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Abstract 

Ground-based electromagnetic induction (EMI) sensors play a significant role in 

shallow soil characterization in precision agriculture. Two different types of EMI sensors 

were used in this study: (i) a multi-coil and (ii) a multi-frequency. The potential 

applications of both EMI sensors have been assessed through two different studies at the 

Pynn’s Brook Research Station, Pasadena, western Newfoundland. One study was on the 

development of relationships between apparent electrical conductivity (ECa) and soil 

properties, using geostatistical and multivariate statistical approaches, and the second study 

investigated the depth sensitivity (DS) of multi-coil and multi-frequency EMI sensors 

using small buried targets of known properties in shallow soils. Soil properties, such as 

sand, silt, soil moisture content (SMC), cation exchange capacity (CEC), and pore water 

electrical conductivity (ECw), were identified as significantly influenced soil properties on 

ECa measurements. The multi-frequency EMI sensor is more reliable on ECa variability for 

wet soils than dry soils and it could explore deeper soil compared to the multi-coil sensor. 

The second study revealed that the multi-coil EMI sensor was a more accurate and suitable 

sensor to detect small metallic targets in the shallow soils than the multi-frequency EMI 

sensor. Finally, I concluded that the multi-coil EMI sensor is a more appropriate compared 

to the multi-frequency sensor, to investigate depth sensitivity (DS) analysis as well as the 

spatiotemporal variability of ECa as a proxy of soil properties in shallow (agricultural) soils 

in western Newfoundland. 

  



iii 

 

Acknowledgments 

First and foremost, my sincere gratitude to my advisor Dr. Lakshman Galagedara, 

for the guidance, encouragement and support during field work as well in the successful 

completion of this research. I would like to express my special thanks to my co-advisor, 

Dr. Adrian Unc, and advisory committee member, Dr. Manokararajah Krishnapillai, who 

have provided valuable comments, suggestions, and inputs to my research work. 

My special thanks to Dr. Daniel Altdorff for his support and guidance on EMI 

measurements and analyses. I express my warm thanks to the Research and Development 

Corporation, NL (RDC-Ignite) and Research Office of the Grenfell Campus, Memorial 

University of Newfoundland for their financial support. I thank Dr. Tao Yuan for his 

assistance in the laboratory. My sincere thank to Chameera Illawature for GPR data 

collection at the field. I especially thank my friends and team members who helped in 

various aspects of this research, Emmanuel Badewa, Dinushika Wanniarachchi, Ivo Arrey, 

Gnanakaran Maheswaran, Waqas Ali, Waqar Ashiq, and Abiraami Ramasamy. 

I wish to offer my heartfelt thanks to all my family: parents, brothers and sisters, 

especially my loving wife, for their support and encouragements.  

All your support and cooperation are much appreciated. 

Kamaleswaran Sadatcharam 

  



iv 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Acknowledgments.............................................................................................................. iii 

Table of Contents ............................................................................................................... iv 

List of Tables ................................................................................................................... viii 

List of Figures ..................................................................................................................... x 

List of Abbreviations and Symbols.................................................................................. xiv 

Chapter 1: Introduction and Overview ............................................................................... 1 

1.1. Background ............................................................................................... 1 

1.2. Aim and Objectives ................................................................................... 4 

1.3. Thesis Organization................................................................................... 5 

1.4. Overview of the EMI Method for Soil Studies ......................................... 6 

1.4.1 Operating Principle of EMI ............................................................... 6 

1.4.2 Apparent Electrical Conductivity (ECa) ............................................ 8 

1.4.3 Apparent Magnetic Susceptibility (MSa) ........................................ 10 

1.5. Depth Sensitivity of EMI Measurements ................................................ 11 

1.6. Multi-coil EMI Sensor ............................................................................ 12 

1.7. Multi-frequency EMI Sensor .................................................................. 13 

1.7.1 Sensor Specifications ...................................................................... 13 



v 

 

1.7.2 Operating Principle of the multi-frequency EMI sensor ................. 15 

1.8. References ............................................................................................... 17 

Chapter 2: Developing Relationships between Apparent Electrical Conductivity and Soil 

Properties Using Geostatistical and Multivariate Statistical Approaches ......................... 26 

2.1. Co-authorship Statement ......................................................................... 26 

2.2. Abstract ................................................................................................... 27 

2.3. Introduction ............................................................................................. 29 

2.4. Methodology ........................................................................................... 32 

2.4.1 Study Area ....................................................................................... 32 

2.4.2 Soil Sampling and Analysis ............................................................ 35 

2.4.3 Electromagnetic Induction Surveys ................................................ 38 

2.4.4 EMI Data Processing ....................................................................... 40 

2.4.5 Statistical Analysis .......................................................................... 41 

2.5. Results and Discussion ............................................................................ 44 

2.5.1 Descriptive Analysis of Soil Physiochemical Properties ................ 44 

2.5.2 Descriptive Analysis for ECa Data of the Multi-coil and Multi-

frequency EMI Sensors ............................................................................... 45 

2.5.3 Variogram Analysis......................................................................... 49 

2.5.4 Pearson's Correlation ....................................................................... 52 



vi 

 

2.5.5 Principal Component Analysis ........................................................ 54 

2.5.6 Multiple Linear Regression (Backward Elimination of MLR) ....... 57 

2.6. Conclusions ............................................................................................. 64 

2.7. References ............................................................................................... 65 

Chapter 3: Investigating the Depth Sensitivity of Multi-Coil and Multi-Frequency 

Electromagnetic Induction Methods Using Small Buried Targets in Shallow Soils ........ 78 

3.1. Co-authorship Statement ......................................................................... 78 

3.2. Abstract ................................................................................................... 79 

3.3. Introduction ............................................................................................. 80 

3.4. Materials and Methodology .................................................................... 84 

3.4.1 Study Area ....................................................................................... 84 

3.4.2 Experimental Plot ............................................................................ 86 

3.4.3 Multi-coil EMI Sensor .................................................................... 86 

3.4.4 Multi-frequency EMI Sensor .......................................................... 87 

3.4.5 Electromagnetic Induction Surveys ................................................ 87 

3.4.6 GPR Survey ..................................................................................... 88 

3.4.7 Depth Sensitivity of EMI ................................................................ 89 

3.5. Results and Discussion ............................................................................ 95 

3.5.1 Multi-coil EMI Survey .................................................................... 95 



vii 

 

3.5.2 Multi-frequency EMI Survey ........................................................ 108 

3.5.3 GPR Data Analysis........................................................................ 114 

3.6. Conclusions ........................................................................................... 117 

3.7. References ............................................................................................. 118 

Chapter 4: General Summary and Conclusions .............................................................. 126 

4.1. Recommendations for Future Works .................................................... 127 

APPENDIX 1 Descriptive Analysis of Raw ECa Data Measured by Both EMI Sensors  

........  ........................................................................................................... 129 

APPENDIX 2 Experimental Variogram With Pairs of Samples .............................. 130 

APPENDIX 3 Temporal ECa Measurements of Multi-coil EMI Sensor .................. 131 

APPENDIX 4 Absolute Deviation MSa Maps of VCP Coil Orientation by Multi-coil 

EMI Sensor: 20th of June 2018 ....................................................................................... 133 

APPENDIX 5 Theoretical depth model of MSa: RR of both sensors and actual depth 

of buried metallic targets ................................................................................................ 134 

APPENDIX 6 Theoretical Depth Model of MSa: CR of Both Sensors and Actual 

Depth of Buried Metallic Targets ................................................................................... 135 

 

  



viii 

 

List of Tables 

Table 2.1: Soil property measured, instrument used and the method ............................... 36 

Table 2.2: Descriptive statistics of soil properties and EMI-ECa (mS/m) data for both dry 

and wet days (n=16), ......................................................................................................... 48 

Table 2.3: Experimental variogram model parameters of ECa data for dry and wet days 48 

Table 2.4: Pearson’s correlation coefficient (r) summary between soil properties (0−20 cm 

depth), and temperature corrected ECa data for both wet and dry days (n=16) ................ 53 

Table 2.5: Correlations between measured variables and the first two PCs at the study site

........................................................................................................................................... 55 

Table 2.6: Summary of backward elimination MLR between soil and hydraulic properties 

and ECa data of multi-frequency and multi-coil EMI sensors on the dry and wet days 

(p<0.05 and n=16) ............................................................................................................. 60 

Table 2.7: Backward elimination MLR models for dry and wet day surveys (p<0.05) ... 61 

Table 3.1: Information of buried targets ........................................................................... 86 

Table 3.2: Theoretical effective depths for ECa depth model of both multi-coil and multi-

frequency........................................................................................................................... 90 

Table 3.3: Descriptive statistics of MSa of multi-coil EMI sensor with respect to survey 

days ................................................................................................................................... 97 



ix 

 

Table 3.4: Descriptive analysis of MSa depth model of multi-coil and multi-frequency 

sensors ............................................................................................................................... 98 

Table 3.5: Descriptive statistics of MSa of the multi-frequency EMI with respect to the 

survey days...................................................................................................................... 110 

Table 3.6: Actual depth vs GPR estimated depth of buried targets for 6 GPR surveys . 115 

Table 3.7: Summary of fitted line plot results for the relationship between actual depth and 

GPR estimated depth....................................................................................................... 115 

 

 

 

 

  



x 

 

List of Figures 

Figure 1.1: Schematic view of EMI operating principles. Tx is the transmitter coil and Rx 

is the receiver coil. .............................................................................................................. 7 

Figure 1.2: The HCP and VCP mode of operation, where Tx is the transmitter coil and Rx 

is the receiver coil (McNeill, 1980). ................................................................................... 8 

Figure 1.3: Depth sensitivity using geometry (left) and frequency (right) sounding methods 

of EMI (modified from Keiswetter and Won, 1997) .......................................................... 9 

Figure 1.4: Schematic representation of electrical conductivity pathways of the ECa 

measurements (modified from Corwin and Lesch, 2005). ............................................... 10 

Figure 1.5: (a) Coil geometry, configuration and orientation of the multi-coil EMI sensor. 

(Offsets 0.32m, 0.71m and 1.18m respectively for Rx 1, Rx 2 and Rx 3 from the Tx coil) 

(Bonsall et al., 2013); (b) Multi-coil sensor operation at PBRS field............................... 14 

Figure 1.6: Components of the multi-frequency EMI instrument .................................... 15 

Figure 1.7: Electronic Block Diagram of the multi-frequency EMI sensor. (modified from 

Won et al., 1996). DSP − digital signal processor; ADC − analog to digital converter. .. 16 

Figure 2.1: Study site, field layout, and sampling locations. (a) Location of PBRS, (b) Grass 

and silage-corn fields, (c) Entire experimental field indicating the location of the DKC26-

28RIB variety -V5, EMI survey coupled with GPS are showed in the black lines (d) Soil 

and ECa sampling points on two transects of V5. ............................................................. 34 



xi 

 

Figure 2.2: Weather data, daily total precipitation in mm, and averaged soil temperature at 

a depth 20 cm. Vertical black arrows indicate the EMI measurements: August 18, 2017 and 

October 13, 2017. .............................................................................................................. 37 

Figure 2.3: Typical structure of a (semi) variogram model; Sill (C+C0), range (a) and 

Nugget (C0) (Oliver and Webster, 2015) .......................................................................... 42 

Figure 2.4: Experimental variogram of ECa data: (a-b) multi-frequency EMI sensor for dry 

and wet days, respectively; (c-d) multi-coil EMI sensor for dry and wet days, respectively.

........................................................................................................................................... 51 

Figure 2.5: PCA biplots of measured soil properties with respect to 8 treatment plots (P1-

P8). (a) - dry day; (b) - wet day; Green colored soil properties represent positive significant 

correlation with most of the ECa data. .............................................................................. 56 

Figure 2.6: Interpolated maps of ECa using the multi-coil EMI sensor (a) dry day (b) wet 

day ..................................................................................................................................... 62 

Figure 2.7: Interpolated maps of ECa using the multi-frequency EMI sensor: (a) dry day 

and (b) wet day with 38kHz frequency, (c) dry day and (d) wet day with 49kHz frequency

........................................................................................................................................... 63 

Figure 3.1: Study location of the research field at PBRS (a), experiment layout with buried 

targets and coordinates (b). ............................................................................................... 85 

file:///C:/Users/Kamalesh/Desktop/New%20Thesis/Kamalesh%20thesis/Sadatcharam_Kamaleswaran_master.docx%23_Toc3852398
file:///C:/Users/Kamalesh/Desktop/New%20Thesis/Kamalesh%20thesis/Sadatcharam_Kamaleswaran_master.docx%23_Toc3852398
file:///C:/Users/Kamalesh/Desktop/New%20Thesis/Kamalesh%20thesis/Sadatcharam_Kamaleswaran_master.docx%23_Toc3852398


xii 

 

Figure 3.2: Typical depth sensitivity responses of ECa depth model: (a) relative response 

and (b) cumulative response for the function of normalized depth (z) ............................. 92 

Figure 3.3: Typical depth sensitivity responses of MSa depth model: (a) relative response 

and (b) cumulative response for the function of normalized depth (z) ............................. 93 

Figure 3.4: Variability of MSa of the vertical coplanar (VCP) mode on a transect at 3 m (x-

axis) for all 3 surveys of multi-coil EMI sensor: (a) ICS 32 cm; (b) ICS 71 cm; (c) ICS 118 

cm. ..................................................................................................................................... 99 

Figure 3.5: Variability of MSa of horizontal coplanar (HCP) mode on a transect at 3 m (x-

axis) for all 3 surveys of multi-coil EMI sensor: (a) ICS 32 cm; (b) ICS 71 cm; (c) ICS 118 

cm. ................................................................................................................................... 100 

Figure 3.6: Absolute deviation of MSa of the VCP coil orientation by multi-coil EMI 

sensor: (a) Survey-1; (b) Survey-2; (c) Survey-3. .......................................................... 104 

Figure 3.7: Absolute deviation of MSa of C1 and C2 of the HCP coil orientation by Multi-

coil EMI sensor: (a) Survey-1; (b) Survey-2; (c) Survey-3. ........................................... 105 

Figure 3.8: Absolute deviated (a) and raw (b) MSa data for the HCP-C3 of multi-coil EMI 

sensor. ............................................................................................................................. 106 

 Figure 3.9: Relative response (RR) and cumulative response (CR) DS models of MSa as a 

function of depth: a-b, C1; c-d, C2; e-f, C3 of multi-coil EMI sensor ........................... 107 



xiii 

 

Figure 3.10: Absolute deviation of MSa of multi-frequency EMI for Survey-1: (a) VCP and 

(b) HCP coil pairs. .......................................................................................................... 111 

Figure 3.11: Absolute deviation of MSa of multi-frequency EMI for Survey-2: (a) VCP and 

(b) HCP coil pairs. Dotted circles show some buried locations ..................................... 112 

Figure 3.12: Absolute deviation of MSa of multi-frequency for Survey-3: (a) VCP and (b) 

HCP coil pairs. Dotted circles show some buried locations ........................................... 113 

Figure 3.13: 500 MHz GPR survey carried out (Oct 24, 2017) along the two transects where 

the targets were buried. (a) transect at 1 m in X axis (b) transect at 3 m in X axis ........ 116 

 

  

file:///C:/Users/Kamalesh/Desktop/New%20Thesis/Kamalesh%20thesis/Sadatcharam_Kamaleswaran_master.docx%23_Toc3852413
file:///C:/Users/Kamalesh/Desktop/New%20Thesis/Kamalesh%20thesis/Sadatcharam_Kamaleswaran_master.docx%23_Toc3852413


xiv 

 

List of Abbreviations and Symbols 

ADC Analog to digital converter 

AM Active microwaves 

ASTM American Society for Testing and Materials 

BD Bulk density 

CEC Cation exchange capacity 

cm Centimeter 

CP Capacitance probe 

CR Cumulative response 

CV Coefficient of variation  

DS Depth sensitivity  

DSP Digital signal processor 

EC Electrical conductivity 

ECa Apparent electrical conductivity 

ECw Pore water electrical conductivity 

EM Electromagnetic 

EMI Electromagnetic induction 

EPA Environmental protection agency 

ER Electrical resistivity  

f Frequency 

GPR Ground penetrating radar 

GPS Global positioning system 

ha Hectare 

HCP Horizontal coplanar 

Hp Primary magnetic field 

Hs Secondary magnetic field 

ICS, s Inter-coil separation 

Kg Kilogram 

LIN Low induction number  

m Meter 

M Molarity of the solution 

Max Maximum 

Min Minimum 

MLR Multiple linear regression 

MSa Apparent magnetic susceptibility 

N North 

n Number of samples 



xv 

 

NL Newfoundland and Labrador 

NMR Nuclear magnetic resonance 

PBRS Pynn’s broke research station 

PCA Principal component analysis 

PCs Principal components 

PD Pseudo depth 

PDA Personal digital assistant 

PM Passive microwaves 

ppm Parts per million  

ppt Parts per thousand 

r Pearson's correlation  

R2 Coefficient of determination  

R2p Predicted R2  

RNE Relative nugget effects 

RR Relative response 

Rx Receiver 

S Siemens 

SD Standard deviation 

SE Standard error  

SMC Soil moisture content  

TDR Time domain reflectometry  

TDS Total dissolved solids 

Tx Transmitter 

USA United States of America 

USDA United States Department of Agriculture 

V5 Corn variety (DKC26-28RIB) 

VCP Vertical coplanar 

W West 

z Normalized depth  

℃ Degree Celsius 

 

 

 



1 

 

Chapter 1: Introduction and Overview 

1.1. Background 

Understanding spatiotemporal variability of the soil and water is necessary to 

develop site-specific management practices to achieve sustainable agriculture in 

Newfoundland and Labrador (NL); it is also a required and fundamental assessment for 

precision agriculture. Soil spatiotemporal variability studies in support of sustainable 

agricultural development for the future food production in the province of NL are 

gaining attention (Quinlan, 2012). 

Around 55% of the landmass in the NL province is covered by Podzolic soil 

(Sanborn et al., 2011). Western Newfoundland is predominantly covered by soils 

classified in the great Podzol group of “Orthic Humo-Ferric Podzol,” which are 

brownish-colored and have low organic matter (Kirby, 1988; Sanborn et al., 2011). 

General characterizations of Podzol are acidic, well to rapid drainage, low nutrients, 

coarse to medium texture, and shallow (Kirby, 1988). These soil characterizations limit 

agricultural production for most of the agricultural soils in NL. Therefore, soil quality 

needs to be improved through practices such as adding organic matter to improve the 

structure and increase water holding capacity and using fertilizers to make the soil 

fertile for agricultural activities. Soil moisture content (SMC) is a fundamental soil 

property that highly influences crop production, and, therefore, its spatiotemporal 

variability has to be monitored under field conditions to support site-specific 

agricultural management. Not only SMC, but other physiochemical properties--such as 

texture, bulk density (BD), porosity, pore water electrical conductivity (ECw) and cation 

exchange capacity (CEC)--of soils should be monitored rapidly to avoid minor 
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temporal variabilities for large-scale agriculture. Near-surface geophysical techniques 

are called for to understand, characterize, and monitor the spatiotemporal variability of 

soil properties in shallow soils.  

The spatiotemporal variability of soil properties in an agricultural field can be 

characterized by many geophysical methods, such as electrical resistivity (ER), time 

domain reflectometry (TDR), ground penetrating radar (GPR), electromagnetic 

induction (EMI), capacitance probes (CPs), active microwaves (AM), passive 

microwaves (PM), neutron thermalization, nuclear magnetic resonance (NMR), 

gamma-ray attenuation, and near-surface seismic reflection (Corwin, 2008). However, 

all these methods follow different operating principles and perform at various scales. 

EMI is an established and widely-used technology for soil studies, and it can be used 

in precision agriculture to map soil heterogeneity at both spatial and temporal scales 

over relatively larger fields (Corwin and Allred, 2008; Doolittle and Brevik, 2014; 

Lesch et al., 2005). Traditional methods (i.e. TDR and soil sampling) for measuring 

soil properties (SMC, texture, BD, etc.) are inadequate to fulfill present-day research. 

These methods are generally invasive, provide only point measurements, and are costly 

due to the need for repeated measurements and temporal monitoring for a large-scale. 

On the other hand, EMI technology is a non-invasive, cost-effective, and rapid method 

which can provide continuous measurements to investigate the spatiotemporal 

variability of physiochemical properties of soils (Corwin, 2008; Corwin and Lesch, 

2005; Doolittle and Brevik, 2014).  

An EMI sensor measures soil’s apparent electrical conductivity (ECa) as a proxy 

of soil properties (Altdorff and Dietrich, 2014; Corwin, 2005; Huang et al., 2016; 

McNeill and Bosnar, 1999; Pedrera-Parrilla et al., 2015). ECa is a popular and accepted 
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parameter for studying a variety of physical and chemical soil properties that directly 

or indirectly influence the ECa readings (Corwin, 2008; Corwin and Lesch, 2005b, 

2005a, 2003; Doolittle et al., 2014). EMI sensors can be used to measure and map 

various soil properties, including: soil salinity, soil texture, SMC, soil BD, porosity, 

CEC, ECw water table depth, and soil depth sounding (Altdorff et al., 2017; Bouksila 

et al., 2012; Brevik et al., 2006; Brevik and Fenton, 2004; Buchanan and Triantafilis, 

2009; Corwin and Lesch, 2014; Corwin and Scudiero, 2016; Friedman, 2005; Huang et 

al., 2015; Lück et al., 2009; Misra and Padhi, 2014; Rodrigues et al., 2015; Vitharana 

et al., 2008). ECa data encompass subsoil information at a range of depths, information 

which is directly correlated with plant growth and crop production (Kaffka et al., 2005; 

Kravchenko et al., 2003). 

Altdorff et al. (2018) studied the effects of agronomic treatments and different 

soil amendments on ECa, while also investigating the prediction accuracy of SMC using 

ECa data. Besides, the researchers found that different management zones could be 

identified with ECa variability on a large-scale.  

Sensitivity (response from soil) of EMI instruments is a non-linear function with 

soil depth. Therefore, depth-weighted measurements are fundamental to ECa. A depth 

of investigation of EMI instruments, called Depth Sensitivity (DS), and accuracy of DS 

in field-scale, needs further investigation. Accuracy of DS is still debated among 

researchers while it shows dissimilarity from a sensor to sensor. The DS of EMI 

instruments in shallow soils, which are relevant for agricultural soils, must be evaluated 

for the particular site and their conditions (Boaga, 2017). An effective DS can be used 

as an assessing tool to measure the capability of EMI sensors in terms of sampling depth 

accuracy. 
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Responses of EMI from subsurface soil are different for ECa and apparent 

magnetic susceptibility (MSa). Theoretical EMI response models (DS models) were 

developed with a function of the soil depth for ECa and MSa separately (Keller and 

Frischknecht, 1966; McNeill, 1980). MSa is more effective to identify metal objects or 

highly conductive materials in the subsurface. However, parameters like soil/sediment 

layers, amount of air, water, magnetic minerals, stone and pottery fragments, may 

change the MSa variations in the field (Dalan and Banerjee, 1998; Simon and Moffat, 

2015). Similar to ECa, MSa also has potential applications for soil related investigations. 

I investigated and assessed the potential applications of two types of EMI 

sensors, namely multi-coil and multi-frequency, for shallow Podzolic soil 

characterization, and depth sensitivity analysis, by using small buried targets in western 

Newfoundland. This research was conducted in a silage corn field at the Pynn’s Brook 

Research Station (PBRS), managed by the Department of Fisheries and Land Resources 

of the Government of NL, Canada. 

1.2. Aim and Objectives 

This thesis explores the potential applications of two different types of EMI 

sensors for understanding and mapping spatiotemporal variability of properties in 

shallow soils in terms of the ECa variability, and examines the depth sensitivity of MSa 

measurements. The MSa field data were evaluated with MSa depth response models. 

The key objectives of the study were to: 

i. Assess the correlation between soil physiochemical properties (i.e. SMC, BD, 

soil texture, pH, CEC and ECw) and ECa using multi-coil or multi-frequency 

EMI sensors. 
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ii. Characterize the spatiotemporal variability of ECa as a proxy for soil properties. 

iii. Evaluate and compare the depth sensitivity of multi-coil or multi-frequency 

EMI sensors through small buried targets in shallow soil. 

iv. Interpret field MSa data and theoretical MSa depth response models. 

This research study employed with CMD−MINIEXPLORER (multi-coil) and GEM–

2 (multi-frequency) for manual EMI surveys at PBRS, Pasadena, western 

Newfoundland. To achieve the objectives, two main field studies were carried out. One 

was undertaken to quantify soil physiochemical properties, such as SMC, BD, soil 

texture, pH, CEC and ECw, along with EMI surveys in a silage corn field. Soil samples 

were analyzed at the Boreal Ecosystem Research Facility at the Grenfell Campus-

Memorial University of Newfoundland. The second study focused on the depth 

sensitivity of two EMI sensors in shallow Podzolic soil. For achieving these depth 

sensitivity goals, different conductivity materials were systematically buried in a 

separate experimental field (fallow) with uniform soil conditions next to the silage corn 

field, and several EMI grid surveys were carried out over the field. In general, the EMI 

method produces two parameters known as ECa and MSa. The first two objectives were 

related to ECa while the other two were related to MSa study. 

1.3. Thesis Organization 

This thesis explores the applicability and potential of multi-coil and multi-

frequency EMI sensors for characterizing Podzolic soils in western Newfoundland. It 

is presented in four chapters: 
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Chapter 1 is the general introduction and overview of the EMI method in soil 

studies, along with EMI principles, a brief literature review outlining EMI applications, 

and sensor specifications. 

Chapter 2 establishes geostatistical and multivariate statistical techniques for 

monitoring the spatiotemporal variability of ECa data, with measured soil 

physiochemical properties. This chapter includes variogram analysis, principal 

component analysis (PCA), multiple linear regression (MLR), kriging interpolation, 

and mapping soil ECa variability. 

Chapter 3 describes the depth sensitivity of multi-coil and multi-frequency EMI 

sensors using small buried targets. MSa data were used for mapping and detecting 

metallic targets. It includes the assessment of which EMI sensor is more suitable for 

metal detection in shallow soils. 

Chapter 4 is the general summary and conclusion of the overall research and the 

identification of research gaps for future studies. 

1.4. Overview of the EMI Method for Soil Studies 

1.4.1 Operating Principle of EMI 

The basic operating principle of the EMI instruments is transmitting 

electromagnetic (EM) energy into the ground and receiving the secondary EM energy 

from the subsoil. The instrument is commonly composed of a transmitter (Tx) coil and 

a receiver (Rx) coil connected by a cable of varying length (Figure 1.1). According to 

Maxwell’s equations, an alternating electric current produces perpendicular alternating 

primary magnetic fields from the Tx coil. The primary magnetic fields induce circular 
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electrical currents (eddy currents) below the surface. These eddy currents generate 

secondary magnetic fields, and they are captured by a Rx coil along with primary 

magnetic fields (Bonsall et al., 2013; Keller and Frischknecht, 1966; McNeill and 

Bosnar, 1999; McNeill, 1980). 

The Rx measures the phase and amplitude of the secondary fields, which is 

different from the primary fields, mainly due to the subsurface properties. The 

secondary field can be divided into an in-phase component and an out of phase 

(quadrature) component compared with the phase of the primary field. When the EMI 

instrument operates at a low induction number and homogenous half-space 

approximation, the in-phase component is directly proportional to the soil MSa, while 

the quadrature component is directly proportional to the soil’s ECa (Huang et al., 2003; 

McNeill, 1980). 

Figure 1.1: Schematic view of EMI operating principles. Tx is the transmitter coil and 

Rx is the receiver coil. 
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Horizontal coplanar - HCP Vertical coplanar - VCP 

The typical coil orientations of an EMI sensor (Figure 1.2) are vertical dipole 

mode or horizontal coplanar (HCP) mode, and horizontal dipole mode or vertical 

coplanar (VCP) mode, which influences EM field penetration and, therefore, the 

sampling depth.  

 

 

 

 

 

 

 

Figure 1.2: The HCP and VCP mode of operation, where Tx is the transmitter coil and 

Rx is the receiver coil (McNeill, 1980). 

1.4.2 Apparent Electrical Conductivity (ECa) 

ECa of soil (millisiemens per meter - mS/m) is a depth-weighted average of the 

bulk soil electrical conductivity within a volume of the subsurface, mostly between the 

Tx and Rx (Figure 1.3) (Cook and Walker, 1992; McNeill, 1980). According to 

McNeill’s (1980) approximation, EMI based ECa is given by:  

 𝐸𝐶𝑎 =  
2

𝜋𝑓𝜇𝑜𝑠2
(

(𝐻𝑠)𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒

𝐻𝑝
) Eq. 1.1 

where 𝑓 is the frequency (Hz), 𝜇𝑜 is the magnetic permeability of free space (4 π 10−7 

H/m), 𝑠 is the inter-coil separation (m), and 𝐻𝑝 and 𝐻𝑠 are primary and secondary EM 

fields at the receiver coil, respectively. 
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Figure 1.3: Depth sensitivity using geometry (left) and frequency (right) sounding 

methods of EMI (modified from Keiswetter and Won, 1997) 

Rhoades et al. (1999) explained in detail the factors influencing ECa 

measurements under field conditions. Electrical conductivity (EC) refers to the ability 

to transmit an electrical current within a material (in soil, for example). In general, three 

pathways of current flow contribute to the ECa of subsoils, and those are (Figure 1.4): 

1. Solid-Liquid phase pathway 
: predominantly, exchangeable cations linked 

with clay minerals 

2. Liquid phase pathway  : soil water in macropores contained dissolved 

solutes 

3. Solid phase pathway : soil particles interconnected each other 
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Figure 1.4: Schematic representation of electrical conductivity pathways of the ECa 

measurements (modified from Corwin and Lesch, 2005).  

 

1.4.3 Apparent Magnetic Susceptibility (MSa) 

Apparent magnetic susceptibility, MSa (parts per thousand - ppt), measures the 

ability of materials to be magnetized by applied magnetic fields. MSa depends on the 

presence of magnetic minerals, but in order to characterize the amount, the shape and 

type of the minerals must be taken into account (Thompson et al., 1975). MSa is not 

often a usable component like ECa (Dalan, 2008; Simpson et al., 2010), because MSa 

gives completely different outputs (negative anomalies from HCP mode) based on coil 

configuration of the EMI sensor and the target depth (Linford, 1998; Simpson et al., 

2010). Anthropogenic activities, such as humanmade underground structures, soil 

disturbance at industrial sites and management practices including leaching fraction in 

agricultural fields --can influence soil MSa measurements (Bonsall et al., 2014; 
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Delefortrie et al., 2018; Simpson, 2009; Van De Vijver et al., 2015). Also, bacterial 

activities and fire can result in higher MSa values in topsoils than subsoils (Bevan and 

Rinita, 2003). 

1.5. Depth Sensitivity of EMI Measurements 

Here, depth sensitivity (DS) is indicating depth of investigation (or depth of 

penetration) of EMI instruments, and it is mainly dependent on the frequency of the 

primary field, the electrical structure of the subsurface soil, inter-coil separation (ICS), 

and coil configurations − VCP or HCP mode (Monteiro Santos et al., 2010). Fitterman 

and Labson (2005) pointed out some basic conditions that should be satisfied for EMI 

sensors to detect a target: 

i. Primary EM fields should induce a current in the target. In case of resistive 

targets, the induced current flows around the targets. 

ii. EM properties should be different between the target and surroundings. 

iii. The anomalous responses from the EMI sensors must be larger than noise 

signals received.  

DS could be inferred from geometry soundings or frequency soundings by 

changing ICS or frequencies, respectively (Figure 1.3). Generally, ‘skin depth’ is a 

standard measure for the penetration depth of frequency sounding EMI sensors. The 

skin depth (δ) is the depth where the primary EM wave is attenuated by a factor of 1/e, 

or to about 37% of the original amplitude (Spies, 1989). However, when conditions are 

less than ideal, skin depth underestimates the DS of the EMI data, and overestimates in 

environmentally noisy or geologically complex areas (Bongiovanni et al., 2008; Huang, 

2005). Therefore, accurate prediction of DS cannot yet be achieved. 
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 𝛿 = √
1

𝜎𝜇𝑜𝜋𝑓
  Eq. 1.2 

where, 𝜎 is the EC of the medium, 𝜇𝑜 is the magnetic permeability of free space, and 𝑓 

is the frequency of the primary EM signal. 

Theoretical DS response models available for EMI sensors that only depend on 

the ICS and coil orientations, are based on the low induction approximation of a 

homogenous subsurface (McNeill, 1980; Saey et al., 2015). These theoretical models 

were developed for relative and cumulative responses of the induced signals (secondary 

fields) of EMI sensors (McNeill, 1980). The relative response (RR) describes the 

contribution of an induced signal from a thin layer at different depths, and the 

cumulative response (CR) is the volume of integration between a certain depth and 

infinite depth. These models give equations for quadrature (ECa) (McNeill, 1980; Saey 

et al., 2015) and in-phase (MSa) (Keller and Frischknecht, 1966; Simpson et al., 2010) 

components of induced responses. ECa depth sensitivity models are more popular in 

many applications compared to MSa models. HCP mode response changes from 

positive to negative in the MSa model, so interpretations of MSa data are difficult. Some 

researchers have used the same equation of ECa depth model for the MSa depth model 

(Santos and Porsani, 2011), but only a few studies have been conducted for the 

interpretation of data using a MSa DS model. 

1.6. Multi-coil EMI Sensor 

The multi-coil EMI device operates at a fixed frequency of 30 kHz, with three 

coil separations. The instrument has one Tx and three Rxs with fixed offsets of 0.32 m, 

0.71 m, and 1.18 m (Figure 1.5). The sensor can be used at both HCP and VCP coil 
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orientations, and it gives six different effective depths of subsoil (Altdorff et al., 2018). 

The sensor is well adapted to outside temperatures between -10℃ and +50℃, and the 

temperature stability is ±1 mS/m per 10℃ change in temperature (GF-Instruments, 

2011). 

1.7. Multi-frequency EMI Sensor 

1.7.1 Sensor Specifications 

The multi-frequency EMI sensor is a handheld, digital, programmable, and 

multi-frequency broadband EM sensor (Tang et al., 2018; Won et al., 1996). The multi-

frequency package consists of the ski that encloses all sensing elements, an electronics 

enclosure that plugs onto the ski, a detachable IPaq for display, and a shoulder strap, as 

shown in Figure 1.6. Features and specifications of the instrument can be listed as 

following (User’s Manual, Geophex Ltd): 

• Operating frequency range 0.3 kHz to 90 kHz 

• Single or multiple frequency survey 

• Maximum sampling rate selectable 30 Hz or 25 Hz 

• Lightweight 3.6 kg 

• ICS between Tx and Rx coils is 1.67 m 

• Easy replaceable and extends battery life, that eliminates cooling fans 

• Personal digital assistant (PDA) digital display with WinGEM software 

• Windows based operating software for easy use 

• External GPS connector 

• Bluetooth connection to IPaq and RS232 serial ports for other devices 

• Real-time painting a quick data look in the survey area 
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• Data stored internal memory as well as SD memory card as external memory 

• Environmental noise spectrum displays or stores it in SD card 

• The output is taken as In-phase and Quadrature in ppm at each frequency, ECa 

and MSa and Powerline amplitude  

 

 

 

Figure 1.5: (a) Coil geometry, configuration and orientation of the multi-coil EMI 

sensor. (Offsets 0.32m, 0.71m and 1.18m respectively for Rx 1, Rx 2 and Rx 3 from 

the Tx coil) (Bonsall et al., 2013); (b) Multi-coil sensor operation at PBRS field. 

(a) (b) 
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Figure 1.6: Components of the multi-frequency EMI instrument 

 

1.7.2 Operating Principle of the multi-frequency EMI sensor 

The multi-frequency instrument consists of three coils. A fixed coil separation 

between Tx and Rx is 1.67 m and the third one is a bucking coil at 1.035 m from the 

Tx to cut off the primary field from the Rx (Huang, 2005; Simon et al., 2015). Figure 

1.7 shows the electronic block diagram of the multi-frequency EMI sensor. The built-

in software converts the desired Tx frequency into a digital bit-stream, which is selected 

by the operator. This bit-stream comprises instructions on how to control a set of digital 

switches (called H-bridge) connected across the Tx coil and generates a complex 

waveform that contains all frequencies specified by the operator (Won et al., 1996). 

 

 

 

 

Rx 

PDA Tx 

GPS 

Electronic console 
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Figure 1.7: Electronic Block Diagram of the multi-frequency EMI sensor. (modified 

from Won et al., 1996). DSP − digital signal processor; ADC − analog to digital 

converter. 

Ten frequencies can be used simultaneously in the multi-frequency EMI sensor. 

If a higher number of frequencies is used, the strength of each frequency will be 

reduced, and consequently lowering the resolution (Bongiovanni et al., 2008; Tang et 

al., 2018). The multi-frequency EMI sensor can be used at both HCP and VCP modes 

of operation: that means a single frequency can sample two different integral depths of 

subsoil based on the coil orientation. The frequency is inversely proportional to the skin 

depth (Eq. 2); therefore, multiple frequencies are equivalent to measuring the earth 

response at multiple depths (Won et al., 1996). The data acquisition by the multi-

frequency EMI device is at 10 Hz. The basic output from the multi-frequency EMI data 

logger is parts per million (ppm) for both in-phase and quadrature components. The 

unit ppm is defined as in Eq. 1.3 (Keiswetter and Won, 1997). 

 
ppm = 106 ×

secondary magnetic field at receiver coil

primary magnetic field at receiver coil
 

Eq. 1.3 
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Chapter 2: Developing Relationships between Apparent 

Electrical Conductivity and Soil Properties Using 

Geostatistical and Multivariate Statistical Approaches 

2.1. Co-authorship Statement 

 
A manuscript based on Chapter 2, entitled “Developing Relationships between 

Apparent Electrical Conductivity and Soil Properties Using Geostatistical and 

Multivariate Statistical Approaches” has been prepared for submission to Precision 

Agriculture (Sadatcharam, K., Unc, A., Krishnapillai, M. and Galagedara, L., 2018). 

Kamaleswaran Sadatcharam, the thesis author was the primary author and Dr. 

Galagedara (supervisor), was the corresponding and the fourth author. Dr. Unc (co-

supervisor) and Dr. Krishnapillai (committee member) were second and third authors, 

respectively. All authors were part of the research project on “Hydrogeophysical 

Characterization of Agricultural Fields in Western Newfoundland using Integrated 

GPR-EMI”, which was led by Dr. Galagedara. For the work in Chapter 2, the overall 

research strategy was developed by Dr. Galagedara with input from all members of the 

group. Mr. Sadatcharam was responsible for the specific methodology, data collection, 

analysis, and interpretation and writing of the manuscript. Dr. Unc and Dr. Krishnapillai 

provided inputs for the field experiment, data interpretation, and manuscript editing. 
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2.2. Abstract 

An electromagnetic induction (EMI) sensor measures soil’s apparent electrical 

conductivity (ECa) as a proxy of subsoil properties. Relationships between ECa and soil 

properties (physiochemical properties) under wet and dry conditions are needed to 

understand the spatiotemporal variability of ECa across the agricultural fields. 

Geostatistical and multivariate statistical approaches can be used to screen the 

relationship of ECa and soil properties to improve the prediction accuracy by 

eliminating weakly correlated variables. The objectives of this study were to: (i) 

identify the significant soil properties influencing ECa measured with multi-coil and 

multi-frequency EMI sensors on dry and wet days; and (ii) assess the potential coil 

separations, frequencies, and coil orientations of EMI sensors on measuring ECa 

variability, using detailed geostatistical and multivariate statistical techniques in a 

shallow Podzolic soil. A field experiment was conducted on a silage-corn field (8 x 42 

m2) at Pynn’s Brook Research Station, in western Newfoundland. Soil samples were 

collected on two different days – a dry day (August) and a wet day (October) – and soil 

physiochemical properties, such as soil texture, bulk density, soil moisture content 

(SMC), cation exchange capacity (CEC), pore water electrical conductivity (ECw) and 

soil pH, were analyzed in the laboratory. ECa data points were digitized according to 

the soil sampling locations from the ordinary block kriging interpolated ECa maps. The 

statistical analyses, i.e. variograms, principal component analysis (PCA), and backward 

elimination of multiple linear regression (MLR), were applied to the ECa and soil 

properties data. The EMI−ECa increases with the increasing soil moisture of the field, 

and as well, the accuracy of the MLR model predictions also increases from dry to wet 

days. Anticipated significantly influenced factors of ECa were identified as silt, SMC, 
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CEC, ECw, and sand of the shallow sandy loam soils. The multi-frequency EMI surveys 

were more reliable on moist soils; in particular, VCP‒49kHz of the multi-frequency is 

appropriate to investigate soil variability, while VCP‒C3 and HCP‒C2 are the most 

appropriate coil separations and orientation of the multi-coil EMI sensor. The multi-

coil is a more suitable EMI sensor than the multi-frequency for investigating the 

spatiotemporal variability of ECa in Podzols at the test site. 

Keywords: apparent electrical conductivity, electromagnetic induction, geostatistical 

analysis, multivariate statistical analyses, soil properties  

  



29 

 

2.3. Introduction  

Characterization of spatiotemporal variability of shallow soil properties is 

crucial for precision agriculture (Allred, 2011). Usually, soil samples and laboratory 

analyses are carried out to understand the soil’s spatiotemporal variability. The 

conventional sampling and analysis of physiochemical properties of soils involves 

invasive sampling and provides only point measurements. This is expensive and not 

feasible for large-scale and extended temporal monitoring (Doolittle and Brevik, 2014; 

Mahmood et al., 2012; Serrano et al., 2013). More currently available sensing 

technologies may be implemented to avoid such issues. In addition, non-invasive in-

situ techniques may allow a reduction in the excessive use of environmentally 

unfriendly chemical-based laboratory analyses. 

Electromagnetic induction (EMI) is an established and widely used technology 

for soil studies. Various EMI sensors have been adopted for the measurement of 

apparent electrical conductivity (ECa), due to their non-invasive nature, cost-

effectiveness, and their ability to provide rapid, continuous measurements. The ECa can 

be used to map spatiotemporal soil heterogeneities (Corwin, 2008; Corwin and Lesch, 

2005; Doolittle and Brevik, 2014). Moreover, for characterization of soil variability, 

ECa maps can be used to delineate management zones (Moral et al., 2010; Ruser et al., 

2008). However, ECa varies from site to site. Therefore, interpretation of ECa 

measurements for a particular site requires detailed statistical analyses (Bronson et al., 

2005). 

ECa measured by an EMI sensor has been used as a proxy of subsoil properties 

(Altdorff and Dietrich, 2014; Corwin, 2004; Huang et al., 2016; Pedrera-Parrilla et al., 

2015). The ECa is a standard and accepted parameter to study a variety of soil properties 
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that directly or indirectly influence the ECa readings (Corwin, 2008; Doolittle and 

Brevik, 2014). EMI sensors can be employed to measure and map various soil 

properties, including: soil salinity (Corwin and Lesch, 2014; Huang et al., 2015); soil 

texture ; soil moisture content – SMC (Brevik et al., 2006; Misra and Padhi, 2014); 

water table depth (Bouksila et al., 2012; Buchanan and Triantafilis, 2009; Doolittle et 

al., 2000; Hall et al., 2004; Schumann and Zaman, 2003); bulk density (BD) and 

porosity of soil (Brevik and Fenton, 2004;Corwin and Lesch, 2005); cation exchange 

capacity – CEC (Corwin and Scudiero, 2016; Rodrigues et al., 2015) and pore water 

electrical conductivity (ECw) (Altdorff et al., 2017; Friedman, 2005). Recently, Altdorff 

et al. (2018) studied the effects of agronomic treatments and different soil amendments 

on ECa; they also investigated prediction accuracy of SMC using ECa data. In addition, 

different management zones could be identified with ECa variability on a large-scale. 

When the EMI instrument was coupled with a Global Positioning System (GPS), it 

offered quicker and easier EMI surveys for the large-scale (Heil and Schmidhalter, 

2017; Priori et al., 2013; Vitharana et al., 2006). 

Geostatistical and multivariate statistical approaches including variogram 

analysis, principal component analysis (PCA), and multiple linear regression (MLR), 

are more suitable for relating ECa with multiple soil properties (Jolliffe, 2002; Moral et 

al., 2010). Variogram analysis is a basic geostatistical approach for characterizing the 

spatial correlations of data (Baroni et al., 2013; MacCormack et al., 2017; Oliver and 

Webster, 2015). The experimental variogram (measured data) fitted with theoretical 

variogram models (e.g. exponential and spherical models) can establish accurate 

spatially dependent data sets. The ordinary block kriging is one of the most suitable 

spatial interpolation techniques for agricultural landscapes (Altdorff and Dietrich, 
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2014; Li and Heap, 2014; Scudiero et al., 2016; Zhu and Lin, 2010). A fitted 

experimental variogram is required for the ordinary block kriging interpolation 

technique, since the relationships between ECa and soil properties are spatially 

dependent (D Altdorff et al., 2017; Altdorff et al., 2018; Bronson et al., 2005; Taylor et 

al., 2010), variogram analysis is a potential way for developing accurate mapping of 

soil properties using the measured ECa data. 

PCA avoids multi-collinearity effects among the variables and generates new 

uncorrelated variables called principal components (PCs) (Bronson et al., 2005; 

Heiniger et al., 2003; Martini et al., 2017). PCA helps to identify uncorrelated variables 

and, therefore, selects the most influencing variables for further analysis. Backward 

elimination of MLR is an accepted method to identify significantly correlated variables, 

while removing statistically non-significant variables. Therefore, geostatistical and 

multivariate statistical approaches will be very effective for characterizing the soil 

physiochemical variables and their relationships with soil ECa. 

The ECa variations are primarily responsive to the presence of soil properties, 

such as texture (clay), SMC, and CEC when measured under non-saline conditions (De 

Smedt et al., 2013; Doolittle and Brevik, 2014; Pedrera-Parrilla et al., 2016b). Some 

soils, such as Orthic Humo‐Ferric Podzol, found in western Newfoundland, contain a 

very low amount of clay, typically less than 10% (Altdorff et al., 2018; Farooque et al., 

2012). This low clay percentage limits the CEC of the soils. Therefore, in those 

particular soils, SMC plays a major role in influencing ECa variability. SMC 

measurements can be used to differentiate between wet and dry days, so relationships 

between ECa and soil properties under wet and dry conditions are needed in order to 

understand, at least, the spatiotemporal variability of SMC. The objectives of this study 
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were to identify the significant soil properties influencing ECa measured with multi-

coil and multi-frequency EMI sensors on dry and wet days, and assess the potential coil 

separations, frequencies, and coil orientations of EMI sensors on measuring ECa 

variability, using detailed geostatistical and multivariate statistical techniques in a 

shallow Podzolic soil.  

2.4. Methodology  

2.4.1 Study Area 

The research was conducted at the Pynn’s Brook Research Station (PBRS) 

managed by the Department of Fisheries and Land Resources, of the Government of 

Newfoundland and Labrador, Canada. The PBRS is located (49°04'23"N, 57°33'39"W) 

in the Humber Valley Watershed in the western part of the island of Newfoundland 

(Figure 2.1a). Sandy fluvial and glacio-fluvial deposits are spread over a very gentle 

slope at the research site (Kirby, 1988). Figure 2.1b & c show the silage-corn agronomic 

experimental area, with different soil amendments as treatments, and the adjacent 

grassed field, all covering approximately 0.4 ha. The silage-corn experiment was 

conducted using five different silage-corn hybrid varieties to evaluate the biomass 

production potentials and greenhouse gases emission (Altdorff et al., 2018; Waqar, 

2018). A detailed study using EMI instruments was focused on one variety (DKC26-

28RIB, DEKALB, Canada) of the silage-corn experiment, which covers approximately 

350 m2 area. The soil texture in the top 0‒15 cm soil layer showed sandy loam to loamy 

fine sand: sand 73.2% (± 5.2), silt 20.8% (± 4.6), and clay 6.0% (± 1.2), according to 

the United States Department of Agriculture (USDA) soil classification. Based on last 

30 years (2016−1986) of weather data from the nearby weather station in Deer Lake 
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(49°12'33"N, 57°23'40"W), the mean annual precipitation and temperature are 1113 

mm and 4oC, respectively (http://climate.weather.gc.ca/). Generally, July is recognized 

as the hottest month and February as the coldest month in the western Newfoundland 

region (Daniel Altdorff et al., 2017). 
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Figure 2.1: Study site, field layout, and sampling locations. (a) Location of PBRS, (b) 

Grass and silage-corn fields, (c) Entire experimental field indicating the location of the 

DKC26-28RIB variety -V5, EMI survey coupled with GPS are showed in the black 

lines (d) Soil and ECa sampling points on two transects of V5.  
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2.4.2 Soil Sampling and Analysis 

A detailed soil investigation was carried out in the variety DKC26-28RIB 

section (hereafter called V5) of the silage-corn field (8 x 42 m2). The V5 is comprised 

of four replicates (2 crop rows per replicate) and each replicate row was divided into 8 

treatment plots (P1 to P8); each plot area was 1 x 5 m2 (Figure 2.1d). Soil samples were 

collected to measure soil properties such as soil texture, BD, CEC, pH, ECw, and soil 

moisture content–gravimetric (SMC). Standard soil analytical procedures (Gregorich 

and Carter, 2007) were employed (Table 2.1) at the Boreal Ecosystem Research Facility 

laboratory of Grenfell Campus-Memorial University of Newfoundland. Soil texture and 

BD were measured only once in this study. For soil texture, 28 undisturbed core 

samples were collected at a depth 0–15 cm to cover the entire V5 field. Air dried and 

sieved soils from <2 mm were used for the hydrometer analysis to measure the soil 

particle size distributions, then the soil textures were calculated according to the USDA 

soil taxonomy classifications. As for BD, undisturbed core samples (n=48) were 

collected, along with two transects, as shown in Figure 2.1d. A sliding hammer fitted 

with a core sampler containing a plastic liner (diameter 3.5 cm and length 15 cm) was 

used to collect cores at the same depth (0–15 cm). The variogram models and ordinary 

block kriging were applied to soil textures (sand, silt, and clay) and BD data, in order 

to create interpolated maps for the V5 area. Then, the point data were digitized (extract 

data from maps) from interpolated maps according to the location where other soil 

samples were collected (Zhu et al., 2010). 

Other soil properties, such as SMC, CEC, pH and ECw were measured using 

composite soil samples collected at two depths (0–10 cm and 10–20 cm) and then depth 
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weighted averages were calculated for the depth 0–20 cm. Each composite sample 

consisted of three samples collected in each treatment plot on a diagonal direction, with 

1 m distance and 0.3 m spacing (Figure 2.1d). These four soil properties were measured 

from the samples collected on August 18 and October 13, 2017, to represent dry and 

wet days, respectively. Average soil temperatures for the August 18 and October 13 

were 17℃ (dry day) and 8℃ (wet day), respectively (Figure 2.2). 

Table 2.1: Soil property measured, instrument used and the method 

Soil Properties Instruments Standard method 

Soil texture Standard hydrometer (ASTM, USA) Hydrometer method (Kroetsch 

and Wang, 2007) 

BD (g/cm3) Core sampler with a sliding hammer Core method (Hao et al., 

2007) 

SMC (%) Convection Oven (Thermo Scientific, 

USA) 

Gravimetric with oven drying 

(Topp et al., 2007) 

CEC (cmol/kg) Ion Chromatography- DionexTM ICS-

5000+ DC-5 Detector/Chromatography 

(Thermo Scientific, USA) 

Sodium Acetate method-EPA 

9081 (Chapman, 1965) 

pH HI9813-6 portable 

pH/EC/TDS/Temperature meter 

(HANNA instruments, USA) 

0.01 M CaCl2 method 

(Hendershot et al., 2007) 

ECw (mS/cm) HI9813-6 portable 

pH/EC/TDS/Temperature meter 

(HANNA instruments, USA) 

EC1:2, soil: deionized water 

(Miller and Curtin, 2007) 

ASTM − American Society for Testing and Materials; EPA − Environmental Protection Agency; EC − 

electrical conductivity; TDS − Total dissolved solids; M − molarity of the solution 

 

 



37 

 

 

 

 

Figure 2.2: Weather data, daily total precipitation in mm, and averaged soil temperature at a depth 20 cm. Vertical black arrows 

indicate the EMI measurements: August 18, 2017 and October 13, 2017.   
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2.4.3 Electromagnetic Induction Surveys 

EMI grid surveys were carried out on the V5 of the silage-corn field using a multi-

coil, and a multi-frequency at least once a month from July 2017 to October 2017. 

However, soil samples were taken only two days, along with EMI surveys, as mentioned 

above, on a dry day and a wet day. A 1 m line spacing was used during grid surveys, 

covering 8 x 42 m2 area, using both EMI sensors. Orientation of the probe of both 

instruments was parallel to the transect lines and with the transmitter coil (Tx) always front 

facing in each survey. The number of ECa readings in a survey were stretched according to 

the transect length (42 m) and walking speed, then the ECa and relative coordinates were 

recorded by inbuilt software. GPS was not used when data were collected on the V5 area. 

ECa data were collected by using both vertical coplanar (VCP) and horizontal coplanar 

(HCP) coil orientations. The multi-coil and multi-frequency EMI sensors were warmed up 

for approximately 20−30 min at the beginning of each survey. 

According to McNeil’s approximation (McNeil, 1980), the sampling depth of the 

multi-coil EMI probe provides six different integral depths of subsurface for both VCP and 

HCP coil orientations. These depths denoted here as: VCP‒C1 (25 cm), VCP‒C2 (50s cm 

− shallow), VCP‒C3 (90 cm), HCP−C1 (50d cm - deep), HCP−C2 (100 cm) and HCP−C3 

(180 cm) (D Altdorff et al., 2017; Bonsall et al., 2013). Similarly, three factory-calibrated 

frequencies were employed with the multi-frequency EMI sensor for both VCP and HCP 

coil orientations to provide 6 sampling depths; hereafter these depths are denoted as 

VCP−18kHz, VCP−38kHz, VCP−49kHz, HCP−18kHz, HCP−38kHz and HCP−49kHz.  
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Based on the analysis of raw data from both EMI sensors, noise data--such as 

negative values (i.e. mean of C1 for VCP and HCP modes) and unusual observations (i.e. 

mean of 18 kHz for VCP and HCP modes)--were removed as outliers of EMI sensors 

(APPENDIX 1). Therefore, VCP−C1 and HCP−C1 were ignored from the multi-coil 

instruments (Altdorff et al., 2018; Thiesson et al., 2017), and VCP−18kHz and 

HCP−18kHz were also omitted for statistical analysis. 

2.4.3.1 Multi-coil EMI Sensor 

The multi-coil EMI sensor operates at a fixed frequency of 30 kHz with three coil 

separations. The instrument has one transmitter coil (Tx) and three receiver coils (Rx) with 

fixed offsets of 0.32 m, 0.71 m and 1.18 m. Operating sensor height is approximately 20 

cm from the ground surface (Altdorff et al., 2018), which maximizes depth sensitivity. The 

sensor is well adapted to outside temperatures between -10℃ and +50℃; the temperature 

stability is ±1 mS/m per 10℃ change in air temperature (GF-Instruments, 2011). The 

multi-coil EMI surveys were always carried out in one direction over the grid lines of the 

V5 field. 

2.4.3.2 Multi-frequency EMI Sensor 

The multi-frequency device has fixed coil separation between Tx and Rx, which is 

1.67 m, and there is a bucking coil at ~1m from the Tx to cut off the primary field from the 

Rx (Simon et al., 2015a). Typically, operating frequencies have to be specified and selected 

by the user for each survey. Up to ten frequencies can be used simultaneously. However, 

since the power provided by the internal battery is distributed equally among the selected 
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frequencies, power reduces in strength when more frequency signals are selected, 

consequently lowering the resolution. Free-air calibration (or 'zero') and amplitude 

calibration have been done at the factory and stored in multi-frequency operating software. 

An approximately 1 m sensor height was maintained for bi-directional grid surveys. 

2.4.4 EMI Data Processing 

Temperature corrections for the ECa raw data collected from instruments were done 

using Eq. 2.1 to 25℃ (Sheets and Hendrickx, 1995).  

where ECa is the collected data, and T is the soil temperature measured (℃). EC25 is the 

temperature corrected ECa. 

The soil temperature was recorded at a depth of 20 cm below the surface. Daily 

average temperature was calculated for the daily EMI survey duration (from 9 am to 4 pm) 

using minimum and maximum temperature recorded at the weather station at the site. 

Temperature corrected ECa data were used to create interpolated maps, using an ordinary 

block kriging interpolating technique in the Surfer11 software (Golden Software Inc., 

USA) (De Smedt et al., 2013). Two variogram models (exponential and spherical) were 

applicable for the V5 site, and these were used in the ordinary block kriging technique, in 

order to achieve high resolution spatially interpolated data (Altdorff et al., 2018). Point 

data were digitized from interpolated maps with respect to the soil sampling locations in 

the field (i.e. three points per treatment plot in a diagonal direction). Finally, an averaged 

 𝐸𝐶25 =  𝐸𝐶𝑎 × [0.4470 + 1.4034 × 𝑒−𝑇/26.815] Eq. 2.1 
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point data was calculated from each treatment plot. Thus, 16 points were obtained for both 

the dry day and the wet day. 

2.4.5 Statistical Analysis  

A variogram analysis was used to develop spatial correlations among ECa data, and 

helps to determine unknown ECa points (from interpolated locations) with respect to spatial 

locations in both dry and wet days. Figure 2.3 shows a typical variogram consisting of three 

important parameters, namely nugget, range, and sill. The nugget represents variability at 

distances smaller than the sample spacing, including measurement error. A higher sill or 

shorter range suggests greater variations of measured data (Zhu and Lin, 2010). 

Exponential and spherical (theoretical variogram) models were fitted to measured ECa 

datasets (experimental variogram) from the test site. Ordinary least squares method was 

applied to fit an experimental variogram with an approximated model variogram (Baroni 

et al., 2013). A small lag distance was used in the variogram analysis, because 

measurements were taken from a small experimental field. 

A small lag distance can be used with 30‒50 pairs of samples or greater 

(APPENDIX 2), when the lag distance is less than half of the maximum distance of the 

field (Journel and Huijbregts, 1978; Li and Heap, 2014). A 90-degree directional tolerance, 

called omni-direction, was used to cover all directions (Variogram Tutorial, Golden 

Software, Inc., USA). The relative nugget effects (RNE) were calculated by the ratio of 

nugget to sill for both dry and wet days in order to characterize spatial dependency of ECa 

data (Moral et al., 2010; Oliver and Webster, 2015). An RNE value (variability) describes 
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unexplainable or random variation related to total variation in a short-range (Nayanaka et 

al., 2011; Zhu and Lin, 2010). 

Figure 2.3: Typical structure of a (semi) variogram model; Sill (C+C0), range (a) and 

Nugget (C0) (Oliver and Webster, 2015) 

Simple Pearson’s correlation (r) coefficients were calculated between soil 

properties and digitized ECa data, using the statistical software Minitab 17 (Minitab Inc., 

2010). A principal component analysis (PCA) was used to reduce the number of significant 

soil properties (uncorrelated variables), and also to avoid multi-collinearity effects among 

the correlated variables (Bronson et al., 2005; Heiniger et al., 2003). The PCA analysis was 

performed with XLSTAT v2018.3 software (Addinsoft, Paris, 2018), and bi-plots were 

created to show a graphical representation of correlations among the variables measured in 

the field. In order to identify the significant dependence of ECa on tested soil properties, a 

stepwise (backward elimination) MLR analysis followed by the Pearson’s correlation and 

the PCA were done (De Caires et al., 2015). 
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Finally, separate MLR models were developed for pre-selected coil separations of 

the multi-coil and the frequencies of the multi-frequency EMI sensors for this particular 

Podzolic soil in western Newfoundland. These MLR models were assessed by properties 

of model summary, especially standard error (SE), coefficient of determination (R2), and 

predicted coefficient of determination (R2p). The R2p value indicates how a regression 

model better predicts new observations by avoiding overfitting a model, which contains 

many predictor variables. Therefore, R2p values can be used to determine the best 

regression models when comparing the different number of predictors in each regression 

model. The developed regression models were used here to identify suitable coils or 

frequencies of EMI sensors to characterize soil variability using ECa. ECa readings can be 

influenced by several soil properties, and those soil properties vary from site to site. 

A few assumptions were made for this study. In general, a quadrature component 

of secondary field proportional to ECa under low induction number condition. Soil samples 

for texture and BD were collected at the depth 0−15 cm, but other soil properties were 

measured at 0−20 cm depth soil samples. Soil texture and BD data were taken only once, 

so the same data were used for both dry and wet day analyses. 

Assumptions Made: 

• The McNeill’s approximations for ECa measurements obtained under low induction 

number applies. 
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• Homogenous distribution of the soil texture and BD within the depth of 0−20 cm, 

and there are no temporal changes of soil texture and BD throughout the study 

period (August 18 to October 13, 2017). 

• There were no external power line disturbances when doing the EMI surveys. 

 

2.5. Results and Discussion 

2.5.1 Descriptive Analysis of Soil Physiochemical Properties 

The soil samples were collected from shallow depths (0‒10 cm and 10‒20 cm) due 

to the stony nature and shallow soil with a hardpan of Podzols, which consequently made 

it hard to collect samples, especially in the dry season. Measured samples were converted 

to a depth weighted average of 0‒20 cm to make a spatially homogeneous depth sample 

(Pedrera-Parrilla et al., 2016). The research was conducted on an Orthic Humo-Ferric 

Podzolic soil, which has low organic matter (<5%) and clay content (Kirby, 1988; Smith 

et al., 2011), and consequently low ECa measurements. A very low clay percentage was 

reported (6.0 ± 0.8) with a coefficient of variation (CV) of 13.1% in the V5 silage-corn 

field at PBRS. A similar variability was observed for silt (CV = 15.3%), but sand content 

showed a low variability (CV = 4.7%) as shown in Table 2.2. Among the clay, silt, and 

sand content, silt becomes one of the influencing factors of ECa variability, since clay 

content was very low in the tested field. Domsch and Giebel (2004) reported that silt 

content also influences ECa similar to clay content. 

 Khan et al. (2016) found low ECa (mean, 4.4 mS/m) for the same soil type (Podzol) 

using a DualEM‒2 EMI sensor. This value matched the ECa measured here with the multi-
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coil EMI in this research field. Another finding by Waine et al. (2000) classified ECa 

readings according to soil textural classes, whereas sandy loam soils were categorized by 

0‒10 mS/m; the authors also suggested that coarse-textured soils give ECa <15 mS/m. 

These ECa values and findings were more similar to ECa data measured at the PBRS site. 

BD showed lower CV (5.1%) compared to other soil properties, except for sand 

and pH, which shows the uniform compaction across the field. The same soil texture and 

BD measurements were used for both days and were assumed to be unchanged within this 

short period. Therefore, except for ECw, mean values of other tested soil properties are 

higher in the wet day compared to the dry day (Table 2.2). ECw shows the highest CV 

(41.2%) in the dry day than any other soil properties from both days. The pH value exhibits 

acidity (< 7) of Orthic Humo‐Ferric Podzols (Farooque et al., 2012) in the PBRS. Soil 

moisture content (SMC) plays a major role in comparing the ECa variability of both days. 

The CVs of SMC is 12.9% and 15.0% for dry and wet days, respectively. At the same time, 

the average SMC is 12.3% (±1.6) for dry sampling and 19.9% (±3.0) for wet sampling, 

illustrating that wet day SMC was high in the tested field. 

2.5.2 Descriptive Analysis for ECa Data of the Multi-coil and Multi-

frequency EMI Sensors 

Descriptive statistics of the raw ECa data of the EMI sensors are given in 

APPENDIX 1. After removal of some raw ECa data, new descriptive statistical values were 

calculated for ECa and soil properties, shown in Table 2.2. Measured ECa values were 

higher on the wet day than the dry day, as expected. The second coil separation (C2) of the 
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multi-coil EMI the highest ECa values; ECa, 4.0 (±0.3) mS/m from HCP–C2 for the dry 

day, and 6.2 (±0.8) mS/m from VCP–C2 for the wet day. Interestingly, a high CV of ECa 

is reported on the wet day for the multi-coil, and on the dry for the multi-frequency EMI 

sensor. However, CV differences between dry and wet days were much smaller for the 

multi-coil compared to the multi-frequency EMI sensor.  

 Average ECa measured from VCP‒49kHz is 20.3 (±0.7) mS/m with a CV of 3.7%, 

which is the highest mean and the lowest CV from among all the measured ECa using both 

instruments and coil orientations. The 38 kHz frequency data of the multi-frequency show 

very high CVs on both days compared to all other values (Table 2.2). On the other hand, 

the ECa measurements by 49 kHz frequency show a relatively higher mean ECa value, 

ranging from 7.5 (±0.7) to 20.3 (±0.7) mS/m for both days (Table 2.2). The VCP mode of 

the multi-frequency EMI gives a higher ECa compared to the HCP mode on the dry day. 

Additionally, a higher variability (high CV) of ECa is found on the dry day compared to 

the wet day from multi-frequency EMI. A similar pattern of high variability in dry days 

has been found by Korres et al. (2010) and Pedrera-Parrilla et al. (2016b). 

ECa measurements from VCP and HCP coil orientations could be influenced by 

how soil layers are characterized with different conductive properties. A good example was 

given by Corwin and Scudiero (2016) with respect to the salinity profile along with a depth: 

if ECa of VCP>HCP, salinity decreases with depth; VCP<HCP, salinity increases with 

depth, and if VCP>>>HCP, salinity is uniformly distributed to a certain depth. 
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 Likewise, ECa data from the multi-coil EMI sensor can be categorized as ECa of 

VCP<HCP on the dry day, and VCP>HCP on the wet day. It reveals that high SMC in 

shallow soil (near the surface) increases ECa values in VCP mode measurements. 

Furthermore, the mean value of the ECa of VCP‒C2 was doubled on the wet day compared 

to dry day (Table 2.2). 

Overall, 38 kHz data from multi-frequency EMI, and soil properties including silt, 

clay, SMC, and CEC were showed similar variability from the wet day. Likewise, ECa data 

measured by 49 kHz frequency were showed closer range of variability with the same soil 

properties for the dry day. All multi-coil EMI data were showed adequate variability range 

with the aforementioned soil properties for both days compared to multi-frequency EMI 

sensor.    
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Table 2.2: Descriptive statistics of soil properties and EMI-ECa (mS/m) data for both dry 

and wet days (n=16), 

 Dry day  Wet day 

Variable Mean SD CV Min Max  Mean SD CV Min Max 

Multi-frequency EMI            

VCP‒38kHz 1.9 0.8 39.2 0.9 3.3  3.9 0.7 18.5 2.8 5.2 

VCP‒49kHz 11.4 1.1 9.2 9.5 13.5  20.3 0.7 3.7 19.1 21.8 

HCP‒38kHz 1.6 1.0 58.7 0.7 3.8  6.3 0.8 12.8 5.2 7.7 

HCP‒49kHz 7.5 0.7 9.5 6.6 8.8  16.6 0.7 4.2 15.7 17.9 

Multi-coil EMI 
           

VCP‒C2 3.4 0.3 7.5 2.9 3.9  6.2 0.8 12.8 5.3 7.7 

VCP‒C3 3.1 0.3 8.0 2.6 3.5  3.5 0.4 11.0 2.7 4.1 

HCP‒C2 4.0 0.3 6.6 3.6 4.5  4.4 0.4 9.0 3.7 5.0 

HCP‒C3 3.6 0.3 8.9 3.1 4.1  4.2 0.4 10.2 3.5 5.1 

Soil properties 
           

Sand (%) 74.2 3.5 4.7 68.0 81.7  74.2 3.5 4.7 68.0 81.7 

Silt (%) 19.9 3.1 15.3 13.7 25.4  19.9 3.1 15.3 13.7 25.4 

Clay (%) 6.0 0.8 13.1 4.7 7.5  6.0 0.8 13.1 4.7 7.5 

BD (g/cm3) 1.4 0.1 5.1 1.3 1.5  1.4 0.1 5.1 1.3 1.5 

SMC (%) 12.3 1.6 12.9 9.3 15.5  19.7 3.0 15.0 15.1 23.8 

pH  5.4 0.2 3.7 4.9 5.7  5.7 0.2 4.2 5.3 6.1 

CEC (cmol/kg) 11.0 2.1 19.3 8.0 14.3  12.2 1.9 15.8 9.4 15.1 

ECw (mS/cm) 0.2 0.1 41.2 0.1 0.5  0.1 0.0 26.8 0.1 0.1 

SD ‒ standard deviation; CV ‒ coefficient of variation (%); Min ‒ minimum; Max – maximum, all values 

were rounded for one decimal 

Table 2.3: Experimental variogram model parameters of ECa data for dry and wet days 

Exp − exponential model; Sph − Spherical model; RNE − relative nugget effect  

Variables 

Dry day  Wet day 

Model Nugget Sill 
Range 

(m) 

RNE 

(%) 
 Model Nugget Sill 

Range 

(m) 

RNE 

(%) 

Multi-frequency EMI 
           

VCP‒38kHz Exp 0.100 0.830 0.3 12.0 
 

Exp 0.030 0.250 0.4 12.0 

VCP‒49kHz Sph 0.500 2.700 0.5 18.5 
 

Exp 0.020 0.160 0.3 12.5 

HCP‒38kHz Exp 0.050 0.350 0.6 14.3 
 

Exp 0.020 0.170 1.6 11.8 

HCP‒49kHz Exp 0.050 0.260 0.4 19.2 
 

Exp 0.010 0.110 1.4 9.1 

Multi-coil EMI 
           

VCP‒C2 Exp 0.001 0.070 1.0 1.4 
 

Exp 0.005 0.056 0.8 8.9 

VCP‒C3 Sph 0.001 0.046 1.4 2.2 
 

Exp 0.005 0.067 1.0 7.5 

HCP‒C2 Exp 0.001 0.058 0.7 1.7  Exp 0.005 0.056 2.0 8.9 

HCP‒C3 Sph 0.001 0.048 1.1 2.1  Exp 0.005 0.050 0.8 10.0 
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Descriptive statistics do not provide spatial variability of soil properties or ECa. 

Therefore, a geostatistical analysis was required for spatial data analysis (Farooque et al., 

2012). Kriging is a better interpolation technique to estimate values in unknown locations 

from the spatial data (Arun, 2013; Shahid et al., 2013). The ordinary block kriging uses a 

weighted average of adjacent values, which are optimized using variogram models (Martini 

et al., 2017; Oliver and Webster, 2015). Therefore, accurate interpolation could be 

established using variogram models of ECa data, and, consequently, mapping the 

variability of ECa for both dry and wet days could be accomplished. APPENDIX 3 shows 

ECa maps of the multi-coil sensor which were created using variogram and ordinary block 

kriging interpolation techniques. 

2.5.3 Variogram Analysis 

A summary of experimental variogram analysis for dry and wet days is shown in 

Table 2.3. Exponential and spherical theoretical variogram models were fitted to ECa data 

with a small lag distance (5 m) due to the 42 m by 8 m (a small) study area. Watson et al. 

(2017) fitted an exponential variogram model with a 10 m lag distance on a 40 m by 50 m 

study site. Based on the variogram models, higher variability was found on the dry day 

compared to the wet day, irrespective of the sensor type or coil orientation. The nugget and 

sill (ECa data) are very low for the multi-coil (≤0.005 and <0.07) compared to the multi-

frequency EMI sensor (> 0.05 and > 0.26). The highest sill is reported for VCP‒49kHz 

(2.7), followed by VCP‒38kHz (0.83) on the dry day. Figure 2.4 clearly depicts that the 

nugget values vary between the frequencies and coil orientations of the multi-frequency, 

while the multi-coil EMI has a consistent nugget for coil separations and coil orientations. 
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From the experimental variogram, the VCP mode showed higher variability than the HCP 

mode for ECa measurements of both instruments. Figure 2.4 shows that VCP and HCP are 

separated from each other on the dry day (multi-frequency) and the wet day (multi-coil). 

The multi-frequency data display has almost identical spatial variability (and also low) on 

the wet day compared to the dry day.  

Strong spatial dependency by both EMI sensors was exhibited through RNE%. 

According to Moral et al. (2010), RNE < 25% indicated strong spatial dependence; between 

25 and 75% denoted moderate spatial dependence; greater than 75% indicated weak spatial 

dependence. However, both instruments showed a robust spatial dependency because RNE 

is less than 25%. The RNEs of the multi-coil EMI sensor are higher on the wet day 

compared to dry day. Oppositely, the RNEs were higher on the dry day compared to wet 

day for the multi-frequency sensor, except VCP‒38kHz. The overall RNE values of the 

multi-coil were lower than the multi-frequency sensor. HCP‒49kHz and VCP‒49kHz 

showed the highest RNEs (19.2% and 18.5%) for the dry day, while VCP‒C2 had the 

lowest RNE (1.4%) on the same day. The multi-coil EMI instrument has stronger spatial 

dependency compared to the multi-frequency, due to a very low RNE of the multi-coil 

sensor (Moral et al., 2010). 

With the knowledge of geometrical and frequency sounding of EMI (Figure 1.3), 

the effective depth from the ground surface to deeper subsoil can be arranged as VCP‒C2 

< VCP‒C3 < HCP‒C2 < HCP‒C3 for the multi-coil EMI device, and as VCP‒49kHz < 

VCP‒38kHz < HCP‒49kHz < HCP‒38kHz for the multi-frequency EMI device. If these 

depth sensitivity patterns were compared with experimental variogram models (Figure 
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2.4), it would reveal that a high variability exists in the near-surface soil (i.e. VCP mode 

shows high variability from both sensors); that is true for an agricultural field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Experimental variogram of ECa data: (a-b) multi-frequency EMI sensor for dry 

and wet days, respectively; (c-d) multi-coil EMI sensor for dry and wet days, respectively.  

(a) (b) 

(c) (d) 
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2.5.4 Pearson's Correlation 

The simple correlation coefficient r between the digitized ECa data and eight soil 

properties is shown in Table 2.4. The correlation strength between ECa and soil properties 

can be divided, according to Zhu and Lin (2010), i.e. if r < 60%, this means weak 

correlation, and if r > 60% this means strong correlation. Huang et al. (2018) recently 

reported that a weak r (VCP−40% and HCP−30%) was obtained when the field was very 

dry (nearly a permanent wilting point) and a strong r (VCP−74% and HCP−75%) was 

found after an irrigation event (wet field). Therefore, correlation strengths can change due 

to wetting and drying patterns of the field. 

Significant (p<0.05) correlation was found between SMC and all ECa data for the 

dry and wet days, except the 38 kHz frequency data of the multi-frequency on the wet day. 

Only ECa of VCP−C3, HCP−C2 and VCP−49kHz showed higher r with SMC towards the 

wet day. Overall, the highest correlation for the dry day was found between VCP‒38kHz 

and SMC (r = 83%), and concurrently for the wet day between VCP‒C3 and SMC (r = 

81%) among all soil properties tested. Interestingly, VCP−38kHz established a weak and 

non-significant correlation (r = 47%) with SMC for the wet day.  

Silt also correlated significantly with all ECa data for both days, except 

HCP−38kHz from the dry day. All dry day ECa data were significantly correlated with 

CEC, while only VCP−C3 and HCP−C2 were significant for the wet day (Table 2.4). There 

were significant correlations found with ECw and all EMI−ECa --one on the dry day, and 
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three on the wet day. It was also noted that the ECw had a significant correlation with the 

VCP−C3, HCP−C2, and VCP−49kHz in the wet day survey. 

Some soil properties, such as sand, clay, BD, and pH, have a negative correlation 

with ECa data on both days. However, only the sand has a significant (p<0.05) correlation 

with ECa data. Negative correlations with sand and ECa were reported by several studies 

(Heiniger et al., 2003; Pedrera-Parrilla et al., 2015; Serrano et al., 2014). A study by 

Bronson et al. (2005) confirmed the negative correlation between ECa and clay content in 

the Ropesville test site, and the negative correlation was established due to low clay 

content. Likewise, the authors observed negative correlations among ECa, CEC, and pH. 

Table 2.4: Pearson’s correlation coefficient (r) summary between soil properties (0−20 cm 

depth), and temperature corrected ECa data for both wet and dry days (n=16)  

 VCP‒

38kHz 

VCP‒

49kHz 

HCP‒

38kHz 

HCP‒

49kHz 
VCP‒C2 VCP‒C3 HCP‒C2 HCP‒C3 

Dry day         

Sand (%) -0.48 -0.48 -0.34 -0.41 -0.75*** -0.69** -0.68** -0.43 

Silt (%) 0.61* 0.59* 0.48 0.55* 0.73*** 0.72** 0.73*** 0.55* 

Clay (%) -0.26 -0.20 -0.38 -0.33 0.45 0.20 0.18 -0.24 

BD (g/cm3) -0.40 -0.150 -0.17 -0.40 -0.16 -0.33 -0.34 -0.46 

SMC (%) 0.83*** 0.50* 0.65** 0.76*** 0.55* 0.74*** 0.71** 0.79*** 

pH -0.17 -0.33 -0.06 -0.16 0.10 0.02 -0.22 -0.20 

CEC (cmol/kg) 0.70** 0.51* 0.61* 0.65** 0.60* 0.77** 0.79*** 0.78*** 

ECw (mS/cm) 0.21 0.005 0.11 0.062 0.47 0.44 0.60* 0.38 

Wet day 

        

Sand (%) -0.38 -0.60* -0.41 -0.47 -0.48 -0.72** -0.61* -0.53* 

Silt (%) 0.51* 0.69** 0.55* 0.60* 0.62** 0.76*** 0.66** 0.62** 

Clay (%) -0.31 -0.07 -0.35 -0.29 -0.29 0.24 0.11 -0.06 

BD (g/cm3) -0.43 -0.28 -0.33 -0.37 -0.37 -0.28 -0.34 -0.39 

SMC (%) 0.47 0.63** 0.47 0.56* 0.55* 0.81*** 0.77*** 0.68** 

pH  0.09 -0.08 -0.03 -0.10 -0.07 -0.15 -0.11 0.02 

CEC (cmol/kg) 0.25 0.43 0.29 0.39 0.37 0.68** 0.63** 0.49 

ECw (mS/cm) 0.37 0.60* 0.39 0.37 0.38 0.63** 0.50* 0.46 

Bold numbers correspond to significant correlations (*** p<0.001, ** p<0.01, * p<0.05) BD ‒ bulk 

density; SMC ‒ soil moisture content (gravimetric); CEC ‒ cation exchange capacity; ECw ‒ pore water 

electrical conductivity 
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EMI sensors are not a reliable tool to measure BD, soil pH (Corwin and Scudiero, 

2016; Korsaeth, 2005; Scudiero et al., 2016), and some macronutrients (Adamchuk et al., 

2004; Korsaeth, 2005; Lobsey et al., 2010). Weak correlations obtained on both days 

between ECa and soil properties, such as clay content, BD, and soil pH, implies that further 

statistical analyses are not necessary (Bronson et al., 2005; Heiniger et al., 2003). 

2.5.5 Principal Component Analysis 

The first two principal components (PC1 and PC2) together exhibit a larger portion 

of the total variability of all soil properties and EMI−ECa data. Both PCs include 

approximately 71% and 77% variances for the dry day and the wet day, respectively, of all 

the aforementioned soil properties including clay, BD, and pH, and ECa data. These two 

values show strong spatial relationships between some of the soil properties and ECa data. 

Good spatial correlations concerning the first two PCs (De Caires et al., 2015) are shown 

in Table 2.5. Almost every ECa (both sensors and modes) had stronger correlations with 

PC1 for both days. However, among the soil properties, only clay was strongly correlated 

with PC2 on both days, but PC2 only contributes 16% (dry day) and 18% (wet day) from 

the total variance of the data (Table 2.5). The correlation strengths between the PC1 and 

soil properties are: CEC > SMC > silt for the dry day, and silt > SMC > CEC for the wet 

day. 

The graphical explanation of correlations is displayed in bi-plots for both days 

(Figure 2.5). A bi-plot simultaneously provides a relative position of variables and 

observations in a graphical relationship (Jolliffe, 2002). Only predominant predictors (soil 

properties) were clustered with positively correlated ECa data, as shown in Figure 2.5.  
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The correlation strength is evaluated by an angle between the two arrows in the bi-

plot: <90o for positive correlation and >90o for negative correlation (Mahmood et al., 

2012). VCP−C3 and HCP−C2 of the multi-coil EMI sensor exhibit strong positive 

correlations with silt, CEC, and SMC on both days, but ECw shows strong correlations on 

the wet day only. In the bi-plot, the length (from the origin) of each arrow represents the 

measure of fit for a variable. A shorter and longer length symbolizes poor and good 

representation of measured data, respectively (Mahmood et al., 2012). The BD, pH, and 

ECw show poor representation on both days in the bi-plots. 

Table 2.5: Correlations between measured variables and the first two PCs at the study site 

Variables 
Dry day 

 
Wet day 

PC1 PC2 
 

PC1 PC2 

VCP‒38kHz 0.882 -0.289 
 

0.837 -0.495 

VCP‒49kHz 0.706 -0.345 
 

0.947 -0.236 

HCP‒38kHz 0.800 -0.458 
 

0.851 -0.477 

HCP‒49kHz 0.855 -0.425 
 

0.891 -0.396 

VCP‒C2 0.717 0.506 
 

0.894 -0.404 

VCP‒C3 0.890 0.213 
 

0.916 0.143 

HCP‒C2 0.894 0.161 
 

0.893 0.022 

HCP‒C3 0.896 -0.261 
 

0.924 -0.226 

Sand -0.733 -0.546 
 

-0.761 -0.576 

Silt 0.823 0.377 
 

0.841 0.434 

Clay 0.032 0.950 
 

0.086 0.854 

BD -0.458 0.069 
 

-0.421 0.047 

SMC 0.865 -0.163 
 

0.824 0.418 

pH -0.302 0.142 
 

-0.234 -0.514 

CEC 0.887 0.063 
 

0.653 0.505 

ECw 0.397 0.465 
 

0.564 0.292 

Highest correlation values in each PC are showed in bold. 
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Figure 2.5: PCA biplots of measured soil properties with respect to 8 treatment plots (P1-

P8). (a) - dry day; (b) - wet day; Green colored soil properties represent positive significant 

correlation with most of the ECa data. 

(a) 

(b) 

SMC 

SMC 



57 

 

The treatment plots, P4, P5 and P6, were located in the center of the V5 silage-corn 

field. These plots showed low SMC and high stony texture (by field observation), resulting 

in high BD. This is reflected in Figure 2.5, BD and sand mostly spread over P4, P5, and P6 

plots. The V5 has small elevation differences between the center (higher) of the field and 

both outer ends. Therefore, surface runoff and interflow can cause nutrients, organic 

matters, and finer particles (clay) to transport and accumulate towards both ends of the V5 

field (field observations also revealed this pattern). This variability could be observed in 

interpolated ECa maps by using both EMI sensors (Figure 2.6 and 2.7). 

Soil properties such as sand, silt, SMC, CEC, and ECw were selected for backward 

multiple linear regression (MLR) analysis, based on the results of both r and PCA.  

2.5.6 Multiple Linear Regression (Backward Elimination of MLR)  

Results from the above geostatistical and statistical analyses were ratified by 

backward elimination of MLR. The MLR indicates the most influencing predictors for ECa 

among the tested soil properties (i.e. sand, silt, SMC, CEC, and ECw). Huang et al. (2018) 

used a similar set of ECa data (EM38h and EM38v) in different regression models for 

predicting SMC at different depths. My study was slightly different, because measured ECa 

is represented by depth weighted soil ECa, corresponding to different coil separations or 

frequencies with VCP and HCP modes of operation. Completely different regression 

models were developed for dry and wet days by the backward elimination analysis of MLR. 

A summary result of MLR analysis is shown in Table 2.6. The SE values are in the 

range of 0.14−0.18 with the multi-coil and 0.37−0.71 with the multi-frequency EMI on the 
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dry day data. However, from the wet day, almost a narrow range of values are observed for 

both sensors (for the multi-coil sensor, SE=0.19−0.26 and for the multi-frequency, 

SE=0.21−0.28). The coefficient of determination (R2) of each model was higher on the wet 

day compared to the dry day, except HCP coil pairs of the multi-coil EMI device (Table 

2.6). 

Predicted coefficient of determination (R2
p) is a crucial parameter in comparing 

regression models which have different predictors. Overall prediction of ECa from soil 

properties is lower in the dry day surveys compared to the wet day. In the dry day, more 

than 50% prediction accuracy is given by VCP−38kHz and HCP−49kHz of the multi-

frequency EMI sensor, as well as VCP−C3, HCP−C2 and C3 of the multi-coil EMI sensor. 

All multi-frequency sensor data and all VCP mode of the multi-coil developed strong 

prediction models on the wet day. The highest R2p values on the dry day (62%) and the 

wet day (87%), respectively, are from HCP−C2 and HCP−38kHz (Table 2.6). 

The multi-frequency EMI sensor explores sampling depth for more than 4 m (Tang 

et al., 2018), but there is an impact from shallow soil properties since the ECa 

measurements are integrated from the surface. The shallow (0−20 cm) soil samples also 

have significant impacts on the ECa readings (Bronson et al., 2005; Farooque et al., 2012). 

The multi-frequency EMI data established better regression models with significantly 

correlated soil properties when the soil was wet (Table 2.7). In other words, R2p>50% was 

shown by VCP−38kHz and HCP−49kHz surveys on the dry day as well as all surveys on 
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the wet day. Overall, soil textures (sand and silt) mainly influenced the multi-frequency 

EMI-ECa data for both days (Table 2.7). 

The multi-coil EMI sensor is less complicated for interpreting the depth sensitivity 

of ECa measurements compared to the multi-frequency device. Clearly, when the soil 

becomes wet, the VCP mode (shallow depths) has a high predicted R2p (>70%) for ECa of 

the multi-coil on the wet day. At the same time, the HCP mode of operation on the dry day 

is moderately suitable to predict some soil properties (i.e. sand, silt, ECw and SMC). 

The wet day regression model equations of both sensors consist of more soil 

properties (predictor variables). SMC is the most influential soil property for this study, 

since the EMI data is a comparison between dry and wet days. Especially in the wet day, 

all regression model equations of both sensors have SMC as a predictor. However, in the 

dry day, only the VCP−38kHz of the multi-frequency, as well as the VCP−C3 and HCP−C2 

of the multi-coil EMI, show SMC as one of the predictors in their regression models. 

 De Smedt et al. (2013) reported that ECa measurements under the non-saline 

conditions can be directly related to soil texture (sand, silt, clay) and is influenced by SMC 

and organic matter. Sudduth et al. (2005) found that soil texture, SMC, and CEC are 

primarily responsible for ECa variation. This study also showed similar soil properties 

(such as SMC, sand, and silt), CEC, and ECw influenced EMI−ECa in the tested Podzolic 

soils. 
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Table 2.6: Summary of backward elimination MLR between soil and hydraulic properties and ECa data of multi-frequency and 

multi-coil EMI sensors on the dry and wet days (p<0.05 and n=16) 

Variables 
Dry day 

 
Wet day 

SE R2 R2adj R2p  SE R2 R2adj R2p 

Multi-frequency EMI 

         

VCP‒38kHz 0.37 0.80 0.75 0.53  0.28 0.90 0.85 0.74 

VCP‒49kHz 0.71 0.60 0.54 0.46  0.23 0.93 0.90 0.77 

HCP‒38kHz 0.61 0.65 0.60 0.46  0.21 0.96 0.93 0.87 

HCP‒49kHz 0.42 0.70 0.66 0.56  0.27 0.90 0.85 0.66 

Multi-coil EMI 
         

VCP‒C2 0.18 0.56 0.52 0.43  0.25 0.93 0.90 0.80 

VCP‒C3 0.15 0.69 0.64 0.54  0.19 0.79 0.75 0.71 

HCP‒C2 0.14 0.78 0.72 0.62  0.26 0.59 0.56 0.49 

HCP‒C3 0.18 0.73 0.66 0.56  0.25 0.75 0.66 0.41 

SE − Standard error of the regression, R2 − coefficient of determination, R2adj − adjusted R2; R2p − predicted R2  
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Table 2.7: Backward elimination MLR models for dry and wet day surveys (p<0.05) 

Dry Day  Wet Day 

Multi-frequency EMI   

VCP-38kHz = -39.6 + 0.386 Sand + 0.510 Silt 

+ 0.2210 SMC 

 VCP-38kHz = -74.8 + 0.793 Sand + 0.866 Silt + 0.2738 SMC - 0.3220 CEC + 14.75 ECw 

VCP-49kHz = -64.7 + 0.749 Sand + 1.034 Silt  VCP-49kHz = -46.04 + 0.6524 Sand + 0.713 Silt + 0.2313 SMC - 0.2085 CEC + 20.46 ECw 

HCP-38kHz = -87.3 + 0.893 Sand + 1.143 Silt  HCP-38kHz = -87.33 + 0.9434 Sand + 1.0665 Silt + 0.2259 SMC - 0.2779 CEC + 16.52 ECw 

HCP-49kHz = -57.2 + 0.646 Sand + 0.846 Silt  HCP-49kHz = -57.6 + 0.742 Sand + 0.837 Silt + 0.2063 SMC - 0.2051 CEC + 12.05 ECw 

Multi-coil EMI   

VCP-C2 = 7.543 - 0.0555 Sand  VCP-C2 = -78.95 + 0.852 Sand + 0.992 Silt + 0.2244 SMC - 0.2622 CEC + 12.73 ECw 

VCP-C3 = 4.35 - 0.0307 Sand + 0.0839 SMC  VCP-C3 = 1.233 + 0.0877 SMC + 6.78 ECw 

HCP-C2 = 2.329 + 0.0368 Silt + 0.0583 SMC 

+ 1.077 ECw 

 HCP-C2 = 2.374 + 0.1027 SMC 

HCP-C3 = -24.97 + 0.2838 Sand + 0.3611 Silt 

+ 1.396 ECw 

 HCP-C3 = -28.42 + 0.317 Sand + 0.303 Silt + 0.1108 SMC + 10.62 ECw 
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Figure 2.6: Interpolated maps of ECa using the multi-coil EMI sensor (a) dry day (b) wet day 

 

 

 

(a) (b) 
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Figure 2.7: Interpolated maps of ECa using the multi-frequency EMI sensor: (a) dry day and (b) wet day with 38kHz frequency, 

(c) dry day and (d) wet day with 49kHz frequency 

  

(b) (d) (a) (c) 
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2.6. Conclusions 

Geostatistical and multivariate statistical methods could establish optimal 

approaches to relate ECa with relevant soil physiochemical properties. In this study, the 

ECa interpolated maps showed the spatiotemporal variability of ECa in the tested site. 

Both multi-coil and multi-frequency EMI sensors showed high spatial dependency on 

ECa measurements. The ECa values of both the multi-coil and the multi-frequency EMI 

sensors increase with increasing SMC of the field from the dry to wet day. The most 

significantly influenced factor of ECa out of all other measured soil properties at the 

PBRS site is SMC. Not only the SMC, but also a few other soil properties (i.e. sand, 

silt, CEC, ECw), significantly contributed to the ECa variability. 

  The PCA clustered soil properties according to the ECa surveys. The PCA and 

r showed only significant positive correlations between all ECa measurements and soil 

properties (such as silt, SMC, and CEC) on either the dry or wet day surveys. Due to 

low clay content, silt influenced the ECa measurements, and this influence was similar 

to the reports of clay’s influence on ECa, as cited in the literature. Based on the 

backward elimination of MLR models, the significantly influenced soil properties on 

measured ECa from both EMI sensors are: sand, silt, SMC, CEC, and ECw. Prediction 

accuracy of the MLR model increases when the soil is wet. The ECa variability due to 

wet and dry conditions was successfully assessed for both EMI sensors.  

The multi-frequency sensor is a more reliable instrument to characterize wet 

soils compared to dry soils, and it could explore deeper soil than the multi-coil EMI 

sensor. The VCP mode and high frequency (49 kHz) of the multi-frequency device are 

appropriate for soil investigation, while VCP−C3 and HCP−C2 are the more 

appropriate coil separations and orientations of the multi-coil sensor. The multi-coil 
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device is a more suitable EMI sensor compared to the multi-frequency to investigate 

the spatiotemporal variability of ECa as a proxy of shallow soil properties (agricultural 

soils) in western Newfoundland. 
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Chapter 3: Investigating the Depth Sensitivity of Multi-Coil 

and Multi-Frequency Electromagnetic Induction 

Methods Using Small Buried Targets in Shallow Soils 
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3.2. Abstract 

 Knowledge about the depth sensitivity (DS) of apparent electric conductivity 

(ECa) and apparent magnetic susceptibility (MSa) recorded by electromagnetic 

induction (EMI) is essential for shallow soil investigations. As ECa is commonly the 

established value and its DS function widely accepted, investigations about the DS of 

MSa are less prominent in literature. MSa is a desirable property to investigate DS of 

EMI if using buried targets of known depths and conductivities. However, the sign-

changing behavior of some MSa measurements of horizontal coplanar (HCP) coil 

orientation is a matter of debate among researchers. The theoretical DS models of EMI 

are also complicated to interpret with field measurements. Therefore, I investigated the 

DS of EMI instruments using small buried targets and assessed it with theoretical DS 

models. Also, the DS of EMI was evaluated with integrated EMI and ground 

penetrating radar analyses. A small plot experiment over a 4 x 15 m2 area was carried 

out in a sandy loam soil in western Newfoundland. Materials of different conductivities 

(4-metal and 4-plastic targets) were buried at eight distinct locations within a 30 to 80 

cm depth range. Three coil separations (32, 71, and 118 cm) from the multi-coil EMI 

sensor were used in two coil orientations: vertical coplanar (VCP) and HCP for the 

multi-coil EMI surveys. Simultaneously, four factory-calibrated frequencies (18, 38, 

49, and 80 kHz) and both coil orientations were used for measuring MSa (in ppt) using 

the multi-frequency EMI probe. High-resolution ordinary block kriging-interpolated 

maps were created using absolute deviation of the measured MSa from the background 

data to identify anomalies from the buried targets. The multi-coil device clearly 

detected all of the four metal targets from three coil separations in both coil orientations. 

Only three of the metal targets were identified from the multi-frequency EMI data with 
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weak anomalies. HCP operations produced stronger anomalies compared to VCP, in 

both sensors. A guideline was developed to understand and evaluate the negative MSa 

value of HCP of multi-coil EMI with the theoretical DS models. The multi-coil EMI 

sensor shows better accuracy predicting the depth of targets than the multi-frequency 

in the shallow soils of the tested field in western Newfoundland. 

Keywords: apparent magnetic susceptibility, depth sensitivity, electromagnetic 

induction (EMI), horizontal coplanar (HCP), metal targets  

3.3. Introduction 

Understanding the near-surface characterization of soil is an essential 

requirement for shallow soil studies and agricultural activities (Hubbard and Linde, 

2011; Moghadas et al., 2010). Shallow soils are highly heterogeneous, and their 

properties and processes are intricate to interpret (Boaga, 2017). Integrated use of 

geophysical instruments, such as electromagnetic induction (EMI) sensors and ground 

penetrating radar (GPR), can provide more detailed information on shallow soils 

(Corwin, 2005; Drive, 2007; Kadiolu and Daniels, 2008; Moghadas et al., 2010; Rubin 

and Hubbard, 2005; Saey et al., 2014). One of the particular applications of these 

methods is to detect buried metallic and non-metallic targets in shallow soils (Allred et 

al., 2004). This method provides target depths (depth sensitivity) in order to locate the 

targets below the ground surface.  

EMI is commonly used for obtaining the apparent electrical conductivity (ECa) 

of soil (Corwin, 2005; McNeill, 1980). Further, it can be used to characterize rapid 

apparent magnetic susceptibility (MSa) variations across the field (Barrowes and 

Douglas, 2016; Benech et al., 2016; Bongiovanni et al., 2008; Simpson et al., 2009). 
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Similar to ECa, MSa can be affected by several parameters, such as soil/sediment layers, 

amount of air, water, stone, metal and pottery fragments in soils (Dalan and Banerjee, 

1998; Simon and Moffat, 2015). In particular, MSa is responsive to highly conductive 

objects, such as metals, but less sensitive to small changes in bulk conductivity 

(Barrowes and Douglas, 2016). For instance, larger nonmetallic targets could be 

detected by MSa due to the contrasts between the non-metallic targets and the host 

medium (Huang et al., 2003). 

There are two different types of EMI instruments that can deal with the depth 

resolution of the integral signals: multi-coil and multi-frequency. The multi-coil EMI 

sensors are comprised of various coil separations (one transmitter and few receivers) 

and were used to explore different depth layers in the soil profile (Altdorff et al., 2016; 

De Smedt et al., 2013; Keiswetter and Won, 1997). Likewise, multi-frequency EMI 

sensors could, in general, explore depth layers (Boaga, 2017; Tang et al., 2018) while 

operating with different frequencies. However, the success of both operating methods 

is highly test-site and target related. Generally, higher frequencies provide shallow 

penetrations and lower frequencies provide deeper penetrations (Allred et al., 2005; 

Keiswetter and Won, 1997; Tang et al., 2018; Witten et al., 2000). There are some basic 

conditions that should be satisfied for EMI sensors to detect a target, namely: primary 

electromagnetic (EM) fields should induce a current in the target; in case of resistive 

targets, the induced current flows around the targets; EM properties should be different 

between the target and its surroundings; the anomalous responses from the EMI sensors 

must be larger than the noise signals received (Fitterman and Labson, 2005). 

In general, GPR is able to provide high-resolution subsurface images and more 

accurate DS compared to EMI at a field scale (Fitterman and Labson, 2005). The depth 
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of the buried target can be estimated by manually fitting the hyperbola in a GPR data 

processing software (Annan, 2003; Huisman et al., 2003; Jol, 2009). Integrated use of 

EMI−GPR can differentiate metallic and non-metallic targets in the sub-surface 

(Kadiolu and Daniels, 2008). 

Depth sensitivity (depth of investigation) models of EMI sensors depend on the 

inter-coil separation (ICS) and coil orientations under a low induction number 

(McNeill, 1980; Saey et al., 2015) as well on the employed frequencies (Bongiovanni 

et al., 2008; Keiswetter and Won, 1997; Noh et al., 2016). The interpretation of MSa , 

however, is more complex, because some parts of the horizontal coplanar (HCP) 

responses show a switch of the algebraic sign from positive to negative values ‒ “sign-

changing” (Benech et al., 2016; Noh et al., 2016; Saey et al., 2013; Simpson et al., 2010, 

2009; Thiesson et al., 2011) or else, values less than the background MSa of the EMI 

survey. This complexity depends on the depth of the buried targets. The HCP mode of 

operation is less sensitive for MSa than the vertical coplanar (VCP) mode (Saey et al., 

2013; Simpson et al., 2009).  

Apparent magnetic susceptibility (MSa) generates different DS responses than 

ECa, and its use is constrained to shallow soil (Linford, 1998; Simpson et al., 2010, 

2009). Hence, the amount of MSa related field studies is limited. Moreover, the accuracy 

of soil DS is related to the sensors used and is still under discussion. Accurate 

predictions of DS for the multi-frequency EMIs are not fully achievable yet (Badewa 

et al., 2018). Furthermore, ‘skin depth’ leads to overestimation or underestimation of 

the DS of multi-frequency EMI sensors (Bongiovanni et al., 2008).  
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Theoretical DS models of MSa and their applications are rarely noticed in 

previous research. (Bevan and Rinita, 2003; Dalan, 2008; Delefortrie et al., 2018; 

Simpson et al., 2010). However, many studies recognized the negative values of MSa 

measurements from the HCP coil orientation. For example: Sasaki et al. (2010) found 

that the shallowest target may contain negative MSa values for lower frequencies (<10 

kHz) using multi-frequency EMI sensors. Two similar studies suggested the negative 

MSa anomalies can be used as an indicator to identify shallow underground targets 

using a HCP-1m coil orientation of the DUALEM-21S (Simpson et al., 2010) and the 

EM38 (Santos and Porsani, 2011). Simon et al. (2014) suggested that the HCP mode of 

operation may produce negative MSa from shallow soil layers. Noh et al. (2016) found 

the negative values produced by shorter offsets (<2 m) of the HCP mode were generated 

in the near surface due to the effect of a downward polarization of the magnetic targets. 

However, the problem with negative MSa from the HCP coil orientation is not fully 

addressed yet. Therefore, the issue of negative measurements of MSa could be evaluated 

with theoretical DS models and field data. 

 DS could be used as an assessing tool to measure the capability of EMI sensors 

regarding sampling depth accuracy (Boaga, 2017). The DS of such instruments in 

shallow soils, for example in agricultural soils, need to be evaluated for particular soils 

and their conditions (Saey et al., 2016). Here, I hypothesized that the DS of EMI sensors 

in shallow soils could be evaluated by assessing the performance of EMI and GPR to 

detect small buried targets of known conductivity.  
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3.4. Materials and Methodology 

3.4.1 Study Area 

The research was conducted at the Pynn’s Brook Research Station (PBRS), 

managed by the Department of Fisheries and Land Resources, of the Government of 

Newfoundland and Labrador, Canada. The PBRS is located (49°04'23"N, 57°33'39"W) 

in the Humber Valley Watershed in the western part of the island of Newfoundland 

(Figure 3.1). Sandy fluvial and Glacio-fluvial deposits are spread dominantly over very 

gentle slope of the research site (Kirby, 1988). The soil texture in the top 15 cm soil 

layer showed sandy loam to loamy fine sand soils: sand 73.2% (± 5.2), silt 20.8% (± 

4.6), and clay 6.0% (± 1.2).  
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Figure 3.1: Study location of the research field at PBRS (a), experiment layout with 

buried targets and coordinates (b). 

 

  

(a (b
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3.4.2 Experimental Plot 

An experimental plot (Figure 3.1b) was selected and marked in a grass field of 

the PBRS on September 22, 2017. The following materials were selected and randomly 

buried: hollow metal pieces, beverage Aluminum cans filled with salt water, and plastic 

bottles filled with salt water and tap water, as shown in following Table 3.1. 

Table 3.1: Information of buried targets 

Buried Targets Buried 

depth (cm) 

x, y Coordinate 

(m, m) 

Size of the 

targets 

Other details 

Plastic bottles – 1 30 1, 9 2 L Tap water 

Plastic bottles – 2 30 1, 11 2 L 12 mS/m 

Metal – 1  35 1, 14 ∅ 18 x 30 cm3 Cylindrical  

Metal – 2 40 3, 11 30 x 15 x 10 cm3 Rectangular 

Aluminum cans 45 3, 7 473 mL x 8  9 mS/m 

Plastic bottles – 3 45 3, 14 3 L & 2 L 3 mS/m 

Plastic bottles – 4 50 1, 7 710 mL x 3 9 mS/m 

Metal – 3 80 3, 5 30 x 15 x 10 cm3 Rectangular 

 

3.4.3 Multi-coil EMI Sensor 

The multi-coil EMI probe operates at a fixed frequency of 30 kHz with three 

coil separations. The instrument has one transmitter coil (Tx) and three receiver coils 

(Rx) with fixed offsets of 0.32 m, 0.71 m, and 1.18 m. Operating sensor height is 

approximately 20 cm from the ground surface (Altdorff et al., 2018) in order to 

maximize the depth of exploration. The sensor is well adapted to outside temperatures 

between -10℃ and +50℃ and the temperature stability is ±1 mS/m per 10℃ change in 

temperature (GF-Instruments, 2011). The multi-coil EMI surveys were done in one 

direction (individual parallel transects) over the experimental plot. 
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3.4.4 Multi-frequency EMI Sensor 

The multi-frequency EMI sensor is a handheld, digital, and broadband 

electromagnetic sensor. A fixed coil separation between Tx and Rx is 1.67 m and there 

is a bucking coil at ~1m from Tx to cut off the primary field from the Rx (Minsley et 

al., 2012; Simon et al., 2015). Typically, frequencies have to be specified and selected 

by users. Up to ten frequencies can be used simultaneously. However, since the power 

provided by the internal battery is distributed equally among the selected frequencies, 

the strength of each frequency signal is reduced as more frequencies are selected, 

consequently lowering the resolution. Free-air calibration (or 'zero') and amplitude 

calibration have been done at the factory and stored in the multi-frequency sensor 

software. Three factory-calibrated frequencies were selected for the multi-frequency 

EMI surveys. An approximately 1 m sensor height was maintained for the bi-directional 

surveys. All grid lines were parallel to each other. 

3.4.5 Electromagnetic Induction Surveys 

All EMI surveys were carried with line spacing of 0.5 m in order to develop 

high-resolution MSa maps. Three EMI survey sets were completed using both 

instruments. The first survey (Survey-1) was on September 22, 2017, before burying 

the targets; the second survey (Survey-2) was on September 22, 2017, after burying the 

targets; and the third survey (Survey-3) was on October 03, 2017. The MSa were 

measured by both the VCP and HCP coil orientations of both instruments. Both 

instruments were warmed up for approximately 20−30 min at the beginning of all EMI 

surveys, as suggested by several authors (Altdorff et al., 2018; Santos and Porsani, 

2011; Von Hebel et al., 2014).  
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The MSa measurements from 0 m to 4 m distance on the Y-axis, where the 

undisturbed soil was present, were used to estimate background means in order to 

compare with the buried areas’ data. Interpolated MSa absolute deviation maps were 

created using absolute deviation for each data point from the background mean. Table 

3.3 shows the number of data used for the calculation and the background means. The 

ordinary block kriging interpolating technique was used to create maps using Surfer11 

(Golden Software Inc., USA) that illustrate clear observation of buried targets. Only 

MSa measurements of HCPC3 were different from other coil separations of the multi-

coil sensor. Therefore, the raw MSa map is shown for the stated situation for more 

detailed interpretations of HCPC3. 

3.4.6 GPR Survey 

A parallel study was carried out using different GPR frequencies by another 

graduate student at the same research field. Some of those GPR measurements were 

taken as supporting data for EMI interpretation in my study. Six GPR grid surveys were 

carried out using 250, 500, and 1000 MHz center frequency transducers of the 

PulseEKKO Pro GPR system (Sensors and Software Inc., Canada). Each grid survey 

contains nine GPR transects which were coincided with EMI grid lines. The data 

processing was done using the corresponding software. Reflection from a sub-surface 

point reflector (i.e. buried target) could trace out a hyperbola in a GPR radargram. The 

shape of the hyperbola is influenced by the depth and material of the target and the 

matrix (Maas and Schmalzl, 2013). Depth to the buried targets was estimated by 

manually fitting the corresponding hyperbolas. The estimated depth and the actual 

depth were compared in fitted line plots of a regression analysis.  
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3.4.7 Depth Sensitivity of EMI 

Multi-coil and multi-frequency EMI sensors can be used to characterize detail 

for vertical layering (Saey et al., 2012). The depth sensitivity varies like geometrically 

or frequency soundings by changing ICS or frequencies, respectively. Generally, ‘skin 

depth’ is a standard measure for depth sensitivity of frequency sounding EMI sensors. 

The skin depth (δ) is the depth where the primary EM wave is attenuated by a factor of 

1/e, or to about 37% of the original amplitude (Spies, 1989). However, when conditions 

are less than ideal, skin depth underestimates the DS of the EMI data, and overestimates 

in environmentally noisy or geologically complex areas (Bongiovanni et al., 2008; 

Huang, 2005). 

 

𝛿 = √
1

𝜎𝜇𝜋𝑓
  

Eq. 3.1 

where 𝜎 is the conductivity of the medium, 𝜇 is the magnetic permeability, and 𝑓 is a 

frequency of the primary EM wave. 

The theoretical DS models were developed for relative response (RR) and 

cumulative response (CR) of the induced signals (secondary field) of the EMI sensors 

(McNeill, 1980). The relative response (RR) describes the contribution of an induced 

signal from a thin layer at different depths, and the cumulative response (CR) is the 

volume of integration between a certain depth and infinite depth. These models have 

different equations for quadrature (ECa) component (McNeill, 1980; Saey et al., 2015; 

Wait, 1962) and in-phase (MSa) component (Keller and Frischknecht, 1966; Simpson 

et al., 2009) of induced responses. 
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The ECa – DS models are more popular than MSa because of the sign-changes 

on the HCP coil orientation and ensuing difficult interpretations of the MSa depth 

response model. Some researchers have used the same equation of the ECa depth model 

for the MSa depth model (Santos and Porsani, 2011). Effective depth measurements 

(effective DS) of most of the EMI instruments follow geometry-sounding techniques. 

The effective depth determined where 70% of the CR comes from on the ECa depth 

model. Callegary et al. (2007) came up with a better explanation for the model of ECa 

associated with McNeill’s approximations. 

Table 3.2: Theoretical effective depths for ECa depth model of both multi-coil and 

multi-frequency  

Inter-coil separation (m) Coil orientation Effective depth (cm) 

Multi-coil EMI   

0.32 (C1) VCPC1  25 

 HCPC1 50d  

0.71 (C2) VCPC2 50s 

 HCPC2 100 

1.18 (C3) VCPC3 90 

 HCPC3 180 

Multi-frequency EMI   

1.67 (C4) VCPC4 125 

 HCPC4 250 

s, shallower; d, deeper; C1 to C4, inter-coil separation 

The CR(z) is a fraction of the secondary magnetic field, which is generated 

between a considered normalized depth, z (where the depth is divided by s – inter-coil 

separation), and infinite depth. CR is zero at infinity and reaches 1 when z is very small. 

However, contribution of the air for negative z (between senor and ground surface) is 

negligible, since most of the responses measured at a depth > z (Callegary et al., 2007). 

For example, the CR value at 0.3 (30%) in the X-axis for VCP and HCP modes measure 
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responses at depths > 0.75s and >1.5s, respectively. In other words, 70% of CR 

accounted between 0s−0.75s and 0s−1.5s for VCP and HCP mode of operations. 

Therefore, in general, the effective depths for ECa measurements are defined as 0.75s 

and 1.5s for VCP and HCP modes of operations, respectively (Callegary et al., 2007; 

Doolittle and Brevik, 2014; McNeill, 1980). However, these effective depths are 

different for MSa depth models. Table 3.2 shows effective depth based on ECa depth 

models for the multi-coil and multi-frequency EMI sensors. 

Relative and cumulative response models of ECa (Figure 3.2) for a 

homogeneously conductive environment, below a normalized depth of z, for both coil 

orientations are given by Eq. 3.2–3.5 (McNeill, 1980): 

 𝑅𝑅 𝑉𝐶𝑃 = 2 −
4𝑧

(4𝑧2 + 1)
1
2

 Eq. 3.2 

 
𝑅𝑅 𝐻𝐶𝑃 =

4𝑧

(4𝑧2 + 1)
3
2

 

 

Eq. 3.3 

 
𝐶𝑅 𝑉𝐶𝑃 = (4𝑧2 + 1)

1
2 − 2𝑧 

 

Eq. 3.4 

 
𝐶𝑅 𝐻𝐶𝑃 =

1

(4𝑧2 + 1)
1
2

 
Eq. 3.5 
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Figure 3.2: Typical depth sensitivity responses of ECa depth model: (a) relative 

response and (b) cumulative response for the function of normalized depth (z)  
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HCP 

VCP 

70% response 

0.75 

(b) 

HCP 

VCP 
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Figure 3.3: Typical depth sensitivity responses of MSa depth model: (a) relative 

response and (b) cumulative response for the function of normalized depth (z) 
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Eq. 3.6–3.9, give relative and cumulative response models, respectively, of MSa 

(Figure 3.3), for a homogeneously conductive environment, below a normalized depth 

of z, for both VCP and HCP coil orientations (Keller and Frischknecht, 1966): 

 
𝑅𝑅 𝑉𝐶𝑃 =

12(𝑧)

𝑠(4𝑧2 + 1)
5
2

 
Eq. 3.6 

 

 
𝑅𝑅 𝐻𝐶𝑃 =

12𝑧(3 − 8𝑧2)

𝑠(4𝑧2 + 1)
7
2

 
Eq. 3.7 

 

 
𝐶𝑅 𝑉𝐶𝑃 =

1

(4𝑧2 + 1)
3
2

 
Eq. 3.8 

 

 
𝐶𝑅 𝐻𝐶𝑃 =

1 − 8𝑧2

(4𝑧2 + 1)
5
2

 
Eq. 3.9 

 

 

Measured data were undergone series of analyses. Descriptive statistical 

analysis was performed in order to characterize quality of field data measurements from 

both instruments. Line graphs were created to show raw MSa data distribution along 

with one transect (at 3 m on X-axis). Finally, interpolated maps were created from 

absolute deviation MSa data to clearly exhibit anomalies from buried objects.  
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3.5. Results and Discussion  

3.5.1 Multi-coil EMI Survey 

Descriptive statistics for the multi-coil EMI data are summarized in Table 3.3. 

The coefficient of variations (CV) of MSa varied for Survey-1 from 1.0% to 3.3%, in 

Survey-2 from 4.8% to 15.4%, and for Survey-3 from 3.7% to 15.2%. The higher CV 

ranges of Survey-2 and Survey-3 were caused by strong responses from buried metal 

targets influencing MSa. Moreover, the means of both surveys look closer to the values 

of Survey-1 (Table 3.3). Negative MSa were observed in the HCP mode of the largest 

coil separation (C3) after the targets were buried. 

Figure 3.4 and 3.5 show line graphs that exhibit distribution of raw MSa 

measurements from the multi-coil device for all 3 surveys, for both the VCP and HCP 

coil orientations on a 15 m transect, where three metal targets were buried. Three key 

observations can be noticed in both figures: 

(i) Only VCPC1 (Figure 3.4a) shows higher variability of MSa along the transect 

from 0 to 15 m, including survey-1. 

(ii) Three metal targets were identified in the transect. Figure 3.4c and 3.5b 

clearly reveal the presence of metal-3 target, which was buried at 80 cm 

depth below the surface. 

(iii) Only the HCPC3 coil orientation (Figure 3.5c) shows reversal anomalies. 

Inferred from the observations (i), higher MSa variability in the shallowest depth 

EMI data might be due to highly heterogeneous shallow soil. The anomalies from the 

targets are very low compared to other coil separations. From observation (ii), the 
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strong anomalous responses (compared to the background) revealed three metal targets 

buried at depths 80 cm (metal-3), 45 cm (aluminum cans), and 40 cm (metal-2) along 

the 0 to 15 m transect. The interpretation of the last two observations can be achieved 

with the help of the theoretical DS models of MSa. Figure 3.6 and 3.7 show ordinary 

block kriging interpolated maps of MSa that show all four small metal targets in the 

experimental plot.  

3.5.1.1 VCP Coil Orientation and Interpretation 

Typically, the effective DS from MSa measurements are lower than the ECa 

(Table 3.2 and 3.4) (Simpson et al., 2009). The theoretical models of MSa ( Figure 3.9) 

show that exploration of DS increases with inter-coil separation (ICS). The VCPC1 

shows only three metal targets with weak responses, and also showed that 90% of the 

CR was obtained within the 30 cm depth Table 3.4. Therefore, targets from 35 − 45 cm 

depth were detected by VCPC1. All four metal targets were detected by the VCPC2 and 

VCPC3 coils, and the fourth metal, which was buried at 80 cm depth, was sensed weakly. 

The observed strength of anomalies from the metal targets diminishes from shallower 

to deeper layers. The temporal stability on MSa measurements of the buried targets can 

be seen in Figure 3.6 and APPENDIX 4, for short (after 10 days) and long-term (after 

9 months) stability of EMI readings, respectively. The field MSa data of the VCP coil 

configuration could be clearly supported by the theoretical MSa depth models. 
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Table 3.3: Descriptive statistics of MSa of multi-coil EMI sensor with respect to survey days 

EMI surveys 
Total No. of 

data 
Mean SD CV  Min Max  

No. data for 

background 

mean 

Background 

mean 

Survey-1 (Sept 22)          

VCPC1 428 1.98 0.06 3.03 1.85 2.16  116 1.98 

VCPC2 428 2.43 0.06 2.47 1.96 2.56  116 2.44 

VCPC3 428 2.41 0.08 3.32 1.60 2.57  116 2.41 

HCPC1 414 1.95 0.02 1.03 1.90 2.05  113 1.95 

HCPC2 414 2.50 0.06 2.40 2.38 2.84  113 2.48 

HCPC3 414 2.78 0.08 2.88 2.59 3.79  113 2.77 

Survey-2 (Sept 22) 
   

 
     

VCPC1 415 1.97 0.10 5.08 1.75 2.28  115 1.97 

VCPC2 415 2.48 0.18 7.26 2.23 3.69  115 2.43 

VCPC3 415 2.54 0.26 10.24 2.21 3.77  115 2.43 

HCPC1 414 1.86 0.09 4.84 1.76 2.81  115 1.85 

HCPC2 414 2.44 0.13 5.33 2.29 3.27  115 2.39 

HCPC3 414 2.66 0.41 15.41 -0.95 2.96  115 2.70 

Survey-3 (Oct 03) 
   

 
     

VCPC1 444 1.92 0.07 3.65 1.78 2.31  120 1.92 

VCPC2 444 2.29 0.18 7.86 2.15 3.53  120 2.23 

VCPC3 444 2.33 0.25 10.73 2.14 3.71  120 2.22 

HCPC1 421 1.95 0.08 4.10 1.90 2.68  116 1.93 

HCPC2 421 2.54 0.14 5.51 2.39 3.51  116 2.48 

HCPC3 421 2.70 0.41 15.19 -1.41 3.27  116 2.74 

MSa (ppt) data were used for descriptive statistics; SD, standard deviation; CV, coefficient of variation (%); Min, Minimum; Max, Maximum  
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Table 3.4: Descriptive analysis of MSa depth model of multi-coil and multi-frequency sensors 

EMI configurations 70% CR 

from VCP 

Positive 

peak in RR 

Sign-changing 

point in RR 

Sign-changing 

point in CR 

Negative 

Peak in 

RR 

Negative 

Peak in 

CR 

90% CR, from 

VCP 

Multi-coil EMI        

VCPC1 20 8 - - - - 30 

VCPC2 40 18 - - - - 65 

VCPC3 65 30 - - - - 110 

HCPC1 
 

6 20 12 27 20 
 

HCPC2 
 

13 43 26 60 43 
 

HCPC3 
 

21 72 42 100 72 
 

        

Multi-frequency EMI        

VCP 90 42 - - - - 160 

HCP 
 

30 103 60 145 103 
 

All values are representing depth below the surface in cm; CR – Cumulative Response; RR – Relative Response.   
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Figure 3.4: Variability of MSa of the vertical coplanar (VCP) mode on a transect at 3 m 

(x-axis) for all 3 surveys of multi-coil EMI sensor: (a) ICS 32 cm; (b) ICS 71 cm; (c) 

ICS 118 cm.  

  

(a) 
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(c) 

Metal-2 Al cans Metal-3 
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Figure 3.5: Variability of MSa of horizontal coplanar (HCP) mode on a transect at 3 m 

(x-axis) for all 3 surveys of multi-coil EMI sensor: (a) ICS 32 cm; (b) ICS 71 cm; (c) 

ICS 118 cm. 

All targets were located below the depth of the peak response on the relative 

response (RR) model. The RR declined from the peak and its 90% cumulative response 

(CR) was reached at depths of 30cm for C1, 65cm for C2, and 110 cm for C3 coil pairs 

of the VCP orientation. These characteristics could explain that the shallowest buried 

(a) 

Metal-2 Al cans 

Metal-3 

(b) 

(c) 
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target induced the strongest anomaly, while the signal response reduces with depth, for 

the VCP coil orientation (Figure 3.6 b & c). 

3.5.1.2 HCP Coil Configuration and Interpretation   

The interpretation of MSa measurements from the HCP mode is more 

complicated than for the VCP mode (Benech et al., 2016; Noh et al., 2016; Saey et al., 

2013; Simpson et al., 2010, 2009; Thiesson et al., 2011). In my results, only the HCPC2 

coil pair was able to clearly sense the target (metal-3) at the 80 cm depth, while the 

other two coils showed very weak responses. The strength of the anomalies on the 

HCPC1 of survey-2 and survey-3 decreased from the shallowest target to the deeper, 

where a similar response was observed in the VCP coils’ orientation. However, the 

theoretical DS model of the HCP is different from the VCP. Two observations could be 

noticed from the HCP DS model of MSa ( Figure 3.9): 

(i) Negative MSa anomalies, or MSa values less than the background, were 

observed within an area where a few conductive targets were buried. That 

specific depth was identified as the sign-changing point from positive to 

negative in the CR depth curve: the negative MSa data were produced when 

targets were located in between the surface and the sign-changing point. 

Positive measurements were recorded when the targets were located below that 

specific depth point (i.e. sign-changing points in the CR depth curve are 12 cm 

for C1, 26 cm for C2, and 42 cm for C3). 

(ii) The strength of the MSa anomaly increases towards the sign-changing point in 

the RR depth curve and its strength reduces after that specific depth (i.e. sign-

changing points in the RR curve are 20 cm for C1, 43 cm for C2 and 72 cm for 

C3).  
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Several logical relationships could be seen between the CR and RR of MSa 

theoretical depth curves. The depth of the negative peak in CR curve and sign-changing 

point in RR curve are shown to be similar values. A depth of the sign-changing point 

in CR is double of the positive peak in RR curve (Table 3.4). 

HCPC1: All targets were located below the sign-changing point in the CR (12 

cm) as well as in the RR (20 cm) curves. Therefore, positive MSa values and a 

decreasing trend in strength of anomaly could be observed from a shallower to a deeper 

target. 

HCPC2: All four metal targets were clearly identified through the HCPC2 coil 

pair. All targets were located below the sign-changing point (26 cm); consequently, all 

MSa values were positive. The sign-changing point of the HCPC2 in the RR curve is 43 

cm, and, therefore, the two targets buried at depths 40 cm and 45 cm were closer to the 

critical depth point (43 cm), hence complex to interpret. When considering the two 

targets buried at 35 cm and 40 cm depths, the increasing trend in the strength of anomaly 

was observed towards the critical point at 43 cm, and the other two targets, which were 

buried at 45 cm and 80 cm depths, showed a decreasing trend in the strength of anomaly 

after the critical point (43 cm). 

HCPC3: It shows some negative MSa measurements in the shallow targets 

(Figure 3.8). A clear indication was given for the HCPC3 only. The shallowest metal 

target (at 35 cm), located above the sign-changing point in CR (42 cm), produced 

negative MSa values. The target at 40 cm sometimes showed positive values too, 

because it was located near the critical sign-changing point. The results revealed that 

only the deepest target showed highly positive MSa measurements compared to the 
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background or nearly to the background values, and others exhibited lower than 

background MSa values. According to the guideline developed here, the behavior of the 

anomaly’s strength is true even for the HCPC3 coil orientation. The sign-changing point 

in the RR curve is 72 cm, and the MSa of three shallow metallic targets increases 

towards that point, from negative to positive. 

 Thiesson et al. (2011) noticed the negative values of in-phase responses of the 

HCP coil orientation. They mentioned a criterion to identify when the in-phase response 

of HCP turns to negative responses: when h>0.45L, where h is the depth of the 

conductive or magnetic thin layer, and L is the ICS of the EMI sensor. This would 

explain that the deeper targets produce negative values and the shallower targets do not. 

If compared with the criterion based on my results (the developed guideline), 

approximately similar values were observed for the multi-coil EMI sensor. However, 

the concept of negative MSa is opposite to the above criterion. These guidelines versus 

(vs.) Thiesson et al.'s (2011) criteria are: for C1, 12 vs. 14 cm; for C2, 26 vs. 32 cm; 

and for C3, 42 vs. 53 cm for HCP coil orientation.  
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Figure 3.6: Absolute deviation of MSa of the VCP coil orientation by multi-coil EMI sensor: (a) Survey-1; (b) Survey-2; (c) Survey-3. 

 

 

(a) Survey-1 (b) Survey-2 (c) Survey-3 
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Figure 3.7: Absolute deviation of MSa of C1 and C2 of the HCP coil orientation by Multi-coil EMI sensor: (a) Survey-1; (b) Survey-2; (c) 

Survey-3. 

 

(a) Survey-1 (b) Survey-2 (c) Survey-3 



106 

 

  

Figure 3.8: Absolute deviated (a) and raw (b) MSa data for the HCP-C3 of multi-coil EMI sensor.  

  

(a) (b) 
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 Figure 3.9: Relative response (RR) and cumulative response (CR) DS models of MSa as a function of depth: a-b, C1; c-d, C2; e-f, C3 of 

multi-coil EMI sensor 

(a) (b) 

(c) (d) 

(e) (f) 
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3.5.2 Multi-frequency EMI Survey 

Descriptive statistics of frequencies 18 kHz, 38 kHz, 49 kHz, and 80 kHz of 

both coil orientations’ measurements are displayed in Table 3.5. From all EMI surveys, 

only the 80 kHz frequency of the VCP and HCP coils measured negative values of MSa. 

CV% ranges for Survey-1 were 10.5%−32.6%, Survey-2 were 11.3%−32.3%, and 

Survey-3 were, 9.1%−21.1%. There was not much CV% difference displayed between 

measurements before and after the targets were buried. The mean of 80 kHz in all 

surveys was negative for both the VCP and the HCP coil orientations. 

Preliminary analysis showed that all ordinary block kriging interpolated maps 

were not appropriate to discuss the measured multi-frequency EMI data, so a specific 

colour scale was selected for further investigation. Therefore, it is very challenging to 

interpret the multi-frequency EMI results with respect to our interested targets. Overall, 

only three metal targets were identified with weak anomalies (Figure 3.10 − 3.12). The 

VCP coil pair showed a fairly precise anomaly on the target buried at the 35 cm depth. 

Also, an increasing trend of anomaly strength could be seen from a lower frequency to 

a higher frequency (Figure 3.11a). 

Frequencies 18 kHz and 38 kHz of the HCP coil orientation detected three metal 

targets buried at the depths of 35, 40, and 45 cm. The other two frequencies (49 kHz 

and 80 kHz) with the HCP mode show only two targets (at depths of 35 and 40 cm). 

The shallowest target produced lower MSa values than the background soils for the 

HCP model of all frequencies (Figure 3.11b and 3.12b). The overall results of the multi-

frequency EMI sensor provided fewer details (anomaly strength and DS) of small 

buried targets, and even those were uncertain when compared to the multi-coil sensor. 



109 

 

These results suggested that either selected frequencies of the multi-frequency EMI 

device or the sensor are not suitable to detect small metallic targets in shallow soils.  

Moreover, theoretical DS models of MSa did not support the measured MSa data 

in this particular experimental location. An additional processing technique is needed 

to improve the performance of the multi-frequency sensor in order to identify 

subsurface metal targets from surrounding soil properties.  
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Table 3.5: Descriptive statistics of MSa of the multi-frequency EMI with respect to the survey days 

EMI surveys Total No. of data Mean SD CV Min Max  
No. data for 

background mean 

Background 

mean 

Survey-1 (Sept 22) 
      

 
  

VCP 18 kHz 893 5.67 0.87 15.34 3.18 7.83  240 5.24 

VCP 38 kHz 893 7.24 1.00 13.81 4.76 9.45  240 6.78 

VCP 49 kHz 938 9.20 0.97 10.54 6.62 11.40  251 8.92 

VCP 80 kHz 938 -21.27 1.04 N/A -24.20 -19.10  251 -21.55 

HCP 18 kHz 916 7.94 2.57 32.37 0.78 11.40  246 6.75 

HCP 38 kHz 916 8.71 2.84 32.61 0.84 13.00  246 7.37 

HCP 49 kHz 910 14.11 2.31 16.37 7.17 17.00  246 12.90 

HCP 80 kHz 910 -25.88 2.36 N/A -33.20 -23.00  246 -27.05 

Survey-2 (Sept 22) 

   

 

  
 

  

VCP 18 kHz 992 5.14 0.68 13.23 2.82 6.96  267 4.97 

VCP 38 kHz 992 6.65 0.75 11.28 3.71 8.69  267 6.44 

VCP 49 kHz 957 6.88 0.80 11.63 3.92 8.74  257 6.81 

VCP 80 kHz 957 -24.11 0.90 N/A -27.10 -21.27  257 -24.22 

HCP 18 kHz 962 9.90 2.55 25.76 2.84 13.45  258 8.82 

HCP 38 kHz 962 11.51 2.78 24.15 3.71 15.53  258 10.34 

HCP 49 kHz 929 8.24 2.66 32.28 1.09 12.05  250 6.63 

HCP 80 kHz 929 -32.83 2.65 N/A -40.34 -28.51  250 -34.31 

Survey-3 (Oct 03) 

   

 

  
 

  

VCP 18 kHz 920 7.49 0.76 10.15 5.30 9.88  248 7.43 

VCP 38 kHz 920 9.33 0.85 9.11 6.47 11.50  248 9.29 

VCP 49 kHz 927 10.69 1.02 9.54 8.35 13.25  250 10.44 

VCP 80 kHz 927 -19.94 1.06 N/A -22.69 -17.41  250 -20.15 

HCP 18 kHz 906 13.74 2.85 20.74 5.35 17.84  245 12.37 

HCP 38 kHz 906 15.89 3.35 21.08 2.38 20.31  245 14.56 

HCP 49 kHz 929 18.35 2.65 14.44 10.48 21.81  250 17.56 

HCP 80 kHz 929 -21.98 2.88 N/A -32.96 -18.10  250 -22.62 
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Figure 3.10: Absolute deviation of MSa of multi-frequency EMI for Survey-1: (a) VCP and (b) HCP coil pairs. 

  

(a) (b) 



112 

 

 

 

 

Figure 3.11: Absolute deviation of MSa of multi-frequency EMI for Survey-2: (a) VCP and (b) HCP coil pairs. Dotted circles show some 

buried locations  

(a) (b) 
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Figure 3.12: Absolute deviation of MSa of multi-frequency for Survey-3: (a) VCP and (b) HCP coil pairs. Dotted circles show some buried 

locations 

 

 

 

‘ 

(a) (b) 
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3.5.3 GPR Data Analysis  

The actual depth of all buried targets, including plastic bottles and metals, were 

detected by the GPR method. The GPR method gives more precise DS measurements 

than EMI sensors, as expected. The DS of the GPR is entirely dependent on wave 

velocity in the subsurface and the frequency used. Table 3.6 shows the GPR surveys 

with three different frequencies and measured actual depths of buried targets. A 

relationship between the actual depth of the reflector and the measured depth of the 

corresponding hyperbola were fitted using a linear regression model (Table 3.7). Figure 

3.13 shows reflections from all metallic and non-metallic (plastic) buried targets 

clearly. Therefore, EMI and GPR combined integrated analysis is more meaningful 

when the depth of the target is uncertain with EMI alone. 
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Table 3.6: Actual depth vs GPR estimated depth of buried targets for 6 GPR surveys 

Buried Target Actual Depth 

(m) 

GPR Estimated Depth (m) 

D1F2 D2F1 D2F2 D2F3 D3F1 D4F2 

Plastic bottles – 1 0.30 0.30 0.31 0.33 0.33 0.38 0.29 

Plastic bottles – 2 0.30 0.27 0.27 0.27 0.32 0.28 0.27 

Metal – 1 0.35 0.34 0.40 0.29 0.35 0.42 0.30 

Metal – 2 0.40 0.36 0.39 0.36 0.38 0.38 0.39 

Al Cans 0.45 0.38 0.43 0.38 0.44 0.52 0.45 

Plastic bottles – 3 0.45 0.46 0.34 0.41 0.45 0.47 0.51 

Plastic bottles – 4 0.50 0.44 0.54 0.46 0.45 0.45 0.43 

Metal – 3 0.80 0.67 0.73 0.71 0.71 0.70 0.71 

D1-D4, Days, F1-1000 MHz, F2-500 MHz, F3-250 MHz 

 

Table 3.7: Summary of fitted line plot results for the relationship between actual depth 

and GPR estimated depth 

 
D1F2 D2F1 D2F2 D2F3 D3F1 D4F2 

Standard error of estimate (m) 0.027 0.056 0.028 0.013 0.050 0.046 

Coefficient of determination (R2) % 96.0 87.9 96.5 99.1 86.3 91.4 

P<0.005 0.000 0.001 0.000 0.000 0.001 0.000 

D1-D4, Days, F1-1000 MHz, F2-500 MHz, F3-250 MHz 

 

 

 



116 

 

Figure 3.13: 500 MHz GPR survey carried out (Oct 24, 2017) along the two transects where the targets were buried. (a) transect at 1 m in 

X axis (b) transect at 3 m in X axis    
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3.6.  Conclusions 

Multi-coil and multi-frequency EMI sensors were used to investigate depth 

sensitivity (DS) of MSa in shallow soil. The multi-coil sensor provided better 

performance in respect to detecting small metallic targets compared to the multi-

frequency probe, in the tested Podzolic soil. All buried metal targets were detected in 

all six integral depth layers through the multi-coil EMI surveys, while only three metal 

targets could be recognized through the multi-frequency EMI surveys. Characterization 

of MSa anomalies from three inter-coil separations of the multi-coil were assessed with 

theoretical DS models. However, the multi-frequency sensor failed to evaluate 

theoretical DS behavior with these small targets. 

The sign-changing behavior (negative values of MSa) of the HCP coil 

orientation was observed only in the HCPC3 of the multi-coil EMI sensor, and as well 

in both coil orientation surveys of 80 kHz frequency of the multi-frequency. The HCP 

mode of operations is more complicated compared to the VCP mode. 

In all EMI surveys, there were no observations of the plastic bottles filled with 

salt water and tap water. However, all plastics were identified from the GPR survey 

data. Integrated EMI and GPR techniques were successfully applied to investigate 

depth sensitivity analysis using small buried metallic and non-metallic targets. 

Negative anomalies will be a good indicator to identify metallic targets in 

shallow soils. There is a potential application of the MSa to detect metallic targets 

(either iron or aluminum) in a shallow soil, as revealed from this experiment. The 

developed DS guidelines were more suitable for both coil orientations of the multi-coil 

EMI sensor. From this experiment, DS of by the multi-frequency sensor is still 
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inconclusive for different frequencies, but it may have potential if further processing 

techniques are applied. 

 

3.7. References 

Allred, B.J., Ehsani, M.R., Saraswat, D., 2005. The impact of temperature and shallow 

hydrologic conditions on the magnitude and spatial pattern consistency of 

electromagnetic induction measured soil electrical conductivity. Trans. Am. Soc. 

Agric. Eng. 48, 2123–2135. https://doi.org/10.13031/2013.20098 

Allred, B.J., Fausey, N.R., Peters, L., Chen, C., Daniels, J.J., Youn, H., 2004. Detection 

of buried agricultural drainage pipe with geophysical methods. Appl. Eng. Agric. 

20, 307–318. https://doi.org/10.13031/2013.16067 

Altdorff, D., Bechtold, M., van der Kruk, J., Vereecken, H., Huisman, J.A., 2016. 

Mapping peat layer properties with multi-coil offset electromagnetic induction and 

laser scanning elevation data. Geoderma 261, 178–189. 

https://doi.org/10.1016/j.geoderma.2015.07.015 

Altdorff, D., Galagedara, L., Nadeem, M., Cheema, M., Unc, A., 2018. Effect of 

agronomic treatments on the accuracy of soil moisture mapping by 

electromagnetic induction. Catena 164, 96–106. 

https://doi.org/10.1016/j.catena.2017.12.036 

Annan, A.P., 2003. Ground Penetrating Radar Principles, Procedure & Applications. 

Mississauga, ON. https://doi.org/10.1016/B978-0-444-53348-7.00016-8 

Badewa, E., Unc, A., Cheema, M., Kavanagh, V., Galagedara, L., 2018. Soil Moisture 



119 

 

Mapping Using Multi-Frequency and Multi-Coil Electromagnetic Induction 

Sensors on Managed Podzols. Agronomy 8, 224. 

https://doi.org/10.3390/agronomy8100224 

Barrowes, B.E., Douglas, T.A., 2016. Evaluation of Electromagnetic Induction (EMI) 

Resistivity Technologies for Assessing Permafrost Geomorphologies. 

Benech, C., Dabas, M., Simon, F. -x., Tabbagh, A., Thiesson, J., 2016. Interpretation 

of shallow electromagnetic instruments resistivity and magnetic susceptibility 

measurements using rapid 1D/3D inversion. Geophysics 81, E103–E112. 

https://doi.org/10.1190/geo2014-0549.1 

Bevan, B., Rinita, D., 2003. Magnetic Susceptibility Sounding. Weems, VA. 

https://doi.org/10.13140/RG.2.2.10891.28962 

Boaga, J., 2017. The use of FDEM in hydrogeophysics: A review. J. Appl. Geophys. 

139, 36–46. https://doi.org/10.1016/j.jappgeo.2017.02.011 

Bongiovanni, M. V., Bonomo, N., de la Vega, M., Martino, L., Osella, A., 2008. Rapid 

evaluation of multifrequency EMI data to characterize buried structures at a 

historical Jesuit Mission in Argentina. J. Appl. Geophys. 64, 37–46. 

https://doi.org/10.1016/j.jappgeo.2007.11.006 

Callegary, J.B., Ferré, T.P.A., Groom, R.W., 2007. Vertical Spatial Sensitivity and 

Exploration Depth of Low-Induction-Number Electromagnetic-Induction 

Instruments. Vadose Zo. J. 6, 158–167. https://doi.org/10.2136/vzj2006.0120 

Corwin, D.L., 2005. Geospatial Measurements of Apparent Soil Electrical Conductivity 

for Characterizing Soil Spatial Variability, in: Soil-Water-Solute Process 



120 

 

Characterization: An Integrated Approach. CRC Press, Boca Raton, FL, pp. 639–

672. https://doi.org/10.1201/9781420032086.ch18 

Dalan, R.A., 2008. A Review of the Role of Magnetic Susceptibility in 

Archaeogeophysical Studies in the USA: Recent Developments and Prospects. 

Archaeol. Prospect. 15, 1–31. https://doi.org/10.1002/arp 

Dalan, R.A., Banerjee, S.K., 1998. Techniques of Soil Magnetism. Geoarchaeology 13, 

3–36. 

De Smedt, P., Saey, T., Lehouck, A., Stichelbaut, B., Meerschman, E., Islam, M.M., 

Van De Vijver, E., Van Meirvenne, M., 2013. Exploring the potential of multi-

receiver EMI survey for geoarchaeological prospection: A 90ha dataset. 

Geoderma 199, 30–36. https://doi.org/10.1016/j.geoderma.2012.07.019 

Delefortrie, S., Hanssens, D., De Smedt, P., 2018. Low signal-to-noise FDEM in-phase 

data: Practical potential for magnetic susceptibility modelling. J. Appl. Geophys. 

152, 17–25. https://doi.org/10.1016/j.jappgeo.2018.03.003 

Doolittle, J.A., Brevik, E.C., 2014. The use of electromagnetic induction techniques in 

soils studies. Geoderma 223, 33–45. 

https://doi.org/10.1016/j.geoderma.2014.01.027 

Drive, C., 2007. Ground Penetrating Radar: Theory and Applications, Cardiovascular 

Imaging. Elsevier. https://doi.org/10.1016/B978-1-4160-5009-4.50004-2 

Fitterman, D. V, Labson, V.F., 2005. 10. Electromagnetic Induction Methods for 

Environmental Problems, in: Butler, D.K. (Ed.), Near-Surface Geophysics. 

Society of Exploration Geophysicists, Oklahoma, U.S.A, pp. 301–356. 



121 

 

https://doi.org/10.1190/1.9781560801719.ch10 

Huang, H., 2005. Depth of investigation for small broadband electromagnetic sensors. 

Geophysics 70, 135‒142. https://doi.org/10.1190/1.2122412 

Huang, H., Won, I.J., San Filipo, B., 2003. Detecting buried nonmetal objects using 

soil magnetic susceptibility measurements, in: Proceedings of SPIE. pp. 1181–

1188. https://doi.org/10.1117/12.485952 

Hubbard, S.S., Linde, N., 2011. Hydrogeophysics, Treatise on Water Science. 

https://doi.org/10.1016/B978-0-444-53199-5.00043-9 

Huisman, J.A., Hubbard, S.S., Redman, J.D., Annan, A.P., 2003. Measuring soil water 

content with ground penetrating radar. Vadose Zo. J. 2, 476–491. 

https://doi.org/10.2113/2.4.476 

Jol, H.M., 2009. Ground Penetrating Radar Theory and Applications. Elsevier, Oxford. 

Kadiolu, S., Daniels, J.J., 2008. 3D visualization of integrated ground penetrating radar 

data and EM-61 data to determine buried objects and their characteristics. J. 

Geophys. Eng. 5, 448–456. https://doi.org/10.1088/1742-2132/5/4/008 

Keiswetter, D.A., Won, I.J., 1997. Multifrequency Electromagnetic Signature of the 

Cloud Chamber, Nevada Test Site. J. Environ. Eng. Geophys. 2, 99–103. 

https://doi.org/10.4133/JEEG2.2.99 

Keller, G. V, Frischknecht, F.C., 1966. Electrical methods in geophysical prospecting. 

Pergamon Press, New York. 

Kirby, G.E., 1988. Soils of the Pasadena-Deer Lake area, Newfoundland [WWW 

Document]. URL 



122 

 

http://sis.agr.gc.ca/cansis/publications/surveys/nf/nf17/nf17_report.pdf (accessed 

11.8.17). 

Linford, N.T., 1998. Geophysical Survey At Boden Vean, Cornwall, Including an 

Assessment of the Microgravity Technique for the Location of Suspected 

Archaeological Void Features. Archaeometry 40, 187–216. 

https://doi.org/10.1111/j.1475-4754.1998.tb00833.x 

Maas, C., Schmalzl, J., 2013. Using pattern recognition to automatically localize 

reflection hyperbolas in data from ground penetrating radar. Comput. Geosci. 58, 

116–125. https://doi.org/10.1016/j.cageo.2013.04.012 

McNeill, J.D., 1980. Electromagnetic Terrain Conductivity Measurement at Low 

Induction Numbers, Technical note TN-06. Mississauga, ON. 

McNeill, J.D., Bosnar, M., 1999. Application of dipole–dipole electromagnetic systems 

for geological depth sounding, Technical Note TN-31. Mississauga, ON. 

Minsley, B.J., Smith, B.D., Hammack, R., Sams, J.I., Veloski, G., 2012. Calibration 

and Filtering Strategies for Frequency Domain Electromagnetic Data Calibration 

and fi ltering strategies for frequency domain electromagnetic data. J. Appl. 

Geophys. 80, 56–66. https://doi.org/10.1016/j.jappgeo.2012.01.008 

Moghadas, D., André, F., Slob, E.C., Vereecken, H., Lambot, S., 2010. Joint full-

waveform analysis of off-ground zero-offset ground penetrating radar and 

electromagnetic induction synthetic data for estimating soil electrical properties. 

Geophys. J. Int. 182, 1267–1278. https://doi.org/10.1111/j.1365-

246X.2010.04706.x 



123 

 

Noh, K., Oh, S., Seol, S.J., Lee, K.H., Byun, J., 2016. Analysis of anomalous electrical 

conductivity and magnetic permeability effects using a frequency domain 

controlled-source electromagnetic method. Geophys. J. Int. 204, 1550–1564. 

https://doi.org/10.1093/gji/ggv537 

Rubin, Y., Hubbard, S.S., 2005. Hydrogeophysics, Vasa. 

Saey, T., De Smedt, P., Delefortrie, S., Van De Vijver, E., Van Meirvenne, M., 2015. 

Comparing one- and two-dimensional EMI conductivity inverse modeling 

procedures for characterizing a two-layered soil. Geoderma 241, 12–23. 

https://doi.org/10.1016/j.geoderma.2014.10.020 

Saey, T., De Smedt, P., Meerschman, E., Islam, M.M., Meeuws, F., Van De Vijver, E., 

Lehouck, A., Van Meirvenne, M., 2012. Electrical conductivity depth modelling 

with a multireceiver EMI sensor for prospecting archaeological features. 

Archaeol. Prospect. 19, 21–30. https://doi.org/10.1002/arp.425 

Saey, T., Delefortrie, S., Verdonck, L., De Smedt, P., Van Meirvenne, M., 2014. 

Integrating EMI and GPR data to enhance the three-dimensional reconstruction of 

a circular ditch system. J. Appl. Geophys. 101, 42–50. 

https://doi.org/10.1016/j.jappgeo.2013.11.004 

Saey, T., Note, N., Gheyle, W., Stichelbaut, B., Bourgeois, J., Van Eetvelde, V., Van 

Meirvenne, M., 2016. EMI as a non-invasive survey technique to account for the 

interaction between WW I relicts and the soil environment at the Western front. 

Geoderma 265, 39–52. https://doi.org/10.1016/j.geoderma.2015.11.020 

Saey, T., Van Meirvenne, M., De Smedt, P., Neubauer, W., Trinks, I., Verhoeven, G., 

Seren, S., 2013. Integrating multi-receiver electromagnetic induction 



124 

 

measurements into the interpretation of the soil landscape around the school of 

gladiators at Carnuntum. Eur. J. Soil Sci. 64, 716–727. 

https://doi.org/10.1111/ejss.12067 

Santos, V.R.N., Porsani, J.L., 2011. Comparing performance of instrumental drift 

correction by linear and quadratic adjusting in inductive electromagnetic data. J. 

Appl. Geophys. 73, 1–7. https://doi.org/10.1016/j.jappgeo.2010.10.004 

Sasaki, Y., Kim, J.-H., Cho, S.-J., 2010. Multidimensional inversion of loop-loop 

frequency-domain EM data for resistivity and magnetic susceptibility. Geophysics 

75, 213–223. https://doi.org/10.1093/gji/ggv354 

Simon, F.-X., Moffat, I., 2015. Identification of shapes and uses of past landscapes 

through EMI survey, in: Sarris, A. (Ed.), Best Practices of Geoinformatic 

Technologies for the Mapping of Archaeolandscapes. Archaeopress, Oxford, pp. 

25–34. 

Simon, F.-X., Sarris, A., Thiesson, J., Tabbagh, A., 2015. Mapping of quadrature 

magnetic susceptibility/magnetic viscosity of soils by using multi-frequency EMI. 

J. Appl. Geophys. 120, 36–47. https://doi.org/10.1016/j.jappgeo.2015.06.007 

Simon, F.-X., Tabbagh, A., Thiesson, J., Donati, J.C., Sarris, A., 2014. Complex 

Susceptibility Measurement Using Multi-frequency Slingram EMI Instrument, in: 

Near Surface Geoscience 2014-20th European Meeting of Environmental and 

Engineering Geophysics. ATHENES, Greece. 

Simpson, D., Van Meirvenne, M., Lück, E., Rühlmann, J., Saey, T., Bourgeois, J., 2010. 

Sensitivity of multi-coil frequency domain electromagnetic induction sensors to 

map soil magnetic susceptibility. Eur. J. Soil Sci. 61, 469–478. 



125 

 

https://doi.org/10.1111/j.1365-2389.2010.01261.x 

Simpson, D., van Meirvenne, M., Saey, T., Vermeersch, H., Bourgeois, J., Lehouck, 

A., Cockx, L., Vitharana, U.W.A., 2009. Evaluating the multiple coil 

configurations of the EM38DD and DUALEM-21S sensors to detect 

archaeological anomalies. Archaeol. Prospect. 16, 91–102. 

https://doi.org/10.1002/arp.349 

Spies, B.R., 1989. Depth of investigation in electromagnetic sounding methods. 

GEOPHYSICS 54, 872–888. https://doi.org/10.1190/1.1442716 

Tang, P., Chen, F., Jiang, A., Zhou, W., Wang, H., Leucci, G., de Giorgi, L., Sileo, M., 

Luo, R., Lasaponara, R., Masini, N., 2018. Multi-frequency Electromagnetic 

Induction Survey for Archaeological Prospection: Approach and Results in Han 

Hangu Pass and Xishan Yang in China. Surv. Geophys. 1‒18. 

https://doi.org/10.1007/s10712-018-9471-5 

Thiesson, J., Rousselle, G., Simon, F.X., Tabbagh, A., 2011. Slingram EMI 

prospection: Are vertical orientated devices a suitable solution in archaeological 

and pedological prospection? J. Appl. Geophys. 75, 731–737. 

https://doi.org/10.1016/j.jappgeo.2011.10.002 

Von Hebel, C., Rudolph, S., Mester, A., Huisman, J.A., Kumbhar, P., Vereecken, H., 

Van Der Kruk, J., 2014. Three-dimensional imaging of subsurface structural 

patterns using quantitative large-scale multiconfiguration electromagnetic 

induction data. Water Resour. Res. 50, 2732–2748. 

https://doi.org/10.1002/2013WR014864 

Witten, A.J., Levy, T., Adams, R.B., Won, I.J., 2000. Geophysical Surveys in the Jebel 



126 

 

Hamrat Fidan, Jordan. Geoarchaeology 15, 135–150. 

https://doi.org/10.1002/(SICI)1520-6548(200002)15:2<135::AID-

GEA2>3.0.CO;2-M 

 

Chapter 4: General Summary and Conclusions  

This thesis explored the uses of the multi-coil and the multi-frequency EMI 

sensors in western Newfoundland Podzolic soils. ECa and MSa are the two main 

components measured from the EMI sensors, and both, in particular, were used in my 

two research studies. Both research studies were conducted at the PBRS, managed by 

the Department of Fisheries and Land Resources, of the Government of Newfoundland 

and Labrador, Canada. 

Spatiotemporal characterization of soil ECa variability is essential for 

agricultural or shallow soil investigations. EMI-ECa is a proxy of soil’s physiochemical 

properties, and the significance of the properties were assessed through a study. Study-

1 (Chapter-2) showed the relationship between ECa and soil properties under wet and 

dry conditions, which were established by geostatistical and multivariate statistical 

approaches, including variogram analyses, PCA, and MLR. The results revealed that 

investigated significant soil properties on ECa measurements are: silt, SMC, CEC, ECw 

, and sand. Besides, better coil separations, frequencies, and coil orientations were 

determined for the sandy loam soil. VCP‒C3 and HCP‒C2 are the most suitable coil 

separations of the multi-coil EMI sensor, while VCP‒49kHz for the multi-frequency is 

appropriate to investigate soil variability under wet conditions. Spatiotemporal 

variability of ECa were illustrated via interpolated maps, which are easy to understand 
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when discussing soil variability over a field scale. The first study inferred that the multi-

coil is the more suitable EMI sensor, compared to the multi-frequency, to investigate 

spatiotemporal variability of ECa as a proxy of soil properties in the shallow 

(agricultural) soils in western Newfoundland.  

Study-2 (Chapter-3) described the depth sensitivity (DS) analysis of the multi-

coil and multi-frequency EMI sensors using small buried targets. The sign-changing 

behavior of some MSa (negative) measurements of the HCP coil orientation, and the 

theoretical MSa DS models of EMI, were difficult to interpret with field measurements. 

Therefore, I investigated the DS of EMI sensors using small buried targets and assessed 

it with theoretical DS models of MSa and validated it with integrated EMI and GPR 

analyses. 

 MSa data were used for mapping and detecting metallic targets. The results 

revealed that multi-coil EMI probe clearly sensed all four metallic targets from all three 

coil separations and in both coil orientations. However, only three of the metal targets 

were identified from the multi-frequency EMI measurements with weak anomalies. The 

multi-coil sensor is the more accurate and reliable sensor to detect small metallic targets 

in shallow soils compared to the multi-frequency. To illustrate, a guideline was 

developed under Chapter-3, to understand and evaluate the negative MSa values of the 

HCP of the multi-coil EMI with the theoretical DS models. Finally, I concluded that 

the multi-coil EMI sensor shows better accuracy predicting the depth of targets than the 

multi-frequency sensor in the shallow soils of the tested field. 

4.1. Recommendations for Future Works 

The following recommendations are suggested for further studies,  
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• Measurements of soil physiochemical properties of deeper soil may develop 

strong correlations with EMI-ECa data, since the multi-frequency measures 

deeper volumes of soil. 

• Terrain indices, such as slope and topography of the field, should be considered 

on EMI survey measurements. 

• Regular soil sampling intervals can achieve prediction of more precise SMC 

variability with EMI surveys throughout the growing season. 

• Depth sensitivity analyses and spatiotemporal variability of EMI-ECa on 

different soils are needed for soil science studies to improve precision 

agriculture management on the island portion of Newfoundland and Labrador. 

• Systematically bury the metallic targets in 10 cm increments in depth, with the 

distance between targets higher than the longest ICS of the EMI instruments. 

These might be useful to gain more understanding about the theoretical DS 

models. 

• Do the same DS analysis of EMI with buried targets for different kinds of soils, 

such as clay, loamy, and sandy soils. It may better expose the variability of MSa 

contrast between background soil and the targets.  
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APPENDIX 1 Descriptive Analysis of Raw ECa Data 

Measured by Both EMI Sensors   
 

Descriptive statistics of raw ECa (mS/m) data collected on October 13, 2017 

Variable Count Mean SD CV Min Max 

Multi-frequency EMI 

      

VCP‒18kHz 2525 0.005 < 0.000 0.130 0.005 0.005 

VCP‒38kHz 2562 2.835 0.698 24.630 0.910 5.880 

VCP‒49kHz 2525 14.304 0.630 4.410 12.590 16.800 

HCP‒18kHz 2502 0.005 < 0.000 0.090 0.005 0.005 

HCP‒38kHz 2548 4.483 0.655 14.600 3.200 7.060 

HCP‒49kHz 2502 11.748 0.560 4.760 10.640 14.170 

Multi-coil EMI 

      

VCP‒C1 1019 -1.274 0.528 -41.420 -2.230 8.510 

VCP‒C2 1019 2.434 0.312 12.800 1.640 4.110 

VCP‒C3 1019 2.514 0.341 13.580 0.640 3.620 

HCP‒C1 1044 -0.350 0.494 -141.210 -1.140 7.650 

HCP‒C2 1044 3.168 0.336 10.610 1.640 4.670 

HCP‒C3 1044 3.031 0.360 11.890 1.770 4.090 

Shaded variables corresponding to negative values and outliers; SD ‒ standard deviation; CV ‒ 

coefficient of variation; Min ‒ minimum; Max ‒ maximum;  
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APPENDIX 2 Experimental Variogram With Pairs of Samples 
 

Experimental variogram depicted from multi-frequency EMI data (VCP-38 kHz) fitted with spherical model (a), and multi-coil EMI data 

(HCP-C2) fitted with exponential model (b). 

a) b) 
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APPENDIX 3 Temporal ECa Measurements of Multi-coil 

EMI Sensor  
 

 

VCP-C2 

 

VCP-C3 
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HCP-C3 
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APPENDIX 4 Absolute Deviation MSa Maps of VCP Coil Orientation by Multi-coil EMI Sensor: 20th 

of June 2018 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCP and HCP mode of operation of multi-coil EMI sensor on 20th of June 2018, HCPC3 shows raw MSa data and other maps are created 

from absolute deviation from background mean of MSa  

VCP HCP 
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APPENDIX 5 Theoretical depth model of MSa: RR of both sensors and actual depth of buried metallic 

targets  

C1-C3, coil separations of multi-coil EMI sensor; C4 is a coil separation of multi-frequency EMI sensor  



135 

 

 

APPENDIX 6 Theoretical Depth Model of MSa: CR of Both Sensors and Actual Depth of Buried 

Metallic Targets  

C1-C3, coil separations of multi-coil EMI device; C4 is a coil separation of multi-frequency EMI device 


