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Abstract 

Large coregulator complexes are recruited to specific gene loci to modulate 

chromatin structure by altering epigenetic marks on DNA and histones to control gene 

expression. Mesoderm induction early response 1 (MIER1) is a nuclear protein known to 

function in transcriptional repression through its ability to recruit histone deacetylase 1 

(HDAC1) and 2. The MIER family consists of three related genes encoding proteins 

containing ELM2-SANT functional domains. MIER1 is the prototypical member, well 

characterized in our lab but little is known about MIER2 or MIER3 function and there is 

no data characterizing these two proteins. In my thesis, I have begun to characterize 

MIER2 and MIER3 proteins and to compare them to MIER1. I investigate their 

subcellular localization, their potential association with each other, their interaction with 

HDAC1 and 2 and chromodomain Y-like (CDYL), the activity of associated deacetylases 

and key residues for HDAC and CDYL recruitment.  

Immunostaining followed by confocal microscopy analysis revealed that, while 

MIER2 and MIER3 are mainly nuclear proteins, a substantial proportion (32%) of 

MIER2 is localized in the cytoplasm. Co-immunoprecipitation (co-IP) experiments 

demonstrated that the MIER proteins do not form dimers, neither homodimers nor 

heterodimers with either of the other two family members. Our data also showed that 

MIER2, but not MIER3, can recruit HDAC1 and 2. Co-IP experiments showed that 

MIER1 and MIER2, but not MIER3, interact with CDYL through the ELM2-SANT 

domains. Both MIER1 and MIER2 augment interaction between CDYL and HDACs.  

Finally, ChIP-Seq analysis revealed that each MIER member has unique targets 

and that they share target genes. In addition, consensus DNA sequences for MIER protein 
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occupancy are nearly identical to binding motif for the transcriptional repressor RE-1 

Silencing Transcription Factor (REST). REST is known to regulate expression of neural 

genes by recruiting corepressor complexes. Co-IP experiments demonstrated that MIER1 

and MIER2, but not MIER3, interact with REST. Suppression of MIER1 or MIER2 

expression in P19 embryonal carcinoma cells results in neuronal differentiation. 

Observations made in this report suggest that MIER1 and MIER2 play an important role 

in the repression of neuronal genes by the REST complex.  

Overall, I am the first to characterize MIER2 and MIER3. The results presented in 

this thesis show that MIER2 is similar to MIER1 in that it recruits some of the same 

epigenetic regulators and both proteins are enriched on REST target genes. In contrast, I 

showed MIER3 to be distinct: despite a high degree of amino acid similarity between 

MIER3 and MIER1/2, it did not interact with any of the MIER1/2 recruited regulators 

and is enriched on FOXA1 target genes.  
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Chapter 1: Introduction 

1.1 Cellular identity is determined by gene expression 

Cells are the basic units of tissues, organs and organisms. There are estimated 37 

trillions cells that make up the human body1. Almost all cells in any one organism, 

regardless of their form and function contain the same deoxyribonucleic acid (DNA) but 

differ dramatically in both structure and function2,3. The identity and function of a cell 

largely depends on changes in gene expression rather than on any changes in 

the nucleotide sequence of the cell's genome3,4.  

Gene expression is a highly regulated process by which genetic instructions from 

a DNA are used to synthesize protein. Gene expression can be controlled at the stage of 

transcription, RNA processing (post-transcriptional modifications), translation and 

protein degradation5. Jacob and Monod established the key concepts of transcriptional 

control half a century ago in bacterial systems6.  Those and many subsequent studies 

established that DNA binding transcription factors occupy specific DNA sequences at 

control elements and recruit and regulate the transcription apparatus. In eukaryotic 

systems, transcription factors, cofactors, the general transcription apparatus, chromatin 

regulators, DNA methylation and noncoding RNAs are all important players exerting 

control5. Consequently, deregulations in any of the regulatory mechanisms can alter 

protein expression and may result in many different disease states including cancer5.  

1.1.1 Gene transcription is a critical site of control  

Transcription is a process whereby messenger RNA (mRNA) is synthesized from 

DNA by the multi subunit enzyme called RNA polymerase II (Pol II). Transcription is 
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the key site for the regulation of gene expression5; thus mRNA synthesis is regulated both 

at the level of initiation and/or elongation stages by numerous transcriptional regulators7.  

Transcription factors (TF) are regulatory proteins that typically control gene 

transcription by binding regulatory elements upstream of the promoters and recruiting co-

modifiers and Pol II to target genes8. These factors contain DNA-binding domains, which 

specifically recognize and bind to short sequences (8-30bp in length) and exert their 

regulation. There are a core set of evolutionarily conserved transcription factors (TFIIB, 

TFIID, TFIIE, TFIIF, and TFIIH) that function directly with Pol II to control its 

recruitment to target genes promoters and its activity in transcription initiation and 

elongation7,9. The transcription elongation factors, TFIIS, Eleven-Nineteen Lysine-rich 

Leukemia, 5,6-Dichloro-1-b-D-ribofuranosylbenzimidazole Sensitivity Inducing Factor, 

Suppressor of Tyrosine 4/5, Elongin, and Positive Transcription Elongation Factor b 

assist Pol II to elongate its transcripts through different mechanisms10. In brief, regulation 

of transcription is the most common form of gene control4, which is achieved by the 

actions of transcription factors, Pol II, the transcriptional apparatus as well as two classes 

of cofactors namely corepressors and coactivators.  

1.2 Corepressors 

Corepressors are transcriptional regulators that are recruited by DNA-bound TFs 

to silence target gene expression11,12. They form multi-protein complexes containing 

structural, chromatin-binding, and DNA- and histone-modifying enzymes, which 

cooperate to establish and maintain transcriptional repression (Fig 1)11. Corepressors play 

essential roles in many biological pathways including differentiation, proliferation, 

programmed cell death, and cell cycle. Nuclear receptor corepressor (NCoR) and 
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silencing mediator for retinoid and thyroid hormone receptors (SMRT) are the first two 

corepressor complexes identified12,13. Since then, several corepressor complexes have 

been identified and most complexes contain at least the histone deacetylases (HDACs) 

among other histone modifying enzymes to aid in transcription repression11,12. These 

corepressor complexes include the switch independent 3a (SIN3A)14, corepressor for the 

RE1-silencing transcription factor (CoREST) 15, nucleosome remodeling deacetylase 

(NuRD) 16and polycomb repressive complex 2 (PRC2)17. 
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Figure 1. Structure and composition of co-repressor complexes 

A. Corepressor complexes (CoR) are composed of structural proteins bound to epigenetic 

modifier effector proteins, and recruited to chromatin by DNA- or histone-binding 

proteins (ChBP). B. Factors associated with the NCOR, NuRD, SIN3A, and CoREST co-

repressor complexes, including both core components and accessory co-factors. Figure 

adapted by permission from Elsevier: Neuropharmacology, 201411. 
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1.2.1 SIN3Acorepressor complex 

SIN3A is a multiprotein corepressor complex that mediates transcriptional 

silencing via interaction and recruitment of diverse transcription factors and chromatin 

remodellers18,19. SIN3A is a large scaffold protein containing four paired amphipathic 

helix (PAH) domains, an internal HDAC interaction domain (HID) and a highly 

conserved region19. The PAH domains recognize and bind to sequence-specific 

transcriptional factors, and the HID domain is responsible for bringing HDAC1 and 

HDAC2 to SIN3A to mediate transcriptional repression of SIN3A target genes19. SIN3 

protein is highly conserved from yeast to mammals and has varied numbers of isoforms. 

In mammals there are two paralogs of SIN3, SIN3A and SIN3B18,19. They share high 

sequence identity and similar expression patterns. Both proteins are widely expressed and 

bind common as well as distinct transcriptional repressors and complexes19.  

Biochemical analysis of the SIN3 complex to characterize the components of 

complex revealed that, in addition to SIN3, HDAC1, and HDAC2, five other proteins 

comprise the core of the complex— retinoblastoma binding protein 4, retinoblastoma 

binding protein 7, SIN3A associated protein 30, SIN3A associated protein 18, and 

Suppressor of defective silencing 14,18. A number of other associated proteins were also 

discovered in the complex, including SIN3A associated protein 180, Retinol binding 

protein 1, Transcriptional Repressor And Anoikis Regulator 1, SIN3A associated protein 

130, SIN3A associated protein 25, and inhibitor of growth protein 1/218–21. The roles of 

these proteins remain unclear: it is hypothesized that some may function in specialized 

subsets of SIN3/HDAC complexes18. 
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SIN3 corepressor complex is shown to play an important role in diverse cellular 

functions such as chromosome segregation, DNA silencing, DNA damage repair, cell 

cycle, senescence, organ development, oncogenesis and many more18,19. Although, SIN3 

is shown to interact with numerous proteins, the molecular mechanism of SIN3 action in 

such diverse cellular activities is still work in progress. 

1.2.2 CoREST complex 

CoREST was first identified as a corepressor of REST but later demonstrated to 

be an integral component of HDAC1/2-containing complexes11. The CoREST protein is 

also known as REST corepressor 1 (RCOR1). It contains one ELM2 (EGL-27 and MTA1 

homology 2) and two SANT (SWI3/ ADA2/NCoR/TFIIIB) domains, which are also seen 

in other repressor proteins such metastasis-associated proteins 1-3 (MTA1-3), NCoR and 

MIER1-311,22.  

The CoREST complex contains two key histone-modifying enzymes, lysine-

specific histone demethylase 1 (LSD1) and HDAC1 and HDAC222,23. The core complex 

also contains plant homeodomain (PHD) Finger Protein 21A, zinc finger protein 217 and 

the DNA-binding co-factor BRCA2-associated factor 35 (BRAF35)15,22. Co-

immunoprecipitation assays also showed association of CoREST complex with C-

terminal binding protein (CtBP) and histone methyltransferases [euchromatic histone-

lysine N-methyltransferase 2 (G9a) and G9a-like protein (GLP)]15,22. The CoREST 

complex is recruited to target genes by transcriptional factor REST but direct binding to 

the RE1 element on target genes via BRAF35 is also reported15,22. CoREST has been 

shown to play an important role in repression of neuronal gene expression and influence 

neuronal differentiation24. 
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1.2.3 The NuRD Complex 

The nucleosome remodeling and deacetylase (NuRD) is also a multiprotein 

complex first purified by many groups independently in 199825. The NuRD complex is a 

unique chromatin remodeler that possesses two distinct enzymatic activities, ATP-

dependent nucleosome remodeling and histone deacetylase activity16,26. It is highly 

conserved in plants and animals, and widely expressed in all cell types27. The core 

complex consists of HDAC1/2, ATP dependent remodeling enzymes chromodomain-

helicase-DNA-binding protein 3/4, histone-binding proteins retinoblastoma associated 

protein 46/48, CpG-binding proteins methyl-CpG-binding domain protein 2/3, nuclear 

zinc-finger protein GATAD2a and/or GATAD2b and specific DNA-binding proteins 

MTA1/2/327,28. Multiple subunits in the NuRD complex can interact directly with DNA, 

and with histones to alter genome structure and regulate gene expression. MTA is an 

essential component of the NuRD complex, functioning as a scaffold to facilitate binding 

of the complex to the target DNA and to HDAC 1 and 2, and also to other transcription 

factors and co-regulators29. 

The three members of the MTA family are highly similar and possess four highly 

conserved domains, which include a bromo adjacent homology domain, ELM2 domain, a 

SANT domain and a GATA domain30. MTA1 share 63% and 72 % identity with its 

homologues MTA2 and MTA3, respectively. The proteins are nearly identical in the 

internal four domains but differ significantly in the C-termini regions and proposed to be 

the reason as to why MTA1, MTA2 and MTA3 are present in mutually exclusive 

complexes31.   
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1.2.4 The NCoR/SMRT complex  

Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and 

thyroid receptor (SMRT) are corepressor complexes that bind to nuclear hormone 

receptors and act as scaffolds, recruiting numerous proteins including class I and II 

HDACs and SIN3A complex to form large multiprotein complexes23,32,33.  

SMRT and NCoR are homologous proteins, which share a similar domain 

organization. The C-terminal region of NCoR and SMRT contains three (NCoR) or two 

(SMRT) nuclear receptor interaction domains, important for interactions with the ligand-

binding domain of nuclear receptors11,12,32.  The N-terminus of NCoR and SMRT have 

been characterized to contain two SANT domains. The first SANT domain is also known 

as the deacetylase activation domain, which has been shown to both recruit and activate 

HDAC3. The second SANT domain has been reported to interact directly with histone 

tails and is also known as the HID.  

The SMRT and NCoR core complexes are made up of NCoR/SMRT, HDAC3, 

transducin β-like 1, TBL related 1, and G-protein pathway suppressor 232. SMRT and 

NCoR exert transcriptional repression on target genes by binding to nuclear receptors as 

well as large number of transcription factors and chromatin modifiers34.  

1.3 Coactivators  

Coactivators are the opposite in function to corepressors enhancing the 

transcription of target genes. Coactivators are very large proteins that harbour multiple 

activation domains and receptor-interacting domains35. Some of these coactivators 

include, the steroid receptor coactivator-1, transcription intermediary factor 2, receptor-
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associated coactivator 3, CREB binding protein (CBP) and p30036. Like corepressors, 

coactivators do not bind DNA directly; instead they act as a scaffold, bridging the DNA-

bound receptor to proteins in the preinitiation complex and chromatin modifying 

enzymes, and thereby augmenting transcription35. Numerous cofactors are characterized 

that facilitate the initial recruitment of Pol II to the promoter and to the subsequent 

transcript elongation, however, the mediator complex is found to the most crucial 

coactivator37,38.   

Mediator is a multiprotein complex that functions to relay regulatory signals from 

TFs directly to the Pol II37. The complex core is made up of 26 subunits and the diverse 

modules in the complex aid in protein–protein interactions between mediator, Pol II and 

other TFs37,38. Also, mediator is crucial for the organization of chromatin architecture, 

including gene loops, which are important structures in regulation of cellular 

transcription37,39.   

1.4 Chromatin  

The transcriptional state of each gene is jointly regulated by chromatin structure. 

In eukaryotes, genomic DNA is packaged into nucleosomes, which is comprised of DNA 

and two pairs of core histones H2A, H2B, H3, and H4 forming a protein octomer40. 

Nucleosomes are the initial mode of compaction of genomic DNA and provide a critical 

mechanism to regulate transcription by altering the binding of trans-acting factors to 

cognate DNA sequences22. Chromatin is a dynamic structure that alternates between a 

condensed, transcriptionally silent state and a less condensed structure, transcriptionally 

active state in a process called chromatin remodeling41. Structural reorganization is 
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triggered by two mechanisms; one initiated by nucleosome remodeling ATPases42 and 

other by various types of histone modifications43. 

1.4.1 Nucleosome remodeling complexes 

 Nucleosome remodelers play important roles in regulating the initiation and 

elongation of transcription26. In general, chromatin remodelers make DNA regulatory 

sequences more or less accessible to the transcriptional apparatus, thereby allowing 

transcription factors to activate or repress transcription26,44. There are four families of 

nucleosome remodelers, which include Switch/Sucrose Non-Fermentable (SWI/SNF), 

imitation switch (ISWI), Chromodomain helicase DNA-binding (CHD) and Inositol 

auxotrophy 80 (INO80)45. All four remodelers utilize ATP hydrolysis to alter histone-

DNA interactions and share a similar ATPase domain. However, all four remodelers 

function in unique biological contexts, imparted by specific domains residing in their 

catalytic ATPases and also by their various associated factors (Table 1)42,44,45. They are 

often recruited to target genes through interactions with sequence-specific transcription 

factors to serve as coactivators or corepressors45. They catalyze a broad range of 

chromatin alterations that includes sliding the histone octamer across the DNA, changing 

the conformation of nucleosomal DNA and/or changing the composition of the histone 

octamer, which can facilitate either activation or repression of gene expression46,47.  
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Table 1: Remodeler composition and orthologous subunits  

 
Table adapted by permission from Annual Reviews: Annual Review of Biochemistry, 

200945 
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1.4.2 Histone modifications 

Chromatin structure can be altered by various post-translational modifications 

(PTMs) of the N-terminal residues of histone proteins48,49. Each histone protein contains 

two common regions, the “histone fold” and the “histone tail”. The histone fold is 

responsible for the formation of stable H2A–H2B and H3–H4 dimers whereas the histone 

tails are unstructured N-terminal regions that flank both ends of the histone fold47. The 

histone tails are highly basic, and contain residues that are targets of PTMs. These 

modifications provide interaction surfaces for protein complexes that contribute to 

transcriptional control. Hence, histone modifications are thought to constitute a “Histone 

Code,” which is “read” by proteins to bring about specific downstream effects50. Most 

common PTMs include methylation on lysine (K) and arginine (R) residues, acetylation 

on K, phosphorylation on serines (S), threonines (T) and tyrosines (Y), ubiquitination on 

K, crotonylation on K, and citrullination on R (reviewed in43,50), with the first three being 

the most common modifications present on histones (Fig 2). Histone 3 (H3) is the most 

commonly modified histone, where K residues on N terminus are targeted for covalent 

attachment of one acetyl or one, two or three methyl groups. 
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Figure 2. Histone modifications regulate gene expression 

(a) The histone tails are targeted for post-translational modification, including phosphorylation, acetylation, and methylation.  Such 

modifications create a distinct pattern, called the ‘histone-code’, that affects gene expression. (b) Acetylation of lysine residues on 

histone tails is usually associated with active genes, whereas reduced or no acetylation is found at inactive genes. Histone acetylation 

is regulated by the opposing activity of Histone acetyltransferases (HATs) and HDACs. Figure adapted by permission from Elsevier: 

Trends in Pharmacological Sciences, 201051.
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1.4.3 Histone code  

Numerous methods such as bisulfite sequencing for DNA methylation and 

chromatin immunoprecipitation (ChIP) for chromatin modifications and DNA-protein 

interactions as well as computational methods for epigenetic analysis have been 

developed, which have rapidly advanced our understanding of epigenetic cues in 

modulation of gene expression. The histone code was first proposed by Strahl and Allis 

in 200052, defined as an epigenetic marking system that use different combinations of 

histone modification patterns to regulate specific and distinct functional outputs of 

eukaryotic genomes52. The histone code is established by a series of “reading”, “writing” 

and “erasing” events performed by histone-modifying enzymes. Writers are enzymes that 

add a covalent modification, while erasers remove them, making it a reversible process. 

Additionally, readers are specific factors that recognize either a particular post-

translational marks on histones or a combination of marks. In general, these histone-

modifying enzymes function as individual components within a diverse set of 

multiprotein complexes that target promoters and enhancers to regulate transcriptional 

responses48,50,53. The following paragraphs provide a brief overview of few of the histone 

modifying enzymes that are relevant to our study.  

1.4.4 Histone acetyltransferases 

In 1964, Vincent Allfrey and colleagues discovered acetylation of histones, 

proposing a regulatory role in transcriptional control54. HATs, HDACs and acetyl-Lys-

binding proteins were subsequently characterized as transcription regulators, thus 

providing evidence for his hypothesis.  Over the past 50 years, extensive research has 
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been conducted to show that acetylation has a significant impact on many cellular 

functions beyond transcriptional regulation55.   

Acetylation of lysine residues at the N-terminus regions of histones is generally 

correlated with increased chromatin accessibility and transcriptional activity56. 

Acetylation of a lysine residue neutralizes the positive charge and weakens the binding 

between the histone and the negatively charged DNA, permitting regulatory proteins to 

bind to DNA55. HATs are enzymes which catalyze the transfer of an acetyl group from 

acetyl-CoA to the lysine -amino groups on the N-terminal tails of histones, transcription 

factors and other chromatin-associated proteins 57. Among the different families of 

histone-modifying enzymes, HATs are the best characterized to date. Five well-studied 

HAT subfamilies include histone acetyltransferase 1, general control nonderepressed 5 

(GCN5)/ P300/CBP-associated factor (PCAF), MOZ Ybf2 Sas2 Tip60, p300/CBP, and 

Rtt10956. X-ray crystallography analysis of each of the five subfamilies revealed a 

conserved core region containing a three-stranded β-sheet and a long helix in parallel, 

important for cofactor binding, but divergent N- and C-termini regions for histone-

specific binding56. For example, GCN5/ PCAF preferentially bind histone H3 over the 

histone H4 and p53 substrates58. Also, most HATs exist as components of multisubunit 

complexes and the different components in the complex determine substrate specificity 

and gene specific targeting50. For instance, recombinant GCN5/PCAF proteins acetylate 

free histones or histone peptides but are much less active on nucleosomes, which suggest 

other components in the complex influence the action of GCN5/PCAF56. Recent studies 

derived quantitative models for correlating various chromatin marks with gene 
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expression. The histone acetylation on H3K9, H4K12, H3K14, H3K27, and H3K122 are 

signatures of active enhancers59. 

Bromodomains recognize the acetylation marks on lysine residues. They are a 

family of evolutionarily conserved motifs identified in 1992 in the brahma gene 

of Drosophila melanogaster60. The human genome encodes 46 bromodomain-containing 

proteins, classified into eight subfamilies on the basis of their structure61. The 

bromodomain and extra terminal family is thoroughly investigated and it is made up of 

bromodomain-containing protein 2, bromodomain-containing protein 3, bromodomain-

containing protein 4, and bromodomain testis associated61. The bromodomain is also 

conserved within many chromatin-associated proteins including HATs, ATP-dependent 

chromatin-remodelling proteins, helicases, methyltransferases, and nuclear scaffolding 

proteins62. Acetylation of histones is a dynamic process that involves the dual action of 

HATs and HDACs and accompanying readers to alter chromatin and influence gene 

expression. 

1.4.5 Histone deacetylases  

HDACs are a family of enzymes that catalyze the removal of acetyl functional 

groups from the lysine residues of both histone and non-histone proteins63. In mammals, 

18 HDACs have been identified, which are divided into four classes based on their 

structure, enzymatic function, subcellular localization, and expression patterns64,65.  

The class I HDAC family consists of HDAC1, HDAC2, HDAC3 and HDAC8, 

which share homology with yeast Reduced Potassium Dependency 366. These HDACs 

are mainly nuclear proteins expressed ubiquitously. Class II HDACs are related to yeast 

HDA1, which include subclass IIa (HDAC4, HDAC5, HDAC7 and HDAC9) and 
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subclass IIb (HDAC6 and HDAC10). Class IIa HDACs shuttle from nucleus to 

cytoplasm and are restricted to brain, muscle, and heart66. HDAC6 is exclusively 

cytoplasmic and is the only enzyme with two deacetylase domains. Class III HDACs are 

better known as Sirtuins (SIRT) and they consist of seven members that occupy different 

subcellular compartments such as the nucleus (SIRT1-7), cytoplasm (SIRT1 and SIRT2) 

and the mitochondria (SIRT3-5)67,68. HDAC11 is the only member of Class IV HDACs. 

It is expressed in the brain, heart, muscle, kidney and testis, but little is known about its 

function. Class I, II and IV HDACs require a zinc ion for deacetylase activity whereas 

Class III HDACs are dependent on nicotinamide adenine dinucleotide cofactor for their 

enzymatic activity66,68. 

Class I HDACs interact with major corepressor complexes, which are then 

targeted to specific genomic regions by interactions with DNA binding factors that 

include transcription factors, nuclear receptors, and epigenetic regulators. HDAC1 and 

HDAC2 are in complex with the SIN3 complex, CoREST complex, NuRD complex 

while HDAC3 is only found with NCoR/SMRT complexes22.  

1.4.5.1  HDAC substrate specificity  

Despite extensive research surrounding HDACs, no definitive histone substrate is 

characterized for each HDAC. This is in part due to most purified recombinant HDACs 

being enzymatically inactive68,69. Functional redundancy is another factor limiting such 

studies, as some HDACs can compensate in the absence of the other. Furthermore, some 

HDACs are part of several different complexes; for example, HDAC1 and HDAC2 form 

a heterodimer in at least 4 different multi-complexes that could possibly have different 

substrate specificity70.  
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1.4.5.2  Regulation of HDAC activity   

The most well defined mechanisms of HDAC regulation are protein–protein 

interactions and posttranslational modifications68. HDACs can undergo a variety of 

posttranslational modifications including acetylation, glycosylation, S-nitrosylation, 

sumoylation, ubiquitination, and phosphorylation71.  

HDAC1 can be phosphorylated by by cAMP-dependent protein kinase A (PKA) 

and casein kinase II (CK2) while HDAC2 is phosphorylated uniquely by protein kinase 

CK272. Phosphorylation of HDAC1 and HDAC2 are essential for enzymatic activity as 

mutations in phosphorylation sites result in a significant reduction in enzymatic activity68. 

Such mutations also disrupt protein complex formation of HDAC1 and 2 with RbAp48, 

MTA2, SIN3, and CoREST68. Recently, D-myo-inositol-1,4,5,6-tetrakisphosphate 

[Ins(1,4,5,6)P4] molecule has been demonstrated to stabilize interaction between HDAC3 

and NCoR repressive complex as well as interactions between HDAC 1 and 2 with 

MTA1 from the NuRD complex73,74.  

1.4.6 DNA methylation  

DNA methylation is an epigenetic mark that involves a transfer of a methyl group 

to the 5th carbon of the cytosine residue (5mCs), mainly in a CpG dinucleotide context to 

silence gene expression75–77. CpG islands are regions of DNA that contain a large number 

of CpG dinucleotide repeats in the genome and are often associated with promoter 

regions, with around 60% of gene promoters reside within CpG islands76.  The 

methylation status in CpG islands are often correlated with the activity of a gene, that is 

actively expressed genes are unmethylated while inactive genes are highly methylated75.  
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Next-generation sequencing aided in characterizing genome wide DNA 

methylation patterns at a single base-pair resolution from plants to humans78–80. These 

methylome maps provided comprehensive details of the frequency and genomic 

distribution of 5mCs, as well as the interplay between DNA methylation and other 

epigenetic mechanisms. 

Three DNA methyltransferases (DNMTs), DNMT1, DNMT3a and DNMT3b, 

catalyze the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to the C5 

position of cytosine76,78. DNMT1 preferentially methylates hemimethylated DNA, 

whereas DNMT3a and DNMT3b are involved in de novo DNA methylation. DNMTs are 

recruited to specific genomic regions directly as they contain specific domains that 

directly recognize certain modifications of the histone H3 tail in chromatin.  For example, 

the ATRX-DNMT3-DNMT3L domain of DNMT3a recognizes unmethylated H3K4 and 

therefore can bind to DNA77,78. In contrast, when H3K4 is trimethylated, an active sign of 

gene expression, DNMT3a cannot be recruited to specific genomic regions. Several 

genome-wide studies showed a strong inverse correlation of DNA methylation and 

H3K4me3 modification to support this hypothesis76,77.  

DNA methylation is essential for regulating tissue-specific gene expression, 

genomic imprinting and X chromosome inactivation77,78. DNA methylation was 

considered a stable tag for long-term repression of gene expression because of the strong 

covalent carbon-to-carbon bond that connects cytosine to a methyl group. Recently, the 

discovery of ten–eleven translocation enzymes showed that DNA demethylation can 

occur through the stepwise oxidation of 5mC to 5-hydroxymethylcytosine, 5-

formylcytosine and finally to 5-carboxylcytosine followed by the removal of the higher 
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oxidized bases by thymine DNA glycosylase and the base excision repair mechanism78. 

Similarly, activation-induced cytidine deaminase/apolipoprotein B mRNA-editing 

enzyme complex is shown to effectively convert 5mC into thymine, thus creating a 

guanine/ thymine  mismatch and inducing the base excision repair pathway to correct the 

base78. Little is known how DNA demethylases are recruited on target genomic regions. 

Crosstalk between DNA methylation with histone modifications is shown to be important 

in regulating transcription.  

1.4.7 Histone methylation  

Histone methylation occurs on arginine and lysine residues and they can be 

monomethylated (me1), dimethylated (me2) or trimethylated (me3) on their ɛ-amine 

group while arginines can only be me181. A variety of histone methyltransferases 

(writers), histone demethylases (erasers), and methylated histone binding proteins 

(readers) have been identified82. Unlike histone acetylation, which neutralizes the positive 

charge on the lysine, no such change in charge is evident with methylation. Instead, the 

methylation site and number of methyl group transferred (whether me1, me2 or me3) can 

determine the status of gene expression59. For example, H3K4me3 on promoters is 

generally associated with active transcription or with genes that are poised for activation, 

whereas H3K9me3, H3K27me3, and H4K20me3 are associated with repressed 

chromatin82. H3K79me2 is important for cell-cycle regulation, whereas H3K36me3 

modification is associated with transcription elongation81,82.  

1.4.7.1  Histone methyltransferases 

To date, numerous histone methyl lysine transferases (HMKTs) have been 

identified. All HMKTs with the exception of disruptor of telomeric silencing-1-like 
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methyltransferase, have an evolutionary conserved Suppressor of Variegation 3-9 

[SU(VAR)3–9], Enhancer-of-Zeste, Trihorax (SET) domain, which contains the catalytic 

site5,50,83. All HMKTs catalyze the addition of methyl groups donated from S-

adenosylmethionine to histones84. Unlike HATs that show no substrate specificity, 

HKMTs tend to be relatively specific enzymes. For example, SET7/9 only mono-

methylates while PR/SET domain 9 (PRDM9) trimethylates H3K443,85.  In general, the 

lysine-binding pocket controls the degree of methylation in the SET domain-containing 

HKMT's86. Methylated histones are recognized by proteins with methyl-binding 

domains48, which include PHD fingers87, Proline-Tryptophan-Tryptophan-Proline 

(PWWP) domains88, ankyrin repeats 89and chromo domains90. 

1.4.7.2  Protein arginine methyltransferases 

There are nine protein arginine methyltransferases (PRMTs) encoded in 

mammalian genomes. These enzymes catalyse three types of arginine methylation — 

monomethylation and two types of dimethylation. Protein arginine methylation is a 

common modification that has been implicated in signal transduction, gene transcription, 

DNA repair and mRNA splicing, among others91. The PRMTs can methylate both 

nuclear and cytoplasmic proteins as well as histone tails. Like other methyl transferases, 

PRMTs also use SAM as a methyl donor and transfer it to the guanidinium side chain of 

arginine (reviewed in 91,92).  

1.4.7.3  Histone demethylases 

Until recently, methylation was considered an irreversible process despite early 

biochemical studies suggesting enzymatic activities that can remove these modifications 

may exist in the cells. However, this dogma of methylation was dismissed with the 
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discovery of LSD1 in 200493. Soon thereafter, several jumonji C (JmjC)-domain-

containing demethylases were identified, and subsequent studies showed that histone 

methylation is in fact reversible94. Since these initial discoveries, an extended family of 

related demethylase enzymes has been identified and their substrate specificities have 

been characterized in detail (reviewed in95–97). Similar to lysine methyltransferases, 

demethylases possess a high level of substrate specificity with regard to their target 

lysine. They are also sensitive to the degree of lysine methylation; for instance, some of 

the enzymes are only capable of demethylating mono- and di-methyl substrates, whereas 

others can demethylate all three states of the methylated lysine95,97.  

1.5 Recruitment of histone regulators on chromatin 

Regulation of how and when histone modifiers are employed to specific histone 

targets is an important area of current research. Numerous ‘reader proteins’ contain 

specific domains that specifically recognize modified histones and employ other 

regulators to the target loci. Acetylated lysines in histones are bound by bromodomains, 

which are often found in chromatin-remodelling complexes62. For example, SWI2/SNF2 

contains a bromodomain that targets it to acetylated histones, which in turn recruits the 

SWI/SNF remodelling complex to rearrange the chromatin in a more active 

conformation62. Methylated lysines are recognized by several domains, including the 

PHD fingers and the so-called Tudor 'royal' family of domains, comprising 

chromodomains, Tudor, PWWP and malignant brain tumor domains53. For instance, 

H3K4me3 – a mark associated with active transcription – is recognized by a PHD finger 

within the inhibitor of growth (ING) family of proteins (reviewed in 98). The ING 
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proteins in turn recruit additional chromatin modifiers such as HATs and HDACs to 

regulate chromatin acetylation. 

Additionally, specific DNA sequences have been identified that are responsible 

for the recruitment of several histone-modifying enzymes. These enzymes directly 

interact with DNA, for example the Drosophila melanogaster Trithorax group (TrxG) 

response elements and the Polycomb group (PcG) response elements, which recruit TRX, 

a H3K4 methyltransferase and  enhancer of zeste homologue 2 (EZH2), a H3K27 

methyltransferase, respectively. TrxG is a heterogeneous collection of proteins that 

function antagonistically against the PcG to activate target gene expression (reviewed 

in79,99). Non-coding RNAs have also been shown to be important for recruitment of 

chromatin modifying complexes100. Furthermore, sequence‐specific DNA‐binding 

transcription factors have been demonstrated to directly target histone modifiers to 

chromatin82.  

1.5.1 Non-coding RNAs recruit complexes onto chromatin 

Over the last few years, numerous studies have revealed examples of long non-

coding RNAs (lncRNAs) involved in targeting several chromatin modification complexes 

to specific genomic locations. lncRNAs are defined as transcripts longer than 200 

nucleotides that do not encode a protein.  lncRNAs have been shown to interact with 

members of the PRC2 complex and LSD1/CoREST/REST complex where they act as a 

modular scaffold and link a histone methylase and a demethylase on target genes100. 

Furthermore, CCAAT/enhancer-binding protein-alpha ncRNA have been demonstrated to 

interact with DNMT1 by forming a stem-loop structure to inhibit DNA methylation101. In 

contrast, lncRNA DNMT1-associated colon cancer repressed lncRNA 1 is found to 
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interact with DNMT1 and enhance DNA methylation at multiple loci without affecting 

DNMT1 protein levels102. 

Recently, loss-of-function studies showed that knockdown of lncRNAs to have 

major consequences on gene expression patterns, comparable to knockdown of some 

known chromatin regulators103. These results strongly suggest that lncRNAs serve to 

modulate the targeting of chromatin modifying complex to specific genomic loci. 

However, future studies will need to investigate the directness of these interactions, and 

determine how lncRNAs confer specificity to highly dynamic chromatin modifying 

complexes.  

Histone marks are associated with distinct transcriptional states, which are 

established through dynamic interplay between histone readers, writers, and 

erasers. Chromo domain protein, Y-like (CDYL) is a highly studied epigenetic reader 

discussed briefly in the subsequent section.  

1.6 The CDY-related gene family 

The chromo domain Y-related (CDY) protein family represents a set of related 

genes discovered in 1999 by Lean et al.104 In humans, the CDY protein family contains 

six proteins (CDY1, CDY1B, CDY2A, CDY2B, CDYL1, and CDYL2). CDY1, CDY1B, 

CDY2A, and CDY2B are four nearly identical genes located on chromosome Y and the 

encoded proteins share more than 96% sequence identity105. The other two members, 

CDYL1 and CDYL2 are autosomal genes, which are located on chromosome 6 and 16 

respectively85. CDYL1 and CDYL2 proteins only share 43% sequence identity. Sequence 

analysis between autosomal proteins and the four “Y” chromosomal proteins showed 

even less conservation105. In humans, the autosomal CDYL genes are ubiquitously 
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expressed, while the CDY genes are only expressed in testis, thus suggesting the CDY 

family of proteins functions in both somatic development and spermatogenesis106.  

1.6.1  Structure, Isoform, and Expression of CDYL 

The CDY family proteins share a N-terminal chromo domain, a central hinge 

region, and a C-terminal enoyl-coenzyme A hydratase/isomerase catalytic domain (also 

known as CoA pocket or CoAP) shown in Fig 3. Crystallization studies of the CDY 

family proteins revealed that CDYL contains three protein molecules per crystallographic 

unit. Also, it is reported that CDYL multimerizes through the CoA pocket, a key step for 

binding methylated histones107. There are three splice variants of CDYL1 namely 

CDYL1a, -b, and –c (Fig 3), which differ in the N-terminal domain107. The CDYL gene 

locus contains 10 exons. CDYL1a isoform is the longest variant generated by splicing of 

the first three to the last six exons. The second splice variant CDYL1b emerges from 

exons 4–10 and a third variant, CDYL1c originates from splicing of exon 4 to exons 6–10 

of the CDYL gene locus.  CDYL1a protein contains extra 62 amino acids in the N-

terminus while CDYL1c lacks the chromo domain region and a 175-aa long part of the 

linker region altogether. Both CDYL1a and CDYL1b isoforms contain a chromo domain 

but only CDYL1b is able to recognize methylated histone lysine residues 

(H3K9me3)85,107. 
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Figure 3. Schematic illustrating the human CDYL isoforms.  

Schematic representation of the protein domain structure of CDYL1 splicing variants a, 

b, and c. All three CDYL isoforms contains a CoA pocket in the C-terminus but only 

CDYL1a and CDYL1b contain a chromo domain in the N-terminus.  
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1.6.2  Binding partners of CDYL1 

CDYL1 is a nuclear protein characterized as a transcriptional corepressor and a 

histone code reader. CDYL1b is the only variant shown to bind methylated histones 

(H3K9me3, H3k27me3). Biochemical studies have identified CDYL1 as a component of 

repressor complexes CtBP and REST/CDYL1/ G9a. CDYL1’s role in CtBP complex is 

still unclear but in the CoREST complex it bridges the interaction between REST and 

G9a and functions as a REST corepressor that facilitates G9a recruitment to REST target 

genes108. Mass spectrometry analysis of Flag-HA-tagged CDYL1 from HeLa nuclear 

extracts revealed MIER1 and MIER2 to be present among 22 other CDYL1 associated 

proteins; the majority of which are involved in transcriptional repression108.  

CDYL has also been shown to bind CoA and HDAC1 and HDAC2 through the C-

terminus CoA pocket 109. Conflicting results have suggested that the CoA pocket of 

CDYL1 possesses HAT activity in the elongation of spermatids during hyper acetylation 

and replacement of histones105. However, the results were not repeated109 and CDYL1 

role as a HAT remains elusive. 

Histone peptide binding assays were performed to characterize the histone-

binding preference of CDYL1. CDYL1 associated strongly with the repressive H3 lysine 

methylation marks, including H3K9me3, H3K27me2, and H3K27me3. In addition, 

CDYL1 is reported to directly interact with EZH2, the catalytic subunit of PRC2, where 

it dramatically enhances the methyltransferase activity of PRC2. Also, genome-wide 

analysis of CDYL targets by ChIP sequencing revealed that CDYL1 and PRC2 share a 

number of genomic targets110,111. 
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Recently, CDYL1 is reported to act as a crotonyl-CoA hydratase to negatively 

regulate histone lysine crotonylation (Kcr), a newly identified histone modification 

enriched at active promoters and potential enhancers in mammalian cells112. The negative 

regulation of histone Kcr by CDYL1 is intrinsically linked to its transcription repression 

activity. Additionally, the authors showed that both the chromodomain and CoAP pocket 

of CDYL1 are required for its negative regulation of Kcr112.  

1.7 Key transcription factors regulating gene expression   

Transcription factors (TFs) are proteins involved in the initiation and regulation of 

gene transcription. Regulation of transcription is the most common form of gene control8. 

The action of transcription factors allows for unique expression of each gene in different 

cell types and during development8. Winged helix/forkhead-box (FOX), Positive 

regulatory domain ( PRDMs) and Restriction element 1 silencing transcription factor 

(REST) are just a few major TFs that will be discussed in brief next as they are important 

to our study.  

1.7.1  Forkhead-box family of proteins 

The winged helix/forkhead-box (FOX) proteins are member of large family of 

transcriptional factors involved in regulating cell growth and differentiation as well as 

embryogenesis and longevity113. The FOX protein contains a FOX domain, a 110-amino 

acid long motif that is conserved from yeast to human and functions as a DNA-binding 

domain114. FOX proteins also contain an extra-FOX protein–protein interaction 

domain115, important for interactions with transcriptional activators, transcriptional 

repressors, or DNA repair complexes114. There are 50 FOX genes in the human genome 

divided into 19 subfamilies116.  
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The subfamily FOXA includes 3 members named FOXA1, FOXA2, and FOXA3, 

which are vertebrate FOX proteins most closely related to Drosophila FOX protein. All 3 

members are shown to regulate the development of a number of endoderm-derived 

organs including liver, lung, pancreas, kidney, and prostate. FOXA control directly or 

indirectly through moderating the expression of a variety of signalling and metabolic 

proteins expressed in the liver117. FOXA can directly bind to the target DNA regions in 

condensed chromatin and remodel its structure, which makes the regulated genes 

available for activation. This activity allows binding of other chromatin modifiers to the 

target gene, which otherwise in the absence of FOXA cannot access their cognate sites 

within DNA118.   

1.7.2 PRDM 

Positive regulatory domains (PRDMs) belong to a structurally related family of 

transcriptional regulators and chromatin modifiers important for driving differentiation of 

a variety of cellular types119. PRDMs are characterised by the presence of at least two 

distinct domains, the zinc fingers and the PR/SET domains (named after the Drosophila 

transcription factors Suppressor of variegation 3–9, Enhancer of Zeste and Trithorax 

(SET) and Positive regulatory domain I-binding factor 1/Retinoblastoma protein-

interacting zinc finger gene 1 (PR) motifs)119–121. There are 17 orthologs of PRDMs in 

primates, which have emerged as key regulators of differentiation modes. Many PRDMs 

are expressed in specific precursor cell populations and are necessary for their 

progression to a fully differentiated phenotype (reviewed in119,122,123). They achieve this 

either by enzymatic activity towards histones or recruitment of interaction partners to 

modify the expression of target genes119,122,124. For example, PRDM1 is involved in the 
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specification of primordial germ cells, forelimb patterning, and reprogramming of 

intestinal enterocytes125. PRDM14 is an important factor in the maintenance of human 

embryonic stem (ES) cells by regulating genes involved in ES cell self-renewal and 

differentiation126. PRDM16 is considered the master regulator of brown fat identity 127and 

recently, PRDM4 has been demonstrated to promote differentiation of brown fat120.  

So far only three PRDMs have demonstrated to possess intrinsic HMTase activity 

despite all possessing SET domains. Recombinant PRDM2 and PRDM8 were both 

shown to act as repressive HMTases by catalyzing H3K9me2 from native H3 124,128, 

whereas PRDM9 catalyzes the activating histone mark H3K4me3 83. Although most 

PRDMs lack intrinsic HMTase activity, they are involved in epigenetic regulation of 

gene expression through the formation of chromatin remodeling complexes containing 

G9a and HDAC1-3119. Additionally, PRDMs act as a scaffold via their C2H2 zinc-fingers 

tethering transcription factors to target gene promoters by recognizing a specific DNA 

consensus sequence to alter expression119,122.  

PRDM4 is also known as Schwann cell factor 1 (SC-1) and associates with 

HDACs1-3 and p75129. Recently, PRDM4 was shown to recruit PRMT5, an arginine 

methyltransferase that catalyzes dimethylation of histone H4 arginine 3 (H4R3me2). This 

modification is often associated with undifferentiated cortical neural stem cells 

(NSCs). Moreover, researchers found that high levels of SC1-PRMT5 complex are 

required in NSCs to maintain the proliferative capacity and “stem-like” cellular state. 

Knockdown of PRDM4 in NSCs lead to precocious neuronal differentiation suggesting 

PRDM4s role in repression of neuronal genes122.  
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1.7.3 REST 

Restriction element 1 silencing transcription factor (REST), also known as 

neuron-restrictive silencer factor (NRSF) is a zinc finger protein that represses neuronal 

genes in non-neuronal tissues. REST was discovered in 1995 by two independent groups 

who showed REST to function as a transcriptional repressor by binding to a conserved 

23bp motif known as repressor element 1 (RE1) in a large number of neuronal genes 

within their regulatory regions130,131. REST has been shown to be an important regulator 

for the establishment of neuronal specificity. It regulates many target genes in stem cells, 

non-neural cells, and neurons, which are involved in neuronal differentiation, axonal 

growth, vesicular transport and release. REST is required to repress more than 2000 

neuron-specific genes that have been examined to date in non-neural tissues and 

undifferentiated neural precursors.  

REST is highly expressed in nonneural cells and decreases with neurogenesis but 

is not fully turned off in mature neurons as expression of REST is detected in the adult 

brain. REST is highly regulated by ncRNAs, including miR-124a, miR-9, and miR-132, 

which is exclusively expressed in the post mitotic neurons. REST expression is also 

controlled by ubiquitin mediated proteolysis via a Skp1-Cul1-F-box protein complex 

containing an E3 ubiquitin ligase. Additionally, REST activity can be regulated by 

translocation of REST in or out of the nucleus132. The authors found that the wild-type 

Huntington protein functions in the cytoplasm of neurons to regulate the availability of 

REST to its nuclear RE1 binding site and that this control is lost in the pathology of 

Huntington’s disease. Furthermore, it has been reported that the canonical Wnt pathway 

directly controls REST expression133.  
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 The mechanisms underlying how REST regulates stem cell differentiation are not 

entirely understood. It inhibits target genes expression by engagement of corepressors, 

SIN3 and CoREST, which in turn recruit HDACs and other chromatin modifying 

enzymes to the promoters of REST-regulated genes to facilitate repression134. Gupta et 

al.135 demonstrated that down regulation of REST in mouse ES cells induced neuronal 

differentiation. The results showed that although control ES cells required induction by 

retinoic acid (RA) to differentiate efficiently into neurons, suppression of REST was 

sufficient to drive the ES cells down the neuronal lineage even in the absence of RA. 

Furthermore, Gao et al.136 reported that in cultured NSCs, knockdown of REST is shown 

to induce the expression of the pro-neuronal genes neuronal differentiation 1 and Tubulin 

3, suggesting that REST knockdown is sufficient to derepress target genes, even in the 

absence of neuronal induction. REST null mice are embryonic lethal at E9.5, exhibiting 

delayed development and a malformed telencephalon137. However, silencing REST does 

not show widespread precocious expression of REST target genes suggesting there are 

other factors that play a role in regulating transcription of neurogenesis genes. REST 

conditional knockout mice revealed a vital role of REST in adult NSCs is to maintain 

them in a quiescent state by inhibiting the neurogenic program136.  

Recent findings reveal that REST also play a role in fine-tuning of genes 

important to synaptic plasticity138. N-methyl-D-aspartate receptors (NMDARs) are 

critical to synaptogenesis, neural circuitry and higher cognitive functions such as learning 

and memory. A hallmark feature of NMDARs is an early postnatal developmental switch 

from those containing primarily GluN2B to primarily GluN2A subunits. The authors 
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reported that REST repressed GRIN2B expression via chromatin remodelling, as the 

switch from GluN2B to GluN2A is important to synaptic function. 

REST has also been shown to function not only as a transcriptional repressor but 

also act as an activator to induce neuronal differentiation139. Kuwabara et al. reported that 

the RE1 dsRNA activates expression of neuron-specific genes through interaction with 

REST transcriptional machinery140. The detailed mechanisms underlying how REST 

regulates its target genes remains elusive, in part due to its functional complexity and 

thousands of target genes. It is also unclear how REST selectively represses distinct 

target genes in different cellular contexts, and why changes in REST expression or 

activity result in changes in expression of only a subset of target genes. Thus, future 

studies investigating its dual roles as repressor/activator and interacting partners will be 

very important for revealing its various functions under different conditions.  

There are four isoforms of REST produced by alternative splicing. The canonical 

isoform of REST protein contains three functional domains: a DNA binding domain 

consist of eight zinc-finger motifs that binds to the RE1 motif, and two independent 

repressor domains, one located at the N- and one at the C- terminus of the protein. The N 

terminus of REST recruits the SIN3A/B HDACs complex and the C-terminal repression 

has been shown to recruit a distinct HDAC complex via its interaction with CoREST141. 

Isoform 2 is missing amino acids 330-1097 and differs in amino acid 301-313; 

ERPYKCELCPYSS → KRSFLVHKFSSLF. Isoform 3 is made up of 1-329 amino acid 

residues while isoform 4 is different from the canonical isoform by missing amino acid 

residues 304-326. Splice variant REST4 expression is seen in mice during seizures as 

well as in small cell lung cancers. It is a poor repressor of transcription because of 
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reduced DNA binding ability and loss of at least one repression domain, resulting in the 

overexpression of REST target genes and imparting a neuroendocrine phenotype on the 

cells142. 

 Several studies have shown that REST is important for normal brain function and 

that its overexpression or mutation is potentially involved in several brain disorders 

including global ischemia, stroke, epilepsy, Alzheimer's and Huntington's disease 

reviewed in 133,143. In addition to regulating neuronal development, REST is also shown 

to function as a tumour suppressor in epithelial tissues. Consequently, inactivating 

mutations, gene deletions, epigenetic gene silencing, and alternative splicing 

of REST have been associated with epithelial cell transformation and malignancies such 

as breast cancer142,144. 

 

1.8 Mesoderm Induction Early Response  (MIER) 

The MIER family consists of three genes encoding related proteins with 

conserved primary sequence, particularly in the ELM2 and SANT domains145. MIER1 is 

the prototypical member, discovered in our lab. MIER2 and 3 were sequenced by the 

NIH Mammalian Gene Collection Program146, and then named based on homology in 

their ELM2 and SANT domains to MIER1.  

1.8.1  MIER1 

MIER1 is a nuclear protein, first identified in Xenopus lavis in our lab as a 

fibroblast growth factor-activated transcriptional regulator147. Human MIER1 is a single 

copy gene on chromosome 1 that spans 63 Kb and consist of 17 exons148. It gives rise to 

multiple isoforms as a result of alternative promoter usage and splicing. The resulting 
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MIER1 protein isoforms vary in their N- and C-terminal sequences but share a common 

internal region that contains the functional domains (Fig 4). MIER1 is highly conserved 

in evolution. Human MIER1 shares 95% identity at a sequence level with the mouse 

MIER1149.  

There are two MIER1 isoforms that have distinct N-termini, which is the 

consequence of using two alternate promoters, P1 and P2. MIER1-3A is transcribed from 

P1, includes a cassette exon 3A resulting in an extended N-terminus, which contains a 

bona fide nuclear export signal (NES)149. The C-termini variants, MIER1α and MIER1β 

result from alternate inclusion of a facultative intron and therefore differ in both size and 

sequence. PCR analysis using multiple breast cell lines has shown that the β variant is 

more abundant than the α isoform150. The α variant C-terminus is made of 23 amino acids 

(aa) including a classic LXXLL motif for interaction with nuclear hormone receptors, 

including ERα151. Previously, our lab has shown that MIER1α interacts with ERα in 

MCF7 cells and MIER1α overexpression inhibits estrogen-stimulated anchorage-

independent growth. The β variant, which results from inclusion of the facultative intron, 

contains 102 aa including a functional nuclear localization signal (NLS) illustrated as 

schematic in Fig 4C148,152. 



Figure 4. Schematic illustrating the human MIER1 gene and isoforms.  

(A) MIER1 structure: Exons are shown as red vertical lines and introns as horizontal 

lines; exon numbers are indicated below each schematic. The pink bar indicates the 

facultative intron 16 and the position of the alpha and beta carboxy-terminal coding 

regions are indicated. The three alternate starts of translation, ML-, MF- and MAE- are 

indicated as are the three polyadenylation signals (PAS): i, ii and iii. (B) Schematic 

illustrating the isoforms of human MIER1. Alternate 5' ends are generated from 

differential promoter usage (P1 or P2) or alternate inclusion of exon 3A. This leads to 

three alternate starts of translation, indicated as ML-, MF- and MAE-, and produces three 

distinct amino termini. The four variant 3' ends, a, bi, bii and biii, produced by alternative 

splicing or alternate PAS usage, result in different size transcripts. (C) Schematic 

illustrating the common functional domains of the MIER1 isoforms and the variant 

amino- (N-) and carboxy- (C-) termini. Transcription from the P1 promoter produces 

proteins that either begin with M-L- or with the sequence encoded by exon 3A 

(MFMFNWFTDCLWTLFLSNYQ). Transcription from the P2 promoter produces a 

protein that begins with M-A-E-. MIER1 isoforms have common domains such as acidic 

stretches, ELM2 and SANT. The two alternate C-termini, alpha and beta, result from 

removal or inclusion and read-through of intron 16, respectively. The alpha C-terminus 

contains a classic LXXLL motif for interaction with nuclear receptors; the beta C-

terminus contains a nuclear localization signal (NLS). 
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1.8.2  MIER2 

Human MIER2 is a single copy gene on chromosome 19 that spans 43 Kb and 

consist of 14 exons. A single transcript of 545 aa long is transcribed. MIER2 contains a 

nuclear localization signal between 244aa-253aa according to NLS prediction 

software153. Recently, we have demonstrated MIER2 to localize mostly in the nucleus but 

also significant cytoplasmic expression was detected145.    

1.8.3  MIER3 

Human MIER3 is also a single copy gene that spans 56 Kb and consist of 13 

exons. It gives rise to 5 isoforms as a result of alternative splicing. Isoform 1 has been 

designated the canonical sequence; isoform 3 differs from this sequence by a single 

amino acid deletion (aa277) in the ELM2 domain. Isoform 2 contains a 5aa insertion near 

the N-terminus, while isoform 4 is missing the first 63aa. Lastly, Isoform 5 is a truncated 

variant containing only the N-terminal 119aa, missing both the ELM2 and SANT 

domains. According to NLS prediction software153, MIER3 encodes a nuclear 

localization signal between 477aa-485aa and we confirmed that indeed MIER3 localizes 

exclusively in the nucleus145.  

1.8.4    MIER structure, function, and expression 

The three MIER family members and their isoforms share a number of features 

with other transcriptional corepressors including the ELM2 domain, and a SANT 

domain149,154,155.  

1.8.4.1  The ELM2 domain  

The ELM2 (EGL27 and MTA1 homology) domain was first discovered in EGL-27, a 

Caenorhabditis elegans protein characterized to play an important role in pattern 
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modulation during embryonic development156. The ELM2 domain is highly conserved 

through evolution and our lab was the first to show a functional role through binding to 

HDAC 1 and HDAC 2157. In MIER1, the ELM2 domain was shown to recruit histone 

HDAC1 and 2 and repress transcription. In addition, MIER1 was discovered to bind 

CBP, inhibiting its HAT activity158. The N-terminal region aa 1-283 of MIER1, which 

includes the ELM2 domains, is responsible for this interaction. Similarly, other 

corepressors such as MTA1-3159 and RCOR1-324 also recruit HDACs through their 

ELM2 domain. Interestingly, most ELM2 domain-containing proteins also possess a 

SANT domain immediately downstream, implying a structural and/or functional 

relationship between these two motifs. 

1.8.4.2  The SANT domain 

The SANT domain is a small highly conserved module made up of ~ 50 amino 

acid residues immediately downstream of the ELM2 domain160. The SANT domain was 

initially defined in the transcriptional factors SWI3, ADA2, N-CoR, and TFIIIB; hence 

the acronym “SANT”160. Subsequently, the SANT domain was found in the subunits of 

many chromatin-remodelling complexes. High-resolution X-ray structure of a SANT 

domain revealed tandem repeats of three α-helices that are arranged in a helix–turn–helix 

motif 160. The SANT domain was first identified based on its homology to the DNA 

binding domain (DBD) of c-Myb, which also consisted of tandem repeats of three α-

helices161. Unlike the DBD of c-Myb, the SANT domain does not bind DNA. Crystal 

analysis of the structure of the c-myb-DNA complex identifies several key residues 

within the third α helix to be involved in DNA interactions, which are not conserved 

within the SANT domain161. In contrast, the SANT domain of ADA2P was demonstrated 
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to interact with histone tails. Also, biochemical analysis of MTA1/CHD4 interactions 

suggests that the SANT containing protein MTA1 acts as a scaffold for NuRD complex 

assembly27. MTA1 is crucial in recruitment of multiple proteins to the target gene loci to 

modulate histone tails to repress transcription. In MIER1, the SANT domain is important 

for interactions with transcription factor specificity protein 1 (SP1)162. SP1 is a sequence-

specific transcription factor that binds GC and GT boxes to activate a wide range of viral 

and cellular genes (reviewed in 163).  Our lab demonstrated that MIER1 via the SANT 

domain formed a complex with SP1 and this interaction interfered with SP1 recognition 

and binding to GC boxes and thus resulted in repression of its own promoter in an 

HDAC-independent manner162. Additionally, MIER1 was unable to bind DNA directly, 

which is consistent with known literature that SANT domain of yeast SWI3P, ADA2P, 

AND RSC8P does not involve DNA binding160.  

1.8.4.3  MIER1 expression 

PCR analysis of the MIER1 in human tissues revealed that the β isoform is more 

widely expressed and much more abundant than the α isoform152. The expression was 

tested in 23 tissues including the heart, placenta, liver, testis, ovary, colon, peripheral 

blood, leukocyte, stomach, thyroid, spinal cord, lymph node and adrenal gland and 

testis152.  The results showed MIER to be present in all 23 tissues but more abundantly in 

the testes.   

An immunohistochemical study of the MIER1α protein expression pattern in 

human tissues revealed an expression pattern predominantly in reproductive and 

endocrine tissues164. The most intensely stained tissues/organs included ovary, testis, 

pancreas, adrenal gland and pituitary. A few non-endocrine tissues/cells consistently 
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displayed intense immunoreactivity; these included neuronal cell bodies in several 

regions of the brain and cardiac muscle fibers. Additional moderate staining was 

observed in the liver and endothelial lining of blood vessels, weak staining in the lungs 

and kidneys while the remaining tissues/organs were negative164. The subcellular 

localization of MIER1α was cytoplasmic in all tissues examined, except in a oocytes, 

mammary ductal epithelia and germinal epithelia, where MIER1α was localized in the 

nucleus164. Immunohistochemical analysis of MIERα expression pattern in normal human 

breast and breast carcinoma samples revealed no difference in expression level but a 

dramatic shift in subcellular localization, from nuclear to cytoplasmic, during progression 

to invasive carcinoma151. MIER1α has been shown to interact with ERα in vitro and 

regulated overexpression in breast carcinoma cells resulted in inhibition of anchorage-

independent growth, which suggested MIER1’s role in breast cancer151. At present, 

there are no published data of MIER2 or 3 expression profiles. 

1.8.5  MIER binding partners 

MIER1 functions as a transcriptional corepressor by recruiting HDAC1 and 2 

through the conserved ELM2 domain157. Also, MIER1α association with HDAC1 and 2 

is key for its nuclear localization, as stated earlier MIER1α does not contain a NLS and 

depends on “piggyback” mechanism to get shuttled between cytoplasm and nucleus154. 

Also, MIER1 was shown to physically associate with SP1 through the SANT domain and 

repress its own expression by interfering SP1 binding to the promoter162. Blackmore et 

al.158 showed MIER1 to interact with CBP via the N-terminal half (amino acids 1–283) of 

MIER1, which includes the N-terminus and ELM2 domain. CBP is a coactivator that is 

shown to possess histone HAT activity.  
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Furthermore, our lab has shown MIER1α to interact with ERα and inhibit 

estrogen-stimulated growth of breast carcinoma cells. As previously discussed, MIER1α 

contains an LXXLL motif, important for interactions with nuclear receptors. McCarthy et 

al.164 showed MIER1α to interact with ERα in the presence or absence of estrogen in 

HEK293 and MCF7 cell lines. Also, overexpression of MIER1a in T47D breast 

carcinoma cells resulted in inhibition of estrogen-stimulated anchorage-independent 

growth, suggesting MIER1α’s role in regulating breast carcinoma cell proliferation. 

Furthermore, immunohistochemical analysis of normal breast tissue and breast carcinoma 

revealed a dramatic shift from nuclear to cytoplasmic localization of MIER1α during 

breast cancer progression. However, the molecular mechanisms of MIER1α localisation 

in breast cancer cells and its role in tumour progression to an invasive phenotype is still 

unclear.  

Additionally, MIER1 has been shown to interact with several chromatin 

regulators including HDAC1 and 2157, CBP162, G9a165, CDYL108, and more recently 

BAHD1155. However, the role of MIER1 binding to these regulators is not yet defined. 

Very little is known about MIER2 or MIER3 proteins and function. Both are predicted to 

be nuclear proteins based on sequence homology with MIER1. Two large-scale 

proteomic/interactome studies have identified MIER1, 2, and 3 proteins in association 

with HDAC1 and/or 263,166 but the functional role of MIER family members in these 

transcriptional repressive complexes is still unclear. As mentioned earlier, it is shown that 

other proteins with ELM2-SANT domains function as scaffolds linking TFs with 

chromatin-modifying enzymes to control gene expression by altering chromatin 

structure22,31.  



 
 

42 

1.9 Implication of chromatin regulators in disease  

Modifications to DNA and histones are dynamic processes that are maintained by 

chromatin-modifying enzymes in a highly regulated manner as briefly outlined 

previously. Consequently, abnormal expression profiles or mutations in chromatin 

regulators can have adverse health effects including cancer45,48. For instance, chimeric 

fusion proteins such as promyelocytic leukemia-retinoic acid receptor, promyelocytic 

leukemia zinc finger-retinoic acid receptor α, and acute myeloid leukemia 1-ETO are 

common in leukemia50. HDACs have been shown to recruit to these genes and mediate 

aberrant gene silencing, which contributes to leukemogenesis167. Importantly, a wide 

range of natural and synthetic compounds have been identified that are able to inhibit the 

activity of HDACs primarily through chelation of the zinc in the catalytic pocket168.  

Similarly, translocations, coding mutations, and/or overexpression in a large 

number of HKMT, including multiple myeloma SET domain, EZH2, and mixed lineage 

leukemia family members have been demonstrated in many different cancers99. 

Overexpression of EZH2 is evident in many cancers including prostate, breast, bladder, 

and melanomas and is associated with worst prognosis82,169. Moreover, EZH2 is critical 

for cancer cell proliferation and survival.  Therefore, EZH2 is currently considered a 

promising drug target, and multiple inhibitors of EZH2 have been developed, some of 

which are in clinical trials169. These inhibitors block the activity of EZH2 by binding to 

the SET domain, active site of the enzyme.  

Similarly, human DNMT enzymes are overexpressed in cancers o colon, breast, 

prostate, liver, and in leukemia, which may partially account for the hypermethylation of 

promoter CpG-rich regions of tumor suppressor genes in a variety of malignancies77. 
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Very little is known about MIER2 or MIER3 proteins and function. Both are 

predicted to be nuclear proteins and function as transcriptional corepressors. These 

characteristics are postulated onto these proteins based on the presence of functional 

domains, ELM2 and SANT also present in MIER1.  

1.10 Hypothesis 

In this thesis, I have begun to characterize MIER2 and MIER3 and compare them 

to MIER1α. I hypothesized that since both MIER2 and MIER3 have highly conserved 

ELM2 and SANT domains, then they would have the same subcellular localization, 

interacting partners in common and function as transcriptional corepressors.  

1.11 Objectives 

1. MIER1 has been well characterized and is known to function as a transcriptional 

repressor through its ability to recruit HDAC1 and 2. Little is known about 

MIER2 or MIER3 function and no study characterizing these two proteins has 

been published. The rationale to investigate MIER2 and MIER3 subcellular 

localization, their potential association with each other, their interaction with 

HDAC1 and 2, the activity of associated deacetylases and mapped key residues 

for HDAC recruitment was to determine whether the MIER proteins have 

redundant, overlapping or unique functions.  

2. MIER1 and 2 are among several other transcriptional repressor associated 

proteins identified in a mass spectrometric analysis of CDYL. CDYL is an 

important chromatin regulator shown to interact with HDAC1/2. I investigated the 
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association of CDYL with the MIER family; mapped key residues for CDYL 

interaction, and explored their function in the repressor complex. 

3. MIER1 is a well-characterized member shown to function as a transcriptional 

corepressor. While I demonstrated that MIER2 interacts with HDAC1/2 

suggesting a role as a transcriptional corepressor, the function of MIER3 is 

largely unknown. Moreover, MIER1-3 target genes are largely unknown. ChIP-

Seq is a powerful method combining chromatin immunoprecipitation (ChIP) with 

massively parallel DNA sequencing to identify genome-wide DNA binding sites 

for proteins of interest. To understand how MIER proteins interact with DNA 

along with other transcriptional regulators is essential for fully understanding their 

role in biological processes. As a result, to identify MIER protein enrichment on 

target genes in the entire genome, I analyzed ChIP-Seq datasets of MIER proteins 

from publicly available database of the ENCODE/HAIB project. 

4. MIER1 and MIER2 are enriched on REST target genes and co-

immunoprecipitation assays revealed that both MIER1 and MIER2 bind REST. 

As a result, I utilized mouse pluripotent P19 cells to identify the role of MIER1 

and MIER2 in neurogenesis.  
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Chapter 2: Materials and Methods 

2.1 Cell lines and culture conditions 

The MCF7 human breast adenocarcinoma (HTB22™), Human Embryonic 

Kidney 293 (HEK293) (CRL 1573™) and HeLa cell lines (CCL-2™) were obtained 

from the American Tissue Culture Collection (ATCC). All cell lines were cultured in 

high glucose DMEM (Thermo Fisher Scientific) containing 10% serum (7.5% calf serum 

(Thermo Fisher Scientific) plus 2.5% fetal bovine serum (Thermo Fisher Scientific) and 

1mM sodium pyruvate (Thermo Fisher Scientific). The P19 mouse embryonal carcinoma 

cell line (CRL1825TM) and the HepG2 human hepatocellular carcinoma cell line (HB 

8065 TM) were also obtained from the ATCC. These two cell lines were cultured in 

MEM-α (Thermo Fisher Scientific) containing 10% fetal bovine serum (Thermo Fisher 

Scientific). Cells were grown a humidified 37°C incubator with 5% CO2. 

2.2 Plasmids and constructs 

1. The human MIER1 gene structure, the sequence of its transcripts and the myc-tag 

vector (pCM3+MT) containing full-length MIER1A have been described previously 152. 

Briefly, an N-terminal myc-tagged construct was produced by subcloning the MIER1Α 

(GenBank accession no. AY124187) coding region with start and stop codon into the 

BamH1 and Bgl II sites of the pCS3+MT. A N-terminal myc tag was chosen to clone all 

MIER constructs because there is no known functional domain at this end and N-

terminal tag was what was available at the time and testing did not indicate any 

interference with known functions of MIER1. MIER1A was subcloned with start and 

stop codon into the EcoRI and XhoI sites of the pCMV-FLAG vector (Clontech 

Laboratories) to produce an N-terminal FLAG-tagged MIER1α protein. 
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MIER2 cDNA (GenBank accession no. BC028203) in pCMV-SPORT6 was 

purchased from Dharmacon. An N-terminal myc-tagged construct was produced by 

subcloning the MIER2 coding region with start and stop codon into the EcoRI and XbaI 

sites of the pCS4+MT vector 154 by PCR, using the following 

primers: 5’-GCGAATTCACCATGGCGGAGGCCTCCTCGC-3’(forward);  

5’-GCTCTAGATCAGCAGGTCATCACGTTACAG-3’(reverse). An N-terminal FLAG-

tagged construct was produced by subcloning the MIER2 coding region with start and 

stop codon into the EcoRI and HindIII sites of the pCMV-FLAG vector by PCR using the 

following primers: 5’-GCGAATTCACCATGGCGGAGGCCTCCTCGC-3’(forward);  

5’-GCAAGCTTTCAGCAGGTCATCACGTTACAG-3’(reverse). 

MIER3 cDNA (GenBank accession no. NM_152622.3) in the pReceiver-M51 

plasmid was purchased from GeneCopoeia. An N-terminal myc- or FLAG-

tagged MIER3 construct was produced by subcloning the coding region with start and 

stop codon into the EcoRI and XhoI sites of the pCS4+MT vector or pCMV-FLAG 

vectors by PCR using the following 

primers: 5’-GCGAATTCACCATGGCGGAGGCTTCTTTTGG-3’(forward);  

5’-GCCTCGAGTCACTCAGAGTGTAGGGC-3’(reverse). 

MTA1 cDNA in the pEnter vector was purchased from ViGene Biosciences and 

subcloned by PCR with start and stop codon into the EcoRI and XhoI sites of the 

pCS4+MT and pCMV-FLAG vectors using the following 

primers: 5’-GCGAATTCACCATGGCCGCCAACATGTACAGG-3’(forward);  

5’-GCCTCGAGCTAGTCCTCGATGACGATGGG-3’(reverse). 
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MIER2 deletion constructs were produced by PCR using the following primers: 

(MIER2-∆1) 5’-GCGAATTCACCATGGCGGAGGCCTCCTCGC-3’(forward),  

5’-GCTCTAGATCACACAGAGCCCATCTCGGATC-3’(reverse); 

(MIER2-∆2) 5’-GCGAATTCACCATGTGGAGTGAAGAGGAGTGCAGG-3’(forward)

, 5’-GCT CTA GAT CAG CAG GTC ATC ACG TTA CAG- 3’(reverse); 

(MIER2-∆3) 5’-GCGAATTCACCATGAAGAAGGAGATCATGGTGGGA-3’(forward)

, 5’-GCTCTAGATCACTTCTTCCACAGGTAGTA-3’(reverse); 

(MIER2-∆4) 5’-GCGAATTCACCATGAAGAAGGAGATCATGGTGGGA-3’(forward)

, 5’-GCTCTAGATCAAGCACAGAGCCCATCTCGGAT-3’(reverse). PCR products 

containing a start and stop codon were ligated into the EcoRI and XbaI sites of the 

pCS4+MT vector to produce N-terminal Myc-tagged proteins. 

MIER3 deletion constructs were produced by PCR using the following primers: 

(MIER3-∆1) 5’-GCGAATTCACCATGGCGGAGGCTTCTTTTGG-3’(forward),  

5’-GCCTCGAGTCATGCAGTCATTCCTTG-3’(reverse); 

(MIER3-∆2) 5’-GGGAATTCACCATGTGGACGGAAGAAGAATGC-3’(forward),  

5’-GCCTCGAGTCACTCAGAGTGTAGGGC-3’(reverse); 

(MIER3-∆3) 5’-GGGAATTCACCATGAGGAAGGAAATAATG-3’(forward),  

5’-GCCTCGAGTCATTTCTTCCACATATA-3’(reverse); 

(MIER3-∆4) 5’-GGGAATTCACCATGAGGAAGGAAATAATG-3’(forward),  

5’-GCCTCGAGTCATGCAGTCATTCCTTG-3’(reverse). PCR products containing a 

start and stop codon were ligated into the EcoRI and XhoI sites of the pCS4+MT vector 

to produce N-terminal Myc-tagged proteins. 
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CDYL1B cDNA (GenBank accession no. NM_004824) in pCMV-SPORT6 was 

purchased from Dharmacon.  An N-terminal myc- or FLAG-tagged CDYL1B construct 

was produced by subcloning the coding region with start and stop codon into the EcoRI 

and XhoI sites of the pCS4+MT vector or pCMV-FLAG vectors by PCR using the 

following primers: 5’-GCGAATTCACCATGATGGCTTCCGAGGAG-3’(forward);  

5’-GCCTCGAGCTAGAACTCATCGATCTTCCT-3’(reverse). 

CDYL1C cDNA (GenBank accession no. BC119682.2) was purchased from 

PlasmID. CDYL1C was subcloned from pCR-BluntII- TOPO into the EcoRI site of the 

pCMV-FLAG vector to produce an N-terminal FLAG-tagged MIER1α protein. 

Several myc-tagged mutant MIER1 and MIER2 constructs, each containing a 

single point mutation were produced using the QuikChange site-directed mutagenesis kit 

(Stratagene), using the appropriate primers listed in the table 8.  

All plasmids were prepared using the NucleoBond Endotoxin-free Maxi Plasmid 

kit (Clontech Laboratories), according to the manufacturer’s instructions. The 

sequences/mutations were confirmed by automated dideoxynucleotide sequencing of both 

strands (DNA Sequencing Facility, The Centre for Applied Genomics, The Hospital for 

Sick Children, Toronto, Canada). 
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Table 2: Antibodies used for Western, CoIP and Immunofluorescence (IF) 

Protein Host/Type Manufacturer  Catalogue 

number  

9E10 anti-myc tag Mouse monoclonal In house production  

HDAC1 Polyclonal rabbit  Santa Cruz Biotechnology H-51 

HDAC1 Mouse monoclonal  Santa Cruz Biotechnology 10E2 

HDAC2  Polyclonal rabbit  Santa Cruz Biotechnology H-54 

Flag M2 Mouse monoclonal Sigma F1801 

CDYL Rabbit polyclonal Abcam Ab5188 

G9a Rabbit polyclonal Millipore 07-551 

REST Rabbit polyclonal Millipore 09-019 

Alexa Flour-488  Jackson ImmunoResearch 

Laboratories 

715-546-151 

HRP-labeled sheep 

anti-mouse 

 GE Healthcare 

 

45000679 

 

HRP-labeled donkey 

anti-rabbit 

 GE Healthcare 

 

45000682 

 

HRP-label goat-anti 

mouse light chain 

specific 

 Jackson ImmunoResearch 

Laboratories 

115-035-174 

 

HRP-label mouse-

anti rabbit light chain 

specific 

 Jackson ImmunoResearch 

Laboratories 

211-032-171 
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2.3 Transient transfection 

MCF7 cells were transfected by electroporation using the Neon® electroporation 

device (Thermo Fisher Scientific) and the following settings: 1000V, 30ms, 2 pulses. 

3x105 MCF7 cells were mixed with 0.5μg myc-tagged plasmid and loaded into a 10μl tip 

for electroporation. HEK293 cells, Hep G2 cells, P19 cells, and HeLa cells (5x105 cells) 

were transfected with 0.5μg plasmid using transfection reagent Mirus TransIT-LT1 

(Medicorp) in a 3:1 ratio of reagent:DNA (v/w), according to the manufacturers’ 

protocol. Transient transfection was utilized to carryout experiments in MCF7 and 

HEK293 cells, as transfection efficiency is high. After transfection, cells were plated at a 

density of 4x104/well in Falcon 8-well culture slides (BD BioSciences) for confocal 

analysis or at 5x105 /well in a 6-well dish for co-immunoprecipitation (co-IP) and 

Western analysis. Transfected cells were cultured for a total of 48hr before processing for 

analysis. 

2.4 Immunofluorescence, confocal microscopy and analysis 

Transfected cells were fixed for 10 min with 4% paraformaldehyde/phosphate-

buffered saline (PBS) and permeabilized with 0.1% Triton X-100/PBS for 15 min. Non-

specific sites were blocked with 5% serum (the animal in which the secondary antibody 

was raised in) in PBS for 1hr before overnight incubation with specific primary antibody 

(1:200 dilution) at 4°C. Subsequently, the cells were incubated with appropriate 

secondary antibody (1:400) for 1hr at RT. Nuclei were counterstained with 2.5μg/ml 4′, 

6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) for 1hr. All slides were mounted in 

10% glycerol/PBS. Cells were examined under an Olympus FluoView FV1000 confocal 

microscope.  
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Fluorescence images for localization study were obtained by sequential z-stage 

scanning in two channels (DAPI and Alexa Fluor-488); z-stacks were compiled into 

individual images. Quantitative analysis of confocal z-stacks was performed using Image 

J software v1.50g, as described in149. Briefly, cell outlines from compiled z-stacks were 

traced and the sum of the pixel values within the outlines in the 488 channel was 

determined. After subtracting the background, this value was used as the corrected whole 

cell MIER fluorescence. The sum of the pixel values for nuclei was determined in the 

same way and used as corrected nuclear MIER fluorescence. The nuclear value was 

subtracted from the whole cell value to obtain cytoplasmic MIER fluorescence. For each 

construct, the average nuclear and cytoplasmic values from 30–40 cells was calculated. 

Statistical analysis was performed with GraphPad software, using a two-sided Fisher’s 

exact test. 

2.5 Co-immunoprecipitation (co-IP) and western blot analysis 

Transfected cells were washed once with 1xPBS and lysed on ice for 30 min in 

1xIP buffer (1% Triton X-100, 150 mM NaCl, 20 mM Tris-Cl pH7.5, 1 mM EDTA, 

0.02% Sodium Azide, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1% protease 

inhibitor cocktail). Cell lysates were passed 10 times through a 26-gauge needle then 

centrifuged at 12,000xg for 10 min at 4°C. The supernatants were incubated overnight at 

4°C with appropriate antibody (1:100 dilution). 50μl of 50% slurry of either Protein A-

agarose beads (Pierce Biotechnology) or Protein G-agarose beads (EMD Millipore) was 

added to each sample and incubated for 1hr at 4°C. After incubation, the beads were 

washed 3 times with ice-cold 1xIP buffer and once with 150mM NaCl; bound proteins 

were solubilized in 30μl of 1.5x sodium dodecyl sulphate (SDS) sample buffer (50mM 
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Tris-Cl pH6.8, 2% SDS, 5% β-mercaptoethanol, 10% glycerol, 0.1% bromophenol blue) 

and analyzed by SDS-PAGE-Western. Expression levels were determined by Western 

blot analysis using extracts of cells solubilized in SDS sample buffer. 

Protein samples were separated by 7.5% or 4-20% polyacrylamide gels and 

transferred onto 0.2μm PVDF membranes (Trans-Blot TurboTM Transfer Pack; Bio-Rad 

Laboratories) using the Trans-Blot TurboTM system (Bio-Rad Laboratories) set at 2.5A, 

25V for 10 min. The membranes were incubated in a blocking solution (tris-buffered 

saline (TBS) containing 5% non-fat skim milk and 0.5% Tween-20) for 1 h at room 

temperature to reduce nonspecific adsorption of antibodies. After washing with Tris 

buffered saline with Tween® 20 (TBST) (TBS buffer containing 0.5 % Tween-20), the 

membranes were incubated with diluted primary antibodies in TBST for 1 h at room 

temperature or overnight at 4 C. After the membranes were washed with TBST, they 

were treated with diluted secondary antibodies in TBST for 1 h at room temperature. The 

treated membranes were visualized by using the Clarity western ECL substrate (Bio-Rad 

Laboratories). 

Densitometric quantitation of the interaction bands co-immunoprecipitating with 

MIER1, 2 and 3 was performed using Image J v1.50g. The band intensity in each 

immunoprecipitate was measured and the background subtracted. To account for 

variability in the expression level of the transfected protein used for immunoprecipitation 

I normalized the values of the immunoprecipitated (IPed) band to the level of expressed 

protein as follows: the expressed protein band was measured and the background 

subtracted and the ratio of IPed band/ expressed band was determined. The ratio of 

HDAC:MIER, CDYL:MIER and MIER:REST was determined for the 
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immunoprecipitate in each replicate experiment and the average ratio + S.D. was 

calculated. For experiments analyzing the effect of MIER1/2 point mutations on CDYL 

interaction, the value for each band was corrected for the variability in expression levels 

as described in the paragraph above and then the ratios were normalized to the value 

obtained with wild type MIER1/2 and plotted as bar graphs.   

2.6 [3H]-acetate labeling of histones 

HeLa cells were grown to a density of 1x106 cells in a 100mm dish. The culture 

medium was removed and 3 mls of fresh DMEM containing 10mM sodium butyrate and 

0.5mCi/ml 3H-sodium acetate was added. Cells were incubated in humidified 37°C 

incubator with 5% CO2 for 1hr after which the medium was removed and the cells were 

washed twice with PBS. Cells were homogenized in 1ml of ice-cold lysis buffer (50 mM 

Tris-HCl pH 8, 150 mM NaCl, 1% Triton X-100, 10 mM MgCl2, 10% glycerol, 1X 

protease inhibitors); the nuclei were collected by centrifugation at 1,000xg for 10 min and 

washed three times with lysis buffer and once with 10mM Tris-HCl pH 7.4, 13mM 

EDTA, pH 8.0. The pellet was resuspended in 0.1 ml ice cold deionized H2O (dH2O) and 

concentrated H2SO4 was added to a final concentration of 0.2M. The suspension was 

incubated on ice for 1hr and centrifuged at 15,000 g for 5 min. 1 ml of acetone added to 

the supernatant and the sample incubated overnight at -20°C. The pellet containing the 

histones was collected by centrifugation at 15,000xg for 5 min and air-dried. The histones 

were resuspended in 50μl dH2O, the protein quantified using a Qubit protein assay kit 

(Thermo Fisher Scientific) and the 3H incorporated determined by liquid scintillation 

counting. 
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2.7 Histone deacetylase assays 

For each sample, 1x106 cells were transfected with the appropriate construct and 

48hr later, subjected to immunoprecipitation using the relevant antibody. For experiments 

measuring the effect of inositol 1,3,4,5-tetrakisphosphate [Ins(1,4,5,6)P4], Ins(1,4,5,6)P4 

(Cayman Chemical) was added to a final concentration of 12.5μM; immunoprecipitates 

were collected on either Protein A or Protein G beads. HDAC assays consisted of 

immunoprecipitates, HDAC buffer (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 1mM 

MgCl2), 5,000 cpm labeled histones, with or without 5μM trichostatin A (TSA; Sigma-

Aldrich), in a final volume of 200μl. Samples were incubated at 37°C for 2hr on a half 

rotation, after which the reaction was terminated by the addition of 50μl Stop buffer (1M 

HCl/160mM acetic acid for labeled histones). Released 3H-acetate was extracted into 

600μl ethyl acetate (Sigma-Aldrich) and the radioactivity determined using a liquid 

scintillation spectrometer (Beckman LS6500). Statistical analysis was performed using 

one-way ANOVA with post-hoc Tukey HSD. 

2.8 RNA extraction and cDNA generation 

Total RNA from HEK293 cells, MEFs, or HepG2 cells was extracted using the 

RNeasy kit (Qiagen). Genomic DNA was removed by treatment with DNase kit (Qiagen) 

and cDNA were generated from 1μg of total RNA using MultiScribe™ (Applied 

Biosystems) as per the manufacturers' protocols. Relative quantitation of cDNA was 

determined using the ABI PRISM 7500 sequence detection system (Applied Biosystems) 

that measures real-time SYBR green fluorescence and then calculated by means of the 

comparative Ct method (2−ΔΔCt) with the expression of glyceraldehyde 3-phosphate 
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dehydrogenase (GAPDH) or Actin β as an internal control. The primers used for RT-PCR 

were purchased from Qiagen.  

2.9 RT-qPCR  

For RT-qPCR analysis, reaction used was RT2 SYBR Green master mix 

(Qiagen). Each reaction was performed in triplicate. 20 l of cDNA was diluted in 80 l 

of dH20. 2l of diluted cDNA samples were mixed with 10 l of SYBR Green PCR 

master mix and 1l primers in a final volume of 20l. Relative values were calculated 

using the 2−ΔΔCt method normalized to β-actin and/or GAPDH expression.   

2.10 MIER1 and MIER2 knockdown P19 cells 

A HuSH 29mer shRNA construct against MIER1 and control shRNA plasmids 

were purchased from Origene (TR303258) 

5’-CAGTTGGTGAATGTGTAGCATTCTATTAC-3’. A Mission shRNA construct 

against mouse MIER2 was purchased from Sigma (TRCN0000306347) 

5’-TGAGCTCGTGAAGTGTAATTT-3’. shRNA plasmids were target-specific retroviral 

vectors encoding 19-25 nt shRNAs designed to knock down gene expression, and 

contained a puromycin resistance gene for selection of stably transfected cells. The 

control shRNA plasmid encoded a scrambled shRNA sequence that did not degrade any 

known cellular mRNA. Selected shRNA were tested to make sure no off target effects 

were observed. P19 cells were transfected with each plasmid using transfection reagent 

MIRUS-LT1 according to the manufacturer’s protocol. Transfected cells were selected 

with puromycin at a final concentration of 2 μg/mL; a single clone was selected and 
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tested for gene expression using RT-PCR. Single clones were used to carryout 

experiments to ensure cells induced to differentiate have low levels of MIER1/2.   

2.11 Preparation of mouse embryonic fibroblasts (MEFs) 

Mier1 knockout mice (mouse genome informatics:4431567) were originally 

obtained from the European Conditional Mouse Mutagenesis (EUCOMM) and housed in 

bio-bubble in animal care facility in Memorial University. Female Mier1+/- C57BL/6N 

was mated to male Mier1+/- C57BL/6N to generate Mier1+/+ C57BL/6N wild type (WT) 

and Mier1-/- C57BL/6N MIER1 null (KO) progenies. MEFs were isolated from embryos 

on day 13.5 after the vaginal plug was detected. In brief, intact embryos were collected in 

a 150 cm dish, washed with 1xPBS. The head of the embryos, which contain the brain 

and the eyes, was removed in 1.7 ml tube, later used for genotyping. The remaining part 

of the embryos were washed with 1xPBS and transferred into a new dish. The embryo 

was chopped into small pieces using sterile blade and transferred into a 50 ml tube. 2 ml 

of 0.25% trypsin-EDTA solutions was added to each tube and incubated at 37°C for 45 

mins. The suspension was further homogenized by pipetting and the cells plated in 10 cm 

dish in culture media.   

2.12 Genotyping of MEFs 

In order to determine the genotype of the MEFs, embryo heads were solubilized 

to extract DNA using Sigma Xnat kit. Genotyping was carried out using 3 sets of 

primers: 

Mier1_F 5’-TTTCAAGCTGTGGCTTCTGG-3’ 

Mier1_R 5’-CCACACCACACAAATGTCCC-3’ 

CAS_R1_Term 5’-TCGTGGTATCGTTATGCGCC-3’ 
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LacZ_2_small_F 5’-ATCACGACGCGCTGTATC-3’ 

LacZ_2_small_R 5’-ACATCGGGCAAATAATATCG-3’ 

3 PCR assays were set up as cycling parameters are different. The products are as 

follows; WT assay with Mier1_F, Mier1_R primers makes a product of ~600bp, Mutant 

assay with Mier1_F, CAS_R1_Term primers makes a product of ~250 bp, and LacZ 

assay with LacZ_2_small_F, LacZ_2_small_R primers makes a product of ~108 bp. 

Table 3: WT assay cycling parameters  

Cycle No. Settings: Eppendorf Mastercycler Gradient  

1 94°C   5 minutes 

35 94°C   30 seconds 

56°C   30 seconds 

72°C   30 seconds 

1 72°C   5 minutes 

 

 
 
 
 
Table 4: Mutant assay cycling parameters 

Cycle No. Settings: Eppendorf Mastercycler Gradient  

1 94°C   5 minutes 

35 94°C   30 seconds 

58°C   30 seconds 

72°C   30 seconds 

1 72°C   5 minutes 
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Table 5: LacZ assay cycling parameters 

Cycle No. Settings: Eppendorf Mastercycler Gradient  

1 94°C   5 minutes 

35 94°C   30 seconds 

60°C   30 seconds 

72°C   30 seconds 

1 72°C   5 minutes 

 

2.13 PCR analysis to determine the sex of MEFs 

PCR analysis of the SmcX and SmcY loci was carried out as described in170 to 

identify mice with X- and Y-specific alleles, revealing bands of 330 and 301 bp, 

respectively using the following primers;  

Smc forward 5’-TGAAGCTTTTGGCTTTGAC-3’  

Smc reverse 5’-CCGCTGCCAAATTCTTTGG-3’.  

The PCR products were visualized on 2% agarose gel using RedSafe™ Nucleic Acid 

Staining Solution (FroggaBio).  

Table 6: Smc cycling parameters 

Cycle No. Settings: Eppendorf Mastercycler Gradient  

1 97°C   30 seconds 

39 94°C   15 seconds 

55°C   30 seconds 

72°C   30 seconds 

1 72°C   10 minutes 
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2.14 Transcriptome analysis of MEFs 

RNA-Seq libraries were prepared by Neogenomics Laboratories Inc. from 10g 

of total RNA from WT or MIER1 KO MEFs, which I prepared using the RNAeasy kit 

(Qiagen). 100-base-pair pair-end reads generated using Illumina’s HighSeq 2500 

platform were mapped to the mouse genome (UCSC mm10 database) on the Galaxy 

platform. The quality of the sequencing reads was assessed with FASTQC v0.72 

software. Sequences were aligned to the UCSC mm10 using TopHat2 v2.1.1, with default 

parameters. TopHat2171 is aligner software that can align reads of various lengths. 

Visualisation and quantitation of the RNAseq libraries was performed with Seqmonk 

v1.38.3171. SeqMonk is a program to enable the visualisation and analysis of mapped 

sequence data. The RNA-Seq quantitation pipeline (within SeqMonk) was employed with 

uniquely mapped reads to generate a set of probes covering every mRNA in the genome. 

Differential expression analysis between samples was performed on raw counts with 

annotated mRNAs via the Intensity Difference Filter (within SeqMonk), a statistical 

based fold change filter that works by constructing a local distribution of differences for 

mRNAs with similar average intensity to the mRNA being examined. Genes were 

considered significantly differentially expressed when the adjusted P value was <0.5. 

Differentially expressed genes were subjected to enriched gene ontology (GO) 

categorization using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) GO Analysis v6.8 with default settings172. DAVID is an 

online platform that provides a comprehensive set of functional annotation tools to 

discover biological meaning behind large list of genes172. 
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2.15  Neurogenesis of MIER1 and MIER2 knockdown P19 cells 

MIER1- and MIER2-knockdown P19 cells were seeded at a density of 

106 cells/mL in 90 mm petri dishes under non-adherent culture conditions and allowed to 

aggregate for 72 h. Aggregated embryonic bodies were dissociated into single cells by 

treatment with 0.25% trypsin-EDTA solutions. The cells were then seeded in a 10 cm 

tissue culture dish at a density of approximately 104 cells/mL culture media. After 24 h 

incubation, culture media were replaced with low serum-containing media (MEM-alpha 

with 4% fetal bovine serum (FBS)). The media were replenished every 2 days until cells 

were harvested on the indicative time. 

2.16 ChIP-Seq datasets of MIER1, 2, 3 and REST target genes 

To identify a comprehensive set of MIER1 (ENCBS465MWC) and REST 

(ENCBS048GNZ) target genes in human K562 and MIER2 (ENCGM383QOM), MIER3 

(ENCBS126SWO), and REST (ENCBS114ENC) in HepG2 cell lines, we investigated 

FASTQ-formatted files of ChIP-Seq datasets prepared for the Encyclopaedia of DNA 

Elements (ENCODE) project by Dr. Michael Snyder, Stanford University and Dr. 

Richard Myers, HudsonAlpha Institute for Biotechnology (HAIB); 

www.encodeproject.org    

In their experiments, human K562 were processed for ChIP with the rabbit 

polyclonal rabbit anti-MIER1 antibody (HPA019589, Sigma) to immunoprecipitate 

MIER1 and the anti-REST antibody (HPA006079, Sigma) to immunoprecipitate REST. 

Human HepG2 cells were processed for ChIP with mouse monoclonal anti-REST 

antibody (Protein Expression Center, Caltech) to immunoprecipitate REST and anti-flag 

antibody (F1804, Sigma) to immunoprecipitate MIER2/MIER3. Due to lack of suitable 

http://www.encodeproject.org/
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antibodies for MIER2 and 3 for ChIP-Seq analyses Savic et al. (2015) adapted the 

CRISPR genome to edit the genome of a pool of HepG2 cells, inserting a 3xFLAG 

epitope at the 3' end of the target gene. They made a HepG2 immortalized cell line stably 

expressing C-terminal FLAG-MIER2/3 fusion protein. 

Next generation sequencing (NGS) libraries constructed from size-selected ChIP 

DNA fragments were processed for deep sequencing at a read length composed of 100 bp 

for MIER1 and REST in K562 cells or 76 bp for MIER2, and 3 or 36 bp for REST in 

HepG2 cells on a Genome Analyzer (Illumina, San Diego, CA, USA). In both cell types, 

the corresponding libraries made from sonicated chromatin, whose formaldehyde cross-

links are reversed without immunoenrichment, were utilized for input control. 

The sequencing data were uploaded to the Galaxy web platform (usegalaxy.org), 

which is an open source, web-based platform for genome data analysis to analyze the 

data173,174. First, the quality of short reads was evaluated by the FastQC program v0.72. 

Next, FastQ Groomer v1.1.1 was used to convert FASTQ files to Sanger format to carry 

out the alignment with the Bowtie v1.1.2 for Illumina mapping tool under default setting. 

The reads were mapped on the human genome reference sequence version hg19 and data 

was filtered for mapped data only. After clean up of the mapped data, significant peaks 

were identified by using the Model-based Analysis of ChIP-Seq (MACS) program 

v2.1.1.20160309.0 with the stringent condition that satisfies p-value or the false 

discovery rate (FDR) ≤ 0.01 and fold enrichment (FE) ≥ 15 in order to reduce the 

detection of false-positive binding sites. The genomic location of binding peaks were 

characterized using CEAS tool v1.0.2 of MACS that classifies the locations into the 

upstream region, 5′ untranslated region (5′UTR), exon, intron, and 3′UTR. The consensus 
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sequence motifs were identified by importing a 200 bp-length sequence surrounding the 

summit of MACS peaks derived from top genes based on FE≥ 15 into the MEME-ChIP 

program v5.0.1. The utility of QC tools, Bowtie, MACS, and MEME-ChIP is described 

in 48,175,176 and used with default settings. Values were statistical significant  for each test 

when p-values were as follows: ANOVA p<0.05, post-hoc Tukey p<0.05, Benjamani 

p<0.5.  
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Table 7: Primers used for cloning using PCR 

Name Primers 

Myc-MIER2 F 5’-GCGAATTCACCATGGCGGAGGCCTCCTCGC-3’ 

R 5’-GCTCTAGATCAGCAGGTCATCACGTTACAG-3’ 

Myc-MIER3 F 5’-GCGAATTCACCATGGCGGAGGCTTCTTTTGG-3’ 

R 5’-GCCTCGAGTCACTCAGAGTGTAGGGC-3’ 

Flag-MIER1 F 5’-GCGAATTCACCATGGCGGAGCCATCTGTTG-3’ 

R 5’-CCCTCGAGTTATTTTAAAAAGGCATTGGCTC-3’ 

Flag-MIER2 F 5’-GCGAATTCACCATGGCGGAGGCCTCCTCGC-3’ 

R 5’-GCAAGCTTTCAGCAGGTCATCACGTTACAG-3’ 

Flag-MIER3 F 5’-GCGAATTCACCATGGCGGAGGCTTCTTTTGG-3’ 

R 5’-GCCTCGAGTCACTCAGAGTGTAGGGC-3’ 

Myc-MIER2 D1 F 5’-GCGAATTCACCATGGCGGAGGCCTCCTCGC-3’ 

R 5’-GCTCTAGATCACACAGAGCCCATCTCGGATC-3’ 

Myc-MIER2 D2 F 5’-GCGAATTCACCATGCTTGGAGTGAAGAGGAGTGC-3’ 

R 5’-GCTCTAGATCAGCAGGTCATCACGTTACAG-3’ 

Myc-MIER2 D3 F 5’-GCGAATTCACCATGGTAAGAAGGAGATCATGG-3’ 

R 5’-GCTCTAGATCATCTTCCACAGGTAGTAGTAC-3’ 

Myc-MIER2 D4 F 5’-GCGAATTCACCATGGTAAGAAGGAGATCATGG-3’ 

R 5’-GCTCTAGATCACACAGAGCCCATCTCGGATC-3’ 
Myc-MIER3 D1 F 5’-GCGAATTCACCATGGCGGAGGCTTCTTTTGG-3’ 

R 5’-GCCTCGAGTCATGCAGTCATTCCTTG-3’ 

Myc-MIER3 D2 F 5’-GGGAATTCACCATGTGGACGGAAGAAGAATGC-3’ 

R 5’-GCCTCGAGTCACTCAGAGTGTAGGGC-3’ 

Myc-MIER3 D3 F 5’-GGGAATTCACCATGAGGAAGGAAATAATG-3’ 

R 5’-GCCTCGAGTCATTTCTTCCACATATA-3’ 

Myc-MIER3 D4 F 5’-GGGAATTCACCATGAGGAAGGAAATAATG-3’ 

R 5’-GCCTCGAGTCATGCAGTCATTCCTTG-3’ 

Myc-MTA1 F 5’-GCGAATTCACCATGGCCGCCAACATGTACAGG-3’ 

R 5’-GCCTCGAGCTAGTCCTCGATGACGATGGG-3’ 

Flag-MTA1 F 5’-GCGAATTCACCATGGCCGCCAACATGTACAGG-3’ 

R 5’-GCCTCGAGCTAGTCCTCGATGACGATGGG-3’ 

Myc-CDYL1b F 5’-GCGAATTCACCATGATGGCTTCCGAGGAG-3’ 

R 5’-GCCTCGAGCTAGAACTCATCGATCTTCCT-3’ 

Flag-CDYL1b F 5’-GCGAATTCACCATGATGGCTTCCGAGGAG-3’ 

R 5’-GCCTCGAGCTAGAACTCATCGATCTTCCT-3’ 

Flag-CDYL1c F 5’-TAGAATTCTCAGAACTCATCGATCTTC-3’ 

R 5’-TAGAATTCACCATGGATGCATTAACAG-3’ 
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Table 8: Primers used for site directed mutagenesis using PCR 

Name Primers 

Myc-MIER2 

aa228 W → A 

F 5’-GACGCTGGGGTCCGCGAGCAGCTGGTCTTCGTTCTCGT-3’ 

R 5’-CTCTGCCTGATATTGTAAACCAACCATTATTTCCTTCCTCAAATCTT-3’ 

Myc-MIER1 

aa260 L → A 

F 5’-CTTCCTCTGTCCAAACAGATGCTTCCTCTCTAGCTGCTTTTAC-3’ 

R 5’-GTAAAAGCAGCTAGAGAGGAAGCATCTGTTTGGACAGAGGAAG-3’ 

Myc-MIER1 

aa271 L → A 

 

F 5’- GCTGCTTTTACATTAAATCTTAATCTTCTCGCTGCTTCTTCTGTATCAAAATTGCATTTAAC -3’ 

R 5’-GTTAAATGCAATTTTGATACAGAAGAAGCAGCGAGAAGATTAAGATTTAATGTAAAAGCAGC-3’ 

Myc-MIER1 

aa274 L → A 

F 5’-CTCTAGCTGCTTTTACATTAAATCTTGCTCTTCTCAATGCTTCTTCTGTATCAA-3’ 

R 5’-TTGATACAGAAGAAGCATTGAGAAGAGCAAGATTTAATGTAAAAGCAGCTAGAG-3’ 

Myc-MIER1 

aa285 L → A 

F 5’-GTAAAAGCAGCTAGAGAGGAAGCATCTGTTTGGACAGAGGAAG-3’ 

R 5’-CTTCCTCTGTCCAAACAGATGCTTCCTCTCTAGCTGCTTTTAC-3’ 

Myc-MIER2 

aa274 L → A 

F 5’- TTGAAGTTGCATTTCACCGCCTCGTACAGCGCCTGCTC-3’ 

R 5’- GAGCAGGCGCTGTACGAGGCGGTGAAATGCAACTTCAA-3’ 

Myc-MIER2 

aa288 L → A 

F 5’-TGTGGAGGAGGCCGCGCGAAGGCTGCGG-3’ 

R 5’- CCGCAGCCTTCGCGCGGCCTCCTCCACA-3’ 
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3.1 MIER proteins display distinct regions of high homology 

The MSAProbs program 177 was used to perform sequence alignment of the MIER 

family using the α isoform of MIER1, the only isoform for MIER2 and the canonical 

isoform of MIER3, isoform 1. Alignment results revealed that both MIER2 and 3 display 

higher homology in the ELM2-SANT region to MIER1 (63% & 60% identity, 

respectively) than they do to each other (52% identity) (Table 9). The SANT domains of 

the three MIER proteins show a greater degree of conservation than do the ELM2 

domains (70–82% identity vs 46–59%) (Table 9). Moreover, the 18aa residues 

immediately downstream of the SANT domain (SANT extension) are also highly 

conserved in all 3 proteins (72% identity, Table 9, Fig 5). This SANT extension was 

previously identified as a region that is 100% conserved in MIER1 from several different 

species, including mouse, rat, cow, chicken and Xenopus 148, suggesting that this region 

has an important functional role. 

Apart from the ELM2 and SANT domains, very few functional domains have 

been characterized in the MIER2 and MIER3 proteins. Thus, comparison of the protein 

sequences for additional highly conserved regions might aid in the identification of 

putative functional motifs to investigate, while also enabling recognition of domains 

unique to individual family members. Sequence analysis revealed several regions of high 

homology between pairs of family members (blue outlines in Fig 5; bold in Table 9). 

MIER3 has two regions of high homology to MIER1; the first, located at the N-terminus 

(aa 9–65; numbers refer to positions in the MIER1 aa sequence) and containing the first 

two acid-rich regions147, is 74% identical to MIER1 (Table 9; Fig 4), while MIER2 shows 

only 19% and 26% identity in this sequence to MIER1 and MIER3, respectively (Table 
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9). The second consists of a short region (aa 351–368) located immediately downstream 

of the SANT extension that is 84% identical to MIER1; this region in MIER2 shows only 

37% and 11% identity to MIER1 and MIER3, respectively (Fig 5; Table 9). MIER2, on 

the other hand, contains one region of high homology (78%) to MIER1, located at the 

end of the ELM2 domain (aa268-285) (Fig 5; Table 9). This sequence contains one of 

two previously identified ALXXL motifs that are highly conserved in a number of ELM2 

containing proteins 157. MIER3 shows only 39% and 33% identity to MIER1 and MIER2, 

respectively and it lacks the second ALXXL motif. MIER2 and MIER3 share a specific 

region of high homology, located upstream of the ELM2 domain (aa98-149; Fig 5). This 

sequence is 87% identical in MIER2 and 3, but only 35% and 33%, respectively, to 

MIER1 (Table 9). 

Interestingly, the C-termini of these 3 proteins are highly divergent, with only 

sporadic identities amongst them (Fig 5). The two major MIER1 isoforms, MIER1α and 

MIER1β, have distinct C-terminal ends, therefore we compared the β isoform C-terminus 

to determine if MIER2 and 3 are closer in homology to the β isoform. Alignment analysis 

revealed that the β C-terminus also shows only sporadic identities (Fig 6), suggesting that 

member-specific functions might be accomplished through their unique C-termini. 
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Figure 5. Alignment MIER1α, MIER2 and MIER3 protein sequences. 

The MIER1α, MIER2 and MIER3 isoform 1 protein sequences were aligned using 

MSAProbs; gaps introduced by the alignment program are indicated by dashes and aa 

numbers are listed on the right. Identities in all 3 proteins are indicated by an ‘*’ and in 

the ELM2 and SANT domains, are also colored red. The beginning of the ELM2 and the 

SANT domain are indicated by a blue arrow and blue arrowhead, respectively. Identities 

in the region of high homology immediately downstream of the SANT domain (SANT 

extension) are colored pink. Identities in 2 of the 3 proteins are indicated by a ‘+’ sign. 

Regions of high homology (>70% identity) between 2 of the protein sequences are 

indicated by a blue outline. The beginning of the highly divergent C-terminal sequence is 

indicated by a black arrow. 
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Figure 6. Alignment MIER1β, MIER2 and MIER3 C-terminal sequences. 

The MIER1β, MIER2 and MIER3 protein sequences, beginning immediately after the 

SANT domain, were aligned using MSAProbs. Gaps introduced by the alignment 

program are indicated by dashes and aa numbers are listed on the right. Identities in all 3 

proteins are indicated by an ‘*’ and in the SANT extension, are also colored pink. 

Identities in 2 of the 3 proteins is indicated by a ‘+’ sign. Regions of high homology 

(>70% identity) between 2 of the protein sequences is indicated by a blue outline. The 

beginning of the highly divergent C-terminal sequence is indicated by a black arrow. 
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Table 9: Amino acid similarity in various regions between MIER family members.  

The numbers in bold represent regions of high percent identity between only two 
members of the family. 

aa numbers refer to MIER1 sequence.  

 

3.2 MIER2 and MIER3 are localized in the nucleus 

MIER2 and MIER3 are predicted to be nuclear proteins 178,179 and we verified the 

subcellular localization of these proteins. MCF7 cells, transfected with plasmids encoding 

myc-tagged MIER1α, myc-tagged MIER2, myc-tagged MIER3 or myc-tag alone were 

examined by confocal microscopy (Fig 7). Confocal z-stacks were analyzed to determine 

the percentage of cells in which the fluorescence was exclusively nuclear or both nuclear 

& cytoplasmic; for the latter, cells were classified in two categories: 1) showing more 

intense staining in the nucleus than the cytoplasm (N>C) or 2) showing equal intensity (N 

= C). Quantitative measurements of fluorescence in the confocal z-stacks were also 

REGION 
MIER1-

MIER2 

MIER1-

MIER3 
MIER2-MIER3 

 % identity % identity % identity 

Overall 42 50 36 

aa 9-65  19 74 26 

aa 98-149 35 33 87 

ELM2 (180-283) 59 54 46 

ELM2 end (268-285) 78 39 33 

SANT (288-332) 80 82 70 

ELM-SANT (180-332) 63 60 52 

SANT ext. (333-350) 78 89 83 

aa 351-368 37 84 11 
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performed in order to determine the distribution in the nuclear and cytoplasmic 

compartments. As expected, the myc-tag alone was distributed throughout the cell (Fig 

7A, panels a-c) with no cell showing exclusively nuclear staining (Fig 7B) and roughly 

equal amounts in the nuclear and cytoplasmic compartments (Fig 7C). Previously, our 

lab149,154 showed that MIER1α was localized in the nucleus of MCF7 cells and similar 

results were obtained here: 94% of cells displayed exclusively nuclear staining (Fig 7A, 

panels d-f; Fig 7B) and quantitative analysis showed that 92% of the protein is in the 

nuclear compartment (Fig 7C). MIER3 showed a similar pattern to MIER1α, with 91% of 

cells displaying exclusively nuclear staining (Fig 7A, panels j-l; Fig 6B) and 87% of the 

protein in the nuclear compartment (Fig 7C). MIER2, on the other hand, had a slightly 

different pattern. While the majority of cells (59%) displayed exclusively nuclear staining 

(Fig 7A, panels g-i; Fig 6B) and the majority of the protein (69%) is in the nuclear 

compartment (Fig 7C), there was a significant proportion of cells with staining in the 

cytoplasm as well (Fig 7A, panel m; 7B) and 31% of the protein was localized in this 

compartment (Fig 7C). 

MIER2 and 3 subcellular localization patterns were also explored in the HEK293 

cell line to ensure the results seen in MCF7 is not a cell specific phenomenon. As 

presented in Fig 7D–7E, the percentage of HEK293 cells displaying nuclear MIER2 or 

MIER3 (52% and 89%, respectively) was similar to that observed in MCF7, as was the 

proportion of MIER3 in the nuclear compartment (90%). MIER2 (34%) was found in the 

cytoplasmic compartment, which was similar to our findings in the MCF cell line. 

However, the significance of MIER2 in the cytoplasm is unknown at the moment. 

 

 



Figure 7. Confocal analysis of MIER2 and MIER3 subcellular localization. 

(A-C) MCF7 cells were transfected with a plasmid encoding myc tag alone or myc-

tagged -MIER1α, -MIER2 or -MIER3 and localization was analyzed by confocal 

microscopy using DAPI (panels b, e, h, k) and the 9E10 myc tag antibody (AlexaFluor 

488) (panels a, d, g, j, m, n). The merged DAPI and Alexafluor 488 channels are shown 

in panels c, f, i &l. (A) Illustrative examples of cells showing whole cell localization of 

the myc-tag (panels a-c), nuclear localization of MIER1α (panels d-f) and MIER3 (panels 

j-l) and mainly nuclear localization MIER2 (panels g-i). Panels m & n show and 

enlargement of the cells indicated by arrows in panels g & j; the brightness was increased 

in these panels to better illustrate the cyotplasmic localization of MIER2 (m), compared 

to exclusively nuclear localization of MIER3 (n). For all panels, white arrows indicate 

cells that display whole cell staining, with nuclear staining more intense than cytoplasmic 

(N>C); white arrowheads indicate cells showing whole cell staining with nuclear staining 

equal in intensity to cytoplasmic staining (N = C); red arrows with white outlines indicate 

cells with exclusively nuclear staining. (B) Histogram showing the percentage of cells, ± 

S.D., displaying each staining pattern: N, exclusively nuclear; N>C, nucleus more 

intensely stained than cytoplasm; N = C, nucleus and cytoplasm display equal staining 

intensity. Fields were selected at random and the staining pattern of all expressing cells in 

the field were scored visually from the compiled z-stacks. Only cells expressing myc-

tagged proteins were included in the total counts and used to calculate percentages; 50–

80 cells were scored for each construct. (C) Bar graph showing the intracellular 

distribution of each protein. Fields were selected at random and all cells expressing myc-

tagged proteins in the field were analyzed, as described in the Materials and Methods. 

Pixel values for the nuclear and cytoplasmic compartments were measured in compiled 

confocal z-stacks using Image J v1.50 g. Plotted is the average value ± S.D. in each 

compartment, using measurements from 30–40 cells for each construct. (D-E) HEK293 

cells were transfected with a plasmid encoding myc-tag alone or myc-tagged -MIER1α, -

MIER2 or -MIER3 and localization was analyzed by confocal microscopy, as described 

for MCF7. (D) Histogram showing the percentage of cells ± S.D. in each of the 

categories described above. Localization was determined as described above for panel B; 

50–80 cells were scored for each construct. (E) Bar graph showing the intracellular 

distribution of each protein, determined as described above in panel C. Plotted is the 

average value ± S.D. in each compartment, using measurements from 30–40 cells for 

each construct. For panels B-E, asterisks indicate values that are significantly different 

(p<0.05); there was no significant difference between the MIER1α and MIER3 values in 

any of the panels. 
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3.3 MIER1, 2 and 3 exist in distinct complexes 

MIER1α is very similar to MTA1147, both proteins contain contiguous ELM2-

SANT domains, recruit HDACs, interact with ERα to repress its activity and both 

function generally as corepressors 29,147,157,159,164. The MTA family of proteins is encoded 

by three genes, MTA1-3, with MTA1 being the best characterized 31. MTA1, 2 & 3 are 

components of the NuRD corepressor complexes 29 and stoichiometric analyses have 

demonstrated that the 3 proteins generally exist in distinct NuRD complexes180, however 

all three have been detected in the MBD3/NuRD complex181,182. Moreover, MTA1 has 

been shown to exist as a homodimer through interaction mediated by its ELM2 domain 

31.  

The crystal structure of HDAC1 and MTA1 complex showed that the ELM2 

domain is divided into two structural regions31,73. The amino-terminal part of the ELM2 

domain formed an extended conformation (a groove) that wrapped around the HDAC1 

making numerous contacts while the carboxy-terminal region of the ELM2 domain 

contains helices that formed a homodimer upon associating with HDAC1. As a result, 

each MTA1 and HDAC1 complex consists of two molecules of MTA1.  

Sequence alignment of the 10 proteins with the ELM2 and SANT domains that 

included MTA1-3, CoREST1-3, arginine-glutamic acid dipeptide repeats (RERE) and 

MIER1-3 demonstrated that the overall sequence conservation for the ELM2 

dimerization domain was low73. However, the pattern of conservation in these related 

ELM2- containing corepressors was similar and could suffice to adopt a similar fold —

although helix H2 is lacking in the MIER proteins73. Therefore, we investigated whether 

any of the MIER proteins homodimerized or heterodimerized in the complex by 
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performing co-immunoprecipitations of MIER complexes from cells expressing myc- and 

flag-tagged MIER1, 2 or 3 in various combinations. As shown in panel ‘a’ of Fig 8, when 

myc-tagged MIER1α, 2 or 3 is co-expressed with flag-tagged MIER1α, 2 or 3 and 

complexes are immunoprecipitated using a myc-tag antibody, no co-precipitating flag-

tagged MIER protein was detected (lanes 6–14). As a positive control, flag-tagged MTA1 

was shown to co-immunoprecipitate with myc-tagged MTA1 (Fig 8, panel a, lanes 1–2). 

We also confirmed the presence of the myc-tagged MIER protein in each co-IP and that 

each flag-tagged protein was expressed. This was done by restaining the blot in panel ‘a’ 

using the myc-tag antibody and by performing Western analysis on whole cell extracts of 

parallel samples, using an anti-flag antibody. As can be seen in Fig 8, panel b, lanes 6–

14, each myc-tagged MIER protein was present and levels were similar to that of the 

positive control, myc-tagged MTA1 (Fig 8, panel b, lane 2). Likewise, each flag-tagged 

protein was expressed (panel c, lanes 6–14) at a level at least as high as that of the 

positive control, flag-tagged MTA1 (panel c, lane 2). These results demonstrate that 

MIER proteins do not form homodimers or heterodimers to co-exist in the same complex. 

In addition, each complex contains only one molecule of MIER protein as no myc-tagged 

MIER proteins were pulled down with any of the flag-tagged MIER proteins.   
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Figure 8. Co-immunoprecipitation analysis of flag-tagged with myc-tagged MIER 

proteins. 

HEK293 cells were transfected with a plasmid encoding myc-tagged MTA1 (lanes 1–2), 

myc tag alone (lanes 3–5), myc-tagged MIER1α (lanes 6–8), myc-tagged MIER2 (lanes 

9–11) or myc-tagged MIER3 (lanes 12–14) along with either flag-tag alone (lane 1), flag-

tagged MTA1 (lane 2), flag-tagged MIER1 (lanes 3, 6, 9 & 12), flag-tagged MIER2 

(lanes 4, 7, 10 & 13) or flag-tagged MIER3 (lanes 5, 8, 11 & 14). Extracts were either 

subjected to immunoprecipitation with the 9E10 anti-myc tag antibody or loaded directly 

onto the gel. The immunoprecipitates (panel a) were analyzed by Western using a flag-

tag antibody. The experiment was repeated three times and representative Western blot 

results are shown. The arrows to the right of panel a indicate the positions where flag-

tagged -MIER2, -MIER3 and -MIER1α are expected to run (upper to lower arrow, 

respectively). The blot was stripped and restained with the 9E10 antibody (panel b) to 

verify the presence of myc-tagged MIER or MTA1 protein in each immunoprecipitate. 

Expression of the flag-tagged MIER proteins was verified using whole cell lysates from 

parallel samples and Western analysis with an anti-flag-tag antibody (panel c).  
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3.4 HDAC1 and 2 are differentially recruited by MIER proteins   

Our lab has previously demonstrated that MIER1 interacts with HDAC1&2 154,157. 

More recently, Joshi et al.63 employed a mass spectrometry-proteomic approach to 

characterize protein interactions for all 11 HDACs and in addition to MIER1 they 

detected MIER2 and 3 in HDAC1 and HDAC2 containing complexes. By contrast, 

proteomic target profiling of HDAC inhibitors by Bantscheff et al.168 identified MIER2 

and 3 in a complex with HDAC2, but not with HDAC1. To investigate and validate these 

MIER-HDAC interactions, we performed co-immunoprecipitation analysis using extracts 

from HEK293 cells expressing myc-tagged MIER1α, MIER2 or MIER3. Myc-tagged-

MTA1 was also included as a positive control. As has been demonstrated previously73,154, 

both HDAC1 and 2 are present in MIER1α and MTA1 immunoprecipitates (Fig 9A, 

panels a-b, lanes 2 & 5). Likewise, both HDACs co-precipitated with MIER2 (Fig 9A, 

panels a-b, lane 3), albeit at lower levels than that seen with MIER1α. HDAC1 and 2 

were also present in MIER3 immunoprecipitates (Fig 9A, panels a-b, lane 4), however 

levels varied between experiments and ranged from being barely detectable above the 

control (Fig 9A, panels a-b, lane 1) to the levels shown in Fig 11A. Therefore, to provide 

a more accurate representation of the level of interaction, we quantified the bands by 

densitometry using blots from all experiments for Fig 9 and Fig 11 and plotted the 

average ratio of HDAC:MIER in the immunoprecipitate Fig 9B. This analysis revealed 

that the level of HDAC 1 and 2 associated with the MIER2 complex was 20% of that in 

the MIER1α complex (Fig 9B). The MIER3 complex contained even lower levels of 

HDAC1 and 2, approximately 9% of that in MIER1α complex. The lower level of 

HDAC1/2 recovered with MIER2 & 3 was not due to a difference in MIER2 or 3 
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expression since re-staining of the blots in Fig 9A, panels a & b with an anti-myc tag 

antibody (Fig 9A, panels c-d) revealed expression levels similar to that of MIER1α 

(compare lanes 3 & 4 to lane 2 in Fig 9A, panels c-d). In addition, HDAC1 & 2 levels 

were comparable among the samples (Fig 9A, panels e-f). 

Isoform 3 of MIER3 differs from isoform 1, used in the above experiments, by a 

single amino acid deletion (277E) in the ELM2 domain, which is conserved among the 

three family members and other ELM2 containing corepressors. X-ray crystallography of 

MTA1 demonstrated that the equivalent amino acid was in contact with HDAC1. Given 

that the ELM2 domain has been shown to be responsible for MIER1 interaction with 

HDACs, we investigated whether this deletion affects HDAC recruitment by MIER3. Co-

immunoprecipitation analysis using extracts from HEK293 cells expressing myc-tagged 

isoform 1 or isoform 3 of MIER3 did not reveal any substantial difference in HDAC 1 or 

2 levels (Fig 9C, panels a-b, compare lanes 1&2). Restaining of panels a-b for MIER3 

showed equivalent expression levels (panels c-d); likewise, analysis of whole cell extracts 

revealed equivalent levels of HDAC1 and 2 expression in the samples (panels e-f). These 

results demonstrate that the 277E in the MIER3 ELM2 domain is not important for HDAC 

recruitment. 

Our data show that MIER2 and 3 are much less effective than MIER1α at 

recruiting HDAC1/2. To verify that is not a HEK293-specific result, we repeated this 

analysis using MCF7 cells. Interestingly, only HDAC1 co-immunoprecipitated with 

MIER2 in this cell line (Fig 9D, panels a-b, lane 3; Fig 9E) and no detectable interaction 

of HDAC1 or 2 was detected with MIER3 (Fig 9D, panels a-b, lane 4; Fig 9E). Given the 

variation in HDAC recruitment between these two cell lines, a third cell line, HeLa, was 
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tested. The results obtained with HeLa cells were similar to that obtained with MCF7: 

only HDAC1 was associated with MIER2 (Fig 10, panel a, lane 3) and neither HDAC1/2 

were detected with MIER3 (Fig 10, panels a-b, lane 4). 

Next, we assessed the deacetylase activity of MIER-associated HDAC, using 3H-

labelled core histones in combination with complexes immunoprecipitated from HEK293 

cells expressing myc-tag alone or myc-tagged MIER1α, 2 or 3 proteins and then 

measuring the 3H-acetate released. Like previously demonstrated in our lab157, MIER1α 

complexes contain HDAC activity that is inhibited by TSA (Fig 9F) and therefore 

MIER1α serves as a positive control, while the myc-tag alone provides the background 

control level. MIER2 immunoprecipitates contained significant levels of TSA-sensitive 

HDAC activity above background (Fig 9F), demonstrating that MIER2 complexes 

contain functional HDACs. Unlike MIER2, no significant HDAC activity above control 

levels was detected in MIER3 immunoprecipitates using one-way ANOVA with post–

hoc Tukey (p = 0.276; Fig 9F).  

 

 

 



Figure 9. Co-immunoprecipitation of HDAC1 and 2 with MIER proteins. 

(A) HEK293 cells were transfected with a plasmid encoding myc tag alone (lane 1) or 

myc-tagged -MIER1α (lane 2), -MIER2 (lane 3), -MIER3 (lane 4) or -MTA1 (lane 5). 

Extracts were either loaded directly on the gel (panels e-f) or subjected to 

immunoprecipitation with the 9E10 anti-myc tag antibody (panels a-d). The 

immunoprecipitates were analyzed by Western using either anti-HDAC1 (panel a) or 

anti-HDAC2 (panel b). The blots in panels a & b were stripped and restained using the 

9E10 anti-myc tag antibody (panels c-d) to verify levels of MIER protein in each 

immunoprecipitate. Whole cell extracts were analyzed by Western using anti-HDAC1 

(panel e) or anti-HDAC2 (panel f) to verify equivalent HDAC levels in each sample. This 

experiment was performed 4 times. (B) Quantitation of the HDAC and MIER band 

intensities in the HEK293 immunoprecipitates was performed by densitometry using 

Image J 1.50g, as described in the Materials and Methods. Plotted is the average 

HDAC:MIER ratio ± S.D. for the 4 experiments from (A) and 3 experiments from Fig 

11A(minus IP4 values only). (C) HEK293 cells were transfected with a plasmid encoding 

myc-tagged -isoform 1 (lane 1) or -isoform 3 (lane 2) of MIER3. The experiment was 

performed twice and Western analysis was completed as in (A). Note that a longer 

exposure than in (A) is shown here, in order to enhance visualization of the MIER3 

associated HDAC bands. (D) MCF7 cells were transfected with a plasmid encoding myc-

tag alone (lane 1) or myc-tagged -MIER1α (lane 2), -MIER2 (lane 3) or -MIER3 (lane 4). 

Western analysis was performed as in (A). (E) Quantitation of the HDAC and MIER 

band intensities in the MCF7 immunoprecipitates was performed as described in (B). 

Plotted is the average HDAC:MIER ratio ± S.D. for 4 experiments. (F) HEK293 cells 

were transfected with a plasmid encoding myc-tag alone or myc-tagged -MIER1α, -

MIER2 or -MIER3. Extracts were subjected to immunoprecipitation with the 9E10 anti-

myc tag antibody. Immunoprecipitates were assayed for histone deacetylase activity 

using [3H]-labeled histones as described in the Methods and Materials. HDAC assays, 

with or without TSA, were performed on duplicate samples and plotted is the average of 

three experiments ± S.D. Statistical analysis, using one-way ANOVA with post-hoc 

Tukey HSD, revealed all -TSA values were significantly different each other (p<<0.05), 

except for MIER3 when compared to Con; # indicates values that are not significantly 

different (p>0.05). 
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Figure 10. Co-immunoprecipitation of HDAC 1 and 2 with MIER proteins in HeLa 

cells. 

Cells were transfected with a plasmid encoding myc tag alone (lane 1) or myc-tagged -

MIER1α (lane 2), -MIER2 (lane 3) or -MIER3 (lane 4). Extracts were either loaded 

directly on the gel (panels e-f) or subjected to immunoprecipitation with the 9E10 anti-

myc tag antibody. The experiment was repeated three times and representative Western 

blot results are shown. Western blot analysis was performed using either anti-HDAC1 

(panel a) or anti-HDAC2 (panel b). The blots in panels a & b were stripped and restained 

using the 9E10 anti-myc tag antibody (panels c-d) to verify the levels of the relevant 

MIER protein in the immunoprecipitate. The blots in panels e & f were stained with anti-

HDAC1 or anti-HDAC2, respectively, to verify equivalent HDAC levels in the cell 

extracts. 
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3.5 Ins(1,4,5,6)P4 does not enhance HDAC activity or recruitment by MIER2 or 

MIER3 

Watson et al.74 investigating the structure of HDAC3 and the SANT domain of 

SMRT has shown that an inositol-(1,4,5,6)-tetrakisphosphate (IP4) molecule bound into a 

basic pocket at the interface between the two proteins. The authors also found that IP4 

had a key role in activating HDAC3, since high salt treatment caused the enzyme to 

become inactive and addition of exogenous IP4 lead to enhanced activation. Similarly, 

Millard et al.73 investigated the role of IP4 with the MTA1 and HDAC1 complex. The 

amino acid residues coordinating IP4 binding in HDAC3 and SMRT are conserved in the 

HDAC1 and in the SANT domain of MTA1, and a similar basic pocket is formed at the 

interface between MTA1 and HDAC1. The authors showed that as with HDAC3: SMRT, 

addition of IP4 to the HDAC1: MTA1 complex enhanced HDAC activity, and mutations 

of amino acid residues (mutations in HDAC1, R270A and R306P; mutations in MTA1, 

Y327A, Y328A, and K331A) inhibited HDAC activity73. Interestingly, the IP4 

interacting residues are not only conserved in SMRT-SANT and MTA-SANT domains 

but also in all related corepressor proteins such as CoREST1-3, MIER1-3 and RERE and 

all could possibly form an inositol-binding pocket. The authors proposed that the binding 

of inositol phosphates would be a common activating mechanism for all class I HDAC 

corepressor complexes. 

Consequently, I explored the possibility that Ins(1,4,5,6)P4 might increase HDAC 

activity and/or HDAC recruitment by MIERs. Extracts from HEK293 cells expressing 

myc-tagged MIER1, 2 or 3 were subjected to immunoprecipitation in the presence or 

absence of Ins(1,4,5,6)P4. Immunoprecipitates were analyzed by Western blot for the 



 
 

82 

presence of HDAC1 and 2 proteins; parallel samples were tested for HDAC activity. No 

substantial difference in HDAC recruitment by any of the MIER proteins was detected 

when Ins(1,4,5,6)P4 was present (Fig 11A, panels a-b). A small, but statistically 

significant, increase in HDAC activity of MIER1 complexes was observed in the 

presence of Ins(1,4,5,6)P4 (Fig 11B), however no difference was detected in the 

deacetylase activity of either MIER2 or MIER3 complexes. Inositol phosphates may not 

be a common activating mechanism for all class I HDAC corepressors as proposed by 

Millard et al73.    
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Figure 11. HDAC activity in the presence of Ins(1,4,5,6)P4.  

HEK293 cells were transfected with a plasmid encoding myc tag alone or myc-tagged -

MIER1, -MIER2 or -MIER3. Extracts were subjected to immunoprecipitation with the 

9E10 anti-myc tag antibody, either in the absence (A, panels a-c, lanes 1,3,5,7; B) or 

presence (A, panels a-c, lanes 2,4,6,8; B) of Ins(1,4,5,6)P4. Immunoprecipitates were 

either analyzed by Western for associated HDAC1 and 2 (A) or assayed for histone 

deacetylase activity using [3H]-labeled histones (B). (A) Western blot analysis of 

immunoprecipitates using anti-HDAC1 (panels a); the blot in panel a was stripped and 

restained using anti-HDAC2 (panel b) and finally using the 9E10 anti-myc tag antibody 

(panel c). Whole cell extracts were analyzed by Western, using anti-HDAC1 (panel e) or 

anti HDAC2 (panel f) to verify equivalent HDAC levels in each sample. (B) 

Immunoprecipitates, incubated with or without Ins(1,4,5,6)P4, were assayed for histone 

deacetylase activity, as described in the Methods and Materials. Assays were performed 

on duplicate samples and plotted is the average of three experiments + S.D. Asterisks 

indicate values that are significantly different when Ins(1,4,5,6)P4 is added (p< 0.05). 
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3.6 An intact ELM2 domain is required for recruitment of HDAC1 and HDAC2 

by MIER2 

Previously, our lab has shown that the ELM2 of MIER1 is responsible for 

interaction with HDACs. Using deletion analysis with myc-tagged constructs, we 

investigated which region of the MIER2 sequence is required for recruitment of HDAC1 

and 2. Deletion constructs consisted of: 1) an N-terminal half that included the ELM2 

domain, aa1-301 (Δ1); 2) a C-terminal half that included the SANT domain, aa302-545 

(Δ2); 3) ELM2 + SANT domains only, aa194-346 (Δ3); 4) the ELM2 domain alone, 

aa194-301 (Δ4). Expression of each construct was confirmed by Western blotting (Fig 

12B, panel c), as was the expression level of HDAC1 and 2 in the cell extracts (Fig 12B, 

panels d-e). 

Immunoprecipitates from extracts of HEK293 cells expressing full-length or one 

of the deletion constructs of MIER2 (Fig 12) were analyzed by Western blot for the 

presence of HDAC1 and HDAC2 (Fig 12B, panels a-b). Analysis of MIER2 revealed that 

HDAC1 & 2 only co-precipitated with constructs containing an ELM2 domain (Fig 12B, 

panels a-b, lanes 3–6) and that the ELM2 domain in isolation is sufficient for interaction 

(Fig 12B panels a-b, lane 6). 

To further investigate the role of the ELM2 domain, we performed a mutational 

analysis. Our lab had previously demonstrated that 214W in the ELM2 domain of MIER1 

is a highly conserved residue across all ELM2 containing proteins.  Additionally, our lab 

showed 214W in the ELM2 domain of MIER1 to be critical for recruitment of HDAC1/2 

since mutation of this tryptophan to alanine resulted in loss of HDAC1/2 from the MIER1 

complexes. MIER2 contain a W in the equivalent position in its ELM2 domains (aa 228 
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in Fig 4), therefore we investigated the effect of mutating this residue on HDAC 

recruitment. Extracts from HEK293 cells expressing full-length wild-type or mutant 

MIER2 (Fig 12C) were subjected to immunoprecipitation and analyzed for the presence 

of HDAC1 and 2 by Western blot. Mutation of 228W to A compromised the recruitment 

of HDAC1 and HDAC2 by MIER2 (Fig 12C, lane 3). These data demonstrate that 

MIER2 behaves similarly to MIER1 in recruitment of HDACs, with 228W in MIER2 

being a critical residue.



Figure 12. Interaction of HDAC1 and 2 with MIER2 deletion constructs. 

(A) Schematic showing a scaled representation of the MIER2 protein sequence, 

indicating the location of the ELM2 (dark pink) and SANT (dark blue) domains; the 

remaining sequence is colored light blue. The amino acid numbers for the beginning and 

end of the protein as well as beginning and end of ELM2 & SANT domains are indicated 

above the schematic. (B) Immunoprecipitation of HDAC1 and 2 with MIER2 deletion 
constructs. Extracts from HEK293 cells transfected with a plasmid encoding myc tag 

alone (lane 1), myc-tagged full-length MIER2 (lane 2) or one of the following myc-

tagged deletion constructs: Δ1 (aa1-301; lane 3), Δ2 (aa302-545; lane 4), Δ3 (aa194-346; 

lane 5), Δ4 (aa194-301; lane 6) were either loaded directly on the gel (panels d-e) or 

subjected to immunoprecipitation with the 9E10 anti-myc tag antibody. Western blot 

analysis was performed using either anti-HDAC1 (panel a) or anti-HDAC2 (panel b). The 

blots in panels a & b were stripped and restained using the 9E10 anti-myc tag antibody to 

verify the presence of the relevant MIER2 deletion construct in the immunoprecipitates; 

the restained blot from panel a is shown in panel c. The blots in panels d & e were stained 

with anti-HDAC1 or anti-HDAC2, respectively, to verify equivalent HDAC levels in the 

cell extracts. A schematic illustrating the MIER2 sequence included in the deletion 

construct used is shown above each lane. The experiment was repeated three times and 

representative Western blot results are shown.  (C) HEK293 cells were transfected with a 

plasmid encoding myc tag alone (lane 1) or myc-tagged -wild-type MIER2 (lane 2) or -

MIER2 containing a point mutation, 228W→A, in the ELM2. The experiment was 

repeated three times and representative Western blot results are shown.   
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Chapter 4: Characterization of MIER family with CDYL  

4.1 MIER1 and MIER2 but not MIER3 interact with CDYL 

Human CDYL belongs to a family of chromodomain Y-related proteins, which 

has been implicated in epigenetic regulation and transcription repression108,110,183. CDYL 

was shown to be part of multi protein chromatin repressive complexes, functioning as a 

corepressor by recognizing and binding specific chromatin marks (H3K9me3, 

H3K27me2, H3K27me3) and recruiting other modifiers to repress gene expression. 

Mulligan et al. 108 employed a mass spectrometry-proteomic approach to characterize 

protein interactions for CDYL and reported the presence of MIER1 and 2 in the CDYL 

complexes. Similarly, MIER1 and MIER2 were also detected using a mass spectrometry-

proteomic approach in the Escamilla et al. study of undifferentiated and differentiated 

mouse embryonic stem cells to identify proteins interacting with CDYL184.  To 

investigate and validate these MIER-CDYL interactions, we performed co-

immunoprecipitation analysis using extracts from HEK293 cells expressing myc-tagged 

MIER1α, MIER2 or MIER3 with flag-tagged CDYL1b or CDYL1c. Both CDYL1b and 

CDYL1c are present in MIER1 immunoprecipitates (Fig 13B, panel a, lanes 5, 6). 

Likewise, both CDYL isoforms co-immunoprecipitated with MIER2 (Fig 13B, panel a, 

lanes 8, 9).  Levels of interaction between MIER1 and MIER2 with CDYL1b and 

CDYL1c varied between experiments and ranged from low levels shown in Fig 13B and 

to more robust interaction of MIER1 and MIER2 with CDYL1c. Therefore, to provide a 

more accurate representation of the level of interactions, we quantified the bands by 

densitometry using blots from two experiments and plotted the average ratio of 

CDYL:MIER in the immunoprecipitate (Fig 13C). This analysis revealed that the level of 
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MIER1 associated with CDYL1b was 60% of that in the MIER1-CDYL1c complex. 

MIER2 contained a similar level of interaction with CDYL1b (57%) to that in MIER2-

CDYL1c associations. Statistical analysis using one-way ANOVA revealed that the 

difference observed with MIER1 (p=0.889; Fig 13B, panel a, lanes 5, 6) and MIER2 

(p=0.922; Fig 13B, panel a, lanes 5, 6) interactions with both CDYL isoforms are not 

significant. Unlike MIER1 and MIER2, no CDYL interactions were detected in MIER3 

immunoprecipitates above that of the control (p = >0.9999; Fig 13B, panel a, lanes 11, 

12). The differences in the level of interaction was not due to different levels of MIER1, 

MIER2, MIER3 expression as similar expression of each construct was confirmed by 

Western blotting (Fig 13B, panel b), as was the expression level of CDYL1b and 

CDYL1c in the cell extracts (Fig 13B, panel c)



Figure 13. Co-immunoprecipitation of CDYL1b and -1c with MIER proteins.  

(A) Schematic showing a scaled representation of the isoforms of CDYL protein 

sequence, indicating the location of the chromo (green) and CDYL1a N-termini (blue); 

CDYL1b N-terminus (pink) and the remaining sequence is colored yellow. (B) Co-
immunoprecipitation of CDYL1b and -1c with MIER proteins. HEK293 cells were 

transfected with plasmid encoding myc tag alone (lanes 1-3) or myc-tagged -MIER1 

(lanes 4-6),  -MIER2 (lanes 7-9), -MIER3 (lane 10-12) along with either FLAG tag alone 

(lanes 1, 4, 7 &10), FLAG-tagged CDYL1b (lanes 2, 5, 8 & 11), FLAG-tagged CDYL1c 

(lanes 3, 6, 9 & 12). Extracts were either loaded directly on the gel (panels c) or subjected 

to immunoprecipitation with the 9E10 anti-myc tag antibody (panels a-b). Western blot 

analysis was performed using either anti-flag (panel a). The blots in panels a were 

stripped and restained using the 9E10 anti-myc tag antibody (panels b) to verify levels of 

MIER protein in each immunoprecipitate. Whole cell extracts were analyzed by Western 

using anti-flag (panel c) to verify equivalent CDYL levels in each sample. The 

experiment was repeated three times and representative Western blot is shown. (C) 

Quantitation by densitometry of the results from the experiment illustrated in (B). The 

values for each band was corrected for the variability in expression levels as described in 

the Materials and Methods and plotted is the average CDYL:MIER ratio ± S.D. 

Statistical analysis, using one-way ANOVA with post-hoc Tukey HSD, revealed MIER1 

and MIER2 significantly different from myc tag alone Con (p<<0.05) but no difference 

in binding with CDYL1b or CDYL1c , designated as n.s., except for MIER3 when 

compared to Con; # indicates values that are not significantly different. 
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4.2 The ELM2-SANT domain is important for recruitment of CDYL by MIER1 

and MIER2 

Using deletion analysis with myc-tagged constructs, we mapped the region of 

MIER1 and MIER2 required for recruitment of CDYL. MIER1 deletion constructs 

consisted of: 1) an N-terminal half that included the ELM2 domain, aa1-288 (Δ1); 2) a C-

terminal half that included the SANT domain, aa289-433 (Δ2); 3) ELM2 + SANT 

domains only, aa180-332 (Δ3); 4) the ELM2 domain alone, aa180-288 (Δ4). Likewise, 

MIER2 deletion constructs consisted of: 1) an N-terminal half that included the ELM2 

domain, aa1-301 (Δ1); 2) a C-terminal half that included the SANT domain, aa302-545 

(Δ2); 3) ELM2 + SANT domains only, aa194-346 (Δ3); 4) the ELM2 domain alone, 

aa194-301 (Δ4). Expression of each MIER1 and MIER2 construct was confirmed by 

Western blotting (Fig 14B, panel b) and (Fig 15B, panel b) respectively, as was the 

expression level of CDYL in the cell extracts (Fig 14B and Fig15B, panels c).  

Immunoprecipitates from extracts of HEK293 cells expressing one of the deletion 

constructs of MIER1 were analyzed by Western blot for the presence of CDYL1b or c 

(Fig 14B, panel a). Analysis of MIER1 revealed that both CDYL1b and CDYL1c co-

precipitated with constructs only when they contained an ELM2 + SANT domain (Fig 

14B, panel a, lanes 8-9). Similarly, deletion constructs of MIER2 were 

immunoprecipitated with 9E10 antibody from HEK293 cell lysates and were analyzed by 

Western blot for the presence of CDYL1b or c (Fig 15B, panel a). Analysis of MIER2 

also revealed that both CDYL1b and CDYL1c co-precipitated only with constructs 

containing an ELM2 + SANT domain (Fig 15B, panel a, lanes 8-9).



 

Figure 14. MIER1 interact with CDYL1b and -1c via ELM+SANT domain.  

Interaction of CDYL1b and -1c with MIER1 deletion constructs. (A) Schematic showing 

a scaled representation of the MIER1 protein sequence, indicating the location of the 

ELM2 (dark pink) and SANT (purple) domains; the remaining sequence is colored light 

blue. The amino acid numbers for the beginning and end of the protein as well as 

beginning and end of ELM2 & SANT domains are indicated above the schematic. (B) 

HEK293 cells were transfected with a plasmid encoding one of the following myc-tagged 

deletion constructs: Δ1 (aa1-288; lanes 1-3), Δ2 (aa289-433; lanes 4-6), Δ3 (aa180-332; 

lanes 7-9), Δ4 (aa180-288; lanes 10-12) along with either flag tag alone (lanes 1, 4, 7,10) 

or flag-tagged –CDYL1b (lanes 2, 5, 8, 11), –CDYL1c (lanes 3, 6, 9, 12). Extracts were 

either loaded directly on the gel (panel c) or subjected to immunoprecipitation with the 

9E10 anti-myc tag antibody. The immunoprecipitates were analyzed by Western using 

anti-flag (panel a). The blots in panel (a) were stripped and restained using the 9E10 anti-

myc tag antibody to verify the presence of the relevant MIER1 deletion construct in the 

immunoprecipitates; the restained blot from panel (a) is shown in panel (c). The blots in 

panel (c) were stained with anti-flag to verify equivalent CDYL levels in the cell extracts. 

A schematic illustrating the MIER1 sequence included in the deletion construct used is 

shown above each lane. The experiment was repeated three times and representative 

Western blot image is shown.
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Figure 15. MIER2 interact with CDYL1b and -1c via ELM+SANT domain.  

Interaction of CDYL1b and -1c with MIER2 deletion constructs. (A) Schematic showing 

a scaled representation of the MIER2 protein sequence, indicating the location of the 

ELM2 (dark pink) and SANT (purple) domains; the remaining sequence is colored light 

blue. The amino acid numbers for the beginning and end of the protein as well as 

beginning and end of ELM2 & SANT domains are indicated above the schematic. (B) 

HEK293 cells were transfected with a plasmid encoding one of the following myc-tagged 

deletion constructs: Δ1 (aa1-301; lanes 1-3), Δ2 (aa302-545; lanes 4-6), Δ3 (aa194-346; 

lanes 7-9), Δ4 (aa194-301; lanes 10-12). Extracts were either loaded directly on the gel 

(panel c) or subjected to immunoprecipitation with the 9E10 anti-myc tag antibody. The 

immunoprecipitates were analyzed by Western using anti-flag (panel a). The blots in 

panel (a) were stripped and restained using the 9E10 anti-myc tag antibody to verify the 

presence of the relevant MIER2 deletion construct in the immunoprecipitates; the 

restained blot from panel (a) is shown in panel (c). The blots in panel (c) were stained 

with anti-flag to verify equivalent CDYL levels in the cell extracts. A schematic 

illustrating the MIER2 sequence included in the deletion construct used is shown above 

each lane. The experiment was repeated three times and representative Western blot 

results are shown. 
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4.3 MIER1 aa274 L→A in the ELM2 domain reduces MIER1-CDYL 

interactions  

The physical interaction between proteins is sometimes mediated by 

corresponding coiled coil regions185,186. The coiled coil is a motif characterized by the 

presence of two or three alpha helices twisted around one another, in either a parallel or 

anti-parallel configuration186. Coiled coils are extremely prevalent structures and they can 

adopt a wide range of structural arrangements with variations in helix orientation and 

oligomerization state186,187. The structures are encoded by a seven-residue heptad pattern 

and the positions in the repeat are denoted by the letters a-g.  The ‘a’ and ‘d’ positions are 

occupied by hydrophobic residues and oppositely charged residues in ‘e’ and ‘g’ 

positions. Consequently, alpha helices from such repeating sequences exhibit distinct 

amphipathic character, with both hydrophobic and polar faces. The association of two 

helices via their hydrophobic faces drives coiled-coil formation.  

 Several algorithms have been developed to detect the presence of coiled coil 

motif in protein sequence based on the heptad repeat186. We used the COILS program of 

Lupas and PAIR2COIL programs available online https://embnet.vital-

it.ch/software/COILS_form.html, http://cb.csail.mit.edu/cb/paircoil2/paircoil2.html to 

check whether any of the MIER family members encompasses a coiled coil motif185,188. 

MIER1 and MIER2 are predicted to contain a coiled coil motif from aa255-286 and 

aa260-297 respectively (Fig 16, panel A; Fig 17, panel A); these amino acids are in the 

C-terminal region of the ELM2 domain in both proteins. In contrast, MIER3 does not 

contain a coiled coil motif in the ELM2 domain (Figure 18 panel B). The ELM2 domains 

of MIER proteins are predicted to form 3 alpha helices according to secondary structure 

https://embnet.vital-it.ch/software/COILS_form.html
https://embnet.vital-it.ch/software/COILS_form.html
http://cb.csail.mit.edu/cb/paircoil2/paircoil2.html
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prediction software189 as well as based on the structural studies of proteins with an ELM2 

domain (Fig 18, panel A)73. Also, analysis of the MIER1- and MIER2- ELM2 domains 

using a helical wheel prediction revealed that both MIER1 and MIER2 make amphipathic 

helices, characteristics of those containing coiled-coil motifs (Fig 16, panel B; Fig 17, 

panel B). Examination of the MIER3 helical wheel also predicted an amphipathic helix 

(Fig 18, panel C) but the hydrophobic surface is different from MIER1 and MIER2 in 

that it is missing the leucine residues highlighted with asterisks in the Fig 18, panel C.  

To investigate whether MIER1 and MIER2 interact with CDYL1b through their 

predicted coiled coil motif, we performed mutational analysis of myc-tagged MIER1 and 

MIER2. We explored the effect of mutating the “a” and “d” positions in heptad repeat 

(leucine residues in the predicted motif of MIER1 and MIER2) on CDYL1b recruitment. 

The CDYL1b isoform was selected in all the subsequent experiments because it is the 

isoform that is shown to interact with chromatin regulators and can bind methylated 

histones. Extracts from HEK293 cells expressing full-length wild-type or mutant MIER1 

(Fig 16) or mutant MIER2 (Fig 17) were subjected to immunoprecipitation and analyzed 

for the presence of CDYL1b by Western blot. Mutation of 274L→A significantly reduced 

recruitment of CDYL1b by MIER1 (p=0.04, Fig 16 C, panel a, lane 6), while mutation of 

260L→A, 271L→A and 288L→A did not. Restaining of panels a with 9E10 antibody 

against the myc tag showed equivalent expression levels of MIER1 constructs (panel b). 

Panel (a) was also restained for HDAC1 (panel c) and HDAC2 (panel d) to explore 

whether any of these mutations had an effect on MIER1-HDAC interactions. Even 

though the HDAC band appeared less intense in 260L→A, the difference was not 

statistically significant (p= 0.44; Fig 16D, panel c, lane 4). Likewise, other leucine 
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mutations (271L→A, 274L→A and 288L→A) did not affect the interaction between MIER1 

and HDAC1.  Also, analysis of whole cell extracts revealed equivalent levels CDYL1b, 

MIER1, HDAC1 and 2 expressions in the samples (panels e-h). These results 

demonstrated that the 274L in the MIER1 ELM2 domain is critical for CDYL recruitment. 

Mutation of the MIER2 288L →A motif reduced the interaction between CDYL1b 

and MIER2 (Fig 17 D, panel a, lane 5) but did not eliminate the interaction. Panel (a) was 

restained for HDAC1 (Fig 17D, panel c) and HDAC2 (Fig 17D, panel d) as well as for 

MIER2 (Fig 17D, panel b) to verify equivalent protein pull down.  Similarly, whole cell 

extracts were analyzed with Western showing equivalent levels CDYL1b, MIER2, 

HDAC1 and 2 expressions in the samples (panels e-h).  These data demonstrated that 

MIER2 behaves similarly to MIER1 in recruitment of CDYL, with aa 288L in MIER2 

being a critical residue. Also, presence of CDYL1b had no effect on the association of 

MIER1 or MIER2 with HDAC1/2. Additionally, mutation of leucine residues in MIER1 

and MIER2 C-terminal region of ELM2 domain did not influence the level of interaction 

between MIER1 and HDAC1/2 or MIER2 and HDAC1/2



 

Figure 16. Interaction of MIER1 with CDYL is reduced by a point mutation aa274 

L→A in the ELM2 domain of MIER1. 

(A) Schematic showing a scaled representation of the MIER1 protein sequence, 

indicating the location of the ELM2 (dark pink) and SANT (purple) domains; the 

remaining sequence is coloured light blue. The amino acid numbers for the beginning and 

end of the protein as well as beginning and end of ELM2 & SANT domains are indicated 

above the schematic. The amino acid sequence below the schematic shows the location of 

different mutations designated by asterisks. (B) Probability of coiled coil formation in 

MIER1 protein scored with the algorithm by McDonnell. (C) Helical wheel prediction of 

MIER1 alpha helical coiled coil motif (aa256-aa286). Yellow: positions occupied by 

nonpolar hydrophobic amino acids and red, blue and green are polar residues. (D) Effect 

of MIER1 point mutations on interaction with CDYL. Extracts of HEK293 cells 

transfected with a plasmid encoding myc-tag alone (lane 1) or myc-tagged –wild type 

MIER1 (lane 2, 3) or –MIER1 containing a point mutation, 260L→A  (lane 4), 271L→A 

(lane 5), 274L→A (lane 6), 285L→A (lane 7), in the ELM2 domain along with either flag-

tag alone (lane 2) or flag-tagged CDYL1b (lanes 1, 3-7) were either subjected to 

immunoprecipitation with the 9E10 anti-myc tag antibody or directly loaded onto the gel. 

Western blot analysis was performed using a flag-tag antibody (panel a) or HDAC1 

antibody (panel c). The blot was stripped and restained with HDAC2 antibody (panel d) 

or the 9E10 antibody (panel b) to verify the presence of myc-tagged -wildtype or -mutant 

MIER1 proteins in each immunoprecipitate. Expression of the myc-tagged MIER1 

proteins and flag-tagged CDYL1b proteins were verified using whole cell lysates from 

parallel samples and Western analysis with the 9E10 antibody (panel f), anti-flag-tag 

antibody (panel e), anti-HDAC1 (panel g), or anti-HDAC2 (panel h). The experiment was 

repeated three times and a representative image is shown. (E) Quantitation by 

densitometry of the results from experiments illustrated in (D). The values for each band 

were corrected for the variability in expression levels as described in the Materials and 

Methods page 53 and plotted relative to that obtained with wild type MIER1± S.D. 

Statistical analysis, using one-way ANOVA with post-hoc Tukey HSD, revealed MIER1 
274L→A interaction with CDYL is significantly different from wild type MIER1 

(p<<0.05). 
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Figure 17. Interaction of MIER2 with CDYL is reduced by a point mutation aa288 

L→A in the ELM2 domain of MIER2. 

(A) Schematic showing a scaled representation of the MIER2 protein sequence, 

indicating the location of the ELM2 (dark pink) and SANT (purple) domains; the 

remaining sequence is coloured light blue. The amino acid numbers for the beginning and 

end of the protein as well as beginning and end of ELM2 & SANT domains are indicated 

above the schematic. The amino acid sequence below the schematic shows the location of 

different mutations designated by asterisks. (B) Probability of coiled coil formation in 

MIER2 protein scored with the Paircoil2 algorithm. (C) Helical wheel prediction of 

MIER2 alpha helical coiled coil motif (aa270-aa299). Yellow: positions occupied by 

nonpolar hydrophobic amino acids and red, blue and green are polar residues.  (D) Effect 

of MIER2 point mutations on interaction with CDYL. Extracts of HEK293 cells 

transfected with a plasmid encoding myc-tag alone (lane 2) or myc-tagged –wild type 

MIER2 (lane 1, 3) or –MIER2 containing a point mutation, 274L→A (lane 4) and 288L→A 

(lane 5) in the ELM2 domain along with either flag-tag alone (lane 1) or flag-tagged 

CDYL1b (lanes 2-4). Extracts were either subjected to immunoprecipitation with the 

9E10 anti-myc tag antibody or directly loaded onto the gel. Western blot analysis was 

performed using a flag-tag antibody (panel a) or HDAC1 antibody (panel c). The blot 

was stripped and restained with HDAC2 antibody (panel d) or the 9E10 antibody (panel 

b) to verify the presence of myc-tagged -wildtype or -mutant MIER2 proteins in each 

immunoprecipitate. Expression of the myc-tagged MIER2 proteins and flag-tagged 

CDYL1b proteins were verified using whole cell lysates from parallel samples and 

Western analysis with the 9E10 antibody (panel f), anti-flag-tag antibody (panel e), anti-

HDAC1 (panel g), or anti-HDAC2 (panel h). The experiment was repeated three times 

and a representative image is shown. (E) Quantitation by densitometry of the results from 

experiments illustrated in (D). The values for each band were corrected for the variability 

in expression levels as described in the Materials and Methods page 53 and plotted 

relative to that obtained with wild type MIER2± S.D. Statistical analysis, using one-way 

ANOVA with post-hoc Tukey HSD, revealed no significantly difference between WT 

MIER2 and mutants. 
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Figure 18. The ELM2 domain of MIER3 does not make a coiled coil structure.   

(A) Alignment of MIER1 aa 215-269, MIER2 aa 221-275 and MIER3 aa 235-289 protein 

sequence, the location of the helices are highlighted in yellow. (B) Probability of coiled 

coil formation in MIER3 protein scored with the Paircoil2 algorithm. (C) Helical wheel 

prediction of MIER3 alpha helical coiled coil motif (aa247-aa277). Yellow: positions 

occupied by nonpolar hydrophobic amino acids and red, blue and green are polar 

residues. The amino acid designated by asterisks are different in MIER3 as compared to 

MIER1 and MIER2   
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4.4 The interaction between CDYL and HDAC1 and 2 is enhanced by MIER1 

and MIER2 

CDYL was previously demonstrated to be part of at least two multi-protein 

subcomplexes108. The first complex consisted of MIER1/2, HDAC1 and 2108 and the 

second complex contained REST, widely interspaced zinc finger motifs (WIZ), and three 

histone lysine-specific methyltransferases (HKMTs) (euchromatic histone lysine 

methyltransferase 2 (EHMT2) also known as G9a, G9a-like protein (GLP), and SET 

domain bifurcated 1 (SETDB1)108. Also, CDYL was shown to interact with HDAC1 and 

2109. I showed that MIER1 and MIER2 interact with CDYL (Fig 13B, panel a) and 

HDAC1 & 2 (Fig 9A, panels a-b) and that exogenous expression of CDYL does not 

affect HDAC1/2 binding to MIER1/2 (Fig 16D, Fig17D; panels c-d), suggesting that the 

interaction between them is not influenced by CDYL. To determine whether MIER1 or 

MIER2 may mediate the interaction between CDYL and HDAC 1/2, I carried out co-

immunoprecipitation assays using extracts from HEK293 cells expressing myc-tagged 

MIER1α or MIER2 and flag-tagged CDYL1b. The immunoprecipitates were analyzed by 

Western using either 9E10 anti-myc (panel a) or anti-HDAC1 (panel b). The blot in 

panels a & b were stripped and restained using anti-HDAC2 (panel c) and anti-flag tag 

antibody (panel d) to verify levels of CDYL1b protein in each immunoprecipitate. 

Similarly, whole cell extracts were also analyzed for Western showing equivalent 

expression of MIER1, CDYL1b, HDAC1 and HDAC2 in all the samples (panel e-h).  

As we demonstrated in the previous experiments, both MIER1 and MIER2 were 

present in CDYL1b immunoprecipitates (Fig 19B, panel a, lane 3 & Fig 20B, panel a, 

lane 3 respectively). As has been previously reported109, both HDAC1 and 2 were 
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detected with CDYL1b in the absence of transfected MIER1 (Fig 19B, panel b-c, lane 2)  

and MIER2 (Fig 20B, panel b-c, lane 2), albeit at much lower levels than that seen with 

MIER1 and MIER2 overexpression. Actually, our data showed that the interaction 

between CDYL1b and HDAC1 & 2 were augmented 4.5X by MIER1 (p = 0.004; Fig 

19B, panel b-c, lane 3) and 5X by MIER2 (p = 0.001; Fig 20B, panel b-c, lane 3) 

respectively. To provide a more accurate representation of the level of interaction, the 

bands were quantified by densitometry using blots from three representative experiments 

and plotted the average ratio of CDYL: MIER and CDYL: HDAC1/2 in the 

immunoprecipitate. This analysis revealed that the level of MIER1 274L →A associated 

with CDYL1b was 20% of that of MIER1 (Fig 19B, panel a, lane 4).  In addition, MIER1 

274L →A returned the level of interaction between CDYL1b and HDAC1 and 2 to levels 

seen in CDYL1b alone precipitate (p = 0.01; Fig 19B, panel b-c, lane 4). However, 

mutating MIER2 288L →A motif did not alter the interaction between MIER2 and 

CDYL1b (Fig 20B, panel a, Lane 4) and MIER2 288L →A reduced the binding by 30% 

but the levels varied between experiments and ranged from barely detectable above 

control to the levels shown in Fig 20B. Statistical analysis of the band intensities obtained 

from densitometry analysis showed no significant difference between MIER2 and MIER2 

288L →A in average level of associations with CDYL1b (p >0.05). The recruitment of 

HDAC1 and 2 by CDYL1b in the presence of MIER2 274L →A or MIER2 288L →A were 

also unaffected (Fig 20B, panel b-c, Lanes 4-5) as compared to MIER2 (Fig 20B, panel 

b-c, Lanes 3). These co-immunoprecipitation assays demonstrated that the level of 

HDAC1 and 2 associated with CDYL complexes were improved when MIER1 or MIER2 

was present. 



Figure 19. The level of HDAC1 and 2 associated with CDYL complex is increased 

when MIER1 is present.  

(A) Schematic showing a scaled representation of the MIER1 protein sequence, with a 

vertical line indicating the location and amino acid change of the mutant. (B) Effect of 

MIER1 on interaction of CDYL with HDAC1 & 2. Extract from HEK293 cells 

transfected with a plasmid encoding myc tag alone (lane 2) or myc-tagged –wildtype 

MIER1 (lanes 1, 3) or –MIER1 containing a point mutation, 274L→A, in the ELM2 

domain along with either flag tag alone (lane 1) or flag-tagged CDYL1b (lanes 2-4) were 

either loaded directly on the gel (panel h) or subjected to immunoprecipitation with the 

anti-flag antibody. Western blot analysis was performed using anti-myc antibody (panel 

a) and anti-HDAC1 antibody (panel b). The blots in panels a & b were stripped and 

restained with anti-HDAC2 antibody (panel c) and the flag antibody to verify the 

equivalent presence of CDYL1b (panel d) protein in the immunoprecipitates. The blots in 

panel c were stained with anti-flag to verify equivalent CDYL levels in the cell extracts.  

Expression of the myc-tagged MIER1, flag-tagged CDYL1b, endogenous HDAC1 and 2 

proteins were verified using whole cell lysates from parallel samples and Western 

analysis with the 9E10 antibody (panel e), anti-HDAC1 (panel f), anti-HDAC2 (panel g), 

or anti-flag-tag antibody (panel h). The experiment was repeated 3 times and a 

representative image is shown. (C) Quantitation by densitometry of the results from the 

experiments illustrated in (B). The values for MIER1, HDAC1, HDAC2 bands was 

corrected for the variability in expression levels as described in the Materials and 

Methods and plotted is the average ratios ± S.D. Statistical analysis, using one-way 

ANOVA with post-hoc Tukey HSD, revealed significant difference between MIER1 and 
274L→A in CDYL immunoprecipitate (p<<0.05) and HDAC1 & HDAC2 also 

significantly different between MIER1 and 274L→A (p<<0.05). 
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Figure 20. The level of HDAC1 and 2 associated with CDYL complex is increased 

when MIER2 is present.  

(A) Schematic showing a scaled representation of the MIER2 protein sequence, with a 

vertical line indicating the location and amino acid change of the mutant. (B) Effect of 

MIER2 on interaction of CDYL with HDAC1 & 2. Extract of HEK293 cells transfected 

with a plasmid encoding myc tag alone (lane 2) or myc-tagged –wildtype MIER2 (lanes 

1, 3) or –MIER2 containing a point mutation, 274L→A (lane 4) and 288L→A (lane 5), in 

the ELM2 domain along with either flag tag alone (lane 1) or flag-tagged CDYL1b (lanes 

2-5) were either loaded directly on the gel (panel h) or subjected to immunoprecipitation 

with the anti-flag antibody. Western blot analysis was performed using anti-myc antibody 

(panel a) and anti-HDAC1 antibody (panel b). The blots in panels a & b were stripped 

and restained with anti-HDAC2 antibody (panel c) and the flag antibody to verify the 

equivalent presence of CDYL1b (panel d) protein in the immunoprecipitates. The blots in 

panel c were stained with anti-flag to verify equivalent CDYL levels in the cell extracts.  

Expression of the myc-tagged MIER2, flag-tagged CDYL1b, endogenous HDAC1 and 2 

proteins were verified using whole cell lysates from parallel samples and Western 

analysis with the 9E10 antibody (panel e), anti-HDAC1 (panel f), anti-HDAC2 (panel g), 

or anti-flag-tag antibody (panel h). The experiment was repeated three times and a 

representative image is illustrated. (C) Quantitation by densitometry of the results from 

the experiments illustrated in (B). The values for MIER2, HDAC1, HDAC2 bands was 

corrected for the variability in expression levels as described in the Materials and 

Methods and plotted is the average ratios ± S.D. Statistical analysis, using one-way 

ANOVA with post-hoc Tukey HSD, revealed significant difference between HDAC1 & 

HDAC2 levels in CDYL immunoprecipitate (p<<0.05) in the presence of MIER2 as 

compared to myc-tagged control depicted with an asterick. 
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4.5 Genome-wide identification of chromatin targets of MIER  

Genome-wide mapping of protein–DNA interactions and epigenetic marks is 

important for a complete understanding of transcriptional regulation. A detailed map of 

binding sites for transcription factors, core transcriptional machinery and other DNA-

binding proteins is key for understanding the regulatory networks that underlie various 

biological processes. Recently, the next-generation sequencing (NGS) technology has 

had a great impact on the field of genome research. Chromatin immunoprecipitation 

followed by deep sequencing (ChIP-Seq) serves as a highly efficient NGS method for 

genome-wide profiling of DNA-binding proteins, histone modifications, and 

nucleosomes190. Increasing amounts of NGS data have been deposited in public 

databases, such as the Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) 

and the Encyclopaedia of DNA Elements (ENCODE) Consortium.   

To identify the genome-wide enrichment sites for the MIER proteins, I analyzed 

ChIP-Seq datasets available from the public database. ChIP-Seq data sets for MIER1, 

MIER2 and MIER3 were prepared by the ENCODE Consortium. Short sequencing reads 

were aligned to the human assembly GRCh37 (also known as hg19) and enrichment of 

binding sites were identified by peak caller model-based analysis of ChIP-Seq using 

MACS program on Galaxy, which is an open source, web-based platform for genome 

data analysis. MACS identified 4577 ChIP-Seq peaks of MIER1 in K562 cells and 

53,480 ChIP-Seq peaks of MIER2 and 65835 peaks of MIER3 target genes in HepG2 

cells. After performing stringent criteria that satisfied both false discovery rate (FDR) ≤ 

1%, which is calculated from the number of control peaks divided by the number of 
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ChIP-seq peaks with the same p-value and fold enrichment (FE) ≥ 15, the results were 

further reduced to 448 genes (MIER1), 1614 genes (MIER2), and 1030 genes (MIER3).  

Among 448 genes detected in the MIER1 sample, the peaks were located in the 

promoter region (15.3%), downstream region (4.0%), 5′UTR (1.9%), exon (2.3%), intron 

(41.4%), 3′UTR (1.5%), and distal intergenic (33.6%) (Fig 21A). Likewise, within 1614 

genes detected in MIER2 in HepG2 cells, the peaks were located in the promoter region 

(18.5%), downstream region (4.4%), 5′UTR (3.2%), exon (2.9%), intron (39.7%), 3′UTR 

(1.7%), and distal intergenic (29.6%)(Fig 22A). Similarly, in 1030 genes detected in 

MIER3 in HepG2 cells, the peaks were located in the promoter region (16.9%), 

downstream region (4.2%), 5′UTR (3.1%), exon (2.8%), intron (41.1%), 3′UTR (1.7%), 

and distal intergenic (30.2%) shown in Fig 23A. Thus, introns serve as a major MIER-

binding site in both K562 and HepG2 cells. As shown in Fig 21C the distribution of 

MIER1 around the transcriptional start site (TSS) presents a peak just before and also 

after TSS. In contrast, the profile of MIER2 and MIER3 in the TTS region shows a strong 

increase just at the TTS (Fig 22C, Fig 23C respectively). 

I next screened for consensus binding motifs for MIER proteins on sequences 

within ±200 base pair relative to each MIER-binding peak summit. I used MEME-

ChIP176 based on FE ≥ 15 to do an unbiased search. The results showed that the MIER1 

consensus binding motif is composed of a well-defined REST RE1 

5′CAG[CG]ACC[AT][TC]GGA[CG]AG3′ (E-value = 7.7 × 10−1156) motif and a PRDM4 

motif composed of 5’GTTTC[AT]AGG3′ ( E-Value = 3.2 × 10−103) (Fig 21B). The E-

value is an estimate of the expected number of motifs with the given log likelihood ratio 
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(or higher) and with the same width and site count that one would find in a similarly 

sized set of random sequences. 

 Likewise, MIER2 consensus motif contains 

5′[TG][TC]CAG[CG]ACC[AT][TC]GGACAG[CA][GT]3′  (E-value = 3.7 × 10−2082), 

which is also REST RE1 binding motif (Fig 22B). Similarly, I performed MIER3 

consensus binding motif search with MEME-ChIP. The results indicated that the MIER3 

consensus sequence contains a REST RE1 motif made up of 

5′[TG][TG]CAG[CG]ACC[AG][TC]GGACAG3′ (E-Value = 9.9 × 10−113) as well as 

FOXA1/2 5′T[GA]TTT[AG][CT]3′ ( E-Value = 7.8 × 10−116) (Fig 23B). Importantly, I 

found significant enrichment of MIER-binding signals within the RE1 sites of known 

REST target genes. 

4.6 Functional analysis of MIER target genes 

Finally, to gain further insights into the MIER protein genome binding targets, we 

performed functional annotation analysis using the GREAT program. Functional analysis 

of MIER1 and MIER2 target genes gives us a clear view of biological pathways and that 

both MIER1 and MIER2 may be involved in neural development (Figs 21D & 22D). 

GREAT analysis suggested that MIER1 target genes were significantly enriched in 

neurological functions including “synaptic transmission”, “multicellular organismal 

signalling”, “transmission of nerve impulse”, “signal release”, and “adenylate cyclase-

inhibiting G-protein coupled glutamate receptor signalling pathway” as the top 5 

significant pathways for MIER1 (Fig 21D). Similarly, MIER2 target genes were analyzed 

and the top 5 pathways were “transmission of nerve impulse”, “multicellular organismal 

signalling”, “synaptic transmission”, “signal release”, and “neurotransmitter transport” 
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(Fig 22D). These data suggests MIER2 target genes are involved in neural processes. 

Additionally, list of MIER3 target genes were uploaded in GREAT to predict the 

pathways that MIER3 is possibly a part of. The result of the top 5 pathways include, 

“acute phase response”, “negative regulation of intrinsic apoptosis signalling pathway”, 

“acute inflammatory response”, “regulation of cytokine biosynthetic process”, and 

“mitochondrion organization”  (Fig 23D).  
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Figure 21. Genome-wide identification of MIER1 target genes in human K562 cell.   

(A) Genomic distribution of MIER1 binding regions determined by ChIP-seq analysis. (B) MEME motif analysis of MIER1 genes 

identified the presence of REST (top panel) and PRDM4 (bottom panel) DNA-binding motif. (C) Average binding profile of MIER1 

at TSS (±3 kb). (D) Functional enrichment analysis of biological processes associated with MIER1 ChIP-seq genes (TSS ±2 kb). 
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Figure 22. Genome-wide identification of MIER2 target genes in human HepG2 cell.   

(A) Genomic distribution of MIER2 binding regions determined by ChIP-seq analysis. (B) MEME motif analysis of MIER2 genes 

identified the presence of REST DNA-binding motif. (C) Average binding profile of MIER2 at TSS (±3 kb). (D) Functional 

enrichment analysis of biological processes associated with MIER2 ChIP-seq genes (TSS ±2 kb). 
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Figure 23. Genome-wide identification of MIER3 target genes in human HepG2 cell.   

(A) Genomic distribution of MIER3 binding regions determined by ChIP-seq analysis. (B) MEME motif analysis of MIER3 genes 

identified the presence of FOXA1 (top panel) and REST (bottom panel) DNA-binding motif. (C) Average binding profile of MIER3 at 

TSS (±3 kb). (D) Functional enrichment analysis of biological processes associated with MIER3 ChIP-seq genes (TSS ±2 kb). 
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REST and MIER1-3 peaks with FE ≥ 15 and FDR <1% computed from MACs 

software was uploaded to GREAT, an online tool to predict functions of cis-regulatory 

regions within 2,000 base pairs around transcriptional start site (TSS). This list was then 

used to identify overlapping target genes between REST and MIER proteins. As 

expected, there was a considerable overlap between MIER1 & REST and MIER2 & 

REST target genes as shown in Fig 24. MIERs were found to bind proximally to many of 

the well-characterized neuronal genes in, previously noted in REST ChIP-Seq studies191. 

REST was found on TSS regions of bdnf, calb1, l1cam, chat, gria2, chrm4, nrcam, grin1, 

stmn2, scg2, syn1, syp, syt4, glra1, and chrnb2 in 14 or more cell types191,192. Among 

these, 6 genes (l1cam, chat, syn1, syp, glra1, and chrnb2) were bound by all three MIER 

proteins. MIER2 bound to all the 15 genes whereas MIER1 was found on TSS of 11 

genes. Our results suggest that MIER2 associates with REST more broadly across 

different cell types as compared to MIER1 and MIER3. 
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Figure 24. Overlap of REST and MIER1, MIER2 and MIER3 target genes.  

(A) Venn diagram shows the overlap of genes targeted by REST and MIER1 in K562 

cells, REST and MIER2 and REST and MIER3 in HepG2 cells, with the number of genes 

indicated in each area.  
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4.7 MIER2 interacts more efficiently with REST than MIER1 and MIER3  

ChIP-Seq data analysis of the MIER proteins revealed that all 3 family members 

were associated with the well-known REST target genes. And motif analyses have 

identified genomic binding sites for MIER proteins to be nearly identical with canonical 

RE1 motif. Previous (unpublished studies) from our lab showed that MIER1 was not a 

DNA binding protein. These findings prompted us to ask whether MIER proteins interact 

with REST. To investigate MIER-REST interactions, I performed co-

immunoprecipitation analysis using extracts from HEK293 cells expressing myc-tagged 

MIER1α, MIER1 MIER2 or MIER3. Myc-tagged-CDYL1b was included as a positive 

control. CDYL has been previously demonstrated to bind REST and bridge the 

interaction between REST and G9a to repress transcription108.  

As has been previously reported108, CDYL1b was present in REST 

immunoprecipitate (Fig 25, panel a, lane 6). Likewise, MIER2 co-precipitated with REST 

(Fig 25, panel a, lane 4), albeit at higher levels than that seen with CDYL1b.  MIER1 & 

MIER3 were also present in REST immunoprecipitates (Fig 25, panel a, lanes 2, 5), 

however levels varied between experiments and ranged from being barely detectable 

above the control (Fig 25, panel a, lane 1) to the levels shown in Fig 25. Therefore, to 

provide a more accurate representation of the level of interaction, I quantified the bands 

by densitometry using blots from 3 experiments and plotted the average ratio of REST: 

MIER in the immunoprecipitate. This analysis revealed that the level of MIER1α with 

REST was 15% of that of MIER2 (Fig 25B). MIER3 level of interaction was even lower, 

approximately 11% of that of MIER2. The lower levels of MIER1 and MIER3 

immunoprecipitated with REST were not due to differences in REST expression since re-
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staining of the blots in Fig 25, panels “a” with anti-REST antibody (Fig 25, panel b) 

revealed that the amount of REST was the same in all the samples. Similarly, whole cell 

extracts were analyzed by Western blotting with antibodies against myc-tag (panel c) and 

REST (panel d) to verify equivalent MIER proteins & CDYL and REST levels 

respectively in each sample.   

To verify the differential recruitment of REST by the MIER proteins was not a 

HEK293-specific result; co-IP was repeated using HepG2 cells. Interestingly, only 

MIER2 co-immunoprecipitated with REST in this cell line (Fig 26, panels a, lane 4) and 

no REST was associated with MIER1 or 3. Again, CDYL1b was used as a positive 

control and interacting band between CDYL1b with REST in HepG2 cells was detected 

(Fig 26, panel a, lane 6). Taken together, my data suggest that MIER2 is associated with 

REST more robustly than MIER1 and MIER3, which is in agreement with the ChIP-Seq 

analysis where I showed MIER2 presence on all the REST target genes.   



Figure 25. Co-immunoprecipitation of REST with MIER proteins.  

HEK293 cells were transfected with plasmid encoding myc tag alone (lanes 1) or myc-

tagged -MIER1 (lanes 2), -MIER1b (lane 3)  -MIER2 (lane 4), -MIER3 (lane 5). 

Extracts were either loaded directly on the gel (panels c, d) or subjected to 

immunoprecipitation with anti-REST antibody (panels a-b). (A) The immunoprecipitates 

analyzed by Western using either the 9E10 anti-myc antibody (panel a) or anti-REST 

antibody (panels b) to verify levels of MIER and REST protein respectively in each 

immunoprecipitate. Whole cell extracts were analyzed by Western using anti-myc (panel 

c) and anti-REST (panel d) to verify equivalent MIER and REST levels in each sample. 

The experiment was repeated three times and representative Western blot is shown. (B) 

Quantitation by densitometry of the results from the experiment illustrated in (A). The 

values for each band was corrected for the variability in expression levels as described in 

the Materials and Methods and plotted is the average MIER:REST ratio ± S.D. Statistical 

analysis, using one-way ANOVA with post-hoc Tukey HSD, revealed MIER2 and 

CDYL1b significantly immunoprecipitated with REST (p<<0.05) compared to control. 
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Figure 26. Co-immunoprecipitation of REST with MIER proteins.  

HepG2 cells were transfected with plasmid encoding myc tag alone (lanes 1) or myc-

tagged -MIER1 (lanes 2), -MIER1b (lane 3)  -MIER2 (lane 4), -MIER3 (lane 5). 

Extracts were either loaded directly on the gel (panels c, d) or subjected to 

immunoprecipitation with anti-REST antibody (panels a-b). The experiment was repeated 

three times and a representative Western blot is shown. The immunoprecipitates analyzed 

by Western using either the 9E10 anti-myc antibody (panel a) or anti-REST antibody 

(panels b) to verify levels of MIER and REST protein respectively in each 
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immunoprecipitate. Whole cell extracts were analyzed by Western using anti-myc (panel 

c) and anti-REST (panel d) to verify equivalent MIER and REST levels in each sample.  

 

4.8 The C-terminal portion of MIER2 is crucial for recruitment of REST  

Using deletion analysis with myc-tagged constructs, we investigated which region 

of the MIER 2 sequence is required for recruitment of REST. MIER2 deletion constructs 

consisted of: 1) an N-terminal half that included the ELM2 domain, aa1-301 (Δ1); 2) a C-

terminal half that included the SANT domain, aa302-545 (Δ2); 3) ELM2 + SANT 

domains only, aa194-346 (Δ3); 4) the ELM2 domain alone, aa194-301 (Δ4). Expression 

of each construct was confirmed by Western blotting (Fig 27B, panel c), as was the 

expression level of REST in the cell extracts (Fig 27B, panels d). 

REST was immunoprecipitated from extracts of HEK293 cells expressing full-

length or one of the deletion constructs of MIER2 (Fig 27). Western blot analysis using 

anti-myc tag antibody of immunoprecipitates revealed that REST only co-precipitated 

with full length MIER2 (Fig 27B, panel a, lanes 2) and Δ2 constructs containing aa 302-

545 a C-terminal half that included the SANT domain (Fig 27B, panel a, lanes 4) and that 

the SANT domain alone is not sufficient for interaction (Fig 27B panels a-b, lane 5).  

To investigate whether HDAC1 &2 and/or CDYL mediate the interaction 

between REST and MIER2 we performed mutational analysis. Previously, I showed that 

the 228W in the ELM2 domain of MIER2 (Fig 12C) was critical for recruitment of 

HDAC1/2 since mutation of this tryptophan to alanine resulted in loss of HDAC1/2 from 

MIER2 complexes. Similarly, I found that 288L in the ELM2 domain of MIER2 (Fig 20B) 

was important for binding to CDYL1b since mutation of this leucine to alanine resulted 

in reduced association of CDYL1b with MIER2. Therefore, I investigated the effect of 
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mutating 228W and 288L residues on REST recruitment. Mutations of 228W→A or 288L 

→A did not change the level of interaction between MIER2 and REST (Fig 27B, panel a, 

lanes 7-8).  

Together, these data suggests that MIER2 binding to REST is mediated through a 

region encompassing aa 301-545. However, the SANT domain does not appear to be 

sufficient for the recruitment of REST by MIER2 since REST is unable to bind to the Δ3 

construct, which includes the SANT domain. It is not surprising that the mutation of 

228W→A or 288L →A does not alter interaction between MIER2 and REST as these 

residues are in the ELM2 domain of MIER2. These data lead to the conclusion that 

neither CDYL nor HDAC1/2 recruit REST to MIER2 and that the interaction between 

REST and MIER2 is independent of HDAC and CDYL.  



Figure 27. MIER2 interact with REST via the C terminus of MIER2.  

Interaction of REST with MIER2 deletion constructs. (A) Schematic showing a scaled 

representation of the MIER2 protein sequence, indicating the location of the ELM2 (dark 

pink) and SANT (purple) domains; the remaining sequence is colored light blue. The 

amino acid numbers for the beginning and end of the protein as well as beginning and 

end of ELM2 & SANT domains are indicated above the schematic. (B) HEK293 cells 

were transfected with a plasmid encoding myc tag alone (lane 1), myc-tagged full-length 

MIER2 (lane 2), one of the following myc-tagged deletion constructs: Δ1 (aa1-301; lane 

3), Δ2 (aa302-545; lane 4), Δ3 (aa194-346; lane 5), Δ4 (aa194-301; lane 6) or myc-

tagged MIER2 containing a point mutation, 228W→A or 288W→A, in the ELM2 domain 

(lanes 7, 8 respectively). Extracts were either loaded directly on the gel (panels c & d) or 

subjected to immunoprecipitation with anti-REST antibody. The experiment was repeated 

three times and representative Western blot results are shown. The immunoprecipitates 

were analyzed by Western using the 9E10 anti-myc tag antibody (panel a). The blots in 

panels a were restained with the anti-REST antibody to verify equivalent REST protein in 

each immunoprecipitates (panel b). The blots in panel c were stained with anti-myc to 

verify equivalent MIER2 constructs levels in the cell extracts. A schematic illustrating 

the MIER2 sequence included in the deletion construct used is shown above each lane.
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4.9 Effect of MIER1/2 knockdown on neuronal differentiation in P19 cells 

Analysis of MIER ChIP-Seq datasets suggested that MIER1 and MIER2 might 

play an important role in regulating genes involved in neural processes. Genome-wide 

binding of MIER1 by ChIP-Seq showed MIER1 was enriched on approximately 90% of 

REST target genes whereas MIER2 bound almost exclusively to REST target genes. 

Also, I found that MIER1 and MIER2 interacted with REST, a transcriptional repressor 

of neuronal differentiation, known to inhibit neuronal genes in non-neuronal cells and to 

regulate neurogenesis.  To investigate the potential role of MIER1 or MIER2 in neural 

differentiation, loss-of-function analyses were conducted in P19 cells, using MIER1 and 

MIER2 selective shRNAs. P19 cells are a line of embryonal carcinoma cells that were 

derived from a teratocarcinoma in mice by McBurney et al. 193. P19 cells can be 

stimulated to differentiate by nontoxic drugs. Treatment of these cells with retinoic acid 

(RA) effectively induces the development of neural lineages including neurons, astroglia 

and microglia cell as shown in schematic (Fig 28A).  

 In this study, I generated stable clones expressing shRNAs against MIER1 and 

MIER2. As a negative control, I stably transfected P19 cells with non-targeting shRNA. 

Using quantitative RT-PCR, I showed MIER1 and MIER2 mRNA levels are 

approximately 30% in knockdown clones compared to that in the control clones (Fig 

28B). The mRNA expression levels are average of three independent experiments and are 

relative to GAPDH.  

Two individual MIER1- and MIER2-knockdown P19 clones were allowed to 

aggregate for 3 days in bacterial grade plates and aggregated embryonic bodies were then 

dissociated into single cells. MIER1- and MIER2-knockdown cells were cultured in 
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monolayers for 10 days. As controls, the non-targeting shRNA P19 clone and 

untransfected P19 cells were incubated for 10 days with or without RA. The expression 

levels of neuron-specific marker and a glia-specific marker, tubulin 3 and glial fibrillary 

acidic protein (GFAP) respectively, were then examined by Western blot and confocal 

analysis.  

As has been previously reported194, P19 parental cells were able to differentiate 

into both neurons and astrocytes in the presence of RA, as evidenced by expression of 

tubulin 3 (Fig 28C, panel a, lane 2) and GFAP (Fig 28C, panel b, lane 2) detected by 

Western blot. As expected, P19 and Con (non-targeting shRNA clone) cells did not 

differentiate into any of the neural lineage without RA treatment (Fig 28C, panels a-b, 

lane 1, 3). Interestingly, the MIER1 knockdown clones in the absence of RA induction 

expressed tubulin 3 (Fig 28C, panel a, lane 4-5), which is a marker of differentiated 

neurons.  Knockdown of MIER1 in P19 cells triggers cells to differentiate into neurons 

suggesting MIER1 involvement in maintaining stem cells in an undifferentiated state,. 

Surprisingly, MIER2 knockdown in P19 cells caused a smaller effect on the expression 

of tubulin 3 (Fig 28C, panel a, lane 6-7) as compared to MIER1 knockdown clones. No 

GFAP expression was present in MIER1 or MIER2 clones (Fig 28C, panel b, lanes 4-7) 

in the absence of RA treatment implying that MIER1/2 may have a specific role in 

lineage differentiation. The results demonstrate that MIER1 and MIER2 play important 

roles in controlling neurogenesis. There are differences in differentiation of MIER1 and 

MIER2 knockdown clones, which may be that the two proteins are important at different 

times during the process of neurogenesis.   



 
Figure 28. Knockdown of MIER1 or MIER2 triggers neuronal differentiation in P19 

cells.   

(A) P19 cells were stably transfected with shRNA plasmids against MIER1 or MIER2. 

MIER1- or MIER2-silenced P19 cells were allowed to aggregate in suspension, minus or 

plus retinoic acid (RA), for 3 days. The resulting embryoid bodies were cultured in a 

monolayer for 10 days. The experiment was repeated three times and representative 

results are shown in B & C. (B) RT-PCR analysis to confirm knockdown of MIER1 or 

MIER2 in P19 cells. (C) Expression levels of the indicated neuronal marker genes were 

examined using Western in P19 parental line in the absence (lane 1) or presence of RA 

(lane 2), scrambled shRNA samples (lane 3), MIER1 knockdown (lanes 4-5) and MIER2 

knockdown samples (lanes 6-7).  
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Next, I confirmed the results of the Western blots using confocal analyses. 

MIER1 and MIER2 knockdown clones along with control non-targeting shRNA clones 

were subjected to differentiation with or without RA to analyze the effect of supressing 

MIER1 or MIER2 on the neural differentiation of P19 cells. Control P19 clone cells 

differentiated into neurons and astrocytes after simple aggregation culture in the presence 

of RA, expressing tubulin 3 as well as GFAP (Fig 29, panel b).  

 In both MIER1 (Fig 29, panels c-d) and MIER2 (Fig 29, panels e-f) knockdown 

clones without RA treatment, tubulin 3 staining is very clear. Again, neither knockdown 

clones showed GFAP staining. These results were consistent with the data obtained from 

Western blot analysis, as shown in Fig 28 and the observations support the results of 

Western blot analysis of neural markers, which showed that MIER1/2 silenced cells 

expressed neuron-specific marker tubulin 3 only (Fig 28C). Taken together, my data 

suggest that MIER1 and MIER2 play a crucial role in neural differentiation.  

 

 

 

 
 
 
 
 



Figure 29. Knockdown of MIER1 or MIER2 triggers neuronal differentiation in P19 

cells.   

P19 cells were stably transfected with shRNA plasmids against MIER1 or MIER2. 

MIER1- or MIER2-silenced P19 cells were allowed to aggregate in suspension, minus or 

plus retinoic acid (RA), for 3 days. The resulting embryoid bodies were cultured in a 

monolayer for 10 days. The experiment was repeated three times and representative 

images are shown. Immunocytochemical staining of MIER1/2 silenced P19 cells that 

were differentiated without retinoic acid (green indicates neuron-specific label tubulin 3; 

red indicates the astrocyte-specific label GFAP; blue indicates the nucleus-specific label 

DAPI). Scale bar = 150 μm.  
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4.10  Neuronal differentiation genes are altered in Mier1-/- MEFs 

Gene targeting is used to engineer any alteration in the genome by homologous 

recombination in mouse ES cells, from point mutations to large chromosomal 

rearrangements195. The European Conditional Mouse Mutagenesis (EUCOMM) program 

is a large-scale knockout consortium aimed to generate null mutations in C57BL/6 mouse 

ES cells. The reason why C57BL/6 strain was chosen is because it is the best-

characterized inbred strain, it is the reference strain for the mouse genome sequence and 

it breeds well in the laboratory195. Consequently, Mier1 null mice were also generated by 

EUCOMM using a “knockout-first” strategy. The method is to insert a cassette into an 

intron of an intact gene to produce a knockout at the RNA processing level196. A splice 

acceptor in the cassette captures the RNA transcript and an efficient polyadenylation 

signal, truncating the transcript so that the gene is not transcribed into mRNA 

downstream of the cassette site. A knockout-first strategy also contains an expression 

reporter like the -galactosidase gene to monitor the activity of the promoter. Mier1 

knockout first was engineered by inserting the cassette between exon 9 and exon 10, 

which is the start of ELM2 domain, to generate an MIER1 null mouse. Data collected by 

Wellcome Trust Sanger Institute (WTSI) using MIER1-Knockout (KO) mice 

demonstrated MIER1 null mice exhibited gender specific phenotypes. Male KO mice 

exhibit decreased body weight, trunk curl, increased body fat amount, decreased 

circulating free fatty acids and glucose levels as well as abnormal behavior. Female KO 

mice displayed trunk curl, abnormal vocalization, tremors and decreased circulating 

glucose levels. Details of experimental designs, statistical analysis and data can be found 

on www.mousephenotype.org.  

http://www.mousephenotype.org/
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Phenotypes such as trunk curl, abnormal vocalization, tremors and abnormal behaviors 

are all traits that may be associated with brain function and development. This is 

consistent with MIER1’s potential role in neurogenesis, evidenced by its enrichment on 

REST target genes and by the fact that silencing MIER1 in P19 cells triggered neuronal 

differentiation in the absence of RA treatment. MIER1 is shown to interact with 

HDAC1/2, CDYL and REST, which play important roles in neurogenesis136,143,197,198. 

Understanding which genes are under direct control of MIER1 can help understand its 

specific role in neural development.   

To address this point, we analyzed transcriptomes of mouse embryonic fibroblasts 

(MEFs) derived from WT and MIER1-KO embryos at stage E13.5 by RNA sequencing. 

The results of this analysis revealed 152 up-regulated and 405 down-regulated genes 

(intensity differences p < 0.5) in MIER1-KO MEFs, when compared to WT MEFs (Fig 

30A, B). The most significant biological processes associated with deregulated genes 

in MIER1-KO MEFs were regulation of neuron differentiation, cell adhesion and growth, 

axon guidance and synapse assembly (Fig 30C). Altogether, these findings show that 

changes in MIER1 levels alter expression of genes controlling neuron differentiation and 

function.  

 



 

Figure 30. RNA-seq analysis of gene expression in MIER1-KO MEFs and WT 

MEFs.  

(A) RNA-seq analysis was performed using SeqMonk using default parameters and a 

threshold value of 0.5. SeqMonk scatter plot showing both the up- and downregulated 

genes between the log 2 -transformed reads-per-million mapped reads values for the 

MIER1-KO and WT MEFs mRNA samples. (B) Heat maps of the relative expression of 

the 152 upregulated genes and 405 downregulated resulting from MIER1 depletion. (C) 

Gene ontology enrichment analysis of transcripts differentially expressed in MIER1-KO 

relative to WT MEFs. The top 11 annotation clusters are listed as derived from the 

DAVID bioinformatics tool. Count values represent number of genes and Benjamini 

values are similar to a p-value corrected for multiple hypothesis testing using the false 

discovery rate. 
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Chapter 5: Discussion 

The MIER family consists of three proteins namely MIER1, MIER2 and MIER3, 

grouped together based on sequence identities in their ELM2 and SANT domains145. 

MIER1 is a very well characterized member, shown to function as a transcriptional 

corepressor by recruiting HDAC1 and 2157. Little is known about the structure and 

function of MIER2 and MIER3. Both are predicted to be nuclear proteins and recently, 

MIER3 has been identified as a candidate breast cancer susceptibility gene199. Several 

large-scale proteomic/interactome studies have identified MIER proteins in association 

with HDAC1 and/or HDAC263,168. Furthermore, such studies have demonstrated that 

MIER1, 2 & 3 are not components of the CoREST, NuRD, SIN3 or NCoR corepressor 

complexes, but rather form distinct HDAC-containing complexes. While large-scale 

interactome analyses are very useful for providing information about the potential 

function of uncharacterized genes, it is important to validate any identified activities 

and/or properties. My results showed that transcriptional complexes formed by MIER 

proteins have different protein compositions suggesting that each MIER-containing 

complex has overlapping as well as unique function with other complexes. 

5.1 MIER family members share high sequence similarity in the ELM2-SANT  

Sequence Alignment tools such as ClustalW200 and MSAProbs177 programs are 

often used to identify regions of similarity that may suggest functional and/or structural 

relationships between biological sequences. I began my study of the MIER family 

characterization by comparing sequences of MIER2 and MIER3 to MIER1 and also to 

each other. Alignment results revealed that both MIER2 and 3 display higher similarity in 

the ELM2-SANT region to MIER1 (63% & 60% identity, respectively) than they do to 



 
 

128 

each other (52% identity) (Table 9). In contrast, the C-termini diverge amongst the three 

proteins suggesting specific functional roles. Millard et al.73 highlighted the amino acid in 

the ELM2 and SANT domain important for binding HDAC1. Sequence alignment 

analysis of ELM2-SANT containing proteins such as MTA1-3, RCOR1-3 and MIER1-3 

showed at least two amino acids that are conserved in all of the proteins except in 

MIER3. MIER3 contains 178I instead of V and 268Y instead of L. Previously157 our lab 

showed that MIER1 binds HDAC1 and 2 via the ELM2 domain and found that 213W as a 

critical residue for HDAC recruitment. Alignment analysis revealed that this tryptophan 

is identical in all ELM2-SANT containing proteins including MIER2 and MIER3. The 

identity at the amino acid residues level in the ELM2 and SANT domains between three 

members of the MIER family is high, implying that they may bind to the same partners 

and have similar functions.   

5.2 MIERs are nuclear proteins 

Cellular structure is highly organized with various sub compartments that ensure 

homeostasis operation of the entire cell. These subcellular structures include nuclei, 

mitochondria, endoplasmic reticulum, Golgi apparatus, cell membrane, and extracellular 

matrix4. Newly synthesized proteins on ribosomes must be transported to their designated 

subcellular compartment to exert their biological function. Misplaced proteins are often 

result in various disease states, which includes many cancers. Therefore, the subcellular 

location of proteins is an important feature of a protein, which is useful in determining 

protein function, in revealing the mechanism of molecular interaction, and in 

understanding the complex physiological processes178.  
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MIER1 was shown to be a nuclear protein154. The MIER1 isoform has a nuclear 

localization signal (NLS) while MIER1 does not, but still resides in the nucleus via a 

“piggy back” mechanism with HDAC 1 &2154. MIER2 and MIER3 are predicted to 

localize in the nucleus and contain an NLS between 244aa-253aa and 477aa-485aa 

respectively. I performed an analysis of the confocal z-stacks, using an Image J software 

program to provide a quantitative measure of the fluorescence in the nuclear and 

cytoplasmic compartments of cells overexpressing each protein. My results showed that 

more than 90% of the MIER1α and MIER3 protein was localized in the nucleus (Fig 7). 

While the majority of MIER2 protein (69%) was in the nuclear compartment (Fig 7C), 

there was a significant proportion of cells where it localized to the cytoplasm as well (Fig 

7A, panel m; 7B) and 31% of the protein was localized in this compartment (Fig 7C). I 

verified the MIER2 and 3 subcellular localization patterns in HEK293 to make sure the 

observation is not cell type-specific. Findings in HEK293 cells were similar to what I 

observed in the MCF7 cell line: that all MIER members are nuclear proteins and that 

there is also a significant percent of the MIER2 protein localized in the cytoplasm. The 

significance of MIER2 in the cytoplasm is currently unknown. There are at least 3 

explanations as to why I see MIER2 staining in the cytoplasm. First of all, the newly 

synthesised protein may be expressed at high concentration such that the nuclear import 

complexes cannot keep up to shuttle them efficiently into the nucleus. Secondly, MIER2 

protein may be actively exported from the nucleus to the cytoplasm, where it has unique 

functions. For example, REST is a nuclear protein but it is actively shuttled from nucleus 

to the cytoplasm to affect its repressive function133. I have demonstrated MIER2 to be in 

complex with REST and translocation of MIER2 from nucleus to cytoplasm may be the 
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same control mechanism to mediate its repressive functions along with REST. Lastly, 

other proteins may be trapping MIER2 in the cytoplasm, thus preventing nuclear import. 

Future experiments to either block import or export are required to answer some or all of 

these questions which to understand the functional role, if any, of cytoplasmic MIER2.  

5.3 One molecule of MIER is present in each regulatory complex 

My data show that MIER family members do not dimerize or multimerize. 

Additionally, there is only one molecule of MIER present in a given regulatory complex. 

Several lines of evidence indicate that complexes formed with MIER1 are different from 

those formed with MIER2 or MIER3: (i) coimmunoprecipitation assays show that the 

three MIER proteins do not interact with each other or with itself to form dimers or 

multimers, (ii) MIER2 immunocomplexes display significantly lower HDAC activity 

than those constituted by MIER1 and insignificant HDAC activity is observed in MIER3 

immunocomplexes, (iii) coimmunoprecipitation assays show that the three MIER 

proteins interact with same proteins at different levels; for example the interaction of 

MIER2 with HDAC1/2 is significantly lower than those exhibited by MIER1 and no 

interaction is seen between MIER3 and HDAC1/2. Similarly MIER1 and MIER2 interact 

with CDYL1b/c but no CDYL1b/c is present in MIER3 immunoprecipitate, and (iv) 

ChIP-Seq analysis showed that the three MIER proteins largely tethered to unique 

regions across the human genome.   

My finding that the MIER proteins do not co-exist in the same complex is similar 

to that of the MTA and CoREST proteins. These two families also harbour ELM-SANT 

domains and recruit HDAC1/2 to function as corepressors. Similarly, MTA1-3 and 

COREST1-3, each family of proteins is encoded by three genes and stoichiometric 
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analyses have demonstrated that the 3 proteins generally exist in distinct complexes. On 

the other hand, MTA1-3 proteins are reported to form homodimers through the ELM2 

domain31 and the homodimerization of MTA1 was shown to be crucial for interactions 

with HDAC 1. Therefore, I tested whether the MIER proteins also formed dimers to 

recruit HDAC 1 and 2. I was able to recapitulate previous findings31 and show MTA1 to 

form dimers but none of the MIER proteins were found to form dimers (Fig 8). Sequence 

alignment analysis of MIER proteins with MTA1 revealed that the ELM2 domain in 

MIER proteins lacks helix 2 that is present in MTA1. MIER proteins are predicted to 

form 3 alpha helices whereas crystallography analysis of MTA1 showed it consists of 4 

helices in the ELM2 domain. The authors showed the helices H1 and H4 of the ELM2 

domain of MTA1 formed the primary dimer interface, with a smaller contribution from 

helix H2. Although there is high degree of conservation of residues on other three helices, 

also shown to be important to form homodimers, helix 2 is missing in MIER proteins and 

may be the reason they do not form homodimers.        

Co-immunoprecipitation assays of the MIER proteins revealed that the MIER 

family members bind the same proteins differentially. For example, MIER1 recruits 

HDAC1/2 most efficiently and contains an augmented HDAC activity compared to 

MIER2, while MIER3 does not possess any HDAC activity and does not bind HDAC1 

and HDAC2. Such observations further supports that the MIER proteins are not together 

in a same complex as they have unique interacting partners and HDAC activity, 

suggesting distinct functions.   

Finally, genome wide characterization of MIER proteins binding sites revealed 

distinct distribution patterns for each MIER proteins. Although the three members shared 
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some target genes, there were far more genes that were unique to each member. Taken 

together, these data demonstrate that the MIER family members function as single 

molecules in unique complexes.  

5.4 Differential HDAC1 and 2 recruitment by members of the MIER family 

Previously, our lab has shown MIER1 to recruit HDAC1 and 2 through its ELM2 

domain157. I began characterization of MIER2 and MIER3 by investigating whether they 

also recruit HDACs given that they share the highly conserved ELM2 domain known to 

be important for HDAC interactions. My results demonstrated that only MIER1 and 

MIER2 recruit HDAC activity and that recruitment levels and stoichiometry vary with 

cell type. The results with HEK293 are consistent with those reported by Joshi et al.63 

who used the CEM-T lymphoblast cell line, but are in contrast to those reported by 

Bantscheff et al.168 who used the myelogenous leukemia cell line K562. In the former 

study, all 3 MIERs were identified in the HDAC1 and HDAC2 interactome, whereas in 

the latter study, MIER2 and 3 only interacted with HDAC2. My data showed that MIER2 

and 3 are much less effective than MIER1α at recruiting HDAC1/2. MIER3 is least able 

to recruit HDACs, so I tested whether the 277E in the MIER3 ELM2 domain is critical for 

HDAC recruitment as it is highly conserved. Co-immunoprecipitation assays established 

that neither MIER3 isoforms recruited HDACs efficiently. Interestingly, in MCF7 cells, 

only HDAC1 co-immunoprecipitated with MIER2 (Fig 9D, panels a-b, lane 3; Fig 9E) 

and no significant levels of HDAC1 or 2 were detected with MIER3 (Fig 9D, panels a-b, 

lane 4; Fig 9E). The results obtained with HeLa cells were similar to that obtained with 

MCF7: only HDAC1 was associated with MIER2 and neither was detected with MIER3 

(Fig 10). It is interesting that MIER2 did not bind HDAC2 in these cells as HDAC1 & 2 
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are highly similar proteins (85% identity) and co-exist as heterodimers in multiprotein 

complexes. There are few studies showing HDAC1 and HDAC2 form homodimers and 

have distinct roles72,201, so possibly MIER2-HDAC complexes have a unique role in 

HEK293 cells separate from complexes formed in MCF7 cells. HDAC1 and 2 are 

phosphorylated, a modification that is required for these enzymes to be assembled into 

the multiprotein SIN3, NuRD, and CoREST corepressor complexes72. However, it is 

unlikely that HDAC2 in MCF7 cells are not phosphorylated as both HDAC1 & 2 

enzymes are phosphorylated by casein kinase II on the same sites. On the other hand, 

HDAC1 is also phosphorylated by PKA, which may explain why only MIER2 interacted 

with HDAC1 in MCF7 cells. These data serve to emphasize the cell line-dependent 

variability in the composition of MIER-HDAC complexes. What remains unclear is the 

functional significance of differential HDAC recruitment by MIERs. This will require in 

part the knowledge of the gene targets of MIER1, 2 and 3 complexes and their complex 

composition in order to elucidate their distinct cellular functions.  

Next, I found MIER1α and MIER2 complexes immunoprecipitated from HEK293 

cells to contain deacetylase activity, while no significant HDAC activity above control 

levels was detected in MIER3 immunoprecipitates (p = 0.276; Fig 9F). The low level of 

HDAC1/2 recruitment by MIER3, even though MIER3 levels in the cell were high due to 

exogenous expression, and the fact that no MIER3-associated deacetylase activity could 

be detected, lead to conclude that MIER3 is unlikely to function in HDAC recruitment 

under physiological conditions. An alternate explanation is that MIER3 requires another 

molecule, or co-factor, or specific environmental condition to activate its ability to 

interact with HDACs. Millard et al.73 reported that Ins(1,4,5,6)P4 enhances the 
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deacetylase activity of both HDAC3:SMRT and HDAC1:MTA1 complexes. 

Interestingly, the inositol phosphate interacting residues are conserved in all corepressor 

proteins including MTA1-3, RCOR1-3, MIER1-3 and RERE. However, I did not find 

substantial difference in HDAC recruitment by any of the MIER proteins when 

exogenous Ins(1,4,5,6)P4 was added to the samples (Fig 11A, panels a-b). A small, but 

statistically significant, increase in HDAC activity of MIER1 complexes was observed in 

the presence of Ins(1,4,5,6)P4 (Fig 11B), however no difference was detected in the 

deacetylase activity of either MIER2 or MIER3 complexes. In addition, Millard et al.73 

showed that the SANT domain of SMRT complex had HDAC activity and mutation of 

Ins(1,4,5,6)P4 binding site on SANT domain of SMRT abolished HDAC activity. As a 

result, the authors concluded that Ins(1,4,5,6)P4 was key in regulating HDAC activity. 

However, our lab has previously157 shown that the SANT domain of MIER1 does not 

have any HDAC activity. Also, the concentration of Ins(1,4,5,6)P4 used in my assays 

were not a factor as I used Ins(1,4,5,6)P4 at a final concentration of 12.5 μM, which is 

what the authors used when they were conducting their HDAC activity assays. Together, 

the data presented here do not support the hypothesis that Ins(1,4,5,6)P4 is required for 

class 1 HDAC activation73. However, they do illustrate differences in the three members 

of the MIER family and presumably the complexes that they form. My data further 

demonstrates that MIER family members may form a distinct binding conformation with 

HDAC1 & 2 as compared to MTA1 and SMRT. Future studies investigating the binding 

pocket of MIER proteins with HDACs would be useful to create specific inhibitors of 

HDACs, which are currently being tested in many cancers.   



 
 

135 

Previously in our lab, the ELM2 in MIER1 was shown to be responsible for 

interaction with HDAC1 and 2. I found that MIER2 behaves similarly to MIER1 in 

recruitment of HDACs, with 228W in MIER2 being a critical residue. It was no surprise 

that 228W in MIER2 is key for HDAC interaction as the amino acid tryptophan is 

conserved among all three MIERs. Sequence alignment analysis revealed that the MIER1 

and MIER2 are 59% identical in the ELM2 domain while MIER1 and MIER3 share 54% 

identity. This raises the question as to why MIER3 does not interact with HDACs given 

the sequence identity among proteins are comparable. Thus, analysis of the ELM2 end 

(aa268-285), the sequence identity almost doubles between MIER1 and MIER2 (78% 

identical), which might explain as to why MIER2 only bind HDACs well compared to 

MIER3 (39% identity to MIER1 and 33% identity to MIER2). I also tested whether the 

ELM2 domain of MIER3 alone could interact with HDAC1/2 in HEK293 cells and yet 

again no HDACs were detected in MIER3 immunoprecipitate (data not shown). The 

reason why I tested the ELM2 domain of MIER3 alone was to determine whether steric 

hindrance of folded protein inhibited the HDAC interaction with MIER3, but this was not 

the case.  

These data clearly demonstrate that the three MIER proteins recruit HDAC1 and 

HDAC2 at different capacities but the reason could not be demonstrated experimentally. 

In order to ascertain whether the differences in the ELM2 domain of MIER3 is solely 

responsible for differences in HDAC recruitment, one could produce chimeric constructs 

of MIER3 containing the MIER1’s ELM2 domain and tested whether it could bind 

HDACs. This experiment would have confirmed whether the differences in the ELM2 

domain alone are responsible for differential HDAC recruitment. However, differential 
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recruitment of HDACs by MIER members is not unique as it is also seen in CoREST 

corepressor complexes24 and NuRD corepressor complexes28.  

5.5 Summary of MIER proteins binding to HDAC1/2   

In the first part of this report, the data presented here constitute the first 

characterization of MIER2 and MIER3 proteins. The results show that MIER2 and 3 are 

mainly localized in the nucleus. MIER2 can recruit HDAC1 and 2 activity, but this 

depends on cell type, and it does not do so as effectively as MIER1α. MIER proteins do 

not dimerize and Ins(1,4,5,6)P4 only enhances MIER1α associated HDAC activity. As 

with MIER1, there is a key tryptophan in the ELM2 domain of MIER2, 228W that is also 

required for HDAC recruitment. What remains largely unexplored is the possible effect 

of MIER1 and MIER2 on HDAC activity. It is known that HDAC activity is influenced 

by phosphorylation as well as protein-protein interactions and in the future our lab could 

explore whether MIERs could regulate HDAC activity or interaction.  

5.6 MIER3 does not interact with CDYL  

CDYL consist of a N-terminal chromo domain, a central hinge region, and a C-

terminal enoyl-coenzyme A hydratase/isomerase catalytic domain shown to function as a 

corepressor. In 2008, Mulligan et al.108 executed an affinity purification of Flag-HA-

tagged CDYL from HeLa nuclear extracts to isolate CDYL and its associated proteins, in 

an attempt to determine the function of CDYL. They carried out a mass spectrometry 

analysis and identified more than 22 associated proteins that copurified with CDYL. 

These included: HDAC1, HDAC2, G9a, GLP, WIZ, REST and MIER1/2. Next, they 

performed a glycerol gradient sedimentation analysis to determine whether these proteins 

form single or discrete subcomplexes. Their data demonstrated that there are at least two 
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multiprotein subcomplexes; first subcomplex was made up by MIER1/2, HDAC1, and 

HDAC2, while the second slower sedimenting complex included CDYL, REST, WIZ, 

G9a, and GLP.  

My data revealed that MIER1 and MIER2, but not MIER3, interact with CDYL1b 

and CDYL1c shown in Figure 13. These data shows that MIER1 and MIER2 interact 

with both isoforms, CDYL1b and CDYL1c suggesting aa1-289 CDYL is not responsible 

for this interaction. There was little difference in the interaction level between MIER1/2 

with CDYL1c and CDYL1b (p > 0.05). There is little or no data about specific role of 

CDYL1a or CDYL1c. CDYL1b is known to be the most abundant isoform107 and is 

tethered to chromatin regulators such as G9a183, HDAC1/2109, REST108, CoREST108 and 

EZH2110. Therefore, CDYL1b variant was used for the rest of this study since MIER1 is 

shown to interact with some of the same repressors.   

A more detailed analysis of the ELM2 end in MIER1 (aa255-286) and MIER2 

(aa260-297) revealed high conservation of sequences and high probability to form coiled-

coil. No coiled-coil structure was identified in the same region in the MIER3 and may be 

the reason why no CDYL was recruited by MIER3. Coiled-coils are characterized by an 

heptad repeat, which is a repeating unit of seven amino acid residues, labeled a, b, c, d, e, 

f or g. Interaction specificity is determined by hydrophobic interactions at positions a and 

d, which form a zig-zag pattern that interlock with a similar pattern on another strand to 

form a tight-fitting hydrophobic core186. Sequence analysis of MIER1 and MIER2 

proteins revealed multiple leucine residues that are positioned on “a” and “d” position of 

heptad repeat. I hypothesized that mutating these residues would alter the coiled-coil 

structure and as a result observe a reduced interaction with CDYL. My results showed a 
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statistically significant reduction in recruitment of CDYL by MIER1 when 274L was 

mutated to A. Mutating other leucines did not alter the interactions between 

MIER1/MIER2 and CDYL. I had expected to observe loss of coiled coil structure and 

attenuated MIER-CDYL interactions with either leucine to alanine mutations but detected 

loss of interaction with MIER1 274L. These findings suggest that MIER1 does not interact 

with CDYL through the coiled coil structure, as altering leucines on other heptad 

locations did influence the interaction levels between MIER1/2 and CDYL, as we had 

predicted initially. However, in order to get a more complete picture, one would need to 

mutate the remaining a and d residues in the predicted region to check if it would alter 

the interaction.  

Furthermore, our mutational analysis revealed that an equivalent 288L in MIER2 

as in MIER1, was also important for MIER2 to bind CDYL. There were differences 

between MIER1 and MIER2 when mutating an equivalent amino acid responsible for 

CDYL recruitment. Sequence alignment analysis of the region aa268-295 in MIER1 

showed a high degree of conservation in MIER2. One explanation is that CDYL is 

tethered to MIER2 complex through a three-dimensional structure that includes another 

molecule. MIER2 is shown to bind REST very robustly and CDYL binds REST. Thus, 

mutation of 288L on MIER2 only weakens the interaction as REST can still recruit CDYL 

to the complex. CDYL is shown to interact with CoREST to bridge G9a to REST 

complex but the region responsible for this interaction is not defined108. Sequence 

analysis of MIER1-3 with other ELM2-SANT proteins (MTA1-3, RERE, and CoREST1-

3)73 of the ELM2 domain showed absolute conservation of the leucine residue except in 
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MIER3 (Y instead of L). Therefore, the data suggests that all ELM2-SANT containing 

proteins have the critical conservation of the residue to interact with CDYL.  

 Data showed no interaction between MIER3 and CDYL and this was not as a 

result of low expression of the protein as the co-immunoprecipitation assays were carried 

out with exogenous myc-tagged proteins. These results are in agreement with Mulligan et 

al.108 finding as I was able to detect MIER1 and MIER2 binding to both CDYL and 

HDACs. Furthermore, as mentioned earlier, I did not detect any HDAC activity or 

HDAC1/2 binding with MIER3, which strengthens my observation that MIER3 is very 

different from both MIER1 and MIER2. MIER3 associated with neither HDACs nor 

CDYL, both of which are shown to be a part of the same complex. The question remains 

as to why MIER3, which contains the ELM2-SANT functional domains as in MIER1 and 

MIER2, does not interact with any of known binding partners.    

5.7 MIER1 and MIER2 augments HDACs association with CDYL  

In 2003, Caron et al. reported CDYL as a new co‐repressor of transcription that is 

able to recruit HDAC1 and 2 but not HDAC3 in COS7 cells. They noted that the 

interaction between CDYL and HDACs is direct through its C-terminal CoAP domain by 

an in vitro binding assay. It is interesting that I observed CDYL-MIER1/2 interactions via 

the CoAP domain as well (Fig 13B). I have shown that MIER1 and MIER2 are present in 

distinct complexes; both recruit HDAC1, HDAC2 and CDYL. Results showed exogenous 

expression of both MIER1 and MIER2 increased the level of HDAC1/2 associated with 

CDYL complexes (Fig 18-19). On the other hand, CDYL did not have any effect on the 

level of MIER1/2 and HDAC1/2 binding (Fig 16-17). Additionally, mutating MIER1 274L 

to A not only reduced interaction between MIER1 and CDYL1b but also lowered the 
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level of interaction between CDYL1b and HDAC1/2. There are at least two possibilities 

that could explain these results. First, MIER1 and MIER2 may be recruiting HDAC1 and 

2 to the CDYL complex or alternatively, MIER1/2 upon binding to CDYL alter the 

structure of CDYL that allows more HDAC1/2 to bind to the complex. Future studies are 

required to confirm and one may do so by carrying co-immunoprecipitation assay with 

mutant W214A in MIER1 and W228A in MIER2, in the ELM2 domain that are shown to 

be crucial for HDAC1/2 binding and determine whether level of HDAC1/2 is influenced 

in the CDYL complex.  

The role of CDYL in the MIER1/2 complexes is not known. CDYL is known to 

function as a methyl reader on histone tails and as a corepressor of REST complex by 

bridging methyltransferase G9a to REST to repress target genes by altering the chromatin 

structure 108. We performed co-immunoprecipitation assays and found MIER1 and 

MIER2 to bind to G9a (data not shown) but we did not investigate whether the 

interaction was mediated by CDYL. In the future, one could test whether the interaction 

between G9a and MIER1 and 2 is direct or via CDYL.  

Recently, CDYL was shown to act as a crotonyl-CoA hydratase to negatively 

regulate histone crotonylation112.  Crotonylation is a newly identified post-translational 

modification on lysine resides in all four histones, which has been demonstrated to 

associate with active promoters and to directly stimulate transcription112,202. CDYL does 

not catalyze decrotonylation from histones but rather acts as a crotonyl-CoA hydratase to 

convert crotonyl-CoA to β-hydroxybutyryl-CoA, thereby destroying crotonyl-CoA for 

Kcr reaction112. This is a newly identified role for CDYL, an intrinsic enzymatic activity 

to inhibit transcription distinct from its previously known function of recruiting histone 
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regulators to facilitate the establishment of repressive modifications such as H3K27me3 

at target regions for repression110. CDYL’s newly identified role raises several questions 

that are yet to be explored. Does CDYL enzymatic activity also depends on cellular 

metabolism, as reported by Sabari et al.203 studying the role of p300 as histone 

crotonylator and if so, what causes the change in levels of crotonyl-CoA vs. acetyl-CoA. 

How is the structure of chromatin regulated through lysine crotolynation? Are there 

selective readers for histone Kcr? Do MIER1 and MIER2 influence CDYL hydratase 

activity? What enzymes regulate the addition or removal of Kcr? Further investigation is 

necessary to answer these questions and determine the biological importance of Kcr.  

5.8 Key points discovered from CDYL and MIER1/2 report 

The data presented here showed that both MIER1 and MIER2 interact with 

CDYL1b and CDYL1c. I have also mapped region of both MIER1 and MIER2 and 

CDYL responsible for the interaction between CDYL and MIER. Additionally, I have 

shown MIER1/2 to enhance the interaction between CDYL1b and HDAC1/2. I have 

hypothesized that MIER1/2 facilitate gene suppression through chromatin remodelling as 

shown in other corepressors by facilitating the assembly of specific histone-modifying 

regulators to the complexes. Therefore, a mass spectrometry analysis of each MIER 

proteins will aid to determine complete list of their binding partners.   

5.9 Genome-wide characterization of MIER1, MIER2 & MIER3 target genes  

My data so far suggests that MIER3 is different from the other two MIER 

proteins. I have shown that MIER3, unlike MIER1 and MIER2, does not interact with 

any of the chromatin modifiers such as HDAC1, 2 or CDYL. In an attempt to 

characterize mechanisms and/or biological functions of the MIER proteins I sought 
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publicly available MIER ChIP-Seq data sets for analysis. These analyses demonstrated 

that both MIER1 and MIER2 were enriched on genes that are well known REST targets. 

Similarly, CDYL was shown to bind REST target genes suggesting that CDYL, MIER1/2 

and REST may be in the same complex to control transcription of target genes 183. It is 

interesting to know whether CDYL is present with MIER1/2 when in complex with 

REST. Does CDYL also bring G9a to REST and MIERs? Previous (unpublished data 

from our lab) shows MIER1 and MIER2 to interact with G9a but it is not clear whether 

the interaction is mediated via CDYL. This is a very novel discovery despite extensive 

amount of research surrounding REST, no study detected MIER proteins to be part of 

REST repressor complex.  

This is the first report characterizing MIER proteins’ binding sites in the human 

genome. The molecular pathways of MIER proteins were predicted using GREAT. 

MIER1 and MIER2 were predicted to be involved in pathways important for neuronal 

function. Similarly, a list of MIER3 target genes was uploaded in GREAT, which showed 

that it might play a role in part in cellular stress response. REST gets recruited to target 

genes by binding to a DNA element called repressor element 1 (RE1). It recruits two 

major HDAC-containing complexes namely SIN3 complex and Co-REST complex via 

the N- and C-termini respectively to repress transcription. It is interesting to find that 

MIER proteins are enriched on known REST genes (Fig 24)191. Numerous studies have 

been conducted to identify REST target genes and associated proteins, yet no such study 

reported any of the MIER proteins to be associated with REST. Many of the apparent 

discrepancies in the current literature concerning subunit composition and identity of 

protein complexes might result from differences in the preparation of extracts and 
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purification procedures. In addition, the ever-increasing sensitivity of protein 

identification by mass spectrometry techniques accounts for the identification of novel 

subunits that were missed in previous approaches. 

 Analyses of ChIP-Seq data for MIER proteins have revealed that the MIER 

family is enriched on known REST target genes. Our lab has previously demonstrated 

that MIER1 does not bind DNA directly (unpublished data) so I hypothesized that MIER 

proteins like other corepressor molecules are recruited to target genes by a transcription 

factor like ER or SP1. Such observations lead me to ask whether MIER proteins interact 

with REST or REST binding partners or are they a part of a novel unidentified complex 

recruited to REST target genes.  

5.10 MIER proteins bind to REST 

As predicted by the analysis of the MIER ChIP-Seq datasets, I discovered MIER1 

and MIER2 to be present in the REST immunoprecipitates in HEK293 cells. The 

association of MIER proteins and REST were also verified in HepG2 cells, where very 

robust MIER2 binding to REST was detected but no MIER1 or MIER3 were present with 

REST. The results in HEK293 showed that MIER1 binds REST but at much lower levels 

compared to MIER2. Moreover, I was able to map MIER2-REST association and 

determine that it occurs through aa 301-545 of MIER2, which contains the SANT 

domain. However, constructs containing the SANT domain and lacking the SANT 

extension were not able to recruit REST. In the future, one could construct a 

SANT+SANT extension to determine whether the interaction between MIER2-REST is 

due to this region, as it is highly conserved among MIER proteins. There are several 

possible reasons why MIER1 and MIER2 interact differentially with REST. Firstly, the 
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C-termini region of MIER proteins shown to be important for interaction with REST are 

very different from each other at the amino acid level and may be causing it to fold 

differently, thus influencing the interaction. Secondly, MIER proteins may be post-

translationally modified causing changes in the binding pocket, which may cause one to 

interact better than the other. Thirdly, MIER2 may be binding REST directly whereas 

MIER1 may need another cofactor to interact with REST that is absent or present at low 

levels in the cells. We observed cell line-dependent variability in the composition of 

MIER1/2-REST complexes, which may be explained by REST and its association with 

cofactors to repress target genes.   

My finding that MIER1 and MIER2 are interacting with REST changes the 

current knowledge that SIN3A and Co-REST are the only corepressor complexes 

mediating HDACs and other regulators to the REST complex to repress genes. It is 

known REST exerts its transcriptional regulatory roles by cooperating with other 

proteins. CDYL was identified as REST corepressor by physically bridging REST and 

the histone methylase G9a to repress transcription and through histone modifications108. 

In this thesis, I have shown that MIER1 and MIER2 to interact with CDYL and REST 

and HDAC1/2, which inhibit transcription by altering the chromatin structure. The 

dynamics of REST binding and cofactor recruitment and its recruitment on the target 

genes as well as the significance of so many possible binding partners remain unclear.  

Observations made in this report identify MIER family as novel corepressors of REST 

and open up a number of questions to be explored. What role do MIER proteins play in 

the REST complex? Are MIER proteins involved in the modulation of neural 

developmental gene expression programs along with REST and CDYL? Do MIER 
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proteins mediate gene networks underlying neural stem cell multi-lineage potential and 

fate restriction? 

In the future, to elucidate MIERs’ regulatory networks, it is important that 

genome-wide mapping by ChIP be coupled with assessments of differential gene 

expression of MIER knockdowns and mass spectrometry analysis of the recruitment of 

transcriptional cofactor to the MIER complexes to further expand our understanding of 

the complexes and their roles. 

5.11 Silencing of MIER1/2 in P19 cells promotes neuronal differentiation  

REST is a transcription factor widely expressed during embryogenesis. It plays an 

important in neurogenesis via epigenetic remodeling to actively repress a vast number of 

genes including those encoding ion channels, neurotransmitter receptors, synaptic vesicle 

proteins and adhesion molecules in neural stem cells133. Interactions of two distinct 

corepressors, SIN3 and CoREST, are identified as key element for REST-mediated gene 

repression. It has been shown that knockdown of CoREST and SIN3A/B leads to ablation 

of REST functions and triggers differentiation of non-neuronal cells into neurogenic 

cells22,204. In addition, there are several reports that demonstrate CDYL play a crucial role 

in neurogenesis108,111,197,198,205. Knockdown of CDYL in induced pluripotent stem 

cells spontaneously differentiated into neuronal lineage205.  

The results of the genome-wide MIER-binding site analysis indicated that MIER1 

and MIER2 are distributed on significant number of well-known REST target genes. 

Also, results of the co-IP assays in this report showed that both MIER1 and MIER2 

interact with REST and CDYL. To examine the functional role of MIER1 or MIER2 in 

differentiation, loss-of-function analyses were conducted in pluripotent P19 cells using 
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MIER1 and MIER2 selective shRNAs. P19 cells are pluripotent cells that are derived 

from teratocarcinoma in mouse and can be differentiated into a variety of cell types. P19 

cells can be differentiated into all the neural lineages by retinoic acid (RA) induction194. 

There are several specific markers to identify whether the cells are of neural lineages, in 

this report, I used neuron-specific class tubulin 3 and astrocyte specific GFAP. 

 My data demonstrated that knockdown of MIER1 or MIER2 resulted in 

differentiation of pluripotent P19 cells into neurons without the treatment of RA. It is an 

exciting result revealing MIER1/2 role in stem cells and lineage commitment. 

Observations made in confocal immunofluorescence analysis showed that neuron-like 

cells differentiated from P19 cells by silencing MIER1 and MIER2 without RA 

treatment. However, I did not determine whether MIER1/2 knockdown P19 cells are 

differentiated into functional neurons. This finding is in line with functions of other 

known REST corepressors like SIN3 and CDYL, where attenuating expression levels 

results in increase in neuronal gene expression111,204,205. 

 Also, I detected higher expression of tubulin 3 in the MIER1 KD clones versus 

MIER2 KD clones by Western analysis. Analysis of ChIP-Seq data and CoIP assays 

illustrated MIER2 to be involved with REST more strongly than MIER1 but the 

differentiation assay results were different. Reduction of MIER1 levels mediates neuronal 

differentiation more robustly compared to MIER2. This may in part be explained by the 

results of the MIER1 ChIP-Seq analysis, which revealed that MIER1 was also enriched 

on genes with another transcriptional factor PRDM4, shown to play a role in neural 

differentiation122. PRDM4 has been shown to recruit the histone arginine 

methyltransferase PRMT5 and the complex is required to maintain the proliferative 



 
 

147 

capacity and “stem-like” cellular state of the neural stem cells. Furthermore, knockdown 

of PRDM4 in PC12 cells resulted in increased expression of tubulin 3122. MIER1 ChIP-

Seq data showed that MIER1 is on 57 regions (out of 448 total sites FE>15) with 

PRDM4 and the remaining 391 sites are REST genes. In this report, I showed MIER1 to 

interact with REST but did not test whether MIER1 is associated with PRDM4. It is 

possible that MIER1 is a component of the PRDM4-PRMT5 repressive chromatin-

remodelling complex recruited by PRDM4 and also a component in REST repressive 

complex recruited by REST, where MIER1 in both complexes is in turn mediating 

repression by engaging HDAC1/2 to the complex.   

Another possibility is that MIER proteins have specific roles in controlling the 

precise timing of neurogenesis that are distinct from one another. MIER1 might be 

crucial for maintenance of neural stem cell population while MIER2 may play a role in 

lineage differentiation. Furthermore, analysis of ChIP-Seq data identified MIER2 target 

genes encoding helix–loop–helix (HLH) transcription factors known to be play diverse 

roles in neural development for example neurogenin 2, NEURODD, hairy and enhancer 

of split 1/3/6 (HES1/3/6), AND inhibitor of DNA binding 2/4 (ID2/4)206. ID proteins 

promote the maintenance and self-renewal of neural stem cells (NSC) and progenitor 

cells and also control the precise timing of neurogenesis (ID1/2) and 

oligodendrogliogenesis (ID2/4) by regulating proneural HLH and other neural 

differentiation factors207. Also, ID2 promotes NSC maintenance by sustaining HES1 

expression208, which in turn inhibits the differentiation of neuronal and glial lineage209. 

Likewise, both HES1 and HES3 are essential for the maintenance and proliferation of 
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NSC. The expression levels of these transcriptional factors were not tested but could be 

in future studies, to determine whether MIER2 regulates any one of these proteins. 

RT-PCR showed clear knockdown of MIER1 or MIER2 transcripts in stable 

knockdown clones. I could not measure MIER1/2 protein levels since the antibodies 

against them did not detect endogenous MIER levels in P19 cells. I did not observe 

proliferation differences between control and knockdown clones during differentiation. 

However, I had fewer clones in the knockdown sample as compared to control initially 

when selecting stable clones expressing shRNA against MIER1 or MIER2. It is very 

likely that MIER1 and MIER2 play role in proliferation and maintenance of pluripotent 

cells. REST expression is high in the adult hippocampus, which is required to maintain 

the adult neural stem cell (NSC) pool and orchestrate stage-specific differentiation. In the 

future, one would test these observations and check if MIER1 and MIER2 may also play 

a role in maintenance of NSC. The levels of MIER1/2 and REST were not examined in 

differentiated cells. While REST expression is known to decrease during neural 

differentiation, MIER1/2 levels are unknown and need to be examined in the future.  

P19 embryonal carcinoma cells were used as a differentiation model, which is an 

invaluable tool for approximating the mechanisms that govern neuronal differentiation. 

However, they are often cultured under conditions that promote unrestricted non-

neuronal growth that compromises neuronal viability. One possibility to avoid this is to 

treat the culture with Cytosine β-d-arabinofuranoside and 2′-Deoxycytidine so that the 

cultures were more consistently enriched toward the neuronal differentiation vs non-

neuronal differentiation194.  
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Next, I was interested to investigate the changes in gene expression in mouse 

MIER1 knockout embryonic fibroblast cells. I established MEFs at 13.5 days and 

performed transcriptome analysis of WT versus KO MEFs. The results were in 

agreement with what was shown with ChIP-Seq analysis and P19 neural differentiation 

findings that MIER1 was involved in regulation of neuron differentiation. Several REST 

target genes (BDNF, NGF, ANKRD1, STMN2, CNN1) were upregulated in MIER1 null 

MEFs, which again further demonstrate MIER1’s involvement with REST as a 

corepressor. There were 154 genes that were upregulated in MIER1 KO MEFs compared 

to ~1000 peaks identified by ChIP-Seq in K562 cells. It is not surprising that only a small 

fraction of genes were affected, as other corepressor complexes such as MIER2, SIN3 

and CoREST also regulate REST-mediated repression. Brain development and function 

is complex, relying on many regulatory circuits to carry normally. The MIER proteins are 

enriched on genes that are important in such pathways and understanding their specific 

role in the brain would heighten our present knowledge, which will help find treatments 

for neurodegenerative diseases.  

These are preliminary findings showing MIER1 & MIER2’s role as an important 

player in neurogenesis. I have demonstrated aberration of MIER1/2 levels result in 

neuronal differentiation, but we need to identify the specific roles in vivo and how are 

they involved in neural development in mouse and or human. Deletion of MIER1 in mice 

does not lead to embryonic lethality or anatomical malformations in fetuses. However, 

we observed MIER1 null mice show decreased body weight and the Mouse Phenotyping 

Consortium and The Wellcome Trust Sanger Institute also reported decreased body 

weight and reduced levels of circulating glucose and cholesterol in MIER1 null mice. 
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They also found null mice to display tremors, abnormal vocalization and abnormal 

behaviour, which are pathways controlled by cell signalling in the brain and exerting such 

phenotypes are a strong argument in favour of MIER1 and REST cooperating to control 

the expression of genes involved in neurogenesis in the brain.  

5.12 MIER1/2 are new players in the REST complex 

In this report, I established that the consensus binding motifs of MIER proteins 

and REST are almost identical. MIER1 and MIER2 share extensive common genomic 

targets with the transcription repressor REST. Moreover, I showed MIER1 and MIER2 to 

interact with REST and mapped the region on MIER responsible for binding. Taken 

together, I have identified MIER1/2 as novel corepressors that bring HDACs to REST for 

transcriptional repression.  REST binds two other corepressor complexes, SIN3 and 

CoREST, which contain many of the chromatin regulators such as CDYL, HDACs and 

G9a that we know MIER1/2 bind as well. This raises the plausible hypothesis that the 

MIER1/2-associated chromatin complex could act as a transcriptional co-repressor in 

synergy with SIN3 and CoREST in the context of neural development and function. 

5.13 Overall summary and our working model 

In summary, in this report I have shown that MIER1, MIER2 and MIER3 are 

nuclear proteins functioning as single molecules in distinct complexes. While both 

MIER1 and MIER2 were found to interact with HDAC1, HDAC2, CDYL and REST, 

MIER3 did not, despite containing the ELM2 and SANT domains important for binding 

to these proteins. Previously, our lab has demonstrated that MIER1 functions in 

transcriptional repression by recruiting HDAC1 and 2. Similarly, in this thesis I have 

discovered that MIER2 also interacts with HDAC 1/2 through its ELM2 domain and 
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possesses HDAC activity. I also found that MIER1 and MIER2 bind to CDYL via their 

ELM2 domain and MIER2 interacts with REST through the C terminus containing the 

SANT domain. I characterized genome-wide binding sites for MIER proteins and 

discovered that all three members share a small number of genes between them. Taken 

together, these data suggest that MIER2 is very similar to MIER1 whereas MIER3 is 

undeniably different. I did not investigate the transcription activity of MIER3 or its 

association with FOX1A/B in this report. FOX1A/B is a transcription factor that 

regulates liver and gut specific genes as well as controls glucocorticoid receptor mediated 

genes. So, it is likely that MIER3 may also play a role in mediating such genes but the 

function of MIER3 is still unclear.      

My data suggest that MIER1 and MIER2 are subunits of distinct transcriptional 

factor mediated (REST) corepressor complexes. Corepressor complexes are recruited by 

transcriptional factors to specific loci to inhibit transcription by modulating the chromatin 

structure via alterations of epigenetic marks on histones. Likewise, MIER1 and MIER2 

are shown to interact with REST, a transcriptional factor that binds RE1 sites on target 

genes, which we have shown to in turn recruit HDAC1/2 as well as other chromatin 

modifiers such as CDYL and G9a to repress genes.  

Based on MIER1 and MIER2 reported functions of interacting partners and 

immunoprecipitated MIER1/2 complexes possessing HDAC activity, a working model is 

proposed that explains how MIER1 and MIER2 containing complexes inhibit 

transcription. First, MIER1/2 is directed to target genes by REST, which binds DNA via 

the RE1 site on regulatory region of targeted gene (Fig 31). MIER1/2 then orchestrates 

the modulation of a chromatin by recruitment of at least the HDAC1 & 2, CDYL, G9a to 
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remove acetyl groups from lysines and methylate in return to stimulate establishment of 

heterochromatin and inhibition of transcription.  The sequence assembly of the complex 

as well as the complete composition of the MIER1 and MIER2 complexes is not yet 

identified. It also remains elusive is whether MIER1 and MIER2 are functioning 

redundantly or they are core part of diverse corepressor complexes with distinct roles.   

5.14  Future Directions 

In order to understand the function and mechanism of the MIER proteins we will 

have to perform mass spectrometry analysis to determine the stoichiometry of protein 

assemblies in each complex. Also, knowledge of the expression of each MIER proteins in 

adult brain as well as in developing embryo will aid in understanding the importance of 

each member. In addition, transcriptome analysis of MIER knockdown in neural stem 

cell will further advance the understanding underlying MIER1/2 roles in neurogenesis.   

Taken together, I have demonstrated MIER proteins function as corepressors by getting 

recruited to target genes by transcriptional factor REST and in turn act as a scaffold to 

bring chromatin regulatory enzymes such as readers, writers and erasers to modulate the 

epigenetic marks to repress expression at specific gene targets.  
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Figure 31. A model of MIER1/2-mediated transcriptional repression.  

MIER1/2 is directed to target genes by interacting with REST that binds DNA on the 

regulatory domain of target genes through RE1 site. MIER1/2 act as a scaffold to recruit 

HDAC1/2 to remove the acetyl (Ac) groups off the histones and tether CDYL and G9a to 

methylate (me) in return to silence transcription.   
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