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Abstract

Convection and diffusion have significant effect on reservoir flow systems. To represent
the reservoir properly, these effects are encountered in models of reservoir engineering.
Many researchers have worked on the convection-diffusion equations. Barakat and Clark
considered a diffusion equation in 1966 and proposed a new explicit finite-difference
scheme which gives a better result with less error using an averaging of two lower-order
schemes. Bokhari and Islam extended this work to solve convection-diffusion equations
and claimed to get the accuracy of O(At*). In the present study, we analyse the Barakat
and Clark Scheme numerically and provide details of the truncation error analysis and
stability by Von Neumann analysis. The Bokhari-Islam Scheme is also studied here. After
the analysis, it is found that the claim of Bokhari and Islam, to get the accuracy of O(At%),
is not valid. Two new numerical schemes, Generalised Barakat-Clark and Upwind Barakat-

Clark are proposed with better accuracy.
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Chapter 1 Introduction

Reservoir simulation is one of the most used tools in reservoir engineering, which predicts
the future performance of oil and gas reservoirs (Ertekin et al. 2001; Chen 2007; Lie and
Mallison 2013; Deb et al. 2017). Flexibility, availability, accuracy over a wide range of
operating conditions, and reliability have made reservoir simulation an accepted
technology. Reservoir simulation is also done for finding ways of enhancing and
optimizing recovery. Improved numerical methods, increased capacity and speed of
computers, low computing cost, and the capability of modelling diverse oil and gas
reservoirs have given numerical reservoir simulation a wide acceptance in the petroleum

industry (Mustafiz and Islam 2008; Islam et al. 2010).

Reservoir simulation is done by analyzing a physical or mathematical model of a reservoir.
Physical modelling may be done at a laboratory scale, while mathematical modelling leads
to partial differential equations along with appropriate boundary conditions. Such
mathematical models adequately describe the processes taking place in a reservoir, for
example, mass transfer, fluid flow through porous media, convection, and diffusion.
Mathematical models are usually solved numerically. The first step of numerical solution
is discretization, which leads to systems of linear and nonlinear algebraic equations. The
systems of equations are solved to predict reservoir performance accurately. Numerical

methods have an advantage of dealing with very complex reservoir conditions.

Use of improved and efficient numerical methods in reservoir engineering plays an

important role in recovery. It is important to account for all processes near a well when



modelling a reservoir. There are two methods of mass transfer through fluid flow in the
reservoir. One is diffusion and the other is convection. Diffusion is an intermolecular
phenomenon, where mass transfer happens due to relative activity of each molecule, while
convection is a major mode of mass transfer due to bulk motion of phase. Convection-
diffusion equations describe physical phenomena where particles, energy, or other physical
quantities are transferred inside a physical system due to both diffusion and convection.

The general equation is (Socolofsky and Jirka 2005, Stocker 2011).

X =V.(DVc) - V.(vo) + R (1.1)

Here, c is the variable representing species temperature for heat transfer, and concentration
for mass transfer; v is the field velocity (field that the quantity is moving around); R

represents sources or sinks; V and V. represents gradient and divergence respectively; the

term V. (DVc¢) describes diffusion; and the term —V. (vc) describes convection.

Concentration gradients causes diffusion in mass transport of a dissolved species or in a
gas mixture; and the convection (bulk fluid motion) contributes to the flux of chemical
species. Thus, the combined effect of convection and diffusion is considered while solving

problems describing flows by convection-diffusion equation.

To solve the convection-diffusion equation numerical methods are preferred over
analytical methods (Huang et al., 2008; Kaya, 2010; Ding and Jiang, 2013). Because, the
analytical solutions are time-consuming and sometimes it is not possible to solve for a

complex flow system. On the other hand, the numerical solutions can solve complex



systems with acceptable error of approximations within a short time compared to analytical

solution (Morton and Mayers, 2005).

1.1 Basis of the research

Near injection wells, both convection and diffusion have vital effects on the fluid flow.
Thus, it is necessary to account for both convection and diffusion processes in modelling

any recovery process.

Many researchers have studied both diffusion and convection-diffusion equations using
different numerical differentiation techniques (Guymon et.al., 1970; Dehghan, 2004; Roos
et.al., 2008; Zhuang et.al., 2009; Shen et.al., 2011; Liu et.al., 2013; and many more). In
1966, Barakat and Clark proposed a numerical solution algorithm for the diffusion equation
(Barakat and Clark 1966) which was expanded later by others. Barakat and Clark proposed
an explicit-finite difference procedure to solve the diffusion equation based on an
averaging of two low-order schemes to reach a high-order scheme. Their proposed method

has the advantage of unconditional stability along with simplicity.

Later, many researchers (Kettleborough, 1972; Welty, 1974; Evans and Abdullah, 1983,
1985; Evans, 1985; Bogetti and Gillespie,1992; Gupta et.al., 1997; Xu and Lavernia, 1999;
Michaud, 2000; Aboudheir et.al., 2003; Belhaj et.al., 2003; and many more) have worked
with Barakat and Clark scheme. In 2005, Bokhari and Islam proposed a scheme for
convection-diffusion equations based on the Barakat and Clark scheme (Bokhari and Islam
2005). They used a central difference approximation in time along with aspects of the

Barakat and Clark scheme, and claim to get fourth-order accuracy in time. The claim to get



fourth-order accuracy makes the Bokhari and Islam scheme eye-catching. However, there
were no detailed steps shown for the analysis of the method proposed by Barakat and Clark,

nor by Bokhari and Islam.

Though there are many fourth-order time integration schemes (Cullen and Davies, 1991;
Ascher et.al., 1995; Wesseling, 1996; Chawla et.al. 2000; Donea et.al., 2000; Li and Tang,
2001; Bijl et.al., 2002; Wicker and Skamarock, 2002; Appadu et.al., 2016; Sengupta et.al.,
2017; Fu et.al., 2018; Ge et.al., 2018; and many more), the lack of evidence in support of
their claim of Bokhari-Islam and the advantages of accuracy with simplicity of Barakat-
Clark Scheme influenced the present study to deal with Barakat-Clark and Bokhar-Islam

Scheme. The focuses of this thesis are:

e To provide detailed steps of the Barakat-Clark and Bokhari-Islam schemes
e Check the validity of the claim of Bokhari and Islam regarding accuracy in time,
and

e Propose two improved averaging-based finite difference schemes.

For doing the analysis:

e A one-dimensional convection-diffusion equation with Dirichlet boundary
conditions is considered.

e Allschemes are validated using an analytical solution where the pressure is defined
as a known function of space and time.

e Numerical solutions of the 1-D convection-diffusion equations are compared with

this analytical solution to calculate exact error values.



In Chapter 2, the background of the research and the analytical solution considered here
are provided. Chapter 3 presents the detailed analysis of the centred difference explicit
scheme and the centred difference implicit scheme for the one-dimensional convection-
diffusion equation. Chapter 4 provides the detailed analysis of error and stability and
numerical validation of the Barakat-Clark Scheme. The error and stability analysis with
numerical validation of the Bokhari-Islam Scheme is provided in Chapter 5. One of the
proposed schemes, the Generalised Barakat-Clark Scheme, is discussed in Chapter 6. The
second proposed scheme, the Upwind Barakat-Clark Scheme, is analysed and validated in
Chapter 7. Finally, Chapter 8 presents the comparison of the different schemes and

potential future research.



Chapter 2 Background

2.1 Finite difference method

The finite difference method (FDM) is a numerical procedure for finding approximate
solutions to partial differential equations (PDESs). In this technique, the physical domain is
represented by a set of discrete nodes. An FDM proceeds by replacing the derivative terms

of a PDE by finite-difference approximations (FDAS).

In discretization, the spatial and temporal domains are represented by a finite number of
nodes, specified by the user. Discretization can be two-dimensional (e.g. one dimension in
space and one dimension in time or two dimensions in space), three-dimensional (e.g. two
dimensions in space and one dimension in time), and four-dimensional (e.g. three
dimensions in space and one dimension in time). Figure 2.1 represents discretization of a
two-dimensional space-time domain. The spacing between two adjacent nodes of the space
and time domains are defined as the spatial step size (Ar) and time step size (At),

respectively. Ar and At can be uniform or non-uniform throughout the domain.

An FDA approximates a derivative of a function at a point r using its values at points in
the neighborhood of r (Figure 2.2). For an FDM, such an approximation is made at all
points of a space domain and all time steps. This gives an approximation of the PDE as a
system of equations using the FDA to replace all derivatives in the PDE. The finite
difference solution comes from solving this system of equations. Two of the most
important parameters for the accuracy of an FDM are the spacing between the nodes and

the specific formula used for the approximations.



The true derivative, f'(r), of a function f(r) at point r is the value of the slope of the

tangent line drawn at that point. In an FDM, the derivative at point r is approximated from

the value of the slope of the secant line between point r and/or neighboring points. The

approximated derivative generally becomes closer to the true derivative as the

neighborhood points come closer to point r. This implies that the resolution and the

accuracy are increased with a decrease in spacing between the nodes. But there is a risk of

increase in round-off error with increasing numbers of nodes (Gautschi, 2012).
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Figure 2.1: Two-Dimensional discretization
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Figure 2.2: FDM Approximations of first derivative of f(r) at point i.

2.2 Some approaches to solve convection-diffusion equation using FDM

Convection-diffusion equations have significant application in heat transfer (Isenberg and
Gutfinger, 1973), fluid dynamics (Kumar, 1983), and mass transfer (Guvanasen and
Volker, 1983). Thus, convection-diffusion equations play a vital role in reservoir
simulation. Many researchers have solved convection-diffusion equations using various
techniques. Analytical solution techniques are strongly influenced by the initial and
boundary conditions, and complex geometry often makes these approaches intractable. On
the other hand, numerical methods are free from such limitations. In spite of having
analytical solutions for the convection-diffusion equation in many settings (Fry et al., 1993;
Zoppou and Knight, 1997; Lin and Ball, 1998; Jiang et al., 2012; Eli and Gyuk, 2015;
Samani et al., 2018; among many), generally researchers are more inclined to use

numerical methods (Zhao and Valliappan, 1994; Huang et al., 2008; Kaya, 2010; Ding and



Jiang, 2013; Aliand Malik, 2014; Karakog et al., 2014; Kaya and Gharehbaghi, 2014; Nazir
et al., 2016; Korkmaza and Dag”, 2016; Askari and Adibi, 2017; among many) because of
the advantages of numerical solutions (i.e, less time, acceptable error, and ability to solve

complex systems) over analytical.

Many numerical methods are used to solve convection-diffusion equations. Some of the

methods which are mentioned in this study are given below.

Forward Time Centered Space (FTCS), a fully explicit finite difference method, is used for
solving heat equation and parabolic partial differential equations (Anderson et.al., 2016).
It is based on the Forward Euler method in time and central difference in space. FTCS

method is computationally inexpensive and easy to solve numerically (Anderson, 1995).

Backward Time Centered Space (BTCS), a fully implicit finite difference method, steeped
backward in time using increments of time interval and centered difference in space (Ames,

1965; Anderson, 1995). The fully implicit scheme is unconditionally stable.

The explicit centered difference method is an explicit second order method which

approximates the solution of the second order differential equation.

Implicit Centered Difference Method is an implicit second order method which

approximates the solution of the second order differential equation.

Upwind Scheme solves hyperbolic partial differential equations by numerically simulating
the direction of propagation of information in a flow field (Courant et.al., 1953). It gives

numerically stable results for convection dominated flows (Abbott and Basco, 1989). The



upwind differencing scheme is used in computational fluid dynamics for solving

convection-diffusion equations (Versteeg and Malalasekera, 2007).

Since the 1990’s, the Lattice Boltzmann Method (LBM) has been used with high attention
for fluid flow simulation (Higuera et al. 1989; Chen et al. 1991; Chen et al. 1992). To
solve diffusion and convection-diffusion equations, LBM can also be applied as shown by
Moriyama and Inamuro (1983), Kang (2003), Ginzburg (2005), and Stiebler et al. (2008).
Geback and Heintz (2013) applied LBM for convection-diffusion equation considering
Neumann boundary conditions, finding second-order convergence both theoretically and
numerically. In addition, for solving one-dimensional time-dependent convection-
diffusion equations with Neumann boundary conditions, Kereyu and Gofe (2016)
considered the Forward Time Centered Space (FTCS) and Backward Time Centered Space
(BTCS) schemes. They found first order convergence for both methods regardless of the

actual order of the spatial dimension.

For the solution of the diffusion equation and time dependent transport equation, different
numerical methods have been suggested by Crank and Nicolson (1947), and Peaceman and
Rachford (1955). Barakat and Clark (1966) proposed an unconditionally stable explicit
finite difference scheme to solve the nonhomogeneous, multidimensional diffusion
equation. Aboudheir et al. (1999) numerically solved the convection-diffusion equation
and showed that the accuracy of the DuFort-Frankel scheme was the highest of the schemes
in their study, but it is not unconditionally stable as urged in literature. In addition, they

found the Barakat- Clark scheme to be more accurate compared to the fully implicit

10



scheme. Later, Bokhari and Islam (2005) applied the same technique proposed by Barakat
and Clark (1966) to solve nonhomogeneous, multidimensional convection-diffusion
equations to get the overall accuracy in time of the order of At*, but they did not provide

any evidence supporting their claim.

Spline interpolation techniques (a form of interpolation using piecewise polynomials) were
used to solve convection equations by Pepper et al. (1979) and Okmoto et al. (1998). Later,
Thongmoon and McKibbin (2006) applied spline interpolation techniques to convection-
diffusion equations and compared with two finite-difference methods. They used FTCS
and the Crank-Nicolson methods for solving convection-diffusion equations and found that

these FDM give more accurate point-wise solutions than the spline technique.

The one-dimensional convection-diffusion equation was solved by Appadu (2013) using
three numerical methods. He used the Lax-Wendroff scheme, the Crank-Nicolson Scheme,
and the Nonstandard Finite Difference scheme (NSFD) (Mickens, 1991). After numerical
investigation, he found that the Lax-Wendroff and the NSDF methods give better

approximations than the Crank-Nicolson scheme for the same space and time step sizes.

The convection-diffusion equation on unstructured grids is solved by Pereira et al. (2013).
They used a first-order upwind and high-order flux-limiter schemes and applied the
methods to a model of the Guaiba River in Brazil. They found good agreement between
the model and observed data and, for all scenarios, the first-order upwind scheme is more

diffusive than the high-order flux-limiter scheme.

11



The one-dimensional convection-diffusion equation is solved by Savovi¢ and Djordjevich
(2012) using an explicit finite difference method considering semi-infinite media with
variable coefficients. They solved the equation for three different dispersion problems.
First, they considered solute dispersion along steady flow in an inhomogeneous medium.
Secondly, temporally dependent solute dispersion along steady flow in a homogeneous
medium. Thirdly, solute dispersion along temporally dependent unsteady flow in a
homogenous medium. Finally, they compared their results with analytical solutions
reported in the literature. Through their numerical investigation, they showed that for
solving one-dimensional convection-diffusion equation with variable coefficient in semi-

infinite media, the explicit finite difference method is accurate and effective.

Gharehbaghi (2016) and Gharehbaghi et al. (2017) also solved the time-dependent one-
dimensional convection-diffusion equation with variable coefficients in semi-infinite
media. They used differential quadrature methods in both explicit and implicit conditions.
Finally, they compared their results with analytical solutions presented in the literature and
found that the differential quadrature methods are robust, efficient and reliable. Also they
found that the predictions of the explicit forms are less accurate than those of the implicit

form.

FDM is used by many researchers to solve one-dimensional convection-diffusion
equations, giving high accuracy compared with analytical solutions. The following table

gives an overview of some of the work done on convection-diffusion equation.

12



Table 2.1 Some of the works done on convection-diffusion equation

Author(s) Method(s) /approach(es) Applied for Remark(s)

Higuera et al. 1989; | Lattice Boltzmann Method | Convection- Considering Neumann

Chenetal. 1991; Chen | (LBM) diffusion boundary conditions,

et al. 1992; Moriyama found  second-order

and Inamuro, 1983; convergence both

Kang, 2003; Ginzburg, theoretically and

2005; Stiebler et al., numerically.

2008, Geback and

Heintz, 2013

Kereyu and Gofe, | Forward Time Centered | Convection- Found  first  order

2016 Space (FTCS) and | diffusion convergence for both
Backward Time Centered methods regardless of
Space (BTCS) schemes. the actual order of the

spatial dimension

Barakat and Clark, | Explicit finite difference | Diffusion Unconditionally stable

1966 scheme

Aboudheir et al. 1999 | Followed DuFort-Frankel | Convection- Found highest
scheme diffusion accuracy of the studied

schemes.

13




Bokhari and Islam, | Followed Barakat and | Convection- Claimed to get fourth
2005 Clark scheme diffusion order accuracy.
Pepper et al, 1979; | Spline interpolation | Convection FDM gives better
Okmoto et al., 1998 techniques results.
Thongmoon and | Spline interpolation | Convection- FDM gives better
McKibbin, 2006 techniques diffusion results.
Mickens, 1991; | Lax-Wendroff scheme, the | Convection- Found that the Lax-
Appadu, 2013 Crank-Nicolson  Scheme, | diffusion Wendroff and the
and the Nonstandard Finite NSDF methods give
Difference scheme better approximations
(NSFD) than  the  Crank-
Nicolson scheme
Pereira et al. (2013). First-order upwind and | Convection- Found that the first-
high-order flux-limiter | diffusion order upwind scheme
schemes equation on | is more diffusive than
unstructured the high-order flux-
grids limiter scheme.
Savovi¢ and | Explicit finite difference | Convection- Showed that the
Djordjevich, 2012 method considering semi- | diffusion explicit finite

14




infinite media  with difference method is
variable coefficients accurate and effective.

Gharehbaghi, 2016); | differential quadrature | Convection- Found that the

Gharehbaghi et al., | methods in both explicit | diffusion differential quadrature

2017 and implicit conditions for methods are robust,
variable coefficients in efficient and reliable.
semi-infinite media.

Shukla et.al., 2011 Finite difference method | Convection- Found that the finite
(FDM), Finite element | dominated difference method or
method (FEM) diffusion finite element method

does not work well.

Sun and Zhang, 2004; | Richardson extrapolation | Convection- Found sixth  order

Ma and Ge, 2010 technique and an operator | diffusion compact finite
interpolation scheme difference

discretization strategy
for coarse grain.

Wang and Zhang, | Multiscale multigrid Convection- Sixth-order  explicit

2010; Ge et.al., 2013 diffusion compact finite

method

difference scheme was

presented

15




Samarskii et.al., 1993; | Stefan approximation and | Convection- Did numerical

Hu and Argyropoulos, | Boussinesq approximation | diffusion simulation of

1996; Voller, 1997; convection/diffusion

Teskeredzi¢ et.al., phase change

2002; Feng and Chang, processes.

2008

Li, 1983 Based on the method of | Convection- For miscible

operator splitting diffusion displacement

processes. This
method is superior to
the conventional finite
difference methods

Nove and Tan, 1988; | Weighted modified | Convection- A computationally fast

Spotz and Cary, 1995 | equation method. diffusion third-order semi-
implicit five-point
finite difference
method is proposed
with large stability
region and  better
accuracy.
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Hariharan and Kannan,

2010; Jiwari, 2012

Wavelet

wavelet analysis.

transform  or

Convection-

diffusion

Developed an accurate
and efficient Haar
transform or Haar
wavelet method which
is found to be simple,
flexible, fast, and

convenient.

Wen-gia, 2003

Followed Saul'yev type

difference scheme and the

Alternating
Crank-Nicolson

method

Convection-
diffusion
Segment

(ASC-N)

A new discrete
approximation to the
convection term was
proposed and found

that ASC-N method is

unconditionally stable.

Jinfu and Fengli, 1998;
Wen-qgia, 2003; Feng

and Tian, 2006

AGE methods

Convection-

diffusion

Unconditionally stable
with the property of

parallelism.

Ismail and Elbarbary,
1999; Ismail and

Rabboh, 2004

Implicit method

Convection-

diffusion

Showed that the

method is  highly
accurate, fast and with

good results whatever

the exact solution is
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too large i.e., the
absolute error still very

small.

Evans and Abdullah, | Explicit method Convection- The formulas are

1985; Evans, 1985; diffusion asymmetric and can be

Noye and Tan, 1988; used to develop group
explicit method.

Tian and Yu, 2011;| The fourth-order compact | Convection- High-order

Zhang and Zhang, | exponential difference | diffusion exponential (HOE)

2013 formula scheme is developed
which is  highly
accurate.

Mihaila and Mihaila, | The method of EI-Gendi Convection- Numerical  solutions

2002; Temsah, 2009 diffusion with interface points

are provided for linear
and non-linear
convection-diffusion

equation. The
maintain

solutions

good accuracy.
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Tan and Shu, 2010; Lu | Inverse Lax—Wendroff | Convection- A careful combination
et.al., 2016 procedure considering | diffusion of the  boundary
numerical boundary treatments is designed

conditions which is stable.
Chen et.al. 2014; Bai | Variational multiscale | Convection- Stabilized projection
and Feng, 2017 method (VMYS) dominated based  method is
convection proposed which is
diffusion better than VMS for

equations some examples.
Gelu etal, 2017; | Finite difference | Reaction— Sixth-order  compact
Bisheh-Niasar et.al., | approximations. diffusion finite difference
2018 method is presented

which  approximates
the exact solution very

well.

The present study focuses on the approach presented by Barakat and Clark (1966) and

adapted by Bokhari and Islam (2005) to solve the one-dimensional time-dependent

convection-diffusion equation.

19




2.3 Numerical Error

Numerical methods do not provide the exact solution to a differential equation. Two kinds
of errors are introduced while computing the approximate solution— round-off error and
truncation error. These two errors together form the total error in an approximation (Figure

2.3).

Total error

l

Error

Round.-off error

Truncation error

v

Step size (Ar. At)

Figure 2.3: Change of error with step size (modified from Gautschi, 2012; Hoffman and Frankel,
2001).

2.3.1 Truncation error
Truncation error occurs in numerical analysis and scientific computing due to use of
approximate mathematical procedures, i.e., the use of finite sums instead of infinite sums

in solving a numerical problem. For example, truncation error occurs in approximating a

3
sine function using the first two terms (Sin x = x — ’;—|) instead of using an infinite number
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x5

7
= —Z 4 ..). The truncation
5! 7!

3
of terms of the Taylor series expansion (Sinx = x — ’;—l +

error of a finite-difference approximation of a time-dependent partial differential equation

can be written by using the two-dimensional version of Taylor’s Theorem for gridpoint i

at time level n, T" = A%{(AP““)i — (BP™),}, where P™ and P™*1 represent the solution at

time levels n and n+1 respectively and the operators A and B will be explained later. The

truncation error is dependent on the numerical method used in solving a mathematical

problem (Hoffman and Frankel, 2001).

In numerical differentiation, the truncation error depends on the step size (Ar, At) and the
specific finite-difference formulas used in approximating the derivatives. The truncation
error can be reduced by reducing the step size or by using a higher-order formula.
Numerical methods used in solving differential equations consist of different steps. It is
essential to find the accuracy of a numerical solution as only approximate solutions can be

obtained using numerical methods (Epperson, 2013).
2.3.2 Round-off error

Round-off error is defined as the difference between the approximate value of a number
used in calculation and its precise (exact) value (Pegg and Weisstein, 2017; Clapham and
Nicholson, 2009). Round-off error is introduced due to the technique of storing the
numbers and performing the numerical computation by computer. A finite number of bits
are used to store the real numbers in computer. When the mantissa of the real numbers is
longer than the available bits then the real numbers are shortened to be stored. This

shortening procedure is done by two ways— chopping and rounding. Chopping removes the
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extra digits that cannot be stored, whereas rounding operation rounds the last digit that can

be stored. The round-off error is introduced by these chopping and rounding actions.

Many researchers studied the significance of round-off error. For example, Qin and Liao
(2017) studied the impact of round-off error on the reliability of numerical simulations of
chaotic dynamic systems; Bellhouse (2015) investigated the effect of round-off error using
the historical tables produced by Simon Stevin (1959) and, McCullough and Vinod (1999)
showed the consequence of round-off error on Vancouver stock exchange index. Several
true incidences can be found in different references that also states about the significance
of round-off error. Destruction of the Ariane 5 rocket launched from the European Space
Agency on June 4, 1996 (Huizinga and Kolawa, 2007) and killing of 28 people in American
soldier’s barrack due to failure of the Patriot missile defence system used in Gulf War

(Skeel, 1992) are the true extreme occurrences that happened due to round-off error.

The round-off error can be increased by three factors— (i) existence of error in initial steps
of computation, (ii) increase in the magnitude of the involved numbers, and (iii) subtraction
of identical numbers from each other (Weisstein, 2017; Hoffman and Frankel, 2001).
Huizinga and Kolawa (2007) categorized the main reasons of round-off error into four
groups. Detailed root causes of round-off error and action plans that need to be executed
to minimise the round-off error (as described by Huizinga and Kolawa, 2007), are shown

in Table 2.2.
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Table 2.2: Main causes of round-off error and action plans that need to be executed to reduce the

round-off error.

Root causes of round-off error

Action plans to minimise the round-off error

1. Lack of expertise in programming.

2. Inadequate test methods.

3. Ineffective development techniques.

4. Low precision.

1. Key programmers need to be trained in math

and programming Courses.

2. Precision should be minimum 64 bit.

3. Consultation needs to be done with an expert
who has expertise in numerical analysis and

coding.

4. Stability and accumulative errors should be
checked while running the code for extended

period.

5. Interval arithmetic math technique can be

used to check the error.

6. Floating-point error analysis must be

performed.

2.4 Stability

The concept of numerical stability of a finite-difference scheme is closely related with the

numerical error of the scheme. A scheme is said to be stable if the errors made in earlier

23




stages of the computation do not propagate into increasing errors in the later stages of the
calculation. The prime requirement of a stable scheme is that the local error made in one
step of the computation should not be increased by further calculation. The effect of an

error should remain constant or reduce with time by further computation.

2.4.1 Procedure of von Neumann stability analysis

The explicit scheme for the one dimensional heat equation (parabolic partial differential
equation) is considered here (Equation (2.1)) to illustrate the technique of von Neumann
stability analysis. Equation (2.2) is the discretized form of Equation (2.1), using a central
difference approximation in space (r direction) and forward difference approximation in

time (t direction).

aT 9°T
ot Yoxe -
i ¢ (ar)? . |

Here, a is the thermal diffusivity. Let T/* be a solution of the explicit scheme for the one-
dimensional heat equation (Equation (2.2)), and let a perturbation, T;* + €]*, satisfy the

same scheme. Thus,

T e (T +el) (TR +el )-2(T e+ (T +el )
At =a (Ar)2 (2.3)
The definition of T;* implies that
Hl-ef _ el 2el+el
e % ey (2.4)
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Expanding the error, €', using Fourier series gives

€' = X Vi exp(tkr;)

Where 7 =+/—1, k= wave number.

To simplify the analysis, it is assumed that the solution has only one term.
€' = y™ exp(tkiAr)

Substituting this into Equation (2.4) gives

(y™1—y™)exp(ikAri) a y™exp (TkAr)—2y™+y " exp (—TkAT)
At o Ar?

exp (tkAri)
n+l _— At _ n
Yyttt =a [2cos(kAr) — 2]y

y=1-a2lsin? (kzﬂ)

Nz
The von Neumann criteria for stability is fulfilled if

4At . kAr
|1 — a— Sin? (—) |<1
Ar 2

4At . kA . "
The term aFSmZ (Tr) is always positive.

Noting thatSin? ("TAT) <1, to satisfy Equation (2.10), we require aZ—iZSinz(

which is guaranteed if

At
a— <
Ar?

N |-
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(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)



Equation (2.11) gives the stability requirement for one-dimensional heat equation. For a

given value of Ar?, the value of At must be small enough to satisfy the equation.
2.5 Analytical solution for 1-D convection-diffusion equation
The 1-D convection-diffusion equation with Dirichlet boundary condition is given below:

oP %P oP
E_D6?+U&’ (2-12)

The factorized function P(x,t) = X(x)T(t) is a solution to the 1-D convection-diffusion

equation, if and only if
X(x)T'(t) = DX" (x)T(t) + UX'(x)T(t) (2.13)
Rearranging terms, we have

T'(t) A X'(%) X' (x)
T XX + UX(x)

= A, where A is a constant. (2.14)

Separating variables and separately considering time and space, we have

T'(t) = AT(t) , which gives

T(t) = e (2.15)
Similarly, for the spatial terms, we get

DX"(x) + UX'(x) — AX(x) = 0 (2.16)
Here, X(x) = c,e5* 4+ c,e%2*; X(0) =X(1) =0 (2.17)

Substituting es* into Equation (2.16) gives
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Ds2+Us—21=0 (2.18)

So,s=+ | 4A U (2.19)

—+Al4D%2 D 2D

U2 A U U2 A U
Thus,s; = |-—=+=——and s, = — [—+=——
4D%2 D 2D 4D%2 " D 2D

Applying X(0) = 0, Equation (2.17) gives ¢; = —¢,

So X(x) = ¢, (e51* — e52¥) (2.20)

2
For U—z +i< 0, Equation (2.20) becomes
4D D

u i _U_Z_ix —i _U_Z_ix
ci(e$1* —eS2*) =¢c, | e 20 |eN 40?2 D" — g N 4D’ D (2.21)

S1X _ 5S2X) — L X _U_Z_i
Or, ¢c,(e es?*) = ¢,2i e 2D" sin 5 X (2.22)

4p2

Now applying X(1) = 0, Equation (2.22) gives

LA, uz 2
c,(e’1 —es2) = ¢,;2i e 2D sin —2 35)=0 (2.23)
g A . e -
So, /——2 — = = nm and, after simplification, we get
4D D
_ u? 2.2
1 =— (5 +Dn?n?) (2.24)

By putting the value of A in Equations (2.15) and (2.23), we get
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- U_Z 2.2 U
T(t)=e (4D+D71 § )t and X(x) = ¢; e 20" sin(nmx) (2.25)
Thus, we can write
—((U—2+Dn2‘rtz)t I
P(x,t) = X0 c e "4 e 2D sin(nmx) (2.26)

For the initial condition at t = 0, we get

Ux

Yoy Cp sin(nmx) = Py(x)ezp (2.27)

Let Py = x(1 — x). Then, Equation (2.27) can be written as

Ux
ezd x x(1 — x) = Yo, cpsin(nmx) (2.28)

By using Fourier series and orthogonal functions, we can write

Ux
ez2db x x(1 — x) sin(mmx) = Yo, c,sin(nmx) sin(mmx) (2.29)

If n #= m, [ sin(nmx) sin(mmx) dx = 0, so, we get

; Ux
Jo, €2D*x(1-x) sin(nmx)dx

n fol sin?2(nmx)dx (2. 30)
_ __ 1eDPmn . o o3 2 22,2 2 3
= Cn =~ Grpenieuty [(=8m*D*n? + 4n*D*n*U + 6DU* + U°) +
U
ez (—1)"(8n2D3n? + 4w2D?n?U — 6DU? + U%)]/() (2.31)

Thus, the analytical solution for the 1-D convection-diffusion equation with initial

condition x(1 — x) becomes
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32D3mn
(4n2D2n2+U?)3

P(xt) = X ( [(—872D3n? + 4w2D?n2U + 6DU? + U3) +

u? 2.2 Ux
4D+Dn T

U f—
ezn (—1)"(8n2D3n? + 4n2D?*n?U — 6DU? + U3)]) e ( “e" Sin (nmx)

(2.32)

The following graph is found when the analytical solution is plotted for t = 1,D =1,

U=1.
58 1078 Analytical solution for Pinitial=x(1-x)
[ Nr=100 D=1 U=1
o B .
,//
‘\
/ N\
\
08 /
/ \\
/
o 06f %
\
\
\
04r \
""‘ V\\-\
021 / \
\.
\
/ \
\
0

Figure 2.4: Analytical solution for Pinitia=X(1-X)

The above analytical solution is used to calculate true errors of finite difference schemes.
The truncation error analysis provides the idea of error propagation and the true errors give
the actual error occurring in the scheme. The stability analysis gives the stability condition

for which the schemes are stable.
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Chapter 3 Centered-Difference Explicit and Implicit
Schemes

3.1 Centered-Difference Explicit Scheme

The Centered-difference explicit method calculates the values of the finite difference
approximation at the next time step from the values of the approximation at the current

time. The explicit scheme has low cost per step and is easy to program.

However, the stability of the explicit scheme requires smaller time step sizes to avoid
divergence. The Centered-difference explicit finite-difference scheme for the convection-

diffusion equation is

n+1 n n n n n n
Pi =P _ pPiza=2P Py Piy1—Pi—q

At (Ar)? 2Ar

(3.1)

3.1.1 Error Analysis of Centered-Difference Explicit Scheme
Using the Taylor series expansion, the truncation error for the explicit scheme is

determined.

apl:l, with similar notation for other partial derivatives evaluated at

ap
Denote 5(tn'ri+1) ==

(tn1)-

For the first derivative, we get

op" _ P, -PL, 2
o T o + 0(Ar?) (3.2)

For the second derivative,
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a%p; _ Pl —2P'+P[

— i—1 2
For time derivative,
n n+1_ n
ke S i SN YOY) (3.4)

at

From Equations (3.2), (3.3) and (3.4), we get,

n+1 n n
PP o(an) = Do (ZAP)jPl 14y P 4 o(ar?) (3.5)
Therefore, the truncation error for this scheme is given by 0(Ar?) + 0(At) (3.6)

3.1.2 Stability analysis for the Centered-Difference Explicit Scheme

To find the stability criterion for the centered-difference explicit scheme applied to the

convection-diffusion equation, we use Von Neumann analysis.

Let P* be a solution of the explicit scheme, and consider a perturbation (deviation), P* +

ef', that satisfies the same scheme.

n+l, n+1 n, n n, n n n
(P At) (P +e;) D(Pl+1+el+1) 2“(;:; )+(PLitel 1)+ U(Pz+1+61+1gA£P Litely) (3.7)

Using the definition of P;*, we see that

n+1 n

€ € €iy1-26] Tel 4 €41~ €1
o P e tUT (3.8)

We expand the error €* using Fourier series. For simplification, we consider that the error

has one term and let 8 = kAr.
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€' = y" exp(1kiAr) = y"exp(1i0) (3.9

Thus, Equation (3.8) becomes

n+1_,n n =0 2+, 4,0 T n 70) —y 1 -1
v Atv )exp(TGi) — pY_exp(8)—2y +y exp(-16) exp (1) + UYL exp(18)—y"exp(-16) exp (101)

Ar? 2Ar
(3.10)

>y = D5[2c0s(6) — 2] + Uz [isin(6)] +1 (3.11)
The explicit scheme will be stable if

|1+ D=5 [2cos(6) — 2] + UT-7sin(8) | < 1, for all 6, 0 < 6 < 2nm (3.12)
(1+D-5[2c0s0 — 2])2 + (UTsin 0) < 1 (3.13)
Defining a = LA)TA; and f = UA—A:, we get

(1 + a(2cosf — 2))2 + (Bsinf)? < 1 (3.14)

Note that (2cosf —2) < 0and 0 <sinf <1

Thus, the stability of this scheme depends on the values of a and S. A few conditions for

which the scheme is stable are given below.
Let x =cosf8 ,s0that—1 <x <1
The stability condition in (3.4) can be rewritten as

fx)=0+2a(x—1)*+p*(1—-x*)<1
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Note that f(1) = 1 and f(—1) = (1 — 4a)? which requires 0 < a <

N | =

If both f(1) and f(-1) are bounded by 1, and f(x) has only a minimum value, then the

condition will be satisfied.

By rewriting f(x) in a quadratic form to find the value of its vertex, we get,
fx)=x%2(4a? - B +xQ2a—8) + (1 — 2a + p?)

Ensuring (4a? — %) > 0, f(x) has a minimum value when |2a| > |B]|. Thus, the scheme
is guaranteed to be stable if 0 < a < %and B8] < |2a].

The following values are used for demonstrating the stability of the explicit scheme,
D=1,U=0,1, Nr=100

+(0)] D=1 U=0 Nr=100 Nt=10000
18 u“o r=100 |+(0)| D=1 U=1 Nr=100 Nt=10000

(@) For Nt = 10,000
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Figure 3.1: Stability analysis of Centered-Difference Explicit Scheme

After few trials, it is found that the explicit scheme is stable when Nt = 19900 or higher.

Because, for Nt = 10000, a = 1, which violates the condition 0 < a < %

For Nt = 19,900, « = 0.5 and for Nt = 40,000, « = 0.25, which follows the condition.
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3.1.3 Numerical Validation

Numerical simulation is done for this scheme using MATLAB. Some of the data found

after simulation are given below

Table 3.1: Error values for Centered-Difference Explicit Scheme for different numbers of time

steps (Nt) and numbers of grid blocks (Nr)

Nr Nt Error (D=1,U=0) Error (D=1,U=1)
25 20000 1.41E-07 1.32E-07
50 80000 3.53E-08 3.28E-08

100 20000 2 17E-08 1.72E-08

200 80000 5.42E-09 4.30E-09

400 320000 1.35E-09 1.07E-09

If we increase Nr by a factor of two and Nt by a factor of four, we see that the error will be

decreased by factor of four, as expected from the truncation error analysis.
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Figure 3.2: Error values for Centered-Difference Explicit Scheme
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Figure 3.2 represents the error values for the centered-difference explicit scheme for both
U =0 and U = 1. From the above graphs, it is clear that explicit scheme is giving less
error with higher values of Nr. If an Error value of 1.00E-09 is desired, Nr = 200 and Nt =

320000 gives the most stable result with maximum time step.

3.2 Centered-Difference Implicit Scheme

The Centered-difference implicit method calculates the values of the finite difference
approximation at the next time step from the values of the approximation at the current
time and future time. The implicit scheme has a high cost per step and can be difficult to
program. But, the stability of the implicit scheme is unconditional and it can deal with

larger time step sizes.

The Centered-difference implicit finite-difference scheme for the convection-diffusion

equation is
PITPY | [ PEEgPILepIAL o pRALpI (3.15)
At (Ar)? 24r

3.2.1 Truncation Error Analysis of Centered-Difference Implicit scheme

Using the Taylor series expansion, the truncation error for the implicit scheme is

determined as

—P{H-l_P? — P?:ll_zp?-‘-l-'-l)?jll P{l:ll_P?_*—ll 2
— t0()=D a7 + U=t + 0(Ar?) (3.16)
Therefore, the truncation error for this scheme is given by 0(Ar?) + O(At) (3.17)
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3.2.2 Stability analysis for Centered-Difference Implicit scheme

To find the stability criterion for the centered-difference implicit scheme applied to the

convection-diffusion equation, we use Von Neumann analysis.

Let P" be a solution of the centered-difference implicit scheme, and consider a perturbation

(deviation), P + €}, that satisfies the same scheme.

i—

n+1, n+1 n,.n n+1, _n+1 n+1, _n+1 n+1, _n+1 n+1, _n+1 n+1, n+1
(Pi " "+ei " )—(Pi+e¢) =D (Piyy +eiyy )—2(P; " +ei  )+(Pi_y +e71) +U (Piyy +eipn ) =PIy +e)
At (Ar)? 2Ar

(3.18)
Using the definition of B", we see that
it U - e W s
At D (Ar)? +U 2Ar (3.19)

We expand the error €} using Fourier series. For simplification, we consider that the error

Equation has one term and let 6 = KAr.
€' = y" exp(1kiAr) = y"exp(1i0) (3.20)

Thus, Equation (3.19) becomes

(yrti—ym) —niy o Y lexp(18) -2yt 4y Nt lexp(-10) -
o exp(®i) =D a7 exp(10i) +
N+1gyn (10) — v+ L axp (T
Uy exp(10)—y" " texp(-10) exp (10i) (3.21)
2Ar
1
=Y ="m (3.22)

1_

( Ar)z[2cos(6)—2]—%[2fsin(e)]
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The implicit scheme will be stable if

1
| DAt UAt - .
1_W[2C059_2]_E[215m9

<1, forall,0<6<2n (3.23)

1
<1 24
[1—%[2c059—2]]2+[%sin9]2 B (3.24)

As (2cosf —2) <0 and 0 < sinf < 1, the denominator of Equation (3.24) is always
bigger than 1. Therefore, the centered-difference implicit scheme for the convection-

diffusion equation is stable without any conditions.
3.2.3 Numerical Validation

Numerical simulation is done for the centered-difference implicit scheme using MATLAB.

Some of the data found after simulation are given below.

Table 3.2: Error values for Centered-Difference Implicit Scheme for different numbers of time
steps (Nt) and numbers of grid blocks (Nr)

Nr Nt Error (D=1,U=0) Error (D=1,U=1)
25 20000 2.07E-07 1.86E-07
50 80000 5.15E-08 4.63E-08
100 320000 1.99E-08 1.16E-08
200 80000 1 08E-08 9.24E-09
400 320000 2. 71E-09 2.31E-09
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If we increase Nr by a factor of two and Nt by a factor of four, the error is decreased by

roughly factor of four, as expected from the truncation error analysis.
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Figure 3.3: Error values for Centered-Difference Implicit Scheme
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Figure 3.3 represents the error values for the centered-difference implicit scheme for both
U = 0and U = 1. From the graphs, it is clear that the implicit scheme gives less error with

higher Nr and higher Nt.
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Chapter 4 Barakat-Clark Scheme

In 1966, Barakat and Clark proposed an unconditionally stable method to solve the general
nonhomogeneous, multidimensional diffusion equation. While analyzing time-dependent
convective phenomena, the authors faced a problem in selecting an appropriate numerical
method. As seen above, the centered-difference explicit scheme, which requires less time,
has a time step restriction for stability. In contrast, the centered-difference implicit scheme,
which allows a larger time step, requires more time to solve the discrete equations. Barakat
and Clark proposed a new explicit finite difference method, which has no severe limitation
on the time-step size. They applied their proposed method to the diffusion equation.
Barakat and Clark proposed two schemes, similar in design but meant to be complimentary,
for the diffusion equation and claimed that the average of the solutions to these two
discretizations provides a better approximation than either scheme by itself. Barakat and
Clark solved the two-dimensional diffusion equation, but did not present detailed steps of
error and stability analysis. Here, we apply the method proposed by Barakat and Clark to
the one dimensional diffusion equation and present detailed steps of error and stability
analysis of the Barakat-Clark scheme. We also provide numerical validation of the scheme

in this setting.

The Barakat-Clark scheme for solving the one-dimensional diffusion equation is

Q-qf Q@ -Q* 1+t
Scheme Q: = L=—p— 4 ‘ 4.1
Q At Ar? (4.1)
sht+i_gn sptl_gh+l_ghgn
Scheme S: - L =D i1 (4.2)
At Ar?
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Average of the solutions: P"*1 = (Qn+1 + Spt1)

4.1 Truncation Error Analysis of the Barakat-Clark Scheme

Using the two-dimensional form of Taylor’s theorem, the truncation error analysis of the

Barakat-Clark Scheme is given here.

First, the theorem is applied to the discretization given in Equation (4.1).

DAt DAt

Let (AP™*1); = ptl t = (Pn+1 P™*1)and (BP"); =P" + ( ", — P

Now,

8?P! A2 | 93P} At3 a4pn At4

DAt opP!
APn+1 e P_n+1 ket P_n+1 n+1 — Pn —LA ar
( i 1 +Ar2( 1 ) = ot t+ a2 2! + at3 3! e +
DAt (Pn 9P At + a%Pf At? ae O°P A | 9Pl At* P + P Ar — aP“ At 9?Pj Ar?
ot atz 2! a3 31 ot* 4! or orz 2!

92P At?2 | 02P] ArAt | 93P Ar®  93P] At® 93P ArZAt | 93P} Arat?  9*P] Art 9P At*

at2 20 ' grat1! 1! | ard 3! at3 3! 9r2ot 20 1! | 9rot2 11 2! art 41 ott 4l
0*P' Ar?At? | 9*P' Ar3At | 9*P] Arat® (4.3)
orz otz 2! 2! ar3at 3! 11 ' arae 1! 31 ’
DAt a%p} Atz o3P A3 | 94PP ALt OP! At
= Pn+1 + Pn+1 Pn+1 — P_n 1 At+ — 4 i = 4 i 2t i =2
( 1 otz 2! ot3 3! ot 4! (ar Ar
92PY At | 82P{ 1 At2 | 93P AtAr 93P 1At?2 | 93P} 1 At®  9*P! ArZAt  9*P] 1 At3
ar 2! dr ot Ar 1! or3 3! orz ot 2! 1! Or 0t2 Ar 2! ar* 4! ar2 otz 2! 2!
04P ArAt2  04PD 1 At*
i Arate i __) (44)
ar3 ot 3! 1! drot3 Ar 3!
Similarly,
DAt DAt opR 02PN Ar?2  93PR Ar3
n n = — pny — pn = n i = i=
(BP )l P + 1+1 1:)1 ) l:)1 + Arz (Pl + or Ar+ arz 21 + 01‘3 3! +
9*Pl! Ar* n
-——P") (4.5)

art 4!
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DAt P} At aZP{‘ At | 93P{ ArAt | 9*P] Ar?At

= pnh zat __ ph) — pn )
P + ( i+1 P ) P + D( or Ar orz 2! or3 3! art 4! ) (4 6)
The truncation error for gridblock i at time level n is given by
n _ 1 n+1 n
= —{(AP™1); — (BP");} (4.7)
1 azpn At2 a3P“ At3 a4P“ At4 apP} At 0P} At
= Th == _n 1 at
Tl At (Pl At + + + + ( or Ar ar2 2! ot
0%P' 1 At> | 03P AtAr  G%P] 1At* | 93P 1 A% 9*Pl Ar’At  9%P! 143 | 9*P] Arat?
drdt Ar 1! ar3 3! or2ot2! 1! Or 0t2 Ar 2! ort 4! or2 otz 2! 2! or3 ot 3! 1!
a*pP] 1 At* aP! At a%p? At 63Pn ArAt 0P Ar?at
—)—-P"-D(- —+ —+— ) (4.8)
drot3 Ar 3! or Ar ar? 2! 3! ar* 4!
TN — 03P} At? A 0*P}! A8 LN (azp?ig o3P 1A% 9*P!' 14At*  9*P] Ar?
1 ot3 3! ottt 4! Ordt Ar 1! = 9rot2 Ar 2! or2 otz 21 2! ort 12

9*Pl' ArAt | 9*P] 1 At3

ar3ot 3! 1! = 9rotd3 Ar 3!) (4.9)
Thus the truncation error for the first equation of Barakat-Clark Scheme is

n _ 0%P] At? 0?Pl At | 03P At?  9*P! At?  9*P{ Ar 3 4
Ti I TEY (arat Ar | 9rot? 2ar  or2ot? 4 or# 12) + O(At ) + O(AI' ) +
O(AtAr) + O( ) (4.10)

Now, Taylor’s theorem is applied to the second equation of the Barakat-Clark Scheme.

DAt

Let (CPn+1)i — Pin+1 » — ( n+1 Pin+1) and (Dpn)l — Pin ( N - Pn)

As above,

82p At? n 3P A | 9*P] At*

n
(CPn*1), = Pin+1 DAt lt_ll_-lil _ Pin+1) =P+ aaitlAt +

otz 2! ot 3! ot* 4l
DAt (P + aP{‘ Ar 4+ aP{‘ At 4+ 9*Pf Ar? + 0*P' At> | 9P ArAt | 93P Ard® | 93P At? A,
Ar? or? otz 2! drot 1! 1! ord 3! ot3 3!
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03P Ar2 At | 3PP ArAt? | 9*PRAr* | 9*PRAt* | 9*PP Ar2At? | 9*PP Ar3At | 9*PP Aratd

arZot 2! 1! drot2 1! 2! or* 4! + ot* 4! or2 otz 2! 2! or3ot 3! 1! drot3 1! 3!
aP“ 2P A2 3PP At 94P! At?
Pin oYy At i2s i2s i _) (411)
atz 2! ot3 3! ot* 4!

2pN A2 3ph A3
= (CPn+1)i — Pin+1 DAt (PI_HI — Pin+1) — Pin 1 At-l- 0°P; At” =+ 0°P; AL+

1 2! ot3 3!
a*P}! At* oP' At | 0°Pl' At | 97P]' 1 At* | 93P} ArAt n o3P At? | 9P} 1 At?
ottt 4! or Ar arz 2! drot Ar 1! or3 3! ar2 gt 2! drot? Ar 2!
0*P' Ar?At | 9*P]' 1A | 9*P]! ArAt® | 9P} iﬁ) (4.12)
ort 4! or2 otz 2! 2! or3 ot 3! 1! or at3 Ar 3! '
And,
DAt DAt aZP“ Ar?  93PP Ar3
n n b __ pnh ek n __ 1 - 1
(DP )1 P + 1 P ) 1 + Ar2 (Pl A + 21 or3 3! +
9*P{ Art n
ot B (4.13)
DAt AP At 92P] At | 83P{ ArAt 9P Ar?At
= P" 4+ —PMY=Pr—D —_——t - 1 414
1 ( 1 ) 1 (dr Ar or? 2! + or3 3! ort 4! ) ( )
The truncation error at gridpoint i and time step n is given by
m_ 1 n+1 n
T = - {(CP™%); — (DP");} (4.15)
1 aZP“ At? | 3PP ALS | 94PP ALY OPM At 92PM At
:>Ti’n =—(Pin i At+ —+——+—F—-Dr"—=+—=+
At 2! ot3 3! att 4! or Ar ar2 2!
0%P 1 At* | 93P} ArAt_I_ o3Pf' At? A, a3p} i£+ a*P} ArZAt_I_ o*Pl 14t® | 9P} ££+
drat Ar 1! ar3 3! or2ot 2! or dtZ Ar 2! ar* 4! arzotz 2! 2! | ardat3l 1!
a*py 1 At* oPf' At 02PM At | 33PPM ArAt  9*PP Ar?at
—) — Pn + D(— L— L — — 1 ) (4.16)
arot3 Ar 3! or Ar  or? 2! or3 3! ort 4!
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_ 3PP AE? | 9Pl A 92PN At | 93P! 1 At2 | 9*PRAr? | 9*PD At2 | 9*PP ArAt

m

=T at3 31 ot 4l (6r otar Torozar 2t T ort 12 T orzoz & T oot 31 T
9*P 1 A3
drat3 Ar 3! (4-17)
The truncation error for the second equation of the Barakat-Clark Scheme is

m _ O°P] A% (azp?g 0*P' Ar* | 9*P]' At? ) 3 3
T = at3 3! dr dt Ar ort 12 + or2 ot? 4 +0(At%) + O(Ar?) + O(AtAr) +
e (4.18)

) :

Now, if we do the average of errors of the two equations of the Barakat-Clark Scheme, we

get
TP+T" _1 (63Pn At? n 64P“ At3 + (azp?ig O°P' 1A% 9*P]' 1A% 9*P] Ar? art
2 ot3 3l drotAr 1! 9rot? Ar 2! 9r2ot2 2! 2! ort 12
9*P ArAt | 9*P]' 1 At3) a3P Atz | 9*P] A3 (aZP{‘ At | 8%P] 1 At2 | 9*P] Ar? n
ar39t 3! 1! 9rot3 Ar 3! o3 3! ot* 4l ordt Ar = Ordt? Ar 2! art 12
o*P' At? | 9*P ArAt | 9*P 1 At3)) (4.19)
or2 gt 4 or3at 3! arat3 Ar 3! '
After simplification
n n 3ph 2 4ph 3 4ph 2 4 n 2
2 ot3 3l ott 4l or* 12~ 0r? Otz

The truncation error for the averaged solutions of the Barakat-Clark Scheme becomes

2 ot3 3!

ort 12 or2 ot2 4

n_/n 3ph A2 4ph A2 4pn £e2
TR+T{" _ 0%PP At (a PP Ar 9*P! AL)_I_O(Atg)_l_O(Arg,) (4.21)

Thus, the Barakat-Clark Scheme is second-order accurate in both time and space. This
proves the claim that the Barakat-Clark Scheme gets higher accuracy by averaging the two

equations of the scheme.
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4.2 Stability Analysis of the Barakat-Clark Scheme

Using Von-Neumann Analysis, Equation (4.25) is found to express the stability condition

associated with Equation (4.1).

yhti_yn Dy exp(10) —y"—yt 14y tlexp(-10) (4.22)
At (4r)?
n+1rq _ DAt T _ — N —
= y" 11 an? (cos(8) —1sin(B8) — 1) = y"[1 + (A )2 — (cos(8) +Tsin(6) — 1) (4.23)
DAt DAt
=>vY[1—-— (cose —1sinB) + ar )2] =1+ (A )2 (C059 +1sin6) — (A an? (4.24)
D DAt
1+ 2 (cosB+1sin@)——
Sy = — ((3&) (ADA)t (4.25)
(Gare) y?
Leta = (A )2 Rewriting Equation (4.25) gives
1+aet?—« (4 26)
14 1-ae~0+a '
, , o0 _1)(e=i6_
Or’ |y|2 _ 1+a(e19+e_19—2)+0¢2( 1)( 1) _ 1+(a?-a)(2—2cosh) (427)

1+a(2_e-i9_ei9)+a2(1-ei9)(1—e‘i9) T 1+(a?+a)(2—2c0s6)

The minima of (a? — ) is —i ;and 0 < 2 —2cosf <4 ;hence, 0 <1+ (a?—a)(2—

2cos0) <1
Forany valueofa,a? + a = a? — «a
1+ (a? —a)(2—2cos0) <1+ (a?+ a)(2 — 2cos0) leaving |y| < 1

So, from Equation (4.27) we can say that |y| < 1
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Equation (4.31) is found to express the stability condition associated with Equation (4.2).

Yy v’““eXp(TG)—Y’““—ZY’“W’“GXP(—TG) (4.28)
At (4r)
= yM*1[1 — (ZA; (cos® +1sin® — 1)] = y"[1 + %(cos 0—Tsin@—1)]  (4.29)
, DAt — . DAt DAt o _ DAt
=Vl - ((Ar)z) (cos 6 +1sin0) + (Ar)z] =1+ ((Ar)z) (cos B —1sin 0) a7 (4.30)
DAt — . DAt
- y, _ 1+<(Ar)2>(c059—151n6)—w (4.31)
—( DAt2>(cose+Tsin6)+ DAtZ
(an) (an)
Similarly, we can write,
’ 1+ae” ¥ —q
Yy = — (4.32)

1-aelf+a

(e?0-1)(e70-1) _ 1+(a?-a)(2-2cos8)

_ 1+a(e®+e -2)+a”
B 2(1-el)(1-e10) * 1+(a?+a)(2-2c0s6)

Or, [v'|?

1+a(2—e"i0-eif)+q

So, |y'| <1 as before.

Thus, the Barakat-Clark Scheme is unconditionally stable.

4.3 Numerical Validation

Numerical simulation is done for the Barakat-Clark scheme using MATLAB. The
following data are found from this simulation for D=1. The error values are given in

Appendix-1.
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Figure 4.1: Error values for the Barakat-Clark Scheme

First of all, comparing the minimal values attached, it is seen that, for Nr = 40, the minimum

average error is approximately 4e-8 at Nt = 4000; for Nr = 80, the minimum average error
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is approximately 1e-8 at Nt = 16000; and for Nr = 160, the minimum average error is
approximately 2.5e-9 at Nt = 64000. So, we clearly see the (Ar)? behaviour of the final

truncation error terms in Equation (4.21).

Fixing Nr = 160, comparing errors for 2000 < Nt < 16000, we see the (At)? behaviour

also from Equation (4.21).

Finally, comparing the error for the average to that for either of the two schemes, we see
the “extra” cancellation, with the two schemes reporting larger errors than the average does,
and with that error growing for a fixed Nt and increasing Nr (decreasing Ar). For example,

if we consider Nt = 16000, for Nr = 160, the Equation (4.1) error is 1.32e-7, while for Nr
=80, it is 6.56e-8. This is in accordance with the ﬁfactor in the truncation error analysis

of the individual schemes.
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Chapter 5 Bokhari-Islam Scheme

To solve the convection-diffusion equation by finite difference schemes, Bokhariand Islam
proposed a new scheme extending the Barakat and Clark scheme. For the time term, they
used a central difference model, which gives accuracy of At? inherently, aiming to get
overall accuracy of At*. Bokahriand Islam claimed to get the desired accuracy but did not

provide any details.

In the present study, we analyse the Bokhari and Islam scheme for the one-dimensional
convection-diffusion equation and provide detailed error analysis for that scheme. Bokhari
and Islam also did not do a stability analysis for their proposed scheme, which is done in

this study. We also provide numerical validation of the scheme in the following setting.

The Bokhari-Islam scheme for solving the one-dimensional convection-diffusion equation

. An+1_An—1 AT _An_An+1+An+1 AT _n
is: Scheme A: = e ) e = e i=1 4 itz 51
2At Ar? + 2AT ( )
+1 -1 +1 +1
Scheme B: BL_—B" _ p By B BBy BB, (52)
' 2At Ar? 2AT .

1

Average of the solutions, P! = - (Al*1 + BP+1)
2

As it is a three-step scheme, additional initial conditions are required. Here, we use the

analytical solution to provide the exact value of P? a time At, eliminating any possible error

entering the solution scheme from using a low-order approximation here.
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5.1 Truncation Error Analysis of Bokhari-Islam Scheme
Using the two-dimensional form of Taylor’s theorem, the truncation error analysis of the

Bokhari-Islam Scheme is given here.

First, the theorem is applied to the discretization given in Equation (5.1).

_ 2DAt 2DAt UAt
Let Pin+1 _ Pin 1_ (Pn+1 Pin+1) — (A13n+1)i an ( n Pn) _|_ ( n -
P1,) = (BP");
Now,

_ 2DAt aZP“ At? | 33PpAE®

(APn+1)i — Pin+1 _ Pin 1 _ ( n+1 Pin+1) — Pin _|_ 1 At+ = -~ 4+ atsl ?
a*Pl Att n aP{‘ 8%P} At?2 | @3P] A3 9P At*  2DAt aP{‘ aP{l
ot 4! Pi + 5 At— otz 2! + ot3 3! ot* 4! Ar? (Pi Ar + At+

0%Pl Ar? | 9Pl At 9%P{lArAt  3%PilArd | 93PP A | 9%P{ ArfAt 93Pl Arat? | 9*Pf Art

orz 2! otz 2! dorot 1! 1! or3 3! ot3 3! arzat 2! 11 orotZ 1! 21 ar* 4!

O'Pf att | 0P Ar?At? 9P ArfAt 9P Arat  pn O] ) OPP{ AT 9°PRAC

ottt 4! orz otz 2! 2! or3at 3! 1! 9rat3 1! 3! 1 ot otz 2! ot3 3!

9*P{ At*

ot ar) (5.3)
a3p} At3 aP} At 02PN At . 3%PPAt?2 | 33PN ArAt

= (AP“*l)i il 2At+ —L— 4+ 2D(— 4 —1——

ar Ar  or? 2! dr dt Ar or3 3!

93P At2 | 93P A2 9*PP Ar2At  9*P! At® | 9*P] Arat? | 9*P! At?
or?ot 21 drot?2Ar  9rt 4! or2ot? 4 or3ot 3l Jrat3 6 Ar

(5.4)
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Similarly,

2DAt UAt
—= (B} — (P}

(BP™); = 1~ B+ +o-Ar+ -+

or2 2!

2DAt " + ap} 82P] Ar?
i+1 1) -

Ar- i &r"  on UAt Ar~ Ar”  o5n
ar3 3! ar* 4! P + Ar + or? +0r3 3'+044' P+

a3P! Ar3 | 9*P] Ar? ) UAt (P“ aP{‘ 82P! Ar?2 | 93P! Ar® | 9*P] Art

apn aZPPAr2 93Pr Ard  94PM Art
e 1—) (5.5)

arz 2! ar3 3! or* 4!

OPM At . 9%PM At . 93P Arat . 94PP Ar2At opt 83P] Ar?At
= (BP"); = 2D (L + S SO

+ 2R Ly Ehoat+ SRR (56)

ar Ar or2 2! or3 3! ort 4!

The truncation error at gridpoint i and time step n is given by

= ~{(AP™1); — (BP™);} (5.7)

1 9P} a3p At3 aP} At 02PM At . 3%PPMAt? | 33PlArat  33P! At?
=>Tin=——2At+ —+2D( L— L — L — — L —
or Ar arz 2! or ot Ar or3 3! ar2 ot 2!
93P} At®  9*P] Ar?At a‘*P{‘ At 9*P] ArAt? | 9*P] At4) (aP{‘ At | 9°P] At
drot2 2 Ar ar* 4! or2ot? 4 or3ot 3! dr 0t3 6 Ar or Ar orz 2!

03P ArAt . 0*PI Ar2At PP 63P“ Ar?At
i Arat 7P ) - U( oAt + 25 )
ar3 3! ar* 4! 3

+

(5.8)

63P At aZP“ azlﬂ1 2At  93PR 03Pl At?  94PP Ar?
—+ D(— 2 L — — At + L — L

3 3 6r ot Ar or2 ot dr 0t2 Ar art 6

9*P! At? a4P{‘ ArAt | 9*P} At3) U( ap op} | 9°P} a3P“ Ar? )

arz otz 2 ar3ot 3 arot3 3 Ar 3

:>T“—2

Applying 2 a; -2 = 0 in Equation (5.9) gives

TH = 93P At? (aZP“ 24t 93P} o3Pl At*  9*P{'Ar?  9*P{' At? | 9*P{ ArAt
L7 a3 3 arat Ar  or?ot arot2 Ar  or* 6  or2at2 2 | ar3at 3
a*P A3 (a3P{‘ Ar? )

arotd 3 Ar) B ar3 3

+
(5.10)

Thus the truncation error for the first equation of Bokhari-Islam scheme becomes

Th — 93P At? (aZP{‘ 24t 93P} 9*Pl Ar2 9P} Atz) (a P Ar
N =1 & & 2

3
prEp At — P 3)+0(At)+

arat Ar  ar2ot ar* 6 ar2 otz 2

o(arat) +0 (5 ) + 0(Ar?)
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We now apply Taylor’s theorem to the second equation of the Bokhari-Islam Scheme
2DAt ( UAt

Let Pin+1 _ Pin_l 2DAt( n+1 Pin+1) — (CPn+1)i and =

I_Pn)-l' (1+1

R%,) = (DP?);

Now,

n+1y  —_ pn+l n-1 _ 2DAt n+1y _ pn ; OPT a?P! A2 93P At3
(CP™1); =M1 — R, e R TR ReTy
a*Py Att ap{ 62Pn At? | 93Pl At® 9t At*  2DAt o, | 0P} aP{‘
ott 4! + At t2 2! T ot3 3! ot* 4! (P Ar + o At

0°P' Ar? | 9%P]At> | 0%P{ ArAt 63Pn Ard PPl A | 93P ArfAt | 03P ArAt? | 9*P] Art

oz 2 T o2 2 Tarocnn T o a T o 3 Toroizn Taroe 2 ot w T
OURL At | 9% ar?ac | 0*R[ Arfat . %P arAc o 9PD . 9%PPAE oAl
att 4! orz otz 2! 2! or3at 3! 1! 9rat3 1! 3! 1 ot otz 2! ot3 3!
o4PM At
L — (5.11)
ot 4!
a%p} At3 aP At 02PM At . 3%PPMAt?2 | 33PM Arat | 33P! At?
= (CP1), = Zloat Lo L LT
6r Ar orz 2! dr ot Ar or3 3! ar2 ot 2!
93P} At3 64P“ ArzAt a‘*P“ At3 a*P} ArAtZ 04P At*
+ + —+ L — (5.12)
arat2 2 Ar 4! or2 ot2 4 ar3at 3! 11 ' arotd 6 Ar
Similarly,
2DAt UAt 2DAt 82P} Ar?
n n
(Dp)i— 1_P)+ 1+1 1) ( 'A+62 21
03PM Ar3 a4P¥‘ Ar UAt OZP“ Ar?  93PMArd | o4pPP Art
—_—t —‘——P-“) (P“ ‘A +— +—‘—+—‘——Pi“+
or3 3! art 4! 2! ar3 3! art 4!
opR 02PM Ar2 | 93PP Ard a”flﬂ1 Ar
0Py Ap _ OPIAX | 0Py ArT  9'P] _) (5.13)
or arz 2! ar3 3! ort 4!
oP]' At | 02PI' At 93P ArAt | 9*P] Ar?At opPR 03 P“ Ar2At
= ny, — (_ ) Bk Al Sl Bfusialunht ) _l
(DP )1 2D or Ar orz 2! or3 3! t ort 4! +U( 2At+ 3 )
(5.14)
The truncation error at gridpoint i and time step n is given by
m_ 1 n+1 n
T = {(CP™); — (DP™);} (5.15)

55



1 0P} 03 P“ At3 (aP“ At | 9%P] At+

m _ i n+1 n — - - —1 =
=T _At{(CP )i — (DP%)i} = at 2D or ar T orz 2

02PP At2 | 93PP ArAt | 3PP At? a3p{‘ A | 9*PD ArzAt a‘*P{‘ A3 9*PP Ar At?

drot Ar ar3 3! or2 ot 2! Or dt2 2 Ar or* 4! or2 ot? 4 ar3 ot 3! 1!
4Pl At* OPM At . 92%PP At 93PM Arat . 94PP Ar?At 03 P“ Ar?At
—‘—)—2 (——‘—+—‘———‘—+—‘—)—U( l2At+ )}
drot3 6 Ar or Ar orz 2! ar3 3! art 4! 3
(5.16)
aP“ 63P“ At? 62Pn a%2p? At a3p) a%p} At2 a*P} Ar
= m — 1 (
Tl 2750 + 3 D2 + dr dt Ar T or? atAt + dr dt2 Ar a T or4 - T
4P At? a‘*P!1 ArAt 0P At aP“ a3P“ Ar?
L& 2h 1 —) ) (5.17)
ar2 otz 2 ar3ot 3 Or 0t3 3 Ar
. aZP“ aP“ . . .
Applying = 0 in Equation (5.17) gives
3PP At? a%p? At o3pt a3p} At2 64P“ Ar a*pP} At2
S>Tn =200 ( LAy Vo Mt S LR s L S
at3 3 drdt Ar  9r2ot Or 0t2 Ar 6 ar2ot2 2
04P! ArAt . 94PD At3 93P Ar?
: i) ~ UG ) (5.18)
ar3ot 3 dr dt3 3 Ar or3

Thus the truncation error for the second equation of Bokhari-Islam scheme becomes

T — 63P“A_t2_D(a3P{’ At + 26213“ At+64P?£ a*P} E)_ (a3pi“£) n
! o3 3 ar? gt ardtAr  ar* 6 ar2 otz 2 ar3 3

o) +0ar’) + 0 (5 ) + 0(AtAY)
Now, if we average the truncation errors of the two equations for the Bokhari-Islam

Scheme, we get

Tt _ 1 [63Pin£ (azpinzm o3Pl At 4+ o3Pl At2  9*Ptar?  9*Pl E_}_

2 2t 9t3 3 orot Ar or2ot 0rot? Ar airt 6 or2ot2 2
0*Pl* ArAt | 9*P[' At3 a3pl* ar?\ | 23P[" At? o’p* At | 3%P[ o3P At*

. = —) — ( l—)+ — — ( —+ At + —+
ar3ot 3 orot3 3 Ar ar3 3 at3 3 orot Ar  0r2ot 0rot? Ar
24P Ar2 04pP* AtZ2  9%PI* ArAt | 4P A3 a3p* Ar?

L T L) - UG (5.19)
art 6 ar2otz 2 or3at 3 orot3 3 Ar ar3

So, after simplifications, the truncation Error for the Bokhari-Islam Scheme becomes,

TP+T" _ 03P AL (aSPL“ a4p" Ar? o atpl E) gy 93P Ar? 3
2 at3 3 b 20t At + 6 or2ot? 2 or3 ) +
0(At3®) + 0(ArAt) (5.20)
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The truncation error in space for both convection and diffusion terms is (Ar)?, which is

similar to the Barakat-Clark scheme. However, the truncation error in time is less than

o3P
r

n . .
57257 At According to our analysis the scheme

(At)%due to presence of the mixed term —; 5

has O (At) accuracy, not O(At*). Bokhari-Isalm claim that their scheme is more accurate

in time than the Barakat-Clark scheme.
5.2 Stability Analysis of Bokhari-Islam Scheme

Using Von-Neumann Analysis, Equation (5.23) is found to express the stability condition

associated with Equation (5.1).

yr oyt yMexp(i0) -y —y™ 4y lexp(-16) y™ exp(10)—y™ exp(-16)
20t b (AT)2 +U 247 (5.21)

2DAt
(ar)?

=y {14 22551 = cos(0) + Tsin(0)} | = ¥ + ¥ [ 55 (cos(6) + Tsin(6) —

(A

2TUAt

1}+ Ar

sin(6)] (5.22)

2tUAt
Ar

2
sinﬂ) +4{1+%(1—0056 +1sin6)}

2DAt e 2IUAL . 2DAt iy
—(AT)2(0059+Lsm0—1)+ A7 smBi\/((m)z(cose+wln9—1)+
1

=Y = 2DAL

z (ar)?

+

(1—cos€+fsin9)}

(5.23)

Using Von-Neumann Analysis, Equation (5.26) is found for Equation (5.2).

Yoy ¥ exp@6) -y Ty My Mexp (1) y'" exp(i0)—y'™ exp(-16)
= +U (5.24)
2At (Ar)2 2Ar
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=yt [1 — 202 (cos(B) + Tsin(6) — 1)] =y 4y A (cos(6) — Tsin() —
(ar) (ar)
1) + 2 sin(6)] (5.25)
, (ZADr?;(cosH—Tsin9—1)+21AUrAtsin0i\[(—(ZADSZ(cos@—fsine—1)+21AUrMsin9)2+4{1—(2ADT§§(0059 +1sinf-1)}
yo= 2{1—(2ADr§§(cost9+isin0—1)}

(5.26)

The Bokahri-Islam Scheme will be stable if both |y| < 1 and |y'| < 1.

For exploring the stability analysis, the following data are used, Nr=100, Nt=200, D=1,

U=0,1,2,4,6,10

; I7(6)]. D=1 U=0 Nr=100 Nt=100 . PEHTTPPRPRTRIITRA L e
09 * Scheme Al = * Scheme At ’
+  Scheme A2 +  Scheme A2
08 Scheme B1 98 ‘ Scheme B1 | |
+  Scheme B2 ‘ i +  Scheme B2 ‘
07
o ‘ 0.6 ‘

Tos ‘ Fos } ‘
0.4 ‘ 0.4 |
0.3 ‘ { 03 ‘ |
02 0.2
01 0.1

+ +
0 el 0 el
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
] /]
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|~(6)] D=1 U=2 Nr=100 Nt=100

0.8

0.4

0.2

%  Scheme A1
+ Scheme A2

Scheme B1
Scheme B2

|+(6)] D=1 U=6 Nr=100 Nt=100

oal

0.4

0.2

Here, Al and A2 are the roots of Equation (5.22) and, B1 and B2 are the roots of Equation

(5.25).

*  Scheme A1
+  Scheme A2
Scheme B1
Scheme B2

(e) U=6

|7(6)] D=1 U=4 Nr=100 Nt=100

%  Scheme A1
+  Scheme A2
Scheme B1
* _ Scheme B2
ks
2 3 4 5 6

|+(6)] D=1 U=10 Nr=100 Nt=100
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*  Scheme A1
+  Scheme A2
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* _ Scheme B2
0.4
0.2
L
0
0 1 2 3 4 5 6

(f) U= 10

Figure 5.1: Stability analysis of the Bokhari-Islam Scheme



Table 5.1: Maximum values of |y| and |y’| for different values of U

U vl 'l
Scheme Al Scheme A2 Scheme B1 Scheme B2
0 1 1 1 1
1 1 1 1 1
2 1.0099 1.0100 1 1
4 1.0300 1.0302 1 1
6 1.0502 1.0503 1 1
10 1.0904 1.0907 1 1

The stability analysis suggests that the Bokhari and Islam scheme is stable under certain

conditions and it becomes unstable when U increases for the same values of D, Nr, and Nt.
5.3 Numerical Validation

Numerical simulation is done for the Bokhari-Islam Scheme using MATLAB. Some of the

data found after simulation are given below. The error values are given in Appendix-2.
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Figure 5.2: Error values of the Bokhari-Islam Scheme
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From the above graphs, it is seen that the average of the two equations gives less error than
Equations (5.1) and (5.2) do alone. Particularly, when Nt is smaller, the cancellation of

errors is most noticeable.

If we simulate the Bokhari-Islam Scheme with U=0, it will give the approximations only
for diffusion like Barakat-Clark Scheme. The graphical comparison of Barakat-Clark and

Bokhari-Islam scheme is given below.

Comparison of Barakat-Clark and Bokhari-Islam
Schemes

1.00E+00
1.00E-01
1.00E-02 @

1.00E-03

Error

1.00E-04 —@— Bokhari-Islam

1.00E-05 Barakat-Clark

1.00E-06

1.00E-07
0 500 1000 1500 2000

Nt

Figure 5.3: Comparison of Barakat-Clark and Bokhari-Islam

These numerical results demonstrate that the accuracy in time for the Bokhari-lsalm
scheme is less than the Barakat-Clark scheme. Hence, Bokhari-Islam decreased the time

accuracy from the Barakat-Clark scheme rather than increasing it.
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Chapter 6 Generalised Barakat-Clark Scheme

Here, we propose an improved finite difference scheme to solve the convection-diffusion
equation. The convective term is incorporated in the Barakat-Clark scheme to generalise
the scheme for both convection and diffusion. In this chapter, the convection term is
discretized in the same way as in the Bokhari-Islam Scheme, and we kept the time
derivative term of the Barakat-Clark scheme to improve the Bokhari-Islam scheme. For the
proposed scheme, truncation error analysis and stability analysis are done along with

numerical validation.

The Generalised Barakat-Clark scheme for solving the 1-D convection-diffusion equation

is
EMI_ER ER  —ER-EMY4pnt? ER  —EPM1
Scheme El L L — D i+1 L L 1—1 + U i+1 1—1 (6.1)
At Ar? 2Ar
FH1_pn FRAL_pti_pnypn Fl —FH
Scheme Fl L L — D i+1 l > L 1—1 + U i+1 1—1 (6.2)
At Ar 2Ar

Averaging of the solutions, P"** = %(Ein+1 + FP+h)

6.1 Truncation Error Analysis of the Generalised Barakat-Clark Scheme

Using the two-dimensional form of Taylor’s theorem, the truncation error analysis of the

Generalised Barakat-Clark Scheme is given here.

First, the theorem is applied to the discretization given in Equation (6.1) and following

steps are found.
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Let (APn+1)i — Pin+1 DAt (Pn+1 Pin+1) +;J and (Bpn)l — Pn + DAt( n—
i

Now,

(APn+1)i — Pin+1 DAt (Pn+1 Pn+1) + Pn+1 Pin + %At + aathZnAzL'z + gms +
e (P fﬂ e e - T

o3P At® | 9%P{' Ar? At 9%P{ Arat® | o*Pllar* | 9*PlAt* | 9%P] Ar?At?  9%P{ Ard At

56 3 Tt macna Tt w T ot w Toed 2 2 Bt a1
94P! Ar At3 opPR 02PP At2  93PP At3  94PP At UAt aP“

‘———Pi“——‘At——‘———‘———‘—)+—(Pi“— ‘A +— At+
drot3 1! 3! at otz 2! ot3 3! ot* 4! 2 Ar

0%Pl' Ar? | 9Pl At>  9%P{lArAt 93Pl Ar® | 9Pl At | 93P ArfAt 03P ArAt? | 9*P] Ar*

oz 20 T o2 2 arotnn o 3 T s Totoian aocnz T o a T
a*PY At* | 9*P]! Ar?At?  9*PQ Ar3At  9*P] Ar At3) ) 6.3)
ottt 4! orz otz 2! 2! or3at 3! 1! 9rat3 1! 3! )
opR a%p} Atz a%p} At3 9*P] At* DAt ap} %P Ar?
(APP+1), = pn 4 Zipe 4 ZELA0 e (- Star+ 2
ot otz 2! a3 31 ot* 4! Ar? or ar2 2!

92PY Ar At 93PPAr3 | 93P} ArZat 3PP Arat? | 9*PP Art | 9*P] Ar?2At? 9*P] ArdAt
drot 1! 1! ar3 3! 6r26t 2! 1! 6r6t2 1! 2! art 4! ar2at2 2! 2! ar3at 3! 1!
9*P{ Ar At3) UAt( 8%P] Ar? n 92PY At2  9?P}' ArAt 93P Ar®
orot3 1! 3! 1 rz 2! otz 2! orot 1! 1! or3 3!
93P At3 a3P{‘ Ar? At a3P{‘ Ar At? a4P{‘ Ar*  9*PP At* | 9*P]' ArZAt?  9*P] Ard At
ot3 3! ar2ot 2! 1! 9rotz 1! 2! or* 4! ott 4! dar2at2 2! 2! ar3at 3! 1!
04PD Ar At3
—L =) (6.4)
drot3 1! 3!
Similarly,
BPM), = PP + DAt pp —pn DAt pp aP}’A 82P] Ar?
( )i_ i (1+1 )+ 1+1 +_ +_ +327+
93P Ar®  9*P] Ar UAt aP“ OZP“ Ar 0313!l Ar 04PM Ar#

pArd ——P“)+—(P“ 5 Ar + e~ o (6.5)
ar3 3! ar* 4! orz 21 or3 3! ort 4!

DAt (9P aZP“ Ar a3P} Ar 9P} Ar? UAt aP“

(BP™); =B + 2 (Zhar+ S8 SR AE  SALI) 0 (g 4 DA +
0%PM Ar2 . 93PP Ar3 a4P-“ Ar?

i2 + ) el 1 _) (66)
arz 2! ar3 3! ort 4!
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The truncation error at gridpoint i and time step n is given by

1 +1
= {(AP"™5); — (BP");} (6.7)
1 opPR a2py Atz a3pY At3 *P} At* DAt oPR 02P™ Ar?
N _n=_{_n apP ae ___(__l par?
T‘ At[ P‘ t o0 At+ ot? + ot3 3! ot 4! Ar? or Ar + orz 2!

0%P' ArAt 93Pl Ar® | 93P Ar?At 93P ArAt® | 9*PPAr* | 9*PP ArfAt?  9*P{ Ard At

arot 11 11 ar3 3! ' ar?at 2! 11 ardt2 1! 2! ' ort 4 ' orZat? 2! 21 ar3at 3! 1

aP“ aZP“ Ar? | 9%P{'At>  9°Pl'ArAt  93P] Ar?

9*P{ Ar At3) uat
-1 - - Pn — 1 A -1 A
( T At e 21 otz 2! drot 1! 1! or3 3!

drot3 1! 3! 2 Ar

93P At® | 03P] Ar? At 93P ArAt? | 9*PPArt* | 9*PP At* | 9*P] ArZAt?  9*P] Ard At

at3 3! ar2ot 2! 1! 9rotz 1! 2! or* 4! ot* 4! ar2 otz 2! 2! ar3at 3! 1!
a*pP} Ar At3 DAt (9PP a%p? Ar 03P Ard | 94PPR Art UAt opH
(e + 2 (Brar+ SIA  ZRLAC | CRAC) I i P Ar 4
arat3 1! 3! or2 2! or3 3! or4
02P1 Ar? 63P“ Ar 04PP Ar#
L A0 plhin (6.8)
arz 2! or3 or* 4!
n _ 03P At?2  9*P] At3 ( a%pP At 93P} At?2 | 9*P] Ar? | 9*P] At?
1 ot3 3! ottt 4! Ordt Ar  Orot2 2 Ar ort 12 o0r2ot? 4
9*P} ArAt  9*P] At3) ( aP} At %P} At? | 93PPAr?  93P! At a3p} ArAt+
ar3ot 6 dr ot3 6 Ar ot 2 Ar 0t2 4 Ar ar3 6 0t3 12Ar or2odt 4
03Pl At 9*P{' At* %Pl ArAt? | 9*P! Ar?At | 9*P] E) (6.9)
orot? 4 ot* 48Ar Or2otz 8 or3at 12 orot3 12 ’

The truncation error for the first equation of Generalised Barakat-Clark scheme becomes

03PN At? 62P“ At 4P Ar? 0P At? aP! At a3P} Ar?
T-n — ) B i= i =2t ) 2t = + —+
1 at3 3! "~ arotAr ort 12 or2ot? 4 ot 2 Ar or3
93P} At? 3 3
o 1 + 0(At3) + 0(Ar )+0(ArAt)+0( )

We now apply Taylor’s theorem to the second equation of the Generalised Barakat-Clark
scheme.
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Let B! — 22 (BR4? — BM1) — 25T = (CP™1),  and B + 25 (BR, —BM) —
P2, = (DP™);

Now,

(CPn+1)i — Pin+1 DAt 11-;1 Pn+1) 1r_ﬁl — Pin + %At-l— aathZnAzL'z_FgAts +

03Pl At | 9%P{ Ar?At | 93P ArAt> | 9*P{Ar* | 9*PPAt* | 9*P] ArAt® | 9*P] Ard At

o6 3 Tozot a1 Torornia T ot 4 o a ooz o T odot a1t
94P! Ar At3 opPR 02PP At2  93PP At3  94PP At uat oPR

1———Pi“——‘At——‘———‘———‘—) (Pn ‘A + 1At+
drot3 1! 3! at otz 2! ot3 3! ot* 4!

92P{ Ar? +62Pn At? +62Pn ArAt+ 63Pn Ar? + o3Pl At® | 93P Ar? At | 3%P] Arat® | 9*P] Ar*
orz 2! otz 2! orot1! 1! ot3 3! ar?2o0t 2! 11 Jrot? 1! 2! art 4!

+

o4PM At 04PM Ar? At? 0P Ar3 At . 0*P! ArAt3
i i i at i 22 (6.10)

at+ 41 ' orzotz 20 21 ' oar3at 3! 1! | orotd 11 3!

a2p} Atz 3PP At3 | 94PP At* DAt (9PP OZP“ Ar
= (CPr+1) = B + Zh g ZTEAC  ORLAC | FRLAC DR g4 ZHEAC
( )‘ 1 a2 2! a3 3! att 4 Ar2 2!
92P{ Ar At | 33P] Ar3 n a%P] Ar2 At | 93P] Arat? | 9*PP Art | 0*P] Ar?At? | 9*P] ArdAt
drot 1! 1! ar3 3! or29t 2! 1! 9rot? 1! 2! art 4! ar2at2 2! 2! ar3at 3! 1!
04PD Ar At3 UAt aZP“ Ar 82P} At2 | 9?P} ArAt | 93P} Ar
‘3——)——( + +—+ - —— 4+ —— 1+
drots 1! 3! 2 Ar or2 ate 2! drot 1! 1! ars 3!

o3pf At® | 93P Ar?At | 93P] ArAt? | o*PlAr* | 9*PlAt* | 9*P] Ar?At? | 9*P{ Ard At

+ —+ —+ —_— —_—— +
ot3 arzot 2! 11 | arot? 1! 2! or* 4! ott 4! ar2 otz 2! 2! ar3 ot 3!
9*P{ Ar At3
—L—— 6.11
drot3 1! 3! ) ( )
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Similarly,

(DP™); = P + 25 (P, — M) — 2P, = PP +%(P- "PFA + "zr';n%—

T W) e @ - T GRS SR TED 61
P = B (- g S STty i
aap Az_ - a;Ps A3—3 + aap AT) (6.13)
The truncation error for gridblock i at time level n is given by

/™ = = {(CP™1); — (DP™);} (6.14)

0%P ArAt | 93Pl Ar3 | 93P Ar?At | 93P] ArAt® | 9*PlAr* | 9*P! Ar?At® | 9*P} Ard At

arat 111! ' ar3 31 | ar2at 20 1! arat2 11 2! | ort 41 ' ar2ae2 20 2! | ar3at 31 1l

04PD Ar At3 uUat op! a2p} Ar a2p} At2 0%PM Ar At . 93P Ar3
LAras) B (b Bl pr 4 Zhac+ ZTEAC LA LAy

drot3 1! 3! or? at2 21 ' arot 1! 11 ar3 3!

93P At® | 03P] Ar? At | 93P ArAt? | 9*PPAr* | 9*PP At* | 9*P] ArZAt? | 9*P] Ard At

at3 31 | arZat 20 11 | 9ratz 11 21 | art 4l att 4l | 9rzotz 20 21 ar3at 31 1!
04PD Ar At3 DAt opR aZP“ Ar 03P‘-" Ard  94PP Art UAt aP“
[ rat) _pn_ Dot 0Pl oty QPN | U pn  OFD
drot3 1! 3! Ar2 21 or3 3! ort 4! 2 Ar
02PN Ar2  93PP Ard | 94PM Art
i art i ar- i 20 (6.15)
arz 2! ar3 3! ort 4!
o T/ — o3Pl At* | 0*Pl A (62P{‘£ o3P At 9*PlAr? | 9*P] At | 9*P] ArAt n
1 at3 3! ottt 4! Ordt Ar  9rot? 2 Ar art 12 or2 ot2 4 ar3ot 6
a*py At3 aP} At a%p} Atz a3P“ Ar 03P At3 83P ArAt | 93P} At2
3 > —— + —+—= + + ;— +
Jr ot 6Ar dt 2Ar ot 4Ar 6 o0t> 12Ar adr¢ot 4 Jr ot 4
9*P] At* 9*P! ArAt? | 9*P! Ar2 At | 9*P] A (6.16)
0t* 48Ar  Or29t2 8 or3at 12 orat3 12 )
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The truncation error for the first equation of Generalised Barakat-Clark scheme becomes

T_In —

L7 a3 3 = T 12 - T

93P At? (62P§l At | 9*P]' At? | 9*P] Ar) (ap{‘ At | 93P Ar® | 93P} Atz) n
drdtAr = Or2ot? 4 ort 12 ot 2Ar a3 6 orot> 4

0(at) +0(Ar®) + 0(ArAe) + 05

The truncation error for the first Generalised Barakat-Clark scheme is the average of T

and T;". Therefore,

TP+T" 1 [63P“ At? n 64Pn A ( 0?P{' At 0°P{' At? | 9*Pl'Ar® | 9*P] AE?
2 2o 3 t+ 4l drotAr  Arot224r | ort 12 9r2ot? 4
9*P ArAat  9*P] At3) ( oP} At %P} At? | 93PPAr?  93P! At a3p} ArAt+
or3dt 6 Or 0t3 6 Ar ot 24Ar  9tZ2 4Ar  Or3 6 ot3 12Ar Or?2ot 4
93P At>2  9*P] At* 9*PY ArAt? | 9*P] Ar?At | 9*P} At3) a%P] At? | 9*P] At3
orot? 4 ot* 48Ar Or2ot2 8 or3at 12 drot3 12 at3 3! ot* 4!
(azp?g 93P At? 64PnAL+ a*P At? ae 0*P] ArAt | 9*P] At3) _ (api“ﬂ_*_
drdtAr  drot? 2 Ar or* 12 9r?0t? 4 or3dt 6 or 0t3 6 Ar ot 2Ar
0%P} At? | 93P} Ar? ar a3pPy A3 n a3Pp} ArAt_I_ a3p} £+ a*pPy At n 9*P} Ar At? n
ot?2 4Ar  0r3 6 ot® 124r  Or?ot 4 drot? 4 ot* 48Ar  Or2ot2 8
9*P]' Ar? At | 9*P] AL3
LI SRR (6.17)
or3ot 12 orot3 12
TP+T{® _ 93PP At?2 | 9*PP AE® (64P{‘ Ar?z  9*P] Atz) (0313{‘ Ar?  93P] At? Ay
2 at3 31 att a4l art 12 9r2ot? 4 a3 6  Irot? 4
9*P]' Ar? At | 9*P] A3
i L) (6.18)
or3ot 12 orot3 12

So, after simplifications, the truncation error for the Generalised Barakat-Clark Scheme

becomes,
Tin+Ti’Tl _ 63Pin£ _ 64PinAL2 24P E B (agpnAL 93ph E) 5

2 at3 3! (6r4 12 Or2ot2 ) 9% 6 T aro a + 0(Ar®) +
0(At3®) + 0(Ar2At) (6.19)
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Thus, the Generalised Barakat-Clark Scheme is second order accurate in both time and
space. That proves that the proposed scheme is similarly accurate to the Barakat-Clark

scheme for convection-diffusion equations.
6.2 Stability Analysis of the Generalised Barakat-Clark Scheme

Using Von-Neumann Analysis, Equation (6.23) is found for Equation (6.1).

n+1

ynti_yn _p? " exp (10) —y -y 14+y " lexp (-19) U]/ exp(16)-y

exp(—10)
At (Ar)? 2Ar (6.20)

=yl - (Zf)tz (cos@ —1sinf —1) + U—At(cose —1sinf)] =y"*[1+ %(cos 0 +
UAt

tsing — 1) LYW (cos 0 + 1sin0)] (6.21)
DAt At vat DAt

= y[1- @2 (cos@ —1sinB) + 228 @ )2 (cosH —1sinf)] =1 + (cos 0 +

_ . DAt | UAt

1sin ) — (Ar)z 2@ (cos@ +1sin0)] (6.22)

1+<(AD£)2 gﬁ:)(cose +Lsm9)—(AA)t2

Y= 1 (DAt I DAt (6.23)

@n? 2AT>(0059 lSln9)+(Ar)2

Using Von-Neumann Analysis, Equation (6.27) is found for Equation (6.2).

Yoy sy exp @)y M —y M4y Mexp(-16) Y exp(i0)—y'™ exp(-10)
At =D (Ar)2 +U 2Ar (6.24)
m+1pq _ DAt —i 4N UAt - _m DAt _
=>y™1 ar)? (cos@ +1sinf —1) e (cos@ +1sinf)] =y™[1 + J¥SE (cos@
— . UAt — .
rsinf —1) ——=(cos# —Isin 0)] (6.25)
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N )/’[1 _ ( DAt

(ary?

DAt

(ary?

DA A
1+( t UAt
’_
)/_

UAt

an? —Z(Ar))(cose—fsine) - bat
1_( DAt

UAt
+ —
2A

r) (cos 0 +1sinf) +

DAt DAt UAt —
(Ar)z] =1+ ((Ar)2 _E) (cos@ —1Tsinf) —

(AT)2 toar

The Generalised Barakat-Clark Scheme will be stable if |[y| <1 and |y'| < 1.

)(c059+fsin0) + DAt

(6.26)
@n?

(ar)?

(6.27)

For exploing the stability analysis, the following data are used, D = 1, Nr = 100,Nt =
100,U=1,24
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Figure 6.1: Stability analysis of the Generalised Barakat-Clark Scheme
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_ +(@a+p)(-D-a _ 1-2a-f _ (2a+ﬁ—1)
T 1-(a-B)(-D+a  1+2a-8 2a—-f+1

if g >1,]y(@|>1
The scheme becomes unstable for f > 1 and any value of « .

The stability analysis suggests that the Generalised Barakat-Clark Scheme is conditionally

stable and it becomes unstable with increasing U for the same values of D, Nr, and Nt.

6.3 Numerical Validation

Numerical simulation is done for the Generalised Barakat-Clark scheme using MATLAB.

The following data are found from this simulation for D=1 U=1. The error values are given

in Appendix-3.
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Figure 6.2: Error analysis of Generalised Barakat-Clark Scheme
If Equations (6.1) and (6.2) are considered as individual schemes, the accuracy of
individual Generalised Barakat-Clark scheme for both time and space are less than
O(At)%and O (Ar)?, respectively. After averaging, the accuracy of the generalised
Barakat-Clark scheme is O(At)%and O(Ar)?, respectively. The accuracy here for
space is like the Bokhari-1slam scheme. But the accuracy for time is higher than the
Bokhari-Islam scheme. So, this scheme can be seen to be an improved version of

the Bokhari-Islam scheme.
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Chapter 7 Upwind Barakat-Clark Scheme

Near an injection well, the convection current may dominate over diffusion. To incorporate
strong convection flows, upwind differencing schemes are used. Here, we also propose
another scheme incorporating the second-order upwind discretization for the convection
term in the Barakat and Clark scheme. As Barakat and Clark described their proposed
equation based on direction, an upwind scheme is a good candidate for the convection term,

because upwind schemes follow the direction of propagation of information in a flow.

The Upwind Barakat-Clark scheme for solving the 1-D convection-diffusion equation is

Gghti_gn GN —gh_ghtlpgntt 3GN—4GnFlygntt
Scheme G: 1720 = p Aamtl SOy 2ol el &
T r
H' —H] H —H - H 3HM1_4H +HT
Scheme H: = v L — pZixt lArz i S5 § o ZA; 1THi-2 (72)

Averaging of the solutions, P"*1 = %(Girl+1 + HP)

While computing the solution near the left-hand end point, the first-order upwind
discretization is used to avoid requiring values for the gridblocks G;_, and H;_,, as it is
not possible to get these values when i — 2 is negative (and the corresponding grid block

is outside of the domain).

7.1 Truncation Error Analysis of Upwind Barakat-Clark Scheme

Using the two-dimensional form of Taylor’s theorem, the truncation error analysis of the

Upwind Barakat-Clark Scheme is given here.
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First, the theorem is applied to the discretization given in Equation (7.1)
Let (AP™*1);, = pr+l — DAt (Pn+1 pr+1y — uat (Pn+1 n+1) and
L L

DAt
— (P}

(BP™); = P! + 2 (Pl — PI") + 7= 3P

n
Now, (Apn+1)i — Pin+1 DAt (Pn+1 Pin+1) UAt (Pn+1 n+1) — Pn +aaL;At +

82P[* At? n 63PnAt3 Cag a*P[* At* DAt (" aPln At 4+ 02p]* Ar? + 9%P' At?

atz 2! at3 at* a4l Arz VU ar? 2! t? 2!
0%Pl'Arac  93P['Ard  03P['At® | 93P ArPAt 93P Ar At | 9*P[Art L a*P* At* At
orat 1! 1! or3 3! at3® 3! ar2ot 2! 1! 9rot? 11 2! art 4l att 4!

R ar?act  atPPardar  otRl Al pn  OR[, 2PPPAt @R[AE
ar2ot2 21 20 9r3at 3! 11 9rot3 1! 3! L ot otz 2! at3 3!
a4P”At4) UAt( aan4Ar 0%P' At?  9%P'24r At 93P 8Ar3
ot* 2Ar P 2! otz 2! orot 11 11 ar3 3!
93P At3 | 93P 4Ar? At 93P 24r At? +64Pin 2Ar4+a4P"At4 " ArzAtz

ot3 31 9r29t 2! 11 9rot? 11 2! ort 3 ot* 24 Zatz

0*Pl* adr3at  9*P[' Arat? 4(PP ap A + apl At+aZPfAr2+62P{lAt2 0%P[" Ar At
ar3at 3 arotd 3 L ar?2 2! otz 21 arot 1! 1!

o3Pl Ard 93Pl At® | 03P Ar? At 93P ArAt? | 0Pl Ar* | 0*Pl'At* | 0*P' Ar? At?

ard 31 ' at3 31 | ar2at 20 11 orat? 11 2! | ort 4l att 4l | ar2at2 21 2
a*p Ar3at  9*pl Ar At3

— =) (7.3)
ar3at 3! 11 ardtd 1!

DAt aP”
= (APn+1)l' — Pin+1 (Pn+1 Pn+1) (Pn+1 n+1) — Pn i At+
0%P[' At | 93P['At3 | 9*P['At* DAt (_ A n o%p Ar?  9%P['ArAt 93P Ar3
atz 2! at3 3! at* 4! Ar? ar2 20 arat 1! 1! ar3 3!

3P Ar?2 At 93P ArAt? | otP[tArt | 9*Pl' Ar?At? 9Pl Ar3 At 9*Pl Ar A3
ar?at 2! 1! 9rat? 1! 2! ar* 4! ar2at? 2! 2! ar3at 3! 11 orat3 1! 3!

77



UAt n Pi” oP/* 0%P[' 3At? aZP[’ a3P" 24r3 93P A3
( 3P or 20r =3 at At itz 2 a at 2ArAt 3 at3 2
0 P" Ar 64P-n At*  94P* 2Ar3At | 3%PT ArAt3
Ll At?Ar + —— — - L (7.4)
ar at2 2 ot* 8 ar3at 3 orat3 3
Similarly,
BP™), = PP+ 225 (PR, — PP + 22 3pr = pr 4 22 (pp 4 L pr 4 TH0
( )l - i+1 i 2 Ar or 9r2 21
a3p[*Ar3  3*P[' Art n) UAt ,, on
ors 3t T or a L +2A 3F; (7.5)
DAt (9P 0%pP*Ar? | 03P Ar3 | 9*P[' Ar* UAt
= (BP™); = Pl + 2 (2 ar L+ 2 ) I gpn 7.
( )i =P tae -l_a2 o T s Yo 2Ar3 (7.6)
The truncation error at gridpoint i and time step n is given by
n_ 1 n+1 n
T = L {(AP"™7); — (BP");} (7.7)
1 a2p* At? | 33p[ At | a*Pl'At* DAt apl 92P[ Ar?
=>Ti“=—{Pl-” lAt+ —_— 4+ —+ ———(——Ar+ —_——
At otz 2! at3 3! at* 4! Ar? or arz 2!
0%Pl'ArAt 93P Ar3 | 93P Ar2At 3PP ArAc® | 9*Pl'Ar* | 9*P] ArZaAc?
arot 1! 1! ar3 3! ar2at 2! 1! arat2 11 21 ar* 4! ar2at? 21 21
o4P* Ar3 At 94P Ar A3 UAt opl opl 92p!" 3At2
L —— — : ——)——(—3Pl-"+—‘2Ar—3—‘At— L
ar3at 3! 1! 9rat3 1! 3! 2 Ar or ot atz 2
aZP” a3P” 2413 63P-nAt3 a3pl *Pl Aar* 9P At*  9*P' 24ar3At
‘ZA At— L At?Ar +———————
3 at3 2 a ot2 2 at* 8 ar3ot 3
o4P™ Arat3 DAt (9P azP"Ar o3P Ar3 4P Art
Ay —pp =2 (Tear + T S A M 5py (7.8)
drot3 3 Ar 2! ar3 3! art 4! 2 A7
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n _ 9°P"At | 93P At? | 9*P[' AL3 ( 0%P At | 93P At 3P At* | 9*P['Ar?
=>T" = — -+ — - — —+
! at? 2! at3 3l at* 4! ardt Ar | or2dt 2 OrdtZ2ar | art 12
a*pl* Atz 9*Pl' Arat  9*Pl At3) oP' 3At  9%P*3At* | %P\ 3%P['Ar?
or2at? 4 or3at 6 rot3 6Ar at 2 Ar ot?2 4Ar = 9rot or3 3
o3Pl A3 | 93P At? Az o*P Ar3 9% At*  9*P[' Ar?At | 3*P[' A3 (7.9)

at3 4Ar = 9rot? 2 or* 4 ot* 16Ar 9r3at 3 arat3 6

The truncation error for the first equation of Upwind Barakat-Clark scheme becomes

62PnAt 82PnAt a3pl At 4P Ar? opl 34t a%pht
n —_ 15 —_
T = 9tz 21 ( arat Ar = dr2dt 2 P ars 12) ( at 24r T arat At
SILA) + 0(AE) +0(ar?) + 0(Arar) + 0(2)

We apply Taylor’s theorem to the second Equation of the Upwind Barakat-Clark Scheme.

Let  (CP™Y), = P+t — 22 (PIAL — PP*1) = 22 (3P and  (DP™); = Pl +
(PR — P + 2 (PR, — 4PR)

Now,

(CPn+1), = pr+l — DAt (Plrfll pr+1) — uat (3Pn+1) = Pn 4 P At+62;”A2t|2 +
ajf%“ﬁ%—i%(f’% Soar+ S At+a§”zn%+azfé”§f S ATt +

o3Pl Ar3 | 3%Pl'Acd | 3%P]' ArPAt | 03P ArAt® | 9*PMAr* | 0*Pl'At* | 9*P]' Ar? At?

—+ —+ + —+ ——+
ar3 3! at3 3! or2at 2! 1! 9rot? 1! 2! art 4! at* 4! arZatz 2! 2!
o*Pl" Ar3 At | 9*P] Aratd pr — aPl" At — 0%P At2 93P At®  o*P[ E) UAt vt 3pn 4
ar3at 3! 1! | arat3 11 3! at2 2! at3 3! at* 4! 2 Ar
ort aZP” 3At?2 | 93P] Ae3 a*p* At*
3=LAt+ = t Tt o) (7.10)
2 at3 2 ot*
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+1 _ +1 DAt +1 +1 UAt +1N doP. 62Pn Atz
= (cp" )i_Pin (Pﬁq Pin )_E(gpi" )_Pin+ at? +
o3P At | 9*Pl'At* DAt (aP[‘A n 9%p[" Ar? aZP[‘A At + a3pl*Ar® 93P Ar?Ac
at3 3! att 4l Ar? ar? 2! arot ar3 31 ' 9rZat 2! 1l
o3Pl ArAt?  9*plArt 3P ArZAc? | 9*P[ Ar3At | 9tP[ A_r@) UAt (3P"
arat? 1! 2! art 4! or2ot? 2! 2! ar3at 31 11 ' 9rdt3 11 3!
aP{‘ 62Pn 3At2 | 93P A3 | 9*P' At*
A —— — 7.11
3 t+ 2 + at3 2 + at* 8) ( )
Similarly,
_ 5n , DAt o n UAt n n, DAt .., 9P}
(DP™); = P, +p(1’i_ P)+ (Bl —4PL) =P+ = (B" ——LAr +
92P{ Ar? 93P} Ar3 64P“ Ar* n UAt apf a*pf 2 _ 9°Pf4ar?
arz 2! ar3 3! + or —h )+ (P ZA + ZA ar3 3
9*Pl! 2Ar* apP} 03P} 24r3  9*P{' Ar*
— 4P + L 4A o°rp -+ 2 Ar? L — 7.12
or* 3 ! + + 3 art 6 ) ( )
DAt 02p A2 a3p[*Ar3 | 9*P] Art UAt
= n — n bl S A | | At Tl
(DP™); = P + A + arz 2! ar3 3! or4 )+ ( 3P;
opr! a3p* 2413 | 9*P] Ar*
or 247 ar3 3 + art 2 ) (7.13)
The truncation error at gridpoint i and time step n is given by
m_ 1 +1
T = - {(CP™); — (DP?);} (7.14)
1 apl 92p At? 93Pl At® | 9*Pl At* DAt (oP] 92P[ Ar?
>T"==[P'+ At +—F—+—— ‘———( A+ ——+
At at at? 2! at3 3! at* 4l Ar2 \ or ar? 2!
621>[lA At 4+ o3Pl Ar3 93P Ar2At | 93P ArAt? | o*Pl'Ar*  9*P!' Ar?Ac?
ar3 31 | or2at 21 11 ordtZ 11 21 | ort 4l ar2at? 2! 2!

9*P" Ar3 At | 0*P* Ar At3
ar3at 3! 1! 0rat3 1! 3!

aZP" 3At2 | 93Pl At | 9Pl At‘*)

UAt n pl
) (3P +3 At+ 2 at3 2 ot* 8
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pn DAt( aPl”A n a%p*ar?  33p*Ard | o*P] Ar4) UAt( 3p7 + opl 2Ar

i Ar? aorz 2! ar3 3! ort 4! or

93P 2ar3 | 9*P] Ar? 71

s 3 T o 2 (7.15)

—Tm =1 [azpi"Atz o3P At3 A 0*P' At* DAt (aZP[‘A At + o3P Ar2 At | 93P Ar At?
" actaez 2 at3 3! att 4l Ar2 \arot ar2at 2! 11 ' 9rdt? 11 2!

a*pl Art | 9*Plt Ar?at? | 9*P[' Ar3Ac | 0*P] Ar At3) UAt ( opl 92P[' 3 At? n

art 12 ar2atz 2! 2! or3at 3! 1! orat3 1! 3! 2Ar at atz 2

a3pl*acd | o*pl* At o3Pl 2413 n 4P Ar4)] (7 16)

at3 2 at* 8 ar3 3 ort 2 )

- T/ — a2p* At | a3p[* At? | 9*Pl At3 (azpi" At . 93P At | 33P!* At? | 9P Ar? n
L7 5¢2 210 33 3l att 4l ardt Ar = ar2at 2! 9rdtZ2Ar = Art 12

o*pl* At* | 9*P!' Arat | 3*P[ At3) ( aP At A 2%pP[" 3 At? n a3p At3 n Pl At*

ar2ot? 4 ar3at 31 11 ' 9rat 31Ar ot 2 Ar at2 4Ar at3 4Ar at* 16Ar

3P Aar? | 9*P! Ar

ar3 3 + ar* T) (7.17)

The truncation error for the second equation of Upwind Barakat-Clark scheme becomes

L i (6ZP?A_t AL Y O A_TZ) ~u(3 op[ At %Rl —“2) +0(At?) +
t at2 2! orot Ar ~ 9r2dt 2 ort 12 ot 2 Ar or3 3

0(Ar3) + O(AtAT) + O (%)

The truncation error for the Upwind Barakat-Clark scheme is the average of T/* and T;™.

Therefore,
TM+T/™ 1 82P[* At | 93P At? | 9P At3 0%Pl* At | 93P[' At 93P] At?

2 _{ atz 21 ' 9t3 31 | 9t 41 ( ordt Ar | 9r20t 2 9rdt? 2Ar
o*pl*Ar2 %Pl At?  3*P[' ArAt  3*P] E) _ (_ﬂ:a_m _ 0%P[ 3At? aZPl” At —
art 12 ar2at?2 4 0r3at 6  0rdtd 6Ar ot 2 Ar ot2 4 Ar arat
o3Pl Ar2 93P At® | 93P At 9*PMArd  9*P!' At*  9*P[ Ar?At | 0*P[ E) n
ar3 3 at3 4 Ar  9rot? 2 ort 4 ot* 16Ar 0r3o0t 3 arat3 6
0%Pl* At | 3%P['At? | o*Pl' A3 (azpi’lg o3P At | 93P At2 | 9*Pl'Ar? | 9*P] At? Az
atz 2! at3 3! ot* 4! ordt Ar ~ 9r2dt 2!  9rot? 2Ar ar* 12 or2ot? 4
o*P" ArAt | 9*P] E) _ ( op" At A 92pP] 3 At? n o3P At® | 3*P]' At* 3PP Ar?
ar3ot 3! 1! 9rot3 3Ar ot 2 Ar ot2 4Ar ot3 4Ar ot* 16Ar ar3 3
) (7.18)
ort 4 ’
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2 at3 3 att 4l

TM+T/™  9%P[*At? | 9Pt At3 (64Pl~"Ar2 o*pl* Atz) U( a3p*ar?2 | o3P At2+

= -t — —
ar* 12 0r2ot? 4 ar3 3 orot? 4

(7.19)

o0*Pl* Ar®  9*P' Ar?At | 0*P[! At3)
ar* 4 9r3dt 6 arat3 12

So, the truncation Error for the Upwind Barakat-Clark Scheme becomes,

T +T" 93P At? (64Pin Ar?2 o atpl Atz) ( a3pl* Ar?2  83P! At? )
: T ——— —_— —_— —_— —— e —— —— —

2 a3 3l art 12 9r29t? 4 ar3 3 arat2 2

0(At?) + 0(Ar3) + 0(ArAt)

7.2 Stability Analysis of Upwind Barakat-Clark Scheme
Using Von-Neumann Analysis, Equation (7.23) is found to express the stability condition
associated with Equation (7.1).

n+1 n

ynti_y Y™ exp(10)—y "=yt 1y lexp (-16) 3y -4yt exp (-10)+y™ 1 exp(—216)
w D e +U " (7.20)
=yt — (Zf)tz (cos@ —Tsinf — 1) — U—At —((cos 26 —1sin 26) — 4(cos 6 —
tsin0))] = y™[1 * (cos@ +1sinf —1) +5 3Ua 7.21
(A )Z
1+ DAt (cos@+fsin9—1)+3UAt
Y =—pm (ar)” 2 (7.22)

1- @r )z(cos(-) isinf— 1)——((00526 1sin26)—4(cosB—1sinf))

DAt UAt

Leta =
= wn

_ 1+a(et?-1)+3p
V= 1-a(e~if-1)—p(e~2i0—4¢-10)

(7.23)

Forg =m,y = 1+a(-2)+3p8 _ 1-2a+3p - _ (2a—3ﬁ—1)

1-a(-2)-B(1+4) 1+2a-58 2a-5B8+1
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Thusy > 1, if 8 > 1.

Using Von-Neumann Analysis, Equation (7.27) is found to express the stability condition

associated with Equation (7.2).

y/mtl_y/n y' "1 exp(10)—y "1y M +y Mexp(-10) 3yt 1—ay'm exp(-10)+y'™ exp(-210)
=D _ +U
At (Aar) 2Ar
(7.24)
m+1pq _ DAt ( — Ay 3UAt] _,m DAt el _
>y [1 (ar)z \COS 0 +1sinf —1) | =Y [1+ a2 (cos@ —1sing — 1) +
UAt — . - .
Py ((cos28 —1sin 260) — 4(cos 8 —tsin0))] (7.25)
1+£t2(c059—fsin9—1)+H((c0526—fsin20)—4(cos€—isin9))
r= 0 e (7.26)
4 1—ﬂ(cose+fsin6—1)—3um '
(ar)2 24T
.. ;o 1+a(e_i9—1)+ﬁ(e_2i9—4e_i9)
Similarly, y" = a(eP-1)-35 (7.27)
_ r_ 14+a(=2)+B(1+4) _ 1-2a+58 _ (Za—SB—l)
Foro =my = 1-a(-2)-38  1+2a-38 2a—3B+1

Thusy' > 1if g > 1.

The Upwind Barakat-Clark Scheme will be stable if both |y| <1 and |y'| < 1. But the

scheme becomes unstable if § > 1, indicating the scheme is, at best, conditionally stable.

To explore the stability analysis, the following data are used, D = 1, Nr = 100,

Nt =100 and 100000, U =10,1,2
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Figure 7.1: Stability analysis of Upwind Barakat-Clark Scheme

7.3 Numerical Validation

Numerical simulation is done for the Barakat-Clark scheme using MATLAB. The
following data are found from this simulation for D=1 U=1. . The error values are given in

Appendix-4.
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Figure 7.2: Error values of the Upwind Barakat-Clark Scheme
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From the above graphs, it is seen that the average of the two equations gives much less
error than the individual equations. If we consider the error values for fixed Nt and different
Nr, we see that the error reduces like (Ar)?2. Again, if we consider the error values for fixed
Nr and different Nt, we see that the error reduces like (At)2. Thus, the accuracy of this
Upwind Barakat-Clark scheme for both time and space are O (4t?) and O (4r?),
respectively. The accuracy here for both time and space is like the Generalized Barakat-
Clark scheme. Though the Upwind Discretization for the convection term was done to
improve stability restrictions, it did not improve the stability. However, the Upwind
Barakat-Clark scheme is observed to give more accurate results than the Generalised
Barakat-Clark scheme. So, this scheme appears to be an improved version of the

Generalized Barakat-Clark scheme.
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Chapter 8 Conclusion

8.1 Comparison of different schemes

The summary of the numerical analysis of different schemes is as follows.

Table 8.1: Summary of different schemes

Schemes | Equation(s) Error (space, | Remarks
time)
Explicit | AP _ p PRa—2PI+PE, | 0(Ar?),0(At) | Conditionally
At (Ar)?
Stable
Piﬂil_PiTh
2ATr
analyticallm | PP™" PP _ o PR —2PP 4RI 0(Ar?),0(At) | Unconditionally
At (Ar)?
plicit Stable
U P?++11_P?—+11
2Ar
Barakat- | Qf"'-Qf _ DQ{‘+1—Q?—Q{‘+1+Q{‘_+11 0(Ar?),0(At?) | Average of two
At Ar?
Clark Gr+i_gn Sn+1_gni_gn,gn Equations gives
At =D Ar2

Average of the solutions:

1
Pin+1 — E (Qlil+1 + Sin+1)

better result.
Unconditionally

stable.
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Bokhari- | 4f-ApTt _ p A, -a7-aP AR | O(Ar®), 0(At?) | Less accurate in
2At Ar?2
Islam time than the
A?+1_A?—1
247 claimed
BI-BPTl BB el
2ac Ar? + accuracy.
UBiT-ll-l_Bin—l
2ATr
Average of the solutions, Conditionally
stable.
Pn+1 — 1 An+1 Bn+1
i E( i+ B
Generalised | E[™'-E! _ p B, —EP-ELTERS | O(Ar?), 0(At?) | Similarly
At Ar?2
Barakat- W omar accurate as the
Eiy1—Eiy
Clark 2ar Barakat-Clark
FUF o FEY AR, Scheme  after
At Ar?
A including  the
i+1" Ti-1
u 2Ar .
convection
Averaging of the solutions, term.
pntl _ E(E_nﬂ TN Conditionally
1 1 1
2
stable.
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Upwind | 6*1-62 _ 1 64y —6l-i " +6t! 0(Ar?),0(At?)| Same accuracy
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Barakat- W me1 m as Barakat-
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Figure 8.1: Comparison of different schemes
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Figure 8.1 shows that the Generalised Barakat-Clark scheme gives less error than the
Bokhari-Islam Scheme and that the Upwind Barakat-Clark Scheme gives less error than

the Generalised Barakat-Clark Scheme.

After analyzing these different schemes, it can be concluded that some schemes give better
results as they are expected to do. In this thesis, we have shown that the Barakat-Clark
Scheme gives less error after averaging the solutions from the two equations. Further, the
Bokhari-Islam Scheme fails to achieve the claim that it gets better accuracy than the
Barakat-Clark Scheme. Our first proposed scheme, the Generalised Barakat-Clark Scheme,
gives similarly accurate results for convection-diffusion equations as the Barakat-Clark
gives for diffusion equations, but is only conditionally stable. The second proposed
scheme, the Upwind Barakat-Clark Scheme gives better accuracy than the Generalised

Barakat-Clark Scheme and is also conditionally stable.

8.2 Concluding Remarks

The results of our numerical investigation are influenced by the choice of Nr and Nt. In
general, we observe that the Barakat-Clark scheme is most suitable for solving diffusion
equations, with unconditional stability. On the contrary, the Bokahri-Islam scheme claimed
to be suitable and accurate for convection-diffusion equations, but fails to fulfill this claim.
The Bokhari-1slam scheme is first-order accurate in time, instead of fourth-order accurate,
as was claimed. In addition, between two proposed schemes, the Upwind Barakat-Clark
scheme appears to give more accurate results than the Generalised Barakat-Clark scheme

with similar stability. Thus, we can conclude that the Upwind Barakat-Clark scheme is the
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best method among all analyzed methods for solving the one-dimensional convection-

diffusion equation.

8.3 Potential Future Research

As convection-diffusion is a very important factor for Reservoir engineering, it is really
necessary to account for effects of both convection and diffusion in fluid flow when
designing plans for reservoir engineering. Thus, the following recommendations are made

based on the present study.

This study is done for the 1-D convection-diffusion equations. Multidimensional analysis
of this study will be worthy for improving or developing better methods applied to reservoir
engineering. Secondly, nonlinearity of convection and diffusion is not considered here. So,
inclusion of nonlinearity in the discussed schemes will give more precise results. Finally,
case studies on different fields will establish the validity of the proposed and discussed

schemes.
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APPENDIX 1

Table 4.1: Error values for Barakat-Clark Scheme for different numbers of time steps (Nt) and

numbers of grid blocks (Nr)

Nr Nt Average Equation 5.1 Equation 5.2
20 50 1.41E-05 1.43E-05 1.43E-05
100 8.48E-06 8.63E-06 8.63E-06
200 2.34E-06 2.80E-06 2.80E-06
400 4.03E-07 8.34E-07 8.34E-07
800 1.03E-07 3.71E-07 3.71E-07
1600 2.31E-07 3.23E-07 3.23E-07
2000 2.46E-07 3.09E-07 3.09E-07
4000 2.67E-07 2.85E-07 2.85E-07
8000 2.712E-07 2.77TE-07 2.77TE-07
16000 2.73E-07 2.74E-07 2.74E-07
40 50 1.07E-02 1.32E-02 1.32E-02
100 1.42E-05 1.45E-05 1.45E-05
200 8.66E-06 8.80E-06 8.80E-06
400 2.57E-06 2.99E-06 2.99E-06
800 6.18E-07 9.99E-07 9.99E-07
1600 1.05E-07 3.59E-07 3.59E-07
2000 4.30E-08 2.60E-07 2.60E-07
4000 4.01E-08 1.46E-07 1.46E-07
8000 6.09E-08 1.03E-07 1.03E-07
16000 6.61E-08 8.11E-08 8 11E.08
80 50 3.74E-01 6.98E-01 6.98E-01
100 1.02E-02 1.35E-02 1.35E-02
200 1.43E-05 1.46E-05 1.46E-05
400 8.72E-06 8.86E-06 8.86E-06
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800 2.64E-06 3.05E-06 3.05E-06
1600 6.76E-07 1.04E-06 1.04E-06
2000 4.28E-07 7.55E-07 7.55E-07
4000 9.51E-08 2.96E-07 2.96E-07
8000 1.11E-08 1.24E-07 1.24E-07
16000 9.92E-09 6.56E-08 6.56E-08
32000 1.52E-08 3.99E-08 3.99E-08
64000 1.65E-08 2.67E-08 2.67E-08
128000 1.68E-08 2.05E-08 2.05E-08
256000 1.69E-08 1.80E-08 1.80E-08
512000 1.69E-08 1.72E-08 1.72E-08
160 50 1.11E+00 2.27E+00 2.27E+00
100 3.75E-01 7.02E-01 7.02E-01
200 9.88E-03 1.37E-02 1.37E-02
400 1.44E-05 1.46E-05 1.46E-05
800 8.75E-06 8.89E-06 8.89E-06
1600 2.66E-06 3.07E-06 3.07E-06
2000 1.74E-06 2.16E-06 2.16E-06
4000 4.44E-07 7.66E-07 7.66E-07
8000 1.09E-07 3.05E-07 3.05E-07
16000 2.40E-08 1.33E-07 1.33E-07
32000 2.83E-09 6.05E-08 6.05E-08
64000 2.47E-09 3.11E-08 3.11E-08
128000 3.79E-09 1.73E-08 1.73E-08
256000 4.13E-09 9.97E-09 9.97E-09
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APPENDIX 2

Table 5.2: Error values for Bokhari-Islam Scheme for different numbers of time steps (Nt) and

numbers of grid blocks (Nr)

Nr Nt Average Equation 5.1 Equation 5.2
20 50 7.64E-04 1.14E-03 1.14E-03
100 2.62E-04 4.29E-04 4.29E-04

200 1.05E-04 1.07E-04 1.07E-04

400 6.56E-05 7.79E-05 7.79E-05

800 3.66E-05 3.86E-05 3.86E-05

1600 1.72E-05 1.87E-05 1.87E-05

2000 1.29E-05 1.32E-05 1.32E-05

4000 4.66E-06 5.14E-06 5.14E-06

8000 1.61E-06 1.82E-06 1.82E-06

16000 6.88E-07 7.10E-07 7.10E-07

40 50 7.49E-03 7.76E-03 7.76E-03
100 1.46E-04 2.86E-04 2.86E-04

200 4.69E-05 1.01E-04 1.01E-04

400 3.69E-05 5.86E-05 5.86E-05

800 1.82E-05 2.27E-05 2.27E-05

1600 8.37E-06 1.01E-05 1.01E-05

2000 7.35E-06 7.43E-06 7.43E-06
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4000 3.71E-06 3.72E-06 3.72E-06

8000 1.69E-06 1.72E-06 1.72E-06

16000 6.39E-07 6.46E-07 6.46E-07

80 50 7.68E-02 1.04E-01 1.04E-01
100 8.56E-03 8.85E-03 8.85E-03

200 7.41E-05 1.36E-04 1.36E-04

400 2.74E-05 4.71E-05 4.71E-05

800 1.11E-05 1.63E-05 1.63E-05

1600 4.94E-06 7.84E-06 7.84E-06

2000 4.64E-06 6.05E-06 6.05E-06

4000 1.46E-06 1.75E-06 1.75E-06

8000 8.91E-07 9.29E-07 9.29E-07

16000 4.89E-07 5.51E-07 5.51E-07

160 50 4.27E-02 1.24E-01 1.24E-01
100 8.12E-02 1.15E-01 1.15E-01

200 9.10E-03 9.37E-03 9.37E-03

400 4.35E-05 7.36E-05 7.36E-05

800 1.34E-05 2.16E-05 2.16E-05

1600 4.65E-06 8.00E-06 8.00E-06
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2000 4.53E-06 4.87E-06 4.87E-06
4000 1.40E-06 1.40E-06 1.40E-06
8000 6.70E-07 8.61E-07 8.61E-07
16000 1.91E-07 2.38E-07 2.38E-07
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APPENDIX 3

Table 6.1: Error values for the Generalised Barakat-Clark Scheme for different numbers of time

steps (Nt) and numbers of grid blocks (Nr) (D=1, U=1)

Nr Nt Average Equation 6.1 Equation 6.2
20 50 1.19E-05 1.18E-05 1.21E-05
100 6.92E-06 6.61E-06 7.46E-06

200 1.92E-06 1.88E-06 2.69E-06

400 3.13E-07 4.84E-07 8.78E-07

800 1.08E-07 4.31E-07 2.55E-07

1600 2.14E-07 3.51E-07 2.20E-07

2000 2.27E-07 3.30E-07 2.21E-07

4000 2.44E-07 2.88E-07 2.27E-07

8000 2.48E-07 2.68E-07 2.36E-07

16000 2.49E-07 2.57E-07 2.41E-07

40 50 1.01E-02 1.19E-02 2.11E-02
100 1.19E-05 1.19E-05 1.22E-05

200 7.07E-06 6.75E-06 7.60E-06

400 2.12E-06 2.04E-06 2.88E-06

800 5.08E-07 6.10E-07 1.04E-06

1600 8.20E-08 2.82E-07 3.94E-07

2000 3.04E-08 2.52E-07 2.89E-07
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4000 3.88E-08 1.67E-07 1.06E-07

8000 5.61E-08 1.14E-07 6.59E-08

16000 6.04E-08 8.58E-08 5.81E-08

80 50 4.29E-01 6.15E-01 8.02E-01
100 9.60E-03 1.16E-02 2.16E-02

200 1.19E-05 1.20E-05 1.22E-05

400 7.12E-06 6.80E-06 7.65E-06

800 2.18E-06 2.09E-06 2.94E-06

1600 5.59E-07 6.45E-07 1.08E-06

2000 3.54E-07 4.54E-07 7.98E-07

4000 7.77E-08 2.17E-07 3.26E-07

8000 7.90E-09 1.31E-07 1.41E-07

16000 9.61E-09 7.55E-08 6.05E-08

32000 1.40E-08 4.50E-08 2.39E-08

64000 1.51E-08 2.93E-08 1.72E-08

128000 1.53E-08 2.16E-08 1.47E-08

160 50 1.55E+00 1.63E+00 3.17E+00
100 4.30E-01 6.18E-01 8.06E-01

200 9.35E-03 1.14E-02 2.18E-02
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400 1.20E-05 1.21E-05 1.22E-05
800 7.14E-06 6.81E-06 7.67E-06
1600 2.20E-06 2.10E-06 2.95E-06
2000 1.44E-06 1.43E-06 2.13E-06
4000 3.68E-07 4.62E-07 8.10E-07
8000 8.98E-08 2.09E-07 3.36E-07
16000 1.96E-08 1.22E-07 1.50E-07
32000 2.02E-09 6.66E-08 6.92E-08
64000 2.39E-09 3.58E-08 3.21E-08
128000 3.49E-09 1.97E-08 1.44E-08
256000 3.76E-09 1.15E-08 6.04E-09
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APPENDIX 4

Table 7.1: Error values for Upwind Barakat-Clark scheme for different number of time steps (Nt)

and numbers of grid blocks (Nr) (D =1,U=1)

Nr Nt Average Equation 7.1 Equation 7.2
20 50 5.67E-05 2.82E-05 1.07E-04
100 9.67E-06 2.90E-05 1.05E-05

200 3.07E-06 1.40E-05 8.17E-06

400 8.82E-07 6.56E-06 4.86E-06

800 3.00E-07 3.17E-06 2.59E-06

1600 1.52E-07 1.59E-06 1.29E-06

2000 1.34E-07 1.29E-06 1.02E-06

4000 1.11E-07 6.88E-07 4.66E-07

8000 1.05E-07 3.94E-07 1.84E-07

16000 1.04E-07 2.48E-07 4.15E-08

32000 1.03E-07 1.75E-07 3.16E-08

64000 1.03E-07 1.39E-07 6.70E-08

128000 1.03E-07 1.21E-07 8.51E-08

40 50 1.81E-01 1.63E-03 3.61E-01
100 6.47E-05 2.36E-05 1.24E-04

200 9.13E-06 2.79E-05 1.05E-05

400 2.91E-06 1.37E-05 8.25E-06

800 7.82E-07 6.42E-06 4.95E-06
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1600 2.14E-07 3.07E-06 2.66E-06
2000 1.44E-07 2.43E-06 2.16E-06
4000 5.15E-08 1.20E-06 1.10E-06
8000 2.84E-08 6.03E-07 5.47E-07
16000 2.27E-08 3.10E-07 2.65E-07
32000 2.12E-08 1.65E-07 1.23E-07
64000 2.09E-08 9.27E-08 5.11E-08
128000 2.08E-08 5.67E-08 1.54E-08
80 50 1.42E+00 1.63E-01 2.82E+00
100 1.89E-01 1.66E-03 3.77E-01
200 6.66E-05 2.14E-05 1.29E-04
400 8.85E-06 2.73E-05 1.05E-05
800 2.83E-06 1.36E-05 8.27E-06
1600 7.53E-07 6.38E-06 4.97E-06
2000 4.87E-07 5.01E-06 4.10E-06
4000 1.26E-07 2.41E-06 2.17E-06
8000 3.50E-08 1.18E-06 1.11E-06
16000 1.21E-08 5.86E-07 5.62E-07
32000 6.44E-09 2.93E-07 2.81E-07
64000 5.03E-09 1.49E-07 1.39E-07
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128000 4.68E-09 7.64E-08 6.71E-08
256000 4.60E-09 4.05E-08 3.13E-08
512000 4.57E-09 2.25E-08 1.34E-08
1024000 4.57E-09 1.35E-08 4.47E-09
160 50 4.92E+00 4.99E-01 9.95E+00
100 1.44E+00 1.64E-01 2.86E+00

200 1.94E-01 1.68E-03 3.86E-01

400 6.71E-05 2.02E-05 1.30E-04

800 8.70E-06 2.70E-05 1.05E-05
1600 2.80E-06 1.35E-05 8.28E-06
2000 1.84E-06 1.06E-05 7.16E-06
4000 4.78E-07 5.00E-06 4.10E-06
8000 1.21E-07 2.40E-06 2.18E-06
16000 3.12E-08 1.18E-06 1.12E-06
32000 8.59E-09 5.82E-07 5.65E-07
64000 2.93E-09 2.90E-07 2.84E-07
128000 1.53E-09 1.45E-07 1.42E-07
256000 1.18E-09 7.29E-08 7.05E-08
512000 1.09E-09 3.69E-08 3.48E-08
1024000 1.07E-09 1.90E-08 1.69E-08
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