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Abstract 

The micromechanical process of solid particle erosion can be affected by a number of factors, 

including impact angle, flow geometry, and particle size and shape. Erosion can also be affected 

by fluid properties, flow conditions, and the material comprising the impact surface. Of these 

several different potential impacting factors, the most critical ones for initiating erosion are particle 

size and matter, carrier phase viscosity, pipe diameter, velocity, and total flow rate of the second 

phase. Three turbulence models which are heavily dependent on flow velocities and fluid 

properties in their environment are k-epsilon (k-ε), k-omega (k-ω) and The Shear Stress Transport 

Model (sst). More extreme erosion generally occurs in gas-solid flow for geometries which 

experience rapid alterations in flow direction (e.g., in valves and tees) because of unstable flow 

and local turbulence. The present study provides results from computational fluid dynamics (CFD) 

simulations that feature dilute water-solid flows in complex pipelines, highlighting the dynamic 

behavior displayed by the flows’ entrained solid particles. Specifically, the impact of fluid 

velocities in relation to erosion location is tested on sand particles measuring 10, 70, 100 and 200 

microns. For the CFD analysis testing, liquid velocities of 20, 25, 30, 35 and 40 m/s are applied. 

The difference is evident between velocities of 20 m/s and 40 m/s, giving an erosion rate of 1.73 

x10-4 kg/m2.s and 2.11x10-3 kg/m2.s, respectively, when the particle solid is 200 𝜇m. The particle 

solid’s effect on the erosion rate at 70 𝜇m gives an erosion rate of 5.79 x 10-4 kg/m2.s, while the 

particle solid’s effect at a 100 𝜇m gives an erosion rate of 8.03x10-4 kg/m2.s when the velocity is 

40 m/s. Data on both size and positioning of the incidence of erosion can be utilized when assessing 

vulnerability to erosion in arc areas (i.e., post-inlet and elbows). 



ii 
 

In the oil and gas industry, issues around solid particle erosion and increasing erosion rates 

are ongoing challenges. Numerous factors come into play when trying to resolve these problems, 

such as the shape and size of the particles causing the erosion, and the ductility of the pipelines 

carrying them. As investigated in the literature, these flows can come into contact with affected 

surfaces at different velocities and angles. Numerical and experimental research indicates that in 

slow flows of phases in dense gas or liquid (e.g., slurry transport), particle impact angles tend to 

be so narrow that they are difficult to test. The present research study examines erosion rates in 

relation to primary and secondary phase flows. In order to simulate four-phase flows in a pipeline 

with an arc and two bends under the impact of solid/liquid particle-initiated erosion, the CFD 

(competitional fluid dynamics) code ANSYS FLUENT is used. The simulations in this work 

measure fluid velocities and erosion rates/locations for 200-micron sand particles, applying liquid 

velocities measuring 20, 25, 30, 35 and 40 m/s in CFD-based tests. The results show that if ethane 

exerts the primary phase impacts with 200 microns of flow material, the erosion rate is  

9.760 x10-3 kg/m2.s at speeds of ~40 m/s. However, if methane comprises the carrier fluid with 

200 microns of flow material, the erosion rate is 1.006 x 10-2 kg/m2.s at sine speeds of ~40 m/s. 

The present study also models how the flow particles affect the carrier fluid (e.g., methane, water, 

ethane), applying both one-way and full coupling. In addition, the turbulence effect exerted in a 

medium by the particle dispersion force against particles is examined in detail. Finally, the primary 

and secondary phases’ impact parameters are determined in relation to frequency and speed of 

impact on outer wall bends.  Any interactional force occurring between the particles and the carrier 

fluid has been considered as a measure of VOF (volume of fluid) momentum transfer.
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Chapter 1  

1.1. Introduction  

1.1.1. Definition of CFD 

We can generally define computational fluid dynamics (CFD) as a method which uses 

computer-based simulations to analyze systems that include heat transfer, fluid flows, and 

chemical reactions. CFD can be utilized in a broad spectrum of engineering and other applications, 

some of which are listed below: 

• Chemical process engineering: Used in separation and mixing processes, including polymer 

molding. 

• Electrical and electronic engineering: Used for equipment cooling (e.g., microcircuits). 

• Marine engineering: Used in off-shore structural loads. 

• Environmental engineering: Used for effluent and pollutant distribution. 

• Biomedical engineering: Used in technology involving arterial and venous blood flow.  

• External and internal environment of buildings: Used in ventilation, heating and wind loading.  

• Turbomachinery: Used for diffusers, interior rotating passage flows, etc. 

• Power plant: Used for gas turbine and internal combustion engines. 

• Ship hydrodynamics. 

• Hydrology and oceanography: Used for river, ocean, and other flows. 

• Meteorology: Used in predicting weather and climate. 

• Vehicle and aircraft aerodynamics: Used for calculating lift and drag.  

CFD methods have been applied in both industrial and non-industrial uses since the early 

1960s. For instance, the aerospace industry uses CFD during the Research and Development 

(R&D) stages of the design of jet engines and aircraft, as well as in their manufacturing stage. 
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Other applications of CFD include gas turbine combustion chambers, furnaces, and combustion 

engines. CFD is also being used by motor vehicle manufacturers for studying in-car environments, 

air flows under the bonnet, and drag forces. From these applications, it is clear that CFD has 

become an important aspect of the industrial design and manufacturing process [1]. 

Over the years, CFD has strived to achieve the same abilities as similar tools in the computer-

aided engineering (CAE) field. Despite this ambition, the intricate behavior inherent in the CFD 

method has prevented it from being able to provide a sufficiently thorough and/or affordable fluid 

flow characterization. This has changed recently, however, with the development of more 

economical computer hardware that is both high-performance and features more user-friendly 

formats, giving the CFD approach a new chance to be adopted for mainstream use [1]. 

1.1.2. CFD advantages 

1.Compared to strategies that are more experiment-based, CFD features a number of 

advantages in relation to the design of fluid systems. Some of the main advantages are listed below: 

• Major decrease in price and turnaround time for designs. 

• Capable of testing the viability of different types of systems (such as large systems) that 

controlled experiments cannot investigate for reasons of practicality. 

• Capable of testing the viability of systems beyond the scope of normal operating conditions and 

in dangerous circumstances such as accidents and explosions. 

• Virtually limitless degree of detail in relation to testing outcomes. 

A major improvement in CFD has been the reduction in costs associated with the method. 

Experiments require expenses (employees, facilities, etc.) that are either not required or only 

negligible with CFD. Moreover, CFD codes are able to provide sizeable results volumes at a 
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fraction of the cost of live experiments, and can employ parametric studies as a means to optimize 

the performance of the equipment used. 

The next section reviews CFD code structure in general and investigates how individual 

building blocks impact design, performance and cost. Additionally, we look at the skills that are 

needed for running the codes as well as communicating results, and suggest that the lack of 

appropriately trained workers could, over the years, have been more of a hindrance to the adoption 

of CFD than its cost or the availability of its components [1].  

1.1.3. CFD code functioning 

The codes for CFD are geared towards numerical algorithms which address fluid flow issues. 

Therefore, as a means to ensure ease of accessibility for solving power, CFD packets feature user 

interfaces that clearly show input problem parameters along with the solving process and the end 

results. The three key parts of the codes are the pre-processor, the post-processor and the solver. 

The next three sections present a short summary of each of these parts [1].  

1.1.3.1. Pre-processor  

In CFD programs, pre-processing comprises the flow problem’s input by employing a user-

friendly interface. The input is then transformed to make it appropriate for the solver to use. There 

are several activities specific to the pre-processing stage. The main ones are listed below: 

•  The region of interest’s geometry is defined: This is considered the computational 

domain. 

•  During grid generation, the computational domain is then divided into several sub-domains 

which are smaller than the original domain and do not overlap. The division orders the cells 

(also known as ‘elements’ or ‘control volumes’) into a formation that is similar to a grid or 

mesh pattern.  
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•  The chemical and/or physical elements that need to be transformed are then selected.  

•  Fluid properties are defined. 

•  Suitable boundary conditions for cells that impact domain boundaries are designated. 

A flow problem’s solution, which includes aspects of temperature, pressure, velocity, etc., 

is based on observing the nodes within the cells. In fact, the CFD solution’s relevancy is 

determined through the cell count of the grid, with a higher amount of cells indicating a higher 

degree of accuracy. A finer grid can, however, be costly both in terms of required calculation time 

and computer hardware. The best option has been shown to be mesh that is non-uniform in 

character, featuring finer meshing for regions of greater variations and larger meshing for areas 

that see few variations. To that end, R&D departments are looking to develop codes for CFD that 

feature a type of adaptive or self-adaptive mesh. However, commercially available technology still 

relies on individual CFD users for grid designs that are reasonably accurate while also being 

relatively inexpensive and fast. 

Over half the time allotted to CFD projects must be spent on defining domain geometry and 

subsequent grid generation. However, productivity has recently been improved by having all major 

codes include a distinct CFD type of interface for importing data out of mesh generators as well 

as surface modelers (e.g., PATRAN and I-DEAS). Additionally, modern pre-processors not only 

permit users to access libraries on the material properties of common fluids, they also provide a 

facility for exploring specific chemical/physical process models, such as combustion models, 

radiative heat transfer, and turbulence models. These are included with the primary equations for 

fluid flow [1]. 
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1.1.3.2. Post-processor 

The post-processor field, similar to pre-processing, has seen radical improvements over the 

past few decades. As a result, CFD programs now come with enhanced visualization and graphics 

capabilities, such as: 

• Surface plots for 2D and 3D 

• Grid display  

• Domain geometry  

• Postscript output in color 

• Plots featuring shaded contour and lines 

• Vector plots 

• Manipulation of view (for scaling, rotation, etc.) 

• Particle tracking 

• Animation 

Moreover, the codes now feature accurate alph-numeric output as well as data export 

facilities, enabling external changes to be made. In particular, the graphics enhancements in CFD 

codes have enabled non-specialists to use the programs [1]. 

1.1.3.3. Solver 

Numerical solution approaches can be divided into three main categories of spectral 

methods, finite element, and finite difference. This study looks at the finite difference category of 

finite volume method, which is a key component in popular CFD codes such as FLUENT, 

CFX/ANSYS, STAR-CD and PHOENICS. A typical numerical algorithm follows certain steps, 

more or less in order: 

• The first step involves integrating fluid flow governing equations for the domain’s finite 

control volumes. 
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• The next step involves converting the integral equations that result into an algebraic system of 

equations. This step is known as discretization. 

• The third step involves an interative approach towards finding the algebraic equations’ 

solutions. 

By integrating the control volumes (first step), the finite volume approach is shown to be 

unique compared to other CFD methods. Specifically, the statements which result from the 

integration reveal precise conservation in the relevant properties for every finite size cell. The 

obvious connection between the principle of physical conservation and the numerical algorithm 

makes the finite volume approach very user-friendly compared to other strategies such as spectral 

and finite element. So, for instance, in finite control volume, the conservation of general flow 

variables for φ, the velocity component is easily expressed as the balance of a range of different 

processes which either reduce or enhance it, as follows: 

Rate of change Net rate of Net rate of 

of Φ in the control increase of f due increase of f due
= +

vohme with respect to conectionl in to to diffusion into th

to time the control volume

   
   
   
   
   
   

Net rate of 

creation of f 
+

e inside the control 

control volume volume

   
   
   
   
   
   

 

 

We can find in CFD codes discretisation strategies that are applicable for use in crucial 

transport aspects such as diffusion, which is transport caused by changes in φ occurring between 

points, and convection, which is transport caused by fluid flow. These strategies are also useful in 

source terms related to the development or termination of φ and in change rates that are time 

contingent. Because the physical phenomena underlying the scenarios tend to be non-linear and 

relatively complicated, a solution which is iterative is a necessity. Solutions related to velocity and 

pressure can be optimized by using SIMPLE algorithm or TDMA (tri-diagonal matrix algorithm) 
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line-by-line solver for algebraic equations. The Gauss-Seidel approach, which uses conjugate 

gradient method along with multigrid accelerators, is also suitable for iterative solutions [1]. 

1.2. Objective 

The primary objective of the present thesis work is to propose numerical simulations and 

their validations for experimental data in order to develop a knowledge base that can be applied to 

the erosion mode for multi-phase flow processes in CFD.  Two types of multi-phase models in 

ANSYS CFD software are studied to measure both their advantages and disadvantages in 

applications related to erosion rates.  A supplementary aim of this work is developing a CFD model 

which can be applied to pipeline research, especially with regard to annular pipe flows of multi-

phase slug fluids. The proposed CFD model will be tested for its validity in two-phase end-water 

flows for complex pipelines. 

1.3. Organization of the Thesis 

This thesis is written in manuscript format. Outline of each chapter is explained below: 

Chapter 1 A brief introduction of CFD. 

Chapter 2 Literature review of erosion rate modeling. 

Chapter 3 Investigation of erosion in intricate pipelines with bends using CFD simulations. 

Chapter 4 Four-phase flow investigation of erosion in intricate pipelines with bends using CFD 

simulations.  

Chapter 5 Conclusions. 
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Chapter 2 

2.1. Literature review  

The literature on the transportation of oil and gas includes a significant amount of 

information about CO2/H2S, highlighting in particular the wear and tear on pipelines that takes 

the form of erosion [2].  

2.1.1. Erosion in pipes  

The oil and gas industry has a lengthy experience with corrosions caused by solid particles 

in pipelines. A few studies have investigated the occurrence of erosion as well as corrosion, but 

given the global expansion of the  oil and gas industry, the research area requires further work [2].  

2.2. Solid Particle Erosion  

In the solid particle erosion process which takes place in the oil and gas industry, material 

either erodes or is removed from a pipe surface. Both the eroding substance and the substance 

being eroded suffer reductions in form and content. Fluid flows can also cause erosion-related 

reductions to the surface material of pipelines [2], [3]. The erosion is greatest when the substance 

being transferred contains a corrosive or corrosion-inducing material [4]. Despite the long-term 

occurrence of erosion in pipelines, it remains a major issue in the oil and gas industry [5, 10]. 

Erosion occurs as a process rather than as a one-off event. In other words, pipeline erosion 

occurs over a sequential time period, leading to substances being removed from the pipe. Erosion 

can take the form of plastic deformations or brittle fractures in the pipes caused by various 

materials impacting the steel [2]. Several studies have investigated the process of erosion-related 

corrosion, looking at aspects such as failure analysis and erosion-corrosion behaviors. The 

procedures involved include examination of scanning electron microstructure; electrochemical 
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methods; visual examination; and computational fluid dynamics (CFD). The present investigation 

looks at CFD simulation using ANSYS software [4]. CFD simulations indicate that a strong 

turbulent flow develops if the opening comprises only a small inlet. The turbulent flow then leads 

to material erosion in the pipes. Furthermore, crack initiation generally depends on turbulence 

intensity and abrupt changes in pressure [4]. The following section presents an overview of 

modeling for solid particle erosion in pipelines and oil and gas wells. 

2.3. Mechanisms underlying solid particle erosion 

As soon as a particle impacts a surface, however slightly, the surface is impacted and thus 

scarred. The actual shape of the impact scar is determined by a number of factors, ranging from 

the ‘attack angle’ to the type and size of the material. Of the many factors involved, surface 

ductility appears to be one of the most important [5].  

Parsi et al [5]. investigated the effect of micro-geometry on the erosion process, proposing 

that micro-cutting is the main cause for all types of erosion. So, for instance, if a particle 

consistently impacts the same surface at a specific angle, other particles serve to enlarge that crater 

by piling materials in the area surrounding the crater. The materials then experience constant 

removal from the crater edge via the erosion “attack”.  However, the model proposed in [5] fails 

to measure the scale of erosion events impacting the inside portion; the model also does not fare 

well in relation to other experiments and data. The researchers suggested that pipeline surfaces 

need to be reinforced to prevent severe erosion events [5]. 

Additionally, they proposed the existence of “platelets”, which are shallow craters caused 

by particles impinging on pipeline surfaces [5]. During the erosion process, due to heat impacting 

the surface of the substance (as well as below the surface), hardening occurs. Hence, in instances 

that are conducive to the formation of platelets, there is also increased  erosion either due to the 
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brittleness of the material or crack initiation [5]. When a brittle surface is impinged by a particle, 

radial cracking occurs; these cracks develop further due to additional erosion and can ultimately 

form divisions in the material [5]. 

2.4. Anticipating and preventing solid particle erosion 

A number of different factors contribute to pipeline erosion, the main ones of which are the 

physical features of the material, such as type, hardness, density, shape and size. At the same time, 

ratio equations vary according to the different features of the particles (e.g., information and data 

on impingement, the relation of the surface material to surface mass loss, etc.). Erosion rates can 

be based on pipeline thickness and/or mass loss of piping surface, while function time may be 

assumed as miles per annum, millimeter per annum, kg/hour, etc. Different researchers adopt 

different approaches according to their data and circumstances [5]. 

2.4.1. Particle features 

Solid particle erosion is impacted by a variety of features, including size, shape, hardness, 

density, material type, etc., of both the materials being impinged and the eroding substances. In 

order to determine accurate outcomes, the particle features and characteristics need to be 

thoroughly examined [5].  

2.4.1.1. Shape characteristic.  

The shape of a particle can determine the extent of the erosion. So, for instance, particles 

that are characterized as sharp can have a significant effect on erosion scale, depth, and duration. 

In [5], the researchers tested both spherical and sharp-angled particles, finding that the sharp 

particles resulted in a four-fold increase in erosion effects over the spherical particles. This 

outcome indicates the interrelation of particle shape and angularity to erosion [5], [6]. Hence, the 

characteristic of shape was added to erosion ratio equations [5].  
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2.4.1.2. Size characteristic.  

The size of a particle also impacts erosion potential. In general, larger particles have greater 

amounts of kinetic energy while impinging pipeline materials at similar speeds as smaller particles. 

In the data, the function of erosion ratio is assumed as the eroded materials’ mass / impinged 

materials’ mass. However, this ratio does not appear to have an influence on particles exceeding 

100 mm [5]. In one experiment, the erosion influence of sand on cast iron was investigated using 

angles of approximately 30° and 75° [1], [5]. As shown in Fig. 2, the velocity of the carrier fluid 

was 3.63 m/s and the sand concentrations were 20 wt %. The results of the experiment indicated a 

clear linear association, showing the particle speed as being unsteady and changeable in liquid 

flows [5].  

 
Fig.2. shows particle damage in wall of pipe 

2.5. Methods for managing erosion 

Several different kinds of erosion management approaches have been proposed to anticipate, 

measure and prevent erosion. The most common approaches are briefly explained in the following 

sections.  

2.5.1. Production rate decrease 

Reducing production rates will also cause both the speeds in the pipeline and the production 

of sand to be reduced. Such reductions, however, will likely increase costs, as production time will 

be expanded [5]. 
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2.5.2. Pipework design 

Ideally, well-designed pipelines should have the capacity to reduce flow speeds and prevent 

unnecessary alterations to flow caused by devices such as valves, constrictions or elbows. To this 

end, pipeline design could incorporate blind trees and bore valves as a means to lower pipe erosion 

rates. Furthermore, because slug flows can also cause significant damage to pipes, pipeline design 

should include sufficient use of drainage. Another aspect of design involves wall thickness. 

Thicker walls, though increasing costs slightly, could help prevent deep cracks in shallow materials 

from destroying the infrastructure [5].   

2.5.3. Separation and exclusion of sand 

Inhibiting the introduction of sand to pipelines in oil and gas sites is crucial. However, 

preventing the intrusion of sand can be difficult, so gravel packs and downhole sad screens are 

used in most pipeline infrastructures to keep too much sand from entering the systems. Sand has 

particularly become a problem in newer wells due to size allowances which permit larger particles 

to gain system access. Far from being merely a nuisance, sand decreases well productivity because 

the sand screens increase the unsteadiness of the flow. Therefore, sand screens and the flow have 

to be equally balanced. Moreover, sand screens alone are insufficient for preventing pipeline 

erosion from sand [5]. 

The tools most commonly used to deal with the presence of sand in pipelines include 

hydroclones and desanders. These and other kinds of separation devices help to reduce (though 

not stop) erosion levels; they can also, unfortunately, be relatively ineffective downhole, 

depending on the site [5].  
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2.5.4. Sand production estimation and measurement  

Like separators, collectors are used in pipelines to deal with the negative impact of sand. 

Sand production is typically dependent on geology and location. It can be determined that if certain 

wells in a certain area are known to produce large amounts of sand, it is likely that wells in the 

vicinity will also produce similar amounts of sand. In these instances, monitors can be employed 

to keep track of any erosion occurring or anticipated to occur in the pipelines. Sand monitoring 

equipment is usually placed in pipe tubings located downhole. The two main tools used in 

monitoring are probes and non-intrusive instruments which are attached to pipework [5]. The 

usefulness of monitoring tools varies according to location and extent of usage [5]. 
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Chapter 3 Investigation of erosion in intricate pipelines with bends using CFD 

simulations 

Aimen Marrah, Mohamed Aizzur Rahman, John Shirokoff . 

Abstract: — The micromechanical process of solid particle erosion can be affected by 

a number of factors, including impact angle, flow geometry, and particle size and shape. 

Erosion can also be affected by fluid properties, flow conditions, and the material comprising 

the impact surface. Of these several different potential impacting factors, the most critical 

ones for initiating erosion are particle size and matter, carrier phase viscosity, pipe diameter, 

velocity, and total flow rate of the second phase. Three turbulence models which are heavily 

dependent on flow velocities and fluid properties in their environment are k-epsilon (k-ε), k-

omega (k-ω) and (sst). More extreme erosion generally occurs in gas-solid flow for geometries 

which experience rapid alterations in flow direction (e.g., in valves and tees) because of 

unstable flow and local turbulence. The present study provides results from computational 

fluid dynamics (CFD) simulations that feature dilute water-solid flows in complex pipelines, 

highlighting the dynamic behavior displayed by the flows’ entrained solid particles. 

Specifically, the impact of fluid velocities in relation to erosion location is tested on sand 

particles measuring 10, 70, 100 and 200 microns. For the CFD analysis testing, liquid 

velocities of 20, 25, 30, 35 and 40 m/s are applied. The difference is evident between velocities 

of (20 m/s) and (40 m/s), giving an erosion rate of 1.73 x10-4 kg/m2.s and 2.11x10-3 kg/m2.s, 

respectively, when the particle solid is 200 𝜇m. The particle solid’s effect on the erosion rate 

at 70 𝜇m gives an erosion rate of 5.79 x 10-4 kg/m2.s, while the particle solid’s effect at a 100 

𝜇m gives an erosion rate of 8.03 x 10-4 kg/m2.s when the velocity is 40 m/s. Data on both size 
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and positioning of the incidence of erosion can be utilized when assessing vulnerability to 

erosion in arc areas (i.e., post-inlet and elbows).  

Keywords: Erosion, Mesh, Solid Partible, CFD  

3.1. Introduction 

In light of restrictions regarding equipment installation, bends are often used as relief 

lines for bypassing immovable obstacles. However, the use of bends creates a sudden 

alteration in the direction of the flow, causing vibrational pipe displacement. In fact, in 

sizeable emissions, the compressible flow of water constantly increases in the relief line, 

eventually moving as fast as the speed of sound (i.e., 343 m/s). The rate of flow is problematic 

from a site safety perspective, as the majority of relief pipelines below the final elbow tend to 

be unfixed and thus prone to swinging [7]. Specifically, in bends, drops of liquid along with 

particles of hydrate branch off the main streamlines for carrying water, leading to pipe walls 

undergoing the process of particle impingement [7]–[9]. 

Given the enormous speed of the particles as they impact the walls, extreme erosion at 

the relief line elbow is usually unavoidable. Hence, this erosion, coupled with pipeline 

vibrations, often leads to pipeline failure, which then causes higher maintenance fees as well 

as issues around environmental degradation of the site. In particular, relief pipeline failures at 

high-sulphur gas wells could ultimately end in site destruction. Considering the high potential 

for such a devastating outcome, a thorough analysis is urgently required that takes into 

consideration both flow erosion and relief pipeline flow-induced displacement. 

Flow-induced pipe displacement results from liquid flow interaction with pipeline 

infrastructure. To date, numerous studies have investigated the phenomenon in an attempt to 

envision and manage the risks and possible outcomes [7], [10]–[13]. However, very little 
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research has as yet been devoted to pipeline vibrations which occur downstream of bends. 

The issue is made even more complicated by the extreme levels of internal fluid pressure and 

the extreme speed of the particle-laden water that is moving through the pipelines. 

Some research has been conducted related to pipeline erosion occurring at bends [14]–

[19], using computational fluid dynamics (CFD) simulations for determining the extent and 

precise region of erosion in the elbows. Especially crucial are the properties of the carrying 

fluids, including particle size and content, with a number of models being designed according 

to test outcomes on gas flows which have solid particles and single-phase fluids [20]. 

Thus far, the majority of the studies have investigated incompressible flows of liquids 

in conditions mimicking normal or low atmospheric pressures, such as slurry transport. 

However, fluid flows such as particle-laden gas have the capacity to be compressible when 

flowing through a high-pressure pipeline. Furthermore, the speed and density of such flows 

can undergo severe alterations when moving through the line reaching the speed of sound 

(i.e., 343 m/s). 

In light of the potential complications that could emerge from such flow velocities, and 

given that this has not yet been investigated as a causation factor in pipe vibration 

displacement and flow erosion, the present study looks at possible interacting influences in 

pipe displacement and erosion. The investigation will apply a coupling analysis to determine 

flow erosion and liquid/structure interactions in compressible water-particle flows along 

elbow pipelines. The aim of the analysis is to determine the extent and exact location for the 

most extreme maximum swings and erosion occurring along relief pipelines. However, 

because such tests are quite expensive to conduct, computational fluid dynamics will instead 

be used in the present study [21]. 
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Particle flow and subsequent erosion can be a major factor in industrial, environmental 

and other applications, such as ventilation and conveyance systems [22]–[26], yet this 

phenomenon has not yet been adequately investigated for flows and erosion in relation to 

pipeline bends. In related research, Sun and Lu. [26] looked into the particle flow distribution 

and deposition behavior in 90° bends, while J. Lin et al. [27] researched the transport and 

deposition of nanoparticles in a rotating curved pipe. As well, Zhang et al. [28] used CFD to 

study near-wall and volume improvements in the prediction of particle impact on sharp bend 

areas, while Ke et al. in [29] studied modeling and numerical analysis in relation to solid 

particle erosion in curved ducts. Despite a few studies being done on particle erosion in bends, 

there is currently very little prediction research which focuses specifically on erosion 

distribution.  

Recent CFD studies investigating flow-induced vibration and flow erosion have 

supported the efficacy of numerical methods. In light of these validations, the present research 

will design a CFD model that includes Fluid Structure Interaction (FSI) and Discrete Phase 

Model (DPM) elements. This model will then be applied to study flow erosion in bend zones 

of high-pressure gas relief pipelines, as well as flow-induced displacement in relief pipelines 

located downstream of bends. After determining the flow-field distribution for the relief 

pipeline’s compressible particle-laden gas flow, the region where the most severe erosion and 

vibration-related displacement can be estimated. Next, the impact of the pipeline diameter, 

phase content and inlet flow-rate is explained. This paper highlights erosion status modeling 

in curved-wall analysis, using the results from both particle and air flow to determine erosion 

information relevant for standard 90-degree bends. We also analyze erosion rate behaviors 

that change according to particle diameter, flow rates, deflection angles, three different 
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equation turbulence models (k-ε, k-Ω and SST), and inlet velocity. Numerical methods are 

employed to investigate the flow erosion rate on a bend in high velocity. Finally, the flow 

field distribution of compressible particle-laden liquid flow in a relief line is obtained to 

predict the location of the maximum erosion in the elbow as well as the maximum displacement 

of the pipe. 

3.2. Validation 

The steps must first be validated before being applied in real work. Sun and Lu [20] performed 

numerical analyses of solid particle erosion with different velocities, but their approach differs from 

CFD mainly in that is employed the Reynolds Stress Model (RSD), whereas CFD employs k-

epsilon (k-ε). Additionally, there were differences in the pipeline material used. Figure 3.1 shows 

validation at velocity 50 m/s using a variety of particle solids diameter, while Figure 3.2 depicts 

validation at different velocities and particle solids of 300 𝜇m. 

 

Fig. 3.1. Validation at a velocity of 50 (m/s) using different particle solids. 
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Fig. 3.2. Validation at different velocities using particle solids of 300 (𝜇m). 

3.3. Geometry and Meshing 

The SOLIDWORKS software Design Modeler is tested and used to model the bean choke. 

The geometry is sketched in 2D and then a revolve function is employed to make the pipe 3D. 

Next, the geometry is imported in ANSYS to obtain the geometry mash for the aluminum pipe 

(length 17 cm, diameter 4.52 cm, and three elbows at 90°). Figures 3.3 and 3.4 geometry in 

ANSYS, while Table 3.1 lists the mesh information. 

The Directed Mesh Inflation in ANSYS Fluent was used to develop the material, 

demonstrating an appropriateness for simulating a two-phase flow in a horizontal pipe. Directed 

Mesh Inflation was chosen because of its ability to decrease both the computational time and the 

number of cells in comparison to alternative meshing techniques, as well as its ability to form grids 

parametrically in a multi-block structure. By employing the path mesh, the user can control and 

specify the number of divisions in the inlet cross-section, enabling the creation of quadrilateral 

faces. Furthermore, by applying a novel type of volume distribution, users can specify how many 

layers they want to have on the pipe. Figure 4 illustrates the mesh.  
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To generate volume mesh, hexahedral grid cells were created through the extrusion of 

quadrilateral faces along the length of the pipe at each layer, as shown in Figures 3.3 and 3.4. Table 

3.1 provides details of the mesh grid which was most appropriate in the present case, as such a 

grid enables a fine cross-sectional mesh to be created without also requiring an equivalent 

longitudinal one. 

Table 3.1. DETAILS OF MESH 

Nr. of elements 153721 

Nr. of nodes 67172 

Element size [mm] 0.617 

Maximum layers 10 

 

 

Fig. 3.3. Geometry in ANSYS and mesh. 

In shifting probes in a fluid domain from a freestream flow to a wall, a non-linear reduction 

in velocity will be encountered until the fluid reaches zero velocity (i.e., when it reaches the wall). 

In CFD terms, the achievement of zero velocity is referred to as the ‘no-slip’ wall condition. In 
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plotting a velocity profile for the area nearest the wall, significant velocity changes occur that must 

be included in the CFD simulation in order to accurately factor in the gradient. Inflation layer 

meshing can be used here for measuring boundary layer regions in turbulent flows which are wall-

bounded. However, because flow behaviors for near-wall regions are relatively complicated, they 

must be suitably captured to obtain valid CFD results for critical engineering data (e.g., pressure 

drops and points of separation) [30]. 

The inflation mesh, turbulence model, and flow field are all interconnected elements. To 

obtain a good resolution of the boundary layer, we can either resolve the layer’s complete profile 

or reduce cell counts by applying empirical wall functions. In flows that feature heavy wall-

bounded effects, effective boundary layer resolution is essential; in other types of simulations, 

however, it can just be cumbersome and not always necessary. Figure 3.5 below illustrates the 

maximum number of layers when using ANSYS [30]. 

  

Fig. 3.4. Maximum layers in ANSYS. 
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3.4. Turbulence Model  

By using dual-equation turbulence models, we can obtain turbulent time scales as well as 

turbulent lengths through the formulation of two transport equations. Launder and Spalding’s 

ANSYS Fluent standard k-ε model has traditionally been employed in engineering flow 

calculations due to its relative ease of use, accuracy, and applicability across a broad range of 

turbulent flows, including heat transfer and industrial flow simulations. As this model is considered 

semi-empirical, empiricism is mainly utilized in deriving the model’s equations. 

The standard k-ε model uses model transport equations to obtain dissipation rate k and 

turbulence kinetic energy k. Hence, the model transport equation for k can be obtained by 

applying the precise equation, whereas the model transport equation for k can be determined 

through the application of physical reasoning. Thus, to derive the k-ε model, we can assume a 

fully turbulent flow but negligible molecular viscosity effects, making this k-ε model only 

applicable in flows which are fully turbulent. Hence, alterations are needed to improve both the 

model’s applicability and its performance. Two model variants that use ANSYS Fluent are the k-

e model and realizable k-e model, as formulated below [31].  
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  (3.2) 

In the formulations, kG   depicts turbulence kinetic energy generation from mean velocity 

gradients; bG  indicates turbulence kinetic energy generation caused by buoyancy; MY  refers to 

fluctuating dilatation contributions in compressible turbulence in relation to total dissipation rate; 
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1C   , 2C   and 3C    indicate constants; k  and    represent turbulent Prandtl numbers of k  and 

  ; and kS   and S   denote sources terms as defined by the users. 

3.5. Erosion model 

In this section, the model suggested for erosion estimation is selected, with the equation 

coming from the formula found experimentally, as given below: 
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p p
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= 
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where ( )pC d   is a function of particle,   is the impact angle of the particle path with the 

wall face, ( )f   is a function of impact angle,   is relative particle velocity, ( )b   is a function of 

relative particle velocity, and, faceA  is the area of the cell face at the wall. 

Default values are: 91.8 10 ,  1 and 0C F b−=  = =  in ANSYS Fluent. We can modify 

formulations expressing erosion models such that they take the format of a general equation for 

erosion rate, as expressed in Equation 3.3. So, for instance, we can rewrite the Tulsa Angle 

Dependent Model [31].  

 ( )0.59 1.731559 sER B F f −=      (3.4) 

as Equation 3.3 by making substitutions as follows: 

( )

( )

1.73

0.591559

b

pB F C d


 

−

=

=
 

where ER  indicates erosion rate, B denotes Brinell hardness, and F represents the particle shape 

coefficient. 
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Table 3.2. BAROMETERS AND INFORMATION FOR THE SIMULATION 

Fluent Setting 

Inlet 20, 25, 30, 35 & 40 (m/s) 

Outlet Pressure outlet 

Wall No Slip 

Turbulent k-epsilon 

k-epsilon DPM 

Injection Surface 

Velocity 20, 25, 30, 35 & 40 (m/s) 

Diameter 10, 70, 100 & 200 (𝜇m) 

Density 1500, 2000, 7800 & 8900 (kg/m3 ) 

Total Flow Rate 0.5, 1, 2, 3, & 4 (kg/s) 

Discrete Phase 

Velocity 20, 25, 30, 35 & 40 (m/s) 

Density 998.2 (kg/m3) 

Viscosity 0.2, 1, 5, 25 and 125 (kg/m.s) 

Pipes Information 

Length 177 (cm) 

Diameter 4.52, 6.52, 8.52 & 9.52 (cm) 

Material Aluminum 

k-epsilon (k-ε), k-omega (k-ω) and (sst) turbulence are the most common models used in 

CFD to simulate mean flow characteristics for turbulent flow conditions. The k-ε turbulence model 
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offers closer data than the others for maximum erosion and distribution along the pipe, but the sst 

and k-ω models show good prediction as well, as can be seen in Figure 3.5. 

 

Fig.3.5. Comparison between three different equation turbulence models, with erosion 

rates for a velocity of 40 (m/s) and a particle size of 200 (𝜇m). 

Independent mesh numbers are shown in Figure 3.6, with element numbers ranging between 

0.5 million and 2 million. The 1 million element line provides almost the same erosion rate as 2 

million, which is slightly more than the 1.5 million element line. Although there are slight 

differences in erosion rates at velocities of 20, 25, 30 and 35 m/s, the difference becomes clear at 

a velocity of 40 m/s. 
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Fig. 3.6. Effect of element number on erosion rate. 

3.5. Results and discussion 

Velocity and particle size are the two main reasons for increases in erosion rate, such that 

when velocity increases, erosion also increases. Figure 3.7 shows the distribution of erosion rates 

on a bend at different inlet flow rates for solid particles of 200 (𝜇m) and a pipe diameter of 4.52 

(cm), while Figure 3.8 shows the distribution of erosion rates for solid particles of 100 (𝜇m) and a 

pipe diameter of 4.52 (cm). Similarly, Figure 3.9 depicts the distribution of erosion rates on a bend 

at different inlet flow rates for solid particles of 70 (𝜇m) and a pipe diameter of 4.52 (cm), and 

Figure 3.10 shows the distribution for solid particles of 10 (𝜇m) and a pipe diameter of 4.52 (cm).   
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Fig. 3.7. Distribution of erosion rates for bends at different inlet flow rates at 200 (𝜇m). 

 

Fig. 3.8. Erosion rate for bends at different inlet flow rates at 100 (𝜇m) and different 

velocities. 

 
Velocity 20 (m/s) 

 
Velocity 25 (m/s) 

 
Velocity 30 (m/s) 

 
Velocity 35 (m/s) 

 
Velocity 40 (m/s) 

 

 
Velocity 20 (m/s) 

 
Velocity 25 (m/s) 

 
Velocity 30 (m/s) 

 
Velocity 35 (m/s) 

 
Velocity 40 (m/s) 

 



28 
 

 

Fig. 1. Erosion rate for bends at different inlet flow rates at 70 (𝜇m). 

 

Fig. 3.10. Erosion rates for bends at different inlet flow rates at 10 (𝜇m). 
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Fig. 3.11. Deformation for three different diameters of pipes at a velocity of 40 (m/s). 

Diameter has a major influence on deformation. Figure 3.11 shows the deformation in four 

different pipes when velocity is constant in all the pipes, and when there is the same particle solid 

size and two fixed supports at the inlet and outlet. It is clear that deformation increases when 

diameter increases. 

Based on Figures 3.12 and 3.13, one can generalize that the correlation between erosion rate 

and solid particles is proportional starting at particle sizes of 70 𝜇m and larger. For particles smaller 

than 70 𝜇m, the erosion rate slightly decreases (velocity 35 m/s). In general, when velocity 

increases, erosion increases as well. Figure 3.12 shows the effect of both solid practical diameter 

and velocity on erosion rate, with the Y-axis indicating the erosion rate and the X-axis indicating 

particle diameter. 

Regarding changes in particle diameter, erosion rates are more or less the same between 10 

and 200 𝜇m in different inlet velocities. Although, at first, there is a reduction in the erosion rate 

during increases in particle diameter, this changes for particle diameter 70 𝜇m or greater. In larger 
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size particles (i.e., 70 𝜇m or greater), erosion rates fall to the lowest possible levels, which is 

especially clear in velocities between 30 and 40 m/s. After that point, the erosion rate increases 

with particle diameter increases. For very large flow inlet velocities and particle diameters (100 

and 200), the phenomenon is similar to that observed in the particle deposition behavior regarding 

shapes in duct flows [26]. 

This phenomenon is similar to an impact mechanism which occurs during the deposition, 

rebounding, and impaction process. At a velocity of 25 m/s, for smaller particles of 10 𝜇m, the 

erosion goes to 70 𝜇m and 100 𝜇m, but the erosion rate decreases slightly due to the large inertia 

of 200 𝜇m. At a velocity of 20 m/s, the erosion rises at 70 𝜇m but then goes down at 100 𝜇m before 

again rising at 200 𝜇m. Smaller particles of 10 𝜇m are affected more by the diffusion, turbulence, 

and vortex in the bend and may also have a higher impact angle, leading to higher erosion rates. 

Coarse particles of 100 to 200 𝜇m are controlled by inertia and gravity and thus would erode more 

of the wall mass [27]. Details on this process are given in Figure 3.13. 

 
Fig. 2. Comparison of erosion rate per impact particle against the particle diameter and 

inlet flow velocity for larger inlet velocities of 20, 25, 30, 35 and 40 (m/s). 
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In Figure 3.13, the erosion rate is highly affected by particle sizes at different velocities. The 

maximum rate is recorded at 200 𝜇m for all velocities, starting at 20 and going up to 40 m/s. The 

figure also shows that the erosion rate of 10 𝜇m is higher than that recorded for 100 and 70 𝜇m for 

velocities of 30 and 35 m/s. In general, when velocity, increases erosion increases as well. 

 

Fig.3.13. Comparison of erosion rates at different velocities and solid particle diameters 10, 

70, 100 and 200 (𝜇m). 

Erosion rate is directly related to particle flow rate. Figure 3.14 shows the effect of both solid 

particle diameter and velocity on erosion rate, with the Y-axis indicating the erosion rate and the 

X-axis the flow rate for selected solid particles of 200 𝜇m. 
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Fig. 3.14. The effect of flow rates on erosion at velocities of 20 and 40 (m/s) at the particle 

size 200 (𝜇m). 

The effect of solid material type on erosion rate is illustrated in Figure 3.15. As can be seen, 

the erosion rate caused by copper particles is slightly higher than that caused by steel particles, but 

is much higher than that caused by aluminum particles. The material density factor thus clearly 

affects the erosion rate at different velocities. 

 

Fig. 3.15. Effect of solid particle density on erosion rates at different velocities 200 (𝜇m). 
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The effect of pipe diameter on the erosion rate used is seen in Figure 17. At fixed parameters 

40 m/s and 200 𝜇m, the erosion rate reduces as the pipe diameter increases from 4.52 to 6.52 cm, 

at which point the correlation between erosion rate and pipe diameter is reversed. The effect of 

pipe diameter change is negligible between 6.52 and 10.52 cm, but then the erosion rate is nearly 

constant, with particle-clashing at the pipe wall reducing in tandem with increases in diameter. 

 

Fig. 3.16. Effect of pipe diameter on erosion rates at a velocity of 40m/s and particle size of 

200 (𝜇m). 

Only a few studies have been performed to examine the effect of carrier fluid viscosity on 

erosion rate. The model predicts pipeline erosion at different velocities and at solid particles of 

200 𝜇m, and decreases in pipeline erosion rates as viscosity increases. The results shown in Figure 

18 follow this trend up to a certain viscosity, which is multiplied five times each, starting at 0.2 

mPa.s and going to 625 mPa.s. However, at higher viscosities, the erosion rate increases with 

increasing viscosity, as shown in Sun et al. [26] for erosion rates for 90° elbows at various carrier 

fluid viscosities. The researchers Sun et al. [26] found only slight increases in erosion rates when 
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the viscosity was increases between settings of 125 mPa.s and 625 mPa.s. They [32] attributed 

their findings to particle size as well as particle shape (spherical). 

 

Fig.3.17. Effect of viscosity on erosion rates at a velocity of 40m/s and particle size of 200 

(𝜇m). 
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Chapter 4 Four-phase flow investigation of erosion in intricate pipelines with 

bends using CFD simulations. 

Abstract: — In the oil and gas industry, issues around solid particle erosion and increasing 

erosion rates are ongoing challenges. Numerous factors come into play when trying to resolve 

these problems, such as the shape and size of the particles causing the erosion, and the ductility of 

the pipelines carrying them. As investigated in the literature, these flows can come into contact 

with affected surfaces at different velocities and angles. Numerical and experimental research 

indicates that in slow flows of phases in dense gas or liquid (e.g., slurry transport), particle impact 

angles tend to be so narrow that they are difficult to test. The present research study examines 

erosion rates in relation to primary and secondary phase flows. In order to simulate four-phase 

flows in a pipeline with an arc and two bends under the impact of solid/liquid particle-initiated 

erosion, the CFD (competitional fluid dynamics) code ANSYS FLUENT is used. The simulations 

in this work measure fluid velocities and erosion rates/locations for 200-micron sand particles, 

applying liquid velocities measuring 20, 25, 30, 35 and 40 m/s in CFD-based tests. The results 

show that if ethane exerts the primary phase impacts with 200 microns of flow material, the erosion 

rate is 9.760 x 10-3 kg/m2.s at speeds of ~40 m/s. However, if methane comprises the carrier fluid 

with 200 microns of flow material, the erosion rate is 1.006 x 10-2 kg/m2 .s at sine speeds of ~40 

m/s. The present study also models how the flow particles affect the carrier fluid (e.g., methane, 

water, ethane), applying both one-way and full coupling. In addition, the turbulence effect exerted 

in a medium by the particle dispersion force against particles is examined in detail. Finally, the 

primary and secondary phases’ impact parameters are determined in relation to frequency and 

speed of impact on outer wall bends.  Any interactional force occurring between the particles and 

the carrier fluid has been considered as a measure of VOF (volume of fluid) momentum transfer. 
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Keywords: Primary phase, Erosion, Velocity, Solid Partible, CFD.  

4.1. Introduction 

Several different kinds of commercial drilling processes in the oil and gas industry must take 

into account particulate multiphase flow (a mixture of oil, gas, water, and sand), which is 

characterized as a constant and continuous carrier phase that effectively disperses the solid phase. 

Damage due to erosion can be initiated by sand particles blasting through pipes under high pressure  

These types of erosive particulate flows also occur in other major industries, such as aero-space 

and energy production infrastructures [33]. 

When gas and particle fluid mixtures near a bend in a pipe, the fluid phase flow structure 

diverges into a double vortex, resulting in extreme particulate phase separation caused by 

centrifugal forces acting on the flow. The interactions which occur between the fluid and the 

particles (including particle-particle and particle-wall collisions and rotational or gradient forces) 

for the most part determine not only pressure drop and fluid velocity distribution but also particle 

behavior. Extensive research has been carried out recently on the experimental, numerical and 

pneumatic conveyance of particle and fluid flows. In the researchers simulated particle collisions 

on coarse pipe surfaces and looked at the non-sphericity of particles using numerical simulations 

and tests. The researcher in investigated a particle-particle collision model and proposed a particle-

wall collision model that takes into consideration how the shadow effect might inhibit rebounding.  

In other studies, the numerical and physical modelling for erosion which can occur in elbows, 

tees, pipe bends, etc., was examined. Computational fluid dynamics (CFD) is currently the 

favoured approach for predicting erosion caused by solid particles in ducts and curved pipes and 

has been for the past few decades. Using CFD, several different empirical, semi-empirical and 

analytical approaches were modeled. In Meng and Ludema [34] presented an overview of the main 
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erosion models, highlighting 28 which pertained to particle-wall erosion. While investigating these 

28 models, the researchers discovered 33 parameters which were applied in the models, although 

each model usually applied no more than five in total [34]. The broad range of parameters in 

general dealt with how much material was being sloughed off a specific surface due to erosive 

action. The researchers’ findings revealed that erosion prediction is a fluid concept that cannot be 

universally framed. Meanwhile, in the researcher suggested applying an analytical method to 

predict wear and tear occurring in bendable materials [35]. 

It is typical for oil and gas sites to share pipelines with other sites to move their product from 

wells to the next transport or refinery site. Hence, in these shared pipelines, even if only one of 

several wells is transporting a multiphase fluid, the entire pipeline is considered multiphase. Ratios 

differ among oil and gas mixtures, but the majority comprise crude oil and some dissolved gas. In 

fact, natural gas makes up most of the flow present in oil and gas separator venting pipes, along 

with a smaller fraction of heavy hydrocarbon condensate and water. So, for instance, gas flowing 

from a coalbed methane gas site well would also include water condensation, turning the flow into 

multiphase. This is a typical transportation mode from well sites, as to install more than one pipe 

would not be economical. There are also cases where the installation of gas/liquid separators would 

not be feasible (e.g., ecologically sensitive areas and urban zones). 

Indeed, the surrounding geography of well sites has a significant impact on the type of 

pipeline that is best used. For example, single-phase pipelines function well in hilly or 

mountainous regions because any pressure lost at the ascent would be recouped at the descent. 

However, two-phase flows would not be suitable, as any pressure lost going uphill would not be 

recouped in the descent due to the lesser density of the material flow. Hydraulics and choosing 

optimal routes play a major role in resolving these kinds of flow equalization issues. 
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In two-phase pipelines, gas/liquid distribution can differ from pipe to pipe and flow to flow. 

Such differences can affect the factors of heat/mass transfer and mechanical interrelationships 

inherent in two-phase flows, making the process extremely complex. The calculation models 

presently being used to describe multiphase flow vary in their degree of usefulness, but such a 

discussion on the merits of each model does not fall within the scope of our paper. Instead, the 

present study looks at the gas and liquid two-phase Beggs-Brill approach that combines a route-

optimization algorithm with hydraulic simulation. Additionally, this study will examine how 

primary and secondary phases impact erosion rates. Both CFD code and ANSYS FLUENT will 

be used in the four-phase flow simulation for a pipeline that is experiencing a high erosion rate 

caused by both solid and liquid particles in the flow. The erosion rate will be determined by the 

amount of  pipeline wall lost and will be calculated by applying the Finnie model for bendable 

materials [36]. 

4.2. Geometry and meshing  

The ANSYS Fluent Directed Mesh Inflation approach has been applied to formulate the 

material for the simulation of horizonal pipeline two-phase flow. Compared to other meshing 

approaches, the main benefits of employing Directed Mesh Inflation in this simulation is its 

relatively short computational time, small cell number, and parametric grid-building capability for 

use in multi-block formats. Simulation users are able to determine the exact number of inlet cross-

section divisions when applying the path mesh, thus allowing for the construction of quadrilateral 

surfaces. Additionally, users are able to determine the number of pipeline layers through the 

application of volume distribution, as shown in Fig. 4.1.  

Figures 4.1 and 4.2 illustrate how hexahedral grid cells have been applied to develop volume 

mesh by extruding quadrilateral surfaces for every layer throughout the pipeline length. Further 



39 
 

mesh grid details for the grid being developed in the present study are given in Table 4.1 As can 

be seen, this type of grid forms a fine cross-sectional mesh without the need for a longitudinal one 

of equivalent length. 

When probes occurring in fluid domains are changed to walls from freestream flows, there 

is a non-linear decrease in the speed of the flow to the zero velocity point of wall encounter. Zero 

velocity, when framed in CFD, is termed as a ‘no-slip’ phase. The extreme shifts in speed that 

occur in fluids as they approach a wall must be included in the velocity calculations for the CFD 

simulations referring to the gradient condition. In this formulation, we can apply inflation layer 

meshing to determine the appropriate boundary layer regions for wall-bounded flows, which are 

typically turbulent and complex. The flow behaviors must, however, be determined in order to 

formulate valid CFD data for pipeline engineering related to potential problem areas such as 

separation points and pressure drops [24]. 

Flow fields, turbulence models and inflation mesh feature significant interdependence 

factors. Therefore, in order to better understand each element of boundary layers, either the total 

profiles of each layer needs to be resolve or empirical wall functions need to be done by decreasing 

cell counts. Figure 4.1 example charts maximum layer counts for the ANSYS approach [24]. 

Table 4.1 DETAILS OF MESH 

Nr. of elements 99751 

Nr. of nodes 39012 

Element size [mm] 0.617 

Maximum layers 5 
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Fig. 4.1 Geometry and mesh in ANSYS 

 

 

Fig. 4.2 Cut in the pipeline showing detail of mesh 

 

4.3. Discrete phase model 

In FLUENT, there is also a specific model for simulating the transport of particles through 

continuous flow fields. In this discrete phase model (DPM), a motion equation uses a Langrangian 

coordinates frame to represent the discrete phase occurring in a continuous phase, giving a 

reasonable calculation of possible particle trajectory. The local continuous phase conditions are 

applied to solve the particle force balance equation, as follows: 

 
( )

( )
p p f

D f p x

p

dv p p
F v v g F

dt p

−
= − + +    (4.1) 
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where pv  and fv  are the particle and fluid velocities, pp  and fp  are the particle and fluid 

densities, respectively, g  is the gravitational acceleration, xF  is a term accounting for additional 

forces, DF  ( )f pv v−  is the drag force per unit particle mass, DF  is dimensionally an inverse of 

time and reads: 

 
2

Re1 18

24

D
D

a p p

C
F a

p D





    
= =          

       (4.2) 

where a  is the aerodynamic response time for the particle, Re is the Reynolds number for the 

particle referred to the relative velocity and DC  is the drag coefficient 

  Re
f f p P

f

p v v D



 −  
=        (4.3) 

  32

2
1

Re Re
D

aa
C a= + +       (4.4) 

 
with coefficients a derived in [13] for two-phase flows. In order to confer position and speed to 

the particle and as a way of closing the solving equation set, Eq. (4.1) and the Lagrangian frame 

trajectory equation, p
ds v

dt
=  , are combined, showing s as the abscissa of trajectory [37]. 

It should be noted that the impact of turbulence on particle dispersion in turbulent flows is 

far from negligible and must be considered in the calculations. In the so-called Eddy lifetime 

discrete random walk (DRW) stochastic model, turbulent dispersion is estimated by combining the 

trajectory equations of each particle and applying instantaneous fluid speed (or velocity) 

throughout the course of the particle pathway. Hence, fluid velocity for particle location is 

formulated as v v v= + , where v   indicates mean fluid phase velocity and v   the turbulent portion 

in fluid velocity. Gaussian distributed random fluctuation is used to formulate turbulent 
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contribution, granting it a constant status in relation to the solution advancement time step t  

which covers DRW e , as given below [37]. 

  0.30e

k



=       (4.5) 

4.3.1. Volume Fraction Equation 

In the present study, a ternary fluid flow comprising two liquids and one gas in immiscible 

phases is investigated. Specialised models are used to ensure the code can deal appropriately with 

the various multiphase flow types it will encounter. Despite its widespread use, existing CFD is 

still unable to simulate multiphase flows in fine detail because of the complicated structure in the 

flows (e.g., interphase heat transfer, phase transition, etc.). Another huge challenge is dealing with 

the assumed homogeneity of phases which is inherent in the CFD program. Nevertheless, we 

proceed with this in mind and consider the flow mixture as being homogenous through the mesh 

material. 

Next, we choose the VOF (volume of fluid) to model the fluid phase simulations and 

deactivate the simulation aspect pertaining to the interface position between fluids as per the 

homogenisation referenced in the previous section. After solving applicable momentum balance 

equations of the mixture into a single set, we evaluate the phase volume fractions of each phase 

for all individual computational cells within the domain, considering the gas and liquid phases 

incompressible. Finally, we solve a continuity equation to find the volume fraction of the phases 

in order to track the interfaces between phases. The equation for the 
thq  phase is expressed as 

follows: 

 ( ) ( ) ( )
1

1
  +  .   

n

q q q q q aq pq qp

pq

a p a p V S m m
p t =

 
 = + − 

 
   (4.6) 
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where qpm  denotes mass transfer out of phase q  and towards phase p, and pqm  indicates mass 

transfer out of phase p  and towards phase q .  For our purposes here, the source term to the right 

of Eq. (4.6), 
qaS  implies zero; however, either a constant or a user-defined mass source of every 

phase can be applied instead. Note that because the volume fraction equation is not solved in the 

primary phase (but is rather done later via explicit or implicit time calculations), we can formulate 

the primary-phase volume fraction as shown in Eq. 4.7 below: 

  
1

1
n

q

q

a
=

=       (4.7) 

4.3.2. Implicit Formulation 

To use implicit formulation expression, we must first discretize the volume fraction equation 

as follows: 

                                  ( )
1 1

1 1 1

,

1

 pn n n n n
q q q q n n n

q f a f pq qp

f p

a a p
V p U a Saq m m V

t

+ +
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=

−  
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1n + =   index for current time step 

n = index for previous time step 

1n

qa +
 = cell value of volume fraction at time step 1n+   

n

qa  = cell value of volume fraction at time step n   

1

,

n

q fa +
 = face value of the 

thq  volume fraction at time step 1n+   

1n

fU +
= volume flux through the face at time step 1n+   

V   = cell volume  

Furthermore, because the current time step’s volume fraction also represents a function related to 

the current time step’s other quantities, we must solve a scalar transport equation iteratively in 

every secondary-phase volume fraction and for every time step. To do this, a spatial discretization 
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scheme must be applied for interpolating face fluxes, choosing from ANSYS Fluent schemes. 

These are presented in detail in the Users’ Guide, under the section Spatial Discretization Schemes 

for Volume Fraction. Implicit formulation is applicable in both steady-state and time-dependent 

formulation, as presented in the guide’s Choosing Volume Fraction Formulation sub-section [31]. 

4.3.3. Explicit Formulation 

The explicit formulation is time-dependent, and the volume fraction is discretized in the 

following manner: 

                   ( ) ( )
1 1

1 1

,

1

 pn n n n n
q q q q n n n

q f a f pq qp aq

f p

a a p
V p U a Saq m m S V

t

+ +

+ +

=

−  
+ = + − + 

  
    (4.9) 

1n + = index for new (current) time step 

n = index for the previous time step 

,a fa = face value of the 
thq  volume fraction 

V = volume of cell 

fU = volume flux through the face, based on normal velocity 

Because volume fraction for current time steps must be formulated according to quantities 

from previous time steps, there is no requirement for explicit calculations to have an iterative 

solution for the transport equation at every time step, in which case face fluxes are interpolated by 

applying CICSAM, Geo-Reconstruct, or Compressive and Modified HRIC as capturing schemes. 

Relevant schemes on explicit formulation in ANSYS Fluent can be found in the subsection Spatial 

Discretization Schemes for Volume Fraction in the Users’ Guide. It is worth noting here that 

ANSYS Fluent refines time steps automatically in relation to volume fraction equation integration, 

and that these calculations can be adjusted using the Courant number. Specifically, volume 

fractions can be revised at every time step or singularly at every iteration for every time step (see 
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the Users’ Guide sub-section Setting Time-Dependent Parameters for the Explicit Volume 

Fraction)  [31]. 

4.3.4. Erosion Rate  

Next, the model for calculating erosion estimation is chosen based on an experimentally-

sourced formulation: 

      
( ) ( ) ( )

particles

erosion

1 face

bN
p p

p

m C d f
R

A


 

=

=        (3.3) 

where ( )pC d   is a function of particle,   is the impact angle of the particle path with the wall face, 

( )f   is a function of impact angle,   is relative particle velocity, ( )b   is a function of relative 

particle velocity, and, faceA  is the area of the cell face at the wall. 

Default values are: 91.8 10 ,  1 and 0C F b−=  = =  in ANSYS Fluent. We can modify formulations 

expressing erosion models such that they take the format of a general equation for erosion rate, as 

expressed in Equation 3.3 So, for instance, we can rewrite the Tulsa Angle Dependent Model [25].  

    ( )0.59 1.731559 sER B F f −=        (3.4) 

as Equation (3.4) by making substitutions as follows: 

( )

( )

1.73

0.591559

b

pB F C d


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−

=

=
 

Where ER indicates erosion rate, B denotes Brinell hardness, and F represents the particle shape 

coefficient. 
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4.4. Boundary conditions: 

Table 4.1 BAROMETERS AND INFORMATION FOR THE SIMULATION 

Fluent Setting 

Inlet 30, 35 & 40 (m/s) 

Outlet Pressure outlet 

Wall No Slip 

Multiphase Volume of Fluid 

Turbulent k-epsilon 

DPM ON 

Injection Surface 

Velocity 30, 35 & 40 (m/s) 

Diameter 100 (𝜇m) 

Density 1500 (kg/m3) 

Total Flow Rate 1 (kg/s) 

Discrete Phase 

Velocity 30, 35 & 40 (m/s) 

Density 0.6679, 1.263 & 998.2 (kg/m3) 

Pipe Information 

Length 177 (cm) 

Diameter 4.52 (cm) 

Material Aluminum 
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4.5. Results and discussion 

The outcome of our research points to primary phase flow as being the key driver in increases 

of erosion rates. Figure 4.3 shows erosion rate distribution occurring near a bend for different rates 

of inlet flow. As can be seen, the primary phase water and solid particles are 200 𝜇m, and the 

diameter of the pipe is 4.52 cm. Figure 4.4 illustrates erosion rate distribution for primary phase 

Methane at 200 𝜇m and a pipe with a diameter of 4.52 cm. In Fig. 4.5, we can see erosion rate 

distribution occurring near a bend for different rates of inlet flow. In this figure, the primary phase 

Ethane at 200 𝜇m and the pipe has a diameter of 4.52 cm. If water forms the primary phase, 

Methane and Ethane have a volume fraction of 0.02 and 0.05, respectively, but if Methane forms 

the primary phase, Methane and water have a volume fraction of 0.05 and 0.02, respectively. 

 
Velocity 20 (m/s)  

Velocity 25 (m/s) 

 
Velocity 30 (m/s) 

 
Velocity 35 (m/s) 

 
Velocity 40 (m/s) 

Fig. 4.3. Distribution of erosion rates for bends when the primary phase is water at 

different inlet flow rates at 200 (𝜇m). 
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Velocity 20 (m/s) 

 
Velocity 25 (m/s) 

 
Velocity 30 (m/s) 

 
Velocity 35 (m/s) 

 
Velocity 40 (m/s) 

Fig. 4.4. Distribution of erosion rates for bends when the primary phase is Methane at 

different inlet flow rates at 200 (𝜇m). 

 

 
Velocity 20 (m/s) 

 
Velocity 25 (m/s) 



49 
 

 
Velocity 30 (m/s) 

 
Velocity 35 (m/s) 

 
Velocity 40 (m/s) 

Fig. 4.5. Distribution of erosion rates for bends when the primary phase is Ethane at 

different inlet flow rates at 200 (𝜇m). 

As mentioned previously, the main cause of increases in erosion rates appears to be primary 

phase flow. Furthermore, if the primary phase is a gas, the erosion rate is higher than when the 

primary phase is a liquid. The graph in Fig. 4.6 shows erosion rate distribution near a bend for a 

number of different rates of inlet flow. As can be seen, the measurements for primary phase as 

water, Ethane and Methane are 40 m/s, while the diameter of the pipe is 4.52 cm. If water forms 

the primary phase, the Methane and Ethane volume fraction is 0.02 and 0.05, respectively, but if 

Methane forms the primary phase, the Methane and water fraction is 0.02 and 0.05, respectively. 

 
Fig. 4.7. Comparison of erosion rates for different solid particles and primary phase flow 

rates. 
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For particle diameter changes, erosion rates remain relatively similar from 10 and 200 𝜇m 

for various inlet speeds. As shown earlier in Fig. 13, this effect is comparable to impact 

mechanisms that can happen in the processes of impaction, rebounding and deposition. At speeds 

of around 25 m/s, particles measuring approximately10 𝜇m result in erosion rates of ~ 70-100 𝜇m. 

These rates of erosion begin to decrease, however, at inertia approaching 200 𝜇m. For speeds of 

around 20 m/s, the erosion rate increases near 70 𝜇m, followed by a decline near 100 𝜇m, followed 

by a second increase near 200 𝜇m. Interestingly, tiny particles (smaller than 10 𝜇m) have higher 

rates of erosion (likely caused by higher impact angles) and are more influenced by turbulence and 

diffusion. On the other hand, larger particles (e.g., 100-200 𝜇m), being more affected by gravity 

and inertia, cause greater erosion of walls [27]. Figures 25 to 27 provide details on these 

mechanisms. 

 

Fig. 4.8. Comparison of erosion rate per impact particle against particle diameter and inlet 

flow velocity for larger inlet velocities of 20, 25, 30, 35 and 40 m/s, with water as a 

primary phase. 
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Fig. 4.9. Comparison of erosion rate per impact particle against particle diameter and inlet 

flow velocity for larger inlet velocities of 20, 25, 30, 35 and 40 m/s, with Methane as 

a primary phase. 

 
Fig. 27. Comparison of erosion rate per impact particle against particle diameter and inlet 

flow velocity for larger inlet velocities of 20, 25, 30, 35 and 40 m/s, with Ethane as a 

primary phase. 

Figure 4.10 shows particle size under various speeds influencing erosion rates at ethane 

forms a primary phase. For every speed, beginning with 20 m/s and increasing to 40 m/s, maximum 

rates are 200 𝜇m for all velocities. From the same figure, we can also see that, at speeds of 20-40 
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m/s, erosion rates of around 10 𝜇m are greater compared to those at around 70-100 𝜇m. From this, 

we can conclude that faster speeds lead to greater erosion.  

 
Fig. 4.10. Comparison of erosion rates at different velocities and solid particle diameters of 

10, 70, 100 and 200 (𝜇m). 

Figure 4.11 depicts how pipe diameter affects erosion rates with ethane as a primary phase. 

As can be seen, for parameters of 40 m/s and 200 𝜇m, there is a decrease in erosion rate with 

expansion of pipe diameter size (here, from 4.52 to 7.5 cm). However, in pipes with diameters 

exceeding 7 cm, there is a reversal in the correlation of pipe diameter and erosion rate. Specifically, 

for pipe diameters of 8.52 to 10.52 cm, the impact is relatively slight; however, as the diameter 

further increases, the rate of erosion becomes constant, and pipe-wall erosion declining as pipe 

diameter increases. 
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Fig. 4.11. Effect of pipe diameter on erosion rates at a velocity of 40 m/s and particle size of 

200 (𝜇m). 

The mechanisms affecting carrier fluid viscosity and erosion rate are not well known. We 

use a model which posits the occurrence of pipeline erosion from various speeds and for particles 

of around 200 𝜇m. The model also posits lower rates of erosion in pipelines when the viscosity is 

greater. Figure 4.12 charts the model for increasing levels of viscosity (from 9.29E-6 mPa.s 

to1.37E-3 mPa.s). As can be seen in the figure, higher levels of viscosity result in higher rates of 

erosion. Researchers in [30] noted only slightly higher rates of erosion for 9.29E-6 mPa.s to1.37E-

3 mPa.s settings of increases in viscosity. The researchers suggested in [32] that both particle shape 

(e.g., spherical) and size played a role in their results. 
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Fig. 4.12. Effect of viscosity on erosion rates at a velocity of 40 m/s and particle size of 200 

(𝜇m). 
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Conclusions 

A CFD model combined with DPM was employed in this study as a means to measure and 

predict the flow erosion of particle-laden water. It was also used to measure and predict flow-

induced displacement for relief pipeline downstream from bends. Simulations using a variety of 

factors (particle size, particle matter, velocity, carrier phase viscosity, pipe diameter, and total flow 

rate of the second phase) were performed using k-epsilon (k-ε), k-omega (k-ω) and (sst) turbulence 

models to measure the effects of factors such as inlet flow rates and pipe diameter. The results of 

the simulations led the researchers to support two key conclusions:  

When determining a pipeline’s distribution erosion or maximum number of erosions, the k-ε 

model performs better than the k-ω or sst models. 

Erosion can increase according to particle diameter. Specifically, particle diameters of 10 𝜇m 

can result in erosion in excess of 70 to 100 𝜇m for velocities of 30 to 35 m/s. 

Furthermore, due to the asymmetrical flow fields which occur in bends, there is an uneven fluid 

force impacting both the external and internal elbow walls, causing curve displacement in the pipes. 

Maximum displacement occurs near the outlet of the pipe, increasing in response to increased flow 

rates and/or decreased pipe diameter. The most extreme erosion areas are at elbows positioned 

downstream from bends, as this is the main impinging region for particles. Bigger rates of inlet flow 

lead to greater rates of erosion, but erosion rates can be mitigated by using larger pipe diameters. 
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