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Abstract

Surplus production models provide simple analytical methods of assessing fish pop-

ulations by taking the annual biomass, the growth rate and the carrying capacity

into account. However, these simple models may not adequately reflect fish stock

dynamics that can be substantially more complex with age and length specific birth,

growth, and death processes at play. To account for this, process errors can be in-

cluded in the production model in a state-space modelling framework, which is used

frequently in ecological modelling in recent years. In this study, we compare the sen-

sitivity of estimators of state-space and conventional non-linear production models

(without process errors) using both the traditional case deletion diagnostic method

and the local influence analysis method introduced by R.D. Cook, 1986 [12]. We

apply these diagnostics to different fish stocks to assess how estimated parameters

respond to small perturbations of the data.
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Lay summary

Fishing supports billions of people worldwide and it is important to catch fish in

a way to promote the long-term survival of fish and the people who rely on them.

Overfishing may cause a reduction of the amount of fish available and eventually

there will be not much fish left to catch in the future. Therefore, management agen-

cies provide guidelines on how much fish can sustainably be caught. Scientists use

customized mathematical and statistical models and fit them to the data available to

decide on sustainable harvest strategies. In this research, we examine models com-

monly used to provide harvest advice. We focus on the traditional way of estimating

models and also a more modern state-space approach. We examine how the critical

outputs from each approach change when we make minor changes to the inputs of

the models. We compare the sensitivity of the models using two methods for five

real data sets. Results from our research show that for some data the state-space

approach shows less sensitivity than the traditional method.
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Chapter 1

Introduction

Stock assessments play a vital role in fisheries science and management. A stock is

a subpopulation that is reproductively isolated, and in which immigration/emigra-

tion only play a minor role in stock productivity. Information obtained from stock

assessments helps fisheries management agencies make decisions and regulations to

maintain a sustainable and profitable fishing industry [23], [21]. With stock assess-

ments, fisheries scientists try to build the most precise model to fit the data they

have. These models range from simple to very complex, depending on the type of

data used. In this study, we investigate Surplus Production Models (SPMs). They

are a simple and widely used stock assessment model. To fit SPMs and estimate

model parameters, we only need a time-series of the total catch each year and an

index which reflects the total weight of the fish population (biomass).

Over the last couple of decades, the state space framework has increasingly been

used to fit SPMs. These State Space Models (SSMs) are becoming popular among

fisheries scientists because they can account for both the measurement error associ-

ated with the data and the process error associated with the model of the population

dynamic [5]. Since both conventional and state space versions of SPMs are available,

it is useful to identify a better model to apply for a stock assessment. One consid-

eration when deciding which model to use is robustness. An aspect of robustness

we study is sensitivity to changes made to input data. Therefore, we investigate

the sensitivity of some commonly used SPMs by making changes to input data and
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examining the effects of these changes on important model outputs. We first apply

the traditional case deletion diagnostic method to survey indices, analyze them for

influential cases and compare diagnostic results for both contemporary and state-

space SPMs. We also use the case weight local influence (CWLI) method (Cook,

1986 [12]) to compare diagnostic results for CSPM’s and SSPM’s. We also compare

these CWLI results with the case deletion results to better understand the corre-

spondence between the methods. Finally, we apply the local influence technique to

find influential observations in the annual catch data.

1.1 Fish stock assessment models

Humans have been fishing as a way of life for thousands of years [19]. As an industry,

it provides the direct livelihood for over 250 million people worldwide and more than

one billion people supply their animal protein needs from fish [2]. However, human

activities are increasingly disturbing delicate marine ecosystems, reducing the size of

some fish stocks. Overfishing is one of the main reasons for the observed changes and

decades of over-exploitation of fish stocks have caused a depletion in the catch over

the years [11]. Therefore, sustainable fishing methods were introduced by fisheries

management organizations over the past decades, which require reliable and accurate

information about fish stocks to make decisions and regulations. Fisheries scientists

help them to this end by providing the information through conducting assessments.

Simply, “stock assessments involve understanding the dynamics of fisheries” (

Hilborn et al., 1992) [23]. These assessments consist of multiple steps: creating a

meaningful database, analyzing these data with proper models, projecting short or

long-term fish stock size and fishery catches, determining long-term stock targets and

estimating the short and long-term effects of different harvest strategies on stock size

and fishery catches [29].

Scientists use multiple methods when gathering information about a particular

type of fish stock. They collect information using research ships as well as commercial

fishing vessels. These data include biological (age and length of fish) and commercial

data (total landing and catch per effort) [29]. Fisheries scientists then use this
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information to build a database and analyze the data using customized statistical

models. These models provide a simplification of a very complex fishery system to

help estimate population changes over time in response to fishing and to predict

future growth in response to management actions.

Fitting the most precise model with the data available is extremely challenging

because, in most situations, the underlying data are noisy and have substantial

measurement errors. We can construct models that fit our data very closely by

adding many parameters; however, that does not mean the model will give good

predictions of the fishery system. We want parsimonious models that fit the data

well in light of the measurement errors in the data, but they should not over-fit the

data and capture data measurement errors as part of the fishery system. The models

used in stock assessment are relatively simple ones and cannot synthesize all the true

processes that drive fish stock dynamics over time.

Production models and structural models are the two primary types of modelling

techniques used in fish stock assessments. Which technique to use depends on the

availability of data. To fit production models (also known as biomass dynamic models

or surplus production models), a time-series of the total catch each year and an index

of relative stock abundance are sufficient. We can use structural models if biological

data are also available for the fish stock, which typically consist of the age and size

composition of the stock. Therefore, structural models generally are more complex

than production models. However, in this study, we only focus on production models,

further discussed in Chapter 4.

SPMs contain two submodels: the process model which describes how the popu-

lation biomass changes over time, and the observation model that explains how an

abundance of index observations relates to biomass predictions of the model [42].

The basic process model is,

Bt+1 = Bt + f(Bt)− Ct, (1.1)

where Bt is the biomass (e.g weight in tonnes) of the fish stock at the starting period

t, f(Bt) is the surplus production as a function of biomass (we discuss this in detail
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in Section 4.1), and Ct is the fishing catch in period t. Basically, in SPMs the current

biomass is the addition of new fish to the previous time periods’ population biomass

minus the amount of fish removed from the population due to natural mortality and

fishing.

Since we do not have a way to estimate the population biomass directly, we use

the following observation model to estimate parameters of the model in 1.1,

It = qBt, (1.2)

where It is an index of abundance and q is the catchability coefficient, which is

thought of as a measure of availability of a fish stock to the fishing or survey pro-

cess used to generate the indices [18]. We also assume that Ct/Et is an index of

abundance, such that,

It =
Ct
Et

= qBt, (1.3)

where Et is the fishing effort producing the catch in period t and Ct and q are the

same as described earlier. In this model, we have the assumption that catch rates

are linearly related to stock biomass.

A simple difference equation for the process model 1.1 is [23],

Bt+1 = Bt + rBt(1−Bt/K) − Ct, (1.4)

where r is the population growth rate, K is the carrying capacity and Ct, Bt are as

described earlier. In this model we assume a constant population growth rate (r), and

a carrying capacity K (discussed in detail in Chapter 4), and that the population is

closed (no immigration and emigration). To estimate model parameters, we consider

the errors (εt) associated with the observation model. These errors are normally

distributed with mean 0 and variance σ2,

It = qBt exp(εt), (1.5)

where εt
iid∼ N(0, σ2). We use maximum likelihood estimation to estimate unknown
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parameters r, K, q, σ and the initial biomass, B0, and the estimation method is

discussed in detail in Section 4.2.1. Here we assume that the random errors are only

associated with observational model 1.3 and that the process model (state equation)

1.1 is deterministic. These random errors are also called observation errors and they

are made while collecting data. These types of models are called observation error

models and they are commonly used in fisheries population modelling [31], [23], [28].

In reality the process model 1.1 also consists of errors because of the variability

in recruitment (the amount of fish added to the exploitable stock each year due to

growth [1]), and natural mortality. Therefore, some fisheries scientists (e.g. Breen,

1991 [6]) have considered process-error models and they assumed that the random

errors occur only in the state-equation and that observations are deterministic to

given states. The process model with errors is,

Bt+1 = {Bt + rBt(1−Bt/K) − Ct} exp(γt), (1.6)

where γt are the error and γt
iid∼ N(0, σ2

γ).

Many scientists prefer the observation error method over process error method if

they have to use a single method. Polacheck et al., 1993 [31] noted that observation

error estimators are superior to process-error estimators when analyzing real data

sets because process-error estimates have higher variance than of observation error

estimates. They also suggested to use the process-error approach in simulation stud-

ies since process-error estimators gave less variable estimates for the parameters in

their simulation studies [31].

However, these assessment models may be unreliable to study the dynamics of

fish populations since they only use one error structure (observation error or process

error). Hence, ecologists have more recently preferred to use state space models

rather than conventional models to address this issue. A better understanding about

the dynamics of a fish population can be obtained from these state space models (e.g.

[37], [35], and [26]). SSMs can describe changes in the unobservable states of the

population biomass and how the observed data relate to the unobservable states [30].

Also, SSMs allow scientists to model both the variations in population dynamics and
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observation models. For example, we can use the observation model in Eq. 1.3 and

the process model in Eq. 1.1 to fit the state space surplus production model. We

discuss state space models in detail in Chapter 3 and the estimation of state space

surplus production models in Chapter 4.

With the introduction of software ADMB by Fournier et al., 2012 [17] and R

package TMB by Kristensen et al., 2015 [27], the use of SSMs has increased sub-

stantially in fisheries stock assessments [3]. These packages use the Laplace approx-

imation to obtain the marginal likelihood of fixed effects parameters when random

process errors and other random effects are integrated out of the model joint likeli-

hood (see Section 3.2).

1.2 Outline of the thesis

In Chapter 2, we discuss the most commonly used influence measures in statistics.

We give illustrative examples for most of these measures and compare some of their

results. We also discuss the local influence method introduced by Cook, 1986 [12]

and an extension of this approach (Cadigan and Farrell)[8].

In Chapter 3, we give a brief introduction to the state space framework and

we discuss the open source R package, the Template Model Builder (TMB), which

has been designed to estimate nonlinear models containing random effects. Using

a simple linear regression example, we illustrate the steps of using this package. In

Chapter 4, we discuss both contemporary and state space SPMs and their estimation

in detail, using the TMB package.

In Chapter 5, we present the diagnostics and results of our analysis. For this

study, we use real data obtained from five different fish stock assessments for redfish,

Greenland halibut, megrim, yellowtail flounder, and anglerfish. We first compare

traditional case deletion diagnostics results with case weight local influence (CWLI)

diagnostics results for selected parameters. We then compare CWLI diagnostics

results with SSMs and contemporary SPMs. Finally, we compare local influence

diagnostic results for catch observations. In Chapter 6, we give the summary of the

study.



Chapter 2

Sensitivity

2.1 Analyzing the sensitivity of a model

There are many models available for stock assessments, and we should always ex-

amine their accuracy as well as reliability using sensitivity analysis. A sensible ap-

proach in fisheries studies is to investigate how important model outputs react when

we modify the inputs of the model. Usually, there are critical parameter estimates

or functions of parameter estimates that are considered important. If these critical

results change significantly when inputs are changed, then we need to be cautious

when interpreting those models results. Better model formulations could be consid-

ered that provide more robust and hopefully, reliable estimates.

We first illustrate influence concepts using the familiar multiple linear regression

model,

Y = Xβ + ε, (2.1)

where Y is the n × 1 response vector, X is the n × p covariate matrix, β is the

p× 1 parameter vector and ε is the n× 1 error vector with elements εi : i = 1, ..., n

and the εi’s are assumed to be independent and normally distributed with mean

zero and known variance σ2. There are numerous ways of measuring the influence

on both estimated parameters (β̂) as well as predicted values (ŷ) for a linear model
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like this. Chatterjee and Hadi, 1986 [10] classified these measures into five groups:

residuals, prediction matrix, the volume of confidence ellipsoids, influence functions,

and partial influence. Before considering these measures in detail, we need first to

discuss the concepts of outliers and leverage points. For illustration purposes, we

created a hypothetical data set using the linear model Y = 1 + 10X + e, where

e ∼ N(0, 5).

2.1.1 Distinction Between Outliers and High Leverage Ob-

servations

a. Outliers

If an observation does not follow the general trend in the data, we call it an

outlier. In some situations, we can identify such observations easily by plotting

data. To illustrate this, we added the point “O” to the hypothetical data set

and plotted the data in Figure 2.1 The point “O” is an outlier because it lies

significantly away from the rest of data. It is a data point that deviates from

the general trend of the data. We can also use numerical methods to identify

outliers in our data, and we will discuss a couple of these methods in the next

section.

b. Leverage points

If a data point lies far away from the rest of the data along the X-axis (or has

an extreme x value), it can be considered a leverage point. These points can

affect the slope of the regression line by dragging it towards them from the

mass of the data. In Figure 2.2, we added the point “L” to the data set; it is

a leverage point because it forces the regression line to tilt towards itself. The

plot (b) in Figure 2.2 shows the change in the regression line with and without

“L”.
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Figure 2.1: Illustration of an outlier. Left: Scatter plot of the values of Y versus the corresponding
values of X. Right: Best fitted regression lines with (red-dotted line) and without (blue line) the
point “O”.
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Figure 2.2: Illustration for a leverage point. Left: Scatter plot of the values of Y versus the cor-
responding values of X. Right: Best fitted regression lines with (red-dotted line) and without (blue
line) the point “L”.
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2.1.2 Traditional measures of identifying influential points

in linear regression

Next, we discuss the influence measures described in Chatterjee and Hadi, 1986 [10].

1. Residuals

This is one of the earliest methods for detecting a data anomaly in a model. If

an observation has a much larger residual value than the rest of data, we can

think of that observation as an outlier. The least squares residual for the ith

observation is,

ei = yi − xiβ̂, (2.2)

where β̂ is the least squares estimate for β and ei is the difference between the

ith response and its model prediction. Since ei values highly depend on the

unit of measurement, in practice we use “studentized residuals” (ti’s),

ti =
ei√

MSE(1− pi)
, and (2.3)

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (2.4)

where MSE is the mean squared error, and pi is the ith diagonal element of

the prediction matrix (P )

P = X(XTX)−1XT . (2.5)

In addition to Eq. 2.3, we also use a scaled version of ei in Eq. 2.2, the
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“standardized residuals” (e∗),

e∗ =
ei√

σ̂2(1− pi)
(2.6)

where σ̂2 is the mean squared residual estimate of var(εi) = σ2 and ei, pi are

as described earlier. We can find σ̂2 as,

σ̂2 =
eT e

n− p,

where n and p are dimensions of Y and β in Eq. 2.1, respectively.

We can determine whether an observation is an outlier or not using its ti value.

As a rule of thumb, |ti|′s > 2 are identified as outliers. As an example, the ti

value of point “O” in Figure 2.1 is 3.13. Once we identify a data point as an

outlier, it is important to check if the point has an undue influence on the model.

This is because some outliers may influence the regression parameter estimates

while others may not. For example, the point “O” in Figure 2 does not seem

to affect the slope of the regression greatly. Plot (b) in Figure 2.1 shows the
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Figure 2.3: Left: Scatter plot of the values of Y versus the corresponding values of X. Right: Best
fitted regression lines with (red-dotted line) and without (blue line) the point “N”.
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fitted regression lines with and without the outlying point “O”, and the slopes

are almost identical. However, for some outliers, this will not be the same. For

example, we added the point “N” to our hypothetical data set shown in Figure

2.3 and we can see it is an outlier (|ti| = 3.21) but, unlike “O”, it influences

the estimated regression line. We can visually identify this by observing at the

plot (b) in Figure 2.3. The slope changes by a noticeable amount when we refit

the regression line without “N”. Therefore, the assessment of residuals may

help to identify outliers, but this alone is not enough to identify an influential

observation in data. This is because an observation we identify as an outlier

may not always be influential, as we discussed earlier. To distinguish these two

situations, we need to understand more about the concept of leverage, which

is discussed in the next section.

2. Prediction matrix

The diagonal elements (pi’s) of the prediction or projection matrix (P ) given in

Eq. 2.5 are important when identifying leverage points. This is because pi’s give

the amount of leverage of yi on the corresponding value ŷi. As Chatterjee and

Hadi, 1986 [10] described, if an observation has a larger pi, then it has higher

leverage on the fitted regression line. The leverage effect increases when an

observation is remote from the rest of the data in X space. Recall the outlying

point “N” in Figure 2.3. It has more influence on the regression parameters

than the outlier “O” in Figure 2.1 because “N” also has a leverage effect since

it is remotely placed along the X axis. In Figure 2.2, point “L” is an example

of a high leverage point, since it is an isolated point in the covariate space,

and it has a high influence on the regression parameters, as shown in plot (b).

However, every leverage point is not always influential. Point “B” in Figure

2.4 is far away from the rest of the covariate observations, but it does not have

high leverage because it follows the general trend of the rest of the data.

A summary of what we have discussed so far can be given as follows: a data

point can be influential on model parameter estimates if it has an outlying
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response value, a high leverage point in the covariate space, or both of these

qualities.
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Figure 2.4: Best fitted regression lines with (red-dotted line) and without (blue line) the point “B”.

3. The volume of confidence ellipsoids

Confidence intervals for regression parameters change significantly when the

data have outliers or leverage points. As an example, in Figure 2.5, we con-

structed the joint 95% confidence ellipse for the parameters in the simple linear

regression models shown in Figure 2.1 and 2.2 using the R package “Ellipse”

[15]. The red and green ellipses in Figure 2.5 represent the joint confidence

ellipses for the slope and intercept parameters in fitted regression models with

and without the outlier “O” and leverage point “L”. The areas of these ellipses

are significantly different and these figures demonstrate that there is some as-

sociation with confidence intervals and influential points. Chatterjee and Hadi,

1986 [10] described a few statistics we can use to measure the influence of an

observation on model parameter estimates by studying the volume of the con-

fidence ellipsoids. A confidence ellipsoid is the generalization of a confidence

interval to more than one dimension. Confidence ellipsoid diagnostics compare

the volume of the confidence ellipsoids with and without the ith observation
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Figure 2.5: Joint confidence ellipses for slope and intercept parameters with and without outlying
observation “O” and leverage point “L”. Left: confidence ellipses for data in Figure 2.1. Right:
confidence ellipses for data in Figure 2.2.

from the model. Some other diagnostics that have been proposed are: the

Likelihood Distance (LDi), Andrews-Pregibon Statistic (APi), Covariance Ra-

tio (CV Ri), and Cook-Weisberg Statistic (CWi). Among these, the Likelihood

Distance is important for us in this study because we use an extension of LDi,

the Likelihood displacement (LD(ω)) by Cook and Weisberg, 1982 [13] as the

main analytical method. Usually, the Likelihood distance is defined as

LDi = 2[L(β̂)− L(β̂(i))], (2.7)

where L(β̂) and L(β̂(i)) are the log likelihoods evaluated at β̂ (with all the

observations) and β̂(i) (without the ith observation). Although all the influence

measures discussed earlier are strictly numerical, this LDi is based on the

probability model used, which is an important characteristic of LDi. There is

also a relationship between likelihood distance and the asymptotic confidence

region, which is given as {β : L(β̂)− L(β) ≤ χ2
α,p+1}, where χ2

α,p+1 is the upper

α point of the chi-squared distribution with (p+1) degrees of freedom [10]. Since

the likelihood displacement may be more computationally expensive, Cook and



15

Table 2.1: Likelihood distance measures for the data in Figure 2.1. LDi: likelihood distance when
ith observation is omitted from the model.

Obs. No. X Y LDi

1 10 19.80 0.11
2 11 22.06 0.07
3 12 25.11 0.05
4 13 24.79 0.06
5 14 27.86 0.05
6 15 30.48 0.04
7 16 33.66 0.04
8 17 33.92 0.05
9 18 35.66 0.05
10 19 38.06 0.06
11 20 38.21 0.17
12 15 53.00 574.77

Weisberg, 1982 [13] introduced the following formula to calculate the LDi for

linear regression models.

LDi = N log

[(
N

N − 1

)
N − p− 1

t∗i +N − p− 1

]
+

t∗i (N − 1)

(1− pi)(N − p− 1)
− 1, (2.8)

where N is the total number of observations, p and pi are the rank and the ith

diagonal element of the prediction matrix P , and t∗i is the studentized residual

of the ith observation. The t∗i is calculated using the formula,

t∗i =
ei√

MSE(i)(1− pi)
, (2.9)

where MSE(i) is the mean squared error calculated when the ith observation

is deleted from the model. As an illustration, we calculated LDi values for

the data in Figure 2.1, and they are summarized in Table 2.1. The 12th case

clearly has the highest LDi, (LD12 = 574.77), and the second largest is case

11, (LD11 = 0.17). This indicates that case 12 is an influential case. Also, it is
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the same outlying data point we identified in Figure 2.1 as “O”.

4. Influence functions

Hampel, 1974 [22] proposed influence functions as a more structured way to

assess the influence of an observation. This has led to an alternative class of

influence measures because, essentially, the influence function is a functional

derivative taken with respect to the input probability distribution. The basic

form of the influence function (IFi) is

IFi = (xi; yi;F ;T ) = lim
ε→0

T [(1− ε)F + εδxi,yi ]− T [F ]

ε
, (2.10)

where T (.) is a statistic obtained from a random sample of the CDF F and

δxi,yi = 1 at (xi, yi) and 0 otherwise. The influence function (IFi) measures

the influence on T of adding one observation (xi, yi) to a very large sample.

However, for a finite sample, approximations of the influence functions in Eq.

2.10 are used. The three most commonly used methods are: the empirical

influence curve, sample influence curve, and sensitivity curve [10].

Empirical Influence Curve (EIC)

The EIC is obtained by replacing F in Eq. 2.10 by the empirical distribution

function, F̂ , based on the full sample. Let F̂(i) be the empirical distribution

function when the ith observation is omitted. We can substitute F̂(i) for F and

β̂(i) (estimate of β when the ith observation is omitted) in Eq. 2.10 and get the

EIC,

EICi = (N − 1)(XT
(i)X(i))

−1xTi (yi − xiβ̂(i))

= (N − 1)(XTX)−1xTi
ei

(1− pi)2
.

(2.11)

Sample Influence Curve (SIC)
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If we omit the limit in Eq. 2.10 and take F = F̂ , T (F̂ ) = β, ε = −1/(N − 1),

we get the SIC,

SICi = (N − 1)(XTX)−1xTi (yi − xiβ̂(i))

= (N − 1)(XTX)−1xTi
ei

(1− pi)
.

(2.12)

Sensitivity Curve (SC)

The SC is based on substituting F = F̂(i) and T (F̂(i)) = β(i), ε = −1/N ,

SCi = N(XTX)−1xTi
ei

(1− pi)
. (2.13)

Influence curves are usually vectors because there are usually multiple param-

eters of interest. Therefore, it is useful to consider the norm of the influence

function so that observations can be arranged in a meaningful way. The class

of norms which are location/scale invariant is,

Di(M ; c) =
(IFi)

TM(IFi)

c
(2.14)

where M is a symmetric, positive (semi-)definite matrix and c is a positive

scale factor. A large value of Di(M ; c) indicates that the observation i has a

strong influence on the estimated coefficients relative to M and c.

We commonly use Cook’s distance (Ci), Welsch-Kuh distance (WKi), Welsch’s

distance (Wi), and Modified Cook’s distance (C∗i ) as distance measures to

identify influential observations in data sets. The basic idea behind all these

methods is to delete a particular case (ith), refit the regression model for the

remaining (n − 1) cases, and then compare the new regression model results

with the original regression model results. We can also obtain these distance

measures by modifying M and c values in the influence curves described above.

A summary of the distance measures is given below.

Cook’s Distance (Ci)
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In Eq. 2.14, if we replace IFi by SICi, M by XTX, and c by (n− 1)2pS2, we

obtain

Ci = Di(X
TX; (N − 1)2pσ2)

=
(e∗i )

2

p

pi
(1− pi)

,
(2.15)

where e∗i ’s are standardized residuals, and p and pi’s are the trace and the

diagonal elements of the prediction matrix P, respectively. Ci can also be

written as,

Ci =
(Ŷ − Ŷ(i))

T (Ŷ − Ŷ(i))

p MSE
, (2.16)

where Ŷ(i) = Xβ̂(i) is the vector of predicted values when Y(i) is regressed on

X(i) (Y(i) and X(i) are vectors of Y and X where the ith observation is deleted).

The Ci directly summarizes how much all the fitted values change when the

ith case is omitted. If a data point has a large Ci value then it is an indication

that the point influences the fitted values. In practice, observations with Ci

values greater than the 10th percentile of the F-distribution (Fp,n−p) are taken

as potentially influential cases.

Welsch-Kuh Distance (WKi)

If we replace IF = SICi, M = XTX, and c = (N − 1)S2
(i) in 2.14 we get

WKi = |t∗i |
√

pi
1− pi

, (2.17)

where t∗i ’s are studentized residuals and pi’s are diagonal elements of the predic-

tion matrix. Vellerman and Welsch, 1980 [38] suggested that if an observation

has a WKi value greater than one or two, then that observation has the po-

tential to be an influential observation.

Welsch’s Distance (Wi)
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Table 2.2: Influence measures based on the Influence function for the data in Figure 2.3. ci: Cook’s
distance, mci: modified Cook’s distance, wki: Welsch-Kuh distance, wi: Welsch’s distance

Obs. No. X Y ci mci wki wi

1 10 20 0.17 -1.32 -0.59 -2.27
2 11 22 0.07 -0.83 -0.37 -1.37
3 12 25 0.02 -0.37 -0.17 -0.60
4 13 25 0.03 -0.55 -0.25 -0.86
5 14 28 0.01 -0.27 -0.12 -0.42
6 15 30 0.00 -0.11 -0.05 -0.17
7 16 34 0.00 0.12 0.05 0.18
8 17 34 0.00 -0.03 -0.01 -0.05
9 18 36 0.00 0.04 0.02 0.07
10 19 38 0.01 0.30 0.13 0.51
11 20 38 0.00 0.02 0.01 0.04
12 11 42 1.15 19.93 8.91 32.86

This statistic is based on replacing IF = EICi, M = XT
(i)X(i), and c = (N −

1)S2
(i) in Eq. 2.14,

Wi =
t∗i

1− pi

√
(N − 1) pi, (2.18)

where N is the number of observations, t∗i and pi are defined above. The Wi

is related to WKi, Wi = WKi

√
N−1
1−pi , and Wi has higher sensitivity to pi than

WKi. Therefore, Wi is a better tool than WKi to capture any influential

observations caused by the effect of leverage.

Modified Cook’s Distance (C∗i )

As a modification to Ci in Eq. 2.15, we can use c =
√

p
n−pS

2
(i) and obtain

C∗i = |t∗i |

√
(N − p)

p

pi
(1− pi)

, (2.19)

where t∗i , p, pi and N are described above. There is a relationship between

C∗i and WKi, because C∗i = WKi

√
N−p
p

. The modified Cook’s distance was
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introduced by Welsch and Kuh, 1977 [41], and it can highlight potential influ-

ential cases better than Ci. These influence measures are illustrated in Table

2.3 using the data shown in Figure 2.3. Cook’s distance does not identify case

12 as influential, whereas the other measures do.

5. Partial influence

The methods discussed in the previous section were based on the assumption

that we have an equal interest in all the regression parameters (β) in the model.

However, there are some situations where we may want to find how an obser-

vation can affect one or several model parameters separately. For example, in

a model with nuisance parameters, we will often not be primarily interested in

the influence of the nuisance parameter estimates.

An observation might have a moderate influence on one or several regression

parameters while having a large amount of influence on other parameters. In

this case, there is a possibility of losing some important information using

influence measures based on all parameters. Therefore, it is important to check

partial influence in multiple linear regression models. Chatterjee and Hadi,

1986 [10] discussed a few of the most commonly used partial influence measures.

A modified version of the influence measure suggested by Cook in Eq. 2.15 can

be used to measure the influence of the ith observation on the jth parameter

(Dij) as,

Dij =
t2

(1− pi)
wij

W T
j Wj

, (2.20)

where Wj = (I −P[j])Xj, P[j] = X[j](X
′
[j]X[j])

−1X ′[j] (prediction matrix without

the jth independent variable), X[j] denotes n× (p− 1) matrix from X with Xj

removed, and wij the ith element of Wj.

Added variable plots also help to identify partial influential points in multiple

regression models (Velleman and Welsch, 1981) [38]. Suppose we want to fit
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the model,

Y = X[j]β +Xjθj + ε, (2.21)

where β is a (p− 1)× 1 vector. If we multiply this model by (I − P[j]) we get,

(I − P[j])Y = (I − P[j])Xjθj + (I − P[j])ε, (2.22)

and note that (I − P[j])X[j] = 0. Let Rj and Wj are the residual vectors when

Y and Xj are regressed on X[j], respectively [10]. They are given as,

Rj = Wjθj + ε∗, (2.23)

and,

Wj = (I − P[j])Xj. (2.24)

We take the expectation of Eq. 2.23, and obtain E(Rj) = Wjθj, which suggests

that a plot of Rj vs Wj will be linear through the origin. Also, the residuals

from the multiple regression model in Eq. 2.21 and the residuals from the

simple regression model in Eq. 2.23 are identical. Therefore, these plots can

be used to identify potential data points which affect individual coefficients

because, in general, the scatter of the points will give an overall idea of the

strength of the relationship. Therefore, points which lie well away from the

rest of the data may be influential in determining the magnitude of parameter

estimates [10].

We have described many influence measures that are available based on case

deletions. However, it is not advisable to use case deletion diagnostic meth-

ods all the time because in some situations deleting a case may lose valuable

information provided by the observation. Cook, 1986 [12] proposed another

combined approach of assessing the local influence of minor perturbations of
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a statistical model based on likelihood and elementary ideas in differential ge-

ometry. This local influence method is described in the next section.

2.1.3 Local Influence analysis

Cook’s local influence analysis

This method is partially motivated by the form of Cook’s statistic in Eq. 2.16,

Di = ||Ŷ − Ŷ(i)||/pσ2, (2.25)

where Ŷ and Ŷ(i) are n × 1 vectors of fitted values based on the full data and data

without the ith observation, respectively, and p is the dimension of the vector of

unknown parameters, θ. We refer to the ith observation of the response variable yi

and the associated explanatory variables xi as the case we want to examine. To

obtain Ŷ(i), we need the re-estimated parameters without the ith case, named β̂(i).

We can minimize the “weighted mean squared error” (WMSE) of the linear model

to obtain the β̂(i). The WMSE of the linear model given in Eq. 2.1 is,

WMSE(β, w) =
1

n

n∑
i=1

wi(yi − xiβ)2, (2.26)

where w is a n × 1 vector of weights, given by, w = (w1, . . . , wn)′. We then set the

ith element of the weight vector to zero (wi = 0) and estimate model parameters by

minimizing the WMSE above.

Although the case deletion method is widely used in sensitivity analysis, the

diagnostics only allow us two possibilities. Cook, 1986 [12] noted them as 1) the case

specifies the model as it is or 2) the case does not follow the model (or is totally

unreliable). It is also interesting to examine the impact of a change in a case weight

(other than zero) to parameter estimates of a model. Cook, 1986 [12] suggested the

following slightly modified version of Eq. 2.25,
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Di(w) = ||Ŷ − Ŷw||/pσ2, (2.27)

where Ŷw is the vector of fitted values obtained when the ith case has weight wi where

i = 1, . . . , n. Although we can assign any value to the weight (w), we need to choose

it carefully so that the application is sensible.

Let L(θ|ω) denote the log-likelihood corresponding to the perturbed model for

a given ω in an open subset Ω of Rn. Assume that there is also an ω0 in Ω such

that L(θ) = L(θ|ω0) for all θ. Finally, let θ̂ and θ̂ω, denote the maximum likelihood

estimators under L(θ) and L(θ|ω), respectively, and assume that L(θ|ω) is twice

continuously differentiable in (θT , ωT ), where ω is a k × 1 vector. It is interesting

to examine the influence of changing ω throughout its domain Ω. Cook, 1986 [12]

suggested the use of the “likelihood displacement” given in the following form to

assess the influence,

LD(ω) = 2[L(θ̂)− L(θ̂ω)]. (2.28)

We can use LD(ω) as a measure of influence and also as a measure of checking the

model’s adequacy. Using this likelihood displacement LD(ω) and the perturbation

scheme ω, we can construct an influence graph. When we have only one perturbation

scheme (k = 1), the graph of LD(ω) vs. ω is a plane curve. When k = 2 the influence

graph is a 3-dimensional surface. However, when k > 2 visualization of the influence

graph is complicated.

Therefore, Cook, 1986 [12] proposed the normalized curvature of the influence

graph to measure the influence, which is the geometric surface formed by the values

of the vector,

α(ω) =

[
ω

LD(ω)

]
(k+1)×1

=

[
α1

α2

]
(k+1)×1

, (2.29)

where ω can reflect any well-defined perturbation scheme in Ω of Rn. α(ω) is a



24

(k + 1) × 1 vector and α1 is a k × 1 vector. When k = 1, α(ω) reduces to a plane

curve and the curvature of such a plane curve is,

C = |α̇1α̈2 − α̇2α̈1|/(α̇2
1 + α̇2

2)3/2, (2.30)

where α̇i and α̈i are the first and second derivatives evaluated at ω0. Since

α̇1 =
∂ω

∂ω
|ω=ω0 = 1, α̈1 = 0 and α̇2 =

∂LD(ω)

∂ω
|ω=ω0 = 0,

from Eq. 2.30, the curvature is,

C = |α̈2| = |L̈D(ω0)|. (2.31)

Although it is not easy to characterize the influence graph over the full range of Ω,

it is easier to characterize the behavior in the neighbourhood of a specific value for ω.

Therefore, Cook, 1986 [12] focused on the behaviour of the influence graph around the

null perturbation (ω0) using the geometric normal curvature, where L(θ) = L(θ|ω0).

He referred to this as the study of “local influence”. Let ω be defined as a function of

h (∈ R1) and a straight line in Ω passing through ω0; ω(h) = ω0 +hd, where d is the

direction vector of length one, and h is the scalar which determines the magnitude

of the perturbation scheme. From Eq. 2.31, we can derive the normal curvature in

the direction d as,

Cd = |L̈D{ω(h)}|, (2.32)

where L̈D{ω(h)} is the second order derivative of the likelihood displacement func-

tion in Eq. 2.28 with respect to h, which is,

∂2LD{ω(h)}
∂h2

. (2.33)

We can further evaluate the curvature along the direction d using the chain rule

in differentiation as,

Cd = 2|dT F̈ d|, (2.34)
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where ||d|| = 1, F̈ is a k×k matrix with elements ∂2L(θ̂ω)/∂ωl∂ωj, l = 1, 2, ..., k (see

Appendix A.1 for the derivation). Since we do not have a direct method to evaluate

F̈ , we simplify it using the chain rule in differentiation as,

F̈ = JT L̈J, (2.35)

where −L̈ is the observed information matrix for the original model (at ω = ω0) and

J is the p× k matrix with elements ∂θ̂iω/∂ωj, i = 1, 2, ..., k.

L̈ =


∂2L(θ)/∂θ1∂θ1 ... ∂2L(θ)/∂θ1∂θp

...
. . .

...

∂2L(θ)/∂θp∂θ1 ... ∂2L(θ)/∂θp∂θp


θ=θ̂

J =


∂θ̂1ω/∂ω1 ∂θ̂1ω/∂ω2 . . . ∂θ̂1ω/∂ωk

...
...

. . .
...

∂θ̂pω/∂ω1 ∂θ̂pω/∂ω2 . . . ∂θ̂pω/∂ωk


To evaluate J , we use the fact that

∂L(θ|ω)

∂θj

∣∣∣∣
θ=θ̂ω

= 0.

Differentiating both sides with respect to ω and evaluating at ω0, L̈J = ∆, where

∆ij =
∂2L(θ|ω)

∂θi∂ωj
. (2.36)

Hence,

F̈ = ∆T (L̈)−1∆. (2.37)

Therefore, the curvature (Cd) is

Cd = 2|dT F̈ d|. (2.38)
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Let Cmax be the maximum eigenvalue of F̈ and let emax be the eigenvector for

Cmax. Cook, 1986 [12] suggested that a large value of Cmax is an indication of

a serious local problem, and if the ith element in emax is relatively large, special

attention should be paid to the element being perturbed by ωi [32].

Local influence first order approach

The likelihood displacement influence measure is focused directly on estimated pa-

rameter values (θ̂), although in many situations it is not only the parameters them-

selves that are of interest, but also some function of the parameter estimates or a

forecast of the data may be the prime interest. Cadigan and Farrell, 2002 [8] sug-

gested a more general approach to local influence analysis which can be evaluated

directly using numerical methods rather than deriving analytic expressions, which

may be quite complex in any event and difficult to understand without computing

the analytic results. Cadigan and Farrell, 2002 [8] assumed that the problem in-

volved the estimation of a p × 1 parameter vector θ by maximizing a fit function

F (θ) that is twice differentiable in θ and yields unique interior parameter estimates.

The estimate of θ, denoted as θ̂, is the solution to

Ḟ ˆ(θ) =
∂F (θ)

∂θ

∣∣∣∣
θ=θ̂

= 0.

They considered a perturbation vector ω with dimension k × 1 in the form ω =

ω0 + hd, where ω0 is the null perturbation, d is a fixed direction vector of length 1

and h is a scalar that determines the magnitude of the perturbation. The main focus

of their estimation was an arbitrary function of parameter estimates (g(θ̂)). Also,

their interest was to assess the influence for the perturbed result gω(θ̂ω) which they

assumed to be a first-order differentiable function in h and θ. Here gω depends on ω

not only through θ̂ω, which is another difference from Cook’s, 1986 [12] Likelihood

Displacement method. Cadigan and Farrell, 2002 [8] referred to their method as a

First order approach. They measured the influence of a perturbation using the slope
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in the direction d, denoted as S(d), of the influence graph of gω versus ω(h),

S(d) =
∂gω(θ̂ω)

∂h

∣∣∣∣
h=0

= d′
∂gω(θ̂ω)

∂ω

∣∣∣∣
h=0

. (2.39)

Using the chain rule, S(d) can be decomposed into more simple derivatives,

S(d) = d′
{
∂gω(θ̂)

∂ω

∣∣∣∣
ω=ω0

+
∂θ̂′ω
∂ω

∣∣∣∣
ω=ω0

∂g(θ)

∂θ

∣∣∣∣
θ=θ̂

}
,

where

∂θ̂ω
∂ω

∣∣∣∣ = −F̈−1∆, (2.40)

F̈ =
∂2F (θ)

∂θ∂θ′

∣∣∣∣
θ=θ̂

,

∆ =
∂2Fω(θ)

∂θ∂ω′

∣∣∣∣
θ=θ̂,ω=ω0

, (2.41)

These results can be used to provide a relatively simple formula for S(d),

S(d) = d′ġ0, (2.42)

where ġ0 is

ġ0 =
∂gω(θ̂)

∂ω

∣∣∣∣
ω=ω0

−∆F̈−1∂g(θ)

∂θ

∣∣∣∣
θ=θ̂

. (2.43)

Cadigan and Farrell, 2002 [8] noted a couple of advantages of using their influence

diagnostics method. For some models with high dimensional parameters (θ) and

perturbation schemes (ω), the evaluation of perturbed parameter estimates (θ̂ω) is

difficult. We can avoid this problem with the preceding method, since we can obtain

ġ0 without evaluating θ̂ω. The evaluation of ∆ in Eq. 2.41 is also difficult, since

it involves computing k × p number of differentiations. However, we only need to

compute F̈ once, because all the influence measures share a common F̈ .
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S(d) can be used to compute the slope of the influence surface in a variety of

directions. The direction that corresponds to the maximum slope of the influence

surface is of particular interest. Perturbations with large absolute elements in smax

are relatively influential. The maximum slope (S(smax)) can be computed as,

S(smax) =
√

(ġ′0ġ0), (2.44)

and then smax = ġ0/S(smax). In our study, we also find the local slope as a percent

of full sample estimates (g(θ̂)) which we denote as pSmax. We can use pSmax as a

scale-free measurement to compare the influence for each case.

Let the least squares of the linear model in Eq. 2.1 be the fit function F (β),

F (β) =
n∑
i=1

(yi − xiβ)2.

We can perturb this least squares function using the weights w1, . . . , wn and write

the perturbed fit function F (β, w),

F (β, w) =
n∑
i=1

wi(yi − xiβ)2.

We write the likelihood displacement of the fit function caused by the perturbed

parameter estimates,

LD = 2{F (β̂)− F (β̂w)},

where β̂ and β̂w are parameter estimates for full model and perturbed model. LD is

conceptually the same as the likelihood displacement in Eq. 2.28. We can use Cook’s

method to assess the influence of the function LD. The slope of the LD-influence

curve in the direction d is,

S(d) = −d′∆′F̈−1x. (2.45)



Chapter 3

State Space Models (SSMs) and

Template Model Builder (TMB)

3.1 State space models

The state space model also called the dynamic linear model, was introduced by

Kalman, 1960 [24] and Kalman and Bucy, 1961 [25]. In the early years, the method

was primarily used for aerospace-related research by engineers. Later, the method

was applied to modelling data from engineering, economics, medicine, ecology, and

social sciences by statisticians.

Since SSMs can incorporate both the measurement error associated with sam-

pling methods and biological (or process) variation of an ecological system, scientists

increasingly use SSMs to model ecological systems [5], [30]. Buckland et al. [7] de-

scribed how they used a SSM to model the dynamics of wild animal populations.

They claimed that the flexibility of the method allowed them to incorporate the

stochastic variation of the processes. Wang [40] noted that most of the field measure-

ments of ecological variables suffer from human errors and inefficiency of equipments.

Therefore traditional statistical inferences may not give accurate results. Address-

ing this, Wang [40] described the importance of using both measurement errors and

process errors when modelling the dynamics of a population.
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The state space model (SSM) framework includes most of the linear models in-

cluding the classical and Box-Jenkins models. Therefore, an SSM is an omnibus

model classification for most time series models. It can also represent a latent vari-

able model, since the underlying structure of an observed series may be modeled

through unobservable latent variables.

For example, consider xt, which is the observed time series where t = 1, ..., n.

Suppose we have a random variable wt which is a vector of d number of terms,

wt = (w1t, ..., wdt)
′ and xt is a function of wt. We call wt the vector of state variables.

Like xt, this vector (wt) also varies with t, but unlike xt, we do not observe wt. Let

α = (α1, ..., αd)
′, a vector of parameters and the observation equation is

xt = α′wt + εt, (3.1)

where εt is an independent and identical white noise sequence with zero mean and

variance σ2
w. We have defined the observed variable in terms of the latent or un-

observed variables in this model. The second part of SSM is the state equation.

To define this, let η = (η
(1)
t , ..., η

(m)
t ) be the iid random vector with mean zero and

covariance matrix Σ = diag(σ2
1, ..., σ

2
n). Let Φ, K be d × d and d ×m matrices of

parameters. The state equation is,

wt = Φwt−1 +Kηt. (3.2)

This looks like an AR(1) type model in which wt is modelled by wt−1 and ηt are

errors. Also, we have an error coefficient (K) in this case and Φ is basically the

autoregressive parameter. We can also assume that the εt (error in the observation

equation) and ηt (error in the state equation) are mutually independent and both

are independent of w1 (first state variable). It is commonly assumed that εt, and ηt

are normally distributed.

A common feature in fishery models is that current stock biomass is related to last

year’s biomass. The use of SSMs in fish stock assessment has increased in recent years

because of their ability to handle process errors in population dynamics models and
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observation errors in fishery catch and survey time series data. State space models for

fisheries can be fitted through a combination of two stochastic processes. Usually, the

state equation contains a stochastic process of population dynamics. As described

earlier, this consists of the biomass in the year t as a function of biomass in the year

t − 1 and the new addition to the biomass because of the new recruitment of fish

as well as the body growth of fish in the population in the last year. However, the

catches or different survey indices (or CPUE-catch per unit effort series) are taken

as the observed variables for the state space model (Miller and Meyer, 2000) [28]. In

Chapter 4, we will describe a state space surplus production model in detail.

3.2 Template Model Builder (TMB)

One of the most critical and challenging tasks in computational statistics is to calcu-

late derivatives of high-dimensional functional matrices or fit functions, including the

log-likelihood. With the efforts of scientists and with the advancement of computers,

many computer algorithms and packages are available to overcome this challenge.

Automatic Differentiation (AD) (Griewank, 2000 [20]) is a technique that computes

derivatives of a function given as a computer algorithm. This technique was later

adapted for statistical software through packages like ADMB by Fournier et al., 2012

[17] and Ceres Solver by Agarwal and Mierle, 2013 [4].

To estimate surplus production models we use R package TMB ( Template Model

Builder ) ( https://github.com/kaskr/adcomp) by Kristensen et al., 2015 [27]. This

package is capable of evaluating first, second, and possibly third-order derivatives.

Kristensen et al. [27] described a few of the advantages of using TMB over ADMB:

faster run times, capability to handle very high-dimensional problems (up to 106

random effects), automatic calculation of the gradient vector and hessian matrix for

parameters, the use of external libraries, and there is no use of temporary files on

the disk. A notable feature of the TMB package is that it automatically integrates

out random effects in mixed-effects models (see below for example) using the Laplace

approximation when it evaluates the marginal likelihood [27].

https://github.com/kaskr/adcomp
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Let us consider how to implement TMB with an example of fitting a linear re-

gression model for the response variable y and predictor variable x. The regression

model is,

yi = a+ bxi + εi, (3.3)

where a, b are intercept and slope coefficients, respectively, ε is the error variable

and εi
iid∼ N(0, σ2). In the C++ template we need to provide the function to evaluate

the negative log likelihood for yi. The distribution of yi is yi ∼ N(a + bxi, σ
2). The

joint probability density function for y1, y2, . . . , yn is,

n∏
i=1

p(yi|xi; a, b, σ2) =
n∏
i=1

1√
2πσ2

e−
(yi−(a+bxi))

2

2σ2 , (3.4)

and the negative log-likelihood is,

L(a, b, σ2) = log

[ n∏
i=1

p(yi|xi; a, b, σ2)

]
= −n

2
log(2π)− nlog(σ)− 1

2σ2

n∑
i=1

(
yi − (a+ bxi)

)2

.

(3.5)

The first step to find the MLE’s of a, b, and sigma using TMB is to write the

C++ template,

#include <TMB.hpp>

template<class Type>

Type objective_function<Type>::operator() ()

{

DATA_VECTOR(Y);

DATA_VECTOR(x);

PARAMETER(a);

PARAMETER(b);

PARAMETER(logSigma);
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ADREPORT(exp(2*logSigma));

Type nll = -sum(dnorm(Y, a+b*x, exp(logSigma), true));

return nll;

}

For most models, the C++ syntax used in the first four lines and the last line

are standard. Many TMB functions have been designed to mimic R functions and

syntax. The data used in the model are declared by the line DATA VECTOR(),

the parameters are declared by the line PARAMETER(), and the log density

for a normal distribution is provided by the function dnorm, similar to R. The

ADREPORT() macro reports an expression (scalar, vector, matrix or array valued)

back to R with derivative information and typically used to obtain point estimate

and standard deviation of the expression. After finishing the user template, we can

use R to compile, link, evaluate, and optimize this model using the TMB package.

The R code for the corresponding model is,

library(TMB)

compile("linreg.cpp")

dyn.load(dynlib("linreg"))

set.seed(123)

data <- list(Y = rnorm(10) + 1:10, x=1:10)

parameters <- list(a=0, b=0, logSigma=0)

obj <- MakeADFun(data, parameters, DLL="linreg")

obj$hessian <- TRUE

opt <- do.call("optim", obj)

opt$par

opt$hessian ## <-- FD hessian from optim

obj$he() ## <-- Analytical hessian

sdreport(obj)

The first line loads the TMB package. The next two lines compile and link the

user template. The line data ← list(y = ...) creates a data list for passing to
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MakeADFun. We must assign the same names for the data components in this list

as the DATA VECTOR names in the C++ user template. The values assigned

to the components of parameters are used as initial values during optimization. The

line that begins obj ← MakeADFun defines the object obj containing the data,

parameters and methods that access the objective function and its derivatives.

In the ninth line we use the standard R optimizer optim to minimize the obj$fn

aided by the gradient obj$gr and starting at the point obj$par. The last line is

used to calculate the standard deviations of all model parameters. We can obtain

estimated parameters using the code opt$par (See Appendix A.2 for outputs of the

model). In the following section, we discuss how to estimate parameters when we

have random effects in our model.

We commonly denoted random effects in a state space models by a vector Γ,

Γ = (ε1, . . . , εn, η1, . . . , ηn)′

where εi’s and ηi’s are random errors from observations and state equations in Eq.

3.1 and Eq. 3.2, respectively. Also, fixed effects parameters are denoted by the

vector θ. Since we are using the TMB package to estimate parameters of our SSMs,

we need to provide the joint negative log-likelihood of the data and random and

fixed effects in the C++ source code. We cannot directly estimate fixed effects

parameters, particularly variance parameters, when random effects are included in

the joint likelihood function. It is better to estimate fixed effects by maximizing the

marginal likelihood by integrating out random effects from the likelihood function.

This method is usually known as the marginal likelihood estimation method. Let

S denote the set of all data, i.e., CPUE indices and catches, used in the model. The

marginal likelihood is,

L(θ) =

∫∫∫
Γ

fθ(S|Γ)gθ(Γ)∂Γ (3.6)

where fθ(S|Γ) is the probability density function (pdf) of the data conditional on

the random effects Γ and gθ(Γ) is the joint pdf for the random effects Γ. Note that
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fθ(S|Γ)gθ(Γ) is the joint pdf of S and Γ. There are two main steps to use TMB for

maximum marginal likelihood estimation. First, the user needs to provide the C++

computer code to calculate fθ(S|Γ) and gθ(Γ). The calculation of the integration

in Eq. 3.6 and the calculation of Γ required for the Laplace approximation are

provided by TMB in R. The random effects Γ can be predicted by maximizing the

joint likelihood, fθ(S|Γ)gθ(Γ) [9]. TMB uses automatic differentiation to evaluate

the gradient function of Eq. 3.6 and in the Laplace approximation. The gradient

function is produced automatically from fθ(S|Γ) and gθ(Γ). This greatly improves

parameter estimation using a derivative-based optimizer. We also use the nlminb()

function within R (R Core Team, 2014 [33]) to find the MLE for θ.

3.3 Laplace Approximation

The Laplace approximation is a technique used to numerically approximate integrals

and is very accurate for certain types of integrals. It is the approach used in TMB

to find the solution for marginal likelihoods. Let Yn = (y1, y2, ..., yn)′ be the vector of

n number of observations, τ = (λ1, λ2, ..., λq)
′ be the vector of latent random effects,

and let θ = (θ1, θ2, ..., θm)′ be the vector of parameters (fixed effects). We write the

joint negative log likelihood for data, and random and fixed effects as,

l(θ;Yn, τq) = log{fYn|τq=x(y1, . . . , yn)fτ (x)}.

The joint density function is,

fYn|τq=x(y1, . . . , yn)fτ (x) = fYn,τq(Yn = y, τq = x).

We can write the marginal density of Yn as,

fYn(y) =

∫∫
· · ·
∫
fYn,τq(Yn = y, τq = x)dx1, ..., dxq

=

∫∫
· · ·
∫
fYn|τqfτqdx1, ..., dxq,

(3.7)
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where fYn|τqfτq = exp(l(θ;Yn, τq)). The Laplace approximation is based on a second

order Taylor series expansion of l(θ;Yn, τq) around the mode of τ . Let τ̂θ be the value

of τ that maximizes the joint likelihood evaluated at the observations when θ fixed

such that,

τ̂θ = maxτ l(θ;Y, τ).

Note that ∂l(θ;Yn=y,τ)
∂τ

|τ=τ̂ = 0. Therefore,

l(θ;Y, τ) ≈ l(θ;Y, τ̂) + (τ − τ̂)′H(θ)(τ − τ̂),

where H(θ) = ∂2l(θ;Y,τ)
∂τ∂τ ′

|τ=τ̂ , is a q × q matrix.

The marginal likelihood of θ is,

L(θ;Y ) =

∫∫
· · ·
∫
exp{l(θ;Y, τ)}dτ

≈
∫∫
· · ·
∫
exp{l(θ;Y, τ̂θ) + (τ − τ̂)′H(θ)(τ − τ̂)}dτ

= L(θ;Y, τ̂θ)

∫∫
· · ·
∫
exp{(τ − τ̂)′H(θ)(τ − τ̂)}dτ

= L(θ;Y, τ̂θ)(2π)n/2Det{H(θ)}−1/2

(3.8)

Finally, the Laplace approximation of l(θ;Y ) is

l(θ;Y ) ≈ l(θ;Y, τ̂θ)−
1

2
log[Det{H(θ)}] +

n

2
log(2π).

The hessian matrix, H, is evaluated by CppAD using TMB. Using the AD and

Laplace approximation greatly simplifies the parameter estimation of hierarchical

models. The TMB user only needs to specify the joint log-likelihood function. TMB

uses the Cholesky decomposition of H(θ); therefore, the Laplace approximation is

well defined only if H(θ) is positive definite.

In a R session, we read the data, dynamically link the C++ function template,

set up the initial values for θ, specify the random effects, and optimize the objective
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function. TMB automatically provides a standard error report for θ̂, and also any

differentiable function of θ, φ(θ) that the user specifies, by using the delta method

[27].



Chapter 4

Surplus Production Models

(SPMs)

Two main types of models are available for fish stock assessments. The first is surplus

production models, which are a less complex type of model because of the simplicity

of the data used. Such models only use information on the total (i.e., aggregated over

all sizes and ages) catch each year and an aggregated index of the stock size. The

second type are structural models, which are more complex because they use more

structured data on the fish stock, such as data on the age or length of the fish. In

this chapter, we investigate the sensitivity of some important outputs from surplus

production models. We measure sensitivity by quantifying the impact of changes in

data inputs on model outputs. We investigate the sensitivity of the contemporary

surplus production model compared to its state space version to examine if there are

differences among these modelling approaches. We are also interested in comparing

the traditional case deletion diagnostics with the local influence diagnostics intro-

duced by Cook, 1986 [12]. We compare diagnostics for real data sets obtained from

five different fish stocks assessments.

It is first useful to present some important terminology from fishery science, and

we start with “carrying capacity”. Figure 4.1 shows the behavior of a fish population

over time. We can identify three main phases in the figure. Phase 1 is the initial stage
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when there are not much fish in the sea; hence, the population size increases slowly.

At the beginning of the second phase, the population grows at an increasing rate and

at the middle stage the population has the fastest growth rate. In the later part of the

second phase, the population is growing but at a decreasing rate. In the last phase,

the population growth slows down and eventually reaches an equilibrium. This is

mainly because food and habitat space become scarce and then the death rate equals

the birth rate. The population size in this stage is called the “carrying capacity”.

We can simply say that the carrying capacity (K) is the highest population size this

environment can fit.

Time

P
op
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at

io
n 

S
iz

e

phase 1 phase 2 phase 3

carrying capacity

Figure 4.1: Fish population growth over time

The maximum sustainable yield (MSY) is another important concept in fish stock

assessment. MSY refers to the largest average catch that can be sustained over a

long period by keeping the stock at a level which produces the maximum annual

population growth. Often, the MSY is about half of the carrying capacity (MSY =

K/2). Fisheries management agencies use MSY as a valuable tool to guide fishing

regulations to maintain a healthy fish population by avoiding overharvesting. This

also helps to sustain a profitable fishing industry. Scientists use MSY concepts to

study harvested populations and to determine biological reference points. In fisheries
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stock assessments, “biological reference points” are reference values used to measure

the status of a stock from a biological perspective [14].

Let B denote the stock biomass, which is the total weight of fish in the stock. Let

BMSY be the stock size which would produce the maximum sustainable yield (MSY )

of the stock. Similarly, let H denote the harvest rate and HMSY be the harvest rate

that produces the MSY. It can be shown for the Schafer’s surplus production model

that BMSY = K/2, and HMSY = r/2. The harvest rate is the ratio between the

catch and the biomass (H = C/B). Here, the catch (C) is the biomass of the stock

taken by fishing.

An important focus of fish stock assessments is to estimate the current size of

the stock (Bcurrent) and the current harvest rate (Hcurrent). Using these values, we

can estimate the status of the stock, which is often defined in terms of the ratios of

the current value and the respective MSY values. The current status of the stock

biomass is given by,

Bstatus = Bcurrent/BMSY .

Similarly, the current status of the harvest rate is Hstatus = Hcurrent/HMSY . These

status values are important because they can be used to guide management actions.

For example, if Bcurrent/BMSY < 1, this means the stock biomass in the last assess-

ment year is less than BMSY , and in this case, the fishery should not harvest the

MSY catch in the short-term.

Estimation of most stock assessment models requires some kind of index of abun-

dance (I) to provide information about the trend in stock abundance over time.

Catch per unit effort (CPUE) data is commonly used as an index of abundance for

some species. CPUE is the number of fish caught per unit of effort from an area over

some time. CPUE can be obtained from both commercial catches and scientific sur-

veys. Generally, commercial CPUE is the number or weight (biomass) of fish caught

by an amount of effort. The effort is a combination of gear type, gear size, and length

of time the gear is used. However, in a scientific trawl survey, CPUE is taken as the

average catch per tow. A common assumption for these indices of abundance is that
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they are only influenced by changes in abundance. That is, changes in the index

of abundance are proportional to changes in the actual stock abundance, and vice

versa. The relationship between an index of abundance and true abundance can be

written as,

It = qBt (4.1)

where It is the index of relative abundance at time t, Bt is the population biomass

at time t, and q is the catchability coefficient which is the portion of a stock caught

by a single unit of fishing effort. The time t is usually measured in years.

4.1 Surplus production models

Surplus production models are simple and widely used fish stock assessment models.

They are commonly called production models or biomass dynamic models because

the behavior or the dynamics of the stock is described in terms of age-aggregated

total biomass rather than the numbers at age. The following conceptual equation is

a simple way of expressing the change of biomass from one time period to the next

if we ignore immigration and emigration.

next biomass = last biomass+ recruitment+ growth− catch− natural mortality,
(4.2)

where recruitment is the addition of newborn fish to the population, growth is the

increase in biomass due to the body size growth of fish from last year, catch is the total

biomass of fish taken due to fishing in the period, and the natural mortality is the

number of fish that die from causes other than fishing. We can combine recruitment

and growth into a single term called production, in the absence of fishing.

next biomass = last biomass+ production− catch− natural mortality. (4.3)

The difference between production and natural mortality is referred to as surplus
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production,

next biomass = last biomass+ surplus production− catch. (4.4)

This model formulation is known as the surplus production model [23].

4.2 Schaefer’s production model

Schaefer’s production model (Schaefer, 1954 [34]) is the most widely used surplus

production model in fish stock assessments. The model is based on the following

differential equation,

dB(t)

dt
= rB(t)

(
1− B(t)

K

)
− C(t), (4.5)

where B(t) is the biomass of the stock at time t, r is an intrinsic rate of population

growth, K is a parameter that corresponds to the unfished equilibrium stock size

(carrying capacity), and C(t) is the catch measured as a rate (e.g., tons per time)

[23].

A simple differenced equation approximate solution to Schaefer’s original model

(Eq. 4.5) is often used (e.g. Walters and Hilborn, 1976 [39]),

Bt+1 = Bt + rBt

(
1− Bt

K

)
− Ct, (4.6)

where Bt is the biomass at time t, r, and K have the same meanings as in Schaefer’s

original model and Ct is the catch during the time t.

4.2.1 Schaefer’s contemporary production model

We make a modification to the production model given above (Eq. 4.6) by dividing

both sides by K. Let Pt = Bt/K, and an alternative version of the production model

is,

Pt+1 = Pt + rPt(1− Pt)− Ct/K. (4.7)
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We refer to this model as the “Contemporary surplus production model” and all

the analyses conducted in this chapter are based on this model and its state space

version. We are mainly interested in estimating the following parameters: initial

biomass B0 (or initial production P0), intrinsic growth rate r, and carrying capacity

K.

Parameter estimation : Schaefer’s contemporary production model

In most situations, we do not get direct estimates for population biomass (Bt) to

estimate surplus production model parameters r and K. However, surveys often

provide an index (Eq. 4.1) of stock biomass. Usually, we assume that the catches

are measured without errors, and they are considered as fixed covariates. Further,

we assume that the model given in Eq. 4.7 has no process error and all of the error

assumed to be occurring in the relationship between stock biomass (Bt) and the index

of relative abundance (It). This is referred to as the “observational error approach”.

The common statistical observation equation is,

It = qBt exp(εt), (4.8)

where exp(εt) are the residual errors which are assumed to be log-normally dis-

tributed where εt ∼ N(0, σ2). In this situation σ2 reflects survey variance and other

variations related to how well the survey covers the stock range. Many surveys occur

approximately at mid year and in this case we use the observation equation,

It = qB(t+ 1
2

) exp(εt).

We get the mid year biomass B(t+ 1
2

) by simply averaging two adjacent year’s biomass,

B(t+ 1
2

) =
Bt+1 +Bt

2
.

The residual of the log index is et = log(It)− log(E(It)), where E(It) is the expected

value of the index It. Since we are using the production function in the form of
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Eq. 4.7 (where, Pt = Bt/K), we can express the expected value of the index as

E(It) = E(qKP(t+ 1
2

) exp(εt)) ≈ qKP(t+ 1
2

), where P(t+ 1
2

) is the mid year production

P(t+ 1
2

) = Pt+1+Pt
2

and K is the usual carrying capacity.

Next, we discuss how to use TMB to estimate parameters for Schaefer’s contem-

porary surplus production model described above. We use annual catch data and

CPUE data for northern Namibian hake obtained from Polachek, 1993 [31]. As the

first step, we need to enter the production model given in Eq. 4.7 into the C++ user

template and invoke the model using the TMB package in R. The full C++ source

code is given in Appendix A.3. However, for illustration purposes, we discuss a few

important parts of the code below.

We declare data using key words DATA VECTOR (reals) or DATA IVECTOR

(integers) and parameters are declared using the key word PARAMETER(),

DATA_IVECTOR(year);

DATA_VECTOR(C);

DATA_VECTOR(index);

.

.

.

PARAMETER(log_r);

PARAMETER(log_K);

PARAMETER(log_q);

PARAMETER(log_Po);

PARAMETER(log_sd_log_index);

It is often difficult to reliably estimate all the production model parameters and q.

Long time-series with high levels of contrast in catch relative to MSY and survey

indices are necessary to reliably estimate parameters. In practice Po is assumed to be

one, particularly for stocks that were known to be only lightly harvested before the

first year of assessment data. Rather than making this strict assumption, we use a

‘prior’ distribution on Po in which the user sets E(log(Po)) and var(log(Po)). Hence,

subjective uncertainty about Po can be included in model inferences. This prior
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distribution is included as a negative loglikelihood component. Below, we write the

negative log likelihood for initial production Po. Similar to R, in C++ the function

dnorm also provides the density for a normal distribution. E log Po is the mean

of the log of initial production and sd log Po is its standard deviation.

nll -= dnorm(log_Po,E_log_Po,sd_log_Po,true);

The contemporary surplus production model given in Eq. 4.7 is declared as,

P(0) = exp(log_Po);

for (i=1;i<n;i++){

P(i) = (P(i-1) + r*P(i-1)*(one - P(i-1)) - C(i-1)/K);

}

log_P = log(P);

log_B = log_K + log_P;

The mid year production P midy and harvest rate H can be found as follows,

for (i=0;i<n-1;i++){

P_midy(i) = half*(P(i)+P(i+1));

}

int ln=n-1;

Type Pnp1 = (P(ln) + r*P(ln)*(one - P(ln)) - C(ln)/K);

P_midy(ln) = half*(P(ln)+ Pnp1);

log_P_midy = log(P_midy);

log_H = log_C - log_B;

H = exp(log_H);

Next we provide the code to find the expected log index value and the residual of

the log index.
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log_Eindex = log_q + log_K + log_P_midy(iyear);

vector<Type> resid = log_index - log_Eindex;

vector<Type> std_resid = resid/sd_log_index;

The negative log likelihood for the residuals of log index is,

nll -= (dnorm(resid,zero,sd_log_index,true)).sum();

The rest of the program produces report output;

REPORT(log_r);

REPORT(log_K);

REPORT(log_q);

REPORT(log_Po);

.

.

.

ADREPORT(log_B);

ADREPORT(log_H);

return nll;

}

Next, we discuss the R code for parameter estimation. In the first line we load

the TMB package into our R session and in the next two lines we compile and

link the C++ user template. The last line imports the data (created using other

R code) to the R working environment. The file tmb.RData includes a data frame

names tmb.data. Note that all the data components in tmb.data must have the same

names as the DATA VECTOR names in the C++ user template.

library(TMB)

compile("fit.cpp")

dyn.load(dynlib("fit"))

load("tmb.RData")
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Next, we provide initial values for all the parameters which are to be estimated.

For log q’s we need to assign multiple values according to the number of indices

(from different surveys or commercial CPUE from different fleets) available for the

study. In this example we have only one index (CPUE); therefore, we only assign

one value. The initial values for parameter estimates are given as,

parameters <- list(

log_r = log(0.4),

log_K = log(2700),

log_q = log(1/1000),

log_Po = log(1),

log_sd_log_index = log(0.3)

)

The TMB template only returns the nll. Estimation is performed using a R function

minimizer. We prefer to use nlminb(). Minimization is often improved using sensible

lower and upper bounds on parameter values that prevents optimizers from straying

into infeasible parameter space or extreme regions of the parameter space where

the nll surface may be nearly flat and cause the optimizer to diverge. We provide

appropriate upper and lower bounds for those parameters which need to be estimated.

parameters.L <- list(

log_r = log(0.3),

log_K = log(2000),

log_q = -Inf,

log_sd_log_index = log(0.01))

parameters.U <- list(

log_r = log(0.5),

log_K = log(5000),

log_q = Inf,

log_sd_log_index = log(1))
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The line that begins obj <- MakeADFun defines the object obj containing the

data, parameters and methods that access the objective function and its derivatives.

obj <- MakeADFun(tmb.data,parameters,DLL="fit",

inner.control=list(maxit=100,trace=T)).

Finally, we use the nlminb R optimizer to minimize the objective function obj$fn

aided by the gradient obj$gr and starting at the point obj$par.

opt<-nlminb(obj$par,obj$fn,obj$gr,lower=lower,upper=upper,

control = list(trace=0,iter.max=500,eval.max=1000)).

Below, the first line shows the convergence status of the optimization. The second

line contains the gradients at the optimized parameter estimates. The final line gives

the parameter estimates for the model.

opt$message

obj$gr(opt$par)

opt$par

A summary of the estimated parameters is given in the table below. Under the

column OE - Estimate, results obtained by Polacheck et al., 1993 [31] are given.

They used the maximum likelihood estimation method to estimate the parameters

and used observation error estimators approach to fit the surplus production model

(Eq. 4.6). We can see that most of the parameter estimates are similar in both

studies.

Table 4.1: Summary of parameters estimated using Schaefer’s contemporary surplus production
model for northern Namibian hake data.

Parameter TMB - Estimate OE - Estimate

r 0.3630 0.379

K 2824 2772.6

q 4.48 4.36

index log sd 0.1208 0.124
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4.2.2 State space formulation for Schaefer’s model

In this study we also use a state space version of Schaefer’s model based on the model

given in Eq. 4.7. The state equation of the model is,

Pt+1 = {Pt + rPt(1− Pt) −HtPt} exp(εt), (4.9)

where Ht = Ct/Bt is the harvest rate at time t and εt is the process error. This

process error vector εt is generated from an AR(1) stochastic process, εt = ϕεt−1 +γt,

where γt is independent and identically distributed, zero-mean normal vectors with

covariance matrix Σ [36], and ϕ is a scalar autocorrelation parameter that is common

to all elements of εt. The process errors have stationary distribution,

lim
t→∞

var(εt) =
σ2
ε

1− ϕ2
ε

, (4.10)

and the covariance and correlation between εt, εt−1 are,

Cov(εt, εt−1) =
σ2
εϕε

(1− ϕ2
ε)
, and Corr(εt, εt−1) = ϕε. (4.11)

We model the harvest rate Ht as a random walk,

log(Ht+1) = log(Ht) + δt, (4.12)

where δt is the log harvest rate deviation at time t and δ1, ..., δt
iid∼ N(0, σ2

δ ).

The state space observations equations are,

log(It)|Bt
iid∼ N(log(qBt), σ

2
I ), (4.13)

where It is the index of relative abundance at time t. Sometimes there may be

several survey indices available, or a combination of survey and CPUE indices. Dif-

ferent index catchability (q) parameters are estimated for each survey index, but the

measurement error variance (σ2
I ) may or may not be assumed to be the same for all

indices.
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Let Cpt denote the total model predicted catch,

Cpt = HtBt = HtKPt.

The log of the total model predicted catch is,

log(Cpt) = log(Ht) + log(Bt). (4.14)

The catch observation equation we use is,

log(Ct)|Bt;Ht
iid∼ N(log(Cpt), σ

2
C) (4.15)

where log(Ct) is the log of observed catch and σC is the standard deviation of the

log(Ct).

Parameter Estimation : State space surplus production model

We implement the model using TMB in R. In the C++ user template we formulate

the production model and error structures. As input data, we use time-series of

survey indices and aggregate catch data. We estimate variance parameters based

on the marginal likelihood in which the random effects have been integrated out.

We can predict the random effects based on the joint likelihood with fixed effects

parameters fixed at their MLE values. We denote the vector of all random effects

by Γ and fixed effects parameters by the vector θ. Fixed effects parameters are

estimated by integrating out the random effects from the joint density function of

the response indices and random process errors. This method is usually known as

the marginal maximum likelihood estimation (MMLE). Let S denote the set of all

data, i.e., CPUE, indices and catches, used in the model. Therefore the marginal

likelihood is

L(θ) =

∫∫∫
Γ

fθ(S|Γ)gθ(Γ)∂Γ (4.16)

where fθ(S|Γ) is the probability density function (pdf) of the data, conditional on
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the random effects, Γ, and gθ(Γ) is the joint pdf for the Γ random effects.

We fit the northern Namibian hake data from Polackeck et al., 1993 [31] to the

state space model described above. In the state space model there are extra variance

parameters to estimate that specify the distribution of these random effects, and

then the random effects may be predicted as we described above. Full C++ and R

codes can be found in Appendix A.4. However, here we use some sections of the code

to explain some important points we should consider when fitting the model and the

parameter estimation.

In addition to the parameters declared in the contemporary model, we add the log

of: initial harvest rate (Ho), standard deviation of harvest rate deviations (sd rw),

standard deviation of process errors (sd pe), process error (pe), harvest rate deviation

(H dev), and logit of process error auto-correlation (ar pe) to the state space C++

source code.

PARAMETER(log_Ho);

PARAMETER(log_sd_rw);

PARAMETER(log_sd_pe);

PARAMETER(logit_ar_pe);

PARAMETER_VECTOR(log_pe);

PARAMETER_VECTOR(log_H_dev);

vector<Type> pe = exp(log_pe);

The log of production model is,

for (i=1;i<n;i++){

log_H(i) = log_H(i-1) + log_H_dev(i-1);

H(i) = exp(log_H(i));

P(i) = (P(i-1)+r*P(i-1)*(one-P(i-1))-H(i-1)*P(i-1))*pe(i-1);

}

Above, the second line represents the harvest rate random walk given in Eq.

4.12. The next lines include the state equation of the state space model given in Eq.
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4.9. Therefore we have negative log likelihoods for catches, random walk deviations

for the log of the harvest rate, and process errors additional to the negative log

likelihoods for indices in the contemporary model.

// nll for catch;

vector<Type> resid_C = log_C - log_EC;

nll -= dnorm(resid_C,zero,sd_logC,true).sum();

// nll for random walk deviation in log_H;

nll -= dnorm(log_H_dev,zero,sd_rw,true).sum();

// nll for log_pe process errors;

i=0;

nll -= dnorm(log_pe(i),zero,sd_pe/sqrt(one - ar_pe*ar_pe),true);

for(int i = 1;i < n;++i){

nll -= dnorm(log_pe(i) - ar_pe*log_pe(i-1),zero,sd_pe,true);

}

In R, we first need to assign starting values for the parameters and their lower,

upper bounds.

parameters <- list(

log_r = log(0.36),

log_K = log(2800),

log_q = log(1/10),

log_Po = log(0.5),

log_Ho = log(0.1),

log_sd_rw = log(0.2),

log_sd_log_index = log(0.3),

log_sd_pe = log(0.1),

logit_ar_pe = log(0.50/(1-0.50)),

log_pe = rep(0,length(tmb.data$C)),
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log_H_dev = rep(0,length(tmb.data$C)-1)

)

parameters.L <- list(

log_r = log(0.2),

log_K = log(2000),

log_q = -Inf,

#log_Po = log(0.1),

log_Ho = log(0.0001),

log_sd_rw = log(0.01),

log_sd_log_index = log(0.01),

log_sd_pe = log(0.05),

logit_ar_pe = log(0.01/(1-0.01)))

parameters.U <- list(

log_r = log(0.5),

log_K = log(4271),

log_q = Inf,

#log_Po = log(10),

log_Ho = log(1),

log_sd_rw = log(2),

log_sd_log_index = log(1),

log_sd_pe = log(0.35),

logit_ar_pe = log(0.950/(1-0.950)))

We introduce the random effects to the model as,

rname = c("log_pe","log_H_dev")

and they are assigned to the random argument in MakeADFun, the objective

function,

obj <- MakeADFun(tmb.data,parameters,map=map,random=rname,DLL="fit",

inner.control=list(maxit=100,trace=T))
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The rest of the code is the same as in Schaefer’s contemporary surplus production

model parameter estimation, described in Section 4.2.1. A summary of the results

obtained for the parameter estimates is given in the following table. Under columns

OE - Estimate and PE - Estimate, we give the results obtained by Polachek et al.

[31] using the observation error approach and process error approach, respectively.

Table 4.2: Summary of parameters estimated using the state space version of Schaefer’s surplus
production model for northern Namibian hake data.

Parameter TMB - Estimate PE - Estimate OE - Estimate

r 0.346 0.304 0.379

K 2934 3448 2772

q 3.705 2.701 4.360

index log sd 0.0932 0.662 0.124

4.3 Case studies

We conduct five case studies in this practicum for data from: 3LN redfish, 3LNO

yellowtail flounder, Divisions 8c and 9a anglerfish, Greenland halibut, and Divisions

IVa and VIa megrim. A brief introduction to data and a summary of a few important

parameter estimates (r, K, Po, and sd log index) for each case study are also given.

4.3.1 Introduction to data and parameter estimates

Redfish

Data for this analysis are obtained from an ASPIC Based Assessment of Redfish

(S. mentella and S. fasciatus) in NAFO Divisions 3LN by A. M. Avila de Melo

et al. (2014) (document number: NAFO SCR Doc. 14/022). Annual catch data

are available for 1959 to 2013 and eight indices (CPUE, 3LN SPRG, 3LN FALL,

3LN RSSN, 3L WNTR, 3L SUMR, 3L FALL, and 3N SPNH) were used for this

study. In Figures 4.2 and 4.3, we plotted the catches and indices used for this study.
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Figure 4.2: Catch data(black line) are in 103 tonnes and indices are mean scaled values.
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Figure 4.3: Catch data(black line) are in 103 tonnes and indices are mean scaled values.
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Table 4.3: Critical parameter estimates and their coefficient of variations for redfish data using
contemporary and state space production models.

Parameter
Contemporary SSM

Estimate CV Estimate CV

r 0.2518 0.116 0.2303 0.424
K (000s) 415.4323 0.285 437.0644 0.446
Po 0.3689 0.434 0.6480 0.417
index sd 0.6273 0.231 0.5688 0.071

Figure 4.4: Production model for redfish data with a prior on Po: Biomass and exploitation rates
(H). Left: contemporary surplus production model, right: state space model.

Yellowtail flounder

Data for this analysis are obtained from the assessment of NAFO Div-3LNO Yel-

lowtail Flounder by Maddock Parsons et al. (document number: NAFO SCR Doc.

15/029). Catch data are available from 1965 to 2015 and four indices (Yankee, Rus-

sian, Spring, and Fall) were used for this study.
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In Figure 4.5 and 4.6, we plotted the catches and indices used for this study.
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Figure 4.5: Catch data(black line) are in 103 tonnes and indices are mean scaled values.
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Figure 4.6: Catch data(black line) are in 103 tonnes and indices are mean scaled values.

Table 4.4: Critical parameter estimates and their coefficient of variations for yellowtail flounder data
using contemporary and state space production models.

Parameter
Contemporary SSM

Estimate CV Estimate CV

r 0.5611 0.093 0.5440 0.101
K (000s) 0.1401 0.057 0.1421 0.084
Po 1.3911 1.372 0.7183 0.705
index sd 0.073 0.231 0.2761 0.074

Anglerfish

Data for this analysis are obtained from the ICES Working Group for the Bay of

Biscay and the Iberian waters Ecoregion (WGBIE) report 2016 in Divisions 8c and

9a. Catch data are available from 1981 to 2015. We also use Spanish and Portuguese

C, and F survey results as the indices.
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Figure 4.7: Production model for yellowtail flounder data with a prior on Po: Biomass and exploita-
tion rates (H). Left: contemporary surplus production model, right: state space model.
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Figure 4.8: Catch data(black line) are in 103 tonnes and indices are mean scaled values.
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Table 4.5: Critical parameter estimates and their coefficient of variations for anglerfish data using
contemporary and state space production models.

Parameter
Contemporary SSM

Estimate CV Estimate CV

r 0.2320 0.204 0.3528 0.711
K (000s) 0.0318 0.160 0.0234 0.726
Po 0.5995 0.020 0.6004 0.020
index sd 0.3929 0.077 0.2978 0.093

Figure 4.9: Production model for anglerfish data with a prior on Po: Biomass and exploitation rates
(H). Left: contemporary surplus production model, right: state space model.

Greenland halibut

Data for this analysis are obtained from the stock assessment carried out by North-

Western Working Group Ecoregion (NWWG) in sub areas 5, 6, 12, and 14 (Iceland

and Faroes grounds, West of Scotland, North of Azores, East of Greenland). The

catch data are available from 1985 to 2015, measured in tonnes and we have two
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indices: standardized series of annual commercial-vessel catch rates for 1985-2015,

(CPUE), and a combined trawl-survey biomass index for 1996-2015, (Survey).
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Figure 4.10: Catch data(black line) are in 103 tonnes and indices are mean scaled values.

Table 4.6: Critical parameter estimates and their coefficient of variations for Greenland halibut data
using contemporary and state space production models.

Parameter
Contemporary SSM

Estimate CV Estimate CV

r 0.4514 0.267 0.2178 0.463
K (000s) 0.2906 0.205 0.6263 0.416
Po 1.0000 0.500 0.6710 0.441
index sd 0.2216 0.102 0.1344 0.120

Megrim

Data for this analysis are obtained by the stock assessment carried out by Working

Group for the Celtic Seas Ecoregion (WGCSE) in the northern North Sea, West of
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Figure 4.11: Production model for Greenland halibut data with a prior on Po: Biomass and ex-
ploitation rates (H). Left: contemporary surplus production model, right: state space model.

Scotland in 2016. The catch data are available from 1985 to 2014, measured in tonnes

and we have indices from six independent surveys conducted in divisions 4.a and 6.a

(SCOGFS WIBTS Q1, SCOGFS WIBTS Q4, SCO IBTS Q1, SCO IBTS Q3,

SAMISS Q2, and IAMISS Q2).
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Figure 4.12: Catch data(black line) are in 103 tonnes and indices are mean scaled values.
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Figure 4.13: Catch data(black line) are in 103 tonnes and indices are mean scaled values.
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Table 4.7: Critical parameter estimates and their coefficient of variations for megrim data using
contemporary and state space production models.

Parameter
Contemporary SSM

Estimate CV Estimate CV

r 0.3994 0.224 0.6452 0.723
K (000s) 58.5453 0.306 30.7072 0.693
Po 0.3546 0.216 0.8918 0.505
index sd 0.4103 0.063 0.3938 0.065

Figure 4.14: Production model for megrim data with a prior on Po: Biomass and exploitation rates
(H). Left: contemporary surplus production model, right: state space model.
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Table 4.8: Some parameter estimations of the state space model are summarized here. Ho: initial
harvest rate, sd rw: standard deviation of harvest rate deviations, sd pe: standard deviation of
process errors, process error (pe), and logit ar pe: logit of process error auto-correlation. (For
halibut data logit ar pe is fixed to -10)

Stock Ho sd rw sd pe logit ar pe

Redfish 0.1562 0.4920 0.2376 -4.5951
Yellowtail flounder 0.0231 0.8494 0.0010 -4.5951
Anglerfish 0.1499 0.1458 0.1506 -0.5414
Halibut 0.0001 0.6851 0.1747 -10.0000
Megrim 0.2324 0.1409 0.0859 0.1419



Chapter 5

Diagnostics and Comparisons

5.1 Influence diagnostics

5.1.1 Case deletion diagnostics for indices

In this chapter, we assess the influence of the surplus production models for small

changes made in input data using two methods. The first is the traditional case

deletion method and the second is the local influence diagnostic method introduced

by Cook, 1986 [12]. We apply both these methods to indices data and fit both the

contemporary surplus production model (SPM) and the state space model (SSM).

We compare diagnostic results mainly in two directions: a) Correspondence of case

deletion and local influence diagnostic methods, and b) comparison of the sensitivity

of two production models in use (SPM and SSM). We also apply the local influence

method to perturbations of catch data.

Contemporary surplus production model

We are interested in whether the state-space of contemporary production models

are more sensitive to changes in the input data. For this investigation, we use the

traditional case deletion diagnostic method and the local influence diagnostic method

introduced by Cook, 1986 [12]. We use case deletion diagnostics for indices as the
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first method.

The following hypothetical example contains annual aggregated catch data (Ct)

for n years, and k number of indices (I1, I2, . . . , Ik) obtained from k individual

surveys carried out for a certain fish type. Although we have all the indices for every

year in this example, in real life situations, we might not have an index/indices for

some years. However, for illustration purposes, we assume that all the indices are

available for all the years (from 1 to n).

Table 5.1: Hypothesized catch and indices data available for a certain fish stock assessment.

Y ear Ct I1 I2 . . . Ik

Y1 C1 I11 I21 . . . Ik1

Y2 C2 I12 I22 . . . Ik2

Y3 C3 I13 I23 . . . Ik3

...
...

...
...

. . .
...

Yn Cn I1n I2n . . . Ikn

The basic idea of the case deletion technique is to delete each index (Ii,j) (where

i = 1, . . . , k and j = 1, . . . , n) one at a time and re-estimate the model parameters.

This is done iteratively in our R code by setting a weight of zero for each index in

each iteration. In this example, we have to estimate the parameters n× k times.

Weighting the contemporary surplus production model is straightforward. We

simply assign weights to the log likelihood function as,

lw(θ) =
m∑
h=1

whlh(θ), (5.1)

where lh(θ) is the log likelihood for the hth case, wh is the hth element of the vector

of weights (w), and m = n × k. Initially we declare these weights as a vector of

1′s, w = (1, 1, . . . , 1)′. If we want to delete a case (say hth index), we simply set the

weight of hth element wh = 0.
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Parameter estimation : Contemporary surplus production model

The parameter estimation method is almost the same as discussed in Section 4.2.1

(parameter estimation for the Schaefer’s contemporary production model). The only

difference is that we need to add the vector of weights to both the C++ source code

and R code. We illustrate this using one of the five fish stocks we study in this

practicum, 3LN redfish (S. mentella and S. fasciatus).

We have to make two changes to the C++ source code. First, we add the data

vector for weights, DATA VECTOR(index wt). We write the negative log like-

lihood for the indices as follows,

nll -= (index_wt*dnorm(resid,zero,sd_log_index,true)).sum().

In our R code, we add the vector of weights as,

tmb.data$index_wt = rep(1,length(tmb.data$index))

where tmb.data is our data frame, length(tmb.data$index) is the total number

of indices available for this study (recall: m in Eq. 5.1). We usually do not need to

change the first few lines in the R code which loads the TMB package and compiles

the C++ user template. However, we need to provide appropriate starting values for

each and every parameter to be estimated. Since we have multiple indices, we need

to provide starting values for all of the catchability coefficients (q’s). For example,

log_q = rep(1,length(unique(tmb.data$iq))),

where unique(tmb.data$iq) is how many survey indices we are using for this ex-

ample. The case deletion analysis is conducted iteratively using a for-loop. In each

iteration we assign a zero-weight to the corresponding element in the weight vector

as,

for(i in 1:n.index){

tmb.data$index_wt[i]=0
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obj <- MakeADFun(tmb.data,parameters,DLL="fit",

inner.control=list(maxit=10,trace=T))

opt <- nlminb(opt$par,obj$fn,obj$gr,lower=lower,upper=upper,

control = list(trace=0,iter.max=5000,eval.max=10000))

rep.index_del[[i]] = obj$report()

}

where n.index is the total number of indices available for this study. The ob-

jective function and the optimization are implemented within the for loop and

rep.index del[[i]] stores all the output produces by report. In this study, we are

interested in finding influential indices for the parameters BMSY and HMSY . With

this method, we consider each index as a case. We scaled re-estimated parameter

values as a percentage to original parameter estimates and the results are plotted

below.
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Figure 5.1: Index deletion diagnostics: redfish data for the contemporary surplus production model.
The points are BMSY percent difference values of deletion results compared to original results.
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Figure 5.2: Index deletion diagnostics: redfish data for the contemporary surplus production model.
The points are HMSY percent difference values of deletion results compared to original results.

Generally, scatters lying far away from the rest of the data can be identified as

potential influential observations. In this case, the CPUE index for the year 1994

seems more influential for both HMSY and BMSY .

State space surplus production model

Weighting the likelihood function for the state space model is not as straightforward

as the contemporary model. Random errors are integrated out to get the marginal

likelihood, which is not the sum of likelihood components for individual survey in-

dex responses. Therefore, we need to weight the conditional distribution function
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separately. The joint density function for the data, random effects and fixed effects

is,

p(y1, ..., yn, θ,Γ) = p(y1, ..., yn|θ,Γ)p(Γ|θ), (5.2)

where θ, Γ are fixed and random effects for the model, respectively, p(y1, ..., yn|θ,Γ) is

the conditional density for the data and p(Γ|θ) is the density for random effects. The

random effects vector Γ contains both process errors ε′s and random walk deviations

δ′s given in Eq. 4.9 and Eq. 4.12, respectively (Γ = [ε1, . . . , εn, δ1, . . . , δn]′). The

joint log likelihood for the density given in Eq. 5.2 is,

l(Γ, θ) =
n∑
i=1

log[p(yi|θ,Γ)] + log[p(Γ|θ)]. (5.3)

Therefore, we can weight the conditional density function separately and then the

weighted log likelihood function lw(Γ, θ) is,

lw(Γ, θ) =
n∑
i=1

wi log[p(yi|θ,Γ)] + log[p(Γ|θ)]. (5.4)

The marginal weighted loglikelihood is based on integrating out the random effects

from the joint weighted loglikelihood using the Laplace method.

Parameter estimation : State-space surplus production model

The parameter estimation method is similar to that discussed in the Section 4.2.2.

We need to weight the appropriate log-likelihood function in the C++ source code

as discussed above. We fit the redfish data used in Section 5.1.1 to the state space

surplus production model discussed in Section 4.2.2. We make only two modifications

to the C++ code discussed in Sections 4.2.2 which are, adding the weight vector

DATA VECTOR(index wt), and weight the negative log-likelihood function for

indices as,

nll -= (index_wt*dnorm(resid,zero,sd_log_index,true)).sum().
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Next we make the corresponding changes to the R code. First we declare the weight

vector as,

tmb.data$index_wt = rep(1,length(tmb.data$index))

and then we provide the for-loop to evaluate the objective function and optimize

parameter estimates in each iteration as follows,

for(i in 1:n.index){

tmb.data$index_wt[i]=0

obj <- MakeADFun(tmb.data,parameters,random=rname,DLL="fit",

inner.control=list(maxit=100,trace=T))

opt<-nlminb(opt$par,obj$fn,obj$gr,lower=lower,upper=upper,

control = list(trace=0,iter.max=5000,eval.max=10000))

rep.index_del[[i]] = obj$report()

}

In Figure 5.3 we plot the index deletion diagnostic results for the state space

version of the surplus production model described in Eq. 4.9. In this case, we also

plot the scaled re-estimated parameters, as described in the previous section.
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Figure 5.3: Index deletion diagnostics: redfish data for the state space surplus production model.
The points are BMSY percent difference values of deletion results compared to original results.



75

●
●●●●●●●●

●
●●●●●●●●●●●●●●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●●

●●●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●●
●●

●
●●

●●●●●●
●
●●

●

●
●
●

●

●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●
●●

●●

●●
●●

●
●
●

●

●
●
●

●

●

●

●

●

0 20 40 60 80 100 120

−
10

0
10

20

Case deletion diagnostics for HMSY

Indices

H
M

S
Y
 p

er
ce

nt
 c

ha
ng

e 
va

lu
e

CPUE

3LN_FALL
3L_SUMR

1994

1992
1993

Figure 5.4: Index deletion diagnostics: redfish data for the state space surplus production model.
The points are HMSY percent difference values of deletion results compared to original results.

Deletions of the 1991 and 1994 CPUE indices result in relatively large reductions

in the estimate of BMSY . On the other hand, deletions of the 1992 3LN fall survey

index and 1993 summer index result in relatively large increases in the estimate of

BMSY . Similarly, the 1994 CPUE index deletion leads to a relatively large increase

in HMSY and 1992 3LN fall survey index and 1993 3L summer index deletions lead

to a relatively large decrease in the estimate of HMSY .
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Case study: case deletion diagnostics for redfish

We plotted the percent change of the current status for biomass and each harvest

rate for eight surveys in Figures 5.5 and 5.6. The red and black dots represent the

contemporary model (SPM) and the state space model (SSM), respectively. For the

purpose of comparing the values, we also included the average absolute value (A.A.V)

for each parameter in each model and each index.

We can see that the overall A.A.V for the biomass is higher for the state space

model than the contemporary model. This indicates that the state space model has

a higher sensitivity to the case deletion diagnostic than the contemporary model.

However, there are a couple of cases (indices: 3L Winter, 3LN Russian) which show

higher sensitivity to the contemporary model than the state space model.

For the harvest rate, both the state space and contemporary models show a

similar pattern of sensitivity to case deletion. Although the overall A.A.V is slightly

higher for the state space model than for the contemporary model, there are a few

cases (indices: CPUE, 3LN Russian, and 3L Winter) where the contemporary model

is more sensitive to case deletion.

In Figures 5.7 and 5.8, we plotted the percent difference of parameters: intrinsic

growth rate (r), carrying capacity (K), and production (Po). We can see that the

intrinsic growth rate (r) seems more sensitive to the state space model than the

contemporary model. The carrying capacity (K) has an almost similar sensitivity

to both models (overall A.A.VSSM = 1.95 > A.A.VSPM = 1.54). However, indices:

CPUE, 3LN Russian, and 3L Winter show a higher sensitivity to the conventional

model than the state space model. However, the production (Po) is more sensitive

to the contemporary model than the state space model (overall A.A.VSSM = 1.38 <

A.A.VSPM = 2.7). It is apparent that all of the indices have higher A.A.Vs for the

contemporary model than for the state space model.
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Figure 5.5: Percent change of the biomass and harvest rate for the case deletion diagnostic.
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Figure 5.6: Percent change of the biomass and harvest rate for the case deletion diagnostic.
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Figure 5.7: Percent change of the growth rate, carrying capacity, and production for the case deletion
diagnostic.
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Figure 5.8: Percent change of the growth rate, carrying capacity, and production for the case deletion
diagnostic.
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In Figures 5.9 and 5.10 we plotted the percent difference of BMSY , HMSY , and

MSY with each index deletion. Note that BMSY is sensitive to both models by

almost the same amount (overall A.A.VSSM = 1.78 > A.A.VSPM = 1.70). HMSY

seems noticeably more sensitive to the state space model than the contemporary one

(overall A.A.VSSM = 1.65 > A.A.VSPM = 0.45). However, MSY seems much more

sensitive to the contemporary model than to the state space model. Overall, A.A.Vs

(A.A.VSSM = 0.14 < A.A.VSPM = 1.25) as well as all of the indices support this fact.

We can see that for some parameters, the state space model shows less sensitivity,

and for other parameters, the contemporary model shows less sensitivity. Hence, by

studying only one fish stock, we cannot determine which model is more sensitive to

the parameters. To address this issue, we conducted the same analysis for other four

data sets described in the Chapter 4. Summarized results from the investigation for

all the stocks and parameters are given in Tables 5.2, 5.3, and 5.4.
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Figure 5.9: Percent change of the BMSY , HMSY , and MSY for the case deletion diagnostic.
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Figure 5.10: Percent change of the BMSY , HMSY , and MSY for the case deletion diagnostic.
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Table 5.2: Case deletion analysis of indices: for biomass and the harvest rate.

stock

Average absolute value

Biomass Harvest rate

SSM SPM SSM SPM

Redfish 1.3653 0.7925 1.8344 1.4494

Yellowtail flounder 0.0272 0.0287 0.2980 0.2764

Angler 2.3384 0.8130 2.8717 0.9971

Halibut 10.0273 45.9815 20.9586 34.3925

Megrim 0.4257 0.6307 0.5476 0.6134

Table 5.3: Case deletion analysis of indices: for BMSY , HMSY , and MSY.

stock

Average absolute value

BMSY HMSY MSY

SSM SPM SSM SPM SS SPM

Redfish 1.9512 1.5423 1.5609 1.0000 0.5487 1.0000

Yellowtail flaonder 0.6240 0.4177 0.8997 1.0000 0.2740 0.0000

Angler 2.1365 1.4512 2.1228 2.0000 0.9394 0.0000

Halibut 1.6660 1.4959 1.8202 2.0000 0.7776 0.0000

Megrim 2.0400 1.6428 2.0960 1.0000 0.1671 1.0000
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Table 5.4: Case deletion analysis of indices: for growth rate, carrying capacity, and production.

stock

Average absolute value

r K Po

SSM SPM SSM SPM SSM SPM

Redfish 1.5609 0.6856 1.9512 2.0000 1.3772 3.0000

Yellowtail flaonder 0.8997 0.6646 0.6240 0.0001 0.0732 0.0002

Angler 2.1228 1.8502 2.1365 1.0000 0.0124 0.0001

Halibut 1.8202 1.9128 1.6660 1.0000 0.4873 0.0001

Megrim 2.0960 1.2903 2.0400 2.0000 1.4864 1.0000

5.1.2 Local influence diagnostics for indices

Case weight local influence (CWLI)

Fisheries scientists often use the case deletion method for influence diagnostics. How-

ever, Cadigan and Farrell (2000) [16] described that local influence diagnostics can

provide a more computationally efficient means for obtaining analogous information.

Therefore, in this section, we try to diagnose influential indices and catch observa-

tions for the redfish case study using the first order approach of the local influence

method described in [8].

Recall the first order local influence approach by Cadigan and Farrell, 2002 [8].

Using this method we can measure how much a certain perturbation scheme, w, can

influence multiple components of a model. Suppose we have a vector of parameters

(θ) to estimate using the fit function F (θ). Assume this fit function can be written as

a sum of each individual case such as F (θ) =
∑n

i=1 fi and we can write the weighted

form of the fit function as Fw(θ) =
∑n

i=1 wifi. w is the case-weight perturbation

vector and it is written as w = (1 + hd)′, where h is the scalar that determines the

size of the perturbation and d is known as the direction vector with
∑n

i=1 di = 1.

If we want to perturb the jth case, we can set the jth element of d equal to 1 and

all the other elements to zero, and then wj = 1 + h. Suppose Fw(θ) is a first order
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differentiable function in h and θ. The influence of a perturbation is measured by

the slope in the direction d, and we denote that by S(d). Further details are given in

Section 2.1.3. In what follows we provide some of the R code we use to compute the

local influence diagnostics. As described in earlier sections, first we need to estimate

the parameters for each model using TMB. Additionally, we need the following R

code to evaluate the local influence diagnostics.

First we declare a list of full data parameter estimates as follows. The pnames

contains names of all the parameters originally estimated.

pnames = names(opt$par)

parameters.est <- list(

log_r = opt$par[pnames==’log_r’],

log_K = opt$par[pnames==’log_K’],

log_q = opt$par[pnames==’log_q’],

log_Po = opt$par[pnames==’log_Po’],

log_sd_log_index = opt$par[pnames==’log_sd_log_index’]

)

The following function will compute ∆ in Eq. 2.41. The object tmb.data.orig

contains the original data we are using for this analysis and within this function we

evaluate the objective function using MakeADFun in TMB. As the output, we get

the gradients of the parameters from objective function.

dFgrad_dtheta = function(w,i){

tmb.data = tmb.data.orig

tmb.data$index_wt[i]=w

obj <- MakeADFun(tmb.data,parameters.est,DLL="fit",

inner.control=list(maxit=10,trace=FALSE))

return(obj$gr(obj$par))

}

The following function provides the g function described in Section 2.1.3. In this case,
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we are interested in obtaining parameter estimates for HMSY and BMSY . However,

we can add any number of parameters from report as the output of this function.

gfunc = function(w,theta){

parameters.est <- list(

log_r = theta[pnames==’log_r’],

log_K = theta[pnames==’log_K’],

log_q = theta[pnames==’log_q’],

log_Po = theta[pnames==’log_Po’],

log_sd_log_index = theta[pnames==’log_sd_log_index’]

)

tmb.data = tmb.data.orig

tmb.data$index_wt=w

obj <- MakeADFun(tmb.data,parameters.est,DLL="fit",inner.control

=list(maxit=10,

trace=FALSE))

rep = obj$report()

ret = c(rep$Hmsy,rep$Bmsy)

return(ret)

}

We use the following function as a device to get the derivative with respect to θ,

gfunc1 = function(theta,w){

return(gfunc(w,theta))}

Del = matrix(NA,n.index,length(opt$par))

for(i in 1:n.index){

Del[i,] = t(jacobian(dFgrad_dtheta,1,,,,i))
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}

w = tmb.data$index_wt

theta = opt$par

# first term in equation below (2) in CF2002

dg_dw = t(jacobian(gfunc,w,,,,theta))

# need this for 2nd term in equation below (2) in CF2002

dg_dtheta = t(jacobian(gfunc1,theta,,,,w))

We obtain the the local influence slopes for individual case-weight perturbations,

Si = dg_dw - Del%*%solve(hess)%*%dg_dtheta

This is the numerical solution to the analytical equations given in Eq. 2.42 and Eq.

2.43.

Parameter estimation

We also refer to this method as the local influence case weight method because even

though we do not delete the case entirely, we use the weight to apply perturbations

to the case-weights. Since we are using the case weights, we do not make any change

to the C++ code used in the case deletion diagnostics.

To estimate perturbed parameters we need to follow these steps. First, in the

R code we need to estimate the parameters for the original data as we discussed

in Section 4.2.1 or 4.2.2, depending on the model we are using. We add the local

influence parameter estimation part described in Section 5.1.2. We apply this method

to redfish indices data and obtained the following results.
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Figure 5.11: Local influence diagnostics: redfish data for the state space production model (SSM).
The points are BMSY local slope as a percent of full sample estimates (pSi).
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Figure 5.12: Local influence diagnostics: redfish data for the state space production model (SSM).
The points are HMSY local slope as a percent of full sample estimates (pSi).

We can observe from Figure 5.11 that the deletion of the 1994 CPUE index results

in relatively large reductions in the estimate of BMSY . On the other hand, deletions

of the 1992 3LN fall survey index and 1993 summer index result in relatively large

increases in the estimate of BMSY . Similarly, from Figure 5.12 we can see that the

1994 CPUE index deletion leads to a relatively large increase in HMSY and 1992

3LN fall survey index and 1993 3L summer index deletions lead to a relatively large

decrease in the estimate of HMSY .
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5.1.3 Local influence diagnostics for catch data

In this section, we investigate how important fishery parameters are sensitive to catch

data. Since we use the local influence diagnostic method, we can make small changes

to catch data via a well-defined perturbation scheme. We perturb the catch in the

form, Cw = C ∗w, where Cw is the perturbed catch and w is the perturbation for the

catch. We can define the perturbation scheme as w = 1+hd, where h determines the

magnitude of the perturbation and d determines the direction, as described earlier.

Parameter estimation

In the C++ source code, we declare a new data vector for catch perturbations

as DATA VECTOR(catch p). Before modelling the production, we change the

catch into the perturbed catch as,

C = C*catch_p;

vector<Type> log_catch_p= log(catch_p);

log_C = log_C + log_catch_p;

In this analysis, we no longer need the weight applied to indices (index wt)

because we only change catch data. The rest of the C++ source code remains

the same as discussed in Section 5.1.1 for the contemporary model and state space

model, respectively. In the R code we need to provide the data input for the catch

perturbations as tmb.data$catch p = rep(1,length(tmb.data$year)),

where length(tmb.data$year) is the number of catch data available. In the local

influence diagnostic section we should pass this catch perturbation values as the

weight (w). As an example, see the following function which evaluates the ∆ in Eq.

2.40.

dFgrad_dtheta1 = function(w){

tmb.data = tmb.data.orig

tmb.data$catch_p=w



92

obj <- MakeADFun(tmb.data,parameters.est,DLL="fit",

inner.control=list(maxit=1000,trace=FALSE))

return(obj$gr(obj$par))

}

In the third line we have assigned the catch perturbation as the weight used in the

function. We applied this technique to find influential observations in redfish catch

data. We measured the sensitivity of HMSY and BMSY using the local slope as a

percent of full sample estimates. In the plots below we have marked the years which

show the highest sensitivity to the change in the catch.
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Figure 5.13: Local influence catch diagnostics: redfish data for the contemporary production model
(SPM). The points are BMSY local slope as a percent of full sample estimates pSi.
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Figure 5.14: Local influence catch diagnostics: redfish data for the contemporary surplus production
model (SPM). The points are HMSY local slope as a percent of full sample estimates pSi.

From the local influence diagnostics in Figure 5.13, we can observe that the

changes made to catches in 1959, 1985, and 1986 result in relatively large increases

in the estimate of BMSY and the changes made to catch in 1993 result in relatively

large reductions in the estimate of BMSY . Similarly, in Figure 5.14, the changes in

catch in 1993 leads to a relatively large increase in HMSY and changes in catch in

1987 lead to a relatively large decrease in the estimate of HMSY .
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5.2 Comparisons

5.2.1 Case Deletion Vs. Case Weight Local Influence

Comparison of case weight local influence diagnostics with case deletion

diagnostics

In Figures 5.15, 5.16, 5.17, and 5.18 below we compare sensitivity of both BMSY and

HMSY parameter estimates with two influence diagnostic techniques we described

earlier: case deletion and local influence. In case deletion method the sensitivity of

re-estimated parameter are measured as the percent difference to original parameter

estimates. For the local influence method, the sensitivity is given as the percent

local slope. Form these figures we can observe that the highly influential points

can be identified identically using both case deletion and local influence methods for

BMSY and HMSY . Therefore, we can consider the local influence method as a better

alternative method of influence analysis for the traditional case deletion method.
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Figure 5.15: Comparative sensitivity of BMSY to each index for contemporary production model
(SPM). A.A.V. stands for average absolute value. For case deletion, percent change of re estimated
parameters to original estimates are plotted. For local influence, local slope as a percent of full
sample estimates (pSi’s) are plotted. pSmax is the maximum local slope.
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Figure 5.16: Comparative sensitivity of BMSY to each index for state space model (SSM). A.A.V.
stands for average absolute value. For case deletion, percent change of re-estimated parameters to
original estimates are plotted. For local influence, local slope as a percent of full sample estimates
(pSi’s) are plotted. pSmax is the maximum local slope.



97

●●●●●●●●●●●●●●●●●
●●

●
●
●
●●●

●●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●
●●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●●

0 20 40 60 80 100 120

−
4

−
2

0
2

4
6

● Case Deletion
Local Influence

A.A.VC.D. = 0.658, A.A.VL.I. = 0.584, pSmax=11.297

Index

H
M

S
Y
 S

en
si

tiv
ity

Comparison of HMSY sensitivity for each index

Figure 5.17: Comparative sensitivity of HMSY to each index for contemporary production model
(SPM). A.A.V. stands for average absolute value. For case deletion, percent change of re-estimated
parameters to original estimates are plotted. For local influence, local slope as a percent of full
sample estimates (pSi’s) are plotted. pSmax is the maximum local slope.
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Figure 5.18: Comparative sensitivity of BMSY to each index for state space model (SSM). A.A.V.
stands for average absolute value. For case deletion, percent change of re-estimated parameters to
original estimates are plotted. For local influence, local slope as a percent of full sample estimates
(pSi’s) are plotted. pSmax is the maximum local slope.

Summary table

As shown in the figures above, we can see that we can obtain similar influence

diagnostics using the case deletion and case weight local influence method. We

investigated that relationship by conducting the same analysis for four more data

obtained from surveys: Div-3LNO yellowtail flounder by NAFO, anglerfish by ICES,

Greenland halibut by ICES, and megrim by ICES. As we expected, we can see that

there is a very high correlation between the results obtained from the case deletion

and the case weight local influence method. We summarized correlations between

both case deletion and case weight local influence for parameter estimates (BMSY

and HMSY ) for both state space and contemporary surplus production models as



99

follows.

Table 5.5: Summary of correlations between case deletion and case weight local influence diagnostics.
BMSY and HMSY parameters for state space model (SSM) and contemporary production model
(SPM).

Stock
Case deletion vs. case weight local influence

BMSY SSM HMSY SSM BMSY SPM HMSY SPM

Redfish 0.9929 0.9872 0.9962 0.9913

Yellowtail flounder 0.9877 0.9829 0.9992 0.9973

Anglerfish 0.9909 0.9872 0.9983 0.9994

Greenland halibut 0.4964 0.7822 0.9989 0.9992

Megrim 0.8251 0.7492 0.9991 0.9992

5.2.2 Case Weight Local Influence: SSM Vs. Contemporary

SPM

In the previous analysis, we found that there is a high correlation between case

deletion results and case weight local influence (CWLI) results for both parameters

BMSY and HMSY . Therefore, we use CWLI method to analyse both the contempo-

rary SPM and the SSM in this section. We compare influence diagnostics of these

two models using both parameters estimates BMSY and HMSY .

In Figure 5.19, we plotted pSi values for BMSY for SSM (in black) and contempo-

rary SPM (in red) for 3LN redfish data. We can observe that the most sensitive cases

are the same for both the models. However, the SSM results show higher sensitivity

than the contemporary SPM in this analysis. To support this we use the average

absolute values (A.A.Vs). Similar results can be observed in Figure 5.20 where we

plotted pSi values for HMSY for SSM (in black) and contemporary SPM (in red) for

3LN redfish data. The SSM results show higher sensitivity than the contemporary

SPM in this analysis.
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Figure 5.19: Local influence diagnostics for redfish indices: The points are BMSY local slope as a
percent of full sample estimates for state space model (SSM) and contemporary model (SPM).
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Figure 5.20: Local influence diagnostics for redfish indices: The points are HMSY local slope as a
percent of full sample estimates for state space model (SSM) and contemporary model (SPM).

We conducted the same analysis for the other four case studies: yellowtail floun-

der, anglerfish, halibut, and megrim. A.A.V’s for the SSM and the contemporary

SPM are summarized for both the parameters BMSY and HMSY in Table 5.6. For

anglerfish and halibut data, both BMSY and HMSY estimates are less sensitive to

SSM than to the contemporary SPM. However, for yellowtail flounder and megrim

data, both parameters estimates are less sensitive to contemporary model than to

SSM.
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Table 5.6: Case weight local influence (CWLI) analysis of indices: average of absolute pSi values for
BMSY and the HMSY are given in the table.

BMSY HMSY

SSM SPM SSM SPM

Redfish 1.6352 1.4202 1.2886 0.6097

Yellowtail flounder 0.4420 0.3736 0.6262 0.6066

Anglerfish 1.0754 1.3720 1.4519 1.7436

Halibut 0.9863 1.6403 1.5342 2.1400

Megrim 1.7587 1.5364 1.5476 1.2106

5.2.3 Compare Catch Local Influence

Catch local influence diagnostics comparison for state space model and

contemporary model

In Figure 5.21 we plotted local influence results for both BMSY and HMSY to compare

state space production model (SSM) and the contemporary production model (SPM).

To make comparison easy, we give the average of the absolute values (A.A.V’s) of

pSi’s for both parameter estimates. For HMSY , SSM is more sensitive than contem-

porary model and for BMSY , the contemporary model shows more sensitiveness than

the SSM.
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Figure 5.21: Local influence results comparison for contemporary surplus production model (SPM)
and state space model (SSM) for catch data. BMSY and HMSY local slopes are plotted as a percent
of full sample estimates (pSi).

We extended this analysis to other four data sets studied in the previous section.

A.A.V’s for the SSM and the contemporary SPM are summarized for both the pa-

rameters BMSY and HMSY in Table 5.7. For yellowtail flounder and halibut data,

both BMSY and HMSY estimates are less sensitive to SSM than to the contemporary

SPM. However, for anglerfish and megrim data, both parameters estimates are less

sensitive to contemporary model than to SSM.
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Table 5.7: Local influence analysis of catch data: average of absolute pSi values for BMSY and
HMSY are given in the table.

BMSY HMSY

SSM SPM SSM SPM

Redfish 3.11 3.89 2.34 0.83

Yellowtail flounder 3.32 3.37 2.76 3.33

Anglerfish 16.86 9.58 16.83 9.37

Halibut 4.44 9.66 3.29 11.48

Megrim 57.35 10.61 58.83 8.74



Chapter 6

Summary

Fishing industries can increase their production by increasing the effort. Unfortu-

nately, this leads to overharvesting or even collapse of fish stocks. Therefore, fishery

management agencies need information about the status of fish stocks that they are

harvesting. Fisheries scientists try to provide this information by conducting stock

assessments. Scientists use mathematical and statistical models to estimate abun-

dance or biomass of the fish stocks. The complexity of these models differs upon the

availability of data. We use the simple and the most widely used Schaefer’s SPM for

this study (we refer to it as the contemporary SPM). In recent years the state-space

modelling framework was also widely used to fit the SPMs. In this study, we compare

the sensitivity of estimators of state-space SPMs and contemporary SPMs (without

process errors) using the traditional case deletion method and local influence analysis

method introduced by R.D. Cook, 1986 [12]. We applied these methods to five dif-

ferent data sets and examined how important parameter estimates respond to small

changes made in the input data. We used R package TMB for each parameter

estimation. TMB uses the Laplace approximation to find the solution for marginal

likelihoods by integrating out the random effects in the SSM. In the first analysis, we

compared the two diagnostic methods. For the comparison, we used the BMSY and

HMSY as the two model outputs. The Comparison shows a high positive correlation

of influential observations between the two diagnostic methods (see Table 5.5). This

finding is beneficial in other studies where the case deletion method cannot apply.
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For example, we cannot delete catches to find influential observations in catch data.

In the second analysis, we compared the sensitivity of state space and the contem-

porary SPMs using the case weight local influence method for indices data. Anglerfish

and halibut data showed less sensitivity for both BMSY and HMSY parameter esti-

mates of the SSM. However, 3LN redfish, yellowtail flounder and megrim data showed

less sensitivity for both BMSY and HMSY parameter estimates of the contemporary

SPM.

As the last analysis, we compared the sensitivity of two models using the local

influence diagnostic method with catch data. Here also we obtained mixed results.

For redfish data, BMSY estimates showed less sensitivity to the contemporary SPM

while HMSY estimates showed less sensitivity to the SSM. Both the parameters BMSY

and HMSY showed less sensitivity to SSM for yellowtail flounder and halibut data

than contemporary SPM. However, contemporary SPM showed less sensitivity for

anglerfish and megrim data.
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Appendix A

Appendices

A.1 Derivative

∂LD{ω(h)}
∂h

=
∂ω

∂h

∂LD{ω(h)}
∂ω

= d′
∂LD{ω(h)}

∂ω
∂2LD{ω(h)}

∂h2
= d′

∂LD{ω(h)}
∂ω∂ω′

∂ω′

∂d
= d′

∂LD{ω(h)}
∂ω∂ω′

d

(A.1)

A.2 TMB linear regression results

> opt

$par

a b logSigma

0.5254673 0.9180288 -0.1350524

$value

[1] 12.83886

$counts

function gradient

87 34
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$convergence

[1] 0

$message

NULL

$hessian

a b logSigma

a 1.310102e+01 7.205559e+01 -1.976378e-07

b 7.205559e+01 5.043891e+02 -2.022709e-06

logSigma -1.976378e-07 -2.022709e-06 2.000001e+01

> opt$hessian ## <-- FD hessian from optim

a b logSigma

a 1.310102e+01 7.205559e+01 -1.976378e-07

b 7.205559e+01 5.043891e+02 -2.022709e-06

logSigma -1.976378e-07 -2.022709e-06 2.000001e+01

> obj$he() ## <-- Analytical hessian

[,1] [,2] [,3]

[1,] 1.312724e+01 7.219985e+01 -1.980334e-07

[2,] 7.219985e+01 5.053989e+02 -2.026757e-06

[3,] -1.980334e-07 -2.026757e-06 2.004004e+01

> sdreport(obj)

outer mgc: 1.011354e-06

outer mgc: 0.0720566

outer mgc: 0.07205458

outer mgc: 0.5043902

outer mgc: 0.5043881

outer mgc: 0.01997994

outer mgc: 0.02002009

outer mgc: 1.526599
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sdreport(.) result

Estimate Std. Error

a 0.5254673 0.59683034

b 0.9180288 0.09618792

logSigma -0.1350524 0.22360672

Maximum gradient component: 1.011354e-06

A.3 TMB C++ code for the contemporary model:

Namibian hake data

#include <TMB.hpp>

#include <iostream>

template<class Type>

Type objective_function<Type>::operator() ()

{

DATA_IVECTOR(year);

DATA_VECTOR(C);

DATA_VECTOR(index);

DATA_IVECTOR(iyear);

DATA_IVECTOR(iq);

//DATA_VECTOR(index_wt);

DATA_VECTOR(log_C);

DATA_VECTOR(log_index);

DATA_SCALAR(E_log_r);

DATA_SCALAR(sd_log_r);

DATA_SCALAR(E_log_Po);

DATA_SCALAR(sd_log_Po);

DATA_SCALAR(sd_logC);
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PARAMETER(log_r);

PARAMETER(log_K);

PARAMETER_VECTOR(log_q);

PARAMETER(log_Po);

PARAMETER(log_sd_log_index);

int n = year.size();

int ni = index.size();

int i;

Type r = exp(log_r);

Type K = exp(log_K);

Type sd_log_index = exp(log_sd_log_index);

vector<Type> log_P(n); //log population biomass divided by K at

start of the year;

vector<Type> log_P_midy(n); // log P at middle of year;

vector<Type> P(n);

vector<Type> P_midy(n);

vector<Type> log_B(n);

vector<Type> log_H(n);

vector<Type> H(n);

vector<Type> log_Eindex(ni);

Type one = 1.0;

Type half = 0.5;

Type zero = 0.0;

Type nll=0;

// prior nll for log_r;
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// nll -= dnorm(log_r,E_log_r,sd_log_r,true);

// prior nll for log_Po;

//nll -= dnorm(log_Po,E_log_Po,sd_log_Po,true);

// log of production model;

P(0) = exp(log_Po);

for (i=1;i<n;i++){

P(i) = (P(i-1) + r*P(i-1)*(one - P(i-1)) - C(i-1)/K);

}

log_P = log(P);

log_B = log_K + log_P;

for (i=0;i<n-1;i++){

P_midy(i) = half*(P(i)+P(i+1));

}

int ln=n-1;

Type Pnp1 = (P(ln) + r*P(ln)*(one - P(ln)) - C(ln)/K);

P_midy(ln) = half*(P(ln)+ Pnp1);

log_P_midy = log(P_midy);

log_H = log_C - log_B;

H = exp(log_H);

// nll for index;

log_Eindex = log_q(iq) + log_K + log_P_midy(iyear);

vector<Type> resid = log_index - log_Eindex;

vector<Type> std_resid = resid/sd_log_index;
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nll -= (dnorm(resid,zero,sd_log_index,true)).sum();

// the rest of the program produces report output;

Type Hmsy = half*r;

Type Bmsy = half*K;

Type MSY = Hmsy*Bmsy;

vector<Type> log_rB = log_B - log(Bmsy);

vector<Type> log_rH = log_H - log(Hmsy);

vector<Type> B = exp(log_B);

vector<Type> Eindex = exp(log_Eindex);

REPORT(log_r);

REPORT(log_K);

REPORT(log_q);

REPORT(log_Po);

REPORT(Hmsy);

REPORT(Bmsy);

REPORT(MSY);

REPORT(log_B);

REPORT(log_H);

REPORT(B);

REPORT(P);

REPORT(H);

REPORT(log_rB);

REPORT(log_rH);

REPORT(log_Eindex);

REPORT(Eindex);

REPORT(resid);

REPORT(std_resid);
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ADREPORT(Hmsy);

ADREPORT(Bmsy);

ADREPORT(MSY);

ADREPORT(log_rB);

ADREPORT(log_rH);

ADREPORT(log_B);

ADREPORT(log_H);

return nll;

}

A.4 TMB C++ and R codes for the state space

model: Namibian hake data

A.4.1 C++ code

#include <TMB.hpp>

#include <iostream>

template<class Type>

Type objective_function<Type>::operator() ()

{

DATA_IVECTOR(year);

DATA_VECTOR(C);

DATA_VECTOR(index);

DATA_IVECTOR(iyear);

DATA_IVECTOR(iq);

DATA_VECTOR(log_C);

DATA_VECTOR(log_index);
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DATA_SCALAR(E_log_r);

DATA_SCALAR(sd_log_r);

DATA_SCALAR(E_log_Po);

DATA_SCALAR(sd_log_Po);

DATA_SCALAR(sd_logC);

PARAMETER(log_r);

PARAMETER(log_K);

PARAMETER_VECTOR(log_q);

PARAMETER(log_Po);

PARAMETER(log_Ho);

PARAMETER(log_sd_rw);

PARAMETER(log_sd_log_index);

PARAMETER(log_sd_pe);

PARAMETER(logit_ar_pe);

PARAMETER_VECTOR(log_pe);

PARAMETER_VECTOR(log_H_dev);

int n = year.size();

int ni = index.size();

int i;

Type r = exp(log_r);

Type K = exp(log_K);

Type sd_rw = exp(log_sd_rw);

Type sd_log_index = exp(log_sd_log_index);

Type sd_pe = exp(log_sd_pe);

vector<Type> log_P(n); //log population biomass divided by K at

start of the year;
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vector<Type> log_P_midy(n); // log P at middle of year;

vector<Type> P(n);

vector<Type> P_midy(n);

vector<Type> log_B(n);

vector<Type> log_H(n);

vector<Type> H(n);

vector<Type> log_Eindex(ni);

vector<Type> log_EC(n); // model log catch;

vector<Type> pe = exp(log_pe);

Type one = 1.0;

Type half = 0.5;

Type zero = 0.0;

Type ar_pe = exp(logit_ar_pe)/(one + exp(logit_ar_pe));

Type nll=0;

// prior nll for log_r;

// nll -= dnorm(log_r,E_log_r,sd_log_r,true);

// prior nll for log_Po;

// nll -= dnorm(log_Po,E_log_Po,sd_log_Po,true);

// log of production model;

P(0) = exp(log_Po);

log_H(0) = log_Ho;

H(0) = exp(log_H(0));

for (i=1;i<n;i++){

log_H(i) = log_H(i-1) + log_H_dev(i-1);

H(i) = exp(log_H(i));
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P(i) = (P(i-1)+ r*P(i-1)*(one-P(i-1))-H(i-1)*P(i-1))*pe(i-1);

}

log_P = log(P);

log_B = log_K + log_P;

log_EC = log_B + log_H;

for (i=0;i<n-1;i++){

P_midy(i) = half*(P(i)+P(i+1));

}

int ln=n-1;

Type Pnp1 = (P(ln) + r*P(ln)*(one - P(ln)) - H(ln)*P(ln))*pe(ln);

P_midy(ln) = half*(P(ln)+ Pnp1);

log_P_midy = log(P_midy);

// nll for index;

log_Eindex = log_q(iq) + log_K + log_P_midy(iyear);

vector<Type> resid = log_index - log_Eindex;

vector<Type> std_resid = resid/sd_log_index;

nll -= (dnorm(resid,zero,sd_log_index,true)).sum();

// nll for catch;

vector<Type> resid_C = log_C - log_EC;

nll -= dnorm(resid_C,zero,sd_logC,true).sum();

// nll for random walk deviation in log_H;

nll -= dnorm(log_H_dev,zero,sd_rw,true).sum();
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// nll for log_pe process errors;

i=0;

nll -= dnorm(log_pe(i),zero,sd_pe/sqrt(one - ar_pe*ar_pe),true);

for(int i = 1;i < n;++i){

nll -= dnorm(log_pe(i) - ar_pe*log_pe(i-1),zero,sd_pe,true);

}

// the rest of the program produces report output;

Type Hmsy = half*r;

Type Bmsy = half*K;

Type MSY = Hmsy*Bmsy;

vector<Type> log_rB = log_B - log(Bmsy);

vector<Type> log_rH = log_H - log(Hmsy);

vector<Type> B = exp(log_B);

vector<Type> EC = exp(log_EC);

vector<Type> Eindex = exp(log_Eindex);

REPORT(log_r);

REPORT(log_K);

REPORT(log_q);

REPORT(log_Po);

REPORT(log_Ho);

REPORT(Hmsy);

REPORT(Bmsy);

REPORT(MSY);

REPORT(log_B);

REPORT(log_H);

REPORT(B);

REPORT(H);

REPORT(log_rB);
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REPORT(log_rH);

REPORT(log_EC);

REPORT(resid_C);

REPORT(log_Eindex);

REPORT(Eindex);

REPORT(resid);

REPORT(std_resid);

REPORT(log_pe);

REPORT(log_H_dev);

ADREPORT(Hmsy);

ADREPORT(Bmsy);

ADREPORT(MSY);

ADREPORT(ar_pe);

ADREPORT(log_rB);

ADREPORT(log_rH);

ADREPORT(log_B);

ADREPORT(log_H);

return nll;

}

A.4.2 R code

load("tmb.RData")

library(TMB)

library(numDeriv)

compile("fit.cpp")
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dyn.load("fit")

parameters <- list(

log_r = log(0.36),

log_K = log(2800),

log_q = log(1/10),

log_Po = log(1),

log_Ho = log(0.1),

log_sd_rw = log(0.2),

log_sd_log_index = log(0.3),

log_sd_pe = log(0.1),

logit_ar_pe = log(0.50/(1-0.50)),

log_pe = rep(0,length(tmb.data$C)),

log_H_dev = rep(0,length(tmb.data$C)-1)

)

parameters.L <- list(

log_r = log(0.2),

log_K = log(2000),

log_q = -Inf,

#log_Po = log(0.1),

log_Ho = log(0.0001),

log_sd_rw = log(0.01),

log_sd_log_index = log(0.01),

log_sd_pe = -Inf,

logit_ar_pe = -Inf)

parameters.U <- list(

log_r = log(0.5),

log_K = log(14271),
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log_q = Inf,

#log_Po = log(10),

log_Ho = log(1),

log_sd_rw = log(2),

log_sd_log_index = log(1),

log_sd_pe = log(0.35),

logit_ar_pe = log(0.950/(1-0.950)))

lower = unlist(parameters.L);

upper = unlist(parameters.U);

## random effects;

rname = c("log_pe","log_H_dev")

map = list(

##log_sd_pe = factor(NA),

log_Po = factor(NA))

obj <- MakeADFun(tmb.data,parameters,,map=map,random=rname,DLL="fit",

inner.control=list(maxit=100,trace=T))

obj$gr(obj$par)

opt<-nlminb(obj$par,obj$fn,obj$gr,lower=lower,upper=upper,

control = list(trace=0,iter.max=5000,eval.max=10000))

opt$message

opt$convergence # will gives "0"
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obj$gr(opt$par)

opt$par

exp(opt$par)

A.4.3 Classical linear models

The following assumptions define the classical linear model (CLM).

CLM: y = Xβ +ε, where y is a n × 1 vector of observations on a dependent

variable, X is a n × p matrix of observations on explanatory variables, β is a p × 1

vector of fixed parameters, and ε is a n× 1 vector of random disturbances.

Assumptions: εi’s are assumed to be independent and identically distributed

normal random variables with mean zero and known variance σ2.
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