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Abstract

Volatility is a financial term that measures the dispersion of asset returns. Calculating

and predicting volatility are not simple, but there are several well-known models for

determining the volatility of assets. In recent years, researchers have been interested

in developing statistical methods to model financial volatility, and new concepts have

been applied to achieve better results. Quantile regression is another area gaining

increased attention in the analysis of financial data. In this thesis, we propose a

new quantile regression model for measuring the volatility of financial assets called

the localized quantile regression model. As the name suggests, the proposed model

is a local model rather than a global model. It takes care of possible structural

changes and makes predictions of volatility more reliable. The initial step in this

approach is to identify the longest interval of homogeneity. Identifying this interval of

homogeneity involves a sequential testing procedure. After identifying intervals, we

can apply quantile regression for each homogeneous time interval. The main advantage

of this method is that it does not require any distributional assumptions. Simulation

studies are carried out to investigate the performance of the proposed method. Results

obtained from the simulation study show that the localized quantile regression model

is appropriate for modeling the volatility of financial assets.
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Lay summary

Assets are defined as property owned by a person or a company, such as money, stocks,

bonds, real state, or investments. Usually, the prices of these assets change over time,

with some, such as stock prices, changing very quickly. Many factors impact these

price changes including the introduction of new company policies, changes in political

and economic situations, etc. Every person or company that owns assets aims to earn

a maximum profit by investing their assets in the market at the right time.

There are billions of investors in the stock market around the world. The main

goal of these investors is to maximize profit while reducing the risk of losses. Stock

prices can change instantaneously because investors adjust their decisions according

to new reports based on past details about price changes. As a result, there can be

large movements in the price of a given asset in a short period of time.

In this study, we investigate and build a model for variations in the price of a given

asset. From period to period, there are unique, but sometimes different, patterns in

these price variations. If we can successfully identify these time periods, we can build

models separately for each period. Rather than modeling all data together, separately

modeling may lead to more accurate predictions. This hypothesis is the main idea

behind our research. Our approach is designated to handle high frequency financial

data. However, we cannot access such data from any free sources. Therefore, we

created data through simulation and applied the proposed method to the simulated

data. The results show that the proposed method can be used to forecast price

variations in a given asset.
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Chapter 1

Introduction

With recent developments in technology, we can now easily record all transactions

in the financial market in greater detail, giving us massive amounts of financial data

through the Internet and financial institutes. Financial data consist of information re-

lated to businesses such as banking, investments, assets, properties, liabilities, equity,

and stocks. These data are essential to allow internal management to run businesses

smoothly. Stockholders and organizations also need financial data to make decisions

on investing in the market and to examine creditworthiness of a business. In addi-

tion, financial professionals need accurate and comprehensive financial information to

achieve long-term goals and to make more reliable business decisions.

Methods and techniques used in statistical time series analysis are highly applica-

ble for most financial data since they are available in time series formats. The primary

objective of financial time series analysis is to determine the value of an asset over a

given or desired period [22]. Financial time series analysis are highly empirical dis-

cipline, but we can use proven methods to make inferences [22]. Analyzing financial

data is different from the analysis of other types of time series data, mainly because

of the uncertainties associated with the financial data [22]. Rather than using price

series, return series of assets are preferred in financial studies. Campbell et al. [3]

presents two main reasons for this. The first reason is that assets series provide a

scale-free and detailed summary for average investors. This information is helpful

for deciding on investment opportunities. The second reason is that return series are

easier to analyze than price series because return series have excellent statistical prop-

erties such as prices are bounded to be non-negative, but the log returns can range

from positive infinity to negative infinity.
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Return on Asset (ROA) is a good indicator of the efficiency of a company [22].

The ROA is defined by the net income of the company divided by the total assets;

that is,

ROA = Net Income/Total Assets. (1.1)

This ratio gives us the percentage of the profit a company earns compared to its

resources. ROA is sometimes referred to “Return on Investment”. There are several

types of asset returns such as the one-period simple return, multi-period simple return,

and continuous compounded return (log return) [22]. If we take Pt to be the price

of an asset at time t, we can define the one-period simple return at time t (Rt) as,

1 +Rt = Pt
Pt−1

, or

(1 +Rt)Pt−1 = Pt. (1.2)

The continuously compounded return denoted by rt is the natural logarithm of the

simple gross return. This return is also called the log return, and is shown by:

rt = ln(1 +Rt) = ln(Pt)− ln(Pt−1). (1.3)

Volatility is another important measurement in finance and related fields. Returns

are used to calculate the volatility of an asset. Volatility (σ) is defined as a statistical

measure of the degree of variation of a trading price series over time. If there are m

returns, σ̂, an empirical estimator of σ, can be calculated using the standard deviation

of logarithmic returns as

σ̂2 =
1

m− 1

m∑
t=1

(rt − r̄t)2, (1.4)

where rt = ln Pt
Pt−1

(rt is the continuously compounded return on asset during the day

t), r̄t is the mean of all m returns in the sample, and Pt is the market value of the asset

on the day t. Usually, the standard deviation of past returns is a natural estimator of

σ.

We can identify the realized volatility and the implied volatility as the two main

types of volatilities. Realized volatility (also called historical volatility) is calculated

using the historical market data, therefore it is known. Unlike realized volatility

implied volatility is calculated using option prices and is used to predict the future

volatility of a stock. In real market data, volatility can take values from zero to one

hundred percent (0 to 100%), but theoretically, it can spread from zero to positive

infinity. Volatility is zero when the price of the asset is constant over time. Volatilities
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above 100% are rare.

The main difficulty in calculating volatility is that we cannot directly observe

it. To estimate daily volatility, we need frequent data such as returns in every 10-

minutes. However, we cannot guarantee the accuracy of such estimates. For instance,

stock volatility consists of intraday volatility and overnight volatility where the latter

denotes variation between trading days. High-frequency intraday returns contain

limited information about overnight volatility. Due to these restrictions it is hard to

make inferences about the future performance of volatility.

One of the main purposes of analyzing financial data is to minimize the associated

risk [7], [17]. Usually, the higher the volatility, the higher the risk [4]. Volatility

forecasting is widely used in risk management, derivative pricing, hedging market

making, market timing, and portfolio selection [4], [7]. Several studies have been

conducted over the past few years to examine the characteristics of volatility. There

are also many empirical findings on volatility. These findings are consistent so that

they are called stylized facts about volatility [7].

Engle and Patton [7] have mainly focused on a few common characteristics (also

called stylized facts) of the volatility. The first property of the volatility series is that

it exhibits persistence [7], [17]. Volatility is not a constant, and tends to cluster in

time. Observing a large (or small) return today (regardless of the sign) is a good

precursor of large (or small) returns in the upcoming days. Mandelbrot [16] and

Fama [8] describe that large changes in the price of an asset are followed by other

large changes, and small changes are followed by other small changes of price of an

asset. These changes can lead volatility to cluster over time. Changes in volatility

typically have very long-lasting impacts on its subsequent evolution. A number of

studies have reported this behavior, such as Baillie et al. [1], Chou [5], and Schwert

[21].

Volatility has a long memory. Volatility is not a constant for long periods be-

cause it fluctuates often. These fluctuations will finally converge to a normal level

of volatility. This characteristic is called the mean reverting. Innovations may have

an asymmetric impact on volatility; that is, most volatility models work under the

assumption that positive and negative innovations (changes in returns) symmetrically

affects the conditional volatility. For instance, the GARCH (1,1) model assumes that

variance is affected by the square of the lagged innovations. Therefore, the GARCH
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(1,1) model does not consider the sign of the innovations. However, positive and neg-

ative shocks do not have the same impact on volatility. If the volatility is high, the

demand for a stock is low. In other words, high volatility reduces the value of the

stock. This property is also referred to as the leverage effect. The prices of financial

assets are correlated with other variables and deterministic events may also have an

impact on volatility. This means that volatility is not independent of other exogenous

variables.

There are two categories of volatility models. In the first category, the conditional

variance is modeled directly as a function of observables [7], [17]. ARCH and GARCH

types of models fall into this category. In the second category, models of volatility

usually requires restricted model specifications. To this end, a stochastic equation

is used to describe σ2
t . Therefore, the second category is called latent volatility or

stochastic volatility. A few of the commonly used models are listed below:

• EWMA -Exponentially Weighted Moving Average

• GARCH- Generalized Autoregressive Conditional Heteroskedasticity

• EGARCH- Exponential GARCH

• Regime-Switching GARCH

• FIGARCH- Fractionally Integrated GARCH

• SWARCH-Switching ARCH.

Chen et al. [4] have proposed a localized modeling approach for the realized volatility

by introducing a time-varying (local) structure of volatility. A unique feature of this

approach is that it uses an adaptive statistical technique to determine these time-

varying structures. The model is based on one assumption that at each time point

there exists a past-time interval (interval of homogeneity) where volatility can be

described by a local autoregressive (LAR) model. This approach is local rather than

global. Therefore, the length of the past time interval and parameters are time-varying

and are different from one such period to another.

Quantile regression is another approach to model and predict the volatility and

does not require any distributional assumptions. Koenker and Bassett [14] introduced

the quantile regression in 1978. It has since become a widely-used technique in many
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research areas such as medical reference charts, survival analysis, financial economics,

and environment modeling [23].

Linear regression summarizes the average relationship between a set of regressors

(Xs) and an outcome variable (Y) based on the conditional mean, denoted by E(Y |X).

However, it does not provide a full picture of this relationship in a sense that one may

want to look at the relationship at different points in the conditional distribution of Y

given a set of regressor X=x. Quantile regression plays an essential role in these types

of situations. There are other advantages of selecting quantile regression over linear

regression such as quantile regression is robust to response outliers and it is invariant

to monotonic transformations. Quantile regression has recently been extended to

financial data analysis. Huang [12] proposed a new method using quantile regression.

Instead of using one pair of quantiles, he used a uniformly-spaced series of quantiles

to describe volatility.

In this study, we propose a localized quantile regression approach. The proposed

approach sequentially identifies homogeneous intervals and then applies a quantile

regression model to each homogeneous interval. The quantile regression model hence

has time-dependent coefficients. The quantile regression model does not require distri-

butional assumptions. Direct interpretation of the results at selected quantiles might

be of more interest to practitioners in the area of finance. The simulation study

presented in Chapter 4 shows that the localized quantile regression model fits the

realized volatility more closely and is also more predictive, as compared to its global

counterpart.



Chapter 2

Quantile Regression

Quantile is a data summarization measurement used in statistics and is also known as

the percentile. A median (50th percentile) is an example of a quantile which partitions

the observations into two equal parts. We denote the quantile value by qτ , where τ lies

between zero and one (0 < τ < 1). The computation and interpretation of quantiles

are straightforward. For example, when τ is equal to 0.5, it gives the median of the

data, which tells us that half of the data is above the median and half is below the

median. Another simple example is the growth chart of babies. For example, if a

four-month-old baby is in the 60th percentile for weight; that means 60 percent of

four-month-old babies weigh the same as or less than that baby, and 40 percent weigh

more.

Koenker and Bassett [14] introduced the quantile regression as a method of sta-

tistical modeling, and since then it has become widely used in many areas. Unlike

linear regression, quantile regression is more robust to outliers, and does not require

to assume a constant variance for the response. Moreover, a fundamental assumption

of the traditional linear regression approach is to assign a distribution for response

variable, but quantile regression does not assume a parametric distribution. Quantile

regression has the capability of describing the entire conditional distribution of re-

sponse by estimating models for the conditional distribution of response for different

quantile levels.

The traditional linear regression method provides only a summary of the relation-

ship between the mean of the response variable (Y) and the set of regressors (Xs). It

estimates a model for the conditional mean function. Linear regression parameters are

determined using the least squares estimation technique, which minimizes the sums
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of squares of the residuals. This conditional mean curve (E(Y |X)) does not have

any potential to describe the entire conditional distribution. For example, classical

least squares regression cannot be used to adequately characterize the relationship

between response and covariates when data come from a skewed distribution or when

heteroscedasticity exists in the data.

However, for different quantiles, we can draw different quantile regression lines,

which are unique for each quantile value. We can model the entire conditional dis-

tribution of the response variable by drawing a series of regression lines for different

values of τ . In Figure 2.1, the graph (a) shows the quantile regression lines from a

data set where the mean and the variance of a response variable increase with the

value of a covariate, and the graph (b) shows a data set which is asymmetric around

the mean. Both graphs provide examples in which linear regression does not capture

relevant information contained in the data such as heteroscedasticity. Both figures

show the fitted quantile regression lines for the quantile levels 0.05, 0.25, 0.5, 0.75, and

0.95. The red line is the least squares regression line. As we can see from the graphs,

the least square regression line does not capture the conditional variance. When het-

eroscedasticity exists in the data, we stabilize the variance using relevant monotone

transformation. This will lead us to ignore valuable information contained in the data.

Moreover, quantile regression does not require the assumption of a constant variance.

Therefore, stabilizing the variance is not necessary for building quantile regression

models and quantile regression is invariant to monotonic transformations such that

Qτ (h(y|x)) = h(Qτ (y|x)), where h(.) is a monotone increasing function and Qτ (y|x)

denote the τ th conditional quantile of y given x [15].

Quantile regression has been used in medical studies, financial and economics

research, and environment modeling. It has many applications in medical sciences

such as in growth and reference charts of the height and weight of children. It has the

potential to identify unusual subjects lying in the upper tail or the lower tail. Further

investigation can be done to identify the factors related to the cases and hence make

medical diagnoses more reliable. Also, quantile regression is used in economics to

determine wages, discrimination effects, and trends in income [15].
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Figure 2.1: Regression models for different quantile levels

2.1 Quantiles and Quantile Functions

Let Qτ (Y |X) denote the τ th conditional quantile of Y given X. The quantile level

τ is the probability Pr[Y 6 Qτ (Y |X)|X], which gives the value of Y, below which

the proportion of the conditional response population is τ . Any real-valued random

variable, Y, may be characterized by its distribution function,

F (y) = P (Y 6 y), (2.1)

whereas, for any 0 < τ < 1,

Qτ (Y ) = F−1(τ) = inf{y : F (y) > τ}, (2.2)

is called the τ th quantile of Y. To obtain sample quantile, we replacing F by the

empirical distribution function

Fn(y) = n−1Σn
i=1I(Yi 6 x). (2.3)

Then the τ th sample quantile given as

Q̂τ (Y ) = F−1
n (τ) = inf{y : Fn(y) > τ}. (2.4)
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Let Y be the response variable and X be an n × p regressors matrix, consisting of

the p × 1 vector of covariates xi for the ith observation for i = 1, 2, . . . , n. Then,

the statistical regression model for the linear relationship between the response and

covariates can be given as Yi = xTi β + εi, where εi is the error term and β is a

p × 1 vector of unknown parameters. We assume that the εi are independent and

identically normally distributed with mean 0 and variance σ2; that is, in notation,

N(0, σ2) . Using the above information, we can give the average response as,

E(yi) = β0 + β1xi1 + . . .+ βpxip, (2.5)

where i = 1, . . . , n. The model parameters, β1, β2, . . . , βp, can be estimated by min-

imizing the summation of the squared model prediction errors εi; that is
∑

i ε
2
i . We

define such an estimate of the vector of parameters β by β̂, which is defined as follows

β̂ = argminβ0,...,βp

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

, (2.6)

or in the matrix form

β̂ = argminβ∈IR

∑(
yi − xTi β

)2

. (2.7)

The linear conditional quantile model can be formulated as Qy(τ |xi) = xTi β(τ) , which

gives quantile regression model as

yi = xTi β(τ) + εi, (2.8)

where β(τ) is p × 1 unknown quantile regression parameters of interest at the τ th

quantile, εi is the error term with the density (say, fp(·)) and i = 1, . . . , n. In the

density fp(·), τ th quantile of εi is zero; that is,
∫ 0

−∞ fp(εi)dεi = τ [20]. Then, the linear

conditional quantile function is

Qi(τ |xi) = β0(τ) + β1(τ)xi1 + . . .+ βp(τ)xip, (2.9)

where i = 1, . . . , n.

The estimation technique in the quantile regression is different from the least

squares technique. It estimates quantile regression model parameters by minimizing
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a summation that gives asymmetric penalties (1 − τ)|εi| for overprediction and τ |εi|
for underprediction. To estimate the quantile regression model given in the equation

(2.9), linear programming methods are used [20], [13]. To be specific, the βj can be

estimated by solving the minimization problem

β̂τ = argminβ1(τ),...,βp(τ)

n∑
i=1

ρτ

(
yi − β0(τ)−

p∑
j=1

xijβj(τ)

)
, (2.10)

or, in the matrix form,

β̂τ = argminβ∈IRk

n∑
i=1

ρτ

(
yi − xTi βτ

)
, (2.11)

where the function ρτ is referred to as the check loss function. Its shape looks like a

check mark. For any 0 < τ < 1, we define the piecewise linear “check loss function”,

ρτ (u) = u(τ − I(u < 0)), where I{·} is the usual 0-1 valued indicator function [13].

The check loss function is illustrated in Figure 2.2. It should be note that the quantile

regression estimators given in equation (2.11) are asymptotically normally distributed

[14].
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ss

Figure 2.2: Check loss function
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2.1.1 Equivariance and Transformation

Equivariance properties are often treated as an important aid in interpreting statistical

results. Let the τ th regression quantile based on observations (y,X) be denoted by

β̂τ (y,X). We collect some basic properties in the following result: Proposition 2.2.1

(Koenker and Bassett, 1978) [14]. Let A be any p × p nonsingular matrix, γ ∈ IRp,

and a > 0. Then, for any τ ∈ [0, 1],

1. Scale equivalence: For any a > 0,

• β̂τ (−ay,X) = −aβ̂1−τ (y,X)

• β̂τ (ay,X) = aβ̂τ (y,X)

2. Regression shift: For any γ ∈ IRp,

• β̂τ (y +Xγ,X) = β̂τ (y,X) + γ

3. Reparameterization of design: For any |A| 6= 0,

• β̂τ (y,XA) = A−1β̂τ (y,X)

2.2 Quantile Regression Using Asymmetric Laplace

Distribution

The asymmetric Laplace distribution (ALD) is a generalization of the Laplace distri-

bution. We say a random variable Y follows an asymmetric Laplace Distribution, if

its probability density function (pdf) is

f(y|µ, σ, τ) =
τ(1− τ)

σ
exp

{
− ρτ

(y − µ
σ

)}
, (2.12)

where µ is the location parameter, σ is the scale parameter (σ > 0), and τ ∈ (0, 1)

is the skewness parameter. Here, ρτ is the check loss function, which is illustrated

in Figure 2.2 for a specific τ value. We use ALD(µ, σ, τ) to denote the distribution

of asymmetric Laplace distribution with relevant parameters. If W = ρτ (
Y−µ
σ

), it is

easy to see that W follows an exponential distribution with mean σ [20]. Figure 2.3

shows the probability density function of some ALD’s.
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Suppose that yi ∼ ALD(XT
i βτ , σ, τ), i = 1, . . . , n. Likelihood function based on n

independent observations from (2.12) is given by,

L(β, σ|y) =
τn(1− τ)n

σn
exp
{
−

n∑
i=1

ρτ
(yi −XT

i βτ
σ

)}
. (2.13)

If we take σ as a nuisance parameter, then the maximization of the likelihood in

equation (2.13) with respect to the βτ is equivalent to the minimization of the objective

function in equation (2.11). This links the relationship between ALD and the inference

for quantile regression estimation. Therefore, the relationship between ALD and the

check loss function can be used in quantile regression studies [9].



Chapter 3

Models for Volatility

Appropriately modeling data is never an easy task, and finding a good model is always

a challenge for statisticians. Modeling and predicting volatility are extremely difficult

due to the complex behavior of data. Many studies have been conducted to model

and predict the volatility of assets. Researchers have also proposed several models to

capture the unique characteristics of volatility.

In this chapter, we present frequently used volatility models and propose a new

model that uses quantile regression for volatility. A natural estimator of the volatility

of financial assets is the standard deviation (σ) of past returns. There are a number

of models that use the past values of returns to estimate volatility. A commonly used

one is the historical average; this calculates σ̂t−1 and assumes it is equal to σ̂t. The

drawback of this method is that its success depends on the sample size. Small sample

sizes can lead to a large sampling error, while if we select a large sample, it may contain

data which may not be relevant to the current market conditions. Exponentially

Weighted Moving Average method was introduce to select a reasonable sample size

to calculate volatility (σ) to reflect current market conditions. By assigning larger

weights to more recent data, this model removes unnecessary information coming

from more remote data.

3.1 Volatility Modeling and Prediction by ARCH

and GARCH

In this section, we discuss statistical models that are commonly used in financial

time series. These models can capture stochastic financial volatility, mean reversion,
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and excess kurtosis. One of the experimentally proven characteristics of financial

time series is that high-frequency time series tend to have fatter tails than Gaussian

distribution [22]. The term “fatter tail” is also referred to as “excess kurtosis” [17].

The kurtosis of the distribution is a good indicator of whether unusual events have

occurred outside the normal range. If the distribution has excess kurtosis, it tells us

that there are many instances of outliers. These extreme values lead the distribution

to have a fat tail on the bell-shaped distribution curve. Generally, if the kurtosis

coefficient is more significant than the coefficient of a normal distribution, which is

around 3, this indicates there is a possibility of obtaining more extreme outcomes

than are usually found in normal distribution outcomes.

An Autoregressive Moving Average (ARMA) model has two major components.

One is from an AR model with order p and the other is from a MA model with order

q, denoted as ARMA(p,q). Let yt be the stationary time series that is a realization

of a stochastic process [17]. Mathematically, the ARMA(p,q) model can be expressed

as [22]

yt = ξ +

p∑
i=1

φiyt−i + εt −
q∑
j=1

θiεt−j, (3.1)

where εt, εt−1, εt−2 . . . , are independent random errors, ξ is a constant, and φi and

θi are autoregressive and moving average model parameters, respectively. When the

series is not stationary, the ARIMA model can be used [17]. If yt is a non-stationary

time series, ARIMA(p,d,q) can be defined as,

Φ(B)(1−B)dyt = µ+ Θ(B)εt, (3.2)

where d is the order of differentation, Φ and Θ are autoregressive and moving average

model parameter vectors, respectively, µ is mean of the yt series, and B is the backshift

operator, also referred to as the lag operator. As an example, if BYt = Yt−1, then Bd

is the backshift d times (BdYt = Yt−d). When d takes the value zero, the ARIMA

model becomes an ARMA model [17].

Financial time series have fatter tails. Hence, ARIMA models are not suitable for

modeling this kind of time series, because they do not have the ability of capturing

stochastic non-constant volatility [17]. Engle [6] proposed a solution to this problem by

suggesting a new model called an ARCH (Autoregressive Conditional Heteroskedastic)

model. As the name implies, this model assumes heteroskedastic variance. The ARCH

model can capture the nonconstant volatility [6]. The ARCH model was very popular
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when it was introduced by Engle [6]. It is the first model to assume that the volatility

is not constant.

ARCH models well describe the fundamental properties of volatility such as volatil-

ity clustering, mean reversion, fat tails, and some other stochastic properties of volatil-

ity. Assume that yt follows the standard stationary autoregressive model with order

p; that is,

yt =

p∑
i=1

φiyt−1 + εt, (3.3)

where εt is the residual with mean zero. We assume |φi| < 1 for i = 1, 2, . . . , p. The

mathematical model of ARCH(p) [6] can be rewritten as,

at = σtεt, σ2
t = ω + α1a

2
t−1 + . . .+ αma

2
t−p, (3.4)

where at is the asset return at time t, σt is the volatility at time t, εt identically and

independently distributed as N(0, 1), ω > 0, αi > 0 for i = 1, 2, . . . ,m.

Building an ARCH model to accurately estimate the volatility can be sometimes

a challenge because there are several restrictions that have to be imposed. To deal

with this, Bollerslev [2] proposed a generalized ARCH model (GARCH). Since then,

GARCH has become frequently used in volatility forecasting [12]. Let rt be the

continuously compounded log return series and at the innovation of the series at time

t defined as at = rt − µ. [17] The functional form of the GARCH(m,s) model is

at = σtεt,

σ2
t = ω +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j (3.5)

where εt ∼ N(0, 1) iid, ω > 0, αi and βj are ARCH and GARCH parameters, respec-

tively, αi > 0, βj > 0, and
∑max(m,s)

i=1 (αi + βi) < 1.

GARCH, IGARCH, TGARCH, EGARCH, and GARCH-M are all transformed

models based on Engle’s basic ARCH model. Some models are introduced to cap-

ture specific characteristics of volatility. As an example, the Threshold GARCH

(TGARCH) model was proposed to capture the negative movements of volatility,

which are usually larger than the positive movements. The TGARCH model, intro-

duced by Glosten et al. [10] and Zakoian [24], is also frequently used in volatility
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modeling. The main concern in this model is that it captures the movements of neg-

ative shocks because effects coming from negative movements are larger than from

positive shocks [22]. Nelson [19] suggested a model called the exponential GARCH

(EGARCH), which allows for unequal changes in volatility. Again, suppose at denotes

the innovation of the asset return at time t, then we can write the EGARCH (m,s)

model as:

at = σtεt

log(σ2
t ) = ω +

s∑
i=1

αi
|at−i|+ θiat−i

σt−i
+

m∑
j=1

βjσ
2
t−j. (3.6)

The GARCH model gives highly accurate results in the long horizon when com-

pared with complex models like MRS-GARCH (Markov Regime-Switching GARCH).

But in a short time horizon, MRS-GARCH performs better than the GARCH model

[18]. Regime Switching GARCH (RS-GARCH) and Fractionally Integrated GARCH

(FIGARCH) are also commonly-used models introduced by Gray [11] and Baillie et

al. [1], respectively.

3.2 Localized Realized Volatility Modeling

Another interesting approach to modeling volatility is introduced by Chen et al. [4].

The main purpose of their study was the investigation of the dual view on volatility.

The proposed method is very flexible because it can explain short memory processes

with breaks as well as long memory processes. Long memory processes can be diag-

nosed using the sample autocorrelation function (ACF). In other words, if the shape of

the ACF is more hyperbolically decaying, then it can indicate long memory property

of volatility.

Since the approach of the Chen et al. [4] is local rather than global, it is called

localized realized volatility modeling. The idea is as follows. First, an algorithm is

developed to identify homogeneous time intervals. Then, for each time interval, they

proposed a local autoregressive (LAR) model because the main assumption behind

this model is that at each time point there is a past time interval, where the data can

be explained by the LAR model. Therefore, at each point in time, where there is a

structural break, a new set of parameters is estimated. To this end, the maximum

likelihood method is used to estimate these local parameters. The selection of the

interval of homogeneity is a sequential testing procedure. First, it starts with a small
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interval, where the local approximation is compatible and the estimated autoregressive

parameters are approximately constant. Then, the algorithm iteratively expands this

span and tests for time homogeneity. The procedure is repeated until a structural

break is found or data are exhausted. Finally, the LAR model given in equation (3.7)

is fitted.

Let the local autoregressive parameter set at time t be θt = (θ0t, θ1t, . . . , θpt)
T .

These parameters are time-varying. The LAR model is

log RVt = θ0t +

p∑
i=1

θit log RVt−i + εt, (3.7)

where εt follows normal distribution with mean zero and variance σ2
t , and RVt is the

realized volatility at time point t. In the model (3.7) the log of RV was modeled

because the realized volatility distribution is strongly skewed and has a fat tail, but

the log of the realized volatility approximately follows a normal distribution [4]. In

this model, all the parameters and the length of the past time intervals are different

from interval to interval.

3.2.1 Parameter Estimation

To estimate the parameters in the LAR model (equation (3.7)) the maximum likeli-

hood (ML) techniques can be used [4]. For a given homogeneous time interval (say

Iτ for the time point τ), the ML estimator of θτ is

θ̃τ = argmax
θ∈Θ

L(log RV ; Iτ , θ),

θ̃τ = argmax
θ∈Θ

{
− lτ − p

2
log 2π−(lτ−p) log σ− 1

2σ2

τ−1∑
t=τ−lτ+p

(
log RVt−θ0−

p∑
i=1

θi log RVt−i

)2}
,

(3.8)

where Θ is the parameter space and Iτ is the interval of homogeneity at time point

τ , i.e. Iτ = [τ − lτ , τ) with p+ 2 6 lτ < τ , p is the number of parameters [4].
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3.3 Localized Quantile Regression of Realized Volatil-

ity

The extreme quantiles of volatility are of great importance in risk management. Mo-

tivated by this, we propose a localized quantile regression approach to volatility mod-

eling and forecasting. The proposed approach sequentially identifies homogeneous

intervals, and then applies a quantile regression model to each homogeneous interval.

Hence, the quantile regression model has time-dependent coefficients. The proposed

quantile regression model is

log RVt = β0τ +

p∑
i=1

βiτ log RVt−i + εt, (3.9)

where RVt is the realized volatility calculate at time t, β0τ and βiτ are quantile re-

gression parameters , and ετ is the error term where the τ th quantile of ετ is zero.

3.3.1 Parameter Estimation

Linear programming methods are usually required to estimate quantile regression

model parameters. One of the advantages of using linear programming methods is

that these methods are computationally efficient. The parameters of the equation

(3.9) can be estimated by solving the objective function given as,

β̂τ = min
β1(τ),...,βp(τ)

n∑
i=1

ρτ

(
log RVi − β0(τ)−

p∑
j=1

log RVi−jβj(τ)

)
, (3.10)

where the function ρτ is the check loss function. Under some regularity conditions, the

estimators of quantile regression parameters are asymptotically normally distributed

[13].

Various linear programming methods have been proposed to estimate quantile re-

gression parameters. These methods include, for instance, the simplex method, inte-

rior point method, interior point method with preprocessing, and smoothing method.

All these methods are different from each other. As an example, the simplex method

starts from a random vertex, and then moves along the boundaries of a circumscribed

polygon until the optimum solution is reached. The simplex method is ideal for

moderate-sized data sets. The interior point method starts from an internal point
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of the circumscribed polygon and looks for the optimum solution within the polygon

without touching boundaries. The interior point method can be used for large data

sets because it is computationally efficient.

We can easily estimate quantile regression parameters using the packages built in

R and SAS. In our study, we used the package Quantreg, which supports the quantile

regression in R.



Chapter 4

Simulation Study

We conducted simulation studies to investigate how well the quantile regression cap-

tures the volatility of a financial data set. In this chapter, we present the simulation

setup and detailed the results. There are two main sections in the simulation study.

In the first part, we applied the quantile regression approach to a generated data set.

In the second part, we carried out another simulation study to find the parameters

of the interval of homogeneity. We generated data from the localized autoregressive

LAR(1) model equation (3.9) and applied the proposed localized quantile regression

model as an illustration.

4.1 Simulation Setup

We first introduce the simulation setup.

• Generate data from LAR(1) processes with θt = θ∗ = (θ∗0, θ
∗
1, σ

∗) for all t; that

is, the model is yt = θ∗0 + θ∗1yt−h + εt; εt ∼ N(0, σ∗2). The initial value for the

first interval was set to y0 =
θ∗0

(1−θ∗1)
. Then, for other intervals, the last value of

the previous interval was treated as the initial value of the next interval. This

way makes the observations continuous.

• We simulated from the AR(1) process with suddenly and gradually changing

parameters in order to investigate the performance of the quantile regression

under different types of changes.

• Interval set: {Ik}5
k=1 for every τ with the following interval lengths,
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Figure 4.1: Structure of the five different intervals.

Table 4.1: Changes of parameters according to the intervals.

Parameters Interval 1 Interval 2 Interval 3 Interval 4 Interval 5

θ∗0 -0.1156 1.1557 -0.1156 0.3467 -0.1156

θ∗1 0.7827 -0.7827 0.7827 0.6261 0.7827

σ∗ 0.5525 0.1000 0.5525 0.4000 0.5525

The true values of the parameters are based on the estimates of an AR(1) model fitted

to the S&P500 data from January 2, 1985 to February 4, 2005 [4]. In this scenario,

all the parameters are changed according to the time.

Time Series plot of the generated data
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Figure 4.2: Time Series plot of the generated data
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Figure 4.2 shows the time series plot of the simulated data. In some time intervals,

data follow an upward trend and in some intervals, data do not follow a trend.
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Figure 4.3: ACF and PACF functions for generated data

The autocorrelation function presented in Figure 4.3 has a hyperbolically decaying

shape. This is known as a long memory process.
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Figure 4.4: Scatter plot for generated data
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4.2 Quantile Regression Approach

First, we applied the quantile regression for every interval with different τ values

where (0 < τ < 1). For simplicity, we selected a few important τ values such as

τ = (0.25, 0.5, 0.75, 0.9, 0.95)

The quantile regression model is

log RVt = β0t +

p∑
i=1

βτtlog RVt−i + εt,

which was introduced in Section 3.3.

We applied the quantile regression method for each interval, and present the results

interval-wise for illustration purposes. For each interval, we present a time series

plot to describe the shape of the data and a quantile plot that shows the quantile

regression lines for selected τ values. Two additional plots are also provided to describe

how estimated intercept terms change according to the quantile level (τ) and how

estimated slopes change with the quantile level (τ). We generated data using the

model yt = θ0 + θ1yt−1 + ε, where ε ∼ N(0, σ2). When we fitted the quantile model

theoretically, we assumed that the τ th quantile of ε is zero. Practically it is not zero.

Thus, we corrected that error by adding the τ th percentile of a normal distribution

with mean 0 and standard deviation σ.

4.2.1 Quantile Regression Model for Interval I

The Interval-I contains data for 1500 days generated from the model Yt = −0.1156 +

0.7827 ∗Yt−1 + εt, where εt ∼ N(0, 0.55252) and t = 1, 2, . . . , 1500. Figure 4.5 shows

time series plot for interval-I data. As expected, there is no upward or downward

trend present in the data. Next, we present quantile regression plot for Interval-I

data for five different τ values.
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Time Series plot of interval I
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Figure 4.5: Time Series plot for interval-I data
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Figure 4.6 shows the quantile plot of the data for Interval-I. All the quantile regression

lines are approximately parallel to each other.
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Figure 4.8: Slope change with τ ; red line is the true parameter value

Figures 4.7 and 4.8 present the estimated intercept terms and changes in the estimated

slopes with respect to τ . In Figure 4.8, the red line indicates the true value of the
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estimated parameters. That implies the parameters estimated using the quantile

regression method are also very close to the true value.

4.2.2 Quantile Regression Model for Interval II

This interval contains 500 days with parameter values θ0=1.1557, θ1=-0.7827, and

σ∗=0.1. The model is, Yt = 1.1557 − 0.7827 ∗ Yt−1 + εt, where εt ∼ N(0, 0.12) and

t = 1501, 1502, . . . , 2000.

Time Series plot of interval II
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Figure 4.9: Time series plot for interval-II data

Figure 4.9 shows time series plot for interval-II data. There is no upward or downward

trend present in the Interval-II data.
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Figure 4.10: Quantile regression plot for interval-II data

Figure 4.10 shows the quantile plot of the data for Interval-II. All the quantile regres-

sion lines are approximately parallel to each other.
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Figure 4.12: Slope change with τ ; red line is the true parameter value

Figure 4.11 present the estimated intercept terms change with respect to τ . Figure

4.12 present estimated slopes change with respect to τ . In Figure 4.12, the red line

indicates the true value of the estimated parameters. That implies the parameters

estimated using the quantile regression method are also very close to the true value.

4.2.3 Quantile Regression for Interval III

This interval contains 400 days with parameter values θ0=-0.1156, θ1=0.7827, and

σ∗=0.5525. The model is Yt = −0.1156 + 0.7827 ∗ Yt−1 + εt, where εt ∼ N(0, 0.55252)

and t = 2001, 2002, . . . , 2400. Figure 4.13 shows time series plot for interval-III data.

The pattern of the Interval-III data is different from Interval-I and Interval-II. In the

first part of the plot, we can see a slight upward trend. In the middle, we can see a

downward trend and again slight upward trend in the last part of the plot.
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Time Series plot of interval III
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Figure 4.13: Time series plot for interval-III data.
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Figure 4.14: Quantile regression plot for interval-III data.
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Figure 4.14 shows the quantile plot of the data for Interval-III. All the quantile re-

gression lines are approximately parallel to each other.
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Figure 4.16: Slope change with τ ; red line is the true parameter value

Figures 4.15 and 4.16 present the estimated intercept terms and changes in the esti-

mated slopes with respect to τ . In Figure 4.16, the red line indicates the true value of
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the estimated parameters. That implies the parameters estimated using the quantile

regression method are also very close to the true value.

4.2.4 Quantile Regression for Interval IV

This interval contains 400 days with parameter values θ0=0.3467, θ1=0.6261, and

σ∗=0.4. The model is Yt = 0.3467 + 0.6261 ∗ Yt−1 + εt, where εt ∼ N(0, 0.42) and

t = 2401, 2402, . . . , 2800.
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Figure 4.17: Time series plot for interval-IV data.

Figure 4.17 shows time series plot for interval-IV data. There is no upward or down-

ward trend. In the middle part of the plot, we can see a slight fluctuation from normal

pattern.
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Figure 4.18: Quantile plot for interval-IV data.

Figure 4.18 shows the quantile plot of the data for Interval-IV. All the quantile re-

gression lines are approximately parallel to each other.
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Figure 4.20: Slope change with τ ; red line is the true parameter value

Figures 4.19 and 4.20 present the estimated intercept terms and changes in the esti-

mated slopes with respect to τ . In Figure 4.20, the red line indicates the true value of

the estimated parameters. That implies the parameters estimated using the quantile

regression method are also very close to the true value.

4.2.5 Quantile Regression for Interval V

This interval contains 461 days with parameter values θ0=-0.156, θ1=0.7827, and

σ∗=0.5525. The model is, Yt = −0.156 + 0.7827 ∗ Yt−1 + εt where εt ∼ N(0, 0.55252)

and t = 2801, 2802, . . . , 3261. Figure 4.21 shows time series plot for Interval-V data

and we can observe a slight downward trend here. .
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Figure 4.21: Time series plot for interval-V
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Figure 4.22: Quantile plot for interval-V data
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Figure 4.22 shows the quantile plot of the data for Interval-V. All the quantile regres-

sion lines are approximately parallel to each other.
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Figure 4.23: Intercept change with τ
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Figure 4.24: Slope change with τ ; red line is the true parameter value

Figures 4.23 and 4.24 present the estimated intercept terms and changes in the esti-

mated slopes with respect to τ . In Figure 4.24, the red line indicates the true value of
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the estimated parameters. That implies the parameters estimated using the quantile

regression method are also very close to the true value.

The first part of the simulation study was carried out to find the performance

of quantile regression on data with different characteristics. We generated data for

five intervals, where three of them (Interval-I, Interval-II, and Interval-V) have the

same set of parameters but different lengths, while the other two intervals have totally

different parameter (Interval-II and Interval-IV) sets and different lengths. This way

we can investigate the performance of the quantile regression under different types of

changes. All the lines in the quantile plots are approximately parallel to each other and

quantile regression estimators are very close to true values. Based on these facts and

by looking at all the graphs, we can say that the quantile regression method describes

the generated data well for all intervals. As the regression model differs from interval

to interval, it is inappropriate to predict the volatility using one general model. It

will be critical to identify the interval of homogeneity for accurate predictions.

4.3 Identification of the Interval of Homogeneity

Volatility clusters through time. Therefore, within some time periods, volatility tends

to have a similar pattern. These time periods are called intervals of homogeneity.

This section presents another simulation study which is carried out to find the longest

interval of homogeneity. The purpose of this simulation study is to illustrate how to

select the longest interval of homogeneity, which makes the quantile regression model

a good approximation to the data. To determine the interval of homogeneity, we use

likelihood ratio testing techniques.

4.3.1 Simulation Setup

In this simulation study, we focus on the first two intervals of the above simulation

study. Interval-I contains 1500 data and interval-II contains 500 data. In the previous

simulation study, we used different parameters in each interval to generate heteroge-

neous data sets. The study is carried out as follows,

0 1500 days

Interval I

1500 500 days

Interval II

2000

1. Initially select a τ (quantile level) value.
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2. Let interval-I data be yt, and then fit a quantile regression model, then find

quantile regression parameters θ̂1 at τ th quantile level. Then, the quantile re-

gression is yt = θ01 + θ11yt−1 + ε1, where t = 1, 2, . . . , 1500. For simplicity we let

yt
∼

=


y0

y1

...

y1500

 , and θ1
∼

= (θ01, θ11)T

3. For interval-II, the estimated quantile regression parameter set is θ̂2 at the

τ th quantile level. We took y1501 = y1500 because this way we can make the

observations continuous. Then, the quantile regression model for interval-II

is, yt = θ02 + θ12yt−1 + ε2, where t = 1501, 1502, . . . , 2000. Similary, we let

yt
∼

=


y1501

y1502

...

y2000

 , and θ2
∼

= (θ02, θ12)T

4. We combined interval-I and interval-II to form the full interval, and the quantile

regression parameter set is θ. Then, the quantile regression model for the full

interval is yt = θ00 + θ10yt−1 + ε0, where t = 1, 2, . . . , 2000, and we let yt
∼

=

y0

y2

...

y1500

y1500

...

y2000


, and θ0

∼
= (θ00, θ10)T

5. Next, calculate the likelihood ratio (LR) statistics based on asymmetric Laplace

distribution. Take this likelihood ratio statistic as LR1. This method can be

explain as follows; Suppose the yi ∼ ALD(xTi θτ , σ; τ), i = 1, 2, . . . , n, are inde-

pendent. Then, the likelihood function for n observations is

L(θ, σ|y) ∝ 1

σn
exp

{
−

n∑
i=1

ρτ

(
yi −XT

i θτ
σ

)}
, (4.1)
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where Xi = (1, yi), σ can be estimated using σ̂ = 1
n

∑n
i=1 ρτ

(
yi −XT

i θ̂τ
)

and ∝
means L(·) is proportional. Let T1 denote the time interval-1 and n1 is the length

of the time interval-1. Likewise, T2 denote the time interval-II and length of time

interval-II is n2. Then LR values for interval-I, interval-II, and full interval can

be given as,

Lθ1(T1) ∝ σ−n1
1 exp{−n1}, (4.2)

Lθ2(T2) ∝ σ−n2
2 exp{−n2}, (4.3)

Lθ0(T1, T2) ∝ σ−N0 exp{−N}, (4.4)

where N = n1 + n2. Hypothesis of this test is

H0 : θ1
∼

= θ2
∼
, Ha : θ1

∼
6= θ2
∼

(4.5)

The log likelihood ratio statistic for testing the hypothesis (4.5) is given by,

LR1 = −2 log

(
max{θ1,σ}∈H0{LH0(T1, T2)}

max{θ1,θ2,σ}∈Ha{LHa(T1), Lθ2(T2)}

)
= −2 log

(
σ̂0
−N exp{−N}

σ̂1
−n1 exp{−n1}σ̂2

−n2 exp{−n2}

)
= −2

(
log(σ̂0

−N)− log(σ̂1
−n1)− log(σ̂2

−n2)−N + n1 + n2

)
= −2

(
log(σ̂0

−N)− log(σ̂1
−n1)− log(σ̂2

−n2)
)
, where N = n1 + n2

= 2
(

log(σ̂0
N)− log(σ̂1

n1)− log(σ̂2
n2)
)

= 2 log
( σ̂N

σ̂1
n1σ̂2

n2

)
.

6. Then, find the empirical distribution of the likelihood ratio statistic using re-

sampling techniques.

• Fit a linear regression model for yt and yt−1 then find ordinary least squares

(OLS) estimates of the regression parameters (Let β̂0, β̂1 be OLS estimates

of the parameters) for interval-I (for 1500 data). Then the OLS prediction

equation is,

ŷt = β̂0 + β̂1yt−1, t = 1, 2, . . . , 1500. (4.6)

• Use parameters obtained from the previous model (equation (4.25)) to
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predict the next 500 data. Take ỹt as predicted values,

ỹt = β̂0 + β̂1yt−1, t = 1501, 1502, . . . , 2000. (4.7)

• Find residuals from the equation (4.6) and fit another linear regression

model for interval-II and find the residuals. Combine all residuals, and

then we have 2000 residuals. Let et be the residuals of linear regression

models. The first 1500 residuals are based on equation (4.6) and the last

500 residuals are coming from the linear regression model which we fit for

interval-II.

• Combine fitted values, i.e. ŷi and ỹi.

ŷi, i = 1, 2, . . . , 1500.

ỹi, i = 1501, 1502, . . . , 2000.

• Permute {ei}. Let ẽi be the permuted residuals, i = 1, 2, . . . , 2000.

• Create new data by adding fitted values and permuted residuals. Let new

y values be Y ∗,

Y ∗ =



ŷ1 + ẽ1

ŷ2 + ẽ2

...

ŷ1500 + ẽ1500

ỹ1501 + ẽ1501

...

ỹ2000 + ẽ2000


,

• Break the new Y ∗ into two parts such that the first 1500 as Y ∗1 and the

last 500 as Y ∗2 .

• Then, we carry out the likelihood ratio test based on ALD for new data

that is Y ∗, Y ∗1 , and Y ∗2 .

• Repeat these steps 1000 times and find 1000 LR values. That is the em-

pirical distribution of LR values.

• Take 100× (1− α)th percentile of 1000 LR values as the ζk.

• Compare the ζk and LR1 to test the hypothesis. The null hypothesis is

rejected if the LR1 value is greater than the ζk value.
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4.4 Results

In this section, we present the results of the simulation study. First, we obtained

results for different α values. Table 4.2 shows the results for selected α values.

Table 4.2: Likelihood ratio test results for different α values.

α LR1 ζ Decision

0.05 0.640 0.214 Reject H0

0.01 0.640 0.222 Reject H0

First, we selected α = 0.05. Then ζ is the 95% percentile of 1000 likelihood ratio

values. The LR1 value is greater than the ζ value, which implies that we reject the

null hypothesis. As the second step, we selected α value as 0.01, and the ζ value is

the 99% percentile of the 1000 likelihood ratio values. In this case, we obtained the

same conclusion as the first case. Next, we selected a few different quantiles for the

test. The results are shown below,

Table 4.3: Likelihood ratio test results for different τ values.

τ LR1 ζ Decision

5% 0.616 0.202 Reject H0

95% 0.653 0.150 Reject H0

50% 0.640 0.213 Reject H0

85% 0.614 0.156 Reject H0

The null hypothesis (H0 : θ1
∼

= θ2
∼

, σ > 0) was rejected for all selected τ values.

Interval-I data were generated using Yt = a1 + b1Yt−1 + ε1, where ε1 ∼ N(0, σ2
1) and

t = 1, 2, . . . , 1500. Interval-II data were generated using Yt = a2 + b2Yt−1 + ε2, where

ε1 ∼ N(0, σ2
2) and t = 1501, 1502, . . . , 2000. For this part of the study, we selected

the same values for a1 and a2. Also, we chose one value for both standard deviations

of ε1 and ε2. That is, we generated data with the same characteristics; we fixed a and

changed bi in the model Yt=a+biYt−1+εi where εi∼ N(0,σ2
i ) and i=1,2

Initially we have two different data sets, but when b1 was close to b2, all the

parameters were the same. If our simulation set up is correct, the p-values should be
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greater than 0.05 when b1 and b2 are getting close to each value. When b1 is very

close to b2, we can use one model to describe the data in both intervals. According to

the results, it is clear that our simulation setup can be used to identify homogeneous

time intervals.

Table 4.4: Fixed a and same variances and different b1, b2.

Value

a -0.1156

b1 0.7827

b2 -0.7827

σ1 0.1

σ2 0.1

LR1 0.633

ζ 0.370

P − value 0.000

Table 4.5: Fixed a and same variances and different b1, b2.

Value

a 1.1557

b1 0.7827

b2 -0.7827

σ1 0.5525

σ2 0.5525

LR1 0.857

ζ 0.567

P − value 0.000

Table 4.6: Fixed a and same variances and different b1, b2.

Value

a 1.1557

b1 0.7827

b2 -0.7827

σ1 0.1

σ2 0.1

LR1 1.040

ζ 0.765

P − value 0.000

Table 4.7: Fixed a and same variances and b1 and b2 are close.

Value

a -0.1156

b1 0.7827

b2 0.500

σ1 0.1

σ2 0.1

LR1 0.048

ζ 0.117

P − value 0.050
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Table 4.8: Same parameters for both intervals.

Value

a -0.1156

b1 0.7827

b2 0.7827

σ1 0.1

σ2 0.1

LR1 0.067

ζ 0.128

P − value 0.546

According to the estimated p-values of all the tests, we can conclude that, when two

intervals have data with different characteristics, the test rejects the null hypothesis.

This result shows that that is we need two different models to capture the behavior of

the data. In order to cross-validate our simulation study, we generated data with same

characteristics by selecting two close values for b1 and b2. According to the results

presented in Tables 4.7 and 4.8 we fail to reject the null hypothesis that supports

our claim that one model can be used to explain the data. This implies that our

simulation setup works well to find the longest interval of homogeneity.

Next, we selected 17 different values for b2 while keeping the b1 value as zero to

estimate the power function of the hypothesis test. Also we selected the same value for

both a1 and a2, as well as σ1 and σ2. Here we assume that the alternative hypothesis is

true. Then, we generated the data for interval-I and interval-II with to the parameters

as given in table 4.9. We recorded whether the test rejected the null hypothesis or

not. This procedure carried out 500 times and the power of the test is calculated as,

power = Number of rejects/500. (4.8)

Results are given in the following table for selected b1 − b2 values,
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Table 4.9: Values of the power for different b1 − b2 values.

b1 b2 δ = b1 − b2 power of the test

0.0000

-0.19654 0.19654 0.974

-0.16454 0.16454 0.930

-0.15654 0.15654 0.912

-0.140886 0.140886 0.822

-0.125232 0.125232 0.732

-0.109578 0.109578 0.590

-0.093924 0.093924 0.422

-0.07827 0.07827 0.342

-0.070443 0.070443 0.298

-0.062616 0.062616 0.208

-0.054789 0.054789 0.186

-0.046962 0.046962 0.162

-0.039135 0.039135 0.118

-0.031308 0.031308 0.092

-0.015654 0.015654 0.070

-0.007827 0.007827 0.068

0.00000 0.00000 0.064
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Figure 4.25: Power function of the test.

In the Figure 4.25, x-axis shows the difference of b1 and b2. When the difference of b1

and b2 are small, power is also small.

4.4.1 Asymptotic Distribution of the Estimators of the Quan-

tile Regression Parameters

Next, we ran a few tests to check whether the estimators of the quantile regression

parameters are asymptotically normally distributed. First, we perform the Shapiro-

Wilk test. The p-value of the Shapiro-Wilk test is 0.6256, which indicates that we fail

to reject the normality assumption.
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Figure 4.26: qqplot for estimates of quantile regression parameters.

Also, qqplot depicted in Figure 4.26 that the normal disribution is adequate for data.

Taking all these factors into consideration, we can conclude that the estimators of the

quantile regression parameters are asymptotically normally distributed.



Chapter 5

Summary and Future Work

5.1 Summary

In this thesis, we introduce a quantile regression model for the volatility of assets.

This study was inspired by the article “Localized Realized Volatility Modeling” by

Chen et al. [4]. They proposed a new model called the Localized Autoregressive

(LAR) model to forecast financial volatility. Identifying the interval of homogeneity

is the first step of their approach. Volatility is not constant, and clusters through

time. Within some time periods, volatility tends to have a similar pattern. These

time periods are called intervals of homogeneity. Our approach attempts to identify

the longest interval of homogeneity using past data. Then, we apply the quantile

regression model separately for each interval.

In the first part of our simulation study in Chapter 4, we focus on generating data

with some structural changes. To illustrate the quantile regression approach, we draw

quantile regression plots for each interval. Most of the data lie between the 0.25th

and 0.95th quantile levels (τ) of logRVt. This shows us that the proposed quantile

regression model is appropriate to describe the data. For this method, we do not need

any distributional assumptions. As a result, we can directly interpret the results at

selected quantiles. This might be more interesting to researchers and practitioners in

the area of finance.

In the second part of the study, we illustrated how to identify the interval of

homogeneity. For that, we used two different datasets which we generated in the

first part of the simulation study. This is important because with a real-life data set,

identifying these intervals usually a challenge. To find out the length of the interval
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of homogeneity, we can use the same steps we carried out in the second part of the

simulation study presented in Chapter 4. As the initial step, we should define n1

and n2, where n1 is the length of the first interval and n2 is the length of the second

interval. For example, to start the test, we can take the first five days as the first

interval and the rest of the data set as the second interval. If the test does not

reject the null hypothesis in equation (4.5), given in Chapter 4, we merge the next

data interval with the first interval. Then, we can apply the test again with the

merged data set. Likewise, we can do this until we reject the null hypothesis and find

the longest interval of homogeneity. After identifying all the homogeneous intervals

successfully, we can separately apply the quantile regression method for each interval.

5.2 Challenges and Future Work

In the study, “Localized Realized Volatility Modeling” by Chen et al. [4], the re-

searchers applied the LAR procedure to the S&P 500 futures indices. For all their

calculations, they used minute-by-minute data of S&P 500 index futures from January

2, 1985 to February 4, 2005. Finding intraday data is the first challenge we faced in

our study. The reason for this challenge is the limited access to minute-by-minute

financial data. Most of the institutions allow us to access weekly, monthly, and an-

nual data. There is a cost involved with minute-by-minute data acquisition. Even

though we have access to historical intraday data (minute-by-minute data), handling

(refining and preprocessing) will be another challenge. Also, finding the interval of

homogeneity is a sequential testing procedure, which brings larger computational cost

to the analysis.

If intraday data are available, model parameters can be estimated more accurately

because multiple data points for a day will show the correct fluctuation of the daily

volatility. Therefore, we propose using minute-by-minute financial data to accurately

model and forecast the daily volatility, as a further work. Moreover, in the future

we can compare predicted values using different models. First, we can predict future

values using one quantile regression model for both interval-I and interval-II. Then,

we can compare those values with the values predicted using only interval-II model.
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