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Abstract 

 Advances in seafloor mapping have allowed for the production of fine-scale 

seafloor landscape (i.e., benthoscape) maps that are analogous to terrestrial land cover 

maps, providing the foundation for assessing the spatial configuration of seafloor habitat 

patches. While many species rely on large, well-connected patches for foraging and 

migration, variability in patch size and configuration can be difficult to incorporate into 

Marine Protected Area (MPA) design. In this thesis, I developed a novel method that 

considers the spatial arrangement of benthic habitat patches in MPA design. I applied the 

approach to the Eastport MPA and surrounding region in Newfoundland, Canada by first 

quantifying the composition and configuration of the benthoscape using multibeam 

echosounder, seafloor video surveys, and patch size and connectivity metrics. Using a 

reserve design algorithm, I then compared outputs that included and excluded the 

prioritization of benthoscape connectivity. The approach presented in this thesis results in 

the preferential selection of large patches within the home-range of a given species, which 

can be important for reducing fragmentation in conservation prioritization solutions and 

better supporting species and ecological processes. This approach offers potential benefits 

for the conservation of coastal and marine regions by increasing our understanding of 

how we can incorporate broad scale patterns into on-the-ground conservation decision 

making.  
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1 Chapter 1 – Introduction 

1.1 Context 

1.1.1 Marine Protected Areas 

Conserving Earth’s biodiversity in the shadow of intensifying impacts from 

anthropogenic activities has never been more pressing. Impacts related to pollution (Islam 

and Tanaka 2004), overexploitation of fisheries resources (Pauly et al. 2005), resource 

extraction (Niner et al. 2018), invasive species (Bax et al. 2003) and coastal development 

have resulted in rapid habitat and biodiversity loss (Halpern et al. 2008). Recent reports 

indicate that global wildlife populations have declined by 60 percent on average in less 

than 50 years (WWF 2018). Marine Protected Areas (MPAs) are spatial management 

tools that can mitigate the effects of some of these impacts, help protect and restore 

biodiversity and habitats while supporting conservation and sustainable use of marine 

resources (Green et al. 2014; Lester et al. 2009). 

Canada has committed to protecting 10% of its coastal and marine waters by 2020 

through an ecologically representative and well-connected system of protected areas 

(Aichi Target 11; CBD-UNEP, 2010). Despite progress in recent years (DFO 2017), 

Canada has yet to reach this target. A very low proportion of existing Canadian MPAs 

have a strong level of protection (0.01% are no-take MPAs; Marine Conservation 

Institute 2018) despite evidence that no-take MPAs provide higher conservation benefits 

compared to MPAs providing partial protection (Lester and Halpern 2008). As new 
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protected areas are rapidly being proposed and designated, understanding how existing 

protected areas contribute to these conservation goals is important, particularly when 

protecting the full range of marine and coastal environments is a primary goal. 

Furthermore, designing ecologically sound MPAs that support biodiversity and resilience 

in marine ecosystems is a significant challenge, not only to identify areas that are 

important to protect, but also in terms of the social and economic considerations that are 

involved (Pascual et al. 2016; Agardy et al. 2016).  

1.1.2 Systematic conservation planning and conservation prioritization 

Methods for designing and prioritizing individual sites for inclusion in MPAs and 

MPA networks can be guided by systematic conservation planning approaches (SCP; 

Margules and Pressey 2000). SCP, a field that emerged from terrestrial conservation 

planning, provides a framework for making repeatable, transparent and efficient 

conservation decisions (Margules and Pressey 2000) and is often used in marine 

conservation planning. One of the many key elements of SCP that is particularly 

important to consider in MPA design is representativity, which refers to the goal of 

reserves sampling across the full range of variation of biodiversity and habitats in a region 

(Margules and Pressey 2000). Other fundamental goals of SCP include 

comprehensiveness, adequacy and efficiency. Comprehensive reserve and reserve 

networks aim to protect the full range of biodiversity features, where biodiversity features 

can include species, habitats and ecological processes (Kukkala and Moilanen 2013). The 

key distinction between comprehensiveness and representativity is that 
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comprehensiveness focuses on defining the full range of biodiversity feature that are to be 

protected while representativity considers the degree to which the biodiversity features 

are protected within conservation solution (protected area network) (Kukkala and 

Moilanen 2013). Representativity is often discussed in the context of quantitative targets 

or proportions of biodiversity features included in the conservation solution (Kukkala and 

Moilanen 2013). Adequacy refers to the goal of protecting enough to ensure the 

persistence of biodiversity features (Kukkala and Moilanen 2013). Finally, efficiency 

refers to the goal of meeting conservation objectives at a minimal cost (Kukkala and 

Moilanen 2013). Cost can refer to monetary costs associated with acquiring, operating 

and monitoring the protected area, the monetary value corresponding to the displacement 

of human activities (e.g. resource extraction) that would potentially accompany 

implementation, as well as social and cultural values and local importance of an area (Ban 

and Klein 2009).  

Evidently, designing reserves that balance these principles can pose challenges for 

conservation planners when the goal is to maximize conservation benefits while 

minimizing impacts to resource users. Fortunately, decision support tools such as Marxan 

(Ball and Possingham 2000), Zonation (Moilanen et al. 2009) and C-Plan (Pressey et al. 

2009) can aid in generating MPA and MPA network design scenarios while meeting SCP 

goals. Marxan is widely utilized by many in the field of conservation planning. The tool 

uses spatial data layers to represent conservation and cost features, and a simulated 

annealing algorithm to identify near-optimal scenarios for meeting user defined 
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conservation targets for the least cost (Ball and Possingham 2000). Marxan is the most 

widely used SCP tool in the world, and is currently being used by Fisheries and Oceans 

Canada (DFO) to aid in the creation of bioregional MPA networks in Canada’s three 

oceans (DFO 2018). While tools such as Marxan, Zonation and C-Plan can help at 

various stages of the MPA design processes, they require rich spatial data representing 

conservation and cost features.  

1.1.3 From landscape ecology to seascape ecology 

While SCP elements such as representativity, comprehensiveness, adequacy and 

efficiency are central to conservation decision-making, the spatial arrangement of habitat 

patches and its influence on ecological processes has also become a principal element of 

conservation planning in in recent years (Pittman et al. 2017). However, SCP tools such 

as Marxan do not consider the spatial arrangement of conservation features and habitat 

patches, and tend to focus primarily on the core SCP elements (representativity, 

adequacy, comprehensiveness and efficiency). Assessing the spatial configuration of 

habitat patches typically requires spatial data at scales relevant to management decisions 

(Stevens and Connolly 2004; Ardron et al. 2010). The ability to produce fine-scale spatial 

data representing habitats in regions that are important for conservation provides 

important baseline information for designing and monitoring MPAs. This spatial 

information also permits the assessment of spatial arrangement, composition and 

configuration of seafloor landscapes, which are important for structuring habitats and 

understanding movement and migration patterns for many organisms. This relationship 
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between spatial pattern (arrangement and composition of patches within a landscape) and 

ecological processes that shape the distribution and abundance of species is the essence of 

landscape ecology (Turner et al. 2015). In recent years, seascape ecology (Pittman 2017) 

– the application of landscape ecology concepts to marine environments – has become 

increasingly important for supporting ecologically sound conservation practices, much 

like its terrestrial counterpart (Boström et al. 2011). Landscape ecology methods and 

metrics include those related to connectivity and fragmentation as well spatial pattern 

metrics such as patch size, shape and proximity to neighbouring patches. Connectivity, in 

particular, has recently become a central focus of marine conservation planning (Olds et 

al. 2016). 

In a broad sense, ecological spatial connectivity refers to the transfer and movement 

of organisms, species, genes and nutrients among spatially separated populations, 

communities or ecosystems (Carr et al. 2017). Connectivity can be quantified by 

combining oceanographic modelling and measures of pelagic larval duration (PLD) to 

identify the spatial location of larvae sources and sinks (Carr et al. 2017; Coleman et al. 

2017). Connectivity can also be identified by the post settlement migration of individuals 

in shallow, biogenic habitats such as coral reefs, mangrove forests and eelgrass beds 

(Grüss et al. 2011; Weeks et al. 2017). From a conservation planning perspective, 

supporting these complex connectivity processes involves not only protecting large 

regions that encompass critical habitat, but also habitat corridors, larval sources and sinks, 
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nursery and spawning grounds and regions that serve as donors and recipients of nutrient 

transfers (Burt et al. 2014).  

Seascape connectivity is one form of ecological spatial connectivity that is analogous 

to landscape connectivity in the sea. Seascape connectivity can refer to structural 

connectivity (i.e., physical linkages within a seascape), potential connectivity (i.e., a 

measure of connectivity that incorporates limited or assumed information on species 

mobility) or actual connectivity (i.e., a measure that uses spatial information on species 

movement to quantify connectivity; Grober-Dunsmore et al. 2009).  

Including connectivity processes in protected area design can positively influence 

reserve outcomes by improving fish abundance within protected area boundaries (Olds 

2012a, 2012b), as well as increasing productivity and biodiversity (Olds et al. 2016). As 

such, methods and applications for integrating connectivity information with widely used 

conservation prioritization tools (i.e., Marxan) are being developed and provide 

operational frameworks for integrating various forms of connectivity into conservation 

planning (e.g. Beger et al. 2010; Weeks et al. 2017; Daigle et al. 2018).  

Connectivity studies are increasingly common in marine systems (Magris et al. 2014; 

Olds et al. 2016), in part fueled by advances in remote sensing and oceanographic 

modelling – technologies that offer valuable insights into processes that operate below the 

surface of the ocean (Olds et al. 2016). The increasing use of genetic approaches in 

marine ecology also advance our understanding of connectivity (Riginos and Liggins 

2013). The majority of seascape connectivity studies have been conducted in shallow 
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environments, and focus on connectivity between patches of coral reefs, mangroves or 

seagrass beds (Olds et al. 2016; Wedding et al. 2011; Pittman et al. 2011) – areas that 

provide shelter and habitat for many juvenile species. However, connectivity research is 

not limited to shallow biogenic habitats and ecosystems. Discrete oceanographic 

“patches,” defined by variables such as temperature, salinity and dissolved oxygen are 

also being considered in marine connectivity studies (Guidetti et al. 2013).  

 In contrast, seascape connectivity research in benthic ecosystems that rely on 

acoustic mapping remains largely unstudied even though processes such migration, 

dispersal, reproduction and range expansion are also occurring in these ecosystems 

(Comeau et al. 1998; Comeau and Savoie 2002; Hovel and Wahle 2010).  

1.1.4  Fine-scale seafloor mapping to support seascape ecology and conservation 

planning 

High quality seascape maps are increasingly valuable in light of recent efforts towards 

supporting landscape-scale ecological processes such as migration, foraging and 

connectivity in marine conservation (Burt et al. 2014; Magris et al. 2014; D’Aloia et al. 

2017). As a result, seascape maps have become central to many marine conservation and 

management activities (Brown et al. 2012; Copeland et al. 2013; Buhl-Mortensen et al. 

2015; Novaczek et al. 2017a). Imagery acquired from satellites and unmanned aerial 

vehicles (UAVs) as well as Light Detection and Ranging (LiDAR) data can be used to 

map intertidal and shallow subtidal coastal zones (Reshitnyk et al. 2014; Jalali et al. 
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2015). However, these light-based techniques are limited in their ability to survey subtidal 

habitats and ecosystems at greater depths than the shallow subtidal zone.  

Advances in acoustic (sonar) seafloor mapping and sampling techniques have allowed 

for the production of continuous seafloor maps that are essentially analogous to digital 

terrain models in terrestrial environments (Brown et al. 2011). Single-beam and sidescan 

sonars, seismic profilers and multibeam echosounders (MBES) are now integral to habitat 

and substrate mapping exercises that aim to map environments that are beyond the depths 

at which light can penetrate. Seascape maps can inform marine conservation (Novaczek 

et al. 2017b; Young and Carr 2015) particularly in terms of identifying vulnerable or 

threatened habitats (Rengstorf et al. 2013), restoration activities (Walker and Alford. 

2016) and fisheries management initiatives (Brown et al. 2012; Smith et al. 2017; Walton 

et al. 2017). The spatial structure of the seascape can be represented as a two or three 

dimensional continuous surface, or more often as a two-dimensional classification of 

benthic habitat (Pittman 2017). Mapping the benthoscape (i.e., the component of the 

seascape that relates to the benthic environment; Zajac et al. 2000) can support the 

identification of the extent, location and composition of seafloor features and 

biodiversity, which provides important baseline information for designing and monitoring 

MPAs (Lacharité and Brown in press).  

Benthoscape maps and species specific habitat maps are typically developed by 

interpreting continuous coverage environmental seafloor data, such as bathymetry and 

reflectivity (backscatter), often collected using MBES (Brown et al. 2011). Bathymetric 
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derivatives such as slope, rugosity, aspect and curvature can also be extracted from 

MBES data, and have been shown to be important variables for predicting substrate and 

species distributions (Monk et al. 2010; Brown et al. 2011; Lecours et al. 2017). The 

strength of the backscatter return signal is also related with seafloor substrate composition 

(Kostylev et al. 2003; McGonigle and Collier 2014). Backscatter intensity (ranging from 

strong to weak) can capture variability in substrate characteristics with strong backscatter 

signals typically associated with hard, consolidated substrates such as bedrock, boulder 

and cobble while weak signals are typically associated with soft, muddy and sandy 

substrates (Lurton and Lamarche 2015). Recording and interpreting backscatter intensity 

can be complex. A number of factors, including system-specific settings and 

environmental variability can result in backscatter intensity values that are not typically 

calibrated across surveys (see Lurton and Lamarche 2015 and Lacharité et al. 2017 for 

comprehensive discussions of backscatter measurements and challenges). This poses 

challenges in terms of extrapolating the substrate and habitat predictions across multiple 

MBES coverages, and the use of such data for long term monitoring and change 

detection. Additionally, high costs associated with collecting MBES data pose further 

challenges. However, novel methods for creating seabed maps from multiple MBES 

coverages are being developed and refined (Lacharité et al. 2017) and contribute 

substantially to our ability to produce fine-scale seafloor maps for a variety of ocean 

management and conservation needs.  
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Benthoscape maps produced using these techniques yield the spatial information 

required for exploring and testing landscape ecology and connectivity concepts in benthic 

environments that require acoustic techniques to map. Methods and metrics include those 

related to connectivity and fragmentation and spatial pattern metrics such as patch size, 

shape and proximity to neighbouring patches. 

1.1.5 Integrating benthoscape mapping, connectivity analyses and conservation 

prioritization 

Despite evidence that including connectivity positively influences conservation 

outcomes (Olds et al. 2016), cases in marine contexts where connectivity is integrated 

with widely used conservation prioritization tools (e.g., Marxan) are rare and dominated 

by studies in shallow coastal systems that can be mapped using optical remote sensing 

techniques (e.g. Crouzeilles et al. 2015; Magris et al. 2016; Weeks et al. 2017). 

Recently proposed applications and methods for including connectivity in conservation 

prioritization continue to advance the field (e.g. Weeks et al. 2017; Daigle et al. 2018). 

MarxanConnect is one such application that allows users to incorporate estimates of 

directional demographic and landscape connectivity in Marxan conservation prioritization 

(Daigle et al. 2018). Another recently proposed method integrates connectivity analyses 

and Marxan conservation prioritization in a relatively data-limited context (Weeks et al. 

2017). In terms of benthic species and ecosystems, benthoscape maps and species-

specific habitat maps are particularly valuable for achieving positive conservation 

outcomes (Ferrari et al. 2018). However, methods are lacking for incorporating 
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benthoscape mapping, configuration and connectivity into widely used conservation 

prioritization tools. Of the limited number of studies that aim to link connectivity and 

conservation prioritization, the majority tend to focus on larval connectivity (White et al. 

2014; Magris et al. 2016; D’Aloia et al. 2017) and post settlement migration of 

individuals in shallow, biogenic habitats such as coral reefs, mangrove forests and 

eelgrass beds (Grüss et al. 2011; Weeks et al. 2017) while little attention has been paid to 

benthic environments that require acoustic techniques to map. While Marxan focuses on 

questions of comprehensiveness, representativity, adequacy and efficiency, exploring 

how the current Marxan workflow could be modified to enable the procedure to 

distinguish between large, well connected and isolated fragments of benthic habitat is 

valuable. 

This project addresses this research gap through the development of a method that 

integrates benthic habitat mapping and landscape connectivity and fragmentation analysis 

into the standard Marxan workflow so that the spatial arrangement of habitat patches can 

be considered in conservation prioritization. In terms of spatial conservation prioritization 

initiatives, filling this research gap is important for reducing habitat fragmentation and 

better supporting species and ecological processes.The method was tested through a case 

study in Newman Sound, an ecologically diverse and well-studied coastal region in of 

Newfoundland and Labrador.  
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1.2  Research Questions 

To address this research gap, this thesis aims to answer the following research 

questions:  

1. What is the composition and spatial configuration of the Newman Sound 

benthoscape?  

2. How can landscape ecology metrics be applied to benthoscape maps to describe and 

measure seafloor structural and species specific potential connectivity?  

3. How can landscape ecology metrics be used by conservation prioritization tools so 

that MPA design considers benthoscape composition and configuration? 

1.3  Research Objectives 

The overarching goal of this thesis is to develop a new method for incorporating 

seascape connectivity metrics related to patch size and connectivity into a conservation 

prioritization tool, while simultaneously meeting benthic habitat and/or substrate 

representativity targets. This goal and the above research questions will be answered by: 

1. Using the benthoscape mapping approach (Brown et al. 2012) to map the seafloor in 

Newman Sound, NL, using newly acquired and archival seafloor video survey and 

multibeam echosounder data. 

2. Applying patch size, proximity and species specific potential connectivity metrics to 

benthoscape classes to assess benthoscape composition and configuration at a broad 

seascape scale. 
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3. Developing a method for integrating fine-scale benthic mapping, species-specific 

potential connectivity and spatial pattern metrics into widely used conservation 

prioritization tools.  

4. Comparing conservation prioritization scenarios when the spatial configuration of the 

benthoscape and its potential effect on ecological processes is considered. 

1.4  Method Summary 

A general overview of the methods applied in this research project is described below.  

1.4.1 Study area 

This research was conducted in Newman Sound, a coastal fjord located in Bonavista 

Bay in Newfoundland and Labrador (NL). Due to the high diversity and abundance of 

ecologically unique areas, including tidal flats, eelgrass and rhodolith beds, and species-

rich submerged fjord walls, Newman Sound has been described as a special marine area 

(CPAWS-NL 2018). Newman Sound is a well-studied region with high conservation 

potential, and thus offers a suitable scenario for applying the benthoscape mapping 

approach and for developing a method for integrating fine-scale benthoscape mapping, 

configuration and connectivity into conservation prioritization. Furthermore, one of the 

two MPAs in NL, the Eastport MPA, is located in the region and provides context for 

discussing potential adaptive management scenarios that could help shift from single 

species to biodiversity conservation. The Eastport MPA consists of two closures: Duck 

Island and Round Island. Much work has been done in terms of identifying the fine scale 
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benthic habitats within the Eastport MPA (Novaczek et al. 2017a) and preliminary 

mapping in Newman Sound (Copeland 2006). This, coupled with additional ground 

truthing data acquired during this project, provides an ideal situation for integrating 

benthoscape configuration and connectivity metrics into conservation prioritization using 

fine scale data in a coastal context. 

1.4.2 Benthoscape mapping  

The seafloor adjacent to the Round Island closure was mapped using the benthoscape 

approach (Brown et al. 2012). The approach involves using multibeam echosounder 

(MBES) data, seafloor imagery and a pixel-based classification method. The abundance 

of benthic fauna was also recorded for each seafloor image. Relationships between 

seafloor substrates and species presence/absence was explored using multivariate 

statistical analyses with the aim of capturing the potential impact of seafloor structure 

(depth, slope and predicted substrate) on benthic community composition. 

1.4.3 Connectivity and Marxan conservation prioritization 

The next stage of this research involved using the benthoscape map produced to 

quantify the composition and configuration of seafloor habitats (benthoscape units) 

adjacent the MPA using landscape ecology concepts and metrics. This included 

measuring patch size, shape and structural connectivity metrics. The metrics were then 

captured in a data layer used by the Marxan SCP tool, so that large, well-connected 

patches were favored during site selection.  
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Figure 1-1: General methods and techniques applied in this thesis 

1.5  Thesis Outline 

This thesis is presented in manuscript format and includes two research chapters as 

submitted to the journals for publication. Chapter 2 describes the method and results 

related to the benthoscape mapping activities in Newman Sound. The resulting 

benthoscape map provides the foundation for assessing spatial arrangement and landscape 
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ecology metrics described in Chapter 3. Chapter 3 demonstrates the newly developed 

method for integrating benthoscape mapping, connectivity and conservation 

prioritization. Chapter 4 provides a general summary and discussion of the limitations and 

future applications of this research.  

While the benthoscape mapping and subsequent connectivity and conservation 

prioritization method was developed and tested in the context of Newman Sound, the 

method developed in this research can be applied to other regions and protected areas in 

Canada where fine-scale habitat or substrate maps are available. 
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2 Chapter 2 – Seafloor mapping to support conservation planning in 

an ecologically unique fjord in Newfoundland and Labrador, 

Canada 

2.1 Abstract 

Purpose: As human impacts continue to threaten coastal habitats and ecosystems, 

marine benthic habitat and substrate mapping has become a key component of many 

conservation and management initiatives. Understanding the composition and extent of 

marine habitats can inform marine protected area (MPA) planning and monitoring, help 

identify vulnerable or rare habitats and support fisheries management. To support 

conservation planning in Eastern Canada, we mapped the seafloor of Newman Sound, 

identifying the benthoscape classes (i.e., discrete biophysical seafloor classes) of this 

ecologically diverse and unique fjord in Newfoundland and Labrador (NL). 

Methods: Mapping was achieved using multibeam echosounder (MBES) data collected 

using multiple platforms, seafloor videos and an unsupervised pixel-based classification 

method. 

Results: Seven benthoscape classes were identified within the extent of the MBES 

coverages. Multivariate statistical analyses indicate that two benthoscape classes - mixed 

boulder and mud - support distinct epifaunal communities, and also capture the changes 

in benthic community composition between hard/shallow substrates and soft/deep 

substrates. 
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Conclusions: Our results illustrate how benthoscape maps can inform marine spatial 

planning and conservation in the Newman Sound region, support monitoring and also 

calls for adaptive management of the adjacent Eastport MPA.  

2.2 Introduction 

Coastal areas are among the most highly threatened and vulnerable regions of the 

world (Waycott et al. 2009; Halpern et al. 2015; Li et al. 2018). Climate change, natural 

resource extraction, coastal development and land-based pollution are just a few of many 

stressors that can lead to habitat degradation and loss in coastal areas (Halpern et al. 2008; 

Grech et al. 2011; Lefcheck 2017).  

Protecting coastal areas requires knowledge of the habitats and ecosystem 

characteristics of the region. However, it can be difficult to assess impacts and monitor 

changes without baseline information on the composition and extent of coastal habitats 

and ecosystems. As a result, habitat and substrate maps have become central to many 

coastal conservation and management activities (Brown et al. 2012; Copeland et al. 2013; 

Buhl-Mortensen et al. 2015; Novaczek et al. 2017a).  

Advances in acoustic (sonar) seafloor mapping and sampling techniques have allowed 

for the production of fine-scale generalized biophysical maps of the seafloor (i.e., 

benthoscape maps – Brown et al. 2012). Specifically, multibeam echosounders (MBES) 

offer a survey technique capable of collecting continuous coverage baseline information 

pertaining to seafloor characteristics (Brown et al. 2011). Seafloor bathymetry measured 

by MBES can be used to understand the geomorphology of the seafloor through the 
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production of bathymetric derivatives such as slope, rugosity, aspect and curvature 

(Brown et al. 2011). MBES backscatter, a measure of the acoustic signal strength 

returning from the seafloor, has also proven valuable in understanding seafloor 

characteristics within a region. Backscatter strength can capture variability in substrate 

composition, with strong backscatter signals typically representing hard, consolidated 

substrates such as bedrock, boulder and cobble, while weak signals correspond to soft, 

muddy substrates (Lurton and Lamarche 2015). Using a combination of bathymetry, 

bathymetric derivatives and backscatter have proven valuable for predicting substrate and 

species distribution (Brown et al. 2011; Monk et al. 2010; Lecours et al. 2017).  

Recording backscatter intensity is complex. A combination of factors, including system-

specific settings and environmental variability can result in backscatter intensity values 

that are not typically calibrated across surveys (see Lurton and Lamarche 2015 and 

Lacharité et al. 2017 for comprehensive discussions of backscatter measurements and 

challenges). This can present further challenges in terms of extrapolating substrate and 

habitat predictions across multiple MBES coverages. However, novel methods have been 

developed and refined for producing seamless biophysical seafloor maps using multiple 

MBES coverages from an area (Lacharité et al. 2017). 

Benthoscape maps and species-specific habitat maps produced using these 

techniques can inform marine conservation and marine spatial planning activities 

(Novaczek et al. 2017b; Young and Carr 2015). Specifically, these maps can help identify 

vulnerable or threatened habitats (Rengstorf et al. 2013), support and monitor restoration 
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activities (Walker and Alford 2016) and inform fisheries management (Brown et al. 2012; 

Smith et al. 2017; Walton et al. 2017). Identifying the extent, location and composition of 

seafloor features and biodiversity in the form of habitat maps also provides important 

baseline information for assessing change, particularly as impacts from climate change 

and anthropogenic activities continue to threaten the resilience of coastal areas.  

Here, we used MBES bathymetry, backscatter and derivatives from two 

uncalibrated multibeam systems to create a benthoscape map of a coastal fjord with high 

conservation potential. We then discuss how the map provides important baseline 

information to support conservation planning in the region.  

Newman Sound is a fjord located in Bonavista Bay on the northeast coast of the 

island of Newfoundland, Canada. The western part of the fjord is located within the 

boundaries of Terra Nova National Park, one of two national (i.e., federal) parks on the 

Island of Newfoundland. Due to the high diversity and abundance of ecologically unique 

areas, including tidal flats, eelgrass and rhodolith beds, and species rich submerged fjord 

walls, Newman Sound has been listed in an expert process as a ‘special marine area’ 

(CPAWS-NL 2017). ‘Special marine areas’ recognize special or representative marine 

features identified during a series of workshops where scientists, provincial and federal 

government and community experts together identified areas in the province of 

Newfoundland and Labrador of higher conservation value. The inner basin of Newman 

Sound, makes up approximately 70% of the Terra Nova Migratory Bird Sanctuary (11.8 

km2), and provides important habitat for a high diversity of migratory shorebirds, seabirds 
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and resident waterfowl (Environment and Climate Change Canada 2017). Newman 

Sound also supports sizeable eelgrass (Zostera marina) beds, which serve as important 

refuge and nursery areas for juvenile Atlantic cod (Gadus morhua) (Linehan et al. 2001; 

Cote et al. 2004; Rao et al. 2014) and other fish and invertebrate species (Joseph et al. 

2006; Cote et al. 2013). 

The Round Island closure, one of two closed areas of the Eastport Marine 

Protected Area (MPA), is located in Newman Sound (Fig. 2-1), adjacent to the area 

mapped in this study. Eastport is one of two Fisheries and Oceans Canada (DFO) Oceans 

Act MPAs in the province of Newfoundland and Labrador. This small (2.1 km2) no-take 

(i.e. closed to all fishing) MPA was established in 2005, based on a voluntary fishing 

closure initiated by the local community in 1997. The primary goal of the Eastport MPA 

is to protect American lobster (Homarus americanus), a species fished commercially in 

the region. Reports of high lobster catches informed MPA boundary placement. However, 

no habitat mapping or biodiversity surveys were done prior to MPA establishment. 

Recent habitat mapping and characterization within the boundaries of the MPA have 

determined that the MPA does little to conserve habitats and biodiversity representative 

of the broader region of Newman Sound (Novaczek et al. 2017a). While the Eastport 

MPA was primarily designed to help protect a single species, its small size offers limited 

protection of ecologically diverse and unique areas in Newman Sound. A recent 

ecosystem goods and services study used biological indicators (estimates of lobster 

abundance; catch per unit effort; estimates of female lobsters that are carrying eggs; size 
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distribution) to examine the impact of the MPA on the local lobster fishery (Lewis et al. 

2017). The study determined that the Eastport MPA has little to no effect on the 

enhancement of the local fishery as the majority of biological indicators show no 

significant improvement when compared to regional scale patterns. The small size of the 

Eastport MPA is frequently cited as limiting the fisheries enhancement and biodiversity 

conservation benefits of the MPA (Lewis et al. 2017; Novaczek et al. 2017a; Stanley et al. 

2018), leading to calls for adaptive management that could result in expanding or 

changing the MPA boundaries to include more diverse habitats (Novaczek et al. 2017a). 

Adaptive management allows regulations and boundaries to be improved as new data and 

knowledge accumulates and as ecological systems change through time (Wilhere 2002). 

While identifying the appropriate MPA size is complex, general guidelines recommend 

that if an MPA is intended to conserve biodiversity and support climate change resilience 

it should be moderate to large in size, ideally 4-20 km in dimension (Green et al. 2014).  

In addition to creating a benthoscape map of Newman Sound, this research also 

discusses how the map provides important baseline information that can support the calls 

for the potential adaptive management of the Eastport MPA to include representative 

biodiversity and unique and vulnerable habitats of the wider geographic region. We 

illustrate scenarios for extending the boundaries of the Round Island closure into the area 

mapped in this study and the resulting increases in protection of benthoscape classes. The 

benthoscape map can also be used to identify variability in benthoscape pattern and 

benthic biodiversity across a range of spatial scales. This information can allow 
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researchers to investigate how seafloor patterns can be most accurately used as surrogates 

for biodiversity in the region. Additionally, coastal seafloor maps such as the one created 

in this study can support future research questions and policy development related to 

habitat limitations for species in response to climate change and for identifying critical 

nursery, spawning and potential settlement areas for threatened or at-risk species.  

2.3 Methods 

2.3.1 Study Area 

Newman Sound (Fig. 2-1) is one of several deep fjords in the region and is 

separated from Bonavista Bay by a shallow sill (Cumming et al. 1992). The maximum 

depth of the outer basin is 349 m, while the inner basin has a maximum depth of 63 m. 

Several rivers and streams flow into the inner basin of Newman Sound where mudflats 

and estuarine vegetation are common. The adjacent Terra Nova National Park protects 

400 km2 of sheltered inlets, islands, forest and bog habitat that supports a variety of 

terrestrial mammals including the endemic Newfoundland marten (Martes americana 

atrata; Parks Canada 2018). 
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Figure 2-1: Newman Sound, Newfoundland and Labrador. Note that the Terra Nova National park 

does not extend into the marine area. 

2.3.2 Multibeam Echosounder Surveys  

In 2003, an acoustic multibeam echosounder (MBES) survey was conducted in 

Newman Sound by the Canadian Hydrographic Service (CHS; Fig. 2-2). Bathymetric and 

backscatter data were collected using two Kongsberg MBES systems: an EM1002 (95 

kHz) system operated aboard the CCGS Matthew, and an EM3000 (300 kHz) system 
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operated aboard the CCGS Plover. The EM1002 system primarily surveyed the deeper 

regions of the fjord, while the EM3000 system surveyed the shallow and narrow region 

separating the inner and outer basins (Copeland et al. 2006). Bathymetric data were post-

processed by the Geological Survey of Canada to generate a 10m resolution surface for 

the region. Uncalibrated raw backscatter data (.all format) from the two MBES systems 

were post-processed independently for this study in QPS FMGT software v7.7.8 using 

default settings and Adaptive AVG algorithm that reduces noise in terrains with 

significant slope variation. Both MBES backscatter coverages were rendered as 10m 

resolution mosaics (Fig. 2-3). 
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Figure 2-2: Bathymetry data collected during EM1002 (A) and EM3000 (B) multibeam echosounder 

surveys (located in the western part of the study area). Inset maps illustrate areas with interesting 

bathymetric features: a large change in depth indicating a high slope region of the fjord (A) and the 

narrow region separating the inner and outer basins of Newman Sound (B) 
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Figure 2-3: Backscatter data collected during EM1002 (A) and EM3000 (B) multibeam echosounder 

surveys (located in the western part of the study area). Inset maps illustrate areas with interesting 

backscatter features: patches of shallow seafloor substrate with low intensity backscatter signals 

surrounded by relatively high intensity backscatter signals (A) and a region where backscatter 

intensity abruptly transitions from strong to weak (B) 
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2.3.3 Benthic Ground Truthing Video Surveys 

Benthic video surveys were conducted from October 3-13th, 2016 from a 40ft 

inshore fishing vessel, the ‘Jamie Tim N’ Trevor’, based out of Happy Adventure, NL. 

Survey stations were selected using a backscatter stratified random sampling design 

(N=28), constrained by the depth range of the camera system (max depth 170m). Ground 

truthing efforts focused on the area mapped by the EM1002 system, as extensive archival 

video data already existed for the shallow region mapped by the EM3000 system 

(Copeland 2006; Fig. 2-2B). Although a temporal difference exists between the MBES 

survey, archived video surveys (2003) and recent video surveys (2016) it is unlikely that 

the MBES bathymetry, backscatter and derivatives would have changed significantly 

within the sheltered geographic region at the resolution at which the benthoscape map is 

generated (10m).  

Video footage was obtained using a custom drop camera system that recorded in 

both standard and high definition. The camera system was equipped with mounted LED 

(Light Emitting Diode) lights and two red lasers positioned 5cm apart to allow for scale 

measurements. Camera and vessel positions were recorded using a handheld Garmin 

eTrex10 WAAS (Wide Area Augmentation System) enabled GPS (Global Positioning 

System), while video transects ran for approximately 4 minutes as the vessel drifted. 

Positional accuracy for the WAAS enabled GPS was < 3m (Garmin Ltd 2005). High 

definition seafloor video footage was recorded with a downward facing GoPro Hero 3 

Black Edition, and an approximate 1m distance between the camera and the seafloor was 
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maintained through an on-board live feed from a downward facing standard definition 

200m-tethered Deep Blue Pro camera.  

Still images were extracted from the high definition GoPro footage at 2 second 

intervals with each transect yielding between 2 and 56 usable images. Images were 

deemed unusable if they had an obstructed field of view (e.g., disturbed fine sediment), 

absent scaling lasers, poor illumination or were blurred. An additional 39 classified 

standard definition images from a previous habitat mapping study (Copeland 2006) were 

incorporated into the analysis. In total, 238 images from 57 stations were used to classify 

the seafloor of Newman Sound. Image location was recorded using the timestamps from 

the high definition footage and continuous GPS overlay of vessel position. Image area 

was measured using Image J Software, and substrates were classified based on 

biophysical characteristics. 

2.3.4 Image Classification 

Seafloor images were classified into benthoscape classes based on their 

biophysical characteristics, including the dominant sediment type and the 

presence/absence of encrusting coralline algae. This approach is comparable to the 

classification of terrestrial landscapes from remote sensing datasets (see Zajac et al. 2003; 

Zajac 2008; Brown et al. 2012). Each image was classified into one of eight benthoscape 

classes that captured the range of variability across ground-truthed images (Table 2-1; 

Fig. 2-4). The eight benthoscape classes were: (A) bedrock, (B) deep pebble/cobble, (C) 

gravelly muddy sand, (D) mixed boulder, (E) mud, (F) shallow pebble/cobble, (G) 
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rhodolith and (H) sand. The classification mirrored that of ground truthing surveys 

(Copeland 2006) to ensure that the two datasets were comparable.
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Table 2-1: Benthoscape classes used to characterize the seafloor in Newman Sound. Depth, slope and 

backscatter measurements were extracted when image locations were overlaid on MBES bathymetry 

(10m resolution) 

Benthoscape Biophysical 

characteristics 

Mean 

depth(m) 

[range] 

Mean 

Slope(deg) 

[range] 

Mean 

Backscatter(dB) 

[range] 

# of 

images 

Bedrock Solid exposed bedrock 

of fjord walls 

 

83 

[163–15] 

32 

[6–65] 

-14.25 

[-25 – -9] 

30 

Deep 

pebble/cobble 

>50% cobbles/gravel.  

Encrusting coralline 

algae absent 

 

106 

[161–72] 

18 

[12– 23] 

-13 

[-20 – -6] 

 

16 

Gravelly 

Muddy Sand 

Mixed gravel, mud, 

sand 

 

 

46 

[68–7] 

7 

[1–14] 

-14 

[-21 – -8] 

44 

Mixed 

Boulder 

Boulder >25%. Mixed 

cobble/ gravel/sand. 

Coralline algae 

present 

 

20 

[42–7] 

6 

[1–19] 

-12 

[-15 – -9] 

20 

Mud Mud 113 

[159–47] 

 

8 

[0–27] 

-16 

[-26 - -8] 

85 

Shallow 

pebble/cobble 

 >50% cobbles/gravel 

Encrusting coralline 

algae present 

 

50 

[77–33] 

 

10 

[2–23] 

-12 

[-14 – -9] 

25 

Rhodolith  >50% Rhodolith 

coverage 

17 

[20–14] 

 

2 

[1-7] 

-17 

[-22 – -9] 

 

8 

Sand Sand 16 

[56–7] 

3 

[0–11] 

-8* 

[-9 – -5]* 

10 

 

 

*indicates backscatter measurements obtained from EM3000 MBES. All others measured 

from EM1002 MBES.  
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Figure 2-4: Images representing benthoscape classes in Newman Sound: (A) bedrock, (B) deep 

pebble/cobble (C) gravelly muddy sand, (D) mixed boulder, (E) mud, (F) shallow pebble/cobble, (G) 

rhodolith, and (H) sand. Scale bar = 5cm 

2.3.5 Unsupervised Segmentation of MBES Data 

Bathymetry, seafloor slope and backscatter have been used extensively in benthic 

mapping studies due to their spatially continuous nature in terms of map coverage, and 

also their important role in separating distinct benthic habitats (Brown et al. 2011; 

Ierodiaconou et al. 2011; Che Hasan et al. 2014; Hill et al. 2014). These variables have 

been used specifically to map coastal fjord environments (Cochrane et al. 2011; Copeland 
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et al. 2013), with slope being of particular interest in a context where steep walls and 

current-winnowed gravel have been shown to support unique and diverse benthic 

communities (Dale et al. 1989). In this study, the two MBES datasets were segmented 

separately based on bathymetry, backscatter and slope using the ISO Cluster 

Unsupervised Classification Tool (ArcGIS 10.3.1). The tool segments a series of input 

raster bands by combining an iterative-self-organizing (ISO) algorithm and maximum 

likelihood classification. The ISO segmentation was limited to areas within the depth 

range of the ground-truthed video surveys (≤170 m). This method has been shown to be 

an effective way of segmenting MBES data (Calvert et al. 2014). The ISO Cluster 

unsupervised classification tool allows the user to select the number of output classes. 

The optimal number of classes for both the EM1002 and EM3000 MBES coverages was 

determined by using the maximum number of classes possible while maintaining at least 

two ground-truthed images within each class. This was not possible for one class within 

the EM3000 coverage due to the limited number of samples within the inner basin of 

Newman Sound. 

The locations of classified ground-truthed images were then overlain on the map 

derived from MBES segmentation and an error matrix was generated to determine the 

accuracy of the classification. The error matrix compares observed substrate classes (from 

image analysis) with the classes derived from MBES segmentation. Three standard 

measures of accuracy were calculated: (1) overall accuracy measures the percentage of 

correctly classified reference pixels when overlain on the MBES segmentation, (2) 
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benthoscape class-specific measures of accuracy, measuring the probability that a 

reference pixel is correctly classified (Producer’s Accuracy) and (3) how likely a map 

user is to encounter a correctly predicted benthoscape (User’s Accuracy) (Diesing et al. 

2016). A methodological diagram (Fig. 2-5) illustrates the general workflow followed for 

integrating the two MBES datasets and comparing the final Newman Sound benthoscape 

classification with epifaunal assemblage analysis (described below).  

 

Figure 2-5: Methodological diagram representing the workflow followed for producing benthoscape 

map of Newman Sound using two multibeam echosounder datasets and seafloor video surveys 

2.3.6 Epifaunal Assemblage Analysis 

The abundance of benthic fauna was also recorded for the entire transect length using 

continuous video footage, and we identified organisms to the lowest possible taxonomic 

level. To explore potential relationships between benthoscape class and organism 
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assemblages, multivariate statistical analyses were performed using the software package 

PRIMER (Plymouth Routines in Multivariate Ecological Research) v7 (Clark and Gorley 

2015). In order to allow for the integration of the archival data, abundance data were 

presence-absence transformed and combined for the entire transect, using the mid-point to 

represent each transect position. Transect length in all samples in the archived and recent 

video footage varied (mean transect length = 110m). Transect length from the archived 

video data varied between approximately 30 – 500m while transect length from recent 

video footage varied between approximately 60 – 200m. As such, species 

presence/absence was not standardized by transect length. Nonetheless, incorporating this 

archival video footage provides insight into the potential relationship between species 

composition and benthoscape class, although it is likely that species richness and 

abundance estimates standardized by transect length would more adequately capture these 

patterns. Transects were excluded from the analysis if they crossed the boundary between 

two predicted benthoscape classes. A Bray-Curtis Similarity matrix was generated, and 

non-metric multi-dimensional scaling (nMDS), analysis of similarity (ANOSIM) and 

similarity percentage (SIMPER) tests were run in PRIMER to assess the potential impact 

of benthoscape class on benthic community composition. 
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2.4 Results 

2.4.1 Unsupervised Substrate Segmentation of MBES Data 

Unsupervised classification of the EM1002 MBES coverage resulted in thirteen 

substrate classes characterized by their depth, slope and backscatter values. The 

classification is based solely on the inputs derived from the MBES surveys (bathymetry, 

backscatter and slope) and classes are not defined using the benthoscape classes from 

ground-truthing surveys (Fig. 2-4). The thirteen substrate classes are assigned to a 

benthoscape class based on the dominant in-situ image class (described below). The 

classes derived from the unsupervised segmentation of the EM1002 coverage which 

covers the majority of the fjord, aligns with what would be expected in terms of the 

geomorphology of fjord environments: separate classes that encompass flat deep basins, 

shallow sills and steep fjord walls (Fig. 2-6A; Syvitski and Shaw 1995). 

Four substrate classes were identified in the EM3000 coverage, with segmentation 

revealing a flat, inner basin with more variable substrate classes along the perimeter and 

at the shallow sill separating the inner and outer regions of the fjord (Fig. 2-6B). 
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Figure 2-6: Results of ISO unsupervised segmentation using bathymetry, backscatter and slope for 

EM1002 MBES coverage within the depth range of the drop camera system (max depth 170m) (A) 

and EM3000 coverage (B). Dashed line indicates region where two coverages overlap 

The error matrix compared the MBES segmentation against the classified images (Table 

2-2). Ground-truthed images obtained where the two MBES coverages overlapped (the 

narrow region between the inner and outer basins) were assigned to MBES segmentation 
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classes from the EM1002 coverage, as the EM1002 segmentation provided more 

variability of classes within the overlapping region (Fig. 2-7) and thus more classes to 

compare against ground-truthed images.  

 

Figure 2-7: Locations of ground truthing in region where EM1002 (left) and EM3000 (right) MBES 

coverages overlap. Colours on each map represent the same unique substrate classes as Fig. 2-6 

The seventeen classes derived from the two MBES coverages were reduced to 

seven by merging segmented classes based on their dominant in-situ image class. Several 

benthoscape classifications from the images corresponded closely with a single MBES 

segmentation class, while others required merging. Images classified as deep 

pebble/cobble corresponded to MBES segmentation class 7 (50.0% agreement) – see 
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Table 2-2 for details on each class, which was typically located at the outer edge of 

regions classified as mud. Gravelly muddy sand (GMS) images corresponded to MBES 

segmentation class 11 (75.0% agreement). Images classified as mixed boulder 

corresponded to MBES segmentation classes 12, 15 and 16 (80.0% agreement) and were 

predominant in shallow water regions towards the head of the fjord. Images classified as 

rhodolith were common in MBES segmentation classes 15 and 16, and were only found 

at the narrow region between the inner and outer fjord basins. Rhodolith was not 

acoustically distinguishable from mixed boulder and without additional ground truthing 

surveys in other regions we cannot assume that the rhodolith bed is uniform across the 

extent of classes 12, 15 and 16. Previous studies have, however, identified the extent of a 

rhodolith bed at the narrow region separating inner and outer Newman Sound (Copeland 

2006). Mud corresponded to MBES segmentation classes 1, 2, 3, 5, 6, 8, 9 and 14 (98.8% 

agreement) and was found in the flat inner and outer central basins of the fjord. Substrate 

class 14 was validated by a single archived image (mud) however the low slope (mean = 

1.1 degrees) and low (relative, uncalibrated) backscatter return in the substrate class 

suggests that mud is an appropriate classification. Bedrock corresponded to MBES 

segmentation classes 4 and 13 (53.3% agreement) and was predominant in deep, high 

slope regions toward the periphery of the fjord. Shallow pebble/cobble did not clearly 

correspond to any MBES segmentation class and was acoustically indistinguishable from 

gravelly muddy sand (GMS). The number of shallow pebble/cobble and GMS images 

differed by a single image when overlain on MBES segmentation class 10 (shallow 
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pebble/cobble = 11 images; GMS = 12 images). As a result, MBES segmentation class 10 

was retained to capture the transition between GMS and more complex mixed boulder 

substrates. Images classified as sand corresponded to map class 17 (60.0% agreement) 

and exhibited a patchy distribution (Fig. 2-6). 

Table 2-2: Error Matrix for final benthoscape classification of Newman Sound, NL    

       

  

MBES Segmentation (ISO Unsupervised 

Classification) Classes 

Ground-truth 

(benthoscape class) 
4+13 7 11 

12+

15+ 

16 

1+2+3

+ 

5+6+8

+ 

9+14 

10 17 

Row 

total (no. 

of 

images) 

Producer's 

accuracy 

(%) 

Bedrock 16 3 0 5 5 1 0 30 53.3 

Deep pebble/cobble 0 8 0 0 8 0 0 16 50.0 

Gravelly Muddy 

Sand 
0 0 21 4 5 12 2 44 75.0 

Mixed Boulder 0 0 0 16 0 2 2 20 80.0 

Mud 0 0 1 0 84 0 0 85 98.8 

Shallow pebble/ 

cobble 
0 0 7 5 2 11 0 25 44.0 

Rhodolith 0 0 0 6 2 0 0 8 n/a 

Sand 0 0 0 1 2 1 6 10 60.0 

Grand total (no. of 

pixels) 
16 11 29 37 108 27 10 238 

 

User's accuracy (%) 100 72.7 72.4 43.2 77.8 85.2 60.0 
  

        

Overall 

accuracy 
73.1% 

 

The final benthoscape map of Newman Sound waters shallower than 170m depth 

(Fig. 2-8) was produced by combining the two MBES coverages. In the region where the 

two MBES coverages overlapped, the EM 1002 coverage was used as it provided a 
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greater number of MBES segmentation classes for ground-truthing comparison and the 

majority of the other ground truthing stations were also located in the EM 1002 extent. 

The final map indicates that the region is dominated by mud (54.22%) and mixed boulder 

(12.85%). Areas classified as mixed boulder occurred in some of the shallowest regions 

of the MBES coverage. Based solely on the results of this mapping project, the amount of 

mixed boulder in Newman Sound is likely underestimated because the MBES coverage 

does not extend to shallow regions adjacent to the shoreline.  

The greatest amount of confusion occurred between GMS/shallow pebble/cobble 

and rhodolith/mixed boulder. Images classified as rhodolith and pebble cobble were 

acoustically indistinguishable from other benthoscape classes, and were thus not included 

in the final benthoscape map of Newman Sound except where shallow pebble/cobble and 

GMS were combined to capture the transition between GMS and more complex 

substrates. The overall accuracy of the final map after merging the two MBES coverages 

was 73.1% (Table 2-2). 
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Figure 2-8: Final benthoscape map of Newman Sound (depth <170m). Bar chart illustrates the 

percent contribution of each benthoscape class in the mapped area 
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2.4.2 Epifaunal Assemblage Analyses 

A number of distinct patterns emerged in the nMDS plot of benthic community 

data in Newman Sound (n=55) (Fig. 2-9). The nMDS plot represents the dissimilarity of 

epifaunal assemblages in multidimensional space in a reduced number of dimensions to 

facilitate visualization and interpretation. However, because species data for the entire 

length of each transect had to be merged into a single point to allow for the incorporation 

of archival data, the sample size was much smaller and may not fully capture the potential 

impact of benthoscape class on community composition. The nMDS plot does however 

suggest a gradual shift from soft substrates (mud) on the right side of the ordination plot 

(Fig. 2-9) to more complex and consolidated substrates (mixed boulder) on the left. 

 

Figure 2-9: nMDS ordination plot of epifaunal assemblage data extracted from seafloor video surveys 

in Newman Sound.  
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ANOSIM results (Table 2-3) reveal significantly different species assemblages 

between mixed boulder and mud (R = 0.619, p < 0.001), mixed boulder and bedrock (R = 

0.620, p < 0.004) mixed boulder and GMS (R = 0.648, p = 0.003), mixed boulder and 

shallow pebble /cobble/GMS (R= 0.606, p = 0.003) and mud and sand (R= 0.549, p = 

0.001). Due to the low representativity of some benthoscape classes in the multivariate 

dataset, pairwise ANOSIM results for several benthoscape classes are not valid because 

the number of possible permutations was too low. 

Table 2-3: Analysis of similarity of observed species between benthoscape classes. Global R = 0.465. 

 Benthoscape Class 
Mixed 

Boulder 
Mud Bedrock 

Deep 

pebble/

cobble 

GMS 

Shallow 

pebble 

/cobble / 

GMS 

       
Mud 0.619** 

     Bedrock 0.620** 0.113 

    Deep pebble/cobble - - - 

   GMS 0.648** 0 - - 

  Shallow 

pebble/cobble/GMS 0.606** - - - - 

 Sand 0.296 0.549** - - - - 

              

- number of possible permutations too low; ** significant at p < 0.005 

 

SIMPER results indicate taxa that contribute most towards the similarity of 

samples within each benthoscape class and the overall average similarity of epifaunal 

composition within each class (Table 2-4). Average similarity within each benthoscape 

class was generally low, ranging from 33% to 56% (Table 2-4). 
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Table 2-4: Results from SIMPER analyses of epifaunal assemblage data (presence-absence 

transformed). The main characterizing species from each benthoscape class are listed. Similarity 

percentage, cumulative similarity percentage for each species and the overall average similarity 

between samples from within each benthoscape class are listed.  

 

In terms of pairs of benthoscape classes with distinct epifaunal assemblages (Table 2-

3), dissimilarity in faunal composition was driven by the presence of several key species. 

Dissimilarity in epifaunal assemblages in mixed boulder and mud benthoscape classes 

(average dissimilarity = 78.1%) was primarily driven by plumose anemones (Metridium 

senile) and northern seastars (Asterias vulgaris), species commonly found on mixed 

Benthoscape Class Species % 
Cumulative 

% 

Average 

similarity 

Mixed Boulder Asterias vulgaris 28.5 28.5 56% 

 

Strongleyocentrotus droebachiensis 28.1 56.6 

 

 

Metridium senile 21.0 77.1 

 Mud Ptychogastria polaris 22.1 22.1 41% 

 

Ophiopholis aculeata 20.3 42.4 

 

 

Chionoecetes opilio 17.2 59.6 

 

 

Strongleyocentrotus droebachiensis 13.9 73.5 

 Bedrock Strongleyocentrotus droebachiensis 27.7 27.7 44% 

 

Ophiopholis aculeata 27.7 55.4 

 

 

Chionoecetes opilio 8.4 63.9 

 Deep Pebble/Cobble                  - - - - 

Gravelly Muddy Sand Strongleyocentrotus droebachiensis 25.0 25.0 33% 

 

Chionoecetes opilio 25.0 50.0 

 

 

Ophiopholis aculeata 25.0 75.0 

 Shallow 

Pebble/Cobble/GMS Strongleyocentrotus droebachiensis 62.5 62.5 37% 

 

Urticina felina  11.3 73.8 

 Sand Echinarachinus parma 33.2 33.2 47% 

 

Asterias vulgaris 30.6 63.7 

   Psuedopleuronectes americanus 16.6 80.3   
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boulder substrates, and epibenthic trachymedusae (Ptychogastria polaris), common on 

mud substrates. Plumose anemones, snow crab (Chionoecetes opilio) and daisy brittle 

stars (Ophiopholis aculeata) were the highest contributors to dissimilarity between mixed 

boulder and GMS faunal compositions (average dissimilarity = 69.3%). Dissimilarity 

between mixed boulder and bedrock (average dissimilarity = 62.92%) was primarily 

driven by the presence of daisy brittle stars, and unidentified white anemones. Differences 

in faunal composition between mixed boulder and shallow pebble/cobble/GMS (average 

dissimilarity = 63.6%) was driven by plumose anemones, northern seastars and dahlia 

anemones (Urticina felina). Common sand dollars (Echinarachnius parma), northern 

seastars and the hydrozoan P. polaris were the highest contributors to dissimilarity 

between mud and sand benthoscape classes (average dissimilarity = 83.64%).  

2.5 Discussion 

Seven benthoscape classes and two statistically distinct epifaunal assemblages were 

identified in Newman Sound, NL by integrating two MBES datasets with new and 

archived seafloor video surveys. The final predicted benthoscape map (Fig. 2-8) 

contributes to seafloor mapping efforts in Newfoundland and Labrador and improves our 

understanding of regional seafloor substrates and habitats in Bonavista Bay, an area that 

has been prioritized for conservation regionally.  
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2.5.1 Epifaunal Assemblage Analysis 

Mud and mixed boulder benthoscape classes supported statistically distinct 

epifaunal assemblages. However, due to underrepresented benthoscape classes in the 

multivariate analyses, it is possible that the species rich bedrock walls and deep 

pebble/cobble benthoscape classes also support distinct communities. Furthermore, 

species abundances may be in fact more important for detecting patterns and variation in 

epifaunal assemblage across benthoscape classes as habitat distinction within the 

boundaries of the MPA was often driven by the abundance of green urchins 

(Strongleyocentrotus droebachiensis), northern seastars (Asterias vulgaris) and brittle 

stars (Ophiopholis sp.; (Novaczek et al. 2017a)). Transforming data to presence/absence 

can make detecting patterns in species assemblages difficult, particularly in the case of 

Newman Sound where generalist species such as green urchins and brittle stars were 

found across all substrates. However, these analyses do provide insight into the potential 

relationships between species composition and benthoscape class. ANOSIM results 

revealed distinct differences in epifaunal assemblages between mixed boulder and mud 

benthoscape classes (R = 0.619, p < 0.001) – a pattern likely driven by contrasting 

sediment composition (hard vs. soft substrates) and depth (shallow vs. deep). This pattern, 

along with the low similarity of epifaunal assemblage composition within each 

benthoscape class (33-56%) aligns with other studies that aim to classify seafloor habitats 

based on benthic community assemblages (McGonigle et al. 2009; Brown et al. 2012; 

Lacharité and Brown in press). While these results fail to capture gradients of epifaunal 
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assemblages in transitional habitats, a higher density sampling effort measuring species 

abundance could potentially capture this variation. 

2.5.2 Mapping for Conservation Planning 

Seafloor mapping has become increasingly important for informing conservation 

planning. Design, management and monitoring of MPAs and other area-based 

conservation measures as well as the identification of Ecologically and Biologically 

Significant Areas (EBSAs) can all be informed by seafloor maps. Recent habitat 

characterization and mapping activities in the nearby Eastport MPA determined that the 

MPA does little to conserve habitats and biodiversity representative of the broader region 

of Newman Sound (Novaczek et al. 2017a). Novaczek et al. (2017a) identified four 

distinct benthic substrates within the boundaries of the MPA: “shallow rocky,” “sand and 

cobble” and “boulder/bedrock” and “sand.” Several of the benthoscape classes identified 

in this study are either under-represented or unrepresented within the boundaries of the 

Eastport MPA. The MPA is dominated by shallow rocky substrates, which correspond to 

the ‘mixed boulder’ classification in this study (48.9% of the combined closures; 86.3% 

of the Round Island closure). The shallow pebble cobble and GMS substrates identified in 

this study are similar to the “sand and cobble” habitat identified by Novaczek et al. 

(2017a). No sandy substrate was predicted to be protected within the boundaries of the 

Round Island closure, while sand/cobble and bedrock features combined made up only a 

small portion of substrates within the closure (13.7%; Novaczek et al. 2017a). 

Furthermore, 95.7% of the Round Island closure is shallower than 80m and within the 
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photic zone (Novaczek et al. 2017a). Consequently, deep-water substrates identified in 

this study (mud and deep pebble/cobble) are unrepresented.  

Extending the boundaries of the Round Island closure into the area mapped in this 

study would result in at least some protection of nearly all benthoscape classes identified 

in Newman Sound (Fig. 2-10). This would increase the protection of benthoscape classes 

and their associated biodiversity that are under or unrepresented based on the current 

boundaries of the MPA, and result in a more ecologically representative MPA - a key 

element of effective conservation planning. Five boundary expansion scenarios and the 

amount (km2) of each benthoscape class included in each scenario are illustrated in Fig. 

2-10. These incremental boundary expansions are useful for determining the proportion of 

each benthoscape class that would be included in potential adaptive management 

scenarios, and how the MPA could better represent benthoscape scale patterns in 

Newman Sound. For each boundary expansion scenario, it is only possible to quantify the 

amount of each benthoscape class within the mapped area. Mapping the additional 

benthoscape classes outside the extent of the MBES (i.e. currently unmapped) would be 

an important next step if these boundary expansion scenarios were considered. 

Alternatively, expanding the boundaries in a NE-SW direction (i.e., only into the area 

mapped in this study) could also be considered.   
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Figure 2-10: Boundary expansion scenarios for the Round Island closure. Bar graph illustrates the 

amount (km2) of each benthoscape class that would be included in various scenarios. Area 

measurements only include the region mapped in this study. Current protection levels obtained from 

Novaczek et al. 2017a 
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The final benthoscape map produced in this study also identifies the location and 

extent of additional shallow rocky substrate (mixed boulder benthoscape) in Newman 

Sound. This substrate is commonly associated with juvenile and adult lobster habitat and 

dominates the MPA (Novaczek et al. 2017a). Increasing the amount of lobster habitat 

protected within the boundaries of the MPA could potentially result in enhancements to 

the local fishery by broadening the area in which MPA benefits, such as increased lobster 

density and a broadened size structure that includes larger, more fecund lobsters, have 

been observed (Stanley et al. 2018). 

The inability to acoustically distinguish rhodolith and mixed boulder benthoscape 

classes, means that alternative methods such as SCUBA surveys are likely required to 

delineate the extent rhodolith beds in the region. Previous research (Copeland 2006) used 

SCUBA surveys to identify the extent of a rhodolith bed located at the shallow narrow 

region separating the inner and outer basins of Newman Sound. Rhodolith beds form 

complex habitats that support a high diversity of invertebrates, fish and algae (Steller et 

al. 2003; Copeland et al. 2008; Hernandez-Kantun et al. 2017 and references therein) and 

also provide refuge and feeding grounds for juvenile Atlantic cod (Kamenos et al. 2004). 

Rhodolith beds are sensitive to bottom contact fishing activities (Hall-Spencer and Moore 

2000; Kamenos et al. 2003), waste build-up from aquaculture operations (Hall-Spencer et 

al. 2006) and are particularly vulnerable to impacts from ocean acidification (Martin and 

Hall-Spencer 2017 and references therein). The rhodolith bed in Newman Sound is also in 

close proximity to sizeable eelgrass (Zostera marina) beds located in the inner sound 
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(Rao et al. 2014). However, neither eelgrass nor rhodolith beds are protected by the 

Eastport MPA despite their importance in providing habitat and refuge for a wide range 

of species.  

 Newman Sound is an ecologically unique and well-studied region in 

Newfoundland and Labrador. However, the Eastport MPA protects very little of its 

diversity despite our knowledge of the importance of conserving representative 

biodiversity, benthoscape classes and unique habitats such as eelgrass and rhodolith beds. 

The small size of the Eastport MPA is a clear limitation. However, the benthoscape map 

produced in this study coupled with extensive research on eelgrass beds in the region and 

our knowledge of the location of the rhodolith bed provide valuable information that can 

inform the potential adaptive management and expansion of the MPA.  

2.5.3 Mapping to Support Future Research Activities in Newman Sound 

A recent study in Newman Sound used nearshore baited cameras to examine how 

seabed habitat influences fish, Atlantic rock crab and American lobster community 

composition (Dalley et al. 2017). The authors identified four common nearshore 

substrates: bedrock (high relief boulder and bedrock outcrops), sand-pebble, cobble and 

eelgrass, in addition to one anthropogenic habitat (wharf). Significant differences in 

species diversity and relative abundance were observed between sand-pebble and bedrock 

substrates. Dissimilarity was driven by a variety of fish species, including cunner 

(Tautogolabrus adspersus), age-1 Greenland cod (Gadus microcephalus ogac), winter 

flounder (Psuedopleuronectes americanus) and Atlantic cod (G. morhua). American 
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lobsters were observed primarily on bedrock substrates, where Atlantic rock crabs were 

absent (Dalley et al. 2017). The baited cameras used by Dalley et al. (2017) were limited 

to the depth at which complementary beach seining sampling was done (max depth 3m), 

which is shallower than the MBES data used in this study. Although it is difficult to 

compare the results of baited vs. non-baited sampling methods, the final benthoscape map 

produced in this study could inform future studies that examine how fish communities 

change in response to substrate beyond the near-shore environment.  

The Atlantic cod population in Newman Sound has been extensively studied in 

terms of habitat use and movement (Cote et al. 2001; 2004), predator-prey dynamics 

(Linehan et al. 2001; Gorman et al. 2009), and relationships between cod density and 

eelgrass patchiness (Thistle et al. 2010). This research was almost exclusively done in 

shallow regions of the inner basin of Newman Sound. As such, our understanding of cod 

movement and habitat associations in deeper regions of Newman Sound is limited. The 

Newman Sound benthoscape map provides valuable information that can inform future 

studies on Atlantic cod movement and variability. Specifically, the benthoscape map can 

provide insight as to how distribution and movement patterns relate to seafloor 

characteristics and benthoscape classes.  

This benthoscape map provides important baseline information for management 

and monitoring activities related to the Eastport MPA. An additional objective of this 

study was to demonstrate the application of a seafloor mapping method that combines 

MBES backscatter data from two sources, a pixel based unsupervised classification and 
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seafloor image analysis. Methods for integrating MBES backscatter from multiple 

sources and incorporating archival data are valuable, particularly due to high costs 

associated with at-sea surveying. Maps that describe seafloor substrates and habitats are 

crucial for effective marine conservation and management, and can facilitate 

implementation, design and management of marine conservation objectives, particularly 

in coastal environments where anthropogenic stressors and threats are concentrated.  
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3 Chapter 3 – Integrating fine-scale seafloor mapping and seascape 

ecology metrics into marine conservation prioritization 

3.1 Abstract 

Marine protected area (MPA) planning often relies on a number of scientific 

principles with the goal of ensuring that the area selected for conservation is likely to be 

effective. Capturing ecological processes, such as seascape connectivity in MPA planning 

has become a central focus in recent years. However, studies that aim to integrate 

seascape connectivity and conservation prioritization are dominated by studies in shallow, 

biogenic habitats while little attention has been paid to benthic seascapes (benthoscapes) 

that require acoustic techniques to map. Advances in acoustic seafloor mapping strategies 

allow for the production of fine-scale maps that yield the spatial information required to 

extend connectivity and conservation prioritization research into these environments. 

Here, we propose and test a method that combines benthoscape mapping, connectivity 

analysis and conservation prioritization. Using a case study in Eastern Canada, we 

quantified the composition and configuration of the benthoscape using patch size, and 

connectivity metrics. We then used Marxan, a widely used conservation prioritization 

tool, to set representativity targets and compared outputs that included and excluded the 

prioritization of benthoscape connectivity. Results illustrate how larger, well-connected 

patches of seafloor substrate and habitat can be preferentially selected in Marxan analyses 

when benthoscape configuration is considered. We also demonstrate the flexibility of the 

method for including species-specific movement data when available. This illustrates how 
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benthic habitat mapping can be coupled with connectivity analyses to extend the field that 

links seascape connectivity and conservation prioritization into regions that require 

acoustic techniques to map, with the goal of better supporting biodiversity conservation in 

these environments. 

3.2 Introduction 

 Direct and indirect human stressors continue to have profound impacts on 

biodiversity. Recent reports indicate that global wildlife populations have declined by 60 

percent on average in less than 50 years (WWF 2018). In response to this decline, calls 

for increased protection of coastal and marine areas have become widespread (e.g. CBD-

UNEP 2010). Marine habitats and biodiversity face threats from activities such as 

pollution, overfishing, marine shipping, resource extraction, as well as from terrestrial 

based activities such as agricultural runoff and coastal development (Halpern et al. 2008). 

Marine Protected Areas (MPAs) are area-based conservation tools that have been 

successful in mitigating some of the impacts of these activities, helping to protect 

biodiversity, and contributing to marine ecosystem resilience (Lester et al. 2009; Green et 

al. 2014). Designing MPAs is challenging, not only in terms identifying and prioritizing 

areas important to protect, but also in terms of the social and economic considerations 

that are involved (Pascual et al. 2016; Agardy et al. 2016). Prioritizing individual sites for 

protection can be guided by systematic conservation planning (SCP): a process providing 

a framework for making repeatable, transparent and efficient conservation decisions 

(Margules and Pressey 2000; Wiersma and Sleep 2016). Key principles of SCP include 
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comprehensiveness, adequacy, representativity and efficiency (Margules and Pressey 

2000). Representativity refers to the need for MPAs to sample the full range of 

biodiversity and habitats in a region (Margules and Pressey 2000) and its importance is 

widely discussed in the field of MPA and MPA network design (Rice and Houston 2011).  

Area-based marine conservation planning methods are continually improving, 

aiming to expand their traditional capabilities to capture representative biodiversity and 

habitats, as well as important ecological processes such as migration, foraging and 

connectivity (Burt et al. 2014; Magris et al. 2014; D’Aloia et al. 2017). Connectivity in a 

broad sense is the exchange of individuals, genes, energy or materials across habitat 

patches, communities or ecosystems (Daigle et al. 2018). Connectivity can be quantified 

by identifying the location of larvae sources and sinks through oceanographic modelling 

and pelagic larval duration (PLD) analyses (Treml et al. 2012) and also by identifying 

post settlement migration patterns of individuals (D’Aloia et al. 2017; Weeks et al. 2017). 

Incorporating connectivity processes into MPA planning, although still rarely done in 

practice, has been shown to enhance conservation outcomes (Martin et al. 2015; Olds et 

al. 2016) leading to calls for better integration between connectivity and conservation 

prioritization (Huntington et al. 2010; Olds et al. 2016). Connectivity processes have 

received increased attention in recent years in part due to Aichi Target 11 of the 

Convention on Biological Diversity (CBD), which states that signatory countries protect 

at least 10% of coastal and marine waters through ecologically representative and well-

connected area-based conservation measures (CBD-UNEP 2010; Rees et al. 2018). 
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Seascape connectivity is one form of connectivity and can be considered analogous to 

landscape connectivity in the terrestrial environment (Olds et al. 2017). Seascape 

connectivity can refer to structural connectivity (i.e., physical linkages within a seascape 

as portrayed by a map of the habitat of interest), potential connectivity (i.e., a measure of 

connectivity that incorporates limited or assumed information on species mobility), or 

actual connectivity (i.e., a measure that uses spatial information on species movement to 

quantify connectivity; Grober-Dunsmore et al. 2009). Seascape connectivity has been 

quantified using various techniques, including larval flow and modelling (D’Aloia et al. 

2017), acoustic tagging to identify ontogenic shifts, pathways and migratory bottlenecks 

(Nagelkerken et al. 2015), and also by quantifying spatial pattern metrics such as patch 

size, proximity and nearest neighbor (Wedding et al. 2011). Seascape connectivity 

influences the spatial distribution of benthic flora and fauna and supports post-settlement 

processes such as migration, foraging and spawning for a variety of species (Meynecke et 

al 2008; Grober-Dunsmore et al. 2009; Bostrom et al. 2011; Nagelkerken et al. 2015).  

Seascape maps are integral for quantifying connectivity by providing foundational 

information for assessing spatial patterns of various seascapes and habitat types. The 

ability to map and identify migration patterns, movement corridors and nursery and 

spawning grounds offers value for designing and establishing protected areas in marine 

and terrestrial systems (Rudnick et al. 2012; Nagelkerken et al. 2015; Magris et al. 2018). 

Additionally, many widely used conservation prioritization tools require spatial data 

layers representing conservation features – data that are provided through detailed, 
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land/seascape scale mapping. Marxan (Ball et al. 2009) is the most widely used 

conservation prioritization tool for generating protected area design scenarios in both 

marine and terrestrial systems (Ardron et al. 2010). Marxan aims to address the problem 

of selecting a set of proposed areas meeting quantitative conservation targets (e.g. X% of 

species Y or habitat Z) at a minimal cost (e.g. forgone opportunities). 

Despite evidence that considering connectivity improves conservation outcomes 

(Olds et al. 2016), cases where connectivity is integrated with widely used conservation 

prioritization tools (i.e., Marxan) are rare and dominated by studies in shallow coastal and 

terrestrial systems that can be mapped using optical remote sensing techniques (e.g. 

Crouzeilles et al. 2015; Magris et al. 2016; Weeks et al. 2017). In contrast, the vast 

majority of deeper seafloor regions are unmapped, particularly at scales suitable for 

seascape connectivity analyses. Without appropriate spatial information, it can be difficult 

to incorporate complex connectivity metrics into conservation prioritization tools. 

However, advances in acoustic seafloor mapping and sampling techniques have allowed 

for the production of fine-scale seascape maps that are essentially analogous to terrestrial 

land cover maps. Mapping the benthoscape (i.e., the component of the seascape that 

relates to the benthic environment; Zajac et al. 2000) provides a broad landscape 

perspective that yields useful information for extending connectivity analyses into the 

MPA designation process in these deeper benthic environments.  

 Benthoscape maps also provide high quality and fine-scale information on the 

location and extent of seafloor habitats and substrates, which can be used to assess 
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whether MPAs and MPA networks protect representative habitats (e.g. Evans et al. 2015; 

Novaczek et al. 2017). However, using benthoscape maps to identify areas for protection 

without considering spatial configuration and connectivity may result in scenarios where 

representativity targets are met but the actual habitat and substrate included in each 

protected area does not consider the size and connectivity of the habitat patches 

themselves. It is well documented that the habitat within a MPA should support regular 

movements of targeted species (Moffitt et al 2009; Metcalfe et al. 2015), however by not 

considering the spatial configuration of habitat patches in MPA design, we risk 

decreasing MPA effectiveness by potentially limiting the protection of large, well-

connected patches.  

 Spatial pattern metrics that measure and describe patch size, shape and 

configuration can be derived from landscape-scale maps and are used extensively in 

ecology and conservation studies in terrestrial and shallow water regions (Wedding et al. 

2011; Turner and Gardner 2015). The general lack of fine-scale continuous benthoscape 

data precludes their use in deeper regions of the ocean. With a growing acknowledgement 

of the value of benthic habitat and substrate maps for informing conservation planning 

and monitoring (Ferrari et al. 2018; Hogg et al. 2018; Lacharité and Brown in press), 

developing methods for extending seascape connectivity analyses and spatial pattern 

metrics into regions that rely on acoustic techniques to map is pertinent. This is 

particularly relevant as many conservation objectives focus on static benthic features 

while little attention has been paid to connectivity processes in these environments.  
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 Recent studies have proposed tools and methods for including connectivity in 

conservation prioritization (e.g. Weeks et al. 2017; Daigle et al. 2018). MarxanConnect is 

an example of recent tool that helps incorporate estimates of directional demographic 

connectivity and landscape connectivity in Marxan conservation prioritization (Daigle et 

al. 2018). Another recently proposed method integrates connectivity analyses and Marxan 

conservation prioritization in a relatively data-limited context (Weeks et al. 2017). 

Studies that link connectivity and conservation prioritization tend to focus on maximizing 

larval connectivity (White et al. 2014; Magris et al. 2016) and post settlement migration 

of individuals in shallow, biogenic habitats such as coral reefs, mangrove forests and 

eelgrass beds where habitat patch configuration and composition can be mapped using 

optical remote sensing techniques (Olds et all. 2016; Weeks et al. 2017). However, these 

tools are limited in their ability to consider benthoscape structure and configuration in the 

selection of potential protected areas. In general, seascape connectivity research that 

relies on benthoscape mapping remains largely unstudied despite the fact that processes 

such as migration, dispersal, reproduction and range expansion are occurring in these 

deeper benthic ecosystems (Comeau et al. 1998; Comeau and Savoie 2002; Hovel and 

Wahle 2010). 

  To address this gap, this research presents a new method for meeting benthic 

habitat and/or substrate representativity targets while simultaneously incorporating spatial 

pattern metrics related to patch size and connectivity into the conservation prioritization 

tool Marxan. We test the method through a case study in Newman Sound, a coastal region 
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of the Canadian province of Newfoundland and Labrador. The goal is to integrate 

benthoscape mapping, spatial pattern analyses and Marxan conservation prioritization to 

develop a method where large well-connected patches of seafloor habitat within 

ecologically meaningful threshold distances can be preferentially selected. 

3.3 Methods 

3.3.1 Marxan conservation prioritization 

 Marxan is the most widely used conservation prioritization tool, helping select a 

set of potential protected areas that meet user-defined targets for conservation features 

(i.e., habitats, species), while attempting to minimize the displacement of, and impact on, 

resource users (i.e., resource harvest value, area, cultural value; Ball et al. 2009). The tool 

uses multiple spatial data layers representing conservation features and a single cost 

feature. Cost layers representing economic costs, such as fishing effort, are commonly 

used in Marxan prioritization to help reduce potential impacts of the proposed protected 

areas on resource users (e.g. Leathwick et al. 2008; Mazor et al. 2014). A common way to 

run a Marxan analysis in the absence of reliable socio-economic data is to assign a 

uniform cost value to all Marxan planning units (PUs; see Fig.1). This area based, 

uniform-cost approach assumes that minimizing the total area in a reserve design scenario 

in turn minimizes the cost to implement, monitor and manage the reserve (Ardron et al. 

2010). In this context, any PU containing a habitat or species of interest would be equally 

likely to be selected by Marxan, regardless of its location in the study area or spatial 
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relationship to other PUs. Marxan can favor the selection of PUs that are adjacent by 

using a Boundary Length Modifier (BLM). Increasing the value of the BLM in turn 

increases the compactness of the proposed network. While the use of BLM helps reduce 

the network fragmentation, it does not consider the spatial configuration of the habitat 

patches themselves (e.g., patch size and proximity).  

 

Figure 3-1: General Marxan workflow using a uniform, area-based cost layer. The selection 

frequency is a surface generated by overlaying the top 100 Marxan solutions where values represent 

the frequency at which each planning unit was selected 

 When area is used as a cost, meeting conservation targets in Marxan could result 

in solutions where representativity targets are met but the habitat or substrate within the 

solutions is composed of isolated fragments. Effectively, the spatial arrangement of 

selected PUs is not informed by knowledge of species home range movements or the 

spatial configuration and connectivity of habitat patches within the PUs themselves. This 
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lack of a broad, benthoscape-scale perspective when aiming for representativity of 

benthic habitats in conservation planning can have important implications for protecting 

benthic species and ecological processes.  

 The method developed and tested in this study involves creating a Marxan cost 

layer (described below) where patches of benthic habitat are weighted based on their 

spatial attributes, configuration, and connectivity. The approach can support planners in 

achieving representative conservation while considering the spatial configuration and 

connectivity of seafloor habitat and substrate patches as well as species movement and 

habitat use. This method includes measures of structural connectivity (physical linkages 

between patches) and species-specific potential connectivity between habitat and/or 

substrate patches. This method requires continuous spatial data on the seafloor, which is 

becoming increasingly available due to advances in seafloor mapping technologies.  

3.3.2 Marxan conservation prioritization using benthoscape cost 

 In this study, we propose a new method that helps capture benthoscape 

connectivity measures as a cost layer in the Marxan process. Benthoscape classes are 

acoustically distinguishable biophysical seafloor classes derived using the benthoscape 

mapping approach (Brown et al. 2012). The method presented here requires maps of each 

benthoscape class to represent conservation features. Patches belonging to each class are 

extracted using a Geographic Information System (GIS) approach. For benthoscape 

classes where species-specific connectivity and movement data are available, connectivity 

refers to both structural and species-specific potential connectivity. Benthoscape cost is 
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calculated using a combination of patch area (Pa) measurements and neighbourhood 

analyses, typical metrics used in landscape ecology. Metrics that quantify patch size and 

proximity are valuable in MPA planning scenarios where a primary goal is to protect 

areas that encompass large, high quality patches of habitat within the home range or 

dispersal distance for focal species (Olds et al. 2016). Neighbourhood analyses include 

calculating the number of patches (#P) and mean distance between patches  within 

a threshold distance. Threshold distance can be set for each habitat layer based on 

existing species-specific movement data (i.e., home range, dispersal distance).  

Benthoscape cost for each patch when species-benthoscape associations and 

connectivity/movement data are available was calculated as: 

 

where x, y and z are weights applied to each patch metric based on their importance for 

the species of interest. These weights should be carefully considered and informed by 

research and expert opinions. Pa values are then rescaled to values between 0-1 and 

inverted to allocate lower costs to larger patches (i.e., as larger patches are more desirable 

for selection as part of the network because they can better support the movements of 

target species). Values for both #P and  are rescaled as benthoscape costs between 0-

1. Values for #P are inverted so that patches with more neighbouring patches within the 

threshold distance are assigned a lower cost. Values for  are not inverted, resulting in 

patches with closer neighbouring patches within the threshold distance having lower 

costs.  
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 For benthoscape classes where species-specific connectivity and movement data 

are unavailable, connectivity refers to structural connectivity only and is calculated as: 

 

where Pa is patch area. Pa values are also rescaled as a benthoscape cost value between 

0-1 and inverted. The inversion results in larger patches having lower benthoscape costs.  

Cost layers associated with each benthoscape class, whether they capture species-specific 

potential connectivity or structural connectivity, are then merged to produce a continuous 

benthoscape cost layer. This layer is then used for Marxan conservation prioritization. 

Fig. 3-2 illustrates the modified Marxan workflow when benthoscape cost replaces an 

area-based, uniform cost layer. 
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Figure 3-2: General Marxan workflow using a benthoscape cost layer. The selection frequency is a 

surface generated by overlaying the top 100 Marxan solutions where values represent the frequency 

at which each planning unit was selected 

 By replacing an area-based, uniform cost layer with our derived benthoscape cost, 

we can achieve representation targets for conservation features while minimizing 

benthoscape cost (i.e., maximizing seascape connectivity). Effectively, the method allows 

the Marxan procedure to distinguish between patches of the same benthoscape class, and 

preferentially select PUs that are within large benthoscape patches in close proximity to 

neighbouring patches over small isolated fragments. This in turn reduces the degree of 

fragmentation of conservation features in Marxan outputs while also prioritizing habitat 

or substrate patches within ecologically meaningful threshold distances. While this 

approach may help reduce network fragmentation, a role often played by Marxan’s 

boundary length modifier (BLM), applying a benthoscape cost means that the habitat or 

substrate within the solutions themselves is composed of larger, well-connected patches. 
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In doing so, we effectively provide a benthoscape-scale perspective when aiming for 

representative benthic conservation which can have important implications for protecting 

species and ecological processes. 

3.3.3 Application of the approach: The Case Study of Newman Sound, 

Newfoundland and Labrador 

3.3.3.1 Study Area 

 The proposed approach has been tested for the area of Newman Sound. Newman 

Sound is a coastal fjord located in Bonavista Bay on the East coast of the island of 

Newfoundland, Canada (Fig. 3-3). This site has been selected due to its ecological 

significance in the region, the large amount of existing biophysical and ecological data, 

and the diversity of benthoscape classes. Additionally, no socioeconomic cost layer (i.e., 

map of fisheries catches) was available for Newman Sound, making the application of the 

benthoscape cost approach appropriate.  

 The maximum depth of the outer basin of the fjord is 349m, while the inner basin 

has a maximum depth of 63m. Several rivers and streams flow into the inner basin of 

Newman Sound where mudflats and estuarine vegetation are common. The adjacent Terra 

Nova National Park protects 400km2 of sheltered inlets, islands, forest and bog habitat 

(Parks Canada, 2018).  
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Figure 3-3: Case study area: Newman Sound, Newfoundland and Labrador 

 Due to the high diversity and abundance of ecologically unique habitats in the 

area, including tidal flats, eelgrass and rhodolith beds, as well as species-rich submerged 

fjord walls, Newman Sound has been listed by a NL non-for profit environmental 

organization as a special marine area (CPAWS-NL 2017). Newman Sound also supports 

sizeable eelgrass (Zostera marina) beds, which serve as important refuge and nursery 

areas for juvenile Atlantic cod (Gadus morhua) (Linehan et al. 2001; Cote et al. 2004; 

Rao et al. 2014) and other fish and invertebrate species (Joseph et al. 2006; Cote et al. 

2013). 
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Newman Sound also includes part of one of the two Fisheries and Oceans Canada (DFO) 

Oceans Act MPAs in Newfoundland and Labrador: the Eastport MPA. This MPA is 

composed of two closures, with the Round Island closure being located in the southern 

part of Newman Sound (Fig. 3-3). Eastport is a small (2.1 km2) no-take MPA established 

in 2005, based on a voluntary fishing closure initiated by the local community in 1997. 

The primary goal of the Eastport MPA is to protect American lobster (Homarus 

americanus, hereafter lobster), a species fished commercially in the region. Reports of 

high lobster catches informed MPA boundary placement, although no habitat mapping or 

biodiversity surveys were done prior to establishment. Recent habitat mapping and 

characterization within the boundaries of the MPA have determined that the MPA has a 

limited capacity to conserve habitats and biodiversity representative of the broader region 

(Novaczek et al. 2017). While the Eastport MPA was primarily designed to help protect a 

single species, its small size offers limited protection of ecologically diverse and unique 

areas in Newman Sound. 

 The seafloor landscape (i.e., benthoscape) in Newman Sound was characterized 

and mapped using the benthoscape approach of Brown et al. (2012), utilizing multibeam 

echosounder (MBES) and seafloor video data (Proudfoot et al. submitted; Chapter 2). The 

seafloor mapping study identified seven distinct benthoscape classes in Newman Sound: 

mixed boulder, mud, bedrock, deep pebble cobble, gravelly muddy sand (GMS), shallow 

pebble cobble/GMS and sand.  
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 To test our method, we selected two of the benthoscape classes identified in 

Newman Sound as Marxan conservation features: 1) mixed boulder; 2) gravelly muddy 

sand (GMS). The mixed boulder benthoscape class was selected because it is comprised 

of complex boulder features with high macroalgal cover – characteristics commonly 

associated with juvenile and adult lobster habitat (Novaczek et al. 2017). In addition to 

this species-benthoscape class association, species-specific home range movement data 

are also available. Lobster tagging studies done in the region demonstrate limited lobster 

movement (Rowe et al. 2001). Rowe et al. (2001) determined that 58.7% of tagged 

lobsters were recaptured in close proximity to where they were captured and tagged, and 

of the more mobile lobsters, 77% were recaptured within 1km of their original tagging 

location. Although lobsters are known to travel distances in other regions of Atlantic 

Canada (Campbell and Stasko 1986; Comeau and Savoie 2002), based on Rowe et al. 

(2001) we used 1km as the threshold distance for lobster movement and for weighting 

patches of mixed boulder. 

 The GMS benthoscape class was selected based on previous studies examining 

benthic fauna in Newman Sound have shown that the GMS benthoscape class supports a 

distinct community of ophiuroids, infaunal bivalves and polychaete worms (Copeland 

2006). GMS patches are prioritized based on size to demonstrate the benthoscape cost 

scenario where species-specific movement data are unavailable.  

 We contrast outputs that use the uniform cost approach (Fig. 3-1) against outputs 

that use the benthoscape cost approach (Fig. 3-2) to demonstrate how large, well-
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connected patches of these two benthoscape classes within ecologically meaningful 

distances can be preferentially selected in Marxan prioritization. We also compare the 

calibrated BLM scenario with a scenario that excludes the use of the BLM parameter 

(BLM=0). We examine “Best Solution” outputs (the solution that meets conservation 

targets most efficiently) for both scenarios. This allows us to contrast results of using the 

benthoscape cost approach to select planning units located in large, well-connected 

patches and increasing the BLM parameter to enhance the clustering and compactness of 

the PUs.  

3.3.3.2 Creation of the benthoscape cost layer in Newman Sound 

 For each patch of mixed boulder in Newman Sound where species specific home-

range data are available (e.g., American lobster; 1km):  

 

where Pa is patch area, #P is number of patches within the 1km threshold distance, and 

 is the mean distance between patches within the 1km threshold distance. ArcGIS 

10.5 was used to derive patch size and proximity metrics. In the case of lobster in 

Newman Sound, Pa of mixed boulder habitat was weighted more heavily than #P 

and  due to the relatively sedentary nature and small home range of lobsters in the 

region (Rowe et al. 2001) and the assumption that larger patches of mixed boulder 

support a higher density of lobsters by increasing available habitat for recruitment and 

shelter (Wahle and Steneck 1991). For this case study, tests were conducted to determine 

an appropriate weighting scheme that ensured that across all patches, variation in patch 
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size, the number of neighbouring patches and the distance between neighbouring patches 

together corresponded to ecologically meaningful benthoscape cost values. Assigning a 

weight of 0.7 to the patch size parameter ensures that small patches in regions with a high 

quantity of near neighbours (i.e., highly fragmented regions) are not assigned lower 

benthoscape cost values than large patches due to the quantity of neighboring patches. 

The remaining weight was divided equally among the parameters associated with 

neighboring patches. In cases where this approach may be used to support on the ground 

conservation decision-making, these weights should be carefully considered and informed 

by expert opinions. Furthermore, these weights can vary depending on study area and 

species that are the focus of the conservation effort. Through this case study, our intent is 

to demonstrate the flexibility of our method for including and weighting species-specific 

connectivity and movement data when available.  

 Pa values were rescaled to values between 0-1 and inverted. #P and  values 

were rescaled as between 0-1. #P values were inverted and values for  were not 

inverted. The equation results in benthoscape cost values for patches of mixed boulder 

ranging from low (0; large patches in close proximity to neighbouring patches) to high (1; 

small isolated patches). 

 For each patch of GMS in Newman Sound where information on associated 

species and movement is unavailable: 
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where Pa is patch area. Pa values were rescaled to values between 0-1 and inverted 

resulting in larger patches having lower benthoscape cost values.  

 The above calculations result in benthoscape class-specific cost layers. Cost layers 

for all conservation features (i.e., benthoscape classes) were then merged to produce a 

seamless benthoscape cost layer for Newman Sound that was then used in the Marxan 

conservation prioritization. Fig. 3-4 illustrates the general workflow described above for 

assigning benthoscape cost, using mixed boulder and gravelly muddy sand (GMS) as 

examples to demonstrate the method’s flexibility in incorporating movement data where 

available. 

 



 

 

 

3-21 

 

 

Figure 3-4: General workflow for deriving benthoscape cost 

3.3.3.3 Marxan Application 

 Through this method we compare two Marxan spatial prioritization scenarios in 

Newman Sound, NL: 1) the reference “uniform cost” scenario where PUs (20 x 20m in 

size) are assigned an equal cost and 2) the “benthoscape cost” scenario where we use our 

derived benthoscape cost layer to assign a cost to each PU. Representation targets were 

set to include 10% of all benthoscape classes within protected areas in line with the Aichi 

Target 11, where signatory countries, including Canada aim to protect 10% of coastal and 
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marine areas by 2020 through ecologically representative and well connected area-based 

conservation measures (CBD-UNEP 2010). While this target was set to test the approach, 

a higher target may be required in an actual conservation planning process due to the high 

ecological value of the region. The boundary length modifier (BLM), a Marxan parameter 

that can be modified to produce more clustered solutions remained constant (0.1) in both 

scenarios. The BLM value was determined through a calibration process that identified 

the highest BLM value (highest degree of clustering) with a minimal impact on the 

overall cost (Ardron et al. 2010). All other Marxan parameters were consistent across 

scenarios (1,000,000 iterations; 100 repetitions).  

3.4 Results 

3.4.1 Creation of the benthoscape cost layer 

 The Newman Sound benthoscape and geomorphology are typical of a submerged 

fjord environment, characterized by flat deep basins defined by shallow sills and steep 

fjord walls (Proudfoot et al. submitted). Benthoscape cost patterns reflect this structure, 

with low benthoscape cost values in large continuous patches and variable benthoscape 

cost values reflecting the more diverse patch sizes in the shallower regions of the fjord 

(Fig. 3-5). 
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Figure 3-5:Extent of mixed boulder (A) and GMS (B) benthoscape classes in the inner region of 

Newman Sound adapted from Proudfoot et al. (submitted). Benthoscape cost layers for mixed 

boulder (C) and GMS (D) benthoscape classes show cost values ranging from 0-1 within each class. 

Final benthoscape cost layer after C and D are merged (E) 

 Benthoscape cost patterns for patches within each benthoscape class are spatially 

variable. As expected from the method used, high benthoscape cost values tend to be 
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associated with highly fragmented regions of the benthoscape (see Fig. 3-5D for 

examples).  

 Large patches of mixed boulder contribute to the low benthoscape cost values in 

the outer region of the fjord (Fig. 3-5C). Low benthoscape cost values are also assigned to 

patches of mixed boulder that are in close proximity to neighbouring patches within the 

threshold distance of 1km lobster home range. These regions where benthoscape cost is 

low are preferentially selected in Marxan prioritization. 

3.4.2 Impact of using benthoscape cost vs. uniform cost on Marxan conservation 

prioritization 

 Clear differences can be observed in Marxan outputs when comparing PU 

selection frequencies from the uniform cost (Fig. 3-6A, Fig. 3-6B) with the benthoscape 

cost scenarios (Fig. 3-6C, Fig. 3-6D). By comparing differences in selection frequencies 

in the two scenarios (Fig. 3-6E, Fig. 3-6F), we can identify areas that are selected more or 

less frequently in the benthoscape cost scenario (red areas were selected more frequently; 

blue areas were selected less frequently). PUs that are within small, isolated patches were 

selected less frequently, while PUs within large structurally connected patches were 

selected more frequently. 
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`  

Figure 3-6: Marxan outputs comparing selection frequencies of planning units under two cost 

scenarios. Uniform cost: mixed boulder (A) and gravelly muddy sand (B). Benthoscape cost: mixed 

boulder (C) and gravelly muddy sand (C). Planning units selected more or less frequently when 

benthoscape cost is considered: mixed boulder (E) and gravelly muddy sand (F) 
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 By examining benthoscape-class specific selection frequencies, it is clear that 

large, structurally connected patches of GMS are preferentially selected in Marxan 

prioritization while small, patches are avoided (Fig. 3-6D). In the case of mixed boulder, 

large patches within the 1km threshold distance of lobster movement are preferentially 

selected in Marxan prioritization, while small isolated fragments are avoided (Fig. 3-6C).  

Differences in the total area of mixed boulder and GMS included in the ‘best solution’ 

(Fig. 3-7A & B) between the uniform and benthoscape cost scenarios were minimal. The 

total area of mixed boulder in the best solution increased slightly (+0.03%) by replacing 

the uniform cost layer with the benthoscape cost (0.324km2 in the benthoscape cost 

scenario vs. 0.323km2 in the uniform cost scenario). The total area of GMS in the best 

solution decreased slightly (-0.05%) in benthoscape cost scenario (0.174 km2 in the 

benthoscape cost scenario vs. 0.175km2 in the uniform cost scenario).  

 Figure 3-7 illustrates the difference between using the BLM parameter to increase 

the compactness of the PUs (Fig. 3-7A & B) and using no BLM (Fig. 3-7C & D) in both 

the benthoscape cost and uniform cost scenarios. In the benthoscape cost scenarios (Fig. 

3-7A & C), it is clear that PUs are concentrated in benthoscape patches that are larger and 

less fragmented. In contrast, applying a uniform cost in both BLM scenarios resulted in 

PUs that are essentially randomly distributed throughout the planning area at two levels 

of compactness (Fig. 3-7B & D). By using the benthoscape cost approach and 

simultaneously increasing the BLM, we can not only increase the compaction of the 
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individual reserves within the network (increased BLM), but also ensure that the 

individual reserves encompass large, well-connected patches of habitat.  

 

Figure 3-7: Marxan Best Solution outputs under two BLM and two cost scenarios. (A) Benthoscape 

cost and BLM=0.1. (B) Uniform cost and BLM=0.1. (C) Benthoscape cost and BLM=0. (D) Uniform 

cost and BLM=0 

3.5 Discussion 

 Using Newman Sound as case study, this research demonstrates a method for 

using a benthoscape mapping approach (Brown et al. 2012) as a foundation for 

quantifying seascape connectivity and spatial pattern metrics (e.g. patch size, proximity) 
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in marine environments and incorporating this information into Marxan prioritization. 

The method is applicable in any area where fine-scale seafloor habitat data are available. 

This method results in the selection of larger and better connected patches of seafloor 

habitat and substrate being preferentially selected and also allows for a high degree of 

flexibility when species specific movement and connectivity data is available. 

3.5.1 Benthoscape cost vs. uniform cost: impact and implications 

 When an area-based uniform cost layer was used to prioritize 10% of mixed 

boulder and GMS benthoscape classes in Newman Sound, all PUs were assigned an 

equal/uniform cost. This resulted in essentially a random selection of PUs (Fig. 3-6A & 

B; Fig. 3-7B & D). Effectively, a PU that contains a single, isolated fragment of habitat 

was considered equal in conservation priority to a PU that was within a large, well-

connected patch of habitat. In contrast, by applying a benthoscape cost we were able to 

identify and prioritize the selection of large, well-connected patches for protection and 

exclude small isolated habitat fragments.  

 Large habitat patches typically support more species and provide more within-

patch heterogeneity (McArthur and Wilson 1963; Turner and Gardner 2015). This is an 

important consideration in MPA network planning where the key goal is ensuring 

protection of areas encompassing large, high quality patches of habitat within the home 

range or dispersal distance for focal species (Olds et al. 2016). Applying a benthoscape 

cost approach resulted in a preferential selection of PUs located in larger patches (e.g. 

Fig. 3-6C, Fig. 3-6D) that are within the dispersal distance of a focal species (e.g. Fig. 3-
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6C). This can allow planners to have more confidence that the habitat and substrate 

within selected PUs is comprised of patches that support more species, individuals and 

ecological processes. Furthermore, prioritizing PUs located in larger benthic habitat and 

substrate patches increases the likelihood that adjacent spillover habitat outside reserve 

boundaries is available, which could potentially enhance fisheries that target mobile 

benthic invertebrates and demersal fish if enhancing fisheries is a goal of the conservation 

initiative (e.g. Freeman et al. 2009).  

 Using a benthoscape cost layer as opposed to an area-based cost layer effectively 

imposes constraints on the Marxan selection process. When constraints are applied to 

conservation prioritization, more PUs are often required to meet conservation targets, 

which can increase the total ‘cost’ of the reserve network and have a greater impact on the 

displacement of human interests (Ardron et al. 2010). However in the case of Newman 

Sound, differences in total area of mixed boulder and GMS included in the ‘best solution’ 

between the uniform and benthoscape cost scenarios were very small. This suggests that 

trade-offs such as increasing the size of the overall reserve network may be negligible 

when a benthoscape cost layer replaces an area-based cost layer. However, this may not 

be the case in more complex scenarios that involve large numbers of conservation 

features within a larger geographic planning area. As such, additional testing is required 

to determine how Marxan outputs would vary as the complexity of the planning scenario 

increases. Our results also demonstrate that applying a benthoscape cost approach to 
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prioritize large, well-connected patches is not analogous to increasing Marxan’s BLM 

parameter to produce more clustered solutions.  

3.5.2 Conservation planning in Newman Sound – limitations 

 This study intended to illustrate how fine-scale seafloor habitat and substrate 

configuration can be incorporated into protected area planning. The application of the 

method to Newman Sound aimed to provide a proof of concept, but is not intended to 

provide direct advice on conservation planning in this region, which would require a more 

thorough planning exercise. Newman Sound was a suitable case study for developing and 

testing our method due to the availability of a fine scale benthoscape map (Proudfoot et 

al. submitted; Chapter 2). An additional limitation is that the coverage of the benthoscape 

map is limited to the area that was acoustically mapped. 

In Newman Sound, several habitats with high conservation potential were not included 

due to difficulties in accessing nearshore and intertidal environments as well as 

discriminating them acoustically. The inner basin and other regions of Newman Sound 

outside the extent of the benthoscape map support sizeable eelgrass (Zostera marina) 

beds, which serve as important refuge and nursery areas for juvenile Atlantic cod (Gadus 

morhua) (Linehan et al. 2001; Cote et al. 2004; Rao et al. 2014) and other fish and 

invertebrate species (Cote et al. 2013; Joseph et al. 2013). The location and extent of 

eelgrass beds throughout Newman Sound have not yet been mapped, and therefore 

eelgrass beds could not be included as a conservation feature with an associated 

benthoscape cost.  
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 Previous research has identified the presence of a rhodolith bed located at the 

shallow narrow region separating the inner and outer basins of Newman Sound (Copeland 

2006). Rhodolith beds form complex habitats that support a high diversity of 

invertebrates, fish and algae (Steller et al. 2003; Copeland et al. 2008; Hernandez-Kantun 

et al. 2017 and references therein) and also provide refuge and feeding grounds for 

juvenile Atlantic cod (Kamenos et al 2004). Rhodolith beds are sensitive to bottom 

contact fishing activities (Hall-Spencer and Moore 2000; Kamenos et al. 2003), waste 

build-up from aquaculture operations (Hall-Spencer et al. 2006) and are particularly 

vulnerable to impacts from ocean acidification (Martin and Hall-Spencer 2017 and 

references therein). 

 Rhodolith beds are also not included as a conservation feature in this study 

because rhodolith could not be acoustically distinguished from the mixed boulder 

benthoscape class (Proudfoot et al. submitted; Chapter 2). However, the ecologically 

unique and sensitive nature of rhodolith and eelgrass beds suggests that they should be 

included in any future conservation activities in the region.  

 While the method presented here was developed and tested in the context of 

Newman Sound, it is in theory applicable to any site where fine-scale seafloor spatial data 

is available (i.e., habitat, substrate, benthoscape). However, as in all conservation 

prioritization scenarios, care must be taken to ensure that conservation features and their 

associated targets are ecologically meaningful, and their subsequent protection will offer 

the highest benefits to species and ecosystems (Tear et al. 2005; Agardy et al. 2016; 
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Wiersma and Sleep 2018). Furthermore, more studies examining direct relationships 

between benthoscape structure and behavior and movement for specific species could 

better inform benthoscape cost allocation. For example, in parts of the Northeast Atlantic, 

heterogeneous regions of the seafloor have been shown to be associated with greater 

abundances of Atlantic cod (Elliot et al. 2017). In this case, assigning a low benthoscape 

cost to patches in heterogeneous regions of the benthoscape might better protect Atlantic 

cod habitat in Marxan planning scenarios. Another example of the flexibility of the 

benthoscape cost approach depending on the species or habitat of interest is to use 

concepts related to core area and edge effects to assign a lower benthoscape cost to the 

interior region or core area of patches (Turner and Gardner 2015). These metrics can be 

important factors that influence habitat quality, or the distribution, abundance of a species 

of interest (Pittman and McAlpine 2004) and can be preferentially selected in 

conservation planning scenarios by applying the benthoscape cost approach. 

3.5.3 Future directions linking seafloor mapping and connectivity in conservation 

prioritization 

 Marxan is a widely used decision support tool that is used to generate protected 

area network design scenarios in both marine and terrestrial systems (Ardron et al. 2010). 

Despite the fact that connectivity is known to positively influence conservation outcomes 

(Olds et al. 2016), using high quality, fine scale seafloor maps in Marxan analyses to 

apply connectivity metrics is rare. This research illustrates how both fine-scale benthic 
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mapping and connectivity analyses can be integrated into Marxan analyses using 

relatively simple landscape ecology metrics and methods. 

 MarxanConnect, a recently developed application for operationalizing 

connectivity in conservation prioritization allows users to incorporate estimates of 

directional demographic and landscape connectivity in conservation planning (Daigle et 

al. 2018). High quality seafloor maps of habitats and ecosystems mapped using acoustic 

techniques can be applied to MarxanConnect’s landscape connectivity function. The 

function uses a resistance connectivity matrix (Zeller et al. 2012) that requires 

information on the degree to which different habitat and substrate types facilitate or 

impede movement. In Newman Sound, detailed information on species-habitat 

associations and species-specific movement across substrate types was unavailable and as 

such, the use of the landscape functionality in MarxanConnect would require uninformed 

assumptions about how species move across various substrate and benthoscape types. 

However, future studies focused on explicitly understanding how benthoscape structure 

influences populations, communities and species movement in Newman Sound could 

then support this functionality.  

 Spatial and temporal oceanographic information is currently unavailable for 

Newman Sound. If this data were to become available, future studies could identify larval 

connectivity patterns within the region. This information could be used to calculate 

benthoscape cost values that consider larval connectivity in addition to post settlement-

adult movement. Methods for incorporating both adult movement and larval connectivity 
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in MPA planning have been demonstrated (i.e., D’Aloia et al. 2017). However adult home 

range movement often informs minimum MPA size, as opposed to influencing the 

selection and inclusion of individual habitat patches within the dispersal distance of a 

species of interest (Moffitt et al. 2009; Metcalfe et al. 2015; D’Aloia et al. 2017). 

Furthermore, downscaling oceanographic data to match the resolution of fine-scale 

benthoscape maps could aid in delineating benthoscape classes that are defined by both 

benthic and oceanographic variables. This could provide additional information that could 

be used in conservation prioritization, namely how larval connectivity models relate to 

benthic habitat patch size and configuration.  

3.5.4 Benthoscape cost approach - limitations 

 The method demonstrated in this research provides a starting point for considering 

benthic landscape (benthoscape) composition and configuration when species specific 

movement and resistance to movement data is limited. Additionally, the method also 

allows for flexibility as data specific to the relationships between benthoscape pattern and 

ecological processes (e.g. migration, foraging, connectivity) become available. 

 In conservation planning, minimizing conflict with resource users is key (Douvere 

2008). Although utilizing a benthoscape cost layer precludes the use of a true 

socioeconomic cost layer, further analyses and testing to explore how a benthoscape cost 

and socioeconomic cost layer could be combined could potentially address this issue. 

This is an important future research direction as the benthoscape cost layer, while 

ecologically meaningful, cannot be used for decision making without an additional step 
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that considers displacement of human interests in the form of a socioeconomic cost layer. 

One approach could be to explore how socioeconomic cost layers could be weighted 

based on benthoscape cost values so that benthoscape cost is integrated with the 

socioeconomic cost layer. However, extensive testing and sensitivity analyses would be 

required to determine how the combined cost layers influence site selection.  

 Nonetheless, a benthoscape cost layer could potentially substitute an area-based 

cost layer in scenarios where socioeconomic cost layers are unavailable.  

An additional limitation of the approach presented here is the use of a benthoscape 

classification scheme to determine benthoscape cost and identify conservation features. 

The limitation stems from the fact that the relationship between the habitat of a particular 

species and a benthoscape class is rarely 1:1 (Zajac et al. 2003; Brown et al. 2012). For 

example, mobile species may utilize soft sediment regions and rocky reefs during 

different life stages (e.g., Ortiz and Tissot 2008) or times of day (e.g., Mason and Lowe 

2010). Thus, basing benthoscape cost and conservation features on a classification 

scheme could present an oversimplification of how species interact with the benthoscape. 

Alternatively, a species distribution modelling approach (SDM; Wilson et al. 2007) 

would provide more detail relating to species habitat preferences across a benthoscape 

and could potentially provide a more detailed representation of benthoscape cost based on 

the importance of a particular region for a species of interest.  
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3.5.5 Applications in terrestrial contexts 

 The benthoscape cost approach demonstrated in this study is not limited to benthic 

landscapes. It is potentially adaptable to any region, including terrestrial and shallow 

water environments, where high quality spatial data (i.e., habitat, land cover) and 

information on species movement and habitat use is available and accessible. As in 

marine contexts, supporting connectivity and movement processes for species is 

paramount in terrestrial conservation planning (Correa Ayram et al. 2016), and the 

application of the benthoscape cost approach in terrestrial contexts would effectively be 

seamless. Incorporating connectivity processes in terrestrial conservation planning 

typically involves identifying habitat corridors and migratory movement pathways which 

can be measured directly, or inferred from least cost path and least cost corridor analyses 

(Correa Ayram et al. 2016). However, in conservation planning scenarios where this 

information is unavailable, landscape maps could potentially be used in conjunction with 

the benthoscape cost approach, and thus discussed as a “landscape cost,” to preferentially 

select large, well-connected patches within the home range or dispersal distance of a 

species of interest. The transferability and flexibility of the benthoscape cost approach 

across marine and terrestrial systems offers a potential positive contribution to terrestrial 

conservation planning, particularly in scenarios where species-specific movement data 

may be limited.  
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3.6 Conclusions 

 Using a fine-scale seafloor map of a coastal fjord with high habitat and ecological 

diversity in Eastern Canada (Proudfoot et al. submitted; Chapter 2), this paper proposed 

and tested a new method for integrating benthoscape mapping, seascape connectivity and 

spatial pattern metrics into conservation prioritization. The vast majority of studies that 

link seascape connectivity and conservation prioritization have been done in shallow 

biogenic environments such as coral reefs, mangrove forests and eelgrass beds (Wedding 

et al. 2011; Olds et al. 2016). Advances in acoustic mapping techniques can support 

greater integration between landscape ecology and conservation prioritization (Olds et al. 

2016) by providing foundational information for assessing spatial arrangement of seafloor 

habitats and substrates.  

 By creating and applying an alternative Marxan cost layer where PUs were 

weighted to prioritize large habitat patches that are within the spatial extent of species 

dispersal abilities we favor the selection of solutions that better support species and 

ecological processes. In doing so, conservation planners can incorporate spatial pattern 

metrics and broader scale seafloor patterns and complexity into conservation 

prioritization. A broader landscape perspective is known to be important when designing 

and evaluating MPAs and MPA networks (Young et al. 2018) but has yet to be 

incorporated in conservation prioritization tools. The ability to map and subsequently 

quantify spatial pattern metrics in benthic environments has great potential for extending 
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the field that links seascape connectivity and conservation prioritization and better 

support biodiversity conservation in these environments.  
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4 Chapter 4 – Conclusions 

4.1 General summary 

 Spatial data are often a critical component of area-based conservation 

initiatives in both marine and terrestrial systems (e.g. Falucci et al. 2007; Sass et al. 

2012; Haggarty and Yamanaka 2018). High-resolution, full-coverage landscape maps 

have been available to terrestrial conservation planners for decades (Melesse et al. 

2007), and have become integral to the design, monitoring and management of 

terrestrial protected areas (e.g. Townsend et al. 2009; Soverel et al. 2010). In contrast, 

the availability of comparable maps of the seafloor is relatively limited and patchy in 

distribution. Despite this limited availability, cases where seafloor maps have informed 

MPA design, monitoring and management continue to be on the rise, demonstrating 

their value throughout the MPA implementation and management process (Young and 

Carr 2015; Novaczek et al. 2017; Lacharité and Brown in press).  

 This thesis demonstrates the utility of seafloor maps in conservation planning 

by answering the following three research questions: (1) What is the composition and 

spatial configuration of the Newman Sound benthoscape?, (2) How can landscape 

ecology metrics be applied to benthoscape maps to describe and measure seafloor 

structural and species-specific potential connectivity?, (3) How can landscape ecology 

metrics be used by conservation prioritization tools so that MPA design considers 

benthoscape composition and configuration. The first question was addressed in 
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Chapter 2, where fine-scale seafloor mapping strategies were used to characterize the 

benthoscape in Newman Sound. Chapter 2 also involved the identification of regional 

scale benthoscape patterns in Newman Sound, an assessment of the extent of habitat 

representativity within the Eastport MPA, and provided insight into how we can 

support the transition from single-species to biodiversity conservation in Newman 

Sound.  

 Questions 2 and 3 were addressed in Chapter 3, where patch size and 

connectivity analyses were used to quantify structural and potential connectivity and 

create a Marxan cost layer where large, well connected patches are assigned lower 

costs. The “benthoscape cost” approach presented in Chapter 3 allowed the Marxan 

procedure to preferentially select large, patches within the home-range of a given 

species, which can be important for reducing fragmentation in conservation solutions 

to better support species and ecological processes. Chapter 3 also discusses how the 

flexibility of the benthoscape cost approach lends itself to applications in other 

geographic contexts. 

 As area-based conservation planning continues to shift towards protecting not 

only species and habitats, but also ecological processes such as connectivity (Carr et 

al. 2017; Pittman et al. 2017), the value of seafloor spatial data to conservation 

planning is becoming increasingly clear. As demonstrated in this thesis, fine-scale 

seafloor maps provide the foundation for assessing the composition and configuration 

of benthic habitat patches, and for exploring how seascape connectivity and 
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fragmentation analyses can be integrated with widely used conservation prioritization 

tools. Seafloor spatial data also enables the exploration of more advanced questions 

related to how spatial pattern metrics such as patch size, shape and proximity influence 

the distribution and abundance of benthic species. 

4.2 Limitations and future research directions 

4.2.1 Availability of seafloor spatial data 

 Fine-scale spatial data representing conservation features are valuable for 

supporting MPA and MPA network design (Ferrari et al. 2018; Hogg et al. 2018), as 

well as for assessing whether MPA and MPA networks meet representativity and 

replication targets (Young and Carr 2015). In terms of MPA and MPA network design, 

methods such as those presented in Chapter 3 are limited by the quality of the input 

data, meaning that the outputs are only useful if the input data are accurate and 

meaningful. As such, spatial data used in any Marxan analyses should be carefully 

scrutinized in terms of how they may influence outputs (Ardron et al. 2010).  

 Additionally, fine-scale seafloor spatial data can be used to locate and identify 

features associated with high biodiversity that can be recommended as conservation 

features in MPA management plans. These conservation features are typically areas of 

high biodiversity and productivity and can include coarse-scale features such as 

seamounts (Morato et al. 2010) and submarine canyons (De Leo et al. 2010) as well as 

fine scale features such as regions of high habitat heterogeneity and rugosity (Elliot et 
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al. 2017; McArthur et al. 2010; Gratwick and Speight 2005) and biogenic habitats 

(Dunham et al. 2018; Francis et al. 2014). Currently, only a fraction of the seafloor is 

mapped at scales appropriate for benthic habitat mapping and conservation planning 

(GEBCO 2018). There is a recognized need for a unified global bathymetric dataset, 

not only for supporting marine conservation and fisheries management needs, but also 

for understanding ocean circulation, under-water geohazards, tsunami forecasting and 

myriad other social, economic and conservation needs (Mayer et al. 2018). Recently, 

an international project (GEBCO 2030) has been launched with the goal of mapping 

the global seafloor at resolutions that permit the types of geomorphometric analyses 

required to understand and map benthic habitats (GEBCO 2018). The GEBCO 2030 

project, and the recent release of the Canadian Hydrographic Service’s NONNA-100 

(non-navigational 100m resolution; CHS 2018) dataset, provide useful information 

that supports conservation planning by providing the basis for applying more complex 

analyses at broader spatial scales. In Canada, as we move towards meeting our spatial 

conservation targets, full-coverage bathymetric data will be valuable for designing, 

monitoring and managing our existing and future MPAs and MPA networks. 

Additionally, full-coverage spatial data would provide an extensive foundation for 

applying and testing the method presented in this thesis at broader spatial scales and 

coarser resolutions.  
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4.2.2  Future research in Newman Sound 

 Newman Sound is an ecologically diverse and well-studied region in 

Newfoundland and Labrador. However, the Eastport MPA located in Newman Sound 

protects very little of this diversity (Novaczek et al. 2017) despite our knowledge of 

the importance of conserving representative biodiversity and unique habitats. Local 

community and stakeholder interest in expanding the Eastport MPA as well as an 

interest in increasing the protection of the diverse and ecologically unique regions in 

Newman Sound (CPAWS-NL 2018) demonstrates some of the timely and socially 

relevant aspects of this research. The boundary expansion scenarios presented in 

Chapter 2 can inform potential adaptive management of the Eastport MPA - something 

rarely done for Canadian MPAs. In Canada, changing MPA boundaries and 

regulations is a complex and lengthy process (Morris and Green 2014). However, the 

ability to adaptively manage MPAs is important, as adaptive management allows 

regulations and boundaries to be improved as new data and knowledge accumulates 

and as ecological systems change through time (Wilhere 2002). In the case of the 

Eastport MPA, protecting regional biodiversity was not one of the MPA objectives. 

Our knowledge of the importance of ecosystem based management and ecological 

connectivity has advanced, and could perhaps be considered as reasons to support the 

adaptive management of the MPA and increasing the amount of protected area 

coverage in Newman Sound. Enhancing habitat representativity and connectivity 

within existing small MPAs such as Eastport can also contribute to broader 



 

 

 

4-6 

 

conservation goals associated with local, national and international conservation 

commitments.  

4.3 Contribution to conservation planning in Canada 

 Canada has committed to protecting ecosystems, species and biodiversity 

through the establishment of an ecologically representative and well-connected MPA 

network that covers 10% of its coastal and marine areas (DFO 2009). Fisheries and 

Oceans Canada (DFO) is advancing MPA network establishment in 5 priority 

bioregions (DFO 2018a) with representativity, replication and connectivity being 

identified as key design features (DFO 2009). Seafloor maps can help identify habitats 

derived from biophysical classifications that are represented in existing MPAs and 

MPA networks (Copeland et al. 2013; Novaczek et al. 2017) and in design scenarios at 

earlier stages of implementation. Seafloor maps can also help determine whether 

habitats are replicated within the reserve or across the reserve network, providing a 

safeguard against potential disturbances (Young et al. 2017). However, quantifying the 

relationship between benthoscape composition and configuration and seascape 

connectivity is perhaps less straightforward, despite evidence of movement and 

migration patterns of benthic and demersal species that occupy these environments 

(Comeau et al. 1998; Comeau and Savoie 2002; Shank et al 2010). Seascape 

connectivity continues to be a primary feature of effective MPA and MPA network 

planning, and will continue to guide the establishment of protected areas in a variety of 
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regions and ecosystems, including deeper benthic environments that require acoustic 

techniques to map and identify connectivity patterns.  

 In the Canadian MPA network planning process, four out of the five priority 

bioregions are using Marxan to guide the design and establishment of their respective 

MPA networks (Canada-BC MPA Network Strategy 2014; DFO 2017a; DFO 2017b; 

DFO 2018b). While connectivity has been identified as a key design feature (DFO 

2009, CBD-UNEP 2010), it appears that connectivity will be largely assessed in post-

hoc evaluations of design scenarios or considered in adaptive management rather than 

integrated into early stages of network design to inform MPA placement (DFO 2017a; 

DFO 2017b; DFO 2018b). Methods such as those presented in this thesis, as well as 

recent applications and methods that also advocate for integrating connectivity 

analyses at earlier stages of MPA network design (D’Aloia et al. 2017; Weeks et al. 

2017; Daigle et al. 2018) could potentially be considered in the remaining eight 

bioregions where MPA networks will be established. However, the limited availability 

of appropriate spatial data representing conservation features and species specific 

movement data may hinder the ability to apply these types of connectivity analyses in 

bioregional MPA network planning. An additional challenge may be the large spatial 

extent of the bioregional planning areas. However, the benthoscape cost approach is 

flexible and could potentially be applied to identify and prioritize large, structurally 

connected conservation features that are currently mapped at coarse resolutions. The 

regions identified using this approach could potentially become the focus of 
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subsequent mapping and conservation efforts. For example, coarse resolution maps of 

geomorphic features such as seamounts, canyons and ridges have been produced over 

large areas (Rubidge et al. 2016), and while these maps may not be appropriate for 

investigating species-specific connectivity questions, they can be useful for identifying 

and prioritizing areas for conservation and for determining where fine-scale mapping 

efforts could potentially be focused. For countries like Canada with large Exclusive 

Economic Zones (EEZs) and limited-fine scale mapping data, coarse resolution maps 

can be valuable for setting the foundation for further fine-scale mapping, connectivity 

and conservation prioritization analyses.  

 Incorporating connectivity processes into MPA and MPA network planning is 

complex. It is also important for designing effective and resilient MPAs and MPA 

networks that support species and ecosystems, particularly as intense anthropogenic 

impacts continue to threaten marine biodiversity and habitats (WWF 2018). For deeper 

benthic ecosystems, this requires close integration of seafloor acoustic mapping, the 

use of connectivity and spatial pattern metric analyses and conservation prioritization 

tools (i.e., Marxan). As advances in this field continue to provide methods and 

operational tools for integrating connectivity and conservation prioritization, ensuring 

that conservation planners and agencies responsible for MPA design and establishment 

are aware of and have access to these methods is paramount. This is particularly 

important as meeting deadlines, such as Canada’s goal of meeting the 10% protection 

target by 2020, means that conservation planners require flexible and adaptable 
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methods that are useful and applicable when the availability of fine-scale spatial data 

and species movement information is variable.  
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5  Appendix  

Appendix 1: Imagery data used to classify benthoscape in Newman Sound. Datum: NAD 83. GMS = Gravelly Muddy Sand.  

 

Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

AC01 AC01_0 2016 

surveys 

48.58864 -53.81604 Mud -136.00 10.8 -12.05 n/a 

AC01 AC01_15 2016 

surveys 

48.58871 -53.81586 Mud -137.50 10.9 -9.85 n/a 

AC01 AC01_23 2016 

surveys 

48.58875 -53.81577 Mud -137.10 12.4 -11.11 n/a 

AC01 AC01_42 2016 

surveys 

48.58887 -53.81558 Mud -140.90 11.7 -7.96 n/a 

AC01 AC01_53 2016 

surveys 

48.58895 -53.81549 Mud -142.50 11.3 -11.74 n/a 

AC01 AC01_63 2016 

surveys 

48.58902 -53.81540 Mud -142.50 11.3 -11.74 n/a 

AC02 AC02_0 2016 

surveys 

48.58947 -53.82683 Mud -142.10 8.1 -13.63 n/a 

AC02 AC02_40 2016 

surveys 

48.58961 -53.82664 Mud -143.70 7.9 -17.72 n/a 

AC02 AC02_68 2016 

surveys 

48.58970 -53.82650 Mud -146.40 6.4 -19.30 n/a 

AC02 AC02_95 2016 

surveys 

48.58981 -53.82639 Mud -147.60 5.3 -20.24 n/a 

AC03 AC03_19 2016 

surveys 

48.58514 -53.82705 Mud -119.70 8.0 -17.72 n/a 

AC03 AC03_26 2016 

surveys 

48.58521 -53.82700 Mud -119.70 8.0 -13.94 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

AC03 AC03_33 2016 

surveys 

48.58528 -53.82695 Mud -120.10 8.1 -13.94 n/a 

AC03 AC03_48 2016 

surveys 

48.58541 -53.82680 Mud -121.80 7.2 -11.42 n/a 

AC03 AC03_5 2016 

surveys 

48.58501 -53.82717 Mud -117.90 11.4 -22.45 n/a 

AC03 AC03_64 2016 

surveys 

48.58556 -53.82666 Mud -122.50 6.4 -13.94 n/a 

AC03 AC03_73 2016 

surveys 

48.58564 -53.82657 Mud -123.50 5.0 -12.37 n/a 

AC03 AC03_84 2016 

surveys 

48.58572 -53.82644 Mud -124.50 4.0 -13.00 n/a 

AC03 AC03_96 2016 

surveys 

48.58583 -53.82632 Mud -125.50 2.2 -16.46 n/a 

AC05 AC05_21 2016 

surveys 

48.58192 -53.85234 Shallow 

Pebble/Cobble 

-71.50 11.9 -12.05 n/a 

AC05 AC05_44 2016 

surveys 

48.58180 -53.85273 Shallow 

Pebble/Cobble 

-76.70 7.5 -12.05 n/a 

AC07b AC07b_0 2016 

surveys 

48.58114 -53.82967 Mud -58.10 5.2 -21.82 n/a 

AC07b AC07b_84 2016 

surveys 

48.58196 -53.82914 Mud -61.10 9.2 -13.94 n/a 

AC07b AC07b_92 2016 

surveys 

48.58203 -53.82907 Mud -59.60 7.6 -15.52 n/a 

AC08 AC08_0 2016 

surveys 

48.58209 -53.87006 GMS -43.90 9.6 -13.31 n/a 

AC08 AC08_100 2016 

surveys 

48.58294 -53.86934 GMS -57.90 12.9 -14.26 n/a 

AC08 AC08_108 2016 

surveys 

48.58302 -53.86930 GMS -57.80 14.4 -16.46 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

AC08 AC08_16 2016 

surveys 

48.58220 -53.86988 GMS -47.70 13.1 -12.37 n/a 

AC08 AC08_28 2016 

surveys 

48.58230 -53.86978 GMS -49.80 12.7 -14.57 n/a 

AC08 AC08_36 2016 

surveys 

48.58237 -53.86974 GMS -52.90 12.4 -13.94 n/a 

AC08 AC08_64 2016 

surveys 

48.58262 -53.86957 GMS -58.10 10.9 -8.27 n/a 

AC08 AC08_72 2016 

surveys 

48.58269 -53.86950 GMS -58.20 10.6 -11.42 n/a 

AC08 AC08_84 2016 

surveys 

48.58279 -53.86940 GMS -59.30 11.4 -12.68 n/a 

AC08 AC08_92 2016 

surveys 

48.58286 -53.86937 GMS -59.30 11.4 -14.26 n/a 

AC08 AC08_48 2016 

surveys 

48.58249 -53.86969 Shallow 

Pebble/Cobble 

-54.30 11.7 -13.63 n/a 

AC09 AC09_0 2016 

surveys 

48.57794 -53.85963 GMS -53.30 1.4 -15.20 n/a 

AC09 AC09_80 2016 

surveys 

48.57850 -53.85902 GMS -58.00 7.6 -12.68 n/a 

AC09 AC09_92 2016 

surveys 

48.57858 -53.85893 GMS -60.00 8.1 -14.57 n/a 

AC09 AC09_24 2016 

surveys 

48.57809 -53.85941 Shallow 

Pebble/Cobble 

-53.90 2.3 -12.68 n/a 

AC09 AC09_36 2016 

surveys 

48.57817 -53.85933 Shallow 

Pebble/Cobble 

-54.20 3.0 -12.68 n/a 

AC09 AC09_44 2016 

surveys 

48.57823 -53.85926 Shallow 

Pebble/Cobble 

-55.10 4.0 -12.05 n/a 

AC09 AC09_52 2016 

surveys 

48.57829 -53.85921 Shallow 

Pebble/Cobble 

-55.70 4.5 -12.68 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

AC09 AC09_72 2016 

surveys 

48.57843 -53.85907 Shallow 

Pebble/Cobble 

-57.00 6.2 -13.31 n/a 

AC09 AC09_8 2016 

surveys 

48.57798 -53.85955 Shallow 

Pebble/Cobble 

-53.40 1.7 -13.63 n/a 

NS01 NS01_106 2016 

surveys 

48.62315 -53.76288 Deep 

Pebble/Cobble 

-160.30 14.4 -18.35 n/a 

NS01 NS01_146 2016 

surveys 

48.62311 -53.76266 Deep 

Pebble/Cobble 

-159.10 14.2 -19.93 n/a 

NS01 NS01_18 2016 

surveys 

48.62326 -53.76334 Deep 

Pebble/Cobble 

-156.60 18.0 -13.00 n/a 

NS01 NS01_38 2016 

surveys 

48.62323 -53.76324 Deep 

Pebble/Cobble 

-157.60 16.8 -14.57 n/a 

NS01 NS01_68 2016 

surveys 

48.62320 -53.76308 Deep 

Pebble/Cobble 

-160.70 14.4 -17.72 n/a 

NS01 NS01_160 2016 

surveys 

48.62311 -53.76258 Mud -159.10 15.1 -18.35 n/a 

NS05b NS05b_14 2016 

surveys 

48.60960 -53.80628 Bedrock -79.60 18.0 -9.53 n/a 

NS05b NS05b_0 2016 

surveys 

48.60965 -53.80606 Deep 

Pebble/Cobble 

-83.60 22.9 -6.38 n/a 

NS05b NS05b_24 2016 

surveys 

48.60957 -53.80644 Deep 

Pebble/Cobble 

-77.30 16.1 -10.16 n/a 

NS05b NS05b_38 2016 

surveys 

48.60954 -53.80666 Deep 

Pebble/Cobble 

-73.70 12.1 -10.48 n/a 

NS09 NS09_16 2016 

surveys 

48.60280 -53.77046 Bedrock -70.10 26.1 -14.57 n/a 

NS09 NS09_32 2016 

surveys 

48.60290 -53.77034 Bedrock -72.00 13.6 -15.20 n/a 

NS09 NS09_44 2016 

surveys 

48.60296 -53.77025 Bedrock -70.20 16.5 -15.52 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

NS09 NS09_108 2016 

surveys 

48.60328 -53.76968 Deep 

Pebble/Cobble 

-75.30 18.1 -8.59 n/a 

NS09 NS09_52 2016 

surveys 

48.60300 -53.77017 Deep 

Pebble/Cobble 

-71.80 13.5 -13.94 n/a 

NS09 NS09_68 2016 

surveys 

48.60307 -53.77002 Deep 

Pebble/Cobble 

-72.80 16.5 -10.16 n/a 

NS09 NS09_84 2016 

surveys 

48.60316 -53.76990 Deep 

Pebble/Cobble 

-74.70 18.7 -8.59 n/a 

NS09 NS09_92 2016 

surveys 

48.60321 -53.76983 Deep 

Pebble/Cobble 

-73.60 18.2 -10.16 n/a 

NS11 NS11_32 2016 

surveys 

48.60258 -53.80856 Bedrock -156.90 19.1 -9.22 n/a 

NS11 NS11_40 2016 

surveys 

48.60264 -53.80850 Bedrock -161.40 17.7 -8.59 n/a 

NS11 NS11_52 2016 

surveys 

48.60273 -53.80841 Bedrock -162.80 17.0 -8.59 n/a 

NS11 NS11_16 2016 

surveys 

48.60246 -53.80869 Mud -151.90 20.6 -8.90 n/a 

NS11 NS11_8 2016 

surveys 

48.60241 -53.80875 Mud -150.00 21.3 -9.22 n/a 

NS13 NS13_84 2016 

surveys 

48.59931 -53.77804 Bedrock -34.50 6.1 -12.68 n/a 

NS13 NS13_92 2016 

surveys 

48.59936 -53.77801 Bedrock -35.40 7.5 -11.74 n/a 

NS13 NS13_20 2016 

surveys 

48.59895 -53.77836 Shallow 

Pebble/Cobble 

-33.50 3.2 -11.11 n/a 

NS13 NS13_36 2016 

surveys 

48.59904 -53.77826 Shallow 

Pebble/Cobble 

-33.90 5.1 -11.42 n/a 

NS13 NS13_4 2016 

surveys 

48.59886 -53.77845 Shallow 

Pebble/Cobble 

-33.30 3.0 -11.74 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

NS13 NS13_52 2016 

surveys 

48.59912 -53.77817 Shallow 

Pebble/Cobble 

-33.80 5.1 -12.37 n/a 

NS13 NS13_68 2016 

surveys 

48.59922 -53.77812 Shallow 

Pebble/Cobble 

-34.40 6.6 -12.37 n/a 

NS14 NS14_108 2016 

surveys 

48.59938 -53.82077 GMS -49.40 1.1 -13.00 n/a 

NS14 NS14_20 2016 

surveys 

48.59974 -53.81961 GMS -48.90 1.7 -11.11 n/a 

NS14 NS14_36 2016 

surveys 

48.59966 -53.81981 GMS -49.20 1.9 -11.11 n/a 

NS14 NS14_44 2016 

surveys 

48.59963 -53.81992 GMS -49.30 1.4 -11.11 n/a 

NS14 NS14_56 2016 

surveys 

48.59960 -53.82009 GMS -49.20 1.0 -11.11 n/a 

NS14 NS14_64 2016 

surveys 

48.59956 -53.82019 GMS -49.40 0.8 -11.42 n/a 

NS14 NS14_72 2016 

surveys 

48.59951 -53.82028 GMS -49.40 1.0 -11.42 n/a 

NS14 NS14_8 2016 

surveys 

48.59982 -53.81948 GMS -48.70 1.8 -11.42 n/a 

NS14 NS14_96 2016 

surveys 

48.59941 -53.82060 GMS -49.50 1.2 -12.68 n/a 

NS14 NS14_28 2016 

surveys 

48.59969 -53.81970 Shallow 

Pebble/Cobble 

-48.90 1.7 -11.11 n/a 

NS15 NS15_104 2016 

surveys 

48.59848 -53.78426 Mud -82.50 5.5 -18.04 n/a 

NS15 NS15_16 2016 

surveys 

48.59801 -53.78474 Mud -81.00 5.5 -14.26 n/a 

NS15 NS15_36 2016 

surveys 

48.59811 -53.78463 Mud -80.90 4.9 -14.89 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

NS15 NS15_52 2016 

surveys 

48.59821 -53.78456 Mud -81.40 4.3 -18.98 n/a 

NS15 NS15_76 2016 

surveys 

48.59833 -53.78442 Mud -81.50 4.4 -17.41 n/a 

NS15 NS15_8 2016 

surveys 

48.59796 -53.78478 Mud -80.40 5.7 -15.52 n/a 

NS15 NS15_92 2016 

surveys 

48.59841 -53.78433 Mud -81.70 5.0 -16.46 n/a 

NS17 NS17_73 2016 

surveys 

48.59481 -53.80072 Bedrock -103.20 27.9 -16.78 n/a 

NS17 NS17_86 2016 

surveys 

48.59489 -53.80059 Bedrock -101.30 27.2 -17.09 n/a 

NS17 NS17_0 2016 

surveys 

48.59426 -53.80126 Deep 

Pebble/Cobble 

-96.40 22.1 -17.09 n/a 

NS17 NS17_100 2016 

surveys 

48.59498 -53.80046 Mud -100.00 24.5 -17.09 n/a 

NS17 NS17_112 2016 

surveys 

48.59507 -53.80037 Mud -102.90 23.4 -16.78 n/a 

NS17 NS17_41 2016 

surveys 

48.59455 -53.80092 Mud -100.60 27.3 -16.78 n/a 

NS17 NS17_54 2016 

surveys 

48.59466 -53.80085 Mud -104.40 26.7 -17.41 n/a 

NS17 NS17_64 2016 

surveys 

48.59474 -53.80079 Mud -104.40 26.7 -15.83 n/a 

NS18 NS18_103 2016 

surveys 

48.59420 -53.79236 Mud -97.70 3.8 -24.65 n/a 

NS18 NS18_43 2016 

surveys 

48.59401 -53.79274 Mud -96.20 3.8 -19.61 n/a 

NS18 NS18_67 2016 

surveys 

48.59407 -53.79258 Mud -97.00 3.7 -22.13 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

NS18 NS18_7 2016 

surveys 

48.59394 -53.79300 Mud -95.00 3.6 -20.56 n/a 

NS18 NS18_91 2016 

surveys 

48.59416 -53.79244 Mud -97.70 3.4 -23.08 n/a 

NS19 NS19_0 2016 

surveys 

48.59458 -53.82205 Mud -143.30 8.3 -10.16 n/a 

NS19 NS19_101 2016 

surveys 

48.59488 -53.82153 Mud -142.60 1.9 -9.85 n/a 

NS19 NS19_113 2016 

surveys 

48.59490 -53.82145 Mud -143.10 4.9 -10.16 n/a 

NS19 NS19_29 2016 

surveys 

48.59469 -53.82193 Mud -143.40 6.2 -9.85 n/a 

NS19 NS19_53 2016 

surveys 

48.59476 -53.82180 Mud -142.70 4.1 -9.85 n/a 

NS19 NS19_73 2016 

surveys 

48.59482 -53.82169 Mud -142.60 1.7 -14.26 n/a 

NS20 NS20_106 2016 

surveys 

48.59529 -53.82715 Deep 

Pebble/Cobble 

-103.20 23.0 -13.00 n/a 

NS20 NS20_92 2016 

surveys 

48.59520 -53.82725 Deep 

Pebble/Cobble 

-106.20 21.1 -13.00 n/a 

NS20 NS20_44 2016 

surveys 

48.59496 -53.82765 Mud -110.00 18.2 -13.31 n/a 

NS20 NS20_64 2016 

surveys 

48.59502 -53.82744 Mud -112.00 18.3 -13.00 n/a 

NS20 NS20_78 2016 

surveys 

48.59511 -53.82735 Mud -108.70 19.6 -13.00 n/a 

NS20 NS20_8 2016 

surveys 

48.59481 -53.82799 Mud -115.50 18.4 -12.68 n/a 

NS21b NS21b_2 2016 

surveys 

48.59369 -53.83630 Bedrock -48.30 26.7 -8.59 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

NS21b NS21b_20 2016 

surveys 

48.59367 -53.83657 Mixed Boulder -40.00 16.1 -8.59 n/a 

NS21b NS21b_14 2016 

surveys 

48.59367 -53.83648 Shallow 

Pebble/Cobble 

-43.70 23.2 -8.59 n/a 

NS24 NS24_0 2016 

surveys 

48.59238 -53.83115 Mud -132.70 11.6 -16.78 n/a 

NS24 NS24_34 2016 

surveys 

48.59250 -53.83094 Mud -130.70 11.0 -16.46 n/a 

NS24 NS24_54 2016 

surveys 

48.59256 -53.83082 Mud -128.60 8.6 -17.09 n/a 

NS24 NS24_74 2016 

surveys 

48.59261 -53.83068 Mud -127.20 4.9 -15.83 n/a 

NS24 NS24_94 2016 

surveys 

48.59267 -53.83055 Mud -127.00 3.4 -15.20 n/a 

NS25 NS25_16 2016 

surveys 

48.59110 -53.80561 GMS -47.20 4.8 -18.67 n/a 

NS25 NS25_24 2016 

surveys 

48.59118 -53.80559 GMS -47.20 4.0 -18.67 n/a 

NS25 NS25_32 2016 

surveys 

48.59126 -53.80557 GMS -47.60 3.0 -18.98 n/a 

NS25 NS25_40 2016 

surveys 

48.59134 -53.80554 GMS -47.80 2.1 -21.82 n/a 

NS25 NS25_48 2016 

surveys 

48.59142 -53.80551 GMS -48.00 1.0 -17.09 n/a 

NS25 NS25_56 2016 

surveys 

48.59149 -53.80545 GMS -47.70 3.4 -15.52 n/a 

NS25 NS25_72 2016 

surveys 

48.59165 -53.80539 GMS -45.70 10.0 -16.15 n/a 

NS25 NS25_80 2016 

surveys 

48.59173 -53.80537 GMS -44.00 8.2 -13.31 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

NS25 NS25_88 2016 

surveys 

48.59181 -53.80536 GMS -44.00 8.2 -11.74 n/a 

NS25 NS25_96 2016 

surveys 

48.59189 -53.80532 GMS -43.50 5.1 -11.74 n/a 

NS25 NS25_0 2016 

surveys 

48.59095 -53.80571 Mud -46.60 6.0 -18.35 n/a 

NS27 NS27_0 2016 

surveys 

48.59128 -53.80917 Bedrock -119.40 43.8 -16.15 n/a 

NS27 NS27_104 2016 

surveys 

48.59167 -53.80819 Bedrock -106.10 52.3 -20.24 n/a 

NS27 NS27_132 2016 

surveys 

48.59175 -53.80791 Bedrock -96.90 51.8 -23.71 n/a 

NS27 NS27_152 2016 

surveys 

48.59180 -53.80771 Bedrock -90.20 51.9 -21.19 n/a 

NS27 NS27_26 2016 

surveys 

48.59137 -53.80891 Bedrock -113.90 41.5 -14.89 n/a 

NS27 NS27_34 2016 

surveys 

48.59140 -53.80884 Bedrock -121.20 43.6 -16.46 n/a 

NS27 NS27_44 2016 

surveys 

48.59143 -53.80874 Bedrock -115.70 42.9 -16.46 n/a 

NS28 NS28_0 2016 

surveys 

48.59111 -53.83474 Mud -121.00 7.1 -12.05 n/a 

NS28 NS28_116 2016 

surveys 

48.59177 -53.83393 Mud -120.40 10.3 -18.04 n/a 

NS28 NS28_40 2016 

surveys 

48.59132 -53.83443 Mud -122.20 9.0 -15.20 n/a 

NS28 NS28_76 2016 

surveys 

48.59154 -53.83421 Mud -120.60 10.0 -18.67 n/a 

NS28 NS28_8 2016 

surveys 

48.59115 -53.83467 Mud -121.00 7.1 -12.05 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

NS28 NS28_84 2016 

surveys 

48.59159 -53.83416 Mud -122.00 10.3 -18.67 n/a 

NS29 NS29_20 2016 

surveys 

48.58942 -53.84238 GMS -62.80 11.9 -16.46 n/a 

NS29 NS29_28 2016 

surveys 

48.58938 -53.84255 GMS -62.00 12.3 -15.20 n/a 

NS29 NS29_38 2016 

surveys 

48.58933 -53.84278 GMS -59.30 13.8 -12.05 n/a 

NS29 NS29_4 2016 

surveys 

48.58947 -53.84201 GMS -67.90 10.0 -15.83 n/a 

NS29 NS29_100 2016 

surveys 

48.58886 -53.84402 Shallow 

Pebble/Cobble 

-50.50 18.2 -12.05 n/a 

NS29 NS29_104 2016 

surveys 

48.58884 -53.84411 Shallow 

Pebble/Cobble 

-50.50 18.2 -12.05 n/a 

NS29 NS29_112 2016 

surveys 

48.58884 -53.84429 Shallow 

Pebble/Cobble 

-49.10 15.1 -13.63 n/a 

NS29 NS29_48 2016 

surveys 

48.58928 -53.84300 Shallow 

Pebble/Cobble 

-57.20 14.3 -11.74 n/a 

NS29 NS29_56 2016 

surveys 

48.58922 -53.84316 Shallow 

Pebble/Cobble 

-54.10 14.8 -11.74 n/a 

NS29 NS29_64 2016 

surveys 

48.58916 -53.84332 Shallow 

Pebble/Cobble 

-53.30 15.4 -10.48 n/a 

NS29 NS29_72 2016 

surveys 

48.58909 -53.84347 Shallow 

Pebble/Cobble 

-51.00 15.4 -10.48 n/a 

NS29 NS29_84 2016 

surveys 

48.58900 -53.84372 Shallow 

Pebble/Cobble 

-51.10 18.2 -10.79 n/a 

NS29 NS29_94 2016 

surveys 

48.58891 -53.84391 Shallow 

Pebble/Cobble 

-52.20 19.3 -12.37 n/a 

NS31 NS31_36 2016 

surveys 

48.58530 -53.83344 Mud -128.10 0.2 -14.89 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

NS31 NS31_66 2016 

surveys 

48.58532 -53.83330 Mud -128.30 0.9 -15.52 n/a 

NS31 NS31_8 2016 

surveys 

48.58530 -53.83358 Mud -128.20 0.3 -14.26 n/a 

NS31 NS31_94 2016 

surveys 

48.58533 -53.83316 Mud -128.20 1.2 -19.93 n/a 

NS37 NS37_12 2016 

surveys 

48.58236 -53.83327 Bedrock -61.90 37.5 -15.83 n/a 

NS37 NS37_22 2016 

surveys 

48.58241 -53.83311 Bedrock -58.60 36.0 -13.94 n/a 

NS37 NS37_26 2016 

surveys 

48.58244 -53.83305 Bedrock -64.70 37.6 -13.94 n/a 

NS37 NS37_40 2016 

surveys 

48.58252 -53.83284 Bedrock -58.40 35.7 -13.94 n/a 

NS37 NS37_50 2016 

surveys 

48.58257 -53.83268 Bedrock -53.90 31.1 -15.52 n/a 

NS37 NS37_6 2016 

surveys 

48.58233 -53.83336 Bedrock -65.60 39.7 -16.46 n/a 

NS39 NS39_0 2016 

surveys 

48.58056 -53.84021 Mud -113.10 3.3 -16.78 n/a 

NS39 NS39_30 2016 

surveys 

48.58062 -53.83992 Mud -113.60 2.9 -13.31 n/a 

NS39 NS39_40 2016 

surveys 

48.58065 -53.83982 Mud -114.30 3.0 -13.63 n/a 

NS39 NS39_48 2016 

surveys 

48.58066 -53.83974 Mud -114.40 2.8 -12.68 n/a 

NS39 NS39_68 2016 

surveys 

48.58071 -53.83955 Mud -114.90 2.2 -13.94 n/a 

NS39 NS39_76 2016 

surveys 

48.58073 -53.83948 Mud -114.80 2.9 -10.48 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

NS39 NS39_92 2016 
surveys 

48.58074 -53.83931 Mud -114.30 4.6 -9.53 n/a 

NS43 NS43_0 2016 

surveys 

48.57737 -53.84508 Mud -94.70 2.9 -17.72 n/a 

NS43 NS43_102 2016 

surveys 

48.57796 -53.84422 Mud -99.90 3.3 -24.02 n/a 

NS43 NS43_114 2016 

surveys 

48.57803 -53.84411 Mud -100.00 3.1 -24.34 n/a 

NS43 NS43_16 2016 

surveys 

48.57748 -53.84496 Mud -95.40 3.4 -19.30 n/a 

NS43 NS43_38 2016 

surveys 

48.57757 -53.84475 Mud -96.20 3.8 -19.61 n/a 

NS43 NS43_68 2016 

surveys 

48.57776 -53.84450 Mud -97.90 3.2 -22.45 n/a 

NS43 NS43_75 2016 

surveys 

48.57780 -53.84445 Mud -98.40 3.2 -22.13 n/a 

NS43 NS43_84 2016 

surveys 

48.57786 -53.84438 Mud -98.60 3.1 -21.82 n/a 

Buckley1_e Buckley1_e Copeland 

2006 

48.58441 -53.90362 Mixed Boulder -7.50 3.1 n/a -7.01 

Buckley1_s Buckley1_s Copeland 

2006 

48.58398 -53.90428 Mixed Boulder -13.30 15.4 n/a -6.38 

Buckley2_e Buckley2_e Copeland 

2006 

48.58452 -53.90241 Mixed Boulder -8.40 6.9 n/a -6.70 

Buckley2_s Buckley2_s Copeland 

2006 

48.58447 -53.90319 Mixed Boulder -7.40 2.4 n/a -7.01 

Buckley3_s Buckley3_s Copeland 

2006 

48.58491 -53.90355 Sand -6.80 0.6 n/a -5.12 

Cliff Cliff Copeland 

2006 

48.57725 -53.91677 Bedrock -14.50 40.4 n/a -6.70 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

D10_e D10_e Copeland 

2006 

48.58030 -53.90958 Rhodolith -17.60 1.5 -16.46 -5.75 

D10_s D10_s Copeland 

2006 

48.58150 -53.91080 Mixed Boulder -14.20 4.4 n/a -5.75 

D11_e D11_e Copeland 

2006 

48.57978 -53.90744 Rhodolith -20.40 4.6 -21.82 -6.07 

D11_s D11_s Copeland 

2006 

48.58096 -53.91156 Rhodolith -16.20 0.8 -18.04 -6.07 

D12_e D12_e Copeland 

2006 

48.57936 -53.91036 Rhodolith -13.70 6.5 n/a -6.07 

D12_s D12_s Copeland 

2006 

48.58010 -53.91198 Rhodolith -13.50 2.3 -17.72 -5.75 

D126_e D126_e Copeland 

2006 

48.57541 -53.90871 Sand -21.60 6.9 n/a -7.64 

D126_s D126_s Copeland 

2006 

48.57628 -53.90926 Sand -15.50 6.2 -46.38 -8.27 

D13_e D13_e Copeland 

2006 

48.57776 -53.90933 Mixed Boulder -12.80 5.7 n/a -5.75 

D13_s D13_s Copeland 

2006 

48.57801 -53.90968 GMS -11.10 2.5 n/a -7.64 

D15 D15 Copeland 

2006 

48.58201 -53.90545 GMS -30.20 3.1 -10.48 -6.38 

D20 D20 Copeland 

2006 

48.58218 -53.89248 Mixed Boulder -33.90 0.8 -12.05 n/a 

D22_e D22_e Copeland 

2006 

48.58071 -53.88056 Mixed Boulder -41.30 3.8 -13.63 n/a 

D22_s D22_s Copeland 

2006 

48.58139 -53.88072 Mixed Boulder -38.20 1.8 -12.68 n/a 

D25_e D25_e Copeland 

2006 

48.58361 -53.87265 Mixed Boulder -41.50 4.0 -11.11 n/a 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

D25_s D25_s Copeland 

2006 

48.58351 -53.87318 Mixed Boulder -42.10 4.6 -12.37 n/a 

D26_e D26_e Copeland 

2006 

48.58311 -53.86462 Mixed Boulder -15.70 2.0 -15.20 n/a 

D26_s D26_s Copeland 

2006 

48.58323 -53.86527 Mixed Boulder -14.60 0.6 -14.26 n/a 

D4_e D4_e Copeland 

2006 

48.57772 -53.92943 Mud -50.50 0.3 -22.13 n/a 

D4_s D4_s Copeland 

2006 

48.57746 -53.92198 Mud -50.10 0.5 -25.60 -12.05 

D7_e D7_e Copeland 

2006 

48.58458 -53.91215 Sand -7.50 0.4 n/a -6.38 

D7_s D7_s Copeland 

2006 

48.58581 -53.91320 Sand -7.50 2.3 n/a -7.96 

D8_e D8_e Copeland 

2006 

48.58280 -53.91304 Mixed Boulder -22.70 15.3 -9.53 -4.49 

D8_s D8_s Copeland 

2006 

48.58349 -53.91410 GMS -34.50 13.3 -10.48 -6.38 

D9_e D9_e Copeland 

2006 

48.58118 -53.91291 Rhodolith -16.30 1.2 -16.78 -6.70 

D9_s D9_s Copeland 

2006 

48.58186 -53.91345 Mixed Boulder -19.10 16.5 n/a -7.33 

Dive3_e Dive3_e Copeland 

2006 

48.57704 -53.91073 Sand -9.30 0.6 n/a -8.27 

Dive3_s Dive3_s Copeland 

2006 

48.57669 -53.91032 Sand -9.90 1.0 -8.90 -8.90 

Dive4_e Dive4_e Copeland 

2006 

48.57669 -53.90995 Sand -10.50 1.7 n/a -8.59 

Dive4_s Dive4_s Copeland 

2006 

48.57648 -53.90995 Sand -11.20 3.0 -9.22 -9.22 
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Station Image ID Source Latitude 

(decimal 

degrees) 

Longitude 

(decimal 

degrees) 

Benthoscape 

Class 

Depth 

(m) 

Slope 

(deg) 

EM1002 

Backscatter 

(decibels) 

EM3000 

Backscatter 

(decibels) 

Dive5_e Dive5_e Copeland 

2006 

48.57676 -53.91343 Mixed Boulder -7.20 1.2 n/a -4.81 

Dive5_s Dive5_s Copeland 

2006 

48.57638 -53.91371 GMS -6.50 2.9 n/a -4.49 

Dive6_e Dive6_e Copeland 

2006 

48.57629 -53.91371 GMS -6.60 2.6 n/a -7.01 

Dive6_s Dive6_s Copeland 

2006 

48.57591 -53.91343 GMS -7.20 0.7 n/a -7.33 

  Prac_e Prac_e Copeland 

2006 

48.57740 -53.91570 Mixed Boulder -11.60 18.6 n/a -6.70 

Prac_s Prac_s Copeland 

2006 

48.57700 -53.91630 GMS -10.10 9.1 n/a -7.33 

ROVA_e ROVA_e Copeland 

2006 

48.58050 -53.90850 Rhodolith -18.40 0.9 -8.90 -5.75 

ROVA_s ROVA_s Copeland 

2006 

48.57980 -53.90840 Rhodolith -17.70 1.9 -21.19 -6.07 

ROVB_e ROVB_e Copeland 

2006 

48.57950 -53.87930 GMS -57.00 11.5 -9.85 n/a 

ROVB_s ROVB_s Copeland 

2006 

48.57950 -53.87950 Sand -55.90 10.7 -11.11 n/a 

ROVD_e ROVD_e Copeland 

2006 

48.62050 -53.69660 Bedrock -83.50 59.2 -10.16 n/a 

ROVD_s ROVD_s Copeland 

2006 

48.62030 -53.69750 Bedrock -118.30 65.3 -10.79 n/a 

ROVE_e ROVE_e Copeland 

2006 

48.66260 -53.59390 Bedrock -32.30 7.2 -13.31 n/a 

ROVE_s ROVE_s Copeland 

2006 

48.66270 -53.59410 Bedrock -33.30 8.2 -12.05 n/a 

Stamford_e Stamford_e Copeland 

2006 

48.57110 -53.90920 Mixed Boulder -6.90 2.7 n/a -8.27 

Stamford_s Stamford_s Copeland 

2006 

48.57040 -53.90960 Mixed Boulder -7.90 0.6 n/a -11.42 


