesters and (B) equivalent circuit. 

If the prerequisite initial electrical charge for capacitor polarization is realized by the electret 

materials, promising harvesting performance may be offered by the electret-based electrostatic 

energy harvesters. Recently Perez et al. [63] introduced a wind energy harvester by deploying the 

electret-based electrostatic technique. The proposed device in this study includes two parallel 

copper plates with the size of 50 mm and 200 m in length and thickness, respectively. Both copper 

films are covered with a 25 m Teflon PTFE layer, which was fabricated by corona discharge. 

Furthermore, a membrane with 25 m thickness of PVDF, whose two sides were deposited with 

10 nm gold layer, is attached to a bluff body. The schematic diagram of this wind energy harvester 

is illustrated in Fig. 8. The proposed system has two capacitors between the membrane and upper 

electrode (𝐶𝑢𝑝𝑝𝑒𝑟) as well as lower electrode (𝐶𝑙𝑜𝑤𝑒𝑟). When wind flow blows the membrane to 

move upwards and downwards, capacitance of the energy harvester would be changed 

continuously. When wind flow velocity reaches 10 m/s, the membrane can oscillate. The average 

output power during period time T is proportional to the capacitance variation between 𝐶𝑚𝑎𝑥 and 

𝐶𝑚𝑖𝑛, which can be determined by: 
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Pelec =
1

T
∫ R (

dQ

dt
)
2

dt ∝ (Cmax − Cmin)Uelec
2T

0
f ,  (11) 

where 𝑈𝑒𝑙𝑒𝑐  is the surface electret voltage, 𝑓  is the oscillation frequency, 𝐶𝑚𝑎𝑥  and 𝐶𝑚𝑖𝑛  are 

maximum and minimum possible capacitances, respectively.  

The experimental data in this study show the proposed wind energy harvester was able to 

produce 2.1 mW power and 200 V output voltage, when the electret voltage is -650 V with 30 m/s 

wind speed. Even though this wind energy harvester has a simple structure, the required high wind 

speed (10 m/s) for fluttering the membrane makes it somehow impractical for the regular windy 

conditions. In addition, a special power management system has to be considered due to the 

generated high output voltage and low current. 

 

Fig. 8. Schematic representation of the proposed wind energy harvester in [63]. 

2.2. Mechanical Mechanisms for Portable Vibration 

Energy Harvesting  

The energy harvesting devices need to function as a mechanical resonator for converting wind 

flow to vibrations. The direct reaction between wind flow and moveable part of energy harvesters 

is oscillation. This periodic oscillation can affect the active part of the energy harvesters. All the 

portable wind energy harvesters in the literature follow two distinct mechanical mechanisms for 
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trapping wind flow vibrations. In this regard, we can classify the wind energy harvesters into two 

groups: rotational and aeroelastic harvesters. Below each group is discussed in more detail. 

2.2.1. Rotational Harvesters 

Figure 9 shows the mechanical structure of rotational wind energy harvesters. The rotational 

movement is a circular motion of an object with reference to its center. This type of motion has 

been widely used in the traditional large-scale windmills [64]. Due to high reliability and 

accumulated mature design knowledge, this mechanism has been widely used for small-scale wind 

energy harvesting devices [34]. Normally, the rotational-mechanism-based devices, such as the 

one in [65], may include a fan with multiple blades and a jamb, which is fixed in the centre of the 

fan. The energy of wind flow can rotate the fan around the fixture. The intensity of rotation is 

related to wind flow speed. In other words, wind blowing in higher speed can induce circular 

motion with higher frequency of rotation for the moveable part of the harvesters. 

 

Fig. 9. Diagram of portable wind energy harvesting devices based on rotational mechanism. 
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The rotational mechanism has been used for piezoelectric-, electromagnetic- and electrostatic-

based wind energy harvesters. In the piezoelectric-based harvesters, one side of the piezoelectric 

cantilever is clamped by the fan and the other side is free. Then the induced rotation in the fan can 

move the piezoelectric cantilever. The interaction between the shaft, which is a fixed point in the 

centre of the fan, and the moveable side of the piezoelectric cantilever applies relative stress to the 

piezoelectric material. Priya et al. [66] introduced a small-scale wind energy harvester based on 

piezoelectric direct effect, which was combined with the traditional windmill features and 

piezoelectric properties. The proposed device included 12 bimorph piezo-cantilevers, which were 

attached to a quite small fan. The schematic of such a piezoelectric windmill with 12 cantilevers 

is illustrated in Fig. 10. Wind flow could apply oscillatory stress on the cantilevers since the fan 

could be easily rotated at the normal wind flow conditions. The dimension of each individual 

bimorph was 60 × 20 × 0.6 mm3. This energy harvesting device was able to generate power of 

10.2 mW at the frequency of 6 Hz. 

 

Fig. 10. Schematic diagram of the piezoelectric windmill consisting of 12 piezoelectric cantilevers. 
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Another rotational piezoelectric wind energy harvester, which was introduced by Yang et al. 

[67], consisted of 12 micro-cantilevers with 47 × 20 × 0.5 mm3 dimension behind the fan. One or 

multiple shafts were located at the centre of the fan. Wind flow could rotate the fan, while the 

interaction between shafts would apply relative stress to piezoelectric cantilevers. The prototyped 

device in this research could generate 613 W rectified power. In comparison with the 

conventional energy harvesters such as wind turbines, the size of the developed devices in these 

studies was significantly reduced. In spite of the size reduction, how to prevent reducing the 

harvested power is a challenging question to be addressed. 

The frequency of the applied stress is proportional to the rotational frequency of the fan. The 

advantage of the piezoelectric-based harvesters is the huge stress applied to the cantilevers at the 

centre of the fan due to high torque at that location, which can be computed by Fd, where F is 

the excitation force (wind flow) and d is the distance between the force and the free end of the 

cantilever. Consequently, the maximum torque may appear around the center of the rotational 

structure, where shaft is located. Furthermore, increasing the number of the piezoelectric 

cantilevers may increase the number of stoppers, which are actually the confluence nodes between 

cantilevers and shaft. As a result, the rotational frequency would be dropped. Therefore, higher 

wind flow speed is required for the proper function of these harvesters. 

On the other side, for the electromagnetic-based harvesters, the required movement for the 

rotor can be achieved by the mechanical rotational mechanism, which is able to provide a relative 

motion between the rotor and stator in the harvesters [57]. The rotational structure normally 

encloses a big plane, which can provide sufficient space for locating magnets or accessing coils on 

the top. This available space can also allow the designers to enlarge the generated power by adding 

more magnets. But it should be noted that, by applying more magnets for enhancing magnetic field, 
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the mechanical rotational structure may gain a lot of weight, which in turn requires stronger wind 

flow to make rotation feasible. Similarly, the rotational mechanism is able to be used by the wind 

energy harvesters based on electrostatic generators. In a recent study conducted by Perez et al. 

[26], a small wind turbine with 4 blades within 4 cm rotor diameter to extract power from wind 

flow was devised. The proposed device could generate 1.8 mW output power at 10 m/s wind speed. 

The main advantage of this energy harvester is its capability of generating 95 W power at wind 

speed as low as 1.5 m/s. 

The main advantage of the rotational mechanism is to provide an alternative and strong spin 

with sufficient space for patterning the active part of an energy harvester. But this mechanism 

needs relatively larger space for making rotation viable. Therefore, the portability associated with 

this mechanism is not high. For this reason, no MEMS wind energy harvester entirely based on 

rotational mechanism has been developed thus far. 

2.2.2. Aeroelastic Harvesters 

When a mechanical resonator is immersed in a fluid flow, aerodynamic phenomena (such as 

vortex shedding, fluttering, and galloping) may appear around or on the structure. As a result, 

vibration can be observed as shown in Fig. 11, which presents the most common aerodynamic 

mechanisms, (A) vortex shedding with a bluff body, (B) flutter with attachment of an airfoil, (C) 

galloping with attachment of a prismatic object, and (D) flapping leaf [68][69]. 
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Fig. 11. Common aeroelastic mechanisms for wind energy harvesting: (A) vortex shedding, (B) flutter, (C) galloping 

and (D) flapping leaf.  

The existing aeroelastic mechanisms in the literature for wind energy harvesting can be 

categorized into two groups: (1) vortex induced vibrations (VIV) and (2) movement induced 

vibrations [34][70]. Normally in VIV, a cylindrical bluff body is located at the end of cantilever 

in a wind energy harvester. When wind passes the bluff body, the resulting flow would form 

discrete vortices due to gradient pressure. The pattern of the vortices shedding alternately from 

one side of the body and then the other side is called Karman vortex street. In the situations where 

vortex shedding behaviour is periodic, the frequency can be determined by [34]: 

f =
S V

D
 ,   (12) 

where V is the wind flow speed, D is the characteristic dimension (e.g., the diameter if a circular 

cylinder is used as a bluff body or the channel diameter if a fluid channel is used), and S is the 
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Strouhal number that is a dimensionless number for describing oscillating flow mechanism. The 

Strouhal number depends on both the body shape and the Reynolds number, which can be 

calculated with (13), 

Re =
D V ρ

μ
,   (13) 

where is the flow density andis the flow viscosity. When the vortex shedding frequency is 

close to one of the harmonic natural frequencies of the aeroelastic harvester, lock-in or 

synchronization takes place so that the energy harvesting maximum power is feasible under this 

condition [71]. 

Zhu et al. [72] presented an electromagnetic wind energy harvester based on VIV. The 

proposed device includes a 50 mm × 18 mm × 0.2 mm cantilever made of Beryllium Copper 

(BeCu). As shown in Fig. 12, a cylindrical magnet, which is made of NdFeB-38H with 15 mm 

diameter and 10 mm height, is fixed at the end of the cantilever with certain distance (15 mm) 

from an 80 mm × 25 mm × 6 mm rectangular aerofoil, which is located at the other side of the 

cantilever. The overall size of the device is 12 cm × 8 cm × 6.5 cm. According to reported 

experimental data, the proposed electromagnetic generator could operate with harvested electrical 

output power of 470 W at the wind speed as low as 2.5 m/s. When the wind speed reached 5 m/s, 

the amount of output power was 1.6 mW. Although the harvested electrical power by the proposed 

device in this study is enough for most of low power electronic devices, using bluff body may 

somehow reduce level of portability. In addition, high cut-in wind speed (2.5 m/s) is another 

drawback of the proposed energy harvester. 
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Fig. 12. Schematic diagram of the electromagnetic wind energy harvester based on VIV mechanism. 

The VIV mechanism is also capable of being utilized in the energy harvesters based on 

piezoelectric generation technique [73]. Piezoelectric material is deposited in an area close to the 

root of the cantilever. A lumped-parameter model for describing the coupling behaviour of the 

piezoelectric VIV-based wind energy harvesters can be written as [74]: 

Meffẅ + Cẇ + Kw + ΘU = FL,   (14) 

CpzU̇ +
U

R
− Θẇ = 0, (15) 

where w is the displacement of the cantilever tip, 𝑀𝑒𝑓𝑓 is the effective mass, C and K are the 

damping coefficient and stiffness respectively, 𝛩 is the electromechanical coupling coefficient, U 

is the generated voltage, 𝐶𝑝𝑧 is the piezoelectric material capacitance, R is the load resistance, and 

𝐹𝐿 is the vortex induced force. 

As the second group of aeroelastic mechanism for wind flow trapping, movement-induced-

vibration has a wider scope than the first VIV group, including (i) flutter-based, (ii) galloping-

based, and (iii) flapping-leaf-based harvesters, as detailed below. This type of aeroelastic 
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mechanisms is affected directly by wind flow force. As a result, movement appears right on the 

fluttering structure. 

(i) Flutter-based mechanism: In the aeroelastic flutter-based wind energy harvesters, an airfoil is 

generally attached to the free end of the beam as shown in Fig. 11B. When wind flow velocity 

reaches a sufficient level known as the critical flutter speed, negative damping occurs and results 

in divergence of flutter deformation [70]. The relationship between critical flutter speed and flutter 

frequency for two degrees of freedom is approximately expressed by [75]:   

Vc ~ (
Y T3

ρ L3
)

1

2
,  (16) 

ω~(
ρ V2

ρb T L
)

1

2

, 

 

(17) 

where 𝑉𝑐 is the critical flutter speed, 𝜔 is the flutter frequency, 𝜌 and 𝜌𝑏 are the fluid and beam 

densities respectively, 𝑉 is the wind speed, T is the beam thickness, L is the beam length and Y 

denotes Young’s modulus of the beam. Bibo et al. [76] presented a piezoelectric wind energy 

harvester integrated with an airfoil, the equations governing the motion of this lumped-parameter 

system can be written as: 

mTḧ + mwXGα̈ + Chḣ + Khh − θU = L, 
 

(18) 

Iαα̈ + mwXGḧ + Cαα̇ + Kαα = M, (19) 

CpzU̇ +
U

R
+ θḣ = 0, (20) 
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where 𝑚𝑇 is the total mass of the airfoil plus the supporting structure, 𝑚𝑤 is the airfoil mass alone, 

𝑋𝐺 is the dimensionless distance between the elastic axis and the center of mass, 𝐶ℎ and 𝐶𝛼 are the 

plunge and pitch structural damping coefficients respectively, and 𝐼𝛼 is the mass moment of inertia. 

The linear structural stiffness factors for the plunge and pitch are 𝐾ℎ  and 𝐾𝛼  respectively. The 

electromechanical coupling factor is denoted by 𝜃, while U is the generated voltage and R is the 

load resistance. The nonlinear load can be presented by aerodynamic lift L and moment M, which 

are equal to [77]: 

L = ρ V2bSCL(αeff − c3αeff
3 ),         M = (

b

2
+ a)L, (21) 

where V is the wind flow velocity, b is the half chord length, S is the airfoil span, 𝐶𝐿 is the 

aerodynamic lift coefficient, and c3 is a nonlinear parameter derived from wind tunnel tests, 𝛼𝑒𝑓𝑓 

is the effective angel of attack and a is the elastic axis distance from the mid-chord. 

(ii) Galloping-based mechanism: as shown in Fig. 11C, when a prismatic object (such as square, 

D-section, triangle, etc.) is attached to the free end of a flutter, the oscillation proportional to the 

incoming wind flow can be formed in a plane [78]. The required condition for the galloping 

oscillations is the derivative of the steady state aerodynamic lift coefficient is negative. Its main 

difference from the flutter-based mechanism is that it is a one degree-of-freedom system whereas 

a flutter-based harvester may be a two- or three-degrees-of-freedom system. Sirohi et al. [79] 

developed a wind energy harvester with galloping piezoelectric beam. The proposed device in that 

study includes an aluminum beam with 90 mm long, 38 mm width and 0.635 mm thickness. 

Moreover, two piezoelectric sheets with 72.4 mm, 36.2 mm and 0.267 mm in length, width and 

thickness respectively are bonded to the top and bottom surface of the aluminum beam. Eventually, 

a rigid wooden bar with 235 mm long and D-shaped cross section with 30 mm diameter is attached 
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to the free end of the beam. This energy harvester was able to generate 1.14 mW power at 4.69 

m/s wind speed. 

(iii) Flapping-leaf-based mechanism: For this mechanism, a flexible leaf or flag is attached to the 

free end of the beam as shown in Fig. 11D. When wind flow is blowing, the leaf can be moved 

upwards and downwards to produce vibration. Li et al. [80][81] proposed a flapping-leaf-based 

wind energy harvesting device that has the potential to extract energy from low wind velocity and 

irregular flow. This study deployed a piezoelectric stalk (made of polyvinylidene fluoride (PVDF)) 

as an active part of the wind energy harvester. To increase vibration amplitude, a flexible leaf with 

8*8 cm2 was attached to the end of this stalk. With a dimension of 72 × 16 × 0.41 mm3, the 

proposed device could generate peak power of approximately 615 W at 8 m/s wind speed. The 

required big leaf at the end of the cantilever (stalk) and the generated power amount show that 

power density of the proposed wind energy harvester is not that high. Moreover, the required large 

area for flapping operation is one of its major drawbacks. 

Numerous methods for predicting and modeling the effect of VIV on the structure are 

available in the literature. Among them, the phenomenological models based on wake oscillators 

have high accuracy for representations due to the considered nonlinear factors (e.g., softening and 

hardening) [82]. Most recently, Dai et al. studied more accurate modeling for the fluctuation lift 

force and investigated the passive suppression mechanism of the cylinder VIV by means of a 

nonlinear energy sink [83]. To model the galloping-based harvesters, the quasi-steady 

approximation method may be used [84]. To improve the applicability of this method, further 

advancement is still required by devising unsteady representations to specify the galloping force. 

Thus, the effects of the unsteady wake can be taken into account. Moreover, this study on modeling 

method should be validated and supported by sufficient experimental measurements. 
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In the literature, almost all the presented mathematical models for aeroelastic flutter-based 

wind energy harvesters are based on lumped models, where the flutter is considered as a mass-

spring-damper system. The main advantage of this modeling is simplicity for extraction of motion 

equations, which can be utilized for harvesting performance estimation and structural parameter 

optimization. However, this model is limited due to lack of parameters to consider piezoelectric 

characteristics and substrate layers. In addition, the lumped-models cannot present the status of 

dynamic mode shapes and strain distribution. Therefore, there is still a lot of room for improving 

such models in the future research to account for nonlinear effects of the piezoelectric materials as 

well as beam’s inertia and geometric nonlinearities. 

Compared with the rotational mechanism, the aeroelastic mechanism is able to build up very 

small wind energy harvesting devices. Since it just needs a narrow ribbon for flapping in proportion 

with air flow power, the required space for this strip is small. Furthermore, the fabrication of this 

mechanical mechanism is less complex than the rotational one. However, the major drawback of 

the aeroelastic mechanism is that its efficient operation only occurs in just one direction although 

wind flow may have arbitrary directions. Zhao et al. [85] proposed a portable wind energy 

harvester by using aeroelastic mechanism, which had an arc shape fabricated by a copper plate. 

The schematic diagram of the proposed energy harvester is illustrated in Fig. 13. This study clearly 

showed that a maximum power could be harvested while wind flow incident was perpendicular to 

the resonator. To overcome this problem, some techniques such as using funnels have been 

suggested. 
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Fig. 13. Schematic diagram of the arc shape wind energy harvester. 

Park et al. [86] proposed a portable wind energy electromagnetic harvester using the 

aeroelastic mechanism, which consisted of a T-shape cantilever and a magnet attached at the end 

of the cantilever. As illustrated in Fig. 14, two coils were fixed at a location very close to the end 

of the cantilever. Both the cantilever and coils were located inside a funnel, which had two 

openings as inlet and outlet for wind flow. The inlet of 4 × 4 inch2 and outlet of 2 × 2 inch2 with 8 

inch distance from each other were patterned. The reported experimental results showed that the 

funnel could magnify wind speed by approximately 20% while the incident angle was at least 30 

degrees. However, utilizing funnel may make the device size larger, which in turn reduces the 

portability. 
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Fig. 14. The electromagnetic wind energy harvester with wind flow contracting funnel. 

2.3. Dimension of Portable Vibration Energy 

Harvesters 

The portable wind energy harvesters may have varied sizes from several micrometers to many 

centimeters. The reported harvesters from the literature can be classified into two major groups, 

macro and micro sizes, in terms of physical dimensions. In this chapter, we are using the following 

definition for us to differentiate macro- and micro-scale wind energy harvesters. We consider those 

devices with any aspect (e.g., length or diameter) greater than 75 mm as the macro-scale wind 

energy harvesters, while the other ones are categorized as the micro-scale harvesters. In the 

following sub-sections, we will present each group with a focus on their properties. Moreover, the 

fabrication methods for the macro- and micro-scale wind energy harvesters will be briefly 

discussed as well. 

2.3.1. Macro-Scale Harvesters 

Industry and academia have introduced macro-scale wind energy harvesting devices with 

dimensions greater than several centimeters. The mechanical aeroelastic mechanism can be 



 

32 

 

fabricated in macro-scale size for portable energy harvesters. Fei et al. proposed a wind-flutter 

harvester for powering wireless sensors, which encloses a one-meter belt to gain 7 mW electrical 

energy from 3 m/s wind speed [87]. Matova et al. presented a wind energy harvester by using 

micromachining piezoelectric on diaphragm of Helmholtz resonator [88]. The proposed device has 

a neck with length of 2 cm and diameter of 2 cm along with a cavity with length of 17 cm and 

diameter of 8 cm. The resonator worked in an airflow region from 10 to 15 m/s wind speed. The 

obtained power was 2 W at 13m/s. After Helmholtz structural optimization, the harvested energy 

was improved to 42.2 W at 20 m/s. This device may be considered as a portable wind energy 

harvester, but its level of portability is fairly low. Moreover, its amount of the generated power is 

also quite small. 

Compared to the micro-scale devices, the macro-scale wind energy harvesters have simpler 

structures. As shown in (2), there is a strong direct relation between the generated power amount 

and size of wind energy harvesting devices. Therefore, the macro-scale wind energy harvesters 

can normally offer much larger output power. The rotational mechanism for both piezoelectric- 

and electromagnetic-based harvesters can be implemented with a small fan. These rotational 

harvesters [57] normally fall into the macro-scale category due to the large size of their used fans. 

The rotation of the fans can directly present motion to the rotor part of the electromagnetic-based 

harvesters [65], while piezoelectric materials can be located on the fans in the piezoelectric-based 

harvesters so that rotational movement can stress the piezoelectric materials to produce output 

electrical power [66].  

The mechanical aeroelastic mechanism can be also fabricated in the macro scale domain for 

portable wind energy harvesters. The electromagnetic-based harvesters by using cantilever can 

provide relative motion between active part and stator, where coils or permanent magnets are 
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attached to the end of the free end of the cantilevers for maximum deflection amplitude [89]. In 

contrast, the piezoelectric technique can also offer an integrated macro-scale wind energy harvester 

by bonding a ceramic piezoelectric material and a metal ribbon serving as the cantilever. Sirohi et 

al. [90] proposed an energy harvester with two identical aluminum cantilevers with a dimension 

of 161 mm × 38 mm × 0.635 mm. The piezoelectric films can be bonded near the root of the 

cantilevers by using epoxy, hot air plastic welding, or pressure.  

Table 3 summarizes the previously published macro-scale portable wind energy harvesters by 

listing their geometry sizes, harvested electrical voltages, harvested electrical powers, normalized 

power densities, power coefficients, wind speeds, utilized power generation techniques, and 

deployed mechanical mechanisms for wind flow trapping. By default the harvester geometry size 

is given in the form of length × width × height, or diameter (φ) and thickness (t) if specified. The 

normalized power density (with unit of W*s/(mm3*m)), which is shown in the 5th column, is 

defined as (3), while the power coefficient, 𝐶𝑝 defined as (4), is listed in the 6th column of Table 

3. 

From Table 3, one can observe that the largest harvested voltage can reach up to 30 V, while 

most of the macro-scale harvesters can only output several volts with the minimum output voltage 

of 80 mV. The largest output harvested power can reach 171 mW, while the minimum one is only 

2 W. The maximum normalized power density is 5.1 W*s/(mm3*m) for one electromagnetic 

generator based on aeroelastic mechanism [91] and the maximum power coefficient is 8.13% for 

a rotational electromagnetic-based generator [92]. Among these macro-scale wind energy 

harvesters, the rotational mechanism tends to be less popular in comparison with the aeroelastic 

mechanism for trapping wind flow. Both electromagnetic and piezoelectric power generation 
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techniques are popular for this group of portable wind energy harvesters. Moreover, a majority of 

the macro-scale harvesters can provide several milliwatts of output electrical power. 

Table 3. Macro-scale portable wind energy harvesters (EM stands for electromagnetic and PZ 

means piezoelectric). 

 
 

Ref Size 

[mm] 

Voltage 

 

Peak 

Power 

 

Normalized 

Power Density 

W 

*s/(mm3*m)]  

Power 

Coef. 

CP 
[%] 

Wind 

Speed 

[m/s] 

Gen. 

Tech. 

Mech. 

Mechanism 

[57] φ = 76.2 0.15 V  651 W - - 17.5 EM Rotational 

[92] φ = 76 - 6 mW - 8.13 3 EM Rotational 

[93] 76.7 × 12.7 × 2.2 8.8 V 155 W  0.01 0.09 6.7 PZ Aeroelastic 

[59] φ = 80, t = 10 1.60 V 27.14 mW 0.1 5.7 5.4 EM Aeroelastic  

[88] φ = 80, t = 170 80 mV 2 W   1.7E-7 2.4E-5 14 PZ Aeroelastic  

[74] 90 ×  10  × 0.6 12 V 145 W 0.08 0.63 3.5 PZ Aeroelastic  

[49] 100 × 60  × 30 - 4 mW 0.006 1.73 4 PZ Aeroelastic  

[89] 141 × 100 × 55 3.8 V 573 W 1.8E-4 0.11 4 EM Aeroelastic  

[94] 150 × 30 × 0.6 - 8.4 mW 0.4 0.61 8 PZ Aeroelastic  

[95] 150 × 30 × 1.1 - 6 mW 0.15 0.43 8 PZ Aeroelastic  

[96] 152.4  × 18  × 

0.305 

- 9.5 W 0.007 0.12 1.69 PZ Aeroelastic  

[90] 161 ×250  × 

0.635 

30 V 53 mW 0.4 1.6 5.18 PZ Aeroelastic 

[20] 200 × 15 × 0.8 - 4.5 mW 0.191 0.26 9.8 PZ Aeroelastic 

[86] 203.2 × 50.8 × 

50.8 

2.1 V - - - 7 EM Aeroelastic 

[97] 209  × 24 × 1 32 V 4 mW 0.073 0.1 11 PZ Aeroelastic 

[98] 254  × 254 × 

0.381 

- 2.2 mW 0.011 0.011 7.9 PZ Aeroelastic 

[99] 325 × 36.2 × 

0.267 

30 V 1.14 mW 0.077 0.15 4.69 PZ Aeroelastic 

[91] 490 × 20 ×0.2 6 V 70 mW 5.1 3.46 7 EM Aeroelastic 

[100] 620 ×290 × 750 6 V 171 mW 6.3E-5 0.02 20 EM Aeroelastic 

[87] 1000 × 25 × 0.2 3.3 V 7 mW 0.47 1.72 3 EM Aeroelastic 

 

2.3.2. Micro-Scale Harvesters  

Micromachining technology is the key of manufacturing a device in tiny dimension. The 

cooperation between micro-mechanical parts, which are fabricated by micromachining techniques, 

and micro-electrical parts offer MEMS devices. Inertial sensors, which can be used for navigation 
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purpose, have always seen their successful MEMS applications for consumer electronics [101]. 

Wind energy harvesting in micro-scale dimension can be also offered by using this technology. 

Micromachining technology is able to produce micro wires with multiple turns as coils in the 

electromagnetic-based energy harvesters. Micro-scale electromagnetic energy harvesting based on 

the aeroelastic mechanism from low-frequency ambient vibration was introduced by Sari et al. 

[102], who proposed a wideband electromagnetic micro-power harvester by using several 

cantilevers with varied lengths. The micro wiring was located around the surface of the cantilevers. 

The fabrication process of the proposed energy harvester required 5 masks for patterning. It had a 

square shape with one opening in the centre for locating the magnet. Although the limit of 

cantilever length may shrink the amount of the generated power, this effect can be alleviated by 

increasing the number of cantilevers. Park et al. [103] proposed a micro-electromagnetic harvester 

for collecting energy from low-frequency ambient vibration. In this study, spiral spring was 

patterned on silicon wafer by using the bulk micromachining technology. Multi-turned copper 

micro-coil was manually added and NdFeB magnet as inertial mass was fixed on the spring. As a 

result of ambient vibration, the spring moved and the magnet would move accordingly. Thus, 

electrical power could be induced in the copper coil. The total size of the fabricated micro-power 

harvester was 10×10×6 mm3, which could generate 115.1 W power and 68.2 mV load voltage 

when variation was 0.57 g (g=9.8 m/s2) at 54 Hz. 

Table 4 summarizes the previously published micro-scale portable wind energy harvesters by 

listing their geometry sizes, harvested electrical voltages, harvested electrical powers, normalized 

power densities, power coefficients, wind speeds, power generation techniques, and mechanical 

mechanisms for wind flow trapping. By default the harvester geometry size is given in the form of 

length × width × height, or diameter (φ) and thickness (t) if specified. Compared to the macro-
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scale harvesters, one can read that the micro-scale portable wind energy harvesters normally output 

less harvested voltage and power. The maximum harvested power is 130 mW and the maximum 

power coefficient is 9.4% for an electromagnetic wind energy harvester based on the rotational 

mechanism, which was however measured at high wind speed (11.83 m/s) [104]. The maximum 

normalized power density is 3.1 W*s/(mm3*m) for an electrostatic wind energy harvester based 

on the aeroelastic mechanism. This somehow helps exhibit that the electrostatic power generation 

technique based on the aeroelastic mechanism is advantageous for the micro-scale wind energy 

harvesters. Furthermore, the piezoelectric-based power generation technique working with the 

aeroelastic mechanism for wind flow trapping, such as [105], can be considered as another 

promising option for the micro-scale wind energy harvesters. Generally the electromagnetic-based 

wind energy harvesters along with the mechanical rotational mechanism have higher power 

coefficients than the others. Moreover, both electromagnetic- and piezoelectric-based techniques 

are popular in the designs of micro-scale wind energy harvesters. 
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Table 4. Micro-scale wind energy harvesters (EM stands for electromagnetic, PZ means 

piezoelectric, and ES represents electrostatic). 
 

Ref. Size 

[mm] 

Voltage 

 

Peak 

Power 

 

Normalized 

Power Density 

[W*s/(mm3*m)] 

Power 

Coef. 

CP 

[%] 

Wind 

Speed 

[m/s] 

Gen. 

Tech.  

Mech. 

Mechanism 

[29] 2 × 1.65 × 

0.005 

24 mV 34 nW 0.39 0.012 5.2 PZ Aeroelastic  

[106] 3 × 0.3 × 

0.008  

18.1 

mV 

3.3 nW 0.03 1.6E-4 15.6 PZ Aeroelastic  

[107] 3  × 8 × 0.035  965 mV 2.27 W 0.17 0.004 16.3 PZ Aeroelastic  

[58] 12 × 12 × 6 81 mV - - - - EM Aeroelastic 

[58] φ = 19, t = 5  4 mV - - - 5 EM  Aeroelastic  

[108] φ = 20 - 4.3 mW - 2.3 10 EM Rotational 

[109] 23 × 4 × 0.130  1.6 V 0.64 W 0.004 3.4E-4 15 PZ Aeroelastic  

[65]  φ = 32   - 2.5 mW - 1.51 7 EM Rotational 

[26] φ = 40, t = 10 - 1.8 mW 0.01 0.24 10 ES Rotational 

[110] φ = 40 0.6 V 16 mW - 2.11 9 EM Rotational 

[104] φ = 42 - 130 mW - 9.4 11.83 EM Rotational 

[67] 47  × 20  × 0.5 13 V 613 W - - 200 

r/min 

PZ Rotational 

[111] 75 × 60 × 30  5.2 V 60 mW 0.02 0.39 18 EM  Rotational  

[63] 50 × 15 

×0.030 

200 V 2.1 mW 3.1 0.29 30 ES Aeroelastic 

[112] 58 × 10 × 

0.202  

4.3 V 30 W 0.05 0.06 5 PZ Aeroelastic  

[113] φ = 53 5 V 7.5 mW - 6.32 4.47 PZ Rotational 

[85] 60 × 40 × 0.06 34 V 1.73 mW 0.71 0.03 17 PZ Aeroelastic  

[114] φ = 63, t=41 4.68 V 10 mW 0.02 5.2 4.67 EM Rotational 

[115] φ = 68, t = 30 70.90 V 9.30 mW - - - PZ Aeroelastic  

[105] 69 × 37 × 0.24 3.3 V 1 mW 0.81 8.1 2 PZ Aeroelastic  

[80] 72 × 16  × 

0.41 

3.7 V 615 W 0.2 0.2 7 PZ Aeroelastic  

[116] 75 × 20 × 

0.004  

1.2 V 0.98 W 0.041 0.002 3.9 PZ Aeroelastic  

 

 

It tends to be true that the mechanical rotational mechanism for portable wind energy 

harvesters cannot be achieved by the micromachining technology due to the required fans or blades 

in the integrated rotation-based wind energy harvesters. Although some parts of the rotational 

structure, e.g., piezoelectric cantilevers or micro-scale coils, are possible to be fabricated by the 

micromachining technology, the manufacturing of the whole devices seems impractical at the 

moment. Nevertheless, the advantage of the rotational mechanism in terms of the beneficial power 

conversion efficiency is definitely obvious compared to the aeroelastic mechanism. On the other 
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hand, a micro-scale wind energy harvesting device may be offered by using piezoelectric 

generators based on the aeroelastic mechanism thanks to the perfect co-existence capability 

between piezoelectric materials and micromachining technology. Zhao et al. [117] proposed a 

micro vibration energy harvester, which was fabricated by using multiple piezoelectric cantilevers 

with AlN as the piezoelectric material. The film layers were deposited on a silicon wafer by using 

the magnetron sputtering technique. Eventually the proof mass on each cantilever and other 

suspending patterns were released by utilizing deep-reactive ion etching. Five piezoelectric 

cantilevers were used as an array to generate electrical power of 3.315 W. The schematic of this 

energy harvester is depicted in Fig. 15. Furthermore, some other micro energy harvesters by using 

micromachining process based on the aeroelastic mechanism have been reported in [54] and [29]. 

 

Fig. 15. Schematic diagram of 5 AlN cantilevers as an array for energy harvesting. 

Figure 16 illustrates various features among the portable wind energy harvesters that are 

reviewed in this chapter. It helps exhibit the common features of the energy harvesters along the 

historical timeline. In this figure, the horizontal axis represents the timeline in years 2004-2016 

and the vertical axis covers the information of electrical power generation techniques and device 

physical dimensions. For each electrical power generation technique, increasing Y amount stands 

for the increment of the normalized power density. According to Fig. 16, the portable wind energy 
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harvesting research and development started with the rotational mechanism, and afterwards the 

wind energy harvesting based on the aeroelastic mechanism was developed. Since 2013, the 

piezoelectric technique for the portable wind energy harvesting has become popular. The 

piezoelectric technique has been widely used in not only macro-scale, but also micro-scale wind 

energy harvesters. Most recently, the electrostatic technique shows some capability in either 

aeroelastic or rotational mechanism for wind energy harvesting. Furthermore, by considering the 

used mechanisms for wind flow trapping in the prior studies, one may observe that the rotational 

mechanism is less popular than the aeroelastic mechanism, although the former can more 

effectively extract power from wind flow. Moreover, one can also find that the micro-scale wind 

energy harvesters have been increasingly developed in the most recent years. In the near future, 

we may expect that this trend would be continuing to fit for ultra-low-power electronic applications 

until some commercial micro-scale wind energy harvesting products get available in the market. 
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Fig. 16. An overview of the surveyed portable wind energy harvesters. 

2.4. Power Management Systems 

Due to small dimension of the portable energy harvesters, the generated electrical power 

normally has extremely low magnitude, which most of the time is not suitable for practical 

electronic applications. Therefore, modifying the magnitude is a vital step. Moreover, a direct use 

of the harvested electrical power is typically impossible due to its AC nature, which needs to be 

converted to a DC power supply. Therefore, power management systems (PMS) play an important 

role in conditioning the output voltage or current magnitude and meanwhile providing the DC 

signals. 
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The purpose of PMS can be satisfied by a charge pump circuit, also known as a voltage 

multiplier (VM), whose major configuration is Villard [118]. This voltage multiplier operates with 

at least two capacitors where one capacitor is charged and the other one is discharged in the first 

half cycle of the AC input signal and vice versa during the second half cycle. The number of circuit 

stages specifies the multiplication level of the original signal. Similar to a rectifier circuit, the 

voltage multiplier outputs a DC voltage, whose power can be simply stored within a super-

capacitor. Eventually, any electronic application devices (such as microcontrollers) can draw the 

required power from the super-capacitor, which can be recharged continuously [119].  

The simplest scheme to convert the generated AC signals to DC ones is to use the standard AC-

DC circuitry as depicted in Fig. 17, which includes a full wave bridge rectifier and a filter capacitor. 

Four diodes are connected in the bridge configuration to provide unidirectional voltage output. In 

each cycle only two diodes are forward biased, while the other two diodes are reverse biased. Thus, 

during each input signal cycle, electrical current is only through one pair of diodes as well as load 

resistor R. In addition, to reduce the ripple on the output voltage, a filter capacitor C is used. The 

experimental validation conducted by Zargarani and Mahmoodi for wind energy harvesting using 

a piezoelectric flag [120] shows the output power would be reduced as a result of voltage drop 

across the non-ideal diodes in their forward-biased mode. Since 1N4001 diodes were used with 

1V forward bias, a total of 2V voltage drop across the forward-biased diodes existed in the circuit 

before reaching the output due to the connection of two series diodes.  
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Fig. 17. The standard AC-DC circuitry. 

Tan et al. [121] optimized a power management system for their wind energy harvesting 

devices. An active rectifier, as shown in Fig. 18, with MOSFET transistors instead of the standard 

diode bridge was developed. The rectifier bridge was composed of a pair of P-type MOSFETs and 

a pair of N-type MOSFETs. The ON-state voltage drop across each pair of transistors was quite 

low so that the efficiency could be improved from 40% to 70%. Then a DC-DC boost converter 

with resistor emulation algorithm took over to perform maximum power point tracking (MPPT) to 

extract maximum power from wind energy harvesters. As the last stage of the proposed power 

management system, a super-capacitor was utilized as a power storage unit. The experimental data 

in this study shows that over the range of wind speed from 2.3 to 8.5 m/s, the efficiency of the 

MOSFET-based active rectifier is on average 15%–25% higher than the diode-based passive 

rectifiers.  
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Fig. 18. Schematic diagram of the active rectifier bridge. 

Another configuration for AC-DC converter that has been used for piezoelectric-based energy 

harvester is synchronous charge extraction (SCE) interface circuitry. As illustrated in Fig. 19, the 

accumulated electrical charge is periodically removed from the energy harvester (Cpz) and 

transferred to the load. The energy harvesting with this method consists of two features: firstly 

extraction phases are synchronized with stimulation forces, secondly the energy harvester itself is 

considered as an open circuit configuration [122]. An SCE circuit, which has an inductive path in 

comparison with the standard AC-DC circuit, is composed of a switching component S, an inductor 

L, and a diode D. When the harvester vibration displacement reaches the extreme position under 

the stimulation force, Cpz’s voltage climbs to its peak value. Then switch S is turned on so that the 

energy accumulated in capacitor Cpz is extracted to inductor L through LC oscillation (composed 

of L and Cpz). After passing a certain time (i.e., a quarter of LC oscillation cycle), capacitor voltage 
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V drops to 0 and inductor L’s current reaches its maximum value. Then, switch S is turned off, and 

inductor L freewheels through diode D and capacitor C.  

Shi et al. studied an efficient self-powered SCE interface circuit for piezoelectric-based energy 

harvesters [123]. Their work confirms that the stimulation force frequency should be less than LC 

oscillation frequency in order for a SCE circuit to function well. In [124], Zhao and Yang 

investigated analytical solutions for galloping-based piezoelectric energy harvesters with various 

interfacing circuits. Their analytical and experimental results show that the power, voltage and 

vibration displacement are independent of load resistance, which is known as a feature of SCE 

interface circuits. Moreover, the comparison between standard AC-DC and SCE circuits indicates 

that the SCE circuit has higher output power than the standard AC-DC one under small 

electromechanical coupling factor condition of piezoelectric materials.  

 

Fig. 19. Synchronous charge extraction (SCE) circuitry. 

Wei et al. developed a power management circuit with a simple structure for electrostatic 

energy harvesters [125]. The proposed circuit, as shown in Fig. 20, is only composed of diodes 

and capacitors. This interfacing circuit includes a source capacitor 𝐶𝑣𝑎𝑟 , which represents 

electrostatic generators, a biasing capacitor 𝐶𝑏𝑖𝑎𝑠, a storage capacitor 𝐶𝑠𝑡𝑜𝑟𝑒 , a pair of rectifier 
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diode D1 and D2, and a voltage multiplier with cells 1, 2 up to n. The operation of this circuit 

consists of two phases. In the first phase, 𝐶𝑣𝑎𝑟 decreases due to the discharge through the path of 

𝐶𝑣𝑎𝑟, 𝐶𝑏𝑖𝑎𝑠, D1 and 𝐶𝑠𝑡𝑜𝑟𝑒. In the second phase, 𝐶𝑣𝑎𝑟 increases due to the charge with the path of 

D2, 𝐶𝑏𝑖𝑎𝑠 and 𝐶𝑣𝑎𝑟. Therefore, the maximum voltage of 𝐶𝑣𝑎𝑟 is equal to (n+1) times of 𝑉𝐶𝑠𝑡𝑜𝑟𝑒 

when 𝐶𝑣𝑎𝑟 reaches its minimum value, whereas the minimum voltage of 𝐶𝑣𝑎𝑟 is equal to n times 

of 𝑉𝐶𝑠𝑡𝑜𝑟𝑒 when 𝐶𝑣𝑎𝑟 has its maximum value. The experimental results of this study showed that 

the efficiencies of over 75% were measured for the harvested power ranging from 13 nW to 75 

nW.  

 

Fig. 20. Interface circuit for electrostatic-based energy harvesters. 

Currently some companies, such as Linear Technology [126] and Infinite Power 

Solution[127], offer integrated kits for converting AC to DC voltage and storing the rectified 

voltage in super-capacitors. For instance, the low-loss bridge rectifier from Linear Technology has 

a total voltage drop of about 400 mV under typical piezo-generated currents (~10µA) and high 

rectifying conversion efficiency up to 90%. Moreover, typical charge loss of Infinite Power 
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Solution products (e.g. MEC125, MEC120, and MEC) is 2% per year. The stored electrical energy 

in super-capacitors can be delivered upon the request of power-consuming devices. Thus, the 

super-capacitors can be repeatedly charged until the electrical power reaches a certain level for 

practical power supply. 

2.5. Summary  

In this chapter a comprehensive survey on recent portable vibration energy harvesting devices 

has been conducted. Vibration energy harvesters can be categorized into the following three groups 

in terms of the used power generation techniques: piezoelectric-based harvesters by utilizing the 

direct effect of piezoelectric materials, electromagnetic-based harvesters by leveraging magnetic 

flux density changes, and electrostatic-based harvesters by utilizing capacitance variation. In 

addition, the vibration from wind flow can be collected with the following two mechanical 

approaches: rotational and aeroelastic mechanisms. The aeroelastic mechanism consists of two 

groups, vortex-induced vibrations and movement-induced vibrations. Furthermore, considering 

their physical dimensions, the portable wind energy harvesters are also classified into macro-scale 

and micro-scale ones. As the generated power amount is strongly dependent on the device size, 

the macro-scale energy harvesters can typically produce more power than the micro-scale ones. 

The current status of research and development exhibits that the aeroelastic mechanism is 

promising for portable wind/vibration energy harvesting mainly thanks to simple structure and 

ease of fabrication, while the rotational mechanism is quite effective for extracting power from 

wind flow. The aeroelastic mechanism, which can only operate with good power conversion 

efficiency when wind flow direction is perpendicular to the structures, should be improved for 

omnidirectional function by deploying some new symmetric structures. The combination between 
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piezoelectric power generation technique and micromachining fabrication technology can offer a 

wide range of wind/vibration energy harvesters with high portability and reasonable output power. 

Thus, we expect to see numerous studies in this direction related to piezoelectric materials in the 

near future. 
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Chapter 3    Design and Optimization of Piezoelectric 

MEMS Vibration Energy Harvesters Based on 

Genetic Algorithm 

 

3.1. Introduction 

In the recent decade, several approaches to improve energy conversion efficiency for the 

MEMS piezoelectric energy harvesters have been presented. Gao et al. [112] proposed a new 

piezoelectric energy harvester that is attached with an external cylindrical object made of photo 

paper to adjust the resonant frequency and magnitude of the output voltage. This study clearly 

demonstrates that different sizes of extension objects (e.g., a cylindrical one) can impact on the 

characteristics of harvester output. Another technique to improve efficiency of the MEMS 

piezoelectric energy harvester, which was presented by Jung et al. [105], is to modify the location 

of piezoelectric film along the beam surface by selecting an area closer to the anchor side. In 

addition, Jia and Seshia [128] proposed to enhance the efficiency of the MEMS piezoelectric 

harvesters by tuning proof mass size as a practical approach. It was found that an end mass 

occupying about 60%–70% of the total cantilever length is optimal for linear response. 

Furthermore, Ibrahim et al. [129] proposed a new structure with a magnetic oscillator around the 

piezoelectric cantilever tip in order to enhance the harvested voltage magnitude. The comparison 

between the proposed device and the conventional piezoelectric energy harvesters shows that the 

harvested voltage was enlarged by a factor of 2.8 at the magnetic oscillator speed of 2 m/s (i.e., 

meters/second). 
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However, all the techniques above are solely based on the designers’ experience and skills in 

making a wise decision, which means they have to spend a considerable amount of time to gain 

optimum design. To address this difficulty, Sunithamani et al. [130] proposed an optimization 

method by using variant-mesh analysis, which aims to run numerous simulations to investigate the 

effect of harvester geometry changes on its performance. Furthermore, in a recent study [131], 

analyzing geometric parameters by incrementing the harvester aspects to produce a correlation 

matrix was presented as a solution to MEMS piezoelectric harvester optimization. However, 

requiring a large amount of time to complete finite element method (FEM) simulations as well as 

acute human observation makes these methods less efficient for optimizing a number of physical 

parameters of MEMS piezoelectric energy harvesters. Thus, a proper design automation technique 

is essential for the MEMS piezoelectric harvester designers to be liberated from the conventional 

laborious trial-and-error effort. Therefore, in this chapter we are motivated to utilize some design 

automation techniques to address this pressing challenge during the design process of the MEMS 

piezoelectric energy harvesters. 

In the literature various approaches for optimization of MEMS structures have been presented 

[101]. Tabatabaei et al. [132] proposed an Artificial Immune System (AIS) method for 

piezoelectric energy harvester shape optimization. However, this method offers an energy 

harvester with unusual shape that cannot be readily fabricated with regular MEMS fabrication 

technologies. Moreover, the proposed AIS optimization approach is less efficient in comparison 

with the other optimization methods [133]. Kim et al. [134] presented a Computational 

Experiments (CE) method for design automation, by which a prototyped device was first tested 

and then the FEM simulation parameters were corrected upon the obtained experimental results. 

After performing this calibration, the objective function for maximizing the harvested voltage at 
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low frequency was utilized in the process of tuning the piezoelectric cantilever dimensions. Since 

this proposed method needs prototyping-based calibration, fabricating energy harvesters two times 

make it somehow impractical. On the other side, Genetic Algorithm (GA), an evolutionary 

optimization approach, was used to enhance the magnitude of the voltage harvested from traffic 

roads [135]. However, the proposed objective function in this study is dependent on natural 

properties of the piezoelectric materials (e.g., piezoelectric coefficient, internal capacitance of 

piezoelectric, etc.), which designers cannot modify during fabrication process. Thus, considering 

a fitness function with optimizable variables but without a need of prototyping-calibration is highly 

demanded.  

To overcome these aforementioned challenges, we propose a new design automation method 

based on GA in this chapter. The contributions of this chapter include the following: 

 We validate the accuracy of the analytic model for MEMS-based unimorph piezoelectric 

energy harvesters with FEM simulation and prototype measurement; 

 We propose a GA-based automated design optimization methodology with minimum 

human efforts for MEMS-based unimorph piezoelectric energy harvester design; 

 We also investigate and analyze various effects of physical parameter changes on the 

mechanical and electrical properties of the MEMS energy harvesters.  

The major work in this chapter has been formally documented in multiple journal and conference 

papers (as listed in the Appendix [Journal-2][Conference-1]). 
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3.2. Analytic Modeling of Unimorph Piezoelectric 

Energy Harvesters  

The piezoelectric materials, which are used to fabricate sensors and actuators [136], have 

crystal structure. By applying mechanical force on the surface, the structure changes to generate 

electrical voltage. This unique property makes them useful for converting mechanical vibration to 

electrical power, and vice versa for mechanical deformation if an external electrical power is 

applied. Since kinetic energy of vibration provides periodic deformation on the piezoelectric 

structure, an AC electrical voltage can be collected from its surface. In order to collect electrical 

voltage from the piezoelectric film, two different configurations for electrode deposition (i.e., 

capacitor-style and interdigitated-style) can be utilized [137]. In this study, due to our 

manufacturing restriction, we can only deposit capacitor–style electrodes in our MEMS unimorph 

piezoelectric energy harvesters. Thus, according to the IEEE standard on piezoelectricity with the 

special consideration of our electrode deposition, the generated voltage by piezoelectric materials 

is proportional to the observed stress on their structure with the following conversion relationship 

(22) [138]: 

V = g31tpσp, (22) 

where V is the generated voltage, 𝑔31  is the piezoelectric coefficient with an assumption of 

dominant stress in the in-plane direction and zero stress in the out-of-plane direction, 𝑡𝑝 is the 

piezoelectric film thickness, and 𝜎𝑝 is the applied stress on the piezoelectric material. Since stress 

can lead to strain inside the material, their general conversion can be expressed by the following 

when the object is restricted to move only in one direction (i.e., the in-plane direction): 
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ε𝑝 =
σ𝑝

Y𝑝
 , (23) 

where 𝜀𝑝  is the observed strain inside the piezoelectric material, and 𝑌𝑝  denotes the Young’s 

modulus of the piezoelectric material. Since the prevalent rectangular-shaped piezoelectric energy 

harvesters are compatible with the regular MEMS fabrication process, this chapter is focused on 

such harvesters. Typically the piezoelectric vibration energy harvesters can be offered in two 

different configurations: bimorph and unimorph. In the bimorph configuration, piezoelectric 

material is deposited on two sides of the beam (or called cantilever, both of which terms are 

exchangeable throughout this chapter) by bonding approaches (e.g., gluing or hot air pressure) for 

centimeter-scale piezoelectric energy harvesters [18]. Due to the limitation of regular MEMS 

fabrication process in deposition of piezoelectric material on two sides, the unimorph piezoelectric 

energy harvesters, which includes the piezoelectric film only on one side, features sound 

advantages for producing energy harvesters in the micrometer scale [139]. Therefore, this chapter 

is aimed at exhibiting the design automation benefits for the unimorph piezoelectric energy 

harvesters. The structural diagram of the unimorph piezoelectric energy harvester is displayed in 

Fig. 21.  

 

Fig. 21. Structural diagram of the unimorph MEMS piezoelectric energy harvester with deposition of piezoelectric film 

on the beam surface close to the anchor side. 
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In the literature, the analytic models, which can estimate the harvested voltage from the 

piezoelectric energy harvesters, can be categorized into the following three: pin-force model, 

enhanced-pin-force model, and Euler-Bernoulli model. The pin-force model assumes the 

piezoelectric film is attached to the beam as a pin connection. The strain on the beam, which 

linearly increases through the beam thickness, is computed by the Euler-Bernoulli beam theory, 

whereas the strain on the entire piezoelectric film is considered to be constant. Obviously this 

model does not consider the bending stiffness of the piezoelectric material. The enhanced-pin-

force model actually improves the pin-force model by taking into account the bending stiffness of 

the piezoelectric material. In this regard, the strain on the piezoelectric material, which is not 

constant any longer but linearly increases, is determined by the beam deformation. In comparison 

with the two models above, the Euler-Bernoulli model features the highest modeling accuracy. 

Since this model assumes the beam and piezoelectric film are perfectly bonded together, their 

deformation should be represented with reference to the new common neutral axis [140][141][142]. 

Thanks to this advantage, in this chapter we utilize the Euler-Bernoulli model for the design 

optimization purpose.  

The Euler-Bernoulli model schematic is depicted in Fig. 22. In this model, the bonding 

adhesive material has no impact on the beam stiffness or mass. Moreover, it is assumed that the 

piezoelectric film is homogenous, transverse isotropic, elastic, and thin compared to the beam.  



 

54 

 

 

Fig. 22. Schematic of the Euler-Bernoulli model with an assumption of perfect bonding between beam and piezoelectric 

film. 

 
 

 

By using the method of transformed section [143], we can transfer the two-layer piezoelectric 

energy harvester into one unified structure (i.e., beam). The common neutral axis of the newly 

formed structure with the reference of the piezoelectric surface on the top can be computed by (24): 

Zs =
∑ ZifiAi
n
i=1

∑ fiAi
n
i=1

=

tp

2
tp

Yp

Yb
+ [tp +

tb

2
]tb

 tp
Yp

Yb
+ tb

, (24) 

where 𝑍𝑠 is the new common neutral axis, 𝑍𝑖 is the original neutral axis for the ith material, 𝑓𝑖 is 

the dimensionless transformation factor based on the ratio of piezoelectric film and beam Young’s 

moduli, and 𝐴𝑖 is the area of the ith  material. Constant n is the number of the composite materials, 

which is equal to 2 in this modeling application. And 𝑡𝑏  is the beam thickness and 𝑌𝑏  is the 

Young’s modulus of the beam. 

Consequently, the strain on this transformed structure can be expressed by (25): 
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εp = −
M

(Yp Ip + Yb Ib)
 (zs −

tp

2
), (25) 

where M is the actuating momentum and the term of (𝑧𝑠 −
𝑡𝑝

2
) indicates the distance between the 

neutral axis and the center of the piezoelectric film. The origin of this coordinate system in our 

analysis is assumed to be the neutral axis.  𝐼𝑝  and  𝐼𝑏  are the moments of inertia for the 

piezoelectric film and beam within the coordinate system in Fig. 22. They can be calculated by 

(26): 

Ip = ∫ wz2 dz
Zs

Zs−tp

=
1

3
w [Zs

3 − (Zs − tp)
3
], 

Ib = ∫ wz2 dz
Zs−tp

Zs−tb−tp

=
1

3
w [(tp + tb − Zs)

3
+ (Zs − tp)

3
], 

(26) 

where w denotes the width of the beam or piezoelectric film. By substituting  (24) and (26) into 

(25), we can derive the average strain on piezoelectric film as (27):  

εp = −
6  Yb tb(tb + tp)

w[Yp2 tp4 + Yb
2 tb

4 + 2Yp tp Yb tb(2tp2 + 3tptb + 2tb
2)]

× M. (27) 

Eventually by using (23), we can also compute the average stress on the piezoelectric material. 

Then by applying it into (22), the harvested voltage from the unimorph piezoelectric harvester is 

equal to (28): 

V = −
6 g31 tpYp  Yb tb(tb + tp)

w[Yp2 tp4 + Yb
2 tb

4 + 2Yp tp Yb tb(2tp2 + 3tptb + 2tb
2)]

× M. (28) 

In order to use (28) for estimating the harvested voltage, the actuating momentum, which is 

equal to (29), has to be computed, 
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   M = (IbYb)k̂, (29) 

where 𝑘̂  is the average of radius curvature. Based on the Euler-Bernoulli beam theory, the 

governing equation of the beam can be expressed by (30): 

YbIb
∂4𝑑(x, t)

∂x4
+ ρA

∂2𝑑(x, t)

∂t2
= F(t), (30) 

where 𝜌 is the beam density, A is the cross-sectional area of the beam, d(x,t) is the deflection along 

the Z-axis as shown in Fig. 22, and F(t) represents the external excitation force on the beam, whose 

oscillation frequency is identical to the resonant frequency of the beam. Moreover, the radius 

curvature in terms of time t is equal to (31):  

k(x, t) =
∂2 d(x, t)

∂x2
. (31) 

Eventually, the required average of radius curvature for momentum calculation in (29) can be 

calculated in (32),  

k̂ =
1

 lp
∫ k(x, t) dx
lp

0

 , (32) 

where 𝑙𝑝 denotes the length of the piezoelectric film. 

Since the Euler-Bernoulli beam theory is used in the derivation above, the following 

prerequisites should be observed in order to ensure the highest accuracy of the final analytic 

modeling: (1) the ratio between the beam length and its thickness is greater than 10 [144]; (2) the 

ratio between the beam length and its width is greater than 2 [145]; (3) the piezoelectric film length 

is much greater than its thickness [146].  
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3.3. Single-Optimization-Based Genetic Algorithm  

The Genetic Algorithm (GA) is an evolutionary computing method for searching and 

optimizing complex problems by mimicking biological evolution [147]. The GA starts its 

operation by generating some random numbers for a group of variables to maximize or minimize 

certain defined fitness function(s). The GA solutions are normally coded in binary string structure. 

During the computation, three different operators can be typically applied to the set of solutions to 

provide new evolutionary population. The flowchart of the GA mechanism is illustrated in Fig. 23 

[148].  

 

Fig. 23. The working mechanism flowchart of the single GA optimization method. 
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As shown in Fig. 23, GA starts with initialization, where the variables are coded in the form 

of fixed-length binary string. Each variable can be randomly selected with equal probability. 

Usually the first operator that performs on a population is reproduction, which strives to find 

appropriate strings in a population and interpolate them into a mating pool. A number of methods 

for string selection have been proposed in the literature, although the main idea is that certain 

preferable strings from the current population should be chosen, duplicated and inserted into the 

pool. The next operator within GA is crossover, where typically two strings are selected from the 

mating pool and a certain quota of these strings are exchanged in between. In other words, the 

recombination between string pairs produces new strings, called offspring. Finally, mutation 

operator is performed to change one bit from 1 to 0 or vice versa. This process is also random with 

a very low probability (called mutation rate) on the entire population. All the three operators are 

performed on the entire population in one GA generation, which is counted by g in Fig. 23. Thus, 

the search and optimization aspect of GA is mainly provided by the crossover and mutation 

operators. The multi-dimensional search capability offered by GA can effectively prevent it from 

being trapped by local optima [149]. Therefore, a significant feature of GA in comparison with the 

conventional optimization approaches is its advantageous access to the global optimum. 

In this chapter, our proposed GA-based optimization method is performed to identify optimum 

physical aspects of the beam and piezoelectric film in the MEMS piezoelectric harvesters for the 

efficiency enhancement of energy harvesting. The coverage of the electrodes is defined to be 

identical to the size of the piezoelectric film. In the following section, the capability of the GA-

based optimization methodology in efficiency improvement and its applicability to the micro-

fabrication process will be discussed and demonstrated. 
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3.4. Experimental Results and Discussion 

In order to evaluate accuracy of the presented analytic equations in Section 3.2 for harvested 

voltage of the unimorph piezoelectric energy harvesters, one piezoelectric energy harvester with 

the listed parameters in Table 5 was implemented in MATLAB (Version 2014) for analytic 

computation, while the other one with the same properties was simulated with COMSOL 

Multiphysics (Version 5.2) for finite element method (FEM). The comparison between the 

harvested voltages by using the analytic computation technique and the FEM simulation is shown 

in Fig. 24. One can observe that the proposed analytic computation after reaching the steady state 

(around 1.3ms) has high accuracy and reliability. Thus, we can ensure that such an analytic model 

has solid potential for being utilized in the magnitude estimation of harvested voltage from the 

unimorph piezoelectric energy harvesters. It should be noted that such high accuracy between 

analytic computation and FEM simulation can be attributed to the relatively simple structure of 

the unimorph piezoelectric energy harvesters and the applied Euler-Bernoulli beam theory. 

Moreover, our sufficient satisfaction of the accuracy-related prerequisites as listed in Section 3.2 

is highly essential. 

Table 5. The utilized parameters in the analytic computation and FEM simulations for a 

unimorph piezoelectric energy harvester. 
 

Parameters Description Value 

𝑙𝑏 Beam length 3 mm 

𝑡𝑏 Beam thickness 200 um 

𝑌𝑏 Young’s modulus of beam 70 Gpa 

𝜌𝑏 Beam density  2700 Kg/m3 

𝑙𝑝 Length of piezoelectric film 3 mm 

𝑡𝑝 Thickness of piezoelectric film 50 um 
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𝑌𝑝 Young’s modulus of piezoelectric material 50 Gpa 

𝜌𝑝 Piezoelectric material density  7600 Kg/m3 

𝑔31 Piezoelectric material coefficient -9.5e-3 V*m/N 

W Beam and piezoelectric film width 1 mm 

 

 

 

Fig. 24. Estimation of the harvested voltages from the unimorph MEMS piezoelectric energy harvester by using analytic 

computation and FEM simulation. 

 

Since the analytic equations presented in Section 3.2 are able to accurately estimate the 

harvested voltage for the given harvester dimensions, we opt to utilize them in a fitness function 

of our GA optimization, which includes five physical variables defined as optimizable parameters, 

i.e., beam length ( 𝑙𝑏 ), beam thickness (𝑡𝑏 ), piezoelectric-film length ( 𝑙𝑝 ), piezoelectric-film 

thickness (𝑡𝑝), and beam or piezoelectric width (w). Note that we define the harvested voltage 

instead of the harvested power as our fitness function of GA. In this way, we can only focus on 

the physical geometry optimization of the harvesters, rather than having to consider any external 
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parameters (e.g., load impedance) additionally. 

The proposed optimization method was implemented in MATLAB genetic algorithm toolbox 

to enhance the magnitude of harvested voltage besides device size reduction. The piezoelectric 

energy harvesters were excited with a sinusoidal vibration, whose amplitude of acceleration is 0.5g 

(1g=9.8 m/s2) with a frequency identical to the resonant frequency specification of the 

corresponding energy harvester. 

The applied fitness function and constraints of our GA optimization are defined by (33): 

Maximize: {V}Maximize: {V} 

Subject to:  design rules of the optimizable parameters 
(33) 

For all the five physical optimizable parameters (i.e., 𝑙𝑏, 𝑡𝑏, 𝑙𝑝, 𝑡𝑝, and w), upper and lower 

bounds are defined as per the design rule constraints as listed in the second row of Table 6. 

Moreover, the observed results by using a commercial product (i.e., COMSOL optimization 

module) for MEMS structural optimization are listed in the fourth row of this table (named as 

Com-OPT). To run the COMSOL optimization module, the geometry of any piezoelectric energy 

harvester in 3D space was first defined, and isotropic materials for both beam and piezoelectric 

film were considered. We selected the Time Dependent Study to measure the harvested voltage for 

50ms with a time interval of 5ms. The optimization module is configured as follows: Monte Carlo 

as the optimization method, 600 as the maximum number of objective evaluations, and objective 

maximization as the optimization type. Further information regarding the COMSOL optimization 

module can be found in [150]. To demonstrate and compare the GA capability, GA was executed 

4 times with the same generation size of 20 but with different population sizes ranging from 5 to 

45, as shown in the rows of OPT1-OPT4. To make a comprehensive comparison, we also list the 

resonant frequency, generated peak voltage (Vpeak) at a specific frequency, and runtime in Table 6. 
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Table 6. Un-Optimized and Optimized five physical aspects of the MEMS piezoelectric vibration energy harvesters by 

COMSOL optimization module and GA with different population sizes. 

 
Parameter Beam  

Length lb 

m] 

Beam  

Thickness 

tb m] 

 

Piezoelectric 

Length lp 

m] 

Piezoelectric 

Thickness 

tpm] 

 

Beam 

Width w 

m] 

VPeak 

 [mV] 

(Analytic) 

VPeak 

 [mV] 

(FEM) 

Resonant  

Frequency 

[KHz] 

Population 

Size 

Runtime 

[min] 

Range [1000,5000] [100,200] [500,5000] [10,50] [500,2500] - - - - - 

Un-OPT 5000 200 5000 10 2300 7.6 6.5 7.08 - - 

Com-OPT 4998 196 4995 14 504 9.13 8.25 7.85 - 338 

OPT1 2265 167 2237 18 905  2.9 2.1 29.03 5 10 

OPT2 4029 114 500 49 970 18.6 17 7.29 15 65 

OPT3 4923 111 636 50 864 27.14 25.8 4.58 30 180 

OPT4 4891 115 500 50 1531 27.81 26.1 4.98 45 720 

 

 

According to the listed data in Table 6, the un-optimized case, as named Un-OPT, had a large 

occupied area with extremely small Vpeak. The optimized unimorph energy harvester by COMSOL 

optimization module, labeled as Com-OPT, could enlarge harvested Vpeak by a factor of 27% in 

comparison with the un-optimized case, while it took 338 minutes in the computation. After the 

first GA optimization run (labeled as OPT1) with a small population size of 5, the generated Vpeak 

was highly reduced in comparison with Un-OPT although the GA optimization process was done 

very quickly. By increasing the population size to 15, the required runtime was increased along 

with the energy harvesting efficiency. OPT3 with a sufficiently large population size of 30 

demonstrates that increasing the population size can help improve the magnitude performance of 
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the piezoelectric energy harvesters by a factor of 3.96 although more runtime is expected. It is 

worth noting that selecting a proper population size is highly critical for the GA optimization. As 

the data of OPT4 shows, although an even larger population size is utilized, the runtime is 

significantly increased but the performance improvement in terms of Vpeak is very little compared 

to OPT3. 

On the other hand, the obtained results for OPT3 show that the magnitude performance 

improvement was actually emerging on top of dimension reduction in several aspects, such as 

piezoelectric film length, beam thickness, and beam width. This is indeed highly desirable for 

MEMS piezoelectric design optimization. In addition, the comparison between the obtained data 

by using GA and COMSOL optimization module clearly demonstrates that GA has gained less 

runtime but with higher capability in energy harvesting efficiency improvement. Besides the 

computation results from the analytic equations, the eighth column in Table 6 also provides the 

FEM numerical simulation results for the harvested voltage magnitude by using COMSOL Time 

Dependent Study. It is found that both results above are in line with each other very well. In 

general, from Table 6 one can observe that a slim beam (i.e., larger length, smaller width, and 

thinner layer) may lead to larger magnitude of the harvested voltage. Moreover, a shorter and 

thicker piezoelectric film tends to contribute considerable improvement to the energy conversion 

for the MEMS unimorph piezoelectric energy harvesters. 

As reflected from Table 6, the GA-based optimization method can successfully optimize a 

large number of free variables (i.e., five physical parameters) that the designers can select during 

the design process. However, for the most of the commercially accessible fabrication processes, 

the thickness of the layers (e.g., beam layer and piezoelectric layer) is normally fixed. In other 

words, the designers have no control on the thickness amount during the fabrication process. Thus, 
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to consider such manufacturing limitation, in this chapter we also performed the GA optimization 

and associated comparison on three harvester physical aspects (i.e., beam length 𝑙𝑏, piezoelectric 

film length 𝑙𝑝 , beam and piezoelectric width w) as reported in Table 7. Moreover, several 

harvesters with the distinct physical aspects were fabricated by a micro-fabrication process and 

then verified by our experimental measurement. 

3.4.1. Micro-Fabrication Process 

The simplified fabrication process flow, which was utilized to fabricate our harvester 

prototypes, is sketched in Fig. 25. This process starts with 150 mm n-type double side polished 

Silicon-on-Insulator (SOI) wafers. The top surface of the silicon layer is doped by depositing a 

phosphosilicate glass (PSG) layer and being annealed at 1050°C for one hour in argon (as depicted 

in Fig. 25 Step-1). Thereafter, the PSG layer is removed via wet chemical etching. Then the 

piezoelectric film, 0.5 m aluminum nitride (AlN), is deposited over the wafer by reactive 

sputtering technique (as depicted in Fig. 25 Step-2). Subsequently, the wafer is coated with 

photoresist and the piezoelectric film is lithographically patterned. After completion of this step, 

the top electrode, which includes 20 nm chrome and 1 m aluminum, is deposited and patterned 

through a liftoff process. In the next step, the silicon layer is lithographically patterned, and Deep 

Reactive Ion Etch (DRIE) is performed to etch the silicon layer down to the oxide layer (as 

depicted in Fig. 25 Step-3). Then on the front side of the wafer, protection material is deposited 

(as shown in Fig. 25 Step-4). After the wafer is reversed, the substrate is lithographically patterned 

and etched by using RIE and DRIE methods. Eventually the deposited protection material on the 

front side is stripped by using a dry etch process. As shown in Fig. 25 Step-5, this MEMS process 

can release our clamped unimorph piezoelectric harvester prototypes.  
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Fig. 25. Fabrication process flow for manufacturing our MEMS unimorph piezoelectric energy harvesters. 

 

3.4.2. Experimental Results 

In Table 7, the coverage ranges for the three optimizable parameters based on the design rule 

constraints and our budgetary chip plan are listed. It is worth mentioning that the size of an un-

optimized harvester, labeled as Un_OPTF, is selected with the maximum allowable sizes in all the 

dimensions. The COMSOL optimization module result, labeled as Com_OPTF, is listed in the 

fourth row of Table 7. On top of the GA optimization study from Table 6, two promising 

evolutionary population sizes of 15 and 30 were selected to perform GA-based optimizations in 

the new scenario here as listed by OPTF1 and OPTF2, respectively. Table 7 includes the peak 

harvested voltage magnitude from the analytic computation in Column 5 by using our presented 

analytic equations and the FEM simulation in Column 6 by using the COMSOL Time Dependent 
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Study at the harvester resonant frequencies. Moreover, Un-OPTF, OPTF1, and OPTF2 were 

fabricated by using the micro-fabrication process above. Com_OPTF was not selected into our 

silicon-area-constrained chip fabrication due to its comparable Vpeak performance but significantly 

inferior runtime efficiency with reference to OPTF1. The measurement results are also included 

in Table 7 (Column 7). The SEM images of the prototyped devices are illustrated in Fig. 26.  

 

Fig. 26. SEM images of the fabricated micro-harvesters (a) un-optimized (Un-OPTF), (b) optimized with population 

size of 15 (OPTF1) and (c) optimized with population size of 30 (OPTF2). 
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Table 7. Un-Optimized and Optimized three physical aspects of the MEMS piezoelectric vibration energy harvesters by 

COMSOL optimization module and GA with different population sizes. 

 
Parameter Beam  

Length lb 

m] 

Piezoelectric 

Length lp 

m] 

Beam 

Width w 

m] 

VPeak 

(Analytic) 

[mV] 

VPeak 

(FEM) 

[mV] 

VPeak 

(Measurement) 

[mV] 

Resonant  

Frequency 

[Hz] 

Population 

Size 

Runtime 

[min] 

Range [1000,3100] [400,3100] [400,1000] - - - - - - 

Un-OPTF 3100 3100 1000 50 47 36 1595 - - 

Com-OPTF 2993 2507 650 54 50 - 1791 - 315 

OPTF1 2790 500 765 52 49 41 1972 15 16.1 

OPTF2 3100 500 500 72 67 50 1576 30 130 

 

 

From the summarized data in Table 7, one can observe that number reduction of the 

optimizable parameters from 5 to 3 can considerably reduce the GA runtime. However, the 

efficiency improvement of the COMSOL optimization module is not significant. Although 

Un_OPTF was selected to use the maximum available physical dimensions, its performance on 

the harvested voltage magnitude is not necessarily superior. Moreover, in comparison with 

Com_OPTF, OPTF1 can achieve equivalent harvested voltage magnitude but with much less 

runtime. Among all the candidates, OPTF2 can achieve the largest harvested voltage magnitude 

with reasonable runtime.  

In addition, compared to the measured output voltage, we can see that the analytic model 

presented in Section 3.2 is capable of estimating the harvested voltage magnitude with accuracy 

of around 80%. Our analyses show that such a difference between the analytic estimation and 

experimental measurement is mainly due to neglect of air damping ratio (normally 0.01 - 0.05 

[140]) and absence of electrode thickness during the analytic computation. On the one side, if we 

consider an air damping ratio of 0.015 in the FEM simulation, the simulation results would be very 
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close to the measurement results. On the other side, the electrode thickness may take up to 10% of 

the beam thickness. Furthermore, it can be seen that our proposed GA optimization methodology 

with proper size of population is able to enhance the harvested voltage by a factor of 31% while 

reducing the harvester physical size by 50%. In contrast, the efficiency of the optimized harvester 

with COMSOL optimization module (i.e. Com_OPTF) is improved only by 6.4% while it needs a 

lot more time for completion of the optimization. Therefore, we conclude that our presented 

analytic model is very helpful for estimating harvested voltage of the MEMS unimorph 

piezoelectric energy harvesters and our proposed GA-based optimization methodology can 

facilitate the MEMS design both effectively and efficiently. 

One may observe that the reported peak harvested voltage magnitudes for the studied 

harvesters in Table 6 are generally less than those listed in Table 7. This is all due to the differences 

of two applied technologies and excitation inputs. In Table 6 the beam and piezoelectric film use 

aluminum and PZT respectively, while in Table 7 the two materials are silicon and AIN. Moreover, 

we used 0.5g acceleration as the excitation input for the computation/simulation in Table 6, and 

2g acceleration in the experiment of Table 7 for easier measurement data reading. Therefore, one 

can conclude that the performance of our proposed GA-based optimization methodology is 

independent of technology material properties and external excitation inputs.     

As reflected in Table 7, geometry modification of energy harvesters may change the amount 

of the resonant frequency. In theory the resonant frequency of a mechanical resonator can be 

computed by (34):  

f =
1

2𝜋
√
𝑘

𝑚
     ,  (34) 

where k is the stiffness and m is the mass of the harvester. That is to say, the resonant frequency is 
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largely dependent on the physical aspects of the harvester. Table 8 lists the computed mass for the 

presented energy harvesters (i.e., the un-optimized and optimized ones) in Table 7. There is certain 

mass change that can be observed from the various harvesters above. Among them, Un_OPTF is 

the heaviest while OPTF2 is the lightest. 

Table 8. Computed masses of the un-optimized and optimized piezoelectric energy harvesters. 
 

Device Name  Mass 

[ngr] 

Un_OPTF 85.84 

Com_OPTF 52.47 

OPTF1 51.38 

OPTF2 37.2 

 

 

In order to compute the required stiffness for resonant frequency calculation by using (34), 

Fig. 27 exhibits the tip displacement versus excitation force for the four presented harvesters from 

Table 8. To measure the tip displacement, we used COMSOL Multiphysics to model the harvesters 

in 3D space and applied variable forces by edge load at tip location in Stationary Study with 

Parametric Sweep function. The slope of each curve can clearly represent the stiffness of the 

corresponding energy harvester. One can observe that Un_OPTF has the maximum stiffness and 

OPTF2 is the minimum one. Furthermore, even though the Com_OPTF and OPTF1 devices have 

almost identical masses, the resonant frequency of OPTF1 is 9.2% greater than that of Com_OPTF 

due to their clear difference in stiffness. Therefore, it can be concluded that the geometry 

optimization is of high significance for the unimorph piezoelectric energy harvesters due to the 

sensitivity of stiffness besides device mass.  
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Fig. 27. Tip displacement versus excitation force for the un-optimized and optimized harvesters with consideration of 

three optimizable parameters. 

 

Another vital parameter to be investigated for the performance of one piezoelectric energy 

harvester is its impedance. The internal piezoelectric impedance, which is known as a source 

impedance, can be modeled by VanDyke equivalent circuit [151]. According to this model, the 

internal piezoelectric generator impedance is dependent on several physical properties of the 

resonator, such as stiffness, mass, mechanical damping, and piezoelectric capacitance. 

Consequently the geometry optimization proposed in this chapter can be used to change the 

internal impedance of the piezoelectric harvesters. Fig. 28 illustrates the simulated internal 

impedance for the four energy harvesters as listed in Table 7, including the resistance curves (with 

the maximum amount at the resonant frequency) and the reactance curves (with zero magnitude at 

the resonant frequency). In this regard, 3D geometry of these devices was modeled by COMSOL 

Multiphysics and 0.01 was considered as a damping ratio around the device resonant frequency. 

Then 0.01 volt was applied on the top side of the piezoelectric film as a test voltage to measure the 
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impedance in Frequency Domain Study. Among the measured impedances, it is observed that the 

maximum impedance belongs to the energy harvester with the minimum resonant frequency and 

the minimum piezoelectric film area, which is OPTF2. In contrast, Com_OPTF, which has higher 

resonant frequency than Un_OPTF, features the minimum internal impedance.  

 

Fig. 28. Internal impedance of (a) Un_OPTF, (b) Com_OPTF, (c) OPTF1 and (d) OPTF2 piezoelectric MEMS harvesters. 

 

Such intricacies can be understood by the following reasoning. Since any piezoelectric 

generator has an internal impedance, whose amount is a function of device resonant frequency and 

piezoelectric film area, the piezoelectric energy harvester with higher resonant frequency and 

larger piezoelectric film area would offer lower internal impedance. By providing an optimum 

impedance load corresponding to the piezoelectric internal impedance, a perfect impedance 

matching network would be offered so that the maximum harvested power can be extracted from 

the energy harvesters. 

The von-Mises stress distributions for the four unimorph piezoelectric energy harvesters from 

Table 7 by applying a 0.01 N constant force at their tip edge under the Load Edge feature in 
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Stationary Study of COMSOL Multiphysics are shown in Fig. 29. According to this figure, the 

minimum observed actuation stress belongs to Un_OPTF with magnitude of 2.9*109 N/m2 (Fig. 

29(a)), while the maximum one happens to OPTF2 with magnitude of 6.9*109 N/m2 (Fig. 29(d)). 

That is to say, Un_OPTF and OPTF2 gain the lowest and highest energy conversion efficiency in 

terms of the harvested voltage, respectively. Fig. 29(b) and (c) demonstrate that Com_OPTF and 

OPTF1 have almost similar peak von-Mises stress with magnitude of 4.5*109 N/m2 and 4.43*109, 

N/m2, respectively. As a result, it can be concluded that OPTF2 has the best performance in terms 

of both actuating stress and occupied area in comparison with the other un-optimized and 

optimized MEMS piezoelectric harvesters.  

 

Fig. 29. 3-D views and von-Mises stress distributions of un-optimized and optimized 

piezoelectric MEMS harvesters: (a) Un_OPTF, (b) Com_OPTF, (c) OPTF1 and (d) OPTF2. 

 

To illustrate the direct effect of our proposed design automation methodology on performance 

enhancement, the induced charge density by the piezoelectric effect was computed and exhibited 
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in Fig. 30. By using COMSOL MEMS module, the induced charge density was measured by 

applying a 0.01 N force at the tip edge of each harvester. Figure 30 clearly demonstrates that the 

highest charge density with magnitude of 0.025 C/m2 belongs to the GA-optimized harvester with 

sufficient population size (i.e., OPTF2). In contrast, the minimum charge density of 0.011 C/m2 

was observed for the un-optimized harvester, Un-OPTF. Moreover, the comparison of the induced 

charge density between the optimized harvester with COMSOL optimization module (i.e., 

Com_OPTF) and our GA-optimized harvester with population size of 15 (i.e., OPTF1) shows that 

they have very similar capability in producing charge with magnitude of 0.019 C/m2 and 0.015 

C/m2, respectively. On the other side, one should not ignore the fact that OPTF1 can run 19.7 times 

faster than Com_OPTF.  

 

Fig. 30. 3-D views and induced charge densities of un-optimized and optimized 

piezoelectric MEMS harvesters: (a) Un_OPTF, (b) Com_OPTF, (c) OPTF1 and (d) OPTF2. 

 

A comprehensive comparison among the von-Mises stress, induced charge density, and 

measured peak harvested voltage shows that there is a direct relationship between actuating stress, 
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induced charge, and harvested voltage amount. This is also theoretically reflected from our 

presented equation set in Section 3.2. Thus, a unimorph piezoelectric energy harvesting device 

with the capability of forming higher stress would be able to generate larger harvested voltage. 

Our proposed GA-based optimization methodology can optimize the physical geometry of the 

unimorph piezoelectric energy harvesters in order to form higher stress and in turn generate higher 

output voltage.    

3.5. Summary 

In this chapter we proposed a GA-based design and optimization method for MEMS unimorph 

piezoelectric energy harvesters. The analytic equations for estimating the generated voltage from 

the MEMS unimorph piezoelectric harvesters were first presented and then validated by using 

COMSOL Multiphysics, a commercial FEM tool, as well as experimental measurement of our 

prototype devices. The proposed GA-based optimization methodology in this study demonstrated 

an enhancement of energy harvesting efficiency by 31% in comparison with un-optimized 

harvesters. This improvement was gained along with physical size reduction in several aspects 

such as beam width and piezoelectric film length. In addition, the comparison between the 

proposed optimization method in this chapter and available commercial product (e.g., COMSOL 

optimization module) shows that our GA-based optimizer has higher optimization efficiency in 

enlarging the harvested voltage magnitude and reducing the computation time. Moreover, some 

effects of the geometry optimization on harvester properties (such as resonant frequency, mass, 

stiffness, and internal impedance) were studied. The developed design and design automation 

techniques would be essential for the MEMS unimorph piezoelectric energy harvester designers 

to be liberated from the conventional laborious trial-and-error effort. 
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Chapter 4    Frequency Tuning and Efficiency 

Improvement of Piezoelectric MEMS Vibration 

Energy Harvesters  

 

4.1. Introduction  

During the past decade, several approaches to improve energy conversion efficiency of the 

piezoelectric energy harvesters have been presented. As a matter of fact, all these proposed 

methods to enhance energy conversion efficiency of the piezoelectric MEMS energy harvesters 

have been performed without considering operational resonant frequencies of the harvesters. For 

instance, although the proposed method in [128] enlarged the device efficiency, the harvester 

resonant frequency is also increased. However, this is actually undesirable for vibration energy 

harvesters due to the low frequency nature of the ambient vibration sources [152][153] and the 

narrow operational bandwidth of the energy harvesters [154]. One of the popular topological 

design methods for the MEMS-based piezoelectric harvesters is to locate a proof mass at the beam 

tip [155] because of its compatibility with the regular micro-fabrication processes. Although the 

resonant frequency tuning for this type of MEMS piezoelectric energy harvesters has been studied 

in the literature, how to simultaneously optimize both resonant frequency and harvested voltage 

amplitude is still unknown thus far. 

Moreover, since the previously developed techniques for resonant frequency tuning and 

energy conversion efficiency improvement of the MEMS piezoelectric energy harvesters are 

heavily dependent on the designers’ intellectual decision, sufficient design experience and 

considerable trial time are indispensable for the designers to gain optimal device structure. To 
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facilitate this design process, a number of optimization techniques, such as the variant-mesh 

analysis based on finite element method (FEM) [130], the correlation matrix with aid of FEM 

results by incrementing the harvester geometry aspects [131], etc., have been proposed. However, 

requiring a large amount of FEM simulation time and only considering one objective in the 

optimization make these methods less effective for real devices in the practical applications. In a 

recent study [156], Siramdas and Pratap demonstrated that the harvested power by the unimorph 

piezoelectric MEMS energy harvesters can be enlarged by optimizing four parameters, namely, 

excitation force, equivalent mass, harvester’s natural frequency, and power factor, where the 

power factor itself is a function of coupling factor, frequency ratio, normalized load resistance, 

and damping ratio.  

From this study, one can imply that the operational resonant frequency should be considered 

in the optimization for the energy conversion efficiency improvement of the piezoelectric MEMS 

energy harvesters due to its impact on the amount of the harvested voltage. However, nonlinearity 

and intricacy among the harvester physical dimension aspects, resonant frequency, and energy 

conversion efficiency make the conventional design methods less effective and efficient if solely 

relying on human observation in the optimization loop. In order to tackle this issue, we are 

motivated to develop an automated design and optimization technique based on Genetic Algorithm 

(GA), which is an evolutionary computation method for optimizing complex problems. Our 

proposed optimization methodology in this chapter can optimize physical aspects of the MEMS 

piezoelectric vibration energy harvesters with the minimum designers’ efforts to achieve high 

energy conversion efficiency and low operational resonant frequencies, besides their geometric 

size reduction. The major work in this chapter has been formally documented in one journal paper 

(as listed in the Appendix [Journal-3]). 
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4.2. Analytic Modeling of Resonant Frequency of 

Piezoelectric MEMS Energy Harvesters 

As shown in Fig. 31, the unimorph piezoelectric harvesters can be manufactured without or 

with a proof mass at the beam tip. The resonant frequency (or natural frequency) of a micro 

cantilever with clamped-free boundary conditions with no proof mass can be estimated by the 

bending modulus [157] or flexural rigidity [158]. In the flexural rigidity, the resonant frequency 

of both micro and macro cantilevers (or beams, both of which are exchangeable throughout this 

chapter) can be expressed by (35): 

fn =
1

2π
√
k

m
   , (35) 

where k is the beam stiffness and m represents the effective mass of the beam. The stiffness of the 

rectangular objects can be simply calculated by (36): 

k =
3 YbIb

𝑙b
3 

     , (36) 

where 𝑌𝑏 is the Young’s modulus of the beam, 𝐼𝑏 is the area moment of inertial, and 𝑙𝑏 is the beam 

length. Since the highest quality factor of the clamped-free beams is obtainable at their first-mode 

resonant frequency, we can compute the first-mode resonant frequency of the harvesters by using 

(37) [159]: 

f1 =
3.52

2π
√
YbIb

mb𝑙b
3      , (37) 
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where 𝑚𝑏 is the beam mass. By equating (37) and (35), we can derive the equivalent mass, which 

considers both the beam mass 𝑚𝑏 and the proof mass 𝑚𝑡𝑖𝑝 at the beam tip. Thus, (35) can be 

rewritten as: 

f1 =
1

2π
√

3YbIb

(0.2427mb +mtip)𝑙b
3 ; (38) 

where 𝑚𝑡𝑖𝑝 denotes the proof mass at the end of the beam (if existing). In such a presented analytic 

model for estimating the resonant frequency of the unimorph MEMS piezoelectric harvesters, it is 

assumed that the effect of the piezoelectric film and electrode layers on the resonant frequency is 

insignificant. Therefore, only the attributes of the beam and proof mass are taken into account in 

the computation below due to their remarkable sizes in comparison with the other components. 

On the other side, the harvested voltage by the piezoelectric materials is proportional to the 

actuating stress on their surface. Thus, according to the IEEE standard on piezoelectricity, the 

conversion relationship between the generated voltage and stress can be expressed by the presented 

analytic equation (28) for the unimorph piezoelectric harvesters in Chapter 3.  

 

Fig. 31. Structural diagram of the unimorph MEMS piezoelectric energy harvesters (a) without and (b) with a proof mass. 
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4.3. Multi-Objective Optimization Based on 

Genetic Algorithm  

Genetic algorithm (GA) is an evolutionary and heuristic computing method that is used for 

searching in a large solution space to optimize complex problems by mimicking biological 

evaluation. In the GA optimization method, a solution is represented as a chromosome within a 

population. The entire population, which is comprised of a large number of chromosomes, can be 

generated by distinct methods, such as random generation, greedy heuristic, etc. The GA 

scalability and performance are dependent on the population size, which is normally a user-defined 

parameter. The GA multi-objective working flowchart is depicted in Fig. 32 [147][148].  

 

Fig. 32. Flowchart of the multi-objective GA working principle. 
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In this chapter, the GA methodology is utilized for both single-objective and multi-objective 

optimization. Therefore, as shown in Fig. 32, first of all the users need to define the objective 

function(s) and optimizable parameters. In this way, the presented equations (28) and (38) are 

deployed as the objective functions, while the physical aspects of the harvesters, i.e., beam length 

(𝑙𝑏), piezoelectric-film length (𝑙𝑝), proof mass length (𝑙𝑚) (if existing), and beam or piezoelectric-

film width (w) are considered as optimizable parameters. 

After providing these information by the users, GA commences with initialization, where the 

variables (i.e., optimizable parameters) are coded in the form of fixed-length binary string. In this 

stage, the variables are selected randomly within the allowed ranges, while the selection 

probabilities are considered to be equal for all the qualified values. During the GA-based 

optimization, usually three genetic operators are performed on the entire population, where the 

repetition is controlled by the number of generation. The first genetic operator, which is called 

reproduction, is to strive to find appropriate strings in a population and interpolate them into a 

mating pool. In the literature, a number of methods for appropriate string selection have been 

proposed, although the basic ideas are similar. From the population, the strings with certain 

preferable features have to be selected. Afterwards, the selected individuals are reproduced and 

inserted into the mating pool.  

The second genetic operator within GA is called crossover. This operator chooses two strings 

from the mating pool, whose particular portions are swapped. Consequently, such a recombination 

operation between the string pairs creates some new strings, which are called offspring. Eventually, 

the last genetic operator, which is called mutation, is performed to change only one bit from 1 to 

0 or vice versa. This mutation operation, similar to the other two operators, is performed randomly 

with a very low probability, whose value is normally recognized as mutation rate. Once these three 
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operations are sequentially performed on all the population members, one GA generation, which 

is indicated by gen in Fig. 32, will be counted. Finally, if the specified conditions (i.e., sufficiently 

superior harvested voltage V, resonant frequency 𝑓1, and occupied silicon area A) are satisfied, the 

algorithm will be stopped and the optimum values of the optimizable parameters will be reported.   

It is worth mentioning that the MEMS-based energy harvesters might be optimized by using 

other mathematical optimization techniques, such as nonlinear programing, geometric programing, 

etc. However, these techniques may impose special requirements (e.g., continuity or convexity) 

on the problems themselves. Moreover, they tend to be highly dependent on the selection of a 

proper starting point in the optimization process. Therefore, in this study we opt for the GA in the 

multi-dimensional search, which is capable of statistically approaching the global optimum 

solutions by skipping local optima. Furthermore, the GA is able to tackle multi-objective 

optimization challenges by offering Pareto solutions for designers’ synergistic trade-off decisions. 

It should be noted that each optimization technique has its own advantages as well as drawbacks. 

Although featuring the listed advantages above, the GA-based optimization is normally a time-

consuming evolutionary process. And its algorithmic factors need to be well tuned in the 

implementation. 

4.4. Experimental Results and Discussion  

By integrating the presented analytic equations in Sections 3.2 and 4.2, it is feasible for the 

designers to estimate both the magnitude of the harvested voltage and the operational resonant 

frequency of the MEMS unimorph piezoelectric harvesters. Thus, as discussed in Section 4.3, the 

required objective fitness functions for the GA optimization methodology can be provided by using 

these analytic equations. It is obvious that the presented analytic equations are dependent on the 



 

82 

 

harvester’s dimensions (e.g., width, length, thickness, etc.) and utilized material properties, such 

as Young’s modulus. During the design process, the designers normally have good control on 

physical dimensions of the devices, whereas the thicknesses of various layers are constantly fixed 

in most of the commercially accessible MEMS fabrication technologies. In this regard, we have 

defined four physical variables as optimizable parameters, i.e., 𝑙𝑏 , 𝑙𝑝 , 𝑙𝑚 , and w. Thus, the 

proposed optimization method by specifying the following objective fitness functions, was 

implemented in MATLAB genetic algorithm toolbox (Version 2014) in order to maximize the 

harvested voltage and minimize the resonant frequency of the MEMS piezoelectric harvesters 

besides their geometric size reduction.  

Maximize: {V} 

Minimize: {f1} 

Minimize: {A} 

Subject to:  design rules of the optimizable parameters 

(39) 

where V represents the harvested voltage, f1 denotes the first-mode resonant frequency, and A is 

the structural area of the harvester. For all the optimizable parameters (i.e., 𝑙𝑏, 𝑙𝑝, 𝑙𝑚, and w), the 

upper and lower bounds, as listed in the second row of Table 9, are defined by considering the 

following three factors: (1) design rule constraints (which are demanded by the foundry), (2) 

available silicon area, and (3) rational aspects for ease of measurement. 

In order to study the accuracy of the proposed analytic modeling discussed in the previous 

section, and demonstrate the performance of the proposed optimization methodology in both 

voltage enhancement and resonant frequency reduction, four piezoelectric harvesters with and 

without integration of proof mass were prototyped by using the micro-fabrication process detailed 

in Section 3.4.1 of Chapter 3. Among these prototyped piezoelectric energy harvesters, two of 
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them, which are listed as Un-OPT and Un-OPTM in Table 9, were fabricated with no special 

considerations. Thus, they can be identified as the un-optimized cases for the piezoelectric MEMS 

harvesters without and with proof mass, respectively. In the first step, the GA was executed as a 

single-objective optimization of the voltage magnitude by setting the population size to 30 and the 

generation number to 20, which means its aim was to only enhance the energy conversion 

irrespective of the resonant frequency and required silicon area. Consequently, the piezoelectric 

MEMS structure in absence of the proof mass was optimized and its geometrical properties are 

summarized in Table 9 under the name of OPT. Furthermore, another GA run was performed as a 

multi-objective optimization with its population size of 50 and generation number of 20. Therefore, 

the physical aspects of the piezoelectric MEMS harvester with the integration of the proof mass 

was optimized by considering the enhancement of the energy conversion efficiency and the 

reduction of the resonant frequency, besides its geometric size reduction. This optimized harvester 

is identified as OPTM in Table 9.  

Table 9. The physical dimensions of the un-optimized and optimized MEMS piezoelectric energy 

harvesters. 

 
 

Item Beam Length 

(𝒍𝒃) 

[m] 

Piezo. 
Length 

(𝒍𝒑) 

[m] 

Width 
 

(w) 
[um] 

Mass Length  

(𝒍𝒎) 

[m] 

Range (500,3200) (500,3200) (200,1000) (100,1000) 

Un-OPT 3150 3153 989 - 

Un-OPTM 3010 3010 989 200 

OPT 3154 500 500 - 

OPTM 2997 1997 1000 1000 
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From the summarized data in Table 9, it can be seen that increasing size of the proof mass or 

beam dimension is a solution to reducing the resonant frequency and increasing the harvested 

voltage amplitude. However, in the absence of the proof mass, as described by the analytic models 

in Section 3.2, the width of the beam has almost no contribution to the resonant frequency and 

harvested voltage. Thus, in the case of single-objective OPT, which was optimized to only enhance 

its harvested voltage, any value (e.g., 500 m) between the upper and lower bounds might be 

selected as the final beam width. However, if any other objectives are simultaneously considered 

in the scenario of multi-objective optimization, a clearer mutual relationship would properly guide 

the optimizable parameters to converge to their optimum solutions. That helps partially 

demonstrate that the single-objective optimization is generally less superior than the multi-

objective optimization.  

It can be also seen that our GA-based optimization finally identified shorter piezoelectric film 

lengths in order to provide larger harvested voltage. This decision is actually in line with a most 

recent study about the impact of the piezoelectric/electrode length on the harvested voltage/power 

[160]. The rationale behind the increase of the harvested voltage is due to the relatively moderate 

diminution in the total generated electrical charge and the significant reduction in the piezoelectric 

film capacitance (i.e., V=Q/Cp). In addition, it should be noted that the performance of the 

optimized harvesters derived in Table 9 might have further increased, if different parameter upper 

and lower bounds were selected. For instance, OPTM would offer even larger harvested voltage 

as discussed in [128] if the upper bound of the proof mass length is chosen to be larger than 

1000m as defined in Table 9 of this study. 

To investigate the accuracy and effectiveness of our proposed analytic models and GA-based 

optimization methodology, by using the micro-fabrication process as described in Section 3.4.1 of 



 

85 

 

Chapter 3, the un-optimized and optimized piezoelectric MEMS harvesters, according to their 

indicated geometric dimensions in Table 9, were fabricated for prototype measurements. The top 

and bottom view SEM images of the prototyped harvesters are depicted in Figs. 33 and 34, 

respectively.  

 

Fig. 33. Top view SEM images of the fabricated micro-harvesters (a) Un-OPT, (b) Un-OPTM, (c) OPT, and (d) OPTM. 
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Fig. 34. Bottom view SEM images of the fabricated micro-harvesters (a) Un-OPT, (b) Un-OPTM, (c) OPT, and (d) 

OPTM. 

 
 

 

To measure the harvested voltages and their resonant frequencies of the prototyped MEMS 

harvesters, the experimental setup as illustrated in Fig. 35 has been used. As shown in this figure, 

the prototyped harvesters can be excited by using a mechanical shaker (4809 manufactured by 
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Tektronix) through a high impedance probe. In order to measure the tip displacement for deriving 

the resonant frequency, we have used a laser displacement sensor (LK-H022 manufactured by 

Keyence), which is mounted on top of the prototyped harvesters.  

 

Fig. 35. Schematic of the utilized experimental setup for measurement of the harvested voltages and operational 

resonant frequencies. 

 

 

To comprehensively evaluate the capability of the proposed optimization methodology, the 

numerical technique carried out by the available commercial FEM simulator (i.e., COMSOL 

Multiphysics (version 5.2a)) and the analytic technique by utilizing the presented analytic models 

in Sections 3.2 and 4.2, besides the experimental measurement, have been deployed to estimate 
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simulation results. The discrepancy was mainly caused by the neglect of two thin layers in the 

structure of the harvesters (i.e., piezoelectric material and electrode) in the analytic computation. 

It is obvious that taking into consideration these two layers, which have been modeled in the FEM 

method, can significantly increase the stiffness of the mechanical resonators, and in turn the 

resonant frequencies as reported by the FEM simulations.  

Table 10. The physical dimensions of the un-optimized and optimized MEMS piezoelectric energy 

harvesters. 
 

Resonant Frequency  

[Hz] 

Harvested Peak Voltage 

[mV] 

     Parameters 

 

 

Device 

Analytic FEM Experimental 

(with electrical 

connections) 

Experimental  

 

(without 

electrical 

connections) 

Analytic FEM Experimental 

Un_OPT 1341.5 1560 1770 1682 51 47 36 

Un_OPTM 515.78 554.69 886 525 439 385 310 

OPT 1306 1524 1704 1589 75 68 52 

OPTM 269.83 320.1 425 298 2208 2050 1900 

 

 

In order to provide electrical connections to the prototyped harvesters, in our experiments we 

manually connected wires to the top and bottom electrodes by utilizing conductive epoxy. Since 

this handling is not precise, it is highly possible that the active beam length was diminished to a 

certain extent. As a result, the measured resonant frequencies of the prototyped harvesters, where 

the electrical wires were connected to the electrodes, are normally higher than the FEM results by 

a factor of ~1.4.  

Consequently, to investigate the impact of the electrical connections on the resonant frequency, 

the connected electrical wires on the surface of the top electrodes in different locations close to the 
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anchor side have been modeled in COMSOL Multiphysics. In this regard, an additional layer with 

the width of 400 m and the uniform thickness of 200 m, whose density is assumed to be uniform, 

was attached to the top electrode. In Fig. 36, it is demonstrated that for all the four prototyped 

energy harvesters, the amount of the resonant frequency is actually increased when the occupied 

area of the beam by the electrical wire is incremented. Moreover, it can be further observed that 

there is a good agreement between the FEM and experimental results when the occupied beam 

length by the electrical wire is within the range of 15% - 20% of the entire beam length.  

 

Fig. 36. Impact of the electrical wire size on the resonant frequency of the MEMS piezoelectric harvesters.  
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Furthermore, to experimentally investigate the effect of the electrical wires on the operational 

resonant frequency of the harvesters, the resonant frequency was also measured without electrical 

connections by using the displacement sensor. In this regard, the operational shaker frequency was 

swept and the tip displacement of the prototyped harvesters was measured. The maximum 

displacement, which was observed at the harvester resonant frequency, could represent the device 

resonant frequency. As per Table 10 and Fig. 36, it is obvious that the measured resonant frequency 

without electrical connections is in a good agreement with the FEM simulations. Thus, we can 

conclude that it is the imperfection of the electrical wire connection that reduces the effective 

length of the beam, which then increases the resonant frequency of each prototyped harvester. 

Moreover, it should be noted that this observed impact of the electrical connection on the resonant 

frequency of the MEMS harvesters can be readily eliminated by considering a contact pad on the 

silicon substrate and expanding the top electrode of the piezoelectric cantilever to that pad when 

designing the layout. 

In Table 10, the comparison among the harvested peak voltage by using the presented analytic 

model, FEM simulations, and experimental measurement demonstrates that these obtained results 

are quite close to one another. Our analysis shows that around 20% difference between the analytic 

model and the measured peak voltage is due to the absence of the electrode layer in the analytic 

computation and the applied rough number for the air damping ratio, which is normally in the 

range of  0.01 - 0.05 [140]. Thus, we can confidently conclude that the presented analytic equations 

for estimation of resonant frequency and harvested voltage can be used as the objective fitness 

functions for the GA-based optimization methodology, which is supposed to indicate the 

optimization trend rather than providing exact values. 
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According to the experimental measurement of the resonant frequencies and harvested peak 

voltages for Un_OPT and OPT energy harvesters, it is clear that the proposed GA-based 

optimization as a single-objective optimization could reduce the resonant frequency from 1682 Hz 

to 1589 Hz and enhance the harvested voltage from 36 mV to 52 mV, which means this resonant 

frequency reduction just happened naturally under no algorithmic control. To enhance the 

functionality of the proposed optimization methodology, we need to execute a multi-objective 

optimization for the unimorph piezoelectric harvesters with an integration of proof mass. In this 

regard, the comparison of the measured resonant frequency and harvested peak voltage between 

Un_OPTM and OPTM harvesters shows that the GA was able to reduce the resonant frequency 

from 886 Hz to 425 Hz and enhance the harvested voltage from 310 mV to 1900 mV, respectively. 

Thus, it can be highlighted that the performance of the optimized harvesters is much better than 

that of the un-optimized ones. Moreover, within the optimized ones, the harvester with the 

integration of proof mass (i.e., OPTM) from the multi-objective optimization can offer a more 

efficient energy harvester with the capability of operation at lower resonant frequency. 

To explore the effects of the proposed GA-based optimization on the improvement of the 

mechanical properties for the piezoelectric MEMS energy harvesters, all the prototyped harvesters 

were modeled in COMSOL Multiphysics and their deflection under uniform acceleration of 1g 

was measured. The mode shapes of the prototyped harvesters during their operation in the first 

mode are illustrated in Fig. 37. Since the prototyped harvesters are clamped-free based, the 

maximum deflection can be only observed at their tips, while in these harvesters the maximum 

actuating stress is obtained in the vicinity of the anchors. Furthermore, the effects of the tip 

deflection on the amount of the harvested voltage will be analyzed in more detail below.  
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Fig. 37. Simulated 3-D beam deflections of (a) Un_OPT, (b) OPT, (c) Un_OPTM and (d) OPTM 

harvesters under uniform 1 g acceleration. 
 

 

 

From the literature, we know that the harvested voltage by a piezoelectric energy harvester 

with clamped-free end boundary is proportional to their tip displacement as expressed below [113]:  

V =
3

8
 (
t

L
)  h31δz  , (40) 

where t is the beam thickness, L is the beam length, ℎ31  is the piezoelectric constant, and 𝛿𝑧 

denotes the tip displacement along the Z-axis. The beam deflections along the Z-axis for all the 

prototyped harvesters, which were measured as per the FEM simulations, are illustrated in Fig. 38. 

One can observe that the proposed optimization methodology in this study is able to successfully 

enlarge the tip displacement especially in the scenario of proof-mass integration. Consequently, in 

the single-objective optimization (i.e., OPT) the tip displacement is clearly enhanced, although the 
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improvement of the harvested energy conversion is not that considerable. In contrast, with the aid 

of the multi-objective optimization (i.e., OPTM), the tip displacement is significantly enhanced 

and in turn the harvested voltage amplitude is extremely higher than the others. Thus, we can 

conclude that a bigger tip displacement is able to provide a larger amplitude of the harvested 

voltage, which can be actually achieved by our proposed GA-based optimization methodology.  

 

Fig. 38. Computed beam deflections by the FEM simulations along the Z-axis for the unimorph 

piezoelectric harvesters: (a) without and (b) with integration of the proof mass. 
 

 

 

Finally, the results of our two optimized MEMS unimorph piezoelectric energy harvesters 

(i.e., OPT and OPTM) are compared with the other reported micro-piezoelectric harvesters in the 
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literature. A metric, which is widely used for harvester performance comparison, is called 

normalized power density (NPD). However, this metric is highly dependent on the load resistance 

and harvester volume. To eliminate such dependence on external components (e.g., load resistance) 

and minimize the effect on the material thickness, which is a constant value most of the time [161], 

we have proposed another metric called Normalized Voltage Density (NVD), which can be 

determined by the harvested voltage over the device occupied area times square of the acceleration 

amplitude. According to the listed data in Table 11, one can observe that the existence of proof 

mass provides higher NVD, and its optimum size plays an important role in offering higher energy 

conversion at a desirable (e.g., lower) resonant frequency. It is worth mentioning that the highest 

NVD belongs to the optimized harvesters by our proposed optimization methodology. Therefore, 

it is concluded that our proposed GA-based optimization methodology is able to explore the 

harvesters with higher NVD for both configurations of the unimorph MEMS piezoelectric 

harvesters (i.e., without and with proof mass), mechanical resonators, and in turn the resonant 

frequencies as reported by the FEM simulations.  

Table 11. Comprehensive performance comparison among the reported harvesters from the literature and the 

proposed ones in this study. 

 
 

Ref.  

Material 

Length×Width 

(mm) 

Proof mass 

Length 

(mm)  

Acceleration 

 

(g) 

Resonant 

Frequency 

(Hz) 

Peak Voltage 

 

(mV) 

NVD 

(
 𝐕

  𝟐𝐠𝟐
) 

Jia (2016) 

[162] 

AlN 2 × 0.5 No proof 

mass 

2 3688 13.94 3.45 

OPT AlN 3.154 × 0.5 No proof 

mass  

2 1589 52* 8.24 

Wen (2015) 

[54] 

PZT  11 × 12.3 8 1 210 3500 25.86 

Shen (2008) 

[155] 

PZT 4.56 × 0.4 1.36 2 461.15 225 30.84 

Andosca 

(2012) [163] 

AlN 6 × 7.8  Not stated 1 57 2310 49.36 

Janphuang 

(2014) [139] 

PZT 11.5 × 10.8 5.75 1 96 6364* 51.23 

OPTM AlN 2.9 × 1 1 2 425 1900* 163.8 
 

*Open circuit voltage 
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4.5. Summary  

In this chapter we proposed a design automation method for reducing resonant frequency and 

enhancing energy conversion of the piezoelectric MEMS energy harvesters. In this regard, the 

analytic model to estimate the resonant frequency and harvested voltage for the unimorph MEMS 

piezoelectric harvesters with and without integration of proof mass was presented. Its accuracy 

with reference to the FEM simulations and the experimental measurement from the prototyped 

harvesters was validated. Thanks to the high accuracy observed, they were utilized as the required 

objective fitness functions of our proposed GA-based optimization. The GA, which is an 

evolutionary computation method, was implemented to optimize the physical aspects of the 

harvester, such as beam length, beam/piezoelectric width, piezoelectric length, and proof mass 

length (if existing). By using a micro-fabrication process, two un-optimized harvesters without 

special considerations and two optimized ones based on the proposed optimization methodology 

were fabricated with their performance measured. It is demonstrated that the optimized harvester 

geometry by GA can generate the peak voltage of 1900 mV at the reduced resonant frequency of 

425 Hz with the highest NVP of 163.8 among the alternatives, which is highly desirable for the 

MEMS devices. 
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Chapter 5    T-Shaped Piezoelectric Structure for 

High-Performance MEMS Vibration Energy 

Harvesting  

5.1. Introduction 

The most commonly used structure for piezoelectric MEMS vibration energy harvesters is the 

cantilever-based one, where the piezoelectric material is deposited on the unimorph or bimorph 

piezoelectric harvesters, respectively [164][165]. To effectively meet the power requirement of 

low-power consumer electronic applications such as wireless sensor nodes, wearable and 

implementable devices, various approaches for enhancing energy conversion efficiency have been 

proposed. For instance, Shen et al. [155] presented a clamped-free micro piezoelectric cantilever 

with an integrated silicon proof mass at the tip of the cantilever for reducing resonant frequency 

and enhancing power density. Later on, Jia and Seshia [128] observed that by increasing the size 

of proof mass the harvested power can be significantly enlarged. Instead of utilizing a rectangular 

or square shaped proof mass, Li et al. [166] proposed a curved L-shaped proof mass. Since this 

form of proof mass does not reduce the effective length of the piezoelectric cantilever, the 

prototype measurement in that study demonstrated its superiority over the conventional ones. 

Although the curved L-shaped proof mass may be considered as a new enhancement method for 

energy conversion efficiency, it cannot be readily applied to the MEMS-scale harvesters due to the 

manufacturing limitation of the micromachining process. 

Another practical method to increase efficiency of the piezoelectric harvesters, which was 

presented by Gu [167], is to limit the cantilever up-and-down oscillations by using a pair of 

stoppers. The reported experimental results in this study clearly demonstrated that utilizing the 

stoppers can increase the output power by 5.3 times in comparison with the conventional 
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piezoelectric harvesters. Nevertheless, although the proposed device can be implemented by the 

regular MEMS technology, it is obvious that such an arrangement makes the fabrication process 

more complex and expensive.   

Another appropriate configuration for piezoelectric MEMS vibration harvesters is to utilize a 

piezoelectric beam with clamped-clamped boundary conditions (i.e., both ends anchored). Thus, 

stress can be obtained from two distinct anchored areas. However, since this configuration would 

increase operational frequency, it is essential to utilize a significantly weighty proof mass in order 

to achieve an efficient energy harvester for being used in the real environment [168]. In turn, using 

a big proof mass would reduce the active area of the cantilever [169], which means the efficiency 

of this configuration is not considerably high at low resonant frequency. On the other hand, a lot 

of research efforts in the literature have been focused on packaging design to enhance the energy 

conversion efficiency for the piezoelectric MEMS harvesters, which themselves often just use the 

conventional straight clamped-free cantilever with integration of proof mass [170]. 

In this chapter, we are motivated to develop a new structure to enhance performance of the 

piezoelectric MEMS vibration harvesters in terms of both energy conversion efficiency and 

operational frequency. In this regard, with an intention of promoting uniform stress distribution 

along the piezoelectric cantilever and providing larger area for placing proof masses, a T-shaped 

cantilever structure with two degrees-of-freedom (DOF) is proposed. The tip part of the cantilever 

is comprised of a “T” segment, which is associated with two symmetric proof masses. Thanks to 

this special configuration, a considerable amount of stress/strain can be obtained from the tip part 

of the structure during the vibration, in addition to the anchor region. An analytic model for 

computing the frequency response of the proposed structure is derived, and the harvester 

performance is studied analytically, numerically and experimentally. By measuring the proposed 
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T-shaped piezoelectric MEMS harvester along with the conventional straight cantilever harvester, 

we have demonstrated that the normalized power density of the T-shaped harvester is about 4.8 

times higher than that of the conventional one.  

It cannot be ignored that the generated voltage by the piezoelectric MEMS harvesters is 

actually an AC signal, whose amplitude may be as low as several hundred millivolts due to the 

physical aspects of the MEMS harvesters. Therefore, AC to DC converters are deemed as an 

indispensable part of the MEMS energy harvesters. The typical diodes (e.g., silicon, Schottky and 

germanium) have voltage drops between 0.2 to 0.7 volts. Therefore, using this type of passive 

components in the conventional bridge rectifier would lead to extremely low-efficient converters, 

and consequently a considerable amount of the harvested voltage would be wasted.  

In the literature, several approaches for rectification of small AC signals have been proposed. 

For instance, Tan et al. [121] proposed an active rectifier, which could rectify low input voltage 

(Vin=1.2V) with 70% efficiency. However, the proposed rectifier includes two operational 

amplifiers, which are powered by 3.3V external power supply. Thus, this requirement makes the 

proposed method less appealing for the practical energy harvesters. To eliminate such a bottleneck, 

Wahbah et al. [171] proposed a voltage doubler rectifier, which was able to rectify a minimum 

1.8V AC signal with efficiency of 24%. Obviously this circuit is not suitable for our application 

since most of harvested voltage would be dissipated due to its low efficiency.  

Furthermore, Schlichting et al. [172] proposed a mechanical AC to DC converter, whose low-

loss hybrid rectifier consisted of four reed switches, on or off according to the strength of magnetic 

field. In this way, a permanent magnet was attached to the piezoelectric cantilever tip to provide 

magnetic field, while the periodic movement of the cantilever changed the magnetic field strength 

around each reed switch. Their experiments showed that this proposed mechanical rectifier was 
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able to offer extremely high efficiency, although the input harvested voltage had to exceed 3V. 

Besides that, the required permanent magnet may enlarge the size of the devices such that the 

MEMS harvesters can hardly benefit from this proposed method. In a recent study of [173], the 

efficiency of the rectifier interface circuits for piezoelectric MEMS harvesters has been largely 

improved (up to 80%) with the aid of a pre-charged battery. Nevertheless, such efficiency is only 

obtainable if the amplitude of the harvested voltage is at least 2V, whereas the reported efficiency 

is almost zero for the millivolt-level input.  

It is worth mentiong that, during the past decade, several commercial power management 

products have been introduced to the market [126]. However, the accepted minimum input voltage 

is typically relatively high (around 2V), which can be rarely provided by the general piezoelectric 

MEMS vibration energy harvesters. Hence, in this chapter we are also motivated to propose a new 

circuit structure as a self-supplied power management system. It consists of a MOSFET-based 

rectifier and a DC-DC booster controlled by a microcontroller. All the utilized components are 

powered by the rectified DC voltage. This self-powered feature makes our proposed power 

management system highly suitable for the piezoelectric MEMS vibration energy harvesters.  

The contributions from this chapter are highlighted below: 

 We propose a new T-shaped piezoelectric harvester with higher power density at lower 

resonant frequency in comparison with the conventional piezoelectric harvesters;  

 The proposed T-shaped micro cantilever is mathematically modeled for analytically 

expressing its frequency response; 

 By using micro-fabrication process, we have prototyped the device and demonstrated its 

manufacturability as well as high performance; 
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 We introduce a self-supplied power management system, which can generally operate 

with small harvested AC voltages. 

The major work in this chapter has been formally documented in one journal manuscript, two 

conference papers, and one under-review patent application (as listed in the Appendix [Journal-

5][Conferenc-3][ Conferenc-4][Patent-2]). 

5.2. Analytic Modeling of T-Shaped Piezoelectric 

Structure 

3-D structural diagram of the proposed T-shaped piezoelectric MEMS vibration energy 

harvester is depicted in Fig. 39. As shown in this figure, the harvester is comprised of two segments, 

i.e., body and tip parts. In the body part, similar to the conventional straight-cantilever piezoelectric 

harvesters, one side of the beam (or called cantilever, both of which are exchangeable throughout 

this chapter) is anchored. However, the other side, which is called the tip part in this chapter, can 

freely oscillate. It is expanded by integrating another cantilever, while two proof masses are placed 

at both ends of this second cantilever. Consequently, this structure can be viewed as a unimorph 

T-shaped piezoelectric cantilever for MEMS vibration energy harvesters. Such a structure provides 

the capability of oscillating in the bending and torsional modes, due to its two DOF. In the 

following, an analytic model for estimating bending and torsional mode frequencies of the T-

shaped structure will be discussed. 
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Fig. 39. Structure diagram of the T-shaped unimorph piezoelectric cantilever. 

5.2.1. Resonant Frequency of Bending Mode 

The resonant frequency of the bending mode shape for the T-shaped structure as illustrated in 

Fig. 40 (a) can be calculated by (41) [174]: 

fB =
1

2π
√
KB
meff

 , (41) 

where 𝑚eff is the effective mass of the cantilever and 𝐾𝐵is the bending stiffness. The bending 

deflection of the conventional cantilever is related to radius of curvature, which is expressed by 

[143]: 

 

1

ρ
=
d2z

dx2
=
−F

YI
(x − L) , (42) 
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where 𝜌 is the radius of curvature, 𝑧 is the deflection along the Z-axis, F is the external excitation 

force, Y is the Young’s modulus of the beam, I is the moment of inertia, x denotes the actuating 

force point on the X-axis, and L is the total length of the beam.  

As demonstrated in Fig. 39, our proposed T-shaped cantilever comprises two segments: the 

first segment can be considered between 0 ≤ 𝑥 ≤𝐿𝑏 named as the body part, while the second 

segment is between 𝐿𝑏 < 𝑥 ≤ (𝐿𝑏+𝐿𝑡) named as the tip part. Thus, (42) can be rewritten as (43) for 

the T-shaped structure: 

d2z

dx2
=

{
 
 

 
 d

2zb
dx2

=
−F

YIb
(x − (Lb + Lt))        If  x ≤ Lb

d2zt
dx2

=
−F

YIt
(x − (Lb + Lt))         If  x ≥ Lb,

 (43) 

where 𝐿𝑏 is the length of the body segment and 𝐿𝑡 is the length of the tip segments. 𝐼𝑏 and 𝐼𝑡 are 

the moments of inertia of the body and tip segments, respectively, which can be computed by: 

Ib =
wbh

3

12
, 

 It =
wth

3

12
+ 2 [

wmhm
3

12
+ [hmwm × (

hm
2
+
h

2
)
2

]], 

(44) 

where 𝑤𝑏 , 𝑤𝑡  and 𝑤𝑚  are the widths of the body segment, tip segment and proof masses, 

respectively. And h and ℎ𝑚 denote the thicknesses of the cantilever and proof masses, respectively. 

The double integral of (43) gives the deflection along the Z-axis as follows: 

z(x) =

{
 
 

 
 zb =

−F

YIb
(
x3

6
− (Lb + Lt)

x2

2
+ Ax + B)      If  x ≤ Lb

zt =
−F

YIb
(
x3

6
− (Lb + Lt)

x2

2
+ Cx + D)        If  x ≥ Lb,

 (45) 
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where A, B, C and D are the integral constants, whose values can be calculated with respect to the 

clamped-free beam boundary conditions, thus: 

A = B = 0, 

C = −
Lb (Lb + 2 Lt)

2 h3wb
. (h3 wt − h3wb + 8 hm

3 wm + 12 h hm
2 wm

+ 6 h2 hmwm), 

D =
Lb
2  (Lb + 3 Lt)

6 h3 wb
. (h3wt − h3wb + 8 hm

3swm + 12 h hm
2 wm

+ 6 h2 hm wm). 

(46) 

By substituting Equations (44) and (46) into (45), the deflection of the T-shaped cantilever 

along the Z-axis at the farthest point away from the anchor (i.e., x=𝐿𝑏 + 𝐿𝑡) can be expressed by: 

z(x=Lb+Lt) =  F

× (
(Lb + Lt)

3  

3
−
Lb
2 (Lb + 3Lt) ∙ β

6 h3wb

+
Lb(Lb + 2Lt)(Lb + Lt) ∙ β

2 h3wb
) × (Y(

h3wt

12
+
hm
3  wm

6

+ 2 hm wm [
h

2
+
hm
2
]
2

))

−1

, 

β = h3 wt − h3wb + 8 hm
3 wm + 12 h hm

2 wm + 6 h2 hmwm. 
 

(47) 

In order to find the stiffness of the T-shaped cantilever, the general equation for stiffness, 

𝐾𝐵 = 𝐹/ z(x=Lb+Lt), can be used. Therefore, the bending stiffness of the T-shaped cantilever is 

equal to: 
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KB = Y(
h3wt

12
+
hm
3  wm

6
+ 2 hm wm [

h

2
+
hm
2
]
2

)

× (
(Lb + Lt)

3  

3
−
Lb
2 (Lb + 3Lt). β

6 h3wb

+
Lb(Lb + 2Lt)(Lb + Lt). β

2 h3wb
)

−1

. 

(48) 

Since significant masses exist at the tip part, the effective mass can be estimated by [159]: 

meff =
33

140
mb +mt. (49) 

where mb and mt denote the masses of the body and tip segments, respectively. Consequently, by 

applying (48) and (49) into (41), the resonant frequency of our proposed T-shaped structure in the 

bending mode can be obtained. 

5.2.2. Resonant Frequency of Torsional Mode 

The torsional mode shape of the T-shaped structure is depicted in Fig. 40 (b), and its amount 

can be computed by  (50) [174]: 

fT =
1

2π
√
KT
IP
, (50) 

where 𝐾𝑇 is the torsional stiffness of the cantilever, and 𝐼𝑃 is the polar mass moment of inertia for 

the cantilever. As per the theory of torsion, the torsional stiffness is related to the angle of twist 

(∅), which is given by (51) for the single rectangular cross-section cantilever: 

∅ =
T. L

G. J
, (51) 
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where T is the excitation torque, G is the shear modulus of the cantilever, L is the length of the 

cantilever, and J represents the torsional constant of the rectangular cross-section. With an 

assumption of constant torque through both body and tip segments, the total angle of twist for our 

proposed T-shaped structure can be estimated by (52), 

∅T =
T 

G 
(
Lb
Jb
+
Lt
Jt
), (52) 

where 𝐽𝑏 and 𝐽𝑡 are the torsional constants of the body and tip segments, respectively, which are 

given by: 

Jb = Cbwbh
3, 

Jt = Ct wth
3, 

Cb =
1

3
(1 − 0.63

h

wb
), 

Ct =
1

3
(1 − 0.63

h

wt
). 

(53) 

Thus, based on the general definition of the stiffness, the required torsional stiffness for (50) can 

be expressed by (54): 

KT = G 
Jb Jt

LbJt + LtJb
, (54) 

Eventually by considering both body and tip segments, the total polar mass moment of inertia 

for the T-shaped structure, which is computed by (55), can be also used in (50): 

Ip =
Mb

12
(Lb

2 +wb
2) +

Mt

12
(Lt

2 +wt
2). (55) 

In the following sections, we will show that the presented analytic models above can accurately 

estimate the resonant frequencies of the bending and torsional mode shapes for the micro T-shaped 

structure. 



 

106 

 

 

Fig. 40. Mode shapes of the T-shaped structure: (a) bending mode and (b) torsional mode. 

 

5.3. Self-Supplied Power Management System 

The structure of our proposed self-supplied power management system (SPMS) is illustrated 

in Fig. 41. It is comprised of four major functional blocks: rectifier, DC-DC converter, load limiter, 

and logic controller. In the following we will describe the construction of each functional block in 

detail. 

(a)

(b)
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Fig. 41. Schematic of the proposed SPMS. 

 

5.3.1. Rectifier 

Since actuating stress on the piezoelectric vibration energy harvesters alternatively occurs, the 

generated voltage is an AC signal, which is infeasible to be directly stored. In order to convert the 

harvested AC voltage to a DC one, a MOSFET full-wave bridge rectifier is utilized as depicted 

within the leftmost dash-box of Fig. 41. In this way, two pairs of N-channel and P-channel 

MOSFETs in the fully cross-coupled structure is employed. In the positive cycle of the harvested 

voltage, the first pair of transistors (e.g., M1 and M4) turns on and the second pair (e.g., M2 and 

M3) gets off. Similarly, in the negative cycle the second pair turns on and the first pair gets off. 

Finally, the rectified voltage is able to be stored in a super capacitor (i.e., Cstartup). 

5.3.2. DC-DC Converter 

The amplitude of the harvested voltage from the piezoelectric MEMS harvesters is normally 

very limited (e.g., several hundred millivolts). To increase the level of the harvested voltage to a 
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usable amount, a boosting converter, which is known as a DC-DC converter, has to be used. Our 

utilized DC-DC converter, as shown in the middle dash-box of Fig. 41, consists of one energy 

storage element at the input (i.e., inductor) and another one at the output (i.e., capacitor). In 

addition, an N-channel MOSFET operating as a switch, whose operational frequency is 

proportional to the generated clock signal by the microcontroller, is used to periodically deliver 

the stored energy from the inductor towards the output capacitor. 

5.3.3. Load Limiter 

To keep the output voltage at a certain level, we need to employ a sub-circuit for output voltage 

level control. In this regard, a feedback loop circuit would unnecessarily increase the power 

consumption of the SPMS. Instead we have utilized a voltage detector (i.e., #2) with the detecting 

voltage of 3.3V plus an N-channel JFET with the threshold voltage of 3.4V at the load side. Thus, 

once the boosted voltage of the output capacitor (i.e., Cout) reaches its specified level (i.e., 3.3V), 

the load part will be enabled. However, if the boosted voltage exceeds the JFET threshold voltage 

(i.e., 3.4V), the transistor will turn off. In other words, the level of the output voltage can be easily 

limited to the threshold voltage level of the JFET.  

5.3.4. Logic Controller 

Since the amount of the generated voltage by the piezoelectric vibration energy harvesters is 

a function of time, it is demanded to boost the stored voltage when its level reaches a sufficient 

amount. In this regard, the activity of the DC-DC converter and load limiter is controlled by using 

a voltage detector (i.e., #1). We have utilized a voltage detector with the detecting voltage of 1.5V 

to monitor the level of the stored voltage in the input super capacitor (i.e., Cstartup). The 

functionality of the voltage detector is to make its output equal to its input whenever its input is 
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no less than the pre-defined detecting voltage. Thus, once the level of the accumulated voltage 

reaches this pre-defined detecting value (i.e., 1.5V), the voltage detector enables the 

microcontroller and the rest of the system. The microcontroller, which generates the constant clock 

signal for switching the DC-DC converter through the N-channel MOSFET, is powered by the 

rectified and stored voltage in the super capacitor Cstartup. In the following section, the performance 

of our proposed SPMS will be demonstrated numerically and experimentally. 

5.4. Experimental Results and Discussion 

To experimentally validate the accuracy of the presented analytic models in Section 5.2, our 

proposed T-shaped piezoelectric structure, whose physical aspects are listed in Table 12, was 

fabricated by using the commercial PiezoMUMPs [175] micro-machining process. Its Scanning 

Electron Microscope (SEM) images are displayed in Fig. 42. In addition, to numerically 

investigate the frequency response of our proposed T-shaped piezoelectric structure, COMSOL 

Multiphysics software package was used for Finite Element Modeling (FEM) simulations. In this 

regard, a T-shaped piezoelectric structure, with the same dimensions as the fabricated one, was 

modeled in the 3-D space with isotropic materials for Eigenfrequency Analysis. Consequently, the 

frequency response of the T-shaped structure in the bending and torsional mode shapes was 

analytically, numerically, and experimentally obtained with their values as listed in Table 13. 
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Table 12. Physical aspects of the T-shaped piezoelectric structure for studying its 

performance analytically, numerically and experimentally. 
 

Parameter Description Value 

𝐿𝑏 Length of the beam for the body segment 2100 m 

𝐿𝑡  Length of the beam for the tip segment 500 m 

𝑤𝑏  Width of the beam for the body segment 500 m 

𝑤𝑡  Width of the beam for the tip segment 3100 m 

𝑤𝑚 Width of the proof masses 780 m 

ℎ Thickness of the beam 10 m 

ℎ𝑚 Thickness of the proof masses 400 m 

Y Young’s modulus of the beam   170 GPa 

 

 

 

Fig. 42. SEM images of the fabricated micro T-shaped piezoelectric cantilever for prototype 

measurement, (a) top view and (b) bottom view. 
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Table 13. Estimated frequencies of the T-shaped piezoelectric structure by using 

analytical, numerical, and experimental techniques. 

 

      Technique 

 

 

Frequency 

        

 

Analytical  

 

Numerical 

 

Experimental 

Bending mode 277 271.8 269.1 

Torsional mode 415 401 371 

 

 

As reflected in Table 13, our presented analytic models are able to estimate the resonant 

frequencies of the T-shaped piezoelectric structure in the bending and torsional modes with the 

accuracy of above 90%, with reference to the numerical and experimental techniques. Thus, the 

observed small discrepancy among the analytical, numerical, and experimental results accredits 

the capability of our presented analytic models for estimating the frequency response of the T-

shaped piezoelectric structure. 

In our experiments, the prototyped harvester was testified in the air medium, whose density 

may shift the resonant frequencies of the T-shaped structure. As reflected in Table 13, the 

measured frequency amounts of both bending and torsional modes are less than their estimated 

values by the analytical and experimental techniques. This is because the device is assumed to 

operate in the vacuum medium in our analytical and numerical techniques, which actually fully 

neglects the impact from air density. It is worth mentioning that the resonant frequencies of the 

micro-cantilevers are highly sensitive to the operational environment especially at their higher 

modes [176]. Consequently, larger frequency shift in our T-shaped piezoelectric structure, due to 

air density, can be observed for the higher mode resonant frequencies (e.g., torsional mode).  
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One can further conclude that our proposed T-shaped structure has two DOF, through which 

the bending and torsional modes can be observed relatively in the vicinity frequencies of each 

other. The frequency spectra of the T-shaped MEMS piezoelectric structure, which were acquired 

by the numerical FEM simulation and the experimental prototype measurement, are illustrated Fig. 

43. 

 

Fig. 43. Numerical and experimental frequency spectra of the T-shaped piezoelectric MEMS harvester. 

The amplitude of the device deflection in the torsional mode is much less than its counterpart 

in the bending mode. As shown in Fig. 43, a large amount of oscillation amplitude along the Z-

axis for the T-shaped piezoelectric structure is attainable when the harvester operates in its bending 

mode. On the other hand, since the electrodes in our energy harvester are arranged in the Z-axis 

capacitor style, the energy harvesting is mainly functional in the 3-1 mode. Consequently, 

harnessing a considerably large amount of energy is expected to take place during the device 

oscillation in its bending mode. In the following the performance of our proposed T-shaped 

structure in the bending mode will be studied in more detail. 
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The stress distribution across the T-shaped piezoelectric structure, which operates in the 

bending mode, is graphically demonstrated in Fig. 44 (a). For the comparison purpose, the stress 

distribution for a straight cantilever with a proof mass placed at the end but lacking the T-segment 

is computed and depicted in Fig. 44 (b). 

 

Fig. 44. Von Mises stress distribution on the cantilever surface when the device oscillates in the 

bending mode for (a) our proposed T-shaped structure and (b) the conventional straight cantilever. 
 

 

According to Fig. 44, uniform stress distribution across the cantilever can be achieved if the 

tip region is expanded by the T-segment. Furthermore, it can be seen that the stress at the tip region 

in the conventional straight cantilever is almost zero. In contrast, in the T-shaped structure a 

considerably large amount of stress can be also observed at the tip region besides the anchor region. 

It is worth noting that, since the proof masses of our proposed T-shaped structure are located at 

the T-segment, the effective length of the cantilever in the body segment would not be reduced 

even though the size of the proof masses is increased. That is to say, a larger size of the proof 

masses in our proposed T-shaped structure is clearly feasible. This feature would make our 

proposed device capable of oscillating at lower resonant frequencies with higher bending 

amplitude in comparison with the conventional straight cantilevers. 

(a) (b) 0

Max
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To demonstrate superiority of the T-shaped piezoelectric structure in absorbing strain, 

volumetric strain along the piezoelectric film for the T-shaped structure and conventional straight 

cantilever estimated by FEM simulations is presented in Fig. 45. The maximum strain 

concentrations for the T-shaped and conventional straight cantilevers are all attributed to the 

regions very close to the anchor locations with the magnitude of 4.4×10-4 and 1.14×10-4, 

respectively. The strain at the furthest point away from the anchor location, which is known as the 

tip region, is close to zero for the conventional straight cantilever, whereas this amount is quite 

high for the T-shaped structure. Therefore, it can be concluded that the active beam area (i.e., the 

area having the capability of harnessing strain/stress) of the T-shaped piezoelectric structure is 

much larger than that of the convention straight cantilever. Furthermore, since the sign of strain 

along the beam length remains constant, a single electrode is good enough for harnessing the 

energy from the surface of the piezoelectric material besides the other ground electrode. This 

would definitely reduce the complexity of the associated electrode routing and power management 

system. 
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Fig. 45. Absorbed mechanical strain along the harvester beam length for the T-shaped 

structure and conventional straight piezoelectric cantilever. 

 

 

According to the IEEE standard on piezoelectricity, if the electrodes are arranged in the 

capacitor configuration, the harvested open-circuit voltage by the piezoelectric material, which is 

proportional to the applied strain, can be expressed by [138]: 

Vo.c = g31tpYpεp, (56) 

where 𝑔31 is the piezoelectric constant, tp is the piezoelectric film thickness, 𝑌𝑝 is the piezoelectric 

material Young’s modulus, and 𝜀𝑝 denotes the absorbed mechanical stain by the piezoelectric film. 

By integrating the strain distribution along the beam length (i.e., 𝜀𝑝 = ∫ 𝜀𝑝(𝑥)𝑑𝑥
𝐿𝑏+𝐿𝑡

0
), the 

amplitude of strain can be obtained. In this regard, the mechanical strains as per Fig. 45 are 0.1256 

and 0.0256 for the T-shaped and conventional straight cantilevers, respectively. Obviously, the 

capability of absorbing strain in the conventional straight-cantilever piezoelectric MEMS vibration 

energy harvester can be increased by a factor of 4.9 if the tip region is expanded by our proposed 

T-segment structure. 
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To demonstrate the direct effect of the absorbed mechanical strain on the amount of the 

harvested voltage, Fig. 46 illustrates the generated voltage by the T-shaped structure and the 

conventional straight cantilever. It can be seen that the amplitude of the generated voltage by the 

T-shaped piezoelectric structure is 2.33V, while the amount is only 0.49V for the conventional 

one. That is to say, the harvested voltage of the T-shaped piezoelectric harvester is larger than that 

of the conventional one by 4.75 times. This comparison clearly confirms the direct relationship 

between the harvested voltage and absorbed mechanical strain. Moreover, the T-shaped structure 

has a much lower resonant frequency in comparison with the conventional straight cantilever. Thus, 

we can conclude that the T-segment structure has a considerable contribution to the efficiency 

enhancement and resonant frequency reduction of the piezoelectric MEMS energy harvesters. 

 

Fig. 46. Simulated generated voltage by the T-shaped structure and conventional straight 

cantilever, when they are excited by sinusoidal acceleration with the amplitude of 0.5g at their 

resonant frequencies.  

 

 

To experimentally verify the performance of our T-shaped piezoelectric structure in terms of 

both energy conversion efficiency and operational frequency, we compare it with an optimized 

conventional straight-cantilever piezoelectric MEMS harvester. The associated information 

regarding the utilized optimization methodology for performance enhancement of this fabricated 

comparison harvester can be found in Chapter 4 [177]. The SEM images of such a conventional 
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straight-cantilever piezoelectric MEMS harvester with its optimized aspects are presented in Fig. 

47. Its capability of harnessing energy was testified and compared with that of the prototyped T-

shaped structure as illustrated in Fig. 42. 

 

Fig. 47. SEM images of the fabricated conventional straight-cantilever harvester for 

prototype measurement: (a) top and (b) bottom views, respectively. 

 

 

At first, the generated open-circuit voltages by both harvesters (i.e., the T-shaped and 

conventional ones) were measured. Both harvesters were excited by a mechanical shaker at their 

first mode-shape resonant frequencies (i.e., 269.1 Hz and 425 Hz for the T-shaped and 

conventional harvesters, respectively). The generated voltage by both piezoelectric MEMS 

harvesters were measured through high impedance probes of an oscilloscope. Fig. 48 (a) illustrates 

the harvested open-circuit voltages by the T-shaped and conventional piezoelectric harvesters as a 

function of acceleration. As expected from our prior numerical study, the amplitude of the 

harvested voltage by the proposed T-shaped harvester is significantly higher than that of the 

conventional harvester with straight-cantilever plus proof mass by over 2 times. More important, 

this feature is not dependent on the amplitude of the acceleration input. It is also obtainable for a 

large amplitude of acceleration (e.g., 10 m/s2). 

Fig. 48 (b) shows the harvested power by the prototyped T-shaped and conventional 
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piezoelectric harvesters. The measurement was conducted under optimal load resistances, which 

were 549 KΩ and 464 KΩ for the T-shaped and conventional piezoelectric harvesters, respectively. 

Similar to the harvested open-circuit voltages, the proposed T-shaped piezoelectric harvester is 

capable of generating larger power than the conventional one. The level of the harvested power is 

proportional to the acceleration amplitude. 

 

Fig. 48. Prototype measurement of (a) harvested voltage and (b) harvested power for the 

proposed T-shaped and conventional piezoelectric harvesters.  

 

 

To provide a fair comparison between the performance of different MEMS energy harvesters, 

the normalized power density (NPD), which is the amount of the harvested power over occupied 

volume of the harvester times square of the acceleration magnitude (μW ∙ cm−3 ∙ m−2 ∙ s4), a 

popular metric for determining the energy harvesting efficiency in the literature [5], is used in this 

work. In this regard, the prototyped T-shaped and conventional piezoelectric harvesters are 

analyzed based on their NPDs. According to the noted dimensions for the prototyped harvesters, 

the occupied silicon volumes of the T-shaped and conventional piezoelectric cantilevers are 
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3.4×10-4 cm3 and 4.34×10-4 cm3, respectively. If both harvesters are excited by the input 

acceleration of 1.5 m/s2, the NPDs of the T-shaped and conventional harvesters are equal to 497 

and 103, respectively. This comparison confirms that the T-shaped piezoelectric harvester is 4.8 

times more efficient than the conventional one in energy harvesting. Moreover, such an energy 

conversion efficiency enhancement is favorably accompanied by the operational frequency 

reduction for our proposed T-shaped piezoelectric MEMS harvester. 

In the following, the performance of our proposed power management system presented in 

Section 5.3 will be studied. We will show that our proposed T-shaped piezoelectric harvester with 

the integration of this SPMS can be considered as a practical solution deployed in the real 

environment for powering up a wide range of low-power electronic devices. 

In our experiments, the functionality of the proposed SPMS was investigated by utilizing the 

discrete components available in the market. The detailed information regarding the components, 

their nominal values, and manufacturers are listed in Table 14. First of all, a numerical study was 

carried out by using LTspice simulator. It was assumed that the piezoelectric MEMS vibration 

harvester can maximally generate 1.5V. So the input voltage (i.e., Vin) of our SPMS was considered 

to be an AC signal with the amplitude of 1.5V. The performance of each particular section within 

the SPMS is depicted in Fig. 49 when the system reached its steady state. From this figure, it can 

be seen that the generated AC signal was rectified, and the boosted voltage by the DC-DC 

converter reached up to 5 volts (i.e., VCout). The converter switching frequency was determined to 

be 30 kHz. The threshold voltage of the N-channel JFET was 3.4V. Based on the JFET behavior, 

the current flowing through the output was limited and the voltage at the load side (i.e., Vout) was 

stabilized around 3.4V. 
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Table 14. Description of the utilized off-the-shelf discrete components for our proposed SPMS in the 

prototype measurement. 

Components Description 

Zero-threshold NMOS 

transistor 
ALD110800 (manufactured by Advanced Linear Devices) 

Zero-threshold PMOS transistor ALD310700 (manufactured by Advanced Linear Devices) 

Super-capacitor (CStarrup) 5000 uF aluminum electrolytic capacitor (manufactured by Illinois capacitor) 

Voltage detector#1 S-1009 series threshold voltage of 1.5V (manufactured by ABLIC U.S.A. Inc.) 

Microcontroller ATTINY 43U-SU (manufactured by Atmel AVR) 

NMOS switch transistor SI5515DC (manufactured by Vishay Siliconix) 

Inductor 100 mH fixed inductor (manufactured by Bourns Inc.) 

Diode Schottky diode (manufactured by ON Semiconductor) 

Capacitor (COut) 100 uF aluminum electrolytic capacitor (manufactured by Illinois capacitor) 

Voltage detector#2 S-1009 series threshold voltage of 3.3V (manufactured by ABLIC U.S.A. Inc.) 

N-JFET  2N5458 (manufactured by Central Semiconductor Corp ) 
 

 

 

Fig. 49. Performance evaluation of the proposed SPMS structure by using LTspice software. 

  

 

 

To demonstrate the capability of gaining higher rectification efficiency by the MOSFET 

rectifier in comparison with the conventional diode bridge rectifiers, we experimentally rectified 
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the AC input signal with different amplitudes by using our developed zero-threshold MOSFET 

rectifier in addition to the conventional diode bridge one. The prototype measurements with their 

rectification efficiencies for both rectifiers are illustrated in Fig. 50. As shown in this figure, the 

amount of voltage drop in the rectified output signal for the zero-threshold MOSFET rectifier is 

considerably smaller than that of the diode-based one. Once the amplitude of the input AC signal 

is relatively small (i.e., 700 mV), a large portion of the harvested energy is dissipated by the diodes 

(i.e., rectification efficiency of only 65%). In contrast, with the same input AC signal, our proposed 

zero-threshold MOSFET rectifier provides much higher rectification efficiency (i.e., 95%). Since 

the amplitude of the generated voltage by the MEMS harvesters is typically relatively small, our 

proposed zero-threshold MOSFET rectifier has promising advantages for being used as the AC-

DC converter for the general MEMS vibration harvesters. 

 

Fig. 50. Prototype measurement of the rectified voltage by the zero-threshold MOSFET (red) and 

conventional diode bridge (blue) rectifiers with their computed rectification efficiencies under different 

input voltages. 

Rectified by MOSFETs

Rectified by diodes 
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The overall performance of the proposed SPMS from our prototype measurement is 

demonstrated in Fig. 51. First of all, the input AC signal (i.e., Vin) with the amplitude of 1.5V is 

effectively converted to a rectified DC voltage (i.e., Vrec) by the zero-threshold MOSFET rectifier. 

Once the level of the accumulated voltage in the super capacitor reaches 1.5V, which is identical 

to the microcontroller power supply voltage and the detecting voltage of Voltage-Detector#1, the 

microcontroller becomes active to generate clock signal for the subsequent DC-DC converter. As 

shown in Fig. 51, the clock signal commences at 5ms, while the booster is activated to increase 

the rectified voltage (i.e., VCout) up to 4.7V at 50ms. When the boosted voltage reaches 3.3V at 

10ms, the Voltage-Detector#2 at the load limiter part is enabled. Thereafter, the voltage can be 

delivered to the load (i.e., Vout). It is worth pointing out that after 10ms the amplitude of the 

delivered voltage to the load would be maintained at 3.4V, while the boosted voltage keeps 

increasing up to 4.7V. 

 

Fig. 51. Performance demonstration of the proposed SPMS structure from our prototype 

measurement. 
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The comparison between the illustrated results in Figs. 49 and 51 shows a good agreement 

between our obtained results from the numerical simulation and experimental measurement. In 

addition, since our proposed circuit as the power management system of the piezoelectric MEMS 

harvesters does not require any external power supplies, the entire system can just operate by the 

harvested AC power. Without using any active feedback, our proposed SPMS is able to increase 

the level of the input voltage to be delivered to the load side reliably. 

5.5. Summary  

In this chapter a new T-shaped piezoelectric MEMS harvester featuring higher power density 

and lower resonant frequency was proposed. We demonstrated that a large amount of stress/strain 

can be obtained not only from the anchor region just as the conventional straight-cantilever 

harvesters, but also from the tip part of the T-shaped piezoelectric structure. We presented analytic 

models for estimating frequency response and validated their accuracy numerically and 

experimentally. The contributions of the T-segment structure in enhancing the energy conversion 

efficiency (by over 4.8 times) and reducing the operational frequency (by 36%) in the prototype 

measurement were discussed. Furthermore, we proposed a new circuit structure as the 

indispensable self-supplied power management system for general MEMS energy harvesters with 

its functionality numerically and experimentally validated. 
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Chapter 6    Nonlinear Multi-Mode Wideband 

Piezoelectric MEMS Vibration Energy Harvester 

6.1. Introduction 

Ordinarily, piezoelectric MEMS energy harvesters comprise a cantilever and a proof mass at 

the tip location. This type of harvesters, which operate on a single-degree-of-freedom (SDOF), can 

be modeled by using a spring-mass system [178]. Although such a simple mechanical structure 

makes the fabrication process easier, it has a very narrow operational bandwidth [179]. 

Consequently, any variation in the ambient vibration frequency, which may occur in the real 

environment, would dramatically reduce the harvesting efficiency. During the past decade, to 

address the narrow operational bandwidth of the SDOF harvesters, several approaches have been 

proposed. 

A feasible solution to enlarging the operational bandwidth of the electromagnetic- [102] and 

piezoelectric-based [180] energy harvesters is to utilize multiple cantilevers/diaphragms, which 

have different operational frequencies, to be arranged as an array [181]. Therefore, at each 

particular frequency at least one cantilever/diaphragm is capable of generating electrical voltage. 

Since such a method requires a large silicon area, the overall harvester power density is relatively 

low. Accordingly, there is a demand for the MEMS energy harvesters to be able to operate in a 

wide range of frequency with a considerable amount of power efficiency/density.  

Another approach to broaden the operational bandwidth of piezoelectric MEMS energy 

harvesters is to utilize the mechanical stopper to limit space of the harvester oscillation [182]. A 

big silicon proof mass for reducing the resonant frequency along with several silicon cantilevers 

were integrated together with piezoelectric thin film (PZT). The mechanical collision between the 
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proof mass and harvester stopper provided nonlinear behavior. The reported experimental results 

in this study demonstrated that the proposed configuration could widen the operational bandwidth 

up to 17 Hz if the magnitude of excitation was high enough (around 1g). However, any decrease 

in the acceleration magnitude could dramatically reduce the operational bandwidth, that is, the 

effectiveness of the proposed method was unfortunately dependent on the input while in the real 

environment both magnitude and frequency of vibration are time variant.   

Zhou et al. [183] proposed a piezoelectric harvester, which contained double beams and two 

tip masses attached together in a series configuration. The piezoelectric film for energy harvesting 

was placed on the surface of the second beam, while the first beam functioned as a dynamic 

magnifier. Although the proposed configuration in this study could enlarge the operational 

bandwidth based on the multi-mode phenomenon, it can hardly be considered as a practical method 

for MEMS piezoelectric harvesters due to its prerequisite of utilizing different thicknesses or 

materials for each particular segment [184].  

The combination of electromagnetic force and piezoelectric effect, which can turn out to be 

bistable harvesters [185], was utilized by Tang et al. [186] for broadening operational bandwidth 

of the piezoelectric vibratory energy harvester. In this regard, the proposed harvester comprised 

two stages, while two permanent magnets were mounted at each stage. The experimental results 

showed that the widest bandwidth with this configuration was 20 Hz if the harvester was excited 

with 1g acceleration. However, the harvester bandwidth was strongly dependent on the magnitude 

of acceleration and, more important, utilizing permanent magnets makes the device fabrication 

somehow impractical for the general micromachining process.   

A wideband piezoelectric harvester with a capability of being fabricated by MEMS process 

was introduced by Rezaeisaray et al. [187]. The proposed energy harvester comprised a big silicon 
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proof mass at the centre and two beams at the corners for suspending the proof mass. In this design, 

the piezoelectric films were deposited on the surface of the beams. Since the proposed 

configuration required a big proof mass and had narrow area for piezoelectric material deposition, 

the power density of the device was apparently quite low due to the size difference between its 

active (i.e., piezoelectric film) and passive (i.e., proof mass) regions. 

To overcome the aforementioned issues, in this chapter we are motivated to propose a new 

wideband piezoelectric MEMS vibratory energy harvester, whose operational bandwidth can 

remain broad even though the magnitude of input acceleration is extremely small. Moreover, it 

can convert the ambient vibration to electricity more effectively and efficiently, while the entire 

device can be fabricated by using a regular micromachining process. Therefore, a doubly clamped 

unimorph piezoelectric cantilever associated with three proof masses at distinct locations is 

designed. Such a geometry features multiple-degrees-of-freedom (MDOF), which means that the 

harvesters with this geometry can harvest energy at multiple vibration modes (i.e., with multiple 

resonant frequencies). Since the proposed harvester has an unique geometry with nonlinear 

behavior, the conventional optimization methodologies for enhancing performance of MEMS 

piezoelectric harvesters, such as variant-mesh analysis [130] and correlation matrix [131], are 

useless due to the stringent requirement of acute human observation. To obtain the optimal 

performance of the harvester, we propose an automated design and optimization methodology 

based on GA, which can be performed with minimum human efforts.  

The contributions of this chapter can be summarized as follows: 

 We propose a new multi-mode wideband piezoelectric MEMS energy harvester with the 

capability of MDOF vibration, which ensures the device can generate voltage at multiple 

vibration modes. 
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 To optimize the performance of the proposed harvester, we introduce an automated design 

and optimization methodology based on GA.  

 To demonstrate the manufacturability of the proposed harvester with the regular MEMS 

fabrication process, the optimized piezoelectric MEMS energy harvester was fabricated 

and testified. 

 Our analysis and prototype measurement show that the uniform proof mass distribution in 

the proposed MEMS harvester geometry offers much higher power density in comparison 

with the conventional piezoelectric harvesters. 

The major work in this chapter has been formally documented in one journal manuscript, one 

conference paper, and one filed patent application (as listed in the Appendix [Journal-

4][Conference-2][Patent-1]). 

6.2. Design and Modeling  

The schematic of the proposed multi-mode piezoelectric MEMS vibration energy harvester 

with the capability of MDOF vibration is depicted in Fig. 52. It has special geometry anchored on 

two opposite sides, which can be viewed as a doubly clamped set of cantilevers or beams (two 

interchangeable terms throughout this chapter). As shown in Fig. 52, the proposed energy harvester 

is comprised of three proof masses, including a main central mass (i.e., Massc) and two lateral 

masses (i.e., Massl1 and Massl2) at various locations such that this configuration offers a uniform 

mass distribution in the entire MEMS harvester geometry. These three proof masses are suspended 

by the serpentine cantilevers, which have a deposition of piezoelectric material on their surface. 

With this geometry, the serpentine cantilevers are considered as the active area of the energy 

harvester. This arrangement associated with the proof masses at different locations makes the 
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proposed energy harvester capable of harnessing the vibration energy effectively at multi-mode 

frequencies.  

 

Fig. 52. Schematic of the proposed wideband multimode piezoelectric MEMS energy harvester. 
 

 

To graphically demonstrate the performance of the energy harvester at different resonant 

frequencies, the COMSOL Multiphysics (Version 5.2a) software package was used. In this study, 

the piezoelectric MEMS energy harvester was modeled by using isotropic materials for both beams 

and piezoelectric film. By using Eigenfrequency Study in the Finite Element Modeling (FEM), the 

simulation results for the first three modes are shown in Fig. 53. To clearly exhibit the oscillation 

of the simulated energy harvester, each mode was recorded for one cycle in 5 continuous frames 

showing the vibration in the time domain. Frame-1 and Frame-5 show the maximum of the possible 

displacements in one cycle, while Frame-3 displays the neutral position. 
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Fig. 53. FEM simulations of the first three mode shapes for the proposed wideband piezoelectric MEMS vibration energy harvester. 

 

As demonstrated in Fig. 53, in the first mode the central proof mass (i.e., Massc) has no motion, 

while the two lateral proof masses (i.e. Massl1 and Massl2) maximally oscillate in an opposite 

phase. In the second mode, the central proof mass is not fixed any more. Similar to the previous 

mode, the lateral proof masses have maximum upward and downward oscillations, while all these 

three proof masses vibrate in the same phase. The maximum oscillation in the third mode occurs 

to the central proof mass. In this mode, the two lateral proof masses at the corners have oscillations 

in the same phase with reference to each other, whereas their oscillation phase is opposite to that 

of the central proof mass. 

The preliminary FEM simulations conducted on the geometry of the proposed harvester show 

that our harvester has nonlinear behavior during its operation in the second mode, while in the two 

other modes (i.e., the first and third modes) it behaves as a linear mechanical resonator. In the past, 
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the performance of the linear harvesters has been studied quite well [188]. Hence, the nonlinear 

behavior of our proposed harvester geometry during its operation in the second mode shape will 

be explained here in more detail. To demonstrate the nonlinear behavior of the energy harvester, 

the mechanical stiffness of the proposed structure is analyzed. From the literature, it is shown that 

the load-deflection equation for a nonlinear mechanical resonator can be expressed by [189][190]:  

F(x)load = kLx + kNx
3  (57) 

where 𝑘𝐿  is the linear stiffness and 𝑘𝑁  denotes the cubic (or nonlinear) stiffness. In order to 

identify those two mechanical stiffness coefficients, in the second mode by using FEM simulations, 

different forces were applied to a known node inside the device geometry and the corresponding 

relative deflections were measured. Based on the measurement results as depicted in Fig. 54, we 

used the curve fitting technique to determine the amount of the linear and cubic stiffness 

coefficients as follows: kL=1.17 N/m and kN=4.04e10 N/m3. Consequently, it is expected to observe 

such nonlinear behavior when the device operates in its second mode. In Section 6.4, the effect of 

the specific mode and the nonlinear behavior of the harvester associated with the mechanical and 

electrical properties will be discussed in more detail numerically and experimentally.  
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Fig. 54. FEM simulation results and fitted curve for estimation of linear and nonlinear mechanical 

stiffness coefficients, when the harvester operates in the second mode. 

 

6.3. GA-Based Optimization 

The genetic algorithm (GA), which is known as an evolutionary optimization methodology, 

is a procedure that can be used to optimize constrained and unconstrained complex problems by 

searching through a group of variables. Its capability in escaping from local optima and pinpointing 

the global optimum has made it as an outstanding optimization method [191]. The basic working 

flow of a standard GA is described in Algorithm 1. The optimization methodology commences by 

generating a random population of n individual chromosomes. In this regard, some variables, 

known as genes, are presented in the form of binary, which can randomly join to the fixed-length 

binary strings to create the chromosomes.   

Once n chromosomes are generated, the fitness of each individual chromosome in the entire 

population is evaluated so that its suitability is ranked according to the fitness score. In the 



 

132 

 

selection-phase, two chromosomes that have the highest fitness scores in the population are 

selected. In the crossover-phase that is one of the most important operations in the genetic 

algorithm, a certain part of the chromosomes is exchanged between two individuals. Consequently, 

certain offspring are created. In the newly generated offspring, some of their genes are subject to 

a mutation, which means one bit (i.e., gene) is changed from 1 to 0 or vice versa. 

After the completion of the mutation-phase, by using the newly created offspring, a new 

population is produced. Thereafter, in the replace-phase, the initial population is replaced with the 

newly created one from the accepting-phase for further algorithmic evolution and fitness 

evaluation. We normally call this updated population as new generation in terms of evolution. If a 

termination condition is satisfied for the current population, the algorithm will be stopped and the 

best solution will be reported. Otherwise, the algorithm will be repeated for g times, where g is the 

generation number determined by the users. 

Depending on the number of the objectives in the fitness evaluation, the optimization 

problems can be categorized into single-objective and multi-objective problems. The single-

objective optimization problem can only hold one objective along with multiple constraints, while 

a number of objectives and constraints can be included into the multi-objective problems. Most of 

the real-world search and optimization puzzles actually fall into the multi-objective optimization 

problems that need to strive for optimality to multiple ends with certain trade-offs anyway. From 

the literature, it is known that the GA-based optimization methodology features solid potential to 

be used for both single-objective and multi-objective problems [192]. 
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In this chapter, the multi-objective GA has been utilized to optimize frequency operation of 

the proposed piezoelectric MEMS harvester. In this way, the lateral proof masses located at the 

corners, i.e., Massl1 and Massl2, and the anchor locations have been considered as optimizable 

parameters. The GA fitness functions, for the multi-objective optimization, are defined as:  

Minimize: mean(f1, f2, f3),   

Minimize: {
sum of the intervals between

 (f2, f1)and (f3, f2) 
},  

Subject to:  design rules of the optimizable parameters, 

(58) 

Algorithm 1: The working flow of the GA. 

 

1: Start: Generate a random population with a size of n chromosomes  

2: Fitness: Evaluate the fitness of each chromosome in the entire 

population 

3: Selection: Select two chromosomes from the population based on 

their fitness  

4: Crossover: Exchange part of the chromosomes according to 

crossover probability for generating offspring  

5: Mutation: Mutate the offspring according to a mutation 

probability   

6: Accepting: Interpolate new offspring in the new population 

7: Replace: Utilize the newly generated population for a further run 

of the algorithm  

8: Test: If termination conditions are satisfied, stop, and report the 

best solution(s) from the current population 

9: Repeat: Go to step 2 for further evolution and evaluation. Repeat 

the algorithm for g times (i.e., generations) 

 



 

134 

 

where 𝑓1, 𝑓2 and 𝑓3 are the resonant frequencies of the first, second, and third modes, respectively. 

Their amounts can be obtained from numerical FEM simulation conducted by COMSOL 

Multiphysics. Therefore, an optimization engine can be built up by linking the GA implemented 

in MATLAB to COMSOL Multiphysics by the LiveLink module [193], as shown in Fig. 55. The 

functionality of the GA-based optimization method aimed for reducing resonant frequencies and 

enhancing bandwidth by selecting a geometry with nonlinear behavior will be illustrated and 

analyzed in the following sections.  

 

Fig. 55. Flow diagram of the utilized MATLAB-COMSOL optimization methodology. 

 
 

By utilizing the GA-based optimization methodology described in this Section, an optimum 

size for the dimensions of various elements in the energy harvester can be determined in 

accordance with the defined fitness functions. In this regard, the anchored beam length 𝐿𝑎 (i.e., 

the distance from the lateral proof masses Massl1 and Massl2 to their corresponding anchors), and 

the length 𝐿𝑚 of Massl1 and Massl2, as shown in Fig. 56, were defined as optimizable parameters. 

The GA-based optimization method then strives to satisfy the defined fitness functions by 

optimizing the values of these two parameters subject to their design rule constraints. During the 

optimization process, the rest of the geometric features in the proposed energy harvester are 

assumed to be un-optimized and constant as listed in Table 15.  
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Fig. 56. Schematic of the proposed multimode piezoelectric MEMS energy harvester with its specified 

physical parameters. 

 

 

Table 15. Sizes of the un-optimized parameters for estimation of the frequency response 

during the GA-based optimization. 

 

Parameters Description Size [m] 

𝐿𝑐 Diameter of the proof mass in the center  1000 

𝐿𝑏1 Length of the first beam  3000 

𝐿𝑏2 Length of the second beam  950 

𝐿𝑏3 Length of third beam  1055 

𝑊𝑏 Beam width 200 

𝑊𝑚 Width of the proof masses at the corners 700 
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6.4. Experimental Results and Discussion 

The effectiveness of the GA-based optimization method is dependent on the size of the search 

space, which can be determined by two user-defined parameters, i.e., population size and 

generation number. To show the effect of these user-defined values on optimization results, the 

GA-based optimization method was executed with two different population sizes, 10 and 20, under 

the same generation number of 20. To demonstrate the capability for enhancing the frequency 

operation of the energy harvester by using the GA-based optimization methodology, we defined 

an un-optimized structure, where the optimizable variables were chosen to be the median values 

as per their allowed ranges. In addition, for the comparison purpose, COMSOL optimization 

module [150] as a widely available commercial optimization tool for optimizing the MEMS 

structures was utilized. The obtained results for the un-optimized and optimized energy harvester 

devices are summarized in Table 16. In this table, the allowed ranges for the optimizable 

parameters, which are defined by their design rule constraints, are listed in the second and third 

columns. The calculated fitness functions for mean frequency and frequency interval sum are 

presented in the 7th and 8th columns, respectively. The calculated mean harvested voltage at the 

operational bandwidth of the device is listed in the 9th column. Moreover, the required runtime to 

conduct the GA- and COMSOL-based optimization is shown in the 11th column. 
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Table 16. Simulated resonant frequencies and calculated fitness functions for the un-optimized and optimized 

wideband piezoelectric MEMS energy harvesters. 

 
 

Parameter Mass 

length  

Lm 

[m] 

Anchor 

location 

La 

 [m] 

1st  

mode 

f1 

[Hz] 

2nd  

mode 

f2 

[Hz] 

3rd  

mode 

f3 

[Hz] 

Mean 

frequency 

 [Hz]  

Frequency 

interval 

sum [Hz] 

Mean 

harvested  

voltage 

[mV] 

Population 

size 

[Number] 

Run 

time 

[min] 

Range [500-

1000] 

[500-

3100] 

        

Un-OPT 750 2050 314 338.82 429.6 360.8 115.6 26.01 - - 

Com-OPT 745 3000 196 218 305 239 109 31.25 - 283 

OPT1 546 2380 284.46 288.41 348.92 307.26 64.46 37.98 10 141 

OPT2 603 2780 227.48 258.58 291.01 259.02 63.53 53.69 20 280 

 

 

As listed in Table 16, the un-optimized harvester, labeled as Un-OPT, has to operate at higher 

frequencies, while the various modes are observed largely separate from one another in the 

frequency domain. The optimized device by the COMSOL optimization module, named as Com-

OPT, can operate in the lower frequencies in comparison with the un-optimized one. However, its 

first three modes are not sufficiently close to one another. In all, the Com-OPT objective fitness 

functions of the mean frequency and the frequency interval sum are reduced by 34% and 5.7%, 

respectively, in comparison to the un-optimized harvester. Moreover, the obtained result by 

executing the GA-based optimization with a population size of 10, labeled as OPT1, shows that 

our proposed optimization methodology can reduce the operational frequencies and frequency 

intervals by a factor of 15% and 44%, respectively, with reference to Un-OPT. The reduction in 

the operational frequency and frequency interval for the optimized harvester with a population size 
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of 20, named as OPT2, can be further improved to 28% and 45%, respectively, compared to Un-

OPT. Thus, it can be seen that increasing the population size of the GA process can improve the 

effectiveness of the optimization method in searching for optimum solutions, since a larger 

population size provides broader search space for the GA to pinpoint optimal values for the due 

parameters. On the other side, by increasing the population size, the required runtime also goes up. 

A comprehensive comparison on the summarized data in Table 16 shows that for the 

optimized device Com-OPT with the COMSOL optimization module, only one objective fitness 

function (i.e., mean frequency) is reduced considerably, whereas its multiple mode frequencies 

located far away from one another make its mean harvested voltage relatively small. As a results, 

it may not be considered as a wideband piezoelectric harvester. In contrast, in our proposed GA 

based optimization, if a proper population size is determined, both objective fitness functions can 

be significantly reduced. This means all the modes are coupled together at the lower frequencies, 

which can help enhance the mean harvested voltage. Therefore, one can observe that OPT2 

achieves the highest mean harvested voltage. In summary, the optimized energy harvester OPT2 

can vibrate at lower frequencies, while its various resonant frequencies in different modes are 

sufficiently close to one another with a considerable amount of mean harvested voltage. 

Consequently, it is considered as a qualified wideband piezoelectric MEMS vibration energy 

harvester, whose performance will be further evaluated numerically and experimentally in the 

following. 

Frequency spectrum obtained by performing FEM simulation on the finally optimized energy 

harvester, i.e., OPT2, is depicted in Fig. 57. To compute the device frequency response, the 

velocity of the three proof masses, (i.e., Massc, Massl1, and Massl2) are measured individually. 

From these simulation results, one can observe that the energy harvester OPT2 has its maximum 
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oscillation at the resonant frequency of the second mode. Furthermore, Fig. 57 clearly shows that 

at the resonant frequency of the first mode, the central proof mass (i.e., Massc) has almost no 

oscillation, while the other two lateral proof masses (i.e., Massl1 and Massl2) are able to vibrate. 

Thus, by considering the oscillation among all the parts, the energy harvester OPT2 can function 

in three modes, where the first, second, and third resonant frequencies are observed at 227.48 Hz, 

258.58 Hz, and 291.01 Hz, respectively.  

 

Fig. 57. Frequency spectrum obtained by performing FEM simulation on the optimized nonlinear multi-

mode piezoelectric MEMS harvester.  
 

 
 

According to the IEEE standard on piezoelectricity [138], if the electrodes are arranged 

according to a capacitor model [137], the harvested open circuit voltage Vop is represented by 

equation (59):  

Vop = g31tpσp, (59) 
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where 𝑔31  is the piezoelectric coefficient, 𝑡𝑝  is piezoelectric material thickness, and 𝜎𝑝  is the 

applied stress on the piezoelectric material. Consequently, the efficiency of these energy harvesters 

is proportional to the capability of their geometries in absorbing mechanical stress. To demonstrate 

the active areas of the energy harvester OPT2 for harnessing mechanical stress, its stress profile at 

each individual mode is shown in Figs. 58(a)-58(c).  

 

Fig. 58. Von-Mises stress distributions on piezoelectric film of the proposed multimode harvester in the: (a) first, (b) second and (c) 

third modes. 

 
 

According to Fig. 58(a), when the energy harvester OPT2 is operating at its resonant frequency 

in the first mode, the maximum actuating stress can be observed in Zone-1. Once the energy 

harvester OPT2 is excited at the resonant frequency in the second mode as shown in Fig. 58(b), a 

considerable amount of stress is observed in Zones 1-2. In addition, a certain amount of applied 

stress is formed in Zone-4 besides Zone-3. In Fig. 58(c), it is demonstrated that if the energy 

harvester OPT2 oscillates at the resonant frequency in its third mode, Zones 3 and 4 can 

considerably absorb the applied stress, while Zones 1 and 2 are also capable of converting the 

absorbed stress to electricity in these regions. This analysis of stress distribution shows that at 
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various resonant frequencies the stress can be harnessed almost all over the entire body of the 

energy harvester. In other words, all segments of the energy harvester are involved in energy 

harvesting, which results in extremely high power density for this device. 

In Figs. 59(a)-(d) strain distributions along the individual beams for each specific mode are 

depicted to illustrate the efficiency of the piezoelectric MEMS energy harvester OPT2. The 

magnitude of strain is considerable only in Zones 1 and 2 when the harvester is excited in its first 

mode, where the active area for accumulation of strain is 43% with average strain magnitude of 

4.3×10-6. In contrast, during the operation in its second and third modes, all the geometric zones 

are functional. That is to say, 60% of the device surface area is attributed to the active area for 

energy harvesting in the second and third modes with an average strain magnitude of 6.5×10-6 and 

4.7×10-6, respectively. Since the majority of the device surface area (i.e., 60%) is active for 

collecting and converting mechanical energy to electricity, it can be seen that the structure of the 

energy harvester OPT2 with our proposed unique geometry and balanced mass distribution has 

high efficiency in generating voltage. Furthermore, as shown in Figs. 59(a)-(d), the proof masses 

cause stiffening phenomenon so that the magnitude of strain on the proof masses is zero. Thus 

from the simulation results, it can also be seen that the peak strains always take place in such 

regions as the anchor locations, corners, and vicinities of the proof masses. Based on a 

comprehensive comparison between Figs. 58(a)-(c) and 59(a)-(d), it can be understood that the 

higher efficiency in energy harvesting occurs in the second and third modes, while the stress/strain 

is distributed along the entire geometry of the proposed energy harvester.  
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Fig. 59. Strain distribution magnitude in the specific zones: (a) Zone 1, (b) Zone 2, (c) Zone 3, and (d) Zone 4. 

 

 

The optimized harvester OPT2 was fabricated by using the micro-fabrication process 

described in Section 3.4.1. The finger-top and SEM images of the prototyped energy harvester are 

depicted in Figs. 60(a)-(b).  
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Fig. 60. The prototyped nonlinear multi-mode piezoelectric MEMS vibration harvester with its (a) finger-top, and (b) 

SEM top view images. 

 
 

The frequency response in terms of deflection and harvested voltage was measured by using 

the following experimental setup. The prototyped energy harvester was excited by using a 

mechanical shaker (Type 4809 manufactured by Brüel & Kjær), whose vibration frequency and 

magnitude were controlled by a function generator (Agilent 3250) and amplified by a high power 

amplifier (manufactured by Brüel & Kjær). The shaker acceleration amplitude was monitored by 

an accelerometer (DXL 3350 manufactured by Analog Devices), which was attached to the shaker 
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platform. Laser displacement sensors (LK-H022 manufactured by Keyence) were mounted on a 

support system on the top of the harvester to measure the deflection of the proof masses along the 

Z-axis over the time when the prototyped energy harvester was excited. The velocity of the proof 

masses can be determined by using a ratio between the measured deflection and the time spent. 

The generated voltage by the prototyped MEMS piezoelectric harvester was measured by using a 

high performance oscilloscope (DSA 7040 manufactured by Tektronix) through a high impedance 

probe.  

Figure 61 shows the experimental measurement of frequency spectrum for the prototyped 

energy harvester. The velocity of each proof mass, i.e., Massc, Massl1 and Massl2, was measured 

by using the laser displacement sensors when sweeping the operational frequency of the shaker in 

the range of 150 Hz-350 Hz. The first three peak velocities, which represent the first three modes 

of the MEMS energy harvester, were observed at 227 Hz, 261.8 Hz and 286 Hz, respectively. The 

vicinity of the resonant frequencies in these three modes confirms that the structure of such a 

piezoelectric MEMS vibration energy harvester described herein has MDOF behavior. The 

maximum deflection was seen in the second mode, while the central proof mass Massc experienced 

little oscillation in the first mode. The velocity magnitude of the central proof mass Massc in the 

third mode is considerably higher than that of the other two lateral proof masses Massl1 and Massl2. 

It is worth noting that this measured performance from the fabricated MEMS harvester (i.e., Fig. 

61) matches the numerical result from the FEM simulation (i.e., Fig. 57) very well. The maximum 

discrepancy between the obtained results by the prototyped measurement and numerical simulation 

belongs to the higher order mode (i.e., the third mode) with an error of less than 2%. Thus, this 

high level of accuracy can help validate the correctness of our applied FEM model in the numerical 

simulations. 
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Fig. 61. Frequency spectrum obtained by performing experimental measurements on the fabricated nonlinear multi-

mode piezoelectric MEMS harvester. 

 
 

Furthermore, according to the illustrated frequency spectrum in Fig. 61, it can be seen that the 

prototyped energy harvester in the second mode is highly nonlinear, due to the jump phenomenon 

behavior [194]. This nonlinear response was investigated under different magnitudes of 

acceleration. In Fig. 62(a), by forward frequency sweeping, the Massc velocity responses in the 

time domain, under acceleration of 0.2 m/s2, 0.5 m/s2, 0.7 m/s2, and 1m/s2, are shown. Moreover, 

to demonstrate its response in the frequency domain, based on the recorded data in the time domain 

their Fast Fourier Transforms (FFTs), which were computed by using MATLAB, are presented in 

Fig. 62(b). Once the prototyped harvester was excited with a quite small acceleration amplitude 

(i.e., 0.2 m/s2), its nonlinearity was observed with a jump phenomenon, due to the geometric 

stiffness hardening, at 257 Hz (black curve). By increasing the acceleration amplitude to 1 m/s2, 

the jump phenomenon shifted to 271 Hz. That is to say, the nonlinear behavior of the proposed 
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energy harvester is available even if the amplitude of excitation is significantly smaller [154]. In 

the second mode when the prototyped energy harvester was under excitation, the vibration 

accelerations of 0.2 m/s2, 0.5 m/s2, 0.7 m/s2 and 1 m/s2 correspond to the bandwidths of 5.3 Hz, 

9.8 Hz, 14 Hz and 16 Hz, respectively.  

 

(a) 

 

(b) 

Fig. 62. Measured velocity of the central proof mass (i.e. Massc) when the energy harvester was excited by forward 

frequency sweeping in the second mode, where the data is shown (a) in the time domain and (b) in the frequency domain 
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The capability of the prototyped energy harvester was further studied by measuring the real 

time generated voltage. Figures 63(a)-(c) illustrate the oscilloscope traces at the resonant frequency 

in each individual mode when the prototyped energy harvester was excited by a sinusoidal 

acceleration with a magnitude of 0.5 m/s2. A comparison between the magnitude of the harvested 

voltages in each mode shows that once the prototyped energy harvester is excited in its second 

mode, the maximum harvested voltage can be obtained with a 119 mV peak voltage. The peak 

harvested voltages are 20 mV and 57 mV in the first and third modes, respectively. While the 

prototyped energy harvester in the third mode has a higher efficiency than its first mode, it can be 

seen that the prototyped piezoelectric MEMS vibration harvester can generate voltage at 

multimode frequencies. Moreover, such a level of harvested voltage clearly confirms our proper 

geometric design in terms of strain/stress distribution inside the energy harvester.  

 

Fig. 63 Measured harvested voltage with acceleration of 0.5 m/s2: (a) in the first (i.e., 227 Hz), (b) 

second (i.e., 261.8 Hz), and (c) third (i.e., 286 Hz) modes, respectively  
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In order to estimate the delivered power to a load by the prototyped piezoelectric MEMS 

energy harvester, the impedance of the harvester, which is known as a source impedance [151], 

was measured by an LCR meter (Model 889B manufactured by BK Precision). It was found that 

for the low frequencies, the source impedance was around 11.65 kΩ. Thus, it is expected that by 

providing an optimal load resistance, whose value is equal to the source impedance of 11.65 kΩ, 

a perfect impedance matching network between the source and load parts can be achieved. In this 

way, it is assumed that the load impedance is purely resistive and the average output power can be 

estimated by:  

Pavg =
Vrms
2

RL
; (60) 

where Vrms is the RMS voltage measured at the output and 𝑅𝐿 denotes the optimum load resistance. 

Under such assumptions, it is determined that when the prototyped MEMS energy harvester is 

excited with a sinusoidal acceleration having magnitude of 0.5 m/s2, it is able to generate 0.02 µW, 

0.61 µW and 0.14 µW in the first, second, and third modes, respectively. 

When comparing harvester efficiency among the different energy harvesters, the normalized 

power density (NPD), which is a ratio between harvested power and volumetric size of the 

harvester per acceleration squared, is widely utilized in the literature [195]. By considering this 

metric, a comparison of the properties (such as NPD and operational frequency) among our 

prototyped energy harvester and various energy harvesters previously reported in the literature was 

conducted as listed in Table 17. According to the summarized data, it is clear that our prototyped 

energy harvester (i.e., the last row in Table 17) is one of the most efficient piezoelectric harvesters 

with a considerably large bandwidth. It is worth noting that the structure of the proposed energy 
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harvester described in this chapter provides sound advantages in terms of energy efficiency in the 

MEMS scale, with a smaller occupied volume of silicon wafer, due to the serpentine structure. 

Table 17. Comparison of the properties among the recently reported wideband MEMS/portable vibration energy 

harvesters. 

Ref. Tech. Volume 

[mm3] 

Substrate Accel. 

[m/s2] 

Freq. Range  

 [Hz] 

Power 

[W] 

NPD 

[W·cm-3· m-2·s4] 

[196] El* 27.1 Si 1.372 520-591 0.083 1.63 

[197] El 187 Si 0.9 148-172 4.95 32.68 

[198] Eg 35 Si 9.8 840-1490 0.0055 0.00163 

[199] Eg 43.35 FR4 10 190-244 0.45 0.0045 

[200] Pi 112 Si 19.6 859.9-924.5 82.24 1.91 

[201] Pi 1419.35 Steel 0.392 4-8 2610 11969.8 

[202] Pi 6500 Si 0.5 387-398 52.9 32.55 

[182] Pi 10 Si 9.8 30-47 0.5 0.52 

[203] Pi 17.5 Si 7.84 12-26 0.87 0.008 

[187] Pi 18 Si 1.96 71.8-188.4 0.136 1.97 

This work Pi 4.1 Si 0.5 227-286 0.61 595.12 

  *El: electrostatic, Eg: electromagnetic, Pi: piezoelectric 

 

6.5. Summary  

In this chapter we presented a structure with the capability of multiple-degrees-of-freedom 

(MDOF) for widening the operational bandwidth of the piezoelectric MEMS vibration energy 

harvesters. The proposed structure has a unique geometry comprising a doubly clamped set of 

piezoelectric cantilevers with a serpentine shape and three proof masses located at different 

positions to provide uniform mass distribution. By using modal analysis and mechanical stiffness 
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computation, it is shown that the harvester is able to operate in the multiple modes with a strong 

nonlinear behavior at the resonant frequency in its second mode. Moreover, we proposed an 

automated optimization method based on genetic algorithm with minimal human effort. The 

optimization result was verified through FEM-based simulations and measurement of the 

prototyped MEMS harvester. It is shown that the performance of the proposed piezoelectric 

MEMS vibration harvester is well superior to that of the recently published portable energy 

harvesters in the literature.  
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Chapter 7     Design and Optimization of Piezoelectric 

MEMS Energy Harvesters Based on Artificial 

Intelligence and Fatigue Lifetime Analysis  

 

7.1. Introduction 

The silicon-based piezoelectric MEMS energy harvesters normally have a high operational 

resonate frequency (i.e., in the range of 500 Hz ~10 kHz) owning to their small physical aspects 

and the utilization of the silicon wafer as a substrate, which is strongly stiff and brittle. In contrast, 

the natural frequencies of the ambient vibration resources are mostly less than 200 Hz [152]. Thus, 

there have been multiple endeavors in the literature to offer the piezoelectric MEMS energy 

harvesters with the capability of operating in the real environment. Using a big proof mass at the 

tip of the piezoelectric cantilever was proposed as a practical method for resonant frequency 

reduction and conversion efficiency enhancement of the MEMS harvesters. In our previous study, 

as described in Chapter 6 [149], the multimodal behavior, which was obtained by using three 

discrete proof masses at different locations within the MEMS harvester, could successfully reduce 

the device resonant frequency. In more recent studies, the capability of micro-fabricated spiral 

[195] and T-shaped [188] piezoelectric energy harvesters were investigated. It was shown that 

such energy harvesters were more suitable than the conventional ones for being utilized in the real 

environment.  

As a matter of fact, the obtained frequency reduction in the prior studies is not that 

considerable, which means further reduction along with the energy conversion efficiency 

enhancement for the silicon-based piezoelectric harvesters to make them a better fit for the 
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operation in the real environment is highly demanded. Therefore, in this chapter a doubly clamped 

cantilever with a serpentine pattern associated with several proof masses is proposed for resonant 

frequency reduction and efficiency improvement. Our proposed structure can offer sound features 

in reducing the MEMS geometry stiffness and increasing the total weight. Moreover, to optimize 

the performance of the proposed MEMS energy harvester, a new optimization methodology based 

on Artificial Intelligence (AI) has been also proposed. In this regard, a deep neural network for 

prediction of resonant frequency and harvested voltage is trained. Thereafter, this network is 

integrated with a genetic-algorithm-based optimization platform for tuning the harvester 

dimensions. 

In addition, several previous studies have shown that the efficiency of the piezoelectric MEMS 

harvesters can be improved by using special mechanical topologies, such as cantilevers-on-

membrane [169], serpentine cantilever associated with uniform mass distribution [149], and T-

shaped piezoelectric cantilever [188]. Nevertheless, all of the methods above are solely focused 

on enhancing the efficiency of the piezoelectric MEMS harvesters regardless of the device failure 

status. It is obvious that the piezoelectric harvesters are only functional when being subject to 

cyclic loading conditions. On the other hand, these cyclic loadings make critical impact on damage 

and durability of the whole system. Consequently, in the piezoelectric MEMS harvesters as the 

sustainable power supplies, besides the high energy conversion efficiency, a high degree of 

reliability and durability is essentially required. 

To the best of our knowledge, thus far no study has been done to assess the fatigue damage of 

the micro-sized silicon-based piezoelectric harvesters. Thus, in this chapter we are further 

motivated to first investigate the effect of the physical aspects of the MEMS harvesters on the 

fatigue damage, and then propose a new mechanical geometry that can enlarge both energy 
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conversion efficiency and durability of the micro-sized harvesters. The major work in this chapter 

has been formally documented in multiple conference papers (as listed in the Appendix 

[Conference-5][Conference-6]). 

7.2. Low-Resonant-Frequency Piezoelectric 

MEMS Harvester  

The 3-D structural diagram of the proposed low-resonant-frequency MEMS vibration is 

illustrated in Fig. 64. This energy harvester comprises seven piezoelectric cantilevers, which are 

connected together by the proof masses. Thus, the overall device can be overviewed as a serpentine 

cantilever, which is clamped on two sides. In comparison to the conventional clamped-free 

piezoelectric cantilevers, the serpentine cantilever can increase the device deflection. Moreover, 

by using seven discrete proof masses, we can provide the uniform mass distribution along the 

harvester geometry. Consequently, with this structure lower mechanical stiffness and larger overall 

mass are attained. In the following section, the capability of the proposed structure in harnessing 

the vibration energy will be discussed. 
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Fig. 64. Structural diagram of the proposed low-resonant-frequency piezoelectric MEMS energy harvester. 

 

7.2.1. AI-Based Optimization Methodology 

In order to obtain the optimum physical aspects of the proposed piezoelectric MEMS harvester 

in terms of resonant frequency and harvested voltage, the AI-based optimization method, where a 

deep neural network (DNN) is integrated with genetic algorithm (GA), has been developed. The 

working principle of the DNN on the decision making process is inspired by human brains. It is 

categorized as an artificial intelligence technique. In this study, the displayed DNN in Fig. 65 was 

implemented in MATLAB to minimize computation time of the optimization process. As shown 

in this figure, the utilized network consists of three different layers, namely, input, hidden and 

output layers. In the input layer four optimizable variables, i.e., Lb, wb, Lm, wm , as indicated in Fig. 

65, can be imported to the network. The hidden layer, is comprised of seven sequential individual 

layers, which are made up of 60, 55, 45, 30, 20, 10 and 5 sigmoid neurons, respectively. Eventually, 

the output layer for reporting the amounts of both resonant frequency and harvested voltage is 
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formed with two neurons. At the first step, the constructed DNN was trained with 108 data sets, 

which were obtained by conducting the FEM simulations with COMSOL Multiphysics software.  

Once the network was trained and its accuracy level was confirmed, the GA, which is an 

evolutionary computation method for optimizing complex problems [133], was integrated with the 

DNN. Therefore, the algorithm generates the random numbers for the input variables and their 

effects on the performance of the energy harvester in terms of resonant frequency and harvested 

voltage were evaluated within a few seconds. Finally, the GA selects those variables, which can 

provide both lower resonant frequency and higher amplitude of harvested voltage, as the optimal 

solutions. 

 

Fig. 65.  Illustration of the utilized deep neural network (DNN) for estimating the performance of the proposed low-

resonant-frequency piezoelectric MEMS energy harvester. 
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7.2.2. AI-Based Optimization Results 

To demonstrate the effectiveness of the proposed AI-based optimization methodology, we 

defined an un-optimized structure, where the optimizable variables (i.e., Lb, wb, Lm and wm) were 

chosen to be the median values as per their allowed ranges. To improve the performance out of the 

un-optimized devices, our AI-based optimization method was executed with the population size 

of 20 and the generation number of 50 for the GA setup. Further information regarding the 

selection of these two user-defined factors can be found in Chapter 3 [164]. The obtained results 

for the un-optimized (un-opt) and optimized (opt) MEMS energy harvesters are listed in Table 18. 

In this table, the allowed ranges for the optimizable parameters, which are specified by their design 

rule constraints, are listed in the second rows. The computed resonant frequencies by the DNN and 

FEM simulations for the un-optimized and optimized structures are presented in the 6th and 7th 

columns, while the estimated harvested voltages by the DNN and FEM simulations are listed in 

the 8th and 9th columns, respectively. 

Table 18. The physical dimensions of the un-optimized and optimized MEMS piezoelectric energy harvesters. 
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(DNN) 
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Range 

 

(1550,3050) 
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(500,1000) 

 

(600,614) 

 

- 

 

- 

 

- 

 

- 

un-opt 2300 200 750 607 162 169 2.7 2.5 

opt 
 

2945 

 

216 

 

907 

 

609 

 

105 

 

110.5 

 

3.5 

 

3.25 
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From the summarized data in Table 18, it can be seen that the DNN can estimate both resonant 

frequency and harvested voltage with over 90% accuracy in reference to the FEM simulations. 

Therefore, by utilizing the DNN as a performance simulator, we can significantly reduce the 

required computation time dedicated to the FEM simulations. On the other hand, with the aid of 

this computation time reduction, a larger number of optimizable variables can be testified. Hence, 

the effectiveness of the optimization algorithm in entrapping the global optima can be further 

enhanced.  

Frequency spectra of the un-optimized and optimized piezoelectric MEMS energy harvesters, 

which were computed by the FEM simulations under the excitation of 0.25g, are illustrated in Fig. 

66. It is shown that the un-optimized device operates at 169Hz, while it can generate the maximum 

voltage of 2.5V. In contrast, by optimizing the harvester dimensions, its resonant frequency can 

be reduced to 110.5Hz, and its capability of the voltage harvesting can be considerably enlarged 

to 3.4V.  

 

Fig. 66.  Frequency spectra of the un-optimized and optimized low-resonant-frequency piezoelectric MEMS 

energy harvesters. 
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7.3. Fatigue Lifetime Analysis and Experimental 

Results 

7.3.1. New Structure for Improving Fatigue Lifetime  

In the mechanical devices, the life time (i.e., fatigue damage time) is proportional to the 

amplitude of stress. This relationship can be expressed by the Coffin-Manson equation as follows:   

σa = σf
′ (2Nf)

b, (61) 

where 𝜎𝑎  is the stress amplitude, 𝜎𝑓
′  is the fatigue strength coefficient, 2𝑁𝑓  is the number of 

reversals cycles to failure and b denotes the fatigue strength exponent. The fatigue strength 

coefficient and exponent (i.e., 𝜎𝑓
′ and b) are dependent on materials properties. This means that 

amounts are basically constant for a particular material [204]. Consequently, to increase the 

number of reversal cycles to failure (i.e., 𝑁𝑓), the stress amplitude (i.e., 𝜎𝑎) must be reduced by 

expanding the active area of the device.        

In order to increase the active area of the MEMS harvester with the minimum impact on the 

device energy conversion efficiency, a new curve-shaped anchor is proposed. The structural 

diagram of our proposed MEMS energy harvester is illustrated in Fig. 67. As shown in this figure, 

the anchor area is expanded by a doubly clamped curve beam, while a straight beam with a tip 

mass is integrated to the centre of the anchor. In this structure the stress can be distributed 

uniformly along the whole anchor region. Therefore, the small stress concentration region, which 

causes damage fatigue, is considerably eliminated. Moreover, it is highly demanded that the 

MEMS harvester operates at lower frequencies. To this end, the second proof mass, for further 
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increasing the overall weight of the device, is attached to the centre of the curve-shaped anchor. In 

the following sections, the capability of the proposed geometry in energy harvesting will be 

discussed numerically and experimentally.  

 

Fig. 67. Structural diagram of the proposed piezoelectric MEMS harvester with the curve-shaped 

anchor. 
 

7.3.2. Fatigue Lifetime Analysis Results 

As discussed in the previous section, the stress concentration in a small region causes damage 

fatigue. In the conventional MEMS cantilever-based energy harvesters, only the anchor part 

experiences a considerable amount of stress. For the comparison purpose, the stress distribution, 

as depicted in Fig. 68, between the conventional harvester geometry and our proposed curve-

shaped anchor topology were simulated by COMSOL Multiphysics software (Version 5.2a). It can 

be seen that the stress is uniformly distributed in the whole area of the curve-shaped anchor. Thus, 

it is expected that this anchor area expanding by using the proposed curve-shaped anchor can 

increase the durability of the MEMS harvester.  
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Fig. 68. Von-Mises stress distribution of (a) the conventional and (b) curve-shaped piezoelectric 

MEMS energy harvesters, respectively. 
 

To examine the durability of the proposed MEMS harvester with the curve-shaped anchor, the 

fatigue test (i.e., Coffin-Manson approach) by COMSOL fatigue module [205] was performed. In 

this regard, the cyclic force with different amplitudes in the tip part of the device was applied. 

Moreover, the same experiment was conducted for the conventional MEMS harvester with the 

normal anchor shape. According to Fig. 69, it is obvious that the curve-shaped anchor harvester 

can work for a sufficiently large number of cycles (>4*106) under the excitation force of 9.4 mN, 

while the conventional harvester under this amount of force breaks at its anchor place (red slot in 

Fig. 69(a)). Thus, we can say the number of cycles to failure is zero for the curve-shaped anchor 

harvester.  
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Fig. 69. Simulated fatigue lifetime distribution under cyclic mechanical loading with the amplitude of 

9.5mN for (a) the conventional and (b) the curve-shaped piezoelectric MEMS energy harvesters, 

respectively. 

 

To further investigate the mechanical behaviour of the proposed harvester, the cyclic loading 

of 10.5 mN, which exceeds the maximum device failure force, was applied. The obtained fatigue 

result is illustrate in Fig. 70. It is shown that under this excitation the initial cracks would be 

observed in the region sufficiently far away from the contact areas, while the curve-shaped anchor 

itself experiences no cracks or fractures. That is to say, unlike the conventional harvester geometry, 

the anchor is not the most fragile region any more that is subject to failure.  
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Fig. 70. Simulated fatigue lifetime distribution under cyclic mechanical loading with the 

amplitude of 10.5mN for the curve-shaped piezoelectric MEMS energy harvester, where the 

three cracks are observed in the region far away from the anchor places. 

 

By using FEM simulations, the frequency responses of the demonstrated MEMS harvesters in 

Fig. 69 under the acceleration of 1g were computed and presented in Fig. 71. It can be seen that in 

the energy harvester with our proposed curve-shaped anchor the resonant frequency is reduced to 

688 Hz. As a matter of fact, this reduction is highly desirable for the MEMS energy harvesters. 

Moreover, its capability in harvesting voltage is also considerably improved with reference to the 

conventional one.  
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Fig. 71. Frequency responses of (a) the conventional and (b) the curve-shaped piezoelectric 

MEMS energy harvesters, respectively, under the acceleration magnitude of 1g. 

 

To validate the correctness of the obtained results by the numerical simulations, as well as 

manufacturability of the proposed structures, the studied MEMS harvesters were fabricated by 

using the fabrication process explained in Section 3.4.1. The cross-section-view SEM image of the 

prototyped devices is shown in Fig. 72, and their performance measurements are listed in Table 

19. A comprehensive comparison on the summarized data in this table shows that the curved-shape 

anchor can considerably improve the failure force and durability of the piezoelectric MEMS 

harvester. In addition, the harvested power can be improved by a factor of 2.66 in reference to the 

conventional geometry.  
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Fig. 72. The cross-section view SEM image of the fabricated MEMS harvesters for illustrating the layers 

arrangement. 

 

 

7.4. Summary 

In this chapter, we proposed a low-resonant-frequency piezoelectric MEMS energy harvester. In 

order to optimize its performance, an AI optimization methodology based on DNN and GA was 

proposed. It is shown that the trained network could estimate the device performance with accuracy 

of over 90%. By taking advantage of this efficient AI-based performance estimator, the GA was 

able to reduce the device operational frequency from 169Hz to 110.5Hz and increase its energy 

conversion efficiency in terms of harvested voltage from 2.5V to 3.4V under 0.25g excitation. 

Table 19. Summarized behaviour of the conventional and curve-shaped anchor piezoelectric MEMS harvesters. 

 
 

 

Parameters 

Failure 

Force 

[mN] 

Resonant Freq.  

[Hz] 

Harvested Voltage 

[mV] 

Matched Load 

[kΩ] 

Harvested Power 

[µW] 

Conventional 7.3 743 473 288 0.77 

Curved-Anchor 9.4 668 776 294 2.05 
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In addition, we proposed a curve-shaped anchor structure for durability and efficiency 

improvement in the piezoelectric MEMS harvesters. The proposed harvester performance was 

studied numerically and experimentally. To demonstrate its high durability, the fatigue test under 

different cyclic loading was conducted. It is shown that in our proposed harvester the harvested 

power can be improved by a factor of 2.66 at the lower resonant frequency in comparison with the 

convention MEMS harvester.   
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Chapter 8    Conclusion  

In this thesis, we first conducted a comprehensive survey on recent portable vibration-based 

wind energy harvesting devices. In the wind energy harvesters that are actually focused on how to 

harness vibration, the kinetic energy of vibration can be converted to electricity by using the 

following three techniques: piezoelectric-, electromagnetic- and electrostatic-based techniques. 

The functionality of the piezoelectric-based harvesters is dependent on the direct effect of 

piezoelectric materials, while in the electromagnetic-based harvesters magnetic field strength, 

which is provided by permanent magnets, plays a crucial role. The electrostatic-based harvesters, 

which require the external power supplies or electret materials, can be offered by utilizing 

capacitance variation. In addition, the required mechanical mechanisms for collecting the vibration 

from wind flow can be categorized into the rotational and aeroelastic mechanisms. The aeroelastic 

mechanism itself consists of two major groups, namely, vortex-induced vibrations and movement-

induced vibrations. Furthermore, regarding their physical aspects, the portable wind energy 

harvesters are classified into macro-scale and micro-scale MEMS ones. Since the generated power 

amount is strongly dependent on the harvester size, the macro-scale energy harvesters can 

normally generate more power than the MEMS ones. 

The current status of research and development exhibits that the aeroelastic mechanism is 

promising for the portable wind (i.e., vibration-based) energy harvesting systems, due to their 

simple structure and ease of fabrication. However, the rotational mechanism is highly effective for 

generating power from wind flow. One should not ignore that the aeroelastic mechanism can 

operate with high power conversion efficiency only if the direction of wind flow is perpendicular 

to the structures. Consequently, deploying some new symmetric structures seems to be necessary 

to provide omnidirectional functionality. The piezoelectric-based power generation technique 
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associated with micromachining fabrication technology can offer a wide range of vibration energy 

harvesters with high level of portability and appropriate output power.  

The piezoelectric-based technique, thanks to the piezoelectric material deposition 

compatibility with the regular micromachining process and the independence from external 

voltage supply, has attracted more attention in producing the MEMS-based vibration energy 

harvesters. Therefore, in this thesis we have focused on the study of design and optimization 

methodologies for the MEMS-based vibration energy harvesters. In this regard, we proposed a 

GA-based design and optimization method for MEMS unimorph piezoelectric energy harvesters. 

In the first step, for estimating the generated voltage by the MEMS unimorph piezoelectric 

harvesters, the analytic models based on the Euler-Bernoulli beam theory was presented. The 

accuracy of the presented analytic models was validated numerically and experimentally by using 

COMSOL Multiphysics, and experimental measurement of our prototype devices, respectively. It 

is demonstrated that our proposed GA-based optimization methodology is able to enlarge energy 

harvesting efficiency by 31% in comparison with un-optimized harvesters. This improvement was 

observed with the overall device size reduction in multiple aspects, such as beam width and 

piezoelectric film length, which is highly desirable during the MEMS design process. Furthermore, 

a comprehensive comparison between our proposed optimization methodology and widely 

available commercial product (e.g., COMSOL optimization module) was shown that our GA-

based optimization method is considerably more effective in both increasing the harvested voltage 

magnitude and reducing the required computation time. In addition, we studied impacts of the 

geometry optimization on mechanical and electrical properties of the harvester, such as resonant 

frequency, mass, stiffness, and internal impedance.  
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Furthermore, for simultaneously reducing resonant frequency and enhancing energy 

conversion of the piezoelectric MEMS energy harvesters, the analytic models to estimate the 

resonant frequency and harvested voltage for the unimorph MEMS piezoelectric harvesters with 

and without integration of a proof mass were presented. Their accuracy with reference to the FEM 

simulations and the experimental measurement from the prototyped harvesters were validated. 

Thanks to the observed high accuracy, they were utilized as the required objective fitness functions 

of our proposed GA-based optimization. To aim for multiple objectives, the GA, which is 

identified as an evolutionary computation method for optimizing complex problems, was executed 

to optimize the physical dimensions of the harvester, i.e., beam length, beam/piezoelectric width, 

piezoelectric length, and proof mass length (if existing). By using the micro-fabrication process, 

two different groups of piezoelectric MEMS harvesters, namely, un-optimized harvesters without 

any special considerations and optimized ones based on obtained results from the proposed 

optimization methodology were fabricated. It is found that the piezoelectric MEMS harvester with 

optimized geometry by the GA-based optimization methodology can generate the peak voltage of 

1900 mV at the reduced resonant frequency of 425 Hz with the highest NVP of 163.8 in 

comparison with the previously proposed harvesters. 

The most commonly utilized configuration for piezoelectric MEMS vibration energy 

harvesters is the unimorph cantilever-based one with integration of a proof mass at the tip part of 

the cantilever. Although such a simple structure can be fabricated by the general MEMS 

fabrication process, its energy conversion efficiency is relatively low since stress/strain can be only 

absorbed in a relatively small region (i.e., anchor region) during the device oscillation. Therefore, 

to provide more uniform stress distribution along the piezoelectric MEMS cantilever, in this thesis 

we proposed a T-shaped structure with two DOF, where both bending and torsional mode 
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frequencies can be located close to each other. The proposed structure was mathematically 

modeled and its analytic model of frequency response was validated by FEM simulations and 

prototype measurements. It was demonstrated that our proposed T-shaped piezoelectric cantilever 

structure can help distribute mechanical stress in broader areas with higher magnitude and lower 

resonant frequency in comparison with the conventional straight-cantilever configuration.  

Typically the conventional piezoelectric MEMS energy harvesters have a very narrow 

operational frequency bandwidth. To increase the operational frequency of piezoelectric MEMS 

harvesters, we further developed and optimized a structure with the capability of multiple-degrees-

of-freedom (MDOF). The proposed structure is anchored on two sides. To increase its total 

deflection, a set of piezoelectric cantilevers with a serpentine shape associated with three discrete 

proof masses at different locations is used. Thus, this unique geometry provides uniform mass 

distribution in the entire device. The behaviors of the proposed structure were studied by using 

modal analysis and mechanical stiffness computation. It is demonstrated that the harvester can 

oscillate in the multiple modes with a strong nonlinear behavior at its second mode frequency. 

Since the proposed harvester is highly nonlinear (due to its MDOF), accurate estimation of its 

performance is almost impossible. As a result, to save human designs efforts, we used a GA-based 

optimization method. The optimization result was verified by FEM-based simulations and 

measurement of the prototyped MEMS harvester. A performance comparison between the 

proposed MEMS harvester and the recently published vibration energy harvesters from the 

literature shows that our proposed harvester is well superior to offer a promising vibration energy 

harvesting system for being deployed in the real environment. 

In order to speed up the optimization process of the unimorph piezoelectric MEMS harvesters, 

we also proposed an AI optimization method based on DNN. In this way, a neural network with 
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the configuration of 4 inputs, 7 hidden layers, and 2 outputs was utilized as a performance 

simulator of the MEMS harvester. Firstly, this implemented network was trained by 108 data sets, 

which were obtained by conducting the FEM simulations. After that, the accuracy of the trained 

network in estimating the harvested voltage and resonant frequency for a given size of MEMS 

harvesters was examined. It was found that the trained network can estimate the device 

performance with accuracy of over 90% with reference to the FEM simulations. By taking 

advantage of this highly efficient AI-based performance estimator, the GA optimization was 

performed with the aim of increasing the harvested voltage efficiency and reducing the operational 

frequency for a piezoelectric MEMS vibration harvester. It is numerically shown that our proposed 

AI-based optimization methodology is able to reduce the device operational frequency from 169Hz 

to 110.5Hz and increase its energy conversion efficiency in terms of harvested voltage from 2.5V 

to 3.4V under 0.25g excitation with reference to the un-optimized one.  

Finally in this thesis we also studied the lifetime of the piezoelectric MEMS harvesters, as an 

important parameter for the energy harvesting systems. To improve the durability and energy 

conversion efficiency of the piezoelectric MEMS harvesters, we proposed a new curve-shaped 

anchoring scheme. This proposed structure is comprised of a doubly clamped curve beam with a 

mass at its center as an anchor, and an attached straight beam with the tip mass to the center of this 

anchor. To assess the fatigue damage, which is actually critical to the micro-sized silicon-based 

piezoelectric harvesters, we used the Coffin-Manson method and FEM to comprehensively study 

the fatigue lifetime of the proposed geometry. Our proposed piezoelectric MEMS harvester was 

fabricated and its capability in harnessing the vibration energy was examined numerically and 

experimentally. It was found that the harvested energy can be enlarged by a factor of 2.66, while 

this improvement is attained by the resonant frequency reduction and failure force magnitude 
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enlargement, in comparison with the conventional geometry of the regular piezoelectric MEMS 

harvesters. 
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Chapter 9    Future Work 

In this thesis we have mainly focused on design and optimization of mechanical structures in 

the unimorph piezoelectric harvesters, which are identified as the core of energy harvesting 

systems. In order to deploy the MEMS harvesters in the real environment, a special package needs 

to be considered. In the future research work, according to the harvester operational medium, a 

unique surrounding frame should be designed to protect the harvester from any environmental 

changes. It is highly desirable that the utilized packaging solutions have the minimum impacts on 

the performance (i.e., energy conversion efficiency and operation frequency) of the energy 

harvesting systems as well as the overall size of the device. Furthermore, enhancing the MEMS 

harvester lifetime by using its package is another subject that should be taken into account. One 

way to do this is to use air damping as a soft spring. In this regard, the MEMS harvester will be 

placed within a cavity. Thus, air will be readily accumulated inside the cavity. Then the moveable 

part of harvester cannot oscillate largely, which means the device deflection is limited to a certain 

level. By using this method, the harvester under large amplitude of acceleration (i.e., shock) will 

be able to survive. 

The electrode coverage of piezoelectric cantilevers plays an important role in the amount of 

the extracted power from the energy harvesting system. In this thesis, the electrode coverage is not 

considered in analytic modeling and our optimization methodologies. However, our presented 

analytic equations can be further expanded by taking into account of the electrode size. Then the 

electrode coverage can be considered as an optimizable variable for enhancing the energy 

conversion efficiency and reducing the operational frequency of the piezoelectric MEMS 

harvesters.  
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The quality factor is a crucial metric that describes the energy losses of the underdamped 

resonant elements, such as energy harvesting systems. This parameter is dependent on both 

bandwidth and center frequency of the resonators. In order to further enhance the capability of the 

piezoelectric MEMS energy harvesters, the quality factor can be considered as another objective 

function for optimization methodology. To reach this objective, we need to investigate the analytic 

modeling of the quality factor for the MEMS unimorph piezoelectric energy harvesters. Moreover, 

we should develop more advanced evolutionary algorithms for the purpose of multi-objective 

optimization. 

It is highly demanded that the overall size of the piezoelectric MEMS energy harvesting 

system remains as small as possible, while it is integrated with the power management system. 

The proposed and investigated power management system in this thesis was implemented by using 

off-the-shelf discrete components, whose physical size is relatively big. Consequently, to 

miniaturize our proposed power management system, we can use CMOS or other technologies to 

integrate the required MOSFET, JFET, microcontroller, etc., into one IC (integrated circuit). It is 

worth pointing out that to further reduce the size of the energy harvesters and diminish the 

complexity of the electrical routing, the patterns of the electrical and mechanical parts can be 

exposed on the same silicon wafer during the micro-fabrication process. Under such an integration, 

the tiny piezoelectric vibration energy harvesting systems with the capability of signal processing 

and energy storage will be produced.   
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