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Abstract 
 

Early odor preference learning is a classical conditioning behavioral model which can be 

used to understand the molecular mechanism of learning and memory, and synaptic 

plasticity. In this thesis the research is focused on the role of N-methyl D-aspartate 

receptor (NMADR) plasticity and metaplasticity in early odor preference learning. 

 

In Chapter 2, we investigated the differential roles of L-type calcium channel (LTCC) and 

NMDAR in early odor preference learning. The results suggest that the NMDAR is 

crucial for creating stimulus-specific memory and LTCC is required for maintenance of 

the memory. Activation of LTCC without NMDAR can cause loss of input specificity and 

as a result, generalization of the memory.  

 

Chapter 3 depicts that, the effect of altered number of NMDARs in the anterior piriform 

cortex (aPC) can significantly modifies future learning and synaptic plasticity. Here we 

show that NMDARs are down regulated at 3hr following the early odor preference 

learning. Repeated training at 3hr leads to unlearning and this unlearning is mediated by 

NMDAR itself. Inhibition of the NMDAR prior to retraining at 3hr, blocks unlearning. In 

continuation of Chapter 3, we have characterized the molecular mechanism underlying 

the NMDAR mediated unlearning in Chapter 4. Calcineurine and metabotropic glutamate 

receptor (mGluR) plays a vital role in NMDAR downregulation at 3hr following early 

odor preference training.  

In Chapter 5, we have investigated whether NMDAR plasticity and its mediated 

metaplasiticity observed in the early odor preference learning can be induced by stronger 
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trainings that produce prolonged memories. Previous research has shown that infusing 

trichostatin A (TSA), a histone deacetylation inhibitor, in the olfactory bulb (OB) extends 

odor preference memory up to 5 days. Our data suggests that OB TSA infusion 

preventsNMDAR down-regulation and unlearning. These outcomes argue that it is 

critical to understand the metaplastic effects of training which have implications for 

learning optimization.   
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Overview 

 

Memory is a very important part of our life. Without memory, our existence 

would be meaningless and we wouldn’t be able to become today’s human being. But, 

understanding the mechanisms involved in forming memory is complicated. Different 

scientists use different memory-related behavioral models to investigate the process of 

memory. In my research, I have chosen the early odor preference learning paradigm to 

investigate the molecular mechanisms involved in learning. These experiments are 

intended to identify the malleable states of synapses, which can be modified, and the 

modification of which could affect behavior. These studies add to current learning and 

memory research by providing a stepwise examination of the pathways involved in both 

synaptic plasticity (Section 1.3) and metaplasticity (Section 1.3.4). Along with identifying 

plasticity mechanisms and pathways, these experiments also examine the effect of 

changes in synaptic plasticity and metaplasticity on behavior. 

 

Calcium plays a crucial role in learning and memory, synaptic plasticity and many 

different signaling pathways. There are various types of calcium channels present in 

different cells. Among them, L-type calcium channels (LTCCs) and NMDA receptors 

(NMDAR) are two calcium-permeable channels that plays a crucial role in learning and 

memory, and synaptic plasticity. The interactions of LTCCs and NMDARs in memories 
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are poorly understood. In Chapter 2, I investigated the specific roles of anterior piriform 

cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice.  

 

Using calcium imaging in aPC slices, LTCC activation is shown to be dependent 

on NMDAR activation. Behaviorally, in mice that underwent early odor preference 

training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) 

odor preference memory and both memories were rescued when BayK-8644 (a LTCC 

agonist) was co-infused. However, activating LTCCs in the absence of NMDARs 

(Pharmacological blockade) resulted in the loss of discrimination between the conditioned 

odor and a similar odor mixture at 3 hr. Elevated synaptic AMPA receptor expression at 3 

hr was prevented by D-APV (NMDAR inhibitor) infusion prior to training, but was 

restored when LTCCs were directly activated, mirroring the behavioral outcomes. 

Blocking LTCCs prevented 24 hr memory, but spared 3 hr memory. These results suggest 

that NMDARs mediate stimulus-specific encoding of odor memory, while LTCCs 

mediate intracellular signaling leading to long-term memory. 

 

In Chapter 3, we demonstrate a metaplastic change in NMDAR numbers in the 

aPC in rat pup induced by a 10 min pairing of peppermint odor+stroking, which 

significantly modifies later learning and memory. Using isolated synaptoneurosomes, we 

found GLUN1 subunit of NMDAR (GluN1) receptor down-regulation 3 hr after training 

and up-regulation at 24 hr. Consistent with the GluN1 pattern, the NMDAR-mediated 

excitatory post synaptic potentiation (EPSP) was smaller at 3 hr and larger at 24 hr. 
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Subunit composition was unchanged. While long-term potentiation (LTP) was reduced at 

both times by training, long-term depression (LTD) was facilitated only at 3 hr. 

 

Behaviorally, pups, given a pairing of peppermint+stroking 3 hr after initial 

peppermint+stroking training, lose the normally acquired peppermint preference 24 hr 

later. To probe the pathway specificity of this unlearning effect, pups were trained first 

with peppermint and then, at 3 hr, given a second training with peppermint or vanillin. 

 Pups given peppermint training at both times lost the learned peppermint preference. 

Pups given vanillin re-training had normal peppermint preference when trained with 

vanillin 3 hr later. Down-regulating GluN1 with siRNA prevented odor preference 

learning. Finally, the NMDAR antagonist, MK-801 (NMDAR pore blocker), blocked the 

LTD facilitation seen 3 hr post-training and giving MK-801 prior to the second 

peppermint training trial eliminated the loss of peppermint odor preference. A training-

associated reduction in NMDARs facilitates LTD 3 hr later; while training at the time of 

LTD facilitation reverses an LTP-dependent odor preference. Experience-dependent, 

pathway-specific metaplastic effects in a cortical structure have broad implications for the 

optimal spacing of learning experiences. 

 

In a continuation of the previous work (Chapter 3), Chapter 4 showed the 

underlying molecular pathways involved in the unlearning process. Rat pups readily form 

a 24 h associative odor preference after a single trial of odor paired with intermittent 
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stroking. Our previous work (Chapter 3) shows that this training trial, which normally 

increases AMPA receptor responses in the anterior piriform cortex both 3 h and 24 h 

following training, induces a down-regulation of NMDA receptors 3 h later followed by 

NMDA receptor up-regulation at 24 h.  

 

            When retrained with the same odor at 3 h, rat pups unlearn the original odor 

preference. Unlearning can be prevented by blocking NMDA receptors during retraining. 

In the fourth Chapter the mechanisms that initiate NMDA receptor down-regulation are 

assessed. Blocking mGluR receptors or calcineurin during training prevents down-

regulation of NMDA receptors 3 h following training. Blocking NMDA receptors during 

training does not affect NMDA receptor down-regulation. Thus down-regulation can be 

engaged separately from associative learning. When unlearning occurs, AMPA and 

NMDA receptor levels at 24 h are reset to control levels. Calcineurin blockade during 

retraining prevents unlearning consistent with the role of NMDA receptor down-

regulation. The relationship of these events to the metaplasticity and plasticity 

mechanisms of long-term depression and depotentiation is discussed. We suggest a 

possible functional role of NMDA receptor down-regulation in the offline stabilization of 

learned odor representations. 

 

Previous work had shown that 24 h duration odor preference learning, induced by 

one-trial training, generates a down-regulation of the GluN1 receptor in aPC at 3 h, and 

results in metaplastic unlearning if a second training trial is given at 3 h. The GluN1 

receptor upregulates at 24 h so 24 h spaced training is highly effective in extending 
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memory duration. Chapter 5 replicates the piriform cortex unlearning result in the 

olfactory bulb circuit and further studies the relationship between the initial training 

strength and its associated metaplastic effect. Intrabulbar infusions that block calcineurin 

or inhibit histone deacetylation normally produce extended days-long memory. If given 

during training, they are not associated with GluN1 downregulation at 3 h and do not 

recruit an unlearning process at that time. The two memory strengthening protocols do 

not appear to interact, but are also not synergistic. These outcomes argue that it is critical 

to understand the metaplastic effects of training in order to optimize training protocols in 

the service of either memory strengthening or of memory weakening. 

 

Chapter 1: Introduction 
 

 1.2 Learning and Memory 

 

 Learning and memory are two distinct but interconnected concepts. It is 

impossible to learn or develop language, relationships, and personal identity without 

previous memories 1.  Learning and memory are one of the most intensively studied 

subjects in the field of neuroscience.  

 

 Memory is a process by which we gather information from past experiences and 

use that information in the present 2. On the other hand, learning is described as a process 

of acquiring new, or modifying, existing memories 3. A memory can be achieved by some 
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series of procedures. The initiation process is called acquisition of memory or learning. 

The following step is called consolidation of memory. The consolidation process is 

dependent on the initial learning phase. Depending on the stimulus, memory can be 

consolidated into short-term memory (STM) or long-term memory (LTM) (LTM will be 

explained more thoroughly in section 1.2.1). The last and crucial step is called memory 

retrieval. A memory is meaningless if we cannot retrieve the information for later use. 

There are two other procedures also involved in learning and memory, which are memory 

extinction and forgetting. In both operant conditioning and classical conditioning 

behavior, memory extinction is possible. In the case of operant conditioning, the 

behaviour gradually stops occurring when the operant behaviour that has been previously 

reinforced is now unable to produce reinforcing consequences.4. In case of classical 

conditioning, when a conditioned stimulus (CS) is presented alone so that it no longer 

predicts the coming of the unconditioned stimulus (UCS), the conditioned response 

gradually diminishes. Memory extinction is a process when an animal learns to uncouple 

a response from a stimulus. For example in contextual fear memory, a rodent learns to 

show no freezing when placed repeatedly in the same context without shock, and after 

multiple trials, the rodent learns that the same context is not associated with shock 

anymore. Similarly, forgetting is a spontaneous or gradual process in which an individual 

is unable to recall information already encoded and stored in an individual’s LTM 5.  

 

 Broadly, memory can be classified as “declarative memory” which requires the 

conscious effort of our mind 6 and “non-declarative memory” which is not available to 

our consciousness 7. Declarative memory help us to remember about facts and events. In 
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other words, we can verbally “declare” these type of memories. On the other hand non-

declarative memory is a type of memory that we are unable to “declare” verbally 6. This 

type of memory dosen’t need conscious effort to recall the memory for example motor 

skills, habituation in particular environment, associative (classical and operant 

conditioning) and non-associative learning (reflex). Clinical observations showed that 

patients with an impaired declarative memory could have their procedural memory 

completely spared, which suggests that these two types of memory are independent of 

each other 8. Thus, neuroscientists concluded that there must be separate mechanisms 

involved for each type of memory 8. These different memories appear to be encoded by 

distinct brain areas and circuitries 9. For example, basal ganglia are involved in 

procedural learning and memory, such as habit learning 10. On the other hand, the medial 

temporal lobes are more involved in declarative memory 10. Scientists have shown that 

the hippocampus is implicated in both spatial and contextual memory 11 which would fit 

into the explicit type memory category. The olfactory bulb (OB) and olfactory cortex 

(OC) are two areas involved in olfactory learning and memory 12 13 14 and will be further 

explored in this thesis.    

 

1.2.1 STM and LTM 

 

 Temporally, and mechanistically, memories have been characterized as having 

multiple phases, typically, STM, intermediate-term memory (ITM) and LTM15–17. By 

definition STM refers to the capacity for holding a small amount of information in mind 

in an active, readily available state for a short time period (minutes to hrs depending on 

https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Mind
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the behavioral models studied). On the contrary, LTM holds the information for the 

longer time period for later manipulation. ITM is a distinct stage of memory separated 

from sensory memory, working memory, STM and LTM 18,19. ITM is a simultaneous 

process, rather than sequential, and requires mRNA translation, but not transcription 19. 

 

 Memories can be divided into STM and LTM based on their duration 20. Studies 

on patient H.M. suggest that the recall of these two types of memory may be mediated by 

different areas of the brain 21.   Henry Molaison (H.M), the patient, was unable to form 

any new declarative memories whereas he was able to recall LTM that formed well 

before his surgery. One of the major questions in the field of memory research is whether 

STM is qualitatively distinct from LTM or whether they can be represented as a single 

quantitative continuum.  Various neuropsychological case studies and their data 

influenced this debate. In one study, researchers showed that patients with damage to the 

medial temporal lobe demonstrated deficits in LTM, although their ability to form STM 

was intact 22. On the other hand, patients with perisylvian cortex damage demonstrated a 

deficit in maintaining short-term phonological information, even though their LTM 

remained intact 23.  

 

 The memory retrieval process generates information on the basis of a retrieval 

cue, remembered details of a past event,  and the strength of the memory 24. The decision 

process determines how we act on this information 24. The broadly classified memory 

categories are not only temporally different; there are differences in their dependence on 

protein synthesis as well. For example, STM does not require protein synthesis, whereas 
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ITM depends on translation, but does not require mRNA transcription. LTM requires both 

translation and transcription 25–31. 

 

For both STM and LTM, neuroscientists believe memory is supported by synaptic 

alterations in the brain. Synapses are where neurons communicate. A change in the 

transmission efficacy at the synapse (synaptic plasticity) has been considered to be the 

cellular mechanism of memory. A particular pattern of synaptic usage or stimulation, 

called the conditioning stimulation, is believed to induce synaptic plasticity (discussed in 

section 1.3).  

 

1.2.2 Stimulus Specificity of Memory 

 

 Another unique property of memory is stimulus-specificity. Generally, memory is 

specific and retrieved in the presence of specific stimuli. This stimulus-specific nature of 

memory has been investigated for decades in synaptic plasticity-related studies in which 

the focus is the strengthening of memory-related connections. Researchers have also 

hypothesized that weakening specific synapses may prevent recall. Different properties of 

long-term potentiation (LTP) will be discussed in a later section (Synaptic plasticity 

section 1.3). One of LTP’s properties is input specificity which makes our memory 

stimulus specific. The input specificity of synaptic plasticity is currently explained by the 

synaptic tagging hypothesis.  
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An individual neuron has thousands of synapses, which may process minimally 

100s of inputs. Evidence suggests single synapses can be modified in a highly selective 

and independent manner 32. The highly selective modification of a synapse for LTM 

requires both transcription and translation 33. Synaptic modification is also required for 

STM but it is independent of transcription and translation 34 consistent with its transitory 

nature.  Translation occurs both in local synaptic areas as well as the cell body, while 

transcription is confined to the nuclear part of a neuron 33. With respect to synapse 

specificity, the question arises of how gene products from the nucleus are transported and 

targeted to only the relatively few activated synapses 35?  To address this question, the 

synaptic tagging hypothesis has been put forward. According to the hypothesis, the 

products of gene expression are shipped throughout the cell, but they are delivered to 

specific synapses which have been “tagged” by previous activity 36. In other words, 

activated synapses create a protein complex (tag setting), which serves as a synaptic tag 

for delivery of the gene products supporting synaptic strengthening.  

 

Several molecules have been identified which may serve as synaptic tags and, 

thus, could be responsible for the input specificity of memory, these include:  CaMKII, 

phosphorylation of AMPARs and different protein kinases 37 38.  It has been shown that 

late-phase LTP (L-LTP) in the hippocampus requires both gene expression and protein 

synthesis  39–42. According to the synaptic tag hypothesis, as noted, gene products can 

only be captured by a synapse which was previously activated and where a tag setting in 

the synapse has been created 43–45. CaMKII has been considered as an integral candidate 

in mediating LTP and memory. Inhibition of  CaMKII results in disruption of the LTP 
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generating ability of CaMKII 46,47 and impairs hippocampus-dependent spatial learning 

48,49. CaMKII remains autophosphorylated for longer than other molecules and thus it 

could serve as a synaptic tag. Although there is a debate about the time window for the 

CaMKII autophosphorylation state, some report that it remains autophosphorylated for an 

hour and while others suggest that it remains phosphorylated for 10-20 min. For example, 

Modarresi et al showed that CaMKII is rapidly phosphorylated in the OB and remains 

phosphorylated for 10 min 50. In this study, it was shown that blocking CaMKII in 

presence of PKA activation can produce a long-term memory, but the memory is not 

specific to the trained odor. This result suggests that CaMKII activation provides the tag 

that confers stimulus specificity for memory. In my thesis, I introduce the roles of 

NMDAR and LTCCs in the input specificity of memory (Chapter 2).  

 

Actin is another molecule which might serve as a synaptic tag because it helps in 

stabilization of cytoskeletal structure for recruiting postsynaptic proteins to the spine 51. 

There is evidence that activation of CaMKII controls the status, activation, and content of 

spine actin filaments, which ultimately controls the structural plasticity of the spine and 

supports synaptic strengthening 51.  

 

Other than production of individual protein molecules, degradation of protein  

molecules is also important for synaptic plasticity. It has been shown that inhibition of the 

proteasome impairs synaptic plasticity, the formation of LTMs 52, and the maintenance of 

LTP 53. Cai et al. (2010) showed that proteasome activity is required for synaptic tagging 
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and the capture of plasticity-related proteins at the activated synapse 54. However, the 

specific proteins that are degraded by proteasome tagging were not clear.  

 

1.2.3 Spaced vs Massed Learning and Its Effect on Memory 

 

 Different learning paradigms have been used by researchers to investigate the 

physiological and molecular basis of learning and memory. Scientists are trying to 

understand learning and memory in order to improve educational training and teaching.  

 

There are multiple reports which suggest that items studied at spaced time 

intervals are recalled better in the long term than those studied repeatedly with no 

intervening delay 55–59. Morris and colleagues in studies of late LTP and LTM in various 

contexts and species 60 demonstrate that repeated stimuli given at spaced intervals can 

create intracellular settings which influence the plasticity and learning. Their work 

demonstrated that protein synthesis was important for the enhancement of both LTP and 

LTM in the spaced training paradigm 61,62. Again, the synthesized proteins strengthen 

activated synapses, triggering LTP 36,63,64.  In a behavioral study, Menzel et al., showed 

that the space between repetitions was critical for LTM encoding 65. In their study, they 

used three different intertrial interval times: 30 sec, 3 min, and 10 min. Their results 

showed that with 3 min and 10 min intertrial intervals memory lasts for 3 days whereas at 

30 sec intervals it lasts only for minutes up to one day 65. Spaced training has large and 

robust positive effects on LTM as has been demonstrated across domains, such as verbal 

learning 66,67,  conditioning (even in animals as simple as Aplysia; see 68,69), the learning 
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of educational materials 69,70 and motor learning 71. Although, E.Z. Rothkopf cautions that 

"spacing is the friend of recall, but the enemy of induction" 72.  According to Rothkopf, 

massing allows one to notice the similarities between successive events or examples, 

whereas spacing reduces the ability to detect such similarities.  

 

In my research, I have shown a mechanism that causes memory to be negatively 

regulated by repeated training with shorter-intervals while being enhanced by repeated 

training with longer-intervals (Chapters 2 and 3).  

 

1.3 Synaptic Plasticity 
 

Neurons communicate with other neurons, muscle cells and gland cells by 

synapses. Synapses are the junctions where neurons pass signals to other types of cells. 

Most of the signaling between neurons rely on chemical synapses which use 

neurotransmitters for signal transmission. Neurotransmitters which are synthesized in the 

cytosol or axon terminal, are the key components of chemical synapses. There are several 

steps involved in neurotransmitter release at the synaptic junction, including the fusion of 

synaptic vesicles with the membrane and subsequent exocytosis. After the 

neurotransmitters undergo exocytosis from synaptic vesicles into the synaptic cleft, they 

bind to specific receptors on the plasma membrane of a postsynaptic cell. The binding of 

neurotransmitters onto postsynaptic cell membrane-associated receptors typically causes a 

change in permeability to ions. The change in the membrane ion permeability alters the 
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potential of the postsynaptic plasma membrane. If the postsynaptic potential is 

sufficiently depolarized, an action potential is then generated in the postsynaptic neuron.  

 

One of the most important and fascinating properties of the mammalian brain is 

the synaptic  plasticity which underlies learning and the formation of memory. 

Associative memory is formed when synapses get strengthened due to the pairing of 

presynaptic and postsynaptic activity 73.  Synaptic plasticity following coincident 

activation of pre and postsynaptic neurons is the cellular basis for learning such as 

Pavlovian classical conditioning 74. Bliss and colleagues 75,76 first reported that repetitive 

activation of excitatory synapses in the hippocampus that led to strong post-synaptic 

depolarization caused a potentiation of synaptic strength that could last for hours or even 

days. This long-lasting strengthening of the synapse was termed LTP.  The opposite of 

LTP, the weakening of synapse, is called long-term-depression (LTD).  

 

1.3.1 Receptors Involved in Synaptic Plasticity 

 

  When neurotransmitters bind to the membrane-bound receptors, receptors change 

their conformations to allow different ions into the postsynaptic cells, which causes 

postsynaptic depolarization or hyperpolarization. Besides transmitter binding to receptors, 

different post-translational modifications of receptors can play a critical role in 

conformational changes, receptor mobility in the membrane and receptor translocation for 

subcellular localization 77.  
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Of course, synaptic receptors are necessary for normal neuronal function as well 

as for synaptic plasticity. There are  two broad types of glutamatergic receptors 

implicated in the process of synaptic plasticity: (a) ionotropic receptors and (b) 

metabotropic receptors or G-protein-coupled receptors. The ionotropic receptors get 

activated when glutamate binds to the receptors and open up  ionic channels in the 

membrane. On the other hand, the metabotropic receptors can be activated by glutamate 

as well as a variety of molecules including odors, hormones, small or large peptides, and 

neurotransmitters. G-protein coupled receptors alter the production of intracellular second 

messengers.   

 

1.3.1.1 Glutamatergic Receptors 

 

Glutamate is the most abundant neurotransmitter in the nervous system. It is the 

main excitatory neurotransmitter in the brain. As highlighted, the receptors which get 

activated due to the binding of glutamate in the ligand binding domain are called 

glutamatergic receptors. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor (AMPAR), N-methyl-D-aspartate receptor (NMDAR) and kainate receptor 

(KAR) belong to the ionotropic receptor category. The most widely investigated 

ionotropic receptor proteins in plasticity research are AMPAR and NMDAR. Although, 

recent evidence is showing that the KAR also has some roles in synaptic plasticity 78. 

These receptors form a pore when glutamate binds to the ligand-binding domain and 

activates the receptors.  
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Specifically, the iGluRs consist of four large subunits which create a central ion 

channel pore. These subunits are formed with more than 900 amino acid residues. All the 

subunits in different types of iGluRs have some sequence similarities, including AMPAR, 

NMDAR, and KAR.  The subunits of GRs have four semi-autonomous domains, which 

include the extracellular ligand-binding domain (LBD), the extracellular amino-terminal 

domain (ATD), the intracellular carboxyl-terminal domain (CTD) and the transmembrane 

domain (TMD). The ATD plays a crucial role in receptor oligomerization and receptor 

trafficking in the membrane. Another important domain in iGluR is LBD which is 

conserved in different iGluR subunits. All agonists and antagonists are designed by being 

directed at the structures of the LBDs. The binding of an agonist or antagonist makes 

conformational changes in the iGluR structure. Structural differences in LBD and TMD 

underlie the three different iGluRs. The ATDs of GRs have sequence homology and are 

structurally homologous to the LBD of the mGluR 79–86.  

Other than iGluRs, the second type of GR, as mentioned, are the mGluR. They are 

slow acting GR which act indirectly on membrane-bound ion channels upon binding of 

glutamate. They are G-protein coupled receptors and, as mentioned, the binding of 

glutamate to these receptors activates second messenger systems for further downstream 

signaling.  

 

In my research, I identified different molecular pathways involved in olfactory 

learning and memory, and I have shown how AMPAR, NMDAR, and mGluR play 

differential roles in synaptic plasticity. In the following sections, I will discuss in more 

detail the structure, function and pharmacology of AMPAR, NMDAR, and mGluR. 
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1.3.1.1.1 AMPAR 

 

 Among all the other iGluRs, the AMPAR mediates most of the fast excitatory 

synaptic transmission. Traditionally, APMAR is known as a non-NMDA-type-receptor. 

Artificially, AMPAR can be activated by the glutamate neurotransmitter analog AMPA 

and the receptor’s name came from the analog. AMPARs are the most commonly found 

receptors in different brain areas. The subunit composition of AMPARs has been 

quantitatively evaluated mostly in the hippocampus 87.  The biophysical properties of 

AMPAR are dependent on the subunit composition of the AMPAR 88,89. 

  

The architecture of AMPARs is formed by combinations of four subunits: GluA1, GluA2, 

GluA3, and GluA4 88,90. The subunits differ from each other at their CTD, which 

determines their binding to different scaffolding proteins. All subunits of AMPARs can 

interacts with PDZ-protein binding domain. Different subunits of AMPARs interact with 

various other proteins. The major population of AMPARs consists of GluA1-GluA2 

combinations 87. The other major population of AMPARs is a GluA2-GluA3 combination 

87 though, this combination is not predominant. One of the striking features of the GluA2 

subunit is that it controls Ca2+ permeability. The GluR2 lacking AMPARs are permeable 

to Ca2+. Monyer et al. showed that GluA2 expression is very low during early postnatal 

development period but the expression increases very quickly during the first postnatal 

week 91,92.    
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All AMPAR subunits have an extracellular N terminus, an intracellular C 

terminus, and four membrane-associated hydrophobic domains and, as reviewed earlier, 

each subunit consists of four separate domains: the extracellular N-terminal domain also 

known as ATD, LBD, the membrane-embedded TMD, which forms the ion channel, and 

the CTD 93.   

 

The CTD of AMPARs is important for subunit specific protein interactions and 

phosphorylation of the C-tail leads to AMPAR trafficking in the membrane, which is 

important for synaptic plasticity 94, although, the precise role of C-tail phosphorylation in 

AMPAR trafficking needs to be clarified in more detail 95–98.  Other than trafficking, 

phosphorylation at the C-tail can modulate channel conductance 99. As already described, 

functional AMPARs are tetrameric in nature. The formation of a tetrameric complex of 

AMPARs is highly dependent on the TMD 100., while the LBD determines the opening 

and closing of the ion channel. AMPARs cannot interact directly with postsynaptic-

density protein 95 (PSD-95). The interaction takes place via another protein called 

stargazin, a type of transmembrane AMPAR regulatory proteins (TARPs). Different 

TARPs play vital roles in AMPAR trafficking, maturation, and channel function 101–106. 

 

The trafficking of AMPARs in the membrane is crucial for various types of 

synaptic plasticity. The membrane trafficking of AMPARs is controlled by different 

interacting proteins and by post-translational modifications including phosphorylation 107. 

Protein-kinase-A (PKA) mediated phosphorylation at the S845 residue of GluA1 and 

calcium/calmodulin-dependent protein kinase II (CaMKII) or protein kinase C (PKC) 
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mediated phosphorylation at the S831 residue of GluA1 have been extensively studied by 

Huganir’s group 108–110. Phosphorylation at S845 of Glu1 increases ion conductivity and 

insertion of AMPARs in the synaptic membrane. Similarly, CaMKII mediated 

phosphorylation at S831 regulates channel conductance and LTP 111.  S845 and S831 

phosphorylation and dephosphorylation are required for several forms of behavior and 

synaptic plasticity in different brain regions including hippocampal and cortical LTP and 

LTD 111–113.  

 

Earlier I have discussed about LTP and relation between LTP and AMPAR 

phosphorylation. But LTD is also one type of synaptic plasticity where weakening of the 

synapses takes place. This weakening of the synapse requires dephosphorylation of 

AMPARs. The dephosphorylation of AMPARs is important for LTD like synaptic 

plasticity. Depending on the site of dephosphorylation, the plasticity of the synapse 

changes. For example dephosphorylation at the S845 of the PKA induces LTD like 

changes 111. The same study also showed that the phosphorylation and dephosphorylation 

of different sites of AMPARs during LTP and LTD  dependent on history of synaptic 

plasticity 111. For example, the induction of LTP in naïve synapses increases 

phosphorylation of  S831 114 115 whereas, previously depotentiated synapses shows 

increase of phosphorylation at S845 site after LTP induction 115. Similarly, 

dephosphorylation of S845 occurs after LTD induction in naïve synapses while, 

previously potentiated synapses result in dephosphorylation at S831 site 115..  
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1.3.1.1.2 NMDAR 

 

  NMDA receptors (NMDARs) are one of the major glutamate-gated cation 

channels with high calcium permeability that play crucial roles in many aspects of the 

cellular biology of higher organisms. The NMDAR plays a central role in the 

development and function of the nervous system, including a role in synaptic plasticity, 

and learning and memory. Apart from its positive effect on the nervous system, it has 

some neurotoxic effects too. Hyperactivation of NMDARs may lead to cell death, while, 

hypo-activation can cause cognitive deficits. NMDARs are slow acting channels which 

require both glutamate and glycine binding and post-synaptic depolarization. The opening 

of the NMDAR channel depends on a series of events, which includes chemical activation 

of the NMDAR and removal of the Mg2+ block which leads to opening of the channel. 

Activation of NMDAR requires glutamate and glycine binding, which depend on 

presynaptic activity. At the same time, postsynaptic depolarization is necessary for 

removal of the Mg2+ block. Removal of the Mg2+ block leads to Ca2+ permeability through 

the channel when it is chemically activated. These events have to occur in a simultaneous 

manner, which makes the NMDAR a coincidence detector in the neuron. 

 

NMDARs are a heteromeric complex formed mainly by three different subunits 

which include GluN1, GluN2, and GluN3. There are eight different splice variants of 

GluN1 RNA which produces eight different subunits 116–118. GluN2 has four different 

subunits encoded by four genes  (GluN2A-D) and GluN3 subunits  are encoded by two 

(GluN3A and B) genes 119. Functional NMDA receptors consist of two obligatory GluN1 
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subunits in combination with two GluN2 and/or GluN3 subunits 119,120. All subunits are 

structurally similar to each other with a conserved domain organization.   

  

 GluN1/GluN2 subunit-containing NMDAR’s activation requires two molecules of 

the co-agonist, glycine 121,122, and two molecules of the agonist, glutamate 123–125. 

Whereas NMDA receptors composed of GluN1/GluN3 require only glycine for activation 

126,127. Other than glycine and glutamate, several other molecules can activate NMDA 

receptors as co-agonists including D-serine, D-alanine, L-alanine, L-serine. Glutamate 

release from the presynaptic terminal activates synaptic NMDARs by occupying two 

binding sites localized at the LBD of GluN2 subunits 128. At the same time, AMPAR 

mediated postsynaptic depolarization is required to remove the Mg2+ blockage, which will 

allow Ca2+ entry that has the ability to activate downstream signaling molecules required 

for plasticity processes. Calmodulin (CaM) and CaMKII are the two major downstream 

molecules which get activated by the Ca2+ entry through NMDARs. The regulation of 

these two molecules will be discussed in the molecular mechanisms of synaptic plasticity 

section.   Calcineurin is another downstream molecule which can be activated by 

NMDAR mediated Ca2+ influx. 

 

 The functional regulation of NMDARs is mediated by differential 

phosphorylation at Serine/Threonine (Ser/Thr) sites in NMDARs. There are many 

Ser/Thr sites that have been identified in NMDARs. Those sites are phosphorylated by 

different protein kinases, which regulate both channel properties and the intracellular 

trafficking of NMDARs, leading to changes in synaptic strength. The protein kinases 
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involved in differential phosphorylation of NMDARs include, CaMKII, PKA, PKC, 

cyclin-dependent kinase-5 (Cdk5), and protein kinase B (PKB) 129.  

 

Raman et al. showed that PKA activation and PK- mediated phosphorylation of 

NMDARs increases the amplitude of NMDA receptor-mediated excitatory postsynaptic 

currents 130. In another study, Crump et al. showed that the synaptic targeting of 

NMDARs is increased by PKA activation 131. Current evidence also revealed that PKA 

inhibitors reduce the relative fraction of Ca2+ influx through NMDARs, which suggests 

that PKA regulates the calcium permeability of NMDARs 132. A study by Scott et al. 

showed that phosphorylation at S897 by PKA and S896 by PKC are both required to 

increase NMDARs surface expression 133. Another study from the same group suggests 

that S896 and S897 site phosphorylation of GluN1 is an important regulator of 

intracellular trafficking 134.  There are other Ser/Thr sites which get phosphorylated by 

PKC and CaMKII. Recent studies have shown that phosphorylation at S1416 of the 

GluN2A subunit by PKC, decreases the binding affinity of CaMKII for the NMDAR, 

which suggests direct crosstalk between PKC and CaMKII 135 effects. Studies in the 

hippocampus have shown that CaMKII -mediated phosphorylation of S1303 inhibits 

receptor-kinase interactions and promotes slow dissociation of preformed CaMKII-

GluN2B complexes 136. This evidence suggests that protein phosphorylation plays a 

crucial role in the modulation of the function of NMDARs. Even though there is 

considerable progress in the understanding of NMDA receptor regulation by 

phosphorylation, many aspects of NMDA receptor phosphorylation related to behavior 

still remain unsolved.  
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It has been reported that NMDARs are stably expressed in the postsynaptic 

membrane, unlike AMPARs. The internalization and trafficking of AMPARs are 

dependent on dephosphorylation events occurring at different AMPARs sites. On the 

other hand, NMDAR internalization is a more complex event that needs to be investigated 

in more detail. Current evidence suggests that the GluN2 subunits interact directly with 

PSD-95 137 which is a modular protein highly enriched in the postsynaptic density. This 

interaction appears to be a major regulator of the NMDAR internalization process 138. 

Data suggest that GluN2B extream C-terminal sequence (YEKL) is sufficient to induce 

internalization 138. The Roche et al., have also shown that GluN2B-mediated 

internalization is increased after the deletion of the PDZ-binding domain of GluN2B. In 

this study, they observed that the GluN2B-mediated internalization is inhibited by the 

synaptic protein PSD-95. Their data suggest that PSD-95 is involved in NMDARs 

regulation in the postsynaptic membrane.  

 

  

 

1.3.1.1.3 mGluR 

 

 Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors 

(GPCRs). Unlike AMPAR and NMDAR, mGluRs are slow acting second messenger 

systems activated by glutamate. Glutamate binding to mGluRs can modulate excitability 

and synaptic transmission via second messenger signaling pathways. mGluRs are 
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extensively present in the central nervous system (CNS), which suggests that these 

receptors participate in numerous functions throughout the CNS. They are present in both 

pre and postsynaptic neurons in synapses of the hippocampus, cerebellum, and the 

cerebral cortex, as well as other parts of the brain and in peripheral tissues. mGluRs have 

the ability to modulate other glutamate receptors such as the NMDAR, AMPAR, and 

KAR, and are linked with many cognitive functions including learning and memory, the 

perception of pain, and anxiety. Researchers have shown that mGluRs are also involved 

in neurodegenerative diseases 139, which makes mGluR a potential candidate for 

therapeutic interventions. 

 

 mGluRs are one type of GPCR which has seven transmembrane domains like 

other GPCRs. The resulting change in the conformation of the mGluR induced by 

glutamate binding activates the protein, which consists of a heterotrimeric complex of α, 

β, and γ subunits. The activation of the G protein causes the exchange of guanosine 5/-

triphosphate (GTP) for guanosine 5/ - diphosphate (GDP) within the α subunit, In the 

inactive state  mGluRs are bound to GDP. mGluRs are class C type GPCRs which are 

distinguished from class A type GPCRs by their large extracellular N-terminal domain 

that contains the endogenous ligand-binding site. There are eight subtypes of mGluRs and 

they are differentially expressed in various cell types. mGluRs are subclassified into three 

major groups based on sequence homology,  ligand selectivity, and  G-protein coupling. 

Group I includes mGluRs 1 and 5, Group II includes mGluRs 2 and 3, and Group III 

includes mGluRs, 4, 6, 7, and 8. Group II and III are mostly presynaptic while Group I 

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Brain
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are postsynaptic. In my research, I focused on Group I mGluR because our findings 

highlighted postsynaptic activity. 

 

 Both mGluR1 and mGluR5, are coupled to phospholipase C via Gq proteins and 

mediate phosphoinositide hydrolysis. Previous studies have shown that an increase in 

intracellular calcium concentration can be achieved by the activation of mGluR1 140. 

Primarily, Group-I mGluRs couple to Gq /Gi which activates phospholipase C, resulting 

in the hydrolysis of phosphoinositides and the generation of diacylglycerol and inositol 

1,4,5-trisphosphate (IP3). This classical pathway leads to calcium mobilization from 

internal storages and can activate different molecular cascades than external calcium?. 

Depending on the cell type or neuronal population, group I mGluRs activate a range of 

downstream effectors, including: calcineurin, the transient receptor potential channel, 

NMDARs, phospholipase D,and other protein kinase pathways such as cyclin-dependent 

protein kinase 5, casein kinase 1, Jun kinase, the mammalian target of rapamycin 

(mTOR)/p70 S6 kinase pathway, and  components of the mitogen-activated protein 

kinase/extracellular receptor kinase (MAPK/ERK) pathway 141 142 143. This broad range of 

signaling cascade activation capacity has made mGluR a key molecule in learning and 

memory research.  

 

1.3.1.2 Voltage gated L-type Calcium Channel (LTCC) 

 

Other than the NMDAR, the LTCC is another channel that has the ability to 

produce calcium influx in neuronal cells. The activation of LTCCs is different than that of 
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NMDARs. The activation of LTCCs is only voltage dependent.  The ‘L’ stands for the 

long-lasting activity pattern of LTCCs. They are mostly found in cardiac muscle and in 

brain cells. Due to the high voltage dependency and its Ca2+ permeability, LTCCs are also 

considered key players in synaptic plasticity and learning and memory research.  

 

 LTCCs have four subunits which include Cav 1.1, 1.2, 1.3 and 1.4. Among them, 

Cav 1.2 and Cav 1.3 are most common in the neuron, although Cav 1.4 has been found in 

retinal cells as well. These subunits are responsible for pore formation of the LTCCs. The 

pores are formed by the α1 subunit and this is considered as the central building block of 

the LTCCs. The α subunits form hetero-oligomeric complexes in association with other 

subunits. The drug binding domain is also present in the α1 subunit of LTCC. Hence, 

drugs have been designed on the basis of the α1 subunit structure. The β subunit of the 

LTCCs is present as the cytosolic intracellular part and this subunit regulates the targeting 

of LTCCs to the plasma membrane. CaM is a molecule which can regulate the channel 

complex formation. The C terminal region of LTCC α1 subunits are involved in many 

protein-protein interactions that, in consequence, have the ability to increase or decrease 

the activity of LTCCs. 

 

 Intramolecular and intermolecular protein-protein interactions, posttranslational 

modifications, and phosphorylation within the Cav1.2 α1 subunits are important for the 

regulation of the LTCCs. Recent studies have characterized how these modifications and 

protein-protein interactions change the activity of the LTCCs.  A truncated  α1 subunit 

after proteolysis can serve as a transcriptional modulator after entering the nucleus. PKA 
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mediated phosphorylation at ser-1700 and thr-1704 of the α1 subunit increases the inward 

current of LTCCs. Involvement of PKA suggests that norepinephrine would have the 

ability to indirectly increase LTCC activity. As mentioned earlier that CaM also interacts 

with the LTCC α1 subunit. CaM and calcineurin (CaN) both get activated by Ca2+, which 

suggests that CaM and CaN may both have the ability to regulate the activity of LTCCs. 

In fact, CaN-mediated dephosphorylation at the PKA sites is necessary to suppress PKA 

enhancement of the channel in neurons 144. 

 

1.3.2 Molecular Mechanisms of Synaptic Plasticity 

 

 The underlying molecular mechanisms of various forms of synaptic plasticity 

have been investigated in great detail. Malenka and others have discussed the molecular 

mechanisms of synaptic plasticity in many reviews 145–148, which provide our current 

understanding  knowledge about the underpinnings of synaptic plasticity. In the following 

sections, I will discuss LTP, LTD and their molecular mechanisms. 

 

1.3.2.1 Long-term Potentiation (LTP) 

 

LTP refers to the strengthening of a specific synapse. This form of plasticity was 

most extensively studied in the CA1 region of the hippocampus 149. Different properties 

of LTP are similar to those of the memory. Both memory and LTP can be generated 

rapidly, and strengthened and prolonged by repetition. Other shared properties of memory 

and LTP are cooperativity, associativity, and input specificity 150. Cooperativity means 
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that LTP can be induced by the coincident activation of a critical number of synapses. 

Associativity is the capacity to potentiate a weak input (activating a small number of 

synapses) when it is activated in association with a strong input (activating a larger 

number of synapses). Input specificity indicates that LTP is elicited only at activated 

synapses and not at adjacent, inactive synapses on the same postsynaptic cell. This feature 

dramatically increases the storage capacity of individual neurons because different 

synapses on the same cell can be involved in separate circuits encoding different bits of 

information.  

 

The bulk of our knowledge about the molecular mechanisms of LTP has been 

derived from studies of LTP at excitatory synapses on CA1 pyramidal neurons in 

hippocampal slices. Similar or identical forms of LTP have been observed at excitatory 

synapses throughout many brain areas. Thus, the conclusions drawn from the study of 

LTP in the hippocampal CA1 region are often applied to other brain regions.  

 

 

1.3.2.1.1 Molecular Mechanisms of LTP 

 

 The induction of the LTP is mediated by NMDARs and expression of the LTP is 

mediated by AMPARs 151.  As previously reviewed in the Section 1.3.1.1, AMPARs and 

NMDARs are the major types of ionotropic glutamate receptors contributing to the 

postsynaptic response at glutamatergic synapses. The AMPAR has a channel that is 

permeable to monovalent cations (Na+ and K+). Activation of AMPARs provides most of 
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the inward current that generates the excitatory synaptic potential. This is a fast reacting 

channel protein. In contrast to AMPARs, the NMDAR exhibits a strong voltage 

dependence because of the magnesium blockage inside the channel 152. Therefore, there is 

little or no contribution of NMDARs during basal synaptic activity to the postsynaptic 

response. However, after depolarization via AMPARs, magnesium dissociates from its 

binding site within the NMDAR channel. This event allows ions to enter the cell. More 

importantly, unlike AMPARs, the NMDAR is permeable to divalent (Ca++) as well as 

monovalent cations (Na+ and K+) ions. The permeability to calcium ions triggers 

downstream molecules that support various forms of synaptic plasticity. It is well 

established that the induction of LTP in the CA1 region depends on activation of 

NMDARs. It has also been shown that the postsynaptic calcium concentration increases 

during strong postsynaptic depolarization. The coincidence detection property of 

NMDAR makes it unique and important for LTP. These properties of the NMDARs also 

explain the basic properties of LTP. 

 

     As stated, the calcium signal is essential to activate signal transduction molecules 

which are necessary to initiate and support LTP 153 151. Researchers have suggested some 

basic criteria for defining the role of a protein as a mediator of LTP induction. The 

function of individual molecules can be studied either by blocking the activation of the 

molecule or by activating it during LTP induction. If blocking the molecule blocks LTP 

induction, or activation of the molecule induces LTP, which occludes further synaptic 

induction of LTP, this molecule is then considered critical for LTP. Calcium/calmodulin 

(CaM)-dependent protein kinase II (CaMKII) is a key molecule in the molecular 
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machinery for LTP, which fulfills those requirements. Previous research suggests that 

CaMKII undergoes autophosphorylation to support LTP induction 114 154. In another 

study, LTP induction was prevented in knockout mice lacking a critical CaMKII subunit 

48. LTP induction was also prevented when a mutation occurred at the 

autophosphorylation site of CaMKII 155. Furthermore, inhibition of CaMKII using a 

peptide blocks LTP 149 95, whereas an increased concentration of active CaMKII increases 

synaptic strength 156 157. Other than CaMKII, several other kinases have been implicated 

in the triggering of LTP. It is still a topic of investigation to dissect out the independent 

molecular pathways involved in triggering LTP.  

 

The expression of LTP is dependent on AMPARs. The increase of AMPARs in 

the postsynaptic density is a key feature shown in various LTP related studies 158 99 147. 

This increase of AMPARs is driven by activity-dependent changes in AMPAR trafficking 

159 160. Phosphorylation of AMPARs at different sites is crucial for the trafficking of 

AMPARs but detailed molecular functions of these changes remain to be determined. 

Recent evidence suggests that CaMKII can phosphorylate Ser831 of the GluA1 subunit, 

which results in a significant increase in single-channel conductance of homomeric 

GluA1 receptors 99. Roughly, AMPARs are translocated into the PSD via both exocytosis 

and lateral movement within the plasma membrane. Most investigators believe that the 

incorporation of AMPARs into the PSD is the most important change because it appears 

to be accompanied by structural changes in the dendritic spines and synapses themselves, 

which is an attractive mechanism for maintaining LTP.  
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For LTP in the CA1 region of hippocampus, it is clear that the NMDAR plays a 

vital role in the induction of LTP. On the other hand, AMPARs support the expression of 

LTP. An increase in NMDAR activation increases the calcium concentration in the 

dendritic spines; the increased calcium ions activate CaM and CaMKII. CaMKII 

phosphorylates AMPARs leading to the insertion of AMPARs into the PSD as well as 

AMPAR trafficking from extrasynaptic sites to synaptic sites. In a parallel process, 

synapses start exhibiting structural changes such as an increase in the size of the PSD and 

the dendritic spine. 

 

1.3.2.2 Long-term Depression (LTD) 

 

Synaptic plasticity is bidirectional.  Synapses will reach maximum efficacy if they 

continue to increase in strength. This unidirectional progression could make it difficult for 

synapses to encode new information. Thus, to make LTP useful, there should be the 

possibility of a weakening process. One process for the weakening of synaptic strength is 

called LTD. Establishment of LTD provided support for the idea that memories or 

experiences were encoded critically by the distribution of synaptic strength in neural 

circuits. There are some computational advantages to having both LTP and LTD in the 

synapse. Linden hypothesized that saturation of LTP is prevented by the active resetting 

of already potentiated synapses; of course homeostatic rebalancing of inactive synapses 

would also have to occur 161. The resetting mechanism can make synapses more 

responsive and preserve the dynamic range of responsiveness needed. Other researchers 
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suggested that LTD of previously potentiated synapses could also serve as a "forgetting" 

mechanism 162.  

 

1.3.2.2.1 Molecular Mechanisms of LTD 

 

A prolonged repetitive low-frequency stimulation is required to obtain LTD. This 

prolonged low activity partially relieves Mg2+ blockage in NMDAR and leads to reduced 

calcium entry into the postsynaptic cells. In a model for the induction of LTP and LTD 

Malenka et. al, proposed that high-frequency stimulation increases the calcium level to 

concentrations greater than 5 µM, while, low-frequency stimulation leads to calcium 

concentrations of less than 5 µM 148. This suggests that calcium concentration plays a role 

in both LTP and LTD, mediating the bidirectional effects. 

 

A leading hypothesis for the induction of the LTD signal transduction pathway 

suggests that LTD involves activation of a calcium-dependent protein phosphatase 

cascade. The proposed molecular cascade consists of the calcium/calmodulin-dependent 

phosphatase calcineurin (also known as protein phosphatase 2B) and PP1 163. Current 

evidence supports the hypothesis that postsynaptic inhibition of either PP2B or PP1  

prevents LTD induction 164  165 166 whereas, direct injection of PP1 into CA1 pyramidal 

neurons increases LTD 167.  

 

The notion that the NMDAR and calcium concentrations play critical roles in 

LTD is widely accepted. Walter and colleague showed that blocking NMDARs using 
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MK-801 prevents LTD induction in both adult and immature mice 168. In the proposed 

mechanism, they show that blocking the NMDAR inhibits the activation of p38-MAPK 

and the dephosphorylation of GluR1 (S831), which prevents LTD. Another proposed 

mechanism for the support of LTD is dephosphorylation of Ser845 on GluR1 

(phosphorylated by PKA). Dephosphorylation of GluR1 at the PKA phosphorylation site 

leads to LTD 169. Dephosphorylation of these two sites (S845 and S831) may both 

contribute to the expression of LTD. Dephosphorylation at the PKA site decreases the 

AMPAR open-channel probability 170. Consistent with a critical role for this site, the 

knock-in alanine substitution of Ser845 on GluR1 prevents NMDAR dependent LTD 111. 

A similar outcome is seen if Ser831 (the CaMKII phosphorylation site) is replaced with 

alanine.  

 

While dephosphorylation mechanisms can alter AMPA receptor conductance to 

support LTD, as described, the current leading hypothesis in the field of LTD expression 

is that the expression of NMDAR-dependent LTD is due to activity-dependent 

endocytosis of synaptic AMPARs 99 145 158 171 160. The calcium-dependent 

dephosphorylation of AMPARs leads to their endocytosis and this endocytosis is 

dependent on phosphatases  172–174. There is direct evidence from immunohistochemical 

studies, that endocytic machinery co-localizes with AMPARs and subsequent endocytotic 

events can be visualized. The endocytotic process is also calcium dependent.  

 

The preferential activation of phosphatase proteins in the dendritic spine takes 

place only in response to a modest increase in calcium. As a result of phosphatase 
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activation, AMPARs dissociate from the PSD and move laterally to the endocytotic zone. 

Finally, these lateralized AMPARs are endocytosed and degraded. LTD also changes the 

size of the dendritic spine. It appears shrinkage of the dendritic spine is associated with 

LTD 175,176 and this might relate to the loss of AMPARs from the dendritic spine 177.  

 

1.3.3 Role of Synaptic Plasticity in Learning and Memory 
 

The relation between synaptic plasticity and memory remains a topic of extensive 

research and debate. It is still not fully understood whether LTP and LTD naturally occur 

during learning in live animals. The discovery of LTP significantly boosted the research 

field of learning and memory and the investigation of their relationship to synaptic 

plasticity mechanisms. Studies on LTP had characterized different key molecules 

involved in LTP induction. Several studies showed that LTP could be blocked by 

inhibiting specific protein molecules, or in specific gene knockout animals. Researchers 

also confirmed that inhibition of these LTP-related molecules could affect various stages 

of memory (acquisition, consolidation, and retrieval) as reflected in behavior.   

 

1.3.3.1 The Hypothesis of Synaptic Plasticity and Memory  

 

The synaptic plasticity and memory (SPM) hypothesis was developed by several 

researchers 178. The key concept of the SPM hypothesis is that synaptic plasticity is a 

physiological phenomenon whereby specific patterns of neural activity give rise to 

changes in synaptic efficacy and neural excitability 178. These changes in synaptic 



37 
 

efficacy induce neural circuit changes that outlast the events that triggered them. This 

biophysical and biochemical machinery is not only important for neuronal activity but 

proposed to be critical for memory. After 40 years of research on the properties of LTP, 

scientists have discovered that LTP processes are required for (a) the acquisition of a 

memory and the storage of memory traces 179 and (b) the initial phases of memory 

consolidation (or stabilization) over time 179. Researchers have concluded that LTP does 

not play a role during memory retrieval 178.  

 

1.3.3.1.1 Criteria for assessing of the SPM Hypothesis 

 

 There are four different criteria for assessing the SPM hypothesis 179. The first 

criterion is “Detectability” which means that the memories for previous experiences 

should be associated with changes in synaptic efficacy in the memory circuitry and these 

changes have to be detectable in the nervous system. The second criterion requires 

“Mimicry”. “Mimicry” refers to the idea that artificial reactivation of the same 

spatiotemporal pattern of neural circuitry thought to store a particular memory should 

lead to a display of apparent memory for a previous experience which did not in practice 

occur. The third concept of SPM hypothesis is identified as “Anterograde Alteration”. 

According to this third criterion, prevention of synaptic plasticity induction during 

learning events should impair the animal’s memory of that experience. The fourth and last 

criterion for the SPM hypothesis is “Retrograde Alteration”. The memory of a previous 

experience is characterized by changes in specific neural circuitry and altering that 

circuitry should alter the animal’s memory of the experience. Studies providing evidence 
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that meet the 4 criteria have been conducted in several behavioral models including the 

olfactory system 180 181 182. 

 

1.3.3.1.2 Experimental Strategies Used for Assessing the SPM Hypothesis 

 

Scientists have exploited different experimental strategies to assess the SPM 

hypothesis. Generally, while the criteria listed above are necessary to demonstrate a 

causal relationship between synaptic plasticity in neural circuits and behavior, to initially 

be consistent with the SPM hypothesis there has to be some correlation between the 

behavioral parameters of learning and memory and some of the properties of synaptic 

plasticity, which we refer to as “Correlation”. The induction of measurable changes in 

synaptic strength at specific synapses should be also associated with learning 

(“Induction”). Another testing strategy is “Occlusion”, which means that saturation of 

synaptic strength in a specific network should occlude new memory encoding. 

 A saturation of synaptic strength refers to a neuronal state in which, at least for a 

period of time, no further LTP or LTD is possible. For example, a true saturation of LTP 

prior to behavioral training should prevent new learning in that circuit because no further 

LTP would be possible 183. Occlusion has been reported for saturation of LTD as well as 

LTP 184 “Intervention” is another strategy that has been used extensively in this field of 

research. A genetic manipulation, pharmacological blockade or enhancement of synaptic 

plasticity and other recent advanced manipulations (e.g., optogenetic manipulations) 

should have predictable effects on learning or memory. For example, Morris et al showed 

that blocking NMDARs blocks hippocampus-dependent spatial learning 185. Later on, 
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many researchers have  shown that inhibition of NMDARs inhibits learning in a different 

behavioral paradigms including certain types of olfactory learning 186,  contextual fear 

conditioning 181,187–189, other operant tasks 190. T-maze alternation 180,191, and delayed 

reinforcement of low rates of response 181. Gene knockout and overexpression of one 

gene have also linked plasticity mechanisms to the mechanisms underlying learning and 

memory 47.  

 

Izquierdo et al took another approach to investigate the relationship between 

synaptic plasticity mechanisms and memory. While most of the foregoing strategies 

focused on memory strengthening and induction protocols, Izquierdo et al have focused 

on “Erasure”. Erasing synaptic plasticity shortly after learning should induce forgetting. 

Erasure has been achieved by either (a) using the application of drugs or enzyme 

inhibitors, which prevent the expression of LTP when given shortly after its induction 

(such as kinase inhibitors,) or (b) using trains that reduced synaptic strength such as those 

for depotentiation (e.g. low frequency) stimulation 192. There are various protocols  for the 

induction of LTD, which typically use extended continuous trains of single pulses at 1–5 

Hz 182,193,194. A report also suggests that a few minutes of 5-Hz stimulation can 

depotentiate recently induced LTP at synapses in the hippocampus CA1 area 182. 

However, the LTD induction protocol has not yet been tested in freely behaving animals 

in-vivo and it is not clear whether LTD protocols induce forgetting.   



40 
 

 

1.3.4 Metaplasticity 
 

Prior synaptic activity, including activity that does not induce LTP, can have a 

long-lasting influence on subsequent synaptic plasticity. For example, a short burst 

stimulus (30 Hz, 150 ms) in hippocampal CA1, which generates short-term potentiation, 

but not LTP, inhibits future LTP and facilitates future LTD 195. This phenomenon, first 

discovered by Abraham and Bear in 1996, was  termed metaplasticity. By definition, the 

plasticity of synaptic plasticity is called metaplasticity. The concept of metaplasticity 

implies that prior activation of a synapse can determine the later fate of the synapse in 

response to stimulation and, specifically, modify whether it will be strengthened or 

weakened by a particular input. The term ‘meta’ reflects the higher-order nature of the 

plasticity.  

 

Essentially, metaplasticity refers to changes in the physiological or biochemical 

state of neurons or synapses that alter their ability to generate synaptic plasticity. In the 

case of conventional plasticity, it has been shown that the modulation and regulation of 

the plasticity events overlap in time. But in the case of metaplasticity, prior activation of a 

synapse can prime the synapse by altering their biochemical and physiological properties 

and these changes persist at least until the second activation. This unique property 

distinguishes metaplasticity from more conventional forms of plasticity. There is an 

extensive range of mechanisms involved in metaplasticity, many of which overlap with 
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the mechanisms of conventional plasticity 195.  This overlap in mechanism and 

simultaneous occurrence pose a considerable challenge for metaplasticity research in 

terms of experimental design and interpretation. In spite of that, there has been a 

substantial amount of work related to metaplasticity over the past decade. Since our 

lifetime of experience is a continually evolving one, it may be hypothesized that 

metaplastic effects are likely to be of particular importance.  

 

 

 

 

1.3.4.1 NMDAR Mediated Metaplasticity 

 

 Besides conventional synaptic plasticity, NMDARs also play a role in 

metaplasticity. Experimenters have used pharmacological or synaptic activation of 

NMDARs to induce metaplasticity. While NMDAR activation is a key trigger for LTP 

induction itself, it also affects subsequent LTP induction, which is due to its triggering of 

metaplastic effects. More importantly, these effects are restricted to the previously 

activated synapses only. Prior LTP induction prevents subsequent LTP at the same 

synapse 195. The inability to induce LTP in the same synapse can be overcome by 

increasing the stimulus intensity. This result suggests that the priming stimulation does 

not completely inhibit LTP but instead elevates the threshold for LTP. The LTP inhibition 

caused by the priming synaptic activity is dependent on activation of NMDARs, p38 

mitogen-activated protein kinase (p38 MAPK), adenosine α2 receptors, a calcineurin,  
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and the protein phosphatases 1A and 2A. While priming stimulation can cause a 

saturation of the potentiation process, this not the only way of the inhibiting later LTP. 

Priming inhibition of LTP can be achieved even when the priming stimulation does not 

cause any detectable change in basal synaptic transmission 195. The metaplastic effect is 

not restricted to LTP, it can modulate LTD as well. The activation of NMDAR can also 

facilitate  or depress the subsequent induction of LTD 195 196.  

 

 Researchers have shown that prior LTP induction reduces the postsynaptic 

voltage threshold for subsequent LTD and facilitates LTD. On the other hand, the same 

prior activation elevates the threshold for future LTP. However, the mechanisms 

mediating these effects of metaplasticity are not clear. Researchers suggest that activation 

of the NMDAR results in LTD of NMDAR (NMDAR LTD) currents themselves.  Lower 

activation of NMDARs or NMDAR LTD results in a reduction in Ca2+ entry through the 

receptor channels subsequently. Previous studies have shown that nitric oxide (NO) and 

PKC have the ability to mediate NMDAR LTD. The same studies have shown that 

NMDAR activation increases the production of NO which can suppress NMDAR 

currents 196 197. On the other hand, pharmacological activation of PKC causes trafficking 

of NMDARs from synaptic sites to extrasynaptic sites 198 199.  

 

There are other mechanisms also involved in this process. For example, the 

impaired LTP due to the application of a prior LTP induction is, apparently not mediated 

by NO and PKC 201,202. There are other potential molecules present downstream of 

NMDAR activation, which could also play a role in metaplastic expression. Different 
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Ca2+ dependent kinases and phosphatases are examples. The priming stimulation could 

alter the intracellular free Ca2+ concentration during plasticity induction, which in turn 

will alter enzyme activity 195. Just like synaptic plasticity, in metaplasticity CaMKII also 

plays a crucial role. The earlier priming affects the phosphorylation state of CaMKII 

203,204 which has a critical role in initiating LTP by regulating AMPARs 205. If the 

autophosphorylated state of αCaMKII is achieved by mutating Thr286 of αCaMKII to 

Ala286 (in which its activity becomes Ca2+-independent), this mutation results in the 

same effects as NMDAR priming stimulation 154. However, it is not clear, whether a 

priming stimulation that does not itself cause LTP can be achieved by 

autophosphorylation of Thr286, which is an important requirement for a purely 

metaplastic effect. In another study, it was shown that knocking out RC3 (also known as 

neurogranin) another binding partner of calmodulin, results in a decrease in LTP 

threshold 206. Autophosphorylation at Thr305/Thr306 of αCaMKII, might also mediate 

later inhibition of LTP. Mutation at Thr305/Thr306 to prevent auto-phosphorylation 

completely abolished the metaplasticity 207. 

 

1.3.4.2 Role of Metaplasticity in Learning and Memory 

 

 How metaplasticity is implemented in natural learning has been an active topic for 

recent neuroscience research. How does learning produce metaplasticity that influences 

either the current acquisition process or future learning? Enriched environments or 

stressful stimuli have both been shown to induce metaplasticity and affect synaptic 

plasticity and learning 208. However, how learning itself affects future plasticity and 
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learning capacity remains to be investigated. A recent study showed that learning could 

induce long-term alterations in after hyperpolarizations (AHPs) which in turn directly 

affect new learning via altered intrinsic excitability. Learning-induced reductions in the 

slow AHP and increases in cell firing has been observed up to 5 days in CA1 pyramidal 

cells in a rabbit eye-blink conditioning experiment 209. The same study showed that if the 

conditioned and unconditioned stimulus were given in random orders then these changes 

were not observed. A persistent decrease in the apamin-sensitive medium AHP was also 

observed in rat piriform cortical neurons after operant conditioning and olfactory-

discrimination training 210,211 and in CA1 pyramidal cells following spatial water maze 

training 212. The underlying molecular mechanisms behind the persistent decrease in the 

slow AHP include a prolonged increase in extracellular-signal-regulated kinase 1 (ERK1) 

and ERK2 activity, as well as PKC 211. At the same time, an increase in the 

GluN2A/GluN2B ratio for piriform NMDARs has been reported 213. During aging, there 

is an increase of the slow AH and increased levels of corticosterone,. These changes 

correlate with impaired learning and memory 214. Reduction of the slow AHP might also 

be important for the learning process because it might metaplastically lower the threshold 

for LTP 214. This change in the neuronal state could provide a facilitated environment for 

new learning. This hypothesis is supported by a study where researchers showed a 

reduction in the slow AHP in rat CA1 pyramidal neurons and found enhanced olfactory 

discrimination performance with subsequent training 215. Reduced slow AHP also 

enhances the ability to learn a different task like spatial navigation in the water maze 215. 
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Histone acetylation and DNA methylation could be other possible mechanisms 

through which metaplasticity would affect learning. Pharmacological inhibition of histone 

deacetylases (HDACs) promotes the formation of long-term memory 216 and the late 

phase of LTP. Animals that have been trained on memory tasks show increased histone 

acetylation in the relevant brain regions 217. In contrast, but related to these epigenetic 

effects, inhibition of DNA methylation inhibits late phase LTP and blocks memory 

consolidation 218,219.  

 

1.4 Olfactory System and Olfactory Learning 
 

 Rodents rely critically on their sense of smell to navigate the environment and 

establish social interactions. My research has used an early odor preference learning 

model in rodents to explore various properties of learning and synaptic plasticity. I 

particularly focused on two olfactory structures: the olfactory bulb (OB) and the piriform 

cortex (PC).  In this section, I first introduce the organization of the olfactory system 

(Figure 6.0), then summarize the research on olfactory learning in rodents.  

 

The OB and the olfactory cortex (OC) including the PC are two main areas that 

are involved in olfactory information processing. Like other sensory systems, olfactory 

information must be transmitted from peripheral structures (the olfactory epithelium 

(OE)) to more central structures (OB and OC) but these two regions directly 

communicate with each other without a thalamic relay, unlike other sensory systems. The 
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olfactory information is first processed in the OB and OC and then transmitted to other 

parts of the brain for generating sensory awareness and stimulus-specific behavior.  

 

There is no topographic organization beyond the OB for olfactory stimuli. A  

topographic organization has been found in the projection from the OE to the OB 220. But 

there is no evidence for a topographic organization from the OB to the OC. The 

spatiotemporal activation patterns to odors occur across large regions of the OC and 

appear to serve as ensemble representations for odor detection and discrimination. 

 

Olfactory receptor neurons (ORN) have a short lifespan (approximately 30-60 

days) and they exhibit significant turnover throughout life. The basal stem cell population 

in the olfactory epithelium constantly replace ORNs by mitotic division. These are the 

only neurons that are inserted in the surface epithelium of the body, as a result, they are 

directly exposed to the environment.  

  

Humans are generally considered as “microsmatic” while rodents belong to 

“macrosmatic mammals 14.  Microsmatic species have a relatively poorly developed 

olfactory system compared to macrosmatic species 221. Certainly, the structural 

organization of the OB and OC in rodents and carnivores is well defined. However, the 

human brain also consists of the same olfactory structures which have been shown in 

rodents and cats. Relatively simple circuitry and direct connections between the OB and 
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OC have helped scientists to understand the information encoding process in the olfactory 

pathways. 

  

The OB and piriform cortex (PC) are the two main structures of the olfactory 

systems which have been most extensively investigated in learning paradigms. Learning 

studies form our lab have shown molecular and structural changes in these structures 

following odor experience and/or conditioning. For example, neurotransmitter release 

patterns are altered in the OB following odor associative learning 222. A significant 

enhancement in the activity of PC cells has been observed following odor conditioning 

223. I will discuss the olfactory learning literature in detail in the later sections. Previous 

studies support the concept that learning-induced synaptic modification occurs both in the 

OB and the OC and investigations of olfactory learning have broadened our 

understanding of learning and memory mechanisms in general. 

 

1.4.1 Olfactory Processing and System Anatomy 

  

 Odor detection and perception begin with the binding of an odorant molecule to 

the olfactory receptor (OR) proteins located on olfactory sensory neuron (OSN) dendrites 

within the nasal epithelium. The binding of the odorant molecules to the OR initiates 

chemical cascades within the OSN that generate action potentials, which travel to the OB 

via OSN axons for further processing. Each odorant activates more than one receptor type 

present in the OSN and odor receptors respond to overlapping sets of odorants 224–228. 
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Activation of these unique sets of neurons forms the basis of an odor identity code. Later 

on the encoded odor information transfer to the OB via the projections of the OSNs 

present in the olfactory epithelium.  

  

Homologous OR gene expressing OSNs project to specific glomeruli in the OB, 

and form synapses with dendrites of the bulbar output neurons, mitral/tufted cells, as well 

as with a heterogeneous population of glomerular layer excitatory and inhibitory 

interneurons. Due to an architecture in which each glomerulus receives input from OSNs 

expressing the same ORs, glomeruli serve as independent, functional units. As a result, 

exposure to specific odorants tend to activate a group of glomeruli forming a specific 

spatial pattern or odotopic map in the olfactory bulb 225,229–233.  

  

The inhibitory circuit within the OB enhances the spatiotemporal features of the 

OSN glomerular input, which further helps in signal processing. For example, the 

GABAergic periglomerular (PG) cells within glomerular layer supply both presynaptic 

and postsynaptic inhibition of OSN input and both intra- and interglomerular postsynaptic 

inhibition of mitral/tufted cell responses 234–243. This PG cell population can control 

lateral inhibition between glomeruli.  Interestingly, both PG and granule cell populations 

are heavily innervated by centrifugal input from several neuromodulatory regions, which 

in turn play a crucial role in olfactory learning and memory 244.  
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After initial processing in the OB, the neural code for a given odor is 

communicated to the 

PC via the lateral olfactory tract (LOT) formed by the mitral/tufted cell axons. In the PC, 

pyramidal neurons form synapses with the mitral/tufted cell axons coming from LOT. 

Electrophysiological data suggests that individual pyramidal cells at multiple locations 

are responsive to a given odorant 245. Unlike the OB, there is no odotopic map present in 

the PC. In the following sections, I will further discuss these two major olfactory 

structures, the OB and PC, which are central to my research. 

 

1.4.1.1 The Olfactory Bulb 

 

  The OB has a laminar structural organization like other cortical areas. 

Histological studies by Cajal and colleagues showed that the bulb consists of seven layers 

246–250. These seven layers include the olfactory nerve layer (ONL), glomerular layer 

(GL), ), the external plexiform layer (EPL), the mitral cell layer (MCL)  the internal 

plexiform layer (IPL), and the granule cell layer (GCL) 251–254. Each OB consists of 

several thousands of glomeruli. One glomerulus receives thousands of OSN axons and the 

dendritic branches of approximately 10-70 M/T cells 255–257 which form synaptic 

connections. These excitatory synapses can be modulated by three types of neurons 

present in the GL: periglomerular cells (PG), short axon cells (SA), and external tufted 

cells (ET) 252,253. The granule cells are another type of cell present deeper in the OB, 

which influence the fine-tuning of odor representation in the OB via dendrodendritic 
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GABAergic modulation 258–260. Volumetrically, the GL and GCL account for the highest 

percentage of the bulb. Reports suggest that approximately 50% of the bulb is composed 

of GL and GCL (GL: ~26%; GCL: ~29%).  

 

Each bulb contains various cell types that include principle neurons (M/T cells), 

interneurons (PG, Granule cells, SA, ET, Van Gehuchten cells, and Blanes cells), and 

glial cells (astrocytes, olfactory ensheathing cells, NG2, oligodendrocytes, and microglia).  

 

After the processing of odor representations by the aforementioned components, 

M/T cells relay that information for the higher-order information processing 261 253, 254 257.  

 

1.4.1.2 The Piriform Cortex 

 

 The PC is a higher order olfactory processing structure required for multiple 

cognitive functions related to olfaction. The PC also serves to connect other brain areas 

with olfactory structures. As mentioned earlier, the LOT is a myelinated axon bundle of 

M/T cell output that relays odor information from the OB to the PC 264,265. Price and 

colleague suggested that the LOT consists of two types of axon bundles: a thinner bundle 

and a thicker bundle 261,266. The thinner bundle originates from tufted cells, which projects 

to the rostral part of the PC and the thicker bundle axons are from the mitral cells and 

innervate throughout the entire PC 247,263. The PC serves as the largest recipient of bulbar 
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projections and is considered the “primary” olfactory cortex 267–270. Although other 

primary cortical areas are typically six-layered, the PC reveals a trilaminar organization 

similar to that of the hippocampus.  

 

The PC is reciprocally and extensively connected to other higher order cortical 

structures, including the anterior olfactory nucleus, endopiriform nucleus, olfactory 

tubercle, entorhinal cortex, prefrontal cortex, perirhinal cortex, and cortical amygdala 

265,266,268,271–278. Interestingly, the PC feedback connections have the ability to influence 

bulbar output by modulating granule cell activity in the OB 264,279–284. Its distributed 

bidirectional nature between the periphery and the higher cortical networks that regulate 

cognition, emotion, memory, and behavior underscores the importance of the PC in 

regulating many physiological and behavioral events in mammals.  

 

Anatomically, the PC is commonly divided into two segments: the anterior 

piriform cortex  (aPC) and the posterior piriform cortex (pPC) 223,285–295. Compared to the 

pPC, the aPC receives relatively more afferent input from the OB and fewer associational 

inputs from other cortical areas. This suggests that the aPC may encodes odor identity 

while the pPC is for ‘content addressable memory’ e.g., odor object identification 296,297 

298 273 292 291 299 245 300 301 302 303 277 304. However, studies using the early odor preference 

learning model show a developmental change in their roles. Week old pups exhibit more 

2-deoxyglucose(2-DG) uptake to odors in the aPC whereas two-week-old pups show 

more 2-DG uptake in the pPC. This may reflect the maturation of other associational area 
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input and processing. The PC has multiple advantages for the study of learning and 

memory effects in a cortical structure: specifically (1) a comparatively simple anatomy 

with a laminar organization; (2) an accessible anatomical location for physiological and 

behavioral studies  305 306; consistent with (3) a lack of thalamic relays from the periphery; 

while also having (4) a high-level synthetic role in odor perception; and well-delineated 

(5) afferent, efferent, and auto-associative connectivities. 

 

1.4.2 Olfactory Learning 
 

 Olfactory learning is a commonly used model system for investigating learning 

and memory mechanisms. Olfactory learning research has involved a variety of species 

including honey bees 65,  Drosophila 307 308, lobsters 309, moths 310,  mice 311 312, humans 

313 314, rats 315 316 317 318,  zebrafish 319, rabbits 320, and sheep 321. Olfactory studies in 

rodents have provided us with detailed descriptions of the underpinnings of infant-mother 

attachment, associative learning 322 323 324 325 326 327 328, and learning-related pattern 

separation and completion 329 330.  

 

In the following section, I will describe different types of animal models in 

olfactory learning research with a focus on the rodent models used in my investigations. 

 

1.4.2.1 Adult Learning Models 

 



53 
 

 Researchers have used both vertebrates and invertebrates to understand the 

mechanisms of olfaction. Examples of the different species researchers have been using 

for olfactory research include lobsters 309, moths 310, honey bees 65, Drosophila 299 300, 

mice 312, turtles 331, rats 307 308 310 320, rabbits 320, sheep 332, zebrafish 319, and humans 313 314 

301. Within these olfactory studies,  complex sensory phenomenon like infant-mother 

attachment learning, associative learning, pattern separation, and pattern completion 271 

322 324 325 326 327 328 have been investigated.  

 

 One of the adult behavioral models used for investigating olfactory learning and 

memory is the ‘Go-No-Go’ paradigm. In this learning model rodents learn to discriminate 

between odors depending on the valence of the odor (rewarded or non-rewarded odor).  

Computer-controlled olfactometers generate odor pulses and deliver or withhold rewards 

facilitating evaluation of  a rodent’s ability to detect and discriminate odors 333 334 335 336 

337 330.  Typically, during training, water-deprived rodents are allowed to either respond 

positively to reward-associated odor by entering the odor delivery port for a water reward 

(“Go”) or they must refrain from entering the odor delivery port when a non-rewarded 

odor is delivered (“No Go”).   

 

Other than go/no-go tasks, rodents can be trained to go in a left or right direction 

for reward. Researchers also use food digging behavioral paradigms where odor and food 

are associated. The positive odor signals digging and food while in the presence of 

negative odor, animals should not dig.  The digging method requires fewer trials, while 
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the olfactometer odor discrimination paradigms take significantly more trials to reach 

learning criteria 338, but are automated, thus limiting experimenter oversight requirements. 

 

1.4.2.2 Early Odor Preference Learning Model 
 

 

Classical conditioning is one of the most widely used associative behavioral 

paradigms. A feature of the associative learning of temporally distinct events is to 

requirement to develop and maintain perceptual and cognitive representations 339 340. In 

classical conditioning, the presentation of the conditioned stimulus (CS) is taken as a 

predictor of a subsequent unconditioned stimulus (UCS) 341. A neutral stimulus like a bell 

ring or an odor (ie. CS) will not generate a predictable response unless they are associated 

with either reward or punishment (ie. UCS). A behavioral response to a previously neutral 

stimulus occurs when that stimulus, a CS, is associated with a reward or punishment, a 

UCS, through learning. The learned behavioral response is the conditioned response. An 

unconditioned response occurs, irrespective of learning, when a stimulus reliably evokes 

a response, such as avoidance responses for painful stimuli or approach responses to 

rewarding ones. Early odor preference learning is an example of classical conditioning. In 

my thesis, I characterized the intracellular molecular pathways involved in early odor 

preference learning and I use postnatal day (PND) 1- 11 rat or mice pups, a time period of 

selective plasticity for this form of learning 342 also referred to as a critical period. 

Developmentally, a critical period is defined as a stage of life during which the 

nervous system is especially sensitive to certain environmental stimuli. During the critical 



55 
 

period for early odor preference learning, rat pups cannot see as their eyes open at 

PND14-15. Hearing thresholds are also higher during this period with responses to loud 

sounds evident at PND, 8-9 with increasing sensitivity gradually developing from that 

point343 . But olfaction and somatosensory inputs are present from birth 344. Thus, pups 

rely particularly on olfactory and somatosensory input to help them maintain proximity to 

their mothers. As might be predicted bilaterally bulbectomized rat pups (at the age of 

PND1) weigh significantly less than control pups 345. These data suggest that olfaction 

plays an important role during the critical period for rat pups. Since neonates use 

olfaction to locate their mother for food, they can be conditioned to prefer odors with 

simple experimental manipulations. 

 

The rodent dam provides pups with positive stimuli including licking, access to 

milk and warmth, but may also provide harsher stimuli such as biting and stepping on 

pups. In this early period of relative helplessness, it appears that both the positive and 

even the more negative natural stimuli facilitate neonate-dam attachment. Early odor 

preference learning, as a type of classical conditioning, consists of a UCS, a stimulus or 

stimuli associated with maternal care, and a CS, a distinct odor. Early odor preference 

learning can be supported by multiple UCSs. Rat pups receive a variety of stimuli during 

maternal care, as mentioned, and, similarly, a range of stimuli can be used as a UCS. 

Pairing the UCS with a novel odor creates a conditioned approach response to the trained 

odor. Examples of stimuli used as the UCSs in this paradigm include milk presentation 346 

347 348,  the odor of maternal saliva 349, stroking or tactile stimulation 350 351 352 353 354 355, 
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and mild foot shocks 356 357 356 358 359, or tail pinches 352 showing that even aversive 

stimuli can produce odor preferences, rewarding intracranial brain stimulation 360, and the 

nesting environment 361 362 are also effective UCSs. 

  

The CS odor can create a variety of conditioned responses depending on the UCS 

363 360 364. For example, generally, a rodent shows aversion to peppermint odor. However, 

Leon and colleagues 365 366 first showed that rat pups have a behavioral preference for 

peppermint odor when tested at PND20 if they were exposed to peppermint for the first 

19 days of life (3 h/day). Odor preference could be induced with briefer CS-UCS pairings 

as well. Odor exposure for 10 min/day on PND 1–18, coupled with tactile stimulation, 

induced an odor preference on PND 19 352. 

  

The associative nature of early odor preference behavior has been demonstrated 

by Sullivan and colleagues. Pups trained with CS-only, UCS-only, random CS–UCS 

presentations, and backward UCS–CS presentations all failed to acquire a preference for 

the trained odor 357 358 whereas, pups with synchronous odor and tactile stimulation 

developed a conditioned approach to the trained odor 357 358. Some aversive stimuli like 

tail pinch and mild foot shock (0.5 mA), also induce an odor associated preference 

behavior during the critical period 356 357 352. On the other hand, the same UCS induces 

odor aversive responses in pups during the second and third postnatal weeks 359 358 323. 

Similarly, stroking loses its effectiveness as a UCS in the second and third postnatal 
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weeks 369. Researchers showed that stroking in the presence of odorant does not induce 

odor preference after PND 10 369 which suggests a sensitive period for the development of 

early odor preferences. A single trial 10 min odor+stroking pairing in the sensitive period 

induces a protein synthesis-dependent odor preference memory which lasts for 24 h 19. 

  

The molecular characterization of early odor preference learning has helped us to 

understand the events underlying the CS-UCS pairing effects. Earlier work had shown 

that norepinephrine (NE) plays an important role as the UCS in early odor preference 

learning 360 and that the locus coeruleus (LC) is the sole source of NE for the olfactory 

bulb (OB) and the piriform cortex (PC) 244. Sullivan and colleagues demonstrated that 

LC-induced NE release is both necessary and sufficient for early olfactory learning 323. In 

early odor preference learning, odorant molecules (CS) bind to the olfactory sensory 

receptors in the olfactory epithelium. This binding event triggers downstream glutamate 

signaling to the OB and piriform cortex, but this is not sufficient to induce activation of 

CREB phosphorylation (a key plasticity or memory event). The odorant (CS) primarily 

activates AMPARs. The concomitant weak activation of NMDARs and LTCCs is not 

sufficient to result in the phosphorylation of CREB (the transcription factor). On the other 

hand, the tactile stimulation delivered via paintbrush stroking (the UCS) releases NE by 

activation of the LC 370. Pharmacological studies of early odor preference learning 

suggest β1-adrenoceptors mediate the UCS effect of tactile stimulation (activating LC-

mediated NE release in the olfactory bulb) since systemic or intrabulbar β1 antagonists 

prevent the effect 371 and the UCS itself can be substituted by a β-adrenoceptor agonist. 
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However, the UCS alone is unable to induce CREB phosphorylation 371 and that requires 

forward pairing of CS and UCS 371. 

  

 

 

 

 

1.4.2.2.1 Advantages of the Early Odor Preference Learning Model 

 

In the following section, I will discuss some of the advantages of the early odor 

preference learning model for studying the substrates of learning and memory. 

 

1.4.2.2.1.1 The memory circuitry is well defined 

 

In early odor preference memory, the circuitry of the CS and UCS pathways are 

well characterized 352 372 316 373. The OB, aPC, and LC are the major brain areas involved. 

Briefly, the CS odor activates AMPARs in the OB (mitral/tufted cells) and aPC 

(pyramidal neurons). The addition of the UCS recruits NMDAR activation in the same 

sites. Previous research showed that inhibition of NMDARs in either OB or aPC prevents 

odor preference memory from forming, but does not hamper odor perception 316. 

Blocking of NMDARs prior to early odor preference testing shows that preference 

memory, once formed, remains intact even though NMDARs was blocked, which 

suggests that NMDARs plays a crucial role in memory acquisition without affecting odor 
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perception or memory retrieval373. Molecular events critical and necessary for learning 

have been identified in both the OB and aPC. These include  activation of NMDARs 373 

316, adrenergic receptors 323 373 374 316, L-type calcium channels 375, metabotropic 

glutamatergic receptors 376, and modulation of inhibition (disinhibition) 316. Previous 

work also suggests that both the OB and aPC play critical roles in early odor preference 

learning and memory and both are necessary. 

 

NE is released from axons originating from LC neurons, which project to OB and 

PC, during stroking. Activation of β-adrenoceptors as a UCS in the OB or the aPC paired 

with odor can generate early odor preference memories 352. On the other hand, inhibition 

of β-adrenoceptors in both structures independently prevents odor preference memory in 

neonates 373. Previously, it was shown that the NE released from the LC and together with 

activation of olfactory bulb β-adrenoceptors are necessary for acquisition of the 

conditioned behavioral odor approach response 367 368. For example, bilateral lesions of 

the LC 360 or inhibition of β-adrenoceptors in the OB 377 prevent the acquisition of 

conditioned odor responses. However, the inhibition of β-adrenoceptor after acquisition 

again does not impair expression of previously learned behaviors 378. These results 

suggest that activation of the noradrenergic projection from the LC to the OB is necessary 

for early olfactory learning. Similarly, β-adrenoceptor inhibition in the aPC during 

odor+stroking conditioning prevents the development of odor preference memory. 
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In summary, it is clear that the OB, aPC, and LC play interconnected roles in early 

odor preference learning. Dissecting the representations of the CS and UCS in these 

olfactory areas is relatively simple compared to identifying the CS and UCS 

representations in hippocampal-dependent spatial and contextual memories. 

 

 

 

1.4.2.2.1.2 Memory stages are well-defined 

 

Temporally, as described earlier , memories have been  divided into stages 

including, STM, ITM and LTM 27 17 30 379. These memory stages are not only temporally 

different, but there are differences in their dependence on protein synthesis as well. STM 

does not require protein synthesis, whereas ITM depends on translation, but does not 

require mRNA transcription. LTM requires both translation and transcription 17 26 27 28 6 29 

16 31. 

 These three memory stages have been characterized in the early odor preference 

learning model 379. STM lasts up to 3h after training. ITM is currently defined as 

occurring up to 5h after training and LTM is seen at 24h. ITM can be disrupted by a 

translational inhibitor (anisomycin) infused into the OB, but not by a transcriptional 

inhibitor (actinomycin). STM is not affected by translational or transcriptional inhibitors. 

Since LTM is transcription and translation-dependent, inhibiting either of these processes 
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prevents LTM 379. A 1h time window after training is critical for the learning-related 

protein synthesis necessary for 24h memory. The inhibition of the translational process 3h 

after training has no effect on 24h memory. The identification of proteins underlying the 

circuit remodeling required for learning and memory is facilitated by these time windows. 

 

1.4.2.1.3 Memory duration can be manipulated 

 

One of the fundamental questions of learning and memory research is how to 

prolong our memories. For learning and educational purposes, how we can strengthen our 

memories? With early odor preference memory, duration can be manipulated with 

multiple spaced training trials or with local pharmacological strategies. By applying 

multiple spaced training for four days, early odor preference memory can be extended for 

at least 48h 369 380 and early work suggested even lifelong memories could be generated 

356. Previous characterization of the molecular pathways of early odor preference learning 

has facilitated the development of prolonged memory models created by using 

pharmacological agents. By manipulating the dephosphorylation of CREB using a PP2B 

inhibitor, one can prolong the duration of associative intracellular events in the one-trial 

odor preference training model beyond 24 hr 381. Other evidence suggests that inhibition 

of histone deacetylase (HDAC) prior to training extends 24 h odor preference memory up 

to 5 days and even longer 216.  Additionally, inhibiting the breakdown of the cyclic AMP 

by a phosphodiesterase type IV inhibitor extends memory 382. 
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1.4.2.2.1.4 Lateralization of Early Odor Preference Learning 

 

The left and right hemispheres of the brain generally communicate through a 

series of commissures. These commissural fibers cross the midline of the brain to form 

reciprocal connections between two hemispheres. Cutting the major commissural 

connection between the two sides of the brains causes the animal to behave as if they 

have two separate brainss. If the inflow of sensory information is restricted to one side of 

the brain then each side of the brain can exhibit relatively independent perception, 

learning, and memory. Newly born rats have a “natural-split-brain” advantage for early 

olfactory learning and memory 383. Pups younger than PND 12 (lacking the development 

of the anterior commissure during this time period) showed an increased preference for 

the conditioned odor in a choice task when tested with the spared side (one nostril open 

during training) open 383. The same pups showed no preference for the conditioned odor 

when tested with the occluded side (the side blocked during training) open 383. A similar 

observation was made more recently when lateralized odor preference training in rat pups 

produced an enhanced network response only in the ipsilateral aPC 380. In contrast, PND 

12 pups or older pups showed learned odor preferences with either naris open when they 

were trained unilaterally. The maturation of specific components of the anterior 

commissure (the olfactory system’s crossed projection pathway) and the bilateral 

response develops simultaneously 384. Bilateral olfactory learning in older pups can be 

blocked by cutting the anterior commissure before unilateral training 385. The data suggest 
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that the anterior commissure is crucial for bilateral olfactory learning in older pups. This 

unique intra-animal control property of neonates reduces the variation seen in between-

animal designs (thus reducing the required number of animals in experiments) and allows 

more precise experimental control for clarifying the molecular pathways of learning and 

memory.  I have utilized these developmental commissural advantages in the experiments 

to be described in my thesis.   

 

1.4.2.2.1 The Molecular Mechanisms contributing to Early Odor 

Preference Learning 
 

Our understanding of the molecular processes underpinning learning and memory 

has accelerated over the past decades. These studies have helped us to understand neural 

circuits and the basis of their adaptive change within both invertebrate and vertebrate 

species. The following sections will focus on the cellular and molecular components 

supporting early odor preference learning in rodents. 

 

 

1.4.2.2.1.1 LC–Norepinephrine 

 

Approximately, 40 % of noradrenergic fibers of the LC project to the OB 386. This 

results in a heightened sensitivity to sensory input during early developmental stages 370 
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387. Tactile stimulation at early ages promotes NE release from the LC terminals 387. The 

release of NE from the LC 388 389 is required for acquisition of conditioned odor 

preference. Pharmacological blocking of noradrenergic β-adrenoceptors in both OB and 

aPC prevents odor learning 314 357 367. Pharmacological activation of β-adrenoceptors in 

the OB paired with odor can generate 24 h odor preference memory. Odor preference can 

also be rapidly acquired by pairing odor with direct stimulation of LC 323. With this 

pairing, odor preference learning can also occur beyond the critical period 390. 

  

 Odor plus tactile stimulation induces a striking increase of NE in the OB in pups 

during the first postnatal week, which is not seen to odor alone and is greater than that 

seen to tactile stimulation alone 391. However, NE levels are lower to combined 

stimulation by 10 days of age 388. It is likely that release of NE from LC terminals in the 

OB and aPC supports odor preference conditioning by engaging the protein molecules 

discussed below. 

 

1.4.2.2.1.2 β -Adrenoceptors 

 

Systemic blocking of β-adrenoceptors with propranolol in the rat pup blocks early 

odor preference learning 367. Later studies also showed that early odor preference learning 

was prevented when the β-adrenoceptor blocker is restricted and localized to the OB 323. 

Systemic injection of the non-selective β-1 and β-2-adrenoceptor agonist isoproterenol 
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(2mg/kg) produces 24h early odor preference memory when paired with odor. A later 

study using selective systemic β1 and β2 agonist administration separately showed that 

odor preference learning induction is specific to β1-adrenoceptor activation 374. Odor 

preference can be induced by a moderate dose of isoproterenol (2 mg/kg) paired with a 

novel odor. However, odor paired with a lower dose (1 mg/kg) or higher doses (4–6 

mg/kg) does not 367 392 393 create odor preference in neonate rat pups. A similar effect can 

also be observed with selective β-1 agonist administration 374. Since isoproterenol 

infusion directly in the OB paired with a novel odor also produces odor preference 

learning, it is likely that both LC-mediated NE release and isoproterenol can serve as 

unconditioned stimuli. 

 

1.4.2.2.1.3 α-Adrenoceptors 

 

The role of β-adrenoreceptors in the early odor preference learning has been the 

focus in past decades 392 367 378 323 352 393. The function of α-adrenoreceptors in this 

learning paradigm has only recently received attention. Like β1-adrenoceptor agonists, 

systemic injection of α1-adrenoceptor agonists paired with odor can generate odor 

preference learning 374 and again doses exhibit an inverted U-curve relationship to 

learning. There were no learning effects with a systemic α-2 agonist for the doses 

explored. However, recent evidence suggests that infusion of 500mM clonidine (α-2 

agonist) directly in the OB can also induce early odor preference learning 394. The likely 
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mechanism for OB α-2-adrenoceptor action is cAMP independent and appears to be 

mediated by disinhibition of mitral cells in the OB. 

 

1.4.2.2.1.4 Serotonin  

 

Serotonin is a neurotransmitter widely present in vertebrates, invertebrates, 

insects, plants, and even in some unicellular organisms. Initially, it was shown that 

depletion of serotonin locally in the OB on PND 1 395 prevented the later acquisition of 

the conditioned odor learning. By increasing the dose of isoproterenol this effect of 5-HT 

depletion could be rescued 392. It was reported that 5HT-2 receptors mediate the effect of 

5-HT depletion as learning can be prevented by systemic injections of the 5HT 2A/2C 

antagonist ritanserin 372. Learning is inducible by stroking in 5HT-depleted pups if there 

is a prior subcutaneous injection of a 5HT 2A/2C agonist 372. Unlike α and β-

adrenoceptors agonists, it was not possible to induce learning by pairing novel odor and 

the 5HT 2A/2C agonist alone 396. These results suggested that serotonin acts to support 

normal β-adrenoceptor mediation of odor preference learning, but it does not act as UCS. 

Serotonin release from the raphe nuclei, during CS-UCS pairing, facilitates the induction 

process. 

 

1.4.2.2.1.5 Cyclic Adenosine Monophosphate 
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A role for cyclic adenosine monophosphate (cAMP) as a critical intracellular 

signal in the initiation of associative learning has been demonstrated in a wide variety of 

species: Drosophila 397 398 399; Aplysia 400 401; and rodents 402 393 403. 

 

Since the ground-breaking discoveries in Aplysia and Drosophila, a growing body 

of evidence supports the hypothesis that the cAMP/protein kinase A/cAMP response 

element binding protein (cAMP/PKA/CREB) cascade might be a universal mechanism 

underlying learning and memory. Depletion of 5-HT in the OB prevented early odor 

preference learning with a typically effective UCS (2mg/kg isoproterenol) for which  

pCREB and cAMP increases were normally observed 393. A causal role for cAMP 

increases in odor preference learning was demonstrated by manipulating cAMP levels 

with the phosphodiesterase IV inhibitor, cilomilast. The inhibitor converts a low learning-

ineffective dose of isoproterenol (1 mg/kg) into an effective UCS 404. In a follow-up 

experiment, cilomilast restored learning in pups with 5-HT-depleted bulbs when paired 

with 2 mg/kg isoproterenol, a condition that had previously been shown to be ineffective 

in producing learning 405. Interestingly, simply increasing cAMP is not sufficient for early 

odor preference learning. A high dose of isoproterenol of 4 mg/kg increases cAMP but 

does not support learning. So, it has been proposed that a specific temporal patterning, as 

well as a sufficient level of cAMP increases, is required for learning.  A cAMP peak was 

observed at 10 min after training with the normally effective dose of isoproterenol, but 

then cAMP levels decreased. With a high dose of isoproterenol, there was only a 

sustained rising increase in cAMP over the 20-min period following training. 
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Interestingly, the effective dose of isoproterenol alone also produced a similar rising 

pattern, but when combined with novel odor input, the profile was a 10 min peak 

elevation in cAMP was followed by a decrease 403. The natural odor+stroking procedure 

also produces a 10-min cAMP peak followed by a decrease pattern. These effects are 

consistent with other reports of calcium modulation of cAMP patterns 406 407. 

 

1.4.2.2.1.6 Protein Kinase A 

 

The cellular level of cAMP, and likely its pattern, also determines the activity of 

PKA. PKA is known to play a key role in long-term memory (LTM) formation in both 

invertebrates 408 and vertebrates 409. Activation of PKA phosphorylates learning-related 

downstream substrates such as serine 133 of the transcription factor CREB 410 411 and 

serine 845 of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

(AMPAR) GluA1 subunit 411 412. Since cAMP plays a crucial role in odor preference 

learning 404 405, PKA activation is inevitable.  As predicted, PKA activation is maximal 10 

min following training during the cAMP peak 413. Blocking of PKA effects by Rp-cAMPs 

prevents normal odor preference learning. This also inhibits CREB phosphorylation, 

which is again consistent with a causal role for the cAMP/PKA/CREB cascade in 

learning. 

 

1.4.2.2.1.7 CREB 
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As reviewed, β1-Adrenoceptors can mediate the UCS in early odor preference 

learning. Tactile stimulation (activating LC-mediated NE release) or an agonist of β-

adrenoceptor,  triggers the cAMP cascade. On the other hand, the odor serves as the CS 

that adds to the depolarization of postsynaptic cells to result in calcium influx through 

NMDARs and L-type calcium channels. The pairing of the UCS and CS modifies cAMP 

profiles and recruits PKA to generate the phosphorylation of CREB 371. 

 

CREB has been referred to in reviews as “the memory gene” (Yin and Tully, 

1996). Using western blot analysis, it was shown that phosphorylated CREB (pCREB) 

levels significantly increase in the OB 10 min following olfactory conditioning 

(odor+stroking). This increase of pCREB is correlated with 24 h odor preference 

memorya 393. . A causal role for OB CREB in early odor learning was demonstrated 

directly by manipulating the expression of the CREB gene 414. The literature also suggests 

that pCREB activation is a temporally focused and restricted event. The effective dose of 

isoproterenol paired with peppermint increased pCREB expression 371 at 10 min, while, a 

high dose of isoproterenol failed to produce learning and did not lead to an increase in 

CREB phosphorylation despite the elevated cAMP levels. Taken together, these results 

argue that an optimal profile of CREB phosphorylation 10 min post-training is necessary 

for initiating 24-h memory in the early odor preference learning model. 
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1.4.2.2.1.8 Phosphatase 

 

Phosphorylation and dephosphorylation of different memory-related proteins 

serve diverse roles in long-term memory and synaptic plasticity. But unlike kinases, 

phosphatases have not been extensively studied in memory research. In the early odor 

preference learning model, dephosphorylation of CREB can be mediated by either protein 

phosphatase 1(PP1) or calcineurin (PP2B) 393. Hyper-activation of PKA may relate to a 

longer inhibition of PP1 and PP2B and a longer duration of CREB phosphorylation. This 

remains to be investigated.  

  

However, PKA and PP2B were found to be co-localized at postsynaptic densities 

415 416. Coincidentally, PP2B is also involved in dephosphorylation of CREB, 

phosphodiesterases and adenylate cyclases 417 418. By manipulating these 

dephosphorylating actions of PP2B we can alter the duration of associative intracellular 

events in the one-trial odor preference training model. PP2B inhibition in both OB and 

aPC using FK506 does not prevent normal 24-h odor preference memory 381 but can 

prolong it. 

  

Unlike isoproterenol, FK506 does not act as a UCS. However, with normal 

training parameters, blocking the calcium-dependent phosphatase extends odor preference 
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memory and extends the duration of CREB phosphorylation. This suggests that CREB 

phosphorylation duration positively modulates memory duration. 
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Chapter 2 

 

NMDA receptors in mouse anterior piriform cortex initialize early odor preference 

learning and L-type calcium channels engage for long-term memory (This Chapter is a 

modified version of Mukherjee and Yuan,  Sci Rep. 2016 Oct 14;6:35256. doi: 

10.1038/srep35256.) 
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2.1 Abstract 

 

The interactions of L-type calcium channels (LTCCs) and NMDA receptors 

(NMDARs) in memories are poorly understood. Here we investigated the specific roles of 

the anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference 

memory in mice.  

 

Using calcium imaging in aPC slices, LTCC activation was shown to be 

dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine 

(LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by 

lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in 

the presence of D-APV. In mice that underwent early odor preference training, blocking 

NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference 

memory and both memories were rescued when BayK-8644 (LTCC agonist) was co-

infused. However, activating LTCCs in the absence of NMDARs resulted in the loss of 

discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated 

synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when 

LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs 

prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs 

mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular 

signaling leading to long-term memory. 
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2.2 Introduction 
 

How synaptic signals are transmitted to the nucleus of the neuron to initiate the 

gene transcription required for long-term memory has been a topic of intense 

investigations. Calcium as a 2nd messenger initiates cascades of intracellular signaling that 

are critically involved in synaptic plasticity and learning.  Calcium-stimulated activation 

of cAMP response element binding protein (CREB) and CRE-mediated gene transcription 

are a universal requirement in memory formation across species419. Voltage-gated 

calcium channels such as the L-type calcium channels (LTCCs) and NMDA receptors 

(NMDARs) serve as the principal sites for calcium entry at the membrane and are 

responsible for the activation of altered gene expression 420 421. While both channels are 

involved in synaptic plasticity mechanisms such as long-term potentiation (LTP), a 

putative cellular mechanism for memory formation, they differ in their roles in LTP 

induction and intracellular signalling 422–425.  

 

NMDARs have been regarded as co-incident detectors for presynaptic activity and 

postsynaptic depolarization during LTP induction 426, which permits calcium entry at the 

synaptic site 427. LTCCs, which are localized in the somatic membrane and proximal 

dendrites 375,427–429, have an important role in translating cytosolic calcium increases to 

gene expression changes 204,430–432. In the hippocampus, both NMDAR-dependent and 

LTCC-dependent LTP has been reported in rodents 422–424,433 as well as in humans 425. 

Depending on the induction protocols, short-duration LTP (lasting less than 1 hr) can be 

induced by a single high frequency or theta burst stimulation, which is abolished by 
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NMDAR blockers and does not require CRE-mediated transcription. Longer-duration 

LTP (lasting hours) requires stronger induction (e.g. multiple theta bursts or high-

frequency trains) and is dependent on LTCC and CRE-mediated transcription 432,434. 

These two calcium channels are also involved in LTP in various other structures 

including the amygdala 435,436 , anterior cingulate gyrus 437, insular cortex 438, superior 

colliculi 439, and olfactory bulb 440. Concurrently, both NMDARs and LTCCs are 

implicated in various learning models such as spatial memory 185,441 , fear conditioning 

435, and associative olfactory learning 375,440.  

 

Early odor preference learning can be induced in neonatal rat 442,443 or mouse 

444,445 by pairing a novel odor with a tactile stimulus that signals maternal care (e.g. 

stroking the body of the pup with a brush). This model has the advantage of being well-

defined with respect to the sites of learning and the temporal phases of the memory 

(short-term memory (STM) vs. long-term memory (LTM)) 329, therefore it is an ideal 

model to study memory mechanisms. The piriform cortex is critically involved in odor 

memory encoding. Blocking NMDARs in the anterior piriform cortex (aPC) prevents 

odor preference learning in pups and LTP induction in vitro 373. However, whether 

LTCCs in the aPC are necessary for early odor learning has not been tested. In this study, 

we first investigated the relationship of the NMDARs and LTCCs in generating somatic 

calcium transients in aPC pyramidal neurons, and then we studied the interaction of the 

NMDARs and LTCCs in odor preference learning in week-old neonatal mice. 
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2.3 Materials and Methods 
 

In the following sections, I will describe my methodology for the study. 

 

2.3.1 Subjects 

 

Postnatal day (PND) 7-9 C57BL/6 mouse pups (Charles River) of both sexes were 

subjects. Mice were bred on site and housed under a 12 h light/dark cycle with ad libitum 

dry food and water. Procedures were consistent with the Canadian Council of Animal 

Care guidelines and approved by the Memorial University Institutional Animal Care 

Committee. 

 

2.3.2 Fluorescence Immunohistochemistry  

 

PND 8-10 pups were anesthetized with pentobarbital i.p. (150 mg/kg, Rafter 8 

Products) and perfused transcardially with saline (0.9%), followed by paraformaldehyde 

(4%, dissolved in 0.1 M PBS). Brains were collected and placed in 4% paraformaldehyde 

overnight at 4ºC, and then transferred to a sucrose solution (20%) for an additional 24 h 

before slicing.   

 

For slicing, 25 µm coronal sections were cut using a cryostat (HM550, Thermo 

Scientific) and mounted on chrome-gelatin coated slides. Slides were kept at 4ºC for 10 

min before being brought to room temperature to dry. An LTCC anti-Cav1.2 antibody 
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(1:200, Alomone Labs) was applied to the slides. The antibody was dissolved in 

phosphate buffered saline (PBS) with 2% Triton-X-100, 0.002% sodium azide, and 5% 

normal goat serum and left on sections overnight at 4°C in a humidified chamber. The 

following day, the slides were washed with PBS and a goat anti-rabbit Alexa 488 2nd 

antibody (1:200, Molecular Probe) was applied to the slices for 1 hr. Slides were then 

washed 3x10 min in PBS and coverslipped with anti-fade mounting medium 

(Vectashield, Vector). Images were taken with a Fluoview FV1000 confocal microscope 

(Olympus) and processed in Corel Photo-Paint X4 software. 

 

2.3.3 Calcium Imaging 

 

Pups were decapitated under halothane anesthesia. Sagittal PC slices (300 µm) 

were cut in an ice-cold sucrose cutting solution (in mM: 83 NaCl, 2.5 KCl, 3.3 MgSO4, 1 

NaH2PO4, 26.2 NaHCO3, 22 glucose, 72 sucrose, 0.5 CaCl2) equilibrated with 95% 

O2/5% CO2
36,37. Slices were then incubated in the same sucrose solution containing 

Oregon Green BAPTA-1 AM (10-20 μM, with 0.02% Pluronic F-127, Molecular Probes) 

at 34˚C for 30-60 min, before washed and left in no-dye solution at room temperature. 

The recording was conducted in an open bath chamber where slices were perfused with 

artificial cerebrospinal fluid (aCSF in mM: 110 NaCl, 2.5 KCl, 1.3 MgSO4, 1 NaH2PO4, 

26.2 NaHCO3, 22 glucose, 2.5 CaCl2) at 30.0°C. Slices were visualized with an Olympus 

BX51WI upright microscope.  
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In vitro population, calcium imaging followed established procedures36. Image 

acquisition (488 nm excitation, 2x2 binning, 15 Hz) was carried out with a cooled-CCD 

camera system (Andor Clara, T.I.L.L. Photonics). A concentric bipolar stimulating 

electrode (FHC) was placed in the lateral olfactory tract (LOT) of the aPC. LOT was 

stimulated (25-30 µA) by an ISO-Flex stimulator (AMPI) with a 200 µsec pulse. Sagittal 

slice cutting and recording configurations are demonstrated in Supplementary Figure 2.1. 

Drugs used included APV (50 µM, Sigma Aldrich), nifedipine (10 µM, Tocris), BayK 

8644 (20 µM, Tocris) and NBQX (40 µM; Tocris).  

 

Image processing and analysis were performed with ImageJ (NIH) and Excel. 

Activity maps of cell ensembles were constructed by averaging 4-6 frames of evoked 

calcium responses from 5 stimulus trials, background subtracted and median filtered for 

illustration only (examples in Figure 1A1, 1B1, 2A1, 2B1, 3A1 and 3B1). Changes of 

somatic [Ca2+] were expressed as relative fluorescence changes (ΔF/F, where F is the 

baseline fluorescence before a stimulus and ΔF is the evoked change in fluorescence). 

ΔF/F was measured in areas of interest in the soma of layer II/III pyramidal cells. The 

average of the three peak frames immediately following the stimulation was used to 

indicate the size of the calcium transient. Fifteen to thirty-five cells were randomly 

selected in each slice image.  

 

2.3.4 Behavioral Studies 
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Behavioral experiments were carried out in a temperature-controlled room (27°C) 

and followed previously established protocols32,35 as described below.  

 

2.3.5 Drug infusion 

 

Intracerebral drug infusions were carried out on PND7 pups following cannula 

surgeries. Pups were anesthetized via hypothermia (under ice) and placed skull flat in a 

stereotaxic apparatus. An incision of the skin was made to expose the skull where two 

small holes were drilled. Two infusion cannulas (Vita Needle, MA) were inserted into the 

brain at specific coordinates for aPC (1.8 mm anterior and 2 mm bilateral, 3.5 mm ventral 

with respect to bregma). The aPC coordinates were verified with 4% methylene blue dye 

or fluorescence bead (example see Supplementary Figure 2.2) in pilot experiments (n = 

6). Drugs or vehicle were infused directly via the cannulas. Half µl of the desired solution 

was infused bilaterally at a rate of 0.25 µl/min using a Hamilton syringe operated by a 

precision pump (Fusion 400, Chemyx Inc). The infusion tubing and cannula was left for 

another min before being withdrawn gently from the brain and the skin was sutured. The 

pups were allowed to recover on the warm bedding for 30 min before odor training. 

Pharmacological agents used included D-APV (500 µM, dissolved in saline), nifedipine 

(100 µM, dissolved in 1% ethanol+saline), and a cocktail of D-APV (500 µM) and BayK 

8644 (200 µM, dissolved in 1% ethanol+saline). The vehicle used was 1% 

ethanol+saline.  
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2.3.6 Odor preference training 

 

 After drug or vehicle infusion, pups were subjected to an odor plus stroking 

(O/S+) or an odor only (O/S-) condition. Pups in the O/S+ groups were placed on 

peppermint-scented bedding (0.3 ml peppermint extract in 500 ml bedding) and stroked 

with a paintbrush at 30 sec interval for 10 min, thus comprising 10 trials of 30 sec 

stroking, interleaved by 30 sec rests. Pups in the O/S- groups were placed in peppermint-

scented bedding for 10 min without being stroked. All pups were returned to the dam 

after training. 

 

 

2.3.7 Odor preference testing 

 

Three or twenty-four hours following the odor training, pups were tested for odor 

preference memory in a testing apparatus. The apparatus contained a stainless steel box 

(30 x 20 x 18 cm) placed over two training boxes separated by 2 cm. One box contained 

peppermint-scented bedding and the other contained unscented bedding, or vanillin-

scented bedding (0.3 ml vanillin in 500 ml bedding; dissimilar odor test), or peppermint 

(70%) + vanillin (30%) mixture bedding (similar odor test). During testing, pups were 

placed in the 2 cm central zone. Times that pups spent over peppermint-scented versus 

other bedding were recorded in five one-minute trials. Pups were allowed 1 min rest 

between the trials in a clean cage. The percentage of the time spent over peppermint 

bedding over total time spent over either bedding was calculated for each pup. To 
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evaluate stimulus-specific memory, rats were tested alternately with dissimilar odors or 

similar odors first, followed with the other odor pairs 10 min later.  

 

2.3.8 Synaptic AMPAR measurement 

 

In separate cohorts, 3 hr following odor training, pups were decapitated, and aPCs 

were collected and flash frozen on dry ice 446. The aPC is located posterior to the 

olfactory bulbs but anterior to the termination of the LOT. The LOT is visible on the 

ventral surface of the brain and the aPC lies dorsal and lateral to it. Tissue was collected 

in a triangular shape from the ventral surface of the brain at and lateral to the LOT, 

posterior to the olfactory bulbs, and anterior to the termination of the LOT. Samples were 

stored at -80°C until further processing. 

 

 

2.3.9 Synaptic membrane isolation 

 

Extraction of synaptic membrane followed previously published procedures 446. 

Tissue samples were homogenized in sucrose buffer (300 µl) on ice containing (in mM): 

320 sucrose, 10 Tris (pH7.4), 1 EDTA, 1 EGTA, 1X complete protease inhibitor mixture 

and phosphatase inhibitor mixture (Roche). The homogenized tissue was centrifuged at 

1000 rpm for 10 min. The supernatant was taken and centrifuged at 10,000 rpm for 30 

min to obtain a pellet, which was subsequently re-suspended in 120 µl sucrose buffer 

using a pestle mixing/grinding rod (Thomas Scientific) directly in the microfuge tube. 
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Eight volumes of Triton X-100 buffer (in mM: 10 Triton-100, 1 EDTA, 1 EGTA, 1X 

protease and phosphatase inhibitors pH7.4) were added for detergent extraction (final 

0.5% v/v). This suspension was incubated at 4 °C for 35 min with gentle rotation and then 

centrifuged at 28,000 rpm for 30 min. The pellet containing postsynaptic densities and 

synaptic junctions that are insoluble in Triton X-10039 was re-suspended in 100 µl of TE 

buffer (in mM: 100 Tris, 10 EDTA, 1% SDS, 1X protease and phosphatase inhibitors), 

sonicated, boiled for 5 min and stored at -80ºC until use.  Protein concentrations for each 

sample were determined by a BCA protein assay kit (Pierce). The volume of lysate 

required to make 35 µg of protein for each sample was calculated. 

 

 

 2.3.10 Western blotting 

 

A total of 100 µl lysate solution, sample buffer (0.3 M Tris-HCl, 10% SDS, 50% 

glycerol, 0.25% bromophenol blue, 0.5 M dithiothreitol), and dH2O were prepared and 

boiled for 2 min at 100°C. Samples and a protein ladder (Thermo Scientific) were loaded 

into a 7.5% SDS-PAGE gel. Sample separation by SDS-PAGE was followed by 

transference to a nitrocellulose membrane (Millipore). Membranes were cut horizontally 

at the 72 kDa level, and the upper portion was probed with a rabbit antibody for GluA1 

subunits (1:7000, Cell Signalling) 447, and the lower portion was probed for β-actin 

(1:5000, Cell Signalling). Membranes were incubated in primary antibody overnight at 

4°C on a shaker. Next day membranes were washed 3x5 min with 1X TBST. HRP-

bounded 2nd antibodies were applied (1:10,000, anti-rabbit; Pierce) for 1 hr. Membranes 
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were then washed 3x10 min in TBST and enhanced chemiluminescence Western blotting 

substrate (Pierce) was applied. Blots were then developed on x-ray film (AGFA). Films 

were scanned using an image scanner (CanoScan LiDE 200), and the optical density (OD) 

of each band was measured using ImageJ software. Each sample was normalized to the 

corresponding β-actin band that was run on the same gel.  

 

2.3.11 Statistical Analyses 

 

Statistical analyses were performed using OriginPro software (Originlab, MA). 

Data were presented as Mean ± S.E.M. One-way ANOVAs were used for behavioral tests 

with Fischer LSD post-hoc comparisons to evaluate differences between behavioral 

groups. One-way ANOVAs with Fisher LSD post-hoc tests or paired t-tests were used for 

Western blotting and calcium imaging data.  

 

2.4 Results 
 

In the following sections, I will describe my results from the first Chapter.  

 

2.4.1 LTCC activation is dependent on NMDAR activation in aPC pyramidal cells 

 

We first looked at the LTCC Cav1.2 expression in the aPC using 

immunohistochemistry. LTCCs were expressed in the membrane of the soma and the 

base of the apical dendrites of pyramidal cells in layer II/III (Figure 2.1a, n = 3), similar 
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to the expression pattern in the hippocampus as reported previously 429. In contrast, in 

neocortex such as the motor cortex, LTCCs were also expressed in the shaft of apical 

dendrites (Figure 2.1b). In neither area did we observe LTCC expression in distal 

dendritic arbors as is normally observed for NMDARs 448,449. However, we cannot 

exclude the possibility that LTCCs are expressed in distal dendrites in low density that is 

beyond the detection threshold in our method.  

 

We then studied the effects of LTCC or NMDAR blockade on somatic calcium 

transient evoked by LOT stimulation. Action potentials in dye-loaded cells elicit somatic 

calcium transients such that cells recruited by LOT stimulation can be identified 450,451. 

Cells with somatic transients were largely confined to the pyramidal cell layers. Similar to 

evoked EPSCs, somatic calcium transients correlates positively with LOT stimulation 

intensities (Supplementary Figure 2.3). The somatic calcium transient was reduced in the 

presence of APV and abolished when NBQX was added (Figure 2.2a1-2.3), suggesting 

calcium transients seen here were post-synaptic responses evoked by the LOT 

stimulation. With the moderate stimulation intensities used (25-30 µA), single LOT 

stimulation evoked ~2-10% somatic calcium increase in individual cells (e.g. Figure 

2.2a2, 2.2b2, 2.3a2, and 2.3b2). On average, APV reduced single LOT stimulation 

evoked calcium transient to 54.2 ± 2.7% of the baseline, while the residual calcium was 

almost abolished (4.2 ± 3.1% of the baseline) in the presence of NBQX (n = 80 cells from 

4 slices, t = 12.38, p < 0.001 compared to APV; Figure 2.2a3). Adding nifedipine to aCSF 

reduced calcium transients to 86.3 ± 0.8% of the baseline, which was reversed following 
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30 min wash (101.6 ± 0.02%, n = 110 cells from 4 slices, t = 10.61, p < 0.001 compared 

to nifedipine, Figure 2.2b1-3). 

 

 We next studied the interaction of the LTCC and NMDAR in eliciting somatic 

calcium transients. In the presence of APV, nifedipine failed to further reduce the somatic 

calcium transient (50.7 ± 0.02% of the baseline in APV vs. 50.0 ± 0.02% in 

APV+nifedipine, t = 0.68, p = 0.49, n = 55 cells from 3 slices; Figure 2.3a1-3). This 

suggests that LTCC activation was subsequent to the NMDAR activation. We then tested 

whether a stronger stimulus could recruit LTCCs directly as may happen during theta 

burst or high-frequency stimulation. When 4 LOT stimulations at 100Hz were used, 

nifedipine still failed to further reduce calcium transients (70.8 ± 0.01% in APV vs. 70.0 

± 0.01% in APV+nifedipine, t = 1.13, p = 0.26, n = 70 cells from 3 slices; Figure 2.3a4-

5). It is noted that the calcium transient evoked with the train stimulation has a smaller 

NMDAR component (30%) compared to that in the single stimulus (50%), suggesting 

additional recruitment of other voltage-gated calcium channels or mGluRs under the 

stronger stimulation.  

 

If LTCCs act downstream of the NMDARs, then direct activation of the LTCCs in 

the presence of NMDAR blockade should allow additional calcium influx to the cells. 

This is indeed the case when BayK 8644, an LTCC agonist was added in the presence of 

APV. Single LOT stimulation was used. BayK 8644 increased the calcium transient to 

76.0 ± 4.4% compared to 46.9 ± 2.9% in APV only (t = 11.53, p < 0.001, n = 125 cells 

from 5 slices; Figure 2.3b1-3).  
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2.4.2 Differential roles of the NMDAR and LTCC in early odor preference learning 

 

 We then pursued behavioral experiments to test the roles of the NMDAR and 

LTCC in early odor preference learning in neonate mice. We tested the effects of 

NMDAR or LTCC blockade on short-term (3 hr) and long-term (24 hr) memory 452 

(Figure 2.4a) and tested whether BayK 8644 could rescue the learning from NMDAR 

blockade at the two-time points.  

 

 NMDAR blockade prevented 3 hr memory while blocking LTCC had no effect on 

this short-term memory. One-way ANOVA shows significant differences in treatment 

conditions (F4, 20 = 53.66, p < 0.001; Figure 2.4b). Post-hoc Fisher test shows a significant 

difference between the O/S++vehicle (65.18 ± 1.78) and the O/S-+vehicle (33.09 ± 2.06) 

groups (n=5, t = 9.70, p < 0.001). D-APV infusion prevented odor preference memory 

(36.83 ± 2.68%, n=5, t = 8.57, p < 0.001) while the nifedipine group showed comparable 

odor preference (65.11 ± 1.56%) compared to the O/S++vehicle group (t = 0.02, p > 0.05). 

Activating LTCCs with BayK-8644 rescued the 3 hr odor preference memory from the 

NMDAR blockade (67.92 ± 3.22, n=5, t = 9.40, p < 0.01 compared to the D-APV only 

group).  

 

 For the 24 hr memory, both NMDAR and LTCC blockade prevented it. One-way 

ANOVA shows significant group effects (F4, 30 = 8.69, p < 0.001; Figure 2.4c). Post-hoc 

Fischer test shows a significant difference between the O/S++vehicle (62.87 ± 3.92, n = 7) 
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and the O/S-+vehicle (35.08 ± 2.93) groups (n = 7, t = 4.29, p < 0.01). Both nifedipine 

(35.61 ± 5.31, n = 6) and APV (32.56 ± 5.32, n = 7) prevented 24 hr preference memory 

compared to the O/S++vehicle pups (p < 0.001). However, adding BayK 8644 to the APV 

rescued the learning at 24 hr (53.54 ± 4.95, n = 8, t = 3.34, p < 0.01) compared to the D-

APV only group.  

 

2.4.3 NMDAR blockade impairs stimulus-specific discrimination of the conditioned 

odor 

 

We were intrigued that either isolated NMDAR activation (in the presence of 

nifedipine) or isolated activation of LTCCs (D-APV+BayK 8644) was able to induce 3 hr 

memory. AMPAR synaptic insertion is implicated in both short-term and long-term odor 

preference memory 447,453. We tested the amount of AMPAR synaptic membrane 

expressions in these conditions (Figure 2.5a&b; Full length blots are presented in 

Supplementary Figure 2.4). AMPAR synaptic expression at 3 hr in the aPC mirrored the 

behavioral outputs (F4, 24 = 3.21, p < 0.05; Figure 2.5b). The nifedipine group showed 

higher AMPAR expression (1.31 ± 0.10, n = 6) compared to the O/O+vehicle group (1.04 

± 0.04, n = 5, t = 2.12, p = 0.04). D-APV only prevented the AMPAR increase (1.00 ± 

0.09, n = 6, t = 0.30, p = 0.77). Co-infusion of BayK-8644 increased AMPAR (1.34 ± 

0.10, n = 6, t = 3.24, p < 0.01 compared to D-APV only group). 

 

To understand whether and how the memories formed through either LTCCs or 

NMDARs differ, we performed experiments to test stimulus specificity of the 3 hr 
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memory using odor discrimination between the conditioned odor peppermint, and a 

dissimilar odor vanillin, or an odor mixture (70% peppermint + 30% vanillin) (Figure 

2.5a). Dissimilar odor testing yielded peppermint preference patterns similar to that in the 

3 hr peppermint vs. normal bedding test (F3, 25 = 47.53, p < 0.001; Figure 2.5c1). Both 

nifedipine (70.97 ± 3.83, n = 7) and D-APV+BayK 8644 (74.11 ± 2.45, n = 8) groups 

showed significantly higher time spent over peppermint bedding compared to the O/S-

+vehicle group (32.67 ± 2.50, n = 7, p <0.01). It has been reported previously that rat 

pups form a generalized avoidance or approach to other novel odors when olfactory bulb 

GABAa receptor 454 or CaMKII 447 is blocked. To test whether aPC LTCC activation 

alone without NMDARs results in generalized approach response, we tested vanillin 

preference in a cohort of mouse pups. D-APV+BayK 8644 pups trained with peppermint 

did not show any preference to the novel odor vanillin (Supplementary Figure 2.5).  

 

However, when peppermint was tested against a similar odor mixture (F3, 25 = 

35.93, p < 0.001; Figure 2.5c2), the D-APV+BayK 8644 group showed no preference for 

the peppermint bedding (43.35 ± 2.94, n = 7) compared to the O/S-+vehicle group (38.23 

± 2.99, n = 7, t = 1.22, p = 0.23), while the nifedipine group still showed a clear 

preference (67.26 ± 1.69, n = 7, t = 6.73, p < 0.01). The fact that in the D-APV+BayK 

8644 group, the same pups showed preference for peppermint in the dissimilar odor test 

but no preference for peppermint in the similar odor test suggests that activating LTCCs 

alone in the absence of NMDAR activation results in loss of stimulus specificity of the 

odor memory – the memory is extended to other similar stimulus that has a large 

component overlapping with the conditioned stimulus.  
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2.5 Discussion  
 

  NMDARs and LTCCs demonstrated differential roles in early odor preference 

learning in mouse pups. Previous work defined three temporal phases for early odor 

preference memory: a short-term memory (up to 3 hr) which is independent of 

transcription and translation, an intermediate memory (5 hr) which requires transcription 

but not a translation, and a long-term memory (24 hr) which is dependent on both 

transcription and translation 379. Blocking NMDARs during learning prevented both 

short-term (3 hr) and long-term (24 hr) memories. However, LTCC blockade prevented 

24 hr memory but did not interrupt short-term memory. It is striking that LTCC blockade 

itself did not affect 3 hr memory and associated AMPAR increase, but activating LTCCs 

when the NMDARs were blocked nevertheless induced 3 hr memory and AMPAR 

increases. These results suggest that NMDARs, but not LTCCs, are normally required for 

3 hr memory. However, when LTCCs are overdriven, it could compensate NMDAR loss 

to promote the AMPAR insertions needed for short-term memory.  

 

The NMDAR and LTCC are involved in different forms of LTP in hippocampus 

432,434 , however, whether they engage in different phases of memory has not been tested. 

In the amygdala, both NMDARs and LTCCs are required in LTPs with distinct induction 

protocols. Spike-timing-dependent LTP generated by associating pre- and postsynaptic 

activities requires LTCCs but not NMDARs, while a tetanic stimulation engages 

NMDARs exclusively 435. Interestingly, similar to what we observed in this study, 

NMDAR blockade prevents both short and long-term fear memory while blocking 
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LTCCs exclusively affects only long-term memory 435. However, how these two channels 

are differentially engaged in the signaling pathways that lead to either short-term or long-

term memory is not known. Both long-term fear memory 455 and odor preference memory 

373,443,456  require CREB signaling. Short-term memory may only require local AMPAR 

insertion into the synaptic membrane mediated by calcium-activated CaMKII signalling 

447.  

 

LTCCs are expressed in the somatic membrane and at the base of the apical 

dendrites of pyramidal cells in the aPC. This subcellular distribution of LTCCs in 

pyramidal cells in the aPC is consistent with that in other structures 375,427–429 and implies 

a differential role of LTCCs in intracellular signaling from NMDARs. Early experiments 

in striatal neurons demonstrated sequential activation of AMPARs, NMDARs, and 

LTCCs 457. A model was put forward to suggest that LTCC activation is dependent on 

NMDARs due to their longer opening kinetics than those of AMPARs. Once activated, 

LTCC allows Ca2+ influx and activation of a kinase pathway to translocate to the nucleus 

to phosphorylate CREB at Ser133 457. Our calcium imaging data showing NMDAR-

dependent activation of the LTCC is consistent with this model.  

 

Detailed downstream signaling from these calcium channels is best characterized 

in the hippocampal neurons. In the hippocampus, although both the NMDAR and LTCC 

are driven by physiologically relevant synaptic inputs to engage CREB signaling 204, the 

LTCC appears to be particularly important in coupling synaptic signaling to the nucleus 

204,458,459.  α1c-comprised LTCC contains a calmodulin (CaM) binding domain and 
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calcium influx through LTCC activates CaM, leading to phosphorylation of CREB 459. 

Various routes are suggested to mediate CaM signaling from the cytosol to the nucleus 

458. Either CaM translocates to the nucleus to activate calmodulin kinase IV (CaMKIV) 

431,457,460  , or it activates other kinases (e.g. mitogen-activated protein kinase, MAPK), 

which in turn translocate to the nucleus to phosphorylate CREB 459.  

 

Another intriguing finding is that LTCC activation in the absence of NMDAR 

activation results in impaired discrimination of the conditioned odor from a similar odor 

mixture. This suggests a critical role of NMDAR in mediating the stimulus specificity in 

early odor preference learning. NMDAR hypofunction has been linked to impaired 

pattern separation in the hippocampal dentate gyrus 461. We propose that synaptic 

NMDARs associate odor-induced glutamate input with stroking/norepinephrine-induced 

excitation of pyramidal cells to initiate memory encoding and ensure input-specificity of 

the learning by activating CaMKII signaling and CaMKII- mediated AMPAR insertion 

447. Meanwhile, the activation of the NMDAR leads to prolonged depolarization of the 

pyramidal cells and subsequently engages LTCCs. Calcium influx through LTCCs 

initiates CaM-mediated protein kinase translocation into the nucleus to activate CREB 

transcription. Direct activation of LTCCs without NMDARs may lead to AMPA insertion 

that affects a broader range of synapses.  

 

Interestingly, cognitive decline during aging has been associated with increased 

LTCC activities in the hippocampus 462–464. There is a shift from NMDAR-dependent 

LTP to LTCC-dependent LTP in the aging hippocampus 465,466. Abnormal activity of 
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hippocampal neurons is correlated with impaired pattern separation ability both in aged 

humans 467 and in aged animals 468. Olfaction dysfunction is also common in aging 

populations and is one of the earliest signs indicating Alzheimer’s disease (AD) 

development 469,470. However, it is not known whether altered expressions and functions 

of LTCCs in the aPC underlie the olfactory deficiency in AD patients.  

 

In summary, our results highlight the importance of balanced NMDAR and LTCC 

functions in encoding input-specific long-term memory. 
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2.6 Figures of Chapter 2 
 

 

 

Figure 2.1. L-type calcium channels (LTCCs) are expressed in the piriform cortex 

pyramidal cells 

(a) LTCC expression in the anterior piriform cortex layer II/III pyramidal cells using 

an antibody against Cav1.2 channels. Solid arrows indicate the LTCC staining at 

the base of the apical dendrites. (b) LTCC expression in the motor cortex layer V 

pyramidal cells. Note that apical dendritic shafts (arrows) are stained.  
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Figure 2.2. Lateral olfactory tract (LOT) stimulation activates LTCCs 

(a1-a3) Somatic calcium transients in the anterior piriform pyramidal cells by LOT 

stimulations are dependent on postsynaptic AMPARs and NMDARs. (a1) Example 

images of population calcium imaging evoked by a single LOT stimulation in control, D-
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APV and D-APV+NBQX conditions. Images were constructed by averaging 4-6 frames 

of evoked calcium responses (ΔF/F) from 5 stimulus trials. Example calcium transient 

traces from 4 cells are shown on the right. (a2) Peak calcium transients (ΔF/F%) averaged 

from a population of cells (yellow circles, regions of interest) on the same slice. (a3). 

Normalized calcium changes (to control) during D-APV and D-APV+NBQX applications 

from 4 slices (n = 80 cells). (b1-b3) Blockade of LTCCs reduces somatic calcium 

transients in pyramidal cells. (b1) Example images of population calcium imaging in 

control, nifedipine (Nif) and Nif washout conditions. (b2). Peak calcium transients 

averaged from a population of cells on the same slice. (b3) Normalized calcium changes 

during Nif and Nif washout from 4 slices (n = 110 cells). **p < 0.01. 
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Figure 2.3. LTCC activation is subsequent to NMDAR activation 

(a1-a5) Nifedipine does not further reduce calcium transients in the presence of NMDAR 

blockade by D-APV. (a1) Example images of population calcium imaging in control, D-

APV and D-APV+Nif conditions. Example calcium transient traces from 4 cells are 
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shown on the right. (a2) Peak calcium transients (ΔF/F%) to a single LOT stimulation, 

averaged from a population of cells (yellow circles) on the same slice. (a3) Normalized 

calcium changes (to control) to a single LOT stimulation during D-APV and D-APV+Nif 

applications from 3 slices (n = 55 cells). (a4) Peak calcium transients to 4 LOT 

stimulations at 100 Hz. (a5) Normalized calcium changes to 4 LOT stimulations from 3 

slices (n = 70 cells). (b1-b3) Application of BayK-8644 increased somatic calcium 

transients in the presence of D-APV. (b1) Example images of population calcium imaging 

in control, D-APV, and D-APV+BayK-8644 conditions. (b2) Peak calcium transients 

averaged from a population of cells on the same slice. (b3) Normalized calcium changes 

during D-APV and D-APV+BayK-8644 from 5 slices (n = 125 cells). **p < 0.01.   
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Figure 2.4. Differential roles of NMDARs and LTCCs in early odor preference 

learning 

(a) Schematics of the odor preference training and testing paradigm. (b) Percentage of 

time spent over peppermint (PP)-scented bedding at 3 hr testing.  (c) Percentage of time 

spent over PP-scented bedding at 24 hr testing. **p < 0.01. 
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Figure 2.5. NMDARs but not LTCCs mediates input-specific discrimination of the 

conditioned odor 

(a) Schematics of the odor preference training and testing paradigm. (b) Relative optical 

densities (ROIs) of AMPAR expression (normalized to beta-actin) in various groups at 3 

hr post-training. Full-length blots are presented in Supplementary Figure 2. (c1) 

Percentage of time spent over peppermint (PP)-scented bedding when tested with two 

dissimilar odors.  (c2) Percentage of time spent over PP-scented bedding when tested with 

PP vs. PP+VA (vanillin) mixture.  *p < 0.05, **p < 0.01. 
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Chapter 3  

 

Unlearning: NMDA receptor-mediated metaplasticity in the anterior piriform cortex 

following early odor preference training in rats. (This Chapter is a modified version of 

Mukherjee et al. J Neurosci. 2014 Apr 9;34(15):5143-51. doi: 

10.1523/JNEUROSCI.0128-14.2014.) 

 

 

 

 

3.1 Abstract 
 

Here we demonstrate metaplastic change in NMDA receptor (NMDAR) number 

in the anterior piriform cortex (aPC) in rat induced by, a 10 min pairing of peppermint 

odor+stroking, which significantly modifies later learning and memory. Using isolated 

synaptoneurosomes, we found GluN1 receptor down-regulation 3 hr after training and up-

regulation at 24 hr. Consistent with the GluN1 pattern, the NMDAR-mediated EPSP was 

smaller at 3 hr and larger at 24 hr. Subunit composition was unchanged. While long-term 
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potentiation (LTP) was reduced at both times by training, long-term depression (LTD) 

was facilitated only at 3 hr. 

 

            Behaviorally, pups, given a pairing of peppermint+stroking 3 hr after an initial 

peppermint+stroking training, lose the normally acquired peppermint preference 24 hr 

later. To probe the pathway specificity of this unlearning effect, pups were trained first 

with peppermint and then, at 3 hr, given a second training with peppermint or vanillin. 

 Pups given peppermint training at both times lost the learned peppermint preference. 

Pups given vanillin re-training had normal peppermint preference when trained 3 hr later. 

Down-regulating GluN1 with siRNA prevented odor preference learning. Finally, the 

NMDAR antagonist, MK-801, blocked the LTD facilitation seen 3 hr post-training and 

giving MK-801 prior to the second peppermint training trial eliminated the loss of 

peppermint odor preference. A training-associated reduction in NMDARs facilitates LTD 

3 hr later; while training at the time of LTD facilitation reverses an LTP-dependent odor 

preference. Experience-dependent, pathway-specific metaplastic effects in a cortical 

structure have broad implications for the optimal spacing of learning experiences. 

 

3.2 Introduction 
 

Early odor preference learning in the week-old rat pup is a well-studied model of 

Pavlovian associative conditioning 271. As rat pups have neither normal visual or auditory 
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input, they are dependent for survival on the dam; thus orienting to dam-associated odors 

is essential 471. Odor associative learning also occurs in newborn human infants 472,473.  In 

the rat pup model, a single 10 min pairing of odor (conditioned stimulus or CS) and 

maternal care signals such as dorsal whole body stroking (unconditioned stimulus or US) 

induces a protein-synthesis dependent 24 hr odor preference memory 379.  

 

In addition to neural changes in the olfactory bulb, which have been extensively 

studied 414,474, neural changes in the anterior piriform cortex (aPC) are also necessary, and 

sufficient, for the expression of early odor preference learning 373. A CS, typically 

peppermint odor, paired with a β-adrenoceptor agonist infusion in aPC, induces odor 

preference learning, while either a locally infused β-adrenoceptor antagonist, or a locally 

infused NMDA receptor (NMDAR) antagonist, prevents odor preference learning.   

 

A strong feature of the rat pup odor-conditioning model is that the anterior 

commissure is not yet developed 383 and odor input can be restricted to a single 

hemisphere using temporary unilateral naris occlusion during training 451,475. The 

reduction in response variability permitted by this within-subject control revealed, in ex 

vivo slices, that an increase in the AMPA receptor (AMPAR)-mediated synaptic response 

to lateral olfactory tract (LOT) input in the aPC parallels odor preference memory 

373,451,475. Calcium imaging in the same preparation reveals an increase in the activation of 



103 
 

pyramidal cells in aPC following training 451, implying a stronger network representation 

for the trained odor.  

 

The NMDAR plays a critical role as a co-incidence detector for mediating 

AMPAR plasticity in associative learning (Malenka and Bear, 2004), including early odor 

preference learning 373,476. Research in the past two decades has provided evidence that 

the NMDAR itself is dynamic and undergoes plastic changes, including changes in the 

number of receptors and in subunit composition 477. Long-term plasticity of NMDAR-

mediated synaptic transmission such as LTP and LTD has been extensively characterized 

in vitro, using acute brain slices and neuronal cultures 195,478. Activity-dependent 

NMDAR plasticity in vivo has been reported in the visual cortex 479,480 and the olfactory 

system 213,476,481. However, its functional significance in learning is not well understood. 

Here, we examine odor training-induced modulation of the NMDAR and its associated 

plasticity effects in the aPC. We find metaplastic, pathway–specific changes that 

modulate the rat pup response to subsequent associative odor training. 

 

3.3 Materials and Methods 
 

In the following sections I will describe all the methods I have used for my 

experiment in my second project. 
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3.3.1 Animals and Ethics Statement 

 

All experimental procedures were approved by the Institutional Animal Care 

Committee at Memorial University of Newfoundland with adherence to the guidelines set 

by the Canadian Council on Animal Care. Sprague Dawley rat pups of either sex (Charles 

River) were used in this study. Animals were bred and pups were born on-site at the 

research facility. Litters were culled to 12 pups with equal numbers of males and females 

on postnatal day 1 (PND1; day of birth is designated PND0). Dams were maintained with 

ad libitum access to food and water.  

 

3.3.2 Behavioral Studies  

 

Behavioral experiments were carried out in a temperature controlled room at 

approximately 28°C and followed the standard protocol previously established for early 

odor preference learning 443,482 as described below. One-way ANOVAs and post hoc 

Fisher tests were used to determine statistical significance throughout the experiments. 

 

3.3.3 Odor preference training and testing  

 

  On PND 6 or 7, pups were assigned to an odor plus stroking (O/S+) or an odor 

only (O/S-) condition. Pups were removed from the nest and placed on normal bedding 

for 10 min. After this habituation period, pups receiving conditioning training (O/S+) 
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were placed on scented bedding (peppermint or vanillin; 0.3 mL odorant extract in 500 

mL bedding) and vigorously stroked with a paintbrush for 30 sec, followed by a 30 sec 

rest, for a total of 10 min. Pups in the non-learning condition (O/S-) were placed in 

peppermint-scented bedding for 10 min without stroking, following the habituation 

period. Pups were returned to the dam after training.  

 

 For O/S+ pups that were re-trained at 3 hr or 24 hr following the first training, they 

were exposed to peppermint or vanillin-scented bedding while being stroked, with the 

same procedure as in the first training. A control group was initially trained with 

peppermint+stroking, and then re-trained with peppermint odor only at 24 hr. A subset of 

peppermint+stroking re-trained pups underwent systemic intraperitoneal (i.p.) injection of 

either MK-801, an NMDAR antagonist (0.1 mg/kg in 50 μl saline, Tocris), or saline, 40 

min before the onset of the re-training. 

 

Twenty-four hrs after a given training or retraining episode (e.g. 48 h after initial 

training for pups receiving a 24 h retraining event), pups were tested for odor preference 

memory using a two-choice odor preference procedure. The testing apparatus was a 

stainless steel box (30 x 20 x 18 cm) placed over two training boxes. One box contained 

peppermint-scented bedding and the other contained normal, unscented bedding. Testing 

boxes were separated by a 2 cm neutral zone. For testing, pups were removed from the 

dam and placed in the neutral zone. Times that pups spent over scented versus normal 
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bedding were recorded in five one-minute trials, each separated by a one-min rest in a 

clean cage. The average time spent over peppermint bedding was calculated for each pup.  

 

3.3.4 Reversible naris occlusion for ex vivo experiments  

 

Nose plugs were constructed using polyethylene 20 (PE 20) tubing and silk 

surgical thread as per procedures described previously 373,483. A small dab of a sterile jelly 

of local anesthetic, 2% Xylocaine (AstraZeneca), was applied to the left naris of the pup 

and let rest for ~3 min before the plug was gently inserted in the left naris. The pup was 

then placed on unscented bedding to habituate to the nose plug, followed by appropriate 

odor conditioning training with peppermint-scented bedding. The nose plug was removed 

immediately following training and pups returned to dams. Some control pups were 

subjected to naris occlusions only for the same amount of time without undergoing odor 

training. Pups that underwent lateralized odor training were killed at various time points 

for tissue collection for either Western blot or electrophysiological recording. 

 

 

 

3.3.5 Intracerebral infusion of SiRNA  
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SiRNA for the NMDA GluN1 receptor was infused into the aPC on PND 3, 

followed by behavioral training on PND 7. PND 3 pups were anesthetized via 

hypothermia and placed in a stereotaxic apparatus in a skull flat position. A horizontal 

incision was made to expose the skull and two small holes were drilled. One μl of 1% 

GluN1 SiRNA mixed in RNase free vehicle (Dharmacon ACCELL SiRNA delivery 

media, Thermo Scientific) or 1% control non-targeting SiRNA was injected into the aPC 

(2 mm anterior to bregma, 3 mm bilateral, 5 mm below the surface) using a Hamilton 

syringe.  In some pups, SiRNA or control was injected into the olfactory bulbs. The 

injection was carried out over 4 min and the syringe was left in site for another 6 min 

before being gently withdrawn from the brain. The skin was sutured and the pups 

recovered in a heated cage. Thirty min following recovery from the surgery, pups were 

returned to the dam.  

On PND 7, pups with bilateral GluN1 SiRNA or non-targeting control infusions 

underwent behavioral training and on the following day were tested with peppermint-

scented bedding. Pups with unilateral GluN1 SiRNA infusion and non-targeting control 

SiRNA injected into the opposite aPC or olfactory bulb were killed for tissue collection 

for Western blots. 

 

3.3.6 Western blots of synaptoneurosomes 
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Three or 24 hr following lateralized odor training, or on PND 7 following 

unilateral GluN1 SiRNA injections (conducted on PND 3), pups were decapitated, and 

aPCs or olfactory bulbs were collected and flash frozen on dry ice. Samples were stored 

at -80°C until further processing. 

 

3.3.7 Synaptoneurosome isolation 

 

All samples were kept on ice during the synaptoneurosome extraction in order to 

minimize proteolysis. Brain samples were homogenized in oxygenated HEPES buffer (in 

mM: 50 HEPES, 124 NaCl, 26 NaHCO2, 1.3 MgCl2, 2.5 CaCl2, 3.2 KCl, 1.06 KH2PO4, 

10 glucose, 1 EDTA, 1 PMSF, complete protease inhibitor cocktail (Roche), complete 

phosphatase inhibitor cocktail (Roche), saturated with 95%O2/5% CO2, pH 7.4), using 

Teflon-glass tissue homogenizers (Thomas Scientific). Lysed samples were kept on ice 

for 10 min for incubation in the buffer and were then passed through 3 pre-wetted filters 

using a 13 mm diameter syringe filter holder (Millipore). The first two filters were 100 

µm nylon filters (Small Parts Inc.) and the last filter was a 5 µm pore hydrophilic filter 

(Millipore). Filtrates were centrifuged at 1000 x g for 20 min at 4°C, following which the 

pellets were resuspended in HEPES buffer. These pellets represent the synaptoneurosome 

fraction. Protein concentrations for each sample were determined using a BCA protein 

assay kit (Pierce). The volume of lysate required to make 40 µg of protein for each 

sample was calculated.  
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3.3.8 Western Blotting 

 

Sixty µL total volume solutions of lysate (volume required for 40 µg protein), 

sample buffer (0.3 M TRIS-HCl, 10% SDS, 50% glycerol, 0.25% bromophenol blue, 0.5 

M dithiothreitol) and dH2O were prepared and boiled for 5 min at 100ºC. Samples were 

then loaded into lanes of a 7.5% SDS-PAGE gel, along with a protein ladder (Thermo 

Scientific) and loading buffer for empty lanes. Sample separation occurred through SDS-

PAGE, followed by transference to a nitrocellulose membrane (Amersham). Membranes 

were cut horizontally at the 72 kDa level and the upper portion was probed with a rabbit 

antibody for GluN1 (1:2000, blocked in BSA; Cell Signalling) subunits, and the lower 

portion was probed for β-actin (1:5000, blocked in 4% m.f. milk; Cedarlane). Membranes 

were incubated in primary antibody and agitated overnight at 4ºC. Secondary antibodies 

bound to horseradish peroxidase were applied the following day (1:20,000, anti-rabbit; 

Pierce) and membranes were then washed in Enhanced chemiluminescence Western 

blotting substrate (Pierce). Finally, blots were developed on X-ray film (AGFA). 

 

Films were scanned onto a computer using an image scanner (CanoScan LiDE 

200) and the optic density (OD) of each band was measured using ImageJ software. Each 
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sample was normalized to the corresponding β-actin band that was run on the same gel. In 

pups that underwent lateralized odor training, each spared hemisphere was normalized to 

its naris-occluded counterpart. In pups with SiRNA infusion, the GluN1 SiRNA infused 

hemisphere was normalized to its non-targeting control counterpart. Experimental values 

are reported as mean ± SEM of the relative expression of the normalized GluN1 subunit. 

A one-way ANOVA was used to evaluate differences in the mean OD.  

 

3.3.9 Electrophysiology: Tissue Preparation and Extracellular Recording 

 

Pups were anesthetized by halothane or isoflurane inhalation and quickly 

decapitated. Brain tissue was extracted and placed in a high glucose artificial cerebral 

spinal fluid (aCSF; in mM, 83 NaCl, 2.5 KCl, 0.5 CaCl2, 3.3 MgSO4, 1 NaH2PO4, 26.2 

NaHCO3, 22 glucose, & 72 sucrose, equilibrated with 95% O2 and 5% CO2) for 

approximately 10 minutes. Sagittal slices (400µm) of the piriform cortex were cut using a 

vibrating blade (Vibratome 1000P, Leica Microsystems) and incubated at 34°C in the 

aforementioned solution for 30 minutes then returned to room temperature. Tissue slices 

were recorded in aCSF (in mM, 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgSO4, 1 NaH2PO4, 

26.2 NaHCO3, 22 glucose, equilibrated with 95% O2 and 5% CO2) at 30-32°C and 

viewed with an upright microscope (Olympus BX51). Extracellular field potentials were 

recorded with glass pipettes filled with aCSF and placed in layer Ia of the aPC. A 

concentric bipolar stimulating pipette (FHC) was lowered into the LOT and delivered 

single test pulses, ranging from 10-60 µA.  
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Electrophysiological data were recorded with Multiclamp 700B (Molecular 

Devices), filtered at 2 kHz and digitized at 10 kHz. Data acquisition and analysis were 

performed with pClamp10 and ClampFit 2.10 (Molecular Devices) and Igor Pro 6.10A 

(WaveMetrics). Student’s t-tests were used to determine statistical significance. 

 

3.3.10 Ex vivo electrophysiology 

 

PND 7-10 pups undergoing ex vivo electrophysiological recording were subjected 

to odor conditioning with one naris occluded as described earlier. Following a 10 min 

habituation period, pups underwent O/S+ or O/S- training on peppermint-scented bedding. 

Upon completion, the plugs were removed and pups were returned to the dam. Pups were 

sacrificed 3 or 24 hr following training and brain slices were prepared. The hemispheres 

of the brain were kept separately within the incubation chamber in order to achieve intra-

animal control.  

 

The NMDAR component of the field EPSP (fEPSP) was isolated using NBQX, an 

AMPAR antagonist (5 μM, Tocris) and low Mg2+ (100 μM) aCSF 475,481. The NMDAR 

input/output (I/O) relationship was measured as the ratio of the size of the presynaptic 

fiber volley (FV) to the slope of the fEPSP, and compared between the spared and 

occluded slices. The AMPAR component of the fEPSP was measured as the initial slope 

of the fEPSP in normal aCSF 373,451. The ratio of AMPAR to NMDAR was measured as 
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the slope of fEPSP recorded in normal aCSF to that recorded in NBQX and low Mg2+ at 

the same stimulation intensity. Ifenprodil (3 μM; a GluN2B antagonist, Tocris) was used 

to isolate the non-GluN2B NMDAR synaptic potential and bath applied to the slice for 30 

min. The GluN2B mediated fEPSP was measured as the fraction of NMDAR fEPSP that 

was blocked by ifenprodil.  

 

For LTP recording, a baseline of fEPSPs evoked by single pulse test stimulation 

was recorded at 0.05 Hz until the last 10 min were consistent and was then followed by 

eight theta burst stimulations (TBS; 10 times 5 Hz trains, each train contains 5 pulses at 

100 Hz) separated by 30 sec. The stimulation intensity for recording and stimulation was 

determined as that at which 50% of the maximum response was evoked. For LTD 

recording, the same procedure was used except the induction was initiated by 900 low 

frequency stimulations at 1 Hz. The stimulation intensity was set to provoke 60-70% of 

the maximal fEPSP response. In a subset of LTD experiments, MK-801 (40 μM) was bath 

applied to the slice for 10 min before induction and washed out after induction. The 

recordings were analyzed to determine the amount of LTP or LTD (compared to the 

baseline) at the LOT to aPC synapses. Data were binned to demonstrate the fEPSP value 

per min.  

 

3.4 Results 
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In following sections I will describe my results from the second Chapter. 

 

3.4.1 Plasticity of NMDARs in the aPC 3 hr and 24 hr following early odor preference 

learning 

 

Morrison et al (2013) showed that early odor preference training results in 

increased AMPAR responses at the LOT synapses in the aPC at both 3 hr and 24 hr post-

training. NMDARs in the aPC mediate early odor preference learning and likely mediate 

the AMPAR LTP observed ex vivo following learning. The present study tests whether 

the NMDAR itself undergoes plasticity following early odor preference learning.  

 

Rat pups underwent early odor preference learning with single naris occluded 

during training. Western blot analyses of synaptoneurosome extracts from the aPC of 

occluded and spared hemispheres were compared at 3 hr or 24 hr time points post 

training. A one-way ANOVA revealed significant differences among groups (F(5,41) = 

3.17, p < 0.05; Figure 3.1). At 3 hr following O/S+ learning, there was a significant down-

regulation in GluN1 (0.67 ± 0.12, n = 9) that was not found 3 hr following O/S- training 

(1.40 ± 0.19, n = 9). At 24 hr, there was a significant up-regulation in GluN1 in O/S+ 

(1.59 ± 0.15, n = 7) animals, and not O/S- animals (1.02 ± 0.18, n = 8). Animals that did 

not receive any training and were subjected to naris occlusions only did not show 

different GluN1 levels from two hemispheres at either time point. Post hoc Fisher LSD 

tests showed that O/S+ 3 hr pups expressed significantly less GluN1 compared to both no 

odor 3 hr animals (p < 0.05) and O/S- 3 hr animals (p < 0.01). O/S+ 24 hr animals yielded 
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significantly higher GluN1 expression compared to O/S+ 3 h (p < 0.05) and O/S- 24 h 

animals (p < 0.05). Together, these results suggest that conditioning leads to NMDAR 

GluN1 subunit expression down-regulation 3 hr and an up-regulation 24 hr following 

O/S+ training.  

 

Next we examined the expression of NMDAR plasticity in the aPC. We focused 

on the LOT afferent input synapses where AMPAR LTP was previously observed 

following early odor preference learning 373,451.  Ex vivo electrophysiology was conducted 

3 hr or 24 hr following lateralized odor training (O/S+). Lateralized training allows a 

within-animal control at this age 373,451,475. We measured the NMDAR fEPSP I/O 

relationship in the presence of NBQX. The I/O relationship measuring the ratio of fEPSP 

slope to the presynaptic FV of the LOT allows us to directly compare the relative number 

of functional NMDARs at LOT synapses from spared and occluded hemispheres of the 

same animals 475,481. A paired t-test showed that at 3 hr post training, there was a decrease 

in the NMDAR I/O in the spared (0.021 ± 0.004, n = 6) hemisphere compared to the 

occluded hemisphere (0.049 ± 0.007; n = 6, t = 5.75, p < 0.01; Figure 3.2A1), indicating 

less NMDAR response for a given input. However, at 24 hr post O/S+ training, there was 

an increase in NMDAR I/O in the spared (0.060 ± 0.008, n = 7) versus the occluded 

hemisphere (0.034 ± 0.004, n = 7, t = 2.71, p < 0.05; Figure 3.2A2).  
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The decrease of NMDAR fEPSPs at 3 hr, and the increase at 24 hr post odor 

training are consistent with the changes of GluN1 subunit expression levels observed with 

Western blotting, suggesting plasticity of GluN1 occurs at the LOT synapses. To test 

whether there is also an NMDAR composition change such as a switch from GluN2B to 

GluN2A subunits as observed following odor associative learning in adult rats 213, we 

measured the percentage of the GluN2B response relative to the total NMDAR fEPSP.  

At both 3 hr (42.4 ± 10.27% occluded, vs. 37.24 ± 8.99 spared, n = 5, t = 0.29, p > 0.05; 

Figure 3.2B1), and 24 hr (45.92 ± 9.61% occluded, vs. 43.48 ± 12.20 spared, n = 7, t = 

0.19, p > 0.05; Figure 3.2B2), there was no difference in the fraction of GluN2B 

responses.  Together, these results suggest NMDAR plasticity at the LOT synapse 

following early odor preference learning, is due to changes in the numbers of GluN1 

essential subunits. The fractions of GluN2B subunits are similar in both hemispheres 

suggesting that GluN2B levels parallel GluN1 levels and there are no subunit composition 

changes. 

 

3.4.2 GluN1 down-regulation at 3 hr coincides with decreased LTP and increased LTD 

at the LOT synapse 

 

What is the consequence of the changes in NMDARs for the synaptic state and 

plasticity? We first looked at the ratio of AMPAR to NMDAR response at the LOT 

synapse following learning. We found that there was an increase in the 

AMPAR/NMDAR ratio at 3 hr (28.17 ± 3.47 occluded, vs. 66.56 ± 6.47 spared, n = 6, t = 
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4.46, p < 0.01; Figure 3.2C1). This is consistent with both an increase in AMPAR 

response as observed previously (Morrison et al., 2013) and a decrease in the NMDAR 

response as observed in this study. However, at 24 hr post-training, there was no 

difference between the occluded hemisphere (37.15 ± 4.03, n = 7) and the spared 

hemisphere (40.45 ± 9.62, n = 7, t = 0.36, p > 0.05; Figure 3.2C2). The finding of no 

change in the AMPAR/NMDAR ratio at 24 hr is likely due to proportional increases in 

both AMPAR 373 and NMDAR responses. Developmentally, an increased 

AMPAR/NMDAR ratio coincides with decreased AMPAR LTP in the olfactory cortex 

481.  

 

We then explored how changes in NMDAR expression and response following 

early odor learning shape synaptic plasticity at the LOT synapse.  It has been shown that 

LTP at the LOT synapse is excluded in the trained hemisphere at 24 hr following early 

odor preference learning 373. Consistent with this result, we observed a learning-induced 

LTP exclusion effect also at 3 hr post-training. In the untrained hemispheres, on average 

the fEPSP slope size increased to 115.5 ± 2.9% at 30 min following TBS induction (n = 

6), whereas in the trained hemisphere, no LTP of the fEPSP was observed (95.9 ± 4.2%, n 

= 6). Accordingly, there was a significant difference between the two groups at 30 min 

post-induction (t = 3.80, p < 0.01, Figure 3.3A). We next tested LTD inductions 3 hr 

following odor training ex vivo in naris occluded versus spared hemispheres. A low 

frequency induction protocol (900 pulses at 1 Hz) 484 resulted in LTD of the fEPSP in the 

spared hemisphere (80.5 ± 9.4% of the baseline, n = 6, t = 2.08, p < 0.05), but not in the 
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occluded hemisphere (105.7 ± 18.3% of the baseline, n = 6, t = 0.31, p > 0.05; Figure 

3.3B). Interestingly, at 24 hr following odor training, there was no LTD induction and no 

difference in the two hemisphere groups (96.8 ± 6.4% occluded, vs. 93.0 ± 11.9% spared, 

n = 7, t = 0.29, p > 0.05, Figure 3.3C). Together with the previous report 373, we show that 

at 3 hr post-training, there is decreased LTP induction at the LOT synapse, in parallel 

with an increase in LTD induction. However, at 24 hr post-training, there is only 

decreased LTP induction, without a parallel and opposite change in LTD induction. While 

an increased AMPAR response at both 3 hr and 24 hr 373 may result in a ceiling effect of 

synaptic LTP and account for LTP exclusion at both time points, a decrease in NMDARs 

at 3 hr may also account for less LTP and appears to be solely responsible for a lower 

threshold for LTD induction. Down-regulation of NMDAR induces metaplasticity that 

alters the plastic state of the previously active synapses.  

 

3.4.3 GluN1 down-regulation at 3 hr interferes with learning at the same synapse  

 

What is the functional significance of NMDAR down-regulation following early 

odor learning? Particularly, how would down-regulation of NMDARs at 3 hr following 

the first training influence another episode of learning at the same synapse? To answer 

this question, we designed experiments in which animals were trained in two trials 

separated by a 3 hr interval. During the first training session, pups were assigned to one of 

the two bedding conditions and underwent O/S+ training: peppermint bedding, or vanillin 

bedding. The vanillin bedding group was re-trained with peppermint bedding 3 hr later. 
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Pups in the peppermint bedding group during the first training were divided into five 

groups: one group was re-trained with peppermint bedding at 3 hr, one group was re-

trained with vanillin bedding at 3 hr, one group was re-trained with peppermint bedding 

at 24 hr, one group was exposed to peppermint bedding only at 24 hr, and one group was 

not re-trained. An O/S- group trained once was also included as a negative control. Odor 

preference testing showed significant group effects (F(6,56) = 14.70, p < 0.01; Figure 3.4). 

Interestingly, pups trained two times in peppermint bedding with a 3 hr interval showed 

no preference learning for the peppermint (42.98 ± 3.88%, n = 10) 24 hr later, compared 

to the O/S+ one-time training group (61.30 ± 4.78%, n = 10, p < 0.01). The vanillin 

bedding group showed normal 24 hr learning to peppermint when re-trained with 

peppermint bedding 3 hr following the first training (66.03 ±4.30%, n = 10), compared to 

the O/S- group (31.92 ± 3.62%, n = 10, p < 0.01). Re-training with vanillin bedding did 

not impair the odor preference memory to the first training odor peppermint (71.69 ± 

4.84%, n = 7) compared to the O/S- group (p < 0.01). Pups trained two times in 

peppermint only bedding but separated by a 24 hr interval did not show any learning 

deficiency (66.77 ± 4.41, n = 9), this is in comparison with the group that was re-exposed 

to peppermint only at 24 hr, which showed no preference memory to peppermint (25.43 ± 

7.45%, n = 7, p < 0.01). This suggests any effect of re-training with peppermint+stroking 

cannot be explained by peppermint exposure itself and confirms the limited duration of 

one trial peppermint preference memory. 
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 Our results suggest that re-training at 3 hr interferes with the expression of odor 

preference induced by initial exposure. This learning interference coincides with 

NMDAR down-regulation, reduced LTP and increased LTD induction at LOT synapses. 

To establish the causal relationship between NMDAR down-regulation and learning 

deficiency, we infused SiRNA that specifically down-regulates the NMDA GluN1 

subunit bilaterally into the aPCs. Western blots showed that four days following the initial 

injection of SiRNA into the brain, the GluN1 subunit was significantly down-regulated 

compared to the control hemisphere, no matter whether it was in the olfactory bulb (51.4 

± 12.3% of the control hemisphere, n = 5, t =3.95, p < 0.05; Figure 3.5A) or in the aPC 

(33.7 ± 4.9% of the control counterpart, n = 6, t = 13.62, p < 0.01; Figure 3.5B).  

Behavioral experiments (F(3,30) = 3.66, p < 0.05; Figure 3.5C) demonstrated that SiRNA 

bilateral infusion into the aPCs prevented early odor preference learning (41.8 ± 6.3%, n 

= 10) compared with the controls (67.0 ± 6.1%, n= 8,  p < 0.01). This result suggests that 

GluN1 down-regulation globally in the aPC results in odor learning deficiency in rat 

pups. Therefore it is likely that GluN1 down-regulation 3 hr following the first training 

accounts for impaired learning during re-training.  

 

3.4.4 Metaplasticity at 3 hr following early odor training is NMDAR-dependent  

 

 How could re-training involving the same synapses that supported learning impair 

subsequent learning or memory expression? NMDAR down-regulation at 3 hr following 

the first training coincides with enhanced LTD induction at the LOT synapse. NMDAR-
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dependent Ca2+ influx is critical for both LTP and LTD. A high rise of intracellular Ca2+ 

through NMDAR triggers LTP and a slower, lower rise of Ca2+ favors LTD induction 

145,485. We tested the hypothesis that fewer NMDARs at the same synapse during re-

training lowers the amount of Ca2+ influx and favors LTD induction. We first asked, by 

using ex vivo slices 3 hr post O/S+ training, whether LTD induction at the LOT synapse is 

affected by NMDAR blockage. When MK-801, an NMDA open channel blocker was 

bath applied to the slices, LTD induction was abolished (104.7 ± 10.9% of the baseline at 

30 min post-induction, n = 7, t = 0.43, p > 0.05, Figure 3.6). This result suggests that the 

NMDAR and likely calcium influx through NMDAR, mediates LTD induction 3 hr 

following O/S+ training.  

 

 We next examined whether NMDAR blockage during re-training would allow 

early odor preference memory to be expressed. We compared three groups: 3 hr re-

training with saline injection, 3 hr re-training with a prior MK-801 injection, and an MK-

801 injection only at 3 hr without re-training. One way ANOVA shows significant group 

effects (F(2,27) = 16.67, p < 0.01; Figure 3.7). Re-training at 3 hr with a saline injection, 

prevented the expression of odor preference memory tested at 24 hr (29.38 ± 4.32%, n = 

10), consistent with the previous result (Figure 3.4). However, when MK-801 was 

administered to the pups at the time of the 3 hr re-training session, the odor preference 

memory at 24 hr was intact (71.39 ± 3.51%, n = 10, p < 0.01 compared to the saline re-

training group). MK-801 injection itself 3 hr following the O/S+ training did not interfere 

with the expression of the odor preference memory (58.28 ± 7.22%, n = 10, p < 0.01 
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compared to the saline re-training group). Together, these results suggest NMDAR 

blockage abolishes metaplasticity occurring at 3 hr following the first O/S+ training, but 

does not affect the expression of already formed memory from the first O/S+ training.   

 

 The key results in this study are summarized in Table 1. 

 

3.5 Discussion 

 

3.5.1 Bi-phasic NMDAR Plasticity Following Early Odor Preference Learning in Rats 

 

Here we report bi-phasic changes in NMDAR synaptic transmission and in 

absolute amount of the essential subunit GluN1 in the aPC following early odor 

preference learning in rats. NMDAR LTD was inducible at the LOT to pyramidal cell 

synapse 3 hr post odor training. Contrary to what was seen with odor rule learning in 

adult rats 213, in which a switch from the GluN2B to GluN2A subunit occurred following 

learning, we observed no change in the  GluN2B-mediated synaptic potential relative to 

the total NMDAR response in the learning hemisphere compared to control. This suggests 

down-regulation of the GluN1 subunit at the LOT synapse is responsible for the reduced 

NMDAR synaptic transmission 3 hr post-training.  
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As reported previously in nucleus accumbens 486, NMDAR LTD 3 hr posttraining 

is concurrent with AMPAR LTP 373. It is likely that both the AMPAR LTP and NMDAR 

LTD are mediated through Ca2+ influx through NMDARs 477 and implies that the same 

postsynaptic Ca2+ concentration induces opposite effects on AMPAR- and NMDAR-

mediated synaptic responses 486.  

At 24 hr post-training we observed LTP of the same NMDAR-mediated synaptic 

responses, likely due to GluN1 up-regulation at the LOT synapse. This delayed NMDAR 

LTP accompanies AMPAR LTP at the same synapse 373, which restores the AMPAR to 

NMDAR ratio to control levels.  

 

 Despite extensive characterization of NMDAR plasticity in vitro 195,478, activity-

dependent changes of NMDARs following behavioral conditioning have been less 

commonly reported 478. Changes of NMDAR subunit composition such as the switch 

between GluN2B and GluN2A subunits underlie developmental changes 479, sensory 

deprivation/enrichment effects 480, and associative learning 213. The differential activation 

of NMDAR subunits translates into different dynamics for NMDAR ion conductance and 

charge transfer, which influence NMDAR-mediated synaptic integration and plasticity 

477.  

 

Induction mechanisms for the bi-phasic NMDAR changes following early odor 

preference learning require further investigation. In vitro work shows that, similar to 



123 
 

AMPAR plasticity, both LTP and LTD of NMDAR require either NMDAR or mGluR 

activation, and a postsynaptic Ca2+ rise 478. Postsynaptic Ca2+ influx activates the 

enzymatic signaling required for plasticity, including protein kinases PKA 487, PKC 488,489, 

and Src 489 for LTP induction, and phosphatases such as protein phosphatase 1 

(PP1)/PP2A for LTD induction 490.  

 

Expression mechanisms involve NMDAR trafficking into, and out of, the synaptic 

membrane through endo/exocytosis as well as lateral movement (Hunt and Castillo, 

2012). NMDAR LTD can be mediated by Ca2+-dependent actin depolymerization, which 

promotes lateral diffusion of NMDARs from synaptic membrane to extrasynaptic sites 

490,491, or dynamin-dependent endocytosis 492. LTP of the NMDAR can be expressed by 

exocytosis of NMDARs via SNARE-dependent processes 493 or recruitment of NMDARs 

from extrasynaptic sites to the synaptic membrane 494. 

 

 It is unclear how the bi-phasic changes in NMDARs, seen here following a single 

odor preference training session, occur. The initial depression may involve only transient 

receptor trafficking out of the synaptic membrane independent of new protein synthesis, 

or only local synaptic proteins and mRNA may be involved, while the later potentiation 

may result from homeostatic regulation to match AMPAR number 495 and require protein 

synthesis. If this were true, separate signaling would be involved in the early LTD and 

late LTP of NMDARs following early odor preference training. 
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3.5.2 Down-regulation of NMDAR Leads to Synaptic and Behavioral Metaplasticity 

 

Metaplasticity refers to the change of capacity for synaptic plasticity due to prior 

synaptic activity 195. Given the role of NMDARs in mediating AMPAR synaptic 

plasticity, one consequence of NMDAR plasticity is a change in the ability to induce 

NMDAR-dependent plasticity of AMPAR-mediated synaptic transmission 478. Studies in 

visual cortex demonstrate changes in LTP or LTD capability following periods of altered 

visual experience 480. Our results provide direct evidence in support of NMDAR plasticity 

as a mechanism for metaplasticity in natural learning. 

 

We show that down-regulation of the GluN1 subunit and LTD of NMDAR-

mediated synaptic responses 3 hr following odor preference learning coincides with 

decreased AMPAR LTP (de-potentiation) and increased AMPAR LTD. This shift 

favoring LTD induction is not solely due to synaptic ceiling effects on AMPARs since at 

24 hr, LTD of the AMPAR is no longer inducible, while LTP of the AMPAR persists 373. 

Together, GluN1 down-regulation and NMDAR LTD are most likely to account for the 

threshold shifts for AMPAR LTP and LTD induction.  

 

 Behavioral metaplasticity has been used to refer to the ability of stress experiences 

to alter behavioral learning due to system wide changes 496. Here behavioral 
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metaplasticity occurs at specific synapses.  A shift in the threshold of AMPAR synaptic 

plasticity induced by training has consequences for learning using the same synapse. 

Three hrs following initial training, re-training with the same odor+stroking protocol, not 

only did not consolidate initial learning, as is seen with repeated training at 24 h, but 

impaired odor learning.  Initial training induced LTD of NMDARs, leading to 

metaplasticity of AMPAR-mediated synaptic responses. Re-training at the same synapse 

likely caused de-potentiation of AMPAR LTP, or caused AMPAR LTD, and either way, 

abolished odor preference learning. The metaplasticity here is pathway-specific as 

training with two different odors with the same 3 hr interval did not interfere with 

preference learning for peppermint odor. Input specificity of behavioral metaplasticity is 

consistent with in vitro work demonstrating synapse-specific metaplasticity in 

hippocampus 497–499.  

 

Metaplasticity at the LOT synapse following early odor preference learning not 

only results from changes in NMDAR number, but as seen in vitro 497–499, depends on the 

NMDAR itself for its expression. NMDAR blockade abolished the AMPAR LTD 

induced 3 hr following odor training. Furthermore, blocking NMDARs before re-training 

permitted odor preference memory expression. It requires further investigation to know 

how re-training at 3 hr impairs odor preference memory. However, one likely explanation 

is that NMDAR down-regulation at 3 hr results in less Ca2+ influx through NMDARs 

during re-training and favors AMPAR LTD or AMPAR LTP de-potentiation.  
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3.5.3 Functional significance of NMDAR metaplasticity 

 

How metaplasticity occurs in vivo in a way that is relevant to cognitive function is 

not well understood 500. Behavioral metaplasticity is proposed to alter learning and 

memory, and the likely mechanism is altered capacity for synaptic plasticity 496. Studies 

on stress-induced metaplasticity support this view. Behavioral stress impairs LTP 

induction and hippocampal-dependent learning and involves NMDAR activation 501. 

Stress, or high-levels of corticosterone, may also impair recollection of previously 

acquired memories.  

 

 Behavioral stress appears to retard plasticity at a global level involving multiple 

brain structures 496, but the present study provides some of the first evidence that learning 

itself affects future learning capacity at the same synapses. A recent study of amygdala-

dependent fear conditioning showed that a weak training trial that does not produce fear 

memory, primes future learning such that another trial delivered 60 min to 3 days later 

results in long-lasting and robust fear memory 502. Together, these studies suggest 

behavioral metaplasticity occurs, and the strength of the priming event may determine the 

nature and time course of the synaptic changes and the character of the behavioral 

modulation.  
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There are two ways to view the present results. Down-regulation of the NMDA 

receptor is physiologically necessary following activation and the behavioral effect is 

adventitious. Or down-regulation supports a behaviorally relevant homeostatic regulation 

of learning. Substantial increases in circuit strength, and consequent dominant sensory 

control over approach behavior may be limited, particularly in the case of sustained 

odors, by a waxing and waning mediated by the metaplasticity change described. Odor 

preference must be sufficiently weak to permit pups to leave the dam as they become 

more mobile. Consistent with such variation in odor preference learning is evidence that 

preference for peppermint constantly present in the maternal cage fades rapidly after 

exposure ends, while peppermint on the dam, providing a more variable stimulus over the 

same period, produces an enduring preference 503. 

 

Correspondingly, multiple spaced presentations of odor/stroking at 24 h intervals 

produces an enduring preference compared to a single association, as might be predicted 

from the present NMDAR changes 451,504. Understanding behavioral metaplasticity, both 

globally, and through pathway-specific changes, has significant implications for 

enhancing stimulus-specific adaptive learning and for diminishing, or ameliorating, the 

behavioral impact of traumatic learning. 
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3.6 Figures of Chapter 3 

 

 

 

 

 

 

 

 

 

Figure 3.1. NMDA GLUN1 plasticity in the anterior piriform cortex (aPC) at 3 hr and 

24 hr following early odor preference learning  

Western blots of synaptoneurosome extracts of aPCs from occluded and spared 

hemispheres of the same animals. Upper panel, example Western blot bands of GLUN1 

in different groups. O/S+, odor plus stroking; O/S-, odor only without stroking; Occ, 

occluded; Sp, spared. Lower panel, relative optical density (ROD) of GLUN1 expressions 

in various groups. The values are normalized GLUN1 expressions in spared aPCs to the 

occluded counterparts. *p < 0.05. **p < 0.01. Error bars, mean ± SEM. 
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Figure 3.2. NMDAR down-regulation at 3 hr and up-regulation at 24 hr occurs at the 

LOT synapse  

A1-A2. NMDAR input/output (I/O) relationship recorded at 3 hr (A1) and 24 hr (A2) ex 

vivo following early odor preference learning. NMDAR fEPSP was isolated by NBQX (5 

μM) in low Mg2+ aCSF. FV, fiber volley. B1-B2. Fractions of GLUN2B to total NMDAR 

fEPSPs recorded at 3 hr (B1) and 24 hr (B2) post-training. GLUN2B component was 

isolated by ifenprodil (3 μM), an GLUN2B antagonist. C1-C2. AMPAR/NMDAR ratio 

recorded at 3 hr (C1) and 24 hr (C2) post-training. Scale bars, 0.2 mV and 5 msec. *p < 

0.05. **p < 0.01. Error bars, mean ± SEM. 
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 Figure 3.3. NMDAR down-regulation at 3 hr coincides with decreased LTP and 

inducibility of LTD at the LOT synapse 

A. Ex vivo LTP induction 3 hr post-training in occluded and spared aPCs from the same 

animals. TBS, theta burst stimulation. B. Ex vivo LTD induction 3 hr post-training. LFS, 

low frequency stimulation. C. Ex vivo LTD induction 24 hr post-training. LFS, low 

frequency stimulation. Solid circles representing data from occluded aPC. Open circles 

representing data from spared aPC. Scale bars, 0.2 mV and 5 msec. Error bars, mean ± 

SEM. 
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Figure 3.4. O/S+ re-training at 3 hr impairs learning at the same synapse 

Percentage of time spent over peppermint-scented bedding in a two choice test. O/S+, 

odor plus stroking. O/S-, odor only. PP, peppermint. VA, vanillin. PP-PP, both first and 

re-training with peppermint-scented bedding. PP-VA, first training with peppermint-

scented bedding, re-training with vanillin scented-bedding. VA-PP, first training with 

vanillin scented-bedding, re-training with peppermint scented-bedding. **p < 0.01. Error 

bars, mean ± SEM. 
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Figure 3.5. GLUN1 down-regulation by SiRNA impairs early odor preference learning 

A. Relative optical density (ROD) of GLUN1 in SiRNA infused olfactory bulb (OB), 

normalized to vehicle infused counterpart. B. ROD of GLUN1 in SiRNA infused anterior 

piriform cortex (aPC), normalized to vehicle infused counterpart. C. Percentage of time 

spent over peppermint-scented bedding in a two choice test. *p < 0.05, **p < 0.01. Error 

bars, mean ± SEM. 
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Figure 3.6. Ex vivo NMDAR blockage 3 hr following odor training blocks LTD at the 

LOT synapse  

Ex vivo LTD induction 3 hr post O/S+ training in the presence of NMDAR antagonist MK 

801. LFS, low frequency stimulation. Squares representing data from MK 801 

experiments. Gray circles are taken from Figure 3B, recording in spared slices following 

O/S+ training without MK 801. Scale bars, 0.2 mV and 5 msec. Error bars, mean ± SEM. 
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Figure 3.7. NMDAR blockage during re-training allows odor preference memory to be 

expressed 

Percentage of time spent over peppermint-scented bedding in a two choice test. Saline or 

MK 801 was injected to pups before 3 hr re-training. MK 801 only group refers to MK 

801 injection at 3 hr without re-training. **p < 0.01. Error bars, mean ± SEM. 
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Chapter 4 

 

Title: Learning-induced metaplasticity? Associative training for early odor preference 

learning down regulates synapse-specific NMDA receptors via mGluR and calcineurin 

activation (This Chapter is modified  version of Mukherjee el al Cereb Cortex. 2017 

Jan 1;27(1):616-624. doi: 10.1093/cercor/bhv256.) 

 

4.1 Abstract  
 

Rat pups readily form a 24 h associative odor preference after a single trial of odor 

paired with intermittent stroking. Recent evidence shows that this training trial, which 

normally increases AMPA receptor responses in the anterior piriform cortex both 3 h and 

24 h following training, induces a down-regulation of NMDA receptors 3 h later followed 

by NMDA receptor up-regulation at 24 h.  

            When retrained with the same odor at 3 h, rat pups unlearn the original odor 

preference. Unlearning can be prevented by blocking NMDA receptors during retraining. 

Here the mechanisms that initiate NMDA receptor down-regulation are assessed. 

Blocking mGluR receptors or calcineurin during training prevents down-regulation of 

NMDA receptors 3 h following training. Blocking NMDA receptors during training does 

not affect NMDA receptor down-regulation. Thus down-regulation can be engaged 
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separately from associative learning. When unlearning occurs, AMPA and NMDA 

receptor levels at 24 h are reset to control levels. Calcineurin blockade during retraining 

prevents unlearning consistent with the role of NMDA receptor down-regulation. The 

relationship of these events to the metaplasticity and plasticity mechanisms of long-term 

depression and depotentiation is discussed. We suggest a possible functional role of 

NMDA receptor down-regulation in offline stabilization of learned odor representations. 

 

4.2 Introduction 
 

In rat pup odor preference learning, a single 10 min exposure to a novel odor 

paired with intermittent stroking produces a 24 h protein-synthesis dependent odor 

preference379, which is associated with enhanced AMPA receptor (AMPAR) currents in 

olfactory inputs to both the olfactory bulb (OB)475 and the anterior piriform cortex 

(aPC)373,451. AMPAR phosphorylation and increased AMPAR membrane insertion occur 

concomitantly with olfactory learning and memory in this model453, consistent with a 

prediction of enhanced network representations with training. The neural changes and 

behavioural memory endure over multiple days with repeated spaced trials451, while the 

odor representational network becomes more stable following spaced training in both the 

OB and aPC338. 

 

In both OB and aPC, the NMDA GluN1 receptor levels are decreased 3 h 

following a single training trial 476,505 but then increase beyond control levels at 24 h505. 

This contrasts with increases in AMPAR responses (likely due to increased membrane 
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expression) at both time points373.  In the aPC in vitro, long-term depression (LTD), 

normally difficult to induce in rat pup slices, is readily induced from slices taken at 3 h 

post odor preference training when NMDA receptors (NMDARs) are down regulated505. 

Behaviorally, ‘unlearning ‘occurs when a second odor preference training is given 3 h 

following the initial training505. Unlearning is specific to the trained odor since pairing a 

different odor with stroking at 3 h does not affect the learning of the new odor assessed 

24 h later, and does not disrupt memory for the originally trained preference505. The 

critical role of the reduced NMDAR expression in unlearning is demonstrated by 

blocking NMDARs 3 h prior to the 2nd training event, while this prevents the original 

associative odor learning if given before the first training trial373, NMDAR blockade 

before the 2nd trial at 3 h permits the original 24 h odor preference to be maintained rather 

than ‘unlearned’505.  

 

The present experiments test the potential mechanisms for NMDAR down 

regulation recruited during the original training and implicated by earlier studies in 

metaplasticity, a process by which prior events temporally alter subsequent plasticity 

susceptibility208,478. The outcomes reveal that activation of metabotropic glutamate 

receptors and calcineurin are required for NMDAR down regulation. A model is 

presented supporting a functional role for NMDAR down regulation in establishing stable 

memory networks. 
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4.3 Materials and Methods 
 

In the following sections I will describe my methodologies for Chapter 3. 

 

4.3.1 Animals and Ethics Statement 

 

Sprague Dawley rat pups of either sex (Charles River) were used in this study. 

Animals were bred and pups were born on-site at the animal care facility. Litters were 

culled to 12 pups on postnatal day 1 (PND1; day of birth is designated PND0). Dams 

were maintained with ad libitum access to food and water. All procedures were approved 

by the Institutional Animal Care Committee at Memorial University of Newfoundland 

adherent to the guidelines by the Canadian Council on Animal Care. 

 

4.3.2 Behavioral Studies  

 

Behavioral experiments were carried out in a temperature controlled room at 

approximately 27°C and followed the previously established protocols 451,505 as described 

below. One-way ANOVAs and post hoc Fisher tests, or two-sample t-test were used to 

determine statistical significance throughout the experiments. 

 

4.3.3 Odor preference training  
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  PND6 rat pups were assigned to an odor plus stroking (O/S+) or an odor only 

(O/S-) condition. Pups were removed from the nest and placed on normal bedding for 10 

min habituation. Pups receiving conditioning O/S+ were placed on peppermint-scented 

bedding (0.3 mL peppermint extract in 500 mL bedding) and vigorously stroked with a 

paintbrush for 30 sec, followed by a 30 sec rest, repeated for 10 min. Pups in the control 

condition O/S- were placed in peppermint-scented bedding for 10 min without being 

stroked. All pups were returned to the dam after training. A subset of O/S+ pups were re-

trained at 3 hr after the first training, following the same procedure as in the first training. 

 

 Three types of experiments were employed. First, O/S+ pups were trained with 

single naris occluded, followed by brain tissue collection at 3 h for NMDAR GluN1 

measurement (Figure 4.1). Another group was re-trained at 3 h and killed at 24 h for both 

GluN1 and GluA1 measurement (Figure 4.7). Second, pups underwent aPC drug or 

vehicle infusions right before a single O/S+ training. These pups were either killed at 3 h 

for GluN1 measurement (Figures 4.2, 4.3, 4.4) or tested for odor preference the next day 

(Figure 4.5). Third, pups underwent aPC drug or vehicle infusions before the re-training 

at 3 h following the first training. These pups were then tested for odor preference the 

next day (Figure 4.6).  

 

4.3.4 Odor preference testing 

 

Twenty-four hours following the initial training, pups were tested for odor 

preference memory using a two-choice odor preference procedure. The testing apparatus 



141 
 

was a stainless steel box (30 x 20 x 18 cm) placed over two training boxes. One box 

contained peppermint-scented bedding and the other contained normal, unscented 

bedding, separated by a 2 cm neutral zone. During testing, pups were removed from the 

dam and placed in the neutral zone. Times that pups spent over scented versus normal 

bedding were recorded in five one-minute trials, each separated by a one-min rest in a 

clean cage. The percentage of the time spent over peppermint bedding over total time 

spent over either bedding was calculated for each pup.  

 

4.3.5 Reversible naris occlusion  

 

Nose plugs were constructed using polyethylene 20 (PE 20) tubing and silk 

surgical thread as described previously451,505. A small dab of 2% Xylocaine gel 

(AstraZeneca) was applied to the left naris of the pup and the pup was let rest for ~3-5 

min before the plug was gently inserted in the left naris. After 10 min habituation, pups 

were assigned appropriate odor training. The nose plug was removed immediately 

following training and pups returned to dams.   

 

4.3.6 Cannula implantation and intracerebral infusion  

 

Cannula implantation was carried out on PND5. Pups were anesthetized via 

hypothermia and placed in a stereotaxic apparatus in a skull flat position. A horizontal 

incision was made to expose the skull where two small holes were drilled. Two guide 

cannulas (Vita Needle, MA) with insect pins were inserted into the brain in specific 



142 
 

coordinates for aPC (from Bregma: Anterior posterior: +2.5, Mediolateral: +3.5 and 

Depth: -5.5;373), and cemented with dental acrylic to the skull. The skin was then sutured 

around the cannulas. The pups were recovered on warm bedding before returned to the 

dams.  

 

All drugs were infused into the aPC on PND6 either 20 min before the first 

training or before re-training. One µl of a drug was injected bilaterally into the aPCs for 

behavioral experiments using a Hamilton syringe. In pups for quantitative 

immunoblotting, drugs were infused in one aPC and vehicles were infused in the 

contralateral hemisphere. The injection was over 4 min, and the syringe was left in site 

for another min before being gently withdrawn from the brain. The pups were returned to 

the dams for ~5 min before habituation and training. Pharmacological agents used include 

a NMDAR antagonist D-AP5 (5 mM and 500 µM, dissolved in saline; Sigma Aldrich), an 

NMDAR agonist NMDA (5 mM, dissolved in saline; Tocris), an mGluR1 antagonist 

AIDA (5 mM and 500 µM; dissolved in a small amount of 1 M NaOH and further diluted 

with saline, the same ratio of NaOH and saline was used as vehicle; Tocris), an mGluR5 

antagonist MPEP (5 mM; 10% DMSO in saline; Tocris), an mGluR group I/II blocker 

MCPG (100 mM, dissolved in saline; Tocris), a calcineurin (phosphatase 2B) inhibitor 

FK-506 (5 mM, 10% DMSO in saline; Tocris) and a phosphatase 1/2A inhibitor okadaic 

acid (500 µM, 10% DMSO in saline; Calbiochem). All drug concentrations used are 

comparable with published results using in vivo brain infusions381,476,506,507. The cannula 

locations were verified to be within the aPC during brain extractions. The spread of 

infusion was tested with 4% methylene blue dye in pilot experiments (<2 mm3; n=6).  We 
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have also validated in previous studies 373,505 that the drug spread using the same infusion 

parameters and techniques was confined to the aPC.  

 

4.3.7 Immunoblotting 

 

Three hours following odor training, pups were decapitated, and aPCs were 

collected and flash frozen on dry ice. For pCREB measurement, brains were taken 10 min 

following O/S+ training. Samples were stored at -80°C until further processing. 

 

4.3.8 Synaptic membrane isolation 

 

Purification of synaptic membrane followed previously published procedures508. 

Tissue samples were homogenized using a Teflon glass tissue homogenizer (Thomas 

Scientific) in ice-cold sucrose buffer (300 µl) containing (in mM): 320 sucrose, 10 Tris 

(pH7.4), 1 EDTA, 1 EGTA, 1X complete protease inhibitor mixture and phosphatase 

inhibitor mixture (Roche). The homogenized samples were centrifuged at 1000 rpm for 

10 min. The supernatant was spun at 10,000 rpm for 25 min to obtain a pallet, which was 

subsequently re-suspended in 120 µl sucrose buffer using a pestle mixing/grinding rod 

(Thomas Scientific) directly in the microfuge tube. Then 8 volumes of a non-ionic 

detergent Triton X-100 buffer (final 0.5% v/v) were added for detergent extraction. The 

Triton X-100 buffer contained (in mM) 10 Tris (pH 7.4), 1 EDTA, 1 EGTA, 1X protease 

and phosphatase inhibitors. This suspension was incubated at 4 °C for 35 min with gentle 

rotation. Then the suspension was centrifuged at 28,000 rpm for 30 min. The pellet 
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(postsynaptic densities and synaptic junctions that are insoluble in Triton X-100,479) was 

re-suspended in 100 µl of TE buffer containing 100 mM Tris (pH 7.4), 10 mM EDTA, 

1% SDS, 1X protease and phosphatase inhibitors, sonicated, boiled for 5 min and stored 

at -80ºC until use.  Protein concentrations for each sample were determined by using a 

BCA protein assay kit (Pierce). The volume of lysate required to make 35 µg of protein 

for each sample was calculated. 

 

4.3.9 Tissue isolation for phosphorylated CREB (pCREB) measurement 

 

APC tissue was placed in microcentrifuge tubes and homogenized with a manual 

motor pastel in 100 μL of lysis buffer containing 0.1% SDS, 1% NP-40, 20 mM PMSF, 

10% glycine, and 1.37 mM sodium chloride with 1 μL/mL leupeptin, 2 mM PMSF, 8.9 

U/mL aprotinin, and 1 mM sodium orthovanadate. The homogenate was centrifuged at 

13,500 rpm for 15 min at 4°C. After determining the protein concentration, the clear 

lysate supernatant was stored at -80°C.  

 

4.3.10 Western Blotting 

 

A total of 100 µl lysate solution, sample buffer (0.3 M Tris-HCl, 10% SDS, 50% 

glycerol, 0.25% bromophenol blue, 0.5 M dithiothreitol), and dH2O were prepared and 

boiled for 2 min at 100°C. Samples were then loaded into lanes of a 7.5% SDS-PAGE 

gel, along with a protein ladder (Thermo Scientific) and irrelevant samples in empty 

lanes. Sample separation occurred through SDS-PAGE, followed by transference to a 

nitrocellulose membrane (Millipore). Membranes were cut horizontally at the 72 kDa 
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level, and the upper portion was probed with a rabbit antibody for GluN1 (1:2000, 

blocked in 5% Milk; Cell Signaling Technology) subunits, and the lower portion was 

probed for β-actin (1:5000, blocked in 5% skim milk; Cedarlane). A pCREB antibody 

(1:5000, Cell Signalling) and a control GAPDH antibody (1:7000, Cell Signalling) were 

used to measure pCREB levels. A GluA1 antibody (1:10000, Cell Signalling) was used to 

probe AMPAR membrane levels. Membranes were incubated in primary antibody 

overnight at 4°C in continuous shaking condition. Next day membranes were washed 

three times for 5 min each with 1X TBST. Secondary antibodies bound to HRP were 

applied after the wash (1:10,000, anti-rabbit; Pierce) for 1 h, and membranes were then 

washed again with 1X TBST three times for 10 min each. Then blots are washed in 

enhanced chemiluminescence Western blotting substrate (Pierce). Finally, blots were 

developed on x-ray film (AGFA). Films were scanned onto a computer using an image 

scanner (CanoScan LiDE 200), and the optic density (OD) of each band was measured 

using ImageJ software.  

Each sample was normalized to the corresponding β -actin or GAPDH band that was run 

on the same gel. In pups that underwent lateralized odor training, each spared hemisphere 

was compared with its naris-occluded counterpart. In pups with drug infusions, the drug 

infused hemisphere was compared with its vehicle infused counterpart. Experimental 

values are reported as mean ± SEM of normalized optical densities. A paired t-test was 

used to evaluate differences in the mean optical densities between the two groups. 
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4.4 Results 
 

In the following sections I will describe my results of Chapter 3 project. 

 

4.4.1 Synaptic GluN1 down-regulation following early odor preference learning is 

mGluR-dependent 

 

 Previously, using a synaptoneurosome preparation, we have shown that GluN1 

subunits are down regulated 3 h following O/S+ training in rat pups505. 

Synaptoneurosomes are composite structures enriched in synaptic proteins 509 and have 

been used to measure activity-dependent changes in AMPARs and NMDARs in the 

olfactory system213,453,476,505. Here we employed a protocol to further separate synaptic 

from extrasynaptic membrane compartment 508 using a subcellular fraction approach 

followed by extraction with Triton X-100 as postsynaptic densities and synaptic junctions 

are shown to be insoluble in Triton X-100510. We validated this method by showing PSD-

95 was particularly abundant in the synaptic fraction compared to either the extra-

synaptic or cytosolic fractions (supplementary Figure 4.1). Our analysis revealed that 3 h 

following O/S+ training, the synaptic GluN1 subunit was significantly lower in the spared 

aPC (normalized OD: 0.69 ± 0.12) than in the occluded counterpart (1.14 ± 0.10, n = 5, t 

= 3.13, p = 0.04; Figure 4.1). This confirms that GluN1 down-regulation occurs at 

synaptic membrane.  
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 We next investigated whether synaptic GluN1 down-regulation is dependent on 

NMDARs. D-APV was infused in one aPC before the O/S+ training, while vehicle was 

infused into the other aPC. Two concentrations (500 µM and 5 mM) were tested. Neither 

500 µM (vehicle: 0.87 ± 0.14 vs. D-APV: 1.0 ± 0.13, n = 6, t = 0.97, p = 0.37) nor 5 mM 

(vehicle: 0.92 ± 0.18 vs. D-APV: 0.81 ± 0.14, n = 6, t = 1.37, p = 0.23; Figure 4.2A&B) 

dose altered GluN1 expression, suggesting GluN1 down-regulation is not NMDAR 

dependent. To validate the drug effect in aPC, we measured pCREB expressions 

following D-APV infusion and O/S+ training. The level of pCREB was lower in the D-

APV infused aPC (1.08 ± 0.27) than the control vehicle side (2.16 ± 0.53, n = 8, t = 2.61, 

p = 0.03, Figure 4.2C), consistent with NMDAR-dependent CREB phosphorylation and 

odor preference learning373,476. This result confirms the effectiveness of the drug infusion 

protocol.  

 

We then tested the potential involvement of mGluRs. When MCPG, an mGluR 

group I/II antagonist was infused, the GluN1 levels were significantly higher in the 

MCPG infused aPC (1.12 ± 0.17) than the control side (0.63 ± 0.18, n = 8, t = 2.18, p = 

0.03; Figure 4.3A&B). This results suggest MCPG prevents GluN1 down-regulation 

following O/S+ training. To test the specific subtype of mGluRs involved, an mGluR5 

specific antagonist MPEP (5 mM) was infused into the aPC. MPEP prevented down-

regulation of GluN1 (MPEP: 1.59 ± 0.19 vs. vehicle: 1.00 ± 1.82, n = 8, t = 3.86, p = 

0.006; Figure 4.3C). However, an mGluR1 specific antagonist AIDA (500 µM and 5 

mM) was ineffective. Neither the 500 µM (vehicle: 0.72 ± 0.16 vs. AIDA: 0.76 ± 0.20, n 

= 6, t = 0.48, p = 0.65) nor the 5 mM (vehicle: 0.93 ± 0.17 vs. AIDA: 0.82 ± 0.20, n = 6, t 
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= 0.80, p = 0.46; Figure 4.3D) dose altered GluN1 expression, suggesting GluN1 down-

regulation is mediated by mGluR5, but not mGluR1. 

 

4.4.2 Calcineurin signalling is involved in GluN1 plasticity  

 

 Activation of mGluRs during early odor preference learning may trigger 

intracellular Ca2+ release, which would activate phosphatase pathways and lead to 

NMDAR dephosphorylation and internalization. We infused two phosphatase inhibitors - 

a calcineurin inhibitor, FK-506 (5 mM), and a phosphatase 1/2A inhibitor, okadaic acid 

(500 µM). FK-506 infusion prevented GluN1 down-regulation (vehicle: 0.62 ± 0.16 vs. 

FK-506: 1.39 ± 0.39, n = 8, t = 2.58, p = 0.04), while okadaic acid had no effect (vehicle: 

0.93 ± 0.26 vs. FK-506: 0.88 ± 0.56, n = 6, t = 0.16, p = 0.88; Figure 4.4). 

 

 As described GluN1 down-regulation following O/S+ training induces unlearning 

upon re-training at 3 h505. If GluN1 down-regulation is blocked, what would happen in the 

animals that are re-trained at 3 hr following the initial O/S+ training? We infused either 

FK-506 or MCPG bilaterally into aPCs before the first O/S+ training and tested the effects 

on odor preference memory 24 h later, with or without 3 h re-training. When infused 

without re-training, neither drug affected odor preference learning compared to the O/S- 

control. A one-way ANOVA revealed significant differences among groups (F (3, 15) = 

11.02, p < 0.001; Figure 4.5A). FK-506 infused group spent significantly more time on 

peppermint scented bedding (60.80 ± 5.45%, n = 4) than the vehicle infused O/S- control 

group (37.47 ± 2.88%, n = 6, t = 4.59, p < 0.001), and not different from vehicle infused 
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O/S+ learning group (55.58 ± 2.70%, n = 5, t = 0.99, p = 0.34), suggesting calcineurin 

inhibition does not interfere with early odor preference learning. Similarly, MCPG 

infused pups also learned (62.12 ± 3.87, n = 4, t = 4.85, p < 0.001 compared to the vehicle 

O/S- group). However, when re-training occurred at 3 h after the first training, either drug 

abolished unlearning. A one-way ANOVA revealed significant differences among groups 

(F (2, 10) = 54.57, p < 0.001; Figure 4.5B). FK-506 infusion prevented unlearning (vehicle 

O/S+-O/S+: 33.06 ± 3.46%, n = 5, vs. FK-506 O/S+-O/S+: 78.49 ± 2.77%, n = 4, t = 10.13, 

p < 0.001). MCPG infusion also prevented unlearning in the re-trained group (MCPG 

O/S+-O/S+: 63.61 ± 3.11%, n = 4, t = 6.81, p < 0.001 compared to the vehicle O/S+-O/S+ 

group). 

 

4.4.3 Calcineurin signalling mediates unlearning 

 

  We have previously shown that unlearning with 3 h re-training is NMDAR-

dependent505. To test whether a phosphatase mediated depotentiation or LTD pathway 

mediates unlearning, we infused FK-506 into aPCs at 3 h with or without re-training. 

Without re-training, FK-506 infusion did not affect odor preference learning. One-way 

ANOVA showed significant group effects (F (2, 11) = 4.52, p < 0.05; Figure 4.6A). FK-506 

infusion at 3 h without re-training (65.01 ± 7.39, n = 5) induced odor preference learning 

compared to the vehicle O/S- group (40.2 ± 7.64, n = 4, t = 2.70, p = 0.02). However, FK-

506 infusion prevented unlearning when animals were re-trained at 3 h (vehicle O/S+-

O/S+: 43.58 ± 6.38%, n = 6, vs. FK-506 O/S+-O/S+: 74.18 ± 3.71%, n = 4, t = 4.14, p < 

0.01; Figure 4.6B).  
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4.4.4 Unlearning resets AMPARs and NMDARs to the baseline non-learning levels 

 

 AMPARs and NMDARs are both up-regulated at 24 hr following a single O/S+ 

training373,505. Here we measured how AMPARs and NMDARs changed at 24 h 

following the initial O/S+ training, with a 3 h re-training episode. Re-trained pups showed 

no difference of AMPAR GluA1 subunit expressions in the occluded (1.33 ± 0.18) and 

spared aPC (1.33 ± 0.17, n = 8, t = 0.32, p = 0.76; Figure 4.7A&B). Similarly, NMDAR 

GluN1 subunits in the spared aPC (1.08 ± 0.13) were not different from the occluded 

hemisphere (1.00 ± 0.21, n = 8, t = 0.49, p = 0.64; Figure 4.7A&C). These results suggest 

re-training at 3 hr resets the levels of AMPAR and NMDAR to the baseline condition 

through metaplasticity.  

 

4.5 Discussion 
 

In the following sections I will discuss Chapter 4 in more detail.  

 

4.5.1 NMDAR plasticity following early odor preference learning 

 

In the last decade, studies have begun to examine the activity-dependent 

regulation of NMDAR trafficking in in vitro preparations511,512. However, the molecular 

basis of activity-dependent NMDAR plasticity in intact, physiological conditions remains 

to be determined478. Our studies have provided among the first evidence that NMDAR 
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activity is regulated by learning - early odor preference learning in rat pups induces an 

early transient and reversible down-regulation of NMDAR and a delayed up-regulation 

(505and present results). Both rapid down-regulation and delayed up-regulation 478 of 

NMDA receptors have been reported in in vitro models. 

 

 AMPAR function is up-regulated in aPC at both the 3 h and 24 h time points373, 

thus there is a dissociation of GluN1 and GluA1 changes at the 3 h time point. While not 

typically reported, LTP of AMPAR- and LTD of NMDAR-mediated opposite changes 

has previously been described in nucleus accumbens neurons486. 

 

4.5.2Molecular Basis of Early GluN1 Down Regulation with Single Trial Training 

 

GluN1 down-regulation was not affected by NMDAR blockage through D-APV 

infusion. MCPG, a general group I and II mGluR antagonist, blocked learning induced 

GluN1 down-regulation. Further testing with mGluR5 antagonist, MPEP, also blocked 

GluN1 down-regulation. However, an mGluR1 specific inhibitor, AIDA, was not 

effective. This suggests that mGluR5 mediates the down-regulation of GluN1s. These 

receptors are strongly expressed in neocortical pyramidal neurons in rat pups of this 

age513. 

 

GluN1 down-regulation was also prevented by calcineurin inhibitor infusion, but 

not by inhibition of phosphatase 1/2A. Activation of mGluRs during learning may 

activate calcineurin, which could dephosphorylate and enhance the activity of the tyrosine 
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phosphatase STEP, which in turn dephosphorylates NMDAR GluN2B receptors.  

Dephosphorylation of GluN2B subunit promotes NMDAR internalization via the 

clathrin-mediated pathway as shown in other systems514. Our previous result 

demonstrating GluN1 down-regulation in a synaptoneurosome preparation (including 

both synaptic and extra-synaptic membranes) 505also favors an enhanced NMDAR 

internalization model, compared to increased lateral diffusion of the receptors.  (See 492 

for a discussion of the generality and power of NMDAR endocytosis as a plasticity 

mechanism.) 

 

Since early odor preference learning and AMPAR LTP at the synapses are 

critically dependent on NMDARs373, it was unexpected that an NMDAR antagonist that 

prevented pCREB expression after training was unable to prevent GluN1 down-regulation 

at 3 h. That is to say successful associative plasticity itself was not required to induce 

GluN1 down-regulation. This demonstrates that the mGluR5 pathway and the NMDAR 

pathways are engaged in parallel by associative training and can function independently 

when recruited by such training. The blockade of NMDARs prevents odor preference 

memory, but does not prevent the ‘silent’ down-regulation of GluN1 receptors induced by 

training. 

 

In contrast, blockade of calcineurin, which prevents GluN1 down-regulation 

driven by mGluR activation in this paradigm, typically enhances learning and memory381.  

In the odor preference model, the calcineurin inhibitor FK506 in the OB before training 

extends the duration of single trial memory and renders suboptimal unconditioned 



153 
 

stimulus optimal. In the present study, rat pups that had received FK506 before the initial 

training showed a strong odor preference memory following retraining at 3 h, rather than 

unlearning. It remains to be assessed whether prevention of GluN1 down-regulation 

contributes to learning enhancement.  

 

Calcineurin also appears to have a role in the NMDAR-mediated unlearning event 

itself. Blockade of calcineurin immediately before retraining at 3 h, despite normal GluN1 

down-regulation at this time, renders the second training trial effective. This is likely due 

to calcineurin’s role as a negative regulator of NMDA plasticity, preventing the 

depotentiating or depressing NMDAR effect normally recruited by fewer receptors during 

the retraining. 

 

4.5.3 Metaplasticity: Long-term depression or depotentiation? 

 

 Unlearning mediated by changes at the aPC synapse (decreased AMPAR LTP and 

inducible LTD) following early odor preference learning not only results from changes in 

NMDAR number, but also depends on the NMDAR itself for its expression505. Blocking 

NMDARs during the retraining abolishes unlearning and permits the expression of odor 

preference memory505.  

 

NMDARs have a role in both depotentiation (returning potentiated synapses to 

baseline) and long-term depression (reduced NMDAR currents promote LTD). Either of 

these mechanisms may underlie the unlearning effect observed here. Both are synapse-
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specific. Consistent with recruitment of LTD by retraining is the ability of a low 

frequency protocol to recruit LTD in trained slices, but not untrained slices, when 

examined 3 h, but not 24 h, post training505. On the other hand, resetting both NMDAR 

and AMPAR to control levels at 24 h by the ‘unlearning’ event, as seen here, is consistent 

with the reset function of depotentiation. Depotentiation is less likely to occur for strong 

LTP protocols 515 and stronger odor preference training paradigms appear not to be 

associated with GluN1 down regulation 216. Single trial odor preference learning is by 

definition a weak protocol since it only produces 24 h memory, but it is a long-term 

protein transcription-dependent memory379, so these experiments are exploring the 

manipulation of mechanisms underlying the durations of long-term memories themselves. 

  

Depotentiation is reported to depend on the GluN2A subunit whereas long-term 

depression is associated with the GluN2B subunit516.  The known role of calcineurin in 

promoting endocytosis of the NMDAR through the GluN2B subunit 517 suggests an LTD 

mechanism may be more likely here (but see518). 

 

 These distinctions are of interest since metaplasticity is thought to recruit long-

term depression, but not depotentiation208. On the other hand since both metaplasticity 

and plasticity mechanisms are likely to be recruited with natural learning 208 it may not be 

possible to disentangle their contributions in odor preference learning. Most importantly, 

the synaptic changes induced by associative training lead to a temporally evolving and 

complex modulation of plasticity predispositions in the engaged circuitry. Selective 
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manipulations of GluN2B and GluN2A subunits during the second training event might 

clarify the nature of the ‘unlearning’ mechanism. 

 

4.5.4 Functional role of synapse-specific GluN1 receptor regulation with associative 

training 

 

The up-regulation of GluN1 receptors at 24 h can readily be envisaged to provide 

a mechanistic basis for the memory strengthening effects of spaced learning (see 519 for 

review of spaced learning effects). In the odor preference learning model longer term 

memories and longer maintenance of AMPAR enhancement are associated with odor 

preference training spaced at 24 h451. Imprinting in chicks also induces delayed GluN1 

up-regulation in structures specifically associated with memory519. Interestingly, the 

strength of the imprinting memory is positively correlated with the degree of delayed 

NMDAR up-regulation520.  

 

We suggest early down-regulation of the GluN1 receptor may be related to the 

removal of weak synapses in the learned odor representation during off line reactivation. 

Such a function has been argued in several models521,522. Spontaneous network activity in 

conjunction with NMDAR-mediated LTD is thought to eliminate weaker synaptic 

connections522.  In one study523, mGluR5s, but not NMDARs, were shown to be critically 

involved in the rewiring of neocortical microcircuitry through the selective elimination of 

weaker connections. 
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 Recently Arc+ cells have also been shown to express LTD mediated by mGluR 

group I (1/5) activation524. In the rat pup odor learning model, we have shown that odors 

recruit Arc activation and that the odor representation by Arc+ cells following multiple 

spaced training is altered to have a larger proportion of stable or strong synaptic 

connections338. Thus it is possible that one training effect of mGluR5 activation is to help 

shape important odor representations by reducing unstable connections during subsequent 

off line activation as described for NMDA circuits in hippocampus521,522. GluN1 down 

regulation would mediate unstable synapse elimination in odor representations following 

training. 

 

4.6 Conclusions 
 

In this study we characterize the molecular mechanisms of associative learning-

induced NMDAR plasticity. GluN1 down-regulation was initiated by mGluR-mediated 

calcineurin signalling and inferred dephosphorylation and internalization of NMDARs. 

Blocking synapse-specific GluN1 down-regulation signalling prevents unlearning 

induced by a re-training episode. Unlearning during GluN1 down-regulation was shown 

to be mediated by an NMDAR-dependent calcineurin pathway inducing both AMPAR 

and NMDAR internalization. Blocking GluN1 down-regulation signalling prevents 

unlearning induced by the re-training episode (see Figure 8 for an illustration of the 

molecular mechanisms involved).  



157 
 

 

We suggest learning-induced GluN1 down-regulation contributes to the increased 

stability of learned odor representations, while delayed GluN1 up-regulation supports the 

benefits of spaced training on memory duration. 
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4.7 Figures of Chapter 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Early odor preference learning in rat pups down-regulates synaptic GluN1 

receptors in the anterior piriform cortex (aPC).  

A. Schematics of the odor training and tissue collection paradigm. O/S+: odor paired 

with stroking. 

B. Relative optical density (ROD) of GluN1 expression (normalized to β-actin) in 

occluded and spared aPCs.  
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Figure 4.2. GluN1 down-regulation is not dependent on NMDAR activation during 

early odor preference learning.  

A. Schematics of the odor training and tissue collection paradigm. O/S+: odor paired with 

stroking. 

B. Relative optical density (ROD) of GluN1 expression (normalized to β-actin) in 

vehicle and D-APV infused aPCs.  

C. ROD of pCREB expression (normalized to GAPDH) in vehicle and D-APV infused 

aPCs.  
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Figure 4.3. GluN1 down-regulation is dependent on mGluR activation. 

A. Schematics of the odor training and tissue collection paradigm. O/S+: odor paired with 

stroking. 

B. Relative optical density (ROD) of GluN1 expression (normalized to β-actin) in 

vehicle and MCPG infused aPCs.  

C. ROD of GluN1 expression in vehicle and MPEP infused aPCs.  

D. ROD of GluN1 expression in vehicle and AIDA infused aPCs.  
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Figure 4.4. GluN1 down-regulation is dependent on calcineurin signalling. 

A. Schematics of the odor training and tissue collection paradigm. O/S+: odor paired with 

stroking. 

B. Relative optical density (ROD) of GluN1 expression in vehicle, FK-506 or okadaic 

acid infused aPCs.  
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Figure 4.5. Inhibition of group I mGluR or calcineurin before first O/S+ training 

rescues early odor preference memory from re-training induced unlearning. 

A. Percentage of time spent over peppermint (PP)-scented bedding without re-training. 

O/S+: odor paired with stroking. O/S-: odor only without stroking. 

B. Percentage of time spent over PP-scented bedding with re-training. 
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Figure 4.6. Inhibition of calcineurin before re-training rescues early odor preference 

memory.  

A. Percentage of time spent over peppermint (PP)-scented bedding without re-training. 

O/S+: odor paired with stroking. O/S-: odor only without stroking. 

B. Percentage of time spent over PP-scented bedding with re-training. 

 

 

 

 

 



164 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Re-training resets AMPAR and NMDAR to the baseline level. 

A. Schematics of the odor training and tissue collection paradigm. O/S+: odor paired with 

stroking. 

B. Relative optical density (ROD) of GluA1 expression (normalized to β-actin) in 

occluded and spared aPCs.  

C. ROD of GluN1 expression in occluded and spared aPCs.  
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Figure 4.8. Summary of pathways involved in NMDAR plasticity and metaplasticity in 

early odor preference learning in rats.  

A. Learning and mGluR-mediated NMDAR plasticity. During the 1st training, Ca2+ 

influx through    NMDARs activates CaMKII, which phosphorylates AMPARs and 

facilitates AMPAR insertion into the synaptic membrane. Meanwhile, mGluR 

activation leads to Ca2+ release intracellularly and activates PP2B pathway and 

dephosphorylates NMDARs. The latter results in NMDAR endocytosis and down-

regulation at 3 hr. Glu: glutamate; PP2B: phosphatase 2B (calcineurin).  

B. NMDAR-mediated metaplasticity and unlearning. If re-training occurs at 3 hr, 

reduced Ca2+ influx through fewer NMDARs results in PP2B mediated AMPAR 

dephosphorylation and endocytosis. This re-sets the level of AMPARs to the original 

state before the 1st training. 
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Chapter 5 
 

Revisit metaplasticity: the roles of calcineurin and histone deacetylation in unlearning 

odor preference memory in rat pups ( This Chapter is a modified version of 

Battacharya, Mukherjee el al. Neurobiol Learn Mem. 2018 Feb 5. pii: S1074-

7427(18)30016-9. doi: 10.1016/j.nlm.2018.02.003.) 

 

5.1 Abstract 
 

Previous work has shown that 24 h duration odor preference learning, induced by 

one-trial training, generates a down-regulation of the GluN1 receptor in anterior piriform 

cortex at 3 h, and results in metaplastic unlearning if a second training trial is given at 3 h. 

The GluN1 receptor upregulates at 24 h so 24 h spaced training is highly effective in 

extending memory duration. The present study replicates the piriform cortex unlearning 

result in the olfactory bulb circuit and further studies the relationship between the initial 

training strength and its associated metaplastic effect. Intrabulbar infusions that block 

calcineurin or inhibit histone deacetylation normally produce extended days-long 

memory. If given during training, they are not associated with GluN1 downregulation at 3 

h and do not recruit an unlearning process at that time. The two memory strengthening 

protocols do not appear to interact, but are also not synergistic. These outcomes argue that 

it is critical to understand the metaplastic effects of training in order to optimize training 

protocols in the service of either memory strengthening or of memory weakening. 
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5.2 Introduction 

 

Real life learning is not an isolated, stand-alone experience. Each learning event 

builds on previous experience and hence is unique in each individual. If learning is an 

accumulative, built-up process, then our memories cannot be accounted for by a single 

synaptic plasticity event during one experience.  Metaplasticity describes the 

phenomenon by which the capacity for synaptic plasticity is altered by prior synaptic 

activity195. Thus metaplasticity is likely critically involved in complex learning and 

directly influences behavioral outcomes. However, how metaplasticity occurs in vivo in a 

way that is relevant to cognitive function is not well understood.  

 

Previously we have demonstrated that metaplasticity occurs in a natural learning 

model – early odor preference learning in rat pups446 505. Week-old rat pups form a 

preference to an odor that is paired with a tactile stimulus signaling maternal care (e.g. 

stroking using a brush)329,442. One trial, 10-min training can lead to a preference memory 

for the conditioned odor lasting up to 24 hs. Increasing the training strength by multi-trial, 

24-h spaced training extends the memory to days451. However, two trials of training 

separated by 3 h actually prevent the odor preference memory505. 
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Interestingly, synaptic NMDA receptors (NMDARs) in the anterior piriform 

cortex (aPC) decrease at 3 h, while they increase at 24 h following one trial training505. 

The altered plasticity at 3 h post the initial training is likely induced by occurring at the 

time of NMDAR down-regulation. Reduced Ca2+ entry via decreased numbers of 

NMDARs during the 2nd associative training at 3 h results in depotentiation (or LTD) of 

the aPC synapses and unlearning of the previous experience505.  Indeed, blocking 

NMDARs during the 2nd training prevents the unlearning505. Further work shows that 

NMDAR down-regulation is mediated by both mGluR5 and calcineurin signaling446. 

Blocking either aPC mGluR5  or calcineurin during the initial training also prevents the 

unlearning induced by the 2nd training, 3 h later 446. The timing between the prior and 

subsequent training appears to be critical, as re-training at 24 h, when NMDA receptors 

are increased 505, enhances memory 451.  

 

Here we study the relationship between the strength of the initial learning and its 

metaplastic effect on subsequent training. We explore whether a stronger induction that 

produces “stronger” memory has the same metaplastic effect on 3 h re-training. Two 

protocols have been established previously that induce stronger odor preference memories 

(i.e. memories with prolonged durations). Blocking calcineurin with FK-506 381 or 

blocking histone deacetylation with class I/II histone deacetylase (HDAC) inhibitor 

trichostatin A (TSA) 216 in the olfactory bulb (OB) extends one-trial odor preference 

memory for days. We have established that both the OB and aPC are plastic sites that are 

critical for early odor preference learning. NMDAR blockade in either site prevents odor 
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preference memory formation373,476. OB NMDARs are also down-regulated at 3 h 

following training476. Since both calcineurin 446,514 and histone deacetylation 525 down-

regulate NMDAR GluN1 subunit in other brain structures, here we first examine the 

effects of FK-506 or TSA OB infusion during single trial training on GluN1 expression 

and subsequent learning at 3 h. After establishing their effects on NMDAR regulation and 

unlearning, we examined possible cross-talk between calcineurin and histone acetylation 

in the OB.  

 

5.3 Materials and Methods 
 

In the following sections I will describe the methodologies I have used for my last 

project.  

 

5.3.1 Animals 

 

Sprague Dawley (Charles River, Canada) rat pups of both sexes were used in this 

study. The day of birth was considered postnatal day (PND) 0. Litters were culled to 12 

rat pups on PND1. Animals were kept in temperature-controlled rooms (20-25oC) on 

reverse 12 h light/dark cycles. All experimental procedures were approved by the 

Institutional Animal Care Committee at Memorial University of Newfoundland following 

the guidelines set by the Canadian Council on Animal Care.  
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5.3.2 Cannula implantation and olfactory bulb infusion 

 

On PND 5, rat pups were anaesthetized by hypothermia and placed in a 

stereotaxic apparatus. The skull was exposed and two small holes were drilled over the 

central region of each OB. The cannulae were implanted into the OB and cemented to the 

skull. The skin was sutured together and pups were allowed to recover on warm bedding 

before being returned to the dam. All drugs were infused into the OB on PND 6 at 20 min 

before the first training. 1.0 µl of a drug was injected bilaterally into the OB for 

behavioral experiments using a 10 µl micro-syringe. In pups for quantitative 

immunoblotting, drugs were infused either bilaterally into the OB (Fig. 5.4) or in one side 

into the OB with vehicle infused into the contralateral bulb (Fig. 5.2,5.3,5.5,5.6 and 5.7). 

 

5.3.3 Drug Preparation 

 

Pharmacological agents used include  TSA (working concentration 0.05 µg/µl/OB  

as described earlier (Bhattacharya et al., 2017) (dissolved in 10% DMSO; Cedarlane, 

Canada; Cat. No. T-1052), a calcineurin (phosphatase 2B) inhibitor FK-506 (5 mM, 

dissolved in 10% DMSO; Tocris; Cat. No. 3631) and a phosphatase 1/2A inhibitor 

okadaic acid (500 μM, dissolved in 10% DMSO; Calbiochem; Cat. No. 459620). The 

https://en.wikipedia.org/wiki/Canada
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working concentrations for FK-506 and okadaic acid used produced the published results 

in our previous work446. 

 

5.3.4 Training 

 

A single 10 min training session was performed on PND 6 rat pups in temperature 

controlled (28oC) behaviour rooms. After the drug infusion, pups were placed on 

peppermint-scented bedding for 10 min and stroked with a paint brush for 30 sec every 

other 30 sec. Pups in the non-learning condition were placed on the peppermint-scented 

bedding for 10 min without stroking. Peppermint-scented bedding was prepared by 

adding 0.3 ml of peppermint extract (G.E. Barbour Inc., Canada) to 500 ml of regular 

unscented woodchip bedding. Pups were returned to the dam immediately after training 

until re-training, testing or sacrifice. For the re-training behaviour experiment, pups were 

re-trained at 3 h after the first training. Pups were re-exposed to peppermint-scented 

bedding while being stroked using the same procedure as in the first training. Pups were 

returned to the dam after re-training.  

 

For Figure 1 experiment, unilateral naris occlusion was performed before the 

odor+stroking training as described previously446,451,505. Nose plugs were constructed 

using polyethylene 20 tubing and silk surgical thread. 2% Xylocaine gel (AstraZeneca) 

was applied to the left naris of the pup. After 3-5 min rest, the plug was gently inserted in 
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the left naris of the pup. After 10-min habituation, the pup underwent training. The nose 

plug was removed immediately following training and the pup returned to dams. 

 

5.3.5 Testing 

 

Twenty- four hours following the initial training, pups were tested for odor 

preference memory by using a two-choice odor preference test. Testing was carried out in 

a stainless steel test box placed over two training boxes. For all of the tests, one training 

box contained peppermint-scented bedding, and the other contained normal, unscented 

bedding. Training boxes were separated by a 2 cm neutral zone.  During testing, each rat 

pup, one at a time, was separated from the dam and transferred to a no bedding holding 

cage in the testing room to prevent odor contamination. To start the testing, the pup was 

placed in the neutral zone of the test box. The percentage of time spent over peppermint-

scented bedding or normal bedding for each pup was recorded during each of five 1 min 

trials. Pups were given 30 sec of resting time in a clean holding cage between each of the 

five 1 min trials.  

 

5.3.6 Immuno-Blotting 
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After training, pups were decapitated and OBs were quickly removed and flash-

frozen on dry ice at one of three different time points (5 min., 10 min. and 3 h).  Samples 

were stored at -800C until further processing. 

 

5.3.7 Synaptic and Extra-synaptic Protein Extraction Protocol  

 

Tissues were homogenized in 100 µl sucrose buffer (in (mM): 320 sucrose, 10 

Tris (pH 7.4), 1 sodium dodecyl sulfate tris-ethylenediaminetetraacetic acid (EDTA), 1 

ethylene glycol tetraacetic acid (EGTA), 1× complete protease inhibitor mixture and 

phosphatase inhibitor mixture (phosSTOP, Roche) at 5500 xg for 20 sec in a homogenizer 

(Precellys® 24). The homogenate was centrifuged at 1000 xg at 40C for 15 min to remove 

the nuclear fraction and incompletely homogenized material (P1). The supernatant (S1) 

was collected and centrifuged at 10,000 xg at 40C for 20 min to obtain the membrane 

fraction (P2) and remove the cytosolic fraction (S2). The pellet (P2) was re-suspended in 

80 µl 1X STE (sodium dodecyl sulfate tris-EDTA): 100 mM Tris (pH 7.4), 10 mM 

EDTA, 1% SDS, 1× protease and phosphatase inhibitors) buffer. P2 samples were 

sonicated and then heated to 900C for 3 min to solubilize the pellet. 

 

5.3.8 Synaptic and Cytosolic +Nuclear (CY+NU) Protein Extraction Protocol  
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Purification of synaptic membrane followed previously published procedures446. 

Tissue samples were homogenized using a Teflon glass tissue homogenizer (Thomas 

Scientific) in ice-cold sucrose buffer (300 μL, same composition as aforementioned). 

Teflon glass tissue homogenizer was wiped with 70% ethanol after each sample 

preparation. The homogenized samples were centrifuged at 1000 xg for 10 min. The 

pellet (P1) was collected as the nuclear fraction. The supernatant (S1) was further spun at 

10,000 xg for 25 min to obtain a second supernatant (S2, cytosolic fraction) which was 

then mixed with the nuclear fraction (P1) to get the cyto+nuclear fraction (S2+P1).  The 

pellet (P2) was re-suspended in 120 μL sucrose buffer using a pestle mixing/grinding rod 

(Thomas Scientific) directly in the microfuge tube. Then, 8 volumes of a non-ionic 

detergent Triton X-100 buffer (final 0.5% v/v; (in mM) 10 Tris (pH 7.4), 1 EDTA, 1 

EGTA, 1× protease and phosphatase inhibitors) were added for detergent extraction. This 

suspension was incubated at 4°C for 35 min with gentle rotation. Then, the suspension 

was centrifuged at 28 000 xg for 30 min. This pellet (P3, postsynaptic densities and 

synaptic junctions that are insoluble in Triton X-100) was re-suspended in 100 μL of TE 

buffer and sonicated. Then samples were boiled for 5 min and stored at −80°C until 

further processing. 

 

Protein concentrations for all those samples (Synaptic + extra-synaptic protein, 

synaptic and cyto+nuclear protein) were determined by using a bicinchoninic acid (BCA) 

protein assay kit (Pierce).  
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5.3.9 Western-Blotting 

 

Samples were mixed with 5x sample buffer (50mM Tris-HCl, pH6.8, 10% 

glycerol, 5% 2-mercaptoethanol, 2% SDS, 0.125% Bromophenol Blue) and de-ionized 

water (to adjust total volume to 25 µl). Samples were heated for 5 min at 1000C prior to 

loading onto either 10% or 15% polyacrylamide gel. Samples were then transferred to 

nitrocellulose membrane (Millipore) at 100 volts for 60 min at 40 C. Following transfer, 

nitrocellulose membranes were washed in Tris-buffered saline with 0.1% Tween (TBST) 

for 3x5 min. Blots were blocked in 5% non-fat dry milk + TBST for 1 h at room 

temperature. After washing, blots were incubated in primary antibody overnight at 40C 

with continuous shaking. For determining NMDA receptor (GluN1), total calcineurin 

(PP2B), and catalytic calcineurin (cat PP2B) expression, immunoblots were cut 

horizontally, and the upper portions were probed with a rabbit antibody for GluN1 

(1:3000, Cell Signalling; Cat. No. 5704S), total PP2B (1:5000, cell signaling; Cat. No. 

2614S), and cat PP2B (1:5000, EMD Millipore; Cat. No. 07-068-I).  The lower portions 

were probed with β-Actin (purified rabbit anti-β-actin, 1:5000, Cell Signaling; Cat. 

No.4967S) as a loading control.  

 

For determining histone 3 phosphorylation at serine 10 (pH3), immunoblots were 

probed with a rabbit antibody for PH3 (1:2500, Cell Signaling; Cat. No. 9701S), with 

total histone3 (tH3, 1/5000, Cell Signaling; Cat. No. 4499S) as a loading control. 
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Blots were then washed in TBST (3x10 min) and incubated in secondary antibody 

(goat anti-rabbit conjugated with horseradish peroxide; Thermoscientific, Cat. No. 31460) 

with 5% non-fat dry milk +TBST, for 1.5 h at room temperature and then washed in 

TBST (3x10 min).  Specific protein bands were visualized using chemiluminescence 

(Supersignal West Pico; Thermoscientific, USA). Blots were exposed for different times 

to film (Kodak Clinic Select Green; Eastman Kodak company, USA) and the optical 

density (OD) of each band were measured using Image J software. 

 

Given that there have been reports questioning the suitability of β-actin as a 

loading control in certain model system526, we show that in our synaptic fraction 

preparation, both GluN1 and β-actin show adequate dynamic ranges and the amount of 

loading we used (30 µg protein) is optimal and within the linear range of concentration 

detection curves (Supplementary Figure 5.1).  

 

5.3.10 Statistical analysis 

 

 Paired t-test were used in Fig. 1, 2, 4, and 5. One-way ANOVA was used in Fig. 

3. Two-way ANOVA was used in Fig. 6 and 7. Data were presented as mean ± S.E.M.  

 

https://en.wikipedia.org/wiki/Waltham,_Massachusetts
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5.4 Results 
 

In the following sections I will describe my results from the Chapter 5. 

 

5.4.1 Calcineurin blockade in the OB prevented GluN1 down-regulation  

 

We first replicated our previous data that early odor preference learning down-

regulates OB GluN1 subunits476. Using unilateral naris occlusion, we showed that 

decreased GluN1 expression in the OB with open naris 3 h following odor training 

(normalized relative optical density (ROD): 0.91 ± 0.12) compared to the OB with 

occluded naris (ROD: 1.26 ± 0.12, n = 9, t = 2.82, p = 0.02; Fig. 5.1). We have shown 

that early odor learning can be lateralized by unilateral naris occlusion451. Our result also 

shows that GluN1 down-regulation induced by learning occurs at synaptic membrane.  

 

We infused FK-506 (a calcineurin antagonist) into one OB and vehicle into the 

other OB 20 min before the odor conditioning and measured NMDAR GluN1 subunit 

levels 3 h following the training (Fig. 5.2A). We observed an increased level of synaptic 

GluN1 expression in the FK-506 infused OB (ROD: 1.16 ± 0.22, n = 8) compared to the 

vehicle infused OB (ROD: 0.57 ± 0.07, n = 8; t = 2.56, p = 0.04; Fig. 5.2B). FK-506 

infusion did not change basal level of GluN1 in naïve pups (O/S(-); ROD saline: 1.33 ± 

0.30, n = 5; ROD FK-506: 1.30 ± 0.08; t = 0.12, p = 0.91; Fig. 5.2C). Unilateral infusion 
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of a PP1 inhibitor Okadaic acid, on the other hand, did not change the level of OB GluN1 

(Okadaic acid: 0.90 ± 0.13; vehicle: 0.92 ± 0.09; n = 10; t = 0.14, p = 0.89; Fig. 5.2D). 

These results suggest that calcineurin mediates the early down-regulation of GluN1 in the 

OB following early odor preference training. Interestingly, calcineurin blockade also 

prevents GluN1 down-regulation in the aPC at 3 h446.   

                                                                                                                                             

5.4.2 Calcineurin blockade in the OB prevented unlearning 

 

Calcineurin inhibition during one-trial training maintained the odor preference 

memory up to 96 hs from the normal 24 hs381. Calcineurin blockade prolongs NMDAR 

opening 527 and enhances NMDAR current528, which could account for its effect in 

promoting learning. Interestingly, at the same time, calcineurin inhibition prevents 

NMDAR internalization 514 and down-regulation 446 (see also Fig. 5.2B). We next tested 

whether FK-506 OB infusion had any effect on unlearning at 3 h (Fig. 5.3A). One-way 

ANOVA revealed a significant group effect (F4,21 = 57.4; p < 0.001; Fig. 5.3B). Single 

odor+stroking (O/S) training led to successful preference learning (63.0 ± 1.11% over 

peppermint) compared to the odor only (O/O) control group (29.20 ± 1.69%; t = 8.08; p < 

0.001). Two trials of O/S training separated by 3 h abolished the odor preference memory 

(34.56 ± 3.38%; t = 7.45; p < 0.001 compared to the one trial O/S training). However, OB 

infusion of FK-506 prevented the unlearning induced by two trials of training in vehicle 

infused pups. Pups in the FK-506 group spent significantly more time over peppermint 

during testing (68.1 ± 2.09%) compared to the vehicle infused pups (t = 9.80, p < 0.001). 
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5.4.3 Inhibiting OB Histone Deacetylation by TSA Prevented GluN1 Downregulation 

and Unlearning 

 

Similar to the calcineurin effect, histone deacetylation blockade by TSA extends 

odor preference memory up to 9 days216. Here we studied whether TSA infusion affected 

GluN1 expression at 3 h, and unlearning induced by re-training at 3 h (Fig. 5.4A). TSA 

bilateral OB infusions prevented unlearning.  The TSA infused group given two trials of 

training separated by 3 hs spent significantly more time over peppermint during testing 

(TSA: 62.30 ± 7.98%, vehicle: 26.24 ± 3.80%; n = 7; t = 4.08, p < 0.01; Fig. 5.4B). In 

parallel, the TSA infused OB group (ROD: 1.62 ± 0.23) showed significantly higher 

levels of GluN1 than the vehicle infused OB (0.68 ± 0.02; n = 8; t = 4.08, p < 0.01; Fig. 

5.4C). Thus both FK-506 and TSA, which normally produce prolonged odor preference 

memory, prevented unlearning induced by a 2nd training trial.  

 

5.4.4 No Simple Interactions of Calcineurin and Histone Deacetylation Occurred in 

Down-regulating GluN1 

 

Do calcineurin and histone deacetylation act independently or synergistically in 

regulating GluN1 levels at 3 h following associative learning? To study whether there is 

an interaction between the effects of calcineurin and histone deacetylation, we first tested 

if there was any additional effect on GluN1 expression when TSA was added to FK-506 
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(Fig. 5.5A). FK-506 and TSA co-infused OBs showed no difference in GluN1 level 

(ROD: 0.64 ± 0.13) compared to the FK-506 only OBs (ROD: 0.64 ± 0.05; n = 8; t = 

0.02, p = 0.98; Fig. 5.5B). This result implies one of two possibilities: 1) FK-506 and 

TSA work synergistically through the same pathway to influence GluN1 expressions; or 

(2) they do not interact synergistically. However, GluN1 down-regulation is saturated by 

either calcineurin or histone deacetylation signaling, thus no additional effect was 

observed by combining the two. 

HDAC inhibition alters hippocampal calmodulin kinase II (CaMKII) 

activity529,530, which is the upstream substrate of calcineurin531,532. We next explored 

whether TSA had any effect on the total level of calcineurin in the OB following odor 

preference learning (Fig. 5.6A). We measured total calcineurin levels in the 

nuclear/cytoplasmic fractions (Fig. 5.6B) and synaptic fractions (Fig. 5.6C), as well as the 

synaptically activated calcineurin levels (Fig. 5.6D). A 2 x 3 Group x Time repeated 

ANOVA was carried out in each case. For nuclear/cytoplasmic total calcineurin, there 

was no significant effect of group (F1,28  = 0.03; p = 0.87), but there was a significant 

effect of time (F2,28  = 5.22; p = 0.01) with no group x time interaction (F2,28  = 0.18; p = 

0.84) (Fig. 5.6B). For total synaptic calcineurin, there was no significant effect of group 

(F1,28  = 0.02; p = 0.90), time (F2,28  = 1.81; p = 0.18), or group x time interaction (F2,28  = 

0.18; p = 0.84) (Fig. 5.6C). The same results occurred for activated synaptic calcineurin 

found by measuring catalytic subunits. There was no significant effect of group (F1,28  = 

0.43; p = 0.52), time (F2,28  = 1.33; p = 0.28), or group x time interaction (F2,28  = 0.09; p = 

0.91) (Fig. 5.6D). Overall, there is no effect of TSA on calcineurin levels at various times 
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following early odor preference learning. Thus, TSA infusion does not alter calcineurin or 

activated calcineurin. 

 

We then investigated the possibility that calcineurin could potentially alter histone 

acetylation through an effect on histone phosphorylation. In the hippocampus, histone H3 

phosphorylation and acetylation co-occur with contextual learning via extracellular 

signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways533,534. 

Dephosphorylation of ERK pathway by calcineurin 535 therefore likely alters histone 

signaling. We tested the effect of FK-506 on H3 phosphorylation following early odor 

preference learning (Fig. 5.7A). A 2 x 3 Group x Time repeated ANOVA was carried out. 

There was no significant effect of group (F1,30  = 0.18; p = 0.67), but there was a 

significant effect of time (F2,30  = 8.48; p < 0.01), with no group x time interaction (F2,30  = 

0.62; p = 0.54) (Fig. 5.7B). 

 

5.5 Discussion 
 

In this study, we discovered that manipulations that were previously established to 

produce stronger memory (memory lasting longer than 24 h that is normally provided by 

one-trial training), such as those induced in the presence of the calcineurin inhibitor FK-

506 381 or the histone deacetylation inhibitor TSA216, do not exhibit a metaplastic 

behavioral unlearning phase at 3 h post-training. Such pharmacological manipulations 

also prevent NMDA GluN1 down-regulation at 3 h. There was no direct interaction of the 
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calcineurin and histone deacetylation substrates during or following odor preference 

learning, even though nuclear/cytoplasmic calcineurin level decreased at 3 h, while 

phosphorylated H3 increased at the same time.  

 

5.5.1 NMDAR Plasticity Following Olfactory Learning and its Metaplastic Effect 

 

NMDAR plasticity has been well characterized in the olfactory system. NMDAR 

subunit composition in the piriform cortex is altered following both development 481 and 

associative learning in adult animals213,536, indexed by increased ratio of NMDAR 

GluN2A/2B in both scenario. The amount of NMDARs, indexed by the essential unit 

GluN1, and NMDAR current, are altered following neonatal odor learning in both the OB 

475,476 and aPC505. However, the impact of NMDAR plasticity on future learning capacity 

has been understudied.  

 

Previously we have shown that one-trial training, which normally induces a 24 h 

preference memory, undergoes a metaplastic unlearning-promoting phase in the aPC 

during memory consolidation at 3 h. This metaplastic phase was induced by aPC 

NMDAR down-regulation505. While odor preference learning is mediated by NMDARs, 

NMDAR plasticity and metaplastic unlearning are independent of NMDARs since 

NMDAR blockade prevents odor learning, but does not affect unlearning505. This implies 

that the lack of unlearning metaplasticity we observe here with odor training is an 

independent process from the original learning itself. Here we show that GluN1 down-
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regulation occurs in the OB as well and that preventing OB GluN1 down-regulation also 

abolishes unlearning. Both OB and aPC are implicated in the encoding of the early odor 

preference memory329,373,476. Our data reveal the same dual circuitries (in the OB and in 

the aPC) for metaplastic unlearning. 

 

5.5.2 Mechanisms for Calcineurin and Histone Deacetylation in NMDAR Down-

regulation  

 

Acetylation of histone H3 can loosen DNA-histone interactions to enhance the 

transcription of target genes537. Suppressing HDAC activity has been correlated with 

enhanced histone acetylation at the NMDAR subunit promoters in primary neocortical 

cell culture538, hippocampal CA1 neurons539, frontal cortex540, and striatum525. On the 

other hand, calcineurin may promote NMDAR down-regulation via dephosphorylation of 

GluN2B at Tyr1472 and triggering clathrin-mediated endocytosis of NMDARS514.  

 

Do calcineurin and histone deacetylation act independently or synergistically in 

down-regulating NMDAR GluN1? We first tested what effect enhanced histone 

acetylation had (by TSA administration) on calcineurin expression or activity during odor 

preference learning. Possible interaction could occur through CaMKII activation by 

HDAC inhibitor 529,530 and CaMKII activation of calcineurin532. We showed no change in 

the levels of nuclear and synaptic calcineurin, and synaptically activated calcineurin 

production in the TSA group compared to the control at multiple times following 

learning. We then investigated whether calcineurin promoted histone deacetylation 
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through its potential influence on H3 phosphorylation. H3 and H4 are major forms of 

histone that are critically involved in learning. In an olfactory aversive learning model, 

both H3 and H4 acetylation are increased in the OB following conditioning454. Contextual 

fear conditioning increases H3 phosphorylation at Ser10 534 and acetylation at Lys14 533 1 

h post-training. The proximity between Ser10 and Lys14 sites implies a possible 

interaction between H3 phosphorylation and acetylation541. Indeed, studies have 

suggested that H3 phosphorylation may be a prerequisite for H3 acetylation in certain 

scenarios542,543. Both H3 phosphorylation and acetylation are regulated by ERK/MAPK 

pathways (Chwang et al., 2006). ERK/MAPK is a target of calcineurin mediated 

dephosphorylation535. Calcineurin could reduce H3 phosphorylation via decreasing 

ERK/MAPK signaling. However, our results showed no difference in H3 levels in FK-

506 treated OBs compared to the vehicle infused ones. Interestingly, H3 phosphorylation 

significantly increased 3 h following odor preference conditioning, suggesting histone 

activation was enhanced by natural associative learning, consistent with other models534.  

 

5.5.3 Functional implications for NMDAR metaplasticity in learning 

 

Metaplasticity permits dynamic regulation of synaptic changes (threshold and 

direction) 496 during complex learning and is likely critical for long-term memory 

formation. Metaplasticity can be manifested in different forms in behavior. Stress, and 

associated high levels of corticosterone, induces acute or chronic synaptic changes that 

can alter learning capacity. Behavioral stress impairs NMDAR-dependent LTP and 

hippocampal-dependent learning501. In both visual 480 and olfactory 481 cortices, changes 
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in LTP or LTD capability are observed following periods of sensory deprivation or 

enrichment. Metaplastic manipulations can be used for therapeutic purposes. A recent 

study shows that metaplastic activation of ryanodine receptors restores long term LTP and 

its associated synaptic properties in an APP/PS1 mouse model of Alzheimer’s disease544.  

 

Our studies in early odor preference learning provide direct evidence in support of 

NMDAR plasticity as a mechanism for metaplasticity in natural learning446,505. We have 

provided some of the first evidence that learning itself affects future learning capacity at 

the very same synapses. Previously we have shown that metaplasticty is critically 

dependent on timing (i.e. intervals between training trials). Here we demonstrate that the 

metaplastic effect is influenced by the strength of the initial learning, such that only weak 

learning down-regulates NMDARs but strong learning prevents NMDAR down-

regulation and its associated metaplastic effect. In an amygdala-dependent fear 

conditioning paradigm, a weak training trial, which does not produce fear memory, can 

prime future learning. Another weak trial delivered hours later results in long-lasting and 

robust fear memory502. Together, these studies suggest that the strength of the priming 

event may determine the nature of the synaptic changes and the behavioral output. 

 

5.6 Conclusion 

 

We show that the metaplastic effects of initial learning are dependent on learning 

strength. A weak learning that only produces a 24 h duration memory results in NMDAR 
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down-regulation and primes unlearning by the same training at 3 h. NMDAR up-

regulation at 24 h following the initial learning, on the other hand, is associated with 

effective re-training at the 24 h interval enhancing and prolonging learning. Here a 

calcineurin inhibitor, as well as a histone deacetylation inhibitor given during training and 

producing strong learning, prevents the 3 h NMDAR down-regulation event, abolishing 

synaptic weakening and preventing unlearning. Understanding behavioral metaplasticity, 

and its associated properties, has significant therapeutic implications for enhancing 

training and improving adaptive learning and for diminishing maladaptive behaviors 

following traumatic experience. 
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5.7 Figures of Chapter 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Early odor preference learning down-regulated GluN1 expression in the 

OB 

A. Schematic of training and tissue collection. O/S(+): Odor+Stroke training. B. GluN1 

expression is reduced in the OB of open naris 3 h following odor preference learning. 

*p<0.05 
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Figure 5.2. FK-506 increased GluN1 expression in the OB 

A. Schematic of training and tissue collection. O/S(+): Odor+Stroke training; O/S(-): no 

training. B. FK-506 (a calcineurin inhibitor) treated OBs in the conditioning training 

group show more GluN1 expression. C. FK-506 does not alter basal level GluN1 in naïve, 

untrained pup OBs. D. Okadaic acid (a PP1 inhibitor) does not alter the GluN1 level in 

the OB in trained pups. *p<0.05 
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Figure 5.3. FK-506 prevented unlearning 

A. Schematic of training and testing. B. FK-506 prevents unlearning induced by a 2nd 

training at 3 h. O/S: odor+stroking; O/O: odor only; **p<0.01 
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Figure 5.4. TSA prevented GluN1 down-regulation and unlearning 

A. Schematic of training, testing and tissue collection. B. TSA prevents unlearning 

induced by a 2nd training at 3 h. C. TSA increases the GluN1 level in OB. *p<0.05; 

**p<0.01 
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Figure 5.5. No additive effects of TSA and FK-506 on GluN1 levels in the OB 

A. Schematic of training and tissue collection. B. FK-506+TSA OBs show similar levels 

of GluN1 as that of FK-506 only OBs. 
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Figure 5.6. TSA had no effect on calcineurin expression levels in the OB following 

early odor preference training 

A. Schematic of training and tissue collection. B. Expression levels of calcineurin (PP2B) 

in the cytoplasmic and nuclear fraction (CY+NU) of the OB. C. Expression levels of 

PP2B in the synaptic extract of the OB. D. Expression levels of activated PP2B in the 

synaptic extract of the OB; Veh, vehicle.  
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Figure 5.7. FK-506 had no effect on histone H3 phosphorylation 

A. Schematic of training and tissue collection. B. Expression levels of phosphorylated H3 

(pH3) in the cytoplasmic and nuclear fraction (CY+NU) of the OB. 
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6. Summary 
 

In my thesis, I have investigated the role of NMDARs in early odor preference 

learning and how NMDARs mediate synaptic plasticity and metaplasticity. During my 

thesis, I have delineated molecular pathways underlying synaptic plasticity and 

metaplasticity in early odor preference learning, and these findings may have implications 

for general learning and learning optimization. In the following sections, I will summarize 

and discuss the findings from Chapter 2 to Chapter 5. 

 

6.1 Differential roles of NMDAR and LTCC in Early Odor Preference Learning 

 

Previously, researchers have characterized the functions of LTCCs and NMDARs 

separately by focusing on their independent contributions. The channel properties of 

NMDARs and LTCCs have been well-characterized 545 546. It had been shown that 

NMDARs plays a crucial role in LTP 171 and in the initiation of learning 185 whereas 

LTCCs helps in the maintenance of LTP 547and  LTM even though both allow Ca2+ into 

the cell 548. Ca2+ entry through NMDARs and LTCCs can trigger different signaling 

cascades which are important for different aspects of learning 549,550. There have also been 

detailed characterizations of the signaling pathways affected by Ca2+ entry through 

NMDARs and LTCCs, but evidence for the distinct yet complementary roles of these two 

channel proteins in learning are sparse.   

Previously it had been shown that both long-term fear memory 455 and odor 

preference memory required CREB signaling 443 393 373. In a recent study, our group also 
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reported that local AMPAR insertion into the synaptic membrane accompanies  STM and 

this AMPAR insertion is mediated by CaMKII signaling 50. An NMDAR-mediated 

CaMKII activation leading to AMPAR insertion mechanism for LTP effects has 

previously been described by R.C. Malenka in 2012 485.  In my work (Chapter 2), I 

investigated the differential roles of NMDAR and LTCC in early odor preference 

learning. 

 

My new research extends these findings and clearly shows that NMDARs and 

LTCCs are important for different phases of memory. The three temporal phases of early 

odor preference memory have been well characterized by Grimes et al. in 2011. Short-

term memory (up to 3 hr) is independent of transcription and translation, intermediate 

memory (5 hr) requires transcription but not the translation, and long-term memory 

(24 hr) is dependent on both transcription and translation. I have shown that blocking 

NMDARs prevents both STM and LTM in early odor preference memory.  

 

Blocking NMDARs decreased AMPAR expression relative to learning controls at 

synaptic sites at 3 h and at 24 h. In contrast, inhibition of LTCCs prevented LTM without 

affecting STM. However, the loss of NMDAR function, which prevents STM, can be 

compensated for by overdriving LTCCs and, again, increased synaptic AMPAR changes 

correlate with renewed STM memory expression.  

 

These results suggest calcium changes can transiently enhance AMPAR 

expression at synaptic sites without requiring a change in protein synthesis. Further 
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investigation of the mechanism of increased synaptic expression will be of interest. Both 

insertion from the mobile cytoplasmic pool and lateral movement from extrasynaptic sites 

are candidate mediators 416, but the translocation must be transient without protein 

synthesis changes.  These data also suggest that NMDARs play a crucial role in both 

STM and LTM whereas LTCCs normally exclusively support LTM. However, it remains 

to be clarified how these two calcium entry channels are differentially engaged with the 

downstream signalling pathways that lead to either STM or LTM. 

 

 

Subcellular localization of NMDARs and LTCC s are likely critical for their roles 

in learning and memory. Researchers have shown that NMDARs are localized in the 

synaptic membrane 551 whereas LTCCs are abundant mainly in somatic areas 375 429. 

These different subcellular localizations imply differential roles for NMDARs and 

LTCCs in intracellular signaling. Specifically, we have shown that the activation of 

somatic LTCCs is dependent on the initial activation of more distant NMDARs, which is 

consistent with early research on striatal neurons 552.  Somatic LTCC activation allows 

Ca2+ influx and leads to different protein kinase activation than that seen for NMDA 

receptors, for example, CaMKIV 553 554 and  PKA 554. The Ca2+ dependent kinase 

activation phosphorylates CREB for transcription of plasticity-related mRNAs.  

 

Another intriguing finding from my research is that LTCC activation in the 

absence of NMDAR activation results in impaired discrimination of the conditioned odor 

from a similar odor mixture. AMPAR expression was increased in the group with LTCC 
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activation alone in the absence of NMDAR activation. We hypothesize that increased 

AMPARs in absence of NMDAR activation occurs in a more diffuse pattern  due to 

missing synaptic tags. Diffuse insertion of AMPARs would explain the loss of input 

specificity, which further leads to impairment in pattern separation. Identifying spatial 

differences in AMPA-receptor insertion in these experiments remains a topic for further 

study. The present data suggest that NMDARs play a critical role in mediating stimulus 

specificity in early odor preference learning. There is compelling evindence that memory 

allocation to specific neurons and synapses is not a random process 555. This requires 

specific mechanisms like, neuronal excitability, synaptic tagging and capture that 

determines where the specific memory will be allocated 555. Similar odor mixture can 

activate different neurons and synapses in the neuronal circuitry 556. Also, neurons get 

activated other than conditioned stimulus. This activation of neuron can reduce the 

distinctiveness of the encoding ensemble. During this activation NMDAR determines 

which synapse needs to be strenghtned and after that incorporation of AMPAR takes 

place in the specific synapses which could serve as a synaptic tag for maintainance of the 

memory or memory consolidation. On the other hand activation of LTCCs in absence of 

NMDARs leads to random incorporation of AMPAR and synaptic strengthening takes 

place in other synapses. This random incorporation leads to generalization of memory and 

complicay in pattern separation at the circuitry level.   

 

6.2.2 NMDAR Plasticity following Early Odor Preference Learning 

 



201 
 

NMDARs play a crucial role as coincidence detectors for mediating synapse 

specific AMPAR plasticity in associative learning 145, including early odor preference 

learning 316 373. Recent evidence has shown that NMDARs themselves undergo plastic 

changes, particularly, during development 477. The data suggest that during development 

NMDAR subunit composition changes from mainly GluN2A to GluN2B subunits.  In the 

piriform cortex, a reverse switch from GluN2B to GluN2A occurs in adult rats following 

olfactory rule learning 213. In my research, I have shown a biphasic change in the 

obligatory NMDAR subunit GluN1 at the synaptic site following early odor preference 

training. We observed a downregulation of GluN1 at the synaptic site at 3 hr and an 

increase of GluN1 expression at 24 hr after training. We have also reported that LTD is 

inducible at 3 hr but LTP was impaired at the same time point.  Unlike the adult rat rule 

learning model, we did not observe any reductions in GluN2B expression at the  LOT-

aPC pyramidal cell synapses following early odor preference training.  This may relate to 

the already high levels of GluN2A expression at this developmental stage. These data 

suggest that GluN1 downregulation at LOT synapses is responsible for the reduced 

NMDAR synaptic transmission at 3 hr after training, which is associated with inducible 

LTD.  

 

Interestingly, the NMDAR LTD at 3 hr post-training, co-exists with AMPAR LTP 

at the same LOT-aPC synapses 373. A similar observation was reported in a study on 

nucleus accumbens 486. In that report, simultaneous LTP of non-NMDA receptors and 

LTD of NMDAR in the nucleus accumbens was also described. With respect to other 

literature, it is very likely that AMPAR LTP and NMDAR LTD are both mediated by 
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Ca2+ concentration 477. Kombian and Malenka showed that the same postsynaptic Ca2+ 

concentration might have an opposite effect on AMPAR and NMDAR mediated synaptic 

responses 486. Interestingly, 24 hr following early odor preference training, there is an 

increase in GluN1 expression at the synaptic site in aPC which coincides with both 

enhanced  LTP 373 and impaired LTD.  We hypothesize that increased AMPARs and 

NMDARs 24 hr following training may have saturated the synapse with respect to 

AMPAR insertion, which leads to impaired LTP, while the high Ca2+ concentration 

occurring through the increased NMDARs might be responsible for the impairment in 

LTD. 

 

6.2.3 Metaplasticity and Behavior 

 

It has been shown that learning can result in increased neuronal excitability in 

different learning tasks and in different brain areas 214 557 212 558 559. This intrinsic 

excitability change has been recognized as a metaplastic mechanism, which facilitates 

future learning through priming 560 561. Priming itself does not induce behavioral changes 

but it changes neuronal intrinsic excitability which influences subsequent plasticity events 

and, thus, behavior. Also, it appears priming effects (changes in intrinsic excitability) do 

not last for long periods; eventually intrinsic excitability goes back to its baseline level 

even though learning persists 562 209 210.  

 

Zelcer et al. (2006) first showed a priming effect on behavior. In this study, they reported 

that well-trained rats that had learned the rule for an odor discrimination paradigm, 
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performed more rapidly on subsequent discriminations between new odors 563. They 

showed that an increase in intrinsic excitability followed rule learning and accompanied 

the more rapid performance. The intrinsic neuronal excitability lasts for approximately 

24 hr after training. Surprisingly, in a hippocampus-dependent Morris water maze 

experiment, the odor rule learning rats exhibit superior performance compared to control 

rats that have never received prior odor discrimination training. They also reported that if 

the water maze training is delayed for 3 days after the odor discrimination training, there 

are no differences between the groups. At the same time, increased intrinsic excitability 

also goes back to baseline. This study suggests time windows for metaplastic changes, 

which is consistent with our own finding. 

 

In another study, Clem et al. showed sensory experience can also regulate both 

future plasticity and learning 564. After removing a single vibrissa, whisker experience 

resulted in synaptic strengthening in the spared barrel cortical neurons. This effect 

depended on glutamate signaling through NMDARs. In vitro studies showed that the 

spared barrel cortical neurons exhibited impaired or partially occluded LTP. The same 

study revealed that blocking NMDARs in the spared barrel cortical neurons leads to a 

form of synaptic strengthening which is dependent on mGluR. The single whisker 

removal not only altesr the synaptic state but also affect subsequent learning.  Overall, the 

study indicates that behavioral experience alters synaptic state which further alters the 

mechanisms of later synaptic plasticity and learning. 
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In a Pavlovian classical conditioning study, Parsons and Davis (2012) 502 

described the effect of metaplasticity on learning 502. The behavioral paradigm was fear 

conditioning where a presentation of light was paired with shock for two trials, which 

generates a fear memory to the light. If the rat is given only one trial they do not form a 

memory as revealed by behavioral tests, but surprisingly this weaker stimulus primes the 

rats for subsequent learning. The same rat displays robust fear memory if a second 

identical trial is delivered within one hour following the first trial.  This priming effect is 

dependent on PKA signaling. Blocking of PKA in the amygdala shortly before the first 

trial blocked fear memory formation after the second trial.  

 

These studies and others have shown some forms of metaplasticity can lead to 

facilitation of memory and to associated synaptic strengthening. My research has shown a 

metaplastic effect which negatively regulates synaptic plasticity and memory. Attenuation 

of a cue-specific memory occurred via a metaplastic mechanism.  In my study, I have 

shown that identical retraining at 3 hr after initial training leads to unlearning. This effect 

is time-dependent such that if the second training is given 24 hr later then the memory 

remains intact. I have shown that this attenuation of the odor preference memory by 3 hr 

retraining is dependent on the downregulation of NMDARs at aPC synapses. I have also 

shown that activating different synapses by using a new odor 3 hr after the first training 

does not affect the original cue-specific memory. Only activation of the same synapses 

via the same conditioned odor cue affects the odor preference memory and leads to 

unlearning. Blocking NMDARs before retraining blocks unlearning, which suggests 

again that attenuation of the memory after retraining is mediated by the NMDAR. I 
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subsequently characterized the molecular mechanisms of the NMDAR plasticity and 

metaplasticity in this model.  

 

 

6.2.4 Molecular Mechanism of NMDAR Plasticity and Metaplasticity 

 

     In continuation of my previous project, I decided to further decipher the molecular 

mechanisms of NMDAR plasticity and metaplasticity (Chapter 4). Identifying molecular 

mechanisms will eventually be crucial for building models of learning and memory 

substrates and for manipulating learning and memory in clinical settings.  

 

     Previously, as reviewed, I had shown that 3 hr after the training there is a 

downregulation of the NMDAR-GluN1 subunit at the aPC-LOT synapse. Unlike learning 

itself, blocking NMDARs prior to the first training does not inhibit this downregulation of 

NMDARs. I then asked whether the physical NMDAR down-regulation is mediated by 

mGluR activation during training. There are two main types of mGluRs present in these 

postsynaptic cells specifically mGluR1 and 5 565. Both of them have the ability to activate 

TRP type channels which trigger calcium release inside cells 566 567.  I have shown that 

inhibiting mGluR5 prior to first training inhibits the downregulation of NMDAR at 3 hr 

and blocks the NMDAR mediated unlearning after retraining. I further showed that the 

downregulation of NMDAR is mediated by the phosphatase calcineurin. Unlearning is 

prevented when calcineurin in the piriform cortex is blocked before the first training. But 

still, the question remains with respect to how the downregulated NMDARs cause 
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unlearning during the second training. Hypothetically, downregulation of NMDARs 

could lead to low Ca2+ concentrations, which would further lead to activation of the same 

protein, calcineurin. The activation of calcineurin produces dephosphorylation of the 

NMDAR and its subsequent downregulation in first place and its stronger activation by 

lower calcium levels (fewer NMDA receptors now) the second time would  

dephosphorylate AMPAR during retraining via activation of the phosphotase. 

Dephosphorylation of the AMPAR at aPC-LOT synapse could cause internalization of 

AMPAR and result in unlearning. The dephosphorylation of NMDARs and AMPARs 

needs to be checked to substantiate this hypothesis. It is also possible that due 

dephosphorylation, the AMPARs and NMDARs trafficked from synaptic sites to extra-

synaptic sites. To understand the complete mechanism, more investigation is necessary. 

We do not know the entire molecular pathway yet but we show in our behavioral 

paradigm that timing and the repetition of training are very important for unlearning. In 

our study, we were able to capture the vulnerable period, or the state of the synapse where 

protein synthesis or mRNA synthesis is crucial to maintaining the long-term memory 

consolidated in our behavioral paradigm. We suggest we altered the consolidation state 

during retraining.  

 

Other questions that need to be addressed is whether or not there are changes in 

the level of expression of the NMDAR-GluN1 after retraining. Is there another timed 

reduction of GluN1 subunit or does it remain the same. This needs assessment at different 

time point especially 3 hr and 24 hr following the retraining. As mentioned earlier Ca2+ 

plays a crucial role in signalling pathways and LTCC may also have a role in this 
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paradigm. LTCC can lead to calcineurin activation and could be manipulated after 

training to assess its contribution to the metaplastic effects we have discovered.  

 

Another interest for future studies is the role of intracellular signaling molecules 

like PKA, CaMKII, and CaMKIV. The subcellular localization of these proteins suggests 

that PKA is mostly present in dendritic shafts when compare to somatic localization 568. 

On the other hand, CaMKII is localized at the synaptic site and in the cytoplasm 569 but 

CaMKIV is localized mostly in the nucleus but can translocate to cytoplasm 570. CaMKIV 

appears to plays a crucial role in transcription and it is associated with cAMP pathways 

571. Whether there is any translocation of CaMKIV due to retraining is of? What would be 

the effect of CaMKIV translocation? What are the other interacting molecules? These 

questions can be addressed rapidly in this model.  

 

I have already discussed the effects of phosphorylation and dephosphorylation on 

AMPARs. In the early odor preference learning model, the phosphorylation and 

dephosphorylation of AMPARs not been well-described. We would like to investigate the 

phosphorylation and dephosphorylation of AMPARs at different time points and relate 

these phosphorylation changes to behaviour. A key question is AMPAR changes relate to 

membrane/cytosol trafficking or to synaptic to extra-synaptic trafficking.  

 

In another project, I focused on delineating the relationship between memory 

strength and metaplastic changes. One trial of 10 min odor/stroking conditioning leads to 

a 24 hr memory, whereas other manipulations such as described below can generate 
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memories more than 24 hrs.  Does this stronger training, which generates longer-lasting 

memories, have the same metaplastic effects on the synapse and on behaviour as normal 

single trial training? In my next section, I discuss my research related to this issue. 

 

6.2.5 Memory Strength and Metaplasticity 

 

In my last project, I have characterized the relationship between the strength of the 

initial learning and its metaplastic effect on subsequent training. Previously, my research 

showed that 3 hr following a single early odor preference training trial, there is a 

downregulation of the NMDAR-GluN1 subunit in the aPC. This downregulation is 

responsible for unlearning when the pups are retrained with the same parameters at 3 hr 

following initial training. As mentioned earlier this 10 min stroking with a paintbrush in 

presence of odor leads to a 24 hr stable memory. But this memory does not last beyond 24 

hr. Previously, two protocols have been established that induce prolonged odor preference 

memories using the same single odor+stroking training protocol. Blocking calcineurin 381 

or histone deacetylation to prior training 216 in the olfactory bulb (OB) extends a one-trial 

odor preference memory for days. Bhattacharya et al. (2017) established a model where 

they showed the same early odor preference memory can be extended to 9 days by 

blocking OB histone deacetylation. They also reported that the extended memory is 

correlated with extended increased AMPAR expression in the OB.    The key question I 

asked here was whether a stronger induction protocol that produces prolonged memory 

has the same metaplastic effect on 3 hr re-training. We have established that both the OB 

and aPC are plastic sites that are critical for early odor preference learning. NMDAR 
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blockade in either site prevents odor preference memory formation 316 373. The 

downregulation of NMDAR is also observed in the OB at 3 hr after early odor preference 

training 316. We, therefore, investigated the modulation by the odor preference training of 

subsequent learning and subsequent NMDAR plasticity using OB blockade of histone 

deacetylation at the time of initial training to create stronger memory.  

 

In this study, first, we observed that there was no NMDAR downregulation in the 

OB at 3hr following odor preference training when the pups were infused HDAC 

inhibitor prior to training. In parallel, we also observed that retraining of HDAC infused 

pups has no effect on the already formed memory.  

 

A well-established fact is that histone acetylation loosens DNA-histone 

interactions to enhance the transcription of target genes 537. It is also the case that in 

various studies  histone acetylation leads to stronger memory 572 216 573 574. Numerous 

studies have shown that inhibition of  HDAC resulted in enhanced histone acetylation 

specifically at the NMDAR subunit promoters in hippocampal CA1neurons 539, primary 

neocortical cell cultures 538, frontal cortex 575, and striatum 525. All these data suggest that 

histone acetylation results in more NMDAR synthesis and incorporation in the 

membrane. Beside NMDAR insertion there is another mechanism by which NMDARs 

either get trafficked from synaptic to extra-synaptic sites or internalized for degradation. 

The downregulation of NMDAR is mediated by calcineurin via clathrin-dependent 

endocytosis of NMDARs 514. This previous report also suggests that H3 and H4 

phosphorylation and acetylation are interconnected and responsible for gene regulation 543 
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542. According to the Chwang et al.,  2006 report, contextual fear conditioning leads to an 

increase in both H3 phosphorylation and acetylation 534. The phosphorylation of H3 is 

mediated by the ERK/MAPK pathway 534 and ERK/MAPK mediated phosphorylation can 

be reversed by calcineurin 576. However, my data suggest that there is no difference in 

total H3 expression levels in FK-506 treated OBs compared to vehicle-infused ones. We 

have noticed a significant increase in H3 phosphorylation at 3 hr following odor 

preference conditioning. These data suggest that natural associative learning has to 

activate histones, which is consistent with other models 534. 

 

6.2.6 The Functionality of NMDAR Metaplasticity 

 

Metaplasticity can be manifested in various forms of behavior. Research on stress 

showed that it induces acute or chronic synaptic changes that can alter learning capacity. 

Many studies have shown that NMDAR-mediated LTP is impaired in stressed rodents 577 

501. Sensory deprivation has been shown to change LTP and/or LTD induction in both 

olfactory 578 and visual 579 480 cortices. In PTSD and stress research, metaplastic 

manipulations may be used for therapeutic purposes. Metaplasticity can be used not only 

in stress research but also in Alzheimer’s disease (AD). A recent study has shown that 

metaplastic activation of ryanodine receptors restores long-term LTP and its associated 

synaptic properties in an APP/PS1 mouse model of Alzheimer’s disease 544. 

 

In my research, I showed that the metaplastic effects have the ability to alter 

future learning and that this is dependent on the strength of the initial learning. My data 
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suggests that only weak training down-regulates NMDARs. On the other hand, strong 

learning prevents NMDAR down-regulation and its associated negative metaplastic 

effect.  
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Figure 6.0. Olfactory Circuitry 

Here In the schematic representation olfactory nerve layer referred to as ONL (Green 

lines on top). ORN projects their axons to the Glomerular layer (GL-Red circle) of the 

olfactory bulb. Then they make synapses with Mitral and Tufted cell (MC/MT) dendrites 

in the GL.  Granule cells (GC-Green cells near MC/MT cells) are present in the granule 

cell layer (GCL). The MC/MT projects their axons to the piriform cortex (PC) by lateral 

olfactory tract (LOT). The PC cells make synapses with LOT to receive the olfactory 

information for further processing. 
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