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Abstract 

Comprising 20–30% of the shells of crustaceans, α-chitin has been shown to provide 

a wide range of valuable products such as therapeutic substances, platform 

molecules and functional materials. However, the polysaccharide’s crystallinity has 

been poorly studied, and this has limited its widespread utilization thus far.    

Filling that research gap, this thesis reports a new mechanochemical method of ball 

milling which amorphizes α-chitin in a controlled way. Using powder XRD to 

measure the polysaccharide’s crystallinity index (CrI%), a low balls-to-chitin (BtC) 

steel system was found to reduce CrI by an average of 6.0 units in regular milling 

times with good precision (±2.5 CrI units). That data set was correlated for the first 

time with FT-IR intensity ratios showing an unaffected degree of acetylation (DA), a 

steady decrease of glycosidic linkage content and α-chitin’s characteristic amide I 

split. The behaviour of the latter was rationalized as an experimental indicator for 

the weakening of the polysaccharide’s intermolecular hydrogen bonding network 

which is hypothesized to arise from the distribution of the average collision force 

within the nanofibril structure.  

The combination of increased collision frequency along with the presence of a solid 

acid catalyst (kaolinite) provided optimum mechanochemical conditions for 

efficient conversion of α-chitin into water-soluble products. The latter were analysed 

with a MALDI-TOF-MS method developed in Memorial University revealing 

oligomers of N-acetyl-D-glucosamine (NAG) with degrees of polymerization (DP) 
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of 1 to 5. The monomer and dimer reached yields of 5.1 and 3.9 wt.%, respectively, 

within 6 h, which compare well with yields of glucose and cellobiose from literature 

for cellulose ball milling. The products of this solvent-free oligomerization process 

were complemented by colorimetric approximations of reducing ends as well as 

size exclusion chromatography observations. This analysis is expected to stimulate 

future research for the sustainable production of these likely biologically active 

chitooligosaccharides.   

In parallel, the inevitable fraction of higher MW chitin resulting from the ball milling 

process has been shown to conveniently solubilize in cold NaOH. An optimum 

concentration of 19 wt.% of the alkali was found to dissolve ~5 wt.% high 

MW/crystallinity α-chitin via a freeze-thaw process at −28 °C and give films of 

acceptable mechanical properties after a simple casting treatment with HCl. 

Practically, this method avoids some of the disadvantages of organic-salt-solution 

solvents like the need for a costly recycling/purification treatment, their life cycle 

issues, the high temperatures, and the long stirring times. At the same time, it can 

quickly create homogeneous solutions of predictable viscosities in the 1–10 wt.% 

range allowing for more efficient and controlled chitin deacetylation.   
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Figure 2-18: Hypothetical mechanical force distribution (orange dotted arrows) through α-
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broken here and that opposite force vectors apply to all covalent and non-
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solubility triplicates were large (at pH 7.0: 6.29 ± 1.39, and at pH 2.9: 6.47 ± 2.16).
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Figure 3-1: Proposed mechanistic considerations towards mechanocatalytic activation of 
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234, F. Schüth, R. Rinaldi, N. Meine, M. Käldström, J. Hilgert, M.D. Kaufman 

Rechulski, Mechanocatalytic depolymerization of cellulose and raw biomass and 

downstream processing of the products, 24-30, Copyright (2014), with 
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signal, and 27.4% [(1469 - 1176) × 100 / 1069] for blue. The intensities of all data 

have been offset relative to the 120 min sample by whole multiples of 200 a.u.
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Figure 3-5: Crystallinity Index (CrI)% of α-chitin over milling time (min) when processed 
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Figure 3-14: Solubility % of α-chitin at pH 7.0 (blue) and 2.9 (red) when ball milled with 68-
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Figure 3-16: UV-Vis spectra of duplicate measurements of 1:20 (orange-red) and 1:40 
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standard glucose solution (blue) is overlaid for comparison purposes. Inset 

reads more detail in the 500-550 nm region. Intensity of the 1:40 dilution at 540 
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The y = α·χ + β equations correspond to x values (glucose concentrations) in 

mM. Secondary horizontal axis reads glucose concentrations in g/L. UV-Vis 

spectra for reagent’s B assay are shown on Figure A3–22. ............................... 189 
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6 h ball milling). Inset plots the absorbances at 420 nm against the dilution factor 
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from the linear equation reported (R2 was ca. 0.91)]. ......................................... 194 

Figure 3-21: UV-Vis spectra of 2.5 (light blue), 8.3 (green), and 11.4 (orange) g/L ball milled 

α-chitin products after1500 μL of their corresponding 65-fold dilutions [0.039 
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Chapter 1 Introduction  

1.1 Irreversible environmental changes and societal timescales  

The way in which our human societies choose to manage risk and uncertainty has 

resulted in three out of the nine Earth-system processes to exceed their irreversible 

change levels (Figure 1–1).1  

 

Figure 1–1: Beyond irreversible environmental change levels. The inner green shading 

embodies the proposed safe operating space for nine interconnected planetary 

systems. The red wedges signify an estimate of our generation’s levels of the 

systems’ key variables. Reprinted by permission from Macmillan Publishers 

Ltd: [NATURE] (Vol 461, 472–475), copyright (2009).     

With key variables for rate of biodiversity loss (species extinction), interference 

with the nitrogen cycle (rate of atmospheric N2 removal), and climate change 
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[atmospheric carbon dioxide (CO2) concentration] starting to go beyond their 

critical values after the 1960s,2 the resilience of the rest of the planet’s 

subsystems/operations (e.g. freshwater use, ocean acidification) is severely 

compromised.3 One of the main reasons for the current situation is our increasing 

dependence on fossil resources fostered within a “growth at all costs” economic 

model.1,4 Fossil feedstocks (natural gas, petroleum, and coal) form over geological 

timescales,5 which are relevant when considering interactions at the ecosystem 

(hundreds of centuries) or/and ecosphere (thousands of centuries) level.6 However, 

global total CO2 emissions from fossil fuel use increased over 500-fold within the 

last three centuries,7 entering the 350 ppm zone of uncertainty.i At the same time, 

recent literature estimates that some of them (fossil resources) will peak within the 

next few generations.9 Considering this historical turning point, along with the 

proposed non-linear (spiral) nature of an organism’s biological time,10 and the 

United Nations (UN) scenarios on world population distribution,11 the more crucial 

questions raised are more relevant to Homo sapiens’ ability to survive on the planet 

(societal reproduction/health) rather than to the survival of the planet itself 

(environmental health).ii   

                                                           
i That atmospheric CO2 concentration is the proposed critical value for the zone of 

uncertainty (350–450 ppm) of one of the two control variables suggested by the Planetary 

Boundary (PB) framework, to which the Earth-system process of climate change is 

particularly sensitive (the other one is the more stringent “radiative forcing”) (3). In May 

2018, the value was recorded at 411 ppm (8).  
ii Just as individual organisms have their unique biology, so do societies [see some of the 

articles of “Biology of Societies” Special Issue of Current Biology (2007)](12,13). Hence, 

societal characteristics unfold in their own biological time (maybe not spirally)(14,15).  
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1.2 Green Chemistry  

Darwinian, economic and societal dimensions of evolution have been interwoven 

for many centuries by alchemy16,17 and chemistry,18,19 via invented materials and 

their manufacturing processes. This progress, which is grounded on innovation and 

systematic work at the molecular level, was refined by pioneering green chemists 

in the 1980s; who responded to sustainability challenges like waste prevention and 

hazard minimization at the industrial scale.20,21   

That dynamic is now formulated by “The Twelve Principles of Green Chemistry”, 

which were introduced in 1998 by Paul Anastas and John Warner.22 These principles 

approach the aforementioned human health and environmental problems 

holistically, and are meant to be complemented by “The Twelve Principles of Green 

Engineering”.23 They are summarized briefly below:   

1. Prevention. Waste prevention is better than treatment or clean up.  

2. Atom Economy. Synthesis should maximize the incorporation of all starting 

materials used in the process into the final product.  

3. Less Hazardous Synthesis. Synthesis should use and generate substances that 

pose little or no toxicity to human health and the environment.  

4. Safer Chemicals. Chemical products should be designed to preserve efficacy of 

the function while reducing toxicity.   
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5. Safer Solvents and Auxiliaries. The use of auxiliary substances (e.g. solvents, 

separation agents etc.) should be made minimized and innocuous.  

6. Energy Efficiency. Energy requirements of chemical processes should be 

recognized for their environmental and economic impacts and should be 

minimized. If possible, synthetic methods should be conducted at ambient 

temperature and pressure. 

7. Renewable Feedstocks. A raw material or feedstock should be renewable rather 

than depleting whenever technically and economically practicable.  

8. Reduce Derivatives. Unnecessary derivatization (use of blocking groups, 

protection / deprotection, temporary modification of physical and chemical 

processes) should be minimized or avoided if possible, because such steps 

require additional reagents and can generate waste.  

9. Catalysis. Catalytic reagents (as selective as possible) are superior to 

stoichiometric reagents.  

10. Degradation. Chemical products should be designed so that at the end of their 

function they break down into innocuous degradation products and do not 

persist in the environment.  

11. Real-Time Analysis for Pollution Prevention. Analytical methodologies need to be 

further developed to allow for real-time, in-process monitoring and control prior 

to the formation of hazardous substances.  
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12. Inherently Safer Chemistry for Accident Prevention. Substances and the form of 

a substance used in a chemical process should be chosen to minimize the 

potential for chemical accidents, including releases, explosions and fires.  

Significant advances both in academia and industry have been attributed to the 

twelve principles of green chemistry,24-26 however these rules were not meant to be 

twelve independent commandments but rather an integrated cohesive system of 

design. Ultimate standards of sustainability can only be obtained if all twelve 

principles are applied in a scaled-up process,27 but in most cases today this would 

be unfeasible on economic grounds (e.g. the cost of renewable routes to chemicals 

are typically more expensive than petrochemical routes).  

Moreover, green chemistry and technology in general cannot achieve the target of 

sustainability alone. The right socio-political conditions are needed to ensure 

investments in green chemistry and engineering. Some of those are:28 

• Appraisement by society and public acceptance. A demand for new greener 

products and benign processes throughout the life-cycle of the product.  

• Reasonable and sustainable legislation that does not inhibit the application of 

greener innovation and protects the future generations’ needs.   

• Convenient market conditions. That implies financial motives to increase 

research and access to finance for novel applications.  
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There is a growing body of literature at the interface of natural and social sciences 

with respect to the above interdependent conditions.29-39 Regardless of the 

academic debate there,iii my hypothesis is that, within a circular economy mindset,40 

sustainability can only be evaluated on a case by case basis, as opposed to a 

planetary one.41,42 With that sense of responsibility, companies and organizations 

can take advantage of the scientific/technical or other skills and make a difference; 

building trust relationships with local communities (Figure 1–2).43 iv     

 

Figure 1–2: Green chemistry considerations/skills for satisfaction of modern society's 

needs. Reproduced from {Green Chem., 2016, 18, 3914-3934} with permission 

from The Royal Society of Chemistry.     

                                                           
iii Despite the visionary perspectives, discussion on those is beyond the scope of this thesis.  
iv In Section 1.5, we will see how an experienced scientist [Sir John (Kappa) W. Cornforth] 

perceives the distinction between “making a difference” and “making debate”.  
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1.3 Renewable resources, food waste and biorefineries  

The seventh of the principles of green chemistry was envisioned in the very first 

issues of the homonym journal back in 1999 through a 2040 horizon scenario 

regarding the feasibility of a plant-based chemical industry. Making clear 

assumptions on world population and crop yield improvement, the authors traced 

the real core of the sustainability challenge in its socio-political nature (the right 

location to produce the right crop).44 As mankind entered the current century when 

petroleum feedstocks are estimated to meet just decades of global production,45 

renewable energy paradigms (solar, wind, and biomass) are positioning the 

concept of sustainability more firmly in the public mind worldwide.46 Presently, 10 

to 12% of the gross primary energy demand on a global basis is satisfied by 

biomass (referring to all organic materials of biogenic, non-fossil character 

including matter living and growing in nature as well as waste materials resulting 

from both living matter and organic matter that is already dead).47 

Regardless of how fast this new mentality is being adopted by the market, science 

has already laid solid foundations for valorisation of alternative feedstocks (as 

opposed to conventional fossil raw materials) with a new paradigm: the biorefinery 

concept.48 Similar to a petrochemical refinery, the biorefinery of the future will be 

an integrated facility which will typically be expected to work on a strategic site and 

on a small scale, alongside the crops and farmland where the feedstocks are grown 

to offset the economies of scale generated by their giant petrochemical 
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predecessors. It will convert a variety of bio-feedstocks into power, heat, chemicals 

and other valuable materials maximizing the value of the biomass and minimizing 

waste.49-51   

More specific, food supply chain waste is seen as a resource for production of fuels 

and chemicals, because almost 15% of the population of the developing countries 

is estimated to be undernourished,52 and also due to the high per-capita food waste 

generated in the industrialized world (95–115 kg/year).53 A good example of how 

food waste can fit in the biorefinery concept is the development of a microwave-

assisted approach to valorise orange peel residues into a range of valuable 

products (from chemicals like D-limonene and α-terpineol to polysaccharides like 

pectin to a novel and most unique form of mesoporous cellulose).54  

Considering competition for land use with respect to food production and habitats 

for humans and wildlife, it is worth citing here that researchers are now looking at 

the oceans for valuable feedstocks. In that context, waste streams from fish 

processing and algae can provide a wide range of products including lipids, 

pigments, minerals, and biopolymers such as proteins, cellulose, chitin and their 

subsequent units (Figure 1–3).55,56   
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Figure 1–3: Potential products from oceanic biomass (excluding fish/shellfish use as meat 

and direct use of algae as a foodstuff). Reproduced from {Green Chem., 2013, 

15, 860-871} with permission from The Royal Society of Chemistry.       

1.4 Chitin  

Chitin, a structural polymer of N-acetyl-D-glucosamine, is the most copious of the 

polysaccharides in the marine environment and highly abundant on the planet, with 

bio-production reaching billions of tons every year. As it contains C, H, O and N, its 

synthesis and degradation interacts with both carbon and nitrogen cycles.57 It 

constitutes 20–30% of the shells of crustaceans which account for at least 50% of the 

fished harvest.58,59 Global yearly production of decapods (shrimps, crabs and 

lobsters) reaches over 14 million tonnes, arising mostly (ca. 80%) from Asia.60 

Hence, over a million tonnes of chitin are produced annually in the world and are 
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currently mostly discarded.v This waste stream could satisfy demands for many 

substances including biologically-active materials,61,62 nanomaterials and fibres,63,64 

and nitrogen-containing platform molecules.65        

A relatively high Degree of Deacetylation (DD) [reverse of Degree of Acetylation 

(DA)] gives chitin a chitosan character, but a rigid nomenclature between the two 

has not been established.66 Typical DA values for native (unprocessed, non-

modified) chitins are in the range of 90–95%.67 Figure 1–4 demonstrates the 

molecular structure of chitin/chitosan (from now on called chitin).       

 

Figure 1–4: Molecular structure of chitin/chitosan (DP: Degree of Polymerization, DA: 

Degree of Acetylation).    

Each sugar unit [either 2-acetamido-2-deoxy-β-D-glucopyranose (221 g/mol) or 2-

amino-2-deoxy-β-D-glucopyranose (179 g/mol)] is joined to the next through an 

equatorial β-(1→4) acetal bond (glycosidic linkage or bridge). This means that the 

chitin molecule is linear and unbranched, just like cellulose. Experienced 

researchers estimate chitin’s average molecular weight (MW) in vivo to be in the 

                                                           
v 14·106 tonnes crustaceans × 50% (→ shell) × 20% (→ chitin) ≈ 1.4·106 tonnes chitin. Out 

of that estimated quantity, only 10,000 tonnes per year are utilized globally (55).  
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order of 1 MDa [÷221 = DP >4,500].68 For comparison, cellulose’s DP is 

approximated to 10,000 for wood and 15,000 for native cotton.69 However, isolates 

of chitin (commercial or non-commercial) have probably lower MW values (0.5–1.0 

MDa, DP 2,250–4,500) and a wide range of polydispersity values because of the 

harsh conditions the biopolymer experiences during deproteination, 

demineralization and depigmentation of crustacean shells.68,70 Studies have 

reported average MWs for chitins of more than 2.0 MDa (data was obtained 

viscometrically).71,72 vi 

Just like in cellulose, chitin chains are packed into partially crystalline fibers 

(embedded in amorphous domains) via a network of inter- and intra- molecular 

hydrogen bonds.69,73 This is likely to occur in analogy to crystallization of cellulose 

in immature cotton boll, which goes forward via formation of specific intra- and 

inter-chain hydrogen bonds.74 The diameter of elementary nanofibrils is 

approximated to 2–5 nm (formed by 18–25 molecules),75 while recent literature has 

reported chitin nanofibrils of 25 nm thickness and 400–500 nm length.76,77 Figure 1–

5 illustrates the hierarchical microstructure of the cuticle of the lobster H. 

americanus.  

                                                           
vi However, considering both the very long polymer chain lengths as well as the sensitive 

solvent systems used, one should be naturally critical regarding the reproducibility of 

these data.  
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Figure 1–5: Hierarchical microstructure of the cuticle of the lobster H. americanus 

[Reprinted from Acta Materiallia, 53, D. Raabe, C. Sachs, P. Romano, The 

crustacean exoskeleton as an example of a structurally and mechanically 

graded biological nanocomposite material, 4281-4292, Copyright (2005), with 

permission from Elsevier].     

In nature, chitin exists in three polymorphic forms (also called allomorphs) α-, β-, 

and γ-,78 usually in association with proteins79,80 depending on the source. The most 

abundant form is α-chitin, found in decapod (shrimp, crab, lobster) cuticles and 

fungal cell walls. The rarer β-chitin is synthesized in squid pens and diatoms, and γ-

chitin can be found in squid and cuttlefish stomach lining.81,82 What distinguishes 

these different forms is the arrangement of chains in the crystalline domains of a 

nanofibril (c-axis is the literature convention for the fibre axis). α-Chitin is formed 

by antiparallel chains on the bc-plane, β-chitin is comprised of parallel chains,83 and 

the γ polymorph is hypothesized as a variant of α and β polymorphs.78,84 vii  

                                                           
vii A variant form can be considered as a mixture (or combination) of two forms. 

Comparative diagrams of the three types of chitin have been proposed (67,78).  
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Antiparallel chains have alternating reducing and non-reducing ends at each edge 

of a bc-plane [(1→4) acetal bonds of neighboring bc-plane chains are in opposite 

directions along the fibre axis], just like DNA strands.viii This difference in the 

orientation of the molecules results in stronger intermolecular forces for α-chitin. 

Figure 1–6 visualizes the three strongest intermolecular hydrogen bonds which 

contribute to bc sheet formation [between chain 1 (black) and chain 4 (blue)] in α-

chitin,86 and the weak polar interaction between the C81-H and the O64 in β-chitin 

(anhydrous)87,88.ix O64´-H···O61´ lies in the ab-plane (O61´ in Figure 1–6 should be 

imagined coming towards the reader) with a calculated length of approximately 

2.30 Å. C84-H···O31 (~2.49 Å) and C81-H···O33 (~2.56 Å) are weaker hydrogen 

bonds which also lie on the ab plane. Most probably, these bonds do not occur 

simultaneously but alternate along the chain axis; stabilizing further the crystal’s 

conformation.86 Apart from that, both α- and β-chitins form molecular sheets in the 

ac-plane through hydrophobic interactions of the pyranose rings and interchain 

hydrogen bonds.89,90 The absence of a strong hydrogen bonding network in the b-

axis of β-chitin results in swelling of the biopolymer in small molecules, among 

which are water and methanol.91       

                                                           
viii A chain’s C1→C4 direction can be thought as either up (↑) or down (↓) along the c-axis. 

Hence, α-chitin’s neighbouring bc-plane chains are ↑↓, β-chitin’s ↑↑, and γ-chitin’s 

possibly ↑↓↑ (85).    
ix Labelling conventions: O6 refers to the oxygen of the primary alcohol, C8 refers to the 

carbon of the methyl group of the acetyl group, superscripts denote the number of chain 

according to Petrov et al. (86) and the prime symbol (′) refers to the neighboring sugar 

unit within a chain.  
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Since the late 1970s, a statistical mixture of more than two conformations of the 

primary alcohol (i.e. hydroxymethyl) group has been realized to give rise to 

diverse patterns of hydrogen bonding in α-chitin.86,92,93 Two recent independent 

computational studies86,94 agree that six out of seven hydroxymethyl groups (86%) 

take one of the two conformations proposed by the experimental study of Sikorski 

et al.93 The possible combinations of those two most probable hydroxymethyl 

conformations within the chains of α-chitin’s modelled unit cell give differences of 

not more than 0.4 kcal/mol (<2 kJ/mol) for computed total energies of the 

polysaccharide’s crystal conformations according to both studies.86,94 When 

compared to the at least 10.4 kcal/mol difference between modes of hydrogen 

bonding in cellulose Iβ [one of the two polymorphs of natural cellulose (found in 

Figure 1–6: Difference in intermolecular forces between α-chitin (left) and β-chitin (right). 

Antiparallel chains in α-chitin have been drawn by a vertical 180° rotation of 

chain 1. Bold chain label denotes the reducing end direction in the molecule. 

Chain 3 (green) in α-chitin lies towards the reader; parallel to chain 4 (blue). 

Hydrogen bonds are in red. Certain hydrogens have been omitted and no 

other hydrogen bonds (e.g. intramolecular ones) are shown for clarity. Note 

that pyranose rings preserve the chair conformation.    



15 
 

cotton and wood)],95 it is clear that α-chitin slowly unravels an astonishingly flexible 

molecular structure.  

The most stable of the intermolecular hydrogen bonds in α-chitin are N1-H···O72 

(~1.97 Å lying along the a-axis) and O61´-H···O72 (~2.04 Å lying along the ac 

plane);86 visualized in Figure 1–7 (O7 refers to the carbonyl’s oxygen, and O61´ has 

the conformation in black). This so called bifurcated hydrogen bond is the primary 

force for crystal packing along the a-axis; forming sheets on the ac plane.86,94,96 More 

specifically, in dispersion-corrected density-functional theory (DFT-D) simulations 

reported in 2016, an energetic cooperativity effect during ac-sheet formation was 

claimed. A minimum of 12 kcal/mol (50 kJ/mol) extra stabilization for the ac sheet 

was observed when compared with the stabilization energy of just two chains in the 

ac plane (calculations were based on a zero energy for the isolated chain including 

its intramolecular hydrogen bonds). Depending on the primary alcohol’s 

conformation the stabilization of two parallel chains in the ac-plane ranges from 

approximately 12 to 24 kcal/mol (50 to 100 kJ/mol).94 In view of methodology 

differences, these figures can be considered as complementary to the 25–30 

kcal/mol of free energy to decrystallize an edge chain from an ac-sheet surface 

which was calculated via molecular dynamics simulations by Beckham and Crowley 

in 2011.96 Again, depending on the hydroxymethyl’s conformation, the maximum 

for the aforementioned ac-sheet extra stabilization is more than 24 kcal/mol (100 

kJ/mol). Finally, considering the hydrogen bonding network that forms the bc-sheet, 
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the overall stabilization for the α-chitin crystal (again relative to the constituent 

isolated chains) rises above 60 kcal/mol (250 kJ/mol).94  

Regardless of the computational challenges in α-chitin crystal thermodynamics, the 

fact that the carbonyl can serve as an acceptor for two hydrogen bonds at the same 

time (as shown in Figure 1–7), gives rise to the historically observable splitting of 

the amide I band in between 1620 and 1660 cm-1 in α-chitin’s FT-IR spectra.97-100 The 

lower frequency vibration has been attributed to the C=O2 group hydrogen 

bonding with N1-H and O61´-H, and the vibration at the higher frequency to the C=O2 

group hydrogen bonding with N1-H exclusively (that is when the hydroxymethyl 

group has the conformation shown in green in Figure 1–7, which allows a 1.90 Å 

intramolecular hydrogen bond with O71).86     

 

Figure 1–7: Intermolecular bifurcated hydrogen bond (in red) between parallel chains in 

α-chitin. Chain numbering is according to Figure 1–6 (based on Petrov et al.).86 

The hydroxymethyl conformation, which does not favour the bifurcated 

hydrogen bond, is visualized in green.  
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1.5 Valuable products from chitin  

In September 1992, Chemistry Nobel prize winner Sir John (Kappa) W. Cornforth 

gave the Sir Robert Price Lecture, titled ‘The Trouble with Synthesis’. It is quite 

probable that he was the first scientist101 that spoke publicly about the problem in 

chemical production (or ‘construction’ or ‘synthesis’ to use some of the words that 

he used) of rejecting the help (or competition) from other organisms, and letting 

chemical production be directed solely by the human mind. He stressed that “as 

time goes on the value of a chemical paper tends to reside more and more in what 

was actually done and made, not in why it was done.”.102 With a perspective of that 

pristine clarity, research groups around the world have demonstrated several 

valuable products from chitin (or chitinous waste e.g. crustacean shells), which for 

the purposes of this thesis are being grouped in six categories (Figure 1–8).    

 

Figure 1–8: Categories of valuable products from chitin (or chitinous waste).  
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1.5.1 Therapeutic substances   

In the past two decades, a plethora of books and reviews have highlighted the 

therapeutic value of chitin and its derivatives, either by keeping track of the variety 

of biological activities of these molecules (antioxidative, antihypertensive etc.)103-106 

or by exploring the numerous forms that they can be processed into, with the scope 

of being applied in arenas like drug delivery, tissue engineering, gene therapy and 

wound healing (gels, films, nanoparticles etc.).104,106-108 Among the most recently 

reviewed properties are the anticancer and anti-inflammatory ones, where chitin 

(often soluble in formulations of MW <46 kDa and usually with high degrees of 

deacetylation) has exhibited both in vitro and in vivo therapeutic activities on 

several types of problematic cells/models (including the human liver cancer cell 

line HepG2).109 Regarding higher MW chitosans, one of the most fascinating 

properties is their ability to capture cholesterol and fat in the digestive system 

(hypocholesterolemic effects).105 When in vitro experiments were conducted in 

which the gastric environment was mimicked, 1 g of a 2100 kDa chitosan (DD >90% 

/ high density) managed to bind 821 ± 21 mg cholesterol and up to 27.5  ± 2.3 g oil 

(soybean).110 A possible explanation is that the polycationic chains of the 

polysaccharide (stomach pH is ca. 2) form emulsion complexes and micelles with 

the negative charges of triglycerides and cholesterol particles/droplets. As the 

species transfer into the neutral/alkaline environment of the duodenum (intestine), 

their charges are lost, resulting in their precipitation (with the fatty molecules 

entrapped probably due to hydrophobic interactions with the sugar ring 
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surfaces).105,106,110 The beneficial effect is that lipid substances are prevented from 

being absorbed by the organ and from entering the blood stream. That way chitin 

can contribute to a lower risk of atherosclerotic diseases, as well as offsetting the 

side effects and economic costs of relevant conventional drugs (e.g. statins).x   

1.5.2 Products for agricultural systems  

Development of chitin technologies has been recently reviewed for agricultural 

production-consumption systems through a systematic patent analysis. The study 

revealed an exponential growth in the number of patents from 1990 until 2005, 

reflecting the market pull for chitin-based products.xi Applications were distributed 

in four sectors: food, crop management, veterinary healthcare, and agri-machinery. 

Reference to all of them far exceeds the scope of this thesis. Hence, I will focus to 

just crop management which showed the highest citation velocity (forward to 

backward citations ratio)xii.112   

Regarding plant protection, chitin (often soluble in formulations with DA <65% and 

MW <120 kDa) has exhibited pesticidal properties on several types of crops like 

food (e.g. pea, rice, wheat), economic (e.g. tobacco, rapeseed), vegetable (e.g. 

                                                           
x That function of the marine polysaccharide can also be considered of a nutraceutical 

character. In fact, a seventh category of valuable substances from chitin could have been 

discussed based on the literature of carbohydrates as functional foods (111).    
xi Interestingly, the typical trend of building a fence around the patent (with owners self-

citing in backward citations) was not observed.  
xii A high citation velocity is a novelty indicator for the technology demonstrating that it does 

not comprise an improvement over the current technology. Moreover, it suggests a rich 

potential for advantageous market value.  



20 
 

cucumber, tomato), and fruits (e.g. grape, apple).113 Indicatively, Falcon et al. 

showed that chitosans of different molecular weights (from 300 kDa to oligomers) 

and degrees of acetylation (from 37% to 1%) presented distinct effects against the 

oomycete Phytophthora parasitica nicotianae (Ppn), a pathogen which is 

responsible for the worldwide damaging soilborne tobacco disease known as Black 

shank.114 When the activity of 300 kDa/1% DA and 127 kDa/37% DA chitosan 

solutions (pH ca. 5.5) was tested in vitro on three strains of P. parasitica (one very 

aggressive, one moderately aggressive, and one tobacco non-host), no correlation 

among strain aggressiveness and antipathogenic activity of the formulations was 

observed [the longer and highly deacetylated molecules presented absolute 

inhibition of all strains at two concentration levels (500 and 1000 mg/L)]. Here, the 

polycationic character of free amine groups of chitosan in acidic environment is 

hypothesized of forming polyelectrolyte complexes with the negative charge of 

carboxyl groups existing in the cell walls of the oomycete. The highest anti-Ppn 

activity though was associated with chito-oligomers (DA <37% and DP possibly 

centered around 6–8), which are more likely to exert their beneficial properties 

from within the cell. This result is of particular relevance to the research presented 

in this thesis, as chito-oligomers can be produced via mechanocatalytic reactions 

of chitin (see Chapter 3).    

The superior performance of oligomers was confirmed with in vivo tests in which a 

46% and 59% plant protection was observed from seed coating and foliar spraying 
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experiments respectively. The results of the latter set of experiments (leaves 

spraying) correlate with glucanase activity which is associated with degradation of 

the cell walls of fungi. With the application of the chitosan solutions taking place 

before exposure to the pathogen, the authors claim that plant protection is 

systemically induced using these treatments rather than the consequence of direct 

antifungal activity.114 Apart from an incentive for more preventive cultivation 

management, this approach offers a realistic alternative solution to the problem of 

Ppn resistance to conventional pesticides (e.g. metalaxyl).115     

With respect to production enhancement, chitosan (usually soluble in acidic 

formulations with DA <25% and MW <100 kDa) improved plant growth in terms of 

seed germination, chlorophyll content, seedling development and uptake of 

mineral nutrients in various crops (e.g. soybean, cotton, wheat, cabbage etc.).116 

Depending on the target crop and the preferred method of application (soil 

enrichment, foliar spraying, seed coating, hydroponic supplement), chitosan can 

promote plant growth in nanoforms as well.117 An elegant example is the 

enhancement of maize seedling growth (Figure 1–9) by 150 nm Cu-chitosan 

nanoparticles in neutral pH [20% DA/low MW (from Sigma-Aldrich) chitosan was 

cross-linked with tripolyphosphate anions and copper cations were entrapped into 

the nanostructure].118    
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Figure 1–9: Enhancement of maize seed germination and seedling growth (root/shoot 

length, number of roots) by Cu-chitosan nanoparticles (NPs). Seeds were 

immersed for 4 h in deionized water (control), bulk chitosan (BCH) (0.01%), 

CuSO4 (0.01%), and Cu-chitosan NPs at 0.01, 0.04, 0.08, 0.12, and 0.16% w/v 

and data were recorded after 10 days of growth in a dark room (w/daily 

watering). Reprinted with permission from Saharan, V.; Kumaraswamy, R. V.; 

Choudhary, R. C.; Kumari, S.; Pal, A.; Raliya, R.; Biswas, P. Cu-Chitosan 

Nanoparticle Mediated Sustainable Approach to Enhance Seedling Growth in 

Maize by Mobilizing Reserved Food. J. Agric. Food Chem. 2016, 64, (31), 6148-

6155. . Copyright (2016)  American Chemical Society.  

1.5.3 Platform molecules   

Considering certain analytical remarks regarding the definition of a platform 

molecule, chitin’s monomer and dimer can easily be included in this category (and 

even higher MW derivatives with respect to the term “sugar platform”).119 However, 

for the sake of this thesis section I will briefly cover selected products from the ring 

opening of chitin/chitosan monosaccharides (C5-C8 molecules). The yields of a furan 

which contains the nitrogen atom [3-acetamido-5-acetylfuran (3A5AF)] have been 

optimized from both chitin and N-acetyl-D-glucosamine.65 The platform has been 
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recently shown to provide a sustainable basisxiii for the total synthesis of proximicin 

A, a promising anticancer agent.120 Pyrazines which among other interesting 

properties exhibit biological activity121 have been produced from pyrolytic 

processes along with other nitrogen-containing aromatic heterocyclics (pyridines, 

pyrroles).122 Finally, moderate to good yields of 5-HMF and levulinic acid have been 

reported from various chitinous feedstocks mainly via microwave methods.123,124  

1.5.4 Fuels 

As part of the efforts for conversion of abundant types of biomass into fuels (mainly 

via saccharification-fermentation),125 pretreated chitin (primarily with acid) has 

been recently processed with a zygomycota from the kingdom of fungi (Mucor), 

and certain strains have exhibited promising ethanol production.126 Likewise, 

hydrogen evolution from bacterial fermentation of chitin and crustacean shells has 

been reported.127 Ultimately, advances in the field of energy production from chitin 

are expected to be influenced critically by our understanding of the various 

parameters which direct the activity of chitinases (the enzymes that hydrolyze 

chitin).128   

1.5.5 Personal care products  

Chitin can perform its beneficial function when applied in various body sites such 

as skin, hair, gums and teeth as a component of complex personal care products. 

                                                           
xiii Including avoidance of the toxic and explosive properties of diphenylphosphoryl azide 

(DPPA).  
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The polysaccharide’s structural characteristics (mainly crystallinity, molecular 

weight, degree of acetylation, and their distribution) give rise to a wide range of 

properties which are relevant to the cosmetics industry. Typically for skin care 

products, the polymer’s molecular weight can regulate a formulation’s viscosity and 

moisture absorption capacity.129 For example, the viscosity of a vitamin E-containing 

cream (15% oil phase) increased approx. 20% with doubling of the molecular 

weight (from 1.2 to 2.4 × 106 Da) of a chitosan (DA ca. 17%) sample (0.5 wt.% of the 

cream).130 Also, chitin nanofibrils have been reported to form nanoparticles together 

with the well known anti-dandruff agents zinc pyrithione and pyrithione olamine 

improving their performance in hair treatment.131 In another intriguing study, 

substitution of the primary alcohol group (-C6-OH) of chitin samples (DA >35%, 

MW in between 142 and 248 kDa) with a carboxymethyl group (-C6-O-CH2COOH, 

degree of substitution >80%) led to moisture-absorption and moisture-retention 

abilities which are equivalent to those of hyaluronic acid.132 With the latter molecule 

of concern in the cosmetics industry due to its high cost, chitin derivatives can 

enrich the toolbox of skin care specialists by offering versatile complementary 

solutions as moisturizing agents.  

Moving on to oral hygiene products, a number of studies have revealed that 

chitosan samples of DA values lower than 50% and molecular weights up to 1400 

kDa have exhibited activity against several bacterial strains (including 

Streptococcus mutans) which are associated with dental plaque formation, dental 
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caries and gingivitis. Therefore, these molecules have been incorporated in real 

formulations like tooth pastes/gels and mouthwashes.129 In one example, chitosan 

gels lowered the concentrations of the established anti-S. mutans agent 

chlorhexidine gluconate, which presents various side effects like tooth staining and 

alteration of tongue sensitivity.133 Further studies towards that direction will clarify if 

the increased formulation viscosity (due to higher MW chitosans) contributes to a 

beneficial release of the active ingredients in the periodontal pocket in a prolonged 

fashion.  

1.5.6 Functional materials 

The variety of forms which chitin can take (fibers of different size, microspheres, 

hydro/aero-gels, films/membranes, nanocrystal particles),134,135 make it a versatile 

functional material with numerous applications like wastewater treatment,136 

packaging,137 strengthening of rubber blends,138 adhesiveness,139 separation 

membranes,140 papermaking,141 and organocatalysis.59 Regarding wastewater 

treatment, chitosan-based materials showed competitive adsorption properties for 

dyes, heavy59,136 and precious metals.142 With the number of commercial dyes lying 

in the order of hundreds of thousands (many of them being of certain toxicity),136 a 

variety of robust adsorbents would offer alternative options to wastewater treatment 

plants. In that context, the chains of a 125 kDa/13% DA chitosan proved to be 

competitive to activated carbon with an average maximum sorption capacity for 11 
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anionic dyes of ca. 680 μmol/g.143 xiv Derivatives of that same chitosan revealed also 

sorption capacities for both Pt and Pd in the order of several hundreds of mg/g.144 

Thinking mechanistically, in the typically low pH values of wastewaters, platinum 

group metals are usually in an anionic complex form, and it has been hypothesized 

that they interact electrostatically with the protonated amino groups of the 

polysaccharide chains.145  

With respect to packaging applications, chitosan and its derivatives have been 

reported to form functional films (mainly antimicrobial and antioxidant) either by 

themselves or when blended with inorganic materials (e.g. silver nanoparticles, 

ZnO), synthetic polymers (e.g. polyethylene, polylactic acid), proteins (e.g. 

caseinate, gelatin), and polysaccharides (e.g. cellulose, pectin). Principally, chains 

of various molecular weights dissolve in dilute acid solutions in concentrations 

usually in the range of 1.5–2.0 wt.%, and strong films are fabricated via a variety of 

methods like direct casting, coating, dipping or immersing, layer-by-layer 

assembly (Figure 1–10), and extrusion.137 Indicatively, when a 1.5 wt.% medium-

MW/15–25% DA chitosan (Sigma-Aldrich) film was prepared by Hosseini et al., the 

measured tensile strength and elongation at break were 28 ± 6 MPa and 24 ± 8% 

respectively. When gelatin was added into the film-forming solution, tensile strength 

decreased gradually and elongation at break increased accordingly.146 This means 

                                                           
xiv The average performance of activated carbon for that same set of dyes did not exceed 

470 μmol/g. However, a possible advantage of activated carbon is that it functions 

independently of the pH.    
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that the lost strength of the pure chitosan film has been transformed into a flexibility 

gain with the addition of gelatin. A similar effect was observed also by Leceta et al. 

when they blended chitosan and glycerol. Their 1.0 wt.% high-MW/<25% DA 

chitosan (Sigma-Aldrich) film showed a 62 ± 3 MPa tensile strength and a 6 ± 1% 

elongation break. With the addition of 30% wt. glycerol, the film became more 

brittle with tensile strength dropping to 32 ± 6 MPa, while the plasticity increased 

with the elongation at break reaching 31 ± 2%.147 These indicative results exhibit a 

promising potential for commercialization of chitin films in the packaging arena, 

which so far has been dominated by petroleum-derived materials.    

 

Figure 1–10: Layer by layer (LBL) assembly to fabricate chitosan-based films. Reprinted in 

part with permission from Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based 

Films for Food Packaging Applications. J. Agric. Food Chem. 2018, 66, (2), 395-

413. Copyright (2018) American Chemical Society.  

Concluding, the selected literature of this section gives only a feel of the diverse 

properties that extended ranges of molecular weights (from >1000 kDa to 

oligomers) and degrees of acetylation (from 65% to 1%) display either as individual 

components or as parts of a whole product. It can comprise a starting point for the 

reader to investigate further as well as to consider whether some of those chitin 

applications are required in large quantities (e.g. agrochemical formulations, fuels, 
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certain industrial functional materials). All of them however can satisfy the needs of 

an increasingly complex society, while at the same time mitigate reliance on fossil 

resources. Although in most cases (if not all), these natural-polysaccharide-based 

substances are expected to be readily degraded and hence align with the 10th of 

“The Twelve Principles of Green Chemistry” (the one aiming for “innocuous 

degradation products”), the need to carefully consider all phases of their whole-

product life cycle (production/multiple uses/disposal) should not be 

underrated.148,149 xv All in all, the rich diversity offered by chitin products can help 

scientists gain the necessary societal trust, as well as a better understanding 

between different disciplines. That will potentially revive the increasingly rare 

culture of cross-fertilization of ideas and unveil Kappa’s “lovely paradox” of making 

a difference.150  

1.6 Natural polysaccharides and valorization methods 

With cellulose (glucans)151,152 and hemicellulose (xylans, mixed linkage β-glucans, 

xyloglucans, and mannans)153 comprising more than 60 wt.% of the above ground 

biomass,154,155 the acetal group of polysaccharides represents the most widely 

distributed chemical functionality οn the planet.xvi These molecules are mainly 

                                                           
xv For example, the pesticidal properties of a chitin formulation on a crop may prove not to 

be fitting to a community’s crop rotation plan.  
xvi Data regarding the composition of 93 varieties of biomass (mostly woody and 

herbaceous/agricultural) have been reviewed with mean wt.% values for cellulose, 

hemicellulose, and lignin being: 44.4%, 31.2%, 24.4% respectively (dry ash-free basis and 

normalized to 100.0%) (156).   
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sourced in plant cell walls, which are composite materials.157,158 Their simplified 

general structure is shown in Figure 1–11. Basically, cellulose microfibrils are 

implanted in a hemicellulose matrix, and this polysaccharide network is permeated 

and protected by lignin, which provides extra rigidity and strength.157,158  Molecular 

interactions between the three polymeric substances are both non-covalent and 

covalent, which gives rise to the recalcitrance of lignocellulosic biomass.157     

 

Figure 1–11: Polysaccharide microfibril structures in plant cell walls. Crystalline cellulose 

is shown in blue, and hemicellulose in orange. Lignin structures are not 

illustrated for clarity. Source: Office of Biological and Environmental Research 

of the U.S. Department of Energy Office of Science (science.energy.gov/ber/). 

Retrieved from https://public.ornl.gov/site/gallery/.    

https://science.energy.gov/ber/
https://public.ornl.gov/site/gallery/
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With fuel production as the primary force driving the shorter-term advances of 

multi-product lignocellulose biorefineries,159 pretreatment methods which 

simultaneously delignify and amorphize cellulose have opened the way to obtain 

fermentable sugars (mainly glucose) in few steps.160 An elegant example is the 

combination of mechanical and alkaline pretreatments. When Miscanthus stems 

were milled to ca. 1000, 220, and 17 μm particles (step 1), and then incubated in 

12% NaOH (3.3 M) at 70 °C for 4 h (step 2), mean lignin removal was approximately 

69% (soluble fraction).161 When the residual cellulosic solids were subjected to 

enzymatic hydrolysis (pH 4.8, 45 °C, 72 h), glucan hydrolysis maximums (glucose 

yield) increased from 37.8% (1000 μm) to 48.1% (220 μm) to 56.0% (17 μm).xvii 

These results exhibit that both mechanical and alkaline pretreatment steps are 

important for a concurrent delignification and cellulose amorphization. Hence, when 

the two were combined in one step (dry biomass was charged in an extruder and 

NaOH solution was injected downstream the reverse screw element), lignin 

removal increased to 77% and glucan hydrolysis was measured at 49.7% 

(comparable performance in a single step instead of two).    

Now, alkaline treatment is also the traditional method for deproteination of 

recalcitrant crustacean shells.xviii Sodium and potassium hydroxide are routinely 

                                                           
xvii Lignin content was not removed in the control experiment (water) of step 2. Glucose 

yield for the non-NaOH-treated 22 μm sample did not exceed ca. 17%.  
xviii Unlike lignocellulose, which is part of the cell, the exoskeleton of crustaceans is an 

extracellular matrix (cuticle) composed of protein coated chitin fibers which are 

decorated or enclosed by a mineral phase (mainly calcium carbonate existing mostly as 

Mg-calcite and amorphous CaCO3) (162,163).  
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used at concentrations 0.1–2.5 M and temperatures up to 100 °C to retrieve the 

protein fraction of crustacean cuticles (soluble) in up to 72 h.58,59,164-166 With 

subsequent acidic demineralization,xix chitin can be recovered in a relatively 

straightforward way and in good purity. However, the generation of large volumes 

of strong acid/base aqueous waste (possibly requiring neutralization) comprises a 

challenging problem. Regarding deproteination, with ca. 20 mL NaOH solution 

needed per g of shell,164,165 the ca. 39,000 t/year of shellfish waste produced in 

Newfoundland168 would have required 780·106 L of NaOH solution. Hence, local 

communities would need to consider recycling facilities for quantities in that order 

of magnitude. Moreover, possible degradation of the protein content is an issue 

which should not be neglected when dealing with strong bases.58   

As discussed in Section 1.5, valuable products from the most abundant of the marine 

polysaccharides can be of molecular weights up to the order of MDa and of a wide 

range of degrees of acetylation. Hence, one should be critical to methods that aim 

for complete depolymerization and oligomers, as those limit the diversity of 

possible products that chitin can offer to a sustainable biorefinery. The usual 

biological activities of chitin oligomers, as well as the potential platform molecules 

and fuels produced from intense depolymerization might not necessarily worth the 

additional energy cost from adjunct treatments (e.g. steam explosion, microwave, 

                                                           
xix CaCO3 solubilizes to CaCl2 with HCl at concentrations lower than 1 M, ambient 

temperatures, and short times (164,165). Also, a decoloration process often involves 

bleaching of β-carotene derivatives (carotenoids), which are bound to the polysaccharide 

(167).    
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ultrasonication, gamma irradiation) proposed on top of acidic or enzymatic 

hydrolyses (essential treatment).  

Depending on the native sample, the traditional acidic hydrolysis of chitin goes 

forward with concentrated strong acids (usually 3–12 M HCl) at elevated 

temperatures (20–90 °C) and up to 7 h. The major disadvantages of this process are 

the creation of large volumes of concentrated acidic waste streams, as well as the 

requirement for special labor (e.g. protection from vapours) and robust equipment 

(e.g. corrosive resistant).169 It is estimated that 1 g of chitin needs at least 40 mL of 

HCl solution.170,171 The ca. 3,900 tons of chitin produced from shellfish waste yearly 

in Newfoundland would have required 156·106 L of concentrated HCl solution. 

Possible basic solutions for neutralization and inevitable salt formation are issues 

that need to be addressed. Similarly to the deproteination phase discussed above, 

this method necessitates strategic design in terms of recycling acid/base quantities 

at the local level.172  

On the other hand, chitinases work under mild conditions, however they are 

expensive,xx and they usually need long times (days), buffers and some sort of 

biomass pre-treatment.173,174 Therefore, if on top of those disadvantages one adds 

the probable separation steps required for the pretreated chitin (e.g. with 

microwaves) to enter the essential hydrolysis step (acidic or enzymatic),169 then the 

benefits from the anticipated intensification (yields of oligomers) might need to be 

                                                           
xx Often, cocktails of enzymes are needed.  
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of substantial value. Interestingly, acidic conditions have been reported to produce 

chitin nanofibers (in some cases with the help of mechanical treatment), however 

those methods need to clarify if possible deacetylation (at pH values <4.5) favors 

the formation of stable suspensions.175 

Aiming to valorize higher molecular weights via fiber spinning, the Rogers group 

dissolved 0.38, 0.62 and 1.4 wt.% of Sigma’s practical grade (PG) chitin (product #  

C7170) in 1-ethyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium 

chloride, and 1-ethyl-3-methylimidazolium acetate respectively while stirring at 100 

°C for 19 h. Here it is hypothesized that the acetate’s stronger basicity than that of 

the chloride provides the anionic part of the ionic liquid (IL) with a better ability to 

disrupt the polysaccharide’s hydrogen bonding network and establish a new one 

between the solvent and the solute. The solvent’s power achieved 73.5% shrimp 

shell solubilization via a short microwave treatment with 94% recovery of the chitin 

content (higher MW).176 xxi In analogy to the lignocellulose treatment discussed 

above, the ionic liquid’s performance comprises an attractive feature for an ocean 

based biorefinery. The acetate’s higher than 0.5 Kamlet-Taft β value was also 

highlighted as the key dissolution parameter when the ionic liquid with tris (2-

hydroxyethyl) methylammonium as a cation managed to dissolve 0.1 wt.% of a chitin 

sample from Wako Pure Chemical Industries Ltd at room temperature after addition 

of ethylenediamine.177  

                                                           
xxi Assumptions were made regarding the dissolution of the shrimp shell’s components.  
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Now, considering the emergence of a market which demands non-shellfish derived 

chitin (from sources like fungi, insects, and squid-pen),178 xxii academic and industrial 

research groups can take advantage of a versatile toolbox of modern solvent 

systems, which apart from ionic liquids offers N,N-Dimethylacetamide/LiCl 

(DMAc/LiCl), CaCl2/methanol, deep eutectic solvents, highly polar fluorinated 

solvents, organic salt aqueous solutions, alkali/urea aqueous solutions, and 

supercritical fluids.179,180 xxiii Most of these options are either organic or aqueous 

solutions of salts. A special case is that of deep eutectic solvents (DES), which has 

gained an appreciable dynamic in the past 15 years.181-183 DES are fluids with a lower 

melting point compared to those of their two individual components [a halide salt 

(hydrogen bond acceptor) and a hydrogen bond donor (e.g. urea, amides, 

carboxylic acids)].184 When applied in an α-chitin sample with a DP ca. 2000–4000, 

9.0 wt.% was dissolved in choline chloride/thiourea [optimized molar ratio (OMR) 

1:2], 6.0 wt.% in choline chloride/urea (OMR 1:2), and 5.0 wt.% in betaine 

hydrochloride/urea (OMR 1:4) with the help of heating at 100 °C for 6, 10, and 10 h 

respectively.185  

Although mechanistic studies in DES dissolution have not progressed as much as in 

ionic liquids (IL), interactions of electrostatic nature between the solvent’s ions and 

the hydroxyl and amide groups of chitin are expected to influence the solvation 

                                                           
xxii In parallel to shellfish waste (mainly shrimp, crab and lobster) discussed so far; possibly 

for the manufacturing of medical grade chitin.   
xxiii Here, the reader might enjoy Kappa’s “cockroach story” in “The Trouble with 

Synthesis” paper (102).  
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performance of DES. Considering the relatively good hydrogen bond donor 

abilities of ureas, the cation-anion combination in the hydrogen bond acceptor 

should make a difference. Nevertheless, with the high temperatures (>90 °C) and 

stirring times (>6 h) reported in most IL and DES dissolution experiments,xxiv a 

kinetic instead of a thermodynamic control might be more crucial. With a critical 

perspective on the mechanism of cellulose dissolution, Lindman et al. have 

highlighted the importance of the neglected amphiphilic character of cellulose and 

the role of hydrophobic interactionsxxv in balance with hydrogen bonding and van 

den Waals interactions.186  

Therefore, all three of those intermolecular forces are expected to contribute to the 

free energy (i.e. Gibbs) barrier associated with decrystallization/solvation of an 

edge chain from an ac-sheet surface of an α-chitin fibril (25–30 kcal/mol, see Section 

1.4). Approximating the process, the system’s Gibbs energy before a solute A (e.g. 

chitin) and a solvent B (e.g. ionic liquid) are mixed is: Gi = nAμA + nBμB, where μJ is 

the chemical potential of substance J, and nJ is the amount of substance (number of 

moles). After they are mixed, the chemical potentials of the two components will 

change, hence the system’s Gibbs energy will become: Gf = nAμ’A + nBμ’B. Thus, the 

                                                           
xxiv In addition, shorter dissolution times were recorded when non-conventional ways of 

heating were applied to IL and DES suspensions of chitin (microwaves, ultrasonication) 

(176,185). 
xxv These are due to the axial position of the glucopyranose’s ring C-H hydrogens 

(methines) and their stacking in between polysaccharide chains. Molecular dynamics on 

small oligomers (DP 1–4) calculated a significantly higher contribution from hydrophobic 

stacking than from hydrogen bonding (89). The situation however is expected to be more 

balanced in polysaccharides.  
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change in Gibbs energy for the system’s mixing (Gibbs energy of mixing, ΔmixG) 

will be: ΔmixG = Gf – Gi; a function of terms from both the solute (e.g. chitin) and the 

solvent (e.g. ionic liquid).187 xxvi Fundamentally, if ΔmixG  is negative for a certain 

composition (nA/nA+nB), then the two components mix spontaneously; as it 

approximately happened for tris (2-hydroxyethyl) methylammonium acetate 

(component B1) and 0.1 wt.% chitin (component A) at room temperature after 

addition of ethylenediamine (component B2).177 However, in most of the other cases 

of ionic liquids (IL) and deep eutectic solvents (DES) discussed above, the high 

temperatures (>90 °C), which resulted in less than 10 wt.% chitin solubilization, 

suggest processes which are far from being characterized as truly spontaneous.   

With our recent comprehension of hydrophobic interactions at the molecular level, 

it is not unreasonable to hypothesize that the thermal energy provided by 

experimentalists is to partially disrupt solvent-solvent interactions in order to create 

cavity-like conditions, which will favour solvent-solute interactions, allow for solute 

accommodation, and finally lead to its irreversible solvation (Figure 1–12).188 

Nevertheless, considering the cost of heating ILs and DES for long times, their life 

cycle issues (complex syntheses, toxicity & biodegradability),189,190 and the need to 

recycle/purify large volumes of liquids,184 xxvii alternative methods that generate 

                                                           
xxvi For two liquids that form an ideal solution, the Gibbs energy of mixing is:                          

ΔmixG = nRT{xA lnxA + xB lnxB}, xJ is the mole fraction of component J (187).   
xxvii Most of the solvent systems reviewed do not exceed 10 wt.% solubilization of chitin 

(179). Hence, a biorefinery’s facilities which might be aiming to solubilize 1,000 kg chitin 

per day would need at least 9,000 kg of solvent. If the scientific community manages to 

understand and establish solubility minimums of characterized chitins, then a myriad 
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high-energy microenvironments such as microwaves, ultrasound, and ball milling 

are promising and complementary tools for the transformation of chitin and 

biomass.195 With the mechanochemical treatment of ball milling in particular, 

processes go forward in the absence of solvent. Therefore, the ΔG for chitin 

solubilization/decrystallization would lose the term of the solvent’s chemical 

potential and simplify to: ΔprocessG = ΔHchitin – TΔSchitin. From this equation it is clear 

that the spontaneity of the mechanochemical process (driven by an increasing 

system entropy) is dependent only on chitin’s molecular weight and intermolecular 

forces (hydrogen bonding, hydrophobic and van der Waals interactions) which are 

reflected in the enthalpy term.186,187,196 Regardless of the sign of ΔG that chitin ball 

milling will reveal, the mechanochemistry approach undertaken for the 

polysaccharide’s valorization in this thesis questions “the ingrained belief that 

solvents are necessary”,197 xxviii  and aligns with the fifth principle of green chemistry; 

the challenge of solvent minimization.198   

                                                           
modification reactions like deacetylation, acylation, and graft copolymerization can be 

genuinely useful exercises for chemists and offer sustainable value to some of the 

products discussed in Section 1.5 (191-194).  
xxviii John Cornforth’s point of view on stereotyped procedures is briefly discussed in “The 

trouble with synthesis” paper (102).  
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Figure 1–12: Disruption of solvent-solvent interactions towards solute solubilization. 

Reproduced from {Otto, S. The role of solvent cohesion in nonpolar solvation. 

Chem. Sci. 2013, 4, (7), 2953-2959} with permission of The Royal Society of 

Chemistry.     

1.7 Mechanochemistry  

‘Mechanochemistry’ is defined as transformations of solids imposed by absorption 

of mechanical energy. It has been accepted that these grinding reactions go 

forward mainly because the reactants’ contact surface area increases with particle 

size reduction and the subsequent more intimate mix. Grinding comprises manual 

methods (mortar and pestle) and non-manual methods like ball milling, or extrusion. 

Acceleration and even enabling of mechanochemical reactions between solids can 

be induced by small amounts of added liquid giving rise to the term ‘liquid assisted 

grinding’ (LAG).199 The volume of the liquid additive should not exceed 1 μL per mg 

of solid reactants. For additions of more than 1 μL/mg, reactivity is expected to be 

influenced by the solubility of the reactants.200  

Mechanistic models for mechanochemical processes depend primarily on the type 

of material that undergoes a transformation. For inorganic materials (e.g. metals and 

metal oxides), hot spot theory and magma-plasma model are the ones most 
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extensively discussed in literature. The basis of hot spot theory lies originally on 

frictional processes between two surfaces which slide against each other. Steep 

rising of local (within approximately 1 μm2) temperatures to above 1000 °C for short 

periods (10-3 – 10-4 s) are related with plastic deformations which are caused by 

small protuberances. Instead of lateral frictional processes, the idea of direct 

impacts gave rise to the magma-plasma model. The generation of local 

temperatures greater than 10,000 °C are considered for impact points, related with 

transient plasmas and the expulsion of energetic species among which free 

electrons.199    

The key sites of reactivity in molecular organic and metal–organic 

mechanochemical reactions are unlikely to be hot spots and magma-plasma sites. 

If that was the case, widespread decomposition would have been anticipated. Since 

such processes are not observed, it is hypothesized that these phenomena are 

probably too fast and/or too localized to explain molecular organic reactions. 

However, as the localized energy disperses, they might have an influence on 

general heating.199  

Considering the statistical nature of the mechanochemical process, and as the 

milling media (usually ball) collides against reactants on the side of the vessel,201 it 

is the temperatures, pressures and processes taking place over larger areas (ca. 1 

mm2) that seem most relevant to reactions of molecular reactants.199 The 

transformations of molecular crystals, which are generally softer and more mobile 
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on molecular scales, are explained by three models: (i) molecular migration across 

surfaces, potentially facilitated via gas phase diffusion, (ii) emergence of a liquid 

phase, and (iii) covalent bond rupture/formation through an amorphous phase.199,202 

Molecules only loosely occupied in their lattices are associated with the first, 

possibly owing to their notable vapour pressures (e.g. p-benzoquinone).202 The 

liquefaction process applies to cases of low melting point reactants or reaction 

mixtures which may constitute eutectic systems. The genesis of this fluid phase can 

affect solid-solid contacts in a variety of ways.203 A plethora of reaction types (from 

catalytic ones like  aldol condensations and oligomerization of benzylic compounds, 

to noncatalytic ones like Baeyer - Villiger oxidations and condensation of amines 

and aldehydes to yield azomethines) proceed via a “liquid or melt phase”, which 

provides a zone of mobility for successful reactant collisions.204 Finally, the third 

model is dedicated to the mapping of molecules which are relatively tightly bound 

together via strong intermolecular forces but whose reactivity is greater when they 

pass via an amorphous phase. A relatively recent example is the cocrystallization 

of piracetam with citric acid.205 Even though the experimental studies mentioned 

above are entirely representative of the three distinct mechanistic models for 

intermediate phases, one can not rule out possible cases of mechanochemical 

reactions being influenced by several of the three in chorus.202  

In principle, the application of mechanical force to activate bonds is advantageous 

as its vectorial nature gives experimentalists the freedom to have better reaction 
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control compared to the traditional thermochemical approaches. With force 

analysis tools developed by theoreticians, mechanochemists can study 

thermodynamic questions such as “Which bonds, angles, and torsions of the 

molecule are particularly stressed and why?” and “What are the force distribution 

patterns in the hydrogen bonds of β-sheets of stress-bearing proteins?”. Moreover, 

quantum chemical methods (e.g. Bell theory) approximate kinetic effects like the 

alteration of a reaction’s activation energy when an external force is applied.206 

Computational methods have started to also predict the equilibrium composition of 

grinding reactions. Although the Day group has presented some successful results 

on metathesis reactions between aromatic disulfides, accuracy in sampling of 

conformational space is needed throughout the identification of global minima for 

lattice energy of possible observable molecular crystal structures.207 These 

fascinating elements from the field of quantum mechanochemistry, which are 

generally unknown to experimental workers, fulfil our needs for designing reactions 

that yield a desired product (among which stress-responsive materials) as well as 

for ridding ourselves of excess use of mechanical force in academic and industrial 

laboratories.206  

Until that kind of “order” is imposed in the optimization of ball milling syntheses, 

rules of thumb will keep training the senses and the unbiased thinking of 

mechanochemists.206 These are based on the manipulation of several practical 
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parameters, which have to be investigated in order to scale-up a process, and can 

be grouped into three categories:208   

• Chemical parameters    

• Technological parameters  

• Process parameters   

Chemical parameters summarize all those variables which are directly linked to the 

chemical transformation taking place in the chamber of the ball mill, which include: 

the type of chemical reaction, the presence of catalysts or additives, the reagent 

ratio, and the presence of low amounts of liquid(s) in case of LAG. Technological 

parameters that should be considered include: the type of ball mill, the milling 

material, the number of milling balls, the size of milling balls, and the filling degree 

of the milling chamber. Process parameters are useful for controlling the energy 

entry during the process and include: operating frequency [revolutions per minute 

(rpm)], reaction time, temperature.208    

1.8 Summary, research objectives and thesis structure 

Summing up, in Section 1.5, selected chitin applications which represent only a 

small fraction of a vast literature were discussed. Essentially, the valuable products 

from the most abundant of the marine polysaccharides revealed a rich diversity 

which ranges from therapeutic substances, products for agricultural systems and 

fuels, to platform molecules, personal care products and functional materials. 
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Furthermore, the most effective methods for chitin’s sustainable valorization were 

assessed  in Section 1.6, and analogies to those for lignocellulose and shellfish waste 

were highlighted. On the other hand, in footnote (v) the reader might have noticed 

the percentage of chitin utilization today: less than 1%. How does this come about? 

How is it possible that this inheritable wealth for both science and society is being 

used in such low quantity? The key to the answer lies in how poorly systematic the 

scientific literature is with respect to a factor which has been generally 

underestimated: polysaccharide crystallinity.186  

In an initial step to fill in that research gap, it should be noted that a mapping of α-

chitin’s intermolecular hydrogen bonding network was attempted in Section 1.4 

through published molecular dynamics simulations and the way that they perceive 

its crystal packing and elementary fibril structure. With that sense of direction, the 

technological parameters of a ball mill are presented in detail in Chapter 2, so that 

some of them be used systematically to determine how the applied mechanical 

force influences α-chitin’s intermolecular hydrogen bonding network and 

crystallinity both qualitatively and quantitatively. The working hypothesis here is 

that the more intense the ball mill’s process and technological parameters are, the 

more amorphous and soluble chitin will be. Therefore, a key objective of this thesis 

was to correlate powder X-ray diffraction (XRD), scanning electron microscopy 

(SEM), Fourier-transform infrared spectroscopy (FT-IR), and solubility data for sets 

of chitin samples created by specific ball milling procedures. Considering the 
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reactivity remarks for mechanochemical processes (see Section 1.7), the key 

questions to answer here are “Can α-chitin be amorphized in a controlled way?”, 

and if yes “Is that amorphization a result of the disruption of the intermolecular 

hydrogen bonding network alone or of covalent bonds as well?”.  

Depending on the results of Chapter 2, ball milling parameters were adjusted in 

Chapter 3 aiming for efficient conversion of α-chitin to water-soluble products. The 

working hypothesis here is the same as for Chapter 2, and in order to test it, 

solubility, colorimetry, matrix assisted laser desorption (MALDI) mass 

spectrometry (MS), and size exclusion chromatography (SEC) data were 

associated both qualitatively and quantitatively. The objective for that part of the 

thesis was to answer critical questions like: “Can mechanochemical conversion of 

α-chitin to water-soluble products be optimized in terms of yield?”, and if yes “What 

is the composition of the optimized water-soluble products?”.    

In Chapter 4, a set of chitins of different MW is created by ball milling in order to 

select the solvent system which is more effective in dissolving a certain 

concentration/MW combination and produce films with good mechanical  

properties. The working hypothesis is that higher molecular weight 

polysaccharides are harder to dissolve, but they  usually  yield  better  mechanical 

properties when they solidify as films. So as to investigate this, experimental results 

from XRD, FT-IR, solubility tests in an ionic liquid, and alkali aqueous solutions, and 

simple film casting were evaluated. The objective in this chapter was to answer the 
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following crucial questions: “Which solvent system performs better in dissolving 

ball milled α-chitin?” and “What are the critical concentrations of certain ball milled 

samples that yield films with acceptable mechanical properties?”.   

Finally, Chapter 5 realizes the comprehensive conclusions of the thesis, with a 

perspective on the main advantages and limitations of the chitin ball milling system, 

as well as ideas on complementary valorization methods for future investigation.  
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Chapter 2 Mechanochemical amorphization of α-chitin  

2.1 Introduction    

2.1.1 Mechanical force and organic macromolecules  

The study of force sensing by cells has now evolved into a dynamic discipline within 

the area of molecular biology.1 In that context, lipid-bilayer/embedded-protein 

systems in membranes have been examined for their ability to sense osmotic force; 

the cell’s way to “measure” the concentration of the universal biochemistry solvent. 

Thus, it has been argued that sensing of force can be considered a “solvent sense”, 

in contrast to “solute senses” which, for example, allow nutrients to enter the cell by 

lock-and-key interactions.2,3 When a cell experiences an environment of low water 

availability (“hyperosmotic stress”), it loses its own, and the aforementioned 

systems (equipped with the protein “mechanosensitive channels”) respond to the 

reduced turgor pressure/force.2,4,5 Now, if that mechanobiology narrative is taken 

to its extreme (a cell in absolute drought conditions), one can surely imagine that 

the consequences at the cellular level offer a familiar source of inspiration to the 

scientists who describe molecular transformations in ball mills by the term “solvent-

free”.xxix           

Regardless of hierarchical level analogies, the challenges with respect to the ways 

in which mechanical stress can induce chemical changes in organic 

                                                           
xxix The responses of bone cells on mechanical forces comprise another fascinating source 

of motivation to researchers who develop self-healing materials (6).  
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macromolecules have become accepted by certain researchers as soon as proof 

of covalent bond scission by force was reported for a highly branched synthetic 

polymer more than 10 years ago.7 Questions addressing the core issue of the 

possibility of directing forces towards certain bonds of complex organic 

macromolecular structures have started being openly raised. It was only more 

recently, with advances in molecular dynamics simulations that polymeric systems 

have started being examined in depth for possible deformations by external 

forces.8 In particular, stress-bearing proteins (e.g. in spider silk) were some of the 

first structures studied in detail in this way. Just like in all other major classes of 

biopolymers (carbohydrates and nucleic acids), the development of their 

mechanical properties is critically dependent on their hydrogen bonding network, 

the understanding of which requires a combination of computational and 

experimental methods.   

In 2010, force distribution analysis (FDA) was employed to estimate the optimal 

length of β-sheets, which are abundant in tertiary and quaternary structure of stress-

bearing proteins. The average β-sheet strands comprise four or five amino acids, 

whereas in proteins of spider dragline silk they are twice that length. The strands 

can be networked with hydrogen bonds (HB) formed between two adjacent peptide 

bonds (hence one hydrogen bond per residue).8-10 FDA revealed that when a 

central strand was pulled, the force propagating along its length was deflected 

vertically towards the two neighboring strands (an upper one and a lower one if the 
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central strand is visualized horizontally) through the hydrogen bonds. The two 

hydrogen bonds (first pair) closest to the point of applied force (one with the upper 

and one with the lower strand) managed to carry a load of 80 pN each, the second 

and third pair 20–30 pN per HB, the fourth about 10 pN per HB, and then forces 

leveled off to zero around the eighth residue.10 These figures for the forces that 

single hydrogen bonds can take up (before their rupture) fall into the strength range 

(up to 148 pN) which has been reported when forces for biologically related 

processes were reviewed.3 This is an example of how intermolecular forces in 

structures of biopolymers can direct applied mechanical stress according to their 

natural architectural design.  

Hence, on the basis of these existing simulations it is reasonable to hypothesize that 

the hydrogen bonding forces that form the sheets of chitin (see Section 1.4 and 

reference 11)11 will distribute the applied force from the collisions with the milling 

media in their own natural way and protect the biopolymer’s covalent bonds from 

the possibility of rupturing. In general, the hydrogen bonding network that is being 

created in natural polysaccharide biosynthesis results in crystalline and amorphous 

regions within the material’s fiber/nanocrystal.12-15 Figure 2–1 shows a proposed 

simplified two-dimensional scheme of crystalline and amorphous regions in 

idealized fibers of linear polysaccharides like cellulose and chitin.  
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Figure 2-1: Scheme of crystalline and amorphous regions in idealized fibers of linear 

polysaccharides like cellulose and chitin. Void in between the horizontal chains 

in the crystalline region can be imagined as the zone where the hydrogen 

bonding of Figures 1–6 and 1–7 form the bc and ac sheets respectively. 

Reproduced from {Nanoscale, 2012, 4, 3274} with permission of The Royal 

Society of Chemistry. (http://dx.doi.org/10.1039/C2NR30260H) 

2.1.2 Reduction of polysaccharide crystallinity via ball milling  

X-ray diffraction (XRD) is a powerful technique that can determine the relative 

proportions of the crystalline and amorphous components in cellulose fibers. This 

has been known since the 1940s and gave rise to the concept of crystallinity.12 

Building on that momentum, in 1959 Segal et al. proposed the "Crystallinity Index" 

(CrI) as an empirical method to calculate the crystalline fraction in cellulose 

samples. According to that work, cellulose’s CrI is the difference between the 

maximum intensity of the (002) lattice diffraction and the intensity of the amorphous 

scatter expressed as a percentage of the former.16  

http://dx.doi.org/10.1039/C2NR30260H
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Considering the interest in producing energy from cellulosic materials, it is 

important to note that this method, which is based on peak height measurements, 

serves as an approximation of the crystalline fraction allowing a first level of 

comparison of cellulose as well as other biomass samples.17 In 2010, a literature 

review of about 80 journal articles which presented crystallinity measurements for 

commercial samples of cellulose revealed that 70–85% of the results were obtained 

using the peak height method (also referred to as Segal CrI method). The rest of 

the 15–30% was roughly evenly distributed between XRD deconvolution, XRD 

amorphous subtraction, and solid-state 13C NMR methods. When Park et al. 

measured eight commercial samples of cellulose with all four of the aforementioned 

methods, they found that the order of the crystallinity values was the same for all 

four methods (average values ranged from 81 to 57%) with the Segal method giving 

25 ± 3% higher crystallinity values compared to the average of the other three 

methods (e.g. Sigmacell-20 cellulose from Sigma-Aldrich gave a crystallinity of 

84.8% with the Segal CrI method while the average from the other three methods 

was 61.3%; the standard deviation of triplicate measurements didn’t exceed 2.2% 

in any of the four methods).18 This demonstrates the usefulness (primarily in terms 

of precision) of the long time used peak height method. However, with our current 

knowledge of polymorphic forms of cellulose, the accuracy limitations of the Segal 

Crystallinity Index are being increasingly debated.19,20 As cellulose is not the main 

focus of this thesis, further discussion of this debate is beyond the scope of the 

current work.    
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With ball milling producing some of the cellulose samples in those early XRD 

investigations more than 70 years ago,12 it is only natural to wonder if certain 

mechanochemical conditions can amorphize linear polysaccharides in a controlled 

way. A survey of the primary literature reveals lack of systematic studies regarding 

amorphization of polysaccharides. In most cases, researchers achieve certain 

amorphization results of cellulose or chitin for a limited set of milling times without 

investigating technological parameters as the vessel and ball material, the filling 

degree of the vessel with balls (packing), the number of balls per mass of substrate. 

In some studies, a CrI is not even calculated and overlays of XRD signals are 

presented as evidence of amorphization. Moreover, in many cases, the 

polysaccharide samples processed are not characterized by degree of 

polymerization (DP), nor viscosity, nor particle size, nor by degree of acetylation 

(DA) for chitin. Hence, the reader can have an indication of the range of some basic 

ball milling parameters along with the reported Crystallinity Index (CrI)% reduction 

percentages (therefore independent of the calculation method) for cellulose and 

chitin from selected independent studies in Table 2–1 (information is not meant to 

be exhaustive): xxx            

                                                           
xxx On 17/1/2018, the 8 references of Table 2–1 had received a total of 258 citations in 

SCOPUS database (Elsevier B.V.). Among those, 22 were review articles, 13 book 

chapters and 1 book (36 documents in total). When the term “mill*” was searched in the 

abstracts of those 36 documents, no results were obtained. When the term 

“mechanochemi*” was searched, only one result was obtained (chapter “Mechanical 

Pretreatment” in the book “Biomass Fractionation Technologies for a Lignocellulosic 

Feedstock Based Biorefinery”) (21). Although Lomovsky et al. produced an excellent 

review of the different types of milling devices for biomass processing, they haven’t 
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Table 2-1: Crystallinity Index (CrI) reduction percentages reported in literature for 

cellulose and chitin ball milling. 

References for Table 2–1 entries are: 1,25 2,26 3,27 4,28 5,29 6,30 7,31 8.32 If the packing 

degree is not mentioned explicitly, the author has calculated it based on the 

reported balls’ masses and accepted density values of the material of the balls.      

                                                           
corelated them with results for Crystallinity Index reductions. SCOPUS is one of the non-

negligible databases for searching the scientific literature providing results which 

partially overlap with the coverages of Web of Science (Clarivate Analytics) and SciFinder 

[Chemical Abstracts Service (CAS)] (22-24).  

 Polysaccharide 
Technological 

parameters 

Operation 
frequency 

(rpm) 

Milling 
time (h) 

Crystallinity 
Index (CrI) 

reduction (%) 

1 
Cellulose [Sigma-
Aldrich (product     

no. C6663)] 

ZrO2 
balls/polypropylene 
vessel - 35% packing 

60 144 33 

2 
Cellulose [DP 1010, 

Hubei Xiangtai 
Cellulose Co., Ltd.] 

Steel vessel –  
33% packing 

375 2 17   

3 
Cellulose [DP 237 
after processing] 

Steel vessel –  
25% packing 

375 2 69 

4 Cellulose 
ZrO2 balls/ceramic 

vessel - 20% packing 
60 96 83 

5 

Cellulose 
(microcrystalline, 
Avicel PH-101, 

particle size 50 μm, 
Sigma-Aldrich) 

Ceramic vessel & balls 300 24 89 

6 

Chitin (Crab, 3mm 
flakes, Yaizu 

Suisankagaku 
Industry) 

ZrO2 vessel/chromium 
steel balls - 9% 

packing - 690 balls/g 
chitin 

800 0.5 56 

7 

Chitin (Crab, 2mm 
flakes, Yaizu 

Suisankagaku 
Industry) 

ZrO2 balls - possibly  
0.65 balls/g chitin 

800 0.5 57 

8 
Chitin (Sigma-

Aldrich) 

ZrO2 vessel & balls -    
28% packing -  

24 balls/g chitin 
700 2 100 
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Although it is challenging to draw conclusions from this table as in addition to the 

reasons mentioned above, the different types of ball milling equipment are certainly 

not easily compared due to the different types of motions (hence forces developed 

during collisions), certain trends can be extrapolated, and help raise questions. 

When comparing entries 2 and 3, which have the same operating frequencies, 

milling times, and similar technological parameters, the significantly higher CrI 

reduction for entry 3 (69% vs 17%) can be attributed to the almost 4 times lower 

degree of polymerization of the milled cellulose sample. Assuming the DP value of 

microcrystalline cellulose in entry 5 is not more than double that in entry 3 (DP 237), 

and that the speeds and technological parameters of the two processes create 

similar forces, the 20 units greater CrI reduction is most probably justified by the 

12 times longer milling time. The longer milling time and probably the more intense 

milling for entry 8 compared to entries 6 and 7 (assuming that a 100rpm difference 

in operating frequencies is relatively small) can partly explain the more than 40 units 

greater CrI reduction reported for chitin in the study of Aida et al. Finally, when one 

compares the systems in entries 1 and 4, which have the same operating 

frequencies and material for the balls, it is not unreasonable to hypothesize that the 

much lower crystallinity reduction achieved with higher packing and in a longer 

milling time in entry 1 can be ascribed to the much lower hardness of the 

polypropylene vessel compared to the ceramic one in entry 4. One can conclude 

that the polysaccharide amorphization levels reported in Table 2–1 have covered 

a broad range (from as low as 17–33% to as high as 89–100%) with wide variation 



70 
 

in milling times due to the numerous options of technological parameters. However, 

these experimental results confirm the intuitive expectation that high operating 

frequencies (>700 rpm) achieve high amorphization levels in short milling times 

(<2 hours) especially when harder milling materials are used (both vessels and 

balls).  

2.1.3 Ball milling essentials and collision frequency  

In this study, SPEX 8000M mixer/mill, the most well-known laboratory scale 

vibration (or shaker) mill with a fixed high operating frequency (approx. 1080 rpm, 

18 Hz, or 113 rad/s) was selectively investigated for its mechanochemical 

performance.33-36 The milling motion of the cylindrical vial, which is clamped 

horizontally along its height, couples back-and-forth swings with short lateral 

movements, each end of the vial drawing one of the lobes of a figure-8 (Figure 2-

2).33 A swing is a 15° rotation around a cartesian vertical axis (it can be visualized 

as left-right movement in the plane of the screen/paper), and a lateral movement is 

a 15° rotation around the shaft-arm axis (it can be visualized as the left flat base of 

the cylinder coming towards the reader, and at the same time, the right flat base 

fading away from the reader, or vice versa). Both motions occur at 18 Hz, with their 

lengths being comparable to the vial’s dimensions.33,37    
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Figure 2-2: Milling motion of the reaction vessel in a SPEX 8000M mixer/mill (in blue 

arrows). The shaft-arm is fixed perpendicular to the clamp which holds the 

(silver) vial. Used with the permission of SPEX SamplePrep from 

https://www.spexsampleprep.com/8000M-mixermill.    

The motion of one 12.6 mm (approx. half inch diameter) ball (with specific weight 

equivalent to steel) in a 65.8 mL vial (3.8 cm internal diameter, 5.8 cm internal 

height) has been simulated for the SPEX’s clamp motion using the discrete element 

method (DEM) from Concas et al.37 The generated collisions result in highly 

disordered motion of the ball with an average impact velocity of 4.17 ± 1.46 m/s. 

After the first 34 s (transient period), the system functions in a “stationary milling 

regime” producing approx. 142 impacts per second, with the sphere spinning 

approx. 80 times per second. The clear majority of the collisions (approx. 54%) take 

place at a tangential direction (at an angle in between 80 and 90° if 0° is set for the 

head-on collision) mostly on the cylindrical surface. The average impact energy has 

been calculated at 0.093 J per collision. More than 45% of the impacts occur with a 

restitution coefficient (the ratio between the ball velocity before and after collision) 

https://www.spexsampleprep.com/8000M-mixermill


72 
 

of 0.95–1.00 (the calculated system average is 0.94), which is indicative of a small 

amount of energy (~6%) being lost in heating the vial or deforming the milling 

media. Varying the operating frequency reveals a proportional linear response of 

impact velocity, impact frequency, impact energy, and spin velocity [e.g. if rpm is 

elevated from 1080 to 1296 (20% rise), the impact frequency will increase from 142 

to 170/s (approx. 20%)]. Interestingly, impact energy was found to have a more 

sensitive response than the rest, with a 49% increase in J/hit corresponding to a 20% 

rise in operating frequency (rpm).37 The packing of the vial in this study was 1.6%.    

Building on the study by Concas et al., Prasad and Theuerkauf employed DEM to 

explore the relationship between number of collisions and force per impact for 

SPEX 8000M steel-equivalent systems with higher packings.35 Keeping the packing 

constant (13.6%) in a 43.1 mL vial (3.8 cm internal diameter, 3.8 cm internal height), 

they varied the number and diameter of balls using 832 × 2.38 mm, 351 × 3.17 mm, 

104 × 4.76 mm, 44 × 6.35 mm, 13 × 9.52 mm, 6 × 12.7 mm. The results showed that 

the force per impact was inversely proportional to the number of collisions per 

second per ball, with the rate of decrease of the former being roughly in the same 

order of magnitude as the rate of increase of the latter. The median contact force for 

the 6 × 12.7 mm system was approx. 40 N arising from approx. 100 collisions/s/ball, 

while the 832 × 2.38 mm system reached around 530 collisions/s/ball with only 2 N 

median contact force.35 The number of collisions/s/ball for six half inch balls from 

Prasad and Theuerkauf is surprisingly low compared to the 142 for one half inch 
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ball from Concas et al., especially with that significant difference in packing (or vice 

versa). However, this can be attributed to differences in the DEM softwares used, 

and possibly to the shorter cylindrical shape of the vial. What is important is that 

together these two studies give a feel of the frequency of collisions in the selected 

ball mill.  

In 2012, Dreizin and Santhanam reported a 22% packing SPEX 8000 steel system 

(2.64 cm diameter/5.24 cm height vial, approx. 14 × 9.5 mm balls) in which collision 

forces reached as high as 1000 N. However, according to their DEM histogram, 

these high energy impacts are a minority, as more than 75% of the total collisions 

do not exceed 100 N. Their computations show that these less-than-100-N impacts 

represent approx. 30% of the energy transferred to the milled powder. Total 

energy, which was used to reinforce nanocomposite powders, was found to be 2.3 

and 2.7 times higher than a 350 rpm - 3% packing planetary and a 400 rpm – 90% 

packing attritor system respectively. Although, that indicative result afforded 

shorter milling times for the SPEX system, it stresses the imperative need for further 

comparative studies among different milling modes as the packing and operating 

frequencies of those three milling devices were very different. This study also offers 

further insight on the magnitude of forces developed in the selected SPEX system 

used throughout this thesis.38 Figure 2–3 illustrates four of the most widely used 

milling modes at different scales. The reader can have a feel of the advantages and 
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disadvantages of these technologies as well as the considerations regarding 

transferring processes from one to the other from some recent reviews.21,34,39       

 

Figure 2-3: Four of the most widely used milling modes. Schematics to the right of the mill 

illustrate the milling media’s motion. (A) SPEX 8000M mixer/mill (65 mL), (B) 

planetary mill (250 mL), (C) attritor (4 L), (D) rolling ball mill (hundreds of L). 

Reproduced from {Faraday Discuss., 2014, 170, 223-233} with permission of 

The Royal Society of Chemistry. http://dx.doi.org/10.1039/C4FD00007B  

2.1.4 Amorphization-solubilization of polysaccharides via collisional 
forces  

Regarding cellulose transformation, the Blair group reported no appreciable 

solubilization when 2 g of microcrystalline cellulose was milled with 3 × 12.7 mm 

steel balls in a 65 mL steel vial using the 1080 rpm of a SPEX 8000D mixer/mill (5% 

packing, balls to cellulose mass ratio 12.5).40 This is not exactly in line with Meine et 

al. who have reported approx. 5% solubilization of α-cellulose (DP 2200) when 

milling for 5 hours with a 800 rpm planetary device using a 19.8 balls to cellulose 

http://dx.doi.org/10.1039/C4FD00007B
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mass ratio and 21% packing.41 While exploring the mechanochemistry toolbox, 

scale up studies were performed with the attrition technology, and it was observed 

that when a relatively small pilot-scale mill was used (charged with 1 kg of a 1:1 

cellulose:catalyst mixture), a long induction period (associated with amorphization) 

preceded substantial conversion rates (during the first 4 hours, soluble saccharides 

did not exceed 4%, while in the next 4, they reached close to 50%).40,42 More 

specifically, when using a 700 rpm system with 6 mm balls, they calculated approx. 

4000 collisions of greater than 150 N per minute per kg for a tank of approx. 1.4 L. 

When they moved to a 160 L tank (keeping the same balls to cellulose mass ratio 

and presumably with the same packing) the number of collisions of greater than 

150 N per minute per kg increased to nearly 60000 (15-fold).43 This valuable for the 

growing community of mechanochemists information echoes with the increased 

average ball velocities for increased vial length reported by Prasad and Theuerkauf 

for SPEX 8000M systems and opens the way for further scale up studies on different 

kinds of ball mills.35 More importantly for chitin transformation, a critical debate has 

been started on decoupling amorphization from hydrolysis possibly by using 

different milling modes.43  

Regardless of the strategies that are being developed for scaled up processes, 

control of intermolecular forces via ball milling has been reported by Fischer et al., 

who in addition to all the technological parameters discussed above have 

experimented with vial/balls differential densities.44 Using a Perspex vial 
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[poly(methyl methacrylate) density is 1.2 g/mL], steel balls, and a 50 Hz (3000 rpm) 

vibrational mill, they managed to disrupt the hydrogen bonding in imidazole and 

felodipine [ethyl methyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydro-3,5-

pyridinedicarboxylate] without breaking covalent bonds, and form a cocrystal with 

one of the imidazole N-H hydrogen bonding to the ethyl ester of a felodipine 

molecule, and the other one to the N-H of the dihydropyridine ring of a second 

felodipine molecule (XRD, Raman, solid-state NMR characterization). Keeping a 

constant packing, they realized that the more energetic impacts of 2 × 10 mm balls 

gave 8.6 times higher reaction rates than the more frequent ones of the 16 × 5 mm 

system (cocrystallization rates k were 0.24 vs 0.028 min-1 respectively with 

satisfactory standard deviations).44 This result suggests that despite the high 

operating frequency (3000 rpm), force development during collisions of the steel 

balls with the acrylic vial was limited (possibly to the pico-newton level) due to their 

differential densities. As intermolecular forces are a critical component in the 

structure of chitin, studies such as this one are important to keep in mind.  

2.1.5 Methodological approach to the problem  

Considering the 1080 rpm of the ball mill used as well as the mm-scale particles of 

native α-chitin, the mechanochemical potential of stainless-steel vial and balls was 

explored, as their high density would possibly allow for a certain impact-

force/impact-frequency combination to irreversibly overcome likely stress-

distribution/polymorphism phenomena originating from a minimum mixing load of 
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α-chitin’s hydrogen bonding network. Based on the hypothesis that a more milled 

sample might exhibit increased solubility,41 a minimum polysaccharide mass of two 

g was milled as a compromise of the required amount to monitor runs of certain 

milling times with several characterization methods [powder XRD (~0.25 g) for 

amorphization, ATR FT-IR (triplicates), solubility tests (~1.35 g for triplicates in 

neutral and acidic pH), SEM for particle size], and having comparable balls to 

polysaccharide mass ratio and packing degree with the SPEX cellulose studies of 

the Blair group [we investigate the milling time effect with a balls to chitin (BtC) ratio 

of 8.2 instead of 12.5 and a packing of approx. 3.3% instead of 5%]40.xxxi As 

mentioned in Section 1.8, the key questions to answer here are “Can α-chitin be 

amorphized in a controlled way (possibly dependent on milling time)?”, and if yes 

“Is that amorphization a result of the disruption of the intermolecular hydrogen 

bonding network alone or of covalent bonds as well?”.  

2.2 Experimental  

2.2.1 Materials   

α-Chitin, which was isolated from snow crab, was provided by ChitinWorks LLC (1-

2 mm flakes of approx. 0.30 g/mL,xxxii moisture content determined gravimetrically 

at 5.5 wt.%). Full details on residual protein and mineral (ash) content were not 

provided. Chitosan high molecular weight (MW) [Degree of Deacetylation (DD) 75–

                                                           
xxxi The latter values of each pair correspond to those used in the work of the Blair group.  
xxxii For comparison, microcrystalline cellulose from Aldrich (Product #: 435236) of 51 μm 

particle size has a bulk density of 0.6 g/mL.  
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85%] was purchased from Sigma Aldrich (Product #: 419419, Brookfield viscosity 

800–2000 cP). Glacial acetic acid was purchased from Fisher Scientific.    

2.2.2 Mechanochemical treatment of α-chitin  

Milling experiments were conducted using a SPEX SamplePrep 8000M mixer/mill. 

A hardened 440C stainless steel vial with a volume of 65 mL (1.5ʺ int. diameter × 

2.25ʺ deep) was charged with 2.00 g α-chitin unless otherwise stated. Stainless steel 

balls (estimated density 7.8 g/mL) were used with diameters of half inch (0.5ʺ or 

12.7 mm) and quarter inch (0.25ʺ or 6.4 mm). Milling times reported herein refer to 

the time the vial was shaken at 1080 cycles per minute (18 Hz). The temperature of 

the outer surface of the vial was monitored with a thermocouple immediately after 

the end of milling cycles and did not exceed 60 °C in any case. This is in accordance 

with previous studies using the same mixer/mill (steel equipment) that reports 

plateaus for maximum temperatures throughout milling times dependent on the 

packing degree of the vial.45 In representative experiments, the vial containing α-

chitin was weighed at room temperature before and after milling and no 

appreciable mass loss was realized within the range of the standard deviation of the 

balance.   

2.2.3 Gravimetric analysis to determine the mass of soluble products 
(sample solubility%) 

Approximately 250 mg of milled sample was vortex mixed in 7.5 mL of either 

distilled water (pH 7.0) or 0.1 M acetic acid (pH 2.9) for one minute. A compact solid 
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was achieved via centrifugation at 5000 rpm for 30 min and soluble products were 

separated with a pipet. The residue was dried overnight (70 °C) and weighed. 

Solubility for the samples from milling α-chitin was calculated by subtracting the 

mass of the undissolved residue from 250 mg (the sample taken from the mill) and 

reported as a weight percentage. Each sample was analyzed in triplicate.  

2.2.4  X-ray diffraction (XRD)     

X-ray diffraction data were obtained using a Rigaku Ultima IV X-ray diffractometer 

with copper radiation operating at 40 kV and 44 mA. X-ray diffraction patterns were 

acquired from 5 to 40° 2 with a sampling width of 0.02°. The crystallinity index 

(CrI%) was calculated using the equation CrI = [(I110 − Iam)/I110] × 100, where I110 is 

the maximum intensity at 19.20° (2), and Iam is the intensity for the amorphous 

region at 16.00° (2).46        

2.2.5 Fourier transform infrared (FT-IR) spectroscopy      

The FT-IR spectra of samples were recorded using a Bruker ALPHA spectrometer 

with a platinum diamond ATR module. After a background measurement taken 

against air, the sample covered the whole surface of the ATR crystal, and a fixed 

pressure was applied on it with the clamp to obtain satisfactory contact with the 

diamond. A total of 24 interferograms (scans) with a 4 cm-1 resolution were signal-

averaged and stored for each measurement; the wavenumber region investigated 

was 4000 to 400 cm-1. The intensity of the selected absorption bands was 

determined by the baseline correction method suggested by the OPUS software 
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package of the instrument. Each sample was measured in triplicate, spectra were 

exported in an ASCII file (approx. wavenumber difference 2.04 cm-1) using the 

vendor’s software, imported to Microsoft Excel, averaged for presentation, and 

plotted with a 0.25 pt smoothed line.     

2.3 Results and Discussion  

2.3.1 X-ray diffraction of native α-chitin  

Figure 2–4 shows the X-ray diffraction pattern of native α-chitin. Maximum 

intensities for crystalline reflections were observed at the following 2θ values: 9.28°, 

19.20°, and 23.14°.xxxiii Using Bragg’s law, these correspond to d spacings of 9.52, 

4.62, and 3.84 Å respectively, which in turn are in close agreement with the values 

published before 1985 for (020), (110), and (130) reflections observed with X-ray 

diffraction for lobster chitin47 and with electron diffraction for crab chitin.48 The 

intensity ratio of the two strongest peaks [(110) and (020)] is 2.6 in Figure 2–4 

(characteristic of the native α-chitin sample), and it is in close agreement with 

reported signals for crangon chitin flakes (2.7),46 shrimp chitin (2.6),49 and in 

between reported signals for crab α-chitin (2.2),50 (3.3).51 There have been a few 

groups that reported XRD patterns with a ratio lower than 1.0,52-54 something which 

gives a feel of the diversity of the natural source of chitin. It should be noted though 

                                                           
xxxiii Bragg 2 theta (2θ) values are reported to two decimal places in this work (as acquired 

by the XRD method). The values extracted from referenced literature are to the accuracy 

reported therein.  
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that the ratio is probably affected to an extent by the isolation process used to obtain 

the chitin from the shell.      

 

Figure 2-4: X-ray diffraction (XRD) pattern of native α-chitin with its characteristic 

reflections.  

The geometries of the constructive interferences of reflections (110) and (020) have 

been visualized within a proposed 19 chain crystallite in Figure 2–5.55 This ab plane 

stacking can be hypothesized to be originating from the already explained 

hydrogen bonding in the a-direction (creating the ac-sheets, see Figure 1–7) as well 

as in the b-direction (creating the bc-sheets, see Figure 1–6). It is reasonable hence 

to expect that the former intermolecular interactions (including the bifurcated 

hydrogen bond) are the main contributors to the rise of the (020) reflection, while 

the latter of the (110) reflection. With the stabilization that the ac-sheets offer to the 
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crystal being at least 3 times higher than that from the bc-sheets (Figure 6 in 

reference 11 shows the computed interchain energies for 3 representative models 

of α-chitin’s unit cell; bc-sheet energies do not exceed 54 kJ/mol while ac-sheet ones 

rise to at least 150 kJ/mol),11 the (110)/(020) intensity ratio can safely be considered 

as a reflection of the strength of the α (alpha) character of the polysaccharide.   

 

Figure 2-5: The ab projection of α-chitin's lattice illustrating the (110) (black lines), (020) 

(green lines), (100) (pink lines), (010) (orange lines) planes within a proposed 

19 chain crystallite. The orthorhombic unit cell is drawn in black lines in the 

bottom left (distance between 010 lines is 18.85 Å, and in between (100) lines 

is 4.75 Å). ac-Sheet direction is shown in red, and bc-sheet direction is shown 

in blue. Adapted by permission from [Springer Customer Service Centre 

GmbH]: [Springer Nature] [Journal of Biosciences] [Atkins, E. J Biosci (1985) 

8:375 (Conformations in polysaccharides and complex carbohydrates, Edward 

Atkins)], [Copyright] (1985), doi: 10.1007/BF02703990.  
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The aforementioned three peaks along with a shoulder [possibly (040)] on the (110) 

peak (at 20.46° in Figure 2–4), and the claimed (013)47 reflection (at 26.28°) have 

been also observed (with reasonable experimental deviations on the second 

decimal of 2θ) for α-chitins from different decapod species in the first half of the 

2000s.49,56,57 In 2003, Jaworska et al.49 observed also a peak at 12.55° (7.05 Å), arising 

from the (021) reflection,47 in a chitin sample from shrimp. This reflection exhibits a 

maximum at 12.74° (6.94 Å) in the pattern of the native α-chitin sample, and it has 

been also recently observed at 12.71° in samples of crab and shrimp chitin.58 β-

Chitin has been observed to have a simpler XRD spectra with mainly two peaks. 

Values of 7.77°, and 9.1° for the one at lower 2θ, and 19.81°, and 20.3° for the one at 

higher 2θ have been reported in two of the above studies.50,56 Chitosan has been 

reported to have two major peaks [one above 10.0° (10.8°)59,60 and the other above 

20.0° (20.4°)59,60 2θ].61     

2.3.2 Effect of the milling ball diameter on crystallinity  

X-ray diffraction data for α-chitin processed with 2  0.5ʺ and 16  0.25ʺ balls for 

increasing milling time are shown in Figures 2–6 and 2–7 respectively. Each of the 

six reflections of native α-chitin in Figure 2–4 (black signal in Figures 2–6 and 2–7) 

decreased in intensity with increasing milling time. Their maximum intensities 

remained at the same 2θ values indicating that the bulk of the ball milled material 

has kept its α-chitin characteristics (see Figures A2–1 and A2–2). The 2.60 

(4600/1770) ratio of the two strongest peaks [(110) and (020)] in native chitin 
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dropped to 2.43 (1460/600) with the 2  0.5ʺ balls (7% reduction) and to 2.08 

(1153/554) with the 16  0.25ʺ balls (20% reduction) for the 120 min samples. This 

is a sign that the α character of the ball milled chitin is decreasing with both sets of 

balls, with the 0.25ʺ balls being more effective most probably because of the 

doubling of the surface area available for collisions. Nevertheless, with a ratio 

higher than 2.0, the a-direction stabilization remains appreciably stronger than the 

stabilization in the b-direction; sustaining the polysaccharide’s α (alpha) character.  

 

Figure 2-6: XRD patterns of untreated (black signal) and milled α-chitin with 2  0.5ʺ balls 

for 30 (red), 60 (green), 90 (blue) and 120 (pink) min. Temperature of the inner 

surface of the vial did not exceed 40 °C.  
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Figure 2-7: XRD patterns of untreated (black signal) and milled α-chitin with 16  0.25ʺ balls 

for 30 (red), 60 (green), 90 (blue) and 120 (pink) min. Temperature of the inner 

surface of the vial did not exceed 41 °C.  

Considering the empirical nature of the Segal method to assess crystallinity in 

polysaccharides (see Section 2.1.2), the selection of the 2θ values which will 

represent the crystalline and amorphous components of chitin’s crystal can be 

based on a historical continuum. In 1990, Focher et al. were probably the first to 

apply Segal’s CrI equation to an α-chitin sample selecting the (110) reflection as the 

crystalline diffraction (at 19° 2θ), and the diffuse halo at 16° 2θ as the scatter that 

reflects most meaningfully the amorphous component.46 From then, several groups 

have used the same values to approximate chitin crystallinity.49,52,62-65 However, in 

2010, when Kumirska et al. reviewed X-ray diffraction methods for chitin and 

chitosan characterization, they have highlighted a few studies which have used 

12.6° 2θ to represent the amorphous content without mentioning any 16° 2θ 
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literature.61 Indeed, 12.6° 2θ has been used in two more investigations; without 

proper caution though, as those native chitin signals have weak but non-negligible 

crystalline diffractions at that angle.32,57     

Figure A2–3 focuses on the 11.0° to 17.0° 2θ region of Figure 2–7. The signals for 

30 (red), 60 (green), 90 (blue) min progress throughout the region in that order of 

relative increasing intensities except from in between 12.2° and 13.0° where the red 

and green signals merge with the higher intensities of the blue signal. 

Characteristically, the blue signal reaches a spike of 696 at 12.74° [2θ value for 

native chitin’s (021) reflection]. This clearly shows that 16.00° is a more meaningful 

representation of the amorphous portion of α-chitin samples among the values 

proposed in the literature. Therefore, the crystallinity indices (CrI) are calculated 

using that value and plotted for both sets of experiments in Figure 2–8.   

 

Figure 2-8: Crystallinity Index (CrI)% of α-chitin over milling time when processed with 2  

0.5ʺ (blue) and 16  0.25ʺ (red) balls.   
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In both cases, the crystallinity of α-chitin is gradually reduced from 91.3% to 51.3% 

with the 0.5ʺ balls and to 34.9% with the 0.25ʺ balls.xxxiv Figure A2–5 provides 

sufficient detail of the 15° to 20° 2θ region for the 30, 60, 90 min signals of Figure 2–

7 to allow reproduction of the calculations. Although the 2  0.5ʺ balls offer higher 

energy collisions due to their higher mass, the 16  0.25ʺ balls are more effective 

from the first 15 minutes probably due to the higher frequency of collisions that they 

offer. Interestingly, their productivity compared to the 2  0.5ʺ balls is fully realized 

after 45 min and until 75 min when the ball mill process begins to level off, and at 

120 min – a 34.9% CrI plateau is achieved. This reduction in CrI of 62% lags behind 

compared to the 100% reduction observed by others (Table 2–1/entry 8),32 

probably because of the lower packing - number of balls/g chitin in the milling 

system (28% - 24 vs 3% - 8), and therefore lower number of collisions; differences 

though in chitin DP cannot be excluded. In 30 min the CrI resulting from milling with 

the 16  0.25ʺ balls is 67.5% representing a 26% reduction. When that value is 

compared with the 56% reduction in Table 2–1/entry-6,30 the three-fold higher 

                                                           
xxxiv Figure A2–4 shows a representative trial line that was taken as background on the XRD 

signal of the sample milled for 90 min with 16  0.25ʺ balls. The line was drawn by JADE 

software [Materials Data, Inc. (MDI)] when from the proposed points the ones at 5.0°, 5.8°, 

34.0°, and 39.9° 2θ were kept by the investigator. When that background was removed 

from the XRDs of the samples of the 16  0.25ʺ balls set, the decreasing trend was the 

same as Figure 2–8 except that the crystallinity index (CrI%) values were 10.2 ± 2.1 

higher (e.g. the 78.5% of the 15 min sample was calculated at 87.1% and the 35.9% of the 

90 min sample was found at 50.0%). Since the Segal method has been reported to give 25 

± 3% higher crystallinity values than the average of other three methods (see Section 

2.1.2) and no other study of those in Table 2–1 has assessed background removal, the 

method was hypothesized to overestimate CrI and it was considered unnecessary.  
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packing can be speculated as the cause for the doubling of the amorphization effect 

(if all other variables are considered similar).  

The precision of the XRD technique was investigated by repeating the 

measurement on two samples prepared in the same way. The overlaid signals for 

the 15 and 105 min samples (2  0.5ʺ balls) in Figures A2–6 and A2–7 show that CrI 

values were 84.1 ± 1.0% and 51.2 ± 3.2%, and the intensity ratios for the (110)/(020) 

reflections were 2.53 ± 0.16 (RSD 6.3%) and 2.26 ± 0.04 (RSD 1.8%) respectively.        

2.3.3 Effect of chitin mixing load on crystallinity  

A critical parameter for scale-up of chitin ball milling is the amount of 

polysaccharide (mixing load) that undergoes the process. To maximize that, a basic 

study of the balls-to-chitin mass ratio (BtC) for the steel ball mill system was 

considered essential. X-ray diffraction data for increasing loads of α-chitin (1, 2, 3, 

4 g) processed for 90 min with 2  0.5ʺ and 16  0.25ʺ balls are shown in Figures 2–

9 and 2–10 respectively. The charged loads (g) correspond to approximately 16.5, 

8.2, 5.5, 4.1 balls-to-chitin mass ratios (BtC) respectively [the actual volume of 2  

0.5ʺ balls is 2.14 mL and 2.08 mL for the 16  0.25ʺ system (<3% relative difference)]. 

The diffractogram presented focus on the region related to crystallinity calculation 

(from 8° to 20° 2θ), as the rest of the signal was not expected to differ significantly 

from the blue signals in Figures 2–6 and 2–7; indeed, reflections (040), (031), and 

(130) subsided with decreasing chitin load.   
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Figure 2-9: Overlay of XRD patterns (no separation) of 4 (red), 3 (green), 2 (blue) and 1 

(pink) g α-chitin milled with 2  0.5ʺ balls for 90 min. Dotted lines mark the 

intensities: 1835 (red), 1547 (green), 1493 (blue), and 1407 (pink) at 19.20°; 

741 (red), 715 (green), 720 (blue), and 756 (pink) at 16.00°; 872 (red), 709 

(green), 644 (blue), 540 (pink) at 9.28°.  
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Figure 2-10: Overlay of XRD patterns (no separation) of 4 (red), 3 (green), 2 (blue) and 1 

(pink) g α-chitin milled with 16  0.25ʺ balls for 90 min. Dotted lines mark the 

intensities: 1488 (red), 1507 (green), 1250 (blue), 1196 (pink) at 19.20°; 686 

(red), 787 (green), 836 (blue), 826 (pink) at 16.00°; 678 (red), 698 (green), 560 

(blue), 512 (pink) at 9.28°.   
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Figure 2–11 shows the CrI values decreasing in both sets of samples with 

decreasing chitin load, something which was expected, as the greater the mass that 

shares a fixed number of collisions (and amount of energy), the more crystalline 

that mass will remain at the end of a fixed process time. The mechanochemical 

potential of the 2  0.5ʺ balls system lowers the crystallinity of 1 g to 46.3% [49% 

reduction from native chitin’s CrI (91.3%)] while when an identical process was 

performed with 4 g chitin the CrI was reduced to 59.6%. The latter 35% reduction 

is at the same level as when 2 g were milled for 60 min. Hence, doubling the chitin 

load does not necessarily mean that the 2  0.5ʺ balls require twice as much time to 

achieve a similar amorphization effect. The increased impact frequency of the 16  

0.25ʺ steel balls system managed to amorphize 4 g of native chitin to a CrI level of 

53.9% (41% reduction), while when colliding with 1 g of chitin crystallinity was 

decreased to 30.9% (66% reduction).   
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Figure 2-11: Crystallinity Index (CrI)% over α-chitin mixing load when milled for 90 min 

with 2  0.5ʺ (blue) and 16  0.25ʺ (red) balls. Inset reads the same data on a 

balls to chitin mass ratio (BtC) x-axis.  

The latter reduction percentage can be compared to the 56% reported by Osada 

et al. in 2013 (Table 2–1/entry 6)30 on the basis that the 3-fold higher milling time 

here is compensated by the 3-fold higher packing. The additional 10% higher 

reduction in our system may result from a greater rate of shaking/mixing, 1080 rpm 

compared to 800 rpm (assuming that their converge mill produces similar impacts 

with the shaker mill here). However, the amorphization level reported by Osada et 

al. was obtained using a much larger amount of steel balls per gram of chitin 

compared to the current study: 690  0.2ʺ (5 mm diameter) Note: (a 5 mm sphere 

occupies 0.065 mL, which weighs approx. 0.5 g of steel; they reported usage of 704 

g of chromium steel balls for 2 g of chitin).30 That high number of balls raises 
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questions about the effectiveness of smaller balls, especially with entry 7 (Table 2–

1) achieving an equivalent result (57% CrI reduction) with 0.65  0.39ʺ (10 mm 

diameter) zirconia (5.9 g/mL density) balls per g of chitin using again a converge 

mill.xxxv Indeed, a bigger balls system [24  0.39ʺ (10 mm diameter) per g of chitin] 

used by Aida et al.32 managed to achieve absolute chitin amorphization. With ZrO2 

balls used, that system’s balls-to-chitin mass ratio was 74.1, which is 4.6 times higher 

than the 16.1 mass ratio used in this thesis that revealed a 66% reduction in 

crystallinity with 16  0.25ʺ steel balls. That high BtC number might have 

compensated for the lower zirconia density (5.9 vs 7.8 g/mL), the lower operating 

frequency (700 vs 1080 rpm), and a possible milder force for collisions in a 

planetary mill (rotational motion) compared to the shaker mill in this thesis.  

Figure 2–11 clearly shows that if the 16  0.25ʺ system would have kept the same 

amorphization potential it had with an imaginary 1.5 g chitin load, it would have 

managed to lower the crystallinity of 4 g to 37.5% (59% reduction). However, the 

CrI achieved was only 53.9% (41% reduction). The phenomenon is more evident 

when considering it in terms of balls-to-chitin mass ratio (BtC) instead of chitin 

mixing load (g) (see inset of Figure 2–11). The straight blue line from 5.5 to 16.5 BtC 

reveals that the 5.5 BtC mass ratio (3 g chitin mixing load) milled with the 2  0.5ʺ 

                                                           
xxxv That is assuming their ~2000 μm chitin particles are of similar density to ours, their 20 

g must have occupied approx. 68 mL, which means they’ve used 6.8 mL of the 

aforementioned 0.524 mL balls, hence 13 balls for 20 g chitin; if a dm3 (L) scale vessel was 

used for entry 7, the estimated packing does not exceed 2% (31).  
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system experiences the same amorphization dynamic as the 1 g chitin mixing load 

(16.5 BtC). This means that even though the higher volume balls offer less frequent 

collisions with chitin, the higher force collision offered from their higher mass (8.3 

g for each 0.5ʺ ball vs 1.0 g for each 0.25ʺ ball in our case) will probably be 

necessary when researchers aim to maximize the amount of polysaccharide milled 

to a required amorphization level. The higher collision frequency might prove 

complementary to the higher forces in cases where the chitin load charged in the 

vessel has a flaky texture (from its shell isolation phase) and exhibits a relatively low 

density (e.g. 0.3 g/mL like with the chitin in this thesis), hence the ball mill process 

will have to start with vials containing a relatively high chitin filling degree.   

Figure 2–12 shows the intensity ratio for reflections (110)/(020) (strength of α 

character) over balls to chitin (BtC) mass ratio for milling with  2  0.5ʺ (blue) and 

16  0.25ʺ (red) balls for 90 min. The 16  0.25ʺ balls system is more effective in 

lowering the α character (from 2.60 to 2.34) when the balls to chitin (BtC) ratio is at 

its highest value (16.5). It is noted that the 2  0.5ʺ balls do not make a difference in 

the α character during milling as their 2.61 ratio lies within the method’s 0.16 

standard deviation.xxxvi However, as the BtC ratio drops (chitin mixing load 

                                                           
xxxvi The precision of ball milling (investigator bias, native chitin’s homogeneity, mixer/mill’s 

motor performance) was investigated by repeating the run of two samples. The overlaid 

signals for the 90 min milling/8.2 BtC samples in Figures A2–8 (16  0.25ʺ balls) and A2–9 

(2  0.5ʺ balls) show that CrI values were 34.5 ± 1.9% and 52.3 ± 0.7%, and the intensity 

ratios for the (110)/(020) reflections were 2.12 ± 0.16 and 2.29 ± 0.04 respectively. Since 

these deviations (average for CrI is ±1.3%) do not exceed the ones of the characterization 

technique (average for CrI is ±2.1%, see Section 2.3.2), the reproducibility of ball milling 
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increases), the bigger balls become more productive, and with a BtC of 4.1 they 

manage to lower α character to 2.10, which falls within XRD’s precision for the value 

of the 16  0.25ʺ system (2.19). This 19% α character reduction [(2.60 - 2.10) × 100 

/ 2.60] on 4 g in 90 min is equivalent to the effect that the 16  0.25ʺ system can 

achieve on 2 g in 120 min. That result can prove of significance when designing 

scaled up processes in the future, as it can help to better direct chitin’s diverse 

functionalities to the different valuable product categories (see Section 1.5).   

 

                                                           
can be considered acceptable with the overall method producing representative samples 

[±2.5 CrI units (=√1.32 + 2.12)] (66).  
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2.3.4 Effect of milling time on particle size and morphology   

An approximation of the particle size distribution of the native and ball milled 

samples is presented in scanning electron microscopy (SEM) images of 2-mm and 

500-μm scale in Figure 2–13. These micrographs illustrate that ball milling with 16 

 0.25ʺ balls (BtC 8.2) for 45 min reduces the size of α-chitin particles from ca. >500 

μm (flakes in Figure 2–13a,b) to ca. <100 μm (CrI 56.8%) (Figure 2–13c). Milling for 

105 min (Figure 2–13d) does not induce a significant further reduction in the 

average diameter of the particles. These results are comparable with those of 

entries 6 and 7 of Table 2–1, in which 30 min grinding (of >2000 μm particles) 

produced approx. 22 μm chitin particles (CrI 40%) in both cases.30,31  

               

Figure 2-13: Scanning electron microscopy (SEM) micrographs of untreated (a – 2 mm 

scale, b – 500 μm scale) and ball milled α-chitin with 16 × 0.25ʺ balls (8.2 BtC) 

for 45 (c – 500 μm scale) and 105 (d – 500 μm scale) min. Regions I and II are 

shown in separate SEMs of 50 and 300 μm scale respectively in Figure A2–10.  
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A notable change in the morphology of native α-chitin upon ball milling is observed 

when closely inspecting the smoothness of certain edges of the particles. Regions I 

(in red) and II (in blue) of Figure 2–13a, which are from two separate particles of 

native α-chitin, are illustrated in Figure A2–10 in 50 and 300 μm scale respectively. 

The pink circles and the orange diamonds highlight smooth surfaces and rough 

edges respectively in native α-chitin particles. The zoomed area of region I (in red) 

allows inspection of statistically significant fibrils,xxxvii which merge into wider 

smooth surfaces. The fibrils’ lengths vary from a few to several micrometers while 

their width is less than a micrometer. The red bar which makes prominent the width 

of one of the longest and widest fibrils is estimated to approximately 300 nm. 

Structures in the nanometer scale are also observed in the zoomed-in section of 

region II (thin sheets). These observed features have probably been influenced to 

an extent by the shell isolation steps followed by ChitinWorks (deproteination, 

demineralization, drying). Unfortunately, technical limitations with the SEM 

instrument did not allow observation at the nanometer level. However, future 

researchers can expect morphologies for chitin’s fibril similar to those reported by 

the Dobrovolskaya group.68,69 The enthusiast reader of the electronic copy is 

encouraged to magnify the page of the images of Figure A2–11 to more than 300% 

                                                           
xxxvii The term “fibril” (or equivalently macrofibril for biological structures) refers to 

diameters of less than a micrometer, while “nanofibril” to less than 100 nm (67).  
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(avoiding the pixilation effect) to have a feel of the absence of rough edges in the 

samples of ball milled chitin.       

The observed changes in morphology and particle size are a direct consequence 

of the forces developed during collisions between steel surfaces and the sheets (ac 

and bc) of the fibril terminals (appearing either as smooth or rough particle 

surfaces). The lack of covalent bonds connecting chitin sheets allows the reader to 

briefly use an analogy between the median contact force in the ball mill and the 

failure force needed to disrupt a cluster of hydrogen bonds in amyloid fibrils of 

different lengths.70 Paparcone and Buehler have emphasized that a minimum failure 

force of 175 ± 125 pN is necessary for a 986 nm amyloid fibril to deviate from its 

elastic deformation regime and fail. Longer than ca. 1μm fibrils are expected to 

defect independently of their length, while the failure mechanism of shorter ones 

has been explained to be length dependent (the shorter the fibril the greater the 

failure force).70 Hence, it is not unreasonable to assume that particle size reduction 

during ball milling proceeds with the smoothing of those rough edges (also thought 

as fibril thinning) as well as with nanometer-scale crack generation on the smooth 

surfaces of the particles (both due to disruption of the hydrogen bonding network 

in both a and b directions). A comparison of a more “wrinkled” surface of a smaller 

particle with the relatively wider “smooth” surfaces of a bigger particle in any of the 

micrographs of Figure A2–11 is in support of the aforementioned hypothesis.      
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2.3.5 FT-IR investigation into molecular origins of changes in crystallinity 

2.3.5.1 Qualitative analysis and weakening of α-chitin’s hydrogen bonding 
network      

From the XRD data collected and their interpretation, it is evident that the increased 

collision frequency of the 16  0.25ʺ balls system decreases crystallinity of α-chitin 

faster than the 2  0.5ʺ balls. Hence, we investigated the possibility of correlating 

the CrI behavior of the smaller balls system in Figure 2–8 with the bifurcated 

hydrogen bond, which is the most stable of the intermolecular hydrogen bonds, 

critical to the decrystallization of α-chitin, and visible with FT-IR spectroscopy (see 

Section 1.4).71,72   

Figure 2–14 shows the changes in the FT-IR spectra of native α-chitin milled with 16 

 0.25ʺ balls for 60 and 120 min (8.2 BtC). The spectra exhibit the characteristic 

strong and sharp absorption bands for chitin at the skeletal frequencies region of 

1000–1200 cm-1 (C-O and C-O-C stretching vibrations),73,74 ca. 1560 cm-1 (N-H in-

plane bending & C-N stretch – termed amide II),75,76 and ca. 1630 cm-1 (C=O stretch 

– termed amide I)75,76.61 The lower signal intensity for native α-chitin (black) is due 

to the flaky texture of the sample which limits contact with the diamond ATR surface. 

The same effect is also evident in the spectrums of entry 6 and 7 of Table 2–1.30,31  

The O-H stretching bands at 3473 and 3428 cm-1 have been attributed to hydrogen 

bonded O6-H and O3-H respectively.77-79 Their 45 cm-1 difference is in close 

agreement with 33,77 36,30 and 4078 cm-1 for crab chitin, 31,57 33,80 and 3581 cm-1 for 
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shrimp/prawn chitin, and 48 cm-1 for Phaeocystis globosa (a genus of algae) α-

chitin.82 Native α-chitin’s band at 3256 cm-1 has been associated with the hydrogen 

bonded N–H stretch for solid state monosubstituted amides,83,84 and has been 

termed amide A.85 Its frequency is adjacent with those reported for various α-chitin 

samples (3264,77 3265,78,82 3266,86 3268,57 3269,81 and ca. 325031 cm-1). Based on the 

structure proposed by Sikorski et al., it is not unreasonable to assume that hydrogen 

bonded primary alcohols contribute to the rise of the amide A band.30,79,80     

 

Figure 2-14: ATR FT-IR spectra of native (black signal) and milled α-chitin with 16  0.25ʺ 

balls for 60 (blue) and 120 (red) min (8.2 BtC). The inset shows the hydrogenic 

stretching region of 3700–3000 cm-1 in more detail.   
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The weaker band at 3099 cm-1 has been attributed to the Fermi resonance between 

the N-H stretch and the perturbed first overtone of amide II,87 and has been termed 

amide B85.xxxviii The frequency of amide B is in line with those observed for various 

α-chitin samples (ca. 3085,31 3106,57,89 ca. 3108,30,78,81 and 310082,86 cm-1). As can be 

seen in the inset of Figure 2–14, ball milling for 60 and 120 min (blue and red signal 

respectively) does not change the frequency of amide B and increases the 

frequency of the amide A band to 3273 and 3275 cm-1 respectively. This shift (ca. 

18 cm-1) of amide A to higher frequencies upon grinding is also visible (on close 

inspection) in the spectra of entry 6 of Table 2–1 and is indicative of a statistically 

(or energetically) less significant involvement of N-H in hydrogen bonding {mostly 

in the a-direction [associated with the (020) XRD peak] through the bifurcated HB}. 

Moreover, the hydrogen bonded O6-H and O3-H bands have become broader with 

milling and merge with the Amide A band (similarly to the spectra of entry 6 of Table 

2–1). This suggests that interchain hydrogen bonding in the b-direction [partly 

reflected in the (110) XRD peak] through the aforementioned hydroxyl groups 

(check Figure 1–6) is also weakening upon ball milling.    

With this evidence for weakening of the hydrogen bonding network in α-chitin, 

increasing moisture uptake is expected to occur with increasing milling time. 

Indeed, gravimetric analysis experiments for ball milled samples that will follow in 

                                                           
xxxviii The consideration of the possibility of the partial origin of amide A and amide B bands 

from vibrational self-trapping is beyond the scope of this study (88).  
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later chapters indicate that native chitin’s 5.5 wt.% moisture [possibly partly on the 

water density “hot spot” zone offered by the (100) interface (b-direction)]90 is 

expected to rise above 6.0 wt.%, but not to exceed ca. 6.7 wt.% (approx. 20% 

increase) for the 3.3% packing set studied here. Researchers in the future might 

hypothesize that the reduced intermolecular hydrogen bonding involvement of the 

polysaccharide’s side chains allows increasing hydrogen-bonded clusters of water 

to be adsorbed onto certain surfaces of α-chitin’s lattice.91 Anyhow, these low water 

content values (orders of magnitude lower compared to a concentrated protein 

aqueous solution ca. 10 mg/mL), along with the fact that molar absorptivities of 

strong bands of biopolymers are orders of magnitude higher than those of water 

bands (e.g. protein amide I band lies in the range of 300–1000 M-1 cm-1 while water’s 

O-H bend at 1643.5 cm-1 is 21.8 M-1 cm-1),92 suggest that a quantitative analysis of 

the FT-IR spectra using the peak height ratio method93,94 will be minimally affected 

by water interferences. Nevertheless, considering the broad absorption of water’s 

O-H stretch in the hydrogenic region (see water’s IR spectrum in Figure A2–12), 

which is roughly 5 times more intense than the sharp O-H bend ca. 1640 cm-1,92,95 

the region of amide I and II was selectively investigated without drying the samples.     

2.3.5.2 Quantitative analysis and a force distribution hypothesis  

Figure 2-15 presents the amide I and II bands in more detail. Amide I of native α-

chitin splits at 1652 and 1621 cm-1, and amide II mode is at 1552 cm-1. This 31 cm-1 

difference for the amide I doublet is characteristic for the source of crab α-chitin 
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from ChitinWorks LLC, and its value is adjacent with all three α-chitin entries of 

Table 1 (33,30,32 ca. 3231 cm-1), as well as with numerous other α-chitin studies 

(33,57,77,79,96 34,78 35,82,97 36,80,86 3781 cm-1). Although in several of those cases 

researchers were clearly stating that the lower frequency peak of the C=O stretch 

is due to a doubly hydrogen bonded oxygen and the higher one to a singly one, 

none of them has even attempted to calculate their peak height ratios. It is only fair 

to highlight at this point that α-chitin’s unit cell proposal from Minke and Blackwell 

in 197847 has contributed significantly in confirming the hydrogen bonding regime 

of amide I, which has been a matter of debate for the most abundant of the marine 

polysaccharides since the 1950s.77,79     

 

Figure 2-15: 1670–1500 cm-1 region of infrared spectra of native (black signal) and milled 

α-chitin with 16  0.25ʺ balls for 30 (green), 60 (blue), 90 (pink) and 120 (red) 

min (8.2 BtC). 1652 and 1621 cm-1 bands are characteristic of the α-chitin 

sample in this thesis.  
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Regardless of the pace of chitin research so far, and as discussed in Chapter 1, the 

lower frequency vibration has been attributed to the C=O2 group hydrogen 

bonding with N1-H and O61′-H, while the vibration at the higher frequency to the 

C=O2 group hydrogen bonding with N1-H exclusively. Figure 2–16 shows the ratio 

between the absorbance intensities at 1621 and 1652 cm-1. A 33% decrease in this 

ratio (from 1.146 to 0.766) with no error bar overlap is observed for the first 75 min 

of ball milling, something which according to Beer’s law reveals a declining relative 

number of doubly hydrogen-bonded amide groups. This implies a weakening of 

the intermolecular hydrogen bonding network by statistically breaking the weaker 

of the two of the bifurcated’s hydrogen bonds (O61′-H···O2=C). That means that the 

degrees of freedom for the primary alcohol are raised, while at the same time the 

stronger N1-H···O72 is theoretically sustained; keeping the chains connected along 

the a-direction. Considering the clear amorphization and particle size reduction 

results from the XRD and SEM methods though, these FT-IR data (amide I split ratio) 

allow future researchers to form new hypotheses regarding force distribution in 

chitinous materials. Since a logical systematic retention of the N1-H···O72 is being 

monitored, it is not unreasonable to assume that the median contact force applied 

from the 16 balls is being directed to an extent through deformation of the covalent 

bonds of the N-acetyl and hydroxymethyl groups to the chains’ backbone; possibly 

deforming the pyranose rings. Figure A2–13 gives a feel of the types of molecular 

transformations studied with force spectroscopy techniques like atomic force 

microscopy (AFM) or magnetic tweezers,98-100 and is used at this point to encourage 
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the consideration of a length-force continuum for the mechanochemical treatment 

applied to chitin.   

Going back to experimental results, the clear change in the amide I band upon ball 

milling with 16  0.25ʺ balls (8.2 BtC system) is reflected in the amide II band as 

shown in Figure 2–15. This is something that might make sense intuitively since the 

two bands represent the delocalization of nitrogen’s lone pair and the partial 

charges on both sides of carbon (plus for nitrogen and minus for oxygen).  Figure 

2–17 studies the ratio between the heights of the strongest components of amide II 

band (1558 and 1541 cm-1). A steady 9% downward trend (from 1.051 to 0.954) is 

observed for the higher frequency for the same as amide I milling-time interval (0-

75 min) with no error bar overlap in between samples of 0-15-60 min. Mysteriously 

for future mechanochemistry enthusiasts, none of the three α-chitin studies of Table 

2–1 show a clear separation between the two most intense amide II contributors, 

which are 17 cm-1 apart in Figure 2–15.     
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Figure 2-17: FT-IR data (1558 cm-1/1541 cm-1 peak ratio) for milled α-chitin with 16  0.25ʺ 

balls (8.2 BtC). Indicatively, the triplicate measurement for the 60 min sample 

gave a ratio of 0.961 ± 0.012, which can be reproduced from the average signal 

in Figure 2–15 (0.0778 / 0.0810 is approx. 0.960).   
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Figure 2-16: FT-IR data (1621 cm-1/1652 cm-1 peak ratio) for milled α-chitin with 16  0.25ʺ 

balls (8.2 BtC). Indicatively, the triplicate measurement for the 60 min sample 

gave a ratio of 0.790 ± 0.011, which can be reproduced from the average 

signal in Figure 2–15 (0.0652 / 0.0824 is approx. 0.791).  
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A systematic literature survey unveils that this parallel behavior of the two amide 

bands can be explained on the basis of the two-dimensional (2D) FT-IR study of α-

chitin from Yamaguchi et al.78 Their analysis of synchronous 2D correlation spectra 

(obtained at a wide temperature range) disclosed consistent positive cross-peaks 

between the higher frequency component of the amide II region (1581 cm-1 for their 

hydrolyzed crab chitin samples) and the lower frequency contributor of amide I 

(1619 cm-1 respectively), as well as between the lower frequency component of 

amide II (1538 cm-1) and high frequency of amide I (1648 cm-1). To the best of my 

knowledge this is the only sensible evidence in primary literature correlating the 

two amide bands in α-chitin, something which highlights the shared origin of the 

associated vibrational modes.  

Therefore, by analogy, it is safe to assign the bands at 1621 and 1558 cm-1 for the α-

chitin samples in this work to the bifurcated hydrogen bonded amide group, and 

the ones at 1652 and 1542 cm-1 to the singly hydrogen bonded mode (as discussed 

in Chapter 1). Oxygen’s higher electronegativity than nitrogen’s, as well as the non-

negligible contribution of the N-H in-plane bending to the amide II mode explain 

the reduced abatement (9%) (and the corresponding error bar overlap between 

30–45 and 60–75 min samples) of the 1558/1541 cm-1/cm-1 ratio compared to that of 

1621/1652 cm-1/cm-1 (33%) (with complete absence of error bar overlap). This 

parallel behavior of amide I and II is an indication that the attachment of the N-acetyl 

group in chitin’s backbone is retained, as if the amino content was increasing upon 
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ball milling, the hydrogen bonding possibility of the carbonyl group would have 

significantly decreased and Figure 2–17 wouldn’t have had that mild reduction of 

the 1558 cm-1/1541 cm-1 peak ratio between the samples of 15-30-45 min.  

After 75 min, both amide I and II split ratios enter a plateau phase. These are in line 

with the behavior of the corresponding crystallinity index in Figure 2–8. Figure A2–

14 shows an 84% change in slopes of the CrI behavior before and after 75 min 

milling time [(0.5976 - 0.0955)·100% / 0.5976 equals 84.0%]. The plot demonstrates 

that if the crystallinity index would have kept decreasing with the same rate as it was 

from 45 to 75 min, it would have reached as low as 20.0% in 107 min (green dotted 

line). However, it was limited to ca. 33.5%. Figure A2–15 shows a 77% change in 

slopes of the 1621/1652 cm-1/cm-1 absorbance ratio before and after 75 min milling 

time [(0.0017 - 0.0004)·100% / 0.0017 equals 76.5%]. The difference between 84 

and 77% in the change of the slopes is objectively small (<10%), and unlikely to be 

coincidental.  

Therefore, since the reduction in hydrogen bonding for O61′-H···2O=C is 

significantly diminished after 75 min of ball milling (77%), and the N-acetyl arm 

seems to be remaining intact, it is only natural to hypothesize that the average 

impact energy (ca. 0.093 J per collision) transferred to a chitin nanofibril is being 

“heterogeneously” directed (through the N-C2 bond) to the pyranose unit. That 

would mean that the angle deformations of the covalent bonds of the sugar rings 

are likely to distribute the energy from the hit with the steel surfaces in between the 
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anomeric centers (through puckering conformation interconversion pathways),101 

and ultimately to the glycosidic linkages (Figure 2–18).xxxix  

 

Figure 2-18: Hypothetical mechanical force distribution (orange dotted arrows) through α-

chitin's N1-H···O72 intermolecular hydrogen bond and backbone structure 

during ball milling. Note that the O61´-H···O72 hydrogen bond of Figure 1–7 is 

broken here and that opposite force vectors apply to all covalent and non-

covalent bonds.  

Indeed, Figure 2–19 shows the 1154 cm-1/2875 cm-1 absorbance ratio decreasing 

steadily during 120 min of ball milling (from 1.44 to 1.25) with no error bar overlap 

between 15, 30, 60, and 120 min.xl This comprises direct evidence of 

depolymerization as the 1154 cm-1 band has long been attributed to the 

antisymmetric C-O-C stretch connecting two sugar units,61,77 and the most intense 

C-H stretch band (at 2884 cm-1 in recent literature, at 2875 cm-1 in spectra here) has 

been eased from possible associations with the multitudes of the carbon-hydrogen 

                                                           
xxxix Without computational simulations this is still a hypothesis at this stage.  
xl FT-IR spectra are shown in Figure A2–16.  
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vibrational modes (e.g. CH2, CH3), and tentatively assigned to the methine groups 

(C-H bonds of the ring carbons).82 At the same time, researchers can now have less 

doubts in using the same band as reference for studying the possibility of amide 

hydrolysis.  

Figure 2–20 reveals that the 1552 cm-1/2875 cm-1 absorbance ratios of all samples 

remain constant (2.746 ± 0.036, RSD is 1.3%) with all error bars overlapping. This 

is clear confirmation of the parallel-amide-I/amide-II-behavior hypothesis 

regarding lack of deacetylation, as native chitin’s 1552 cm-1 band presents an 

absorbance minimum for the ball milled samples in between the frequencies of 

their two main modes of amide II (doubly and singly hydrogen bonded). The work 

of the Iwakura group on the use of the 1550 cm-1/2878 cm-1 IR peak ratio for the 

determination of the degree of acetylation (DA),102 which has been appreciated by 

Van de Velde and Kiekens,103 allows a meaningful calculation of DA values for all the 

samples. The inset table in Figure 2–20 discloses that when the ratio is multiplied 

by the coefficient offered from Sannan et al. (35.46),102 native chitin’s 95.0 ± 5.6% 

DA remains within its triplicates’ standard deviation for all 8 ball milled samples 

(97.7 ± 1.0%). The 5.6% standard deviation of native α-chitin is at the same level as 

that reported for commercial chitosans from Sigma Aldrich. The aforementioned IR 

method for DA determination was selected after trial and error efforts with linear 

relationships of various absorbance ratios proposed by the relevant review 

prepared by Kasaai.104 Indicatively, when the ratios are plugged into A1560/A2875 = 0.2 
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+ 0.0125·DA (R2 = 0.99),104 the obtained DA values are higher than 200%, something 

which does not make sense by chitin’s definition. When the amide III/CH3 

absorbance ratio was used, the highlighted equation for the entire DA range 

(A1320/A1420 = 0.3822 + 0.03133·DA)104 gave acetylation values in the core of the 

chitosan character range (26–33%), which intuitively is not consistent with the 

relative heights of the amide I and II bands against the ones of the hydrogenic region 

(notice IR spectra that will follow in later chapters) nor with the observed 2θ values 

in the XRD signals.59,61 When the amide-I / O-H absorbance ratio was used in DA = 

(A1655 / A3450)·100 / 1.33 and DA = (A1655 / A3450)·115,104 both sets of DA values for the 

samples produced from milling with 16  0.25ʺ balls were significantly and 

consistently higher than 100%.xli Therefore, the work in this thesis is in agreement 

with that of the Iwakura group viz-a-viz the most suitable bands and frequencies to 

measure towards DA determination.xlii    

  

                                                           
xli Considerations of possible limitations of the selected (and rejected) method(s) pertain to 

a deeper discussion regarding FT-IR variables for quantitative analysis, which is beyond 

the scope of this work. It is worth noting though that the selected method is part of a 

comprehensive series of studies on chitin (including on solubility and deacetylation 

kinetics) conducted in the 1970s at Seikei University, Tokyo, Japan (105-110). The 

university’s dedication to the material’s diversity potential until recent times can certainly 

constitute a source of inspiration for future researchers of the polysaccharide toolbox 

(111-113).  
xlii The use of the 1552 / 2878 cm-1 / cm-1 has been claimed to interfere to a limited extent 

(ca. ±3 DA% units) with water absorption (114). However, that hypothesis is subject to 

interferometer and other experimental parameters, the discussion of which is beyond the 

scope of this thesis.  
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Figure 2-19: FT-IR data (1154 cm-1/2875 cm-1 peak ratio) for milled α-chitin with 16  0.25ʺ 

balls (8.2 BtC). Figure A2–16 shows the relevant absorbance intensities for the 

60 min sample (0.0353 / 0.0265 = 1.332).  

Figure 2-20: FT-IR data (1552 cm-1/2875 cm-1 peak ratio) and degree of acetylation (DA%) 

for milled α-chitin with 16  0.25ʺ balls (8.2 BtC). Figure A2–16 shows the 

relevant absorbance intensities for the 60 min sample (0.0726 / 0.0265 = 2.740).  

 

89.0

93.0

97.0

101.0

2.51

2.61

2.71

2.81

0 15 30 45 60 75 90 105 120

D
e
g

re
e
 o

f a
ce

tyla
tio

n
 (D

A
%

)

A
b

so
rb

a
n

ce
 r

a
ti

o

Milling time (min)

Milling time (min) amide II/methine ratio St. Dev. DA% St. Dev.

0 2.678 0.158 95.0 5.6

15 2.816 0.052 99.8 1.9

30 2.767 0.033 98.1 1.2

45 2.756 0.042 97.7 1.5

60 2.742 0.034 97.2 1.2

75 2.737 0.066 97.1 2.3

90 2.745 0.017 97.3 0.6

105 2.741 0.034 97.2 1.2

120 2.729 0.083 96.8 2.9

1.19

1.29

1.39

1.49

0 15 30 45 60 75 90 105 120

A
b

so
rb

a
n

ce
 r

a
ti

o

Milling time (min)

Milling time (min) glycosidic/methine ratio St. Dev.

0 1.440 0.127

15 1.434 0.019

30 1.388 0.019

45 1.357 0.041

60 1.332 0.012

75 1.307 0.043

90 1.275 0.035

105 1.263 0.030

120 1.251 0.054



112 
 

2.3.5.3 Comparison with literature data  

Unfortunately, none of the prior ball-milling studies of chitin (Table 2–1) attempted 

to investigate the possibility of amide hydrolysis upon ball milling using their 

obtained FT-IR spectra. Only a few qualitative results were presented with minimal 

discussion despite the fact that the 2008 review by Kasaai offers extensive coverage 

of the quantitative analysis potential of the infrared region of the electromagnetic 

spectrum.104 Furthermore, and mysteriously for future mechanochemists, none of 

those groups have used any of the plethora of methods offered for DA 

approximation (including solution or solid-state NMR, titrimetric approaches, 

UV/Vis light).61,115,116 In contrast, and regardless of the quality of the reported results, 

it is worth citing that in 2012 Zhang et al. have attempted to correlate FT Raman with 

NMR spectroscopy for chitin DA determination.117 Stimulatingly for future green 

chemistry researchers, Aida et al. focused on reporting acetic acid yields (among 

other platform molecules of which none was nitrogen-containing) after a very high 

temperature water treatment (400 °C; in sequence to the initial ball milling step). 

Characterization of their possible chitosan by-product though was tactfully ignored 

(FT-IR and SEM observations), despite the fact that they have highlighted the 

material’s medical applications (high value).32  

Similarly to the gaps in chitin literature, and paradoxically for the more studied 

polysaccharide of cellulose, a lack of characterization of its most idiosyncratic 

covalent bond (glycosidic linkage) applies for all five entries of Table 2–1. In entry 
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1, Zhao et al. have attributed the observed CrI reduction (and subsequent increase 

in hydrolysis rates) to just decreased intermolecular hydrogen bonding (CP/MAS 

13C solid-state NMR data on C4 peak areas between 79 and 92 ppm are associated 

with crystalline and non-crystalline fractions, not bonding regime of anomeric 

carbons).25 A similar XRD/13C solid-state NMR interpretation of amorphization is 

adopted also by Komanoya et al. (entry 4). Even though the authors highlight the 

importance of cellulose depolymerization as the rate-determining step towards 

mixtures of monosaccharides (sorbitol and mannitol), they take for granted that a 

noble metal catalyst is necessary to hydrolyze the glycosidic linkages.28,118 That 

approach might raise questions in the future on the basis of the twelve principles of 

green chemistry and elemental sustainability;119 much more with the ground that 

earth-abundant metal catalysis and organocatalysis are gaining in general.120 Entry 

5 by Wang et al. works with FT-IR peak height ratios, but only to track molecular 

changes of crystalline and amorphous (ball milled) cellulose during their pyrolytic 

treatment (temperatures >240 °C).29  

It is only with entries 2 and 3 that a reduction in degree of polymerization (DP) is 

measured. In the latter study of Hu et al. (from 2014), kinematic viscosity 

measurements in copper ethylene diamine solution revealed that the 69% 

crystallinity reduction (CrI drops from 78.5 to 24.1%) of entry’s 3 DP-237-cellulose 

(originating from 120 min of 375 rpm ball milling with 25% packing of a steel vessel) 

corresponds to a 46% decrease in DP (the 2 h milling sample has chains of ca. 128 
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glucose units).27 Applying the same viscometric method, Zhang et al. tested a similar 

ball mill system (with 33% packing this time) and in their 2015 paper reported that 

the 1010 DP untreated cellulose (CrI 85.3%) was steadily degraded to ca. 645 DP 

(CrI 70.7%) after 2 h milling, representing a ca. 36% drop in the average length of 

the chains (entry 2).26 Considering that both ball milling processes started from 

similar crystallinities (and equivalent packing), the fact that depolymerization of the 

longer chains of entry 2 lagged behind that of the shorter ones of entry 3 might be 

an indication of force propagation along the chains through deformation of all 

covalent bonds.    

Likewise, the three chitin studies of Table 2–1 barely manage to qualitatively 

reference the glycosidic linkage. The only evidence for rupture of the bond under 

mechanochemical conditions is offered by Osada et al., who have used a gel 

permeation chromatography method (GPC), and reported a mean molecular 

weight (𝑀𝑊̅̅ ̅̅ ̅̅ ) reduction of their chitin sample (from >760 kDa for untreated) to 407 

kDa for the 10 min (68% CrI), and to 267 kDa for the 30 min (40% CrI) milling 

sample.30 This reduction of CrI by 28 units arising from 20 min ball milling with the 

system of entry 6 of Table 2–1 (9% packing, 690 balls/g chitin) corresponds to a 

34% reduction in 𝑀𝑊̅̅ ̅̅ ̅̅  (from 407 to 267 kDa). That result from the Totani-Nikaido 

group can be compared with the 6% reduction in glycosidic linkage content in this 

thesis (1154 cm-1/2875 cm-1 peak ratio drops from 1.388 to 1.307) for the 30-to-75 

min milling period (45 min) of the 16  0.25 balls system (see Figure 2–8), since the 
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CrI reduction is equivalent (from 67.5 to 38.8%). The almost 6 times faster 

depolymerization of entry 6 might be attributed to the higher BtC-ratio and packing 

(resulting intuitively in higher collision frequency), but also to a higher 𝑀𝑊̅̅ ̅̅ ̅̅  chitin 

used in this work. The latter reason would probably result in the mean contact force 

to spend more of the milling time distributing along the chains.xliii From a 

mechanochemistry point of view, it is worth mentioning that the process of the 

Totani-Nikaido group [Ichinoseki National College of Technology (Japan)] took 

place in a newly developed converge mill (comparable to the rotational motion of 

a planetary mill), which had a fixed guide vane inside the milling chamber. That 

unique characteristic might have intensified the mean impact force (compared to 

those in a regular planetary mill of the same operating frequency) which along with 

the high impact frequency offered from the 690 balls to chitin (BtC) mass ratio might 

have resulted in the reported interesting depolymerization rate (assuming lack of 

deacetylation).      

2.3.6 Effect of milling on the solubility of α-chitin in water  

To investigate the extent to which the observed reduction in glycosidic linkage 

content (and subsequent amorphization) corresponds to an increase in aqueous 

solubility, the ball-milled samples prepared with 16 × 0.25″ balls were subjected to 

solubility tests in water and dilute acetic acid (0.1 M/pH 2.9). The latter test 

                                                           
xliii One can imagine a hypothetical situation of ball milling α-chitin’s pentamer (MW = 1034 

g/mol); the chains would have lost their hydrogen bonding network and glycosidic bonds 

a lot sooner than a chitin of MW in the order of MDa.    
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conditions were based on a proposal by G.A.F. Roberts121 and Kumirska et al.61 

regarding chitin/chitosan classification (the latter being soluble in the acidity of that 

environment while the former not). The suspension was prepared at a concentration 

adjacent to the only chitin/water solubility test of Table 2–1 (entry’s 8 ca. 33 

mg/mL),32 which is roughly 3 times higher than that of the cellulose solubility tests 

by Meine et al.41 During initial experimentation, suspensions were stirred for 2 hours 

as suggested by Aida et al., but after 30 and 3 min tests the relative standard 

deviations (RSD%) for solubilities were realized not greater than 10%, hence a 1 

min high speed vortex was found adequate (see data in Table A2–1). Since there 

was no clear trend observed in primary literature regarding the separation method 

for polysaccharide solubility tests in water (indicatively see the experimental 

procedures of the ball milling studies of Hick et al.40 and Meine et al.41), 

centrifugation was selected because it was found more practical for triplicate tests 

compared to filtration.xliv  

                                                           
xliv The reader who might expect that the solubility of polysaccharides is a “hot” research 

area for the scientific (and in particular the chemistry) community will surely be 

disappointed (if not puzzled) by the relevant literature. When the terms “*saccharide*” 

(covering e.g. cyclomaltooligosaccharides) together with “solubility” were searched in 

the titles of articles available in SCOPUS, only 60 results were returned on 21/3/2018. With 

the breadth of information that the database covers, that poor figure is characteristic of 

the all-time lack of interest for the problems associated with the topic. Out of those 60 

documents, only one review was identified, which focused on medical applications of 

polysaccharides rather than a fundamental understanding of their structure-solubility 

relationship (Title: Review on: Importance and methods of reduction of water solubility 

and swelling of natural polysaccharide polymer for colon specific drug delivery system) 

(122). It is at least a mystery that the “chemistry” term of “solubility” finds such lack of 

application to a class of compounds mentioned in surely more than 60 academic organic 

chemistry textbooks throughout the curriculums of the world (developed or not). That 

unfortunate situation might be related with an excessive focus on intellectualistic synthesis 
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In water, solubility increased steadily from 5.9% for native α-chitin (t = 0) to 11.0% 

for the t = 120 min sample with no error bar overlap between all samples presented 

in Figure 2–21. The almost doubling of the solubility lags to the 10-fold increase 

(from 3 to 35%) achieved by Aida et al. That can be justified by the significantly 

higher packing (28 vs 3%), as well as BtC mass ratio (24 vs 8) used in that study. 

MALDI-TOF MS evidence from that study (entry 8) suggests that the solubility can 

be attributed to chito-oligomers with m/z < 2000 (although results should be 

interpreted with caution as no experimental procedure was presented for the 

analytical method).32 The solubility of native α-chitin (5.9%) is mainly due to the 

significant moisture content (originally 5.5%) removal in the undissolved residue 

(see Section 2.2.3). Minor contributions to solubility can be attributed to the rotation 

speed limits of the regular centrifuge used, which at those particular suspension 

concentrations (>25 mg/mL) did not manage to pellet possible lower MW chitin, 

residual oligo-peptides and other impurities originating from the demineralization-

deproteination-decoloration of the crab sample from ChitinWorks LLC. 

Considering the dimensions of the equipment (the radius from the rotor center to 

the bottom of the tube was not more than ca.15 cm), the 5000-rpm applied is 

estimated to have not exceeded a relative centrifugal force (RCF) of ca. 4200 × g.xlv 

                                                           
(see the Cornforth perspective in the Introduction chapter), a permanent hypothermia of 

“solvent sense” (see mechanobiology narrative in Section 2.1.1), and the vicious circle of 

reproducibility problems which they create (123).  
xlv RCF = 11.18 × r × ω2 / 105, r: distance from the axis of rotation (cm), ω: rotation speed 

[revolutions per minute (rpm)] (124).  
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That value is lower than the 6650 × g used for chitosan purification by Moura et al.,125 

and much lower than the 29,220 × g used for the cellulose solubility tests by Meine 

et al.41.xlvi A contribution from residual minerals (or other impurities from shell 

isolation) to the soluble fraction should not be ignored in the future as the infrared 

signals showed some absorbance ca. 1430 cm-1, which is characteristic for 

CaCO3.
126  

In acid, solubility followed the same increasing trend only with higher values (an 

average of 0.83 solubility % units), which can be attributed to calcium acetate 

formation as well as the 2.3 ± 1.0% average degree of deacetylation of the set’s 

samples (protonation of the amino groups leads to solvation of the chains).127 

Considering the higher differences of the 60-90-120 min samples (compared to 0 

and 30 min), future researchers should set up experiments taking into account 

studies which report the possibility of protonation of the amide group of 

chitin/chitosan at pH values below 3.5.128 As a reference experiment, a high-

molecular-weight chitosan sample (DD 75−85%) was ball milled with 2 × 0.5″ / 

68−70 × 0.25″ balls for 4 h and resulted in a solubility of 98.0 ± 0.9% at pH 2.9 and 

26.3 ± 1.2% at pH 7.0. This emphasizes the significant differences in solubility 

between chitin (i.e., acetylated biopolymer) and chitosan (i.e., deacetylated 

biopolymer) at acidic pHs and acts to confirm that the milled chitin has not increased 

                                                           
xlvi Future researchers might consider relative centrifugal forces (RCF) higher than 60,000 

× g (ultracentrifugation), which is a powerful method to study macromolecular structures 

in solution (124).   
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in solubility due to deacetylation. What is most important though is that the samples 

become clearly more soluble with increasing milling time, hence the FT-IR 

observation of loss of glycosidic linkages is complemented by a macroscopic 

confirmation.  

Figure A2–17 shows UV-Vis spectra of the soluble products.xlvii Peaks at ca. 273, ca. 

292, and ca. 306 nm grow taller with increasing milling time, while absorbances of 

all signals fade out when they approach the visible region. In the violet region (380–

435 nm), the products of 120 min milling present higher absorbances than the ones 

of the 30 min sample, producing the pale yellow-green color in the right vial of the 

photo in the inset. These results are likely due to Maillard-type reactions that occur 

between the amine groups and the reducing sugars formed to yield a range of 

intensely-pigmented substances (from small molecules like pyrazines to polymeric 

ones like melanoidins). 

X-ray diffraction patterns of the insoluble residue from the pH 7.0 solubility tests are 

shown in Figure A2–18. Diffraction peaks at 2θ values are identical to those for α-

chitin. The CrI values of this insoluble, residual material follow a decreasing trend 

ranging from 83.2% (t = 30 min) to 76.1% (t = 120 min) when compared to ca. 90% 

for untreated chitin. On the other hand, if one considers the crystallinity behavior of 

the whole ball milled sample (both water-soluble and water-insoluble fractions) 

                                                           
xlvii UV-Vis spectra were acquired using an Ocean Optics USB4000 spectrometer at 420 nm. 

Integration time was 5000 μsec, and signals were the average of 50 scans.  
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reported in Figure 2–8, it is evident that the shorter chains of α-chitin formed new 

hydrogen bonds after the solubility test, and recrystallized. Interestingly, the more 

depolymerized the sample, the higher the recrystallization effect. The sample of 120 

min increased by 41.2 CrI units (from 34.9 to 76.1), that of 90 min by 40.2 (from 35.9 

to 76.1), the one of 60 min by 31.5 (from 48.2 to 79.7), and 30 min milled chitin by 

15.7 (from 67.5 to 83.2). Considering the range of useful products discussed in 

Section 1.5, that result might function as extra motivation for mechanochemists to 

design more efficient processes, as a more established market for water-soluble 

chitin products can drive a less developed one for water-insoluble ones (or vice 

versa).     

  

Figure 2-21: Solubility % of α-chitin at pH 2.9 (red) and 7.0 (blue) when ball milled with 16 

× 0.25ʺ balls. * Solubility values for 0 min milling time correspond to α-chitin 

ball milled for 3 min with ca.18% packing (reduced particle size was easier to 

weigh). When the flakes of native α-chitin were tested standard deviations for 

the solubility triplicates were large (at pH 7.0: 6.29 ± 1.39, and at pH 2.9: 6.47 

± 2.16).  
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2.4 Conclusions  

In this chapter, a rational selection of technological and process parameters of ball 

milling was undertaken in order to amorphize α-chitin in a controlled way. Using 

powder XRD, an 8.2 balls to chitin (BtC) mass ratio - 3.3% packing - steel vial/balls 

SPEX SamplePrep 8000M system was found to systematically amorphize the 

polysaccharide, which originally possessed a 91% crystallinity index (CrI). This 

way, a consistent crystallinity reduction was observed in regular milling time 

intervals (an average of 6.0 CrI units every 15 min) with good precision (±2.5 CrI 

units). The higher collision frequency of 16 quarter-inch balls was more effective 

than the higher energy collisions of the 2 half-inch system in 120 min total milling 

time with the CrI reaching a plateau of ca. 35% in the former case while ca. 51% in 

the latter. Moreover, the effect of chitin mixing load [balls to chitin mass ratio (BtC)] 

was studied for both systems with results confirming that higher BtC ratios produce 

greater amorphization. The intensity ratio for XRD reflections (110)/(020) was 

rationalized as an experimental indicator for strength of α character for chitin 

[hydrogen bonding in the a-direction (creating the ac-sheets) in the extended 

structure] and was found to reduce with decreasing BtC mass ratio.   

Particle size and morphology were studied with SEM. Ball milling was shown to 

reduce α-chitin particles from ca. >500 μm to ca. <100 μm, smooth the rough edges 

of the particles and wrinkle (potentially defect or crack) the smooth surfaces of the 

native polysaccharide sample. A detailed FT-IR analysis revealed α-chitin’s 
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qualitative characteristics. Several indications observed in the hydrogenic region 

revealed weakening of the hydrogen bonding network upon ball milling. These 

changes were quantified in the region of amide I and amide II vibrations (1670–

1500 cm-1). The ratio between absorbance intensities at 1621 and 1652 cm-1 

decreased by 33% in the first 75 min of milling suggesting a declining relative 

number of doubly hydrogen-bonded amide groups. The behaviour of amide I peak 

was associated with that of amide II and was also found to correlate well with the 

corresponding gradual reduction of the crystallinity index (CrI%). All that 

experimental evidence raised the hypothesis that the average contact force applied 

to a chitin nanofibril during collisions is being directed from the hydrogen bonding 

region to the pyranose unit. That hypothesis was supported by direct evidence of 

depolymerization which was observed via a steady decline of the 1154 cm-1/2875 

cm-1 absorbance ratio during the whole period of 120 min ball milling. At the same 

time, degree of acetylation (DA) remained unchanged during ball milling (97.7 ± 

1.1%) providing additional proof of N-acetyl’s role in force distribution within α-

chitin’s nanofibril. Solubility tests have correlated the aforementioned 

depolymerization/amorphization evidence with an increase in aqueous solubility. 

All these interpreted results were discussed alongside the relevant literature and 

were found to fill in a significant gap in the area of chitin amorphization. Apart from 

comprising the basis of the following chapters, the work here offers a simple, rapid, 

and semiquantitative method for designing mechanochemical systems within the 
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scope of producing chitins (and other renewable resources) for a range of high-

value applications like drug delivery and tissue engineering.129,130      
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Chapter 3 Mechanochemical conversion of α-chitin to 
oligomers of N-acetyl-D-glucosamine    

3.1 Introduction    

3.1.1 Relevant ball milling methods in polysaccharide literature  

Aiming for water soluble depolymerization products, Hick et al. were the first who 

systematically explored ball milling parameters for polysaccharide 

transformations.1 The researchers tried different solid catalysts [1:1 mixture with 

microcrystalline cellulose, which typically has a DP of not more than 4002] using a 

shaker mill (5% packing of the vial, 3 balls per g of cellulose, run at 1060 rpm), an 

attrition mill (41% packing, 29 balls per g of cellulose, 350 rpm), and a rolling mill 

(23% packing, 25 balls per g of cellulose, 100 rpm). All three vial-balls systems were 

made from steel (assumed of equivalent hardness) and were estimated to give 9-

10 impacts every 10 s with the forces developed in the rolling mill being an order 

of magnitude less than the other two (approx.100 N vs. 1000 N). Despite the high 

percentages of packing, the attrition and rolling mills gave non-appreciable 

conversions of microcrystalline cellulose into water soluble products, hence the 

results presented for the efficiencies of more than ten solid catalysts were obtained 

with the relatively high-energy shaker mill (SPEX 8000D Mixer/Mill). Materials with 

high surface acidities like kaolinite (Al2Si2O7 ·2H2O), alumina super acid, aluminium 

phosphate (AlPO4), alumina (Al2O3), Y-type zeolite, and bentonite (Al2Si4O11·H2O) 

presented satisfactory catalytic performance with kaolinite reaching as high as 
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approx. 65% soluble products in 2 h. Solids like talc [H2Mg3(SiO3)4], vermiculite 

[(MgFe,Al)3(Al,Si)4O10(OH)2·4H2O), quartz (SiO2), and silicon carbide (SiC), which 

are of low acidity, did not exceed 30% solubilization in the same milling time. The 

efficiency of the milling process was not affected by the catalyst hardness.1xlviii 

The observed effectiveness of kaolinite has been attributed to its layered structure.1 

This natural clay is a hydrated aluminosilicate comprised of layers of octahedrally 

Al(OH)4 sheets covalently bound to tetrahedrally SiO4 sheets in a 1:1 ratio.1,3 When 

protons from the hydroxyl groups of the Al(OH)4 sheet form hydrogen bonds with 

open Si–O–Si sites the layers are bound together to form the particles of kaolinite.1,3 

The aluminium-containing sheet in bentonite, which is structurally similar to 

kaolinite, is covalently bonded above and below with a silicon-containing sheet in a 

2:1 configuration. Hence, the active sites are not so free to interact with cellulose, 

explaining partly why bentonite did not exceed 20% cellulose solubilization in the 

same milling time.1        

Further advances in mechanically assisted depolymerization of cellulose appeared 

after 2012 with Meine et al., who managed to fully convert α-cellulose into water-

soluble products (oligosaccharides) in 2 h.4 The quantitative yields were obtained 

when α-cellulose (DP 2200) was impregnated with strong acids like HCl and H2SO4 

(0.61 and 0.44 mmol per g of substrate respectively), and ball milled in a planetary 

                                                           
xlviii Based on the results and discussion of Hick et al., the possibility of kaolinite (and other 

solid acid catalysts) to assist the amorphization/depolymerization of polysaccharides in a 

physical way is considered negligible.  
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steel system [21% packing, 5 balls (total mass 5 × 3.95 = 19.75 g) per g of acid-

impregnated cellulose, 800 rpm].4 This successful approach of acidulated cellulose 

was also applied by Shrotri et al.5 Their group found that complete solubility of 

Sigma-Aldrich’s Sigmacell 20 microcrystalline cellulose (DP approx. 200) was 

achieved with 0.25 mmol H2SO4/g impregnation, and ball milling in a planetary 

system (10 g of balls per g of acidulated substrate, 300 rpm) for 10 h. An average 

degree of polymerization of 6–9 for those soluble oligomers was determined. 

Interestingly, during the milling process, α-(1→6) linkages were formed (branched 

oligomers) which explain the higher solubility of larger oligosaccharides and 

suggest repolymerization of cellulose monomers.5      

3.1.2 Mechanistic considerations  

In all the above systems, cellulose gave very low yields of water-soluble products 

when ball milled by itself (without the presence of the acidic material). Indicatively, 

Meine et al. reported only 10% solubilization after a 10 h treatment in their relatively 

high speed and high packing planetary system.4 These experimental observations 

imply the necessity for strong acids (either in the liquid or solid state) to hydrolyze 

the glycosidic bond. Indeed, a density-functional theory (DFT) study on cellobiose 

(assumed analogous to cellulose) has realised that the basicity of the glycosidic 

oxygen (especially for the axial position of the lone pairs) is generally lacking 

compared to the surrounding hydroxyl and pyranic oxygens.6 Calculations for the 

relative Gibbs energy of protonation on both of the cellobiose conformers that 
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randomly occur in the most common polymorph of native cellulose (Iβ) (as well as 

on two hypothetical conformers that were generated with rotations of the 

hydroxymethyl group of the most common of the two “native” conformers) have 

clearly demonstrated that the primary alcohol group in particular is the most basic 

of all sites.xlix Moreover, when an explicit water molecule was present, the proton 

from the protonated cellobiose site was always dissociating and binding to water.  

These computational insights highlight the requirement for strong acids in cellulose 

depolymerization, with which the selective protonation of the hydroxyl sites can be 

surmount. In mechanistic terms, Loerbroks et al. realized that when the most 

common of the two “native” cellobiose conformers gets its glycosidic oxygen 

[O(1)] protonated axially, a cooperativity of the exo-anomeric (n O(1)→σ*
C(1)O(5))

7 and 

endo-anomeric (n O(5)→σ*
C(1)O(1)) effect (mitigation of the exo-anomeric effect and 

enhancement of the endo-anomeric effect) is responsible for an approximate 7% 

elongation of the C(1)-O(1) bond [(C1) is the anomeric carbon], and to favourable 

bond dissociation. In addition, it has been calculated that the 8.5 kcal/mol 

stabilization that the intramolecular O(5)···HO(3´) hydrogen bond offers to that 

“native” conformer drops to 0.8 kcal/mol. Overall, and using solvation models as 

                                                           
xlix With the liberation of the primary alcohol group from its natural constraints (hydrogen 

bonding regime) during ball milling (observed amide I split IR ratio decrease in Figure 

2–16), competition for protons in our ball milled chitin samples is expected to slow down 

hydrolysis in acidic conditions.  
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well, the authors found that the protonation accounts for about 90% of the 

approximately 31 kcal mol-1 activation energy of cellobiose hydrolysis.6,8  

However, the above computational analysis results do not mean that acid 

impregnation alone can lead to appreciable levels of hydrolysis. When cellulose 

was left to impregnate with H2SO4 for 7 days, its solubility reached only 8%.9 

Moreover, a darkening of the acid impregnated cellulose has been observed over 

time, providing evidence for carbonization instead of depolymerization.8 Indeed, 

the remaining 10% for the activation of the glycosidic linkage (approx. 3.0 kcal/mol) 

has been attributed to necessary conformational changes of one of the pyranic rings 

of cellobiose (from chair to half-chair) which further enhance an endo-anomeric 

charge transfer.6,8 That structural distortion of the protonated conformer results also 

in the complete loss of the aforementioned 0.8 kcal/mol stabilization from the 

O(5)···HO(3´) hydrogen bond, resulting in a more favourable cleavage of the C(1)-

O(1) bond.6 Figure 3–1 illustrates the most important mechanistic considerations 

proposed towards the mechanocatalytic cellobiose/cellulose hydrolysis.    
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Figure 3-1: Proposed mechanistic considerations towards mechanocatalytic activation of 

the glycosidic linkage in cellobiose/cellulose. Reprinted from Catalysis Today, 

234, F. Schüth, R. Rinaldi, N. Meine, M. Käldström, J. Hilgert, M.D. Kaufman 

Rechulski, Mechanocatalytic depolymerization of cellulose and raw biomass 

and downstream processing of the products, 24-30, Copyright (2014), with 

permission from Elsevier.  

3.1.3 Summary and methodological approach to the problem  

One can conclude that, although literature provides a molecular mechanism which 

justifies the experimental trend for the use of acidic media during mechanochemical 

depolymerization of cellulose, on the other hand it underestimates the factor of 

collision frequency. By ignoring the effects of vial-packing and balls-to-cellulose 

mass ratio, the above studies devalue the potential of their ball mills’ operating 

frequencies towards the necessary pyranic ring conformational changes. As we 

now know from Chapter 2 that the higher collision frequency of the 0.25ʺ-balls/3%-

packing/8.2-BtC system is more effective for chitin amorphization-depolymerization 

than that of 0.5ʺ balls, the collision frequency was selectively increased by 
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concurrently raising the packing and BtC values to ca. 18% and 42.8 respectively. 

Having established a proportional relationship between water soluble products and 

loss of glycosidic linkages (see Sections 2.3.5.2 and 2.3.6), the ball mill’s 

depolymerization performance was evaluated based on the former. Likewise, the 

effect of kaolinite on α-chitin’s solubility was investigated as well as the 

depolymerization effect on the microwave production of levulinic acid (LA). 

Depending on the optimum ball milling conditions, water soluble products from α-

chitin were analysed colorimetrically, as well as with MALDI-TOF MS and SEC.      

3.2 Experimental  

3.2.1 Materials   

α-Chitin, which was isolated from snow crab, was provided by ChitinWorks LLC (1-

2 mm flakes of approx. 0.30 g/mL, moisture content determined gravimetrically at 

5.5 wt.%). Chitosan high molecular weight (MW) [CAS: 9012-76-4, Vendor’s 

product #: 419419, DD>75%, Brookfield viscosity 800–2000 cP], 3,5-dinitrosalicylic 

acid, glycidyltrimethylammonium chloride (GTMA) (≥90%), 2,5-dihydroxybenzoic 

acid (DHB) (98%) were purchased from Sigma Aldrich. N-acetyl-D-glucosamine 

(GlcNAc) 98% was purchased from AK Scientific, Inc. N, N’ diacetylchitobiose 

(GlcNAc)2 and oligosaccharides were purchased from Toronto Research 

Chemicals Inc. Deuterated glucose (1,2,3,4,5,6,6-D7, 97–98%) (Glc-d7) was 

purchased from Cambridge Isotope Laboratories, Inc. Kaolinite (sample No.5, API 

project 49, Lamar Pit, Bath, South Carolina)  was  purchased  from Ward’s  Natural 
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Science.l Acetic acid was purchased from Fisher Scientific. NaOH and potassium 

ferricyanide (III) [K3Fe(CN)6] were purchased from BDH Chemicals Ltd. Sodium 

carbonate monohydrate Na2CO3·H2O was purchased from Merck. Methanol was 

supplied by ACP Chemicals Inc. All chemicals were used as received.  

3.2.2 Mechanochemical treatment of α-chitin  

Performed as in Chapter 2, with the addition of milling experiments where 1.00 g of 

α-chitin was charged along with 1.00 g of kaolinite.  

3.2.3 Gravimetric analysis to determine the mass of soluble products 
(sample solubility %) 

Performed as in Chapter 2, with the addition of: Solubility for the samples from 

milling α-chitin with kaolinite was calculated by subtracting the mass of the 

undissolved residue from 250 mg and reported as a weight percentage of half of 

the weight of the milled sample, as kaolinite accounts for 50% w/w of the original 

sample. Each sample was analyzed in triplicate.  

3.2.4 X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) 
spectroscopy  

Performed as in Chapter 2.  

                                                           
l Possible composition of the sample can be found from the “Crustal Geophysics and 

Geochemistry Science Center”, which is part of the United States Geological Survey 

(USGS). 

https://crustal.usgs.gov/speclab/data/HTMLmetadata/Kaolinite_CM5_BECKb_AREF.html  

https://crustal.usgs.gov/speclab/data/HTMLmetadata/Kaolinite_CM5_BECKb_AREF.html
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3.2.5 Chitin conversion to levulinic acid (LA) 

Approximately 100.0 mg chitinous sample (native or milled, standard deviation for 

a set of 8 experiments was ca. 6.0%) was charged along with 89.1 ± 11.5 mg SnCl4·5 

H2O (0.254 ± 0.033 mmol, RSD ca. 13%), 4.0 mL deionized H2O, and a magnetic stir 

bar in a microwave vial (2–5 mL) according to literature.10 The mixture was set at 

190 °C in a Biotage Initiator 2.5 microwave synthesizer and left to react for 30 min 

at very high absorption level.li A 250 μL room temperature aliquot of the reaction 

mixture was withdrawn and poured into 2 mL of ethyl acetate (EtOAc). A fixed 

volume of hexanoic acid was added to all eight reaction mixtures as an internal 

standard (1.82 μL). Levulinic (LA) and hexanoic (HA) acids were extracted by high-

speed vortex for 30 sec and centrifugation at 1500 rpm for 2 min. The organic 

(upper) phase was pipetted out and the residual reaction mixture underwent the 

above extraction process two more times with fresh EtOAc (3×2 mL in total). The 

combined extracts were evaporated with a Buchi Rotavap and the dried residue 

was reconstituted in 1000 μL EtOAc for analysis with GC-MS according to Omari et 

al.10 Representative gas chromatograms with the retention times and mass spectra 

of HA and LA are shown in Figures A3–1 and A3–2 respectively. Α calibration curve 

for LA yields from 100 mg of chitinous samples (Figure A3–3) was constructed 

                                                           
li In accordance to the relevant paper, the actual pressure was monitored and found stable 

for most of the reaction time (from the 8th to the 30th minute) at ca. 20 bar. According to the 

vendor’s manual, that pressure value for water corresponds to 205 °C (11). For reference, 

when 5.0 mL of water were tested on 14/1/2015 at a set temperature of 200 °C, the 

pressure was recorded at 21 bar which is close to the instrument’s functional limit. Default 

stirring is at 600 rpm.   
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based on standard solutions prepared according to the data of Table A3–1 (HA was 

integrated from 3.81 to 4.22 min and LA from 4.38 to 4.88 min).  

3.2.6 Colorimetric approximation of reducing ends of soluble products  

3.2.6.1 Dinitrosalicylic acid (DNS) method  

This was performed in a similar way to methods reported in the literature.12,13 The 

DNS reagent was prepared by dissolving 0.2503 g 3,5-dinitrosalicylic acid (MW 

228.12 g/mol) in 25.0 mL distilled water (1% or 43.9 mM) with the aid of a warm tap 

water bath. Approximately 0.80 g NaOH, 8.8–12.2 g L-tartaric acid disodium salt 

dihydrate (CAS 6106-24-7; MW 230.08 g/mol),lii and 80–100 mg phenol were added 

in a 50.0 mL volumetric flask and the components were dissolved in ca. 42 mL 

distilled water with the aid of warm tap water bath.liii 100 μL of the 1% 3,5-

dinitrosalicylic acid solution was transferred into the flask, which was then made up 

to the mark with distilled water. The DNS reagent was kept in darkness during sets 

of experiments that were undertaken over several weeks.  

An aliquot of the water-soluble products (pH 7.0) created as per Section 3.2.3 was 

diluted in order to bring the visual absorbance of the solution of the ball-milled 

samples in close proximity to that of the DNS reagent. 1500 μL of the DNS reagent 

were vortex-mixed with 1500 μL of the diluted soluble product (or standard 

                                                           
lii The substance was the most economic and readily available analog to Rochelle salt 

(potassium sodium tartrate tetrahydrate; MW 282.1 g/mol).  
liii Exact concentrations are reported in the corresponding Results and Discussion section 

according to optimization experiments. 
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monosaccharide) solution. This mixture was heated under microwave irradiation 

(Biotage instrument) at 100 °C for 5 min (high absorption) and then cooled to room 

temperature. The colour intensity of the mixture was measured using an Ocean 

Optics USB4000 spectrometer at 540 nm. Integration time was 5000 μsec, and 

signals were the average of 50 scans. Calibration curves were prepared using Glc 

and GlcNAc for quantification.  

3.2.6.2 Schales’ method  

This was performed in a similar way to methods reported in the literature.14 Schales’ 

reagent was prepared by dissolving 0.0500 g potassium ferricyanide (K3Fe(CN)6) 

and 6.2009 g sodium carbonate monohydrate Na2CO3·H2O in 100.0 mL distilled 

water. The solution was transferred to a dark glass container and was kept in a 

cabinet. An aliquot of the water-soluble products isolated above (385 μL, pH 7.0) 

was diluted to 25.0 mL to approximate the visual absorbance of the initial solution 

of the ball-milled samples compared with that of N-acetyl-D-glucosamine (GlcNAc). 

2000 μL of Schales’ reagent was vortex mixed with 1500 μL of the diluted soluble 

product (or GlcNAc) solution. This mixture was heated under microwave irradiation 

(Biotage instrument) at 100 °C for 10 min and then cooled to room temperature. The 

colour intensity of the mixture was measured using an Ocean Optics USB4000 

spectrometer at 420 nm. Experiments were also performed using GlcNAc for 

comparison.  
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3.2.7 Derivatization of soluble products, GlcNAc and (GlcNAc)2 for 
quantification using MALDI-TOF MS analysis   

Derivatization of the soluble products formed by dissolution at pH 7.0 was carried 

out using a procedure reported by Gouw et al. with minor modifications.15 

Deuterated glucose (Glc-d7) was used as an internal standard. A 1000 μL aliquot of 

the soluble products solution (water for blank) was added to 1000 μL of a 7.0 mM 

Glc-d7 solution (20.0 mg in 1500 μL H2O, the internal standard). 60.0 μL 1M NaOH 

and 8.00 μL glycidyltrimethylammonium chloride (GTMA) were added to that 

solution. The resulting mixture was vortex mixed, heated at 60–65 °C for 2 h and 

stored in a fridge until analyzed. Calibration curves for quantifying GlcNAc and 

(GlcNAc)2 using MADLI-TOF MS, were constructed by diluting a 35.62 mM (197.0 

mg GlcNAc in 25 mL H2O) and a 3.9 mM (8.2 mg (GlcNAc)2 in 15 mL H2O) 

respectively. The volumes of the above solutions were in the range of 15–1800 μL 

and they were diluted to volumes of 20 mL for GlcNAc and 1300 μL for (GlcNAc)2. 

Details of the MALDI-TOF MS experiments follows below.    

3.2.8 MALDI-TOF instrumentation and mass spectra processing    

900 μL of a 10 mg/mL 2,5-dihydroxybenzoic acid (DHB) solution (2:1 v/v 

methanol:water) were mixed with 100 μL of the derivatized soluble products 

solution and 0.75 μL of this mixture was spotted onto the MALDI target plate. The 

samples were dried at ambient temperature and the plate was loaded into a 4800 

MALDI TOF/TOF analyzer (AB Sciex). Spectra were acquired automatically 

(multiple positions on the sample spot) in reflectron positive method from 100 to 
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1200 Da (focus mass 550) using 400 total shots per spectrum. The machine was 

equipped with a Nd:YAG laser of 355 nm with a firing rate of 200 Hz. Laser intensity 

was fixed to 76%. Peaks were detected (min S/N = 3) with no baseline subtraction 

or smoothing and the intensity of the base peak in all spectra was found within the 

range of 1000 to 65000 counts. Spectra were exported in a simple ASCII file 

(approx. m/z difference 0.00615) using the vendor’s Data Explorer software and 

imported to the open source multifunctional mass spectrometry software mMass.5 

Relevant peaks were labelled and their native intensities (no baseline correction) 

and resolutions were revealed. Spectra (at least 4 among spots) for the derivatives 

of the soluble products and for the blank were averaged using the relevant 

command in mMass (Figure A3–4). In all cases, the m/z standard deviation was 

below 0.050 (Figure A3–5). The average spectrum for the blank derivatization 

reaction (Figure A3–6) has been subtracted from the average spectrum of the 

soluble products derivatives using the relevant command in mMass for clarity of 

presentation. Finally, analyte to internal standard (Glc-d7) peak height ratios were 

calculated from the labelled spectra for quantification purposes. 

3.2.9 Size Exclusion Chromatography (SEC) analyses 

SEC was performed at 35 C on a Viscotek VE 2001 GPCMax equipped with a 

Viscotek VE 3580 RI detector and phenomenex aqueous columns (PolySep-GFC-P 

2000, PolySep-GFC-P 4000 and guard). Samples were prepared at a concentration 

of approximately 2 mg/mL and left to equilibrate for 18 h. Prior to analysis, samples 
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were filtered using 0.2 M syringe filters. 100 L of sample was injected, and 

samples were eluted using HPLC grade water (with 0.05% w/v NaN3) at a flow rate 

of 0.30 mL/min.  Nine PEG/PEO standards (Agilent Easivial) were used to prepare 

a calibration curve, in the molecular weight range of 106 to 130 000 Da. NAG, N,N’-

diacetylchitobiose (NAG2) and three chitooligosaccharide standards (Toronto 

Research Chemicals) were analyzed and their retention volumes recorded for 

comparison with unknown chitin-derived samples. Under the same conditions, 

samples of aqueous (pH 7.0) soluble portions of chitin were analyzed. Data were 

processed using OmniSEC software.  

3.3 Results and discussion   

3.3.1 Effect of kaolinite on α-chitin’s amorphization/solubility 

In preliminary investigations, powder X-ray diffraction (XRD) was assessed as a 

method for evaluating the amorphization of chitin in the presence of kaolinite. Figure 

A3–7 shows the XRD pattern of kaolinite (red signal) exhibiting peaks at the 

following 2θ: 12.3 (strong and sharp), 19.9, 20.3, 21.3, 24.8 (strong and sharp), 37.7, 

38.5, 39.2, and 62.3. These values are in good agreement with those characteristic 

for the structure of kaolinite.16 When the signal is overlaid with that of native α-chitin 

(light blue signal with transparency), the possibility of chitin’s (110) reflection at 19.2 

overlapping with kaolinite’s (020) peak at 19.9 raises questions regarding an 

uncomplicated crystallinity index calculation as presented in Chapter 2. Indeed, 

Figure A3–8 shows significant changes for the pattern of a 1:1 chitin:kaolinite 
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mixture (green signal). α-Chitin’s (110) reflection at 19.20 shifts to 19.48 with its 

intensity reduced by 66% (from 4603 in Figure 2–4 to 1544). At the same time, 

kaolinite’s (020) peak appears more than 80% intensified (from 850 to 1544) at 19.48 

maintaining its (11̅0) reflection at 19.92 (0.38 shift). This masking of reflections is 

also evident on chitin’s (020) peak at 9.28 and on kaolinite’s (001) peak at 12.32. In 

the former case, the polysaccharide shifts to 9.50 (from 9.28) with its intensity 

reduced by 61% (from 1773 to 689) when mixed with kaolinite, and by 76% (from 

1773 to 431) when 0.5 g of that mixture was mortared (with a pestle) for 4 min. In 

the latter case, the main kaolinite signal shifts to 12.46 (from 12.32) with its intensity 

reduced by 34% (from 1805 to 1186) when mixed with kaolinite, and by 21% (from 

1805 to 1417) when 0.5 g of that mixture was mortared (with a pestle) for 4 min 

respectively. Taken into account these complications of the materials’ crystalline 

fractions, as well as the 60% reduction of chitin’s amorphous halo at 16.00 (from 401 

to 159), assessment of chitin’s crystallinity during mechanochemical treatment with 

kaolinite was consider a task which is beyond the scope of this thesis.liv Figure A3–

10 in the Appendix gives a feel of the changes for the pattern of the 1:1 

chitin:kaolinite mixture (pink signal) when milled with 2  0.5ʺ balls (8.2 balls-to-

powder mass ratio) for 30 (green signal) and 90 (red signal) min. All of the mixture’s 

peaks decrease in intensity with increased milling time with α-chitin’s masked (110) 

reflection at 19.48  appearing to shift to 20.02. The region around 16.00, which can 

                                                           
liv In addition, future researchers should also consider a new peak arising for the mixture at 

44.3° 2θ (see Figure A3–9).  
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be considered representative for chitin’s amorphous fraction appears more intense 

with increased milling time something which makes sense intuitively.   

Due to these limitations of powder X-ray diffraction (XRD) on solid mixture analysis 

in this case, a relationship between crystallinity index and solubility is proposed to 

assess the depolymerization efficiency of kaolinite in relation to that of the ball mill’s 

3% packing. Figure A3–11 correlates the crystallinity index data of the 16  0.25ʺ 

balls sample set from Figure 2–8 with the corresponding average solubility values 

from Figure 2–21. Considering the approximate character of a relationship like that, 

the resulting equation (Solubility % = -0.0856·CrI + 13.533) presents a reasonable 

linearity (R2 = 0.9843) for milling times up to 90 min. Hence, it can be used to 

translate the crystallinity indices for the 2  0.5ʺ balls set (76.5, 59.8, and 52.7% in 

Figure 2–8) into predicted solubility values (pH 7.0) for those samples (green bars 

in Figure 3–2 are 6.98, 8.41, and 9.02% respectively). The 2.04 solubility-units 

increase arising from 60 min ball milling (from 6.98% for the 30 min sample to 9.02% 

for the 90 min sample) represents a 29.2% rise, which is the result of the work of the 

2  0.5ʺ balls / 8.2 balls-to-powder mass ratio system on native α-chitin.  

Now, when those pre-milled samples were milled in 1:1 mass ratio with kaolinite for 

60 min (2  0.5ʺ balls / 8.2 balls-to-powder mass ratio),lv α-chitin solubility increased 

                                                           
lv When 2 g kaolinite were ball milled by themselves with 2  0.5ʺ / 68-70  0.25ʺ balls for 

60 min the material (turned from white to grey) was completely insoluble in both neutral 

and acidic pH values (conditions were similar to those for chitin solubility tests, the dry 

mass after the tests was ca.1.8 ± 1.6 % heavier than before the tests).  
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to 14.5 ± 0.3% (blue bars in Figure 3–2).lvi The 5.61 solubility-units rise which 

resulted from 60 min ball milling (from 9.02 to 14.63% for the 90 min pre-milled 

sample) represents a 62.2% increase produced from the cooperation of the 2  0.5ʺ 

balls / 8.2 balls-to-powder mass ratio system with kaolinite.  When comparing the 

62.2% rise observed from a 60 min SPEX-8000 process with kaolinite with the 29.2% 

without it, one can hypothesize that the natural clay at least doubles the 

depolymerization efficiency of the ball milling process. If the reader considers the 

7.24 solubility-units elevation for the 30 min pre-milled sample (from 6.98 to 

14.22%), then the 103.7% solubility increase denotes a 3.6 times more efficient 

process resulting from the use of kaolinite. These results confirm the significant role 

of acidity offered by the clay’s layers as explained in Section 3.1.     

  

                                                           
lvi Solubility in pH 2.9 was slightly higher as expected (red bars in Figure 3–2 are at 18.1  ±  

0.5%).  



151 
 

 

Figure 3-2: Solubility % of pre-milled α-chitin using 2  0.5ʺ balls for 30-60-90 min (step 1) 

when milled with kaolinite (1:1 g:g) by 2  0.5ʺ balls for 60 min (step 2) (blue 

bars in pH 7.0 and red in pH 2.9). Green bars show the predicted average 

solubility values (pH 7.0) for just step 1.lvii    

With kaolinite producing ca.14.5 ± 0.3% soluble products in 60 min (2  0.5ʺ balls / 

8.2 balls-to-powder mass ratio), one would expect that increasing milling time 

would increase the solubility of α-chitin by the same factor. Figure 3–3 shows that 

when milling time was quadrupled (4  60 = 240 min), solubility did not exceed 31.5 

± 1.5%, a value which is appreciably lower than the expected ca. 58% (4  14.5). 

The higher collision frequency system of the 0.25ʺ balls gave water-soluble 

products at the same levels (30.9 ± 0.3%), which were 3 times those without 

kaolinite. This result can be associated with the observed amorphization and 

delamination of kaolinite upon grinding,17 which exposes their surface protons to 

                                                           
lvii Predicted average solubility values for milling with 2  0.5ʺ balls were obtained by 

applying the corresponding CrI values (Figure 2–8) to the equation of Figure A3–11.   
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chitin’s deformed glycosidic linkages. That catalytic activity of the clay on chitin (ca. 

31% solubility in 4 h) is significantly lower than that on microcrystalline cellulose 

reported by the Blair group (>40% in 1 h).1 That difference might be partly 

attributed to a possibly higher 𝑀𝑊̅̅ ̅̅ ̅̅  polysaccharide in this study, something which 

provides an additional reason to explore the effects of increased collision 

frequency.   

Now, the 10.1 ± 0.6% solubility resulting from 240 min collisions of the 16  0.25ʺ 

balls presents a puzzling hysteresis viz-a-viz performance when compared with the 

11.01 ± 0.3% maximum achieved in 120 min (see Figure 2–21). The 13.2 ± 0.3% 

obtained from the higher force per impact of the 2  0.5ʺ system can be considered 

as a more productive depolymerization process, however it still lags behind when 

compared with the 8.4% solubility expected from the first 60 min of ball milling (see 

Figure 3–2). In summary, although kaolinite definitely provides a significant 

improvement to the yields of water-soluble products, the factor of collision 

frequency certainly requires further exploration in order to maximize ball milling 

efficiency in a SPEX-8000 mixer/mill and likely other mechanochemical systems 

too.     
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Figure 3-3: Solubility % of α-chitin when milled by 16  0.25ʺ (turquoise/orange) and 2  

0.5ʺ (blue/red) balls without (2:0 g:g) and with kaolinite (1:1 g:g) for 240 min 

(turquoise/blue bars in pH 7.0 and orange/red in pH 2.9).   

3.3.2 Effect of increased packing and balls-to-chitin (BtC) ratios (intense 
ball milling) on α-chitin  

3.3.2.1 Fast amorphization  

X-ray diffraction (XRD) data for α-chitin (2 g) processed with 1  0.5ʺ and 72  0.25ʺ 

balls  for milling times between 15 and 120 min are shown in Figure 3–4 [packing 

and BtC were quintupled (5  3.3% = 16.5%, and 5  8.2 ≈ 40.2)]. It is important to 

note that temperature of the outer surface of the vial was monitored with a  

thermocouple and did not exceed 50 °C in any case (ca. 10 °C increase from the 

3.3% packing experiments). Figure 3–5 shows the CrI values of α-chitin over milling 

time (min) when processed with 1  0.5ʺ / 72  0.25ʺ balls. Almost half of the 

polysaccharide’s crystallinity (48%) is lost in the first 15 min, a result which took the 
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less intensive 16  0.25ʺ system approximately 60 min. In the next 15 min, the 16.5% 

packing system brings α-chitin’s CrI down to 33.5%, which is at the same level as 

the 120 min plateau of the more efficient of the 3.3% packing systems (see Figure 

2–8). This crystallinity behaviour indicates at least a three-fold decrease in milling 

time and can be associated with the increased collision frequency of the higher-

packing/higher-BtC system. This intensive ball milling manages to amorphize the 

polysaccharide to a CrI as low as 25.9% after 75 min of total processing time, where 

the crystallinity of the material exhibits an interesting resistance for times up to 120 

min. The reader is reminded here that the average standard deviation of CrI values 

is ±2.5 units (see footnote xxxvi) with a maximum of ±3.2 units arising from just the 

precision of the XRD technique (see last paragraph of Section 2.3.2). Therefore, the 

“oscillating” trend in Figure 3–5 highlights the need for reproduction of this set of 

experiments. The plateau for the crystallinity index at 26.7 ± 0.9% possibly 

correlates with the 25 ± 3% higher crystallinity values that the Segal method gives 

for cellulose samples when compared to the average of three other methods18 (see 

Section 2.1.2). The above explanation implies the possibility that the CrI for those 

four samples (observed at 26.7 ± 0.9%) are actually close to zero. That would mean 

that achieving absolute amorphous α-chitin is possible in less than 2 h with the 

intense ball milling conditions described here (16.5% packing / 40.2 BtC). However, 

future researchers should consider the possibility of reagglomeration and 

coalescence phenomena taking place during mechanochemical processes.19-21   
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Figure 3-4: XRD patterns of α-chitin (2 g) milled with 1  0.5ʺ / 72  0.25ʺ balls for 15 (black), 

30 (red), 60 (orange), 90 (blue), and 120 (green) min (16.5% packing / 40.2 

BtC). Dotted lines mark the intensities: 2251 (red), 1469 (blue) at 19.20°; 1899 

(red), 1176 (blue) at 16.00°. CrI values are: 33.5% [(2251 - 1899) × 100 / 1051] 

for red signal, and 27.4% [(1469 - 1176) × 100 / 1069] for blue. The intensities 

of all data have been offset relative to the 120 min sample by whole multiples 

of 200 a.u. 

         

Figure 3-5: Crystallinity Index (CrI)% of α-chitin over milling time (min) when processed 

with 1  0.5ʺ / 72  0.25ʺ balls (16.5% packing / 40.2 BtC; blue data) and with 16 

 0.25ʺ balls (3.3% packing / 8.2 BtC; red data).  
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Wanting to record potentially useful information regarding likely polymorphism 

phenomena for the crystalline fraction, Figure A3–12 presents the intensity ratio for 

reflections (110)/(020) (possibly reflecting strength of α-character) over milling 

time (min) for the 16.5% (green data) as well as the two 3.3% packing systems 

discussed in Chapter 2. It is interesting to notice that the trends for the two 0.25ʺ 

balls systems (green and red data) are the same for the first 75 min (ratio drops in 

the first 30 min, raises in the next 30, and drops again for the 75-min sample). The 

higher BtC system exhibits a wider range of values for the ratio [from 1.84 (30 min) 

to 2.60 (60 min) vs from 2.02 (30 min) to 2.24 (60 min) for the 8.2 BtC one] suggesting 

a more dynamic ball milling process (something which intuitively makes sense).lviii 

Moreover, in none of the samples did the ratio increase above 2.76, which is the 

sum of the value for native α-chitin (2.60) and the maximum standard deviation 

(0.16). These analog trends for the three systems might be meaningful only when 

contrasted with a hypothetical continuous decline of the ratio with increased milling 

time (the reader can imagine no “ups and downs”).lix  

3.3.2.2 Fast solubilization  

From the XRD data collected and their interpretation, it is evident that the increased 

collision frequency of the 16.5% packing/40.2 BtC system amorphizes α-chitin 

                                                           
lviii The reader is reminded that standard deviation for the (110)/(020) ratio from duplicate 

XRD measurements of two samples did not exceed 0.16 (see Section 2.3.2).  
lix The data set is presented here in order to create a record for a future researcher to 

further investigate possible polymorphism phenomena. Thinking in entropy terms, α-

character should have been decreasing with increasing milling time.  
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(possibly to absolute levels) faster than the 3.3% packing/8.2 BtC systems. 

Therefore, solubilities of samples which were milled with 68–70  0.25ʺ / 2  0.5ʺ 

balls [hence slightly higher packing (17.5%)] were explored in an attempt to 

maximize them.lx Figure 3–6 reveals that the 42.8 BtC system gave 19.3 ± 0.6% 

soluble products in 2 h (blue data in pH 7.0), while the 85.6 BtC one achieved the 

same levels (19.6 ± 1.6%) in 1 h. These results along with the ones for double the 

milling time (4 h and 2 h points for 42.8 and 85.6 BtC respectively) imply the 

possibility of a proportional relationship between balls-to-chitin mass ratio (BtC) 

and milling time (the higher the BtC, the less milling time required for a desired 

solubilization result). Overall, both systems exhibit a logarithmic growth with 

solubilities for the 42.8 BtC plateauing ca. 36% after 6 h milling, while the ones of the 

85.6 one reaching as high as 45.5 ± 0.8%.lxi lxii Figure 3–7 shows the development of 

color in both ball milled (from white to darker shades of grey) and water-soluble 

soluble (from colorless to darker shades of orange-brown) products. Similarly to 

Section 2.3.6, pigmentation is hypothesized to arise from Maillard-type reactions.  

                                                           
lx The addition of a second 0.5ʺ ball probably raised the frequency of higher impact 

collisions as a maximum of 63-65 °C was measured when a thermocouple came in contact 

with the balls and inner walls of the vial immediately after milling for hours.  
lxi Water soluble products were slightly increased in pH 2.9 (1.6 ± 0.9 solubility units) just 

as expected (red data are for BtC 42.8).  
lxii Figure A3–13 shows the X-ray diffraction patterns of the insoluble residue from the pH 

7.0 solubility tests. Crystallinity indices are in between 74 and 82%; at similar levels as 

those of the 16 × 0.25ʺ balls set (see Figure A2–18).      
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Figure 3-6: Solubility % of α-chitin when ball milled with 68-70  0.25ʺ / 2  0.5ʺ balls (17.5 

% packing); BtC 42.8 at pH 7.0 (blue), 2.9 (red), and 85.6 at pH 7.0 (green).  

Figure 3-7: Colour development in ball milled and water-soluble α-chitin products when 

processed with 68-70  0.25ʺ / 2  0.5ʺ balls (17.5% packing / 42.8 BtC) for 0-

2-4-8 h.  
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3.3.2.3 Fast and deep depolymerization, deacetylation trend, and a liquid 
assisted grinding (LAG) test  

Figure 3–8 shows the FT-IR spectra of milled α-chitin with 68-70  0.25ʺ / 2  0.5ʺ 

balls (17.5% packing / 85.6 BtC) for 60 (green), 120 (blue), 240 (pink) and 360 (red) 

min (green data of Figure 3–6). The main qualitative difference with the spectra of 

the samples milled with 16  0.25ʺ (see Figure A2–16) is that the signals of intense 

milling here are evidently smoother in the 1600–1400 cm-1 region. More 

specifically, the amide II band does not exhibit its two components (1558 and 1541 

cm-1) associated with the doubly and singly hydrogen bonded N-acetyl group. Its 

maximum absorbance is at 1548 cm-1 and its ratio with the methine group (2874  

cm-1) is plotted in Figure 3–9. The first 60 min of milling reveal a decrease of the 

degree of acetylation (DA)  to 85.4 ± 0.8% from 95.0 ± 5.6% for native α-chitin. After 

that, the DA remains stable at 84.4 ± 0.9% until 360 min milling.lxiii Looking at the 

chain backbone, the glycosidic linkage reveals a 24.7% drop (from 1.440 to 1.084) 

in the first 60 min (Figure 3–10), which is at least 3-fold that of the 3.3% packing/8.2 

BtC system [7.5% (from 1.440 to 1.332)]. After that, the rate of DP reduction slows 

ca. 6.6 times to a linear decline of y = -0.0009·x + 1.1473 (R2=0.9891; y is the FT-IR 

ratio and x is milling time in min) until 360 min where the absorbance ratio is 58% 

                                                           
lxiii The  amide I split ratio (1621 cm-1 /1652 cm-1) followed the same trend as the 1548 cm-1 

/2874 cm-1  peak ratio dropping at 0.845 for the 1 h sample (from 1.146), reaching as low 

as 0.820 for the 2 h sample and then rising at 0.875 and 0.915 for the 4 and 6 h samples 

respectively (average standard deviation was 0.007). That behaviour is in parallel lines to 

that for the 3.3% packing/8.2 BtC system (see Figure 2–16) only with ca. 0.062 higher ratio 

values.   
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of its “native” level (from 1.440 to 0.836). Comparing the FT-IR data with those from 

Figure 3–6, it is clear that solubility is inversely proportional to glycosidic linkage 

content in analogy to the lower collision frequency system in Chapter 2. More 

specifically, the FT-IR ratio probing depolymerization is in a linear relationship with 

solubility from 2 to 6 h milling time [y = -81.237·x + 114.01 (R2 = 0.9894; y is the 

solubility % and x is the 1154 cm-1 /2874 cm-1 ratio); see green data in Figure 3–6 ]. 

This allows prediction of α-chitin solubility properties by manipulating the BtC ratio 

and acquiring FT-IR spectra, something which is applied in Chapter 4. Finally, the 

spectra reveal that concurrent controlled deacetylation is possible to a low extent 

(ca. 10%) with higher collision frequency systems.  

Liquid assisted grinding (LAG) was tested by adding 180 μL deionized water (0.01 

mol) in the 85.6 BtC system (hence 0.18 μL/mg) and milling for 2 hours.lxiv After some 

treatment with mortar/pestle and drying, FT-IR measurements revealed a ratio for 

the glycosidic linkage content of 1.21 ± 0.03. This value is clearly higher than 1.06 

± 0.05 obtained with dry milling (see Figure 3–10), therefore one can hypothesize 

that liquid water does not assist depolymerization of α-chitin. It might be a challenge 

for future researchers to clarify whether the adsorbed moisture (5.5 wt.%) of α-

chitin favours depolymerization (i.e. experiment with absolute dry mass).  

 

                                                           
lxiv After the milling cycle, the mass had some crystal chunks and did not stick on the inner 

steel walls of the vial as with usual dry milling.   



161 
 

 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

11001150120012501300135014001450150015501600

A
b

so
rb

a
n

ce
 (

a
.u

.)

Wavenumber (cm-1)

0.017

0.020

0.023

0.026

0.029

0.032

280029003000
0.010

0.015

0.020

0.025

0.030

0.035

1135114511551165

Figure 3-8: 1600–1100 cm-1 region of infrared spectra of milled α-chitin with 68-70  0.25ʺ / 2  0.5ʺ balls (17.5% packing / 85.6 

BtC) for 1 (green), 2 (blue), 4 (pink) and 6 (red) h. Insets show the reference band (3000–2800 cm-1) and glycosidic 

linkage (1169–1135 cm-1) regions. Orange dotted lines highlight the intensities for reproduction of the ratios which 

probe depolymerization and deacetylation for the 4 h sample (the bands at 2874, 1548, and 1154 cm-1 absorb 0.0291, 

0.0688, and 0.0272 respectively).  
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Figure 3-9: FT-IR data (1548 cm-1 /2874 cm-1  peak ratio) and degree of acetylation (DA%) 

for  milled  α-chitin  with 68-70  0.25ʺ / 2  0.5ʺ balls (17.5% packing / 85.6 BtC) 

plotted in green data (inset table records the exact values and standard 

deviations). Blue data is for the 16  0.25ʺ balls system (3.3% packing / 8.2 BtC) 

plotted in detail in Figure 2–20.   

 

Figure 3-10: FT-IR data (1154 cm-1 /2874 cm-1  peak ratio) for  milled  α-chitin  with 68-70  

0.25ʺ / 2  0.5ʺ balls (17.5% packing / 85.6 BtC) plotted in green data (inset table 

records the exact values and standard deviations). Blue data is for the 16  0.25ʺ 

balls system (3.3% packing / 8.2 BtC) plotted in detail in Figure 2–19.   
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3.3.2.4 Depolymerization of chitosan  

Figure 3–11 shows the FT-IR spectra of high MW chitosan (green), as well as milled 

with 42.8 (blue) and 85.6 (red) BtC [68 × 0.25ʺ / 2 × 0.5ʺ balls (17.5% packing)] for 

30 min. The main qualitative differences with the α-chitin spectra of Figure 3–8 are: 

the reduced absorbances of all three amide bands in the region 1700-1300 cm-1, 

the rise of a relatively strong shoulder of amide II at 1589 cm-1 (likely NH2 

deformation),22-24 the shifting of the carbon-hydrogen vibrations to lower 

frequencies (e.g. α-chitin’s alkyl stretch at 2931 cm-1 appears at 2916 cm-1 in 

chitosan), the absence of amide B, and the shifting of amide A to higher frequencies 

(hydrogenic region is not shown to narrow the presentation of data). The most 

intense of the C-H bands appears at 2866 cm-1, which is 8-9 cm-1 lower than α-

chitin’s reference band.lxv Using that vibration as a reference, the DA of the unmilled 

sample was 20.9 ± 0.6% (1552/2866 cm-1/cm-1 ratio is 0.589 ± 0.018), which is within 

the range given by its supplier (DD>75%). The DA values for the 42.8 and 85.6 BtC 

milled samples were 20.6 ± 0.4% (IR ratio 0.580 ± 0.012) and 21.2 ± 0.1% (IR ratio 

0.599 ± 0.003) respectively, which practically means that deacetylation did not 

occur during the 30 min of both high collision frequency conditions. On the other 

hand, depolymerization was clearly observed with the 1151/2866 cm-1/cm-1 ratio 

dropping from 0.869 ± 0.037 for the unmilled sample, to 0.782 ± 0.027 for 42.8 BtC, 

to 0.738 ± 0.004 for 85.6 BtC. The latter ball milling performance represents a ca. 

                                                           
lxv Compared to α-chitin, the weaker hydrogen bonding network of chitosan possibly allows 

different conformations to the carbon-hydrogen bonds.  
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15.0% DP reduction from the untreated chitosan, which is slightly higher than the 

12.4% expected for the 85.6 BtC system of α-chitin (predicted IR ratio is 1.26; see 

0-60 min slope of Figure 3–10). This can be attributed to the stronger hydrogen 

bonding network of the acetylated polysaccharide and allows a hypothesis of 

comparable molecular weights.lxvi The reduced collision frequency of the 42.8 BtC 

system achieved an approximate 10.0% depolymerization of Sigma’s high MW 

chitosan. That performance might be comparable with the 33.5% CrI of α-chitin 

produced from 30 min milling with 1  0.5ʺ / 72  0.25ʺ balls (16.5% packing / 40.2 

BtC; see Figure 3–5).  

 

 

                                                           
lxvi The higher 1154 cm-1/2874 cm-1 ratio for native α-chitin (1.44 vs. 0.87) does not 

necessarily mean that its glycosidic linkage content is proportionally higher to that of 

unmilled high-MW chitosan. Figure A3–14 shows a NAG5 FT-IR spectra with a 1154 cm-1 

/2874 cm-1 ratio of 2.40. Signals of NAG, NAG2, and α-chitin are overlaid for comparison.  
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Figure 3-11: 1700–1100 cm-1 region of infrared spectra of high MW chitosan (green), as well as milled with 42.8 (blue) and 85.6 

(red) BtC [68 × 0.25ʺ / 2 × 0.5ʺ balls (17.5% packing)] for 30 min. Insets show the reference band (3000–2800 cm-1) 

and glycosidic linkage (1167–1135 cm-1) regions. Orange dotted lines highlight the intensities for reproduction of the 

ratios which probe depolymerization and deacetylation for the 42.8 BtC sample (the bands at 2866, 1552, and 1151 

cm-1 absorb 0.0331, 0.0192, and 0.0259 respectively). 
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3.3.2.5 A hypothesis on α-chitin molecular weight (MW)  

When high MW chitosan from Aldrich [Brookfield viscosity 800–2000 cP (or mPa·s 

in SI), DD>75%) was milled with 68–70  0.25ʺ / 2  0.5ʺ balls  for 4 h (BtC 42.8), a 

solubility of 26.3 ± 1.2% in pH 7.0 (same level as α-chitin), and 98.0 ± 0.9% in pH 

2.9 was measured. The latter result underlines the significant differences in 

solubility between chitin and chitosan in acidic environments and can serve as 

indication of the possible negligible deacetylation of chitin under the intense ball 

milling conditions described. The former comprises preliminary experimental 

evidence of possibly comparable molecular weight ranges between native α-chitin 

used in this thesis and Aldrich’s high-MW chitosan. Although it is accepted that a 

higher viscosity measurement arises from a higher MW polymer, to the best of my 

knowledge, literature lacks a review of a relationship between Brookfield viscosity 

measurements and average MW for chitin/chitosan. However, a few chitosan 

studies have reported the following results: 14 mPa·s corresponds to 87 kDa,25 100 

mPa·s to 119 kDa,26 200 mPa·s to 300 kDa,26 461 mPa·s to 532 kDa,25 >400 mPa·s to 

570 kDa,27 which are in better mutual agreement compared to 128 kDa from 6 

mPa·s,28 400 kDa from 10 mPa·s,29 and 1239 kDa from 289 mPa·s,28 that are possibly 

overestimating the average MW of their polysaccharide samples. Considering the 

above literature results, it is not unreasonable for Sigma Aldrich’s 800–2000 mPa·s 

Brookfield viscosity measurements to correspond to molecules of approximately 

980–2400 kDa. On the basis of the almost identical solubility of α-chitin in neutral pH  
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rising from 4 h intense ball milling (25.9 ± 0.3% vs 26.3 ± 1.2% for high-MW 

chitosan), as well as the weaker hydrogen bonding network for the deacetylated 

chains, it is not irrational to expect that the molecular weights of the native α-chitin 

sample from ChitinWorks do not exceed 2400 kDa.lxvii Further studies would be 

needed to support this conclusion and this is challenging given the generally 

insoluble nature of α-chitin. One could imagine that ionic liquids, which have the 

potential to dissolve chitin,30 would possibly be useful in obtained MW data [see 

work from the Moores group (https://doi.org/10.26434/chemrxiv.7312070.v3)].   

3.3.2.6 Proposed mechanistic considerations  

 Regardless of the challenges in the field of chitin MW estimation, what matters 

primarily in this set of experiments is that water-soluble product yields have been 

significantly and systematically improved from those in Chapter 2. The higher 

packing and BtC ratios have resulted in higher collision frequencies than those of 

the 16  0.25ʺ system, which in turn have statistically increased glycosidic bond 

rupture [observed as a 0.38 drop (from 1.44 to 1.06) of the 1154 cm-1/2874 cm-1 

absorbance ratio in 2 h milling, see Figure 3–10].lxviii Electron spin resonance (ESR) 

spectra of ball milled chitin and chitosan acquired by Sasai et al. confirmed the 

                                                           
lxvii That rationale can provide a starting point for the formation of future hypotheses 

regarding chitin MW determinations.  
lxviii A future challenge for researchers can be the study of the 1154 cm-1/2875 cm-1 FT-IR 

absorbance ratio for α-chitin samples with CrI values below 30% (hence possibly totally 

amorphous) and solubilities higher than ca. 20% as achieved in this section with packing 

and BtC values higher than 16.5% and 40 respectively.   

https://doi.org/10.26434/chemrxiv.7312070.v3
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expected homolytic cleavage of covalent bonds (possibly including the glycosidic 

ones) during this mechanochemical process.31 When chitin particles (finer than ca. 

63–75 μm) were milled in a 60 Hz stainless steel system of 5.9 BtC, radical 

concentration reached a maximum (ca. 5.2·1017 spin numbers/g) after 30 min of 

collisions and decreased by approximately 15% after 90 min milling (a >80% DD 

chitosan exhibited a similar behaviour). Computer simulations of the ESR spectra 

revealed four spectral components, one of which was hypothesized to result from 

glycosidic bond scission (observed as a single broad-line spectrum)lxix and the 

other three from subsequent hydrogen abstraction from the ring carbons.31 

Although this challenging task, which requires significant computational efforts,32 

did not provide a definite assignment of the single broad-line spectrum to a C1 

centered radical, it certainly provides a strong reference for future researchers of 

polysaccharide mechanochemistry as the aforementioned unpaired electron 

system was stable enough to be identified experimentally in radiated disaccharide 

crystals (sucrose).33     

Now, given that particle size reduction was clearly demonstrated for the systematic 

amorphization experiments (from >500 μm to <100 μm, see Section 2.3.4), it is 

logical to hypothesize that the higher collision frequency of this set reduces the 

average particle size via simultaneous disruption of intermolecular hydrogen 

                                                           
lxix Intriguingly, this component was the major one for chitosan ball milling and the second-

major one for chitin.  
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bonding and homolytic glycosidic linkage cleavage (see Figure 3–10). As 

discussed in Section 2.1.3, collisions of steel surfaces in the SPEX system are to a 

good approximation perfectly elastic (restitution coefficient 0.95-1.00),34 hence the 

Hertz theory of impact has been applied to explain the essentials of the ball 

deformation geometry,35 as well as to determine the impact duration, pressure, and 

deformed volume.36 Maurice and Courtney36 have found that when a half inch 

stainless steel ball collides with 3.9 m/s on a curved surface of the same material 

(e.g. the vial’s inner walls or another ball) in a SPEX system, the impact duration 

(total time of ball compression and subsequent relaxation) is ca. 31 μs, the Hertz 

radius is 620 μm,lxx and the maximum pressure is 3.30 GPa.lxxi One can imagine that 

as the first nanoseconds of the steel-chitin contact increase, the radius of the 

stressed area increases too. A fraction of the α-chitin particle gets trapped in 

between colliding media and eventually is subjected to plastic deformation, which 

will potentially result in fragmentation of the particle.lxxii The phenomenon is likely to 

proceed via crack initiation and propagation,20 which can be hypothesized to 

involve force distribution (discussed in Section 2.3.5.2) in elementary α-chitin fibril 

                                                           
lxx The area of the contacting surfaces between a 0.5ʺ steel ball and a particle of native α-

chitin  is illustrated approximately on Figure A3–15.   
lxxi For comparison, the contact time of a colliding steel ball in a Fritsch Pulverisette 7 (P7) 

planetary ball mill (relative impact velocity of 4.5 m/s) was calculated at 39 μs, the Hertz 

radius at 670 μm, and the maximum pressure at 6.3 GPa (37).  
lxxii Collision modeling has proposed three stages for a collision. The first stage where the 

deformation of both ball and powder is within an elastic regime and its duration is very 

short compared to the total collision time. The second is that of the plastic deformation of 

the powder, and the third one is considered again elastic with stress distribution beyond 

the Hertz radius (20).  



170 
 

volumes. Ultimately, after compression and relaxation (hence past the 

microseconds of the collision), statistical rupture of intermolecular hydrogen bonds 

and glycosidic linkages is the outcome which is reflected in the results of the 

solubility tests,  XRD diffractograms and FT-IR spectra presented in this thesis 

(Figure 3–12).  

 

Figure 3-12: Proposed mechanistic considerations towards mechanochemical 

depolymerization of α-chitin. Elementary α-chitin fibril volumes trapped in 

between colliding balls are subjected to disruption of intermolecular hydrogen 

bonds and homolytic cleavage of glycosidic linkages through force distribution 

(orange dotted arrows).  

3.3.3 Effect of intense ball milling on α-chitin’s conversion to levulinic acid 
(LA)   

Previous studies in the group have shown that the reactivity of α-chitin towards acid-

catalyzed hydrolysis under microwave irradiation and aqueous conditions to yield 

levulinic acid (LA) was limited to ca. 12.3 ± 0.7 wt.% (average of 3 α-chitin samples). 

These low levelslxxiii were hypothesized to arise from the crystalline and insoluble 

nature of the native sample of the biopolymer. Having demonstrated the significant 

                                                           
lxxiii Compared to 32.0 wt.% LA from glucosamine hydrochloride and 24.6 ± 0.6 wt.% from 

the three chitosan samples of Sigma-Aldrich (low-medium-high MW).  
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decrease in the crystallinity index (below 30% in 75 min) and increase in solubility 

(above 35% in 6 h) achieved by increased collision frequency (see Section 3.3.2), 

LA yields were assessed for chitinous samples which were produced using 

increasing milling times with the 17.5% packing/42.8 BtC system.   

Firstly, a feel of the GC-MS method precision was obtained by running triplicates 

for each sample.lxxiv The average RSD value for triplicate LA/HA peak area ratios of 

8 samples (3 × 8 = 24 injections) was 0.97%, which is three times lower compared 

with the average RSD for the duplicate injections of the four standard LA solutions 

used to prepare the calibration curve (3.12%, see Table A3–1). The highest one was 

2.94% (LA/HA peak area ratio for an extract of the 5 h milled α-chitin reaction 

mixture was 0.300 ± 0.009).lxxv This means that the standard deviation in LA yield of 

a GC-MS injection did not exceed  ±1.9 wt.% (with the average being  ±1.4 wt.%). 

Secondly, the precision of the extraction step was tested with duplicates on three 

reaction mixtures (native α-chitin and milled for 5 and 8 h). Figures A3–16 and A3–

17 show the two chromatograms for the duplicate extraction of a unique 8 h milled 

α-chitin reaction mixture, which presented the highest RSD (12.4% based on 

triplicate GC-MS injections). The first one exhibits a 17.2 wt.% LA yield, and the 

second a 20.0 wt.% (hence the average is 18.6 ± 2.0 wt.%). Overall, the LA/HA 

ratio’s standard deviation for the three (reaction mixture) duplicate extractions was 

                                                           
lxxiv “Sample” refers to a unique extract of a unique microwaved reaction mixture, which 

was injected in the GC-MS system.  
lxxv The 0.300 ± 0.009 peak area ratio corresponds to 23.9 ± 1.9 wt.% LA (see Figure A3–

3).   
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±0.012, hence each extraction carried an average error of ±2.1 wt.% LA. 

Cumulatively, the overall standard deviation (from extraction and injection 

together) for LA yield from a unique microwave reaction mixture was  ±2.5 wt.% (= 

√1.42 + 2.12).38  

Figure 3–13 shows that the three yields of LA from ball milled α-chitin (18.1 ± 2.8 

wt.%) did not exceed the levels of the standard deviation of the triplicate microwave 

runs for the native sample (16.9 ± 2.5 wt.%).lxxvi Taking into account the significant 

solubility differences of those α-chitin samples (see Figure 3–6), the data of this set 

of six aqueous microwave reactions (blue bars in Figure 3–13) provides sufficient 

evidence of the fact that the ball milling performance of the 17.5% packing/42.8 BtC 

system does not give rise to an increase in LA yield.lxxvii This puzzling result seems 

to be confirmed from the chitosan experiments (green bars), the yields of which are 

in acceptable consistency with the published ones (see introductory paragraph of 

this section).lxxviii Considering the LA yields of 24.6 ± 3.5 wt.% from 4 h milled high-

MW chitosan and 20.0 ± 3.5 wt.% from  5 h milled α-chitin, it is not unreasonable to 

expect a comparable molecular weight for the acetylated chains.lxxix Although the 

                                                           
lxxvi Overall standard deviation for LA yield from a random MW-run (so anyone of the green 

or blue bars in Figure 3–13) is  ±3.5 wt.% (= √2.52 + 2.52) (38). 
lxxvii With α-chitin solubility quadrupling from 4 h intense ball milling, LA yields were 

expected to be at least doubled (2 × 16.9 = 33.8 wt.%).     
lxxviii The aqueous aliquots (after extraction) were observed to be of increasing darkness 

according to the following reaction-mixture sequence: α-chitin (native), chitosan high-

MW, α-chitin 4 h milled.   
lxxix The reader is reminded here of the close proximity of the solubilities of ball milled high-

MW chitosan and α-chitin in pH 7.0 (see Section 3.3.2.5). 
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results of this set of experiments are somewhat disappointing, efforts to maximize 

the yields of water soluble products from α-chitin by mechanochemical means were 

still pursued, as N-acetyl-D-glucosamine and chito-oligosaccharides would also be 

highly desirable products.   

   

Figure 3-13: Levulinic acid yields (wt.%) produced from native and ball milled chitosan 

high-MW (green bars) and α-chitin (blue bars) via microwave assisted 

conversion (for analytical data see Table A3–2). Ball milling was with 17.5% 

packing/42.8 BtC for 4, 5, 8 h.   

3.3.4 Effect of the combination of intense ball milling and kaolinite on α-
chitin solubility  

After achieving systematically positive results with regards to produce α-chitin-

derived water-soluble species (in the region below 50%) using kaolinite and intense 

ball milling, it was only natural to combine the two into a set of solubilization 

experiments. Figure 3–14 shows the solubility values of α-chitin over milling time 

(h) when processed with 2  0.5ʺ / 68-70  0.25ʺ balls and kaolinite (1:1 g:g; BtP 

42.8). In the first two hours, the system reveals a more active process than that 
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without kaolinite achieving the production of 50.3 ± 2.5% water-soluble species 

(84% increase from the 27.3% solubility produced using the 85.6 BtC system).lxxx 

After that, its productivity starts to level out entering a logarithmic phase where it 

reaches 73.7 ± 2.8% soluble α-chitin in 4 h milling.lxxxi That value represents a 1.9 

times higher solubility than when ball milled without kaolinite (39.2% in Figure 3–6), 

which signifies the system’s optimum performance time (75.8 ± 1.2% soluble 

products were obtained at 6 h corresponding to a 1.7-fold rise from 45.5%). 

Wanting to test a lower packing/BtC value, the 1:1 α-chitin:kaolinite mixture was 

milled with 1  0.5ʺ / 48  0.25ʺ balls for 90 min. The sample’s solubility in pH 7.0 

was 27.91 ± 1.36%, which is clearly lower than the ca. 39.1% expected with  2  0.5ʺ 

/ 68  0.25ʺ balls for 90 min [the neutral solubility values of 0, 0.5, 2 h milling runs 

fall into a straight line  with y = 22.247·x + 5.7733 and R2 = 0.9999 (y is solubility % 

and x is milling time in h)]. These data form a solid basis for future kinetic studies. 

The average solubility difference between pH 7.0 and 2.9 for the 2-4-6 h milling 

experiments is 11.6 ± 0.2% (RSD 1.5%). When comparing that value with the 1.6 ± 

0.9% solubility difference between the two pHs for intense ball milling without 

kaolinite (ca. 7-fold increase, see red/blue data Figure 3–6), the significant 

difference (10.0% solubility units) along with the very low relative standard 

                                                           
lxxx Comparison is made in terms of the mass of water soluble products (mg) produced 

from 1000 mg α-chitin (hence the reader should recall the solubility values of the 85.6 BtC 

set in Figure 3–6 and not the ones with 42.8 BtC).    
lxxxi The reproducibility of ball milling for this set of experiments was tested when the 2 and 

4 h runs were repeated; sample solubilities in pH 7.0 were 49.40 ± 2.14% and 67.67 ± 

0.17% respectively. Therefore, 4 h of ball milling generally gives 70.7 ± 4.3% solubility. 
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deviation (1.5%) is likely indicative for possibly new types of reactions (perhaps 

including deacetylation) occurring during the process with kaolinite. At 7 h, the 

increase of water soluble products stops, hence further increases in milling time 

were considered beyond the scope of this work. That fact coincides with an 

increase in the difference between solubilities for the two pHs (from 11.6 ± 0.2% to 

13.9%), and this might suggest of a change in reactivity during that phase of the 

milling process, but this would require further investigation to be unequivocal.lxxxii   

 

Figure 3-14: Solubility % of α-chitin at pH 7.0 (blue) and 2.9 (red) when ball milled with 68-

70  0.25ʺ / 2  0.5ʺ balls (17.5% packing, BtP 42.8) and kaolinite (1:1 g:g). The 

2 h milled sample was not tested in replicates in pH 2.9.  

                                                           
lxxxii All samples of water-soluble species of Figure 3–14 were kept in the fridge for further 

analysis. When the ones milled for 4 h (73.7 ± 2.8% at pH 7.0 and 85.2 ± 0.7% at 2.9) were 

examined a month after their generation, a visible suspension was observed. When 

vortexed for 10 s the particles got smaller and the solution appeared more homogeneous. 

When the sample was left for some time (e.g. 30 min) particles settled down at the bottom 

of the vial. The samples milled for 2 h (50.3 ± 2.5% at pH 7.0 and 62.1% at 2.9) were clear 

with no visible solid mass.  
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XRD data for the set of experiments here is given in Figure A3–18, where the 

patterns of α-chitin (red), and kaolinite (green) when milled  with 68-70  0.25ʺ / 2  

0.5ʺ balls [17.5% packing, 85.6 balls-to-powder (BtP) mass ratio] for 4 h, as well as 

of a 1:1 α-chitin:kaolinite mixture (blue) milled with 42.8 BtP (same packing) for the 

same time are overlaid. α-Chitin has a 33.5% CrI [(553-368) × 100% / 553] and two 

new peaks upon milling; one at 43.72°, and another at 44.64° 2θ, which is tall and 

sharp. This is indicative of possible new reactions without the effect of kaolinite. The 

intensities of kaolinite do not exceed 160 (a.u.), which when compared with those 

of the signal in Figure A3–7 reveal a loss of the clay’s native structure (with inevitable 

delamination). Their 1:1 ball milled mixture exhibits the same masked 

characteristics shown in Figure A3–10 only with lower intensities (20.0° 2θ region is 

>750 in the low BtP system while <400 for the set in this section).    

An analog slope change observed for the pH 7.0 solubility curve (blue data in 

Figure 3–14) at 2 h milling time (from linear to logarithmic) has been reported by 

the Blair group in the work which is discussed in Section 3.1.1.1 When ball milling 

1:1 cellulose:kaolinite mixtures in their 5%-packing steel SPEX system (BtP 12.5), 

the researchers have systematicallylxxxiii measured a change in the solubility curve 

slope around 1.1 h milling time (solubility at that point was ca. 45%).lxxxiv Taking into 

                                                           
lxxxiii A set of five (conditioned) kaolinites was studied.  
lxxxiv The next point reported is at 1.5 h where water soluble products were measured at ca. 

60%. This ca. 15 solubility units (%) increase from about 25 min milling comprises a small 

but not negligible hysteresis compared to the 45 (%) in the first 60 min of the experiment 

(1).  
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account that the mixer/mill equipment in between the two studies is exactly the 

same (operating frequency, vial material and dimensions) the doubling of the time 

for the change of slopes for α-chitin water-soluble products can surely be attributed 

to the significantly stronger hydrogen bonding network and probably to a 

polysaccharide of higher 𝑀𝑊̅̅ ̅̅ ̅̅  in this thesis.lxxxv The analogies between the two 

studies extend even further as both solubilization curves fade out logarithmically to 

a plateau of ca. 76% with α-chitin reaching it in 6 h and microcrystalline cellulose in 

3 h.  

Given the aforementioned discussion of the results in this section as well as of that 

in Section 3.1, the significant improvement in α-chitin solubility with the use of 

kaolinite in the ball mill process is assumed to be originating from a protonation of 

the glycosidic oxygen [O(1)]. With the delamination of kaolinite upon grinding, its 

active specific surface area (ca. 852 m2/g)1 is likely to offer its protons to the surfaces 

of α-chitin particles. However, as it has been hypothesized in Section 3.3.2.6, 

glycosidic oxygens are likely to be in a statistical decline in the collision’s trapped 

volume (which is plastically deformed) due to homolytic cleavage of glycosidic 

linkages and the several possibilities for subsequent hydrogen abstraction from 

pyranic carbon atoms. Hence, the stages of collision in which the protons of kaolinite 

are more likely to protonate glycosidic oxygens of α-chitin (and other 

                                                           
lxxxv As mentioned in Section 3.1.1, microcrystalline cellulose used from the Blair group does 

not exceed a DP of 400 (2). That value corresponds to a ca. 72 kDa MW (400×180), which 

falls in the range of Sigma Aldrich’s low-MW chitosan [Brookfield viscosity <300 cP which 

is approximated to not exceed ca. 400 kDa (see Section 3.3.2.5)].  
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polysaccharides) are either the first or the third where the collision’s regime is 

elastic,20 and stress distribution is more likely to break just hydrogen bonds and 

statistically expose glycosidic oxygens to the protons of kaolinite.lxxxvi That 

perspective might be complementing the “end-only” kinetics of the Blair group, as 

one does not limit the other.1 Finally, the logarithmic phase and 76% plateau of 

Figure 3–14 can be attributed to a particle size reduction limit which has been 

observed for cellulose ball milling.9 This empirical explanation is likely to be traced 

to reagglomeration and coalescence phenomena taking place during 

mechanochemical processes.19-21  

Reusability of the milled catalyst was tested by milling 2 g kaolinite with 68  0.25ʺ / 

2  0.5ʺ balls for 3 h and then mixing 1 g of that delaminated clay with 1 g α-chitin 

and milling with the same packing for 1 h. Solubility of the polysaccharide was found 

at 21.9 ± 0.7%, while according to y = 22.247·x + 5.7733 [see page 174 (page 199 

of the thesis’ pdf)] a 1 h milling with native kaolinite would have produced 28.0% 

water-soluble products. This difference between the two yields represents a 78.2% 

reusability, which is a promising advantage of the clay considering the intense pre-

milling it has been subjected to.    

To check for potential volatile, relatively-non-polar platform molecules formed from 

ring opening of N-acetyl-D-glucosamine, a small set of extraction experiments was 

                                                           
lxxxvi The aforementioned hypothesis does not exclude an O(1) protonation from kaolinite 

during the second (plastic deformation) stage.   
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conducted on both ball-milled and water-soluble samples produced in this section. 

When 250 μL of the water-soluble samples generated after 2 and 4 h of ball milling 

(of both pHs) were processed with 5 mL solvent (either ethyl acetate or 

chloroform),lxxxvii the abundances of chromatograms produced with the same GC-

MS method as in Section 3.2.5 were below 7000 (only noise detected). The same 

negative result was obtained also when ca. 200 mg of the 2 h ball-milledlxxxviii sample 

underwent the aforementioned extraction process.lxxxix   

3.3.5 Colorimetric approximation of reducing ends of soluble products  

From the solubility data collected and their interpretation, it is evident that the 

combination of intense ball milling and kaolinite (17.5% packing/BtP 42.8 and 1:1 

g:g chitin:kaolinite) provides optimized conditions for the mechanochemical 

conversion of α-chitin to water-soluble products. Since yields of fermentable 

reducing sugars comprise an indicative criterion for the effectiveness of a 

polysaccharide valorization method,39,40 the reducing potential of the pH 7.0 soluble 

species generated in Section 3.3.4 was of extensive scope to investigate. Reducing 

ends of chitin molecules (Figure 1–4) arise from the hemiacetal tautomeric 

equilibrium between the open-ring aldehyde (and its hydrate) form (acyclic) and 

                                                           
lxxxvii Extraction process was similar to that reported for levulinic acid (LA) (vortex at room 

temperature-centrifugation-evaporation-reconstitution).   
lxxxviii With 17.5% packing, BtP 42.8.  
lxxxix Future investigations might focus on using different solvents and maybe at higher 

temperatures.  
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the various cyclic forms (mainly α and β anomers of the pyranose).41,42 xc The most 

convenient and communicative methods to measure concentrations of reducing 

sugars in depolymerized polysaccharide samples are colorimetric assays,44,45 with 

more than five oxidizing agents reported in literature.46-48 All these assays attain 

similar qualitative results but vary in their detection limits, sensitivity, linear 

quantification range and operating conditions (temperature and pH).48 Most of them 

express the concentration of reducing sugar molecules (analytes) usually in g/L, 

hence in Table 3–1, a conversion of the % solubilities of Figure 3–14 to solubilities 

in g/L provides the basis for further analysis. The methods most studied over the 

past decades have been the Nelson-Somogyi (NS), and the 3,5-dinitrosalicylic acid 

(DNS).49-51 The latter was selected as a starting point since it has been applied often 

in the field of cellulose hydrolysis.52-54   

Table 3-1: Conversion of % solubility (pH 7.0) of ball milled α-chitin products (Figure 3–14) 

to solubility in g/L based on the actual mass (g) which was solubilized in 7.5 mL 

water.  

Milling time 
(h) 

Solubility % Soluble mass (g) Solubility (g/L) 

avg st. dev. avg st. dev. avg st. dev. 

0.5 16.71 2.93 0.0189 0.0023 2.5 0.3 

2 50.31 2.53 0.0623 0.0082 8.3 1.1 

4 73.72 2.76 0.0989 0.0218 13.2 2.9 

6 75.77 1.25 0.0857 0.0079 11.4 1.0 

7 74.12 3.44 0.0854 0.0103 11.4 1.4 

                                                           
xc The proportion of the acyclic forms for various aldohexoses has been found to not exceed 

1% (43).    
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3.3.5.1 Dinitrosalicylic acid (DNS) method  

The 3,5-dinitrosalicylic acid (DNS) assay was first presented by Sumner and 

Graham in 1921 to measure reducing sugars in the urine.55 The basis of the method 

lies on the concurrent oxidation of functional sugar groups and the reduction of DNS 

(yellow compound) to 3-amino-5-nitrosalicylic acid (orange compound) when 

alkaline conditions and heat are applied. Although the pure form of the latter 

molecule has an absorption maximum at 458 nm, reproducible measurements for 

the assay are obtained for wavelengths above 520 nm.56 The oxidizing reagent was 

subsequently advanced by the addition of Rochelle salt (sodium potassium tartrate), 

phenol and sodium bisulfite, which protect from dissolved oxygen, enhance and 

stabilize the reaction color respectively. The concentrations of all the components 

of the DNS reagent were optimized by Miller in 1959 on the basis of maximum color 

development at 575 nm upon 5 min reactions with equal volumes of glucose 

solutions in a boiling water bath. In summary they are: 44 mM DNS, 0.25 M NaOH, 

0.18 M Rochelle salt,xci 21 mM phenol, and 4.0 mM Na2SO3. The reagent could 

quantify reducing sugars up to 0.2 g/L.12 In 1987, as part of the efforts for 

standardizing protocols for the measurement of cellulase activities, the International 

Union of Pure and Applied Chemistry (IUPAC) has modified the aforementioned 

concentrations on the basis of 25–40% sugar-sample/DNS-reagent volume ratio and 

readings at 540 nm to: 33 mM DNS, 0.35 M NaOH, 0.77 M Rochelle salt, 61 mM 

                                                           
xci Addition of the Rochelle salt to the reaction mixture is suggested by Miller immediately 

after color development and before its cooling due to interference with bisulfite’s role.  
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phenol, and 31.0 mM Na2S2O5.
xcii The reagent here could quantify reducing sugars 

up to 5 g/L (possibly up to 10 g/L).13  

In preliminary experiments, a 44 mM DNS reagent was prepared in approximation 

to the Miller method (in the absence of Rochelle salt and phenol) and reacted 

accordingly (ca. 93 °C oil bath) with equal volumes of standard solutions of N-

acetyl-D-glucosamine (NAG) in the range of 1.3 to 14.7 g/L.xciii After ca. 3 min of 

heating, a yellow to orange color change was observed for the >8.0 g/L NAG 

solutions, which was qualitative confirmation of the method even at concentrations 

much higher than those designed for. However, when UV-Vis spectra were 

acquired, all signals were saturated with their intensities in the targeted wavelength 

region (below 600 nm) being higher than the spectrometer’s 0.0–1.5 (AU) linear 

dynamic range.  

Therefore, it was realized that the concentration of 3,5-dinitrosalicylic acid had to 

be lowered. Figure 3–15 shows the UV-Vis spectra of initial reaction mixturesxciv 

between equal volumes of a standard glucose solution and DNS reagents of 0.702 

(red), 0.351 (orange), 0.176 (green), and 0.088 (blue) mM 3,5-dinitrosalicylic acid. 

It is clear that the 44 mM 3,5-dinitrosalicylic acid of the Miller method has to be 

diluted at least 250 times to have a smooth peak at ca. 371 nm. Moreover, in order 

                                                           
xcii Just as in the Miller method, reaction mixtures developed the color of the product upon 

5 min heating in 100 °C.  
xciii The total reaction mixture volume was 4000 μL.  
xciv Initial reaction mixture means before the application of heating.  
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to have the least absorbance possible in the region higher than 500 nm [e.g. below 

0.010 (AU)], it is suggested to dilute 500 times (blue data are for 0.088 mM 3,5-

dinitrosalicylic acid in the DNS reagent).     

 

Figure 3-15: UV-Vis spectra of initial reaction mixtures between equal volumes of a 

standard glucose solution and DNS reagents of 0.702 (red), 0.351 (orange), 

0.176 (green), and 0.088 (blue) mM 3,5-dinitrosalicylic acid. Inset reads more 

detail in the 500–520 nm region.   

Although both IUPAC and Miller DNS reagents are intensely alkaline, they are not 

exactly at the same level. In the former case a 0.35 M NaOH solution offers a pH of 

13.60, while in the latter the concentration of 0.25 M brings the oxidizing reagent to 

a pH of 13.40. Figure A3–19 shows UV-Vis spectra of 1500 μL of a 1.86 mM glucose 

solution after being reacted upon microwave irradiation for 5 min at 100 °C with 

1500 μL IUPAC-like DNS reagents [0.088 mM 3,5-dinitrosalicylic acid, ca. 0.9 M 

tartaric acid disodium salt dihydrate, 62 mM phenol, 32 mM Na2S2O5] of the 
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following pH values: 12.80  (blue), 13.24 (green), and 13.60 (red).xcv When 

comparing the intensities of this small set of signals at 540 nm, it is clear that a pH 

difference in the order of 0.20 units (from 13.40 to 13.60) corresponds to a ca. 0.055 

difference in absorbance (from 0.121 to 0.176), which represents a significant  

increase (45%) in 3-amino-5-nitrosalicylic acid production. Therefore, a pH of 13.60 

was selected for further studies as it would provide a sensitive response to reducing 

sugar concentrations.   

Both IUPAC and Miller DNS reagents use sulfite substances (Na2S2O5 and Na2SO3 

respectively) in order to stabilize the color developed in the presence of phenol 

(presumably by scavenging dissolved oxygen). However, more recent DNS assays 

seem to find them unnecessary.57-59 In order to investigate the effect of that 

component, IUPAC-like and sulfite-free DNS reagents were reacted with two levels 

of glucose concentration. Figure A3–20 shows UV-Vis spectra of 1500 μL of 1.86 

(blue/red) and 0.93 (turquoise/orange) mM glucose solutions after being reacted 

upon microwave irradiation for 5 min at 100 °C with 1500 μL IUPAC-like 

[blue/turquoise; 0.088 mM 3,5-dinitrosalicylic acid, 0.40 M NaOH, ca. 0.9 M tartaric 

acid disodium salt dihydrate, 62 mM phenol, 32 mM Na2S2O5] and sulfite-free 

[red/orange; 0.088 mM 3,5-dinitrosalicylic acid, 0.39 M NaOH, 0.77 M tartaric acid 

disodium salt dihydrate, 18 mM phenol] DNS reagents. The clearly higher 

absorbances at 540 nm of the sulfite-free assays at both levels of glucose 

                                                           
xcv Heating in an oil bath was found inefficient when switching to test tubes of thicker glass.  
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concentration led to the exclusion of that component from further experimentation. 

Likewise, Figure A3–21 exhibits enhanced absorbance at 540 nm for phenol-

containing DNS reagent; therefore that component was included in the following 

assays.xcvi  

As shown in Figure 3–7, water soluble products contained intensely coloured 

species. Therefore, dilution was considered necessary in order to bring the above 

520 nm analyte absorbance to levels which are comparable to those of the selected 

DNS reagent (0.088 mM 3,5-dinitrosalicylic acid) in the reaction mixture [e.g. at 

least below 0.100 (AU)]. Figure 3–16 exhibits the UV-Vis spectra of duplicate 

measurements of 1:20 (orange-red) and 1:40 (turquoise-green) dilutions of the most 

concentrated and intensely-coloured water-soluble products of Figure 3–14 (88.07 

± 3.53% or 13.1 ± 1.9 g/L from 7 h ball milling).xcvii Considering the instrument’s 

precision, the 520 nm absorbance of the 1:20 dilution (0.66 g/L) is found below 0.100 

and that of the 1:40 (0.33 g/L) below 0.060. Hence, in order to quantify the reducing 

sugars into monomeric equivalents, glucose and N-acetyl-D-glucosamine 

calibration curves aimed at concentrations below 0.33 g/L.     

                                                           
xcvi Future researchers might try and avoid the use of toxic phenol by optimizing the other 

components of the DNS assay or/and considering less hazardous substitutes proposed 

like cysteine (60).  
xcvii The actual soluble mass of the 7 h milled sample in 7.5 mL of pH 2.9 was 97.9 ± 14.0 

mg, which corresponds to a solubility of 13.1 ± 1.9 g/L.  
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Figure 3-16: UV-Vis spectra of duplicate measurements of 1:20 (orange-red) and 1:40 

(turquoise-green) dilutions of the most concentrated and intensely-coloured 

water-soluble products of Section 3.3.4 (88.07 ± 3.53% from 7 h ball milling). 

The DNS reagent of 0.088 mM 3,5-dinitrosalicylic acid diluted with equal 

volume of a standard glucose solution (blue) is overlaid for comparison 

purposes. Inset reads more detail in the 500-550 nm region. Intensity of the 1:40 

dilution at 540 nm is 0.042 ± 0.011.  

Figure 3–17 shows three glucose calibration curves for three DNS assays. The red 

one is with DNS reagent A [0.088 mM 3,5-dinitrosalicylic acid, 0.4079 M NaOH (pH 

13.61), 0.766 M tartaric acid disodium salt dihydrate (MW 230.1 g/mol), 17.0 mM 

phenol] and the blue one is with DNS reagent B [0.088 mM 3,5-dinitrosalicylic acid, 

0.3997 M NaOH (pH 13.60), 1.063 M tartaric acid disodium salt dihydrate (MW 230.1 

g/mol), 21.6 mM phenol]. Data for both were obtained by 5 min microwave runs at 
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100 °C between equal volumes of DNS reagent and glucose solution (1500 μL).xcviii 

The green one was obtained by Saqib and Whitney when 4 mL of DNS reagent C 

[44 mM 3,5-dinitrosalicylic acid, 0.4 M NaOH (pH 13.60), 1.063 M Rochelle salt (MW 

282.1 g/mol)] reacted with 1 mL glucose solution upon 5 min heating in a boiling 

water bath.58 Although DNS reagents A (red) and B (blue) revealed very good 

linearity for the concentration ranges presented, their response to glucose was less 

sensitive to reagent C (green) (slopes are evidently lower than 0.2359).xcix 

Moreover, the quantification limits for DNS reagents A and B are clearly higher (> 

0.50 mM) than that of reagent C (<0.20 mM). These differences between the assay 

of reagent C and the other two can be attributed to the 2000 times higher 3,5-

dinitrosalicylic acid to glucose molar ratio in the former case.c ci With more nitro 

groups around the open-ring aldehydes of glucose, it is reasonable for the assay of 

reagent C to produce higher concentrations of 3-amino-5-nitrosalicylic acid 

compared to those of reagents A and B. The slightly higher slope (sensitivity i.e. 

resolution) and quantification limit of reagent’s B assay compared to that of reagent 

                                                           
xcviii UV-Vis spectra for the calibration curve of reagent’s B assay can be consulted in Figure 

A3–22.  
xcix The y = α·χ + β equations correspond to x values (glucose concentrations) in mM.  
c On the basis of the 1.00 mM glucose reaction mixture, the 3,5-dinitrosalicylic acid to 

glucose molar ratio for the assay of reagent B is 0.088 (0.088 mM/mM × 1 μL/μL), and for 

the assay of reagent C 176 (44 mM/mM × 4 μL/μL). Hence, reagent C initiates all reactions 

of its calibration with 2000 times (176 ÷ 0.088) higher 3,5-dinitrosalicylic acid to glucose 

molar ratio.  
ci That is assuming that the amounts of thermal energy transferred to the reaction mixture 

and UV-Vis detector responses are equal. Moreover, the assumption should include 

negligible effects of Rochelle salts and phenol.  
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A can be attributed to its higher concentrations of tartaric acid disodium salt 

dihydrate [39% (from 0.766 to 1.063 M)] and phenol [27% (from 17.0 to 21.6 mM)].cii  

Figure A3–23 exhibits the UV-Vis spectra of standard N-acetyl-D-glucosamine 

(NAG) solutions of 0.594 (orange), 0.927 (green), 1.224 (blue), 1.484 (red) mM after 

being reacted upon microwave irradiation for 5 min at 100 °C with DNS reagent A. 

Unlike the results with glucose (red data in Figure 3–17), and despite the stronger 

absorbances below 1.00 mM, the signals revealed a lack of linearity for the 

concentration range 0.59–1.22 mM (y = 0.1589·x + 0.0026, R2 = 0.8833).ciii 

Considering also the scarcity of DNS assays, which might quantify reducing sugars 

from chitin into N-acetyl-D-glucosamine equivalents, DNS reagent B was applied to 

ball milled α-chitin products with the scope to obtain an approximation of their 

reducing potential in glucose equivalents.  

                                                           
cii pH values of all three DNS reagents were the same (ca. 13.60).  
ciii A loss of linearity to lower absorbance values was also observed for glucose 

concentrations higher than 1.50 mM, which might be the reason why Saqib and Whitney 

have not experimented with higher concentrations (58).  
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Figure 3-17: Glucose calibration curves for DNS assays with reagent A [red; 0.088 mM 3,5-

dinitrosalicylic acid, 0.4079 M NaOH (pH 13.61), 0.766 M tartaric acid disodium 

salt dihydrate, 17.0 mM phenol] and reagent B [blue; 0.088 mM 3,5-

dinitrosalicylic acid, 0.3997 M NaOH (pH 13.60), 1.063 M tartaric acid disodium 

salt dihydrate, 21.6 mM phenol] obtained by 5 min microwave treatments at 

100 °C [volumes of DNS reagent and glucose solution were equal (1500 μL)]. 

Assay of reagent C [green; 44 mM 3,5-dinitrosalicylic acid, 0.4 M NaOH (pH 

13.60), 1.063 M Rochelle salt] was obtained by Saqib and Whitney in a similar 

way (volumes of DNS reagent and glucose solution were 4 and 1 mL 

respectively). The y = α·χ + β equations correspond to x values (glucose 

concentrations) in mM. Secondary horizontal axis reads glucose 

concentrations in g/L. UV-Vis spectra for reagent’s B assay are shown on Figure 

A3–22.   

Figure 3–18 illustrates UV-Vis spectra of 2.5 (red), 8.3 (green), and 11.4 (blue) g/L 

ball milled α-chitin products after1500 μL of their corresponding diluted aliquots 

[0.18 (red), 0.21 (green), and 0.24 (blue) g/L] were treated by microwaves for 5 

min at 100 °C with 1500 μL DNS reagent B [0.088 mM 3,5-dinitrosalicylic acid, 

0.3997 M NaOH (pH 13.60), 1.063 M tartaric acid disodium salt dihydrate, 21.6 mM 
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phenol]. When comparing the intensities at 540 nm before and after the reaction, it 

is clear that the species from the samples of 6 and 2 h milling give positive proof for 

reducing sugar oxidation, while the ones from 0.5 h not. Based on the 

corresponding glucose calibration curve (reagent B), Table 3–2 approximates the 

concentration of reducing sugars in the ball milled samples in glucose equivalents 

(Glc-eq in g/L). With the standard deviation of absorbances at 540 nm expected to 

not exceed 0.011 (see Figure 3–16), potential reducing species from the 0.5 h 

milling sample (0.002 ± 0.011) coincide with the hypothesized quantification limit of 

the calibration curve (0.62 mM). More importantly, however, the absorbance 

elevations originating from the redox reaction (final – initial reaction mixture) of the 

2 (0.031) and 6 (0.054 - 0.031 = 0.023) h milling samples exceed the standard 

deviation for the set of UV-Vis measurements in this section (0.011). Hence, the 

corresponding 0.79 and 0.91 mM measured glucose equivalents (0.14 and 0.16 g/L 

respectively) can be extrapolated to glucose equivalents (g/L) before their dilution. 

The more than 230% Glc-eq increase (from 1.6 to 5.7 g/L) for the 0.5 to 2 h milling 

samples, and the ca. 36% Glc-eq increase (from 5.7 to 7.7 g/L) for the 2 to 6 h ones 

are in line with the corresponding solubility growths of those samples (2.5-8.3-11.4 

g/L; see Table 3–1). Therefore, it is meaningful to consider the percentage of soluble 

species that those Glc-eq concentrations correspond to. With the deviations in 

between the 63-69-68% for the set of samples studied with DNS reagent B being so 

small (66 ± 3%), it is only reasonable to assume that glucose equivalents offer an 

acceptable approximation of reducing sugar quantification of the ball milled 
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samples in this chapter. However, the remaining ca. 34% can be hypothesized to 

arise from a different response of N-acetyl-D-glucosamine (or/and potential chitin 

oligomers) to DNS reagents; and since a lack of linearity was observed when a 

calibration curve for NAG was attempted, another colorimetric method was 

pursued.civ   

 

Figure 3-18: UV-Vis spectra of 2.5 (red), 8.3 (green), and 11.4 (blue) g/L ball milled α-chitin 

products after1500 μL of their corresponding diluted aliquots [0.18 (red), 0.21 

(green), and 0.24 (blue) g/L] were treated by microwaves for 5 min at 100 °C 

with 1500 μL DNS reagent B [0.088 mM 3,5-dinitrosalicylic acid, 0.3997 M 

NaOH (pH 13.60), 1.063 M tartaric acid disodium salt dihydrate, 21.6 mM 

phenol]. Inset focuses on the 530–550 nm region and includes the 

corresponding signals before the application of microwave irradiation (orange 

below 0.010 for 0.18 g/L sample, lighter green at 0.020 for 0.21 g/L and lighter 

blue at 0.030 for 0.24 g/L).   

                                                           
civ In addition, when the rest of the visible spectrum was examined, it was observed that the 

samples of 2 and 6 h milling exhibited their maximum absorbance (of final – initial reaction 

mixture) at ca. 471 nm [their intensities reached 0.059 (vs 0.031) and 0.097 (vs 0.054) 

respectively]. Hence, a quantification of reducing sugars at 540 nm might prove not fitting 

for water-soluble products of chitin ball milling.  
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Table 3-2: Reducing sugars approximation [glucose equivalents (g/L)] in water-soluble α-

chitin species generated upon optimized ball milling conditions. Absorbance 

values (Figure 3–18) were translated into glucose equivalents by DNS 

reagent’s B calibration curve (y = 0.1979·χ – 0.126), which was assumed to be 

linear beyond 0.96–1.48 mM.  

Measured quantity by DNS assay 
Milling time (h) 

0.5 2 6 

Absorbance at 540 nm 

final 0.002 0.050 0.082 

initial 0.005 0.019 0.028 

final - initial -0.003 0.031 0.054 

Diluted glucose equivalents 
mM 0.62 0.79 0.91 

g/L 0.11 0.14 0.16 

Dilution factor 14 40 47 

Glucose equivalents 
g/L 1.6 5.7 7.7 

% of soluble 
species 

63 69 68 

 

3.3.5.2 Schales’ method   

The Schales assay was invented by Selma and Otto Schales in 1945 as a result of 

their efforts to determine glucose in blood with a colorimetric procedure that would 

not require strict conditions and formation of a new color. The method is based on 

the disappearance of ferricyanide (yellow) upon its reduction by the acyclic forms 

of aldohexoses in strongly alkaline conditions.61 In 1971, Imoto and Yagishita 

developed a practical Schales reagent (0.5 g/L K3Fe(CN)6, 0.5 M Na2CO3), which 

provided reproducible measurements of N-acetyl-D-glucosamine (NAG) with 15 

min heating of 1.3/1.0 v/v Schales-reagent/sugar solution ratio.14  

Figure 3–19 shows the N-acetyl-D-glucosamine calibration curve prepared for the 

method (the corresponding UV-Vis spectra are on Figure A3–24). The data show 
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good linearity, and they are in good agreement with that of Eijsink and Horn.62 cv  Just 

as in the DNS method, dilution of the analyte was considered necessary to bring its 

420 nm absorbance to levels which are comparable to those of the Schales reagent 

in the initial reaction mixture (ca. 0.91). Figure 3–20 exhibits the UV-Vis spectra of 

2000 μL Schales reagent when mixed with 1500 μL of 15 (pink), 20 (red), 25 

(orange), 30 (green), 35 (blue), 47 (purple) fold dilutions of intensely-coloured 

water-soluble products of Section 3.3.4 (75.77 ± 1.25% from 6 h ball milling). The 

inset reveals a linear function between the absorbances at 420 nm (y) and the 

dilution factor (x): y = 0.0082·x + 0.3823. Using that equation, it was calculated that 

a ca. 0.91 absorbance for the initial reaction mixture would require a dilution factor 

for the 6 h ball milled soluble products of 65. 

 

Figure 3-19: N-acetyl-D-glucosamine (NAG) calibration curve for the Schales assay. The y 

= α·χ + β equation corresponds to x values (NAG concentrations) in μM. 

Secondary horizontal axis reads NAG concentrations in g/L. UV-Vis spectra for 

the assay are shown on Figure A3–24. 

                                                           
cv The 5 min shorter heating time in this study can be hypothesized to result from the 

efficiency of the microwave process.  

y = -0.0018x + 0.899
R² = 0.9959

0 0.02 0.04 0.06 0.08

0.1

0.5

0.9

0 50 100 150 200 250 300 350 400

N-acetyl-D-glucosamine (g/L)

A
b

so
rb

a
n

ce
 a

t 
4
2
0
 n

m

N-acetyl-D-glucosamine (μM)



194 
 

 

Figure 3-20: UV-Vis spectra of 2000 μL Schales reagent when mixed with 1500 μL of 15 

(pink), 20 (red), 25 (orange), 30 (green), 35 (blue), 47 (purple) times diluted 

intensely-coloured water-soluble products of Section 3.3.4 (75.77 ± 1.25% from 

6 h ball milling). Inset plots the absorbances at 420 nm against the dilution factor 

[the value for the 15-fold dilution (0.396) was excluded as it deviated 

significantly from the linear equation reported (R2 was ca. 0.91)].    

Figure 3–21 shows the UV-Vis spectra of 2.5 (light blue), 8.3 (green), and 11.4 

(orange) g/L ball milled α-chitin products after1500 μL of their corresponding 65-

fold dilutions [0.039 (darker blue), 0.128 (green), and 0.176 (red) g/L; signals for 

initial reaction mixtures absorb above 0.78 at 420 nm] were treated by microwaves 

for 10 min at 100 °C with 2000 μL Schales reagent. When comparing the intensities 

at 420 nm before and after the reaction, it is clear that the species from all three 

samples give positive proof for reducing sugar oxidation. Based on the 

corresponding N-acetyl-D-glucosamine calibration curve, Table 3–3 approximates 

the concentration of reducing sugars in the ball milled samples in monomer 

0

0.2

0.4

0.6

0.8

360 380 400 420 440 460

A
b

so
rb

a
n

ce
 (

A
U

)

Wavelength (nm)

y = 0.0082x + 0.3823
R² = 0.9818

0.50

0.60

0.70

20 25 30 35 40 45

Dilution factor



195 
 

equivalents (NAG-eq in g/L). Just like in the DNS assay, ferricyanide disappearance 

originating from the redox reaction (initial - final reaction mixture) of the 0.5 (0.102), 

2 (0.340) and 6 (0.566) h milling samples increases with increasing milling time. 

Hence, the corresponding 73, 235, 371 μM measured NAG equivalents (0.017, 

0.053, 0.084 g/L respectively) can be extrapolated to NAG equivalents (g/L) before 

their dilution. The 220% NAG-eq increase (from 1.1 to 3.5 g/L) for the 0.5 to 2 h 

milling samples, and the 58% NAG-eq increase (from 3.5 to 5.5 g/L) for the 2 to 6 h 

ones are in line with the corresponding solubility growths of those samples (2.5-8.3-

11.4 g/L; see Table 3–1). Therefore, it is meaningful to consider the percentage of 

soluble species that those NAG-eq concentrations correspond to. With the 

deviations in between the 43-42-48% for the set of samples studied with Schales 

reagent being so small (44 ± 3%), it is only reasonable to assume that NAG 

equivalents offer an acceptable approximation of reducing sugar quantification of 

the ball milled samples in this chapter. However, the remaining ca. 56% can be 

hypothesized to arise from a different response of chitin oligomers to Schales 

reagent.  
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Figure 3-21: UV-Vis spectra of 2.5 (light blue), 8.3 (green), and 11.4 (orange) g/L ball milled 

α-chitin products after1500 μL of their corresponding 65-fold dilutions [0.039 

(darker blue), 0.128 (green), and 0.176 (red) g/L; signals for initial reaction 

mixtures absorb above 0.78 at 420 nm] were treated by microwaves for 10 min 

at 100 °C with 2000 μL Schales reagent. Pink dotted line with transparency 

marks the absorbance level at 0.78.    

Table 3-3: Reducing sugars approximation [NAG equivalents (g/L)] in water-soluble α-

chitin species generated upon optimized ball milling conditions. Absorbance 

values (Figure 3–21) were translated into NAG equivalents by Schales reagent 

calibration curve (y = - 0.0018·χ + 0.899).   

Measured quantity by Schales assay 
Milling time (h) 

0.5 2 6 

Absorbance at 420 nm 

final 0.767 0.476 0.231 

initial 0.869 0.816 0.797 

Initial - final 0.102 0.340 0.566 

Diluted NAG equivalents 
μM 73 235 371 

g/L 0.017 0.053 0.084 

Dilution factor 65 65 65 

NAG equivalents 
g/L 1.1 3.5 5.5 

% soluble species 43 42 48 
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What is important for the results of Section 3.3.5 is not the determination of 

concentrations of reducing sugars as both of the colorimetric methods used display 

differential behaviours towards different degrees of polymerization (DP),58,62 rather 

that they responded in a consistent way to the increases of solubility for increasing 

milling time. Since the unknown variability in molecular weights could have led 

traditional separation techniques (chromatography, electrophoresis, analytical 

centrifugation) to characterization problems (broad peaks/bands),63 a mass 

spectrometry (MS) approach was undertaken to determine the composition of the 

water-soluble products of the optimized ball-milling process.  

3.3.6 Mass spectrometry analysis of soluble products with matrix assisted 
laser desorption ionization (MALDI)   

Due to their negligible vapor pressure and complex structures (involving various 

non-covalent interactions), mass spectrometry analysis of biopolymers (proteins, 

nucleic acids, saccharides) has started developing only in the 1980s with the 

introduction of ion desorption techniques [fast atom bombardment (FAB), 

electrospray ionization mass spectrometry (ESI MS), and matrix-assisted laser 

desorption–ionization (MALDI)].64 Unlike proteins, for which peptide bond scission 

is likely to lead to relatively defined fragmentation patterns, carbohydrates undergo 

more complex fragmentations due to cleavages of glycosidic linkages as well as 

bonds between several stereogenic centres comprising the rings.65-67 The influence 

of the nature of the parent ion on fragmentation is significant with positively charged 

analytes receiving more attention.68 Besides those with amino groups (e.g. 
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chitosan), saccharide molecules are neutral and therefore their basicity potential is 

low for attraction of protons. Even when they do protonate, those species 

decompose much faster than adducts with metal cations (mainly from group I), 

which consequently are of more use for qualitative analysis.66,67 cvi Ionization 

efficiencies have been reported to vary with molecule size and desorption method 

with MALDI demonstrating good reproducibility on quantitative analysis of 

oligosaccharide mixtures.67,69 However, by introducing a charge-tag 

(derivatization), stronger intensities and independency of metal adducts can be 

gained regardless of the analyte concentration.67   

Therefore, at Memorial University, a method has been developed for analyzing 

sugars using MALDI-TOF MS.70 The process reduces the need for time- and solvent-

intensive chromatographic separations, which is desirable in greener analytical 

method development.71 Applying the procedure to water-soluble milled products, 

oligomers of GlcNAc with degrees of polymerization (DP) between 1 and 5 were 

detected as their derivatives using glycidyltrimethylammonium chloride GTMA. 

Figure 3–22 shows a representative reaction scheme for the formation of the 

derivatives on the primary alcohols of chitin molecules.cvii The quaternary 

ammonium tag offers increased sensitivity towards carbohydrate analytes.15   

                                                           
cvi It has been hypothesized that complexation of the cation occurs via the participation of 

multiple oxygen lone pairs (67).  
cvii The primary alcohol is the most reactive/nucleophilic site for both steric and electronic 

reasons (72,73).  
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Figure 3-22: Representative reaction scheme for the formation of chitin-GTMA derivatives.  

3.3.6.1 Qualitative analysis  

Figure 3–23 shows MALDI-TOF mass spectra of the soluble products from ball 

milling α-chitin with 68-70  0.25ʺ / 2  0.5ʺ balls (17.5% packing, BtP 42.8) and 

kaolinite (1:1 g:g) for 0.5 h (A), 2 h (B) and 6 h (C). In all spectra, the intensities of 

the derivative species in decreasing order are: dimer (m/z 540.3), monomer (m/z 

337.2), trimer (m/z 743.4), tetramer (m/z 946.5), and pentamer (m/z 1149.6).cviii cix cx 

As expected based on the previously described colorimetry/solubility data, the 

intensities of the peaks assigned to the dimer and monomer increase with 

increasing milling time. The intensities of the corresponding dehydrated fragments 

([ion − H2O]+, m/z 319.2, 522.3, 725.4, 928.5, 1131.6) decrease with oligomer size. 

                                                           
cviii Representative data regarding the m/z precision are given in Figures A3–4 and A3–5. 

The standard deviation for the set of samples analyzed did not exceed 82.5 ppm [±0.021 

for the (GlcNAc)5 derivative peak (average m/z among 7 spots was 1149.609) of the 6 h 

milled sample], which provides a very good level of certainty for the first decimal. Figure 

A3–25 shows the structures and exact masses of the analytes (monomer to pentamer).  
cix For details on m/z accuracy see Appendix A3.1.   
cx If the average spectrum for the blank derivatization reaction (Figure A3–6) was not 

subtracted from the ones for the analyzed samples, the intensities of the GTMA peaks (m/z 

116.1, 134.1), which in general were at least 6 times higher then those for the analytes, 

would not have allowed the relative heights of the five analytes to be highlighted (spectra 

for the samples would have appeared like in Figure A3–28).  
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GlcNAc is known to dehydrate under catalytic and noncatalytic conditions to form 

Chromogen I74,75 (which with the quaternary ammonium tag used here would 

appear at m/z 319.2), and we propose that the other dehydrated fragments 

observed are formed in a similar way. The protonated fragments of the derivatives 

(m/z 338.2, 541.3, 744.4, 947.5, 1150.6) were also observed but were much weaker 

than their parent peaks [over 8 times less intense for the monomer (Figure A3–29), 

5 times for the dimer (Figure A3–27), 3 times for the trimer, 2.5 times for the 

tetramer and 2 times for the pentamer]. Underivatized oligomers (m/z 221.2, 424.4, 

627.6, 830.8, and 1034.0) were not detected. This is not surprising as the 

derivatization method can lead to a 2000-fold increase in sensitivity.15 The peaks at 

m/z 133.1 and 229.2 likely arise from degradation of GlcNAc in the ionization 

process as they were observed in spectra of GlcNAc standards (although in lower 

proportions; see inset tables with peak lists in Figure A3–29). Other minor peaks 

(m/z 429.2, 547.3, 565.3, 632.2, 835.4) were not assigned and could come from 

degradation products (either formed within the mass spectrometer or during the 

ball-milling processes). 
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Figure 3-23: MALDI-TOF mass spectra of soluble products from ball milling α-chitin with 

68-70  0.25ʺ / 2  0.5ʺ balls (17.5 % packing) and kaolinite (1:1 g:g, BtP 42.8) 

for 0.5 h (A), 2 h (B) and 6 h (C). Insets show spectra focused at m/z 300-340 

without subtracting average spectra for the blank derivatization reaction. Peak 

height at m/z 303.2 for internal standard can be compared to the monomer 

(GlcNAc) peak height at m/z 337.2. Table A3–3 records the corresponding 

detailed peak lists.  
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3.3.6.2 Quantitative analysis  

Isotopically labeled glucose (glucose-d7) was selected as an appropriate internal 

standard (IS) as it is expected that the ionization efficiencies of the GlcNAc 

oligomers will be proportional to its ionization. Furthermore, the IS’s competitive 

reaction with the derivatizing agent allowed quantitative analysis of our analytes. 

Figure 3–24 shows the analyte to IS peak height ratios for samples ball milled for 

0.5, 2, 4, 6 h. An increase in height ratio and therefore concentration for GlcNAc and 

(GlcNAc)2 is evident for the samples as milling time increases from 0.5 to 6 h, which 

correlates to the corresponding solubility/colorimetry data increase. For the 0.5 to 

2 h and 2 to 6 h milling intervals, the elevations of [GlcNAc] based on its peak height 

ratio with IS were 408% (from 0.12 to 0.61) and 87% (from 0.61 to 1.14) respectively. 

The ratio of the two percentages (408 / 87 = 4.7) is near with the corresponding 

ratio for NAG-eq. elevations given by the Schales method (220 / 58 = 3.8). For the 

dimer and trimer, the corresponding ratios between the two phases of ball milling 

(0.5 to 2 h and 2 to 6 h) are 8.1 (305/38; analyte/IS ratio changes from 0.21 to 0.85 to 

1.17) and 82.9 (325 / 4; likewise, from 0.12 to 0.51 to 0.53) respectively. This 

increasing trend for this ratio, which goes even further for the tetramer and 

pentamer, is characteristic for the specific parameters of the ball milling system 

used (SPEX 8000M, steel vial/balls, 17.5% packing, 1:1 α-chitin:kaolinite, 42.8 BtP) 

and is expected to differ with mechanochemical variations. The consideration of that 

data might provide future researchers with a basis to form new hypotheses 

regarding kinetics of polysaccharide ball milling.   
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The trimer, tetramer, and pentamer peak height ratios also rise initially (0.5 to 2 h) 

but level out after longer milling times. The tetramer and pentamer reveal an 

evident decrease from 4 to 6 h. This suggests that these oligomers likely break up 

to form GlcNAc and (GlcNAc)2 upon longer milling times. For the 0.5 and 2 h 

samples, the analyte/IS peak height ratios of m/z 295.2, 498.3, 701.3, and 904.4 

which correspond to the derivatives of the deacetylated sugars of GlcNH2, 

GlcNAc−GlcNH2, GlcNAc−GlcNAc−GlcNH2, and 

GlcNAc−GlcNAc−GlcNAc−GlcNH2 respectively, were found to be less than 10% of 

the pentamer ratio (indicative data can be found in the peak lists of the samples’ 

average spectra in Table A3–3). For the 6 h sample, the analyte/IS peak height ratios 

of m/z 295.2 (DA 0%), 498.3 (DA 50%), 701.3 (DA 67%), and 904.4 (DA 75%) were 

21, 17, 10, and 2% of the acetylated pentamer (DA 100%) ratio respectively. 

Although these values are generally higher than those for the 0.5 and 2 h samples, 

their contribution to average oligomer DA is still miniscule considering those of the 

acetylated ones. Therefore, the significantly higher solubilities of ball milled α-chitin 

in pH 2.9 (see Section 3.3.4) can be hypothesized to arise from reactions that do not 

include deacetylation. Even with higher BtC and a solid acid catalyst in the system, 

these results complement the IR data suggesting that deacetylation is minimal under 

the ball milling conditions explored. However, future researchers should consider 

the possibility of color development (see Figure 3–7) through deacetylation and 

subsequent reactions of the amino group.  
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Figure 3-24: Analyte (monomer to pentamer) to internal standard (IS) peak height ratios for 

GTMA derivatives of α-chitin oligomers generated by milling (kaolinite, 2  0.5ʺ 

/68-70  0.25ʺ balls) for 0.5, 2, 4, 6 h. Data were obtained by MALDI-TOF-MS.    

Figure 3–25 shows the calibration curves for GlcNAc and (GlcNAc)2 with correlation 

coefficients (R2) greater than 0.996 (representative spectra shown in Figures A3–29 

and A3–30).cxi cxii Using these, analysis of the spectra allows the calculation of 

concentrations (mM) and yields from ball milling α-chitin with 2 × 0.5″ /68−70 × 

0.25″ balls and kaolinite (Table 3–4). The 4 h yields for GlcNAc (3.4 wt.%) and 

                                                           
cxi When a 3.80 mM point was attempted for the calibration curve of GlcNAc, the analyte/IS 

ratio (1.44 ± 0.13) lowered the linearity to R2 = 0.9867, hence data were excluded.    
cxii Calibration curves based on the dehydrated derivative-monomer peak (and its 

summation with its parent) were considered, however linearities (R2) of the ratios with the 

IS (and its dehydrated fragment) ranged between 0.90 and 0.96. Presentation of that data 

is beyond the scope of the thesis.  
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(GlcNAc)2 (2.8 wt.%) are comparable to 3 h yields for Glc (4.3 wt.%) and (Glc)2 (3.5 

wt.%) from sulfuric acid impregnated cellulose by Dornath et al..76 The slightly lower 

values and longer milling time needed for GlcNAc and (GlcNAc)2 production can 

be a reflection of the greater degree of hydrogen bonding present in α-chitin 

compared with cellulose, the higher MW and possibly to the different ball milling 

conditions used. Microcrystalline cellulose used by Dornath et al. had a DP of 215. 

Considering the hypothesis in Section 3.3.2.5 regarding the MW of α-chitin in this 

study, the 4 h yields for GlcNAc and (GlcNAc)2 can be considered to be produced 

from a competitive depolymerization process. Mysteriously, the technological 

parameters of the ball milling process of Dornath et al. are not available to compare 

with the work here.76 Using a 500-rpm planetary ball mill (Fritsch, Pulverisette), 

alumina balls and a BtC ratio ca. 20 in a 6 h process, Yabushita et al. achieved an 

interesting composition of oligomer yields from sulfuric acid impregnated chitin 

(assumed of a certain alpha character).77 The fully acetylated trimer [(GlcNAc)3] 

revealed the highest yield with 11% and the lowest recorded was for GlcNAc 

(4.7%). Unfortunately, no calibration curve or preparation of standard solutions are 

mentioned.77 When a calibration curve for the oligosaccharide standard (GlcNAc)5 

was attempted (Figure A3–31), the correlation coefficient was unfortunately not 

acceptable (R2 <0.95). However, one can approximate that the concentrations of the 

pentamer in our samples are less than 0.60 mM [pentamer peak height ratio does 

not exceed 0.44 (= 0.24 + 0.20) in the 4 h sample]. Although the yields of GlcNAc, 

(GlcNAc)2, and related oligosaccharides are low, they can be improved in the future 
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by combining a range of pretreatment, chemical, and biochemical approaches, 

e.g., liquid assisted grinding before treatment with an enzyme cocktail.  

 

Figure 3-25: Calibration curves for GlcNAc (blue) and (GlcNAc)2 (red) prepared by GTMA 

derivatization and MALDI-TOF MS. Error bars arise from quintuplicate 

acquisitions among spots. Representative spectra are available in Figures A3–

29 and A3–30.   

Table 3-4: Concentrations (mM) measured by MALDI-TOF MS and yields (wt.%)a of GlcNAc 

and (GlcNAc)2 when α-chitin was ball milled with 2  0.5ʺ /68–70  0.25ʺ balls 

and kaolinite.  

milling 

time (h) 

GlcNAc (GlcNAc)2 

concentration 

(mM) 

Yield  

% 

concentration 

(mM) 

Yield 

% 

0.5 0.39  ±  0.07 0.6 0.21  ±  0.01 0.6 

2 1.87  ±  0.12 2.5 1.00  ±  0.06 2.6 

4 2.79  ±  0.44 3.4 1.18  ±  0.35 2.8 

6 3.49b  ±  0.20 5.1 1.39  ±  0.15 3.9 

a Yield % calculated on a mass basis (see Table A3–4).  

b Determined by derivatizing a 1:10 diluted sample of the soluble products.  
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3.3.7 Size Exclusion Chromatography (SEC) analysis of soluble products  

Results from the mass spectrometric analysis provided evidence for the 

mechanochemical production of chito-oligosaccharides in the DP range 1-5. As the 

application of that procedure was new in general, we wanted to complement the 

data set with a chromatographic method. SEC was performed on standard samples 

of NAG, (NAG)2, (NAG)4, (NAG)5 and (NAG)6. Mn values for these were obtained via 

conventional calibration against PEG/PEO standards and compared with their real 

Mr. SEC data consistently gave higher than anticipated Mn values (Table A3–5), the 

expected narrow dispersities (Mw/Mn) and retention volumes of between 16.32 mL 

for (NAG)6 (our highest Mr standard) and 19.22 mL for NAG (our lowest Mr 

standard). In contrast, the chromatograms for the mixtures of water soluble 

compounds generated by milling chitin with kaolinite showed broad multimodal 

traces (Figure A3–32). The chromatograms spanned retention volumes of 13–23 mL 

and calculated dispersities were between 4 and 6. In agreement with the mass 

spectrometric data, the most intense peak corresponded to (NAG)2. However, 

products with larger retention volumes than NAG (possibly low molecular weight 

organic dehydration products) and smaller retention volumes than (NAG)6 were 

also observed. The chromatograms for samples ground for 4 to 6 h were nearly 

identical and this is in agreement with the mass spectra. Furthermore, the 

overlapping nature of the peaks compared with the standards suggests that the 

oligosaccharide mixtures are heterogeneous in nature. 
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3.4 Conclusions   

In this chapter, a thorough investigation of the effects of kaolinite and packing/balls-

to-chitin (BtC) ratios (intense ball milling) was undertaken in order to optimize the 

yield of water-soluble products from α-chitin. Using solubility tests, a 1:1 w/w α-

chitin:kaolinite mix milled with 8.2 BtP - 3.3% packing for 1 h was found to at least 

double the depolymerization efficiency of the system; confirming the significant role 

of acidity offered by the clay’s layers. However, the solid catalyst’s performance did 

not produce the expected increase in yields for longer milling times (4 h), hence 

the factor of collision frequency was investigated by concurrently raising the 

packing and BtC values higher than 16% and 40 respectively. This way, the 

crystallinity of the polysaccharide was observed to gradually decrease over a 3-

fold shorter milling time compared with the 8.2 BtC - 3.3% packing system. At the 

same time, solubility reached 36 and 45% after 6 h milling with 43 and 86 BtC 

respectively confirming that a higher BtC will result in higher yields of water-soluble 

products. FT-IR data from both α-chitin and high-MW chitosan ball milling 

confirmed that solubility is inversely proportional to glycosidic linkage content in 

analogy to the lower collision frequency system of Chapter 2. Evidence for 

deacetylation  suggests that it only occurs in the first 60 min of α-chitin milling, when 

it decreases to 85.4 ± 0.8% from 95.0 ± 5.6% for the native chains. These data 

provide the basis of my hypothesis that the α-chitin in this study and Aldrich’s high-

MW chitosan (approximated between 980 and 2400 kDa) have comparable 
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molecular weights (MW). Moreover, the data led to a new question for future 

research: “Do the increased levels of glycosidic bond rupture originate from plastic 

deformation of α-chitin particles during collisions in the ball mill?”. A possible 

computational contribution on polysaccharide ball milling might help to approach 

the answer.   

The combination of increased collision frequency along with the presence of the 

solid catalyst provided optimum mechanochemical conditions for efficient 

conversion of α-chitin into water-soluble products. In the first 2 h of milling, the 

system achieved 50.3 ± 2.5% water-soluble species increasing significantly the 

kinetics compared with the process without kaolinite. This improved 

depolymerization reaction is hypothesized to originate from protonation of 

glycosidic oxygens during the elastic phases of collisions when covalent bonds of 

pyranic rings are subjected to conformational changes. After that point, and in 

parallel to literature cellulose studies, the system started leveling out reaching a 

plateau of ca. 76% solubility in 6 h probably due to reagglomeration and 

coalescence phenomena known to occur in ball milling.   

The composition of the optimum yields of α-chitin water-soluble products (2.5, 8.3, 

11.4 g/L for 0.5, 2, 6 h milling respectively) was first assessed with a colorimetric 

approximation of reducing ends. Both dinitrosalicylic acid (DNS) and Schales 

assays responded in a consistent way to the solubility increases of the two phases 

of ball milling [232% increase (from 2.5 to 8.3 g/L) for the depolymerization/particle-
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reduction phase and 37% increase (from 8.3 to 11.4 g/L) for the 

depolymerization/reagglomeration phase]. The DNS reagent gave 230 and 36% 

increases in glucose equivalents (Glc-eq) for the two phases of the process 

respectively, while Schales reagent revealed 220 and 58% increases in N-acetyl-D-

glucosamine equivalents (NAG-eq). The differential behaviour of both assays 

towards different degrees of polymerization led to a mass spectrometric study of 

the water-soluble species. The application of a MALDI-TOF-MS method developed 

at Memorial University revealed oligomers of NAG with degrees of polymerization 

(DP) of 1 to 5. Relative quantification using an internal standard showed that the 

bigger oligomers (pentamer, tetramer, trimer) depolymerize with increasing 

milling time (increasing trends for the monomer and dimer concentrations were 

recorded accordingly). Deacetylated oligomers were found at minimal to 

negligible levels complementing the FT-IR data obtained for ball milling without 

kaolinite. N-acetyl-D-glucosamine (NAG) and N,N′-diacetylchitobiose (NAG2) were 

obtained in yields of 5.1 and 3.9 wt.%, respectively, within 6 h, which is comparable 

with yields of glucose and cellobiose from literature cellulose ball milling. These 

data agreed with chromatographic observations (SEC analysis), which showed 

broad dispersities (Ð) for the ball milled samples (Ð 4-6) in contrast to narrow ones 

for NAG-oligomer standards (Ð 1.00–1.04).     

In brief, milling α-chitin with 2 × 0.5ʺ / 68–70 × 0.25ʺ balls (17.5% packing) and 

kaolinite (1:1 g:g; BtP 42.8) revealed the most efficient mechanochemical conditions 
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for the production of chitin oligomers with the system’s optimum performance time 

being in between 2 and 4 h (>80% increase in solubility afforded by the use of the 

solid acid catalyst). Elementary α-chitin fibril volumes trapped in between colliding 

balls are subjected to disruption of intermolecular hydrogen bonds and homolytic 

cleavage of glycosidic linkages through force distribution (see Figure 3–12) and the 

improved depolymerization reaction is hypothesized to originate from protonation 

of glycosidic oxygens during the elastic phases of collisions when covalent bonds 

of pyranic rings are subjected to conformational changes.   
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Chapter 4 α-Chitin dissolution studies towards film 
casting  

4.1 Introduction and methodological approach to the problem  

Natural and synthetic polymer scaffold fabrication (hydrogels or films e.g. for tissue 

engineering) is based in two main approaches: polymer melt and polymer 

solubilization.1 Regarding those made from polysaccharides, the majority is based 

on the dissolution of cellulosic or chitinous material into a solvent system followed 

by various fabrication techniques [casting (with or without porogens), gas foaming 

(e.g. using CO2), electrospinning etc.].1,2 Polar solvents (e.g. LiCl/DMAc, NMMO), 

ionic liquids (e.g. [C2mim][OAc]), deep eutectic solvents (e.g. ChCl/urea) and alkali 

aqueous systems (e.g. alkali/urea) have been reported to lead to dissolution of the 

matrix (different types of cellulose, wood pulp or chitin at concentrations that usually 

do not exceed 12.5 wt.%) and production of hydrogels (via various gelation 

procedures like cast, mold, coagulate). However, most of those processes do not 

report the molecular weight (MW) of the polysaccharides used.2,3 Yet, in polymer 

chemistry MW is a critical parameter for the reproducibility of scaffolds, since it 

controls crucial physical properties; from rheology (including viscoelasticity) 

through to mechanics (such as tensile strength). In general, higher MW polymers 

are harder to dissolve as changes in entropy upon dissolution are less favourable; 

however, the resulting materials usually have better mechanical properties.4   
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In this chapter, studies on a set of chitins with a similar degree of acetylation (DA) 

but of 3 different MWs (high, medium, low) are described. These were performed 

to test which solvent system would be most effective in dissolving a certain 

concentration-MW combination and produce scaffolds (after appropriate gelation) 

with acceptable mechanical properties.cxiii In cases where polymer concentration is 

greater than 1/[η] by a factor of approximately 10 ([η]: intrinsic viscosity), chain 

entanglements start to influence their dynamics and rheology. For high–MW 

polymers, that concentration is generally ca. 10 mg/mL,6 and of course the 

phenomenon enhances with increasing molecular weight.4 Formation of new 

hydrogen bonding networks and intensification of intermolecular interactions in 

general is expected to lead to gelation and even phase separation.3,7,8 In parallel, 

chitin’s flexibility is inversely proportional to its degree of acetylation (DA),9,10 and 

since flexible polymers have higher solubility than stiff ones,11 the DA is considered 

equally important with MW for the production of chitinous scaffolds with tunable 

properties. Therefore, the above set of chitins served, at the same time, as a basis 

for a set of deacetylation reactions that aimed for two levels of DA (high e.g. 65% 

and low e.g. 15%) for the high and low MW samples and a medium DA (e.g. 40%) 

for the medium MW sample. Using the optimum concentration-MW-solvent-system 

                                                           
cxiii Initial experiments were designed and conducted in collaboration with the Scott group 

of the Centre for Sustainable Chemical Technologies (CSCT) of the University of Bath (UK) 

within the framework of a 3-month Royal Society of Chemistry (RSC) Researcher Mobility 

Grant. Future work on that direction can involve reactive printing of the scaffold’s surface 

for cell attachment enhancement (5).  
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combinations, the effect of DA on the mechanical (and other) properties of the 

resulting scaffolds can be investigated in the future. Figure 4–1 illustrates the most 

important experimental considerations towards α-chitin film fabrication.  

 

Figure 4-1: Main experimental considerations towards α-chitin film casting. Steps of film 

fabrication via the solution casting technique (solvent evaporation can be 

preceded by an anti-solvent treatment step) and chain entanglement for 

increasing polymer concentration. Molecular weight, degree of acetylation and 

crystallinity of α-chitin influence all phases of the process in chorus. Adapted 

from Suntornnond, R., An, J., Yeong, W. Y. and Chua, C. K. (2015), 

Biodegradable Polymeric Films and Membranes Processing and Forming for 

Tissue Engineering. Macromol. Mater. Eng., 300: 858-877. 

doi:10.1002/mame.201500028 by permission from John Wiley and Sons. © 

2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
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4.2 Experimental  

4.2.1 Mechanochemical treatment of α-chitin  

This was performed as previously described in Chapters 2 and 3.  

4.2.2 X-ray diffraction (XRD)  

This was performed as previously described in Chapters 2 and 3.  

4.2.3 Fourier transform infrared (FT-IR) spectroscopy  

Some FT-IR spectra were acquired at Memorial University of Newfoundland (MUN) 

as previously described in Chapters 2 and 3. Other spectra were acquired on a 

Spectrum 100 spectrometer with a diamond/ZnSe ATR module (PerkinElmer) at 

CSCT (University of Bath). A total of 24 scans with a 4 cm-1 resolution were signal-

averaged and stored for each measurement; the wavenumber region investigated 

ranged from 4000 to 650 cm-1. The intensities of the selected absorption bands were 

determined by the baseline correction method on the basis of the vendor’s software 

package of the instrument. Each sample was measured in triplicate and spectra 

were averaged for presentation. Reproducibility of measurements taken at CSCT 

are subject to the variable force applied to the sample (anvil force gauge was taken 

care to be at least 110).  

4.2.4 Relative viscosity of chitin in 1-ethyl-3-methylimidazolium acetate  

This was performed according to literature methods with minor modifications.12 

25.48 ± 0.28 mg of dry chitinous sample was mixed with 12.2779 ± 0.3506 g of 1-
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ethyl-3-methylimidazolium acetate (EmimAcO) in a 30 mL glass vial [average chitin 

concentration for 12 suspension preparations was 0.2076 ± 0.0046 wt.% (RSD 

2.2%)]. The caped mixture was heated in a domestic microwave oven (800W) using 

3-5 s pulses at full power. Between each pulse, the vial was removed, the mixture 

was stirred vigorously and then replaced in the microwave. After at least 100 pulses 

(and oil bath treatment at 100 °C for some samples), complete dissolution was 

monitored optically. Kinematic viscosity measurements were conducted in a 35.0 ± 

1.0 °C water bath (>20 L)cxiv using a Cannon-Fenske Routine viscometer (size 200 

No. N637, Cannon Instrument Co.) with a calibration constant of 0.1009 mm2/s2 

(cSt/s) (approximate charge volume was 7.1 mL).cxv The duplicate average efflux 

time of EmimAcO was 646.53 ± 0.04 s. Relative viscosity values for the samples are 

the average of two measurements with the average standard deviation being 2.08 

s.cxvi   

4.2.5 Chitin dissolution studies and preliminary film casting  

These are described along within the Results and Discussion section as they 

required a trial and error approach.   

                                                           
cxiv Temperature fluctuations of a 3 L water bath exceeded 1.0 °C.  
cxv Before each measurement, the charged sample was left to equilibrate thermally for ca. 

15 min and visible bubbles were taken care to be released from the liquid mass.   
cxvi Viscometer was washed with acetone in between charging of samples, and the second 

measurement of the sample was conducted by pushing the volume of the first 

measurement to the appropriate level.  
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4.2.6 Ultrasound assisted heterogeneous deacetylation of α-chitin  

Sonication experiments were conducted using a QSonica Q500 ultrasonic 

processor (output frequency 20 kHz). The probe was a standard 13 mm and the 

microtip had a diameter of 6 mm suitable for processing volumes of 5 to 50 mL. 

2.041 ± 0.014 g of chitin sample (RSD 0.7%) were charged in a 30 mL cylindrical 

glass vial and 25.0 mL of NaOH 40.0 wt.% was added along with a magnetic stir bar. 

This 1:12.5 w/v (or ca. 5 wt.%) concentration is relatively high compared to 1:22.7 

w/v13 and 1:20.0 w/v14 used in the literature for α-chitin, but lower than the 1:10 w/v  

for β-chitin.15 cxvii The vial was clamped inside the sound enclosure booth and the tip 

was immersed to a depth that was at least 1.5 times the tip diameter. The setting for 

the amplitude was in the functional range (between 20 and 50%). Pulses of 4 s ON / 

7 s OFF of 20-25 % amplitude were found to keep the 25-30 mL reaction mixture 

temperature relatively stable at 60.0 ± 1.0 °C. Sonication time reported refers to the 

time which the tip was vibrating during the aforementioned 11 s pulse, while at the 

same time the reaction mixture was under constant magnetic stirring on an ordinary 

hotplate (with no additional heating) and its temperature was monitored with a 

thermocouple.    

                                                           
cxvii Considering the available glassware (30 mL vials), the concentration used herein was 

convenient for the purpose of these preliminary experiments.  
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4.2.7 Determination of degree of acetylation (DA) by 1H NMR spectroscopy  

The samples were dispersed at 4 to 5 mg/mL in either 2 wt.% or 20 wt.% DCl in D2O 

and achieved dissolution (visually clear) when stirred vigorously at 70 °C overnight. 

Samples were filtered through cotton wool and solution-state 1H NMR experiments 

were performed using a 500 MHz Bruker Avance III spectrometer (5 mm PABBO 

BB- probe). Quantitative spectra were recorded at 25 °C with a 10 μs pulse, a 

repetition delay of 5 s and 64 scans accumulated.cxviii Spectra were processed with 

Topspin 2.1 (Bruker BioSpin GmbH). The DA value for each sample was calculated 

using the following equation:   

𝐷𝐴% = 100 ∗

𝐼(𝐶𝐻3)
3

𝐼(𝐻2 + 𝐻3 + 𝐻4 + 𝐻5 + 𝐻6)
6

 

Where I(CH3) is the integral value for the methyl group of the N-acetyl group at ca. 

1.8 ppm (corresponding to 3 protons of acetylated units only), and 

I(H2+H3+H4+H5+H6) is the integral value for the signals of the H2 to H6 protons 

between 2.8 and 4.2 ppm (corresponding to 6 protons of all units).16  

4.2.8 Relative viscosity of chitin in NaOH  

93.0 ± 0.2 mg of 67/60 chitincxix was mixed with 18.6791 ± 0.1026 g NaOH solution 

(9.70, 19.40, 29.11, 38.81 wt.%) in a 20 mL glass vial [average chitin concentration 

                                                           
cxviii The software used in CSCT was Topspin 2.1 (Bruker). Tuning and shimming were 

always conducted before data acquisition with final B0 stdDev < 0.5 Hz.  
cxix That is PG chitin milled with 67 BtC/14% packing for 60 min.  
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for 4 suspension preparations was 0.4954 ± 0.0031 wt.% (RSD 0.6%)]. The caped 

mixture was stirred for ~2 h at ca. −14 °C with a magnetic stir bar, and then placed 

in dry ice until frozen (~30 min). When thawed and stirred, stir bars were removed 

and samples were charged into 15 mL centrifuge tubes (VWR, poly-propylene). 

After centrifugation at 7500 rpm for 10 min, solution was decanted. Kinematic 

viscosity measurements were conducted at room temperature using an Ubbelohde 

type viscometer (size 1, No. C193, Cannon Instrument Co.) with a calibration 

constant of ca. 0.01 mm2/s2 (cSt/s) (approximate charge volume was 11 mL). The 

duplicate average efflux times of the 9.70, 19.40, 29.11 wt.% NaOH solutions were 

125.0 ± 0.2, 259.0 ± 1.4, 710.0 ± 1.4 s respectively. Relative viscosity values for the 

samples are the average of two measurements with the average standard deviation 

being 2.8 s.   

4.3 Results and discussion  

4.3.1 Mechanochemical depolymerization/amorphization of α-chitin  

In Chapters 2 and 3, a systematic study of α-chitin’s transformation in a 

mechanochemical system (ball mill) was carried out demonstrating the potential of 

varying the vial’s packing degree and size of milling media. Therefore, a set of three 

α-chitin samples was produced from native α-chitin for which the ball milling 

parameters and resulting FT-IR data are shown on Table 4–1 (spectra shown on 

Figure 4–2).  
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Table 4-1: Mechanochemical conditions and FT-IR data for the α-chitin sample set prepared 

for dissolution studies.[a] Spectra shown in Figure 4–2.  

Measured quantity 

α-chitin sample 

native high MW 
medium 

MW 
low MW 

mixing load (g) - 2.00 2.00 1.00 

# of 0.25'' balls - 24 32 68 

BtC ratio - 12.0 16.0 68.0 

packing %  5.0 6.6 14.0 

milling time (min) - 10 25 60 

glycosidic linkage          

FT-IR ratio 

1.423         

± 0.080 

1.316         

± 0.063 

1.194         

± 0.024 

1.116         

± 0.051 

amide II                           

FT-IR ratio 

2.736         

± 0.116 

2.503         

± 0.131 

2.366         

± 0.037 

2.349         

± 0.090 

DA%[b] 97.0 ± 4.1 88.8 ± 4.6 83.9 ± 1.3 83.3 ± 3.2 

amide I split                    

FT-IR ratio 

1.133         

± 0.013 

1.017         

± 0.005 

0.903         

± 0.001 

0.840         

± 0.009 

CrI % 91.3 83.6[c] 74.1[c] 62.2[c] 

  

[a] The minimum quantity prepared for each sample was at least 6 g to ensure sufficient 

mass for multiple production/analysis. Therefore, several milling batches were undertaken 

for each sample. Triplicate FT-IR spectra were acquired on vortex-mixed ball milled 

batches.  

[b] Calculated by the Sannan method.17  

[c] Crystallinity Index (CrI%) is an approximation obtained from its relationship with the 

amide I split FT-IR ratio when data from 3.3% packing/8.2 BtC ball milling were correlated 

(see Figures 2–8 and 2–16).  
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Figure 4-2: Infrared spectra of native (red), high MW (green), medium MW (blue), and low MW (orange) α-chitin (ball milling 

conditions and FT-IR ratios are recorded in Table 4–1). Data acquired at MUN.  

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1100120013001400150016001700

A
b

so
rb

a
n

ce
 (

a
.u

.)

Wavenumber (cm-1)

0.010

0.015

0.020

0.025

280029003000 0.010

0.015

0.020

0.025

0.030

0.035

1135114511551165



228 
 

FT-IR data are similar to those of Section 3.3.2.3 (see Figures 3–8 to 3–10) with 

degree of acetylation dropping to 88.8 ± 4.6% for the high MW and then remaining 

relatively stable at ca. 83.6% for the more milled samples. Glycosidic linkage 

content revealed clear differences with no error bar overlap (Figure A4–1).cxx Based 

on the amide I split ratio, crystallinity was found to decrease with decreasing 

molecular weight. Therefore, the sample set provided a solid basis for dissolution 

studies with common solvents used in film casting.cxxi  

4.3.2 Relative estimation of molecular weights (MW) using an ionic liquid 
(IL)   

In order to see if the above set of solid-state data on native and ball milled α-chitin 

will be reflected in a solution property, relative viscosities were measured in 1-

ethyl-3-methylimidazolium acetate [EmimAcO]. The milled set of chitins was 

expanded with Sigma’s practical grade (PG) chitin, a darker colored chitin donated 

to MUN (ChitinWorks), and two samples from CSCT (one of flaky texture and one 

of fine particles). As dry samples were required, they were vacuum dried (ca. 50 

mbar) at 105 °C for 14 h and the samples’ moisture contents were determined 

gravimetrically with an analytical balance that measures 2 decimals of the milligram 

(see Figure A4–2). The moisture content values ranged from 5.48 wt.% for native α-

chitin to 8.29 wt.% for Sigma’s practical grade (PG) chitin which were at similar 

                                                           
cxx The 1.116 ± 0.051 FT-IR ratio for glycosidic linkage content of the low MW sample is 

comparable with the 1.084 ± 0.017 obtained from 60 min milling with 68-70×0.25ʺ/2×0.5ʺ 

balls (17.5% packing / 85.6 BtC; see Figure 3–10).  
cxxi After this point, experimental work was performed in the University of Bath.  
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levels with literature.12 Moisture content of ball milled samples increased with 

decreasing MW; from 6.01 wt.% for high MW α-chitin to an average of 6.65 wt.% for 

the medium and low MW samples. Thermogravimetric analysis (TGA) was 

conducted on the high MW milled α-chitin. Moisture content was determined as 

5.74 wt.% in a ca. 21 min run (Figure A4–3) revealing a 3.2% RSD with the value 

obtained from the overnight drying gravimetric analysis. Decomposition of the 

sample (possibly including depolymerization and deacetylation) started above 240 

°C (Figure A4–4) in close agreement with literature.18,19   

Figure 4–3 compares the relative viscosities of the ball milled samples among each 

other as well as with native α-chitin and Sigma’s practical grade chitin. A decrease 

in viscosity with decreasing MW with no overlap between the error bars for the 

triplicate mass preparation of high and medium MW was observed (from 2.94 ± 

0.37 to 2.08 ± 0.06). Moreover, the viscosity of the low MW (1.08) sample is 

significantly lower than the deviation for the medium MW. Low MW chitin produced 

a clear solution in about 100 microwave pulses while the medium MW required 

around 150. These data suggest that the three ball milled samples are of clearly 

different molecular weights reflecting the FT-IR data in Section 4.3.1. The darker 

colored chitin (ChitinWorks), and the two chitin samples from CSCT (flakes and fine 

powder) had relative viscosities of 4.40 (0.2097 wt.%), 5.14 (0.2093 wt.%) and 8.56 
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(0.2097 wt.%) respectively.cxxii Native α-chitin, high MW and the fine powder sample 

from CSCT needed more pulses of the microwave treatment than the rest of the 

samples, and they were also left stirring in an oil bath at >70 °C. Although, the high 

MW and fine powder suspensions afforded clear solutions after some hours, native 

α-chitin sample had some visible particulates, so it was left at 110 °C for ca. 36 h. 

After this treatment, the solution appeared clear, hence the measurement was taken. 

However, the lower relative viscosity than that of the high MW sample (2.67 ± 0.24 

vs 2.94 ± 0.37) might be attributed to persistent crystalline domainscxxiii not easily 

spotted with the human eye as well as to possible increased intermolecular 

interactions between the chains upon cooling to room temperature. Both of these 

factors would decrease the soluble polymer concentration, hence limiting the 

preparation’s viscosity. The higher degree of acetylation (DA) of native α-chitin 

compared to the high MW sample (97.0% vs 88.8%) is hypothesized to favour 

reformation of hydrogen bonds which might have been temporarily broken at 110 

°C.cxxiv Finally, Sigma’s practical grade chitin viscosity is higher than the one 

measured by Qin et al. (2.40 vs 2.0212) but probably within experimental error 

                                                           
cxxii Replicates of kinematic viscosity measurements for these three samples were not 

conducted as the samples were not included in experimental design but also because 

efflux times were too long (exceeded 47 min).     
cxxiii Thin crystalline particulates (e.g. chitin nanofibers) not being dissolved.  
cxxiv One can also hypothesize that the chitin samples from CSCT and the darker colored 

chitin which revealed relative viscosities higher than 4.40 are possibly of lower than 89% 

DA.  
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(assuming the batches produced from the company are of a certain reproducibility 

and also considering deviations due to suspension preparation/dissolution steps). 

 

Figure 4-3: Relative viscosities of chitin samples at 0.2070 ± 0.0052 wt.% in EmimAcO. 

Dissolution process included microwave treatment. Error bars in native, high 

MW, and medium MW data are 0.24, 0.37, and 0.06 respectively arising from 

duplicate for native α-chitin and triplicate for the ball milled samples 

suspension preparations (0.2068 ± 0.0002 wt.% native α-chitin, 0.2027 ± 0.0078 

wt.% high MW, 0.2097 ± 0.0001 wt.% medium MW).  

4.3.3 Chitin dissolution studies and preliminary film casting  

4.3.3.1 In 1-ethyl-3-methylimidazolium acetate (EmimAcO)   

Before conducting the above microwave study, a triplicate mass preparation of high 

MW α-chitin in 1-ethyl-3-methylimidazolium acetate (EmimAcO) was attempted at 

a similar concentration level (ca. 0.2 wt.%) using a roller table at room temperature. 

After 5 days, only suspended particulate matter was observed, so the preparations 

were placed in a 60 °C sonication bath (100% power, frequency 37 kHz) for several 

hours in order to try and assist the dissolution process. However, visible particles 

were still observed. When the temperature was increased to 80 °C, particles were 

still visible after 2 h. As no dissolution was achieved, the vials were placed in a >100 
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°C oil bath with vigorous stirring. After overnight treatment, two of the three 

preparations appeared as clear solutions (samples labelled GM3 28 V2C and GM3 

28 V1C, Figure 4–4), however particulate matter was still visible in the third 

preparation (sample GM3 28 V3C, Figure 4–4).cxxv The progression of these 

experiments confirm that microwave heating (see Section 4.3.2) is superior to other 

methods in assisting chitinous materials to dissolve in EmimAcO, but also that 

kinetic control of the dissolution process is important (as hypothesized in Section 

1.6).  

At the same time, trials of native α-chitin with EmimAcO at the 2 wt.% level were 

attempted since that was the aim towards film casting.cxxvi A concentration of 2.14 

wt.% native α-chitin in the IL underwent the same thermal treatments as the 0.2 wt.% 

high MW suspensions above with visible particulate matter observed in every step. 

Therefore, the sample was placed in a 100 °C oil bath with vigorous stirring. After 

more than 4 days at 100–110 °C, the preparation still contained particulate matter 

[temperature was not set over 110 °C as there might be a stability issue for the ionic 

liquid.(or/and the polysaccharide) at the timescale of days]. Upon cooling, the 

mixture was very viscous, and its color was dark red-brown (Figure 4–4).  

                                                           
cxxv The yellow to orange color change can be attributed to reactions originating from 

impurities in the supplied ionic liquid.  
cxxvi Researchers at CSCT knew from experience that cellulose film casting occurs at a 

minimum concentration of ca. 1.0 wt.%. The reader might also remember from Section 

1.5.6, that chitin films with acceptable mechanical properties are usually casted from 1.5-

2.0 wt.% solutions.  
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Figure 4-4: Color comparison and appearance of EmimAcO (vial far left) and viscous 

suspensions of high MW α-chitin [triplicate mass preparation at 0.2 wt.% after 

sonication bath (60–80 °C) and stirring at ca. 100 °C] and native α-chitin (vial 

far right; 2.0 wt.% preparation after more than 4 days of stirring at 100–110 °C) 

in EmimAcO.  

During this set of experiments, it was noticed that literature reports a 6 wt.% 

solubility of α-chitin (crab, n = 35 cp) in BmimAcO at 110 °C.20 However, the 

Brookfield viscosity reported seems to be low; based on the fact that Sigma-Aldrich 

gives a range of 20–200 (or 300) cp for low MW chitosan which corresponds to 

50,000–190,000 Da. For further reference, viscosity 200–800 cp is medium MW and 

800–2000 cp is high MW (see also Sections 3.3.2.5 and 3.3.4). It is not unreasonable 

therefore to assume that dissolution at the 6% level might have been possible with 

the low MW α-chitin of the prepared set.  

After the above cumbersome dissolution trials with EmimAcO, it was hypothesized 

that a less viscous solvent system might allow more efficient dissolution via stronger 

shear forces. Hence, a 1:1 molar ratio for EmimAcO : DMSO was used to prepare a 

1.0 and 2.0 wt.% native α-chitin dispersion (with the polysaccharide being pre-
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soaked in DMSO and stirred or 3 hours).cxxvii After overnight stirring at 80 °C, the 

samples appeared as suspensions with the 2.0 wt.% preparation having more 

visible particles. Hence, temperature was gradually increased to 100 °C and 

samples were left to stir for a couple more days. Despite the potential of  increased 

kinetics, no visible dissolution was achieved (see Figure A4–5). During the course 

of experiments, and after realizing that Sigma’s practical grade chitin (PG chitin) is 

of lower MW than native α-chitin (rel. viscosity 2.40 vs 2.67), suspensions of 0.5 and 

1.0 wt.% PG chitin were prepared in 1:1 molar EmimAcO : DMSO (with overnight 

pre-soaking in DMSO). After 22 h of stirring at 100 °C, both samples had still fine 

particles suspended so they were not studied further.  

4.3.3.2 In sodium hydroxide (NaOH)  

In parallel to the preliminary experiments with the aforementioned ionic liquid, 

dissolution of the high MW α-chitin sample in 10 wt.% NaOH (at 4 °C in a cold room) 

was attempted to see if MW estimation was possible according to a published 

viscosity-light scattering study.22 After almost 3 days of stirring, a preparation of 2.28 

mg/mL remained as a suspension. Even after filtering with 0.45 μm syringe filters, 

dilutions with concentrations below 1.5 mg/mL gave relative viscosity 

measurements below 1.00 suggesting that the preparation was still a suspension.     

                                                           
cxxvii DMSO has been observed to compete with the acetate as a hydrogen bond acceptor 

with the anion of the ionic liquid comprising the inner solvation shell of cellulose chains 

(21).   
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Thinking mechanistically, when a solvent is brought in contact with a polymer 

(Figure 4-5a), it penetrates the chain matrix from the more amorphous parts of the 

fibers, and its diffusion results in swelling of the solid phase (Figure 4–5b). When 

the concentration of the solvent in the polymer reaches a critical value, 

disentanglement of the chains begins (Figure 4–5c). The macromolecules of the 

swollen interphase are then able to move in to the solvent phase (Figure 4–5d), 

leaving the solvent front to advance into more crystalline parts (Figure 4–5e).23-26 

Localized swelling has been observed in cotton fibers by optical microscopy long 

ago; creating balloon-like structures.27 More specific for this thesis, this ballooning 

effect has also been reported for cellulose samples in 7.6 % NaOH.28  

 

Figure 4-5: Stages of the polymer (black chains)-solvent (red circles) interface towards 

dissolution (a: contact, b: swelling, c: disentanglement, d: initial dissolution step, 

e: final dissolution step). Reprinted by permission from [Springer Nature 

Customer Service Centre GmbH]: [Springer Vienna] [The European 

Polysaccharide Network of Excellence (EPNOE)] by [Navard P., Wendler F., 

Meister F., Bercea M., Budtova T.] [COPYRIGHT] (2012). 
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Looking into relevant literature, Liu et al. observed that chitincxxviii absorbs double its 

weight in 40 wt.% NaOH solution after one hour soaking at room temperature (100 

g chitin absorbed 220 g solvent).cxxix Moreover, absorption (i.e. swelling) was found 

to increase with alkali concentration; soaking for 4 h in 25 wt.% NaOH resulted at ca. 

75 g alkali solution absorbed per 100 g chitin, while the performance rose sharply 

to more than 200 g/100 g chitin in 40 wt.% NaOH.cxxx cxxxi Therefore, it has been 

hypothesized that as the hydrated ion radius decreases with increasing electrolyte 

concentration, the hydrated Na+ OH− ions are able to better diffuse into the 

hydrogen bonding network of the polysaccharide chains.31 This hypothesis is 

supported by computations of the binding strength of sodium ions in cellulose of 

various water contents. Via first-principles density functional theory (DFT), 

Deshpande et al. concluded that sodium’s interaction with cellulose is not influenced 

so much from coordinate covalent bonds with the lone pairs of the polysaccharide’s 

hydroxyl groups, but more from interaction with the H2O molecules which are 

strategically oriented in between them.32 A 0.42 eV difference in binding energies 

was calculated between cases where sodium interacted with a secondary alcohol 

in the presence of one (2.74 eV) and two (3.16 eV) water molecules. Binding with 

                                                           
cxxviii The sample was of 510 kDa and 89% DA.  
cxxix Data were obtained by 10,000 rpm centrifugation. 
cxxx Interestingly, H2O contributed more than NaOH to the swelling of chitin.  
cxxxi Another study has reported that when five commercially available chitin samples (ca. 

80% DA) of a wide range of Brookfield viscosities (from 4 to 1152 cP) had been soaked in 

room temperature water for 30 min, their weight had increased from 381 to 673% (data 

were obtained by 25 min centrifugation) (29). The same method has been also applied to 

non-commercial chitosan samples (30).  
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the primary alcohol was measured at 3.36 eV in the absence of water, and at 3.52 

eV when one water molecule was present.32 For reference, adsorption energies for 

a single water molecule on different O sites of cellulose Iβ were computed from 0.26 

to 0.41 eV.33 These computational results support experimental observations of 

increased ionic conductivity (therefore mobility) with increasing hydration in 

cellulose,34 and suggest that the interaction between the hydration shell of the ions 

with the protruding groups of polysaccharides dictates the rate of their diffusion 

within the hydrogen bonding network.32,34 cxxxii  

Intriguingly, when Liu et al. soaked chitin for 4 h at reduced temperatures (−18 to 

−20 °C), absorption in 25 wt.% NaOH increased ca. 10-fold (ca. 750 g/100 g chitin) 

with the maximum value recorded for 20 wt.% NaOH (>800 g/100 g chitin). Here, 

the authors hypothesized water expansion upon freezing with subsequent 

weakening of the intermolecular hydrogen bonding network and decrystallization 

of the polysaccharide.31 However, it is only natural for one to wonder if at the 

reported temperature (−20 °C) there is actual freezing of the 20 wt.% NaOH solution 

in particular, as according to caustic soda specialists the freezing point of a ca. 19 

wt.% NaOH solution is −28 °C (Figure 4–6).cxxxiii   

                                                           
cxxxii Diffusion coefficients of Na+ and OH− in cellulose were both measured in the order of  

10-9 cm2/s (34,35).  
cxxxiii A similar graph for the freezing point of NaOH solutions is available in a handbook 

from Occidental Petroleum Corporation and OxyChem at:   

https://www.oxy.com/OurBusinesses/Chemicals/Products/Documents/CausticSoda/caust

ic.pdf. The freezing point minimum there appears to be −28 °C at 19 wt.% NaOH. 

Complementary data are also available from Avantor® Puritan Products at: 

https://www.oxy.com/OurBusinesses/Chemicals/Products/Documents/CausticSoda/caustic.pdf
https://www.oxy.com/OurBusinesses/Chemicals/Products/Documents/CausticSoda/caustic.pdf
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Figure 4-6: Freezing point (°C) of aqueous sodium hydroxide (NaOH) solutions (0-50 wt.%). 

Data based on Pickering, S. U. LXI.-The hydrates of sodium, potassium, and 

lithium hydroxides. J. Chem. Soc. , Trans. 1893, 63, (0), 890-909.  

Considering the fact that alkali solutions are reported in several solvent systems for 

chitin37,38 and cellulose,39 the dissolution power of ~20 wt.% NaOH was worth 

exploring. Hence, 0.35 wt.% of medium MW chitin sample was soaked overnight at 

−18 °C in 18.1 wt.% NaOH (appeared as a white suspension). When it was placed 

in a −80 °C freezer for 10 min, the suspension was frozen.cxxxiv When thawed and 

stirred, the suspension was transparent with no particulates visible to the naked eye. 

After leaving the solution for about a week at room temperature, chitin came out of 

solution to yield a suspension once more (Figure 4–7 shows the contrast of 

                                                           
https://www.puritanproducts.com/resources-support/technical-resources/freezing-

point-chart/. Both of these references are in close agreement with the measurements of 

Pickering (36).  
cxxxiv Total suspension mass was ca. 3.0 g.  
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transparent solution and white suspension). Going back to alkaline based solvent 

systems, high MW chitin was subjected to solubility tests using 8:4:88 wt.% NaOH : 

urea : H2O solution according to literature.40 cxxxv Suspensions were frozen at −18 

°C, however even at a concentration as low as 0.125 mg/mL dissolution was not 

achieved.      

 

Figure 4-7: Medium MW α-chitin back in white suspension (vial on the left) after its 

transparent solution (0.35 wt.% in 18.1 wt.% NaOH) was left at room 

temperature for a week. Vial on the right shows an undissolved native α-chitin 

particle (next to the magnetic stir bar in the) in transparent NaOH solution (0.43 

wt.% preparation in 21.7 wt.% NaOH) after one freeze-thaw cycle.  

Comparing the experiments of EmimAcO and NaOH, the freeze-thaw process with 

~20 wt.% NaOH seemed to provide a dissolution method with relatively short 

processing times and less intense work (considering the numerous pulses in the 

domestic microwave). Hence, it was pursued further with the aim of casting films of 

Sigma’s practical grade (PG) chitin. Concentrations of 0.41, 0.73, 1.43 and 2.69 wt.% 

                                                           
cxxxv In the field of cellulose dissolution by aqueous alkali systems, urea has been 

hypothesized to weaken the interactions between the hydrophobic surfaces consisted of 

pyranose hydrogens (41) (see also the Lindman hypothesis in Section 1.6).  
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of PG chitin were dispersed in 20.0 wt.% NaOH. The samples were stirred for 2 h in 

an ice bath, and after that they were stirred in a dry ice/acetone bath which was in 

between −13 and −18 °C. In less than 10 min, the two more concentrated samples 

became very viscous. After that, all samples underwent 3 freeze-thaw cycles with 

the use of a −80 °C freezer. Viscosity appeared to increase with increasing 

concentration, but the 0.41 wt.% sample contained particulates. Figure 4–8 exhibits 

the increased viscosity of this set, which can also be thought as swelling of the 

polysaccharide particles.  

 

Figure 4-8: Snapshot of increasing viscosity (from left to right) for 0.41, 0.73, 1.43, 2.69 wt.% 

practical grade (PG) chitin samples in 20 wt.% NaOH. 

The last set of experiments provided evidence that 20 wt.% NaOH can be an 

effective solvent for the more amorphous fractions of chitin particles, but 

considering all dissolution trials, it is assumed that native α-chitin used in this thesis 

and Sigma’s practical grade chitin have persistent crystalline domains whose 

dissolution is particularly challenging. These fractions of the polysaccharide’s 

nanofibrils have been claimed to possess an amphiphilic-like structure with 
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hydrophobic surfaces involving the ring hydrogens, and hydrophilic sections 

entailing the hydroxyl groups directed towards the sides of the ring.42 If future 

research focuses deeper into that structural aspect, ball milling might receive 

increasing attention in polysaccharide studies. At the moment though, and at the 

laboratory scale, filtering that undissolved mass might be the objective for some 

researchers, however the increased viscosity of the dispersion is expected to push 

ordinary pumps to their limits.cxxxvi   

Regardless of the separation challenges, experimentation with HCl as an anti-

solvent was thought worth trying. Therefore, concentrations of 0.46, 1.01, 1.59, 1.95 

and 4.37 wt.% of PG chitin were dispersed in 20.0 wt.% NaOH (0.0293 ± 0.0001 mol 

NaOH in vials of 7 mL). The samples were stirred and went through two consecutive 

freeze-thaw cycles within 1 h using the −80 °C freezer. Most of the dissolution 

seemed to happen in the first cycle, and sample viscosity increased with increasing 

concentration. An exception was the 4.37 wt.% sample which was so viscous after 

the second cycle that the magnetic stir bar in the vial could not spin. Samples were 

poured into petri dishes (except the 4.37 wt.% sample which had solidified and had 

to be warmed), and the magnetic bars were removed. Viscous solutions were 

spread to cover the whole surface of the petri dish with no visible gaps [except 4.37 

wt.% (see Figure A4–6)].    

                                                           
cxxxvi An alternative technique might be ultracentrifugation.  
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An equimolar, neutralizing 250 mL HCl bath was prepared (0.12 M gives approx. 

0.029 mol) and petri dishes were immersed slowly. Viscous solutions detached 

from the petri dish surface and films started floating. However, with careful 

manipulation, the films were kept on the petri dish surfaces and placed on the 

bottom of the bath tank. The 0.46 wt.% sample easily lost its coherence during bath 

immersion. The rest of the petri dishes were left in their corresponding acid baths 

overnight. Figure A4–7 shows the appearance of films after being removed from 

their baths (note: the 1.01 wt.% sample tore apart when it was brought up in the 

bath’s surface). The reader might notice how even the 4.37 wt.% sample (far right 

in Figure A4–7) covered the whole area of the petri dish. The remaining three 

samples were washed in a deionized water tank and sample 1.59 wt.% tore apart in 

some places. After about 20 min, the samples were placed at −18 °C for about 35 

min to be conditioned before freeze drying (they appeared less smooth at this point 

in processing). Freeze-drying required about 5 h under a 7-mbar vacuum. The film 

prepared from the 1.59 wt.% sample tore apart even more but the other two were 

in one piece (although sample 1.95 wt.% can be characterized as fragile with thinner 

areas and some cracks). The film from the 4.37 wt.% sample was the strongest and 

happened to develop a smooth and relatively transparent area (as opposed to the 

white and relatively rough domains in others; Figure 4–9). The piece of film could 

easily tolerate a fall from the benchtop to the floor with no crack whatsoever. It also 

had a rigid structure, except from the transparent part, which revealed some 

flexibility. The latter result along with the breaking of the 1.59 wt.% sample suggest 
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that the parameters of the freeze-drying process (and probably anti-solvent 

treatment) affect the entanglement of the chains and the texture of the solidified film. 

However, it seems that the acetylated chains of PG chitin require a minimum 

concentration of ca. 2 wt.% for casted films with acceptable mechanical properties.    

 

Figure 4-9: Practical grade (PG) chitin films after their freeze-drying process. 

Concentrations from left to right are: 1.59, 1.95, and 4.37 wt.%.  

4.3.4 Ultrasound assisted heterogeneous deacetylation of α-chitin  

Chitin’s amide groups can be hydrolyzed chemically either with acids or bases.43 

Since glycosidic linkages are sensitive to acidic treatment though (as seen in 

Chapter 3), alkali deacetylation has been preferred by most researchers even 

before the first spectroscopic investigations of the marine polysaccharide.44,45 By 

means of usually NaOH,cxxxvii both homogeneous and heterogeneous 

methodologies have been explored using the traditional one-variable-at-a-time 

                                                           
cxxxvii Generally, concentrations higher than 30 wt.% NaOH are applied, which create an 

excessively alkaline environment. For reference, a ca. 6 wt.% NaOH (1 M) gives a pH of 

14.  
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experimentation.46-48 More recently though, it has been found that among seven 

variables (number of successive alkali baths, reaction time, reaction temperature, 

alkali reagent, alkali concentration, atmospheric conditions, use of an oxygen 

scavenger), temperature is the most significant variable that controls the process.14   

The importance of temperature was also highlighted in a study that explored the 

deacetylation potential of sonication on β-chitin.15 It was found that high intensity 

ultrasound irradiation can yield high molecular weight chitosan (which can lead to 

preferable mechanical properties for the desired scaffold applications) when 

deacetylation temperature was controlled at 60 °C.cxxxviii Therefore, sonication 

treatments were applied to the α-chitin set from Section 4.3.1 aiming for efficient 

amide hydrolysis and minimal depolymerization. Having a feel of the deacetylation 

effect that certain sonication times would give on the native α-chitin sample was 

considered necessary. Also, the influence of the work up of the reaction mixturecxxxix 

as well as the methodology for 1H NMR measurements of DA were investigated.    

The initial trial was performed by sonicating the native sample for 76 min (based on 

a compromise between two consecutively 50 min processes reported by Fiamingo 

et al. for a 1:10 w/v β-chitin reaction mixture).15  After cooling the reaction mixture 

in an ice bath, 5–6 large particles were observed floating on the reaction mixture’s 

                                                           
cxxxviii The relatively low molecular oxygen conditions that ultrasound irradiation usually 

creates along with the relatively low temperature (60 °C) are hypothesized to minimize 

oxidative depolymerization which usually occurs in thermochemical processes (15).  
cxxxix Lowering the pH to 8.5 has been hypothesized to terminate the reaction and “increase 

the proportion of the insoluble fraction” (49).   
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surface indicating that they had not mixed with the bulk of it. After their removal, 

more than 100 mL of 1M HCl were added, the pH was measured with an indicator 

paper and found to be 8-9. Filtering of the sample was attempted using 0.45 μm 

filters (Versapor Membrane, PALL), but filtration with the available pumps was very 

slow. Therefore, the reaction mixture was centrifuged at 5000 rpm and washed with 

deionized water. After drying at 80 °C overnight, approx. 1.26 g of a flaky textured 

product with an orange coloration was recovered and mortared to prepare for 

analysis (product 4–1). FT-IR data for the triplicate measurement of product 4–1 is 

shown in Figure 4–10. The intensity ratio for the amide II has dropped from 2.736 

for native chitin to 1.071 and for the glycosidic linkage from 1.423 to 1.088. These 

figures suggest extensive deacetylation and little depolymerization.   
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Figure 4-10: Infrared spectra (triplicate acquisition) of deacetylation product 4–1 (76 min 

sonication of native α-chitin). Inset table records the absorbance ratios which 

probe depolymerization (1.088 ± 0.088) and deacetylation (1.071 ± 0.052).  
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Product 4–1 was passed through a mesh and dissolved in 2 wt.% DCl (4.4 mg/mL). 

NMR data for product 4–1 is shown in Figure 4–11. With the ca. 1.85 ppm resonance 

assigned to the methyl group of the N-acetyl group, the DA value is 32.1%.   

 

Figure 4-11: NMR spectra of deacetylation product 4–1 (76 min sonication of native α-chitin; 

4.4 mg/mL in 2 wt.% DCl). Inset table records the integration details [DA is 

32.1% (= 600 / 18.7088)]. Inset spectra shows the 1.70-2.00 ppm region.  

The process was tested with another chitin sample by applying the same sonication 

time to the high MW α-chitin. After approx. 4 min of sonication (10 min real time), 

the reaction mixture appeared light brown. Upon completion of 76 min sonication, 

the reaction mixture appeared more viscous than the trial with the native sample 

and was washed with approx. 50 mL water. This viscosity was decreased when 

more than 80 mL of 1M HCl were added. When approx. 40 mL of 1.8 M HCl were 

added, the reaction mixture reached a total volume of approx. 200 mL and was 

centrifuged/washed/dried as described before for the native sample. The resulting 
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solid appeared of a darker brown shade (product 4–2). An overlay of FT-IR spectra 

of products 4–2  and 4–1 is shown in Figure 4–12.  

 

 

Figure 4-12: Infrared spectra of deacetylation products 4–1 (red) and 4–2 (green). 

The signal for product 4–2 is characteristic for a carboxylic acid salt, which gives 

rise to two bands involving the out-of-phase and in-phase carboxylate stretching 

vibrations.50 The out-of-phase stretching band is observed near 1570 cm-1 (1572-

1574 cm-1 in spectra here) and the in-phase stretching band is observed near 1415 

cm-1  (a doublet at 1424 and 1414 cm-1 in  spectra). A possible interpretation is that 

chitosan has been acidified to such a large extent that it has turned into a chitosan 
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acetate salt.cxl This might also suggest that the amide stretches (from the acetylated 

residues in the chains) are masked. One can also observe that the glycosidic 

linkage stretch is significantly lower compared to the 2875 cm-1 reference band 

(which has shifted to lower frequencies).     

Product 4–2 was dissolved in 2 wt.% DCl (4.3 mg/mL) and NMR data are shown in 

Figure 4–13. The DA value here is 19.8%. The more deshielded protons appearing 

around 1.99 ppm (the difference from 1.858 is 0.134 ppm) are potentially from the 

acetyl group of the chitosan acetate salt.51,52 The lower DA value (19.8 vs 32.1%) can 

be explained by the lower crystallinity of the high MW α-chitin, which facilitates the 

penetration of NaOH within the entangled chains.  

 

Figure 4-13: NMR spectra of deacetylation product 4–2 (76 min sonication of high MW α-

chitin; 4.3 mg/mL in 2 wt.% DCl). Inset table records the integration details [DA 

is 19.8% (= 600 / 30.26)]. Inset spectra shows the 1.75-2.10 ppm region.  

                                                           
cxl Another explanation might be that the washing was inadequate, and that sodium acetate 

contaminated the product.   
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Wanting to lower the work up volumes and also try a potentially faster neutralization 

step, undiluted HCl was used on the reaction mixture from a 29 min sonication of 

native α-chitin (product 4–3). It seemed that when 13 mL of 12 M HCl were added, 

the pH which was measured with a pH electrode did not go below 13.0 immediately. 

However, the temperature rose significantly to ca. 50 °C, therefore this approach 

was not pursued further.  

Aiming for a shorter (than 76 min) sonication treatment as well as to gain a better 

understanding of the reproducibility of the whole process, 44 min ultrasound was 

applied (and no neutralization step) to native α-chitin twice (product 4–4 and 

product 4–5). The FT-IR spectra of both samples are shown in Figure 4–14. The two 

spectra are similar to each other and share common features with product 4–2 

(carboxylate stretching vibrations, low glycosidic content); assumed to arise from 

sodium acetate salt formation. 

 

Figure 4-14: Infrared spectra of deacetylation products 4–4 (red) and 4–5 (green). 

-0.002

0.008

0.018

0.028

1100130015001700190021002300250027002900

A
b

so
rb

a
n

ce
 (

a
.u

.)

Wavenumber (cm-1)



250 
 

Products 4–4 and 4–5 were dissolved in 2 wt.% DCl (4.3 mg/mL). The NMR data are 

shown in Figures 4–15 and 4–16 with the DA values being 50.7% and 54.8% 

respectively. In line with the FT-IR characterization, the NMR spectra here are also 

similar to that of product 4–2 (i.e. two acetyl groups are observed) which provides 

additional evidence for contamination of the biopolymer with acetate salt.   

 

Figure 4-15: NMR spectra of deacetylation product 4–4 (4.3 mg/mL in 2 wt.% DCl). Inset 

table records the integration details [DA is 50.7 % (= 600 / 11.83)]. Inset spectra 

shows the 1.75-2.05 ppm region in more detail.  

 

Figure 4-16: NMR spectra of deacetylation product 4–5 (4.3 mg/mL in 2 wt.% DCl). Inset 

table records the integration details [DA is 54.8 % (= 600 / 10.95)].      
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Investigations of reduced sonication times were further pursued with 21 min on 

native α-chitin. Approximately 50 mL of 6 M HCl were added to the reaction mixture 

and pH was found to be ~8.0 using indicator paper. After centrifugation, the reaction 

mixture was washed several times (in an effort to reduce acetate salt contamination) 

and was finally freeze-dried (product 4–6). Product 4–6 was dissolved in 20 wt.% 

DCl (as a higher DA value was expected; 5.2 mg/mL) and NMR data are shown in 

Figure 4–17 [sodium-3-trimethyl silylpropionate (TMSP-2.2.3.3-D4) was spiked for 

reference]. The peak for the N-acetyl protons appears at 2.1319 ppm, and the 

region up to 2.27 ppm where possible acetate protons would have been expected 

is clear. The region of the ring protons though appears less clear (DA is 55.0%). 

 

Figure 4-17: NMR spectra of deacetylation product 4–6 (5.2 mg/mL in 20 wt.% DCl). Inset 

table records the integration details [DA is 55.0 % (= 600 / 10.91)].  

After these preliminary experiments, a sonication time of 22 min was applied to the 

high MW sample (aiming for a high or medium DA value). With the addition of 45 

mL of 6M HCl, the reaction mixture appeared very viscous and about 20 mL of water 
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were added to reduce that viscosity. When the pH was ~8.5, the reaction mixture 

was diluted up to a total volume of 200 mL. After centrifugation and washing, the 

residue was thermally dried under vacuum and approx. 1.7 g was recovered 

(product 4–7). An overlay of FT-IR spectra for products 4–7, 4–6 and 4–1 is shown 

in Figure 4–18. With the amide II peak appearing ca. 1550 cm-1 in all 3 signals and 

no carboxylate in-phase stretching band near 1415 cm-1 for products 4–7 and 4–6, 

one can calculate amide II intensity ratios in order to have a relative estimation of 

the DA value.cxli  

 

Figure 4-18: Infrared spectra of deacetylation products 4–7 (red), 4–6 (blue) and 4–1 

(green). Inset table records the intensity ratios for the glycosidic linkage and 

amide II.  

                                                           
cxli The band at 1430 cm-1 for product 4–1 (see Figure A4–8) raises questions for future 

research.   
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The 0.10 difference in the IR ratio for the glycosidic linkage in between native α-

chitin and high MW α-chitin (1.42 - 1.32; see Section 4.3.1), gives a 0.11 difference 

(1.75 - 1.64) in the amide II ratio of the resulting deacetylated product from 22 min 

sonication. Assuming that an amide II ratio of 1.75 corresponds to a DA value of 55% 

[from its NMR; 62% using the FT-IR Sannan coefficient] and of 1.07 to a DA value of 

32% (as measured above with NMR; 38% with the Sannan method), it is not 

unreasonable for one to expect that an aimed amide II ratio of 1.50 [from the 0.14 

difference from product’s 4–7 (high MW) 1.64 ratio which arises from the 0.13 

difference of the glycosidic linkage ratio difference between high and medium MW 

(1.32 – 1.19)] might correspond to an approx. 46% DA value (from 22 min 

sonication).cxlii Therefore, a 50% DA value was aimed [as a medium DA value for the 

medium MW chitin sample in the Design of Experiments context (see Section 4.1)] 

with an 18 min sonication treatment. Table 4–2 presents a record of the 

deacetylation experiments (4–1 to 4–6) described to this point, as well as those that 

follow (4–7 to 4–11).      

 

 

 

 

                                                           
cxlii The higher DA values obtained by FT-IR compared to those from NMR (6 ± 1 DA% units, 

see Table 4–2) could be due to both NMR and FT-IR acquisition variables.     
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Table 4-2: Deacetylation experiments on various chitin samples and results (DA%). Results 

are of preliminary nature.  

Product 
code 

Starting 
chitin  

Sonication 
time (min) 

DA% 

FT-IR NMR 

4–1 native 76 38.0 32.1 

4–2 high MW 76 - 19.8 

4–3 native 29 - - 

4–4 native 44 - 50.7 

4–5 native 44 - 54.8 

4–6 native 21 62.0 55.0 

4–7 high MW 22 58.2 53.3 

4–8 medium MW 18 - <10 

4–9 low MW 22 - - 

4–10 medium MW 9 - <10 

4–11 medium MW 65 - - 

 

Indeed, a sonication time of 18 min was applied to the medium MW sample (aiming 

for a medium DA value of 50%). After neutralization (~8.0), centrifugation and 

washing, the residue was freeze-dried and approx. 0.55 g was recovered (product 

4–8). When sonication was applied to the low MW sample (aiming for a low DA 

value), it was found that the reaction mixture got very viscous after 18 min 

sonication. As there was little visible diffusion, the treatment was stopped at 22 min. 

With addition of only 10 mL of 6M HCl, viscosity was completely lost, and the 

product appeared fully dissolved. After a couple of days, the product was 

recovered with the addition of EtOH (acetone was also tried and did not lead to any 

precipitation). The product isolated by centrifugation was thermally dried under 

vacuum and saved for future analysis (product 4–9).   
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Wanting to have a better feel for the deacetylation process on the medium MW 

chitin sample, a sonication time of 9 min was applied (aiming for a high DA value 

around 75%). The reaction mixture was worked up as for product 4–8 and approx. 

0.39 g was recovered (product 4–10). Aiming for a low DA value for the medium 

MW chitin sample, more than 45 min sonication was applied. At 65 min, the reaction 

mixture appeared very viscous and ~100 mL of water was added. After the addition 

of 19 mL of 6M HCl, viscosity was lost (as for product 4–9; the pH was ~9.5). The 

product was recovered the day after with the use of EtOH (as for product 4–9), and 

after centrifugation and drying, it was saved for future analysis (product 4–11).  

Products 4–7, 4–8, 4–10 were dissolved in 20 wt.% DCl at 4.4, 5.5, 5.0 mg/mL 

respectively and NMR data are shown in Figures 4–19, 4–20, and 4–21 respectively 

[sodium-3-trimethyl silylpropionate (TMSP-2.2.3.3-D4) was spiked for reference]. 

Products 4–8 and 4–10 achieved dissolution with just 20 min stirring at 70 °C. The 

peak for the N-acetyl protons in product 4–7 appears at 2.11 ppm, and no signals 

for acetate protons were seen in the region up to 2.24 ppm. The DA value is 

53.3%.cxliii The DA values for the other two products (which had medium MW chitin 

as starting material) are unexpectedly low (<10%) by NMR analysis.  

                                                           
cxliii The Sannan method gives a DA of 58.2 ± 5.7% (amide II ratio in Figure 4–18 was 1.64 ± 

0.16).  
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Figure 4-19: NMR spectra of deacetylation product 4–7 (4.4 mg/mL in 20 wt. % DCl). Inset 

spectra shows the 2.05-2.27 ppm region [DA is 53.3% (= 600 / 11.26)].  

 

Figure 4-20: NMR spectra of deacetylation product 4–8 (5.5 mg/mL in 20 wt.% DCl). Inset 

spectra shows the 2.06-2.54 ppm region in more detail. 

 

Figure 4-21: NMR spectra for deacetylation product 4–10 (5.0 mg/mL in 20 wt.% DCl). Inset 

spectra shows the 2.10-2.60 ppm region in more detail.  
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The set of the above deacetylation experiments provided preliminary evidence that 

the sonication method applied is able to give predictable results for the higher MW 

α-chitin samples (native and high MW). Sonication times of 22 and 76 min were 

found to lower the DA to ca. 57 ± 4% and 35 ± 4% respectivelycxliv with concurrent 

depolymerization taking place to a lower extent.cxlv The performance appears more 

efficient in its initial phase compared to the 37% DA from 50 min sonication of β-

chitin observed by Fiamingo et al.15 However, chitin concentration in the set of 

deacetylations here was ca. 20% lower, and the exact nature of ultrasound treatment 

was slightly different.   

Based on these results, the lower MW α-chitins of the set (medium and low MW) 

gave unexpectedly low DA values suggesting that a significant redesign of the 

deacetylation method is required.cxlvi Moreover, the neutralization process by 

means of HCl resulted in recoveries below 0.55 g for the deacetylation products of 

the lower MW chitins,cxlvii which is ca. 1/3 of the recovered masses for the higher 

                                                           
cxliv A more than 3-fold increase in the reaction time (3 × 22 = 66 min) did not seem to have 

a proportional DA decline, confirming the known leveling off of chitin deacetylation 

kinetics (53).  
cxlv When comparing the initial FT-IR ratios for the glycosidic linkages and amide II (Section 

4.3.1) with those of Figure 4–18, the average decreases were 0.18 for the former and 1.17 

for the latter. These suggest that the rate of depolymerization was roughly 15% that of 

deacetylation. A possible mechanistic hypothesis for alkaline depolymerization is through 

deprotonation of the C8 and subsequent nucleophilic attack on the anomeric C, which 

seems kinetically demanding.  
cxlvi However, the preliminary observations for these reactions confirmed the hypothesis 

that more amorphous α-chitin samples can give faster deacetylations (assumed to arise 

from randomly accessed N-acetyl groups) (49). Hence, shorter than 18 min sonication 

times are hypothesized to give lower than 50% DA values.  
cxlvii That mass represents less than 30% of the starting chitin (~2.0 g).  
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MW. Therefore, a more systematic study is needed to understand the work-up step 

(removal of acetate salts). Principally, in the excessively alkaline conditions of the 

reaction mixture, sodium acetate exists between the neutral deacetylated chains, 

and separation of the salt and chitinous material requires washing with aqueous 

solutions. The polysaccharide chains are expected to precipitate during certain 

centrifugation conditions, however the results suggest that repetitive washings are 

needed with fresh quantities of aqueous solution to extract all of the sodium acetate. 

The hypothesis that the lowering of the pH by means of HCl to 8.5 maximizes the 

recovery of the polysaccharide might be a challenge for future research. 

Considering a hypothesized tendency of the chains to reentangle upon cooling to 

room temperature, a neutralization process by HCl might increase the risk for acetic 

acid and ammonium acetate local entrapment (through competitive diffusion with 

NaCl within the hydrogen bonding network) and lead to their inevitable 

precipitation. To the best of my knowledge, literature has not yet experimented 

systematically with the details of the work-up step.  

Focusing on product 4–1, the strong infrared band at 1430 cm-1 (see Figure 4A–8) 

is hypothesized to arise from contamination with an acetate salt (probably that with 

sodium). Hence, upon arrival to MUN, the sample was subjected to a washing 

treatmentcxlviii and examined with FT-IR.  Figures A4–9, A4–10, and A4–11 show the 

                                                           
cxlviii Approximately 400 mg of product 4–1 were stirred with ~10 mL deionized water in a 

>50 °C water bath for ~20 min. The mixture was treated for another 20 min in a sonic bath 

and then it was centrifuged at 7500 rpm for 10 min. Supernatant was removed, fresh water 

was added, and the suspension was left under stirring in a 45 °C water bath overnight. 
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amide, glycosidic linkage, and carbon-hydrogen infrared regions respectively of 

standard mixtures of  anhydrous sodium acetate with milled α-chitincxlix cl along with 

that of product 4–1 before and after its aforementioned washing. The orange 

colored signals show an increasing intensity of the characteristic CH3COONa 

vibrations at 1407, 1562, 2930, and 2999 cm-1 with increasing concentration of the 

salt.54 cli Observing the spectra for product 4–1 (red and green signals) in Figure 

A4–9, the clear decline of the 1407 cm-1 band (in-phase symmetric carboxylate 

stretch)50,55 to the usual absorbance levels of chitin (<0.10 a.u.),clii as well as the 

emergence of the glycosidic linkage at ca. 1150 cm-1 in Figure A4–10cliii indicate that 

a simple washing treatment can make a difference which can be monitored with 

infrared spectroscopy.cliv The changes upon washing are also evident in the C-H 

                                                           
The sample was centrifuged at 7700 rpm for 70 min, supernatant was removed, and the 

insoluble residue was placed in a ~55 °C oven under vacuum overnight.   
cxlix An α-chitin sample with amide I split, amide II, and glycosidic linkage infrared ratios of 

0.764 ± 0.008, 2.356 ± 0.029 (DA 83.5 ± 1.0%), and 1.264 ± 0.019 respectively was created 

by milling 1.00 g of dried α-chitin (larger particles were selected through a mesh) with 67 

quarter inch balls for 60 min. Crystallinity index (CrI%) was measured by XRD at 34.8%. 

The higher ratio for the glycosidic linkage obtained here (1.26) compared to that of the 

low MW sample (1.12; see Table 4–1) is a good basis for future studies of the relationship 

between chitin particle size and depolymerization efficiency of ball milling.  
cl Intimate mixtures of 14, 35, 50, 65, 74 wt. % anhydrous sodium acetate in the milled α-

chitin sample were prepared by vortexing totals of ~100.0 mg for ~60 s in vials of 2 mL 

volume.   
cli The signals for the 14 and 74 wt.% mixtures were in between those for 0 and 35 wt.% the 

former and 65 and 100 wt.% the latter and are omitted for clarity.   
clii Higher absorbance levels in general (compared to those for the polysaccharide) were 

also observed for chitin’s monomer, dimer and pentamer (see Figure A3–14).  
cliii The glycosidic linkage stretch is clearly supressed in chitin mixtures of higher than 74 

wt.% CH3COONa.  
cliv The washing steps might not necessarily have to be that long as executed in these 

preliminary experiment here.  
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stretching region where chitin’s methine group (at ~2870 cm-1) confirmed its 

stronger absorbance compared to the bands above 2910 cm-1 (Figure A4–11).     

That region of infrared (3000–2800 cm-1) along with the 1400–1420 cm-1 band might 

prove reliable probes for effective chitin washing even if ammonium acetate is 

formed during the neutralization of the deacetylation reaction mixture. Figure A4–

12 overlays the FT-IR spectra of ammonium and sodium acetate.clv Ammonium 

acetate exhibits its expected N-H stretches and bends in the hydrogenic region and 

above 1600 cm-1 respectively. This carboxylate salt shows its in-phase symmetric 

carboxylate stretch in a slightly lower frequency (1393 cm-1) than that of sodium 

acetate (1407 cm-1), which is in close agreement with literature along with the rest 

of the spectrum’s peaks.56 clvi Therefore, FT-IR might be used more in the future to 

study the work-up step of deacetylation reactions.    

The amide II and glycosidic linkage infrared ratiosclvii for product 4–1 before its 

washing treatment were 0.580 (DA 20.6%) and 0.129 respectively, while after the 

aforementioned washing the latter rose significantly to 0.879 (as clearly seen in 

Figure A4–10) and the former to 0.652 (DA 23.1%). Similar results were obtained 

for product 4–2; before its washing, amide II and glycosidic linkage ratios were 

                                                           
clv Ammonium acetate was produced by reacting ~100 mL glacial acetic acid (ca. 17.4 M) 

with ~120 mL NH4OH (ca. 14.5 M). The reaction mixture was gently heated overnight, and 

ca. 4.85 g of white crystals were recovered. Residual unreacted reactants are not 

excluded.  
clvi Interestingly, ammonium acetate presents an additional CH2 wagging vibration at 1148 

cm-1 compared to sodium acetate (54,56).   
clvii Measured at MUN.  
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0.295 (DA 10.5%) and 0.095 respectively, while after the washing they were 

measured at 0.486 (DA 17.2%) and 0.679.clviii These results reveal that the glycosidic 

linkages in both deacetylation products were supressed by sodium acetate 

contamination to a similar extent (85.6 ± 0.5%; product 4–1 from 0.879 to 0.129 and 

product 4–2 from 0.679 to 0.095). But more importantly, the DA values obtained 

from the FT-IR measurements at MUN (20.6% for product 4–1 and 10.5% for product 

4–2) are consistently lower (10.4 ± 1.5 DA% units) than those obtained by solution 

state 1H NMR [32.1% for product 4–1 (see Figure 4–11) and 19.8% for product 4–2 

(see Figure 4–13)]. Therefore, it was only natural to investigate the DA values that 

solution state 1H NMR would give for the starting materials of the aforementioned 

deacetylations.  

Measurements of the DA of the α-chitin set (native and high-medium-low MW from 

Table 4–1) were attempted. Suspensions of 4.4 mg/mL in 20 wt.% DCl were 

prepared and subjected to vigorous overnight stirring at 70 °C.clix The native α-

chitin sample (labeled K in Figure 4–22) did not dissolve fully (particles were still 

visible), high MW (labeled L) seemed homogeneous but was somewhat cloudy, 

medium MW (labeled M) and low MW (labeled N) were transparent. Samples were 

filtered through cotton wool and NMR data are shown in Figures 4–23, 4–24, 4–25, 

                                                           
clviii Spectra of the washings of the rest of the deacetylation products are not shown for the 

sake of a shorter thesis.  
clix It was observed though that the low MW chitin sample seemed to dissolve in seconds.  
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and 4–26.clx DA values are within a sensible range (89.4–96.4%), however they 

increase with decreasing MW. That fact is not consistent with the results obtained 

from FT-IR (the higher the MW, the higher the DA; see Table 4–1). That puzzling set 

of results was hypothesized to arise from a low S/N, which in turn might have been 

originating from the relatively low concentration of the preparations (<5 mg/mL).    

 

Figure 4-22: Snapshot of 4.4 mg/mL α-chitin samples from Table 4–1 [native (GM3 173 K), 

high (GM3 173 L)-medium (GM3 173 M)-low (GM3 173 N) MW] in 20 wt.% DCl 

after overnight stirring at 70 °C.  

 

Figure 4-23: NMR spectra of native α-chitin (4.4 mg/mL in 20 wt.% DCl); DA is 89.4%. 

                                                           
clx Experimental work up to this point was conducted in the University of Bath.  
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Figure 4-24: NMR spectra of high MW chitin (4.4 mg/mL in 20 wt.% DCl); DA is 91.2%. 

 

Figure 4-25: NMR spectra of medium MW chitin (4.4 mg/mL in 20 wt.% DCl); DA is 92.0%. 

 

Figure 4-26: NMR spectra of low MW chitin (4.4 mg/mL in 20 wt.% DCl); DA is 96.4%. 
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Therefore, after returning to MUN from the CSCT (University of Bath), a new sample 

of high MW chitin was produced using the same ball milling process as Table 4–1 

[from bigger particles of native α-chitin though (obtained by mesh)]clxi. This time, 

10.1 and 14.3 mg/mL in 20 wt.% DCl suspensions were prepared in order to check 

the NMR S/N effects as well as the reproducibility of ball milling. After overnight 

stirring at 70 °C both solutions remained turbid. Samples were filtered through 

cotton wool and NMR data are shown in Figures 4–27 and 4–28.clxii The S/N ratio 

appears improved here, and the average DA value (89.8 ± 1.6%) is in close 

agreement with that obtained from the lower S/N spectra (91.2%; Figure 4–24). This 

result enhances the hypothesis made above that solution state 1H NMR and FT-IR 

give results which at this high DA range (>80%) can be considered as 

contradictory. The above observations along with the fact that FT-IR measurements 

obtained at the CSCT were found to give higher DA values compared to solution 

state 1H NMR (6 ± 1 DA% units; see Table 4–2), have led to the search for a third 

method for DA determination.clxiii Out of the several methods used in literature,60-62 

                                                           
clxi Similar to the sample described in footnote cl, this sample is hypothesized of a higher 

than 1.32 infrared ratio for the glycosidic linkage content. DA though is not expected to 

differ significantly from 88.8% (see Table 4–1).  
clxii Data were obtained on January 2017 with the help of NMR specialist David Davidson 

using Topspin 1.3 on the 500 MHz spectrometer (Bruker AVANCE) at MUN (acquisition 

parameters were similar as those in Section 4.2.7).     
clxiii Moreover, when a milled PG-chitin sample in 20 wt.% DCl was attempted to be 

measured on July 2017 in MUN, tuning of the 500 MHz NMR was not possible. The high 

ionic strength of the concentrated strong electrolyte was hypothesized as a formidable 

barrier for manual tuning attempts. However, there are a few studies where 

measurements of chitin samples in concentrated DCl have been reported with the use of 

longer radio frequency pulses (57,58). In principal, advances in the design of pulses for 
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solid-state NMR was selected for further investigations as after exceptionally 

analytical studies of experienced researchers, it has been hypothesized to be less 

biased than solution-state NMR.63   

 

Figure 4-27: NMR spectra of high MW α-chitin (10.1 mg/mL in 20 wt.% DCl); DA is 90.9%. 

 

Figure 4-28: NMR spectra of high MW chitin (14.3 mg/mL in 20 wt.% DCl); DA is 88.7%. 

                                                           
general-purpose suppression of the water signal are expected to contribute to new 

methods which will satisfy some of the diverse demands of biomass research (59).  
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For solid-state NMR studies, two α-chitin sets were put together; one from native 

(ChitinWorks) and one from practical grade (PG; Sigma Aldrich). The former was 

comprised of native α-chitin milled with 16  0.25ʺ balls (8.2 BtC) for 5, 45 and 105 

min. The latter was comprised of unmilled PG-chitin and milled with 67  0.25ʺ balls 

for 10 (13.4 BtC) and 30 (33.5 BtC) min. Each of the 5 milled samples is coded after 

BtC/milling-time [e.g. the native α-chitin milled with 16  0.25ʺ balls (8.2 BtC) for 45 

min is coded 8/45 and the PG-chitin milled with 67  0.25ʺ balls (33.5 BtC) for 30 

min is coded 33/30]. Generally, the higher the numbers in the code, the more 

intense the milling. Figures 4–29 and 4–30 show solid-state CP/MAS 13C NMR 

spectra of the samples of native α-chitin and PG-chitin respectively.clxiv The data are 

in good qualitative agreement with literature; the N-acetyl methyl group appears at 

~23 ppm and C1 to C6 in between 50-110 ppm.64,65 clxv Moreover, all peaks become 

broader with increased milling treatment, something which confirms relevant 

amorphization studies of chitin.66 When the standard peak picking algorithm of 

MestreNova 11 was applied to the spectra, the DA values for the milled samples 

were up to 120%.clxvi When using GSD (global spectral deconvolution) as the 

method for peak picking, the DA values of the PG-chitin sample for the various 

                                                           
clxiv Data were acquired using a Bruker AVANCE II 600 MHz spectrometer with a frequency 

of 150.97 MHz (probe: 3.2 mm MAS 13C-1H/ 15N B4704/ 00154, magic angle spinning 

(MAS) rate was at 20 kHz  and cross-polarization (CP) was used]. Spectra were recorded 

with a 22.5 ms acquisition time, 4 μs pulse width, 4 s relaxation delay and 1931 to 2048 

accumulated scans at 298 °K.  
clxv Carbonyl’s resonance (ca. 174 ppm) is excluded from this presentation as it is not 

involved in DA calculation.  
clxvi For details on these conventional integrations see Appendix A4.1.  
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parameters of the algorithm are recorded in Table 4–3. As seen, the parameter of 

peak broadness optimization makes a significant difference to the results with 

values higher than 2.00 (spectrum is deconvoluted on a narrow peak basis) 

revealing reasonable DAs (below 100.0%).clxvii When the narrow optimization (with 

refinement level 2) was applied to the 8/5 α-chitin sample of Figure 4–29, the DA 

was 95.0%, which is in between the expected values (97.0 and 88.8%; see FT-IR 

data in Table 4–1). These observations confirm the usefulness of a deconvolution 

tool for a biopolymer like chitin.    

Table 4-3: DA values of the PG-chitin sample for the various global spectral deconvolution 

(GSD) peak optimization parameters of MestreNova v. 11. 

Optimized for peaks 
Refinement level 

1 2 

Narrow (2.00) 97.8 97.7 

Average (1.00) 100.9 100.3 

Broad (0.25) 107.4 109.5 

Custom ---> 3.00 - 97.7 

 

                                                           
clxvii Figure A4–13 shows the solid-state CP/MAS 13C NMR spectra of PG chitin. DA obtained 

with MestreNova 11 GSD peak picking (optimization for narrow peaks, refinement level 

2) is 97.7%.  
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Figure 4-29: Solid-state CP/MAS 13C NMR spectra of native α-chitin milled with 16  0.25ʺ balls (8.2 BtC) for 5 (red, code: 8/5), 45 

(green, code: 8/45) and 105 (blue, code: 8/105) min. 
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Figure 4-30: Solid-state  CP/MAS 13C NMR spectra of Sigma’s PG chitin (red) milled with 67  0.25ʺ balls for 10 (13.4 BtC, green, 

code: 13/10) and 30 (33.5 BtC, blue, code: 33/30) min.  
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However, as C1 peaks (~104 ppm) in samples 8/105 and 33/30 deviate clearly from 

Lorentzian/Gaussian (L/G) shapes,clxviii line fitting with possible minimization of the 

residual error67,68 was considered a more appropriate approach for DA 

determination. Figure A4–14 shows the deconvolution and line fitting of the spectra 

of PG chitin and Table A4–2 records the corresponding peak parameters and DA 

calculation.clxix clxx With a DA of 92.6% for PG-chitin, one can hypothesize that 

different versions/methods of the same software produce different results (GSD 

peak picking of version 11 gave a DA of 97.7%). 

Regardless of the aforementioned deviation,clxxi line fittings for the other two samples 

of Figure 4–30 were investigated with MestreNova v. 10.0.2. It was observed that 

when the GSD peak broadness optimization value was 0.30 and higher, some of the 

obtained DA values for sample 13/10 were higher than 100%.clxxii Hence, the line 

fitting peak parameters for only the first 20 GSD peak broadness optimization values 

(from 0.10 to 0.29) were recorded for both 13/10 and 33/30. Figure 4–31 shows that 

the DAs of the more amorphous 33/30 range from 77 to 87% with higher GSD peak 

                                                           
clxviii Line width at half height of the C1 peak of 33/30 (at 102.6 ppm) is approximately 600 

Hz (probably the broadest peak in all 6 spectra of Figures 4–29 and 4–30).  
clxix MestreNova v. 10.0.2 – 15465 (released on 17/6/2015) had to be used in late July 2017 

as v.11 used so far was losing its license.  
clxx The selected line fit was observed to be consistent among several fits with GSD peak 

optimization values in between 1.74 and 3.47. These are relative high values which are 

meant to optimize the resolution of narrow peaks (see Table 4–3; for more details the 

reader can consult the corresponding MestreNova manual).   
clxxi Which is in reasonable DA ranges.  
clxxii This possibly makes sense as it is the lower GSD peak broadness optimization values 

that are designed for broader peaks.  
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broadness optimization values giving higher DAs. At the same time, the more 

crystalline 13/10 exhibits a wider range of DAs (from 74% to 91%) with no particular 

trend for the software’s deconvolution tool. Considering the preliminary and 

investigative nature of this analysis, these observations are actually sensible as that 

region of GSD peak broadness optimization values (0.10 – 0.29) is designed to 

improve the resolution in spectra where broader peaks dominate over narrow 

ones.clxxiii  

When observing the analytical data for the peaks of all 20 different GSD line 

fittings,clxxiv Lorentzian/Gaussian (L/G) ratio was found to have the highest deviation 

(RSD%) among all 4 peak parameters by far (ppm, height, width, L/G ratio; ppm 

changes usually only to the 2nd decimal). For example, in the set of the 20 line 

fittings of the C4 peak of sample 13/10, the following average parameters were 

recorded: resonance at 83.51 ± 0.02 ppm (0.03% RSD), height 83357 ± 728 (0.9% 

RSD), width 356 ± 3 Hz (0.8% RSD), L/G 0.078 ± 0.115 (147% RSD), area 2078411 ± 

43939 (2.1 RSD%). Similar figures were obtained for all peaks of the 13/10 sample; 

RSD values for the L/G parameter were almost always above 80%, while RSDs for 

the rest (ppm, width, height, area) did not exceed 10% in any case. Sample 33/30 

                                                           
clxxiii To the best of my knowledge, literature on chitin solid state NMR does not report the 

particulars of DA determination (software used, integration method, possible 

deconvolution). Moreover, in some cases the DA is measured to only two significant 

figures (65), and in general, research questions on the possible effects of acquisition 

parameters have not been raised openly yet (63,64). Therefore, the short investigative 

analysis here is only to stimulate future research.   
clxxiv Recorded in tables like that of Table A4–2.  
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gave RSDs ca. 12% for the L/G parameter and less than 4% for the rest. The question 

arising then is: “does it make sense to select the optimum (out of 20) GSD fitting 

based on the average L/G value for the probe peak (N-acetyl methyl at 23.0 ppm)?”. 

And if yes, “should the fitting ("reading") error (MestreNova's GSD deviation) arise 

from +/- 0.01 (or maybe more) for the GSD peak-broadness optimization?”. These 

questions are somehow rhetorical for this thesis as when they were asked to the 

research and development (R&D) team of MestreNova, the specialists 

recommended the line-fitting algorithm of the newer version of the software.clxxv Out 

of the 20 line fittings (v. 10.0.2), the average L/G value of the N-acetyl methyl (probe) 

peak of the 13/10 sample was 0.28 ± 0.48. That average value (0.28) was actually 

the L/G value of the probe peak for 4 consecutive line fittings (GSD peak broadness 

optimization values 0.26, 0.27, 0.28, 0.29). The average DA of those 4 line fittings 

was 87.4 ± 3.1%. Applying the same logic to the 33/30 sample, the average L/G 

value of the N-acetyl methyl (probe) peak was 1.34 ± 0.17. That average value (ca. 

1.4) was actually the L/G value of the probe peak for 3 consecutive line fittings (GSD 

peak broadness optimization values 0.18, 0.19, 0.20). The average DA of those 3 

line fittings was 83.2 ± 1.8%. The latter result (obtained by 30 min milling of PG chitin 

with 33.5 BtC/14% packing) might be comparable with the 83.9 ± 1.3% of medium 

MW α-chitin obtained by 25 min milling  with 16 BtC/6.6% packing (see Table 4–1).   

                                                           
clxxv Access to version 12 (beta) was kindly provided by MestreNova on August 2017, 

however further discussion on the obtained results is beyond the scope of this thesis.  
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Figure 4-31: Degree of acetylation (DA%) of milled PG chitin samples 13/10 (blue, 13.4 BtC 

for 10 min) and 33/30 (red, 33.5 BtC for 30 min) for MestreNova's (v.10.0.2) 

GSD peak broadness optimization values (0.10–0.29).  

All in all, the experimental results presented in Section 4.3.4 along with their 

discussion suggest that controlled deacetylation of α-chitin samples of different MW 

requires first a method for DA determination which is more reproducible than those 

currently reported in literature. This probably needs a methodological approach 

where two (spectroscopic) methods measure a set of chitin samples and a minimum 

reading error in between the two is defined; as attempted by Zhang et al.65 Solid-

state NMR and FT-IR can certainly contribute towards that, but a more dedicated 
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study is desirable to better understand their quantification potential.clxxvi clxxvii Once 

reliable reading errors are established for the whole DA range, then the work-up 

step and the separation of acetate salts can be standardized with FT-IR. That will 

open the way for a more controlled study of the numerous deacetylation 

parameters. In the end, considering the promising potential of NaOH as solvent for 

chitin (see Section 4.3.3.2), homogeneous conditions for deacetylation might prove 

more attractive to future researchers. These are suggested to be combined with a 

microwave approach as the concentrated alkali is very likely to degrade the 

metallic surface of a sonication tip.  

4.3.5 NaOH as a solvent for chitin   

With the dissolving power of ~20 wt.% NaOH being effective in a wide range of 

concentrations of higher MW chitin samples (Section 4.3.3.2), one might ask how do 

solvation performances of other concentrations of the electrolyte compare to that of 

the freezing point minimum. Figures 4–32 and 4–33 show the relative viscosities of 

67/60 PG chitinclxxviii in 9.70, 19.40, and 29.11 wt.% NaOH solutions and their 

corresponding undissolved residues respectively (for experimental procedure see 

                                                           
clxxvi Ball milling with low and high BtC/packing of steel has proved a reliable tool, which can 

amorphize, depolymerize and deacetylate α-chitin. Hence the created samples can drive 

the investigation of the abilities of the quantifying algorithms.    
clxxvii Solution state NMR might also prove useful in the long term, but more work is 

necessary to understand the relationship between NMR acquisition parameters, solvent 

concentration, and chitin MW.  
clxxviii PG chitin milled with 67 BtC/14% packing for 60 min is coded 67/60 after BtC/milling 

time.  
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Section 4.2.8). The dissolution performance of 19.40 wt.% NaOH was the most 

effective with relative viscosity reaching 1.180 and no undissolved residue left after 

centrifugation. The concentration of 9.70 wt.% was a close second with a relative 

viscosity of 1.156 and miniscule pieces of undissolved residue after centrifugation. 

The average concentration of the two suspensions prepared was 0.4978 ± 0.0005 

wt.% (0.10 % RSD). The RSD in concentrations is ~14 times lower than the RSD of 

the two relative viscosities (1.43% originating from an average relative viscosity 

value of 1.168 ± 0.017). Therefore, it is safe to conclude that 19.40 wt.% NaOH 

revealed better solvent properties for low MW chitin compared to 9.70 wt.% NaOH. 

With a relative viscosity of 1.065, the concentration of 29.11 wt.% NaOH was far 

below the first two, and that is confirmed from a visibly higher proportion of viscous 

undissolved mass compared to those for <20 wt.%. The residue of the 38.81 wt.% 

NaOH is even denser from that of the 29.11 wt.%, and that is evident from its darker 

orange color.clxxix These results agree with the observations of Chen et al., who have 

obtained homogeneous chitin solutions only with 20 wt.% NaOH.69    

 

                                                           
clxxix Hence, a measurement of the solution’s relative viscosity was found unnecessary.   
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Figure 4-32: Relative viscosities (kinematic) of milled PG chitin (60 min with 67 BtC/14% 

packing) in 9.70, 19.40, and 29.11 wt.% NaOH solutions. Dissolution involved 

freezing temperatures (<−28 °C).  

                              

Figure 4-33: Undissolved residue of milled PG chitin (60 min with 67 BtC/14% packing; 

41.6% CrI) in 9.70, 19.40, 29.11, and 38.81 wt.% NaOH (from left to right). 

Dissolution involved freezing temperatures (<−28 °C). Red circles on the 9.70 

wt.% NaOH tube (far left) highlight small pieces of undissolved residue. 

 

1.156

1.180

1.065

1.000

1.050

1.100

1.150

1.200

9.70 19.40 29.11

R
e
la

ti
ve

 v
is

co
si

ty

NaOH wt.%



277 
 

The questions rising then are: how does relative viscosity in ~20 wt.% NaOH behave 

for increasing concentrations of the lowest MW chitin sample (67/60), and how does 

that behavior change for higher-MW/more-crystalline samples of the 

polysaccharide. To answer those, a set of milled samples from Sigma’s PG chitin 

was created according to parameters in Table 4–4.   

Table 4-4: Mechanochemical conditions and FT-IR data for the practical grade (PG) chitin 

sample set prepared for dissolution studies with 19.00 wt.% NaOH. Spectra 

shown in Figure 4–34. 

Measured quantity 
 

 

PG chitin sample 

native 13/10 22/30 33/30 67/60 

mixing load (g) - 5.00 3.00 2.00 1.00 

# of 0.25'' balls - 67 67 67 67 

BtC ratio - 13.4 22.3 33.5 67.0 

packing % - 14.0 14.0 14.0 14.0 

milling time (min) - 10 30 30 60 

glycosidic linkage          

FT-IR ratio 

1.742         

± 0.008 

1.382      

± 0.037 

1.099         

± 0.015 

1.031         

± 0.038 

1.012         

± 0.066 

amide II                           

FT-IR ratio 

2.967         

± 0.047 

2.670      

± 0.087 

2.268         

± 0.017 

2.260         

± 0.071 

2.227         

± 0.121 

DA%[a] >100[b] 94.7 ± 3.1 80.4 ± 0.6 80.1 ± 2.5 79.0 ± 4.3 

amide I split                    

FT-IR ratio 

1.288         

± 0.020 

1.115      

± 0.023 

0.907         

± 0.021 

0.900         

± 0.013 

0.854         

± 0.016 

[a] Calculated by the Sannan method. [b] 105.2 ± 1.7%.   
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Figure 4-34: Infrared spectra of native (red), 13/10 (orange), 22/30 (green), 33/30 (pink), and 67/60 (blue) PG chitin (ball milling 

conditions and FT-IR ratios are recorded in Table 4–4).  

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

111012101310141015101610

A
b

so
rb

a
n

ce
 (

a
.u

.)

Wavenumber (cm-1)

0.016

0.021

0.026

0.031

280029003000

0.014

0.024

0.034

0.044

0.054

113511501165



279 
 

Infrared data are similar to those of Section 4.3.1 with degree of acetylation (DA) 

dropping to 80.4 ± 0.6% for the 22/30 PG chitin and then remaining relatively stable 

at ca. 79.8 ± 0.7% for the more milled samples.clxxx clxxxi These results complement 

the ones obtained for intense ball milling of α-chitin (ChitinWorks) where 

deacetylation leveled off to 84.4 ± 1.0% (see Figure 3–9). Glycosidic linkage content 

revealed a clear decreasing trend (from 1.74 to 1.01; ~42% drop) with error bar 

overlap only for samples 67/60 and 33/30. The MW reduction is almost double that 

observed in Table 4–1 (~22%; from 1.42 to 1.12), and it might be due to the 

significantly larger particle size of native α-chitin compared to that of PG chitin.clxxxii 

The amide I split ratio was confirmed to decrease (from 1.29 to 0.85) with 

decreasing molecular weight.clxxxiii Crystallinity decreased from 88.2% for the native 

sample to ca. 36.5% for the most milled (67/60) (Figure 4–35). Therefore, the sample 

set provided a solid basis for dissolution studies with 19.00 wt.% NaOH.   

                                                           
clxxx The 80.1 ± 2.5 % DA of sample 33/30 is in close agreement with 83.2 ± 1.8% obtained 

by solid-state NMR (see page 272).  
clxxxi Native’s sample 2.967 ± 0.047 amide II ratio exceeds the upper limit of the Sannan 

method (~2.8) (17). Hence, a more reliable measurement of that DA is the one obtained 

by deconvolution of solid-state NMR spectra (97.7%, see Table 4–3).   
clxxxii The relationship between particle size, crystallinity and molecular weight of 

polysaccharides might comprise a challenging research field in the future.  
clxxxiii Error bar overlap was observed only for samples 33/30 and 22/30.  
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Figure 4-35:  X-ray diffraction patterns of native (red) PG chitin and milled with  67×0.25ʺ 

balls (14.0 % packing); 13.4 BtC for 10 min (orange), 22.3 BtC for 30 min 

(green), and 67.0 BtC for 60 min (blue). Inset table records the crystallinity 

indices (CrI%).  The intensities of 22/30 (green), 13/10 (orange), and native PG 

chitin (red) signals have been offset by 200, 500, and 700 a.u. respectively.   

Figure 4–36 shows the relative viscosities of milled 13/10, 22/30, 33/30, 67/60 PG 

chitin samples in 19.00 wt.% NaOH as a function of concentration.clxxxiv clxxxv Relative 

                                                           
clxxxiv Data were obtained according to Section 4.2.8, except that stirring at ca. −14 °C was 

reduced to 30 min and centrifugation was increased to 7700 rpm. Kinematic viscosity 

measurements were conducted at room temperature using an Ubbelohde type 

viscometer (size 1C, No. A622, Cannon Instrument Co.) with a calibration constant of ca. 

0.02932 mm2/s2 (cSt/s). The duplicate average efflux time of the 19.00 wt.% NaOH solution 

was 104.0 ± 2.0 s. Relative viscosity values for the samples are the average of two 

measurements with the average standard deviation being 5.7 s.  
clxxxv Figure A4–15 shows snapshots of 0.5, 1.0, 2.0, 4.0 wt.% low MW α-chitin (see Table 4–

1) in ~20 wt.% NaOH when frozen and after thawing. These are characteristic of the visual 

appearance of low MW preparations; the whole volume of the frozen mass was 

homogeneously white below 1 wt.%, while it turned into darker shades of orange for 

increasing concentrations.  
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viscosity of the lowest MW sample (67/60 chitin) increased gradually up to 9.83 at 

~9.6 wt.%, while similar viscosity levels were obtained at decreasing 

polysaccharide concentrations for increasing MW/crystallinity; the 13/10 sample 

reached 9.73 at ~0.9 wt.% (10-fold analogies for the set). The undissolved residues 

of the highest (13/10) and lowest (67/60) MW samples were 2.80 ± 0.28%clxxxvi and 

0.13 ± 0.11%clxxxvii respectively.clxxxviii The inset graph underlines the fact that relative 

viscosities for all samples increase parabolically (not linearly) with increasing 

concentration. For example, if the 22/30 milled chitin had kept dissolving to the 

same extent it did up to 0.47 wt.% for up to 1.28 wt.%, the relative viscosity would 

have only been 4.65 and not 7.52 as it was measured. Moreover, the reader might 

have already noticed that the relative viscosities of the lowest MW sample (67/60) 

increase linearly for concentrations up to ~2.3 wt.%. If that trend had remained the 

same for up to 4.60 wt.%, the relative viscosity of the most intense milled 

polysaccharide would have been 2.87 and not 3.53 as it was observed.   

  

                                                           
clxxxvi The 0.36 wt.% 13/10 sample gave 2.6 wt.% undissolved residue after the freeze-

thaw/centrifugation process, while the 0.92 wt.% preparation gave 3.0 wt.%.  
clxxxvii The 9.63 wt.% 67/60 sample gave 0.3 wt.% undissolved residue after the freeze-

thaw/centrifugation process, while the 0.77 wt.% preparation gave 0.1 wt.%.  
clxxxviii Undissolved residues were washed twice with ~9 mL deionized water (7700 rpm 

centrifugation for 10 min was applied) and the clean residue was dried and weighed.   
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Figure 4-36: Relative viscosities (kinematic) of milled 13/10 (orange), 22/30 (green), 33/30 (pink), 67/60 (blue) PG chitin samples 

in 19.00 wt.% NaOH as a function of concentration (wt.%). Inset table records the exact data, inset graph highlights 

the polynomial fits along with their equations and R-squared values. Data were obtained by freezing at −28 °C.  
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With the same behaviour being observed for the whole range of molecular weights 

and crystallinities in the set, it is reasonable to hypothesize that the diffusion of the 

hydrated Na+ and OH- is driven into more crystalline fractions of chitin fibrils by the 

macroscopic stirring at near-freezing temperatures (ca. −15 °C).clxxxix That 

hypothesis is supported by vibrational observations of NaOH solutions of various 

concentrations [from 0.5 to 10 M (4.8–29.5 wt.%)] which suggest that the hydrated 

OH- reorients as a whole via local thermal equilibrium.71 cxc At the same time, the 

possibility of the ca. 19.0 wt.% electrolyte to form heptahydrates upon freezing at 

ca. −28 °C (NaOH·7H2O)36 provides the ions with a driver to reach a state of definite 

orientation and minimum entropy. The possible formation of NaOH·7H2O crystals in 

between the polysaccharide chains is expected to statistically disrupt the 

interactions in both NaOH solution (hydrogen bonding of the hydrated species with 

their surrounding “bulk” water) and chitin (intermolecular hydrogen bonding and 

hydrophobic interactions) leading to chain disentanglement.cxci cxcii However, future 

researchers should take into account various types of alkali hydrates; from 

                                                           
clxxxix Solvent diffusion possibly involves an equilibrium of hydrogen bond breaking and 

reformation; similar in nature to that observed for cyclodextrins (70).  
cxc Several groups have calculated that the hydroxide hydration shell at room temperature 

comprises of ca. 4.5 water molecules (71).    
cxci To the best of my knowledge, mercerization literature has not investigated 

systematically freezing temperatures; the focus has usually been on alkali concentration 

and process time (72,73). With the theoretical diversity of polysaccharide samples 

though, a more systematic investigation of those conditions is of significant scope.    
cxcii This hypothesis along with the fact that the freezing point of ca. 19 wt.% NaOH does not 

exceed a ~55 °C difference from room temperature might stimulate future research of 

NaOH systems as solvents for polysaccharides. Considering scaling up, a process like 

this might be favoured in industrial facilities located in countries where sub-zero 

temperatures are already part of their productive life (Scandinavia, Canada, Russia). 
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separated ion pairs with hydrodynamic diameters of 1.5–2 nm to hydrated dipoles 

of 0.5–0.8 nm.39 

Regardless of the mechanistic challenges, the fact that the dissolution of 1.56 wt.% 

22/30 chitin gave 1.9 wt.% undissolved residue and that of 2.10 wt.% 33/30 chitin 1.0 

wt.% complements the corresponding data for the highest and lowest MWs and 

suggests that 19.00 wt.% NaOH might require a second freeze-thaw cycle to 

dissolve the persistent crystalline domains present in high MW chitin samples. 

Another alternative might be the use of KOH instead of NaOH, as its freeze-thaw 

properties have been suggested to provide better dissolution performance than 

NaOH.74  

Nevertheless, with the solvation properties of 19.00 wt.% NaOH giving results of 

reasonable reproducibility, the highest-MW/most-crystalline chitin of the set (13/10) 

was selected for film casting as its properties are near to those of the native PG 

sample used in Section 4.3.3.2. Two experiments were conducted at the 5% level in 

order to check for differences in the drying process; one aimed for freeze-drying 

and another for thermal drying. Suspensions of 4.66 and 4.77 wt.% of 13/10 chitin in 

19.00 wt.% NaOH were prepared, subjected to ~30 min stirring in −15 °C and then 

frozen in dry ice. After thawing, the viscous solutions were poured in petri dishes 

which were left to stand for ~30 min.cxciii Immersion in separate equimolar HCl baths 

                                                           
cxciii Using 6.2618x2 + 3.7039x + 1.0159 (see Figure 4–36), the relative viscosities of the 4.66 

and 4.77 wt.% 13/10 chitin preparations are calculated at ca. 154 and 161 respectively.  
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resulted in immediate formation of white materials [see Figure A4–16(a)]. This 

observation provides some evidence of chain entanglement where formation of 

new hydrogen bonding networks and intensification of intermolecular interactions 

generally lead to gelation. After 4 h, the films appeared to become thicker (Figure 

A4–16(b)]. The 4.77 wt.% film was washed twice in water baths (deionized), and 

placed back on the petri dish, which was then surrounded by dry ice overnight 

(conditioning) and freeze-dried the next day.cxciv The 4.66 wt.% film was left in its 

acid bath overnight and then washed in the same way. After that, it was left to dry 

slowly at 50 °C under vacuum (the process lasted ~30 h).  

Figure 4–37 shows that both films were in one piece after their drying process. The 

4.66 wt.% sample which was thermally dried [Figure 4–37(a)] shrunk substantially 

to a radius of ca. 2 cm developing a characteristic curvature. The film was relatively 

stiff with its surface being smooth, translucent and of an orange shade. The 4.77 wt.% 

sample which was freeze-dried [Figure 4–37(b)] shrunk to a much lesser extent 

remaining relatively flat. The film was more flexible than that which was thermally-

dried with its surface being rougher and white. Its thickness was comparable to that 

of 10 sheets of regular printing paper. Although mechanical tests were not 

conducted, both films were of appreciable minimum strength.cxcv    

                                                           
cxciv Freeze-drying was conducted on the facilities of the Biochemistry department of MUN 

with the kind help of the instrumentation support specialist Craig Skinner.  
cxcv When tension was applied to a piece of the 4.77 wt.% film (by hand gripping at 

diametrically opposite sites and pulling at opposite directions), the force needed to break 
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Figure 4-37: Films of ~4.7 wt.% 13/10 chitin produced by dissolution in 19.00 wt.% NaOH; 

thermally-dried (a) and freeze-dried (b). 

Figure 4–38 shows how the infrared spectra of the two films compare to that of 13/10 

chitin. The freeze-dried film (green spectrum) exhibits the same bands as those of 

the milled powder (blue spectrum) only with generally lower intensities. That might 

be attributed to a limited contact with the ATR diamond surface due to the film’s 

thickness.cxcvi The only significant qualitative differences are the puzzling intense 

bands at 1425 and ~880 cm-1 that are generally of negligible absorbance in chitins. 

Another interesting difference is the significantly higher glycosidic linkage ratio 

(1.97 ± 0.13) that the freeze-dried film has revealed. With polymerization of the 

chains being highly unlikely during the dissolution process, future research might 

consider investigating how the entanglement/gelation process affects the packing 

                                                           
the piece in two was certainly greater than that needed for a sheet of regular printing 

paper. The freeze-dried film can be thought to resemble certain qualities of paperboard. 
cxcvi The film seemed to have a sheet-like texture. Microscopy examinations are certainly 

expected to complement FT-IR data in future studies.    

b a 
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of the pyranic rings.cxcvii That might also be the reason which makes the amide II 

ratio appearing slightly increased (2.74 ± 0.21) compared to the sample before the 

NaOH/HCl treatment (2.67 ± 0.09). Otherwise, the amide I split ratio seems to lie at 

a reasonable level (1.05 ± 0.01).  

The IR spectrum of the thermally-dried film has several qualitative differences with 

that of the 13/10 chitin. The hydrogenic region showed unexpected bands at ~3450, 

2915, and 2850 cm-1. Moreover, the amide II band is unusually suppressed 

compared to amide I and the region in between the glycosidic linkage and amide 

III is paradoxically active. Most probably, these qualitative differences arise from 

the thermal drying process as the inset spectra highlights the fact that the relatively 

wet film (just after washing) exhibits the expected chitin signal in that region.    

 

                                                           
cxcvii The carbon-hydrogen vibrations were not only significantly supressed compared to 

the glycosidic linkage, but they showed a few qualitative differences as well.  
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Figure 4-38: Infrared spectra of 13/10 chitin (blue), freeze-dried film (green), and thermally-dried film (red). Inset highlights the 

1100–1300 cm-1 region including the signal of the thermally-dried film before its drying and after its washing treatment 

(pink dotted).  
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These preliminary results suggest that freeze-drying produces films with more 

attractive properties than those thermally-dried (size and flexibility); but a more 

systematic study is needed on the factors that influence film thickness and 

transparency. With dilute HCl baths providing an effective anti-solvent/gelation 

treatment and ~19 wt.% NaOH dissolving high MW chitins at the 5 wt.% level, future 

research can focus on fine-tuning the film properties according to market needs by 

experimenting with lower MWs and concentrations. That can be done relatively 

easy using the freeze-thaw process of ~19 wt.% NaOH at −28 °C, which has proven 

to produce predictable solvation results (relative viscosity/undissolved residue) for 

a wide range of chitin concentrations (up to ~10 wt.%) and MW/crystallinities (1.01–

1.38 glycosidic linkage FT-IR ratio/36–83 % CrI). 

4.4 Conclusions  

Preliminary results obtained in collaboration with the University of Bath towards 

film-casting of chitin for applications in biomedical engineering were successful. 

However, there were many unforeseen challenges and this process was more 

difficult that initially envisioned. Dissolution experiments of 

amorphous/depolymerized α-chitin in both an ionic liquid and an alkali aqueous 

solution were conducted aiming to compare solvent systems for the production of 

α-chitin films. An approximate concentration of 19 wt.% NaOH was found to dissolve 

high MW/crystallinity α-chitin in a wide range of concentrations (up to ~ 5 wt.%) via 

a freeze-thaw process. The method was proven to be short involving swelling of the 
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polysaccharide at ca. −15 °C and then freezing at −28 °C (total process time ~ 1 h). 

Overall, and using a neutralizing anti-solvent treatment as well, the process 

revealed that a minimum around 2 wt.% of higher MW α-chitin is required to obtain 

films of acceptable mechanical properties. In contrast, a 0.5 wt.% suspension of the 

same α-chitin was insoluble when EmimAcO : DMSO at 100 °C was used. However, 

EmimAcO was useful at the 0.2 wt.% level where a relative estimation of α-chitin 

MWs has revealed that a 0.10 ± 0.03 reduction in the glycosidic linkage FT-IR ratio 

(produced by ball milling with increasing BtC/packing ratios) corresponds to a 0.93 

± 0.10 reduction in relative viscosity.   

Relative viscosities of α-chitin in 19 wt.% NaOH increased parabolically with 

increasing concentration; the lowest MW sample [1.01 ± 0.07 glycosidic linkage 

ratio, 36.5 % CrI] reached 9.83 at ~9.6 wt.%, while similar viscosity levels for the 

highest MW sample (1.38 ± 0.04 glycosidic linkage ratio, 83.2 % CrI) touched 9.73 

at ~0.9 wt.% (10-fold analogies for the set). Furthermore, with the masses of the 

undissolved residues decreasing for decreasing MW/crystallinity, it was 

hypothesized that swelling of chitin fibers at −15 °C and chain disentanglement at 

−28 °C go forward via enhanced diffusion of hydrated Na+ and OH- ions and 

formation of NaOH·7H2O crystals respectively. With more dedicated studies 

required for a mechanistic elucidation though, the 1.38 ± 0.04 glycosidic linkage 

ratio/83.2 % CrI sample was casted as a film at the 5 wt.% level using a dilute HCl 

bath. The acidic gelation/phase-separation treatment was found practical 
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producing strong films after only 4 h. Thermal drying resulted in translucent films of 

reduced size and flexibility, while freeze-drying gave white products with FT-IR 

data being in close agreement to those of the milled sample. These preliminary 

casting experiments comprise a starting point for future fine-tuning of chitin films 

with 2 to 5 wt.% of higher MWs expected to yield acceptable mechanical properties.  

At the same time though, and as lower DA values are hypothesized to contribute to 

higher flexibility of the films, a set of ultrasound assisted heterogeneous 

deacetylation reactions was performed on a wide range of α-chitin MWs using 40 

wt.% NaOH. The experiments showed preliminary evidence that the sonication 

method applied is able to give predictable results for the higher MW/crystallinities 

of α-chitin samples. Analysis of solution state 1H NMR and FT-IR spectra showed that 

sonication times of 22 and 76 min lowered the DA to 57 ± 4% and 35 ± 4% 

respectively. However, the lower MW α-chitins of the set gave unexpectedly low 

DA values suggesting that further work is needed. Also, more research is needed 

on the separation of acetate salts formed upon neutralizing deacetylation reaction 

mixtures. The initial results obtained here suggest that FT-IR spectroscopy is an 

effective monitoring technique. With the powerful solvation properties that 19 wt.% 

NaOH has revealed though, homogeneous deacetylation approaches might prove 

more efficient in the future both in terms of reaction kinetics and the work-up step. 

Future research might also focus more on the microwave technology, which has 

received little attention for chitin deacetylation studies. Last but not least, a method 
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for DA determination which would be more reproducible than those currently 

reported in literature is imperative. Solid-state NMR showed a promising potential, 

however a deeper understanding of peak deconvolution methods is necessary, as 

chitin samples with lower DAs and crystallinities are expected to give increasingly 

broader peaks, which generally comprise a serious problem for conventional 

integration algorithms.      
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Chapter 5 Concluding remarks and future directions 

The work described in this thesis builds on the design of mechanochemical systems 

which aim to find value in α-chitin. As discussed in Chapter 2, the challenging 

crystallinity of the most copious of the marine polysaccharides can be reduced in a 

controlled way via manipulating certain ball milling technological parameters. 

Using that method, in Chapter 4, a simple and rapid process to fabricate α-chitin 

films is investigated via mechanochemical amorphization and subsequent 

dissolution in aqueous NaOH. An optimum concentration of 19 wt.% of the alkali was 

found to dissolve ~5 wt.% high MW/crystallinity α-chitin via a freeze-thaw process 

at −28 °C and give films of acceptable mechanical properties after a simple gelation 

treatment with HCl. This route based on XRD/FT-IR characterization of the milled 

samples has not been reported previously. Practically, it avoids some of the 

disadvantages of ionic liquids and deep eutectic solvents like the need for a costly 

recycling/purification treatment, their life cycle issues, the high temperatures, and 

the long stirring times.1 However, the reader of Section 4.3.5 might have noticed 

that the dissolution of ~0.9 wt.% high-MW α-chitin gave also ~3% undissolved 

residue. Therefore, it is only natural for one to ask questions like “What are the 

levels of undissolved mass in the ~5 wt.% film?” and “Do they lower or raise the 

strength of the resulting film?”. Moreover, and considering a recent study where 

very strong and transparent films of a low MW α-chitin (101 kDa) were obtained via 

stirring in aqueous KOH/urea solutions at −30 °C,2 chemists might wonder if a 
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freezing step is actually necessary for the dissolution of certain MW-concentration 

ranges of the polysaccharide.cxcviii   

Furthermore, the ball-milling/cold-NaOH method is expected to conveniently 

create homogeneous solutions of predictable viscosities in the 1–10 wt.% range 

allowing for more efficient and controlled chitin deacetylation. That approach might 

prove more attractive in the future, as although the sonication method applied to α-

chitin suspensions resulted in a favourable deacetylation over depolymerization for 

the higher MW α-chitins, the DA values obtained from the lower MW chains were 

not predictable (see Section 4.3.4). It is precisely at that lower MW region though 

that more controlled and efficient deacetylation processes are required in the near 

future as the resulting chitosans can be used as high value materials for a range of 

applications. In addition to the diverse products described in Section 1.5, recent 

studies show that chitosans (DD 75–85%) of 26 and 109 kDa increase cell attachment 

of plant α-cellulose scaffolds by up to 3000%,4 while derivatives of chains with DD 

>92% and MWs of 40–150 kDa produced robust shells for capsules with liquefied 

cores which can be applied in a broad spectrum of fields (from medicine to 

electronics).5   

However, with the latter results obtained with commercial chitosan samples, the 

specific ranges of the reported DA and MW values emphasize the urgent need 

                                                           
cxcviii The aforementioned study does not mention freezing of the cold 3.5 M KOH/0.6 M urea 

solvent, in spite of the fact that a 3.5 M KOH solution (~17 wt.%) has a freezing point ca. 

−18 °C (3).   
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within an ocean-based biorefinery to characterize samples both accurately and 

precisely. Although the DA values measured with FT-IR, solution and solid-state 

NMR in Chapter 4 have shown to complement each other to some extent, a more 

dedicated study is needed in the immediate future. The preliminary results from 

solid-state NMR of ball milled α-chitins indicate that with a better understanding of 

peak deconvolution options which modern softwares offer, that powerful 

spectroscopic method can complement FT-IR data towards a less biased and 

precise DA determination. In order to reach reproducible results for a wide range 

of MW/crystallinities though, future studies need to accept the challenges that arise 

from the numerous parameters of the combined steps of the work-up and reaction 

in aqueous alkali mediums. With separation of acetate salts proving to require 

laborious washing conditions (perhaps involving multiple centrifugation or filtration 

steps during purification of chitosans), future scaled-up processes might benefit 

from the possibility of deacetylation by ball milling. Based on FT-IR and solid-state 

NMR measurements of several α-chitin sets in Chapters 3 and 4, high balls-to-chitin 

(BtC) and packing ratios of stainless steel media are hypothesized to deacetylate 

the polysaccharide to some extent concurrently with its extensive 

depolymerization/amorphization. If this evidence is reproduced by other chitin ball 

milling studies in the future, it might confirm that high frequency/impact collisions 

are capable of liberating the acetyl group in some other form than that of the 

interfering acetate salts. Recent experimentation with different grinding media 
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shapes (cylinder, square), operating frequencies and other technological 

parameters opens the way for fine-tuning a wide range of α-chitin transformations.6   

Nevertheless, chitin deacetylation by ball milling has already been achieved with 

the use of a base as a catalyst. When high MW chitin (362 kDa, ~96% DA) was milled 

with equal amounts of NaOH using a planetary ZrO2 vial/balls system, low MW 

chitosan was produced with chains of ~8 kDa and ~73% DD.7 Despite the fact that 

this remarkable result opens the way for the mechanochemical production of low 

MW chitosan straight from the shells of crustaceans, the study might raise 

challenging questions in the future regarding the reactants’ contact surface area.cxcix 

Alternatively, the surface basic sites of hydrotalcites, which are readily available 

and economic solid bases,8 are expected to gain increasing attention from the 

mechanochemistry community in the future.  

In my related studies presented in Chapter 3, the active specific surface area of 

kaolinite led to significant improvements in α-chitin depolymerization. The 

increased acidity of the system upon milling of the solid catalyst along with the high 

BtC/packing ratios allowed for 50 ± 3%  water-soluble products in the first 2 h of 

milling (84% increased productivity than that without kaolinite). This  improved 

depolymerization reaction is in agreement with a reported cellulose ball mill system 

                                                           
cxcix NaOH pellets are expected to only deform in the ball mill and not to reduce in size. 

Moreover, separation of water-soluble low MW chitosan from equal amounts of NaOH is 

hypothesized to be laborious in a scaled-up process. Liquid-assisted grinding or an 

impregnation technique might reveal a more sustainable approach for alkali catalyzed 

deacetylation of chitin.   
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and is hypothesized to originate from  protonation  of glycosidic oxygens during the 

elastic phases of collisions when covalent bonds of pyranic rings are subjected to 

conformational changes. After 2 h milling, the system entered a phase of leveling 

out reaching a plateau of ca. 76% solubility in 6 h probably due to coalescence of 

chitin particles. Colorimetric approximations of reducing ends via the 

dinitrosalicylic acid (DNS) and Schales assays confirmed the solubility elevations 

for the two ball milling phases. 

The application of a MALDI-TOF-MS method developed in Memorial University 

showed that water-soluble products contained oligomers of NAG with degrees of 

polymerization (DP) of 1 to 5. Relative quantification using a derivatization approach 

revealed that the bigger oligomers (pentamer, tetramer, trimer) lose their 

glycosidic linkages with increasing milling time (increasing trends for the monomer 

and dimer concentrations were demonstrated accordingly). Deacetylated 

oligomers were found at minimal to negligible levels supplementing the FT-IR data 

obtained for ball milling without kaolinite. N-acetyl-D-glucosamine (NAG) and N,N′-

diacetylchitobiose (NAG2) reached yields of 5.1 and 3.9 wt.%, respectively, within 

6 h, which compare well with yields of glucose and cellobiose from literature 

cellulose ball milling.9 These data agreed with chromatographic observations (SEC 

analysis), which showed broad dispersities (Ð) for the ball milled samples (Ð 4–6) 

in contrast to narrow ones for NAG-oligomer standards (Ð 1.00–1.04). Consisting 

exclusively of acetylated sugar units, these oligomers have been categorized as 
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homooligomers.10 Similar mixtures of chitin chains near 1 kDa have been 

hypothesized to inhibit oxidative stress in live cells and potentially prevent 

neurodegenerative diseases like Alzheimer’s and Parkinson’s, however the studies 

do not specify whether their mass spectra peaks correspond to parent or adduct 

ions.11,12 In general, weaknesses in characterization of chitin oligosaccharides are 

not unusual in literature and that is reflected in several of the publications which 

review their biological activities.13,14 However, with the commonly beneficial 

properties that these molecules reveal in critical fields like therapeutics, food 

additives and plant protection,14 tandem mass spectrometric techniques10 as well as 

synthetic biology approaches15 are expected to make a lasting difference in the 

future.   

At the same time, and until higher standards of oligomer characterization are 

established, networks of sea-based biorefineries can take advantage of the diverse 

functionalities that higher MW chitin chains (>10 kDa) have been shown to possess 

(see Section 1.5). As discussed in Section 2.3.6, the production of water-soluble 

chitin species comes along with an inevitable insoluble fraction of higher MW chitin 

which can comprise an alternative source of molecules for markets such as those of 

personal care products and functional materials. If a concerted effort is made 

towards the realisation of the diversity of valuable products from chitin, the results 

of the low BtC/packing set presented in Chapter 2 can provide a solid basis for more 

advanced work with ball mills. In this thesis, for the first time a semi-quantitative 
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correlation has been achieved using IR data where a gradual reduction of α-chitin’s 

crystallinity with an unaffected DA can be seen to correlate with a steady decline of 

glycosidic linkage content, and the characteristic amide I split. This application of IR 

spectroscopy might be useful for other researchers using chitin which is after all the 

most abundant of the marine polysaccharides.   

The results in Chapters 2 and 3 demonstrate that with systematic ball milling and 

detailed product characterization, α-chitin can be amorphized in a controlled way, 

which involves disruption of the intermolecular hydrogen bonding network and 

simultaneous depolymerization. However, that methodology contributes only to 

academic debate at the moment as the shaking mode of the SPEX 8000 system 

which was used in this thesis is not scalable without significant redesign.16 

Nevertheless, similar magnitude of forces have been shown to develop with the 

attritor technology which is scalable and revealed a 15-fold increase in the 

frequency of high energy collisions upon scaling from a 1.4 to a 160 L reactor.17,18 

Moreover, it is not only the technique of ball milling that induces mechanochemical 

transformations; continuous flow processes can go forward in twin-screw extruders 

in multi kg h-1 quantities.19 In general, future advances in the scalability of 

mechanochemical approaches will most probably allow companies and 

biorefineries to start designing high DA chitins of tunable MWs in a lab/pilot scale 

without the use of concentrated strong acids; avoiding this way the need for special 

labor and neutralization of acidic waste streams. Although scaling up 
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mechanochemical processes is not straightforward yet,18,20 milling experiments on 

depolymerization of lignocellulosic biomass suggest a reduction of electrical 

energy consumption with increase from the hectogram to the kilogram scale.21 

Therefore, similar technology assessments coupled with industrial implementation 

studies specifically on α-chitin should be performed in order to expand the field 

from lab research to feasible realisation of added value products such as excipients 

in formulations for human use (personal care products, functional packaging etc.). 

This will signal new support drivers towards the meaningful commercial 

exploitation of the various abundant chitinous waste streams.   

Returning to the here-and-now, one of the things that this thesis did not manage to 

achieve is a determination of the MWs of the chitin samples used. This is not unusual 

considering the strong intermolecular forces present within α-chitin samples. 

Studies in Chapter 3 indicated a MW in the order of 1 MDa for the native α-chitin 

sample from ChitinWorks. When cold 10 wt.% NaOH was used as a solvent on ball 

milled samples of significantly lower crystallinity/MW according to a published 

viscosity/light-scattering study,22 the MW values obtained were not reasonable. 

Although more systematic attempts should be made with that method as well as 

those using N,N-dimethylacetamide/LiCl,23,24 at the same time, the overall 

assessment of relevant literature suggests that chemists will soon be forced to invent 

new methods of MW determination of chitin. Based on the understanding of chitin 

crystal packing and its elementary fibril structure we have obtained during the past 
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10 years from the concerted studies of high resolution X-ray diffraction data and 

molecular dynamics simulations,25-28 the research groups which work 

systematically on the versatile toolbox of modern solvent systems are expected to 

challenge each other with optimum dissolution parameters towards solvation of 

increasing MWs and crystallinities. Considering the rich diversity of chitin sources 

and shell isolation processes though, as well as the neglected role of hydrophobic 

interactions, the scientific community can take advantage of similar ball milling 

methods and start the investigations of solvents’ potentials from lower 

crystallinities/MWs working their way up to the higher MW samples.  

Until higher standards of chitin MW determination reach wider acceptance, 

mechanochemists might challenge their own specialty by investigating the 

relationship between particle size, crystallinity, and molecular weight of 

polysaccharides. As discussed in Chapter 4, the larger particles of native α-chitin 

showed a significant hysteresis in glycosidic linkage content reduction upon similar 

ball milling conditions compared to those of practical grade (PG) α-chitin. This 

allows researchers who use ball mills that operate via shaking modes to raise 

questions like “To what extent should collision frequency be increased in order for 

the larger α-chitin particles to achieve an equal depolymerization efficiency to that 

of the smaller particle system?” and “What are the optimum collision 

force/frequency combinations for efficient depolymerization of different α-chitin 

crystallinities?“. Considering the hypothesized link between the FT-IR absorbance 
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ratio of the amide I split and the crystallinity index (CrI %), experimentalists might 

want to test if that relationship is valid for α-chitin amorphization which does not 

include concurrent depolymerization (e.g. by using lower operating frequencies or 

differential vial/balls densities upon ball milling). Moreover, with recent 

computational methods contributing to a fast discovery of super-hard materials,29 

the performances of steel systems here and elsewhere might be significantly 

improved and make a difference in the functional costs of scaled-up 

mechanochemical processes.      

If one puts the above study next to those that have shed light on chitin’s crystal 

packing and elementary fibril structure, then it is not unreasonable to think of 

computational chemists as orchestra conductors who raise the mutual 

understanding and cross-fertilization of ideas of scientists of different disciplines 

more and more.30 These scientific efforts seem to have already started to find a 

positive response from societies, who either embrace or question the motto “think 

globally, act locally”; with questioning considered vital for a better interaction 

between science and society.30-34 For example, “To value the ‘waste’ of some 

companies as resources for others” is an element which gains increasing levels of 

agreement between experts of circular economy and that is encouraging for the 

industrial symbiosis of small and medium-sized enterprises (SMEs).35 With volumes 

of produced crustaceans in the EU distributed broadly among both Mediterranean 

(mainly Spain and Italy) and Northern (mainly Ireland, UK, Denmark, Netherlands) 
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countries,36 and new public-private partnerships supporting bio-based networks of 

SMEs at the European level,37 chitin applicability in innovative technologies like 3D-

printing38 and others mentioned in Section 1.5 can surely transform the dream of the 

ocean-based biorefinery into a lasting reality.39-41     
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Figure A2– 2: Overlay of XRD signals (with no separation) for native α-chitin (black) and ball 

milled for 120 min with 16  0.25" balls (pink).  

Figure A2– 1: Overlay of XRD signals (with no separation) for native α-chitin (black) and ball 

milled for 120 min with 2  0.5" balls (pink). Insets highlight (in red dotted line) 

the maximum intensity of the pink signal at the same 2θ values as the ones 

considered for the (020) and (110) reflections of native chitin (9.28° and 19.20° 

respectively). 
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Figure A2– 3: Overlay of XRD signals (no separation) of α-chitin milled for 30 (red), 60 

(green), 90 (blue) min with 16  0.25" balls. Dotted lines mark the intensities of 

the amorphous scatter at 16.00° 2θ.  

 

Figure A2– 4: Trial line taken as background on the XRD signal of the α-chitin sample milled 

for 90 min with 16 × 0.25ʺ balls. The line was drawn by JADE software [Materials 

Data, Inc. (MDI)] when from the proposed points the ones at 5.0°, 5.8°, 34.0°, 

and 39.9° 2θ were kept by the investigator.  
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Figure A2– 5: Overlay of XRD signals (no separation) of α-chitin milled for 30 (red), 60 

(green), 90 (blue) min with 16  0.25" balls. Dotted lines mark the intensities of 

the crystalline (110) reflection at 19.20° 2θ.  
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Figure A2– 6: Overlay of XRD signals (no separation) of the sample milled for 15 min with 2 

 0.5" balls. CrI measured on May 2014 (red) is 83.3% [(3249 - 541) × 100 / 

3249], and on December 2014 (green) is 84.8% [(3017 - 460) × 100 / 3017]. Τhe 

intensity ratios for the (110)/(020) reflections are: 2.64 (3249 / 1232) for the red 

signal, and 2.41 (3017 / 1250) for the green signal.    
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Figure A2– 7: Overlay of XRD signals (no separation) of the sample milled for 105 min 

with 2  0.5" balls. CrI measured on May 2014 (purple) is 48.9% [(1535 - 784) 

× 100 / 1535], and on December 2014 (orange) is 53.5% [(1302 - 606) × 100 / 

1302]. Τhe intensity ratios for the (110)/(020) reflections are: 2.23 (1535 / 689) 

for the purple signal, and 2.28 (1302 / 570) for the orange signal.     
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Figure A2– 8: Overlay of XRD signals (no separation) of two samples milled for 90 min 

with 16  0.25" balls (BtC: 8.2). CrI is 35.9% [(1241 - 796) × 100 / 1241] for 

the red signal, and 33.1% [(1250 - 836) × 100 / 1250] for the green signal. 

Τhe intensity ratios for the (110)/(020) reflections are: 2.00 (1241 / 619) for 

the red signal, and 2.23 (1250 / 560) for the green signal.   
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Figure A2– 9: Overlay of XRD signals (no separation) of two samples milled for 90 min with 

2  0.5" balls (BtC: 8.2). CrI is 51.8% [(1493 - 720) × 100 / 1493] for the blue 

signal, and 52.7% [(1511 - 714) × 100 / 1511] for the green signal. Τhe intensity 

ratios for the (110)/(020) reflections are: 2.32 (1493 / 644) for the blue signal, 

and 2.26 (1511 / 670) for the green signal.   
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Figure A2– 10: Scanning electron microscopy (SEM) micrographs of native α-chitin. The 50 

μm scale on the left corresponds to region I and the 300 μm one on the right to 

region II of Figure 2–13. All marks in color are discussed in Section 2.3.4.  

thin stripes thin sheets 
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Figure A2– 11: Scanning electron microscopy (SEM) micrographs (100 μm) of ball milled 

α-chitin with 16 × 0.25ʺ balls for 45 (left) and 105 (right) min.   
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Figure A2– 12: Molar absorptivity of water in the 1000-4000 cm-1 spectral range at 25 °C 

(ordinate is the left or right y-axis on which the signal’s intensities are read). 

Reprinted from Analytical Biochemistry, Vol. 248, Sergei Yu. Venyaminov, 

Franklyn G. Prendergast, Water (H2O and D2O) Molar Absorptivity in the 

1000–4000 cm−1 Range and Quantitative Infrared Spectroscopy of Aqueous 

Solutions, 234-245, Copyright (1997), with permission from Elsevier. 
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Figure A2– 13: Types of molecular transformations studied with force spectroscopy techniques. Adapted minimally from Current 

Opinion in Chemical Biology, 4, Hauke Clausen-Schaumann, Markus Seitz, Rupert Krautbauer and Hermann E Gaub, 

Force spectroscopy with single bio-molecules, 524-530, Copyright (2000), with permission from Elsevier.  
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Figure A2– 14: Change in slopes of the crystallinity index (CrI %) before and after 75 min 

milling time for the 16  0.25" balls system [(0.5976 - 0.0955) × 100% / 0.5976 

equals 84.0%].  

 

 

Figure A2– 15: Change in slopes of the 1621/1652 cm-1/cm-1 FT-IR absorbance ratio before 

and after 75 min milling time for the 16  0.25" balls system [(0.0017 - 0.0004) 

× 100% / 0.0017 equals 76.5%].   
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Figure A2– 16: 1600–1100 cm-1 region of infrared spectra of native (black signal) and milled α-chitin with 16  0.25″ balls (8.2 BtC) 

for 30 (green), 60 (blue), 90 (pink) and 120 (red) min. Insets show the reference band (3000–2800 cm-1) and glycosidic 

linkage (1170–1135 cm-1) regions. Orange dotted lines highlight the intensities for reproduction of the ratios which 

probe depolymerization and deacetylation for the 60 min sample (see Figures 2–19 and 2–20).    
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Table A2– 1: Solubility results of α-chitin samples milled with 2  0.5ʺ/70  0.25ʺ balls 

(17.7% packing) for two distinct milling times (1 and 5 h) [stirring time 120,cc 

30, 3 (vortex) min].   

 

 

 

 

                                                           
cc When monitoring the temperature of the stirred mixture (ca. 250 mg chitin in 7.5 mL 

aqueous solvent), a 5.0 ± 0.8 °C increase (from room temperature) was recorded during 

the 120 minutes of the test [observed for six α-chitin samples (milled with 17.7% packing 

for: 3 min, 2-3-4-6-8 h]. Interestingly, the rise was steeper in the first hour of the test (ca. 

3.5 °C). Future researchers might use that experimental evidence to formulate the 

hypothesis of whether the solvation of chitin (and maybe polysaccharides in general) is 

an exothermic process.       

Milling time (h) Stirring time (min) Solubility % Average solubility % St. deviation RSD %

120 12.21

30 13.42

3 (vortex) 11.07

120 29.01

30 28.10

3 (vortex) 30.36

9.64
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Figure A2– 17: UV-Vis spectra of soluble products of milled α-chitin with 16  0.25″ balls 

(8.2 BtC) for 30 (green), 60 (blue), 90 (pink) and 120 (red) min. Inset shows 

a photo of the color of 0 min (left vial), and 120 min (right vial) soluble  

products (at pH 7.0).   
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Figure A2– 18: X-ray diffraction patterns (no separation) of the insoluble residue from the 

pH 7.0 solubility tests of milled α-chitin with 16  0.25ʺ balls for 30 (green), 60 

(blue), 90 (pink) and 120 (red) min (8.2 BtC). The crystallinity indices are: 

83.2% [(2957 - 496) × 100 / 2957] for t = 30 min (green), 79.7% [(2651 - 538) 

× 100 / 2651] for t = 60 min  (blue), 76.12% [(2324 - 555) × 100 / 2324] for t = 

90 min (pink), and 76.08% [(2120 - 507) ×100 / 2120] for t = 120 min (red).  
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Appendix A3  

 

Figure A3– 1: Gas chromatogram of the EtOAc-extracted reaction mixture which was 

generated when the microwave method was applied to the 8 h milled (17.5% 

packing/42.8 BtC) α-chitin sample. Mass spectrum of the 3.903 min peak 

corresponds to hexanoic acid (HA).1   

 

1. National Institute of Standards and Technology (NIST), NIST Chemistry WebBook, 

Standard Reference Database Number 69, 

https://webbook.nist.gov/cgi/cbook.cgi?ID=C142621&Units=SI&Mask=200#Mass-

Spec, (accessed 06/05, 2018).   

https://webbook.nist.gov/cgi/cbook.cgi?ID=C142621&Units=SI&Mask=200#Mass-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C142621&Units=SI&Mask=200#Mass-Spec
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Figure A3– 2: Gas chromatogram of the EtOAc-extracted reaction mixture which was 

generated when the microwave method was applied to the 5 h milled (17.5% 

packing/42.8 BtC) α-chitin sample. Mass spectrum of the 4.430 min peak 

corresponds to levulinic acid (LA).2   

 

2. Omari, K. W.; Besaw, J. E.; Kerton, F. M. Hydrolysis of chitosan to yield levulinic 

acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green 

Chem. 2012, 14, (5), 1480-1487.  
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Figure A3– 3: Calibration curve for LA yields from 100 mg of chitinous sample (prepared 

according to data of Table A3–1). 

  

Table A3– 1: Chromatographic data (peak areas of duplicate injections) for standard 

solutions of levulinic acid (LA) used to prepare the calibration curve (cc) of 

Figure A3–3. Standard solution cc1 (0.11 mg/ml LA) was too dilute for the 

analyte peak to be quantified.  
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Figure A3– 4: Averaging of the chitin trimer-derivative peak in the 0.5 h milling sample (2 

 0.5ʺ /68-70  0.25ʺ balls, with kaolinite) using the relevant mMass function.  

  

 

Figure A3– 5: m/z precision for the MALDI-TOF MS method. Number of spectra (among 

spots) are n=4 for 0.5 (blue □), n=4 for 4 (pink ○), n=5 for 2 (red ◊), n=7 for 6 

(green Δ) h milling soluble product samples (2  0.5ʺ /68-70  0.25ʺ balls, with 

kaolinite). Exact masses of the analytes are shown in Figure A3–25.  
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Figure A3– 6: Average MALDI-TOF MS spectra for blank derivatization reaction with 

structures and exact masses of assigned peaks. Inset focuses on m/z 300–340. 

 

 

Figure A3– 7: X-ray diffraction (XRD) patterns (from 5 to 65° 2θ) of kaolinite (red signal) and 

native α-chitin (transparent light blue signal). Kaolinite does not exhibit any 

significant peaks for 2θ higher than 65°.  
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Figure A3– 9: XRD patterns (from 37 to 45° 2θ) of kaolinite (red signal), native α-chitin 

(blue), 1:1 chitin:kaolinite mixture (green), 1:1 chitin:kaolinite mixture (0.5g) 

mortared for 4 min (pink). 
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Figure A3– 8: XRD patterns (from 8 to 22° 2θ) of kaolinite (red signal), native α-chitin (blue), 

1:1 chitin:kaolinite mixture (green), and 1:1 chitin:kaolinite mixture (0.5g) 

mortared for 4 min (pink). 
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Figure A3– 10: XRD patterns (from 5 to 26° 2θ) of 1:1 chitin:kaolinite mixture (0.5g) mortared 

for 4 min (pink signal) when milled with 2×0.5ʺ balls (8.2 BtP) for 30 (green) 

and 90 (red) min.   

 

Figure A3– 11: Correlation between crystallinity index (CrI%) and solubility % for α-chitin. 

Data based on milling with 16×0.25ʺ balls (8.2 BtC, see Chapter 2).  
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Figure A3– 12: Intensity ratio for reflections (110)/(020) over milling time (min) for 1×0.5ʺ / 

72×0.25ʺ (16.5% packing / 40.2 BtC) (green), 16×0.25ʺ (red), and 2×0.5ʺ (blue) 

system.  

 

Figure A3– 13:  X-ray diffraction patterns (no separation) of the insoluble residue from the 

pH 7.0 solubility tests of milled α-chitin with  68–70×0.25ʺ / 2×0.5ʺ balls (17.5% 

packing); BtC 42.8 for 2 (blue), 4 (red), and 6 (pink) h; BtC 85.6 for 1 (green), 2 

(orange), 4 (purple) h. Inset table records the crystallinity index (CrI %). 
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Figure A3– 14: 1700–1100 cm-1 region of infrared spectra of native α-chitin (orange), NAG5 (blue), NAG2 (red), and NAG (green). 

Inset shows the carbon-hydrogen region (3000–2800 cm-1) for reference.  
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Figure A3– 15: Scanning electron microscopy (SEM) micrograph of native α-chitin particle 

(500 μm scale). Red circle approximates the contact surface area (Hertz radius 

620 μm) when impacted from a 0.5ʺ steel ball (3.9 m/s velocity) in a SPEX 

system. 
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Figure A3– 16: Gas chromatogram of the first (of two) extract of the 8 h milled α-chitin 

reaction mixture. LA/HA peak area ratio is 0.211 (3791411 / 17994511), which 

translates to 17.2 wt.% LA from the chitinous sample.  

 

 

Figure A3– 17: Gas chromatogram of the second (of two) extract of the 8 h milled α-chitin 

reaction mixture. LA/HA peak area ratio is 0.248 (3461583 / 13978715), which 

translates to 20.0 wt.% LA from the chitinous sample.  
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   #   min   scan scan scan  TY  height     area    % max.   total 
 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 
  1   3.910   683  723  844   M2  371357  13978715 100.00%  80.152% 
  2   4.412   908  922 1106   M   107603   3461583  24.76%  19.848% 
  
  
                        Sum of corrected areas:    17440298 
 
              CHRIS1050DEMO.M Wed Feb 04 17:01:02 2015    
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Table A3– 2:Chromatographic results (peak areas) for LA production from 6 chitinous 

samples (reproducibility of microwave reaction was tested with triplicates on 

native α-chitin). Yield (mg LA) is obtained by application of the LA/HA peak 

area ratio to the equation of Figure A3–3, and then corrected with respect to 

the corresponding chitinous sample mass (corrected yields are plotted in 

Figure 3–13). Chitosan is Sigma Aldrich’s high-MW product.  

Measured 

quantity 

Chitosan 

Chitosan 

(4 h) 

α-Chitin  

(i) 

α-Chitin 

(ii) 

α-Chitin 

(iii) 

α-Chitin  

(4 h) 

α-Chitin  

(5 h) 

α-Chitin  

(8 h) 

Chitinous 

sample 

(g) 

0.1001 0.0855 0.0998 0.1015 0.0997 0.1061 0.1000 0.0991 

SnCl4      

5·H2O (g) 

0.0850 0.0853 0.0824 0.0911 0.0836 0.0836 0.0851 0.1168 

HA     

peak area 

15679659 16786907 15390049 16367305 17235882 18802425 16156850 16561678 

LA      

peak area 

5814915 4396101 3153051 4027362 3031557 3620620 4014384 3914900 

LA/HA 

peak area 

ratio 

0.371 0.262 0.205 0.246 0.176 0.193 0.248 0.236 

Yield   

(mg LA) 

29.3 21.0 16.7 19.8 14.5 15.8 20.0 19.1 

Corrected 

yield 

(wt.%) 

29.2 24.6 16.7 19.5 14.5 14.9 20.0 19.3 
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Figure A3– 18: XRD patterns (from 5 to 80° 2θ, no separation) of α-chitin (red), and kaolinite 

(green) when milled  with 68–70  0.25ʺ / 2  0.5ʺ balls [17.5% packing, 85.6 

balls-to-powder  (BtP) mass ratio] for 4 h, as well as 1:1 α-chitin:kaolinite 

mixture (blue) milled with 42.8 BtP (same packing) for the same time. Inset 

shows the region from 41 to 47° 2θ in more detail.      
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Figure A3– 19: UV-Vis spectra of 1500 μL of a 1.86 mM glucose solution after being reacted 

upon microwave irradiation for 5 min at 100 °C with 1500 μL IUPAC-like DNS 

reagents [0.088 mM 3,5-dinitrosalicylic acid, ca. 0.9 M tartaric acid disodium 

salt dihydrate, 62 mM phenol, 32 mM Na2S2O5] of the following pH values: 12.80  

(blue), 13.24 (green), and 13.60 (red). Inset focuses on the 530–550 nm region.     

 

Figure A3– 20: UV-Vis spectra of 1500 μL of 1.86 (blue/red) and 0.93 (turquoise/orange) 

mM glucose solutions after being reacted upon microwave irradiation for 5 min 

at 100 °C with 1500 μL IUPAC-like [blue/turquoise; 0.088 mM 3,5-

dinitrosalicylic acid, 0.40 M NaOH, ca. 0.9 M tartaric acid disodium salt 

dihydrate, 62 mM phenol, 32 mM Na2S2O5] and sulfite-free [red/orange; 0.088 

mM 3,5-dinitrosalicylic acid, 0.39 M NaOH, 0.77 M tartaric acid disodium salt 

dihydrate, 18 mM phenol] DNS reagents.  
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Figure A3– 21: UV-Vis spectra of 1500 μL of 0.72 mM N-acetyl-D-glucosamine solutions 

after being reacted upon microwave irradiation for 5 min at 100 °C with 1500 

μL phenol-free DNS reagent [green; 0.088 mM 3,5-dinitrosalicylic acid, 0.375 

M NaOH (pH 13.57), 1.068 M tartaric acid disodium salt dihydrate] and phenol-

containing DNS reagent [red; 0.088 mM 3,5-dinitrosalicylic acid, 0.386 M NaOH 

(pH 13.59), 0.766 M tartaric acid disodium salt dihydrate, 17.8 mM phenol]. 

Signal in orange is for the initial reaction mixture (before the application of 

microwave irradiation).  
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Figure A3– 22: UV-Vis spectra of 1500 μL standard glucose solutions of 0.964 (orange), 

1.094 (green), 1.224 (blue), 1.483 (red) mM after being reacted upon 

microwave irradiation for 5 min at 100 °C with 1500 μL DNS reagent B [0.088 

mM 3,5-dinitrosalicylic acid, 0.3997 M NaOH (pH 13.60), 1.063 M tartaric acid 

disodium salt dihydrate, 21.6 mM phenol]. Signal in yellow is the 1.224 mM 

glucose/DNS reagent B reaction mixture before its microwave treatment. The 

signal intensity of all initial reaction mixtures at 540 nm was in between 0.015 

and 0.025. Calibration curve is shown on Figure 3–17.   

   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

360 390 420 450 480 510 540 570

A
b

so
rb

a
n

ce
  
(A

U
)

Wavelength (nm)

0.000

0.050

0.100

0.150

0.200

530 540 550



342 
 

     

 

 

 

 

Figure A3– 23: UV-Vis spectra of 1500 μL standard N-acetyl-D-glucosamine (NAG) 

solutions of 0.594 (orange), 0.927 (green), 1.224 (blue), 1.484 (red) mM after 

being reacted upon microwave irradiation for 5 min at 100 °C with 1500 μL 

DNS reagent A [0.088 mM 3,5-dinitrosalicylic acid, 0.4079 M NaOH (pH 13.61), 

0.766 M tartaric acid disodium salt dihydrate, 17.0 mM phenol]. Signal in yellow 

is the 0.594 mM NAG/DNS reagent A reaction mixture before its microwave 

treatment.   
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Figure A3– 24: UV-Vis spectra of 1500 μL standard N-acetyl-D-glucosamine (NAG) 

solutions of 100 (green), 200 (red), 300 (blue), and 400 (pink) μM after being 

reacted upon microwave irradiation for 10 min at 100 °C with 2000 μL  Schales 

reagent. Signal in orange is the 100 μM NAG/Schales reagent reaction mixture 

before its microwave treatment. Inset shows that the signal intensities of all 

initial reaction mixtures at 420 nm were in between 0.900 and 0.914. Calibration 

curve is shown on Figure 3–19.  
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Figure A3– 25: Structures and exact masses of the MALDI-TOF MS analytes (monomer to 

pentamer). 
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A3.1 Details on m/z accuracy 

Figure A3–26 records the m/z accuracy for the set of samples analyzed. Samples 

for 0.5, 2.0, and 6.0 h milling were derivatized and spotted/lasered on 11 and 12 of 

August 2015 respectively. The maximum difference from the exact mass was 

+0.095 for the (GlcNAc)5 derivative peak. Sample for 4.0 h milling was derivatized 

and spotted/lasered on 24 and 25 of November 2015 respectively. The maximum 

difference from the exact mass was -0.215 for the (GlcNAc)5 derivative peak. 

Calibrations of the instrument were not pursued as the recorded m/z differences for 

the analytes did not interfere with any other peaks. Figure A3–27 shows the dimer-

GTMA peak for the 4.0 h milled sample at 540.1754, which is 0.1009 lower from its 

exact mass (540.2763). Its resolution (4864) is much higher than 2000 where it might 

have started being considered a problem for qualitative and quantitative analysis. 

The same stands for the rest of the analyte peaks shown in the inset table.    

 

Figure A3– 26: m/z accuracy for the MALDI-TOF MS method. Number of spectra (among 

spots) are n=4 for 0.5 (blue), n=4 for 4 (pink), n=5 for 2 (red), n=7 for 6 (green) 

h milling soluble product samples (2  0.5ʺ /68–70  0.25ʺ balls, with kaolinite). 

Exact masses of the analytes are shown in Figure A3–25.  
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Figure A3– 27: The dimer-GTMA peak for the 4.0 h milled sample at m/z 540.1754 

(protonated fragment included).    

 

 

 

Figure A3– 28: Average spectra of the 2.0 h milling sample without subtraction of the blank 

derivatization reaction spectra. Inset shows the 100-340 m/z region in more 

detail. Inset table includes the corresponding peak list. 
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Figure A3– 29: Spectra (m/z 300–340) of 0.80, 1.55, and 3.05 mM N-acetyl-D-glucosamine 

(NAG) standard solutions after derivitization with GTMA. Inset table shows 

the detailed peak list. Data was used to prepare NAG’s calibration curve 

shown on Figure 3–25.  
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Figure A3– 30: Spectra (showing the analyte peak) of 0.42 (blue), 0.80 (green), and 1.55 

(orange) mM N,N´-diacetylchitobiose (NAG2) standard solutions after 

derivatization with GTMA. Inset spectra shows the IS peak and table records 

the detailed peak list. Data was used to prepare NAG2’s calibration curve 

shown on Figure 3–25.    

 

 

Figure A3– 31: Calibration curve for (GlcNAc)5 prepared by GTMA derivatization and 

MALDI-TOF-MS. Error bars arise from quintuplicate acquisitions among spots.  
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Table A3– 3: Mass spectrometry peak lists for α-chitin water-soluble species of 0.5, 2.0, 6.0 

h milling (2  0.5ʺ /68–70  0.25ʺ balls, with kaolinite) derivatized with GTMA. 

Spectra are shown in Figure 3–23.   

 

 

 

 

 

 

 

0.5 h milling  2.0 h milling  6.0 h milling  



350 
 

Table A3– 4: Yield (g) calculation for GlcNAc and (GlcNAc)2 when ball milling 1.00 g α-

chitin with 68–70  0.25ʺ / 2  0.5ʺ balls (17.5 % packing, BtP 42.8) and kaolinite 

(1:1 g:g).a   

Measured quantity 

Milling time (h) 

0.5 2 4 6 

Α. Solubility % 16.7 50.3 73.7 75.8 

Β. Soluble products (mg) 167 503 737 758 

Γ. Actual soluble mass (mg) 18.9 62.3 98.9 85.7 

Δ. Water needed (mL) 66 61 56 66 

Ε. [GlcNAc] (mM) 0.39 1.87 2.79 3.49 

Ζ. [GlcNAc]2 (mM) 0.21 1.00 1.18 1.39 

Η. GlcNAc (mol) 2.6E-05 1.1E-04 1.6E-04 2.3E-04 

Θ. (GlcNAc)2 (mol) 1.4E-05 6.1E-05 6.6E-05 9.2E-05 

Ι. GlcNAc (g) 5.7E-03 2.5E-02 3.4E-02 5.1E-02 

Κ. (GlcNAc)2 (g) 5.9E-03 2.6E-02 2.8E-02 3.9E-02 

a 1.00 g of α-chitin charged in the ball milling vial (along with 1.00 g kaolinite) will theoretically give 

1000 mg (depolymerized) products (as we have observed no mass loss during ball milling).      

Based on the solubilities of Figure 3–14, the masses of the soluble products (out of those 1000 mg) 

are expected to be those of measured quantity Β.  

When using 7.5 mL of water for the solubility tests, the actual masses of soluble products were those 

of measured quantity Γ.  

The volumes of water needed to create the solutions for those theoretical masses of soluble products 

are expected to be those of measured quantity Δ.  

Based on the concentrations given by MALDI-TOF MS (measured quantities Ε and Ζ), the number of 

mol of GlcNAc and (GlcNAc)2 produced from ball milling 1.00 g of α-chitin are expected to be those 

of measured quantities Η and Θ.  

Yield (in g) for GlcNAc and (GlcNAc)2 (MW are 221.1 and 424.2 g/mol respectively) from 1.00 g of 

α-chitin are those of measured quantities Ι and Κ.  
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Table A3– 5: Size exclusion chromatography (SEC) data for N-acetylglucosamine (NAG) 

and other chito-oligosaccharide standards.  

Compound Actual Mr GPC Mn 
[a] GPC Mp 

[b] Mw/Mn 
Retention 
Volume 

(mL) 

NAG 221 306 289 1.04 
19.22 

 

(NAG)2 424 657 653 1.02 
18.07 

 

(NAG)4 831 1221 1263 1.02 
17.02 

 

(NAG)5 1034 1609 1650 1.01 
16.58 

 

(NAG)6 1237 2006 1947 1.00 
16.32 

 
[a] Mn was obtained via calibration against PEG standards 

[b] Mp is the mode of the molecular weight distribution. Mp is quoted for very narrowly 

distributed polymers, such as polymer standards used in calibrations. Therefore, Mp 

might be a better reflection of the actual mass.  
 

 

Figure A3– 32: Size-exclusion chromatogram for water-soluble products generated by 

grinding a 1:1 w/w mixture of chitin and kaolinite for 7 h (purple line) with 68–

70  0.25ʺ / 2  0.5ʺ balls. Chromatograms of standards (NAG2, blue line and 

NAG5, red line) included for comparison. 
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Appendix A4   

 

Figure A4– 1: FT-IR intensity ratio (1154 / 2873 cm-1 / cm-1) probing depolymerization of α-

chitin samples prepared for dissolution and film casting studies. 

Complementary data recorded on Table 4–1.  

 

Figure A4– 2: Moisture contents (wt.%) of all available chitin samples. Values determined 

gravimetrically by drying 109 ± 21 mg sample on a ~25 L Vacutherm oven 

(Thermo Scientific) at 105 °C/50 mbar vacuum for ca. 15 h.  
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Figure A4– 3: Thermogravimetric analysis (TGA) curve (green) for moisture determination of high MW α-chitin. The heating rate 

from ca. 30 to >130 °C was ca. 6.3 °C/min. The mass loss in 1,241.2 s (ca. 20.7 min) was 5.74% (final temperature: 

127.6 °C).  
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Figure A4– 4: Thermogravimetric analysis (TGA) curve for decomposition of high MW α-

chitin. The heating rate was ca. 5.0 °C/min. 

 

Figure A4– 5: Photograph of a 1.0 wt.% native α-chitin in 1:1 EmimAcO : DMSO after stirring 

at 100 °C for two days. Ellipse in blue above the white magnetic stir bar 

highlights a blurry region, which is characteristic of undissolved crystalline 

domains.  
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Figure A4– 6: Solidified honey-like coloured sample of 4.37 wt.% practical grade chitin in 

20 wt.% NaOH. 

 

Figure A4– 7: Spread of wet practical grade (PG) chitin films after their anti-solvent (HCl) 

bath treatment. Concentrations from left to right: 1.01, 1.59, 1.95, 4.37 wt.%.  
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Figure A4– 8: Infrared spectra of deacetylation products 4–7 (red), 4–6 (blue) and 4–1 

(green) acquired at CSCT.  

  

Figure A4– 9: Infrared spectra (amide region) of standard mixtures of 0 (blue solid), 35 

(yellow long dash dot), 50 (orange thin solid), 65 (orange dash), 100 (orange 

solid) wt.% anhydrous sodium acetate (CH3COONa) in milled α-chitin (~35% 

CrI), product 4–1 before (red solid) and after (green solid) its washing 

treatment. Data were acquired at MUN.  
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Figure A4– 10: Infrared spectra (glycosidic linkage region) of standard mixtures of 0 (blue 

solid), 35 (yellow long dash dot), 50 (orange thin solid), 65 (orange dash), 74 

(black solid), 100 (orange solid) wt.% anhydrous sodium acetate (CH3COONa) 

in milled α-chitin (~35% CrI), product 4–1 before (red solid) and after (green 

solid) its washing treatment. Data were acquired at MUN.  

 

Figure A4– 11: Infrared spectra (carbon-hydrogen region) of standard mixtures of 0 (blue 

solid), 35 (yellow long dash dot), 50 (orange thin solid), 65 (orange dash), 100 

(orange solid) wt.% anhydrous sodium acetate (CH3COONa) in milled α-chitin 

(~35% CrI), product 4–1 before (red solid) and after (green solid) its washing 

treatment. Data were acquired at MUN.  
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Figure A4– 12: Infrared spectra of ammonium (red) and sodium (blue) acetate. 
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A4.1 Conventional integrations in chitin solid-state NMR  

Peak picking options were: standard method, only positive peaks, 10.00 noise 

factor, 10.00 sensitivity, 1000 max # of peaks, parabolic interpolation ticked, auto 

classify not ticked, interactive not ticked. Integration options were: peaks calculation 

method, default method parameters, autodetect integral regions, peak picking 

algorithm, 3.00% min area, apply automatic integration was not ticked.  

When manual integrations were conducted (hence peaks were not picked) with 

method “Sum” [the algorithm was set as “peak picking” (same parameters as 

above)], the DA values of all samples in Figures 4–29 and 4–30 did not exceed 

104.6% (95.1% was the lowest DA value). However, the majority of them were still 

above 100.0% (see Table A4–1). Interestingly, the DAs of the 14% packing set 

(Figure 4–30) where deacetylation is expected with increasing milling time and BtC, 

increased with increasing milling treatment. The reverse is observed for the 3% 

packing set where deacetylation is expected to be negligible. When spectra for PG 

chitin and 8/105 were opened with TopSpin (Bruker) and integrated (with no 

baseline correction) over the same frequency range, the resulting DAs were 

95.04% and 102.3%. This suggests that the two softwares give almost identical 

results. However, the obtained DA values are not consistent with the so far analysis 

in this thesis. 

When the “Sum” integration method was applied with autodetect regions [(hence 

MestreNova integrated each of the C1-C6 peaks separately (except the ones for 
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8/105 and 33/30 which exhibit significant peak overlap)], DAs for all six samples 

were in between 100.7% and 111.8% (no particular trend was observed for the 

amorphization effect).  When the algorithm was derivative (instead of peak picking), 

DAs of the 8/105 sample for different sensitivities ranged from 115 to 172% 

[merging distance was 0.040 ppm and minimum area 3.00% (default settings)].   

All these trials for manual and automatic conventional integration (calculation 

method “Sum”) suggest that the method is not reliable probably due to challenging 

signal overlap in the 46-115 ppm region. Therefore, a deconvolution approach is 

hypothesized to improve the calculation of DA.  
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Table A4– 1: Manual integration data for chitin solid state NMR spectra in Figures 4–29 and 4–30.  

with baseline correction 
 

no baseline correction 

PG-chitin 
 

Range (ppm) Normalized Absolute 
  

Range (ppm) Normalized Absolute 

1 107.82 .. 53.61 600 8656143.1 
 

1 107.87 .. 53.56 600 8475731.33 

2 26.57 .. 21.09 98.19 1416570.99 
 

2 26.57 .. 21.09 95.07 1342929.11 
          

13/10 
 

(GM4.61z) 

 
Range (ppm) Normalized Absolute 

  
Range (ppm) Normalized Absolute 

1 107.10 .. 52.47 600 10588166.67 
 

1 107.15 .. 52.48 600 10588166.67 

2 26.64 .. 19.48 98.97 1746492.61 
 

2 26.64 .. 19.48 98.97 1746492.61 
          

33/30 
 

(GM4.55) 

 
Range (ppm)  Normalized Absolute 

  
Range (ppm) Normalized Absolute 

1 107.74 .. 51.23 600 12264468.66 
 

1 107.81 .. 51.21 600 11541248.09 

2 26.85 .. 17.43 100.91 2062619.95 
 

2 26.85 .. 17.43 101.73 1956775.35 
          

8/5 
 

(GM4.70) 

 
Range (ppm) Normalized Absolute 

  
Range (ppm) Normalized Absolute 

1 107.58 .. 51.81 600 10863169.37 
 

1 107.54 .. 51.78 600 10119218.23 

2 26.54 .. 19.16 103.19 1868214.7 
 

2 26.55 .. 19.17 104.59 1763906.75 
          

8/45 
 

(GM31) 

 
Range (ppm) Normalized Absolute 

  
Range (ppm) Normalized Absolute 

1 107.02 .. 50.44 600 12048989.73 
 

1 107.06 .. 50.39 600 11362396.28 

2 26.56 .. 17.47 102.22 2052702.08 
 

2 26.56 .. 17.47 103.57 1961336.97 
          

8/105 
 

(GM35) 

 
Range (ppm) Normalized Absolute 

  
Range (ppm) Normalized Absolute 

1 108.15 .. 50.06 600 12253660.49 
 

1 108.14 .. 50.02 600 11507596.73 

2 26.86 .. 17.41 100.83 2059181.31 
 

2 26.86 .. 17.41 102.3 1962083.74 
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Figure A4– 13: Solid state CP/MAS 13C NMR spectra of PG chitin. DA obtained with MestreNova 11 GSD peak picking is 97.7% 

(optimization for narrow peaks, refinement level 2). 
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Figure A4– 14: Deconvolution and line fitting of solid state CP/MAS 13C NMR spectra of PG chitin (red signal is for experimental 

data, blue is for the fitted line and green is the residue line) using MestreNova v. 10.0.2. Table A4–2 records the line 

fitting peak parameters and DA calculation.  



364 
 

 

 

Table A4– 2: Line fitting peak parameters and DA calculation for PG chitin (see spectrum in Figure A4-14).  

Line Fitting  

Name: PG-chitin (narrow, 20 fit. 
cycles)        

From: 9.690 ppm        
To: 119.789 ppm        

Residual Error:7.63e+07        

# ppm Height Width(Hz) L/G Area  
1 104.17 130552.2 194 0.3 1721490.12  
2 97.55 11261.52 31 -0.2 25762.694  
3 83.49 85514.86 337 0.51 1901645.99  

4 75.94 162654 186 
-

0.29 2221005.23  
5 73.53 177580.8 112 -0.1 1427292.07  
6 61.26 99127.63 319 0.63 2046471.44 sum of #1-7 peak areas 

7 55.35 132235.3 195 0.49 1703901.06 11047568.6 

8 22.91 196421.7 119 
-

0.23 1705269 DA 92.6% 
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Figure A4– 15: Photographs of 0.5, 1.0, 2.0, 4.0 wt.% low MW α-chitin (see Table 4–1) in 

~20 wt.% NaOH when frozen (left) and after thawing (right).  

 

 

 

Figure A4– 16: Photographs of 4.77 wt.% 13/10 chitin in 19.00 wt.% NaOH immersed in a 

~0.24 wt.% HCl bath for 10 min (a) and 4 h (b).  
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