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Abstract 
An accurate analysis of the characteristic behavior of a fractured reservoir is challenging due to 

the complex reservoir formation; furthermore, the irregular flow patterns in the discrete domains 

add to the computational complicacy. The study aims to develop a mathematical model for the 

fractured reservoir through the utilization of the anomalous diffusion approach and the multi-

continuum approach. Firstly, the study reviews both the concepts in details to make a better 

understanding of the limitations, formulations and the application criteria. A comparative study 

is done to determine the relative impacts of two approaches in the reservoir at different flow 

periods. Consequently, a linear model is developed for the reservoir flow towards a hydraulically 

fractured horizontal well at the transient condition. The derivation considers a modified tri-linear 

model with different arrangements of the matrix and fractures. The solution is derived in the 

Laplace domain, and numerically it is inverted to the real-time domain by the Stehfest algorithm. 

The study shows that the continuum-based approaches differ for the different fracture network, 

inter-flow condition, continuum-number, and the interface transfer function whereas the 

anomalous diffusion approach captures the heterogeneity of the reservoir by the fractional time 

or space derivative. The evidence from the comparative study suggests that a combination of the 

continuum approach and the anomalous diffusion is recommended as an alternative approach for 

the modelling of fluid flow in a fractured reservoir. In the developed model, the influence of the 

super-diffusion in the hydraulic fracture is remarkable as it alters the pressure response during 

the whole life of the reservoir. However, the sub-diffusion impact increases with the time and is 

significant at the late stage. The study also shows that Macro-fracture permeability regulates the 

pressure drop in the reservoir as it is the primary conduit in the inner reservoir. The combination 

of the approaches and the logical distribution of the flow conditions are shown as the better 

alternative to the conventional method.       
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Chapter 1   Introduction 
 

A naturally fractured reservoir contains a significant portion of the world’s fossil fuel reserve. 

According to the Schlumberger market analysis (2007), more than sixty percent of the world’s 

proven oil reserve and forty percent of the gas reserve are conserved in the fractured carbonate 

reservoir. Although carbonates and shales are the most common formation of the fractured 

reservoir, it also belongs to the sandstone, cherts, and the igneous or metamorphic rocks. The 

fluid that travels through the fractured reservoir pursues a complex path and the production 

performance of the reservoir also traces this complexity. The fluid flow modelling is a vital tool 

for the reserve estimation, characterization, and the production optimization of a reservoir. This 

study aims to develop a linear mathematical fluid flow model for fractured reservoirs and intends 

to make a better prediction on the reservoir performance. The following discussion states the 

problem statement, key ideas, objectives, procedures, contributions, and the organization of this 

research. 

1.1 Problem Statement 

A fractured reservoir can be defined as a formation of altered matrices and fractures. The fluid 

travels a complex path in such a reservoir. The fracture and the matrix have different flow 

parameters; therefore, the pressure response at the well contains the contributions of both.  The 

fluid transfer between two adjacent domains depends on the relative storability of the domain 

and the transfer surface at the mutual boundary of the domains. The modelling of the fluid flow 

in a fractured reservoir, thus, requires the proper evaluation of the flow at each distinctive 

regions of the reservoir. Fluid flow condition, either transient or the semi-steady state, is another 

concern for the modelling.  

For the volumetric reservoir, pressure diffusion is the dominant mechanism for the fluid flow. In 

the classical diffusion, the pressure gradient is a local character; hence, the value of the pressure 

gradient at a point is considered an instantaneous property and depends on the pressure value at 

the vicinity of that position. Classical diffusion also assumes a Brownian motion of the particles, 

and the diffusion process follows the exponential law. Conversely, the anomalous diffusion 

occurs when the particles have a non-Gaussian distribution. The mean square displacement of the 

individual particle follows a power law instead of a proportional relationship with time (Fomin et 
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al., 2011; Raghavan, 2011; Chen and Raghavan, 2015). The particle is treated as a continuous 

time random walker (CTRW), which can randomly jump or wait (Montroll and Weiss, 1965; 

Fulger et al., 2008). The waiting time of the particle at the interval of two successive movements 

is not a constant one. Depending on the time and space event the waiting time is shorter or 

longer. When the space event dominates the flow, it accelerates the particle movement, and 

super-diffusion occurs (Montroll and Weiss, 1965). When the flow path restricts the flow, 

conversely, the waiting time becomes longer, and the time effect controls the flow, which causes 

sub-diffusion (Caputo, 1998).        

Transient flow is the dominant flow condition for the fractured reservoir flow. Gringarten et al., 

(1974) proposed the following formula to predict the time when boundary dominated flow 

(Pseudo-steady state) is developed around a vertical fracture with an infinite conductivity 

 𝑡 ≥
1.14∗ 104 𝜙𝑐𝑡𝜇𝑥𝐹

2

𝑘
 (1.1) 

Naturally fractured reservoir has very low permeability (k). Thus, in case of a substantial fracture 

length (𝑥𝐹) the transient condition is elongated for a longer time. Raghavan et al. (1997) have 

shown that the transient condition is the prevailing flow condition when the fluid flows toward a 

fractured horizontal well and it can be prolonged to the most of its production-life. According to 

the Sharma and Aziz (2004), higher compressibility of the reservoir fluid makes a delay in 

initiating the boundary dominated flow up to 10 days. In general, the pressure transient tests run 

for a duration of 1 to 2 days. Therefore, the reservoir fluid is flowing at the transient condition 

during the determination of the reservoir parameters. The assumption of the transient fluid flow 

condition, thus, is more appropriate for flow modelling of the fractured reservoir.  

A transient pressure response curve (𝑡𝐷 𝑣𝑠 𝑝𝐷) of the homogeneous reservoir has a constant slope 

because the reservoir-drainage area consists of a single formation. On the other hand,  for a 

fractured reservoir the curve shows a slope change at the early stage and at the late stage. The 

change of the pressure-depletion trend at a particular time depends on the individual continuum 

parameters which are being drained at that time (Abdassah and Ershaghi, 1986). Depending on 

the depletion criteria, the slope is steeper or flatter than the homogeneous response. According to 

the dual or triple continuum approaches the slope of the curve depends on the relative storability 
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and the inter-porosity flow parameter of the different continuum. Nevertheless, an anomalous-

slope change is observed in case of the hydraulically fractured reservoir that cannot be explained 

by the multi-continuum approach.    

The proper analysis of the pressure depletion for a reservoir is essential for its characterization 

and the production optimization. A misinterpretation of the pressure transient test data causes an 

inaccurate prediction about the reservoir performance. Additionally, the proper evaluation of the 

reservoir parameters and the pressure responses are essential for the production design and 

reserve estimation. For instance, highly permeable fractures may feed the well at the early stage 

that causes a high production rate and makes an overestimation in the reserve calculation. 

Dual porosity concepts have introduced a new continuum in the homogeneous reservoir to 

correlate the slope change with the inter-porosity flow of the continuums and remarks that the 

individual portion in the response curve reflects the domination of the separate continuum 

(Warreen and Root, 1968).   Abdassah and Ershaghi (1986) have considered a new continuum in 

the model, either a fracture or a matrix, and relates the slope of the response curve with the 

storability ratio and the inter-porosity flow parameters. They work with both of the strata model 

and the block model. Jalali and Ershagi (1987) have modified the triple porosity model and 

extended it to the dissimilar matrix types. Al-Ghamdi and Ershagi (1996) have studied a model 

with dissimilar fractures and with a radial flow condition. Alahmadi (2010) has proposed a linear 

triple porosity model and follows the El-Banbi (1998) linear flow solution for a fractured 

horizontal well. The proposed model reservoir consists of matrix and two set of orthogonal 

fracture, the micro-fracture and the macro-fracture. Brawn (2009) has developed a tri-linear 

model for the hydraulically fractured horizontal well and assumes linear flow for all regions; the 

outer reservoir, the stimulated inner reservoir, and the hydraulic fractured. Ozcan (2014) has 

modified the tri-linear model by considering anomalous diffusion in the inner reservoir. 

Furthermore, Albinali (2016) has studied another modification of the tri-linear model by 

assuming anomalous flow both in the inner reservoir and in the outer reservoir. 

Dual and triple porosity models use the intrinsic properties of the reservoir; those are difficult to 

determine for a fractured reservoir. Moreover, the flatter slope of the pressure response curve at 

an early time cannot be explained by the dual or triple porosity model. On the other hand, tri-
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linear models consider the reservoir geometry in more details and the assumption of the 

anomalous diffusion eliminates the requirements of the extra intrinsic properties. However, the 

determination of the anomalous coefficient contains a significant uncertainty. The anomalous 

behavior of the fractured zone due to the space event within the hydraulic fracture is out of 

consideration in the previous studies (Brawn, 2009; Ozcan, 2014; Albinali, 2016).  

This study aims to eliminate these limitations and proposes a combination of the continuum 

approach and the anomalous diffusion. Furthermore, this research handles the impacts of the 

time and space separately at different regions of the reservoir with the proper anomalous 

diffusion equations.  

1.2 Key Ideas 

The study considers a modified Tri-linear structure (TLM) to develop a mathematical flow 

model that follows a logical combination of anomalous and conventional flow. The combination 

is based on the following arguments:  

1. Sub-diffusion is occurred in the outer reservoir, an area beyond the tip of the hydraulic 

fracture and the unstimulated zone in a fractured reservoir. Due to the internal structure, 

this area has the higher resistance to the fluid flow. Consequently, the time effect 

becomes a dominant factor in the overall flow that causes a slower-flow than the usual. 

2. Fluid flow follows conventional diffusivity law in the inner reservoir and this area is 

approximated by a multi-continuum structure. The inner reservoir is a stimulated zone 

between two hydraulic-fracture and contains a number of induced fractures. The 

construction of the inner reservoir can be approximated by the core data, well log data, 

and the other methods of formation evaluation. Thus, the orientation and the density of 

the fractures and the physical properties of the matrixes and the fractures can readily be 

determined for the inner reservoir. 

3. Super-diffusion process takes place in the hydraulic fracture. The stimulation process 

creates a better conductive region in the hydraulic fracture because it creates and 

connects the fractures and enlarges the existing fractures. Therefore, the space events 

control the flow in this region and make a faster flow than the natural.      
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1.3 Purpose Statement 

The objectives of the study are: 

a. To review the fundamentals of anomalous diffusion process in the fluid flow; 

additionally, analyzing the formulation and definition of the basic concept of anomalous 

diffusion, known as memory concept, from different standpoint to distinguish the 

memory effect from the other types of non-local impact in the fluid-flow. 

b. To review the fluid flow models for the fractured reservoir and investigate their 

assumptions, formulations, and limitations. 

c. To conduct a comparative study on the different flow models for the fractured reservoir 

to determine the appropriate approach.  

d. To develop a linear mathematical flow-model for naturally fractured reservoirs and solve 

the model analytically in case of hydraulically-fractured horizontal well. 

e. To analyze the pressure response of the solution for finding the effect of different regions 

of the drainage area on the overall pressure response at the bottomhole of the well and the 

conditions for production optimization.      

 

1.4 Procedure Statement 

The study makes a comparison between the anomalous diffusion method (Chen and Raghavan, 

2015) and the linear triple porosity approach (El-Banbi, 1998; Ahmadi and Wattenbarger, 2011). 

The comparative analysis considers characteristic distinct physical structure for each approach 

and derives the analytical pressure solution in Laplace domain. To compare the responses of the 

approaches, it maintains the dimensional consistency in the physical models.  

The tri-linear reservoir model (Brawn, 2009; Ozcan, 2011) is the basic structure for the 

development of the multi-continuum anomalous model. Either a conventional or a modified, 

continuity equation represents the flow type in separate region. The pressure solution is derived 

in the Laplace domain and the coupling between the two adjacent regions is done by appropriate 

boundary conditions. Caputo’s (Caputo, 1969) definition and properties of the fractional 

derivative are used to solve the sub-diffusion equation whereas the basic properties of the mittag-

Leffler function (Hombole et. al., 2011, Fomin et. al., 2010) are used for the solution of the 

super-diffusion process. The linear flow solution in the inner reservoir follows the procedures of 
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El-Banbi (1998), Brawn, 2009, and Ozcan, 2011. The solution is numerically inverted to the time 

domain based on the Stehfest algorithm (1970). The pressure response is generated and analyzed 

by MATLAB_R2016a. 

1.5 Contribution of the Study 

This study investigates different approaches for the fluid flow modelling of a naturally fractured 

reservoir, inspects the particular physical arrangements, analyses the contrasts among the 

different models, and examines the mathematical formulations and their limitations. 

This study also discusses the current concept of memory in different fields and critically analyses 

the representative mathematical tools for each corresponding model. The idea of anomalous 

diffusion in the petroleum engineering is critically reviewed. 

To determine the better representative model of the fractured reservoir, the study conducts a 

comparative analysis on two standard approaches for the fluid flow modelling of a naturally 

fractured reservoirs: the anomalous diffusion and the multi-continuum approach. 

The adaptation of the triple porosity model in the inner reservoir region in a Tri-linear model to 

capture the heterogeneity in a naturally fractured reservoir is used for the first time in this study. 

The logical combination of sub-diffusion, super-diffusion, and linear axial flow for evaluating 

the performance of a hydraulically-fractured horizontal well is another innovative approach in 

this research. 

 

1.6 Organization of the Thesis 

The thesis consists of six chapters and three appendices as follow 

 

Chapter 1 is the introduction of the thesis that contains the problem statement, key idea of the 

research, objectives, procedure of the study and the contribution of this research. 

 

Chapter 2 reviews the memory concept which is the fundamental idea of anomalous diffusion. 

This chapter investigates the definitions of memory, makes the comparison of the non-Darcy 

flow and anomalous diffusion, and shows the application of the memory concept in the 

petroleum reservoir.  
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Chapter 3 presents the literature review on the fluid flow models for the fractured reservoir, 

classification of the models, physical structures and the limitations of different approaches. 

 

Chapter 4 develops a simplified model using the anomalous diffusion approach and multi-

continuum approach and compares the responses to determine the characteristic limitations of the 

approaches. 

 

Chapter 5 is devoted for the development of a linear mathematical model for the fractured 

reservoir using both the anomalous diffusion and the multi-continuum approach. The derived 

solution is validated by comparing them with the existing models and with the field data. The 

responses of the model are analyzed to determine the effect of the different parameters on the 

bottomhole pressure depletion.  

 

Chapter 6 contains the conclusions and the recommendations of the study 

 

Appendix A includes the derivation of the continuity equation for the anomalous diffusion and 

the derivation of the multi-continuum anomalous diffusion model. 

Appendix B presents the derivation of the flow solution for a rectangular matrix block 

Appendix C shows the derivation of the pressure solution for a two-dimensional linear flow in 

the hydraulic fracture.       
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Chapter 2 A Critical Review on Memory Concept: Anomalous 

Diffusion and Non-Darcy Flow 
 

Preface 

Memory is the fundamental concept for understanding the behavior of the anomalous diffusion. 

The concept of memory is one of the most expanding ideas in fluid flow modeling. The recent 

advancement and the continuing research, moreover, makes it more promising in its potential 

application in the petroleum field. In the existing literature, there are a variety of perspectives 

about the definition of memory. This chapter discusses the current concept of memory in 

different fields and critically analyzes the representative mathematical tools for each 

corresponding model. This will conveniently facilitate the conceptualization of the memory. A 

discussion on the fractional derivative will clarify its relationship with memory. In practice, the 

integro-differential tool is widely used for escalating the memory formalisms and its impact on 

modeling complex reservoirs. A general definition of memory as a time-dependent phenomenon 

or as a deviation of Darcy flow in porous media, make it tumultuous with the term like the non-

Darcy flow and the transient flow. Considering this fact, this study emphasizes the distinction 

between memory and the non-Darcy and the transient flow. There are diverse perspectives in the 

application of memory in petroleum reservoir engineering. This paper investigates these 

perspectives and comprehensively analyzes their formulations and limitations. Reviewing the 

difficulties in the implementation of the memory in the petroleum reservoir flow gives direction 

for the future research.     

2.1 Introduction 

Memory is the phenomenon which occurs if the medium itself and fluid that flows through the 

medium have a continuous interaction and the system traces the previous track at the present 

performance. The variations of the rock and fluid properties are usually included to modify the 

governing equations. Memory modifies the basic flow model by incorporating the effects of time 

which are created by the flow history from the alteration of rock and fluid properties. 

The Memory has different definitions and formulations depending on the fields. In physics, 

memory is the psychological arrow of time that not only records the events of a system but also 

interacts with that system. It correlates with the system and moves forward or backward along 

the same direction of thermodynamic changes of that system, i.e., entropy change (Mlodinow et 
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al. 2014). In Geotechnics, memory is the criteria that causes and controls the propagation of 

fracture within a solid formation which is under the conditions of stress (Christensen et al. 2004). 

In earth science, memory is the time-dependent pore pressure diffusion due to fluid flow 

(Raileigh et al. 1976, Bell and Nur, 1978). In fluid flow modeling, memory is an approach to 

evaluate fluid flow under a frame of reference of internal observation by considering the matter 

and molecules within the flow (Hossain et al. 2006). Some studies represent memory with time-

dependent correlations, by using a non-equilibrium expression within the equation or as the 

deviation part from the constitutional equations. In fluid flow through porous media, the effect of 

memory is represented with the integro-differential operator (Caputo, 1999; Iaffaldano et al. 

2006; Hossain et al., 2006; 2009; and Giueppe et al.,2009). 

Memory concept creates a new era in reservoir engineering because the conventional approaches 

deal with the variation of fluid, solid, and semi-solid structure of the fluid medium properties. 

However, memory includes the effect of compositional and structural alteration of the fluid and 

medium over the flow time. There are three trends in characterizing memory in petroleum 

engineering. For the conventional reservoirs (permeability is ranged from Darcy to millidarcy), 

the impact of memory appears in the modification of the constitutive equations, and the 

corresponding fluid and rock properties which is directly related to time (Hussain et al., 2006; 

2007; 2008; 2009; and 2013). For unconventional reservoirs (permeability of Nano Darcy), an 

anomalous diffusion is assumed to be existent in the reservoir. This anomalous diffusion is 

characterized with the aid of the fractal parameters or by the modification of the flux law with 

the fractional time and space derivative (Chang and Yortos, 1990; Raghavan 2011; Chen and 

Raghavan 2015; Holy and Ozkan, 2016; Alibini et al., 2016). In other approach, the impact of 

memory is evaluated in the homogenizing process of the flow between different subdomain and 

is related to the kernel of the integro-differential operator (Panfilov et al., 2013; and Rasoulzadeh 

et al., 2014).   

This paper analyzes the definitions of memory in different fields and evaluates their 

mathematical expressions in a critical manner. There is a brief discussion on the non-Darcy flow 

in porous media. This intensive investigation clarifies the difference between memory and non-

Darcy flow. The study also contrasts the time-dependent behavior of transient flow and the 

impact of memory on reservoir flow. Investigation on the application of memory in the 
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petroleum field updates the recent advancement in this new field. The discussion on challenges 

will make way for future research in this area. 

area. 

2.2 Memory Concept 

Memory can be conceptualized as an anomalous behavior in the fluid flow, the time-dependent 

variation of the system properties or as the trace of the interaction of essential components of a 

system. Table 2.1 highlights the defining criteria of memory in different fields and tries to find 

out the mathematical roots of each approaches. The following section discusses the concepts in 

detail. 

2.2.1 Geo Mechanics  

In 1976, Raileigh et al. conducted an experiment at an oil field in Rangely, Colorado to correlate 

field pressure and earthquake frequency in an active zone.  By measuring fluid pressure, they 

could predict the beginning of the earthquake. When the pressure diffusion within the formation 

was modelled, they faced some problems in utilizing the classical Darcy law, because the model 

was not able to solve their challenges. Later, in 1978, Bell and Nur encountered the same 

limitations in their interpretation of the relationship between hydrostatic pore pressure and 

seismicity in a fracture zone. Their investigation yields a time-dependent pore pressure diffusion 

due to fluid flow which is treated as memory in Geo Mechanics (Raileigh et al. 1976; and Bell 

and Nur, 1978). Roeloffs et al. (1988) investigated the stability of faults for the variations in 

water level. The study found that pore pressure diffusion depends on the compressibility of the 

rock and fluids. Depending on the stress condition, the impact of the periodic variation of the 

water level on the pore pressure is a time-dependent criterion. They validated their observation 

by using coupled and uncoupled stress equation and with field data.  a stretching sheet. 

2.2.2 Turbulent Fluid Flow 

Shin et al. (2003) found a non-equilibrium effect on the segregation velocity of particle. The 

effect goes in the direction of the turbulence level in fluid flow which is generally decreasing. 

The flow contains an impact of previous mean and fluctuating velocities. This creates a non-

equilibrium effect on particle deposition inside the turbulent boundary layer during the 

transportation of the inertia dominated particles. The effect of earlier motion on current flow is 
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termed as memory and modeled based on the intermediate diffusion time scale and mechanism 

of flow. Shin et al. (2003) modeled the turbophoretic velocity as  

 𝑣𝑡
+ = 

24 𝜏𝑃
𝑅𝑒𝑝𝐶𝐷

𝑑

𝑑𝑦
 (𝜁 − 𝐷𝑦𝑦  

𝑑𝑣𝑦

𝑑𝑦
)
1

𝑢∗
+ 

24 𝜏𝑃
𝑅𝑒𝑝 𝐶𝐷

 
𝑑

𝑑𝑦
(𝜏𝐵

𝑑𝜁𝑦𝑦

𝑑𝑦
)
1

𝑢∗
 (2.1) 

The last part of the equation represents the non-equilibrium effect due to memory. 

2.2.3 Fluid Flow with Yield Stress 

Chen et al. (2005) studied the mobilization and subsequent flow of the fluid with a yield stress, 

i.e., Bingham plastic, in a porous medium. With a yield stress, during the two-phase fluid flow in 

porous media, a minimum threshold for displacing fluid from the pore throat is always required 

(Rossen and Gauglitz, 1990). When an individual pore throat influences the capillary expression 

of fluid flow, there is a relationship between pore geometry and pressure gradient (Rossen, 1990; 

and Copx et al., 2004). To evaluate this relationship, the concept of minimum threshold path 

(MTP) was proposed based on the simple percolation model (Rossen and Mamun, 1993), and   

percolation cluster within porous media (Feder, 1988). Identification of MTP is always 

challenging because of the complex formation geometry, i.e.; tortuosity. Therefore, a new 

concept is proposed to overcome this challenge, the invasion percolation with memory (IPM) 

(Kharabaf, 1996; Kharabaf and Yortsos 1997, 1998). In the absence of the flow effect, the static 

problem of single phase (Kharabaf and Yortsos 1997) and two phase (Kharabaf and Yortsos 

1998) fluid flow with yield stress are discussed along with the properties of MTP. The static 

condition and formation microstructure also impose a dynamic effect on the flow rate and 

pressure gradient relationship at the mobilization of fluid flow, similar to the viscous effect (Falls 

et al. 1989, Sahimi 1993, Shah and Yortos 1995, Tian and Yao 1999, Shah et al. 1998, Xu and 

Rossen, 2003). Chen et al. (2005) worked with two types of cases, the static case and the 

dynamic case of which the viscous effect is important. Based on the algorithm of IPM, they 

proposed a pore network model with a distributed yield stress threshold. Memory appears in their 

model as the microstructure influence of pore network on fluid flow. The minimum threshold 

path between the two neighboring boundaries along which the sum of the threshold is 

minimized, controls the initial mobilization of fluid within the pore network. They modeled the 

mobilization and fluid flow in pore throat by the single capillary expression. In the model, the 

relationship between applied pressure gradient and flow rate for single phase flow is a function 
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of the microstructure. In conventional porous media, the relationship depends on the variable 

conductance of the pore throat. For example, against an applied pressure gradient, the increment 

rate of the fraction of the pore that belongs to the open path is lower in the dynamic case than in 

the static case. 

2.2.4 Fluid Flow in Porous Media 

Caputo (1999) modified Darcy’s law with a fractional derivative to model the diffusion process 

in porous media. He started by using Rice and Cleasly (1976) formulation for the core equation 

of stress-induced fluid flow. This is the combined form of Biot’s (1941) stress-strain relationship 

equation and the continuity equation, which satisfies the stress equilibrium and compatibility 

conditions. The study replaced the constant of consolidation (c) by pseudodiffusivity (A) and 

used Darcy’s modified equation for the expression of mass flux rate. To illustrate the memory 

effect, he worked with the following uncoupled equation: 

 
𝐴 (

𝜕𝛼

𝜕𝑡𝛼
)(
𝜕2𝑝

𝜕𝑥2
) = (

𝜕𝑝

𝜕𝑡
)  (2.2) 

Using Caputo’s (1969) definition of fractional derivative, Caputo (1999) analytically solved the 

equation and found the solution as a form of a green function as follow: 

 
𝑃(𝑥, 𝑡) = 𝑃(0) + (

𝐶1
𝜋
) ∫ [exp(−𝑟𝑡)] [exp(−𝑟

𝑧
2 𝐴

−1
2  𝑥 cos

𝑧𝜋

2
))] sin (𝑟

𝑧
2 𝐴

−1
2  sin (

𝑧𝜋

2
))𝑑𝑟

∞

0

 (2.3) 

Where z = 1 – α 

To model the pressure distribution, he considered four types of boundary conditions: (i) delta 

pressure fluctuation, (ii) zero pressure, (iii) sinusoidal pressure, and (iv) constant pressure at the 

boundary. Zero or constant pressure was assumed at the half space of the medium. These 

boundary conditions are convolved with the Green function (Eq. 2.3), and a numerical 

investigation is made to evaluate the impact of memory. Caputo observed that in the case of step 

pressure, the variation of pressure with distance and time depends on memory parameter (z). 

When there is a zero pressure at the boundary, constant pressure at half space of the medium, and 

an increasing value of memory (α), pressure transforms more slowly from the half space and the 

time required to gain the maximum pressure gradient at a particular distance is delayed. When 

there is a sinusoidal pressure at the boundary, both the phase differences increase, and a growth 

of phase lag is also observed along the medium because of the impact of memory. Finally, when 

there is a constant pressure at the boundary, the effect of memory slows pressure response, which 
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travels more gradually through the medium. The amplitude of the pressure is decreasing at a 

certain distance from the medium. Based on these observations, the researcher recommended that 

the permeability of the medium is changing with time. This change impacts the current pressure 

diffusion within the medium at present. This scenario resembles the recollection of previous 

events. According to Caputo (1999), the deviation of permeability is caused for two reasons: (i) 

the effect of previous pressure gradient, and (ii) phenomena that are related to fluid flow, i.e. 

chemical reaction, mineral precipitation, temperature variations and fluid, solid interactions. 

However, Caputo’s (1999) approach did not provide a complete numerical solution of the 

governing equation with fractional derivative, however it did numerical investigation of the 

Green function. It did not provide any physical basis for the value of α and assumed value for the 

pseudodiffusivity without experimental validation. Caputo’s (1999) study is a comparative 

investigation based on mathematical findings, but as it does not consider experimental or field 

data, it is weakly connected to the actual scenario of flow in the porous medium. 

Caputo (2000) extended his previous work and modeled fluid flux diffusion with memory. He 

modified the Darcy equation by a convolution of the integrodifferential operator at both sides, 

i.e. fluid flux and pressure gradient. In the same way, he changed the equation of state and 

considered time-dependent fluid rheology. The modified equations are presented in Eq. 2.4 and 

Eq. 2.5 as: 

 (𝑎 + 𝑏 
𝜕𝑚2

𝜕𝑡𝑚2
)𝑃 = (𝛼 + 𝛽 

𝜕𝑚1

𝜕𝑡𝑚1
 )𝑚 (2.4) 

 (𝛾 + 𝜀 
𝜕𝑛1

𝜕𝑡𝑛1
) 𝑞̅ = (𝑐 + 𝑑 

𝜕𝑛2

𝜕𝑡𝑛2
 )
𝜕𝑝

𝜕𝑥
 (2.5) 

 

where a, b, c, d, α, β, ε, γ, and n are the parameters which scale up the memory impact in the 

flow modeling. This approach gives flexibility to model fluid flow with more time dependent 

rock and fluid properties and adaptability to match with experimental data in the evaluation 

process. The study examined two models. Model I was simplified by considering time 

independent fluid properties, and Model II modified the equation of state. Following the same 

solution procedure of previous work (Caputo, 1999), Caputo showed the Green function for the 

first model is: 
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Here the dimensionless pseudo-diffusivity (A) and boundary variable (y) are the combinations of 

memory parameters. This approach tried to explain the flux diffusion with memory instead of 

pressure diffusion by convolving this green function with different boundary conditions. It is 

found that flux diffusion slows down with effects of memory i.e. with the increasing order of 

differentiation. Although the amplitude of the maximum flux increases with memory, the 

average velocity decreases. Memory acts as a low pass filter in fluid diffusion. However, it is 

less sensitive to low frequency content of flow (e.g. phase lag, velocity), in contrast to pressure 

diffusion. All the analyses in these studies are based on the mathematical formulations and tried 

to understand the influence of memory related parameter on the response of the overall equation 

in different conditions. So, for the deficiency in the experimental validation and numerical 

analysis, the study is not able to model the overall flow performance with memory in real 

applications. 

Iaffaldano et al. (2006) investigated fluid diffusion with memory in a porous medium. They 

measured the diffusion in a sand sample and observed that flux decreases with time, indicating 

that the permeability of the medium varies. They slightly modified the Caputo’s model (Caputo, 

2000) for one-dimensional flow and determined the memory parameters of the model by fitting 

the experimental finding with it. Although this study offered an experimental basis of the Caputo 

model, it worked with a sand column. Stress-induced consolidation and hence permeability 

reduction is a common observation in such settings (Schutjens, 1991). Therefore lack of, a clear 

distinction between the effect of memory and the compaction, as well as a short flow history (i.e. 

10 hours) are the limitations of this study. 

Giuseppe et al. (2010) used a similar mathematical model as Caputo (2000) and experimentally 

validated the model. In comparison to Iaffaldano et al. (2006) they worked on six types of porous 

media. The media was both homogeneous and non-homogeneous and used a vertical cylinder as 
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the sample chamber. They adapted their experimental data to the model and determined the 

memory parameters. Medium with high porosity have a high memory effect because of the high 

compaction. Large grain size increases the impact because of the higher probability what will 

change the formation shape. They found higher memory accumulation in the heterogeneous 

formation, and medium density increases the effect. However, this study has done an intensive 

experimental work, but it has the same limitations as Iaffaldano et al. (2006). 

2.3 Memory and Non-Darcy Flow 

For fluid flow modeling in a porous medium, the Darcy model is to date the most widely used 

and accepted equation formulated by an experimental investigation of the flow of water through 

a sand pack (Darcy, 1856). The model is valid for homogeneous viscous fluid flow in isotropic 

porous media.  Darcy related the volumetric flux to the pressure gradient with a proportionality 

constant. Later, this constant is evaluated as permeability (Hazen 1892, Wenzel 1942, Jacob 

1946, Rose, 1949). For the validity of Darcy’s model, the original conditions are the proportional 

relationship of volumetric flux, pressure gradient, and the independent nature of permeability to 

fluid type. A non-Darcy flow is expected for violation of any of those conditions. 

Many approaches have been attempted to evaluate the behavior of non-Darcy flow, its 

amplitude, mechanism, reasons that initiate this deviated flow from ideal nature. Generally, four 

distinct types of approach are found in literature. These are: (i) setting the criteria up that can 

predict the deviation point of Darcy flow to non-Darcy, i.e. Reynolds number, Forchheimer 

number, (ii) emphasizing the empirical relationship like Forchheimer equation and develop the 

expression for the non-Darcy coefficient, (iii) investigating the non-Darcy flow based on the 

physical structure of porous medium and derive the expression from fundamental conservation 

law, and (iv) determining the impact and causes of non-Darcy flow near the wellbore region by 

considering the production scenario. Table 2.2 summarizes some of the non-Darcy models and 

lists key reasons for their non-Darcy character, including the associated assumptions of the 

models. 

 

 

Table 2.1: Critical Analysis of Different Memory Concepts 
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Reference Application 

area 

Defining Criteria of Memory Root for mathematical formulation with memory 

Roeloff (1988) Geo 

Mechanics 

That causes and controls the propagation of fracture 

within a solid formation which is under stress 

conditions. 

-Biot equation with compressible rock and fluid. 

 

-Coupled and Uncoupled solution 

 

-Specified Material properties. 

 

Chang and 

Yortos (1990) 

Fractal 

reservoir 

Deviated or delayed pressure response within a fracture 

reservoir due to the fractal geometry in fracture 

network, that has disordered spatial distribution and 

different scale of conduit fracture.  

-Anomalous diffusion in fractals 

-The Modified dual porosity system for a fractal geometry 

-Pressure transient test analysis of the Pressure response by 

using the solution of the modified diffusivity equation. 

 

 

 

Caputo (1999) 

 

 

 

Fluid flow 

in porous 

media 

Filter that acts upon the spectral properties of fluid 

flow is working in time domain and increase the low-

frequency content of flow (phase lag, velocity) whether 

decreases the high-frequency content (pressure 

amplitude) 

-Fractional time derivative of pressure gradient 

 

-Pseudo diffusivity (A) and Pseudo diffusivity ratio (η). 

 

-Convolution of boundary condition with Green function. 

Caputo (2000) Flux 

diffusion in 

porous 

media 

Characteristics of the medium that diminishes the 

permeability and interrupt the pressure response and 

fluid flux rate following the flow history. 

-Modified Darcy’s law and continuity equations with 

integrodifferential operators. 

 

-Green function for flux diffusion 
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Shin et al. 

(2003) 

 

 

Turbulent 

fluid flow 

A non-equilibrium effect acting on the turbulent 

boundary layer where inertia force dominates the fluid 

flow 

-The intermediate diffusion time scale 

 

- Anomalous non-equilibrium part of the turbophoretic 

velocity. 

Lynch et al. 

(2003) 

Plasma 

Physics  

Long range correlation in the dynamic behavior of the 

particle both in space and time event due to the unusual 

displacement, accelerated velocity or trapping of the 

particle.   

-Fractional kinetics 

-Continuous time random work (CTRW) for particle 

distribution 

-Fractional space derivative. 

Chen et al. 

(2005) 

Fluid flow 

with yield 

stress in 

porous 

media 

The local microstructure effect influences the 

relationship between applied pressure gradient and 

flow rate at the microscopic level regarding the 

minimum threshold path (MTP) of fluid flow with a 

yield 

-Algorithm of invasion percolation with memory (IPM) 

 

-A pore network model with a distributed yield stress 

threshold. 

 

-Modeled the mobilization and fluid flow in the pore throat 

by single capillary expression. 

Iaffaldano et al. 

(2006) 

Water flow 

in porous 

media 

As the impacts of previous pressure gradient and fluid 

flux conditions, on recent flow. 

-Basic memory relation 

 

-Laplace transformation and appropriate boundary 

conditions. 

 

-Matching the experimental data and theoretical solution 
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Hossain et al. 

(2006, 2007, 

2008) 

Petroleum 

reservoir 

Evaluation of reservoir flow under a frame of 

references of internal observation by considering the 

matters and molecules related to flow, instead of 

external observation 

-Modification of constitutive equations with memory 

formalism. 

 

-Time dependent rock and fluid properties. 

 

-Fractional derivative for memory impact 

Giuseppe et al. 

(2009) 

Fluid flux 

in porous 

media 

The effects of local pressure gradient, related fluid flux 

and pressure-density variation effects on current flow 

and reductions in permeability and fluid flux by 

mechanical compaction. 

 

-Fractional order derivatives. 

 

-Memory parameters for every local or non-local variance. 

 

R. Raghavan 

(2011) 

Petroleum 

reservoir 

“Strange diffusion” across the disordered structures of 

geometrically complex porous medium due to the 

impact of the history of flow process. 

-Continuous time random walk (CTRW) model 

-Fractal dimentions 

-Fractional diffusion 

-Mittag-Leffler function 

Rasoulzadeh et 

al. (2014) 

Three scale 

fracture 

porous 

media 

Delay in fluid flow between different sub domain of 

the formation. 

-Microscopic model by proper parameterization 

 

-Integrodifferential operators 

 

-Two scale homogenizations 

Chen and 

Raghavan 

(2015) 

Petroleum 

Reservoir 

The long range spatial effect and the trapping effect in 

temporal scale on the local character of the flow. 

-Fractional time and space derivative 

- Mittag-Leffler function 

-Laplace transformation 

-Fox function. 
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Table 2.2: Mathematical Model for Non-Darcy Flow. 

 

Reference Mathematical model Application criteria Key reason for non-Darcy flow 

Forchheimer 

1914 
− 
𝑑𝑝

𝑑𝑋
= 
𝜇𝑣

𝑘
+  𝛽𝜌𝑣2 

-High velocity isothermal flow of a 

macroscopically inviscid fluid 

-Uniform isotropic elastic porous 

medium. 

-Increased inertial force in high velocity 

flow at pore scale 

Klinkenberg 

1941 
𝑘𝑔 =  𝛼

1

𝑃̅
+ 𝑘𝐿 

 

-Steady state gas flow at high velocity 

-Determination of effective permeability 

for Darcy equation. 

-Slippage between fluid and pore wall at 

high velocity gas flow. 

Brinkman 

1947 
− 
𝑑𝑝

𝑑𝑋
=  

𝜇𝑣

𝑘
−  𝜇(

𝜕2𝑣

𝜕𝑌2
+ 
𝜕2𝑣

𝜕𝑍2
) 

 

-Flow through porous medium with the 

enough large pore throat, allowing the 

velocity change at the throat. 

-Shear forces between the fluid and the 

pore structure during the high velocity 

flow at microscopic level 

Polubarinov

a_Kochina 

1957 

− 
∆𝑝

∆𝑥
= 𝑎𝑣 + 𝑏𝑣2 + 𝑑 

𝑑𝑣

𝑑𝑡
 

-Unsteady state fluid flow -Effects of fluid and rock properties like 

grain size and distribution, porosity, 

viscosity at pore level. 

 

-Unsteady state condition 

Irmay 

1958 
− 
𝑑𝑝

𝑑𝑥
=   

𝑎𝑖(1 −  ∅)
2𝜇

∅3𝐷2
 𝑢 +  𝛽𝜌𝑣2

+ 
𝑏𝑖 (1 −  ∅)𝜌

∅3𝐷2
 𝑢2  

+ 
1

𝜑
 
𝜕𝑢

𝜕𝑡
 

-One dimensional viscous flow 

-Isotropic porous media consist of sphere 

of equal diameter. 

-Grain size distribution and porosity 

-Effects of temperature, viscosity, and 

density on high velocity flow. 
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Geertsma 

1974 
𝛽 = 0.005 

1

∅5.5 𝑘0.5
 . (

1

(1 − 𝑠𝑤)
5.5𝑘𝑟𝑒𝑙

𝑜.5) 
-Gas flow in porous media with a water 

saturation 

-Non-uniform medium either 

consolidated or unconsolidated with 

complex pore structure. 

 

-Dominance of inertia force over viscous 

force due to high velocity. 

Barak and 

Bear 979 

𝑔𝐉 = (𝒗𝒘(𝟐) +𝑩(4):
𝐪𝐪

q
+ 𝑪(𝟑) . 𝐪) . 𝐪 

q = Specific velocity (cm/sce) 

-Saturated Steady state flow of high 

velocity. 

-Homogeneous anisotropic medium 

 

-Rock properties, formation structure, 

and the complexity of the porous 

medium. 

Avila 1985 
𝛽∅ (1 − 𝑠𝑤) √𝑘 = 𝑐 [

√𝑘𝜌𝜎

𝜇
]𝑚 

-Multiphase high velocity flow under high 

temperature and variable overburden 

pressure. 

-Effects of permeability, porosity, 

residual fluid saturation, and effective 

stress on fluid flow 

Blick et.al. 

1987 
− 
𝑑𝑝

𝑑𝑋
=  

𝜇𝑣

𝑘
+  𝛽𝜌𝑣2 + 

𝜌

𝜑2
 𝑣 
𝜕𝑣

𝜕𝑥
+ 
𝜌

𝜑
 
𝜕𝑣

𝜕𝑡
 

-One dimensional single phase unsteady 

state fluid flow with high velocity. 

-Along with inertial force the combined 

contribution of momentum flux and fluid 

acceleration in high velocity flow 

Hassanizade

h et al. 1987 

−𝜙(𝑃,𝑘 −  𝜌𝑔𝑘)

= (𝑎′ + 𝑏′|𝑣𝑘
𝑑|

+ 𝑐′ |𝑣𝑘
𝑑2|) 𝑣𝑘

𝑑 

With temperature gradient: 

-High velocity flow 

-Uniform isotropic elastic medium 

-Isothermal flow 

-macroscopically inviscid fluid 

-Microscopic inertial and viscous force. 

 

-Viscous drag force have higher 

contribution to onset the nonlinear flow 

than inertial force and viscous drag 

force. 
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−𝜙(𝑃,𝑘 −  𝜌𝑔𝑘)

= (𝑎1 + 𝑏1|𝑣𝑘
𝑑|

+ 𝑐1|𝜃,𝑘|) 𝑣𝑘
𝑑 + (𝑎2

+ 𝑏2|𝑣𝑘
𝑑| + 𝑐2|𝜃,𝑘|) 𝜃,𝑘 

X.Wang et. 

al 1998 

−𝐤  𝛻𝑝 =  𝜇𝐯 + 10−3.25𝜌𝛕𝟐 𝐯|𝐯| -Single phase flow 

-Only pore scale anisotropy considers in a 

pore scale network model 

-Extra pressure loss due to inertial 

effects in pore contraction, expansion, 

and bends in an anisotropic medium 

Prada et al. 

1999 
𝑢 =

𝑞

𝐴
=  
𝑘

𝜇
 [
∆𝑝

∆𝐿
− (

∆𝑝

∆𝐿
)
𝑐𝑟
] 

𝑓𝑜𝑟 
∆𝑝

∆𝐿
> (

∆𝑝

∆𝐿
)
𝑐𝑟

 

 

-Low velocity liquid flow in low 

permeability formation with a threshold 

pressure gradient 

-At low mobility ratio (
𝑘

𝜇
) fluid must 

overcome a threshold pressure gradient 

rather than the actual one. 

Zeng et al. 

2005 

𝑀𝐴 (𝑝1
2 − 𝑝2

2)

2𝑧𝑅𝑇𝜇𝑙𝜌𝑝𝑄𝑝
= 
1

𝑘
+  𝛽(

𝜌𝑝𝑄𝑝
𝜇𝐴

) 

𝐸 =
𝐹𝑜

1 + 𝐹𝑜
, 𝐹𝑜 =  

𝑘𝛽𝜌𝑣

𝜇
 

-Determination of critical Forchheimer 

number that responsible for the 

initialization of non-Darcy flow. 

 

-Liquid-solid interactions and viscous 

resistance in high velocity gas flow. 

Friedel et al. 

2006 

−𝑔𝑟𝑎𝑑 𝛷 = (
𝜇

𝑘
+ 𝛽𝑡𝜌|𝑢⃗ |)𝑢⃗  

𝛽𝑟 = 4.1 . 10
11 𝑘𝑟𝑒𝑠

−1.5 ,

𝛽𝑓 = 1. 10
11 𝑘𝑓

−1.11 

-High velocity flow in the fracture and the 

reservoir 

 

-Non-Darcy coefficient depends on stress 

condition. 

-Inertial flow in the reservoir as well as 

in the fracture at the near wellbore 

region. 
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Cai 

2014 
𝑉𝑠 = 𝑎 (

∆𝑝

𝐿𝑜
− 𝐽) 

𝑎 =  
1

32 𝜇𝑑  𝐿𝑜
𝐷𝑇−1

 
2 − 𝐷𝑓

3 + 𝐷𝑇 − 𝐷𝐹
 
∅ 𝜆𝑚𝑎𝑥

1− 𝐷𝑇

1 −  ∅
 

 

𝐽

=  
16𝜏𝑜
3

 
3 + 𝐷𝑇 − 𝐷𝑓

3 − 𝐷𝑓
 𝐿𝑜
(
𝐷𝑇−1
1+ 𝐷𝑇

)
 

×  (
1

32
 
∅

1 −  ∅
 

2 − 𝐷𝑓

3 + 𝐷𝑇 − 𝐷𝐹
 )

𝐷𝑇
(1+ 𝐷𝑇)  

×  𝐾
− 

𝐷𝑇
(1+ 𝐷𝑇) 

 

-Low velocity flow in a low permeability 

porous media 

 

-Threshold pressure gradient (TPG) that 

related to porosity fractal dimension, 

maximum pore size, and fluid property. 

Wang et al. 

2016 
𝑣 =  

𝑘

𝜇
 ∇𝑝 (

1

1 + 𝑒−𝑏|∇𝑝|
) 

𝑎 =  −0.6095 (
𝑘

𝜇
)
3

+ 2.5821 (
𝑘

𝜇
)
2

− 3.4594 (
𝑘

𝜇
) + 1.5836 

𝑏 = 0.3603 (
𝑘

𝜇
)2 − 0.1049 (

𝑘

𝜇
) + 1.0935 

 

-Low velocity flow in shale and tight oil 

reservoir 

-In the rock liquid interaction, there exist 

a boundary layer that creates nonlinear 

effect. 
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2.3.1 Onset of Non-Darcy flow 

In the existing literature, there are two types of numbers to identify the Darcy flow to non-Darcy 

flow deviation point- i) Reynolds number ii) Forchheimer number. In the past, non-Darcy flow 

was treated as turbulent flow, and some researchers termed the non-Darcy coefficient as 

turbulence factor (Cornell and Katz,1953, Tek et al., 1962). For that reason, it was a common 

practice to use the Reynolds number for identifying the beginning of this flow (e.g. pipe flow).  

There exist a variety of values of the Reynold number because different parameters were used to 

define this dimensionless number. Table 2.3 summarizes some available mathematical 

expressions for the Reynolds number and their critical value at the onset of the non-Darcy flow.  

 

Table 2.3: Reynolds and the Forchheimer number at the onset of non-Darcy flow 

 

Mathematical 

Expression 
Reference 

Critical Value at Onset 

𝑅𝑒 = 
𝜌𝐷𝑝𝑣

𝜇
 

Chiton and Colburn (1931) 40-80 

Fracher and Lewis (1933) 10-1000 

Blick, and Eivan (1988) 100 

𝑅𝑒 = 
𝜌𝐷𝑝𝑣𝑜
𝜇

 

Tek (1957) 1 

Wright (1968) 2 

Dybbas and Edwards (1989) 1-10 

Hassanizadeh and Gray (1987) 1 

𝑅𝑒 = 
𝜌𝐷𝑝𝑣

𝑜

𝜇
 
1

1 −  ∅
 Ergun (1952) 3-10 

𝑅𝑒 = 
𝜌𝑑𝑡𝑣

𝜇
 

Ma and Ruth (1993) 3-10 

Couland et.al. (1986) 3-13 

𝐹𝑜 = 
𝑘𝑜𝛽𝜌𝑣

𝜇
 

 

Green and Duwez (1952) 0.005-0.02 

Ma and Ruth (1993) 0.005-0.02 

Zeng et al. (2005) 0.11 

 

Chiton and Colburn (1931) adapted the Reynold’s number for investigating the porous medium 

and replaced the length by the diameter of particle and velocity by superficial velocity. They 

found that the non-Darcy flow occurs between the value 40 – 80. Using the same definition, 
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Fracher and Lewis (1933) evaluated it as 10-1000 for the unconsolidated porous medium. Blick 

and Eivan (1988) found it as 100. To make the definition more appropriate for the porous media 

Tek (1957) found the responsible Reynolds number for the non-Darcy flow was 1. He defined 

the inertia term by order of magnitude of flow velocity (vo), density and microscopic 

characteristic length as one. Wright (1968) used the same definition and assessed the value as 2 

and Dybbas and Edwards (1989) as 1-10. Hassanizadeh and Gray (1987) used the Tek (1957) 

definition and evaluated the Reynolds number as ten at the onset of the deviated flow.  

Ergun (1952) added the porosity in the definition and replaced the velocity term by actual 

velocity (v0) of the fluid. Based on his definition the Reynolds value of 3-10 creates the non-

Darcy flow. Numerical simulation of the solution of Navier-stokes equation also gives the 

critical points for nonlinear flow behavior. Ma and Ruth (1993) showed the critical Reynolds 

number as 3-10, and Couland et.al. (1986) gave the range as 3-13. 

All the above definitions have a pore diameter or characteristic length. Both can be determined 

for a packed column of sample particle. However, it is very inconvenient to determine the exact 

characteristic length of a porous structure. Researchers tried to find another dimensionless 

number that would contain the closely related parameters of the porous medium. The 

Forchheimer number was proposed to solve the problem (Li and Engler, 2001, Gidley, 1991). 

Green and Duwez (1952) considered the liquid and solid interactions. They introduced the 

permeability and a non-Darcy coefficient into the definition. For gas flow, they determined 0.1-

0.2 as the critical value for the non-Darcy flow. With the same trend, Ma and Ruth (1993) 

defined the Forchheimer number and they determined the critical value in the range of 0.005-

0.02. For determining β from different types of formations, Zeng et al. (2005) followed the same 

procedure of Cornell and Hatz (1953). They have done extensive work on the Forchheimer 

number and defined the number as the ratio of liquid, solid interaction, and viscous resistance. A 

non-Darcy effect (E) calculates the magnitude of deviation of the non-Darcy flow from the 

Darcy flow. In addition, they gave a theoretical basis and experimental procedure to calculate the 

Forchheimer number for the gas flow. According to the study, the non-Darcy effect is more 

severe in low permeability rocks, and the critical number is 0.11 which is in good agreement 

with the previous studies. 
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2.3.2 Determination of non-Darcy coefficient 

Several researchers tried to evaluate the non-Darcy coefficient as a rock and fluid property. 

Considering the experimental data of Cornell and Kartz (1953), a porosity and permeability 

dependent correlation for non-Darcy coefficient was established by Janicek and Katz (1969). For 

an hetarogeneous formation, a similar type of work has been done by Gewers and Nichol (1969). 

They incorporated the effects of residual liquid saturation in the relationship of permeability to β. 

Cooke (1973) worked with particle size distribution of the porous medium to represent β. By an 

empirical correlation, Geerstma (1979) linked β with porosity and permeability in the case of 

high-velocity gas flow with a water saturation. Their investigation is based on dimensional 

analysis of Forchheimer equation and experimental findings.   

Avila (1985) established an expression for the non-Darcy coefficient through an experimental 

work. He considered the effects of permeability, porosity, residual fluid saturation, and effective 

stress on fluid flow. Tiss et al. (1989) used Avila’s correlation and investigated the dependence 

of β on those parameters in more details. In addition, they examined the effect of higher 

temperature and higher pressure both on β and permeability, and the mutual relationship between 

low permeability and β. Finally, they validated Avila’s correlation by experimental findings. 

  

2.3.3 Non-Darcy flow model based on constitutive equations and physical model 

Apart from empirical correlation, many studies focused on the physical structure of the porous 

medium and flow geometry to analyze the reasons beyond the nonlinear character of the Darcy 

equation (Ergun and Orning, 1949, Barak and Bear, 1979, Wang et al. 1998,). Using the 

fundamental governing equation of flow, researchers developed the model and tried to find out 

the source of nonlinearity from the model (Forchheimer, 1914, Irmay, 1958, Blick and Civan, 

1987, Hassanizadeh, 1987).  

The Darcy model deals with the linear relationship between flow velocity and driving force 

(pressure gradient). Forchheimer (1914) introduced the non-linear effect for high velocity in the 

equation of motion with an empirical constant. Irmay (1958) worked with Navier-stokes 

equation of viscous flow. He investigated the validity of the Darcy and Forchheimer models in 

the case of an isotropic porous model consisting of the sphere of equal diameter. He revealed that 

the Darcy’s model is valid only at low flow rate with minimum kinetic energy within the 

homogeneous thermodynamic system. In contrast, the Forchheimer model is valid for the high 
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Reynolds number but the coefficient contains the effects of formation porosity and grain size 

distribution. Irmay (1958) considered the viscosity and temperature effects and proposed a new 

model with an extra factor.  

Blick and Civan (1987) added additional terms in the Forchheimer equation to estimate the 

contribution from momentum and mass conservation. Using the capillary-orifice model, they 

derived a general equation from momentum and mass conservation law. In the case of gas flow, 

they showed that the flow behaves differently from Forchheimer and Darcy’s equation at the 

early time due to high acceleration. They validated their findings with experimental data. 

Hassanizadeh (1987) proposed a model for high-velocity flow based on the continuum approach 

and investigated the impact of microscopic drag force on the global flow character. He initiated 

the development of the general equation from the macroscopic equation of momentum 

conservation where the inertial term appeared as a deviated term in stress field and drag force 

added as a surface force (Hassanizadeh and Gray 1979). Taking the thermodynamic process in 

consideration Hassanizadeh and Gray (1980) derived the equation for those force terms. 

Hassanizadeh (1987) worked on their previous expression by employing dimensional analysis. 

He showed that microscopic viscous drag force has higher order contribution in the constitutive 

equation than macroscopic inertial force. Therefore, drag force causes the initialization of the 

non-Darcy flow. Like the Forchheimer equation, he proposed a three-dimensional equation for 

high-velocity isothermal flow for isotropic elastic media.    

Researchers also developed a general equation by imposing the governing law on an idealized 

physical model and solved the equation for this model with certain assumptions (Barakand Bear, 

1979; Wang et al., 1998). Barak and Bear (1979) worked to develop an approximate expression 

for the relationship between volumetric flow rate, pressure gradient, and formation properties for 

the steady-state saturated, and high-velocity flow. This flow is uniform at the microscopic scale. 

Three tensors were added to measure the impact of tensorial rock properties on the flow 

equation. They considered five types of models (Figure 2.1) to formulate the expression and 

compared the theoretical and experimental results in each case. In four of those physical models, 

they assumed the structure of the porous medium as the different arrangements of pipe and 

junctions, where the fifth model was a fissured porous media. The study demonstrated the 

influence of physical structure on the flow performance and recommended that the form of 

mathematical expression should be reformed according to the complexity of the flow medium.  
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Figure 2.1: Two-dimensional physical model of Barak and Bear (1979). 

One of the functional physical models to characterize the porous media is the pore network 

model that can illustrate the transport phenomenon at the microscopic level in an anisotropic 

media with complex geometry. This model is working on a distributed network of pore body and 

connected throat (Ionnidis and Chatzis, 1993, Friedman and Seaton, 1996, Mani and Mohanty, 

1997). Wang et al. (1998) proposed a tensorial form of the Forchheimer model for the single-

phase flow in an anisotropic medium. They induced the anisotropy into three different ways; 

termed as, size influenced (i.e. different throat size), connectivity induced (i.e. different throat 

connectivity), and spatial correlation induced (i.e. different body size). In their simulation 

process within the network model, they determined the permeability tensor from the tensorial 

form of the Darcy law and measured only the viscous pressure loss. At high-velocity flow, they 

calculated the non-Darcy coefficient tensor from the tensorial form of the Forchheimer equation. 

They included pressure loss due to bending, expansion, and contraction, which was proportional 

to the square of superficial velocity. In their observation, the non-Darcy flow primarily occurs 

because of inertia effect, and there exists a correlation between the morphological parameters of 

the medium and the microscopic flow properties. 
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2.3.4 Non-Darcy flow related to production 

For inspecting the non-Darcy flow related to production, most of the studies focused on the tight-

gas reservoir and at the fracture near well bore region. Many the investigations tried to evaluate 

the non-Darcy flow coefficient by considering inertia dominated flow within the fracture 

(Millheim and Cichowicz, 1968, Holditch and Morse, 1976, Guppy et al. 1982, Smith et al. 

2004). The non-Darcy flow can affect the results of well-test analysis and the inherent error in 

the test results may lead to the overestimation of the future production performance of the well 

(Umnuay et al. 2000, Alvarez et al. 2002). Therefore, some researchers proposed the modified 

type curve that accounts the contribution of the non-Darcy flow (Shiqing et al. 1996, Liu et al. 

2004). During the hydraulic fracture operation, the propped fracture and proppant concentration 

causes a non-Darcy flow (Jin and Penny, 1998, Barree et al. 2007, Shah et al. 2010). Koh (1977) 

considered gas flow in this region and scaled up the non-Darcy flow coefficient and related it to 

the stress condition within the fracture zone and proppant concentration.  

Friedel and Voigt (2006) investigated the well performance when the non-Darcy flow exists in 

the reservoir, and the well fractures. They corrected the non-Darcy coefficient by including the 

inertial effects and the effects of stress induced variable permeability. Based on a detailed 

simulation, they figured out the impact of the non-Darcy flow on the production performance 

with constant non-Darcy coefficient and permeability dependent coefficient. The non-Darcy flow 

significantly reduces the production rate of the well significantly while the reservoir non-Darcy 

flow affects the production rate less severely than the fracture non-Darcy flow. However, the 

non-Darcy flow at the reservoir is prominent as the drainage area increases at a longer time 

performance. This study proposed a new type-curve for including a new dimensionless 

parameter for the reservoir non-Darcy flow. The non-Darcy impact and model was validated by 

well test data. 

Threshold pressure gradient (TPG) is an impotent aspect for the non-Darcy flow in a low 

permeability reservoir. For low permeability formation, the relationship between velocity and 

pressure gradient is linear at a high-pressure gradient, and it becomes non-linear at low gradient. 

The idea of TPG comes from the extrapolation of the non-linear part to zero velocity. The 

minimum pressure gradient is required to initiate the fluid flow. TPG mainly exists due to the 

interaction between solid molecules and liquid molecules and decreases with increasing value of 

mobility ratio. Many studies concentrate on this phenomenon and developed correlation for the 
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non-Darcy flow (Miller and Low, 1963; Prada and Civan, 1999). Many studies tried to establish 

a correlation for determining the TPG through core flooding experiments. Yang et al., (2004) 

used brine and oil, Yan et al., (2006) worked with water. Li et al., (2008) and Hao et al., (2008) 

with oil to formulate the expression that correlates TPG with permeability and viscosity.  

Tight or shale reservoir has low permeability, and TPG controls the non-linear flow in this 

reservoir that changes the production performance of the reservoir (Zeng et al., 2010). Previous 

studies have recommended that for shale and tight oil reservoir the low-velocity non-Darcy flow 

does not depend on TPG rather it depends on the thickness of boundary layer along the pore 

body (Liu et al., 2005, Sen et al., 2015). These researchers emphasized more on the rock-fluid 

interactions and the thickness of the boundary layer that depends on mobility ratio. By the 

molecular dynamics simulation, it was shown that high viscous flow at low permeability rock 

creates the larger thickness of boundary layer and that initiates the nonlinear behavior of the 

flow. Wang et al, (2016) investigated the well production performance in the shale and tight oil 

reservoirs. They proposed a model for low-velocity non-Darcy flow and suggested that the non-

Darcy flow starts from the zero-pressure gradient. By using the curve fitting technique, they 

evaluated the coefficient of the model based on the experimental data of Wang et al., (2011). 

They evaluated the performance of a vertical well and a horizontal well with multi-fracture after 

solving the modified diffusivity equation. The observation of massive ultimate recovery 

reduction in a vertical well and the less affected response of the non-Darcy flow at the horizontal 

well states the importance of the horizontal well in the production of a low permeable reservoir.   

2.3.5 Remarks of the discussion on memory and non-Darcy flow 

The above detailed discussion on the non-Darcy flow reveals that this flow occurs at a distorted 

linear relationship between the flow flux and the pressure gradient. In other word, nonlinear 

behavior is observed in the velocity and pressure gradient curve. The key causes of the flow can 

be summarized as variable rock properties i.e. porosity, permeability, grain size and distribution 

of the formation and complexity of the porous medium. Another cause is the associated impact 

of the high velocity flow, for example, a high inertial force, a slippage between fluid and pore 

wall,  a shear forces between the fluid and the pore structure, the effects of the temperature, the 

fluid viscosity and density, the momentum of the flux and the fluid acceleration and the 

additional pressure loss due to the inertial effects in pore contraction, expansion, and bends. 

Additionally some of the local and global effects on fluid flow, such as, residual fluid saturation 
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and effective stress, microscopic inertial and viscous drag force, threshold pressure gradient 

(TPG) and liquid-solid interactions also cause this flow. The Researchers try to include these 

effects into the Darcy equation in a variety of ways so that they can explain the nonlinearity in an 

appropriate approach. The non–Darcy flow existed because of the current characteristics of the 

medium, fluid and the overall flow and deviated from the ideal conditions. On the contrary, the 

memory effects illustrate the time dependent nature of the formation and flow. Memory takes the 

flow-history into account and considers the variation of the formation and fluid properties with 

time. After determining the magnitude of influence from previous events on present flow, the 

memory formulation can predict the future flow performance in an accurate manner. However, 

both idea of the memory and the non-Darcy flow deal with the modification of the Darcy 

equation but after comparing the mathematical models of the non-Darcy flow (Table 2.3) and the 

concept of memory, it is obvious that both of those do the model of the fluid flow in different 

ways. When it is considered as the deviation from the classical diffusion process, every memory-

based flow model has a non-Darcy character. However, every non-Darcy flow model does not 

include the impact of memory.  

2.4 Applications of Memory Concepts in Petroleum Reservoir Flow 

The concepts of memory in petroleum reservoirs have three major trends (Figure 2.2). The 

concept of memory is incorporated in the fluid flow model as an anomalous diffusion. The 

anomalous behavior of the complex reservoir is characterized though the inclusion of fractal 

exponent or the fractional time and space derivatives. In second approach researchers tried to 

modify the constitutive equation with the addition of time dependent rock and fluid properties. In 

this practice, the fractional order of differentiation reflects the memory impact, and time 

dependent correlation modifies the properties. In the other approach, memory accumulation 

evaluated at multiscale flow dominantly occurs in a fractured reservoir. Integro-differential 

operator expresses the delay in different subdomain in this concept. Table 4.4 summarizes the 

available model with memory and their characteristics. 
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Figure 2.2: Application of memory concept in petroleum reservoir 

 

2.4.1 Anomalous Diffusion 

The anomalous diffusion is a characteristics diffusion process that occurs in the medium with a 

complex structure. To model the anomalous diffusion the flux law is modified in such a way that 

the value of the pressure gradient is not instantaneous or local. Rather, it has global character and 

contains the effects of the long distance and the larger time events. The complexity of the flow 

path restricts or accelerates the flow. The internal mechanism of the anomalous flow can be 

explained the Continuous Time Random Walk (CTRW) model (Montroll and Weiss, 1965; 

Fulger et al., 2008). According to this model the particle distribution of the flow does not follow 

the Gaussian distribution unlike the classical diffusion. As a random walker, the particle has 

variable waiting time between two consecutives movement. More interestingly the mean square 

displacement of the particle follows a power law, instead of a proportional relationship with time 

(Gefen et al., 1983; Chang and Yortos, 1990; Caputo, 1998; Fomin et al., 2011; Raghavan, 2011; 

Chen and Raghavan, 2015).    

Chang and Yortsos (1990) have done an extensive investigation of the pressure transient 

response of fractal reservoir which is based on the concept of the anomalous diffusion in fractals 
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(O’Shaughnessy and Procaccia (1985). They developed a modified diffusivity equation for a 

physical model consisting of a fracture network and a Euclidean matrix. Chang and Yortsos 

(1990) reformed the porosity () and the permeability formulation for the fractal. They added the 

matrix contribution on the overall flow by using the Warren and Root’s dual porosity 

approximation, where the inter-porosity parameter and the exchange rate is escalated for the 

fractal geometry. A slower response at the early time and a faster changing at a larger time are 

predicted in the dimensionless pressure and the dimensionless pressure derivative plot of the 

model. Raghavan (2011) analyzed the application of anomalous diffusion in the transient flow of 

a fractal system. The study referred to the work of the Camacho-Velazquez et al. (2008) which 

investigated two different models for the anomalous diffusion. The first model is the Chang and 

Yortos’s (1990) model for the fractal geometry and consists of some exponents to represent the 

fractal dimensions. The other one is the Metzler et al. (1994) model, is pertaining a fractional 

derivative and the fractal exponents. Raghavan (2011) modified the model by using a material 

balance equation (Le M Haut (1984)) for the fractal media and overcome the limitations in the 

explicit expression of the diffusivity term. The impact of memory yields a flatter slope in the 

pressure transient analysis of the diffusion process in the fractal system. In the extended work of 

Chen and Raghavan (2013;2015) showed a general solution for the transient diffusion equation 

with a fractional time and space derivative. They solved the equation by using the Laplace 

transformation and the Mittag-Leffler function according to the algorithm of the Stehfest (1970) 

and the Gorenflo et al. (2002). The analysis of the pressure response at the well-bore for different 

boundary conditions shows that early the model behaves as a stretched exponential and at the 

late time it obeys the power law. The behavior of the trilinear model of Ozkan et al. (2011) is 

analyzed by the outcome of the findings. The slope of the derivative plot signifies the 

contribution of the different regions at the different time.  

2.4.2 Modification of the Constitutive Equations 

The stress-strain relationship is an important criterion for predicting the production performance 

of the reservoir as the viscosity do the change in the mobility ratio of the flow and hence changes 

the production. Hossain et al. (2008b) developed a new stress-strain relationship for the crude oil 

with the inclusion of memory. Conventional approaches do not include the influences of the 

surface tension and interfacial tension on the viscosity. In the flow of reservoir, fluid velocity 

depends on the pressure distribution and on the temperature variation. Therefore, in the response 
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to the fluctuation of pressure and temperature, the velocity shows deviated value. This approach 

(Hossain et al. (2008b)) incorporated effects of the temperature on the viscosity by the Arrhenius 

model and the effect of surface tension by the Margoni number into the Newtons law of 

viscosity. Modification of the velocity term by the formalism of memory gives the time variant 

character to the model. Apart from the simple strain rate and viscosity relationship, this study 

shows that the shear stress rate related to the impact of surface tension, effects of memory, 

pressure, pseudo-permeability and temperature. Nevertheless, the study has a limitation in the 

solution procedure of the model and do not evaluate the piecewise impact of memory. 

Diffusivity equation is the basic equation to model the fluid flow in the reservoir. Hossain et al. 

(2008) developed a basic diffusivity equation with the memory for any axial flow of a single-

phase fluid in a porous medium. Using the Ahmehaideb (2003) correlation for the viscosity and 

the permeability correlation (Beal et al. 2006, Civan, 2000) they quantified the memory 

parameter (η). They developed the flow equation by combining continuity equation, modified 

rate equation and modified equation of state. With the memory parameters, the study changed the 

rate equation and followed the memory formalism and the definition of the fractional order 

derivative of Caputo (2000), and by assuming time variable porosity, it modified the equation of 

state. Finally, they gave the numerical solution with finite difference discretization. They found 

that along with production life of a reservoir the memory parameter varies in a significant 

manner that indicates the diminish of permeability. As the pressure depleted with time, reservoir 

permeability also decreases. They concluded that the variation of porosity and permeability with 

time is a substantial evidence of memory effect. However, the study developed the governing 

equation by assuming invariant properties of fluid. In the solution procedure, the parameter with 

memory impact appears as a constant value in the numerical discretization. It determined the 

pseudo diffusivity (η) value from correlation and no real correlation between the order of 

differentiation (α) the medium, so the time dependency is not measured correctly in this model. 

Material balance equation is the most used tool to estimate the field production and evaluate the 

flow performance of a reservoir. Hossain et al. (2009) developed a general material balance 

equation with memory concept by considering the time-dependent rock and fluid property. 

Comparing with the conventional MBE (Craft and Hawkins, 1959, Dake, 1983, Ahmed, 2006), 

this approach handles the expansion drive mechanism with more accuracy. It included 

“associated volume” (Fetkovich, 1998) in the volume expansion term of the equation. To 
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incorporate the time-dependent properties, it used the memory-based stress-strain relationship 

(Hossain et al. 2007) and replaced the pressure difference term in the expression of the 

dimensionless parameter (Cepm) from the simplified equation of Hossain et al. (2008). Later, this 

study made a numerical investigation of the proposed model without memory and the 

conventional MBE and made a detailed comparison between them. The formulated memory-

based MBE has highly non-linear character, and due to the lack of solution, the study could not 

be able to illustrate the memory impact.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4: Reservoir Flow Modeling with Memory 
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Reference Mathematical Model Representing 

criteria 

Special Character Limitations 

Chang and 

Yortsos 

(1990) 

𝑐𝑓 (
𝜕𝑝

𝜕𝑡
) = [(

𝑚

𝜇
)(

1

𝑟𝐷−1
)
𝜕

𝜕𝑟
(𝑟𝛽

𝜕𝑝

𝜕𝑟
)] 

 

Anomalous 

diffuson in 

fractal 

-Expression for the 

permeability of fractal and for 

the flow rate by using the 

fractal exponent of a fractal 

geometry. 

-Dual porosity model for 

fractal and matrix. 

-Analysis of the pressure 

transient response. 

-The matrix is not 

interconnected 

-Single phase flow 

-Evaluation of fractal 

exponent 

Hossain et al. 

2006 𝜏𝑇 = (−1)
0.5 × (

𝜕𝜎

𝜕𝑇

𝛥𝑇

𝛼𝐷𝑀𝑎
)  ×  

[
 
 
 ∫ (𝑡 − 𝜁)−𝛼 (

𝛿2𝑝
𝛿𝜁2

)𝑑𝜁
𝑡

0

Г(1 − 𝛼)
]
 
 
 
0.5

×   
𝑘2𝛥𝑝𝐴𝑥𝑧Г(1 − 𝛼)

𝜇𝑜𝜂𝜌𝑜𝜑𝑦𝑐 ∫ (𝑡 − 𝜁)
−𝛼 (

𝛿2𝑝
𝛿𝜁2

) 𝑑𝜁
𝑡

0

× (
𝛿𝜎

𝛿𝑇

6𝐾𝜇0𝜂

𝜕𝑝
𝜕𝑥

)

0.5

× 𝑒
(
𝐸
𝑅𝑇
) 𝑑𝑢𝑥
𝑑𝑦

 

Stress-strain 

model 

-Yields accurate reservoir 

simulation result 

 

-Enable exact rheological 

study 

 

-Make the optimum surfactant 

and foam selection for EOR 

process 

-Illustrates the influence of 

memory formulism on the 

overall response of equation. 

 

-Inadequate solution of the 

governing equation. 
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Hossain et al. 

2008 
1

𝜂

𝜕𝜂

𝜕𝑥
 [
∫ ((𝑡 −  𝜁)−∝) (

𝜕2𝑝
𝜕𝜁𝜕𝑥

)𝜕𝜁
𝑡

0

Г(1 − 𝛼)
]

+  𝑐𝑓
𝜕𝑝

𝜕𝑥
 [
∫ ((𝑡 −  𝜁)−∝) (

𝜕2𝑝
𝜕𝜁𝜕𝑥

)𝜕𝜁
𝑡

0

Г(1 − 𝛼)
]

+
𝜕

𝜕𝑥
 [
∫ ((𝑡 −  𝜁)−∝) (

𝜕2𝑝
𝜕𝜁𝜕𝑥

)𝜕𝜁
𝑡

0

Г(1 − 𝛼)
]

=  
𝜙𝑐𝑡
𝜂

 
𝜕𝑝

𝜕𝑥
 

Diffusivity 

Equation 

-Considered time dependent 

rock properties. 

 

-Model the fluid flow in case 

of enhanced oil recovery 

process related to non-

Newtonian fluid flow 

 

-Only for single phase fluid 

at axial flow condition 

 

-Invariant physical 

properties of fluid. 

 

-Inadequate evaluation of 

memory parameters. 

Hossain et al. 

2009 

𝛾𝑝𝑚 =
𝛼𝑆𝐹

√𝑘𝜑

𝜂

(1 −)
∫ (𝑡 − 𝜁)−𝛼

𝛿2𝑝

𝛿𝜁𝛿𝑥

𝑡

0

𝑑𝜁 

𝜇𝑒𝑓𝑓 = 𝜇∞ +
𝜇0 − 𝜇∞

[1 + (
𝛼𝑆𝐹

√𝑘𝜑

𝜆𝜂
(1 −)

∫ (𝑡 − 𝜁)−𝛼
𝛿2𝑝
𝛿𝜁𝛿𝑥

𝑡

0
𝑑𝜁 )

𝑎

]

𝑛
𝑎

 

 

Apparent 

shear rate 

-Time dependent relation 

between viscosity and 

permeability in shear thinning 

fluid. 

 

- Applicable for heterogenous 

formation. 

-Consider one dimensional 

flow of Newtonian fluid. 

 

-Assume isentropic process 

Hossain et al. 

2009 

𝑁𝑝 − (𝑊𝑒 − 𝑊𝑝𝐵𝑤) = 𝑁(𝐵𝑜 − 𝐵𝑜𝑖 + 𝐵𝑜𝑖𝐶𝑒𝑝𝑚
′ ) Material 

Balance 

Equation 

-Addition of associated 

volume in the expansion drive 

mechanism 

 

-Model with time dependent 

rock and fluid properties. 

 

-Better evaluation of water 

-Highly non-linear equation. 

 

-Inadequate numerical 

solution of the memory base 

model 
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𝐶𝑒𝑝𝑚
′ = [𝑆𝑜𝑖𝐶𝑜 + 𝑆𝑤𝑖𝐶𝑤 + 𝑆𝑔𝑖𝐶𝑔  (

𝑅𝑠𝑜𝑖
𝐵𝑜𝑖

+ 
𝑅𝑠𝑤𝑖
𝐵𝑤𝑖

)𝐵𝑔𝑖 + 𝐶𝑠

+𝑀 (𝐶𝑤 + 𝐶𝑠)]  

× [{6 𝐾𝜇𝑜𝜂 (𝐿

− 𝑥) (
𝜕𝜎

𝜕𝑇
 
∆𝑇

𝛼𝐷𝑀𝑎
)
2

 [∫ ((𝑡
𝑡

0

−  𝜁)−∝) (
𝜕2𝑝

𝜕𝜁𝜕𝑥
)𝜕𝜁] 𝑒

2(
𝐸
𝑅𝑇𝑇

)
(
𝑑𝑢𝑥
𝑑𝑦

)
2

 

×  𝑢𝑥  ∆𝑡 ×  
1

𝜏𝑇
2{Г(1 − 𝛼)}

} ×
1

/1 − 𝑆𝑤𝑖
] 

saturation 

Raghavan 

(2011) 

1

𝑟𝑛−1
𝜕

𝜕𝑟
[𝑟𝑛−1𝜆(𝑟)

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
] =  𝜙𝑐

𝜕Υ𝑝(𝑟, 𝑡)

𝜕𝑡Υ
 

Transient 

reservoir 

flow 

-Modification of the Darcy 

law with a fractional time 

derivative 

-Incorporation of the fractal 

parameters in the differential 

equation. 

-Analytical solution for 

instantaneous line source 

condition in Cartesian and 

Cylindrical coordinates.  

-Inadequate evaluation of 

the pressure response 

-Proper expression for the 

fractal exponent. 

Rasoulzadeh 

et al. 2014 
𝐵̂(2)  

𝜕𝑃2

𝜕𝑡
= 𝑑𝑖𝑣(𝐴̂(2) 𝑔𝑟𝑎𝑑 𝑃(2))

− 𝛾𝜆𝐵̂(1)  

×  
𝜕

𝜕𝑡
 (∫ √𝑡 −  𝜏

𝑡

0

 
𝜕𝑃(2)

𝜕𝜏
 𝜕𝜏) 

Three scale 

fracture flow 

-Parameterization of 

permeability and fracture 

thickness 

 

-Asymptotic two scale 

-Consider the source flow 

only at the boundary of the 

matrix. 

 

 



50 

 

   Homogenization of diffusivity 

equations. 

 

-Integrodifferential operators. 

 

 

 

Chen and 

Raghavan 

(2015) 

𝜕

𝜕𝑥
{𝜆𝛼,𝛽

𝜕𝛽

𝜕𝑥𝛽
𝑝(𝑥, 𝑡)} =  𝜙𝑐

𝜕𝛼

𝜕𝑡𝛼
𝑝(𝑥, 𝑡) 

Transient 

diffusion 

equation 

-Combined effect of 

fractional time and Space 

derivative on the flow 

equation 

-A general solution by 

Laplace transformation and 

Mittag-Leffler function. 

-Analysis of the early and the 

late time pressure responses 

of production well and 

making contrast.  

-Lack of field application 

-Computational complexity 

-Practical aspect of memory 

parameters. 
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2.4.3 Memory in Inter-Porosity Flow of Multiscale Reservoir 

In the case of the multiscale porous media there exist a different type of memory. The 

actual natural porous medium system consists of a different arrangement of fracture and 

matrix block, and each media have unique properties. A multiporosity and 

multipermeability system are defined by Aifantis (1977) as a medium that has a finite 

discontinuity in porosity field. The existing double porosity models (Warren and Root, 

1963, Kazemi, 1969, Raghavan et al. 1981, Spivey et al. 2000) and triple porosity models 

(Abdassah and Ershaghi, 1986, Liu et al. 2003, Ozkan et al. 2009, Ahamadi et al. 2010) 

worked with different combinations of matrix and fracture arrangement and with different 

flow and boundary conditions within each medium. The memory for the multiscale 

reservoir is the delay in the flow of macroscopic model that occurs due to the delay in the 

flow between the different subdomain at the boundary at the macroscopic level. Memory 

accumulation is multiscale reservoir depends on three basic parameters, the distance 

between the various unit, permeability ratio of adjacent units and the relative pore space 

in the fractures. Arbogast et al. (1990) analyzed the memory in double porosity model by 

an integrodifferential equation that represents the flow between the matrix and the 

fracture at the boundary. These effects added to the macroscopic equation along the 

homogenization of diffusivity equation of two media. Amaaziane et al. (2007) evaluated 

the memory for triple porosity model by two integrodifferential operators at the 

homogenization process of three media. They worked with self-similar types of medium 

that have the same order of distance and same permeability ratio.  

Rasoulzadeh et al. (2014) investigated the memory accumulation at three scale media 

with the non-self-similar medium. In their parameterization process, they ensure the 

contribution of each medium. They applied asymptotic two-scale homogenization 

techniques for two times, firstly for the flow between the matrix and thin fracture and 

secondly the thick fracture and the first unit with fracture and matrix. They consider the 

flow only occur at the thin boundary layer of the matrix block so the exchange kernel 

itself equivalent to the memory of the average flow.   
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2.5 Challenges in Application 

Parameterization is a complicated step during the evaluation of memory in the multiscale 

reservoir (Rasoulzadeh et al., 2014). The contributions of all subdomain must include in 

the single parameter. In highly heterogenous reservoir representation of the permeability 

and thickness of the medium is relatively difficult. For conventional reservoir, the proper 

definition of the memory parameter is problematic for the specification of the model. The 

review of the available memory model for fluid flow shows that all the model has the 

limitations with the determination the magnitude of memory implications in a medium 

(Caputo, 1999,2000; Raghavan, 2011). Most of the study assumed the value, but a proper 

proceeding should be existed. Determination of the order of the fractional derivative for 

the targeted formation remains unsolved.  Memory formalism makes the governing 

equation to be highly non-linear (Hossain, 2008; Hossain and Islam, 2009). Moreover, the 

definition of the fractional derivative shows that the discretization process for the 

numerical solution of the memory model is an immense limitation to implement this 

concept (Podlubny, 1998). An appropriate discretization algorithm is the prospective area 

of development. Table 5 reveals that every mathematical model with memory has a great 

difficulty with the computational costs. Although memory inclusion gives more accuracy 

at reservoir simulation, the advantage of exactness should not be suppressed by massive 

computational expenses (Oldham and Spanier, 1974; Chen and Raghavan, 2015). The 

determination of the computational cost and its comparative study is a promising area for 

future. 

2.6 Conclusions 

Although memory concept has the different defining approach but in general, it is the 

impact of the history of a system. In fluid flow, memory causes the delay in pressure 

diffusion. Fractional order of differentiation is the standard mathematical tools to deal 

with the fluid flow memory. Non-Darcy flow considers the impact of the deviated local or 

global behavior of the flow from ideal one. For this reason, the way non-Darcy flow 

modify the equation is entirely different than that from memory. Mathematical 

formulation and the fundamental difference in definition make the clear distinction 

between the memory impact and the transient flow. Although recently the memory 
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concept has explored in the petroleum engineering aspect, different approaches are 

applied to determine the memory impact in the reservoir fluid flow. The appropriate 

parameterization, conceptualization of memory impact, high non-linearity in the 

governing equation and numerical solution in an efficient way, are the unsolved 

difficulties for the proper establishment of this idea in the petroleum field. 

Nomenclature 

c = regression constant 

a,b,d = empirical constant 

𝑎′, 𝑏′, 𝑐′ = Coefficient of Hassanizadeh’s model and f(ρ,θ,ϕ) 

𝑤(2), 𝐵(4) 

𝐶(3) 
= 

Tensor related to rock properties 

 

cf = Total fluid compressibility of the system(co+cw), 1/pa 

ct = Total compressibility of the system (=cf+cs), 1/pa 

cs = Formation rock compressibility of the system, 1/pa 

cw = Formation water compressibility of the system, 1/pa 

dt = Time step, s 

ξ = A dummy variable for time i.e., real part in the plane of the integral, s 

dξ = Dummy time step, s 

𝑘𝑔 = effective gas permeability (Darcy) 

𝑘𝑟𝑒𝑙 = relative permeability 

𝑘𝑔 = Liquid permeability (Darcy) 

L = Length (cm; m) 

Lo = straight line length of the porous sample (in,cm,m) 

l = Microscopic characteristic length 

m = Avila’s regression constant 

∆𝑝

∆𝐿
 = applied pressure gradient 

(
∆𝑝

∆𝐿
)
𝑐𝑟

 = threshold pressure gradient (TPG) 

𝑃̅ = average pressure 

Q,q = flow rate 

qo = Order of magnitude of flow velocity 
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Sw = water saturation 

v = fluid velocity (ft sec-1, ms-1) 

Vk = macroscopic fluid velocity vector 

Greek Symbols 

ρ = density (lbm ft-3; g cm-3) 

ϕ = porosity (fraction) 

σ = effective stress (psi; KPa) 

µ = viscosity (cP, mPa s) 

α = Klinkenberg constant 

 

References 

Abdassah, D., & Ershaghi, I. (1986). Triple-porosity systems for representing naturally 

fractured reservoirs. SPE Formation Evaluation, 1(02), 113-127. 

Ahmed, T. (2006). Reservoir engineering handbook. Gulf Professional Publishing. 

Aifantis, E.C., 1977, On the Problem of Diffusion in Solids, Acta Mech., 9, 209-2011, 

1977 

Al Ahmadi, H. A., Almarzooq, A. M., & Wattenbarger, R. A. (2010, January). 

Application of linear flow analysis to shale gas wells-field cases. In SPE 

Unconventional Gas Conference. Society of Petroleum Engineers. 

Almehaideb, R. A. (2003). Improved correlations for fluid properties of UAE crude oils. 

Petroleum science and technology, 21(11-12), 1811-1831. 

Alvarez, C. H., Holditch, S. A., & McVay, D. A. (2002, January). Effects of Non-Darcy 

Flow on Pressure Transient Analysis of Hydraulically Fractured Gas Wells. In 

SPE Annual Technical Conference and Exhibition. Society of Petroleum 

Engineers. 

Amaziane, B., Pankratov, L., & Piatnitski, A. (2007). Homogenization of a single phase 

flow through a porous medium in a thin layer. Mathematical Models and 

Methods in Applied Sciences, 17(09), 1317-1349. 

Arbogast, T., Douglas, Jr, J., & Hornung, U. (1990). Derivation of the double porosity 

model of single phase flow via homogenization theory. SIAM Journal on 

Mathematical Analysis, 21(4), 823-836. 



55 

 

Avila, Carlos Eduardo. 1985. The effects of temperature and overburden pressure on the 

non-Darcy flow coefficient in porous media. 

Baoquan, Z., Linsong, C., & Fei, H. (2010, January). Experiment and Mechanism 

Analysis on Threshold Pressure Gradient with Different Fluids. In Nigeria 

Annual International Conference and Exhibition. Society of Petroleum 

Engineers. 

Barak, A. Z., & Bear, J. (1981). Flow at high Reynolds numbers through anisotropic 

porous media. Advances in Water Resources, 4(2), 54-66. 

Barree, R. D., & Conway, M. (2007, January). Multiphase non-Darcy flow in proppant 

packs. In SPE Annual Technical Conference and Exhibition. Society of 

Petroleum Engineers. 

Beal, C. (1946). The viscosity of air, water, natural gas, crude oil and its associated gases 

at oil field temperatures and pressures. Transactions of the AIME, 165(01), 94-

115. 

Bell, M. L., & Nur, A. (1978). Strength changes due to reservoir‐induced pore pressure 

and stresses and application to Lake Oroville. Journal of Geophysical Research: 

Solid Earth, 83(B9), 4469-4483. 

Biot, M. A. (1941). General theory of three‐dimensional consolidation. Journal of applied 

physics, 12(2), 155-164. 

Blick, E. F., & Civan, F. (1987, January). Porous media momentum equation for highly 

accelerated flow. In SPE Production Operations Symposium. Society of 

Petroleum Engineers. 

Caponetto, R. (2010). Fractional order systems: modeling and control applications (Vol. 

72). World Scientific. 

Caputo, M. (1969). Elasticitá e dissipazione (Elasticity and anelastic dissipation). 

Zanichelli Publisher, Bologna). Michele Caputo, M. (1997): Rigorous time 

domain responses of polarizable media. I, Ann. Geofis, 40(2), 423-434. 

Caputo, M. (1999). Diffusion of fluids in porous media with memory. Geothermics, 

28(1), 113-130. 



56 

 

Caputo, M. (2000). Models of flux in porous media with memory. Water resources 

research, 36(3), 693-705. 

Chang, J., & Yortsos, Y. C. (1990). Pressure transient analysis of fractal reservoirs. SPE 

Formation Evaluation, 5(01), 31-38. 

Chilton, Thomas H., and Allan P. Colburn, 1931. II—Pressure Drop in Packed Tubes1. 

Industrial & Engineering Chemistry 23.8 (1931): 913-919. 

Civan, F. (2015). Reservoir formation damage. Gulf Professional Publishing. 

Cooke Jr, C. E. 1973. Conductivity of fracture proppants in multiple layers. Journal of 

Petroleum Technology 25.09: 1-101. 

Cornell, David, and Donald L. Katz, 1953. Flow of gases through consolidated porous 

media. University Microfilms. 

Coulaud, O., Morel, P., & Caltagirone, J. P. (1986). Effets non linéaires dans les 

écoulements en milieu poreux. Comptes rendus de l'Académie des sciences. 

Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la 

Terre, 302(6), 263-266. 

Cox, S.J., Neethling, S., Rossen, W.R., Schleifenbaum, W., Schmidt- Wellenburg, P., 

Cilliers, J.J., 2004. A theory of the effective yield stress of foam in porous 

media: the motion of a soap film traversing a three-dimensional pore. Colloids 

and Surfaces A: Physicochemical and Engineering Aspects 245, 143–151. 

Craft, B. C., & Hawkins, M. F. (1959). Applied Petroleum Reservoir Engineering Chap. 2 

Prentice-Hall. Englewood Cliffs, NJ. 

Dake, L. P. (1983). Fundamentals of Reservoir Engineering., 1978. 

Darcy, H. (1856). Les fontaines publiques de la ville de Dijon: exposition et application... 

Victor Dalmont. 

Davison, M., & Essex, C. (1998). Fractional differential equations and initial value 

problems. Mathematical Scientist, 23(2), 108-116. 

Di Giuseppe, E., Moroni, M. and Caputo, M., 2010. Flux in porous media with memory: 

models and experiments. Transport in Porous Media, 83(3), pp.479-500. 



57 

 

Dybbs, A., & Edwards, R. V. (1984). A new look at porous media fluid mechanics—

Darcy to turbulent. In Fundamentals of transport phenomena in porous media 

(pp. 199-256). Springer Netherlands. 

Ergun, S. (1952). Fluid flow through packed columns. Chem. Eng. Prog., 48, 89-94. 

Ergun, S., & Orning, A. A. (1949). Fluid flow through randomly packed columns and 

fluidized beds. Industrial & Engineering Chemistry, 41(6), 1179-1184. 

Falls, A.H., Musters, J.J., Ratulowski, J., 1989. The apparent viscosity of foams in 

homogeneous bead packs. SPERE, 155–164. 

Fancher, G. H., & Lewis, J. A. (1933). Flow of simple fluids through porous materials. 

Industrial & Engineering Chemistry, 25(10), 1139-1147. 

Feder, J. (1988). Fractals Plenum. New York, 9. 

Fetkovich, M. J., Reese, D. E., & Whitson, C. H. (1998). Application of a General 

Material Balance for High-Pressure Gas Reservoirs (includes associated paper 

51360). SPE journal, 3(01), 3-13. 

Friedel, T., & Voigt, H. D. (2006). Investigation of non-Darcy flow in tight-gas reservoirs 

with fractured wells. Journal of Petroleum Science and Engineering, 54(3), 112-

128. 

Friedman, S. P., & Seaton, N. A. (1996). On the transport properties of anisotropic 

networks of capillaries. Water Resources Research, 32(2), 339-347. 

Fulger, D., Scalas, E., & Germano, G. (2008). Monte Carlo simulation of uncoupled 

continuous-time random walks yielding a stochastic solution of the space-time 

fractional diffusion equation. Physical Review E, 77(2), 021122. 

Geertsma, J. 1974. Estimating the coefficient of inertial resistance in fluid flow through 

porous media. Society of Petroleum Engineers Journal 14.05: 445-450. 

Gewers, C. W. W., and L. R. Nichol. 1969. Gas turbulence factor in a microvugular 

carbonate. Journal of Canadian Petroleum Technology 8.02: 51-36. 

Gidley, J. L. (1991). A method for correcting dimensionless fracture conductivity for non-

Darcy flow effects. SPE production engineering, 6(04), 391-394. 

Green Jr, L., & Duwez, P. (1951). Fluid flow through porous metals. J. Applied Mech., 

18. 



58 

 

Guppy, K. H., Cinco-Ley, H., & Ramey Jr, H. J. (1982). Non-Darcy flow in wells with 

finite-conductivity vertical fractures. Society of Petroleum Engineers Journal, 

22(05), 681-698. 

Hao, F., Cheng, L. S., Hassan, O., Hou, J., Liu, C. Z., & Feng, J. D. (2008). Threshold 

pressure gradient in ultra-low permeability reservoirs. Petroleum Science and 

Technology, 26(9), 1024-1035. 

Hassanizadeh, M., & Gray, W. G. (1979). General conservation equations for multi-phase 

systems: 1. Averaging procedure. Advances in water resources, 2, 131-144. 

Hassanizadeh, M., & Gray, W. G. (1980). General conservation equations for multi-phase 

systems: 3. Constitutive theory for porous media flow. Advances in Water 

Resources, 3(1), 25-40. 

Hassanizadeh, S. M., & Gray, W. G. (1987). High velocity flow in porous media. 

Transport in porous media, 2(6), 521-531. 

Hazen A. 1892. Some physical properties of sand and gravels. Rep. Massachusetts State 

Board of Health, P. 541 

Holditch, S. A., & Morse, R. A. (1976). The effects of non-Darcy flow on the behavior of 

hydraulically fractured gas wells (includes associated paper 6417). Journal of 

Petroleum Technology, 28(10), 1-169. 

Hossain, M. E. (2008). An experimental and numerical investigation of memory-based 

complex rheology and rock/fluid interactions (Vol. 69, No. 11). 

Hossain, M. E., & Islam, M. R. (2009). A comprehensive material balance equation with 

the inclusion of memory during rock-fluid deformation. Advances in Sustainable 

Petroleum Engineering Science, 1(2), 141-162. 

Hossain, M. E., Mousavizadegan, S. H., & Islam, M. R. (2008a). A new porous media 

diffusivity equation with the inclusion of rock and fluid memories. 

Hossain, M. E., Mousavizadegan, S. H., Ketata, C., & Islam, M. R. (2008b). A NOVEL 

MEMORY-BASED STRESS-STRAIN MODEL FOR RESERVOIR 

CHARACTERIZATION. Nature Science and Sustainable Technology Research 

Progress, 297. 



59 

 

Iaffaldano, G., Caputo, M., & Martino, S. (2005). Experimental and theoretical memory 

diffusion of water in sand. Hydrology and Earth System Sciences Discussions, 

2(4), 1329-1357. 

Ioannidis, M. A., & Chatzis, I. (1993). Network modelling of pore structure and transport 

properties of porous media. Chemical Engineering Science, 48(5), 951-972. 

Irmay, S. (1958). On the theoretical derivation of Darcy and Forchheimer formulas. Eos, 

Transactions American Geophysical Union, 39(4), 702-707. 

Jacob C. E. 1946. Notes on Darcy’s law and permeability. Trans. American Geophysical 

Union, Vol. 27, No. 2, P. 265. 

Janicek, John Daniel, and Donald La Verne Katz. 1955. "Applications of unsteady state 

gas flow calculations. 

Kazemi, H. (1969). Pressure transient analysis of naturally fractured reservoirs with 

uniform fracture distribution. Society of petroleum engineers Journal, 9(04), 

451-462. 

Kharabaf, H., 1996. Ph.D. Dissertation, University of Southern California. 

Kharabaf, H., Yortsos, Y.C., 1997. Invasion percolation with memory. Physical Review E 

55, 7177–7191. 

Kharabaf, H.,Yortsos,Y.C., 1998. Pore-network model for foam formation and 

propagation in porous media. SPEJ 42–53. 

Klinkenberg, L. J. (1941, January 1). The Permeability of Porous Media To Liquids And 

Gases. American Petroleum Institute 

Koh, W.I.,1977. Non-Darcy flow of a gas in propped fractures. PH.D. dissertation, Texas 

A&M University College Station, Tex. 

LI, A. F., ZHANG, S. H., LIU, M., WANG, W. G., & ZHANG, L. (2008). A new method 

of measuring starting pressure for low permeability reservoir [J]. Journal of 

China University of Petroleum (Edition of Natural Science), 1, 019. 

Li, D., & Engler, T. W. (2001, January). Literature review on correlations of the non-

Darcy coefficient. In SPE Permian Basin Oil and Gas Recovery Conference. 

Society of Petroleum Engineers. 



60 

 

LI, S. Q., CHENG, L. S., LI, X. S., & Fei, H. A. O. (2008). Nonlinear seepage flow of 

ultralow permeability reservoirs. Petroleum Exploration and Development, 

35(5), 606-612. 

Liu, D.X., Yue, X.A., Yan, S. (2005). The effects of adsorbed water layer on flow 

mechanism in low permeability reservoir. Petroleum Geology and Recovery 

Efficiency. Volume 6, Pages 40-42 

Liu, J., Bodvarsson, G. S., & Wu, Y. S. (2003). Analysis of flow behavior in fractured 

lithophysal reservoirs. Journal of contaminant hydrology, 62, 189-211. 

Liu, Q. G., YANG, X. M., & LI, Y. (2004). Study of well-test model of low 

permeability's dual-pore media with flowing boundary in oil and gas. 

JOURNAL-SOUTHWEST PETROLEUM INSTITUTE, 26, 30-33. 

Lynch, Vickie E., et al. "Numerical methods for the solution of partial differential 

equations of fractional order." Journal of Computational Physics192.2 (2003): 

406-421. 

Ma, H., & Ruth, D. W. (1993). The microscopic analysis of high Forchheimer number 

flow in porous media. Transport in Porous Media, 13(2), 139-160. 

Mani, V., & Mohanty, K. K. (1997). Effect of the spreading coefficient on three-phase 

flow in porous media. Journal of Colloid and Interface Science, 187(1), 45-56. 

Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional 

differential equations. 

Miller, R. J., & Low, P. F. (1963). Threshold gradient for water flow in clay systems. Soil 

Science Society of America Journal, 27(6), 605-609. 

Millheim, K. K. (1968). Testing and analyzing low-permeability fractured gas wells. 

Journal of Petroleum Technology, 20(02), 193-198. 

Mlodinow, L. and Brun, T.A., Relation between the psychological and thermodynamic 

arrows of time, (89) 052102 (2014) 

Mlodinow, L., & Brun, T. A. (2014). Relation between the psychological and 

thermodynamic arrows of time. Physical Review E, 89(5), 052102. 

Montroll, E. W., & Weiss, G. H. (1965). Random walks on lattices. II. Journal of 

Mathematical Physics, 6(2), 167-181. 



61 

 

Oldham, K., & Spanier, J. (1974). The fractional calculus theory and applications of 

differentiation and integration to arbitrary order (Vol. 111). Elsevier. 

Ozkan, E., Brown, M. L., Raghavan, R. S., & Kazemi, H. (2009, January). Comparison of 

fractured horizontal-well performance in conventional and unconventional 

reservoirs. In SPE Western Regional Meeting. Society of Petroleum Engineers. 

Podlubny, I. (1998). Fractional differential equations: an introduction to fractional 

derivatives, fractional differential equations, to methods of their solution and 

some of their applications (Vol. 198). Academic press. 

Prada, A., & Civan, F. (1999). Modification of Darcy's law for the threshold pressure 

gradient. Journal of Petroleum Science and Engineering, 22(4), 237-240. 

Raghavan, R. "Fractional derivatives: application to transient flow." Journal of Petroleum 

Science and Engineering 80.1 (2011): 7-13. 

Raghavan, R., & Ohaeri, C. U. (1981, January). Unsteady flow to a well-produced at 

constant pressure in a fractured reservoir. In SPE California Regional Meeting. 

Society of Petroleum Engineers. 

Raleigh, C. B., Healy, J. H., & Bredehoeft, J. D. (1976). An experiment in earthquake 

control at Rangely, Colorado. Science, 191(4233), 1230-1237. 

Rasoulzadeh, M., Panfilov, M., & Kuchuk, F. (2014). Effect of memory accumulation in 

three-scale fractured-porous media. International Journal of Heat and Mass 

Transfer, 76, 171-183. 

Rice, J. R., & Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid‐

saturated elastic porous media with compressible constituents. Reviews of 

Geophysics, 14(2), 227-241. 

Robinson, T. W. (1939). Earth‐tides shown by fluctuations of water‐levels in wells in 

New Mexico and Iowa. Eos, Transactions American Geophysical Union, 20(4), 

656-666. 

Rose W. 1949. Theoretical generalizations leading of the evaluation of relative 

permeability. Petroleum Transportation, American Institute of Mining 

Engineering, Technical Paper 2563, P. 111 



62 

 

Rossen, W.R., 1990. Theory of mobilization pressure gradient of flowing of foams in 

porous media. I. Incompressible foam. II. Effect of compressibility. III. 

Asymmetric lamella shapes. Journal of Colloid and Interface Science 136, 1–53. 

Rossen, W.R., Gauglitz, P.A., 1990. Percolation theory of creation and mobilization of 

foam in porous media. A.I.Ch.E. Journal 36, 1176–1188. 

Rossen,W.R., Mamun, C.K., 1993. Minimal path for transport in networks. Physical 

Review B 47, 11815–11825. 

Sahimi, M., 1993. Non-linear transport processes in disordered media. A.I.Ch.E. Journal 

39 (3), 369–385. 

SCHUTJENS, P. M. (1991). Experimental compaction of quartz sand at low effective 

stress and temperature conditions. Journal of the Geological Society, 148(3), 

527-539. 

Sen, W. A. N. G., Qihong, F. E. N. G., Ming, Z. H. A., Shuangfang, L. U., Yong, Q. I. N., 

Tian, X. I. A., & ZHANG, C. (2015). Molecular dynamics simulation of liquid 

alkane occurrence state in pores and slits of shale organic matter. Petroleum 

Exploration and Development, 42(6), 844-851. 

Shah, C., Kharabaf, H., Yortsos, Y.C., 1998. Immiscible displacements involving power-

law fluids in porous media. In: Proceedings of the Seventh UNITAR 

International Conference on Heavy Crude and Tar Sands, Beijing, China. 

Shah, C., Yortsos, Y.C., 1995. Aspects of flow of power-law fluids in porous media. 

A.I.Ch.E. Journal 41 (5), 1099–1122. 

Shah, S. N., Vincent, M. C., Rodriquez, R. X., & Palisch, T. T. (2010, January). Fracture 

orientation and proppant selection for optimizing production in horizontal wells. 

In SPE Oil and Gas India Conference and Exhibition. Society of Petroleum 

Engineers. 

Shin, M.; Kim, D.S.; Lee, J.W.: Deposition of inertia-dominated particles inside a 

turbulent boundary layer. Int. J. Multiph. Flow 29, 893–926 (2003) 

Shiqing, C., Lunxun, X., & Dechao, Z. (1996). Type curve matching of well test data for 

non-darcy flow at low velocity [J]. Petroleum Exploration and Development, 4. 



63 

 

Smith, M. B., Bale, A., Britt, L. K., Cunningham, L. E., Jones, J. R., Klein, H. H., & 

Wiley, R. P. (2004, January). An investigation of non-Darcy flow effects on 

hydraulic fractured oil and gas well performance. In SPE Annual Technical 

Conference and Exhibition. Society of Petroleum Engineers. 

Spivey, J. P., & Lee, W. J. (2000, January). Pressure transient response for a naturally 

fractured reservoir with a distribution of block sizes. In SPE Rocky Mountain 

Regional/Low-Permeability Reservoirs Symposium and Exhibition. Society of 

Petroleum Engineers. 

Tek, M. R. (1957). Development of a generalized Darcy equation. Journal of Petroleum 

Technology, 9(06), 45-47. 

Tek, M. R., K. H. Coats, and D. L. Katz. 1962. The effect of turbulence on flow of natural 

gas through porous reservoirs. Journal of Petroleum Technology 14.07: 799-806. 

Tian, J.-P., Yao, K.-L., 1999. Immiscible displacements of two-phase non- Newtonian 

fluids in porous media. Physics Letters A 261, 174–178. 

Tiss, M., and R. D. Evans, 1989. Measurement and correlation of non-Darcy flow 

coefficient in consolidated porous media. Journal of Petroleum Science and 

Engineering 3.1-2: 19-33. 

Umnuay ponwiwat, S., Ozkan, E., Pearson, C. M., & Vincent, M. (2000, January). Effect 

of non-Darcy flow on the interpretation of transient pressure responses of 

hydraulically fractured wells. In SPE Annual Technical Conference and 

Exhibition. Society of Petroleum Engineers. 

Wang, X., & Sheng, J. J. (2017). Effect of low-velocity non-Darcy flow on well 

production performance in shale and tight oil reservoirs. Fuel, 190, 41-46. 

Wang, X., Thauvin, F., & Mohanty, K. K. (1999). Non-Darcy flow through anisotropic 

porous media. Chemical Engineering Science, 54(12), 1859-1869. 

Warren, J. E., & Root, P. J. (1963). The behavior of naturally fractured reservoirs. Society 

of Petroleum Engineers Journal, 3(03), 245-255. 

Wenzel L. K. 1942. Method of determining permeability of water bearing materials. 

United States Geological Survey, Water Supply Paper No. 887 



64 

 

Wright, D. E. (1968). Nonlinear flow through granular media. Journal of the Hydraulics 

Division, 94(4), 851-872. 

Xu, Q., & Rossen, W. R. (2003). Effective viscosity of foam in periodically constricted 

tubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 

216(1), 175-194. 

Xue-wu, W., Zheng-ming, Y., Yu-ping, S., & Xue-wei, L. (2011). Experimental and 

theoretical investigation of nonlinear flow in low permeability reservoir. 

Procedia Environmental Sciences, 11, 1392-1399. 

YAN, M., WU, C. H., & WANG, Y. J. (2006). Tendency of Starting Pressure Gradient 

Changes in Heterogeneous Reservoirs [J]. Journal of Oil and Gas Technology, 3, 

040. 

Yang, Q., Nie, M. X., & Song, F. Q. (2004). Threshold pressure gradient of low 

permeability sandstone. J Tsinghua Univ (Sci Tech), 44, 1650-1652. 

Zeng, B. Q., Cheng, L. S., & Hao, F. (2010). Experiment and mechanism analysis on 

threshold pressure gradient with different fluids. SPE, 140678, 859-863. 

Zeng, Z., & Grigg, R. (2006). A criterion for non-Darcy flow in porous media. Transport 

in porous media, 63(1), 57-69. 

 

 

 

 

 

 

 

 

 
 

 



65 

 

Chapter 3 A Review on Fluid Flow Models for Fractured 

Reservoir 
 

Preface 

This chapter is a review of the fluid flow models for the fractured reservoir, a complex 

structure of alternative matrix and fracture. An accurate analysis of the characteristic 

behavior of such a reservoir becomes more challenging due to the complex reservoir 

formation and the irregular flow patterns in discrete domains. Current literature covers 

various methods which predict the flow behavior in a fractured reservoir; however, a wide 

variation in physical models and inherent assumptions make it difficult to select an 

accurate-representative scheme. This study investigates different approaches, inspects the 

physical arrangements, analyzes the contrasts, and examines the mathematical 

formulations and their limitations. The analysis shows that the continuum-based 

approaches differ for the different fracture network, inter-flow condition, continuum-

number, and the interface transfer function. The linear flow approach assumes simplified 

flow condition in a complex network and gives the computational advantage whereas the 

anomalous diffusion approach captures the heterogeneity of the reservoir by the fractional 

time or space derivative. The evidence from this study suggests that increasing the 

number of the continuum in the physical structure raises the precision. Nevertheless, the 

required-additional number of intrinsic properties is the critical challenge in the 

continuum approach. Although the anomalous diffusion minimizes the number of 

properties, the determination of the memory parameters is ambiguous in this method. A 

combination of the continuum approach and the anomalous diffusion is recommended as 

an alternative approach for the modeling of fluid flow in a fractured reservoir. 
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3.1 Introduction 

The fractured reservoir has a complex structure, which is comprised of a network of 

repeating fractures and matrices. The challenges in the modeling of the fluid flow for 

such a reservoir are determination of the influences of the constituents, identification of 

the heterogeneity of the fractures and the matrix, the analysis of pressure response that is 

being observed at the pressure transient test of the reservoir. Since the fluid transfer in a 

fractured reservoir depends on its physical structure, the details of the reservoir formation 

are mandatory for an accurate fluid flow model.  

Dual porosity models consider two sets of homogeneous components: fractures and 

matrix, instead of a single continuous medium, and adds a degree of detail about 

formation (Warren and Root, 1963; Kazemi, 1969; de Swaan, 1976). Two additional 

parameters terms the inter-porosity flow parameter and the fluid capacitance co-efficient, 

are being used to characterize the deviated behavior of the fractured reservoir from the 

conventional homogeneous reservoir. However, double porosity models were proved to 

be insufficient to explain the abrupt slope change in the pressure response of a tight gas or 

an unconventional reservoir. Triple porosity models attempt to solve this problem by 

considering one additional continuum, either a fracture or a matrix. The inter-porosity 

flow conditions between two adjacent domains, the unsteady state or the semi-steady state 

condition, the arrangement of continuum, and the direction of fluid flow make the 

variations in different models (Abdassah and Ershaghi, 1986; Jalali and Ershaghi, 1987; 

Liu et al., 2003; Wu et al., 2011). Regardless, Multi-porosity and multi-permeability 

models consider more distinctive continuum in the formation structure so that the model 

could make an accurate representation of the highly fractured reservoir (Khulman et al.; 

2015).  

Apart from these multi-continuum approaches, El-banbi (1998) introduced the concept of 

linear flow for a hydraulically fractured reservoir. Brown et al. (2009) extended this idea 

to the Tri-linear model (TLM), which divided the flow region into three segments: outer 

reservoir, inner reservoir and the hydraulic fracture, and assumed linear flow for every 

region. Although all the continuum-based models make a better representation of the 

actual reservoir structure, it requires many reservoir parameters to be determined. The 
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Anomalous diffusion approach, which incorporates a fractional order of differentiation or 

the fractal exponents into the constitutive flow equations to capture the heterogeneity of 

the reservoir, eliminates the intrinsic properties of the formation from the fluid flow 

model (Raghavan, 2011; Chen and Raghavan, 2015, Alibini, 2016; Holy and Ozkan, 

2016).  

This study is an overview of all the available models for the fractured reservoir. It takes a 

new look at the formulations of different models and analyzes the limitations. A 

recommendation is made at the end of this study on the appropriate flow model for the 

naturally fractured reservoir based on a comparative analysis.   

3.2 Dual Porosity Model 

Warren and Root (1963) have introduced the dual porosity model in the petroleum 

reservoir. They modified Barenblalt et al.’s (1960) work, and their model demonstrates a 

new approach to analyze the pressure test data. The deviated behavior of the 

homogeneous reservoir is explained by a sugar-cube structure (Figure 3.1) where the 

matrix block is assumed as a source medium of fluid, and the fracture is considered the 

primary conduit for the fluid transfer. Although the model only studies the semi-steady 

state behavior of the reservoir, it can characterize the deviation of response by two 

additional parameters; one denotes the relative fluid capacitance, and the other signifies 

the comparable transfer rate of the respective media. The study also estimates the 

parameters from the pressure build-up data of a reservoir. This research is considered a 

reference for the fluid flow modeling of a heterogeneous reservoir; however, it is valid for 

late time response of a reservoir, and there is still considerable ambiguity about the 

analysis of a stratified reservoir and shape factor determination of the interface condition. 

Kazemi (1969) has tried to eliminate that limitation by considering transient flow 

condition through a slab porosity model (Figure 3.1). His work makes an accurate 

prediction of the flow behavior at the early time, but the model cannot be applied in a 

complex reservoir and is not valid for the late time response. 
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Figure 3.1: Physical structure of the dual porosity model (Redrawn from Warren 

and Root, 1963; Kazemi, 1969) 

3.3 Triple Porosity Model 

Abdassah and Ershaghi (1986) have investigated the reason for the anomalous slope 

change during the transition period in a pressure response curve of the fractured reservoir. 

Based on their observation, they have proposed a triple porosity model, which is 

comprised of two separate sets of matrix blocks and a set of fracture (Figure 3.2). Their 

study considers both the strata model and the sugar cube model under the transient flow 

condition. For mathematical formulation, they follow Lai et al.’s (1983) approach and 

find the expression of the dimensionless pressure. The pressure drawdown and the 

pressure build-up behavior of both models, however, show the deviated slope change that 

is being related to a ratio of the inter-porosity flow co-efficient and a ratio of fluid 

capacitance co-efficient. Moreover, a correlation is established for estimating the ratio of 

the inter-porosity co-efficient. The research has tended to focus on the transient behavior 

of the reservoir but in case of an unconventional reservoir with high matrix permeability 

semi-steady state flow may begin at an early flow time. 
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Figure 3.2: Triple porosity sugar-cube model (Redrawn from Abdassah and 

Ershaghi, 1986)  

3.4 Anomalous Diffusion  

Chang and Yortsos (1990) have conducted an extensive investigation on the pressure 

transient response of a fractal reservoir which is based on the concept of the anomalous 

diffusion in fractals (O’Shaughnessy and Procaccia, 1985). They have developed a 

modified diffusivity equation for a physical model consisting of a fracture network and a 

Euclidean matrix. The fracture network is characterized by the fractal geometry (Fractal 

dimension, D). Therefore, the flow equation for the fracture network contains a number of 

fractal exponents (a, D, ). Chang and Yortsos (1990) reform the porosity (ϕf) and the 

permeability formulation for the fractal. They add the matrix contribution on the overall 

flow by using Warren and Root’s (1963) dual porosity approximation where the inter-

porosity parameter and the exchange rate is escalated for the fractal geometry. The 

pressure drawdown and the pressure buildup analysis demonstrate the deviated response 

of the fractal and shows the procedure to evaluate the related reservoir fractal-exponent.  

A slower response at the early time and a faster changing at late time are predicted in the 

dimensionless pressure and the dimensionless pressure derivative plot of the model. The 

Fracture 

Matrix 
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main weakness in their study is that they do not propose any procedure for the 

determination of the fractal exponent; therefore, the model has a difficulty in the practical 

perspective. Moreover, in the early time pressure response, the impact of fractal exponent 

is not evaluated.               

Raghavan (2011) has made an analysis of the application of anomalous diffusion in the 

transient flow of a fractal system. The study is referred to in the work of the Camacho-

Velazquez et al. (2006) which investigates two different models for the anomalous 

diffusion. The first one is Chang and Yortos’s (1990) model for the fractal geometry and 

consists of a number of exponents to represent the fractal dimensions. The other is the 

Metzler et al. (1994) model which pertains a fractional derivative and the fractal 

exponents. Raghavan (2011) has modified the model by using a material balance equation 

(Le M, 1984)) for the fractal media and overcame the limitations in the explicit 

expression of the diffusivity term. A key problem with the approach is that it does not 

provide a practical basis for signifying the fractal structure.  The study also develops a 

fractional continuity equation for Cartesian and radial systems. The mobility expression 

in the equation is defined in terms of a fractal exponent that imposes a slower growth in 

the mobility of the medium. The solution of the diffusivity equation for the production at 

a constant rate and for the production at a constant pressure shows that the response 

follows a power law rather than an exponential decay. The impact of memory yields a 

flatter slope in the pressure transient analysis of the diffusion process in the fractal 

system. The study shows the effects of fractional order derivative; however, the model 

shows less consistency with the reservoir physical model.  

Chen and Raghavan (2015) have shown a general solution for the transient diffusion 

equation with a fractional time and space derivative. They have solved the equation by 

using the Laplace transformation and the Mittag-Leffler function according to the 

algorithm of the Stehfest (1970) and the Gorenflo et al. (2002). The analysis of the 

pressure response at the well-bore for different boundary conditions shows that at the 

early time the model behaves as a stretched exponential and at late time it obeys the 

power law. The functional behavior of the Mittag-Leffler has the same shape. A key 

problem with this approach is the asymptotic expression of the Mittag-leffler function in 
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the solution process that yields an approximate result. Chen and Raghavan (2015) also 

analyze the contributions of the sub-diffusion and the super-diffusion on the transient 

pressure response and find an opposite impact of the space derivative and the time 

derivative in the response. The slope of the response curve is flattened with an increasing 

order space derivative. Due to the influence of the fractional derivative, the predicted 

pressure distribution in the reservoir is different from the classical diffusion’s response. 

The behavior of the trilinear model of Ozkan et al. (2011) is analyzed by the outcome of 

the findings. The slope of the derivative plot signifies the contribution of the different 

regions at the different times. One of the main limitations of the study, however, is the 

anticipated value of the memory parameter that should be related to the particular 

reservoir.   

3.5 Linear Model   

Linear modes consider linear flow in the individual continuum and show a convenient 

approach for characterizing the tight gas or shale gas reservoir. According to 

Wattenbarger (2007), the linear flow assumption is more applicable for the fractured 

shale gas reservoir because highly pervious fracture drains the fluid from a low permeable 

matrix.  Because of perpendicular linear flow in the adjacent medium, in a dual porosity 

arrangement the flow is bi-linear. Similarly, it is tri-linear in a triple-porous reservoir. El-

banbi (1998) establish a solution technique for the linear reservoir flow in a dual porosity 

arrangement. Alahmadi (2010) has developed a linear triple porosity model for shale gas 

reservoirs. The study considers two sets of orthogonal fractures and matrix (Figure 3.3) 

that follows the solution technique of El-banbi (1998). This paper has conducted an 

intensive investigation of the reservoir behavior by considering four different types of 

flow model. Each model considers a distinctive combination of inter-porosity flow 

conditions termed transient flow condition and pseudosteady state condition. To find out 

the appropriate combination of flow conditions, he compares the response of the models 

with the establish model and simulation results. The fully transient model has the best 

match with the both. Finally, Alahmadi (2010) shows a field application of the transient 

model in case of shale gas reservoir. The study shows a simplified mathematical approach 

for analyzing the reservoir data; however, it has same limitations of triple continuum 
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approaches. Moreover, this paper does not consider the long-range effects and 

irregularities of the time and space event in the flow performance. 

 

Figure 3.3: Linear triple porosity model (Redrawn from Alahmadi, 2010) 

Tri-linear models (Brawn et al., 2009, Ozkan et al., 2011, Apaydin, 2011, Ozcan, 2014, 

Albinali, 2016) Work on well-defined physical structure that divides the whole reservoir 

into three regions, termed inner reservoir, outer reservoir and hydraulic fracture (Figure 

3.4). To evaluate the horizontal well performance in a hydraulically fractured tight 

reservoir the tri-linear models consider linear flow in each segment of the reservoir. The 

structure of the inner reservoir and the type of flow in the individual region make the 

variation in the tri-linear model related studies. Table 3.1 shows an analysis on the tri-

linear models.    
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Figure 3.4: General structure of the tri-linear model (Redrawn from Brawn et al., 

2009) 

   Ozkan et al. (2011) have discussed about the horizontal well performance that follows 

the Brawn’s tri-linear model (2009) and they compare the performance of a conventional 

tight gas reservoir to an unconventional shale gas reservoir. They determine the effects of 

the outer reservoir, matrix permeability, natural fracture permeability and density, and the 

hydraulic fracture permeability and spacing in the production performance of a fractured 

well. The orientation of the natural fracture network and the density of the fractures 

control the performance of an unconventional reservoir. A high matrix permeability and 

an elevated hydraulic-fracture conductivity cannot be able to increase the productivity in 

an unconventional reservoir. According to their observation the inner reservoir or the 

stimulated area between two hydraulic fracture is the limiting drainage area in a shale gas 

reservoir. However, induced fracture and the optimization of the hydraulic fracture 

conductivity can make a productivity improvement.  
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Table 3.1: Analysis of the Tri-linear models 

 

Criteria Brown, 2009 Apaydin, 

2011 

Ozcan, 2014 Albinali, 

2016a 

Albinali, 

2016b 

Outer Reservoir 

Physical 

Structure 

Unstimulated 

zone 

Unstimulated 

zone 

Unstimulated 

zone 

Unstimulated 

zone 

Unstimulated 

zone 

Flow 

Condition 

Transient Transient Transient Transient Transient 

Flow Type Conventional Conventional Conventional Anomalous Anomalous 

Inner Reservoir 

Physical 

Structure 

Dual porosity Dual porosity Dual porosity Dual porosity Fractal 

Structure 

Matrix 

Flow 

Condition 

Transient and 

semi-steady 

state 

Transient Transient Transient Transient 

Matrix 

Flow Type 

Bi-linear axial 

flow 

Radial flow in 

special 

arrangement of 

micro-fracture 

at the surface 

layer 

Bi-linear 

anomalous 

flow 

Radial 

anomalous 

flow with 

fractional time 

derivative 

Radial 

anomalous 

flow with 

fractal 

exponents 

Fracture 

Flow 

Condition 

Transient and 

semi-steady 

state 

Transient Transient Transient Transient 

Fracture 

Flow Type 

Bi-linear axial 

flow 

Axial flow Bi-linear 

anomalous 

flow 

Linear 

anomalous 

flow with 

fractional time 

derivative 

Linear 

anomalous 

flow with 

fractal 

exponents 

Hydraulic Fracture 
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Criteria Brown, 2009 Apaydin, 

2011 

Ozcan, 2014 Albinali, 

2016a 

Albinali, 

2016b 

Physical 

Structure 

Rectangular Rectangular Rectangular Rectangular Rectangular 

Flow 

Condition 

Bi-linear axial 

flow 

Bi-linear axial 

flow 

Bi-linear axial 

flow 

Bi-linear axial 

flow 

Bi-linear axial 

flow 

Flow Type Transient Transient Transient Transient Transient 

     

3.6 Conclusion  

 

The Chapter has investigated some of the approaches for modeling the fluid flow through 

a naturally fractured reservoir. The analysis from this study suggests that the continuum-

based models consider the physical structure of the reservoir and increase the accuracy in 

the prediction of the reservoir behavior; however, the required reservoir parameters for 

the new continuum are difficult to be determined. Alternatively, anomalous diffusion 

concept requires less parameter compare to the continuum approaches, but a high 

uncertainty exists in the precise determination of the order of the differentiation or the 

fractal exponent. Future studies on the current topic therefore require a logical 

combination of continuum approach and anomalous diffusion. It will not only reduce the 

complication but also increase the accuracy in the fractured-reservoir characterization. 
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Chapter 4 A Comparative Study of Mathematical Models for 

Fractured Reservoirs: Anomalous Diffusion and Continuum 

Approach 
Preface 

This study aims to determine an appropriate representative flow-model of a fractured 

reservoir after comparing two existing approaches: the anomalous diffusion and the 

continuum approach. The comparison of these two current approaches is the first time 

effort to capture the relative impact of the assumptions those are made in the development 

of the approaches. A fractured reservoir is assumed in this paper that drains the fluid in 

transient condition, to a hydraulically fractured horizontal well. To investigate the 

comparison, dimensional consistency is maintained for both the anomalous diffusion and 

the continuum approach. Chen and Raghavan’s (2015) model is considered as the 

anomalous diffusion model with modified boundary conditions. Continuum approach 

model considers the linear flow in a triple continuum structure that consists of matrix 

slab, micro-fracture, and hydraulic fracture. An analysis of the pressure response curves 

and the field data evaluates the proper approach for the analysis of the flow behavior. The 

solution of the wellbore pressure is derived in Laplace domain and is inverted by the 

Stehfest algorithm. Slope of the pressure response curve depends on the order of 

differentiation at the anomalous diffusion model. Conversely, the permeability of the 

hydraulic fracture controls the transient behavior at the continuum approach. The first set 

of analyses states that the continuum-based model considers the physical structure of the 

reservoir and increases the accuracy in the prediction of the reservoir behavior; however, 

more reservoir parameters are required for new continuum, those are difficult to 

determine. Alternatively, anomalous diffusion approach requires less parameter compared 

to the continuum approaches, but a high uncertainty exists in the precise determination of 

the order of the differentiation or the fractal exponent. The anomalous diffusion shows a 

good agreement with the synthesized field data at the early stage whereas the continuum 

approach matches better at late stage of the response. 
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4.1 Introduction 

An accurate analysis of the characteristic behavior of a fractured reservoir is challenging 

since the complex reservoir formation, and the irregular flow patterns in the discrete 

domain brings computational challenges. Instead of a single homogeneous model, dual 

porosity models consider two sets of homogeneous components, which are recognized as 

fractures and matrix (Warren and Root, 1963; Kazemi, 1969; de Swaan, 1976). The fluid 

flow in such a reservoir is controlled by two parameters termed the inter-porosity flow 

parameter and the fluid capacitance co-efficient. However, double porosity models were 

proved to be insufficient to explain the abrupt slope change in the pressure profile of a 

tight gas or an unconventional reservoir. Triple porosity models attempt to solve this 

problem by considering one additional continuum, either a fracture or a matrix. The inter-

porosity flow conditions between two adjacent domains, the unsteady state or the semi-

steady state condition, the arrangement of continuum, and the direction of fluid flow are 

the major variations in different models (Abdassah and Ershaghi, 1986; Jalali and 

Ershaghi, 1987; Liu et al., 2003; Wu et al., 2011).  

Chen and Raghavan (2015) have shown a general solution for the transient diffusion 

equation with a fractional time and space derivative. They solved the equation by using 

the Laplace transformation and the Mittag-Leffler function according to the algorithm of 

the Stehfest (1970) and the Gorenflo et al. (2002). The analysis of the pressure response 

at the well-bore for different boundary conditions shows that at the early stage the model 

behaves as a stretched exponential function and at a late stage, it obeys the power law. 

The functional behavior of the Mittag-Leffler has the same shape. A fundamental 

problem with this approach is the asymptotic expression of the Mittag-leffler function in 

the solution process that yields an approximate result. Chen and Raghavan (2015) also 

analyze the contributions of the sub-diffusion and the super-diffusion on the transient 

pressure response and found an opposite impact of the space derivative and the time 

derivative in the response. The slope of the response curve is flattened with an increasing 

order space derivative. Due to the influence of the fractional derivative, the predicted 

pressure distribution in the reservoir is different from the classical diffusion response. The 

behavior of the trilinear model of Ozkan et al. (2011) is also analyzed in the study. The 
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slope of derivative plot signifies the contribution of the different regions at the different 

stages. One of the main limitations of the study, however, is the uncertainty with the 

anticipated value of the memory parameter. Apart from these diffusion approaches, El-

banbi (1998) introduced the concept of linear flow for a hydraulically fractured reservoir. 

Alahmadi (2010) proposed a triple porosity model for a horizontal well production and 

follows the solution procedure of the El-Banbi (1998). The study assumes linear flow in 

the three domains of the reservoir; matrix, macro-fracture, and the micro-fracture. All the 

possible conditions of fluid flow are assumed as an inter-porosity transfer condition and 

the shape factor are defined according to the definition of Kazemi (1969). In the pressure 

response curve, Alahmadi (2010) found five different slopes that reflect the domination of 

the different regions of the reservoir at different stages of time.     

Both the anomalous diffusion approach and the continuum-based approach are recognized 

as the most updated tools for the characterizing of the fractured reservoir. The 

comparison, therefore, provides a basis for the application of the correct approach. The 

validation of the models with the field data shows their comparative applicability at 

different flow times.       

4.2 Anomalous Diffusion Model 

4.2.1 Physical Model 

A rectangularly shaped reservoir is assumed as in figure 4.1. 
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Figure 4.1: The Physical Structure of the reservoir for the Anomalous Diffusion 

model (Model I) 

 

4.2.2 Model Development 

The anomalous diffusion equation for a slightly compressible fluid for the reservoir 

(Figure 4.1) (Chen and Raghavan, 2015) 

 

𝜕

𝜕𝑥
(
𝑘𝛼,𝛽

𝜇

𝜕𝛽∆𝑝(𝑥, 𝑡)

𝜕𝑥𝛽
) = 𝜙 𝑐𝑡  

𝜕𝛼∆𝑝(𝑥, 𝑡)

𝜕𝑡𝛼
 

 

(4.1) 

At the initial time, equilibrium condition is existed in the system. So, 

 𝑝(𝑥, 𝑜) = 𝑝𝑖 (4.2) 

The inner boundary condition: 

 𝑞 = −
𝑘𝛼,𝛽

𝜇

𝜕1−𝛼

𝜕𝑡1−𝛼
(
𝜕𝛽∆𝑝(𝑥, 𝑡)

𝜕𝑥𝛽
)
𝑥=0

 (4.3) 

 

The outer boundary condition: 

 
𝜕∆𝑝(𝑥, 𝑡)

𝜕𝑥
|
𝑥=𝑥𝑒

= 0 (4.4) 

The dimensionless form of the Eq. 4.1: 

2xe 

h 

ye 
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𝜕

𝜕𝑥𝐷
(
𝜕𝛽𝑝𝐷
𝜕𝑥𝐷𝛽

) = 𝜆𝛼,𝛽  
𝜕𝛼   𝑝𝐷
𝜕𝑡𝐷

𝛼  (4.5) 

η =
𝑘𝛼,𝛽

𝜙 𝑐𝑡𝜇
 and 𝜆𝛼,𝛽 =

𝑥𝑒𝑥𝑒
𝛽

η(
𝑥𝑒
2𝜙 𝑐𝑡𝜇

𝑘𝛼,𝛽
)

𝛼  which is a dimensional parameter. If 𝛼 = 1 𝑎𝑛𝑑 𝛽 = 1, 

this denotes the conventional diffusion and the parameter 𝜆𝛼,𝛽 is a dimensionless 

diffusivity constant.  

The solution of the Eq. 4.5 is derived in Laplace domain by performing the Laplace 

transformation for two times in the equation, the first transformation is done with respect 

to the time (t) and the second one with respect to the space (x). The analogous solution 

technique, however, is used in Fomin et al. (2011), Atangana and Kilicman (2013) and in 

Chen and Raghavan (2015), for a constant terminal rate boundary condition. The Laplace 

transformation of the Eq. 4.5 with respect to the time (t) is: 

  
𝜕

𝜕𝑥𝐷
(
𝜕𝛽𝑝𝐷̅̅ ̅̅ (𝑥, 𝑠)

𝜕𝑥𝐷𝛽
) = 𝜆𝛼,𝛽𝑠

𝛼 𝑝𝐷̅̅ ̅̅ (𝑥, 𝑠) (4.6) 

Now applying the Laplace transformation on the Eq. 4.6 for space (x): 

 𝑠̃[𝑠̃𝛽𝑝𝐷̿̿ ̿(𝑠, 𝑠̃) − 𝑠̃
𝛽−1𝑝𝐷̅̅ ̅(0, 𝑠)] − (

𝜕𝛽𝑝𝐷̅̅ ̅(𝑥𝐷, 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

− 𝜆𝛼,𝛽𝑠
𝛼𝑝𝐷̿̿ ̿(𝑠, 𝑠̃) = 0 (4.7) 

 
𝑝𝐷̿̿ ̿(𝑠, 𝑠̃) =

𝑠̃𝛽

𝑠̃𝛽+1 − 𝜆𝛼,𝛽𝑠
𝛼
𝑝̅𝐷(0, 𝑠) + 

1

𝑠̃𝛽+1 − 𝜆𝛼,𝛽𝑠
𝛼
(
𝜕𝛽𝑝̅𝐷(𝑥𝐷, 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

= 0 

(4.8) 

Inverting Eq. 4.8 with the basic properties of the Mittag-Leffler function yields: 

 

𝑝̅𝐷(𝑥𝐷, 𝑠) = 𝑝̅𝐷(0, 𝑠)𝐸𝛽+1(𝜆𝛼,𝛽𝑠
𝛼𝑥𝐷

𝛽+1)

+ (
𝜕𝑝̅𝐷(𝑥𝐷, 𝑠)

𝜕𝑥𝐷
𝛽

)
𝑥𝐷=0

𝑥𝐷
𝛽𝐸𝛽+1,𝛽+1(𝜆𝛼,𝛽𝑠

𝛼𝑥𝐷
𝛽+1) 

(4.9) 

The constant flow rate is 
𝑞

4
  as only one fourth of the total drainage area is considered for 

modelling in this context. The inner boundary condition (Eq. 4. 3) will be  
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𝑞

4
= −

𝑘𝛼,𝛽𝐴𝐹

𝜇

𝜕1−𝛼

𝜕𝑡1−𝛼
(
𝜕𝛽∆𝑝(𝑥, 𝑡)

𝜕𝑥𝛽
)

𝑥=0

 (4.10) 

 
𝜕1−𝛼

𝜕𝑡𝐷
1−𝛼

(
𝜕𝛽∆𝑝𝐷
𝜕𝑥𝐷𝛽

)
𝑥𝐷=0

= −
𝜋

𝑐𝐴𝐹
 (4.11) 

 (
𝜕𝛽∆𝑝̅̅̅̅ 𝐷(𝑥𝐷, 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

= −
𝜋

𝑐𝐴𝐹𝑠2−𝛼
 (4.12) 

Using the value of the 4.13 in 4.9: 

 

𝑝̅𝐷(𝑥𝐷, 𝑠) = 𝑝̅𝐷(0, 𝑠)𝐸𝛽+1(𝜆𝛼,𝛽𝑠
𝛼𝑥𝐷

𝛽+1)

−
𝜋

𝑐𝐴𝐹𝑠2−𝛼
𝑥𝐷

𝛽𝐸𝛽+1,𝛽+1(𝜆𝛼,𝛽𝑠
𝛼𝑥𝐷

𝛽+1) 
(4.13) 

Using the derivative properties of the Mittag-Leffler function (Hombole et. al., 2011; 

Fomin et. al., 2010) in the outer boundary condition (Eq. 4.4) 

 

𝑑𝑝̅𝐷(𝑥𝐷, 𝑠)

𝑑𝑥𝐷
= 𝑝̅𝐷(0, 𝑠)𝜆𝛼,𝛽𝑠

𝛼𝑥𝐷
𝛽𝐸𝛽+1,𝛽+1(𝜆𝛼,𝛽𝑠

𝛼𝑥𝐷
𝛽+1)

−
𝜋

𝑐𝐴𝐹𝑠2−𝛼
𝑥𝐷

𝛽−1𝐸𝛽+1,𝛽(𝜆𝛼,𝛽𝑠
𝛼𝑥𝐷

𝛽+1) 

(4.14) 

 

𝜕𝑝̅𝐷
𝜕𝑥𝐷|𝑥𝐷=1,𝑠

= 𝑝̅𝐷(0, 𝑠)𝜆𝛼,𝛽𝑠
𝛼𝐸𝛽+1,𝛽+1(𝜆𝛼,𝛽𝑠

𝛼) −
𝜋

𝑐𝐴𝐹𝑠
2−𝛼

𝐸𝛽+1,𝛽(𝜆𝛼,𝛽𝑠
𝛼)

= 0 

(4.15) 

 𝑝̅𝐷(0, 𝑠) =
𝜋𝐸𝛽+1,𝛽(𝜆𝛼,𝛽𝑠

𝛼)

𝑐𝐴𝐹𝑠2𝜆𝛼,𝛽𝐸𝛽+1,𝛽+1(𝜆𝛼,𝛽𝑠𝛼)
 (4.16) 

Substitute the value of the Eq.4.16 in Eq. 4.14 

 

𝑝̅𝐷(𝑥𝐷, 𝑠) =
𝜋𝐸𝛽+1,𝛽(𝜆𝛼,𝛽𝑠

𝛼)

𝑐𝐴𝐹𝑠2𝜆𝛼,𝛽𝐸𝛽+1,𝛽+1(𝜆𝛼,𝛽𝑠𝛼)
𝐸𝛽+1(𝜆𝛼,𝛽𝑠

𝛼𝑥𝐷
𝛽+1)

−
𝜋

𝑐𝐴𝐹𝑠2−𝛼
𝑥𝐷

𝛽𝐸𝛽+1,𝛽+1(𝜆𝛼,𝛽𝑠
𝛼𝑥𝐷

𝛽+1) 

(4.17) 

This is the expression for the dimensionless pressure drop for the constant terminal rate 

flow in the wellbore. 

At  𝑥𝐷 = 0 the dimensionless pressure drop will be the bottom-hole pressure drop. The 

expression can be deduced from the Eq.4.17: 
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 𝑝̅𝐷(𝑥𝐷, 𝑠)|𝑥𝐷=0 = 𝑝̅𝑤𝐷(𝑥𝐷, 𝑠) =
𝜋𝐸𝛽+1,𝛽(𝜆𝛼,𝛽𝑠

𝛼)

𝑐𝐴𝐹𝑠2𝜆𝛼,𝛽𝐸𝛽+1,𝛽+1(𝜆𝛼,𝛽𝑠𝛼)
 (4.18) 

[𝐸𝛽+1(0) ≈ 1] 

This is the expression for the dimensionless bottom-hole pressure for the constant 

terminal rate flow. For 𝛼 = 1, 𝛽 = 1 the flow will be the classical flow equation and that 

yields 𝜆𝛼,𝛽 = 1, 𝑐𝐴𝐹 =
𝑦𝑒𝐵

2𝑥𝑒
 

 𝑝̅𝑤𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝑠𝜆𝛼,𝛽𝑠𝛼 tanh(√𝜆𝛼,𝛽𝑠𝛼)
 (4.19) 

 𝑝̅𝑤𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝑠
 (4.20) 

4.3 Linear Triple Porosity Model 

4.3.1 Physical Model 

 

 

Figure 4.2: The Physical Structure of the reservoir for the linear model (Model II) 

For the model II, strata duel porosity model (Kazemi, 1969) is assumed in the bounded 

region of two hydraulic fractures (Figure 4.2). Linear flow (El-Banbi, 1998; Ahmadi and 

Wattenbarger, 2011) is sustained in all the regions. Fluid is flowing from the reservoir to 

the horizontal wellbore through the hydraulic fracture only.  

 

4.3.2 Model Development       

The governing flow equation in the matrix layer is: 

Horizontal Well 

Hydraulic fracture 

Matrix Layer 

ye 

h/2 

Hydraulic fracture Matrix Layer 

Horizontal Well 

xe 
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𝜕2∆𝑝𝑚
𝜕𝑧2

=
(𝜙 𝑐𝑡)𝑚𝜇

𝑘𝑚
 
𝜕∆𝑝𝑚
𝜕𝑡

 (4.21) 

The initial condition 

 ∆𝑝𝑚𝐷(𝑧𝐷,0) = 0 (4.22) 

The inner Boundary conditions 

 
𝜕∆𝑝𝑚
𝜕𝑧 |𝑧=0

= 0 (4.23) 

The outer boundary conditions 

 
∆𝑝𝑚

|𝑧=
𝐿𝑛𝑓
2

= ∆𝑝𝑛𝑓
|𝑧=

𝐿𝑛𝑓
2

 
(4.24) 

The dimensionless form of Eq. 4.21: 

 
𝜕2∆𝑝𝑚𝐷

𝜕𝑧𝐷
2 −

3𝜔𝑚
𝜆𝑚

𝜕∆𝑝𝑚𝐷
𝜕𝑡𝐷

= 0 (4.25) 

Taking the Laplace transformation: 

 
𝜕2∆𝑝̅̅̅̅ 𝑚𝐷

𝜕𝑧𝐷
2 −

3𝜔𝑚
𝜆𝑚

{𝑠∆𝑝̅̅̅̅ 𝑚𝐷(𝑧𝐷 , 𝑠) − ∆𝑝
𝑚𝐷
(𝑧𝐷 , 0)} = 0 (4.26) 

The initial condition yields 

 
𝜕2∆𝑝̅̅̅̅ 𝑚𝐷

𝜕𝑧𝐷
2 −

3𝜔𝑚
𝜆𝑚

𝑠∆𝑝̅̅̅̅ 𝑚𝐷(𝑧𝐷, 𝑠) = 0 (4.27) 

[𝛼𝑚 =
3𝜔𝑚𝑠

𝜆𝑚
] 

The general solution of the Eq. 4.27: 

 ∆𝑝̅̅̅̅ 𝑚𝐷 = 𝐴𝑒𝑥𝑝(−√𝛼𝑚𝑧𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑚𝑧𝐷) (4.28) 

Now for the inner boundary condition (Eq. 4.23): 

 ∆𝑝̅̅̅̅ 𝑚𝐷 = 2𝐵𝑐𝑜𝑠ℎ (√𝛼𝑚𝑧𝐷) (4.29) 

For the outer boundary condition (Eq. 4.23): 

 ∆𝑝̅̅̅̅ 𝑚𝐷 =
∆𝑝̅̅̅̅ 𝑛𝑓𝐷𝑐𝑜𝑠ℎ (√𝛼𝑚𝑧𝐷)

𝑐𝑜𝑠ℎ (√𝛼𝑚)
 (4.30) 

The fluid flow equation in the natural fracture: 

The source term in the natural fractured flow model is evaluated by the definition of 

Kazemi (1969). 
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𝜕2∆𝑝𝑛𝑓

𝜕𝑦2
=
(𝜙 𝑐𝑡)𝑛𝑓𝜇

𝑘𝑛𝑓
 
𝜕∆𝑝𝑛𝑓

𝜕𝑡
+

𝜇

𝑘𝑛𝑓
𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚 (4.31) 

 
𝜕2∆𝑝𝑛𝑓

𝜕𝑦2
=
(𝜙 𝑐𝑡)𝑛𝑓𝜇

𝑘𝑛𝑓
 
𝜕∆𝑝𝑛𝑓

𝜕𝑡
+
𝑘𝑚
𝑘𝑛𝑓

2

𝐿𝑛𝑓

𝜕∆𝑝𝑚
𝜕𝑧 |𝑧=

𝐿𝑛𝑓
2

 (4.32) 

 
𝜕2∆𝑝𝑚𝑓𝐷

𝜕𝑦𝐷
2 = 

𝑦
𝑒𝐷
2

4

𝜕∆𝑝𝑛𝑓𝐷

𝜕𝑡𝐷
+ 𝜆𝑚𝑓

𝜕∆𝑝𝑚𝐷
𝜕𝑧𝐷 |𝑧𝐷=1

 (4.33) 

 

Initial condition for the natural fracture 

 ∆𝑝𝑛𝑓𝐷(𝑦𝐷, 𝑜) = 0 (4.34) 

The inner and outer boundary conditions 

 
𝜕∆𝑝̅̅̅̅ 𝑛𝑓𝐷

𝜕𝑦𝐷 |𝑦𝐷=𝑜,𝑠

= 0 (4.35) 

 ∆𝑝̅̅̅̅ 𝑛𝑓𝐷|𝑦𝐷=1,𝑠
= ∆𝑝̅̅̅̅ 𝐻𝐹𝐷|𝑦𝐷=1,𝑠

 (4.36) 

From Eq. 4.30 

 
𝜕∆𝑝𝑚𝐷
𝜕𝑧𝐷 |𝑧𝐷=1

= ∆𝑝̅̅̅̅ 𝑛𝑓𝐷√𝛼𝑚 tanh(√𝛼𝑚) (4.37) 

Laplace transformation of the Eq. 4.37 

 
𝜕2∆𝑝̅̅̅̅ 𝑛𝑓𝐷

𝜕𝑦𝐷
2 =

𝑦
𝑒𝐷
2

4
{𝑠∆𝑝̅̅̅̅ 𝑛𝑓𝐷(𝑦𝐷, 𝑠) − ∆𝑝𝑛𝑓𝐷(𝑦𝐷 , 0)} + 𝜆𝑚𝑓

𝜕∆𝑝̅̅̅̅ 𝑚𝐷
𝜕𝑧𝐷 |𝑦𝐷=1

= 0 (4.38) 

Using the Eq. 4.34 and Eq. 4.37 

𝜕2∆𝑝̅̅̅̅ 𝑛𝑓𝐷

𝜕𝑦𝐷
2 =

𝑦
𝑒𝐷
2 𝑠

4
∆𝑝̅̅̅̅ 𝑛𝑓𝐷 + 𝜆𝑚𝑓√𝛼𝑚 tanh(√𝛼𝑚)∆𝑝̅̅̅̅ 𝑛𝑓𝐷|𝑧𝐷=1

= 0 

 
𝜕2∆𝑝̅̅̅̅ 𝑛𝑓𝐷

𝜕𝑦𝐷
2 − 𝛼𝑛𝑓∆𝑝̅̅̅̅ 𝑛𝑓𝐷 = 0 (4.39) 

[𝛼𝑛𝑓 =
𝑦
𝑒𝐷
2 𝑠

4
+ 𝜆𝑚𝑓√𝛼𝑚 tanh(√𝛼𝑚)] 

The general solution of the Eq. 4.39 

 ∆𝑝̅̅̅̅ 𝑛𝑓𝐷 = 𝐴𝑒𝑥𝑝(−√𝛼𝑛𝑓𝑦𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑛𝑓𝑦𝐷) (4.40) 

Apply the inner boundary condition 
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 ∆𝑝̅̅̅̅ 𝑛𝑓𝐷 = 2𝐵𝑐𝑜𝑠ℎ (√𝛼𝑛𝑓𝑦𝐷) (4.41) 

At the outer boundary (Eq. 4.36) 

 𝐵 =
∆𝑝̅̅̅̅ 𝐻𝐹𝐷|𝑦𝐷=1

2𝑐𝑜𝑠ℎ (√𝛼𝑛𝑓)
 (4.42) 

From the Eq. 4.41 

 ∆𝑝̅̅̅̅ 𝑛𝑓𝐷 = ∆𝑝̅̅̅̅ 𝐻𝐹𝐷|𝑦𝐷=1

𝑐𝑜𝑠ℎ (√𝛼𝑛𝑓𝑦𝐷)

𝑐𝑜𝑠ℎ (√𝛼𝑛𝑓)
 (4.43) 

The flow equation in the hydraulic fracture 

 
𝜕2∆𝑝𝐻𝐹
𝜕𝑥2

=
(𝜙 𝑐𝑡)𝐻𝐹𝜇

𝑘𝐻𝐹
 
𝜕∆𝑝𝐻𝐹
𝜕𝑡

+
𝜇

𝑘𝐻𝐹
𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚𝑓 (4.44) 

 
𝜕2∆𝑝𝐻𝐹
𝜕𝑥2

=
(𝜙 𝑐𝑡)𝐻𝐹𝜇

𝑘𝐻𝐹
 
𝜕∆𝑝𝐻𝐹
𝜕𝑡

+
𝑘𝑛𝑓

𝑘𝐻𝐹

2

𝑦𝑒

𝜕∆𝑝𝑚
𝜕𝑦 |𝑦=

𝑦𝑒
2

 (4.45) 

 
𝜕2∆𝑝𝐻𝐹𝐷

𝜕𝑥𝐷
2 = 

𝜔𝐻𝐹

𝑘𝑀𝐹𝐷

∆𝑝𝐻𝐹𝐷
𝜕𝑡𝐷

+
𝜆𝐻𝐹

3

𝜕∆𝑝𝑛𝑓𝐷

𝜕𝑦𝐷 |𝑦𝐷=1

 (4.46) 

Initial condition for the hydraulic fracture 

 ∆𝑝𝐻𝐹𝐷(𝑦𝐷 , 𝑜) = 0 (4.47) 

At the well bore the hydraulic fracture maintains a constant flow rate 

 𝑞 = −
𝑘𝐻𝐹𝐴

𝜇

𝜕𝑝𝐻𝐹
𝜕𝑥

|
𝑥=0

 (4.48) 

 (
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷

)
𝑥𝐷=0,𝑠

= −
𝜋

𝑐𝐴𝐷𝑠
 (4.49) 

Now flow condition at outer boundary gives 

 
𝜕∆𝑝𝐻𝐹
𝜕𝑥 |𝑥=𝑥𝑒,𝑡

= 0 (4.50) 

The general flow equation for the hydraulic fracture, from Eq. 4.46, Eq. 4.47 and Eq.4.49  

𝜕2𝑝̅𝐻𝐹𝐷

𝜕𝑥𝐷
2  −  𝛼𝐻𝐹𝑝̅𝐻𝐹𝐷 = 0 

Hydraulic fracture pressure solution 

 𝑝̅𝐻𝐹𝐷 =
𝜋𝑐𝑜𝑠ℎ (√𝛼𝐻𝐹(1 − 𝑥𝐷)

𝑐𝐴𝐹𝐷𝑠√𝛼𝐻𝐹𝑠𝑖𝑛ℎ (√𝛼𝐻𝐹)
 (4.51) 
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This is the expression for the dimensionless hydraulic fracture pressure for the constant 

terminal rate flow. At  𝑥𝐷 = 0 the hydraulic fracture pressure will be the bottom-hole 

pressure. 

 𝑝̅𝑤𝐷 =
𝜋

𝑐𝐴𝐹𝐷𝑠√𝛼𝐻𝐹𝑡𝑎𝑛ℎ(√𝛼𝐻𝐹)
 (4.52) 

This is the expression for the dimensionless bottom-hole pressure for the constant 

terminal rate flow and has the same form of Eq. 4.19; although, it has a different non-

Homogeneous function. If 𝛼𝐻𝐹 = 1 then from the asymptotic expression of the tanh(1), 

it can be shown that the Eq. 4.52 becomes: 

 𝑝̅𝑤𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝐷𝑠
 (4.53) 

This is the general expression for the bottom-hole pressure at constant flow rate for the 

linear reservoir. 

4.4 Results and Analysis  

The dimensionless pressure response of the homogeneous reservoir is a single slope line. 

It is evident that the response curve has more than one slope in the dual or triple 

continuum reservoir (Warren and Root, 1968, Abdassah and Ershaghi, 1986). The 

response curve of tri-linear models also shows a slope change at the transition of the 

earlier and the intermediate to late time response (Brawn, 2009; Ozkan et al., 2011,2012, 

Albinali et al., 2016a, 2016b). Figure 4.3 shows the dimensionless pressure response of 

the anomalous diffusion model and the triple porosity model. The impact of space and 

time events create lower pressure drop during initial period in the anomalou diffusion 

model. On the contrary, the response of the triple porosity model has two distinct slopes. 

The initial slope holds the contributions of the hydraulic fracture whereas the second 

slope changes according to the late stage pressure response.,  
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Figure 4.3: Dimensionless wellbore pressure for the anomalous diffusion model and 

for the linear triple porosity model 

 

Figure 4.4 and 4.5 shows the impact of space and time derivative in the anomalous 

diffusion model. The effect of the super-diffusion is evaluated according to the order of 

the space derivative. As the value of 𝛽 decreases from the unity, the space event becomes 

more significant; hence, the flow will be accelerated at the same pressure gradient. The 

sub-diffusion has a negligible effect at the late time response of the reservoir. Figure 4.5 

shows that the space events cause a lower pressure-drop to maintain the same production 

rate. The single most marked observation to emerge from the figure is the impact of the 

super-diffusion is prolonged from the very early time to the late time. This result has 

further strengthened the hypothesis that the space event in the hydraulic fracture can 

significantly alter the flow characteristics. 
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Figure 4.4: Effect of fractional time order in the anomalous diffusion model 

 

Figure 4.5: Effect of fractional space order in the anomalous diffusion model 

 

 



91 

 

 

Figure 4.6: Dimensionless flow rate at constant bottom hole pressure of the 

anomalous diffusion model  

 

 

Figure 4.7: Dimensionless flow rate at constant bottom hole pressure of the 

anomalous diffusion model 
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Figure 4.6 and figure 4.7 shows the responses of the anomalous model for constant 

bottom hole pressure. The depletion trends of the production rate show the effects of sub-

diffusion and super-diffusion on the production performance. 

Figure 4.8 shows the effect of the hydraulic fracture permeability on the pressure 

response. Hydraulic fracture is the main conduit in the model as it is the only medium that 

transfer the fluids to the reservoir; thus, the permeability-alteration in the hydraulic 

fracture changes the pressure response from the earlier time to the late time of the 

production (𝑡𝐷 = 10.6𝐸4). However, at the early to intermediate time, the hydraulic 

fracture permeability causes the most variation in the pressure response. At later time the 

flow capacitance of the macro-fracture reaches to the maximum and the flow is 

influenced by the boundary effect.     

 

Figure 4.8: Effect of Hydraulic fracture permeability in the multi-continuum model 

 

The comparison of the responses of the two models (Figure 4.9) reveals the consistency 

of the results. The reactions of the two models are to be similar to the order of the 

differentiation in the anomalous model is closing to a unit value. However, a lower 

pressure drop at the early time is the evidence of the super-diffusion in the hydraulic 

fracture that makes the difference between the two models.  
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Figure 4.9: Comparison of the multi-continuum approach and the Anomalous 

diffusion method 

4.5 Conclusions 

The study has developed two models to analyze the performance of a hydraulically 

fractured reservoir. The analysis from this study suggests that the continuum-based 

models consider the physical structure of the reservoir; however, the required reservoir 

parameters for the new continuum are difficult to be determined. Alternatively, 

anomalous diffusion concept requires less parameter compare to the continuum 

approaches, but a high uncertainty exists in the precise determination of the order of the 

differentiation or the fractal exponent. The magnitudes of the effects of the time and 

space events are related to the order of the differentiation. The space events control both 

the early and late stage responses of the pressure curve. The time events have a negligible 

effect on the late stage performance. The permeability of the hydraulic fracture is the 

dominating parameter in the multi-continuum approach. A higher permeability in the 

hydraulic fracture can increase the flow rate of the reservoir.  Future studies on the 

current topic, therefore, require a logical combination of continuum approach and 

anomalous diffusion. It will not only reduce the complication but also increase the 

accuracy in the fractured-reservoir characterization. 
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Nomenclature 

 

h Reservoir thickness, ft 

𝑟𝑤 Wellbore radius, ft 

𝑦𝑒 Horizontal well length, ft 

LF Spacing of natural fracture, ft 

𝑥𝑒 Distance to boundary parallel to well, ft  

µ Viscosity, cp 

q Constant flow rate, Stb/day 

∅ Porosity, fraction 

K Phenomenological coefficient, md-hr1-  

𝑐 Total compressibility, Psi-1  

w Hydraulic fracture width, ft 

 Memory Parameter (Space) 

K Permeability, md  

𝛼 Memory Parameter,  
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Chapter 5: Development of A Linear Fluid Flow Model for the 

Naturally Fractured Reservoir Based on the Memory and 

Multi-Continuum Approach 
 

Preface 

Naturally fractured reservoir is a highly heterogeneous formation with an irregular 

arrangement of matrix and fracture in different scales. Hence, a proper approximation of 

the reservoir formation and the accurate assumption of the flow conditions are essential to 

capture the inherent heterogeneity of the fractured reservoir. This study aims to develop a 

linear mathematical model for a naturally fractured reservoir through an assumption of 

the multi-continuum approach and a combination of the conventional diffusion and the 

anomalous diffusion at the transient condition. The study introduces the triple porosity 

model in the inner reservoir. The logical combination of super-diffusion and sub-diffusion 

also innovatively utilizes in the model development process. The complex physical 

structure of the model reservoir can be able to capture the heterogeneity of the fractured 

reservoir in more details. The heterogeneity of separate formation, however, appears as a 

function of time in the final expression. Therefore, the heterogeneous behavior of an 

individual region can be captured and analyzed by this model. The pressure response 

curve comprises areas with distinguishing slopes; consequently, the value of the slope 

reflects the typical flow behavior of a flow domain. Moreover, the model is proved to be 

flexible for varying idealization of the physical arrangement in a flow region since the 

domain function can be altered and distinct physical structure of the area is related to the 

domain function. The model can be reduced to the expression of a homogeneous reservoir 

after imposing the proper condition, which states the validity of the model. The sensitivity 

analysis shows the effects of flow-parameters on the overall flow performance. The most 

remarkable observation to emerge from the study is the anomalous slope change in the 

pressure response curve. This finding reinforces the impact of the super-diffusion in the 

hydraulic fracture of the reservoir. Hence, this model can be used as a better alternative 

tool for the pressure transient data analysis of a naturally fractured reservoir. 
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5.1 Introduction 

The fractured reservoir attributes an anomalous characteristic behavior since it has a 

complex structure of alternating matrices and fractures, and different flow-conditions 

exist in distinctive flow-domains. The first attempt to capture the heterogeneity of such 

type of reservoir is the dual continuum approach both for the transient condition (Kazemi, 

1969, de Swaan-O, 1976) and the semi-steady state condition (Warren and Root, 1968). 

The two continua are termed matrix and fracture; additionally, the matrix is considered 

the primary source and the fracture as the principal conduit. A sudden slope change in the 

pressure-response curve of a fractured reservoir is related to the relative capacitance of 

the matrix and the fracture. Triple continuum approaches (Abdassah and Ershaghi, 1986) 

add an extra continuum either a matrix or a fracture in the physical structure of the 

reservoir. The additional continuum is related to the anomalous slope change in the 

pressure-response curve that is evident in some fractured reservoir case. El-Banbi (1998) 

has considered the linear flow in the fractured reservoir for the early time and develops a 

linear dual porosity model. Linear flow, a flow that is perpendicular to any flow surface, 

occurs when a high permeable continuum drains the fluid from a tight formation with 

very low permeability (Wattenbarger, 2007). Alahmadi (2010) has developed a linear 

model of triple continuum medium in the case of a fractured reservoir which produce 

through a horizontal well. He identifies five regions in the pressure response curve; 

moreover, the slope of each curve is related to the properties of the respective continuum. 

Brawn (2009) has introduced a tri-linear model for the horizontal well and considers the 

dual continuum approximation for the inner reservoir whereas linear axial flow is 

regarded as both for the outer reservoir and the hydraulic fracture. A continuum-function 

captures the inherent heterogeneity of each region and can be determined from the 

pressure response curve.  

 Ozcan (2011) has modified the tri-linear model by introducing a bi-linear anomalous 

diffusion in the inner reservoir. The natural and induced heterogeneity of the inner 

reservoir is related to the order of the fractional time derivative of the flow equation. 

Albinali (2016) has proposed another modified tri-linear model and assigns anomalous 

diffusion both in the outer reservoir and in the inner reservoir. The anomalous diffusion-
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approaches utilize the fractional time or space derivative to scale up the heterogeneity of 

the reservoir; however, the determination of the proper order of the differentiation is the 

vital challenge in these approaches. Furthermore, no previous study considers the 

heterogeneous behavior of the hydraulic fracture zone. Alternatively, the continuum 

approaches need a number of intrinsic properties of the distinctive zone. The intrinsic 

properties of the outer reservoir and the hydraulic fracture are inconvenient to be 

determined. The aim of this study is to develop a linear mathematical model that 

considers both the continuum approach and the anomalous diffusion. In this study, the 

drainage area of a hydraulically fractured horizontal well is approximated by a modified 

Tri-linear model (TLM), which is comprised of three regions: outer reservoir, inner 

reservoir, and hydraulic fracture. The inner reservoir has a triple porosity arrangement 

with a characteristic spherical shale matrix. Though out the model development, the 

matrix is the main source of fluid and has the higher storability/fluid capacitance than the 

fracture. On the other hand, the fracture has a higher flow capacity than the matrix, so it 

behaves as a conduit. Flow is linear in all the regions under transient flow condition; 

however, the super-diffusion and the sub-diffusion are assigned respectively for the 

hydraulic fracture and the outer reservoir. A dimensionless pressure expression is derived 

in Laplace domain, and Stehfest algorithm inverses the solution to the real-time field. The 

expression of dimensionless hydraulic-fracture pressure contains Mittag-Leffler function 

due to the fractional derivative of space. 

The adaptation of the triple porosity model in the inner reservoir region in a Tri-linear 

model to capture the heterogeneity is used for the first time in this model. The logical 

combination of sub-diffusion, super-diffusion, and linear axial flow for evaluating the 

performance of a hydraulically-fractured horizontal well is another innovative approach 

to this model. 

5.2 Model Reservoir 

The model reservoir follows the Tri-linear model (TLM) concept (Brawn, 2009; Ozcan, 

2014; Alibini, 2016). According to the TLM, the reservoir has three main regions: outer 

reservoir, inner reservoir, and hydraulic fracture. Fluid-transfer occurs from the reservoir 
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to the well only through the hydraulic fracture. Fig. 5.1 shows the modeled reservoir, for 

the simplicity only two hydraulic fractures are shown in the figure.  

5.2.1 Outer reservoir 

Outer reservoir is extended beyond the tip of the hydraulic fracture. It consists of matrix 

and natural fracture; this region has no impact from the completion and the stimulation 

processes. Diffusion process in outer reservoir is controlled by the tight compressed-

matrix and low permeability natural fracture. The complex network of the matrices and 

fractures distorts the fluid flow of the reservoir. This region, therefore, exhibits a sub-

diffusion process. A fractional time derivative takes all the heterogeneity into accounts 

and the order of the differentiation is correlated to the degree of heterogeneity.  

5.2.2 Inner Reservoir 

Inner reservoir is defined as the confined area between two adjacent hydraulic fractures. 

A triple-continuum model approximates the fluid flow path in the inner reservoir. Three 

main continua are known as matrix, micro-fracture, and macro-fracture. The study 

considers two different shapes of the matrix; one is the spherical-shaped matrix, and 

another is the slab-sized matrix block. The spherical-shaped matrix represents highly-

fractured tight-shale formation whereas the slab matrix block is applicable for the 

formation that has the higher matrix permeability. A general structure of the reservoir is 

shown in fig. 5.3 in a 2D view and the flow directions and boundaries conditions are also 

indicated. fig. 5.4 illustrated the details of the inner reservoir with spherical-shaped 

matrix while fig. 5.5 shows the slab matrix.   
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Figure 5.1: Two Parallel horizontal well with hydraulic fracture. 

 

 

 

Figure 5.2: Top view of the reservoir. 
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Figure 5.3: Two-dimensional view of the reservoir and the flow direction for the 

model. 

 

Figure 5.4: Three-dimensional view of the inner reservoir (Spherical-shaped 

matrix). 
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Figure 5.5: Three-dimensional view of the inner reservoir (Matrix-Block) 

 

The matrix sphere has a fractured surface on its external area, is defined as matrix-cake 

and the physical structure is approximated according to the concept of Osman et al., 

(2011). Fig. 5.6 demonstrates the structure of an individual matrix sphere which consists 

of three different continua, are named as core matrix, cake matrix, and cake fracture. The 

cake fracture is the only conduit that transfers fluid to the micro-fracture. Both the 

spherical-shaped core matrix and the cake matrix which is assumed as a sheet like 

structure, maintain a linear flow to the cake fracture. Fluid transfer from the matrix to the 

macro-fracture is assumed to be negligible. Not only the matrix slab but the micro-

fracture also transfers a very slight amount of fluid to the hydraulic fracture. At the 

hydraulic fracture boundary, hence, macro-fracture conserves a pressure continuity and a 

flow continuity at this mutual boundary of inner reservoir and hydraulic fracture. 

Macro-fracture 
Micro-fracture 

Matrix 
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Figure 5.6: Simplification of the matrix structure (Adapted from Osman et al.; 2011) 

5.2.3 Hydraulic Fracture 

Hydraulic fracture is assumed to be rectangular shaped that is extended over the whole 

thickness (ℎ) of the reservoir in the model. No fluid flow occurs at the tip of the hydraulic 

fracture; in the 𝑥 direction the tip denotes the outer-boundary location of the inner 

reservoir. Although the thickness of the hydraulic fracture is very thin compared to the 

inner reservoir width, the well inflow occurs only through this region. The total flow in 

the hydraulic fracture is the sum of the fluid fluxes that linearly comes in the 𝑦 direction 

from the inner reservoirs of the both sides. 

5.3 Assumptions in the Model 

-    Single phase flow in a naturally fractured reservoir to a horizontal well. 

-    One dimensional linear flow of the slightly compressible fluid. 

-    A Flow symmetry at the midpoint of the two-lateral horizontal well. 

-    The isotropic permeability of the reservoir and constant viscosity of the 

reservoir fluid. 

Spherical Matrix 

𝑟𝑐𝑚 

Cross-sectional view 

Simplified outer surface 

𝑟𝑚𝑐 

𝑟𝑚𝑐 
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-    Transfer of fluid occurs only through the Macro-fracture to the Hydraulic 

fracture. 

-    Matrix has the spherical shape and contains most of the storage of the 

reservoir. 

-    The Fracture has negligible storage capacity but has high conductivity. 

-    The pressure in the linear axis of each continuum is independent to the other 

continuum. (Pseudo-function). 

- Unsteady state (Transient) flow condition in the all regions. 

5.4 Development of the Mathematical Model 

One dimensional linear diffusion equation for the slightly compressible fluid 

 
𝜕2𝑝

𝜕𝑥2
=
𝜙 𝑐𝑡𝜇

𝑘

𝜕p

𝜕𝑡
   (5.1) 

Flux law is modified by the fractional derivative for incorporating the memory effect 

(Caputo 1999, Hossain et. al.; 2005, 2006, Raghavan, 2011; Chen and Raghavan, 2011, 

2013, 2014). Fractional time derivative represents the sub-diffusion. The Sub-diffusion 

occurs when the previous time event affects the performance of the current fluid flow. 

According to the order of the derivative, the fractional time derivative of the pressure 

gradient includes a weighing factor to each time step of the flow history and measure the 

effects of time at a point in the flow medium. Consequently, the pressure gradients at 

those points are not instantaneous; rather, holds the impact of the longer time event. The 

diffusion process is slowed down due to the fractional time derivative. Alternatively, the 

fractional space derivative represents a faster diffusion than the conventional one. The 

modified flux law for this anomalous diffusion is written as (Chen and Raghavan, 2015): 

 𝑢 (𝑥, 𝑡) =
𝑞

𝐴
=  −𝜂𝛼,𝛽  

𝜕1−𝛼

𝜕𝑡1−𝛼
[
𝜕𝛽𝑝(𝑥, 𝑡)

𝜕𝑥𝛽
] (5.2) 

0 < 𝛼 ≤ 1 𝑎𝑛𝑑 0 < 𝛽 ≤ 1; 𝜂𝛼,𝛽 =
𝑘𝛼,𝛽

𝜇
  . k,  is defined as a dynamic constant. In 

conventional flux law, the permeability (k) has the dimension of L2 but in modified flux 
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law the dynamic constant (k, ) has the dimension of L1+T1-. If  = 1 and  = 1, then 

Eq. (5.2) yields the conventional flux law and the dynamic constant can be defined as 

permeability with the same dimension (L2). The Caputo’s definitions of fractional 

derivatives are: (Caputo, 1967, 1998) 

 

 
𝜕𝛼𝑝(𝑥, 𝑡)

𝜕𝑡𝛼
=

1

Γ(1 − 𝛼)
∫ (𝑡 − 𝑢)−𝛼
𝑡

0

[
𝜕𝑝(𝑥, 𝑢)

𝜕𝑢
]𝜕𝑢 (5.3) 

 

 
𝜕𝛽𝑝(𝑥, 𝑡)

𝜕𝑥𝛽
=

1

Γ(1 − 𝛽)
∫ (𝑥 − 𝑣)−𝛽
𝑥

0

[
𝜕𝑝(𝑣, 𝑡)

𝜕𝑣
]𝜕𝑢 (5.4) 

 ‘’ denotes the gamma function. By using the modified flux law (Eq. 5.2) in the 

continuity equation (Eq. 5.1): 

 𝜕(−𝜂𝛼,𝛽  
𝜕1−𝛼

𝜕𝑡1−𝛼
𝜕𝛽𝑝(𝑥, 𝑡)
𝜕𝑥𝛽

)

𝜕𝑥
=  −𝜙 𝑐𝑡𝜌 

𝜕p

𝜕𝑡
 

(5.5) 

 Taking 
𝜕𝛼−1

𝜕𝑡𝛼−1
 of both sides 

 
𝜕([
𝜕𝛽𝑝(𝑥, 𝑡)
𝜕𝑥𝛽

])

𝜕𝑥
=
𝜙 𝑐𝑡
𝜂𝛼,𝛽

 
𝜕𝛼p(x, t)

𝜕𝑡𝛼
 

(5.6) 

Let 𝜂𝛼,𝛽 ≠ 𝑓(𝑥). This is the equation for one dimensional linear anomalous diffusion of 

the slightly compressible fluid.  

For sub-diffusion flow  =1; so, Eq. (5.6) reduces to 

 
𝜕2𝑝(𝑥, 𝑦)

𝜕𝑥2
=
𝜙 𝑐𝑡
𝜂𝛼,𝛽

 
𝜕𝛼p(x, t)

𝜕𝑡𝛼
 (5.7) 

For super diffusion  = 1. Therefore, Eq.  (5.6) yields 

 
𝜕(
𝜕𝛽𝑝(𝑥, 𝑡)
𝜕𝑥𝛽

)

𝜕𝑥
=
𝜙 𝑐𝑡
𝜂𝛼,𝛽

 
𝜕p(x, t)

𝜕𝑡
 

(5.8) 

5.4.1 Flow in the Outer Reservoir 

Eq. 5.7 can be rewritten for the outer reservoir in terms of pressure drop. The order of the 

differentiation is related to the impact of the time event in the outer reservoir flow.       
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𝜕2∆𝑝𝑜
𝜕𝑥2

=
(𝜙 𝑐𝑡)𝑜𝜇

𝑘𝛼𝑜
 
𝜕𝛼𝑜∆𝑝𝑜
𝜕𝑡𝛼𝑜

 (5.9) 

 In dimensionless form: 

 
𝜕2𝑝𝑂𝐷

𝜕𝑥𝐷
2 = 𝜔𝐴𝑜 𝜆𝐴𝑜

𝜕𝛼𝑜𝑝𝑂𝐷
𝜕𝑡𝐷

𝛼𝑜  (5.10) 

 
𝜕2𝑝𝑂𝐷

𝜕𝑥𝐷
2 = 𝑀𝐷𝐴

𝜕𝛼𝑜𝑝𝑂𝐷
𝜕𝑡𝐷

𝛼𝑜  (5.11) 

Where MDA is the dimensionless anomalous number. Ao is the dimensional anomalous 

storability with a dimension of L1-T2-2M-1. For classical diffusion =1, and Ao 

changes to dimensionless storability ratio. Ao is the dimensional inter-porosity co-

efficient and has the dimension of L-1T2-2M1-. In the case of classical diffusion, also 

the Ao becomes the dimensionless inter-porosity. Anomalous number represents the fluid 

transfer phenomenon between two adjacent domains where normal diffusion occurs in the 

one domain and the anomalous diffusion occurs in the other domain. 

Applying Laplace transformation on Eq. (5.11) 

 
𝜕2𝑝̅𝑂𝐷

𝜕𝑥𝐷
2 −𝑀𝐷𝐴{𝑠

𝛼𝑜𝑝̅𝑂𝐷 − 𝑝𝑂𝐷(𝑥𝐷)} = 0 (5.12) 
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Figure 5.7: boundary conditions of the outer reservoir 

At 𝑡 = 0, the outer-reservoir pressure is the same as the initial pressure, so the pressure 

drop is zero at that time. 

 ∆𝑝0(𝑥, 𝑜) = 0 (5.13) 

 𝑝𝑂𝐷(𝑥𝐷,0) = 0 (5.14) 

If the spacing of two parallel horizontal reservoirs is 2𝑥𝑒, there is a no flow boundary at 

𝑥 = 𝑥𝑒. That implies 

 
𝜕∆𝑝𝑜
𝜕𝑥 |𝑥=𝑥𝑒

= 0 (5.15) 

 
𝜕𝑝̅𝑂𝐷
𝜕𝑥𝐷 |𝑥𝐷=𝑥𝑒𝐷

= 0 (5.16) 

The flow is linear in 𝑥 direction when it flows from the outer-reservoir to the inner-

reservoir. The fluid transfer between the outer reservoir and the matrix of inner-reservoir 

is negligible; therefore, it is assumed that the fluid transfer occurs only through the 

macro-fracture. Pressure is continuous at the mutual boundary of the macro-fracture and 

the outer-reservoir; hence, the pressure of those two domains is equal at 𝑥 = 𝑥𝐻𝐹. 

Outer-reservoir 

Outer-reservoir 

Inner-reservoir 

Hydraulic fracture 

Inner-boundary: pressure continuity 

Horizontal 

Well 

No Flow Outer-Boundary 
Xe 

y 

XF 

x 
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 ∆𝑝0|𝑥=𝑥𝐻𝐹
= ∆𝑝𝑀𝐹|𝑥=𝑥𝐻𝐹

   (5.17) 

 𝑝̅0𝐷|𝑥𝐷=1
= 𝑝̅𝑀𝐹𝐷|𝑥𝐷=1

 (5.18) 

From Eq. (5.12) and Eq. (5.14) 

 
𝜕2𝑝̅𝑂𝐷

𝜕𝑥𝐷
2 −𝑀𝐷𝐴𝑠

𝛼𝑜𝑝̅𝑂𝐷 = 0 (5.19) 

The general solution of the Eq. (5.19)  

 𝑝̅𝑂𝐷 = 𝐴𝑒𝑥𝑝(−√𝛽𝑜𝑥𝐷) + 𝐵𝑒𝑥𝑝(√𝛽𝑜𝑥𝐷) (5.20) 

𝛽𝑜 = 𝑀𝐷𝐴𝑠
𝛼𝑜. 𝛽𝑜 is the outer reservoir function that represents the heterogeneity of the 

reservoir.  

 For outer boundary condition (Eq. 5.16) 

 𝐴 = 𝐵𝑒𝑥𝑝(2√𝛽𝑜𝑥𝑒𝐷) (5.21) 

And 

 𝑝̅𝑂𝐷 = 𝐵𝑒𝑥𝑝(√𝛽𝑜𝑥𝑒𝐷)((exp (√𝛽𝑜(𝑥𝑒𝐷 − 𝑥𝐷) + exp (−√𝛽𝑜(𝑥𝑒𝐷 − 𝑥𝐷))) (5.22) 

Inner boundary condition gives 

 𝐵 =
𝑝̅𝑀𝐹𝐷|𝑥𝐷=1

𝑒𝑥𝑝(√𝛽𝑜𝑥𝑒𝐷) ((exp (√𝛽𝑜(𝑥𝑒𝐷 − 1) + exp (−√𝛽𝑜(𝑥𝑒𝐷 − 1)))
 (5.23) 

The final solution for the outer-reservoir  

 𝑝̅𝑂𝐷 = 𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
cosh(√𝛽𝑜(𝑥𝑒𝐷−𝑥𝐷)) 

cosh(√𝛽𝑜(𝑥𝑒𝐷−1))
   (5.24) 

  

5.5.2 Case 1: Spherical Matrix Block with Fractured Surface 

This model considers two different types of matrix block (Fig. 5.4 and Fig. 5.5). In the 

first case, the spherical matrix block with fractured surface is considered (Fig. 5.4)   

5.5.2.1 Core Matrix 

In the case of isotropic formation, the radial flow can be assumed as a one-dimensional 

linear flow. So, the governing radial diffusion equation of the core matrix is 

 
1

𝑟2
𝜕

𝜕𝑟
(𝑟2  

𝜕∆𝑝𝑚𝑐
𝜕𝑟

) =
(𝜙 𝑐𝑡)𝑚𝑐𝜇

𝑘𝑚𝑐
 
𝜕∆𝑝

𝑚𝑐

𝜕𝑡
 (5.25) 
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At the initial time the matrix has the same pressure of the initial pressure. At the center of 

the sphere, a finite pressure is assumed. At the contact surface of the core matrix and the 

cake fracture, there exists a continuity of the pressure because the flux is moved from the 

core to the surface layer of the matrix through the cake fracture. Therefore, the initial and 

the boundary conditions of the core matrix are    

 ∆𝑝𝑚𝑐(𝑟, 0) = 0 (5.26) 

 ∆𝑝𝑚𝑐(0, 𝑡) = 𝑓𝑖𝑛𝑖𝑡𝑒 (5.27) 

 ∆𝑝𝑚𝑐|𝑟=𝑟𝑚𝑐 = ∆𝑝𝑓𝑐|𝑟=𝑟𝑚𝑐  (5.28) 

For computational simplicity, a substitution is made for the 𝜕∆𝑝𝑚𝑐 by 

 𝑤𝑚𝑐𝐷(𝑟𝐷, 𝑡𝐷) = ∆𝑝𝑚𝑐𝐷(𝑟𝐷, 𝑡𝐷)𝑟𝐷 (5.29) 

The general solution of the Eq. 5.25 given as   

 𝑤̅𝑚𝑐𝐷 = 𝐴𝑒𝑥𝑝(−√𝛼𝑚𝑐𝑟𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑚𝑐𝑟𝐷) (5.30) 

The final pressure solution of the core matrix is derived by using the boundary conditions (Eq. 

A.3.20) 

 𝑝̅𝑚𝑐𝐷(𝑟𝐷, 𝑡𝐷) =
1

𝑟𝐷

𝑝̅𝑓𝑐𝐷𝑟𝑚𝑐𝐷 sinh(√𝛼𝑚𝑐𝑟𝐷)

sinh(√𝛼𝑚𝑐𝑟𝑚𝑐𝐷)
 (5.31) 

 

5.5.2.2 Flow in the cake matrix 

In this model, the cake matrix is identified as the matrix formation in the surface area of 

the spherical matrix block that is bounded by the cake fracture. Figure 5.6 shows the 

general structure of the cake matrix and Fig. 5.8 illustrates the details description and the 

flow conditions. The formation of the cake matrix is approximated by a rectangular slab 

that has an equal length of surface-area depth and a thickness of ℎ𝑐𝑚. The governing flow 

equation in the fracture cake matrix  

 
𝜕2∆𝑝𝑐𝑚
𝜕𝜉2

=
(𝜙 𝑐𝑡)𝑚𝑐𝜇

𝑘𝑚𝑐
 
𝜕∆𝑝𝑐𝑚
𝜕𝑡

 (5.32) 

The fluid flux moves from the cake matrix to the cake fracture in the linear 𝜉 direction. A 

no flow boundary occurs at the mid-point of the matrix thickness as the fluxes moves 

concurrently to the two-opposite fracture from a single matrix slab. At the mutual 
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boundary of the cake fracture and the cake matrix, pressure continuity is assumed. The 

pressure drop at the interface is assumed to be negligible under the transient flow 

condition. Hence, the initial and boundary conditions for the cake matrix are  

 

Figure 5.8: Structure of the cake matrix 

 

 ∆𝑝𝑐𝑚(𝜉, 𝑜) = 0 (5.33) 

 
𝜕∆𝑝𝑐𝑚
𝜕𝜉 |𝜉=0

= 0 (5.34) 

 ∆𝑝𝑐𝑚
|𝜉=

ℎ𝑐𝑚
2

= ∆𝑝𝑓𝑐
|𝜉=

ℎ𝑐𝑚
2

 (5.35) 

The dimensionless form of the Eq. 5.32 after Laplace transformation 

 
𝜕2𝑝̅𝑐𝑚𝐷

𝜕𝜉𝐷
2 −

3𝜔𝑚𝑐
𝜆𝑐𝑚

{𝑠𝑝̅𝑐𝑚𝐷(𝜉𝐷, 𝑠) − 𝑝
𝑐𝑚𝐷

(𝜉𝐷 , 0)} = 0 (5.36) 

The general solution of Eq. 5.36 

 𝑝̅𝑐𝑚𝐷 = 𝐴𝑒𝑥𝑝(−√𝛼𝑐𝑚𝜉𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑐𝑚𝜉𝐷) (5.37) 

𝐻𝑒𝑟𝑒 𝛼𝑐𝑚 =
3𝜔𝑚𝑐𝑠

𝜆𝑐𝑚
 and 𝛼𝑐𝑚 is the characteristic function that contains the heterogeneity at 

the cake matrix. 

The pressure solution of the cake matrix with the assigned boundary conditions 

(Appendix A Eq. A.4.12)  

ℎ𝑐𝑚 

𝑟𝑓𝑐 − 𝑟𝑚𝑐 

ℎ𝑓𝑐 

Cake Matrix 

𝜉 

Cake Fracture 
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 𝑝̅𝑐𝑚𝐷 =
∆𝑝̅𝑓𝑐𝐷𝑐𝑜𝑠ℎ (√𝛼𝑐𝑚𝜉𝐷)

𝑐𝑜𝑠ℎ (√𝛼𝑐𝑚)
 (5.38) 

5.5.2.3 Flow in Cake fracture 

In the model, the cake fracture is a conduct that transfer the fluid flux from both the core 

matrix and the cake matrix to the micro-fracture. It has comparatively a high flow 

capacitance than the matrix so the fluid transfer from the cake matrix to the macro 

fracture can be ignored. Fluid flux between the cake matrix and the cake fracture is 

modeled by a dual-porosity mechanism; thus, the flux contribution of the cake matrix to 

the fracture, is evaluated by a source term (𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑐𝑚) that is equivalent to the transient 

matrix influx per unit time per unit volume of the drainage area of the matrix at the outer 

boundary.  

 
𝜕2∆𝑝𝑓𝑐

𝜕𝑟2
=
(𝜙 𝑐𝑡)𝑓𝑐𝜇

𝑘𝑓𝑐
 
𝜕∆𝑝𝑓𝑐

𝜕𝑡
+

𝜇

𝑘𝑓𝑐
𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑐𝑚 (5.39) 

𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑐𝑚 is the influx from the cake matrix per unit volume at unit time. The source 

term can be evaluated as (Kazemi 1969; Ahmadi 2011): 

 𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑐𝑚 =
2𝑘𝑐𝑚
𝜇ℎ𝑐𝑚

𝜕∆𝑝𝑐𝑚
𝜕𝜉

|𝜉=
ℎ𝑐𝑚
2

 (5.40) 

The dimensionless flow equation with the source term and after Laplace transformation is  

 
𝜕2𝑝̅𝑓𝑐𝐷(𝑟𝐷, 𝑠)

𝜕𝑟𝐷
2 −

3𝜔𝑓𝑐

𝜆𝑓𝑐
{𝑠𝑝̅𝑓𝑐𝐷(𝑟𝐷 , 𝑠) − 𝑝

𝑓𝑐𝐷
(𝑟𝐷, 0)} − 𝜆𝑓𝑐

′
𝜕𝑝̅𝑐𝑚𝐷
𝜕𝜉𝐷 |𝜉𝐷=1

= 0 (5.41) 

The initial condition for the Cake fracture 

 ∆𝑝𝑓𝑐(𝑟, 𝑜) = 0 (5.42) 

The inner boundary of the cake fracture is its mutual boundary with the core matrix. The 

matrix transfers the fluid flux solely to the fracture so at this common boundary there is a 

continuity of flux between the core matrix and the cake fracture. The surface area ratio of 

the two domains is  
ℎ𝑓𝑐+ℎ𝑐𝑚

ℎ𝑓𝑐
 . Fig. 5.9 illustrates the conceptual surface area both the cake 

matrix and the surface layer which is comprised of the cake matrix and the cake fracture. 

Therefore, the inner boundary condition of the cake fracture in Laplace domain  
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𝜕𝑝̅𝑓𝑐𝐷(𝑟𝐷, 𝑠)

𝜕𝑟𝐷 |(𝑟𝑚𝑐𝐷,𝑠)

=
𝑘𝑚𝑐(ℎ𝑓𝑐 + ℎ𝑐𝑚)

𝑘𝑓𝑐ℎ𝑓𝑐

𝜕𝑝̅𝑚𝑐𝐷(𝑟𝐷, 𝑠)

𝜕𝑟𝐷 |(𝑟𝑚𝑐𝐷,𝑠)

 (5.43) 

 

Figure 5.9: The conceptual surface area of the core-matrix and the surface layer 

Pressure solution of the core matrix gives 

 
𝜕𝑝̅𝑚𝑐𝐷
𝜕𝑟𝐷 |(𝑟𝑚𝑐𝐷,𝑠)

= 𝑝̅𝑓𝑐𝐷|𝑟𝑚𝑐𝐷
{√𝛼𝑚𝑐 coth(√𝛼𝑚𝑐𝑟𝑚𝑐𝐷) −

1

𝑟𝑚𝑐𝐷
} (5.44) 

The pressure solution of the cake matrix yields 

 
𝜕𝑝̅𝑐𝑚𝐷
𝜕𝜉𝐷 |(𝜉𝐷=1)

= 𝑝̅𝑓𝑐𝐷|𝜉𝐷=1
√𝛼𝑐𝑚 tanh(√𝛼𝑐𝑚) (5.45) 

The inner boundary condition (5.43) with the core matrix pressure derivative   

 
𝜕𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷 |(𝑟𝑚𝑐𝐷,𝑠)

= 𝑝̅𝑓𝑐𝐷|𝑟𝑚𝑐𝐷
β
𝑚𝑐

 (5.46) 

Here, β𝑚𝑐 =
𝑘𝑚𝑐(ℎ𝑓𝑐+ℎ𝑐𝑚)

𝑘𝑓𝑐ℎ𝑓𝑐
{√𝛼𝑚𝑐 coth(√𝛼𝑚𝑐𝑟𝑚𝑐𝐷)−

1

𝑟𝑚𝑐𝐷
} 

The cake fracture maintains a pressure continuity with the micro-fracture at its outer 

boundary because it is assumed that a negligible pressure drop is occurred at the interface 

under the transient flow condition.  

 
∆𝑝𝑓𝑐

|𝑟=
𝑦𝑓
2

= ∆𝑝𝑚𝑓
|𝑟=

𝑦𝑓
2

 
(5.47) 

 

4𝜋𝑟𝑚𝑐
2

= 𝐿𝑓𝑐 ∗ (ℎ𝑓𝑐 + ℎ𝑐𝑚) 

ℎ𝑐𝑚 ℎ𝑓𝑐 

Core Matrix Cake Matrix 

Cake Fracture 

𝐿𝑓𝑐 
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The assumption of pseudo-pressure function states that the pressure value of the cake 

fracture is independent of 𝜉 axis, i.e; 𝑝̅𝑓𝑐𝐷 ≠  𝑓(𝜉). Eq. 5.41, Eq. 5.42 and Eq. 5.45 gives  

 
𝜕2 𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷
2 − 𝛼𝑓𝑐

′ 𝑝̅𝑓𝑐𝐷 = 0 (5.48) 

𝐻𝑒𝑟𝑒,𝛼𝑓𝑐
′ = 𝛼𝑓𝑐 + 𝜆𝑓𝑐

′ √𝛼𝑐𝑚 tanh(√𝛼𝑐𝑚) and the function 𝛼𝑓𝑐
′  is the characteristic function 

of the heterogeneous character of the cake fracture. 

The general solution of the Eq. 5.48 

 𝑝̅𝑓𝑐𝐷 = 𝐴𝑒𝑥𝑝 (−√𝛼𝑓𝑐
′ 𝑟𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑓𝑐

′ 𝑟𝐷) (5.49) 

The inner boundary condition is implemented in the solution by the differentiating of the 

Eq. 5.49 and evaluating it at 𝑟𝐷=𝑟𝑚𝑐𝐷  that following a substitution in Eq. 5.44. On the 

contrary, Eq. 5.49 is used for the outer boundary condition. Detail derivation is given in 

the Appendix A.  

The final pressure solution for the cake fracture from Appendix A, Eq. A.5.28   

 

𝑝̅𝑓𝑐𝐷 = 𝑝̅𝑚𝑓𝐷|𝑟𝐷=1
1

𝛽𝑓𝑐
{
 

 

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 𝑒𝑥𝑝 (√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 𝑟𝐷))

+ 𝑒𝑥𝑝 (−√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 𝑟𝐷))

}
 

 

 

(5.50) 

𝐻𝑒𝑟𝑒, 𝛽𝑓𝑐 =

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 𝑒𝑥𝑝 (√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 1)) + 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1)) 

5.5.3 Flow in the Micro-fracture 

One dimensional linear flow is assumed in the micro-fracture at the transient condition. A 

source of flux enters in the micro-fracture at 𝑟 =
𝑦𝑓

2
. According to the Swaan O (1976), at 

the transient condition, the matrix flux is distributed in the one-half thickness of the 

fracture in an instantaneous and uniform distribution. In case of linear flow, it can be 

evaluated as the half of the fracture volume that encloses the matrix. Due to the simplified 
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idealization of matrix, the spherical matrix can be treated as a parallelepiped and isotropic 

matrix block with a dimension of yf and a flow symmetry at the center of the block (Fig. 

5.10). As mentioned in the previous section, the cake fracture is the only medium that 

transfers the flux, the source term definition only contains the intrinsic properties of the 

fracture. Although Kazemi’s (1969) definition is appropriate for the block matrix, in this 

study Swaan O’s (1976) definition is used since the original shape of the matrix is 

spherical and the later definition is more appropriate for the spherical- shaped formation. 

So, the matrix influx to the micro-fracture is  

 𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑓𝑐 =
2𝑘𝑓𝑐ℎ𝑓𝑐

𝜇ℎ𝑚𝑓(ℎ𝑐𝑚 + ℎ𝑓𝑐)

𝜕∆𝑝𝑓𝑐

𝜕𝑟 |𝑟=
𝑦𝑓
2

 
(5.51) 

The fluid flow equation for the micro-fracture 

 
𝜕2∆𝑝𝑚𝑓

𝜕𝑧2
=
(𝜙 𝑐𝑡)𝑚𝑓𝜇

𝑘𝑚𝑓
 
𝜕∆𝑝𝑚𝑓

𝜕𝑡
+

2𝑘𝑓𝑐ℎ𝑓𝑐

𝑘𝑚𝑓ℎ𝑚𝑓(ℎ𝑐𝑚 + ℎ𝑓𝑐)

𝜕∆𝑝𝑓𝑐
𝜕𝑟 |𝑟=

𝑦𝑓
2

 (5.52) 

Initial condition for the micro-fracture 

 ∆𝑝𝑚𝑓(𝑧, 𝑜) =0 (5.53) 

 

Figure 5.10: Boundary Conditions for the Micro-fracture. Single fracture is shown 

for simplicity. 

Macro-fracture 

Pressure 

Continuity 

Micro-fracture 

Flux source from 

Matrix 

No Flow 

Boundary 
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The micro-fracture is connected to the macro-fracture at its both end (Figure 5.10). 

Therefore, the flow symmetry creates a no flow boundary at the mid-point of the matrix 

block. This inner boundary condition is 

 
𝜕∆𝑝𝑚𝑓

𝜕𝑧 |𝑧=0,𝑡
= 0 (5.54) 

At the outer boundary of the micro-fracture, there is a continuity of pressure at the 

common boundary of the micro and macro fracture. Micro-fracture only communicates 

with the macro-fracture and for the simplicity the pressure drop at the interface is ignored. 

 
∆𝑝𝑚𝑓

|𝑧=
𝐿𝑓
2

= ∆𝑝𝑀𝐹
|𝑧=

𝐿𝑓
2

 
(5.55) 

Differentiating Eq. 5.50 and evaluating at 𝑟𝐷 = 1 gives 

 
𝜕𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷 |(𝑟𝐷=1,𝑠)

= −𝑝̅𝑚𝑓𝐷|𝑟𝐷=1
𝛽𝑓𝑐
′  (5.56) 

Here, 𝛽𝑓𝑐
′ =

1

𝛽𝑓𝑐
{(

√𝛼𝑓𝑐
′ −β𝑚𝑐

√𝛼𝑓𝑐
′ +β𝑚𝑐

)√𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1)) − √𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 −

1))} 

The dimensionless form of the Eq. 5.52 at Laplace domain with the initial condition and 

the value Eq. 5.56 

 
𝜕2𝑝̅𝑚𝑓𝐷

𝜕𝑧𝐷
2 − 𝛽𝑚𝑓𝑝̅𝑚𝑓𝐷 = 0 (5.57) 

Here,  𝛽𝑚𝑓 =
3𝜔𝑚𝑓𝑠

𝜆𝑚𝑓
− 𝛽𝑓𝑐

′ 𝜆
𝑓𝑐𝑓

 and it shows the deviated behavior of the micro-fracture 

due to its homogeneous character. 

The general pressure solution of the micro-fracture 

 𝑝̅𝑚𝑓𝐷 = 𝐴𝑒𝑥𝑝 (−√𝛽𝑚𝑓𝑧𝐷) + 𝐵𝑒𝑥𝑝(√𝛽𝑚𝑓𝑧𝐷) (5.58) 

The final pressure solution of the micro fracture by the evaluation of the pressure 

conditions (Appendix A Eq. A.6.20) 
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 𝑝̅𝑚𝑓𝐷 = 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1

𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓𝑧𝐷)

𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓)
 (5.59) 

5.5.4 Flow in the Macro-fracture 

The characteristic flow in the macro-fracture is a two-dimensional linear flow. In the 

model, macro-fracture is assumed as a conduit that has the higher flow capacity than the 

macro-fracture and a continuous-extend over the whole inner reservoir in 𝑥 direction and 

in 𝑦 direction. At its outer boundary in the 𝑥 direction, a flux enters by maintaining a 

flux-continuity condition with the outer reservoir. A flux source, alternatively, from the 

macro-fracture. Both the macro-fracture and the micro-fracture have rectangular-block 

structure; therefore, at the contact surface, the source term is evaluated according to the 

definition of Kazemi (1969). The governing flow equation in the macro-fracture is  

 
𝜕2∆𝑝𝑀𝐹
𝜕𝑥2

+
𝜕2∆𝑝𝑀𝐹
𝜕𝑦2

=
(𝜙 𝑐𝑡)𝑀𝐹𝜇

𝑘𝑀𝐹
 
𝜕∆𝑝𝑀𝐹
𝜕𝑡

+
𝜇

𝑘𝑀𝐹
𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚𝑓 (5.60) 

Under the transient flow condition transient flow, the flow from unit volume of the micro-fracture 

at unit time  

 𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚𝑓 =
𝑘𝑚𝑓
𝐿𝑓
2
𝜇

𝜕∆𝑝𝑚𝑓

𝜕𝑧 |𝑧=
𝐿𝑓
2

 (5.61) 

An integration in the 𝑥 direction gives the total flow in that axis.  

  
1

𝑥𝐻𝐹

𝜕∆𝑝𝑀𝐹
𝜕𝑥

+
𝜕2∆𝑝𝑀𝐹
𝜕𝑦2

−
2

𝐿𝑓

𝑘𝑚𝑓

𝑘𝑀𝐹

𝜕∆𝑝𝑚𝑓
𝜕𝑧 |𝑧=

𝐿𝑓
2

=
(𝜙 𝑐𝑡)𝑀𝐹𝜇

𝑘𝑀𝐹
 
𝜕∆𝑝𝑀𝐹
𝜕𝑡

 (5.62) 

In case of linear flow, the pseudo function assumption reveals that the change of the 

pressure in the 𝑦 direction is independent of the 𝑥 direction.  

In dimensionless form of the Eq. 5.62 

 
𝜕𝑝𝑀𝐹𝐷
𝜕𝑥𝐷

+
𝜕2𝑝𝑀𝐹𝐷

𝜕𝑦𝐷
2 −

𝜆𝑚𝑓

3

𝜕𝑝𝑚𝑓𝐷

𝜕𝑧𝐷 |𝑧𝐷=1

=
𝜕𝑝

𝑀𝐹𝐷

𝜕𝑡𝐷
 (5.63) 

The initial condition  

 ∆𝑝𝑀𝐹(𝑥, 𝑦, 𝑜) = 𝑝𝑖 (5.64) 
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Figure 5. 11: Boundary Conditions for the macro-fracture. For Simplicity, a limited 

number of fractures is shown. 

The fluid flows linearly from the outer reservoir to the inner reservoir only through the 

macro-fracture in the 𝑥 direction. Thus, at the common-boundary of the outer reservoir 

and the macro-fracture (𝑥 = 𝑥𝐻𝐹), there exists a flow-continuity. Alternatively, a no-flow 

boundary condition occurs at the mid-point (𝑦 = 𝑦𝑒) of the inner reservoir in the 𝑦 

direction because the inner reservoir simultaneously drains the fluid toward the two 

opposite hydraulic fractures (Fig. 5.11).       

Thus, Inner boundary condition in the 𝑥 direction for the Macro-fracture 

 𝑞0(𝑥𝐻𝐹 , 𝑡) = 𝑞𝑀𝐹(𝑥𝐻𝐹 , 𝑡) (5.65) 

 
𝑘𝛼𝑜(ℎ𝑀𝐹 + 𝐿𝑓)

𝜇

𝜕1−𝛼𝑜

𝜕𝑡1−𝛼𝑜
(
𝜕∆𝑝0
𝜕𝑥

)
𝑥=𝑥𝐻𝐹

=
𝑘𝑀𝐹ℎ𝑀𝐹

𝜇
(
𝜕∆𝑝𝑀𝐹𝐷
𝜕𝑥

)
𝑥=𝑥𝐻𝐹

 (5.66) 

The condition is transferred in the Laplace domain as 

 

(
𝜕𝑝̅𝑀𝐹𝐷(𝑥, 𝑦, 𝑠)

𝜕𝑥𝐷
)
𝑥𝐷=1

= 𝐶𝑂𝑀𝐹 (
(𝜙 𝑐𝑡)𝑀𝐹𝜇𝑥𝐻𝐹

2

𝑘𝑀𝐹
)

𝛼𝑜−1

𝑠1−𝛼𝑜 (
𝜕𝑝̅𝑜𝐷(𝑥, 𝑦, 𝑠)

𝜕𝑥𝐷
)
𝑥𝐷=1

 

(5.67) 

Hydraulic 

Fracture 

Outer 

Reservoir 
Macro-

fracture 

Flow symmetry-

No flow 
Flux Continuity with 

outer reservoir 
Pressure Continuity 

with hydraulic 

fracture 
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Here, 𝐶𝑂𝑀𝐹 =
𝑘𝛼𝑜(ℎ𝑀𝐹+𝐿𝑓)

𝑘𝑀𝐹ℎ𝑀𝐹
 

Differentiation of the Eq. 5.24 and 5.59 yields  

 (
𝜕𝑝̅𝑜𝐷
𝜕𝑥𝐷

)
𝑥𝐷=1

= −𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
𝛽𝑂𝑀𝐹 (5.68) 

Here, 𝛽𝑂𝑀𝐹 = √𝛽𝑜 tanh (√𝛽𝑜(𝑥𝑒𝐷 − 1)) 

 
𝜕𝑝̅𝑚𝑓𝐷

𝜕𝑧𝐷 |𝑧𝐷=1

= 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1
√𝛽𝑚𝑓 tanh  (√𝛽𝑚𝑓) (5.69) 

From the Eq. 5.67 and Eq. 5.68 

 (
𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑥𝐷

)
𝑥𝐷=1

= −𝛽𝑂𝑀𝐹𝐷𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
 (5.70) 

Here, 𝛽𝑂𝑀𝐹𝐷 = 𝐶𝑂𝑀𝐹 (
(𝜙 𝑐𝑡)𝑀𝐹𝜇𝑥𝐻𝐹

2

𝑘𝑀𝐹
)
𝛼𝑜−1

𝑠1−𝛼𝑜𝛽𝑂𝑀𝐹 

At the inner boundary of the 𝑦 direction, a no flow boundary is created due to the flow 

symmetry. 

 
𝜕∆𝑝𝑀𝐹
𝜕𝑦 |𝑦=𝑦𝑒

= 0 (5.71) 

Pressure is continuous at the interface of the macro-fracture and the outer reservoir. So, at 

the outer boundary of the macro-fracture in the y direction  

 ∆𝑝𝑀𝐹
|𝑦=

𝑤
2

= ∆𝑝𝐻𝐹
|𝑦=

𝑤
2

 (5.72) 

Assuming the pseudo-function assumption i.e.; 𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
= 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1

= 𝑝̅𝑀𝐹𝐷.  

Transforming the Eq. 5.63 in Laplace domain and using the Eq. 5.64, Eq. 5.69, Eq. 5.70  

 
𝜕2𝑝̅𝑀𝐹𝐷

𝜕𝑦𝐷
2 − 𝛽𝑀𝐹𝑝̅𝑀𝐹𝐷 = 0 (5.73) 

Here, 𝛽𝑀𝐹 = 𝛽𝑂𝑀𝐹𝐷 +
𝜆𝑚𝑓

3
√𝛽𝑚𝑓 tanh  (√𝛽𝑚𝑓) + 𝑠. The function 𝛽𝑀𝐹 represents the 

non-homogeneity in the macro-fracture.   

The final pressure solution of the Eq. 5.71 is derived by the implementation of the 

boundary conditions (Eq. 5.71 and Eq. 5.72). Appendix A, Eq. A.7.31   



119 

 

 𝑝̅𝑀𝐹𝐷 = 𝑝̅𝐻𝐹𝐷
|𝑦𝐷=

𝑤𝐷
2

cosh(√𝛽𝑀𝐹(𝑦𝑒𝐷 − 𝑦𝐷))

cosh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −
𝑤𝐷
2 ))

 (5.74) 

5.5.5 Flow in the Hydraulic Fracture 

The stimulation process generates a high conductive region in the hydraulic fracture zone 

by generating new fracture and connecting the isolated fracture and vugs. The induced 

connectivity alters the flow capacity of formation. Therefore, the contribution of the space 

event becomes significant. The consequential faster flow in the hydraulic fracture can be 

defined as super diffusion. A fractional space-derivative represents that faster flow and 

the order of differentiation is related to the magnitude of the space-event’s influence. Eq. 

5.8 is the characteristics equation for the super-diffusion and in the case of the hydraulic 

fracture flow it can be written as 

 
𝜕

𝜕𝑥
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

) +
𝜕

𝜕𝑦
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑦𝛽

) =
(𝜙 𝑐𝑡)𝐻𝐹𝜇

𝑘𝛽
 
𝜕∆𝑝𝐻𝐹
𝜕𝑡

 (5.75) 

A single fracture is related to two inner reservoirs in the 𝑦 direction, thus, it is assumed 

that the flux from an inner reservoir is distributed from the boundary of the hydraulic 

fracture to the half of its width. An integration from the mid-point to the outer boundary 

(
𝑤

2
) gives the total flow at the 𝑦 direction. The linear flow assumption implies that the 

pressure changes in the 𝑥 direction is independent of the 𝑦 direction.  

 
𝜕

𝜕𝑥
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

) +
2

𝑤
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑦𝛽

)

𝑦=
𝑤
2

=
(𝜙 𝑐𝑡)𝐻𝐹𝜇

𝑘𝛽
 
𝜕∆𝑝𝐻𝐹
𝜕𝑡

 (5.76) 

Dimensionless form of the Eq. 5.76 is  

 
𝜕

𝜕𝑥𝐷
(
𝜕𝛽𝑝𝐻𝐹𝐷
𝜕𝑥𝐷𝛽

)+
2

𝑤𝐷
(
𝜕𝛽𝑝𝐻𝐹𝐷
𝜕𝑦

𝐷
𝛽
)
𝑦𝐷=

𝑤𝐷
2

= 𝑀𝐷𝐴𝐻𝐹

𝜕𝑝
𝐻𝐹𝐷

𝜕𝑡𝐷
 (5.77) 

Initial condition of the hydraulic fracture 

 ∆𝑝𝐻𝐹(𝑥, 𝑦, 𝑜) = 0 (5.78) 

Macro-fracture flux is evaluated at the mutual boundary of the hydraulic fracture and the 

macro-fracture is assumed to be continuous so at the outer boundary (𝑦 =
𝑤

2
) of the 

hydraulic fracture, both fluxes have equal magnitude. 
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𝑘𝛽(ℎ𝑀𝐹 + 𝐿𝑓)

𝜇
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑦𝛽

)
𝑦=

𝑤
2

=
𝑘𝑀𝐹ℎ𝑀𝐹

𝜇
(
𝜕∆𝑝𝑀𝐹
𝜕𝑦

)
𝑦=

𝑤
2

 (5.79) 

The dimensionless form of the outer boundary condition in Laplace domain  

 (
𝜕𝛽𝑝̅𝐻𝐹𝐷
𝜕𝑦

𝐷
𝛽
)
𝑦𝐷=

𝑤𝐷
2

= 𝜆𝐴𝐹
′ (

𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

 (5.80) 

Differentiating the pressure solution of the macro-fracture and evaluating at 𝑦𝐷 =
𝑤𝐷

2
 

gives  

 (
𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

= −√𝛽𝑀𝐹 tanh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −
𝑤𝐷
2
)) 𝑝̅𝐻𝐹𝐷

|𝑦𝐷=
𝑤𝐷
2

 (5.81) 

From the Eq. 5.80 and Eq. 5.81 

 (
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑦

𝐷
𝛽
)
𝑦𝐷=

𝑤𝐷
2

= −𝛽𝑀𝐻𝐹𝑝̅𝐻𝐹𝐷
|𝑦𝐷=

𝑤𝐷
2

 (5.82) 

Here 𝛽𝑀𝐻𝐹 = 𝜆𝐴𝐹
′ √𝛽𝑀𝐹 tanh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −

𝑤𝐷

2
)) 

Substituting the initial and the boundary condition in the Laplace transform form of the 

Eq. 5.77   

 
𝜕

𝜕𝑥𝐷
(
𝜕𝛽𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷𝛽

)− 𝛽𝐻𝐹𝑝̅𝐻𝐹𝐷 = 0 (5.83) 

Here 𝛽𝐻𝐹 = 
2

𝑤𝐷
𝛽𝑀𝐻𝐹 +𝑀𝐷𝐴𝐻𝐹𝑠 

The Laplace transformation of Eq. 5.83 for the space 𝑥   

 
𝑠̃[𝑠̃𝛽𝑝̿𝐻𝐹𝐷(𝑠, 𝑠̃) − 𝑠̃

𝛽−1𝑝̅𝐻𝐹𝐷(0, 𝑠)] − (
𝜕𝛽𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

− 𝛽𝐻𝐹𝑝̿𝐻𝐹𝐷(𝑠, 𝑠̃) = 0 

(5.84) 

 
𝑝̿𝐻𝐹𝐷(𝑠, 𝑠̃) =

𝑠̃𝛽

𝑠̃𝛽+1 − 𝛽𝐻𝐹
𝑝̅𝐻𝐹𝐷(0, 𝑠) + 

1

𝑠̃𝛽+1 − 𝛽𝐻𝐹
(
𝜕𝛽𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

= 0 

(5.85) 

 

Inverting Eq. 5.85  
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𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠) = 𝑝̅𝐻𝐹𝐷(0, 𝑠)𝐸𝛽+1(𝛽𝐻𝐹𝑥𝐷
𝛽+1)

+ 𝑥𝐷
𝛽𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹𝑥𝐷

𝛽+1) (
𝜕𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

 
(5.86) 

At the inner boundary of the hydraulic fracture at 𝑥 = 0, fluid is flows from the fracture 

to the horizontal well. If constant flow rate at the well-bore is assumed, then 

 𝑢 = −
𝑘𝛽

𝜇
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

)

𝑥=0

 (5.87) 

 

Figure 5.12: Simplified structure of the hydraulic fracture. The shaded area is the 

representative zone of the model. 

To determine the total flow, Eq. 5.87 has to integrate along the width and the thickness of 

the reservoir. An Integration is done alone the 𝑦 axis from the center to 
𝑤

2
 and at the half of 

the thickness of the reservoir. The integrated result at Laplace domain 

 (
𝜕𝛽𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷𝛽

)
𝑥𝐷=0

= −
𝜋

𝑐𝐴𝐹𝐷𝑠
 (5.88) 

Substituting inner boundary condition in Eq.5.86  

Reservoir 

Thickness (h) 

Width (w) 

Length of the 

fracture 
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𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠) = 𝑝̅𝐻𝐹𝐷(0, 𝑠)𝐸𝛽+1(𝛽𝐻𝐹𝑥𝐷
𝛽+1)

−
𝜋

𝑐𝐴𝐹𝐷𝑠
𝑥𝐷

𝛽𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹𝑥𝐷
𝛽+1) 

(5.89) 

The outer boundary of the Hydraulic fracture in the 𝑥 direction is the tip of the hydraulic 

fracture. It is assumed that no flow is transferred at this area so the outer boundary 

condition 

 
𝜕∆𝑝𝐻𝐹 
𝜕𝑥 |𝑥=𝑥𝐻𝐹,𝑡

= 0 (5.90) 

Differentiating the Eq. 5.88 yields (Hombole et. al., 2011, Fomin et. al., 2010) 

 

𝑑𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠)

𝑑𝑥
= 𝑝̅𝐻𝐹𝐷(0, 𝑠)𝛽𝐻𝐹𝑥𝐷

𝛽𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹𝑥𝐷
𝛽+1)

−
𝜋

𝑐𝐴𝐹𝐷𝑠
𝑥𝐷

𝛽−1𝐸𝛽+1,𝛽(𝛽𝐻𝐹𝑥𝐷
𝛽+1) 

(5.91) 

 𝑝̅𝐻𝐹𝐷(0, 𝑠) =
𝜋𝐸𝛽+1,𝛽(𝛽𝐻𝐹)

𝑐𝐴𝐹𝐷𝑠𝛽𝐻𝐹𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹)
 (5.92) 

Substitute the value of Eq. 5.92 in Eq. 5.89 

 

𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝐷𝑠
{

𝐸𝛽+1,𝛽(𝛽𝐻𝐹)

𝛽𝐻𝐹𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹)
𝐸𝛽+1(𝛽𝐻𝐹𝑥𝐷

𝛽+1)

− 𝑥𝐷
𝛽𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹𝑥𝐷

𝛽+1)} 

(5.93) 

This is the expression for the dimensionless hydraulic fracture pressure for the constant 

terminal rate flow. 

At  𝑥𝐷 = 0 the hydraulic fracture pressure will be the bottom-hole pressure. The 

expression can be deduced from the Eq. 5.93 

 𝑝̅𝑤𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝐷𝑠
{

𝐸𝛽+1,𝛽(𝛽𝐻𝐹)

𝛽𝐻𝐹𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹)
} (5.94) 

This is the expression for the dimensionless bottom-hole pressure for the constant 

terminal rate flow. 
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5.5.6 Case 2: Rectangular Matrix Block  

5.5.6.1 Block Matrix Flow 

The geometry of the matrix block is shown in the Fig. 5.5. The flow equation in the 

matrix block is 

 
𝜕2∆𝑝𝑚
𝜕𝜁2

=
(𝜙 𝑐𝑡)𝑚𝜇

𝑘𝑚𝑐
 
𝜕∆𝑝𝑚
𝜕𝑡

 (5.95) 

At 𝑡 = 0, the same pressure at every domain of the reservoir.  

∆𝑝𝑚(𝜁, 𝑜) = 0 

 

Figure 5.13: Boundary Conditions for the block matrix and the micro-fracture 

Each matrix block is connected with two micro-fracture and the flow only occurs at the 𝜁 

direction because of the assumption of linear flow (Fig. 5.13). Hence, there is a no flow 

boundary at the middle of the 𝜁 axis, i.e. 𝜁 = 0. So,  

 
𝜕∆𝑝𝑚
𝜕𝜁 |𝜁=0

= 0 (5.96) 

At the outer boundary of the matrix block, it maintains a constant pressure relationship 

with the micro-fracture.   

 
∆𝑝𝑚

|𝜁=
𝑦𝑓
2

= ∆𝑝𝑚𝑓
|𝜁=

𝑦𝑓
2

 
(5.97) 

The dimensionless flow equation for the matrix block after implementing the Laplace 

transform and applying the initial condition 

 
𝜕2𝑝̅𝑚𝐷(𝜁𝐷, 𝑠)

𝜕𝜁𝐷
2 −

3𝜔𝑚
𝜆𝑚

𝑠𝑝̅𝑚𝐷(𝜁𝐷 , 𝑠) = 0 (5.98) 

𝑦𝑓 

𝐿𝑓 

Matrix Micro-fracture 

Pressure Continuity at the 

mutual boundary 

No-flow boundary 
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𝐻𝑒𝑟𝑒 𝛼𝑚 =
3𝜔𝑚𝑠

𝜆𝑚
 

The final pressure solution for the block matrix (Appendix)  

 𝑝̅𝑚𝐷 =
𝑝̅𝑚𝐷𝑐𝑜𝑠ℎ (√𝛼𝑚𝜁𝐷)

𝑐𝑜𝑠ℎ (√𝛼𝑚)
 (5.99) 

5.5.6.2 Flow in the Micro-fracture 

The contribution of the matrix flux in the micro-fracture flow is a source term that comes 

from the matrix block. Therefore, a change in the matrix geometry only updates that flux-

source of the matrix. For a rectangular block shaped matrix, the transient source term is 

defined according to the kazemi’s (1969) definition. In this case, the flux exchange area 

of the matrix and the fracture is equal to the block dimension.  

 𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚 =
𝑘𝑚
𝑦𝑓
2
𝜇

𝜕∆𝑝𝑚
𝜕𝜁 |𝜁=

𝑦𝑓
2

 (5.100) 

The fluid flow equation for the micro-fracture 

 
𝜕2∆𝑝𝑚𝑓

𝜕𝑧2
=
(𝜙 𝑐𝑡)𝑚𝑓𝜇

𝑘𝑚𝑓
 
𝜕∆𝑝𝑚𝑓

𝜕𝑡
+

𝜇

𝑘𝑚𝑓
𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚 (5.101) 

The dimensionless form of Eq. 5.101 after substituting Eq. 5.100  

 
𝜕2𝑝𝑚𝑓𝐷

𝜕𝑧𝐷
2 = 

3𝜔𝑚𝑓

𝜆𝑚𝑓

𝜕𝑝𝑚𝑓𝐷

𝜕𝑡𝐷
+ 𝜆𝑚𝑓

′
𝜕𝑝𝑚𝐷
𝜕𝜉𝐷 |𝜉𝐷=1

 (5.102) 

The differentiation of Eq. 5.99 yields 

 
𝜕𝑝̅𝑚𝐷
𝜕𝜁𝐷 |𝜁𝐷=1

= 𝑝̅𝑚𝑓𝐷√𝛼𝑚 tanh(√𝛼𝑚) (5.103) 

By Laplace transformation and using the same initial condition (Eq. 5.53) provide the 

flow equation as  

 
𝜕2𝑝̅𝑚𝑓𝐷

𝜕𝑧𝐷
2 − 𝛽𝑚𝑓

′ 𝑝̅𝑚𝑓𝐷 = 0 (5.104) 

𝐻𝑒𝑟𝑒, 𝛽𝑚𝑓
′ =

3𝜔𝑚𝑓𝑠

𝜆𝑚𝑓
+ 𝛽𝑚. The 𝛽𝑚𝑓is the modified domain-function for the micro-

fracture that is related with a rectangular block. The subsequent calculation in the 

remaining domains is same as the spherical matrix block.    
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The final pressure solution of the macro-fracture with the same boundary conditions (Eq. 

5.54 and Eq. 5.55) 

 𝑝̅𝑚𝑓𝐷 = 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1

𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓
′ 𝑧𝐷)

𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓
′ )

 (5.105) 

 

5.6 Validation of the expression 

For 𝛽 = 1 the flow will be the classical flow equation. Substituting the value of 𝛽 = 1 in 

the Eq. 5.94 

 𝑝̅𝑤𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝐷𝑠
{

𝐸2(𝛽𝐻𝐹)

𝛽𝐻𝐹𝐸2,2(𝛽𝐻𝐹)
} (5.106) 

 𝑝̅𝑤𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝐷𝑠√𝛽𝐻𝐹 tanh(√𝛽𝐻𝐹)
 (5.107) 

This is the similar expression for the multi-continuum reservoir flow (Brown et. al., 2009. 

Ozkan et. al., 2010, 2011, Alibini 2016)  

 

If 𝛽𝐻𝐹 = 1 then from the asymptotic expression of tanh(1), it can be shown that the 

equation (129) becomes: 

 𝑝̅𝑤𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝐷𝑠
 (5.108) 

This is the general expression for the bottom-hole pressure at constant flow rate for the 

linear reservoir. 

The response of the model is compared with the Brawn et. al. (2011) model in figure 

5.14. The response of the both models is nearly identical for a  𝛼𝑜 value of 1 and  value 

of 0.95. The permeability of the microfracture is assumed to be very lower (0.1) than the 

micro-fracture, so the inner reservoir becomes a dual porosity system like as Brawn’s 

model. The response it adjusted by altering the compressibility values of the matrix and 

the macro-fracture of the multi-continuum anomalous model. For a value of the 

compressibility and the permeability of the continuum, the both models behave as same. 

The matching of the curve is the evident of the consistency of the result. Because of the 
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effect of space (=0.95) there is a difference is remaining in the response at the early 

time. 

 

 

Figure 5.14: Comparison of Multi-Continuum Anomalous Model and the Brawn et 

al (2011) trilinear model. 

5.7 Results and Analysis 

 

This section describes the response of the model. Table 5.1 summarized all the data that 

are used for the response analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

D
im

en
si

o
n

le
ss

 P
re

ss
u

re
-d

ro
p

 Δ
P

D
 



127 

 

Table 5.1: Synthetic data for the model analysis 

 

Parameters Value Parameters Value 

Reservoir thickness, h, ft 250 Macro fracture total 

compressibility, 𝑐𝑀𝐹, Psi-1 

5E-3 

Wellbore radius, 𝑟𝑤, ft 0.25 Thickness of the macro-fracture, 

ℎ𝑀𝐹 ,ft 
0.009 

Horizontal well lengthy, 𝐿𝐻, ft 3100 Micro fracture porosity, 

𝜙𝑚𝑓 ,fraction 

0.45 

Spacing of macro-fracture, LF, ft 10 Micro-fracture permeability, 𝐾𝑚𝑓 , 

md 

20 

Number of hydraulic fracture, 𝑛𝐻𝐹  10 Micro fracture total compressibility, 

𝑐𝑚𝑓 ,Psi-1 

5E-3 

Number of Macro-fracture, 𝑛𝑀𝐹  25 Thickness of the micro-fracture, 

ℎ𝑚𝑓 ,ft 
0.006 

Number of Micro-fracture, 𝑛𝑚𝑓 50 Spacing between two fractures, 𝑦𝑓 , ft  5 

Distance between hydraulic 

fractures, 𝑑𝐹 ,ft  
300 Cake fracture porosity, 𝜙𝑓𝑐 , fraction 0.40 

Distance to boundary parallel to 

well, 𝑥𝑒 ,ft  
350 Cake fracture permeability, 𝐾𝑓𝑐,md 10 

Drainage area length, 𝑦𝑒 ,ft  150 Cake fracture total compressibility, 

𝑐𝑓𝑐,Psi-1 

2E-4 

Viscosity, µ, cp 0.3 Mico-fracture thickness, ℎ𝑓𝑐 , ft 0.003 

Constant flow rate, q, Stb/Day 300 Radius of the matrix core, 𝑟𝑚𝑐 , ft 2 

Hydraulic fracture porosity, 

𝜙𝐻𝐹 ,fraction 

0.40 Thickness of the cake matrix 

slab, ℎ𝑐𝑚, ft  
0.2 ∗ 𝑟𝑚𝑐 

Phenomenological coefficient, K,  

md-hr1-  

50000 Core matrix porosity, 𝜙𝑚𝑐 ,fraction 0.05 

Hydraulic fracture total 

compressibility, 𝑐𝐻𝐹,  Psi-1  

1E-4 Core matrix permeability, 𝐾𝑚𝑐,md  1E-4 

Hydraulic fracture half length, 𝑥𝐻𝐹 ,ft 250 Core matrix total compressibility, 

𝑐𝑚𝑐,Psi-1 

1E-4 

Hydraulic fracture width, w, ft 0.01 Outer reservoir porosity, 𝜙𝑜 , fraction 0.05 

Memory Parameter (Space),  0.8 Phenomenological coefficient, 

𝐾𝛼,md-hr1- 

1.2 

Macro fracture porosity, 

𝜙𝑀𝐹 ,fraction  

0.60 Outer reservoir total 

compressibility, 𝑐𝑜 Psi-1 

1E-4 

Macro-fracture permeability, 𝐾𝑀𝐹 , 
md  

1000 Memory Parameter, 𝛼𝑜 0.9 
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5.7.1 Dimensionless pressure drops 

The dimensionless pressure response of the homogeneous reservoir is a single slope line. 

It is an evident that the response curve has more than one slope in the dual or triple 

continuum reservoir (warren and Root, 1968, Abdassah and Ershaghi, 1986). The 

response curve of tri-linear models also shows a slope change at the transition of the 

earlier and the intermediate to late time response (Brawn, 2009; Ozkan et al., 2011,2012, 

Albinali et al., 2016a, 2016b). Figure 5.15 and figure 5.16 shows the dimensionless 

pressure response and the pressure drop profile of the model, both have two 

distinguishable slopes. With a value of 0.75, the initial slope holds the contributions of 

the hydraulic fracture and the macro-fracture whereas the second slope changes according 

to the late time pressure response. Due to low permeability of the matrix and high storage 

capacity, the late time response is dominated by the matrix flow parameters.    

 

 
 

Figure 5.15: Dimensionless wellbore pressure for the Multi-Continuum Anomalous 

Model 
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Figure 5.16: Wellbore pressure drop for the Multi-Continuum Anomalous Model 

 

5.7.2 Effect of the Hydraulic fracture-permeability 

The hydraulic fracture is the only conduit that feeds the well; therefore, the permeability 

of the hydraulic fracture affects the pressure response. The model considers super-

diffusion in the hydraulic fracture. Thus, the flux law has a phenomenological constant of 

the dimension of 𝐿1+𝛽. Figure 5.17 shows the effect of the hydraulic fracture 

perviousness on the pressure response of the well. For a constant rate production, the 

pressure drop is decreases for a higher phenomenological constant of the hydraulic 

fracture. Although the hydraulic fracture is extended for a smaller area compare to the 

inner reservoir, the perviousness of the fracture alters the pressure drop at the early and 

intermediate time. It is important to note that the higher value of the perviousness shows 

an earlier boundary effect than the lower one.           
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Figure 5.17: Dimensionless wellbore pressure drop for the different values of the 

phenomenological constant (𝑲𝒃𝒆𝒕𝒂) 

 

5.7.3 Effect of the Super diffusion 

 

The effect of the super-diffusion is evaluated according to the order of the space 

derivative. As the value of 𝛽 decreases from the unity, the space event becomes more 

significant; hence, the flow will be accelerated at the same pressure gradient.  Fig. 5.18 

shows how the faster flow influences the pressure response of the reservoir. The single 

most marked observation to emerge from the figure (Fig.5.18) is the impact of the super-

diffusion is prolonged from the very early time to the late time. This result has further 

strengthened the hypothesis that the space event in the hydraulic fracture can significantly 

alter the flow characteristics. For a conventional flow (𝛽 = 1), pressure drop is higher 

than the super-diffusion flow. At the intermediate time, the pressure drop variation is 

more significant because the macro-fracture and the matrix starts to response to the 

pressure gradient and that provides a constant flow rate without   
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Figure 5.18: Dimensionless wellbore pressure drop for the different values of the 𝜷 

(Degree of super-diffusion) 

 

5.7.4 Effect of the Macro-fracture 

Fig. 5.19 shows the effect of the micro-fracture permeability on the pressure response. 

Micro-fracture is the dominant conduit in the inner reservoir region; thus, the 

permeability-alteration in the micro-fracture changes the pressure response from the 

earlier time to the late time of the production (𝑡𝐷 = 10.6𝐸4). However, at the 

intermediate time, the macro-fracture permeability causes the most variation in the 

pressure response. At later time the flow capacitance of the macro-fracture reaches to the 

maximum and the flow is influenced by the boundary effect.     
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Figure 5.19: Dimensionless wellbore pressure drop for the different values of the 

macro-fracture permeability (𝑲𝑴𝑭) 

5.7.5 Effect of the Micro-fracture 

 

Micro-fracture is an intermediate zone between the source matrix and the hydraulic 

fracture; moreover, it has a small relative volume. Fig. 5.20 shows the pressure response 

variation due to the alteration of the micro-fracture permeability. From the figure it is 

observed that the micro-fracture flow capacity only affects the overall response only at an 

intermediate time, from 𝑡𝐷 = 1𝐸 − 3 to 𝑡𝐷 = 1𝐸2 , and the it creates a very slight 

variation in the pressure response. The response also shows that the pressure drop is 

decreasing while the micro-fracture permeability is increased.    
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Figure 5.20: Dimensionless wellbore pressure drop for the different values of the 

micro-fracture permeability (𝑲𝒎𝒇) 

5.7.6 Effects of the inner reservoir extend 

 

The tip of the hydraulic fracture that bounded the inner reservoir area has a dissimilar 

effect at different flow time of the reservoir which is shown in the Fig. 5.21.  A high-

stimulated zone creates a high pressure-drop at the early time whereas at intermediate 

time the matrix and the macro-fracture regulate the flow. Therefore, at that time the 

pressure-drop due to the size of the stimulated zone is lower. At the late time, it is 

required a lower bottom hole pressure to maintain a constant flow rate from a reservoir 

with a long areal extend of the inner reservoir. 

D
im

en
si

o
n

le
ss

 P
re

ss
u

re
-d

ro
p

 Δ
P

D
 



134 

 

 
 

Figure 5.21: Dimensionless wellbore pressure drop variations for the extend of the 

inner reservoir and the hydraulic fracture (𝑿𝑯𝑭). 

 

5.7.7 Effect of the matrix permeability 

 

A change of the flow parameters in the matrix causes the change in the pressure response 

at intermediate to late time period. Figure 5.22 shows that an increment of the matrix 

permeability can reduce the pressure drop at a significant rate at intermediate time and 

boundary effect initiates earlier. Moreover, the findings demonstrate that the macro-

fracture can influence at the early-intermediate-transient time whereas the matrix has the 

most impact at the late intermediate time. The matrix is acted as the main fluid source, so 

the conductivity of the matrix regulates the flow of the reservoir after reaching the 

pressure pulse to the matrix.       
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Figure 5.22: Dimensionless wellbore pressure response for the different values of the 

core-matrix permeability (𝑲𝒎𝒄) 

 

5.7.8 Effect of the Outer reservoir 

 

The effect of the outer reservoir is shown in the Fig. 5.23. Since the most influential 

character of the outer reservoir is the sub-diffusion, the anomalous parameter, termed the 

phenomenological constant and the order of the time derivative control the pressure 

response at this model. The lower value of the anomalous parameters makes an extra 

pressure drop at the late early to early intermediate time (𝑡𝐷 = 1𝐸 − 4 𝑡𝑜 5𝐸 − 1). These 

findings significantly differ from the previous results reported in the literature (Brawn, 

2009; Ozcan, 2011; Ozkan et. al, 2012). The study shows an impact of the outer reservoir 

at earlier time because the frequency of the macro-fracture is higher in the inner reservoir 

region and the extend of the inner reservoir is smaller than the previous studies. 

Therefore, the pressure response travels faster in the multi-continuum anomalous model. 

The findings also validate the time impact on fluid flow that causes a slower flow; thus, 

yields a reduction in pressure.  
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Figure 5.23: Variations of the Dimensionless wellbore pressure drop with the sub-

diffusion parameter (𝑲𝜶, 𝜶). 

 

5.7.9 Effect of the hydraulic fracture density 

 

 The study assumes a no-flow boundary at the mid-point (𝑦 = 𝑌𝑒) of two adjacent 

hydraulic fractures. Therefore, the outer boundary of the inner reservoir increases as the 

number of hydraulic fracture decreases. Figure 5.24 illustrates the effect of the hydraulic 

fracture density. No significant difference is observed at the early and the intermediate 

time. A variation of the pressure drop occurs when the boundary effect is identified in the 

flow. A high density of the hydraulic fracture triggers to an earlier boundary effect.    
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Figure 5.24: Dimensionless wellbore pressure loss variation with the density of the 

macro-fracture. 

 

5.7.10 Effect of the density of the macro-fracture 

 

The most remarkable result to emerge from the model response is that the influence of the 

density of the macro-fracture. In the model, matrix is the source of the fluid; however, the 

tight formation of the matrix has a poor conductivity. Consequently, with a relative higher 

conductivity, the macro-fracture controls the fluid flows to the hydraulic fracture. Figure 

5.25 reveals that the impact of the macro-fracture density in term of dimensionless 

pressure. A denser macro-fracture maintains the constant flow rate through a lower 

pressure drop in the reservoir. Although the boundary effect starts earlier for the denser 

macro-fracture, due to its high conductivity lower pressure drop sustains at the late time.    
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Figure 5.25: Effect of the macro-fracture density on the dimensionless bottom-hole 

pressure response of the model. 

 

5.8 Chapter Summary 

A multi-continuum anomalous model is developed in this chapter. A logical combination 

of flow conditions is used in a modified physical structure. Either the pressure continuity 

or the flow continuity condition controls the inter-porosity flow between different 

domains. The solution for the pressure is derived in the Laplace domain and then it is 

inversed by Stehfest algorithm. The response analysis of the model shows the following 

major findings: 

a. The response curve has two distinguish slope that are related to the flow 

parameters of the domains. 

b. The influence of the super-diffusion in the hydraulic fracture is remarkable as it 

alters the pressure response during the whole life of the reservoir. 

c. The sub-diffusion impact is significant at the late time response and increases with 

the time. 
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d. Macro-fracture permeability regulates the pressure drop in the reservoir as it is the 

main conduit in the inner reservoir. 

e. Matrix permeability can influence the pressure response at the late early to 

intermediate time. 

f. The density of the macro-fracture has a significant impact both in the early and the 

late time.    

Symbol 

h Reservoir thickness, ft 

𝑟𝑤 Wellbore radius, ft 

𝐿𝐻 Horizontal well lengthy, ft 

LF Spacing of macro-fracture, ft 

𝑛𝑓 Number of hydraulic fracture, f 

𝑑𝐹 Distance between hydraulic fractures, ft  

𝑥𝑒 Distance to boundary parallel to well, ft  

𝑦𝑒 Drainage area length, ft  

µ Viscosity, cp 

q Constant flow rate, Stb/day 

𝜙𝐻𝐹 Hydraulic fracture porosity, fraction 

K Phenomenological coefficient, md-hr1-  

𝑐𝐻𝐹 Hydraulic fracture total compressibility, Psi-1  

𝑥𝐻𝐹 Hydraulic fracture half length, ft 

w Hydraulic fracture width, ft 

 Memory Parameter (Space) 

𝜙𝑀𝐹  Macro fracture porosity, fraction  

𝐾𝑀𝐹 Macro-fracture permeability, md  

𝑐𝑀𝐹 Macro fracture total compressibility, Psi-1 

ℎ𝑀𝐹  Thickness of the macro-fracture, ft 

𝜙𝑚𝑓 Micro fracture porosity, fraction 

𝐾𝑚𝑓 Micro-fracture permeability, md 
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𝑐𝑚𝑓 Micro fracture total compressibility, Psi-1 

ℎ𝑚𝑓 Thickness of the micro-fracture, ft 

𝑦𝑓 Spacing between two fractures, ft  

𝜙𝑓𝑐 Cake fracture porosity, fraction 

𝐾𝑓𝑐 Cake fracture permeability, md 

𝑐𝑓𝑐 Cake fracture total compressibility, Psi-1
 

ℎ𝑓𝑐 Mico-fracture thickness, 

𝑟𝑚𝑐 Radius of the matrix core, ft 

ℎ𝑐𝑚 Thickness of the cake matrix slab, ft  

𝜙𝑚𝑐 Core matrix porosity, fraction 

𝐾𝑚𝑐 Core matrix permeability, md  

𝑐𝑚𝑐 Core matrix total compressibility, Psi-1 

𝜙𝑜 Outer reservoir porosity, fraction 

𝐾𝛼 Phenomenological coefficient, md-hr1- 

𝑐𝑜 Outer reservoir total compressibility, Psi-1 

𝛼𝑜 Memory Parameter,  

 

Model Constant 

𝑥𝐷 =
𝑥

𝑥𝐻𝐹
 

𝑥𝑒𝐷 =
𝑥𝑒
𝑥𝐻𝐹

 

𝑦𝐷 =
𝑦

𝑥𝐻𝐹
 

𝑦𝑒𝐷 =
𝑦𝑒
𝑥𝐻𝐹

 

𝑤𝐷 =
𝑤

𝑥𝐻𝐹
 

𝑟𝐷 =
𝑟
𝑦𝑓
2
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𝜉𝐷 =
𝜉

ℎ𝑐𝑚
2

 

𝑧𝐷 =
𝑧

𝐿𝑓
2

 

𝜁𝐷 =
𝜁
𝑦𝑓
2

 

𝑐𝐴𝐹𝐷 =
𝑘𝛽𝑤𝐵

𝑘𝑀𝐹𝑥𝐻𝐹𝛽
 

𝑐𝐻𝐹𝐷 =
𝐵𝑤𝑘𝐻𝐹
𝜋𝑘𝑀𝐹𝑥𝐻𝐹

 

𝜆𝐴𝑜 =
𝑘𝑀𝐹
𝛼𝑜 𝜇𝑥𝐻𝐹

2

𝑘𝛼𝑜𝜇𝛼𝑜𝑥𝐻𝐹
2𝛼  

𝜆𝑚𝑐 =
12𝑥𝐻𝐹

2 𝑘𝑚𝑐

𝑦
𝑓
2𝑘𝑀𝐹

 

𝜆𝑐𝑚 =
12𝑥𝐻𝐹

2 𝑘𝑚𝑐
ℎ𝑐𝑚2 𝑘𝑀𝐹

 

𝜆𝑓𝑐 =
12𝑥𝐻𝐹

2 𝑘𝑓𝑐

𝑦
𝑓
2𝑘𝑀𝐹

 

𝜆𝑓𝑐
′ =

𝑘𝑐𝑚𝑦𝑓
2

𝑘𝑓𝑐 ℎ𝑐𝑚
2  

𝜆𝑓𝑐𝑓 =
𝐿𝑓
2
𝑘𝑓𝑐ℎ𝑓𝑐

𝑘𝑚𝑓𝑦𝑓ℎ𝑚𝑓(ℎ𝑐𝑚 + ℎ𝑓𝑐)
 

𝜆𝑚𝑓 =
12𝑥𝐻𝐹

2

𝐿𝑓
2

𝑘𝑚𝑓

𝑘𝑀𝐹
 

𝜆𝐴𝐹 =
𝑘𝑀𝐹𝑥𝐻𝐹

𝛽

𝑘𝛽𝑥𝐻𝐹
 

𝜆𝐴𝐹
′ =

𝑘𝑀𝐹ℎ𝑀𝐹
𝑘𝛽(ℎ𝑀𝐹 + 𝐿𝑓)

𝑥𝐻𝐹
𝛽

𝑥𝐻𝐹
 

𝜆𝑚𝑓
′ =

𝐿𝑓
2𝑘𝑚

𝑦𝑓
2𝑘𝑚𝑓
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𝜆𝑚 =
12𝑥𝐻𝐹

2 𝑘𝑚
𝑦𝑓2𝑘𝑀𝐹

 

𝜆𝐻𝐹
′ =

𝑘𝑀𝐹ℎ𝑀𝐹
𝑘𝐻𝐹(ℎ𝑀𝐹 + 𝐿𝑓)

 

𝜂𝐻𝐹𝐷 =
(𝜙 𝑐𝑡)𝐻𝐹
(𝜙 𝑐𝑡)𝑀𝐹

𝑘𝑀𝐹

𝑘𝐻𝐹
 

𝜔𝐴𝑜 =
(𝜙 𝑐𝑡)𝑜
(𝜙 𝑐𝑡)𝑀𝐹

𝛼𝑜  

𝜔𝑚𝑐 =
(𝜙 𝑐𝑡)𝑚𝑐
(𝜙 𝑐𝑡)𝑀𝐹

 

𝜔𝑓𝑐 =
(𝜙 𝑐𝑡)𝑓𝑐
(𝜙 𝑐𝑡)𝑀𝐹

 

𝜔𝑚𝑓 =
(𝜙 𝑐𝑡)𝑚𝑓
(𝜙 𝑐𝑡)𝑀𝐹

 

𝜔𝐻𝐹 =
(𝜙 𝑐𝑡)𝐻𝐹
(𝜙 𝑐𝑡)𝑀𝐹

 

𝐶𝑂𝑀𝐹 =
𝑘𝛼𝑜(ℎ𝑀𝐹 + 𝐿𝑓)

𝑘𝑀𝐹ℎ𝑀𝐹
 

𝑀𝐷𝐴 = 𝜔𝐴𝑜 ∗  𝜆𝐴𝑜 

𝑀𝐷𝐴𝐻𝐹 = 𝜔𝐻𝐹𝜆𝐴𝐹 

𝛼𝑚𝑐 =
3𝜔𝑚𝑐𝑠

𝜆𝑚𝑐
 

𝛼𝑐𝑚 =
3𝜔𝑚𝑐𝑠

𝜆𝑐𝑚
 

𝛼𝑚 =
3𝜔𝑚𝑠

𝜆𝑚
 

𝛼𝑓𝑐 =
3𝜔𝑓𝑐𝑠

𝜆𝑓𝑐
 

𝛼𝑓𝑐
′ = 𝛼𝑓𝑐 + 𝜆𝑓𝑐

′ √𝛼𝑐𝑚 tanh(√𝛼𝑐𝑚) 

𝜂𝐻𝐹𝐷 =
(𝜙 𝑐𝑡)𝐻𝐹
(𝜙 𝑐𝑡)𝑀𝐹

𝑘𝑀𝐹

𝑘𝐻𝐹
 

𝛽𝑜 = 𝑀𝐷𝐴𝑠
𝛼𝑜 
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β𝑚𝑐 =
𝑘𝑚𝑐(ℎ𝑓𝑐 + ℎ𝑐𝑚)

𝑘𝑓𝑐ℎ𝑓𝑐
{√𝛼𝑚𝑐 coth(√𝛼𝑚𝑐𝑟𝑚𝑐𝐷)−

1

𝑟𝑚𝑐𝐷
} 

𝛽𝑚 = 𝜆𝑚𝑓
′ √𝛼𝑚 tanh(√𝛼𝑚) 

𝛽𝑚𝑓
′ =

3𝜔𝑚𝑓𝑠

𝜆𝑚𝑓
+ 𝛽𝑚 

𝛽𝑓𝑐 =

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 𝑒𝑥𝑝(√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 1)) + 𝑒𝑥𝑝(−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1)) 

𝛽𝑓𝑐
′ =

1

𝛽𝑓𝑐
{
 

 

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 √𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1))

− √𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1))

}
 

 

 

𝛽𝑚𝑓 =
3𝜔𝑚𝑓𝑠

𝜆𝑚𝑓
− 𝛽𝑓𝑐

′ 𝜆
𝑓𝑐𝑓

 

𝛽𝑂𝑀𝐹 = √𝛽𝑜 tanh (√𝛽𝑜(𝑥𝑒𝐷 − 1)) 

𝛽𝑂𝑀𝐹𝐷 = 𝐶𝑂𝑀𝐹 (
(𝜙 𝑐𝑡)𝑀𝐹𝜇𝑥𝐻𝐹

2

𝑘𝑀𝐹
)

𝛼𝑜−1

𝑠1−𝛼𝑜𝛽𝑂𝑀𝐹 

𝛽𝑀𝐹 = 𝛽𝑂𝑀𝐹𝐷 +
𝜆𝑚𝑓

3
√𝛽𝑚𝑓 tanh  (√𝛽𝑚𝑓) + 𝑠 

𝛽𝑀𝐻𝐹 = 𝜆𝐴𝐹
′ √𝛽𝑀𝐹 tanh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −

𝑤𝐷
2
)) 

𝛽𝑀𝐻𝐹
′ = 𝜆𝐻𝐹

′ √𝛽𝑀𝐹 tanh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −
𝑤𝐷
2
)) 

𝛽𝐻𝐹 =
2

𝑤𝐷
𝛽𝑀𝐻𝐹 +𝑀𝐷𝐴𝐻𝐹𝑠 

𝛽
𝐻𝐹

′
=
2

𝑤𝐷
𝛽𝑀𝐻𝐹
′ + 𝜂𝐻𝐹𝐷𝑠 

 

 



144 

 

References 

 

Albinali, A. (2016a). Analytical solution for anomalous diffusion in fractured nanoporous 

reservoirs. Colorado School of Mines. 

Abdassah, D., & Ershaghi, I. (1986). Triple-porosity systems for representing naturally 

fractured reservoirs. SPE Formation Evaluation, 1(02), 113-127. 

Alahmadi, H. A. H. (2010). A Triple-porosity model for fractured horizontal 

wells (Doctoral dissertation, Texas A & M University). 

Albinali, A., & Ozkan, E. (2016b, May). Analytical Modeling of Flow in Highly 

Disordered, Fractured Nano-Porous Reservoirs. In SPE Western Regional 

Meeting. Society of Petroleum Engineers. 

Albinali, A., Holy, R., Sarak, H., & Ozkan, E. (2016). Modeling of 1D Anomalous 

Diffusion in Fractured Nanoporous Media. Oil & Gas Science and Technology–

Revue d’IFP Energies nouvelles, 71(4), 56. 

Apaydin, O. G., Ozkan, E., & Raghavan, R. S. (2011, January). Effect of discontinuous 

microfractures on ultratight matrix permeability of a dual-porosity medium. 

In Canadian Unconventional Resources Conference. Society of Petroleum 

Engineers. 

Brown, M., Ozkan, E., Raghavan, R., & Kazemi, H. (2011). Practical solutions for 

pressure-transient responses of fractured horizontal wells in unconventional 

shale reservoirs. SPE Reservoir Evaluation & Engineering, 14(06), 663-676. 

de Swaan O, A. (1976). Analytic solutions for determining naturally fractured reservoir 

properties by well testing. Society of Petroleum Engineers Journal, 16(03), 117-

122. 

El-Banbi, A. H., & Wattenbarger, R. A. (1998, January). Analysis of linear flow in gas 

well production. In SPE Gas Technology Symposium. Society of Petroleum 

Engineers.  

Fomin, S. E. R. G. E. I., Chugunov, V., & Hashida, T. O. S. H. I. Y. U. K. I. (2011). 

Mathematical modeling of anomalous diffusion in porous media. Fract. Differ. 

Calc, 1(1), 1-28. 



145 

 

Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2011). Mittag-Leffler functions and their 

applications. Journal of Applied Mathematics, 2011. 

Holy, R. W., & Ozkan, E. (2016, May). A Practical and Rigorous Approach for 

Production Data Analysis in Unconventional Wells. In SPE Low Perm 

Symposium. Society of Petroleum Engineers. 

Kazemi, H. (1969). Pressure transient analysis of naturally fractured reservoirs with 

uniform fracture distribution. Society of petroleum engineers Journal, 9(04), 

451-462. 

Ozcan, O. (2014). Fractional diffusion in naturally fractured unconventional reservoirs. 

Colorado School of Mines. 

Ozkan, E., Brown, M. L., Raghavan, R., & Kazemi, H. (2011). Comparison of fractured-

horizontal-well performance in tight sand and shale reservoirs. SPE Reservoir 

Evaluation & Engineering, 14(02), 248-259. 

Raghavan, R. (2011). Fractional derivatives: application to transient flow. Journal of 

Petroleum Science and Engineering, 80(1), 7-13. 

Stehfest, H. (1970). Algorithm 368: Numerical inversion of Laplace transforms 

[D5]. Communications of the ACM, 13(1), 47-49. 

Warren, J. E., & Root, P. J. (1963). The behavior of naturally fractured reservoirs. Society 

of Petroleum Engineers Journal, 3(03), 245-255. 

Wattenbarger, R. A. (2007). Some Reservoir Performance Aspects of Unconventional 

Gas Production. In Private conference presentation. 

 

 

 

 

 

 

 

 

 



146 

 

Chapter 6 Conclusions and Recommendations 

 

In this research, a solution for a linear multi-continuum anomalous diffusion model is 

derived and analyzed. The following conclusions are made from the research: 

 

All the fluid flow with memory impact is the non-Darcy flow but all the non-Darcy flow 

is not the memory based anomalous flow. The appropriate parameterization, 

conceptualization of memory impact, high non-linearity in the governing equation and 

numerical solution in an efficient way, are the unsolved difficulties for the proper 

establishment of this idea in the petroleum field.  

The continuum-based models consider the physical structure of the reservoir; therefore, it 

requires additional reservoir parameters for the new continuum. Alternatively, anomalous 

diffusion approach requires less parameter compared to the continuum approaches, but a 

high uncertainty exists in the precise determination of the order of the differentiation or 

the fractal exponent. A combination of the continuum approach and the anomalous 

diffusion is one of the best alternatives for fluid flow modelling in the naturally fractured 

reservoir. 

The model with the combination of the anomalous diffusion and continuum approach 

gives more flexibility in the modeling of fluid flow in fractured reservoir. The response 

curve has two distinct slope that are related to the flow parameters of the domains. The 

influence of the super-diffusion in the hydraulic fracture is remarkable as it alters the 

pressure response during the whole life of the reservoir. The sub-diffusion impact is 

significant at the late stage response of a reservoir and increases with the time. Macro-

fracture permeability regulates the pressure drop in the reservoir as it is the main conduit 

in the inner reservoir. Matrix permeability can influence the pressure response at the late 

early to intermediate time. The density of the macro-fracture has a significant impact both 

in the early and the late time.    
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The following recommendations are made for the future research: 

a. The implementation of the anomalous diffusion model in the reservoir analysis 

requires a proper procedure for the determination of the memory parameters. 

b. A numerical investigation should be done with all the possible boundary 

conditions to determine the anomalous behavior impact in the reservoir flow.   

c. Future studies on the multi-continuum anomalous model require a numerical 

investigation of the model so that it can be applied with a variation of the 

parameters. 

d. The analysis of the boundary dominated flow in the multi-continuum anomalous 

model will enable the performance analysis of a fractured reservoir with higher 

matrix permeability  
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Appendix A 
 

A.1 Derivation of the Continuity Equation for the Anomalous Diffusion 

 

 

𝑚 = 
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑏𝑢𝑙𝑘 𝑣𝑜𝑙𝑢𝑚𝑒

𝐵𝑢𝑙𝑘 𝑣𝑜𝑙𝑢𝑚𝑒
 

                                   =  𝜌 
𝑉

𝑉𝐵
            [All are in the reservoir condition] 

                     =  𝜌𝜙  [For single phase flow VR = V0] 

 

Volumetric flux, u = Volume/Area*time 

Mass flowing at x = (u) x 

Mass flowing out at x +x = (u) x + x 

During the time of t, the overall flow = [(u) x –(u) x + x] At 

For a time-interval t, the accumulation of mass inside volume (Ax) is = mAx 

According to the law of mass conservation: 

[(u) x –(u) x + x] At = mAx  

Dividing by xt:  

 [ (u)𝑥 – (u)𝑥+ x ] 

x
=  



t
 

(A.1.1) 

 𝜕(u)

𝜕𝑥
=  −

𝜕

𝜕𝑡
      [ ∆𝑥 → 0, ∆𝑡 → 0] 

(A.1.2) 

This is the continuity equation for the one-dimensional flow of a single-phase fluid. All 

the parameters are in reservoir condition. 

Equation (A.1.1) can be rewritten as follow by the chain rule: 

  x 
X+x 

Cross section 
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 𝜕(u)

𝜕𝑥
=  −𝜙(

𝜕

𝜕𝑝
 
𝜕p

𝜕𝑡
 ) 

(A.1.3) 

The definition of the compressibility 

 
𝑐𝑡 = −

1

𝑉

𝜕𝑉

𝜕𝑝
 

(A.1.4) 

 

𝑐𝑡 = −𝜌(
𝜕(
1
𝜌)

𝜕𝑝
) 

(A.1.5) 

 
𝑐𝑡 =

1

𝜌
 
𝜕𝜌

𝜕𝑝
 

(A.1.6) 

 
𝑐𝑡𝜌 =

𝜕𝜌

𝜕𝑝
 

(A.1.7) 

Using the expression for the compressibility in the Eq. A.1. 2 

 𝜕(u)

𝜕𝑥
=  −𝜙 𝑐𝑡𝜌 

𝜕p

𝜕𝑡
   

(A.1.8) 

For the conventional approach Darcy’s law is valid as a flux law 

 
𝑢 =

𝑞

𝐴
= −

𝑘

𝜇

𝜕𝑝

𝜕𝑥
 

(A.1.9) 

Eq. A.1. 8 yields 

 
𝜕(

𝜕𝑝
𝜕𝑥
)

𝜕𝑥
=
𝜙 𝑐𝑡𝜌𝜇

𝑘
 
𝜕p

𝜕𝑡
 

(A.1.10) 

[For the slightly compressible fluid  (x) and for the homogeneous reservoir k (x)] 

 
𝜌
𝜕2𝑝

𝜕𝑥2
+
𝜕𝑝

𝜕𝑥

𝜕𝜌

𝜕𝑥
=
𝜙 𝑐𝑡𝜌𝜇

𝑘
 
𝜕p

𝜕𝑡
 

(A.1.11) 

 
𝜌
𝜕2𝑝

𝜕𝑥2
+
𝜕𝑝

𝜕𝑥

𝜕𝑝

𝜕𝑥

𝜕𝜌

𝜕𝑝
=
𝜙 𝑐𝑡𝜌𝜇

𝑘
 
𝜕p

𝜕𝑡
 

(A.1.12) 

 
𝜌
𝜕2𝑝

𝜕𝑥2
+ 𝑐𝑡𝜌(

𝜕𝑝

𝜕𝑥
)2 =

𝜙 𝑐𝑡𝜌𝜇

𝑘
 
𝜕p

𝜕𝑡
      

(A.1.13) 

 
𝜌(
𝜕2𝑝

𝜕𝑥2
+ 𝑐𝑡 (

𝜕𝑝

𝜕𝑥
)
2

) =
𝜙 𝑐𝑡𝜌𝜇

𝑘
 
𝜕p

𝜕𝑡
     

(A.1.14) 

 𝜕2𝑝

𝜕𝑥2
=
𝜙 𝑐𝑡𝜇

𝑘

𝜕p

𝜕𝑡
 

(A.1.15) 
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For slightly compressible fluid  𝑐𝑡 (
𝜕𝑝

𝜕𝑥
)
2

= 𝑐𝑡 (
𝑞𝜇

𝑘𝐴
)
2

≪ 1. This is the equation for the one-

dimensional linear diffusion of the slightly compressible fluid. 

The modified flux law (Chen and Raghavan, 2015) 

 
𝑢 (𝑥, 𝑡) =

𝑞

𝐴
= −𝜂𝛼,𝛽  

𝜕1−𝛼

𝜕𝑡1−𝛼
[
𝜕𝛽𝑝(𝑥, 𝑡)

𝜕𝑥𝛽
] 

(A.1.16) 

where 0 < 𝛼 ≤ 1 𝑎𝑛𝑑 0 < 𝛽 ≤ 1; 𝜂𝛼,𝛽 =
𝑘𝛼,𝛽

𝜇
 

 By using the modified flux law (Eq. A.1.16) in the continuity equation (Eq. A.1.15) 

 
𝜕(−𝜂𝛼,𝛽  

𝜕1−𝛼

𝜕𝑡1−𝛼
𝜕𝛽𝑝(𝑥, 𝑡)
𝜕𝑥𝛽

)

𝜕𝑥
=  −𝜙 𝑐𝑡𝜌 

𝜕p

𝜕𝑡
 

(A.1.17) 

 Taking 
𝜕𝛼−1

𝜕𝑡𝛼−1
 of both sides 

 
𝜕([
𝜕𝛽𝑝(𝑥, 𝑡)
𝜕𝑥𝛽

])

𝜕𝑥
=
𝜙 𝑐𝑡
𝜂𝛼,𝛽

 
𝜕𝛼p(x, t)

𝜕𝑡𝛼
 

(A.1.18) 

Let 𝜂𝛼,𝛽 ≠ 𝑓(𝑥). This is the equation for one dimensional linear anomalous diffusion of 

the slightly compressible fluid.  

For sub-diffusion flow  =1 

 𝜕2𝑝(𝑥, 𝑦)

𝜕𝑥2
=
𝜙 𝑐𝑡
𝜂𝛼,𝛽

 
𝜕𝛼p(x, t)

𝜕𝑡𝛼
 

(A.1.19) 

For super diffusion  = 1 

 
𝜕(
𝜕𝛽𝑝(𝑥, 𝑡)
𝜕𝑥𝛽

)

𝜕𝑥
=
𝜙 𝑐𝑡
𝜂𝛼,𝛽

 
𝜕p(x, t)

𝜕𝑡
 

(A.1.20) 

A.2 Flow in the Outer Reservoir 

The flow equation for the outer reservoir in terms of pressure drop 

 
𝜕2∆𝑝𝑜
𝜕𝑥2

=
(𝜙 𝑐𝑡)𝑜𝜇

𝑘𝛼𝑜
 
𝜕𝛼𝑜∆𝑝𝑜
𝜕𝑡𝛼𝑜

 (A.2.1) 

  In dimensionless form 
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𝜕2

𝜕(𝑥𝐻𝐹𝑥𝐷)2
(
𝑝𝑂𝐷𝑞𝐵𝜇

2𝜋𝑘𝑀𝐹ℎ
) =

(𝜙 𝑐𝑡)𝑜𝜇

𝑘𝛼𝑜
 

𝜕𝛼𝑜 (
𝑝𝑂𝐷𝑞𝐵𝜇
2𝜋𝑘𝑀𝐹ℎ

)

𝜕 (
𝑡𝐷𝑥𝐻𝐹

2 (𝜙 𝑐𝑡)𝑀𝐹𝜇
𝑘𝑀𝐹

)
𝛼𝑜 (A.2.2) 

 

 
1

𝑥𝐻𝐹
2  

𝜕2𝑝𝑂𝐷

𝜕𝑥𝐷
2 =

(𝜙 𝑐𝑡)𝑜
(𝜙 𝑐𝑡)𝑀𝐹

𝛼𝑜  
𝑘𝑀𝐹
𝛼𝑜 𝜇

𝑘𝛼𝑜𝜇𝛼𝑜𝑥𝐻𝐹
2𝛼

𝜕𝛼𝑜𝑝𝑂𝐷
𝜕𝑡𝐷

𝛼𝑜  (A.2.3) 

 

 
𝜕2𝑝𝑂𝐷

𝜕𝑥𝐷
2 =

(𝜙 𝑐𝑡)𝑜
(𝜙 𝑐𝑡)𝑀𝐹

𝛼𝑜  
𝑘𝑀𝐹
𝛼𝑜 𝜇𝑥𝐻𝐹

2

𝑘𝛼𝑜𝜇
𝛼𝑜𝑥𝐻𝐹

2𝛼

𝜕𝛼𝑜𝑝𝑂𝐷
𝜕𝑡𝐷

𝛼𝑜  (A.2.4) 

 
𝜕2𝑝𝑂𝐷

𝜕𝑥𝐷
2 = 𝜔𝐴𝑜𝜆𝐴𝑜

𝜕𝛼𝑜𝑝𝑂𝐷
𝜕𝑡𝐷

𝛼𝑜  (A.2.5) 

 
𝜕2𝑝𝑂𝐷

𝜕𝑥𝐷
2 = 𝑀𝐷𝐴

𝜕𝛼𝑜𝑝𝑂𝐷
𝜕𝑡𝐷

𝛼𝑜  (A.2.6) 

Applying the Laplace transformation 

 
𝜕2𝑝̅𝑂𝐷(𝑥𝐷 , 𝑠)

𝜕𝑥𝐷
2 −𝑀𝐷𝐴{𝑠

𝛼𝑜𝑝̅𝑂𝐷(𝑥𝐷 , 𝑠) − 𝑝𝑂𝐷(𝑥𝐷 , 0)} = 0 (A.2.7) 

Initial conditions for the outer reservoir 

 ∆𝑝0(𝑥, 𝑜) = 0 (A.2.8) 

 
𝑝𝑂𝐷(𝑥𝐷,𝑡𝐷=0)𝑞𝐵𝜇

2𝜋𝑘𝑀𝐹ℎ
= 0 (A.2.9) 

 𝑝𝑂𝐷(𝑥𝐷,0) = 0 (A.2.10) 

For two parallel horizontal reservoirs, there is a no flow boundary at x = xe 

 
𝜕∆𝑝𝑜
𝜕𝑥 |𝑥=𝑥𝑒

= 0 (A.2.11) 

 
𝜕(
𝑝𝑂𝐷𝑞𝐵𝜇
2𝜋𝑘𝑀𝐹ℎ

)

𝜕(𝑥𝐻𝐹𝑥𝐷)
= 0 

(A.2.12) 

 
𝜕𝑝𝑜𝐷
𝜕𝑥𝐷

|
𝑥𝐷=𝑥𝑒𝐷

= 0 (A.2.13) 

 
𝜕𝑝̅𝑂𝐷(𝑥𝐷 , 𝑠)

𝜕𝑥𝐷
|
𝑥𝐷=𝑥𝑒𝐷

= 0 (A.2.14) 
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Due to the continuity of pressure, at the inner boundary of the outer reservoir 

 ∆𝑝0|𝑥=𝑥𝐻𝐹
= ∆𝑝𝑀𝐹|𝑥=𝑥𝐻𝐹

 (A.2.15) 

 𝑝0𝐷|𝑥𝐷=1
= 𝑝𝑀𝐹𝐷|𝑥𝐷=1

 (A.2.16) 

 𝑝̅0𝐷|𝑥𝐷=1
= 𝑝̅𝑀𝐹𝐷|𝑥𝐷=1

 (A.2.17) 

From Eq. A.2.10 and Eq. A.2.7 

 
𝜕2𝑝̅𝑂𝐷

𝜕𝑥𝐷
2 −𝑀𝐷𝐴𝑠

𝛼𝑜𝑝̅𝑂𝐷 = 0 (A.2.18) 

The general solution of Eq. A.2.18 

 𝑝̅𝑂𝐷 = 𝐴𝑒𝑥𝑝(−√𝛽𝑜𝑥𝐷) + 𝐵𝑒𝑥𝑝(√𝛽𝑜𝑥𝐷) (A.2.19) 

𝛽𝑜 = 𝑀𝐷𝐴𝑠
𝛼𝑜 

Now, differentiating Eq. A.2.19 with respect to 𝑥𝐷 

 
𝜕𝑝̅𝑂𝐷

𝜕𝑥𝐷 |𝑥𝐷=𝑥𝑒𝐷

= −√𝛽𝑜𝐴𝑒𝑥𝑝(−√𝛽𝑜𝑥𝑒𝐷) + √𝛽𝑜𝐵𝑒𝑥𝑝(√𝛽𝑜𝑥𝑒𝐷) = 0       (A.2.20) 

 𝐴 =
𝐵𝑒𝑥𝑝(√𝛽𝑜𝑥𝑒𝐷

𝑒𝑥𝑝(−√𝛽𝑜𝑥𝑒𝐷)
 (A.2.21) 

 𝐴 = 𝐵𝑒𝑥𝑝(2√𝛽𝑜𝑥𝑒𝐷) (A.2.22) 

From Eq. A.2.19 and Eq. A.2.22 

 𝑝̅𝑂𝐷 = 𝐵𝑒𝑥𝑝(√𝛽𝑜𝑥𝑒𝐷)((exp (√𝛽𝑜(𝑥𝑒𝐷 − 𝑥𝐷) + exp (−√𝛽𝑜(𝑥𝑒𝐷 − 𝑥𝐷))) (A.2.23) 

 𝑝̅𝑂𝐷 = 2𝐵𝑒𝑥𝑝(√𝛽𝑜𝑥𝑒𝐷)𝑐𝑜𝑠ℎ (√𝛽𝑜(𝑥𝑒𝐷 − 𝑥𝐷)) (A.2.24) 

For the inner boundary condition 

 𝑝̅0𝐷|𝑥𝐷=1
= 2𝐵𝑒𝑥𝑝(√𝛽𝑜𝑥𝑒𝐷)𝑐𝑜𝑠ℎ (√𝛽𝑜(𝑥𝑒𝐷 − 𝑥𝐷)) = 𝑝̅𝑀𝐹𝐷|𝑥𝐷=1

 (A.2.25) 

 𝐵 =
𝑝̅𝑀𝐹𝐷|𝑥𝐷=1

2𝑒𝑥𝑝(√𝛽𝑜𝑥𝑒𝐷)𝑐𝑜𝑠ℎ (√𝛽𝑜(𝑥𝑒𝐷 − 1))
 (A.2.26) 

From the Eq. A.2.24 

 𝑝̅𝑂𝐷 = 𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
cosh(√𝛽𝑜(𝑥𝑒𝐷 − 𝑥𝐷))  

cosh(√𝛽𝑜(𝑥𝑒𝐷 − 1))
 (A.2.27) 
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A.3 Flow in the Core Matrix 

The governing equation for the spherical core matrix 

 
1

𝑟2
𝜕

𝜕𝑟
(𝑟2  

𝜕∆𝑝𝑚𝑐
𝜕𝑟

) =
(𝜙 𝑐𝑡)𝑚𝑐𝜇

𝑘𝑚𝑐
 
𝜕∆𝑝

𝑚𝑐

𝜕𝑡
 (A.3.1) 

Initial conditions: 

 ∆𝑝𝑚𝑐(𝑟, 0) = 0 (A.3.2) 

  𝑝𝑚𝑐𝐷(𝑟𝐷,, 𝑡𝐷 = 0) = 0 (A.3.3) 

Inner boundary condition: 

 ∆𝑝𝑚𝑐(0, 𝑡𝐷) = 𝑓𝑖𝑛𝑖𝑡𝑒 (A.3.4) 

 𝑝̅𝑚𝑐𝐷(0, 𝑠) = 𝑓𝑖𝑛𝑖𝑡𝑒    (A.3.5) 

Outer boundary condition: 

 ∆𝑝𝑚𝑐|𝑟=𝑟𝑚𝑐 = ∆𝑝𝑓𝑐|𝑟=𝑟𝑚𝑐  (A.3.6) 

 𝑝̅𝑚𝑐𝐷|𝑟𝐷=𝑟𝑚𝑐𝐷
= 𝑝̅𝑚𝑓𝐷|𝑟𝐷=𝑟𝑚𝑐𝐷

 (A.3.7) 

Eq. A.3.1 in dimensionless form: 

 
1

𝑟𝐷
2  
𝜕

𝜕𝑟𝐷
(𝑟𝐷

𝜕𝑝𝑚𝑐𝐷
𝜕𝑟𝐷

) =
3𝜔𝑚𝑐
𝜆𝑚𝑐

𝜕𝑝𝑚𝑐𝐷
𝜕𝑡𝐷

 (A.3.8) 

Now let 

 𝑤𝑚𝑐𝐷(𝑟𝐷, 𝑡𝐷) = 𝑝𝑚𝑐𝐷(𝑟𝐷, 𝑡𝐷)𝑟𝐷 (A.3.9) 

 𝑤̅𝑚𝑐𝐷(𝑟𝐷, 𝑠) = 𝑝̅𝑚𝑐𝐷(𝑟𝐷, 𝑠)𝑟𝐷 (A.3.10) 

From Eq. A.3. 8 and Eq. A.3.9   

 
𝜕2𝑤𝑚𝑐𝐷

𝜕𝑟𝐷
2 = 

3𝜔𝑚𝑐
𝜆𝑚𝑐

 
𝜕𝑤𝑚𝑐𝐷
𝜕𝑡𝐷

 (A.3.11) 

The initial and the boundary condition for 𝑤𝑚𝑐𝐷 

 𝑤̅𝑚𝑐𝐷(0, 𝑠) = 0 (A.3.12) 

At inner boundary 

 𝑤𝑚𝑐𝐷(𝑟𝐷,, 𝑡𝐷 = 0) = 0 (A.3.13) 

 𝑤̅𝑚𝑐𝐷(0, 𝑠) = 0 (A.3.14) 

From the initial condition, Eq. A.3.12, from Eq. A.3.11 
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𝜕2𝑤̅𝑚𝑐𝐷(𝑟𝐷, 𝑠)

𝜕𝑟𝐷
2 −

3𝜔𝑚𝑐
𝜆𝑚𝑐

𝑠𝑤̅𝑚𝑐𝐷(𝑟𝐷, 𝑠) = 0 (A.3.15) 

The general solution of the Eq. A.3.15 

 𝑤̅𝑚𝑐𝐷 = 𝐴𝑒𝑥𝑝(−√𝛼𝑚𝑐𝑟𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑚𝑐𝑟𝐷) (A.3.16) 

Using the inner boundary condition (Eq.A.3.14): 

 𝑤̅𝑚𝑐𝐷 = −2𝐴 sinh(√𝛼𝑚𝑐𝑟𝐷) (A.3.17) 

From Eq.A.3.10 and Eq.A.3.17: 

 𝑝̅𝑚𝑐𝐷(𝑟𝐷, 𝑠) = −
2

𝑟𝐷
𝐴 sinh(√𝛼𝑚𝑐𝑟𝐷) (A.3.18) 

Now at the outer boundary (𝑟𝐷 = 𝑟𝑚𝑐𝐷), from the Eq.A.3.7 and Eq.A.3.18 

 𝑝̅𝑓𝑐𝐷 = −
2

𝑟𝑚𝑐𝐷
𝐴 sinh(√𝛼𝑚𝑐𝑟𝑚𝑐𝐷) (A.3.19) 

From Eq.A.3.18 and Eq.A.3.19 

 𝑝̅𝑚𝑐𝐷(𝑟𝐷, 𝑡𝐷) =
1

𝑟𝐷

𝑝̅𝑓𝑐𝐷𝑟𝑚𝑐𝐷 sinh(√𝛼𝑚𝑐𝑟𝐷)

sinh(√𝛼𝑚𝑐𝑟𝑚𝑐𝐷)
 (A.3.20) 

A.4 Flow in the fracture cake matrix 

The governing flow equation in the fracture cake matrix  

 
𝜕2∆𝑝𝑐𝑚
𝜕𝜉2

=
(𝜙 𝑐𝑡)𝑐𝑚𝜇

𝑘𝑐𝑚
 
𝜕∆𝑝𝑐𝑚
𝜕𝑡

 (A.4.1) 

The initial condition 

 ∆𝑝𝑐𝑚(𝜉, 𝑜) = 0 (A.4.2) 

 𝑝𝑐𝑚𝐷(𝜉𝐷,0) = 0 (A.4.3) 

Boundary Conditions: 

At the inner boundary 

 
𝜕∆𝑝𝑐𝑚
𝜕𝜉 |𝜉=0

= 0 (A.4.4) 

 
𝜕𝑝̅𝑐𝑚𝐷
𝜕𝜉𝐷 |𝜉𝐷=0

= 0 (A.4.5) 

At the outer boundary of the cake matrix 
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 ∆𝑝𝑐𝑚
|𝜉=

ℎ𝑐𝑚
2

= ∆𝑝𝑓𝑐
|𝜉=

ℎ𝑐𝑚
2

 (A.4.6) 

 𝑝̅𝑐𝑚𝐷|𝜉𝐷=1
= 𝑝̅𝑓𝑐𝐷|𝜉𝐷=1

 (A.4.7) 

The dimensionless form of Eq. A.4.1 

 
𝜕2𝑝𝑐𝑚𝐷

𝜕𝜉𝐷
2 −

3𝜔𝑚𝑐
𝜆𝑐𝑚

𝜕𝑝𝑐𝑚𝐷
𝜕𝑡𝐷

= 0 (A.4.8) 

 

Taking the Laplace transformation and using Eq. A.4.3 

 
𝜕2𝑝̅𝑐𝑚𝐷

𝜕𝜉𝐷
2 −

3𝜔𝑚𝑐
𝜆𝑐𝑚

𝑠𝑝̅𝑐𝑚𝐷(𝜉𝐷, 𝑠) = 0 (A.4.9) 

[𝛼𝑐𝑚 =
3𝜔𝑚𝑐𝑠

𝜆𝑐𝑚
] 

The general solution of the Eq. A.4.9 

 𝑝̅𝑐𝑚𝐷 = 𝐴𝑒𝑥𝑝(−√𝛼𝑐𝑚𝜉𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑐𝑚𝜉𝐷) (A.4.10) 

Now for the inner boundary condition, the Eq. A.4.10 turns to be  

 𝑝̅𝑐𝑚𝐷 = 2𝐵𝑐𝑜𝑠ℎ (√𝛼𝑐𝑚𝑠𝜉𝐷) (A.4.11) 

For the outer boundary condition (Eq. A.4.7) 

𝐵 =
𝑝̅𝑓𝑐𝐷

2𝑐𝑜𝑠ℎ (√𝛼𝑐𝑚)
 

Thus, the final pressure solution for the cake matrix   

 𝑝̅𝑐𝑚𝐷 =
𝑝̅𝑓𝑐𝐷𝑐𝑜𝑠ℎ (√𝛼𝑐𝑚𝜉𝐷)

𝑐𝑜𝑠ℎ (√𝛼𝑐𝑚)
 (A.4.12) 

A.5 Flow in Cake fracture 

The one-dimensional flow equation: 

 
𝜕2∆𝑝𝑓𝑐

𝜕𝑟2
=
(𝜙 𝑐𝑡)𝑓𝑐𝜇

𝑘𝑓𝑐
 
𝜕∆𝑝𝑓𝑐

𝜕𝑡
+

𝜇

𝑘𝑓𝑐
𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑐𝑚 (A.5.1) 

𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑐𝑚 is influx from the cake matrix to the unit volume of fracture at unit time. The 

source term can be evaluated as:  

 𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑐𝑚 =
2𝑘𝑐𝑚
𝜇ℎ𝑐𝑚

𝜕∆𝑝𝑐𝑚
𝜕𝜉

|𝜉=
ℎ𝑐𝑚
2

 (A.5.2) 
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Now Eq. A.5.1 with the source from cake matrix 

 
𝜕2∆𝑝𝑓𝑐

𝜕𝑟2
=
(𝜙 𝑐𝑡)𝑓𝑐𝜇

𝑘𝑓𝑐
 
𝜕∆𝑝𝑓𝑐

𝜕𝑡
+
2𝑘𝑐𝑚
𝑘𝑓𝑐ℎ𝑐𝑚

𝜕∆𝑝𝑐𝑚
𝜕𝜉

|𝜉=
ℎ𝑐𝑚
2

 (A.5.3) 

The dimensionless form of the Eq. A.5.3 

 
𝜕2𝑝𝑓𝑐𝐷

𝜕𝑟𝐷
2 = 

3𝜔𝑓𝑐

𝜆𝑓𝑐

𝜕𝑝𝑓𝑐𝐷

𝜕𝑡𝐷
+ 𝜆𝑓𝑐

′
𝜕𝑝𝑐𝑚𝐷
𝜕𝜉𝐷 |𝜉𝐷=1

 (A.5.4) 

 

𝜕2𝑝̅𝑓𝑐𝐷(𝑟𝐷 , 𝑠)

𝜕𝑟𝐷
2 − 𝛼𝑓𝑐 {𝑠𝑝̅𝑓𝑐𝐷(𝑟𝐷 , 𝑠) − 𝑝

𝑓𝑐𝐷
(𝑟𝐷, 0)} − 𝜆𝑓𝑐

′
𝜕𝑝̅𝑐𝑚𝐷(𝑟𝐷, 𝑠)

𝜕𝜉𝐷 |𝜉𝐷=1

= 0 

Here, 𝛼𝑓𝑐 =
3𝜔𝑓𝑐𝑠

𝜆𝑓𝑐
 that scales up the heterogeneity at the cake fracture only.  

The dimensionless initial condition for the cake fracture 

(A.5.5) 

 𝑝𝑓𝑐𝐷(𝑟𝐷 , 𝑜) = 0 (A.5.6) 

At the inner boundary, there exist a flux continuity with the core matrix 

 𝑞𝑓𝑐(𝑟𝑚𝑐, 𝑡) = 𝑞𝑚𝑐(𝑟𝑚𝑐, 𝑡) (A.5.7) 

The surface area ratio: 

 
𝐴𝑚𝑐
𝐴𝑓𝑐

=
ℎ𝑓𝑐 + ℎ𝑐𝑚

ℎ𝑓𝑐
 (A.5.8) 

Now from the Eq. A.5.7 with value of the surface ratio 

 
𝜕∆𝑝𝑓𝑐

𝜕𝑟 |(𝑟𝑚𝑐,𝑡)
=
𝑘𝑚𝑐(ℎ𝑓𝑐 + ℎ𝑐𝑚)

𝑘𝑓𝑐ℎ𝑓𝑐

𝜕∆𝑝𝑚𝑐
𝜕𝑟 |(𝑟𝑚𝑐,𝑡)

 (A.5.9) 

In dimensionless form after the Laplace transformation 

 
𝜕𝑝̅𝑓𝑐𝐷(𝑟𝐷 , 𝑠)

𝜕𝑟𝐷 |(𝑟𝑚𝑐𝐷,𝑠)

=
𝑘𝑚𝑐(ℎ𝑓𝑐 + ℎ𝑐𝑚)

𝑘𝑓𝑐ℎ𝑓𝑐

𝜕𝑝̅𝑚𝑐𝐷(𝑟𝐷, 𝑠)

𝜕𝑟𝐷 |(𝑟𝑚𝑐𝐷,𝑠)

 (A.5.10) 

Differentiating Eq. A.3.20 

 

𝜕𝑝̅𝑚𝑐𝐷
𝜕𝑟𝐷 |(𝑟𝐷,𝑠)

=
𝑝̅𝑓𝑐𝐷𝑟𝑚𝑐𝐷

sinh(√𝛼𝑚𝑐𝑟𝑚𝑐𝐷)
(
1

𝑟𝐷
cosh  (√𝛼𝑚𝑐𝑟𝐷)√𝛼𝑚𝑐

− sinh(√𝛼𝑚𝑐𝑟𝐷)
1

𝑟𝐷2
) 

(A.5.11) 

Evaluating at 𝑟𝐷 = 𝑟𝑚𝑐𝐷 
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𝜕𝑝̅𝑚𝑐𝐷
𝜕𝑟𝐷 |(𝑟𝑚𝑐𝐷,𝑠)

= 𝑝̅𝑓𝑐𝐷|𝑟𝑚𝑐𝐷
{√𝛼𝑚𝑐 coth(√𝛼𝑚𝑐𝑟𝑚𝑐𝐷) −

1

𝑟𝑚𝑐𝐷
} (A.5.12) 

From the Eq. A.5.10 and Eq. A.5.12 

 
𝜕𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷 |(𝑟𝑚𝑐𝐷,𝑠)

= 𝑝̅𝑓𝑐𝐷|𝑟𝑚𝑐𝐷
β
𝑚𝑐

 (A.5.13) 

Here, β𝑚𝑐 =
𝑘𝑚𝑐(ℎ𝑓𝑐+ℎ𝑐𝑚)

𝑘𝑓𝑐ℎ𝑓𝑐
{√𝛼𝑚𝑐 coth(√𝛼𝑚𝑐𝑟𝑚𝑐𝐷)−

1

𝑟𝑚𝑐𝐷
} 

The outer boundary condition for the cake fracture due to the pressure continuity  

 
∆𝑝𝑓𝑐

|𝑟=
𝑦𝑓
2

= ∆𝑝𝑚𝑓
|𝑟=

𝑦𝑓
2

 
(A.5.14) 

In dimensionless form and in Laplace domain 

 𝑝̅𝑓𝑐𝐷|𝑟𝐷=1
(𝑟𝐷 , 𝑠) = 𝑝̅𝑚𝑓𝐷|𝑟𝐷=1

(𝑟𝐷, 𝑠) (A.5.15) 

Now differentiating the Eq. A.4.12 

 
𝜕𝑝̅𝑐𝑚𝐷
𝜕𝜉𝐷 |(𝜉𝐷,𝑠)

=
𝑝̅𝑓𝑐𝐷𝑠𝑖𝑛ℎ (√𝛼𝑐𝑚𝜉𝐷)√𝛼𝑐𝑚

𝑐𝑜𝑠ℎ (√𝛼𝑐𝑚)
 (A.5.16) 

Evaluating at 𝜉𝐷 = 1 

 
𝜕𝑝̅𝑐𝑚𝐷
𝜕𝜉𝐷 |(𝜉𝐷=1,𝑠)

= 𝑝̅𝑓𝑐𝐷|𝜉𝐷=1
√𝛼𝑐𝑚 tanh(√𝛼𝑐𝑚) (A.5.17) 

Substitute Eq. A.5.6 and Eq. A.5.17 in the Eq. A.5.5 

 
𝜕2𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷
2 − (𝛼𝑓𝑐 + 𝜆𝑓𝑐

′ √𝛼𝑐𝑚 tanh(√𝛼𝑐𝑚))𝑝̅𝑓𝑐𝐷(𝑟𝐷, 𝑠) = 0 (A.5.18) 

Assuming that   𝑝̅𝑓𝑐𝐷 ≠ 𝑓(𝜉) 

 
𝜕2𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷
2 − 𝛼𝑓𝑐

′ 𝑝̅𝑓𝑐𝐷 = 0 (A.5.19) 

Here, 𝛼𝑓𝑐
′ = 𝛼𝑓𝑐 + 𝜆𝑓𝑐

′ √𝛼𝑐𝑚 tanh(√𝛼𝑐𝑚) 

The general solution of the Eq. A.5.19 

 𝑝̅𝑓𝑐𝐷 = 𝐴𝑒𝑥𝑝 (−√𝛼𝑓𝑐
′ 𝑟𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑓𝑐

′ 𝑟𝐷) (A.5.20) 

From the Eq. A.5.20 

 
𝜕𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷 |(𝑟𝐷=𝑟𝑚𝑐𝐷,𝑠)

= −√𝛼𝑓𝑐
′ 𝐴𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ 𝑟𝑚𝑐𝐷) + √𝛼𝑓𝑐
′ 𝐵𝑒𝑥𝑝(√𝛼𝑓𝑐

′ 𝑟𝑚𝑐𝐷) (A.5.21) 
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Substitute the Eq. A.5.21 and Eq. A.5.20 in the Eq. A.5.13 

 

−√𝛼𝑓𝑐
′ 𝐴𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ 𝑟𝑚𝑐𝐷) + √𝛼𝑓𝑐
′ 𝐵𝑒𝑥𝑝(√𝛼𝑓𝑐

′ 𝑟𝑚𝑐𝐷)

= β
𝑚𝑐
{𝐴𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ 𝑟𝑚𝑐𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑓𝑐
′ 𝑟𝑚𝑐𝐷)} 

(A.5.22) 

 𝐴 = 𝐵

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 𝑒𝑥𝑝(2√𝛼𝑓𝑐
′ 𝑟𝑚𝑐𝐷) (A.5.23) 

Substitute the value of A in the Eq. A.5.20 

 

𝑝̅𝑓𝑐𝐷 = 𝐵𝑒𝑥𝑝(√𝛼𝑓𝑐
′ 𝑟𝑚𝑐𝐷)

{
 

 

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 𝑒𝑥𝑝 (√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 𝑟𝐷))

+ 𝑒𝑥𝑝 (−√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 𝑟𝐷))

}
 

 

 

(A.5.24) 

Using the outer boundary condition (Eq. A.5.15) in the Eq. A.5.24 

 

 

𝐵 =
𝑝̅𝑚𝑓𝐷|𝑟𝐷=1

𝑒𝑥𝑝(√𝛼𝑓𝑐
′ 𝑠𝑟𝑚𝑐𝐷)

{
 

 

(

 
√𝛼𝑓𝑐

′ − 𝛽𝑚𝑐

√𝛼𝑓𝑐
′ + 𝛽𝑚𝑐

)

 𝑒𝑥𝑝 (√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 1)) + 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1))

}
 

 

 

(A.5.25) 

 

From the Eq. A.5.24 and Eq. A.5.25 



159 

 

 

𝑝̅𝑓𝑐𝐷

= 𝑝̅𝑚𝑓𝐷|𝑟𝐷=1
(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 𝑒𝑥𝑝 (√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 𝑟𝐷)) + 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 𝑟𝐷))

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 𝑒𝑥𝑝 (√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 1)) + 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1))

 

(A.5.26

) 

 

𝑝̅𝑓𝑐𝐷 = 𝑝̅𝑚𝑓𝐷|𝑟𝐷=1
1

𝛽𝑓𝑐
{
 

 

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 𝑒𝑥𝑝 (√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 𝑟𝐷))

+ 𝑒𝑥𝑝 (−√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 𝑟𝐷))

}
 

 

 

(A.5.27) 

𝐻𝑒𝑟𝑒, 𝛽𝑓𝑐 =

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 𝑒𝑥𝑝 (√𝛼𝑓𝑐
′ (𝑟𝑚𝑐𝐷 − 1)) + 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1)) 

 

A.6 Flow in the Micro-fracture 

According to Swaan O (1976), at the transient condition the flow from the matrix block to 

the half of the volume of fracture at unit time is  

  

 𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑓𝑐 =
2𝑘𝑓𝑐ℎ𝑓𝑐

𝜇ℎ𝑚𝑓(ℎ𝑐𝑚 + ℎ𝑓𝑐)

𝜕∆𝑝𝑓𝑐

𝜕𝑟 |𝑟=
𝑦𝑓
2

 (A.6.1) 

The fluid flow equation for the micro-fracture 

 
𝜕2∆𝑝𝑚𝑓

𝜕𝑧2
=
(𝜙 𝑐𝑡)𝑚𝑓𝜇

𝑘𝑚𝑓
 
𝜕∆𝑝𝑚𝑓

𝜕𝑡
+

𝜇

𝑘𝑚𝑓
𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑓𝑐 (A.6.2) 

With the Source term 
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𝜕2∆𝑝𝑚𝑓

𝜕𝑧2
=
(𝜙 𝑐𝑡)𝑚𝑓𝜇

𝑘𝑚𝑓
 
𝜕∆𝑝𝑚𝑓

𝜕𝑡
+

2𝑘𝑓𝑐ℎ𝑓𝑐

𝑘𝑚𝑓ℎ𝑚𝑓(ℎ𝑐𝑚 + ℎ𝑓𝑐)

𝜕∆𝑝𝑓𝑐
𝜕𝑟 |𝑟=

𝑦𝑓
2

 (A.6.3) 

The dimensionless form of the Eq. A.6.3 

 
𝜕2𝑝𝑚𝑓𝐷

𝜕𝑧𝐷
2 = 

3𝜔𝑚𝑓

𝜆𝑚𝑓

𝜕𝑝𝑚𝑓𝐷

𝜕𝑡𝐷
+ 𝜆𝑓𝑐𝑓

𝜕𝑝𝑓𝑐𝐷

𝜕𝑟𝐷 |𝑟𝐷=1

 (A.6.4) 

Initial condition for the micro-fracture 

 ∆𝑝𝑚𝑓(𝑧, 𝑜) =0 (A.6.5) 

 𝑝𝑚𝑓𝐷(𝑧𝐷, 𝑜) = 0 (A.6.6) 

The inner boundary conditions 

 
𝜕∆𝑝𝑚𝑓

𝜕𝑧 |𝑧=0,𝑡
= 0 (A.6.7) 

 
𝜕𝑝̅𝑚𝑓𝐷(𝑧, 𝑠)

𝜕𝑧𝐷 |𝑧𝐷=𝑜,𝑠

= 0 (A.6.8) 

The outer boundary conditions 

 
∆𝑝𝑚𝑓

|𝑧=
𝐿𝑓
2

= ∆𝑝𝑀𝐹
|𝑧=

𝐿𝑓
2

 
(A.6.9) 

 𝑝̅𝑚𝑓𝐷|𝑧𝐷=1,𝑠
= 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1,𝑠

 (A.6.10) 

Differentiating Eq. A.5.27 

 

𝜕𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷 |(𝑟𝐷,𝑠)

= −𝑝̅𝑚𝑓𝐷|𝑟𝐷=1
1

𝛽𝑓𝑐
{
 

 

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 √𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷

− 𝑟𝐷)) − √𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 𝑟𝐷))

}
 

 

 

(A.6.11) 
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𝜕𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷 |(𝑟𝐷=1)

= −𝑝̅𝑚𝑓𝐷|𝑟𝐷=1
1

𝛽𝑓𝑐
{
 

 

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 √𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷

− 1)) − √𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1))

}
 

 

 

(A.6.12) 

 
𝜕𝑝̅𝑓𝑐𝐷

𝜕𝑟𝐷 |(𝑟𝐷=1)

= −𝑝̅𝑚𝑓𝐷|𝑟𝐷=1
𝛽𝑓𝑐
′  (A.6.13) 

𝐻𝑒𝑟𝑒, 𝛽𝑓𝑐
′ =

1

𝛽𝑓𝑐
{
 

 

(

 
√𝛼𝑓𝑐

′ − β
𝑚𝑐

√𝛼𝑓𝑐
′ + β

𝑚𝑐)

 √𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1))

− √𝛼𝑓𝑐
′ 𝑒𝑥𝑝 (−√𝛼𝑓𝑐

′ (𝑟𝑚𝑐𝐷 − 1))

}
 

 

 

Using Eq. A.6.6 and Eq. A.6.13 in Eq. A.6.4 in Laplace domain 

 
𝜕2𝑝̅𝑚𝑓𝐷

𝜕𝑧𝐷
2 − (

3𝜔𝑚𝑓𝑠

𝜆𝑚𝑓
− 𝛽𝑓𝑐

′ 𝜆
𝑓𝑐𝑓
) 𝑝̅𝑚𝑓𝐷 = 0 (A.6.14) 

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔, ∆𝑝̅̅̅̅ 𝑚𝑓𝐷 ≠ 𝑓(𝑟)] 

 
𝜕2𝑝̅𝑚𝑓𝐷

𝜕𝑧𝐷
2 − 𝛽𝑚𝑓𝑝̅𝑚𝑓𝐷 = 0 (A.6.15) 

𝐻𝑒𝑟𝑒, 𝛽𝑚𝑓 =
3𝜔𝑚𝑓𝑠

𝜆𝑚𝑓
− 𝛽𝑓𝑐

′ 𝜆
𝑓𝑐𝑓

 

 

 

The general solution of the Eq. A.6.15 

 𝑝̅𝑚𝑓𝐷 = 𝐴𝑒𝑥𝑝 (−√𝛽𝑚𝑓𝑧𝐷) + 𝐵𝑒𝑥𝑝(√𝛽𝑚𝑓𝑧𝐷) (A.6.16) 

Apply the inner boundary condition (Eq. A.6.8) 
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 A=B (A.6.17) 

 𝑝̅𝑚𝑓𝐷 = 2𝐵𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓𝑧𝐷) (A.6.18) 

The outer boundary condition yields 

 𝐵 =
𝑝̅𝑀𝐹𝐷|𝑧𝐷=1

2𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓)
 (A.6.19) 

Thus, the final pressure solution for the micro-fracture is 

 𝑝̅𝑚𝑓𝐷 = 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1

𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓𝑧𝐷)

𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓)
 (A.6.20) 

A.7 Flow in the Macro-fracture 

The flow equation: 

 
𝜕2∆𝑝𝑀𝐹
𝜕𝑥2

+
𝜕2∆𝑝𝑀𝐹
𝜕𝑦2

=
(𝜙 𝑐𝑡)𝑀𝐹𝜇

𝑘𝑀𝐹
 
𝜕∆𝑝𝑀𝐹
𝜕𝑡

+
𝜇

𝑘𝑀𝐹
𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚𝑓 (A.7.1) 

The source term from the micro fracture to macro fracture is 𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚𝑓 . Under the transient flow 

condition transient flow, the flow from unit volume of the micro-fracture at unit time 

 𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚𝑓 =
𝑘𝑚𝑓
𝐿𝑓
2
𝜇

𝜕∆𝑝𝑚𝑓

𝜕𝑧 |𝑧=
𝐿𝑓
2

 (A.7.2) 

From the Eq. A.7.1 and Eq. A.7.2 

 
𝜕2∆𝑝𝑀𝐹
𝜕𝑥2

+
𝜕2∆𝑝𝑀𝐹
𝜕𝑦2

−
2

𝐿𝑓

𝑘𝑚𝑓

𝑘𝑀𝐹

𝜕∆𝑝𝑚𝑓
𝜕𝑧 |𝑧=

𝐿𝑓
2

=
(𝜙 𝑐𝑡)𝑀𝐹𝜇

𝑘𝑀𝐹
 
𝜕∆𝑝𝑀𝐹
𝜕𝑡

 (A.7.3) 

Integrating Eq. A.7.3 with respect to x 

 

∫ (
𝜕2∆𝑝𝑀𝐹

𝜕𝑥2
)

𝑥𝐻𝐹

0
𝜕𝑥+∫ (

𝜕2∆𝑝𝑀𝐹

𝜕𝑦2
)

𝑥𝐻𝐹

0
𝜕𝑥 −

∫ (
2

𝐿𝑓

𝑘𝑚𝑓

𝑘𝑀𝐹

𝜕∆𝑝𝑚𝑓

𝜕𝑧 |𝑧=
𝐿𝑓

2

)
𝑥𝐻𝐹

0
𝜕𝑥=∫ (

(𝜙 𝑐𝑡)𝑀𝐹𝜇

𝑘𝑀𝐹
 
𝜕∆𝑝𝑀𝐹

𝜕𝑡
)

𝑥𝐻𝐹

0
𝜕𝑥 

(A.7.4) 

Assuming the pseudo-function assumption: 

𝜕∆𝑝𝑀𝐹
𝜕𝑦

≠ 𝑓(𝑥) 
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𝜕∆𝑝𝑚𝑓

𝜕𝑧
≠ 𝑓(𝑥) 

By using these relation in Eq. A.7.4 

 
1

𝑥𝐻𝐹

𝜕∆𝑝𝑀𝐹
𝜕𝑥

+
𝜕2∆𝑝𝑀𝐹
𝜕𝑦2

−
2

𝐿𝑓

𝑘𝑚𝑓

𝑘𝑀𝐹

𝜕∆𝑝𝑚𝑓
𝜕𝑧 |𝑧=

𝐿𝑓
2

=
(𝜙 𝑐𝑡)𝑀𝐹𝜇

𝑘𝑀𝐹
 
𝜕∆𝑝𝑀𝐹
𝜕𝑡

 (A.7.5) 

In dimensionless form 

 
𝜕𝑝𝑀𝐹𝐷
𝜕𝑥𝐷

+
𝜕2𝑝𝑀𝐹𝐷

𝜕𝑦𝐷
2 −

𝜆𝑚𝑓

3

𝜕𝑝𝑚𝑓𝐷

𝜕𝑧𝐷 |𝑧𝐷=1

=
𝜕𝑝

𝑀𝐹𝐷

𝜕𝑡𝐷
 (A.7.6) 

After Laplace transformation  

 
𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑥𝐷

+
𝜕2𝑝̅𝑀𝐹𝐷

𝜕𝑦𝐷
2 −

𝜆𝑚𝑓

3

𝜕𝑝̅𝑚𝑓𝐷

𝜕𝑧𝐷 |𝑧𝐷=1

= 𝑠𝑝̅𝑀𝐹𝐷 − 𝑝𝑀𝐹𝐷|𝑡𝐷=0
 (A.7.7) 

The initial condition for the macro-fracture 

 ∆𝑝𝑀𝐹(𝑥, 𝑦, 𝑜) = 𝑝𝑖 (A.7.8) 

 𝑝𝑀𝐹𝐷(𝑥𝐷,𝑦𝐷,𝑡𝐷=0) = 0 (A.7.9) 

Inner boundary condition in the 𝑥 direction 

 𝑞0(𝑥𝐻𝐹, 𝑦, 𝑡) = 𝑞𝑀𝐹(𝑥𝐻𝐹 , 𝑦, 𝑡) (A.7.10) 

 
𝑘𝛼𝑜(ℎ𝑀𝐹 + 𝐿𝑓)

𝜇

𝜕1−𝛼𝑜

𝜕𝑡1−𝛼𝑜
(
𝜕∆𝑝0
𝜕𝑥

)
𝑥=𝑥𝐻𝐹

=
𝑘𝑀𝐹ℎ𝑀𝐹

𝜇
(
𝜕∆𝑝𝑀𝐹𝐷
𝜕𝑥

)
𝑥=𝑥𝐻𝐹

 (A.7.11) 

 

 

 

 

In dimensionless form 

 

(
𝜕𝑝𝑀𝐹𝐷
𝜕𝑥𝐷

)
𝑥𝐷=1

=
𝑘𝛼𝑜(ℎ𝑀𝐹 + 𝐿𝑓)

𝑘𝑀𝐹ℎ𝑀𝐹
(
(𝜙 𝑐𝑡)𝑀𝐹𝜇𝑥𝐻𝐹

2

𝑘𝑀𝐹
)

𝛼𝑜−1
𝜕1−𝛼𝑜

𝜕𝑡𝐷
1−𝛼𝑜 (

𝜕𝑝0𝐷
𝜕𝑥𝐷

)
𝑥𝐷=1

 

(A.7.12) 

In Laplace domain 
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(
𝜕𝑝̅𝑀𝐹𝐷(𝑥, 𝑦, 𝑠)

𝜕𝑥𝐷
)
𝑥𝐷=1

= 𝐶𝑂𝑀𝐹 (
(𝜙 𝑐𝑡)𝑀𝐹𝜇𝑥𝐻𝐹

2

𝑘𝑀𝐹
)

𝛼𝑜−1

𝑠1−𝛼𝑜 (
𝜕𝑝̅𝑜𝐷(𝑥, 𝑦, 𝑠)

𝜕𝑥𝐷
)
𝑥𝐷=1

 

(A.7.13) 

Here, 𝐶𝑂𝑀𝐹 =
𝑘𝛼𝑜(ℎ𝑀𝐹+𝐿𝑓)

𝑘𝑀𝐹ℎ𝑀𝐹
 

Differentiating the Eq. A.2.27 

 
(
𝜕𝑝̅𝑜𝐷
𝜕𝑥𝐷

) = 𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
1 

cosh(√𝛽𝑜(𝑥𝑒𝐷 − 1))
−√𝛽𝑜sinh(√𝛽𝑜(𝑥𝑒𝐷

− 𝑥𝐷)) 

(A.7.14) 

 (
𝜕𝑝̅𝑜𝐷
𝜕𝑥𝐷

)
𝑥𝐷=1

= −𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
√𝛽𝑜 tanh (√𝛽𝑜(𝑥𝑒𝐷 − 1)) (A.7.15) 

 (
𝜕𝑝̅𝑜𝐷
𝜕𝑥𝐷

)
𝑥𝐷=1

= −𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
𝛽𝑂𝑀𝐹 (A.7.16) 

Substituting the value of Eq. A.7.16 in the Eq. A.7.13 

 (
𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑥𝐷

)
𝑥𝐷=1

= −𝐶𝑂𝑀𝐹 (
(𝜙 𝑐𝑡)𝑀𝐹𝜇𝑥𝐻𝐹

2

𝑘𝑀𝐹
)

𝛼𝑜−1

𝑠1−𝛼𝑜𝛽𝑂𝑀𝐹𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
 (A.7.17) 

 (
𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑥𝐷

)
𝑥𝐷=1

= −𝛽𝑂𝑀𝐹𝐷𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
 (A.7.18) 

Differentiating the Eq. A.6.20 

 

𝜕𝑝̅𝑚𝑓𝐷

𝜕𝑧𝐷 |𝑧𝐷=1

= 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1
√𝛽𝑚𝑓 tanh  (√𝛽𝑚𝑓) (A.7.19) 

Using the A.7.9, A.7.18, A.7.19 in A.7.7 

 

−𝛽𝑂𝑀𝐹𝐷𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
+
𝜕2𝑝̅𝑀𝐹𝐷

𝜕𝑦𝐷
2 −

𝜆𝑚𝑓

3
√𝛽𝑚𝑓 tanh  (√𝛽𝑚𝑓) 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1

− 𝑠∆𝑝̅̅̅̅ 𝑀𝐹𝐷 = 0 

(A.7.20) 

According to the pseudo-function assumption 𝑝̅𝑀𝐹𝐷 is not the function of micro-fracture 

and outer reservoir. So, it can be assumed that  𝑝̅𝑀𝐹𝐷|𝑥𝐷=1
= 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1

= 𝑝̅𝑀𝐹𝐷. 

Therefore, A.7.20 gives  
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𝜕2𝑝̅𝑀𝐹𝐷

𝜕𝑦𝐷
2 − 𝛽𝑀𝐹𝑝̅𝑀𝐹𝐷 = 0 (A.7.21) 

Here 𝛽𝑀𝐹 = 𝛽𝑂𝑀𝐹𝐷 +
𝜆𝑚𝑓

3
√𝛽𝑚𝑓 tanh  (√𝛽𝑚𝑓) + 𝑠 

The general solution of the Eq. A.7.21 

 𝑝̅𝑀𝐹𝐷 = 𝐴𝑒𝑥𝑝(−√𝛽𝑀𝐹𝑦𝐷) + 𝐵𝑒𝑥𝑝(√𝛽𝑀𝐹𝑦𝐷) (A.7.22) 

In the inner boundary of the 𝑦 axis, there is a no flow boundary. So 

 

𝜕∆𝑝𝑀𝐹
𝜕𝑦 |𝑦=𝑦𝑒

= 0 (A.7.23) 

 

𝜕𝑝̅𝑀𝐹𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑠)

𝜕𝑦𝐷 |𝑦𝐷=𝑦𝑒𝐷,𝑠

= 0 (A.7.24) 

Pressure continuity at the outer reservoir yields 

 
∆𝑝𝑀𝐹

|𝑦=
𝑤
2

= ∆𝑝𝐻𝐹
|𝑦=

𝑤
2

 (A.7.25) 

 
𝑝̅𝑀𝐹𝐷

|𝑦𝐷=
𝑤𝐷
2

= 𝑝̅𝐻𝐹𝐷
|𝑦𝐷=

𝑤𝐷
2

 (A.7.26) 

Now from the Eq. A.7.22 

 

𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑦𝐷 |𝑦𝐷=𝑦𝑒𝐷,𝑠

= 0

= −√𝛽𝑀𝐹𝐴𝑒𝑥𝑝(−√𝛽𝑀𝐹𝑦𝑒𝐷) + √𝛽𝑀𝐹𝐵𝑒𝑥𝑝(√𝛽𝑀𝐹𝑦𝑒𝐷) 

(A.7.27) 

 𝐴 = 𝐵𝑒𝑥𝑝(2√𝛽𝑀𝐹𝑦𝑒𝐷) (A.7.28) 

From the Eq. A.7.22 and A.7.28 

 𝑝̅𝑀𝐹𝐷 = 𝐵𝑒𝑥𝑝(√𝛽𝑀𝐹𝑦𝑒𝐷)2 cosh(√𝛽𝑀𝐹(𝑦𝑒𝐷 − 𝑦𝐷)) (A.7.29) 

Using the outer boundary condition 

 𝐵 =

𝑝̅𝐻𝐹𝐷
|𝑦𝐷=

𝑤𝐷
2

2𝑒𝑥𝑝(√𝛽𝑀𝐹𝑦𝑒𝐷) cosh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −
𝑤𝐷
2 ))

 (A.7.30) 

The final pressure solution for the macro-fracture is derived from the Eq. A.7.29 and Eq. 

A.7.30 

 𝑝̅𝑀𝐹𝐷 = 𝑝̅𝐻𝐹𝐷
|𝑦𝐷=

𝑤𝐷
2

cosh(√𝛽𝑀𝐹(𝑦𝑒𝐷 − 𝑦𝐷))

cosh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −
𝑤𝐷
2 ))

 (A.7.31) 
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A.8 Flow in the Hydraulic fracture 

Eq. A.1.20 is the characteristics equation for the fluid flow in the hydraulic fracture. The 

governing equation is 

 
𝜕

𝜕𝑥
(
𝑘𝛽

𝜇

𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

) +
𝜕

𝜕𝑦
(
𝑘𝛽

𝜇

𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑦𝛽

) = (𝜙 𝑐𝑡)𝐻𝐹  
𝜕∆𝑝𝐻𝐹
𝜕𝑡

 (A.8.1) 

 
𝜕

𝜕𝑥
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

) +
𝜕

𝜕𝑦
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑦𝛽

) =
(𝜙 𝑐𝑡)𝐻𝐹𝜇

𝑘𝛽
 
𝜕∆𝑝𝐻𝐹
𝜕𝑡

 (A.8.2) 

Integrating the Eq. A.8.2 along the y axis 

 ∫ (
𝜕

𝜕𝑥
(
𝜕𝛽∆𝑝𝐻𝐹

𝜕𝑥𝛽
))

𝑤

2
0

𝜕𝑦+∫ (
𝜕

𝜕𝑦
(
𝜕𝛽∆𝑝𝐻𝐹

𝜕𝑦𝛽
))

𝑤

2
0

𝜕𝑦 =∫ (
(𝜙 𝑐𝑡)𝐻𝐹𝜇

𝑘𝛽
 
𝜕∆𝑝𝐻𝐹

𝜕𝑡
)

𝑤

2
0

𝜕𝑦 (A.8.3) 

Pseudo-function assumption 

 
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

≠ 𝑓(𝑦) (A.8.4) 

That implies 

 
𝜕

𝜕𝑥
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

) +
2

𝑤
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑦𝛽

)

𝑦=
𝑤
2

=
(𝜙 𝑐𝑡)𝐻𝐹𝜇

𝑘𝛽
 
𝜕∆𝑝𝐻𝐹
𝜕𝑡

 (A.8.5) 

The Dimensionless form of the Eq. A.8.5 

 
𝜕

𝜕𝑥𝐷
(
𝜕𝛽𝑝𝐻𝐹𝐷
𝜕𝑥𝐷𝛽

)+
2

𝑤𝐷
(
𝜕𝛽𝑝𝐻𝐹𝐷
𝜕𝑦

𝐷
𝛽
)
𝑦𝐷=

𝑤𝐷
2

= 𝜔𝐻𝐹𝜆𝐴𝐹
𝜕𝑝

𝐻𝐹𝐷

𝜕𝑡𝐷
 (A.8.6) 

 
𝜕

𝜕𝑥𝐷
(
𝜕𝛽𝑝𝐻𝐹𝐷
𝜕𝑥𝐷𝛽

) +
2

𝑤𝐷
(
𝜕𝛽𝑝𝐻𝐹𝐷
𝜕𝑦

𝐷
𝛽
)
𝑦𝐷=

𝑤𝐷
2

= 𝑀𝐷𝐴𝐻𝐹

𝜕𝑝
𝐻𝐹𝐷

𝜕𝑡𝐷
 (A.8.7) 

Initial Condition for the hydraulic fracture 

 ∆𝑝𝐻𝐹(𝑥, 𝑦, 𝑜) = 0 (A.8.8) 

 𝑝𝐻𝐹𝐷(𝑥𝐷, 𝑦𝐷, 𝑜) = 0 (A.8.9) 

At the outer boundary of 𝑦 axis, there is a continuity of flux between the hydraulic 

fracture and the macro-fracture 

 𝑞𝐻𝐹 (𝑦 =
𝑤

2
, 𝑡) = 𝑞𝑀𝐹 (𝑦 =

𝑤

2
, 𝑡) (A.8.10) 
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 (
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑦𝛽

)
𝑦=

𝑤
2

=
𝑘𝑀𝐹ℎ𝑀𝐹

𝑘𝛽(ℎ𝑀𝐹 + 𝐿𝑓)
(
𝜕∆𝑝𝑀𝐹
𝜕𝑦

)
𝑦=

𝑤
2

 (A.8.11) 

 (
𝜕𝛽𝑝𝐻𝐹𝐷
𝜕𝑦

𝐷
𝛽
)
𝑦𝐷=

𝑤𝐷
2

= 𝜆𝐴𝐹
′ (

𝜕𝑝𝑀𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

 (A.8.12) 

 (
𝜕𝛽𝑝̅𝐻𝐹𝐷
𝜕𝑦

𝐷
𝛽
)
𝑦𝐷=

𝑤𝐷
2

= 𝜆𝐴𝐹
′ (

𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

 (A.8.13) 

From the Eq. A.7.31 

 (
𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

= −√𝛽𝑀𝐹 tanh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −
𝑤𝐷
2
)) 𝑝̅𝐻𝐹𝐷

|𝑦𝐷=
𝑤𝐷
2

 (A.8.14) 

Substituting the Eq. A.8.14 in Eq. A.8.13 

 (
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑦

𝐷
𝛽
)
𝑦𝐷=

𝑤𝐷
2

= −𝜆𝐴𝐹
′ √𝛽𝑀𝐹 tanh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −

𝑤𝐷
2
)) 𝑝̅𝐻𝐹𝐷

|𝑦𝐷=
𝑤𝐷
2

 (A.8.15) 

 (
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑦

𝐷
𝛽
)
𝑦𝐷=

𝑤𝐷
2

= −𝛽𝑀𝐻𝐹𝑝̅𝐻𝐹𝐷
|𝑦𝐷=

𝑤𝐷
2

 (A.8.16) 

Laplace transformation of Eq. A.8.7 

 

𝜕

𝜕𝑥𝐷
(
𝜕𝛽𝑝̅𝐻𝐹𝐷(𝑥, 𝑦, 𝑠)

𝜕𝑥𝐷𝛽
) +

2

𝑤𝐷
(
𝜕𝛽𝑝̅𝐻𝐹𝐷(𝑥, 𝑦, 𝑠)

𝜕𝑦
𝐷
𝛽

)
𝑦𝐷=

𝑤𝐷
2

= 𝑀𝐷𝐴𝐻𝐹(𝑠𝑝̅𝐻𝐹𝐷 − 𝑝
𝐻𝐹𝐷

(𝑥, 𝑦, 0)) 

(A.8.17) 

Using Eq. A.8.9 and Eq. A.8.16 in Eq. A.8.17 

 
𝜕

𝜕𝑥𝐷
(
𝜕𝛽𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷𝛽

) −
2

𝑤𝐷
𝛽𝑀𝐻𝐹𝑝̅𝐻𝐹𝐷

|𝑦𝐷=
𝑤𝐷
2

= 𝑀𝐷𝐴𝐻𝐹𝑠𝑝̅𝐻𝐹𝐷 (A.8.18) 

Linear flow assumption implies that the magnitude of the macro-fracture pressure is 

independent of the location at the macro-fracture.    

 
𝜕

𝜕𝑥𝐷
(
𝜕𝛽𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷𝛽

)− 𝛽𝐻𝐹𝑝̅𝐻𝐹𝐷 = 0 (A.8.19) 

Here 𝛽𝐻𝐹 =
2

𝑤𝐷
𝛽𝑀𝐻𝐹 +𝑀𝐷𝐴𝐻𝐹𝑠 

The Laplace transformation of the Eq. A.8.19 for the space is 
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𝑠̃[𝑠̃𝛽𝑝̿(𝑠, 𝑠̃) − 𝑠̃𝛽−1𝑝̅𝐻𝐹𝐷(0, 𝑠)] − (
𝜕𝛽𝑝̅𝐻𝐹𝐷(𝑥𝐷 , 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

− 𝛽𝐻𝐹𝑝̿(𝑠, 𝑠̃)

= 0 

[𝑠̃𝛽+1∆𝑝̿̿̿̿ (𝑠, 𝑠̃) − 𝑠̃𝛽∆𝑝̅̅̅̅ 𝐻𝐹𝐷(0, 𝑠) − (
𝜕∆𝑝̅̅̅̅ 𝐻𝐹𝐷(𝑥𝐷 , 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

− 𝛽𝐻𝐹∆𝑝̿̿̿̿ (𝑠, 𝑠̃)

= 0 

∆𝑝̿̿̿̿ (𝑠, 𝑠̃)(𝑠̃𝛽+1 − 𝛽𝐻𝐹) − 𝑠̃
𝛽∆𝑝̅̅̅̅ 𝐻𝐹𝐷(0, 𝑠) − (

𝜕∆𝑝̅̅̅̅ 𝐻𝐹𝐷(𝑥𝐷, 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

= 0] 

 

(A.8.20) 

 
𝑝̿(𝑠, 𝑠̃) =

𝑠̃𝛽

𝑠̃𝛽+1 − 𝛽𝐻𝐹
𝑝̅𝐻𝐹𝐷(0, 𝑠) + 

1

𝑠̃𝛽+1 − 𝛽𝐻𝐹
(
𝜕𝛽𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

= 0 

(A.8.21) 

From the definition of the Mittag-Leffler function 

 ℒ[𝑥𝛽−1𝐸𝛼,𝛽(𝑎𝑥
𝛼)] =

𝑠𝛼−𝛽

𝑠𝛼 − 𝑎
 (A.8.22) 

Inverting the Eq. A.8.21 with properties of A.8.22 

 

𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠) = 𝑝̅𝐻𝐹𝐷(0, 𝑠)𝐸𝛽+1(𝛽𝐻𝐹𝑥𝐷
𝛽+1)

+ 𝑥𝐷
𝛽𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹𝑥𝐷

𝛽+1) (
𝜕𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠)

𝜕𝑥𝐷𝛽
)
𝑥𝐷=0

 
(A.8.23) 

Constant flow rate at the inner boundary at the 𝑥 direction gives 

 𝑢 = −
𝑘𝛽

𝜇
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

)

𝑥=0

 (A.8.24) 

An integration is done to determine the total flow 

 ∫ ∫ 𝑢

ℎ
2

0

𝜕𝑧𝜕𝑦

𝑤
2

0

= −
𝑘𝛽

𝜇
∫ ∫ (

𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

)

ℎ
2

0
𝑥=0

𝜕𝑧𝜕𝑦

𝑤
2

0

 (A.8.25) 

 
𝑞

4 ∗ 2
= −

𝑘𝛽

𝜇

𝑤

2

ℎ

2
(
𝜕𝛽∆𝑝𝐻𝐹
𝜕𝑥𝛽

)

𝑥=0

 (A.8.26) 

In dimensionless form 
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 (
𝜕𝛽𝑝𝐻𝐹𝐷
𝜕𝑥𝐷𝛽

)
𝑥𝐷=0

= −
𝜋𝑘𝑀𝐹𝑥𝐻𝐹

𝛽

𝐵𝑤𝑘𝛽
 (A.8.27) 

 (
𝜕𝛽𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷𝛽

)
𝑥𝐷=0

= −
𝜋

𝑐𝐴𝐹𝐷𝑠
 (A.8.28) 

This inner boundary condition is substituted in the Eq. A.8.23 

 

𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠) = 𝑝̅𝐻𝐹𝐷(0, 𝑠)𝐸𝛽+1(𝛽𝐻𝐹𝑥𝐷
𝛽+1)

−
𝜋

𝑐𝐴𝐹𝐷𝑠
𝑥𝐷

𝛽𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹𝑥𝐷
𝛽+1) 

(A.8.29) 

Due to a no-flow boundary at the tip of the hydraulic fracture  

 
𝜕∆𝑝𝐻𝐹 
𝜕𝑥 |𝑥=𝑥𝐻𝐹,𝑡

= 0 (A.8.30) 

 
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷 |𝑥𝐷=1,𝑠

= 0 (A.8.31) 

Using the derivative properties of the Mittag-Leffler function (Hombole et. al., 2011) 

 
𝑑

𝑑𝑥𝐷
[𝑥𝐷

𝛽𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹𝑥𝐷
𝛽+1)] = 𝑥𝐷

𝛽−1𝐸𝛽+1,𝛽(𝛽𝐻𝐹𝑥𝐷
𝛽+1) (A.8.32) 

From Fomin et. al., 2010 

 
𝑑

𝑑𝑥
[𝐸𝛽+1(𝛽𝐻𝐹𝑥𝐷

𝛽+1)] = 𝛽𝐻𝐹𝑥𝐷
𝛽𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹𝑥𝐷

𝛽+1) (A.8.33) 

Through the Eq. A.8.29, Eq. A.8.32 and Eq. A.8.33 

 
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷 |𝑥𝐷=1,𝑠

= 𝑝̅𝐻𝐹𝐷(0, 𝑠)𝛽𝐻𝐹𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹) −
𝜋

𝑐𝐴𝐹𝐷𝑠
𝐸𝛽+1,𝛽(𝛽𝐻𝐹) = 0 (A.8.34) 

 𝑝̅𝐻𝐹𝐷(0, 𝑠) =
𝜋𝐸𝛽+1,𝛽(𝛽𝐻𝐹)

𝑐𝐴𝐹𝐷𝑠𝛽𝐻𝐹𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹)
 (A.8.35) 

Substitute Eq. A.8.35 in Eq. A.8.29 

 

𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝐷𝑠
{

𝐸𝛽+1,𝛽(𝛽𝐻𝐹)

𝛽𝐻𝐹𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹)
𝐸𝛽+1(𝛽𝐻𝐹𝑥𝐷

𝛽+1)

− 𝑥𝐷
𝛽𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹𝑥𝐷

𝛽+1)} 

(A.8.36) 

This is the expression for the dimensionless hydraulic fracture pressure for the constant 

terminal rate flow. 
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At  𝑥𝐷 = 0 the hydraulic fracture pressure will be the bottom-hole pressure 

 𝑝̅𝑤𝐷(𝑥𝐷, 𝑠) =
𝜋

𝑐𝐴𝐹𝐷𝑠
{

𝐸𝛽+1,𝛽(𝛽𝐻𝐹)

𝛽𝐻𝐹𝐸𝛽+1,𝛽+1(𝛽𝐻𝐹)
} (A.8.37) 

𝐸𝛽+1(0) ≈ 1 

This is the expression for the dimensionless bottom-hole pressure for the constant 

terminal rate flow. 
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Appendix B 

Derivation of the Flow Solution for A Rectangular Matrix 

Block 
 

The governing flow equation for the matrix block 

 
𝜕2∆𝑝𝑚
𝜕𝜁2

=
(𝜙 𝑐𝑡)𝑚𝜇

𝑘𝑚𝑐
 
𝜕∆𝑝𝑚
𝜕𝑡

 (B.1) 

Dimensionless initial Condition 

 𝑝𝑚𝐷(𝜁𝐷,0) = 0 (B.2) 

Dimensionless inner boundary condition 

 
𝜕𝑝𝑐𝑚𝐷
𝜕𝜁𝐷 |𝜁𝐷=0

= 0 (B.3) 

 
𝜕𝑝̅𝑐𝑚𝐷
𝜕𝜁𝐷 |𝜁𝐷=0

= 0 (B.4) 

Dimensionless outer boundary condition 

 
∆𝑝𝑚

|𝜁=
𝑦𝑓
2

= ∆𝑝𝑚𝑓
|𝜁=

𝑦𝑓
2

 
(B.5) 

 𝑝̅𝑚𝐷|𝜁𝐷=1
= 𝑝̅𝑚𝑓𝐷|𝜁𝐷=1

 (B.6) 

Eq. B.1 in dimensionless form 

 
𝜕2𝑝𝑚𝐷

𝜕𝜁𝐷
2 −

3𝜔𝑚
𝜆𝑚

𝜕𝑝𝑚𝐷
𝜕𝑡𝐷

= 0 (B.7) 

Eq. B.7 in Laplace domain with initial condition 

 
𝜕2𝑝̅𝑚𝐷

𝜕𝜁𝐷
2 − 𝛼𝑚𝑝̅𝑚𝐷(𝜁𝐷, 𝑠) = 0 (B.8) 

Here 𝛼𝑚 = 
3𝜔𝑚𝑠

𝜆𝑚
 

The general Solution 

 𝑝̅𝑚𝐷 = 𝐴𝑒𝑥𝑝(−√𝛼𝑚𝜁𝐷) + 𝐵𝑒𝑥𝑝(√𝛼𝑚𝜁𝐷) (B.9) 

Applying the boundary condition (Eq. B. 4 and Eq. B.6), the pressure solution is derived 



172 

 

 𝑝̅𝑚𝐷 =
𝑝̅𝑚𝑓𝐷𝑐𝑜𝑠ℎ (√𝛼𝑚𝜁𝐷)

𝑐𝑜𝑠ℎ (√𝛼𝑚)
 (B.10) 

A source of flux is transferred to the micro-fracture at 𝜁 =
𝑦𝑓

2
 at transient flow condition and 

evaluated as  

 𝑞𝑆𝑜𝑢𝑟𝑐𝑒,𝑚 =
𝑘𝑚
𝑦𝑓
2
𝜇

𝜕∆𝑝𝑚
𝜕𝜁 |𝜁=

𝑦𝑓
2

 (B.11) 

The flow equation in the micro-fracture with the source term 

 
𝜕2∆𝑝𝑚𝑓

𝜕𝑧2
=
(𝜙 𝑐𝑡)𝑚𝑓𝜇

𝑘𝑚𝑓
 
𝜕∆𝑝𝑚𝑓

𝜕𝑡
+
𝑘𝑚
𝑘𝑚𝑓

2

𝑦𝑓

𝜕∆𝑝𝑚
𝜕𝜁 |𝜁=

𝑦𝑓
2

 (B.12) 

Dimensionless form of Eq. B.12  

 
𝜕2𝑝𝑚𝑓𝐷

𝜕𝑧𝐷
2 = 

3𝜔𝑚𝑓

𝜆𝑚𝑓

𝜕𝑝𝑚𝑓𝐷

𝜕𝑡𝐷
+ 𝜆𝑚𝑓

′
𝜕𝑝𝑚𝐷
𝜕𝜁𝐷 |𝜁=1

 (B.13) 

Differentiating the Eq. B.10 

 
𝜕𝑝̅𝑚𝐷
𝜕𝜉𝐷 |𝜉𝐷=1

= 𝑝̅𝑚𝑓𝐷√𝛼𝑚 tanh(√𝛼𝑚) (B.14) 

Transforming the Eq. B.13 in Laplace domain and using the initial condition and Eq. B.14 

 
𝜕2𝑝̅𝑚𝑓𝐷

𝜕𝑧𝐷
2 − 

3𝜔𝑚𝑓𝑠

𝜆𝑚𝑓
𝑝̅𝑚𝑓𝐷 − 𝛽𝑚𝑝̅𝑚𝑓𝐷|𝜉𝐷=1

= 0 (B.15) 

Here, 𝛽𝑚 = 𝜆𝑚𝑓
′ √𝛼𝑚 tanh(√𝛼𝑚) 

 
𝜕2𝑝̅𝑚𝑓𝐷

𝜕𝑧𝐷
2 − 𝛽𝑚𝑓

′ 𝑝̅𝑚𝑓𝐷 = 0 (B.16) 

𝐻𝑒𝑟𝑒, 𝛽𝑚𝑓
′ =

3𝜔𝑚𝑓𝑠

𝜆𝑚𝑓
+ 𝛽𝑚 

The solution of the Eq. B.16 is follows the same procedure through the Eq. A.616 to Eq. 

A.6.20 and is applying the same boundary condition (Eq. A.6.8 and Eq. A.6.10). The final 

solution is given as 

 𝑝̅𝑚𝑓𝐷 = 𝑝̅𝑀𝐹𝐷|𝑧𝐷=1

𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓
′ 𝑧𝐷)

𝑐𝑜𝑠ℎ (√𝛽𝑚𝑓
′ )

 (B.17) 
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Appendix C  

Derivation of the Pressure Solution for a Two-Dimensional 

Linear Flow in the Hydraulic Fracture 
 

The flow equation in the macro-fracture is the same as in Appendix A (Eq. A.7.31) 

 ∆𝑝̅̅̅̅ 𝑀𝐹𝐷 = ∆𝑝̅̅̅̅ 𝐻𝐹𝐷
|𝑦𝐷=

𝑤𝐷
2

cosh(√𝛽𝑀𝐹(𝑦𝑒𝐷 − 𝑦𝐷))

cosh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −
𝑤𝐷
2 ))

 (C.1) 

The characteristics equation for a two-dimensional flow in the hydraulic fracture 

 
𝜕

𝜕𝑥
(
𝜕∆𝑝𝐻𝐹
𝜕𝑥

) +
𝜕

𝜕𝑦
(
𝜕∆𝑝𝐻𝐹
𝜕𝑦

) =
(𝜙 𝑐𝑡)𝐻𝐹𝜇

𝑘𝐻𝐹
 
𝜕∆𝑝𝐻𝐹
𝜕𝑡

 (C.2) 

Integrating Eq. C.2 along the 𝑦 axis from 0 𝑡𝑜
𝑤

2
 and applying the pseudo-function 

assumption gives   

 
𝜕

𝜕𝑥
(
𝜕∆𝑝𝐻𝐹
𝜕𝑥

) +
2

𝑤
(
𝜕∆𝑝𝐻𝐹
𝜕𝑦

)
𝑦=
𝑤
2

=
(𝜙 𝑐𝑡)𝐻𝐹𝜇

𝑘𝐻𝐹
 
𝜕∆𝑝𝐻𝐹
𝜕𝑡

 (C.3) 

Converting the Eq. C.3 in dimensionless form  

 
𝜕

𝜕𝑥𝐷
(
𝜕𝑝𝐻𝐹𝐷
𝜕𝑥𝐷

) +
2

𝑤𝐷
(
𝜕𝑝𝐻𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

=
(𝜙 𝑐𝑡)𝐻𝐹
(𝜙 𝑐𝑡)𝑀𝐹

𝑘𝑀𝐹

𝑘𝐻𝐹

𝜕𝑝
𝐻𝐹𝐷

𝜕𝑡𝐷
 (C.4) 

 
𝜕

𝜕𝑥𝐷
(
𝜕𝑝𝐻𝐹𝐷
𝜕𝑥𝐷

) +
2

𝑤𝐷
(
𝜕𝑝𝐻𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

= 𝜂𝐻𝐹𝐷
𝜕𝑝

𝐻𝐹𝐷

𝜕𝑡𝐷
 (C.5) 

Initial condition 

 ∆𝑝𝐻𝐹(𝑥, 𝑦, 𝑜) = 0 (C.6) 

 𝑝𝐻𝐹𝐷(𝑥𝐷, 𝑦𝐷, 𝑜) = 0 (C.7) 

At the outer boundary (𝑦 =
𝑤

2
) the flux is continuous as it is in macro-fracture 

 
𝑘𝐻𝐹
𝜇
(
𝜕∆𝑝𝐻𝐹
𝜕𝑦

)
𝑦=

𝑤
2

=
𝑘𝑀𝐹ℎ𝑀𝐹

𝜇(ℎ𝑀𝐹 + 𝐿𝑓)
(
𝜕∆𝑝𝑀𝐹
𝜕𝑦

)
𝑦=

𝑤
2

 (C.8) 

 (
𝜕𝑝𝐻𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

=
𝑘𝑀𝐹ℎ𝑀𝐹

𝑘𝐻𝐹(ℎ𝑀𝐹 + 𝐿𝑓)
(
𝜕𝑝𝑀𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

 (C.9) 



174 

 

 (
𝜕𝑝𝐻𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

= 𝜆𝐻𝐹
′ (

𝜕𝑝𝑀𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

 (C.10) 

 (
𝜕𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑦𝐷, 𝑠)

𝜕𝑦
𝐷

)
𝑦𝐷=

𝑤𝐷
2

= 𝜆𝐻𝐹
′ (

𝜕𝑝̅𝑀𝐹𝐷(𝑥𝐷, 𝑦𝐷, 𝑠)

𝜕𝑦
𝐷

)
𝑦𝐷=

𝑤𝐷
2

 (C.11) 

Differentiate Eq. C.1 with respect to 𝑦𝐷  

 (
𝜕𝑝̅𝑀𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

= −√𝛽𝑀𝐹 tanh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −
𝑤𝐷
2
)) 𝑝̅𝐻𝐹𝐷

|𝑦𝐷=
𝑤𝐷
2

 (C.12) 

From the Eq. C.11 and C.12 

 (
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑦

𝐷

)
𝑦𝐷=

𝑤𝐷
2

= −𝛽𝑀𝐻𝐹
′ 𝑝̅𝐻𝐹𝐷

|𝑦𝐷=
𝑤𝐷
2

 (C.13) 

𝐻𝑒𝑟𝑒, 𝛽𝑀𝐻𝐹
′ = 𝜆𝐻𝐹

′ √𝛽𝑀𝐹 tanh (√𝛽𝑀𝐹(𝑦𝑒𝐷 −
𝑤𝐷
2
)) 

Transforming the Eq. C.5 in Laplace domain and using the Eq. C.7  

 
𝜕2𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑦𝐷, 𝑠)

𝜕𝑥𝐷2
+
2

𝑤𝐷
(
𝜕𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑦𝐷, 𝑠)

𝜕𝑦
𝐷

)
𝑦𝐷=

𝑤𝐷
2

= 𝜂𝐻𝐹𝐷𝑠𝑝̅𝐻𝐹𝐷(𝑥𝐷, 𝑦𝐷, 𝑠) (C.14) 

From the Eq. C.13 and Eq. C.14 

 
𝜕2𝑝𝐻𝐹𝐷
𝜕𝑥𝐷2

−
2

𝑤𝐷
𝛽𝑀𝐻𝐹
′ 𝑝̅𝐻𝐹𝐷

|𝑦𝐷=
𝑤𝐷
2

= 𝜂𝐻𝐹𝐷𝑠𝑝̅𝐻𝐹𝐷 (C.15) 

 
𝜕2𝑝𝐻𝐹𝐷
𝜕𝑥𝐷2

− 𝛽𝐻𝐹
′ 𝑝̅𝐻𝐹𝐷 = 0 (C.16) 

Here, 𝛽
𝐻𝐹

′
=

2

𝑤𝐷
𝛽𝑀𝐻𝐹
′ + 𝜂𝐻𝐹𝐷𝑠 

The general solution of Eq. C.16 

 𝑝̅𝐻𝐹𝐷 = 𝐴𝑒𝑥𝑝 (−√𝛽𝐻𝐹
′ 𝑥𝐷) + 𝐵𝑒𝑥𝑝(√𝛽𝐻𝐹

′ 𝑥𝐷) (C.17) 

In the inner boundary of 𝑥 direction, there exists a constant flow rate at the well. Thus, the 

inner boundary condition at Laplace domain  

 (
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷

)
𝑥𝐷=0

= −
𝜋𝑘𝑀𝐹𝑥𝐻𝐹
𝐵𝑤𝑘𝐻𝐹𝑠

 (C.18) 
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 (
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷

)
𝑥𝐷=0

= −
𝜋

𝑐𝐻𝐹𝐷𝑠
 (C.19) 

The outer boundary in the 𝑥 direction is the tip of the hydraulic-fracture. A no-flow 

boundary at the tip of the fracture implies 

 
𝜕∆𝑝𝐻𝐹 
𝜕𝑥 |𝑥=𝑥𝐻𝐹,𝑡

= 0 (C.20) 

 
𝜕𝑝̅𝐻𝐹𝐷
𝜕𝑥𝐷 |𝑥𝐷=1,𝑠

= 0 (C.21) 

Using the outer boundary condition in the Eq. C.17 gives 

 𝐴 = 𝐵𝑒𝑥𝑝(2√𝛽
𝐻𝐹

′
) (C.22) 

From the Eq. C.17 and Eq. C.22 

 𝑝̅𝐻𝐹𝐷 = 𝐵𝑒𝑥𝑝(√𝛽𝐻𝐹
′ )(𝑒𝑥𝑝 (√𝛽𝐻𝐹

′ (1 − 𝑥𝐷) + 𝑒𝑥𝑝 (−√𝛽𝐻𝐹
′ (1 − 𝑥𝐷)) (C.23) 

Applying the inner boundary condition (Eq.C.19) in Eq. C.23 yields 

 
𝐵 =

𝜋

2𝑐𝐻𝐹𝐷𝑠√𝛽𝐻𝐹
′
𝑒𝑥𝑝(√𝛽

𝐻𝐹

′
)𝑠𝑖𝑛ℎ(√𝛽

𝐻𝐹

′
)

 
(C.24) 

The final pressure solution for the hydraulic fracture is derived from the Eq. C.23 and 

C.24 

 𝑝̅𝐻𝐹𝐷 =

𝜋 cosh (√𝛽𝐻𝐹
′ (1 − 𝑥𝐷)

𝑐𝐻𝐹𝐷𝑠√𝛽𝐻𝐹
′ 𝑠𝑖𝑛ℎ(√𝛽𝑀𝐹)

 (C.25) 

This is the expression for the dimensionless hydraulic fracture pressure for the constant 

terminal rate during a conventional flow in the two-dimension of the fracture.  

At  𝑥𝐷 = 0 the hydraulic fracture pressure will be the bottom-hole pressure. 

 
𝑝̅𝑤𝐷 =

𝜋

𝑐𝐻𝐹𝐷𝑠√𝛽𝐻𝐹
′ 𝑡𝑎𝑛ℎ (√𝛽𝐻𝐹

′ )

 
(C.26) 
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Appendix D 

Dimensionless Parameters and Model Parameters for The Comparative 

Study  
 

𝑝𝐷 =
2𝜋𝑘𝛼,𝛽ℎ∆𝑝

𝑞𝐵𝜇
 

𝑡𝐷 =
𝑘𝛼,𝛽𝑡

𝑥𝑒
2𝜙 𝑐𝑡𝜇

 

η =
𝑘𝛼,𝛽

𝜙 𝑐𝑡𝜇
 

𝑥𝐷 =
𝑥

𝑥𝑒
 

 𝜆𝛼,𝛽 =
𝑥𝑒𝑥𝑒

𝛽

η (
𝑥𝑒
2𝜙 𝑐𝑡𝜇
𝑘𝛼,𝛽

)
𝛼 

𝑧𝐷 =
𝑧

𝐿𝑛𝑓
2

 

𝜔𝑚 =
(𝜙 𝑐𝑡)𝑚
(𝜙 𝑐𝑡)𝑛𝑓

 

𝜆𝑚 =
12𝑥𝑒

2𝑘𝑚

𝐿𝑛𝑓
2𝑘𝑛𝑓

 

𝛼𝑚 =
3𝜔𝑚𝑠

𝜆𝑚
 

𝑦𝐷 =
𝑦
𝑦𝑒
2

 

𝑦𝑒𝐷 =
𝑦𝑒
𝑥𝑒

 

𝜆𝑚𝑓 =
𝑦𝑒
2𝑘𝑚

𝐿𝑛𝑓
2𝑘𝑛𝑓

 

𝛼𝑛𝑓 =
𝑦
𝑒𝐷
2 𝑠

4
+ 𝜆𝑚𝑓√𝛼𝑚 tanh(√𝛼𝑚) 

𝜔𝐻𝐹 =
(𝜙 𝑐𝑡)𝐻𝐹
(𝜙 𝑐𝑡)𝑛𝑓
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 𝑘𝐻𝐹𝐷 =
𝑘𝐻𝐹

𝑘𝑛𝑓
 

𝜆𝐻𝐹 =
12𝑥𝑒

2𝑘𝑛𝑓

𝑦𝑒
2𝑘𝑀𝐹

 

𝑐𝐴𝐷 =
𝐵𝑘𝐻𝐹ℎ𝑤

𝜋𝑘𝑛𝑓ℎ𝑓𝑥𝑒
 

𝛼𝐻𝐹 =
𝜔𝐻𝐹

𝑘𝐻𝐹𝐷
𝑠 +

𝜆𝐻𝐹

3
√𝛼𝑛𝑓 tanh(√𝛼𝑛𝑓) 


