

May 2019

A Simplified Manual of the
JSBSim Open-Source

Software FDM for Fixed-Wing
UAV Applications

TECHNICAL REPORT

Oihane Cereceda

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

St. John’s, NL, Canada

i

Summary

Simulation packages provide a valuable framework or environment to study the interaction

between aircraft, including Unmanned Aerial Vehicles (UAVs), and the existing air traffic in Near

Mid-Air Collision (NMAC) scenarios. The described simulation package is based on the open-

source JSBSim Flight Dynamics Model (FDM), which has been validated and tested in UAV

computer models for 4D encounters and avoidance manoeuvres. The objective of this technical

report is to provide a simplified version of the current package, including the minimum

requirements for the design of a UAV in JSBSim, and to guide any modellers on the UAV

computer design task. Introductory concepts and the dynamics behind this package will not be

stated here.

This report begins with a brief introduction of JSBSim structure and simulation modes. The

source code classes are introduced in Section 2 followed by the set instructions for the

additional feature of the multiplayer mode used in 4D encounters. The report concludes with a

UAV example case study.

ii

Table of Contents

Summary ... i

Table of Contents .. ii

List of Figures .. iii

List of Acronyms .. iv

1. High-Level Simulation Structure .. 1

1.1. Standalone Mode: Scripting ... 1

1.1.1. Script Definition ... 4

1.1.2. Visualization in FlightGear .. 5

1.2. Integration in FlightGear... 6

2. Classes, Class Hierarchy and Model Class ... 7

3. Additional Features: Multiplayer Mode ..11

4. Case Study: Giant Big Stik Fixed-wing UAV ...13

4.1. Giant Big Stik Aircraft Modelling ..13

4.2. Giant Big Stik in Standalone Mode ..14

4.3. Giant Big Stik Integrated into FlightGear ...16

References ...18

iii

List of Figures

Figure 1. JSBSim standalone mode structure .. 2

Figure 2. JSBSim program command line and options ... 3

Figure 3. JSBSim program command line in batch mode ... 3

Figure 4. FlightGear interface. Advanced options. Input/output properties 5

Figure 5. FlightGear block structure ... 6

Figure 6. FlightGear interface. Advanced options. Flight Model ... 7

Figure 7. FGFDMExec and JSBSim Initialization process [1] ..10

Figure 8. Multiplayer mode in FlightGear with a Cessna 172 as seen from the cockpit of another

aircraft ...12

Figure 9. Giant Big Stik on the field before tests ..13

Figure 10. UAV roll and pitch angles ...15

Figure 11. Giant Big Stik in FlightGear v2.0.0 performing an aerobatic manoeuvre in JSBSim

standalone mode ..16

Figure 12. Giant Big Stik manual flight in FlightGear v2.0.0 ..17

iv

List of Acronyms

ATC Air Traffic Control

CSV Comma-Separated Values

DoF Degrees of Freedom

FDM Flight Dynamics Model

GNC Guidance, Navigation, and Control

NL Newfoundland and Labrador

NMAC Near mind-Air Collision

R/C Radio Control

RAVEN Remote Aerial Vehicles for ENvironment-monitoring

UAV Unmanned Aerial Vehicle

1

1. High-Level Simulation Structure

JSBSim [1] is an FDM package that consists of a series of classes integrated together to

simulate an aircraft and its environment. The package is stable and ready to use from the

command/shell window. The basic version also includes a large aircraft library and simple

demos. The most remarkable work done on JSBSim are the motion base simulator at the

University of Naples, Italy [2] and the human pilot math model with JSBSim as the 6-DoF

simulation core, developed by the U.S. Department of Transportation [3].

However, JSBSim does not contain any visual environments or models associated with it and

additional software –FlightGear [4]– is required if the performance needs to be observed.

JSBSim can be downloaded online [5] and more information can be found on its website [6].

Although the developers claim that it can be integrated into MATLAB/Simulink, the system is still

in development and needs significant improvement.

1.1. Standalone Mode: Scripting

The standalone simulation mode of JSBSim only requires the source code, the set of engines,

and aircraft. The package is in constant development with periodic releases; the source code is

considered stable whereas new aircraft and other systems are uploaded to the repository after

they are verified. If the user needs to compile and build the program, they should follow the

instructions in the manual [1].

A JSBSim standalone simulation structure can be summarized by the following blocks (Figure 1):

- The JSBSim source code (B1) is formed by the full 6-DoF FDM, including the

dynamics of the system and all the models that exchange properties with the aircraft or

computer model, such as wind and atmosphere.

- The script file (B2) is expressed in .xml format and describes the tasks to be performed

by the computer model.

- The initialization file (B3) includes the information related to the initial state of the

aircraft. It can be called either from B1 or B2.

- The aircraft configuration file (B4) contains all the parameters for a specific aircraft.

The main file includes the metrics, mass and aerodynamics, among others. The

propulsion system formed by the engine (B4.1) and thrust (B4.2) files are called from

B4. Extra files (B4.3) can also be added depending on the final purpose of the

2

simulation. Examples include an autopilot, guidance system, or more specific information

about elements such as sensors or a control system.

- The type of output (B5) is defined at the end of the aircraft configuration file (B4) and

generated by the source code. The output can be generated through a series of datalogs

or, become a visual performance using a complementary software such as Flight Gear

or OpenEaagles [7].

- An additional datalog (B6) with specific parameters or a set of parameters to a

particular package can be added as well.

Figure 1. JSBSim standalone mode structure

Therefore, the minimum and most basic configuration consists of the source code (B1) with the

aircraft configuration file, including the propulsion system (B4, B4.1, B4.2), the script files

defining the task (B2), the initialization file (B3), and the output generation files or interface (B5).

The corresponding blocks are highlighted in light blue in Figure 1. The remaining blocks are

complementary depending on the task to be completed. A straightforward simulation can be run

with the Debug command shown in Figure 2, indicating the minimum files and

configuration/execution simulation parameters.

If run in batch mode, the complete simulation is executed in a line code (Figure 3). That batch

file should include the basic and minimum command lines for the simulation as described below

in the code box. This example eliminates files generated from previous simulations, runs the

JSBSim package by indicating the correspondent script, moves the output file and plots the

results in Gnuplot [8].

3

Figure 2. JSBSim program command line and options

Figure 3. JSBSim program command line in batch mode

4

1.1.1. Script Definition

The simulation task is defined in the script alongside the aircraft and its initial state. Events

activate when a condition (declared within JSBSim) is met and a series of actions are activated.

Each event is triggered once unless the condition associated with it is declared "continuous" or

"persistent", making it constantly evaluated during the simulation.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl"

href="http://jsbsim.sourceforge.net/JSBSimScript.xsl"?>

<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"

 name="C172 cruise at 4K, 100% power">

 <description>This run is for testing the C172 altitude hold autopilot and

cruise performance</description>

 <use aircraft="c172x" initialize="reset01"/>

 <run start="0.0" end="50" dt="0.0083333">

 <property value="0"> simulation/run_id </property>

 <event name="Hold heading and altitude">

 <condition>simulation/sim-time-sec ge 5</condition>

 <set name="ap/heading_setpoint" value="200"/>

 <set name="ap/heading_hold" value="1"/>

 <set name="ap/altitude_setpoint" value="4000.0"/>

 <set name="ap/altitude_hold" value="1"/>

 <notify>

 <property> attitude/psi-rad </property>

 <property> attitude/theta-rad </property>

 <property> attitude/phi-rad </property>

 <property> position/h-agl-ft </property>

 </notify>

 </event>

 </run>

</runscript>

rem Remove the old results file

del /Q aircraft\DHC6\test\TestDHC6_Out.csv

rem Run the test

Debug\JSBSim --script=aircraft\DHC6\test\DHC6-test.xml

rem Copy the csv file to another location and change its name

copy JSBoutDHC6.csv aircraft\DHC6\test\

ren aircraft\DHC6\test\JSBoutDHC6.csv TestDHC6_Out.csv

rem Generate gnuplot to the screen

gnuplot aircraft\DHC6\test\PlotOrbitDHC6.p

5

In the example framed above extracted from a script demo, the Cessna 172 aircraft is tested for

the autopilot hold and cruise performance. The aircraft and its initial state is declared with <use

aircraft=" " initialize=" "/> and the simulation conditions are defined with <run

start=" " end=" " dt=" ">. The event extracted from the script shows that a series of

autopilot properties get updated 5 seconds after the simulation starts. With the </notify>

function, the Euler angles and the altitude are displayed on the command window when the

event is triggered.

1.1.2. Visualization in FlightGear

By default, the standalone mode does not allow for visualization. With an extra line of code in

the aircraft configuration file, the model can share its output with FlightGear, enabling the visual

performance. For a successful exchange of properties, the same input/output information must

be configured in FlightGear, since JSBSim runs as an external model.

Assume that following line of code is declared in the JSBSim in aircraft configuration file:

Then, the FDM in FlightGear must be selected as external and the input property in FlightGear

must be:

Figure 4. FlightGear interface. Advanced options. Input/output properties

 <output name ="localhost" type="FLIGHTGEAR" port="5500" protocol="UDP"

rate="10"> </output>

6

The visualization of the performance will start as soon as the simulation launches. It should be

noted that the visualization will depend on the JSBSim deltatime unless otherwise indicated.

1.2. Integration in FlightGear

The second way to run an aircraft designed in JSBSim is by integrating it directly into FlightGear

[9]. The main difference between this mode and the mode explained in Section 1.1.2. is that in

this case, only the aircraft configuration and its related files are needed since FlightGear holds

the simulation. This is extremely useful when the aircraft is flown manually with a controller,

whereas it becomes impractical when choosing a pre-defined task.

For a better understanding, the Figure 5 shows a simplified structure of FlightGear formed by

aircraft (expressed in JSBSim FDM), Air Traffic Control (ATC), airport, scenery and other

models:

Figure 5. FlightGear block structure

Copy the required files in the source folder, including the aircraft information, into FlightGear to

run the simulation. If everything has been done correctly, the selected aircraft will be listed as

available. Before launching the simulation, ensure that the flight model option “jbs” is selected in

Advanced Options (Figure 6). The model will start on the ground or in the air and can be

initiated and controlled by a flight controller, a joystick, or with the computer keyboard.

7

Figure 6. FlightGear interface. Advanced options. Flight Model

Note that in this mode there is no need to add any shared properties in the aircraft configuration

file, since FlightGear will be generating the output straight from the simulation.

2. Classes, Class Hierarchy and Model Class

The JSBSim complete package includes all the source codes for a basic simulation; however,

the user can create new systems depending on the required task. These systems might include

autopilot, Guidance, Navigation, and Control (GNC) and specific onboard instruments. JSBSim

is designed to be modified depending on the vehicle and user's needs. C++ represents an

excellent programming language to cover all the requirements in JSBSim; it provides the

required management tool for extracting, calculating and propagating data between classes as

part of its object-oriented programming.

The JSBSim source code structure works like any other computer model in C++. The location

and dynamics of the aircraft are given by the mathematical expressions [10]. The package

models the metrics, the computation of the forces and moments, and the propagation/output of

the dynamics, among others. Likewise, JSBSim also needs basic mathematical elements such

as functions, tables, and quaternions to handle mathematical transformations.

The code is distributed in classes depending on their function. The collection of described high-

level classes could be classified in:

8

- The executive class FGFDMExec initializes and runs the package from the application

calling JSBSim. The simulation starts and finishes according to the script that includes

the simulation details. When FGFDMExec class is initialized, it creates model objects

that define the aircraft according to the aircraft configuration file defined by the user.

- The model class FGModel represents the real physical classes and elements in the

aircraft. The model classes are executed in order including FGAerodynamics, FGAircraft,

FGAtmosphere, etc.

- The math classes (FGColumnVector3, FGQuaternion, FGTable, etc.) contain the

mathematical operations needed to solve equations, transformations, and other relations

in JSBSim.

- I/O and initialization classes (FGInputSocket, FGOutputTextFile, etc.) handle inputs

and outputs to the system.

- The basic classes (FGJSBBase and FGState) provide common capabilities to all the

classes such as message handling.

Focusing on the UAV computer model design, only the Model classes differ from the general

aviation aircraft case; the remaining classes are necessary, and include the operators and

simulation characteristics required for the correct implementation of JSBSim. The model classes

inherited from FGModel are listed below, including a brief description and special conditions (if

applicable) for the UAV case:

- The input class (FGInput)1 manages the inputs to the model with <input> elements in

the aircraft configuration file. When the software reads <input>, a communication

between classes is open and an appropriate action taken.

- The atmosphere class (FGAtmosphere)1 models the 1976 standard atmosphere

including winds, turbulence and giving the values of pressure, density and temperature,

depending on the location of the aircraft. Beware that the UAV case will only consider

low altitude (under 1000ft)2 and therefore, the model may be simplified to consider only

the troposphere conditions. However, the author recommends keeping this model as it

is for possible future uses.

- The FCS class (FGFCS)1 manages a collection of flight control classes defined by the

aircraft components (surface control elements, throttle, autopilot). In a simple UAV

1This class is required in all types of aircraft and fixed-wing UAVs.

2This value might differ with the upcoming Transport Canada regulations to be implemented in 2019.

9

simulation, the primary controls for the model are the surface command elements of the

aircraft which include the ailerons, elevator, and rudder.

- The propulsion class (FGPropulsion)1 manages from 0 to n number of engines

(FGEngine). JSBSim includes different kinds of propulsion systems depending on the

engines used to generate thrust. They include a piston engine model (FGPiston 

FGEngine), a jet turbine engine model (FGTurbine  FGEngine), a turboprop engine

model (FGTurboProp  FGEngine), a rocket engine model (FGRocket  FGEngine)

and an electric engine model (FGElectric  FGEngine). However, only the piston and

electric models are considered in the case of UAVs. The thrust generation (FGThruster

 FGForce) presents the same scenario where among the options found in JSBSim –

direct, nozzle (FGNozzle  FGThruster), propeller (FGPropeller  FGThruster) and

rotor (FGRotor  FGThruster)– only the propeller is used in the fixed-wing UAV case.

The propulsion system, including the engine and the origin of the thrust generation, are

called from the aircraft configuration file.

- The mass balance class (FGMassBalance)1 calculates the moments of inertia, Center of

Gravity (CG), and mass over time. At initialization, the <mass_balance> section in the

aircraft configuration file is read and for each sample time, the CG and mass are

updated. This class is relevant in the UAV case when the aircraft is carrying a piston

engine since the fuel consumption will highly update those values.

- The aerodynamics class (FGAerodynamics)1 is a collection of manager classes with

individual force and moment definitions. When <aerodynamics> is called in the aircraft

configuration file, this class handles the corresponding aerodynamic calculations

obtaining the forces and moments calculated for each of the axes.

- The inertial class (FGInertial)1 initializes the radius and reference acceleration values.

- The ground reactions class (FGGroundReactions) models the ground reactions defined

in the aircraft configuration file as <ground_reactions>. The two types of contacts

are BOGEY, which is directly related to the landing gear and its contacts, and

STRUCTURE, which is used to locate any aircraft contact type that is not part of the

landing gear (wing tips, nose and tail). JSBSim models the landing gear set as a

spring/damper model with <spring_coeff> and <damping_coeff>. It also models

retractable landing gear for contacts but it is not applicable to most UAVs as their landing

gear is non-retractable.

10

- The aircraft class (FGAircraft)1 gathers all systems together; it initializes the aircraft

model loading its properties with <metrics>, and obtains the contribution of each of the

systems in the generation of forces and moments.

- The propagate class (FGPropagate)1 models the equations of motion, giving the state of

the vehicle from the forces and moments generated during flight.

- The auxiliary class (FGAuxiliary) models pilot sensed accelerations and other auxiliary

parameters used for acceleration calculations in inertial space. This class is only

required in case the UAV carries motion-based sensors onboard.

- The output class (FGOutput)1 handles the simulation output. The desired output is

defined in the aircraft configuration file. The classes generated include: CSV (datalog in

csv), SOCKET (data sent to a socket output defined by an IP address), FLIGHTGEAR

(socket to FlightGear) and TABULAR (columnar data).

Figure 7 expresses the JSBSim FGModel in operation; when JSBSim is initialized, FGFDMExec

is executed generating all the models' objects that will be uploaded with the information

contained in the aircraft configuration file. This allows the assembly of the 6-DoF aircraft

computer model.

Figure 7. FGFDMExec and JSBSim Initialization process [1]

For a full collection of JSBSim classes, see reference [11].

11

3. Additional Features: Multiplayer Mode

An additional feature in FlightGear allows for the visualization of several independent models in

one simulation by communicating with each other. The setup is similar to the FlightGear

visualization in the JSBSim standalone mode (Section 1.1.2) except that the properties shared

between one and another must be opposite.

For the multiplayer mode setup instructions (extracted from [12]), assume that one model is

called “aircraft 1” (A1) and another “aircraft 2” (A2). For this mode, the IP of both computers is

required to enable the communication; use the ipconfig command to retrieve that information.

In A1 follow these steps:

1- Launch FlightGear selecting the aircraft and the airport.

2- Select AI Models and Random Objects.

3- Select Multiplayer mode:

- Callsign: GS_TEST1

- Hostname: IP of A1

- In: 5510

- Out: 5520

4- Select Advanced options.

5- Flight model. Select the most appropriate model depending on the run mode (jsb,

external, etc.).

6- Input/Output: Include the following variables:

--native-fdm=socket, in, 10, localhost, 5500, udp (external FDM – JSBSim output)

--native-ctrls=socket, out, 5, localhost, 5501, udp

--native-fdm=socket, out, 5, IP of C2, 5504, udp (communication to A2)

7- Return and Run.

In A2, do the following:

1- Launch FlightGear, selecting the appropriate aircraft and the same airport as in A1.

2- Select AI Models and Random Objects.

3- In Multiplayer mode:

- Callsign: GS_TEST2

- Hostname: IP of A1

12

- In: 5520

- Out: 5510

4- Select Advanced Options.

5- Flight model: jsb, external, etc.

6- Input/Output: Add the following:

--native-fdm=socket, in, 10, localhost, 5502, udp (external FDM – JSBSim output)

--native-ctrls=socket, out, 5, localhost, 5503, udp

7- Return and Run.

Both aircraft should be displayed on the screen of A1 from the perspective of A1 (Figure 8). This

particular Multiplayer mode allows one computer (A1) to be the host of the online simulation,

while A2 only simulates the performance of the second aircraft.

Figure 8. Multiplayer mode in FlightGear with a Cessna 172 as seen from the cockpit of another aircraft

13

4. Case Study: Giant Big Stik Fixed-wing UAV

The Giant Big Stik R/C UAV (Figure 9) [13] is an aerobatic sport-scale aircraft belonging to the

“Stik” series, manufactured by GreatPlanes [14]. It is powered by a fuel engine (Zenoah 26A)

and flies like a full-size airplane. This model airplane has been widely used in the Remote Aerial

Vehicles for ENvironment-monitoring (RAVEN) group at Memorial University of Newfoundland in

St. John’s, Newfoundland and Labrador (NL), Canada, for many years. Its aerobatic

characteristics are the most significant highlight of this model.

Figure 9. Giant Big Stik on the field before tests

4.1. Giant Big Stik Aircraft Modelling

Based on the package structure described in Figure 1, the minimum set of blocks are created as

part of the aircraft modelling:

- B3-initialization file: the simulation is held near Clarenville, NL, Canada with a certain

initial UAV airspeed and no wind.

<initialize name="ini03">

 <vc unit="KTS"> 38.87689112646 </vc>

 <longitude unit="DEG"> -53.91752033 </longitude>

 <latitude unit="DEG"> 48.2778129 </latitude>

 <phi unit="DEG"> 0.0 </phi> <!-- Roll -->

 <theta unit="DEG"> 0.0 </theta> <!-- Pitch -->

 <psi unit="DEG"> 0.0 </psi> <!-- Yaw -->

 <altitude unit="FT"> 984.252 </altitude>

 <hwind> 0.0 </hwind>

</initialize>

14

- B4-aircraft configuration file. It includes all the coefficients and parameters specific to the

Giant Big Stik UAV, which are introduced in [15]. For this example, two cases are

considered: an output file and a visualization while the simulation is running.

4.2. Giant Big Stik in Standalone Mode

As an example of the use of JSBSim with UAV applications, a simple task is defined where the

model turns left using the ailerons at maximum deflection in open-loop. In this example, which

has been used in previous work [16] for validation purposes, the aileron is set to its maximum

value in 5 seconds and returns back to 0.0 in 6.5 seconds.

<fdm_config name="GBS" version="2.0" release="ALPHA"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://jsbsim.sourceforge.net/JSBSim.xsd">

 <fileheader>

 <author> Oihane Cereceda </author>

 <filecreationdate> 2015-11-11 </filecreationdate>

 <version> v4 </version>

 <description> Giant Big Stik JSBSim model

 v1: Files and values created from Aeromatic v0.82

 v2: Files modified according to more specific data

 v3: Validate model using scripts and plotting data </description>

 v4: Output to FlightGear to visualize the performance

 </fileheader>

 <metrics>

 <mass_balance>

 <ground_reactions>

 <propulsion>

 <flight_control name="FCS: unnamed">

 <aerodynamics>

 <output name ="localhost" type="FLIGHTGEAR" port="5500" protocol="UDP"

rate="10"> </output>

 <output name="GBS_Out.csv" type="CSV" rate="100">

</fdm_config>

15

Figure 10. UAV roll and pitch angles

The simulation starts with the UAV in the air, meaning that it needs a few seconds to reach a

stable situation before any command is sent to the model. This is also reflected when, in the

case of real flight, the R/C model switches from manual to unmanned mode. The simulation test

shown here expresses a special case where the ailerons are shifted to their maximum value in

order to evaluate the dynamics of the system when performing an extreme manoeuvre. Figure

10 (plots generated using Gnuplot from JSBSim datalog output) shows how the roll angle is

affected by changes in the aileron deflection; the aircraft quickly spins around and stabilizes as

soon as the ailerons are back to 0.0.

The coherence of the system is noticeable. When the aircraft rolls, the lift vertical component is

no longer balanced and the weight creates a loss in altitude and pitch angle. The response is

presented in Figure 11 where FlightGear has been used to visualize the performance of the

aircraft during the simulation.

 <use aircraft="GBS" initialize="ini03"/>

 <run start="0" end="35" dt="0.01">

 <event name="Set engine throttle">

 <event name="Set aileron max. Turn left">

 <condition> simulation/sim-time-sec ge 5.0 </condition>

 <set name="fcs/aileron-cmd-norm" action="FG_STEP" value="-0.569"

tc="1"/>

 <notify/>

 </event>

 <event name="Set aileron to zero">

 <condition> simulation/sim-time-sec ge 6.5 </condition>

 <set name="fcs/aileron-cmd-norm" action="FG_STEP" value="0.0"

tc="1"/>

 <notify/>

 </event>

 </run>

16

Figure 11. Giant Big Stik in FlightGear v2.0.0 performing an aerobatic manoeuvre in JSBSim standalone
mode

4.3. Giant Big Stik Integrated into FlightGear

This JSBSim feature allows the user to manually fly the model using the FlightGear interface.

Following the setup described in Section 1.2, and using the Futaba Interlink Elite Controller to fly

the computer model, the simulation views are the following:

(a) Chase view of a turning manoeuvre

(b) Straight flight over the runway, chase view

17

(c) Fly-by view simulating what an R/C pilot would
see from the ground

(d) Cockpit view during flight

Figure 12. Giant Big Stik manual flight in FlightGear v2.0.0

18

References

[1] J. S. Berndt and JSBSim Development Team, “JSBSim, An open source, platform-

independent, flight dynamics model in C++.” 2011.

[2] Universita degli Studi di Napoli Federico II, “ADAG | Aircraft Design &

AeroFlightDynamics Group.” [Online]. Available:

http://www.adag.unina.it/english/index.html. [Accessed: 10-Oct-2017].

[3] Y. Zhang and S. Mcgovern, “Mathematical Models for Human Pilot Maneuvers in Aircraft

Flight Simulation,” in ASME 2009 International Mechanical Engineering Congress and

Exposition, 2009.

[4] “FlightGear Flight Simulator.” [Online]. Available: http://www.flightgear.org/. [Accessed:

28-Apr-2017].

[5] JSBSim Development Team, “JSBSim Flight Dynamics Model download.” [Online].

Available: https://sourceforge.net/projects/jsbsim/. [Accessed: 20-Sep-2018].

[6] JSBSim Development Team, “JSBSim Open Source Flight Dynamics Model.” [Online].

Available: http://jsbsim.sourceforge.net/. [Accessed: 09-Oct-2017].

[7] “OpenEaagles.” [Online]. Available: http://www.openeaagles.org/wiki/doku.php?id=start.

[Accessed: 19-Oct-2017].

[8] “Gnuplot.” [Online]. Available: http://www.gnuplot.info/. [Accessed: 20-Sep-2018].

[9] “JSBSim - FlightGear wiki.” [Online]. Available: http://wiki.flightgear.org/JSBSim.

[Accessed: 21-Apr-2017].

[10] M.V. Cook, Flight Dynamics Principle, 2nd ed. 2007.

[11] JSBSim Development Team, “JSBSim Flight Dynamics Model: JSBSim.” [Online].

Available: http://jsbsim.sourceforge.net/JSBSim/. [Accessed: 09-Oct-2017].

[12] J. Stevenson, “Small UAV 4D Simulation in MATLAB/Simulink and FlightGear. User

Description Document,” 2013.

[13] Great Planes, “Giant Big Stik ARF Instruction Manual,” no. 217, pp. 13–15, 2005.

19

[14] M. M. C. Great Planes, “Great Planes Giant Big Stik ARF.” [Online]. Available:

http://www.greatplanes.com/airplanes/gpma1224.php. [Accessed: 09-Oct-2017].

[15] J. D. Stevenson, “Assessment of the Equivalent Level of Safety Requirements for Small

Unmanned Aerial Vehicles,” Memorial University of Newfoundland, 2015.

[16] O. Cereceda, L. Rolland, and S. O’Young, “Validation discussion of an Unmanned Aerial

Vehicle (UAV) using JSBSim Flight Dynamics Model compared to MATLAB/Simulink

AeroSim Blockset,” in 2016 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 2016, pp. 3989–3994.

