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Abstract
By taking advantages of the two-photon polymerization induced by femtosecond laser and the
versatility of the femtosecond lasermicrofabrication, we demonstrate a femtosecond laser
microfabricated polymeric grating for spectral tuning, inwhich gratings of different thicknesses
achieve gradual tuning of awhite incident light into output lights of different colors ranging from cyan
to red, which is in good agreementwith the simulation. Through the selection of different grating
parameters, the technique developed in this study offers the possibility to tailor the performance of the
grating to achieve specific grating efficiency or complete extinction at specificwavelengths, which is
promising formeasurements and applications in spectroscopy, sensing, integrated optical systems,
and biomedicine.

1. Introduction

Spectral tuning, broadly to say, any operation to achieve the selection, filtering, or control of wavelengths in
order to obtain specific spectral components of light, is essential inmeasurements with extensive uses in
spectroscopy,microscopy, sensing, photochemistry, lasers, and optical communication. Inmany of these
applications, opticalfilters are used, such as prisms, gratings, acouto-opticalfilters, and liquid crystal tunable
filters [1–7]. However,most of these bulkyfilters are usually not suitable for use in an integrated system.
Recently, someminiaturizedmicroelectromechanical systems (MEMS)-based or opticalfiber based tunable
gratings have been reported [8–11].Wavelength tuning in the visible spectral range, commonly known as color
filtering, is particularly important for applications, such as a colorfilter consisting of an array of annular
apertures in a gold film for transmissionmeasurement [12], amultilayered structure incorporating a
subwavelengthmetal-dielectric grating for better reflection resonance and color effects [13], excitation of
surface plasmonic effects in nanostructuredmaterials [14–16], and plasmonic color filters adopting free-
standing resonantmembranewaveguides [17].Most of these reported components are either relatively large in
volume for use in free-space optics, costly in the fabrication techniques, or aremostly incompatible with
integrated systems, especially for the case of biomedical applications, for example, a lab-on-a-chip platform,
where footprint and the compatibility with the fluidic environment are crucial [18]. Yu et al showed an optical
diffraction grating usingmultiphase droplets on amicrofluidic chip, which produces different colors as a color
filter [19]. Cuennet et al reported the integration of color filter withmicrofluidics by soft lithography for on-chip
absorption spectroscopy, inwhich the tunable filter was based on themicro-flowof liquid crystals for its
wavelength-dependent birefringence bymodifying the flow velocityfield in themicrochannel [20]. These
reportedmicrofluidic filters were fabricated by standard soft-lithography relying on themovement of
multiphase droplets ormicro-flowof liquid crystals, inwhich the controllability and repeatability of the device
performance could be significant concerns.

In this letter, we report a technique of femtosecond lasermicrofabricated polymeric grating and
demonstrate its application in spectral tuning. In this study, gratings with an epoxy-based negative photoresist
(SU-8) are fabricated by direct writingwith a Ti:sapphire femtosecond laser at a wavelength of 800 nm, a pulse
width of 67 fs, and a repetition rate of 80 MHz (Libra system,Coherent Inc.). Conventional techniques to
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fabricate diffraction gratings include photo-masking [21], electron beam lithography [22], etching techniques
[23], and holographic interference [24, 25]. Holographic lithography/recordingwas developed to create
periodic 3Dmicrostructures, inwhich periodic interference patterns such as an asphericmicrolens structure
[26], microscopic tubular structure [27], and fast bits [28], are printed into the photoresist bymulti-laser beam
irradiation. This technique for the fabrication of 3Dmicrostructures possesses themerit of fast fabrication but
requires higher laser power and is limited to patterns of interference. Recently,maskless femtosecond laser
direct writing and femtosecond laser-assisted etching have been reported to achieve dynamically tunable protein
microlens and tunablemicrolens, respectively [29, 30]. Despite the use of relatively slow line-by-line approach,
the femtosecond lasermicrofabrication technique adopted in this study exhibits its salient advantages of
flexibility and versatility, inwhich it is easy towrite gratings with different specifications (periodicityΛ, thickness
d, andwidth a) by simply adjusting the laser parameters (i.e., laser power, scan speed, and focusing condition),
and thus offers the significantmerits in the adjustability of the grating performance formeasurements.

2. Principle

For the case of a diffraction grating, as shown infigure 1, the grating equation is:

msin normal incidence 1mq lL = ( ) ( )

where θm is the angle between themth order and the zeroth order diffracted rays, depending on thewavelength
and the periodicity.When awhite light passes through the grating, components of light with a single wavelength
are separated into different directions, thus producing a dispersion spectrum. The intensity of the zeroth order
of diffraction (m=0) can be derived to relatewith the thickness of the grating and the refractive indices (RIs) of
the periodic regions based on the discussion in [31]:
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whereΛ is the grating pitch, d is the thickness of the grating, δj=j1–j2 is the phase difference,j1 andj2 are
the phases of light that passes through the higher RI region n1 and lower RI region n2, and a and b are thewidths
of the two regions, respectively. Equation (2) indicates that the intensity of the zeroth order of diffraction
depends on all grating parameters (Λ, a, d, n1, n2), as well as thewavelength of the incident light (λ), which
suggests that, by either varying the thickness of the grating or adjusting the RI of thefluidflowing in the
microchannels, the zeroth order of diffractionwith different spectral features (color and intensity) can be
observed by a charge coupled device (CCD) camerawhen awhite light passes through the grating.

Figure 1. Schematic illustration of a guided-mode resonance grating: (a) the 3D view, and (b) the side view.
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3. Results and discussion

Figure 2 shows the SEM images of a gratingwith a periodicity of 3 μmover a grating size of 200 μm×200 μm,
fabricated by a femtosecond laser power of 0.625 nJ/pulse and a scan speed of 20 μm/s when the laser beam is
focused by a 50×objective lens with a numerical aperture (NA) of 0.8. Thewidth of the grating is 0.989 μm.
These periodic channels exhibit high uniformity and excellent quality. The resolution of the femtosecond laser
fabrication ismainly restricted by diffraction limit, inwhich the linewidth is inversely proportional to the value
of theNA, i.e., a smaller feature can be craftedwith an objective lens of a higherNA value. The selection of an
objective lens with a suitableNA value is determined by the size of themicrostructures to be created aswell as
other experimental considerations. The femtosecond laser focused by an objective lens of a higherNA fabricates
a narrower and thinner line. As a result,multiple scanswill be required in order to achieve a line on a photoresist
film of larger thickness such as 2 μmor thicker, whichwill reduce the efficiency and effectiveness of the
femtosecond lasermicrofabrication.

Figure 3 gives the diffraction patterns captured by the Panasonic CCD camera for the gratings with
periodicities of 2 and 3 μm, respectively. Similar diffraction patterns have also been detected at the same site with
theHamamatsu camera head. It is obvious from the figure thatm=0,±1 orders are shown on the screen for
the gratingwith a periodicity of 2 μmandm=0,±1,±2 orders observed for the gratingwith a periodicity of
3 μm.The light with a shorterwavelength is closer to the center of the zeroth order than the light of a longer
wavelength for the same diffraction order which indicates that the shorterwavelength light has a smaller angle of
diffraction. The diffracted light is closer to the center in a long-period grating than in a short-period grating at
the same diffraction ordermanifesting a smaller angle of diffraction for a long-period grating. In addition, it can

Figure 2. SEM images of a femtosecond lasermicrofabricated gratingwith a periodicity of 3 μm.The size of the grating is
200 μm×200 μm.

Figure 3.Diffraction patterns observedwith a Panasonic CCD camera from a femtosecond lasermicrofabricated grating: (a) and (c),
Λ=2 μm; (b) and (d)Λ=3 μm.
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also be found infigure 3(b) that the light with a longer wavelength in the first order partly overlaps with the light
of a shorter wavelength in the second order of diffraction.

As the equation (2) reveals that the intensity of the zeroth order diffraction depends on the duty cycle a/Λ
and a cosine function of 1/λ, the simulated curves of I0 in thewavelength range of 350–1750 nmat different
ratios of a/Λ is given infigure 4, inwhich the thickness d is 1.50 μm, n1 is 1.596 (the RI of SU-8 at 633 nm) [32],
and n2 is 1.000 (air), respectively.Multiple periods are observed in the spectral curves while the extinction ratio
reaches itsmaximumat a/Λ=0.5 and then diminisheswith either an increase or decrease of a/Λ. It is obvious
that thewavelengths of the peaks and valleys are independent of the grating’s duty cycle a/Λ. Therefore, gratings
with a periodicity of 2 μmat a duty cycle a/Λ of 0.5 and another periodicity of 5 μmat a duty cycle a/Λ of 0.2 are
employed in this study to investigate the characteristics of the spectrumof the zeroth order diffraction.

If the phase difference satisfies
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Here, q is the order of the resonancemode. This equation tells that, once the phase difference equals an odd
integer number ofπ, this specificmonochromatic light is completely filtered out by a gratingwith a duty cycle
(a/Λ) of 0.5. Therefore, equation (4) is the foundation to design grating color filters. In our experiments, the
spectrum and intensity of the zeroth order diffracted light aremeasured by an optical spectrum analyzer (Ando
AQ-6315, Japan). Normalized transmission (grating efficiency) is obtained by calculating the ratio of the
intensity of the zeroth order diffracted light and that of the light source.

Figure 5 gives the transmission spectra of femtosecond lasermicrofabricated gratings with different grating
thicknesses of 1.57, 1.76, 1.84, and 2.15 μm,which aremeasured by a 3Doptical surface profiler (Nexview, Zygo
Corp.). The thickness of the grating can be adjusted by either changing the focusing of the femtosecond laser or
varying the thickness of the photoresist film through changing the rotation speed of the spin-coating while we
have adopted the second approach in this study. The values of the parameterΛ infigures 5(a)–(c) are 2 μm, and
5 μm infigure 5(d). The results from the simulationwith equation (2) byMATLAB software are also shown in
thefigureswith the parameters a/Λ, n1, and n2 of 0.5, 1.596, and 1.000, respectively. Themorphology of the
gratings captured by a LeicaDMRopticalmicroscope (Germany) and the spots on the samples for spectroscopic
measurement are alsomarked in the figures. Thefigure shows themeasured normalized spectra of the zeroth
order diffracted light fromdifferent samples alongwith the simulation results for comparison. Due to the fact
that the RI changes slightly with varyingwavelengths, there is a small discrepancy between the experimental data
and the simulation results. For the S1 samplewith a grating thickness of 1.57 μm, the transmission spectrum
shows the highest intensity at 491.8 nmwhich corresponds to a cyan color for human eyes. For the samples S2,
S3, and S4with grating thicknesses of 1.76, 1.84, and 2.15 μm, the highest intensity is shown at awavelength of

Figure 4. Simulation on the transmission spectra of the zeroth order in different duty cycles according to equation (2). The SU-8
grating is surrounded by air and the thickness of the SU-8 grating d is 1.50 μm.
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550.5, 566.1, and 648.5 nm, respectively, which corresponds to a color of green, yellow, and red for human eyes
accordingly. The lights after the gratings of different thicknesses exhibit different colors under themicroscope,
whichmatches the fact that the chromaticity diagramdepends on spectral features. It is noted that the
experimentally observed transmission spectrum infigure 5(d) shows a smaller extinction ratio than the
simulation result due to its smaller duty cycle. The values of the duty cycle are 0.2 and 0.5 for the experiment and
the simulation, respectively.

Figure 6(a) shows aCIE 1931 color space chromaticity diagram [33]. The numbers along the outer curved
boundary correspond to thewavelengths of themonochromatic light. The coordinates are calculated from the
ratios of theXYZ tristimulus values [34, 35]. The chromaticity diagramdescribes the colors observed by human

Figure 5.Transmission spectra of femtosecond lasermicrofabricated gratings with different grating thicknesses: (a) 1.57 μm; (b)
1.76 μm; (c) 1.84 μm; and (d) 2.15 μm.The values of parameterΛ and a/Λ in (a), (b), and (c) are 2 μmand 0.5, and 5 μmand 0.2 in
(d), respectively. The simulation results with equation (2) byMATLAB software are also shown in thefigures with the parameters a/Λ,
n1, and n2 of 0.5, 1.596, and 1.000, respectively. Themorphology of the gratings and the spots on samples for spectroscopic
measurement are shown aswell.
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eyeswhenmonochromatic lightsmix togetherwith different intensities. S1–S4 labelled infigure 6(a) correspond
to the colors shown infigure 5. The peakwavelengthλpeak with the same resonancemode aremarkedwith star
signs infigure 5. The experimental data infigure 6(b) show a linear relationship between the peakwavelength
λpeak and thickness d, in agreementwith the prediction from equation (2) that the peak shifts to a longer
wavelength as the thickness increases.

4. Conclusions

In summary, femtosecond lasermicrofabricated polymeric grating has been realized in this study and its
application in spectral tuning has been demonstrated. Color tuning from the SU-8 gratings of different
thicknesses is experimentally observed, which is in good agreement with the simulation. Comparedwith other
reported grating-based colorfilters, the technique developed in this study ismuch powerful and versatile, which
enables fabrication of high-quality gratingwith superior performance as a tunable color filter. It is worthy to
mention that it is also possible to achieve spectral tuning over other spectral ranges in addition to the visible
spectral range demonstrated here. The possibility to vary the values of the specifications of the gratings enables
the feasibility to design and fabricate a variety of spectral tuning components for awide range of applications.
Furthermore, the grating and the femtosecond lasermicrofabrication technique developed in this study provide
a platform technology to use the grating as amodular unit to enable the integration ofmultitude functionalities
for a range of novel applications inmeasurement science and technology in the future.

Figure 6. (a)TheCIE 1931 color space chromaticity diagram. S1–S4 labelled in thefigure correspond to the colors shown infigure 5(b)
dependence of the peakwavelength on grating thickness for samples with their transmission spectra shown infigure 5.
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