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Abstract

The thesis presents a comprehensive investigation on vibrations of cracked beam

struclUres and methodologies for crack identification. In order to detennine the crack

influence on suuctural dynamic characteristics correctly and efficienlly, a vibration

model for cracked beams is developed. The crack model assumes that the crack is always

open during the dynamic response aCthe structure and considers the reduction of sliffuess

al the crack location; in addition it also includes the influence of stress relief around the

crack region and its influence on the effective stiffuess around the crack localion.

Computation of stiffiless for the cracked beam is achieved through consideration of strain

energy variation in the structure, resulting from the occurrence of a crack. The model thus

generales a continuous beam vibration equation (with varying moment of inenia), which

could effectively incorporate the local changes ofsuuctural propenies due to the crack.

Using the model, vibration analyses of simply·supponed and fix.td·flXed solid

rectangular beams, with one and twO cracks, are carried out for computing natural

frequencies and mode shapes. Changes of frequencies due to the cntck are ploned

considering crack size and/or crack location. 11 is shown that the natural frequencies

would decrease as the crack size increases, and the decreases of frequencies would follow

a wave-like panern as the crack location changes. Comparisons are made with earlier

results and some other experimental investigations, carried out for verifying some of

these results. and shown to have a good agreement.

Frequency contour procedure is developed for crack detection. Different combinations of

crack sizes and locations would give different nalW'lll frequencies. and contour lines for

the same nonnalized frequency (as that of the measured value of the corresponding

mode) could be plotted. Frequency contours for different modes in a cracked structure

(having values similar 10 the measured values) are plotted together, and the intersection

point of all the contours provides the identification ofthe crack location and size.



Analyses of a hollow beam model. representing a ship model. are also carried out. The

beam model, v.ith varying stiffness and mass. vibrales in waler. generating added fluid

mass of !he ship model. Due to the ec:cenlric llatutt of !he added fluid mass and wave

force excitation. both vertical bending vibration and coupled tonional.bending

(horizontal) vibration are gmemed in !he suucture. Frequencies and mode shapes agIft:

well wilh test resuJ.rs. obtained earlier in an experimenla1 invcsligation. For a CDCk~

backbone in the ship model. frequencies are obtained and ploned with crack size and

crack location. The frequenc)" conloun are used 10 idenlify the crack size and k>c:ation.

To consider shear defonnation and rotary inertia eff~l, lhe vibfalion analyses on

Timoshenko beams. withfwilhout a crack. are also camed out The mulls are compared

wilh lhat of Euler beams.

Finally. forced vibration of cracked beams is considered. Frequency response.

acceleration response and acceleration curvature response functions are obtained. and

lheir changes due: 10 a crack have been investigated,. Acceleration CUfVah1re response and

resonant accelmtion amplitude procedures are found as suitable indicators 10 identify !he

Cf1Ick.
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Chapter I

Introduction

1.1 Vibration Based Inspection

The occurrence of defects. cracks and damages may be inevitable in enginming

structures in spite of our best efrons. They are formed due to various causes. Some of

lhem art metallurgical defects, generated as a result of improperly controlled

manufacturing processes. Some may be environment induced cracks, such as suess

corrosion cracking and hydrogen damage. Some may he faligue cracks thai occur under

cyclic service load conditions ronlrolled by the limited fatigue strength of materials.

Some other damages may be induced due to impacts of falling weights. ramming of

floating debris and ships, etc.

A crack which occurs in a structural element would reduce the local stiffness and weaken

the strucnual strength. Even though all structures art designed 10 withstand the expected

operational loads. they are prone 10 damages from overloads or repealed faligue loads

leading to cracks. The continued and undetected growth of the CI1lck may finally lead 10

!he collapse of !he SIr\lCtUfC, and subsequently to the possible losses of human lives and

lrCmcndous revenues. Therefore, !he deteclion of a crack at ils early slage of development

is imponant for the safety of !he structure and human lives. During the past Ihree



decades. focused effons have been made for lhe development and improvemenl of

existing and developing nondestnlctive inspection methods (NOI).

The use of various malerials. cypes of struclUte, constrUCtion procedures. etc., have led to

lhe development of different NDI methods. Some melhods such as Visual lnspeclion.

Ultrasonic, Radiography, Acoustic Emission, Magnetic Particle inspection. Dye

Penetrant and Eddy Current tC(:hniques, are called conventional methods which arc well

developed and already in use for detecting cr1lckslflaws in SlruCtures. The olher methods

such as Vibration Based Inspection, Wave Propagation and Laser techniques are new

emerging methods which are undergoing development and not accepted as readily as

others. Most ofNDI methods could be more or less considered 10 be applicable to genml

use; but these methods also have some kinds of limitations......hich make them excellent

for detecting one kind of damage and useless for detecting others. The final inspection

plan for any structure often includes the use of more than one inspection method.

As a newer NDI method, the Vibration Based lnspection (YBO has been proposed as one

of the most promising approaches [I]. which has certain advantages compared to other

conventional methods. The fundamental idea of VBI is to get infonnation about the

soundness ofa struelUte from the measurement of its vibration characteristics; if there is a

change in the vibration characteristics (Which may be due 10 a number causes) of the

structure. then such changed characteristics could be due to a decrease of stiffness caused

by the presence of cracks. The cracks could be identified by the use of a nwnber of

remotely located sensors and the subsequent analysis of data obuined from them. The



dynamic characteristics such as frequencies and responses obtained from the data

analysis are global parameters for structures; thus the VBl can be used as a global

inspection procedure and wholesale screening is not nttessaty. Meanwhile. no cleaning

of local areas is required compared to others. The detection of defects through VBl could

be applied to CT1lCks far away from the sensors and to areas whose surfaces are not

accessible. VBI method is also cheap and quick.

Vibration based inspection. in theory. is generally developed from the investigation of

simple structures such as a beam and a plate. From vibration theories of beams and

plates. one knows thaI natural frequencies of a beam or a plate are dependent on the

square root of flexural stiffness of the beam or the plate. The local flexural stiffness in a

structure would change due to the crack and how much it would change. globally and

locally. is dependent on the crack size and location. Given the size and location of the

crack, it is possible to calculate the changes of vibration characteristics of the structure.

based on the correct crack models and solution methods. Conversely, if the changes of

vibration characteristics are measured from vibration response. it is also possible to delect

the crack and find. its location and size.

Modelling of a crack in VBI is an imponant Step 10 identify the CT1lCk. The shon beam

model [I] was the firsl developed model in which the presence of a crack. was considered

by introducing a short beam with a reduced bending stiffuess at the position of the crack.

Another model, the reduced Young's modulus and moment ofinenia model, was simply

to assume a change in Young's modulus to represent the presence of a cl1lck, which is



mainly used in coMection with finite element analysis. The model developed later. viz..

lTacturt mechanics model. was to model the crack zone of a beam by means of a local

flexibility matrix detennined using fracture mechanics concepts. At the location of the

crack. lhe beam is considered to be cOMecled by a spring system which has dynamic

properties defined by its flexibility matrix.

Crack detection methods are developed based on crack modelling and experiments.

Basically. there are two variations in vibration based crack detection methods: frequency

analysis and modal analysis. which need to record sensor data in time domain and then to

transform data into frequency domain using Fast Fourier transfonn procedures. In

frequency analysis. one simple method is to compare the measured frequencies 10 the

predicted frequencies of a cracked structure to determine the presence oCthe crack. Other

methods are often involved in defining some parametCfS (indicators). which are related to

frequency shifts. to delennine the crack size and/or location [2]. In modal analysis. many

crack indicators have been developed based on frequencies and mode shapes. which

include modal assurance criteria (MAC). mode shape curvature/strain. modal sensitivity

and frequenCYlranSfer function.

1.2 Purpose and Scope of Research

Among the models developed for crack characterization in VBI. the model based on

fracture mechanics concepts has betn widely used in analyzing the cnck influence on the

vibration response of structures. In this model. the local compliance at the crack location



is calculated based on fracrure mechanics concepts. However, !his model is mainly

applied to beam sttuetures and uses the discontinuities in beam by dividing the beam

structure into two or more subslructureS. depending on how many cracks are on it.

Substructures are connected by a bending spring which is used to model the crack. Each

substrucrure is treated as an independent beam which has its own equation of motion, A

group ofvibrntion equations arc related by continuity conditions of the bending spring. It

is rather cwnbersome and quite involved to apply this method to irregular beams and

other structures. Meanwhile, many crack detection methods have been developed in VBI.

Many procedures have been proposed to identify the presence of cracks in structures;

however, the methodology to identify the location and size of a crack is still incomplete.

Effective and accurate crack detection methods arc required to be developed to cover the

whole range of crack depths and locations.

The present research worle will thus focus on developing an effcctive and COrTect crack

model for beam structures using energy method. Purpose of the study is to develop crack

detcction methods based on results from the developed energy model to identify the crack

location and crack size. The resean:h will cover the following areas:

Develop an energy based crack model for beam structures, which could be used to

calculate the frequencies and mode shapes of cracli;cd beams;

ii) Carry out vibration analysis of Euler beams and develop a crack detection

procedure;



iii) Carry out venical bending vibration and coupled torsional-bending vibration

analyses of hollow beams and idenlify and detect the existence of possible cracks;

iv) Cany out vibration analysis ofTimoshenko beams and compare with Euler beams

wilhfwilhoutcracks;

v) Cany out forced vibration analysis of solid beams and develop crack detection

melhods from acceleration responses.

1.3 Organization orThesis

The thesis is arranged according to the following format:

Chapter 2 gives a review of the relevant studies on vibration based inspection carried OUI

by earlier researchers. Chapler 3 gives the theoretical background needed for the

research; il includes basic vibration theory for beams, application of nwneric:al Galerkin's

method, representation of crack influence using fraclUIe mechanics conceplions, and

modal analysis for response estimation.

Chapter 4 describes an energy based nwnerical model which is used to consider the

vibration of cracked beams. Galerltin's method is used to solve the vibration equations.

The frequency conlour method is developed to identify the crack. The analyses are

carried OUI for simply supponed and rued-fixed beams. and a free-free hollow beam

vibrating on water. The hollow beam represents a ship model with varying S1iffiless. The

nwnerical results are verified by experiments carried out on cracked beam. Chapler S



gives an analysis of torsional-bending vibration of the hollow beam model and the use of

crack detection methodology developed earlier.

Chapler 6 discusses the studies on vibrations of cracked Timshenko beams. The results

are compared with that of Euler Deams. Forced vibration of a cracked simply·supponed

beam is presented in Chapter 7. The acceleration curvature response procedure and

acceleration resonant amplitude contour procedure an: developed for crack identification.

Finally, Chapter 8 swnmarizes the relevant fmdings of the research and gives

rc{;ommendations for funher studies.



Chapter 2

Review of Literature on Cracked Structures

2.1 ModeUng or a Crack

2.1.1 IntToduction

The basic idea in VBI is [0 measure the dynamic characteristics throughout the lifetime of

the structure and use them as a basis for detection of the position and magnitude of

cracks, if any. However, a successful detection of cracks through measuring of the

dynamic charaeterislics is very much dependent on the exatl modeling of the crack. II is

known thai the crack would reduce the sliffuess of a structure. decrease its natural

frequencies and change its vibration modes. Such changes will inevitably depend on the

crack type. size and location. COrm:1 modelling of these parameters of me crack will

indicate how the dynamic char.l.cterislics change.

The established models up to now, in general. reneel only part orlhe changes in sliffness

caused by the crack. II is aJmost impossible 10 establish a model to reflect the change of

damping; this is due 10 the fael that damping in structures is quite complex and very

sensitive to environmental conditions such as temperature, treatment of steel, etc. The

modeling of a crack considering change of stiffness can be divided into open (always



open) and br~thing ctaek (thaI open and close) models. In open crack models. the crack

is always open during vibration. In the breathing crack model: (0 the crack opens and

closes fully during pan of one vibration cycle and remains closed during the remaining

pan of the cycle; or (ii) the crack opens panially during pan of the vibration cycle (due to

the compressive residual stresses left along the wakes of some fatigue crack [3,4]), closes

fully and remains closed during remaining pan of the vibration cycle; or (iii) the crack

remains almost open during a number of vibration cycles (as a consequence of the debris

deposiled in the opening and closing crack. due to the conlinuous grinding action and the

mismatched crack closure [5.6]), and then follows a procedure similar to that given in

(ii). Figure 2.1 shows the schematic of crack closure. Figure 2.2 shows that crack opens

and closes depending on the load applied on the crack, In most of the ~rlier slUdies

carried out on cracked struclUres, only open crack models were used to find relationships

among modal and crack parameters while very few studies considered the breathing crack

model to investigate the non-linearity in cracked structures.

1.1.1 Ope. Crack Models

Decrease of struclllral stiffness due 10 a known open CTIlck is constant. In other words, the

stiffuess of the structure is reduced by an open crack. but stiffuess for this cracked

structure will nOI change dwing vibratory motion. A number of analytical models have

been developed 10 invcsligate the loss of stiffness due to an open crack. The methods

include short beam. reduced Young's modulus and momenl inertia. and fracture

mechanics model.



2.1.2.1 Short Beam Model

The crack in I beam will decrease the cross-sectional area or bmding stiffness £/

resisting deformation. In this model the presence of a crxk is taken into ICCOunl by

introducing a short beam element with a reduced bending stiffucs.s II the position of the

crack (Figure 2.3). The lenglh of the short beam is assumed 10 be an equivalent wKIth w

of the crack. This model ....115 probably the mosl commonly used model until the mid·

seventies [I J. With Ihis model, an analytical solution is easily established and finite

element analysis could be easily clllTied out 10 verify the results.

Kirsmer (7] investigaled the relationship between the changes in the firsl natural

frequency of a simply supponed beam and an equivalenl slol width through energy

considerations. The experimental data was~ to calibrate the exprasion with respect to

the equivalent width of the slot He found thai an equivalent width equal to five times the

actual v.idth of the slot gave reasonable agreement with !he analytical and experimcmal

data. Thomson and Madison (8) used a short beam model fa dcfennine the effect of a

nanow groove or crack on the fkxlll1Ll. longitudinal and torsional vibrations of a slender

bar. However. the authors pointed out thai the procedure would only be applicable if the

equivalent slot width was determined through cxpcrimmlS. Petroski (9) perfonned

experiments on a lhree poinl bending specimen. and then used the results along with

fracrure mechanics theory 10 calculale the equivalenl width of Ute crack.
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Cracks in a beam would cause discontinuities in stress distribution (stress relief around

the crack location) and local defonnations (such as strain, slope, curvature, etc.) in the

vicinity of the crack. Pan of the beam will thus become less effective in misting the load

due to the changes in stress disaibution. The main disadvantage of the short beam model

is that it does not take account of this ineffectiveness of the material and the sudden

change of local defonnations due 10 the crack presence.

2.1.2.2 Reduced Young's Modulus and Moment of Inertia Model

This model is mainly used in cOMection with finite element analysis. Because a crack

decreases local stiffness, it is convenient to assume a change in Young's modulus to

represent the presence of a crack. Young's modulus is a material property. Although any

change in stiffness. due to a crack, may be represented as a change in modulus, it is not a

true change in modulus. This method requires only a simple modification in the finite

element analysis and no new element is required. Moment of inertia reduction reflects the

removal of a local portion of the SlrUCture, and in tum the variation of the local stiffness

ofastructute.

The complex stress/strain disuibution around the tip of crack is not properly modeled in

this model. In general the model is much simple and approximate. Ryner [I] pointed out

that the variation in natural frequencies. with respect to the size of damage calculated by

means of this model, would have poor accuracy and would be typically overestimated.

Yuen (10] used this model to investigate a damaged cantilever beam. He mainly focused

on the sensitivity studies of various modal parameters, which used mode shape and mode
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shape slope. Other researchers using this modd include Pandey el al [II] and Salawu &

Williams [12].

2.1.2.3 Fracture Mechanics Model

A crack existing in a structural member introduces a change oflocal flexibility which is a

function of the crack depth. This variation changes the dynamic behavior of the system

and its stability characteristics. The basic idea or this model is to model the crack zone of

a beam by means of a local flexibility matrix detennined using fracture mechanics

concepts.

To establish the local flexibility manix of a cracked member under general loading,

consider a prismatic beam with a crack of depth (] (see Figure 2.4). The beam has height

hand width b. The beam is subjected to a force or moment p,. Under a general loading,

the additional displacement u" due to the presence of the crack. along the direction of

force p', will be computed using Castigliano's theorem.

To this end. if~ is the strain energy due to a crack, Casligliano's theorem requires that

the additional displacement be [13J

(2.1)

1bc strain energy ~ is given from fracture mechanics considerations as

(2.2)

where J is the strain energy density function, and.4< the crack surface. Therefore
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(2.3)

The flexibility influence coefficient cij is given by

(2.4)

Thus the flexibility matrix wlll be a 12><12 matrix if all the six degrees of freedom al a

point (three displacements and three rotations) are taken info account for the element.

The relationship between J and the stress intensity (aclors. for linear elasticity, is given

by

(2.5)

where I' is Poisson'sralio, E is the modulus ofelastieiry. Kj • Kif and Kill are the stress

intensity factors for mck modes I, nand UI mpectivcly. and

fJ:f' , forplanestr~
ll-v- forplanestraJn

Then, the local flexibility caused by a crack can be calculated by

(2.6)

The influence of the ineft'«rive material caused by the crack is inherent in the expression

for the stress intensity factors and thereby in the local flexibility matrix. Thus a high level

of accuracy can be expected when using this model. The level of accuracy depends on

reliable expressions for the stress intensity factors and detailed description of the

geomeny aflhe cracked zone.

Il



A beam with rectangular cross section has been the most preferred problem considered

by many investigators. The suess intensity factor Kj can be wrinen as for the bending

defonnation ofa beam by

[2.7)

where (7 is a characteristic stress value for the beam. The function f(*) has been given

in different fonns by different authors. Ostaehowicz and Krawczuk [14J use

[2.8)

The function f(*) is dependent only on the crack depth at a specific location and as

such K j in equation ( 2.6) has contributions only at the crack location. The effect of

stress relief on either side ofthe crack is not taken into consideration in this model.

Irwin [15] was probably the first person to relate the local flexibility ofa cracked beam to

the stress intensity factor. Okamura er of [16] detennined the local flexibility for the axial

load and bending moment in a beam of rectangular cross section. They studied the

variation of the flISt natural frequency of a free·free beam as a function of the crack

depth. Ju et al [17) considered a beam subjected to pure bending and used the results in

coMection with damage detection.
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Dimarogonas lUld Paipetis (18) established a SxS flexibility matrix to model the vicinity

ofa crack. To~ion was not included in the model. later Papadopoulos and Dimarogonas

(19) completed the matrix by adding torsion lUld obtained a full6x6 flexibilil)' matrix.

2.1.3 Bre.lbiDg Cr.ck Mooel

The introduction given in section 2.1.1 discusses the various possibilities that may occur

during the opening and closing of a crack. The fatigue crack will open and close

alternatively during the hannonic vibration of a beam or plate. This is called the

breathing crack. The breathing crack model is used to analyze the opening and closing of

the crack during vibration. Up to now very few studies have considered explicitly the

effects of actual opening and closing of cracks on the stiffness and dynamic response of a

structure. In these studies some [20,21) have used bilinear oscillators to simulate the

crack. which is shown in Figure 2.5. It can be seen from the figure that when mass ma is

not in contact with the left spring (equivalent to crack opening) the system vibrates at

stiffuess Ie/, and .....hen the mass is in contact with the left spring (equivalent to crack

closing) the system has stiffness Ie} (lei> kil. In the application to a cracked beam, the

beam is assumed to have twO characteristic stiffnesses., one having a larger value when

crack is closed and the other having a smaller value when the crack is open (see Figure

2.6). The instant of crack opening or closing is determined by the stress or strain

discontinuity at the location of the crack; and the opening/closing of the crack is assumed

to occur almost simultaneously. For some portion of vibration period the beam is

considered to vibrate as an WlCracked one; for the remaining portion of the period the

IS



beam vibrates as a beam with fully open crack. The bilinear equations arc solved by

approximate methods or numerical procedures.

Krawczuk and Ostachowicz [22J asswned a time function for the crack opening and

closing during one vibration period (see Figure 2.7). and then solved the consequent

linear equations during small time intervals. Meanwhile. researchers [23,24,25,26J have

used finite element method to analyze the opening and closing crack; and the stiffness of

the cracked section was either calculated from the asswned force.<Jisplacement

relationship or was the same as that of the bilinear model. Due to the complex nature of

the equations and the difficulty of obtaining exact analytical solutions, several researchers

[27.28,29) carried out experimental investigations and used the dynamic response to

identify the nonlinearity associated with the crack opening and closing. It has been

observed that the opening and closing erack makes the cracked seclion stiffer than it

already is; this will indicate the crack depth to be much smaller than it actually is in the

cracked beam. However, these papers have shown that it is difficult to relate the size and

location ofthe crack directly from the measured crack indicators.

2.2 Crack Detection Methods

The crack would change the dynamic characteristics of a structure; therefore, use of such

changes could be a possible way to detect the crack. Based on this principle. many crack

detection methods have been developed: (a) frequency change; (b) mode shape change;
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(cl strain and curvature changes; (d) flexibility change; (e) matrix update method; (f)

nonlinear method; and (g) neural network method.

2.2.1 Frequency C".ages

The natural frequencies of a structure are dependenl on irs stiffness and mass density. For

example. the bending frequencies for a simply supponed beam are given by

(n<)'[E1J'w.'" T -;; . n=I.2.3...
(2.9)

where I is the lengt.h of the beam. £1 is bending stiffness, and # is mass per unil length. It

can be seen that the stiffness changes due to the presence of a crack will change the

natural frequencies of the strUcture; therefore. the monitoring of frequency changes is a

reasonable crack det«tion method. The main reason for the popularity of this approach is

that the natural frequencies are rather easy to detennine with a relatively high level of

accuracy. In facl, one sensor placed on a structure and connected 10 a frequency analyzer

could give the values of several natural frequencies. Further, natural frequencies are

sensitive 10 all kinds ofdamages, both local and global damages.

This sensilivity of a slnJeture 10 a local damage can easily be seen from equation ( 2.9 )

oblained for the natural frequency of linear uncracked beams with consWlt cross seclion

and material propcnies. When a crack occurs. it will lead to a change in the momenl of

inertia I, or perhaps the distribution of mass. and thereby to changes in natural

frequencies.
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It is noticed from equation ( 2.9 ) that the natwal frequencies depend on the square root

of the stiffness. Thus the changes of frequencies might not be significant for a small

crack. This is why some researchers favor other methods. However. using frequency

shifts to detect damage would be much more practical in applications where such shifts

can be measured very precisely in a controlled environment

Another disadvantage is mat any change in the non-structwal mass or stiffness will be

reflected in the natwal frequencies. For example. in offshore platforms damage induced

frequency shifts are difficult to distinguish from the shifts resulting from erosion of soil

around the embedded ponion of the pile or the increased mass due to marine growth.

Therefore. it is importam to record all such changes and take them into account.

The frequency change due to a crack does not modify every natural frequency of a

cracked structure. A natural frequency that does not decrease cannot be used as a damage

indicator. but could be used to identify possible locations of the crack. This is probably

due to the fact that the damage is located at a nodal point for that mode shape and the

measurements will most probably indicate unchanged values (for that frequency).

precluding the possibility for identifying the frequency shift. For example, if the third

frequency remains unchanged for a simply supported beam, the possible location of the

crack would be at two narrow areas on the beam around the points where the

displacement of the third mode shape is zero.
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Usually the presence of a crack is related to a decrease in local stiffitess and thereby in

the natural frequencies. However, increase in natural frequencies has also been observed

by Maguire [30]; he reponed that when a damage was introduced in some pre-stressed

concrele beams, Ihe frequencies increased. These increases were attribUled to the fact that

the modulus of elasticity of concrete increased as the pre-stresses decreased.

There are a large numbers of papers related 10 crack detection using frequency change

melhod. Some studies consist of calcUlating frequency shifts from a knO\Nt'l type of

damage. Typically, the damage is modeled malhemalically, and the measured frequencies

are compared 10 the predicted frequencies to delcrmine the presence of the damage.

Vandiver (31,32] investigated the frequency changes in firsl two bending modes and first

torsional mode of an offshore light tower to idenlify damage. Numerical analysis

indicated that changes in the effeclive mass of the tower resulting from sloshing of fluid

in tanks mounted on deck would ptoduce only 1% change in the frequencies of the three

modes being considered. The aulhor also demonstrated that failure of most members, by

removing the member from the numerical model, produced changes in resonant

frequencies greater than 1%, and thus damage in most of the members would be

detectable.

Kenley and Dodds (33] studied changes of resonant fkquencies due to crack in a

decommissioned offshore platfonn. They found that only complete severance of a

diagonal member could be detected by changes in the global modal frequencies. The

19



damage had to produce a 5% change in the overall stiffness before il can be detected, and

1% changes of resonant frequencies for global modes can be detected.

Tracy and Pardoen (34] gave an analysis for compuling Ihe vibralion frequencies and

mode shapes of a composile beam wilh a mid·plane delamination. The beam was divided

into four seclions: above. helow, and on either side ofme delaminafion. in which bending

and axial vibrations were considered. The rransverse deformalions of the seclions above

and below Ihe delamination were constrained 10 vibrate together so that the analysis was

applied to mid-plane. The characteristic equation was solved nwnerically to give

frequencies and mode shapes.

Man et al [35] gave a detailed closed fonn solution for the frequency of a hearn

containing a slot. The aulhor reponed thaI the minimum slot size thai is detectable by

their technique is 10% the hearn depth.

Choy et af (36) used reduced modulus of one or more beam elements to simulate damage.

It was assumed that the first beam element was degraded, and the modulus associaled

with Ihis elemenl was adjusted until the first natural frequency from the nwnerical model

matched the first measW"Cd natural frequency. The process was repealed assuming the

damage to be located in each of the other elements. and also repealed for the second and

third natural frequencies. The location of the damaged $Cction was obtained from the

intersection of flexural rigidily venus element location curves obtained from the iterative
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process using lhe different natunll frequencies. The method could not distinguish damage

at symmetricall0C3lions in a symmetric structure.

Some studies in frequency change consist of calculating the damage paramelers, e.g.,

crack length and/or crack location, from the frequency shifts. Adams el of [37J described

an axial vibration response study to identify the crack from changes in the resonant

frequencies associated with two modes. Srubbs et of (38,39) derived a relalionship

between changes of resonant frequencies and changes of member stiffnesses. Damage

was defined as a reduction in the stiffness ofone of the elements, and could be located by

solving the inverse equation using measured frequencies.

Hearn and Testa 140J defined Ihe ratio of changes in nalUral frequencies for various

modes. The ralio could be calculated using mode shapes and pre-damaged modal

propenies, and Ihe damage was identified using the measured frequency ratios. Sanders et

01 [41} used Stubbs procedure combined with an intemal·state·variable theory to detecl

damage in composites. Skjaerbaek et of [42J studied a mulli.slory reinforced concrete

frame structure and developed a procedure 10 detect the damage using a single response

measurement. Damage was defined as average relative reduction of Ihe stiffness matrix

of the substructures that reproduce the two lowesl frequencies of the whole structure.
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2.2.2 Mode Shpe ChaagK

A crack will cause a local change in the derivatives of mode shapes at the position of the

damage. This has led 10 the application of crack detection by the mode shape change

method. However. to estimate correctly the mode shape, one needs to measure responses

at a large number of locations. Thus the instrumentation requi~d and the duration of the

measuremenl session will increase considerably if a detailed mode shape has to be

estimated. This is probably the main disadvantage in using the mode shape method.

West [431 prescnted the first systematic use of mode shape information for the location of

structural damage. In his study. he used the modal assurance criteria (MAC) to delermine

the level of correlalion be""'etn modes from the test of an undamaged space-shuttle-

orbiler body flap and the modes from the test of the flap after it had been exposed to

acoustic loading. The mode shapes were panilioned using various schemes. and the

change in MAC across the different partitions was used to localize the suuctural damage.

The MAC-value between two eigenvectors ~ and ~ was defined as

(2.10)

The MAC-values express the correlalion between two sets of estimates for the same

mode shape. A value equal to 1 indicates a full correlation.
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Rizos et at [44J considered the aansverse vibration of an Wlcracked beam with an open

crack.. The beam was divided into two standard slender beams by the crack. The

compatibilily condilion between Ihe two sections was derived based on the crack srrain

energy function. The result was a system of equations for the ~uencies and mode

shapes in tenns of crack length and location. To detennine the crack length and position.

the beam was excited at a natural frequency, and vibration amplitudes were measured

only at two locations.

Fox [45] used "Node line MAC", which was based on the measurement points close to a

node point for a particular mode, to detect the crack and found it to be a more sensitive

indicator of changes in mode shape caused by damage. Graphical comparison of relative

changes in mode shapes proved to be the best method for detecting the damage position

when only resonant frequencies and mode shapes were examined. A simple method of

correlating nodal points (of modes) with the corresponding peak amplitude locations was

shown to locate the damage.

Liewen and Ewins [46] suggested the so-alled coordinate modal assurance criteria

(COMAC), as an improvement of the MAC·factor, to detect the damage. The COMAC

for point i of the beam, between twO sets ofmode shapes Ill" and 418, is defined as

COMAC(i)
[h~, ¢~,I]',.,
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where N is me number mode shapes. Thus. me COMAC compares the two sets of mode

shapes in a point-wise manner.

Ko et al (47] used a combination of MAC. COMAC and sensitivity analysis 10 detect me

damage in steel framed structures. The sensitivities of the calculated mode shapes to

panicular damage wtrt computed to determine which DOF were the most relevant and

then wm: used in COMAC. Mode pairs that were used in CQMAC were selected by the

analyses of MAC. Results from COMAC were used to identifY the damage.

Kam and Lee 148] presented an analytical fonnulation for locating a crack and

quantilYing its size from the changes in the vibration frequencies and mode shapes. The

first-order Taylor expansion of the modal parameters in tenns of the element parameter.;

was used for fonnulations. The reduced stiffness was used to locate the crack. The crack

length was then detmnined by considering the change in strain energy due to the

presence of the crack. Salawu and Williams [12. 49J compared the results of using mode

shape relative change and mode shape cwvature change to detect damage and pointed out

that the most important factor was the selection of the modes used in the analysis.

Cornwell et at [50J presented a strain energy method for plate-like structures. The method

only required the mode shapes of the structure befote and after damage. The authors

pointed that the algorithm was effective in locating areas with stiffuess reductions as low

as 10% using relatively few modes.
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2.2.3 Stnia .ad Curnture Mode Sb.pe Chinget

Quite a few researcher.; have used the changes of strain or curvature to detect cracks.

The changes were found to be local and sensitive to cracks and also convenient to

measure. For beams the strain and curvature at a point are relaled by

(2.12)

.....here £ is the strain, p the radius of curvature, and I( the curvanue, at the point under

consideration.

Pandey ttl af (11] computed the changes in curvalure mode shape in a beam by FEM and

reponed thai the curvature change was a good damage indicator. The curvature values

were computed from the displacement mode shape using the central difference

approximation for mode i and degree of freedom q

(2.13)

where II was the length of each orlhe two elements belween the DOF (q./) and (q+1).

Stubbs el 01 [5 IJ calculated the change in modal strain energy defined by the curvature of

measured mode shapes. For a linear elastic beam, the damage indicator for the prll

clement could be written as

(2.14)

25



where the uip lerms were measures of the experimentally determined fraclional slrllin

energy for mode i between Ihe endpoints of element p, denoted by a and b. !be

superscripts d and u indicate the damaged and undamaged specimens. For a Bemoulli-

Euler beam, the fractional slrllin energies of undamaged and damaged beam were

eXp!6SC<lbyaulhorsas

. (~'('Jlf d<+ %,'(xi/,f d<1
u.: (%,'(Xlr.f d<1
, (~'(x>J:f d<+ %,'(41 d<1

u." [%,'(xJ!f d<1
(2.15)

The value of 4. with the largest magnitude would ir:dicate the member p which had the

probable damaged seclion.

Swamidas and Chen (521 analyzed the changes of strain FRFs to delect the crack in a

tripod tower platform. Artificial saw cuts were made 10 simulate the crack. AI each cut

the suains, accelttalions and displacements were measured and the ttansfer fwK:tions

were computed. The governing equalion used in their study was given by

(-W'[G]+[H]){<1"'JI" {F(",JI

A theorelical expression ofthe slrllin responses was given as

,: [~'IIAr'[~I{F}:[H']{F}

(2.16)

(2.17)

where [W] was the strain tranSfer function, ~. the strain mode shape, rp the

displacement mode shape, and [AJ=(-cuZ[M,I+[K.lt'. The authors demonstrated that
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the strain transfer function cfwlged by around 60% when the crack grew through ~

thickness, while accclmlllion and displac:cmcnl transfer functions were no! influenced

much by the crack developmenl and g:nn'I1h.

Chance et 01 (53J found that numerically cakulated curvalUte from mode shapes resulted

in wwxeptable errors. They used measured strains instead to dcnoIe curvaturr direclly.

which dramatically improVed results. N....,osu et oj (54} evaluated strain changes

generated by Ihe presence of a crack in a tt1bular T.joint. They found these changes (() be

much greater than frequency shifts and were measurable even at a relalively large

distance from the crack.

2.2.4 F1eJ:ibilityCII..Cts

The flexibility matrix is the invCf$C of ~ stalic stiffile:ss matrix for a str\JCtUre. The

flexibility matrix relates~ applied static fort:e and resulting struetur.tl displacemenll$

I.) -(A)IF)
(2.18)

where [A] is the flexibility mauix. in which each column rqH"e5Cnts the displacement

pancm ofstruelUte associaled with a unit fora: applied 1.1 the associaled OOF.

The structural vibration responses can be expressed in flexibility matrix fonnat as

[AJlMll'l+ 1.1 • [A)IF}
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Using the nonnalittd displaccmenl mode shapes [~J and natural frequencies [OJ. the

flexibility matrix is given by

(A)-("Ul>r'(")' (2.20)

Generally only !he firsl few modes ofthe suucture. typically the 1o~"CSt.frequency modes,

1ft measured; 50 the above fonnulalion is approximale. Tbe synthesis of the complete

SIatic flexibility matrix would require the measurement of ,II mode shapes and

frequencies.

In principle, the damage is detected using the flexibility malrix by comparing the

flexibility roamx obtained from the damaged structure to the flexibility matrix obtained

from the undamaged structure. It is obvious that the sliffness matrix could also De used 10

detect damage in , similar manner. From die above equation, il can De seen that the

flexibility has an inverse relationship 10 the square of !he frequencies; therefore. the

measured flexibility matrix. is morc sensitive 10 changes in the lower frequency modes of

lheSIl'UCtUI"e.

Pandey and Biswas [55} detected and located the damage by using changes in flexibility

of the SIl'UCtUre. lbeirnumerical and experimental results showed that properestimalcs of

the damage condition and the location of damage could De obtained from just the firsl

two measured modes of the structure.
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Toksoy and Aktan (56J computed the measured flexibility of. bridge and examined the

crnss-sectional deflection profiles. They found thai anomalies in the deflection profile can

idmify the damage even wilhout. baseline data set.

Mayes [57] measured flexibilily from the results ofa modal test on. bridge 10 locale !he

damage. Zhang and Aktan (58) used the tmifonn load flexibility to cakul.l1e the curvature

of the uniform load surface which was appropriale 10 identify the damage from the

author's view. The unifonn load flexibility matrix was COn5lrUCted by swnming liIe

columns of the measured. flexibilily mattix.

The presence of crack in a SU'UCtUre would change sttuefW1l1 modal matticc::s consisting of

mass, stiffness and damping contributions. In lhis method, lhe updaled matrix is obtained

by modifying the original modal matrix 10 reprodLlCe as closely as possible the mea51Rd

SUllic or dynamic response from the data. The crack is detecled by comparing the~

matrix 10 the original correlated matrix. To solve for the updated matrix. a consttained

optimization problem is usually developed based on the stn.K:tUr21 equations of motion,

the nominal model and the measured data.

The structural equalions of mOlion of an undamaged structure for a n·DOF system are

given as [2]
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(M"II;j+[C")I,j +(K'lIxj = If(/)}

The eigenvalue equation for the above equation is given by

«A;I'[M"}+(A;I(C"j+(K"))WI. = (O)

(2.21)

12.221

where l: and (;-) j are the ,JJt eigenvalue and eigenvector of the undamaged strlJCtUrt.

Let A.~ and {;"l i stand for the eigenvalues and eigenvectors corresponding to the

damaged structure. Substituting these quantities into the above eigenvalue equation will

give

(2.23)

where lEI, is defined as the modal force: error, or residual force. for the l~ mode orthe

damaged structure. This vettor represents the hannonic force excitation that would have

to be applied to the undamaged structure represented by {MU
]. [Cj and [KUj at the

frequency of l~ so that the structure would respond with mode shape h~4};. For the

damaged structure, the eigenvalue equation can be expressed as

(2.24 1

where the damaged modal matrices are defined as the modal matrices of the undamaged

structure minus a perturbation

(M'j=(M"j-(<lli)

(C'j=(C'j-(oq

(K'j=(K")-[4Kl
( 2.251

Substituting the above equation into the eigenvalue equation for the damaged structure

yields
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«J~)'[M' -dM]+(J~)[C -&C]+[K" -M]){~'}, ={OJ

Moving the perturbation lenns to the right side ofthe equation then yields

(2.26)

(2.27)

The left side of this equation consists of known quantities and has previously been

defined as the modal force error. Thus we have:

«J~)'[<lli]+(J~H&C]+[M]){~'}, = IE}, (2.28)

The above equation is the basis for solving the modal malrix for damaged structure.

Liu [59J used the optimal update technique 10 identify the damage in a truss structure.

The author reponed that if sufficient modal data art available, the elemental propenies

could be directly computed using the measured modal frequencies and measured mode

shapes. The method is used to locate the damaged member of a truss structure. using the

first four mea5W"ed modes.

Kim and Bartkowicz [60] dc:monsrrated the damage detection capabilities of the matrix

update m~od fOf a three dimensional bUSS structure. The numerical and experimental

results showed thaI the number of sensors is lhe most critical parameter for damage

detection, followed by the number of the measured modes.

Doebling et af [61] presented a method of selecting vibration modes for finite element

model update. The modes were selected using the maximum sttain energy stored in the

damaged structural configuration. The authors pointed thai these modes provided more

infonnation about changes in the structural load paths resulting from damage. However,
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this procedure required accurate idenlification and mass nonnalization of the damaged

stnlCtUl't'smodeshapes.

2.2.6 Noaliaur Metllod

Shen and Chu (20) used a bilinear crack model (Figure 2.5) to deal with the faligue crack

poslUlated to open when the normal suain near the crack tip was positive. and to be

closed otherwise. The stress, strain and displacement disttibutions were asswned in the

cracked beam, considering the crack contact effect. Using a varialional theorem. they

obtained !he equalions of mo!ion and associaled boWldary conditions for the vibra!ion of

a uniform beam containing one fatigue crack. A bilinear equalion of motion for each

vibration mode of a simply supported beam was fonnulated using a Galerkin's procedure.

The dynamic response of the bilinear equation Wlder a concentrated forcing excitation

was calculated through a numerical analysis. A clear nonlinear behavior was found on

time histOf)' and frequency spectrum for each vibration mode. The authors pointed out

that the change in the dynamic behavior could be used !o deduce the size and location of

the crack. Ho....-ever. the authors do not describe the details of how to consider the effects

of crack closing in the numerical analysis.

Chu and Shen [21) used two square wave functions to model stiffness change and

proposed a new closed-form solution for bilinear oscillators under low-frequency

excitation. The equation of motion was given by
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(2.29)

where: w, and w: were frequencies corresponding to two stiffuesses (one for crack

opening and one for crack closing), and ',(l)and ;:(t) were two square wave functions

which were defined by (see Figure 2.6)

;,(/)::{~
for /./>0

for u<O
(2.30)

(2.31)

lbc proposed solution provided the specb'al pattern and the magnitude of each harmonic

component for a damaged rectangular beam according to the size and location of the

crack. The authors suggested that this procedure was a possible crack detection approach

considering the spectral response under low frequency harmonic excitation.

Collins. Plaut and Wauer (62) used the bilinear model to consider the crack closing and

opening in a shaft due 10 its rotation. The crack was assumed 10 be open when the

elongation of the all the points on the crack face was positive. Otherwise. the crack was

considered closed. Six coupled equations were obtained for the rotating circular shaft

with simply supponed ends. Galerltin's method was used with a two-term approximation

for each of the six displacemtnts which resuiled in twelve second-order ordinary

differential equations. Then the twelve equations were solved numerically by the Adams-

Moulton leChnique. Time histories and frequency spectra were compared for shafts

without and with a crack for which the crack depth was one-fifth of the shaft diameter.

The responses to a single axial impulse and periodic axial impulses were: also determined.
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The procedure appeared to provide an effective means for detecting cracks in rotating

shafts.

Friswell and Penny [631 presented an equivalent one degree of freedom nonlinear model

of a cracked beam vibrating in its first mode. The variance of the stiffness due to the

crack closing and opening was detennined by analysis of vibrational time domain signals.

The crack closing or opening depended on the sign of the curvature of the beam at the

crack location. Analysis of the frequency response funclion for the beam vibration. under

impact and sinusoidal excilations, showed that it was not possible to detect the two values

of effective stiffness.

Abraham and Brandon (64) used Ihe time varying connection matrices representing the

interaction forces at crack surfaces to consider the crack opening and closing. The crack

became the boundaries of sub-intervals over which linear equations governed the general

motion of the system. A Timoshenko beam under transverse and longilUdinal vibrations

was invesligated. The authors assumed that the system was under steady state motion and

the connection matrices were periodic functions with respecllO time. Thus the connection

matrices alternated between two values, corresponding 10 the cases when the crack was

open and when it was closed (intact beam). Then the connection matrices were expressed

by Fourier series. The solution was obtained by truncating the Fowier series. which gave

approximaleresults.
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Krawczuk and Ostachowicz [22J presented a discrete-eontinuous rnc.del of transverse:

vibrations of a beam wilb a closing crack. The local stiffuess al the position of the crack

was calculated on the basis of fracture ml:chanics concepts. In ordl:t' to takl: inlO account

thl: crack opening and closing, the authors used thl: assumption that the depth oflhl: crack

was subjecte:d to variations in timl: according to the following relationship (Figtu"l: 2.7)

a(t) = 0o(l-sin(llt»). for tE (0, T./2)

a(t)=Do ' fortE(T,/2,T>
(2.32)

whl:re n is Ihl: vibration ~urncyoflhe beam and T. =211"/0 is Ihl: period of beam's

vibration. DLIl: to thl: crack opening and closing which raultl:d in variations of thl:

stiffuess or fkxibility in thl: planl: of the crack, thl: authors used small timl: intl:rvals of

vibration I:quations in which thl: stifl'hl:SS could be assuml:d to be constant Using thl:

results in one interval as the initial conditions fOf next interval, the procedw-e of solving

the open crack vibration in a beam could then be used to solve the problem.

%.2.7 Neuul Network Metbod

Neutral network methods have been developed only during the recent years. They aim at

locating and sizing the damage in complex stru.:tures. The most popular method used is

the multi-layer perception concept (MLP) trained by back propagation, which is usually

called the backprop neural network. Figure 2.8 shows a typical two-layer hack-

propagation Ill:twork.
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Neural networks are computational models inspired by me neuron architecture and

operation of the human brain. They were developed to mimic me pattern recognition

capabilities of the human brain. The strength of neulr.l1 networt solutions lies in meir

pattern recognition capabilities. A neural network is an assembly of a large nwnbeY of

highly COMected processing units, me so-called nodes or neurons. The neural networks

are capable of self-organization and knowledge acquisition. Neural networks "learn"

from examples and exhibit some structural capability for generalization. Training consists

of providing a set of known input-output panerns to the network. The outputs of ooe layer

(nodes) are multiplied by the weights, and summed, and shifted by a bias. Then they are

used as inputs to the next layer. The network iteratively adjusts the weights and bias by

minimizing the error between the predicted and measured outputs so as to obtain me

desired outputs with a requested level ofaccuracy.

Kudva et oJ [6SJ used a backprop neural network to detect the damage in a stiffened plate

with a 4x4 array of bays. The damage was modeled by cuning holes of various diameters

in me plate at the center of the bays. A static uniaxial load was applied to me structure,

and the strain gauge readings were taken from elements in the bays. The neural nerwork

was used to identify the map from the strain gauge data to the location and size of the

hole. The structure of the network was chosen to be two hidden layers, each with the

same number of hidden nodes as the nwnber of inputs. The network was trained with 3,

12, or 32 panerns. The authors found thai the above neural network was able to predict

the location oflhe damaged bay without an mor, but there were errors of 50%, more or

less, on the prediction of the hole size.
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Lealh and Zimmerman (66) used an MLP neural netWork. based on a training algorithm.

to idmtify the damage in • fOW"~lcmmt cantilevered beam. Th~ training a1gorir.hm was

designed to fit the data wilh a minimal number hidden nodes. The damage in the beam

"''as modeled by reducing Young's modulus up 109S%. The ncur.tl network was used to

idmtify the map from the first two bending frequencies to lh~ l~v~1 of damage in each

m~mber. Th~ algorithm was abl~ to identify the damage with a m:lXimwn error of3S'!•.

Szwczyk and Haj~la [67] used a coWlter·propagation neural n~lWork to detect damag~ in

a truss struetw'e. Th~ counter'propagation network builds what is essentially an adaptiv~

look-up table from the data. The advantages of the counter-propagation network are lhat

th~ body ofdata does nOI have to be cycled through more than once. The disadvantage of

lhis netWork is that il may take a vet')' Iarg~ nwnber of training points 10 adequately

sampl~ the desired fw'K:tion. In lhis study.lh~ damag~ was modeled by reducing Young's

modulus in the IJUSS mcmbers up to 100%. The error ofvmfication was about 30%.

2.3 Summary

Sev~ra1 models have been developed for "always open" cracks, viz.. (i) A shon beam

model that uses a short beam ~lement with reduced bending stiffiless at the position of the

crack 10 represent the presence of a crack. and whose application. in many cases. leads to

an analytical solution or to a simple finite element analytical procedure; but lhis model

does not take into llCCOWlt the ineffective material and local defonnations in the vicinity
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of the crack: (ii) The reduced Young's modulus and mom~t of inertia model that

as.swnes a change in YOW1g'S modulus or a mnoval ora local portion of tile structure so

as (()~t the presence of a crack; bw the complex smssISb'3.in disaibution around

the tip of crack is not considered in this model: and (iii) The fracture mechanics model

that computes the local flexibility/stiffuess terms using the cooccpts of fracture

mechanics. The decrease in the magnitude of the tmns of the stiffness matrix rellecrs the

presence of the crack: the model has been mainly applied to beams or tJ'USS struc:tures,

and the struerure is divided into substructureS by the crack. The crack is modelled into a

bending or torsional spring which connects substructul'eS: however, the actual beam

stiffuess is continuous and the model does not consider stress relief at crack surfaces.

For crack opening and closing, only a few studies have been camed out. in which

nonlinear crack models have been developed. The bilinear oscillator is the mainly used

one. In this model, the beam is asswned to have two characteristic: stiffuesses. one having

a larger value when crack is closed and the other having I smaller value when the crack is

open. The crack is asswned fully open and fully closed, a1temalively. The instant of cradt

opening or dosing is determined by parameten such IS the stre:ssIstrain discontinuity at

the location of the crack..

Based on the above models, several crack detection methods have been developed. They

include methods based on frequency changes, mode shape changes. strain/curvature

mode shape changes, flexibility changes, matrix updates and neunlll network. The

frequency change method uses the changes of natun.I frequency of structures to identify
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lhe crack. The natural frequency is a global parameteT in structural vibn.tion. and is easy

to obtain from measurements. However, the changes of frequencies will be small if the

crack is not big enough. This would make the detection a bit difficult. The mode shape

changes method uses the changes of mode shapes to detect the crack. This method is

sensitive to the crack due to the local derivative changes ofmode shapes at the position of

a crack. However, the instrumentation required and the durntion of the measurement

session will increase considerably if a detailed mode shape has to be estimated. Strain

mode shape and curvaturt mode shape changes methods are similar to the mode shape

change method; but they use more sensilive pararnelm such as curvature, strain and

mess. Other crack detection methods are generally based on the measurement of

frequencies and mode shapes.

To model the crack bener, this sNdy will develop a continuous beam analysis approach.

which considm the continuous stiffness and stress/energy relief close 10 the crack

surfaces. Due to the complex disaibution of streSSeS and plastic defonnation around the

crack tip, it is difficult to analyze the vibration of a cracked structwe by the use of stress

functions. Energy method is exclusively applied in general vibration analysis 10 derive

the equations of motion. Energy approach in fracture mechanics provides an easy way to

calculate energy release of a cracked structure, and would become an effective tool for

the development of the model. Crack detection will be investigated in this study for

developing bener procedures for crack size and location identification.
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Figure 2.2 Crack Opening and Closing (Newman [68]. Backlund (69))
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Figure 2.] Short Beam Model

"

Figure 2.4 Beam element with a lranSverse crack under applied forces
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Figure 2.5 Bilinearosc;I]afor
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Figme 2.6 (a) Free vibration ora bilinear oscillalor;(b) Periodic square wave function ;1;

(c) Periodic square wave function ;1'

42



p!l

Figure 2.1 •• Discretc-conlinuous model of cantilever beam with crack: b. model ofdtplh
changes of crack as a time fune;tion.
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Figure 2.8 Two layer back propagation network
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Cbapter 3

Basic Tbeory

In dealing \lith any problem related to vibration and diagnostics, basic equations of

mOlion are fonnulated by considering the d)1lart1ic rquilibriwn or total energy of the

system. and equations are solved in time, frequency or laplace domain; in this study,

Laplace and frequency domains are considered. For cracked beams considered in lhis

study. the resulr.s obtained earlier for untracked beams are used in the dynamic analysis.

considering both the bending and torsional vibrations of the beam. Differential equations

of motion for cracked beams are quite complicated and often do not have exact analylical

solutions. The Galerkin's method is therefore utilized 10 solve such equations. Since the

structure: is cracked. fracrure mechanics principles are utilized 10 fonnulalC me probltm.

Knowlcdgeof5treSS and mergydetmninarion in crxked struetutes .....ouId be a necessary

prerequisite 10 model cracks in vibration analysis. FOf" forced vilntion ofcracked beams.

modal analysis is carried OUI. The basic theoretical results, used for the above-mentioned

studies, are given in this chapter 10 give a better insight inlo the reading of the subsequent

chapters.
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3.2 Vibration or Beams

Transverse vitnlions ofbc:ams. in which shear deformation and rotary inertia are taken

into accown. are included in the study. Shear deformalion effects are subslantial for

shorter beams. In such a case, the slope of the beam is nOl merely equal to the bending

rotation of the cross .section, but also includes dislortion due to shear. Therefore, the

problem needs to be described by two variables. Consider the element of a beam of

length dx shown in Figure 3.1. Ifw is the displacement of the ccnterline of the beam, ~

the total slope. IjI the slope due to bending, the slope due [0 shear will be [70J

P=%,;-"
The ~lation between the.shear fon:c and shear deformation is given by

Q.J:'GA{J=J:'G{-"+~)

(l.l)

(l2)

where G is the shear modulus. A is area of the cross stetion and J:' is a nwncrical factor

depending on the shape of the cross section. being 516 for a rectangular cross section, and

9110 for acircular section. The relationship between the bending moment and the bending

deformation is given by

M=E/~ax
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where £/ is bending stiffness of the beam. Newton's law for IJ'anSverse and rotational

motion yields

mw=~+ l(x./)
(3.4)

(l.5)

where Q is the tranSverse shear force acting on the element, f(X.I} is the distributed

dynamic load on the beam. ", is the mass per unit length. and J is the mass moment of

inenia.

(3.6)

in which r is the radius of gyration aboul the neutral axis. Subslitution of equations ( 3.2)

and ( 3.3) into equalions (3.4) and (3.5) yields

(3.7)

Eliminaling ". for. constant ClOSS seetion. equation (3.7) will resull in

Ifshear deformation and rotary inertia are neglected, free bending vibmion (wilhout any

applied forces. viz.. /(X.I)-O] for a beam can be obtained from the equation (3.8) as

-£/~:~ =m~:~

..
(3.9)



Th~ solution rorthe abov~ equalioo (].9) is assumed as

w.W(x~-

SubstiNtion or equation (].10) into (].9) yi~lds

The solutioo ror equation ( ].11) is given by

W: C. cosh(h)+C: sinh(h)+C, cos(h)+C. sin(h)

(3.10)

(3.11)

(3.12)

constanlS are det~nnined by th~ use or boundary conditions. For bending vibration or

single span beams. rour boundary conditions are used ror solving the equation ( ].12).

which yield rour algebraic equations in terms OrCh C1• C) and C•. The condition ror th~

existence or a solmicn ror these algebraic equations is that the determinant or these

equations be UfO. This gives the frequency equatioo ror the detmnination or fttquency

flJ. Three cases can be considered ror the solution, viz., (i) both ends simply supported;

(ii) both ends fixed; and (iii) both ends fteely moving in space.

(i) For a simply supponed beam with length I. the four boundary conditions arc:

W(O):W(1) =0

(~:n.=(:':1- 0
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After the application of the boundary conditions. the frequency equation is

obtained as

sin(k/)=O

The mode shape is given by

If':sin(h)

(ii) For a fiKcd-fiKcd beam. boundary condilions are:

W(O):W(/)=o

(~L=(~L =0

FMluency equalion is obtained as

l-cosh(.tl)cOSCk/)=0

The mode shape is given by

IV =sin(h) -sinh(kr) + C~kl)-c~h(k/) [cos(h)-cosh(hlJ
sm(.tll+ Slnh(k/)

(iii) For. free-free beam. boundaryconditioos are

(:~L=(:n.. =0

(:~L=(:~l =0

Frequency cqualion is obtained as

(k/)~il-cosh(k/lcos(k/)l =0

..

(3.14)

(3.15)

(3.16)

(3.17)

(1.[8)

(1.[9)

(3.20)



and the mode shape is given by

W =sin(la) + sinh(h) + c~Jc1)-c~h(kl) [cos(b:J +cosh(la))
sm(kl)+ smh(kl) (3.21)

Discussions on the solutions of equation ( 3.8) are deferred till Chapter Six, wherein a

detailed solution procedure is given for cracked beams considering transverse shear

defonnationand rotaryinenia.

3.2,2 Tonionll VibrltioD

For the general beam such as a rectangular beam, the cross section would not remain

plane after deformation under torsion. The cross section would undergo warping which

generates an axial displacement. Figure 3.2 shows the displacements ofa point P, located

on the body. inyand z directions due to rotation as well as the displacement inx direction

due 10 warping and rotation. The warping function is denoted by ¢(Y,z)and rotation is

denoted by 8. then displacements are given as (71)

,.
u=9a;

1'=-z8

w::y8

Neglecting the axial strain f:D' the shear strains are obtained as

Yq::(~-Z)~

Y.,::(~+Y)~
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Theshearsuesses are given by

(3.24)

where G IS the material shear modulus. The potential energy IS obtained as

(3.25)

where I is the length of the beam. and A is the area of the cross section. From the above

equation, the torsional rigidity could be expressed as

(3.26)

The differential equation for torsional vibration could be obtained as

( 3.27)

where /, is the polar moment of inertia and p is material density.

For a circular beam warping could be neglected, i.e., ;(y,z) z= 0 and I. ~ lp; then one

obtains the torsional vibration equation for a solid cylindrical body as

(3.28)

The solution for the above equation is assumed as

(J=6(x)e'-

'0

(3.29)



Substitution of equation ( 3.29) inlo ( 3.28) yields

(3.30)

The above equation has the following solution

(3.31)

where C I and C! are undetennined constants. Application of ooundary condilions to

equation (3.3 () will yield two algebraic equations for C1 and C~. The condition fOf

exiSlencc of a solution for the algebraic equations is Ihat its coefficient delenninant is

zero. This will give 8 frequency equation which determines natural frequencies. Two

cases are considered, viz., (i) bolh ends fixed; and (ii) both ends free.

0) For a fixed-fixed beam wilh length I, boundary conditions are

8(0) = 8(1) = 0

Frequency equation is obroined as

Sin(~)=o

The mode shape is given by

e=sin(~)

51

(3.32)

(3.33)

(3.34)



(ii) For a free-free or simply supponed beam, boundary conditions are

(~L =(~L =0
Frequency equation is obtained as

~Sin(~)=o

The mode shape is given by

e=cos(~)

(J.J5)

(3.36)

(3.37)

Discussions on the solution of equation ( 317) are deferred till Chapter Five, wherein the

coupled torsional.bending vibration of a cracked beam is discussed in great details.

3,3 Gilierkin's Method

Galerkin's method is the most widely used one oftbe various .....eighted residual methods,

which works directly with a differential equation. It achieves the best approximation by

minimizing the error in satisiying i>. differential equation over the system. For the beam

vibration, the differential equation could be written as

LW(x) = ..l.,u(x)W(x) (J.J8)

where L is a differential operator of order 2 or 4 . For the transverse vibration of a beam,

LW(X)=£/~, ,u(x)=pA, ..l.is eigenvalue, pis material density, A is area of the

cross-section. and £1 is bending stiffness. The solution W(,r) is subject to given boundary
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conditions. The assumption is that the problem does not have a close-fonn solution, so

that one can consider an approximate solution in the form

(].]9)

where Hi are called independent trial f'unttions chosen from a set of functions satisl}1ng

the boundary conditions. Because W"I(.r) does not satisfy the equation (].38), there is an

error at e"ery point This error is called the residual which could be expressed as

(].40)

To reduce the error to the largest extent possible, the coefficients Cj in equation ( ],]9)

are sought such that these values would make the following integral to be zero, i.e,.

, ,
PV,Rd:c '" jW,(LWI.I_A.l.I,uWl.J)d"c '" 0

Substituting equation ( ].]9) into the above equation, one obtains

or in matrix format

where
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(3.42)

(].4])

(].44)
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are constant coefficients. Equation ( 3.42) will consist of" linear equations in C1• C~•...•

C". For the existmc:e of !he solution. the determinant of the coemcient matrix should be

zero. This will yield the nanuaJ frequencies and, subsequendy. the vibn.tion modes.

From equation ( 3.41), we can 5C'C that when the number of trial functions Wix)

approaches infmilY. the only manner in which the integral could be zero is that the

residual irselfiszero, i.e.,

( 3.46)

which shows thac the solution of the equation ( 3.41) converges to the solution of the

differenlial equation. After determination of the coefficients Cj, equation ( 3.39) will

become ~ best solution for the differential equation. Quite often, several properly

selected trial functions will give much accurate solution for the problem.

3.4 Genenl Vibration aad Modal Analysis

Dynamical characteristics for a srructure could be described by a set of vibration modes

and natural frequencies; therefore. vibration analyses for the slrUCtUR. specially that of I

complex sttueture. are usually camed out on discme models.

Invariably. any structure could be modelled as a multi-degree-of freedom system. The

properties of the muhi-degrees-of-freedom system are expressed by its mass matrix (Ml.

stiffness matrix [K]. damping matrix [C) and the forces {O thaclct in the direction of the
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various displacement degr«s of freedom (ul. The mOilon equation for such a system is

given by

{M){iil+[Cl{iil+[K){'1 = If}

Let (4) Jbe the normal modes of the system. For a linear s~em.

1..}'[MJ[..I=I=diogfJ.I.···.!J

(4)t(K][~J=diog(wl: ,w; .···.w;1

(3.47)

(3.48)

The damping matrix is assumed (() be W1Coupled according 10 the following fonnulation

(3.49)

Equation (3.49) is generally satisfied when the damping is a linear combination of the

mass matrix and stiffness oflhe form:

[C]-o[M}+b{K] (3.50)

where 0 and b are real scalar consWlts. and this type of damping is called proportional

damping. For proportional damping or for the case wherein ofT-diagonal tenns in the

matrix (41nCJ[~J can be neglected. we could seI up

[""{Cl["1 =diag(>;."''].-
',=ol(2flJ;)+bllJ,J2

Then equation (3.47) can be uncoupled with the: linear Iran5fonna!ion

{'}-["){q}

which gives uncoupled equafions of the following fonn:
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For free vibnuion, one obtains

(3.55)

1hc: solution for free vibration could be expressed as

(356)

(3.51)

where: Ai and f/J, are constanlS that are detcnnincd by initial conditions. Final response is

obtained using the equation {ul" [4Jllq}. For forced vibration, given by equation (3.54),

wherein the structure undergoes a harmonic motion with frequencyCLI.

q,"Q,eJU

The excitation function could be written as

{fl = {FIe....

Substitution of equalions ( 3.58) and (3.59) into equation (3.54) leads 10

Q, _ • '''I'{F} .
CLI:+2j{,CLI,W-W-

Using equation ( 3.53), the response for forced vibration is given by

M = (¢lIlCLI,: +2J{w,w-oit[¢l)' (FleJ'l'

=(HUw)l(F~J'I'

wh""

(3.58)

(3.59)

( 3.60)

(3.61)

(3.62)



is the frequency transfer response function matrix. H" UCrJ) is the response in degree of

freedom r due to a unit harmonic excitation with frequency llJ applied in degree of

freedoms. From equation (3.62), it can be seen lhat

3.5 Basic Fracture M«h.aia Theory

(3.63)

Stresses in a cracked slIUcrure could be obtained using linear elaslic &acMe mechanics

theory. and could be expressed in terms of complex functions. Using these stresses, the

strain energy distribution can nwnerically be calculated. which will be used in

verification of the model developed in next chapter. Energy consideration based on

Griffith theory is used to investigate the decreaselincrea.se of str.tin mergy during the

C11lIck gro....1h. under different loading conditions (72).

3.5.1 LiMar Elastic Scress Aulysis ror Crxk ProbklllS

An analytic function could be COI'ISIJ'UCted as (73)

Z(z)'" ReZ+ilmZ
(3.64)

where ;;:::: X +iy is a complex variable, Re denotes the real pan of Z. 1m denotes the

imaginary pan of Z. Use ofCauchy'Riemann conditions gives
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ReZ''''Re~:%aReZ :almZ
,r ax ",'

ImZ'''lm~: 31mZ :::_l3ReZ
d:: ax cl).

It can be shown thai

V:ReZ:V=lmZ:O

lnuoducing the notation

I .. fld: '" ReI +ilmi

i= flu, = fl,r=R,i+i1mi

Westergaard defined an Airy function (74]

which would satisfy the bi-hatmonic equation for plane stress problems. viz.,

The streSSeS ace therefore determined by

a'u
(T.:% cry: :ReZ-ylmZ'

a'u
r"'=-iby:-·I'ReZ'

(3.65)

( 3.66)

(3.67)

(3.68)

(3.69)

( 3.70)

(3.71)

(3.72)

For a through crack (length 2a) in an infinite plate, subjecled 10 unifonn equal stress (J in

both directions (opening crack mode or Mode I). shown in Figure 3.3, the boundary

conditions could be slaled as
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a, +it.,. =0 forY"·O. -o<x<a

a. -a, =a forx..y->infinity

(3.73)

(3.74)

It is found WI me following function satisfies the boundary conditions described above.

(3.75)

1nserling equation ( 3.75) into lhc equations ( 3.70). ( 3.71) and ( 3.72). one obcains

stresses for a plane crack problem under uniform Strn.s loading in x and y directions.

a .R{ "" l-y~,j "" 1. ~ a~ U\:p-:;;t

a OR{ "" l..,~[j "" 1' :p-:;r' ox "\p:;t

(3.76)

( 3.77)

(3.78)

The stresses can be calculated nwncrically for linear elastic fracture using the above

equalions. It could be Sttn thai the stresses given by the above equations arc: close to

infinity al the cncIc lips while the real stresses around crack tips would be: limited 10 the

yield stress of the material. bc:ause the local region become plastic under the applied

yield stresses. For stresses of inlCfest. ncar the cruk tip, equalions ( 3.76). ( 3.77) and

(3.78) could be expressed. using polar coordinatc:s, as

a :~COS!!..(I-sin~5in~)
'v2Jv 2 2 2

a1 "~COS!!..(I +Sin~5in~)
.;2Jv 2 2 2
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K, :q.,rrm

( 3.81)

( 3.82)

is the stress intensiry factor for opening mode crack, and 0 is rhe angular coordinate to

the point under consideration (see Figure 3.]).

If!he plate containing die crack is subjttted 10 die uniform stress in only one ()') direclion

(perpendicular 10 the aack). the Airy stress function is sellecled as

(3.8])

whe~

Stresses will rhen be

<7, 'R{~)-y~,J~l-<7
;J:. _0· ih: "1 ,J:. -0·

<7.R{ cr )+Y~IJ cr ), O[;C;! ax "\:r;t:":'

'.'-Y~R{~)
f;1~ ;J:- -0"

(3.84)

(3.8S)

(3.86)

(3.87)

For mode II (sliding mode ) crack. which is subjected 10 pure shear loading in the plane

ofx and y, shown in Figure ].4, the stress function is chosen as
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VII =-yReZ

where

StreSSes are detennined as

a.:=2ImZ+yReZ·

r .. := ReZ - ylmZ'

Srresses near the crack tips could also be expressed. using the polar coordinates. as

K . O( • 38)a :=- ~sln- 2+cos-cos-
• ",,2Jrr 2 2 2

r = ~COS~(I-sin~sin~)
'T ,,2Jtr 2 2 2

K tl =r..[N

is the stress intensity factor for sliding mode crack.

( 3.88)

( 3.89)

( 3.90)

( 3.91)

( 3.92)

(3.93)

(3.94)

(3.95)

(3.%)

For mode In (tearing mode) crack which is subjected to a shear loading in the antiplane,

shown in Figure 3.5, the stress function could be selected as

(3.97)
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where Z·h and)J= 2(1~V) is elastic shear modulus.

The stresses are obtained as

T., =lmZ

T}~ =ReZ

Using polar coordinates. stresseS near the crack tips could be expressed as

is stress intensiryfaclorfortearingmodecrack.

(3.98)

( 3.99)

(3.100)

The crack will consume energy to fonn its two crack surfaces when it propagates. The

energy comes from stored strain energy and/or work done by external loads. The total

porential energy of the system could be wrinen as (72)

n=u-w (3.101)

where U is strain energy and W is work done by external loads. During crack growth,

decrease of potemial energy per unit crack area will be equal to the energy dissipated in

uni! propagation of crack area. Let r denote the energy spent in increasing the crack area,

then we have
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(3.102)

GmenJly strain energy will include elastic energy and plastic energy. The plaslic energy

is genCl1lted as a resuh of plastic defonnalion during crack growth. For brinle malmals.

me plaslic energy would be negligible; therefore Griffith theory gives the definition of

Slrain energy release rate as

(3.103)

",..here if is elastic suain energy. G is al.so called crack driving force. II has been shown

thai the strain energy release rales are related 10 stress inlmsily factors according 10

following relalionships:

G,:¥
.....here E'" E fot plane stress. and £. I_Ev: for plane strain.

G :~
" l

(3.104)

(3.105)

(3.106)

If the crack is subjected 10 a complex loading. related 10 al1lhm: crack modes, the stnin

energy release rale will be

(3.107)

When the crack propagates from 0 10 a, the energy consumed by the crack growth could

be calculaled as
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(3.108)

Io\'here B is the widm of crack swface.

Suppose a beam contains a crack.. and the beam is subjccled to a dead load which is

maintained constan! during the crack gromh. If a crack has propagated 60, say, under a

constant bending moment (due 10 dead-load loading assumplion), me applied moment

will IJerfonn some work W which will not only assist me crack growth but also increase

the structural strain energy (72). Since me externally applied moment remains unaltered

due to the crack growth 60, using Clapeyron's theorem (72J, the work W is twice the

increase of elastic smin energy, and the fmal strain energy of the system is increased.

Figure 3.6 shows the load-displacement response under dead-load asswnption for crack

growth from QJ 10 Ql. The energy before crack growth is rqn:sefIted by the area (OAC)

and after die gfOlo\th by the area (OBD). During crack grovoth (under the constant load P)

the load P performs work given by the area (ABCD). The increase of strain energy would

be (OBD) - (OAC)= (ABCDY2. Mathematical expressions m as follows:

W_£.+W..1lJ.J

£.",W
(3.109)

where £. is energy for crack growth, and I1U the increase of elastic strain energy in a

cracked beam. The final strain energy ofthe cracked beam is
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U.=U+6U=U+£.
( 3.110)

where U is strain energy of the beam prior to crack growth. This procedure is ulilized in

fonnulaling the deformation of the cracked beam.

3.6 Closure

In this chapter, the necessary equations and formulations utilized in the suhsequent

derivations of governing equalions for cracked slruCtuJ"eS are given for easy reference and

reading of me chapters that follow. Chapler 4 utilizes the equations given in section 3.2.1,

3.2.2,3.3,3.5.1,3.5.2 and 3.5.3 10 derive the basic formulations and solulions obtained

for a cracked beam and other comparisons given therein. Similarly other chaplers will be

using the relevant section of Ihis chapter to fonnulate and solve the governing equation

obtained therein.
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Figure 3.\ A Timoshenko beam in transverse vibration
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Figure 32 Displacements ofa point P in torsion ofa non-eircuJarcross section
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Figure 3.3 Mode Icrack under unifonn tensile stress loading
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Figure 3.4 Mode II crack under unifonn ilt'-planc shear loading
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Figure 3.5 Unifonn out-of.plane shear stress loading (Mode III)
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Figure 3.6 Load-displacement response as the crack grows under the dead-load loading
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Cbapter 4

Crack Identification in Vibrating Beams Using Energy

Metbod

4.1 Introduction

As outlint'd in chapter thut. for vibration analyses of cracked btams and possible mck

detection. fracture mechanics procedure is generally preferred [Ij. The procedure

assumes thai a crack occurring in a beam would reduce the local stiffness around the

location of the crack. In using the fracture mechanics model, one type of fannulation

calculates the local flexibilil)' using Castigliano's second theorem as applicable to

fntcture mechanics (18.19).

For better modelling of a mck in the beam. some researchers nave used the variational

principle to develop continuous vibmion equations for cracked beams with asswnplions

of stressesIstrainsldisplacements. Christidcs and Barr (75) first proposed an exponcntial

type: function (crack disturbance function) to modellhc stressislnl.in variation around the

crack zone, in which one parameter was to be detennincd by experiments. Based on the

asswned stress. strain and displac~ent expressions. lhe vibration equations of beams

with symmetrical cracks were derived using Hu·Washizu variational principle [76,77].

Shcn et QI. [78,79] followed a similar procedure 10 invesligate the vibration of cracked

beams with single or symmetrical cracks. solution 10 which was obtained using
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Galerkin's method with many temlS. Recently Chondros and Dimarogonas (80J, using

Christides and Barr's theory as a background nwtrial, have generated some solutions for

the crack functions in vibrations of a aadced cantilever beam using fracture mechanics

principle and Cutigliano's theomn. Displacmlentsand stresseS were assumed as

/I '" -:((1 + !(x,z)Jw(x.l))'

w=(I+ !(x,Z)Jw(X,I)

r .. =(-z+m(x,z)]S(x.l)

". _(_z+m(x.z)]T(x.t)

whe~ !(x.z) and m(x.:) were crack disturbance functions, and 5(x,t) and T(x.t)

unknown functions. The disturbance function!(x,z) was detennined as

(4.1)

(4.2)

where a is crack. depth ratio (a/h), and L is crack location (beam length ;< l.tJ). According

10 their computations. one crack. disturbance function m(x.z) gets canceled and disappear.>

in the final vibration equalion. while the other function/(x.z) seems 10 be constanl along

the beam; this function also tends to inflllity aiong the neutral axis. Such enck

disturbance functions could result in wua.listic displaccmenlSfstresseS. which "..auld DOl

~t the displacements/stresseS due 10 a crack. Laler Chondcos ~t of [81] obtained

me crack function for a simply supponed beam (varying as I function orits distance from

mck), which is given by

(4.3)

where $/(a) is modification function for stress intensilY faclor, which is a function of

crack depth ratio (aIh). It can be seen thaI the crack disturbance function is still infinite at

the neutral axis, which would lead 10 infinite displacements/stresses.
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In this thesis investigation. a continuous vibration theory for cracked beams will be

developed by modeling the energy variation along the beam length due 10 the crack.

4.2 Solid Ro<taaguIar Beam with ODe or More Cracks

4.2.1 kndiDI Stifrness or the Beam witlt • end.

For the uncracked beam. subjected to a bending moment M. the strain cnergy in the beam

is given by

(4.4)

When a crack is formed on one side of the beam. and then it grows from zero 10 a under

a COllSWlI external bending moment. the energy consumed for crack growth. based on

fracture mechanics (sec: equation 3.108). is

(4.5)

where b is the width of the beam. and G the strain energy release rate. For the transverse

vibration of the beam. the crack is mainly subjected to direct bending stresses and the

effect of shear stresses can be neglected: therefore. only the effect of first mode crack

needs to be considered in the analysis. If the shear and transverse learing forces are

dominanl. effects due 10 modes U and 1Il should be considered. This gives the strain

energy release rale as
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G"'~
£ (4.6)

\Il1tcre K, is the stress intmsity flKlOf for first mode crack. and £ is the Young's

modulus.. For a solid rectangular cross-section beam of depth Jr and width b. Kj is given

" (721

K, ". 61.:f F(o)
(4.7)

where h is the depth of the beam; and for o/h <: 0.6 (for higher values of aIh. a tabular

format is given in reference [82J. which could be used in a nwnerical manner). the crack

geometry factor is

(4.8)

Finally using equation ( 45) the energy conswntd in generating the cnlck becomes

(4.9)

D(o)". 1an;~~~)o:

F~(o)",115-4-2.091(*)+9.19(*): -20.574(*)1 +41.243(*,

-69<;)'+98.92(*)' -85.87(*>' +39.2(*)1
(4.10)

If EI,(x)is the bending stiffuess oflhc cracked beam with the crack being always open.

the final strain energy in the cracked beam could be alternatively expressed as

" M
l

U :-[-<Ix
, 2

0
EI,(x)
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where /~(x) is moment inenia of the beam with a open crack. It must be remembered

that under the dead·load as.5Ump:ion. the exlernal dynamic moment appli~ (0 [he beam is

constant over the length of the beam. For other c:a.ses where bending moments vat)' and

War fOfCe5 are present. suitable varialion of bending momenl along the length could be

considered and the derivalions modified; in addition effect due to mode II cracking

should also be incorporated.

From fracture mechanics eonsiderations., the stresscsfsmtins are highly concentrated

around !he crack tip and the crack region. and reach !he nominal stress al a location far

away from the crack. So it can be asswned Ihat the increase of strain energy due to crack

growth. under constant applied moment. is concentraled mainly around the erack region.

In order 10 represent mathematically the smin energy variation along the cracked beam

length, the distribution of E. (equallo the increase of strain energy) along the beam is

postulaled (by the pcesent researcher) lO be similar 10

~

(x-, )-1+
k(Q)a

whetc Q(a.c) and /e(a) are terms to be detmnincd such that

E. '"' J Q(Q.C) , d.r

'1+(=)-
k(Q)Q

(4.12)

(4.13)

and c is the distance to the crack location from one end of the beam. Expression (4.12)

has the maximwn value at the crack location (x - c) and approaches zero far away from

the crack, which indicates thai changes of srrain energy occur mainly around end. and
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very little away from the: aack location. This makes the: strain enet'&)' variation to be:

ronce:ntrate:d ~Iy around !he: crack region. From equations ( 4.9) and ( 4.13). one:

obtains

SubslilUtion Ofe:qualions (4.4). (4.11) and (4.13) into equalion (3.110) yields

.!.I~>:.!.f~+I~
2 0 £/,(x) 2 0 £/ I [x-c)"1+

k(o)o

(4.14)

(4.15)

From the above equation. the modified bending stiffness of the cracked beam is obtained

£/
£I,(x};;; 1+ £/R(a.c).

1+[.!..:E.)"
k(o)o

At the location of crack, i.e.• alx - c. one has

£/ bh'/12 bh'1I2
£/,1 ... ;;; b(h..I.... }J /12 =: b(h-a)' 112
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",'here hOOfI_ is the equivalent height of the beam at the position of the aack. The n

pven by equation (4.16) and equivalent height (h.,). computed thereby, will vary along

the length of the beam. Using equations ( 4.16) and (4.19), one obtains

(4..20)

(The quantity 1._..J..!..=.!...)+ j~)} is approximately equal to 1t when the
..........\ ...(0)0 \.t(a)a

crack is not near the ends of the beam]. It can be seen that ifno crack is pres~nt in th~

beam, i.~.. a '" 0, th~n th~ parameters O(a) '"' 0, Q(a,c} .. O. R(a.c) - 0 and k(a)- 0; from

equation ( 4.16) the equivalent stiffness fl. becomes the stiffness oflhe uncrack~d beam.

The variations of normalized equivalent stiffness and nonnalized equivalent height (h"l)

of the cracked beam (along its length) are shown in Figure 4.1 (calculated from equation

(4.16»).

To verify the reasonableness ofenergy distribution given by equations (j.lIO) and (4.1]),

the strain energy along the x.-uis in a aacked plate (width of4O units and unit thickness)

under uniform tension stress (plane stress) is calculated based on equations (3.110) and

(4.1]). At the same time. strain energy is comPUIed nwncrically using Westergaard's

method (complex functions. equations (].84) to (].87)) [74] used in linear elastic fracture

mechanics. The two curves of ~nergy distribution arc ploned in Figun 4.2, which are

close to one another except near the crack zone. It can be seen from Figure 4.2 that.

outside the crack influence zone, the energy distribution is nearly constant, and the

change of strain energy (due to both formulations) will be nearly zero (outside the crack

75



influence zone) [assumed in equation ( 4.13)]. Thus, the increase of str1lin energy under

dead-load is quite conccntr1lled around the crack lone.

Based on elastic fracture mechanics approach, the SIreSses near the crack tip lend to be

very large or infinite. so does the strain energy. But. in reality, stresses and strain energy

cannOI approach infinity, and consequently plastic defonnation occurs around the crack

tip; therefore, a part of the increased strain energy under the dead-load loading is stored

as plastic energy at the crack tip. The magnitude of the plastic Strain energy is difficult to

calculate and is dependent on the stress cycling and the consequent residual strain left

around the crack tip. Since cracking in beams can be characterized as plane stresS

cracking, under cyclic loading the plastic energy SlOred around the crack tip is very small;

hence the contribution from crack tip plaslicity 10 the energy stored in the beam is rather

small. Consequently use of LEFM principles 10 characlerize the crack phenomena is

valid. Also using equation ( 4.l3),lhe strain energy is assumed to be concentrated around

!he crack tip, and the lotal energy increase is set almost to the correct value. The final

strain energy distribution would then be a reasonable one. From Figure 4.2, the difference

in energy between the exact solution and the developed approximate solution is small.

and the closeness of energy concentration around the crack tip and total increase of

energy are also guaranleed by equation ( 4.13); therefore. the crack energy function

represented by equation ( 4.13) is considered 10 be valid for the problems investigated in

this thesis.
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Under a constant external bending moment M. tM energy supplied for the growth of two

cracks is

the two cracks. Similarl)'. for the transverse vibration of the beam. the first mode crack

eff«t is dominant; and onl)' the influence of the first mode crack is considered in this

stud)'.

(412)

lbe two Stress inlensiry faclors are given as

whett for a,lh < 0.6 and alit < 0.6 crack geometry factors are

F(D,) "" 1.12 -1.4(';)+ 733(';): -13.8(7;-)l + 14(7;-)'

F(D:) "" 1.12-1.4(~)+ 7.1J<-t)1 _13.8(~)l +14(-t)'

Finall)'equalKln (4.21) becomes
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(4.26)

The function F.(o) is given in equation (4.10). Following the earlier derivations given in

equation (4.9). for each crackgro",1h, the energy consumed can be expressed by

(4.27)

when the cracks are close logrther. the energy consumed in cnck fonnulation cannoc be

superposed near the crack region, since the interaction is nonlinear. Hence a more

rigorous analysis is needed 10 include the crack inlenction effects. If the two cracks are

not very close 10 each other so Ihal the stress field for each crack could be treated

separately using fracture mechanics theory, Ihen the increase ofsrrain energy due to crack

growths under constant eXlernal bending moment could be assumed to be distributed in

the beam according 10 the following functions (similar 10 the case for one crack),

~ and Q:(Ql'C~)

I ( s-<,)' I ( s-<, )'
+ K,(Q,)a1 + *:(0:)0:

(4.28)

",ith c1and c: being dislanCeS 10 the crack localions from one end of the beam. Using

equalions (4.27) and (4.29), one obtains
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(430)

~d

(4.31)

Substitution of equations ( 4.4). ( 4.11). ( 4.21), ( 4.25) and ( 4.29) into equation (3. t 10)

yields

~i~.~i~+i~+i Q,(a,.<,) .dx
2,£/< 2, £/ , [x-<)- , [x-<.)-1+ --'- 1+ ----

k,(o,)o, k:(a1)a:
(4.32)

From equation (4.32), the bending stiffness of the beam with two cracks is obtained as

(4.33)

(4.34)

( 4_ll)

AI the two cntCk locations, i.e., atx· c/ andr - c/. one has
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(4.36)

where £/~I and £Ie! are equivalent btnding sliffilesscs at each of !he crack positions,

respectively. Using equations (4.33) and (4.36), one obtains

k (0) 3JrF.(0IXh- QI)IQ, k (0 )_ JJrF.(Q:)(h_Q:)J o:
1 1 [hJ (h o,))jh ' :: W-(h-o:)J]h

(4.37)

fit is 10 be noted that Ie, -ell» 01 or 0: when !he two cracks are assumed 10 be far

apart].

The variations of normalized equivalent stiffness and depth (along !he beam length) for

two cracks are shown in Figure 4.3. It can be seen that the effect due to crack interaction

is marginal unless the crack becomes large, viz., o/h > 0.5. For more cracks on the beam,

the same procedure could be uliliud to compute !he bending sliffness of the cracked

beam, if the cracks do nOI inleract considerably with one other.

4.1.3 Traasvene VibutioD EquatioDs (or Cncked Beams

For an Euler beam, the vibration equation can be expressed using Newton's approach as

a' [ a'w] a'wa;:r £(a;r +m~=O
(4.38)

where m is the mass density along !he beam length; in spile of the crack, Ihe mass m per

unit length will remain conslant throughout the length of the beam.
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Assuming tilt' sepm.rion of variables concept, let ..·::W(X)H(f). and substituting into

the above equation ( 4.38), one obtains the ctwacteristic equation as

d' [ d'W]d;Z £I, dx:: +mfl:J;W =0

where aJ~ is the narunJ frcqlJC'OC)' ofthe cracked beam.

(4.39)

To solve for natural frequencies and mode shapes, a four-tenn Galerkin's method is used.

For a simply supponed beam. the trial funclions are selected as [see equation (3.IS)]

.....here Cj are coefficients, and

w, = sin(T) ; W: = sin(T)

w,zsin(T): w.=sin(T)

(4.40)

(4.41)

The above four funclions are the exaet functions of the uncracked simply-supported beam

for the fim four modes. For a fixed-fIXed beam.. the trial functions are sclccled [831, from

theexaet fltSl foW"mode functions of the uncracked fixed bea.!1'l [seeequation(3.18)J, as

(4.42)

where C,arecoefficients,and
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If, =Sin(T)-Sinh(l!f>+B,{Cos(T)-COSh(.!¥.»

cos(~)-cosh(~)
B - / /

, Sin(T)+sinh(!f)

p,=4.73, p~=7.8S3, p)=IO.996, p.=14.173

(4.43)

( 4.44)

To \'erify the convergence of Galerkin's method, more terms of trial functions arc also

used in the calculations. Table 4-1 and Table 4-2 show the tnquencies ob!ained by the

four lemu Galerkin's method and eight renns Galerkin's method for a cracked beam (one

crack) with a crack depth ratio of a/h - 0.25 and a!h - 0.5, respectively. The beam length

is 3m and the crack is localed al d/=0.8. The results indicate thai the four lemu

Galerkin's melhod has given accepuble frequencies, with minimal mon. II is also

observed from the resuhs shown in Table 4-1 and Table 4-2, th.al for the second mode of

vibration the error obtained for a simply supported beam is greater than thaI for tilt' fixed

beam. This is due to the fact that the point of contta·flexure for the fixed beam (for the

second mode) occurs near the crack location and consetIuenrly the Cf1ICk presence does

not influence the second frequency significantly; whereas for a simply supported beam,

the presence of the cnck affects the tmjuency significantly and as such a larger error is

obtained for the second mode.
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In ordtt to verify me meory. vibration experiments for the cracked beam were carried

out. The prismatic beam made of aluminum had • span length of 650 mm and a

re<:langular cross·scction of 214"214 mm. Young's modulus of elasticity was £ .. 62.1

GPo, (supplied by me manufacturer) and malerial density was 2700 tglmJ
; also the

varialion in the cross section areas (across me whole beam length) was observed 10 be

small and as such for the lest it was assumed 10 be conslant over the whole length. The

crack ....'&$ introduced by making fine saw cutS (O.4mm wide) al the middle of the beam

(dl z O.5) and perpendicular 10 the longitudinal axis; this allowed the crack [0 remain open

always. The beam was simply supported at two ends as shown in Figure 4.4. From Figure

4.4 it can be setn that the ratio of bending stiffness between the thin c:onne<:tion and the

remaining portion of the beam on the fixed end is 11512 [i.e.fI/8/J and ralio of axial

stiffness between the two is JIB. Since only bending frequencies are considered in the

study. the simply supported boundary conditions are almost properly simuLated. The

excitation was carried out by an e1tctrodynamic shaker at the center of the beam. Seven

acceleromtfm were evenly placed on the beam. Dual Channel Signal Analyur (B.tK

type 2032) and the STAR analysis software [84] WCTe used to extract the experimental

results. The star analysis softwatt carries out the modal Ivmging of response vaJues

(over 20 for sine sweep 1est5 and even 100 for random responses) and as such the

variance from the estimated values will be very small.
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Figw-es 4.5 and 4.6 show exptrimental setup by side view. The beam model was clamped

at each end. between twO thick square steel pb.11CS, supponed over a short and stiff sleel

H-scction column. This was achieved by using twO ~guJar sleel plates (3/4' thick)

with four holes each for bcKting the beam model on the stiff supporting column. '11K

exciler was suspended using. slotted square flat plaIe. '11K plale was ftxed to the top

beam (of the steel frame) by four threadcd rods. This made possible the adjustment of the

position ofthe exciter ae anytime a model was to be fixed.

Byexciling the model al a point. and measuring the acceleration responses ofthe beam at

different points on the beam model, it was possible to get all the frequency response

functions between these positions which would lead 10 the extraction of the modal

paramelers. A fast sine sweep signal produced by the frequency ge~rator, which was

then amplified. was used to drive the exciter, ....tlich eventually transmitted the force to

the beam model through the load cell. It is to be noted thaI the model was excited at •

poinl 'Nhich "''IS a few millimetm away from the center of the: model. This was done to

avoid exciting the beam II a nodal point (ofa mode), since the beam would not respond

in that mode at thai pomL

The beam without crack was first lested; then the crack was made in the beam, varying

from a crack depth ratio ofWh .0./10 aIh ~ 0.5. Then::fOft there were six sets oftesling.

For each set of testing, first three frequencies were measured. and the frequency ratios,

i.e., the ratio of the frequency of the cracked beam to that of the uncracked beam, were

calculated. The frequenc)' ratio vs the crack ratio (first mode) is shown in Figure 4.7 and
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compared with the theoretical results. obtained from lhis study. and experimental data

from Christides and Barr {1S1. II should be IlOled lhal the points are COIU'IeCtcd by a

continuous curve. inslead of a discretely jointed curve; the reason is thaI jf the crack

depth was increased in very small increments and the beam teSted then the curve would

be continuous curve. If can be seen that the theoretical and experimcntal results show a

very good agreement; the test results seem 10 be slightly lower than the theoretical values.

In addition. a parallel eltpcrimcntal study was carried OUI on 14 aluminum beams. seven

with simply supponed ends and the other seven with fixed ends. Careful experimenlal

measurements and detailed analysis of the experimental results were carried OUI 10 verify

the results of the numerical analysis reported [8S]. Reference (8S) can be consulted for

more detailed results and analyses.

u.s Resulls aDd Discus.sioIlS

The natural frequencies and mode shapes for U'an$verse vibration of the cracked beams

are ca.k:ulatcd using the MATL\.8 prognm. The cnK::k is assumed to be always open. All

beams considered here are of a solid re.ctangular cross section. with a depth of O.2m, a

widthofO./m. and a length of Jm. For the simply supported beam with a crack. the first

four frequencies are obtained for different crack depths and locations. When the crack is

located at the midpoint of the beam. the normalized frequencies are shown for different

crack depths in Figure 4.8. The frequencies decrease by about 11.4% and 8.1 % for the

first and third modes as the crack grows up 10 half the beam height. However. the

frequencies change marginally for the second and foonh modes; this is due: 10 the fact



thai the crack at the midpoint of the beam is Iocatulll the vibralion nodes of the SCC'Of'Id

and fourth modes. Since pan of the beam around the crack region is also influenced by

stress relief due to crack, small reductions of frequency values occur for .second and

fourth modes. even though the crack is located around the nodes of the second mode. For

the sake of comparison, the normalized values of the parallel snJdyreponed earli« [851 is

plooed in Fi8\ft 4.8. It is seen that lhett is a very good correlation bdween the theory

developed in this study and mea.sum1 mck growth development.

Figure 4.9 shows the nonnalized frequencies for various crack locations when the CtllCk

depth is kept constant al a/h '" 0.15. As indicaled in the figure. the crack occurring near

the ends of the beam does noc change the frequencies. For the fust mode. the maximum

change of frequency takes place as the crack occurs at the CetHer. ~Iy. both the

crack location and crack depth influence the natural frequencies oflhecracked beam. The

nonnalized frequencies vs. crack location and crack depth art shown in a thrft·

dimensional plol in Figure 4.10. From these figures. it can be seen thai the crack location

and crack depth rntios are directly relaled. to the frequency rntios.

For a simply supported beam containing two cracks, wflich art located It ell .. JIJ and

ell - 2/1 from the left end. the nonnalized frequencies are shown in Figure 4.11 as both

cracks grow to I depth of a/h .. 0.$. The third mode has the smallest change of

frequencies (aboul 5%), while the other modes have much 1arger changes, which are

15.5%, 16.9'% and 12.8%, respectively; this is due 10 the fact that the nodes for the third

mode are located near the cracIc locations.
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For a fIXed-fiXed beam containing a crack. Figure 4.12 shows the normalized frequencies

for different crack depths when the: crack is located al the: midpoinl of the beam. and

Figure 4.13 shows !he: normalized frequencies for diffe:rcnl crack depths for the crack

located at the: end of !he: beam. The: changes of frequencies m similar 10 thai for a simply

supported beam; however. the: dccreasc of frequencies for the crack al the: end of the:

beam is larger than thaI for the: crack in the middle. For the: crack in the: middle. the

frequency changes are: 7.8% and 7.9"10 for the first and third modes (with crack depth

ratio a/h=O.5); !hey are: much smaller for the o!her two modes. For the: crack at the end.

!he first frequency change is aboul 11.5% for a crack depth ralio of a/h=O.5. For Ihe

s«ond mode. !he change is much higher than lhat for the central crack; it is the: same for

fourth mode. For Ihe third mode:. the: crack al Ihe caner produces larger changes than the:

crack at the: end. This is due: 10 the: fael thaI the loss of S1iffue:ss al !he center influences

the frequencies much higher (due: 10 fiXed ends at both sides) than the: mck al the end

(\lo'hich produces a partial fiXed condition at one end when the: crack becomes larger).

Figure: 4.14 indicates the: tlucnwion ofdJe normalized frequencies wilhcradt depth Q/h 

0.15 as the: crack location moves along the: beam. Unlike the: simply supported beam., the:

maximwn changes of frequencies for the first and second modes occur near the: ends of

the fixed-fixed beam. The reason is that the presence of a crack at lhese: locations would

reduce: Ihe stiffue:ss much more near the suppons (lhe boundary constraints) than near the

tenle:r. The three·dimensional plot of nonnalized frequency vs. nonnalized crack location

and depth are shown in Figure 4.15.
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As shown above, both crack Ioca!ion and depth have influences on the frequencies of the

cracked beam. It nuns out !hal one frequency could correspond to different crack depths

and locations, as can be seen from Figure 4.10 and FiguR 4.15. Based on !his. the

contour line which has the same normalized frequency change (!he same frequency

change resulting from diffemn combinations of crack depths and locations) could be

ploned in a figure having the Cf1lck location and deplh as its axes. Figure 4.16 shows

frequency contours for fOUl modes of !he simply supponed beam wi!h one crack, and

Figure 4.17 shows contours for four modes of the fIXed-fixed beam wi!h one crack. To be

clear and readable, !he figures for each mode include only contours of three normalized

frequency changes. The 0.98 contour means that the points on the cwvc have 2%

decrease of &equency compared to the W1Cfaclced beam. The location and depth

comsponding to any point 0:'1 the curve would become the possible crack location and

depth. A crack should and must belong to one contOW' line for each mode. The contOW'

lines for different modes could be ploned together. and the intmc<:tion point(s) would

indicate the crack location and crack depth. Since the frequencies could be measured

accurately for lower modes and the contour.; for lower modes tend to be simple. two

contours from lower modes (e.g. the first and second modes) are ploned together to

obtain the intersection point(s). When more than one intersection point is obtained, the

contour from another lower mode is also used to get the final point, which would indicate
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the crack: location and depth. When the crack: location and vibcation node coincide b a

mode, the contour tends 10 disappear and flO intersections ~ obtained; then tht: !text

mode: is used. Basically. the fltSt four frequencies ~ suffICient to identify the crack

(depth and location) in the beam.

From the formulations given in equations (4.4) 10 (4.20). il can be: seen thallhe ~uency

ratios~ functions of a/h and dl ratios. Hence the crack function G can be: expressed as

G = F(~,~,~)where F represents Ihe composile function, and therefore !he unique
w h I

location for the crack: will be: given by the intersection of any three frequency contoun.

For convenience and ease in calculations, the three lowest modes are used.

From the resulls in the above section. a crack. with a/h = 0.25, located al the middle of a

simply supported beam.1w the nonnaIized frequencies of 0.9708 (i.e.• a 2.92% decrease

offrequeDCy) for the ftrSC mode, 0.9744 for the third mode. and sbo....-s very small changes

in frequencies for the ocher fWO modes (0.9972 and 0.994). The contoor with the value of

0.9708 is retrieved from the fint mode and is plotted in Figure 4.18. The contour wilh the

value of the 0.9744 from the third mode is shown in the same figure. There are thRe

intersection points for these fWO contours. lberefore. the contour from the second mode

is also used to uniquely identify the crack location and depth. Three contours will give

one intersection (location 2 in Figure 4.18), which indicales the crack depth and location

vcry well. To consider the siluation of a non-cenual crack. the case of a simply supponed

beam with a mek depth a/h =0./, located at cA =0.4, is iUustrated in Figure 4.19. The

changes in normalized frequencies for the above crack are given respectively by 0.9947.



0.9979 and 0.9978. for fil"$l~ frequencies. The 0.9947 conlour for the fim mode.

0.9979 contour for the second mode and 0.9978 contour for the third mode are shown in

Fi~ 4.19. The intmcction poinll (locations 2 and 3 in Figure 4.19) indicate a crack

depth aIh-O./ and crack locations of cA=0.4 or 0.6. Due to sttuetural symmetry in the

simply supported beam. the three contours would give two probable crack locations.

Acrua[ loealion could be idenlified by adding an olT·center mass to the beam, which

would make Ihe vibration modes asymmetric. When the modes are asymmetric, only one

inters«lion point will be obtained. This is shown 10 be true in Ihe following figures.

A lumped mass of ooe-Ienth ofbeam mass per unit length is attaChed to the bc:am at the

quarter point of the Icnglh.ln ease thaI no crack exists, the firsl four fiequencies decrease

about 4.7%. 8.1%, 3.5% and 0'1. (see Table 4-3). respectively, due 10 the olT~entermass.

When the beam contains a crack. nonnalized frequency changes against the crack depth

ratios are shown in Figure 4.20. As crack location moves along the beam, the changes of

nonnaJized frequency are shown in Figure 4.21. It can be seen that the changes m not

symmetric anymore due 10 the off-center mass. Figw-e 4.22 shows the nonnalized

frequenctes vs. crack depth ratios and crack location ratios. 'TbRe frequency conlOln for

firsl four modes are plotted in Figure 4.23. Figure 414 shows the: crack identirlCalion,

which give the crack depth ratio ofo/hcO./ and crack location ratioorcA-O.4. Due to the

off-ccnlcr mass. crack location ratio of cII=O.6. which is identified as Ihe possible crack

location in the symmetric beam, is not a possible crack location.
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4.4 Hollow Beam (Ship Backbone) Containing. Tllrough Cnck

404.1 Skip Model

A hydroelastic model, represenling a 1f2~ scale model of a version of Ihe Canadian

P:i.!rol Frigate (CPF), was buill several years ago for modal lesting (86]. The model,

6.225m long. had six segments whose joints were located at .762m, 1.524m, 2.286m,

3.048m and 4.176m from the forward end. The six scgrnents were rigidly connected 10 a

backbone to construct a complete ship model. The backbone, which simulated the hull

girder. primarily consisted of four continuous stiffeners of carbon fiber composite

materials and a box made of lexan plates. The stiffeners were housed in the box by gluing

and screwing them porperly. The elastic backbone bad a hollow rectallgular section,

which was continuous from the forward segment to Ihe aft segment. While moda.I

parameters and freqlJCTlCY responsc:s for Ihe model were obtained from experiments

which o,\'Cr"e carried out at the Institute for Marine Dynamics (NRcq, St. John's, NF

(87.88,89J, a rigorous thCOfetical vibrational analysis ofthe model ship, o,\ilh cm:ked and

unaacked backbone, has ll()( been carried out for the model. Such an analysis would help

one to identify properly the modal frequencies and mode shapes of the model; in

addition, it would also help to detecl any crack presenl in the model and thus assist in

preventing further damage to the model.
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.....2 Simplirled Fonn.lItio. ror I"e Hydrodasric Model

The hydroelastic model of the ship is shown in Figutt 4.25. The backbone was crnlered

transvmely in the II'lOCkI and the vertical height of ilS cmkrline coincided with th~

model's vertical neutnJ axis at mid·ship. The rigid segments ar lh. hydroclastic CPF

model were mounted on the backbcne: by using aluminum platfon. screwed onto

hardwood suppons which were glued and bolted on the backbon~. The w~igh( ...-:d length

of th~ six segments are given in Table 4-4 (86]. There was a IOmm gap betwMl two

adjacent segm~nts ta allaw for relative freedom of movement between each segment. The

gap was closed by a flexibl~ membrane so that walcr does nol get in between the

segm~nts.

Since the backbone was !he only COlIlinUCUS member in the ship model. and the segments

enly simulated me weight ar the ship hull and transferred added mass due to ilS

interxtion with waitt. vibratioo analysis of the backbone should lead to the correcI

estimates armodaJ property for the whole model. The backbone was 4.85m long. O.l27m

high. and had. varying width which was O.l32m at one end, O.I08m at the other end and

O.l85m near the middle (see Fi~ 4.26). The venial bending stiffnesses of the

backbone at the joints or various segments arc given in Table 4-5. The backbone is then

modelled as a rectangular hollow section beam with average wall thickness of 3mm and

composed of lexan material. This simplification was made to make use of the available

stress intensity faclors for rompulalion of crack influence. If the composite material of

the backbone was 10 be considered in analysis. as il exists. then new derivations had to be
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obtained for SIF, including detenninatioo of complex modes of cracking. The malenal

elastic modulus £ is /45GPo and shear modulus G is 58 GPo. Using the cwve·fil method

and values ofbmding stiffnesscs gh-m in Table 4-S[86}, the continuous bending stiffness

along the beam in vertical dim:tion can be represented by (90)

a.. = 471,190, a1 = 51 5,733, a~ = 672,103

a j =- 787,894, a~ = 650.1 09, a l = 562,134

a. = 426,291, aT = 328,404

.11 =O,xl = 0.4, x: =0.968,~ =2.138

x~ =2.919, x} = 3.697, x, =4.474, x, = 4.85

(4.45)

(4.46)

Similarly the mass disttibution along the beam, convtrted from me weights of the

segments given in Table 4.4, can also be rqnsemed by

P. :85, P, =90, P: = 121, PJ =127

P. E lOS, PI =8I,P. =30

Xa = 0, XI =0.4, Xl = 1.553, xJ = 2.528

X~ =3.308, x, =4.086, x6 =4.85

(4.47)

(4.48)

(4.49)

Meanwhile, lhe mass of segments protruding out from the backbone beam are assumed to

act as concentrated masses al the two ends of the backbone, which have the following

values
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M.. :::83.5.1:g
M",:::IIJ.3kg

(4.50)

II is also verified that the totalnws obtained from the above cootinuous mass disaibution

and two concentrated rnassots at the ends added up to the values given in Table 44 along

~;th the: backbone mass.

Added fluid mass is added 10 the ship model during its vibration (heave and sway) in

water. The added mass liang the length is calculated using the equation given for a

floaling rectangular section {911 with a hull width of O.95m (-}o) and a waterline draft

O.Jlm (:::b). As is shown in Figure 4.27. the equation for calculation of added mass in

verticaldirecrion is given by

(4.51)

With 0:=0.9512, b-O.J/ and /(]-/./9 (see Figure 4.27). added mass is detennined as

(4.52)

Near the two ends of the model ship, the width tOIItaeling the water level became

gradually narrowed to O.5Om al one end and a.Om at the other end. Added masses at two

mds (beyond the length of backbone) ~ caltulated using the same equalioo ( 4.51).

These two additional added waler masses~ considered as concentrated loads at the two

ends of beam (backbone). which are given as

M.e"'293kg

M", =3Ug
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4.4.3 Fon.....tiou for rflle Vmiul VibnriH of. Cncked BKkbo.e ...

4.4J.1 Bending Stiffness oftheCrackcd Backbone Beam

For the: backbone beam. without any cnck, subjected 10 a bmding momcnl M. the strain

energy in the beam is given by

(4.54)

When the crack is fonned on the upper flange of the beam. and grows from zero 10 20

perpendicular to the cenlerline under a constant eXlemal bending moment, the energy

consumed for crack growth, based on fiacrure mechanics, is

( 4.5~)

""'here 1< is the wall thickness ofltlc beam. and G the strain energy release: rate. For the:

vmieaI vibralion of the beam, the crack. is mainly subje'Cted [0 an axial normal load and

the: shear stress can be neglected: therefore. only the r.m crack mode exists.

(4.56)

whm: K, is the streSS intensity factor for first crack mode. and £ is the: YOWlg'S

modulus. For the hollow beam. K, is given as [I]

K, = ao.fi;F

F:: 0.9+ 1.72(~)-11.42(....!!.-)l + 140.11(--2-.)J
b+h b+h b+h (4.57)

where a, is the nominal stress applied [0 the crack. b the: beam width at the posilion of

the: crack. h the height oflhe beam. and
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Mh
(1.::

2/. (4.58)

when- I", is momenl inertia of the unaacked beam at the position of the crack. Finally

equation ( 4.55) b«omes

(4.59)

where

o ,.1I1l~F.(Q)t<a:

21~£

F.(D) -0.81 +4.),{~)+,.•.,{~)' _6,.,J~)' -209.'.,{~)'
\.b+1I \.b+1I \6+11 "\6+11

... 2J06.I...!...)' +9801.6"...!...). -163915.9.,(.-!!.-)' +]]5]195.3'...!...)"
'\h+h 1.6+/r I.b+1I \.b+1I

(4.60)

If fl, is bending stiffuess of the cracked hollow beam. the {mal strain energy in the

cracked beam could be ahemalively c:xpressed as

where I, is moment inertia o(the cracked beam.

(4.61)

From fracture mechanics. the StreSSeSfstrains are highly concentrated around the crack

tip, and reach the nominal stres5 II • region far away from the tip. So it an be asswned

thai the incrnse of strain energy due to the C11Iclc grolo\1h Wld~ constant applied loads is

mainly concentrated around the crack tip. Therefore, postulating that the disbibution of

E. along the beam is similar to (as assumed earlier in sections 4.2.1 and 4.2.2)
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(4.62)

"''here Qand k are coefficients to be determined so that

(4.63)

with c as the location of the crack on the beam. From equalions (4.59) and (4.63). one

obtains

(4.64)

SUbstitulingequations (4.54), (4.61)and (4.63) inlo (3.110). one obtains

(4.65)

From the lbove equation. one obtains the bending stiffness of the cracked hollow beam

(4.66)

(4.67)

At the loealion of the crack. i.e. II x· C, (neglecling lower order lerms)
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£/ (bh l -(b-2t.)(h-2t,)I)/12

£/, - (bhJ -(b-2t.)(1I 21.)1)1I2_t,2<2h l /4

Using equations (4.66) and (4.68),

k = 2F. (a{Cbh l
-(b- 2/.Xh - 21,»))/12 _t,2aJr

l
/4]

• (bhJ_(b 21.)(h-21.)')/12

(4.68)

(4.69)

4.4.3.2 Characteristic Vibration Equation

For a cracked hollow beam vibrating in water, the equation of bending vibration is given

by

(4.70)

where m is mass densiry along the beam length, which includes mass of segments and

added mass m•• and kl is wateTstiffiless.

kl =93lONlm
(4.71)

wbere m_ is the mass densiry per unit length of the backbone, "'" is the added mISS of

wafer given by equation ( 4.52) and m. is the distributed segmental mass give by equation

( 4.47). The nuid damping was not included in the formulation. since only frequency

estimation was made at thi~ stage. In order to consider the conccntnted mass at the two

ends ofthe beam, one can use delta functions and get the final vibration equation with the

concentrated mass as
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M,.=M.. +M.o

M.,.M~+M..

( 4.72)

(4.73)

Let II' =W(x)H(t) and with H(t) .. e~, and substituting inlo die above ~uation. one

obtains

~[£( d-~]_"'t»;W +l,W -6(x-0)M,.tJJ;W -6(x-/)M.,tJJ;W =0
tk- • fix-

where t», is me narwal frequency oCme cracked hollow beam.

4.4.3.3 Solution

(4.74)

As Ihe model ship noats on water. the boWldary conditions for lhe hollow backbone

beam are fr«/free al lhe ends. In order 10 gel lhe first four frequencies and mode shapes,

one can usc I fout-lmn Galcrk.in method. To satisfy !he boundary conditions. Ihe lrial

funaions~ selected from those used Cor Ihe unaackcd beam [83) as

(4.75)

where C,are coefficients, and W;s are taken from cqUilion (1.2I)as
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w: :::Sin(7}+sinh(7)+B'[cos(7)+c:osh(T)]

cos(&)-cosh(&)
B - I I

, sin(7)+ sinh(T)

PI :::4.73. P: =7.853, Pl :::10.996, P... [4.173

(4.76)

(4.77)

The frequencies and mode shapes for vertical vibn:lion are calcuJalcd using the

MATLAB program. For !he W'lcnck.ed hollow back.bone !>tarn, the: computed four natural

frequencies as well as the ones from tests are shown in Table 4.6. Mode shapes an

shown in Figure 4.28. Mode shapes oblained from the lests are shown in Figure 4.29(87].

II can be seen mat lhe calculated frequencies agree well with lhe lest results, but even-

order lTequencies in tests arc missed in Ihe calculation. It appears lhal Ihe missed

frequmdes could be the frequenc:ics for the (horizontal) flexural-Ionional vibnlion of

the backbone due 10 Ihc cccenlric nature of the: added mass for tranSverse motion; the

procedure to delemline these frequencies ate oudincd in Chapler Fi~. The enors

betY.un the first three calculated and c:xpcrimenlal frequencies are found to be -{l.45%,

+4.56", and +6.98O.t. respectively. The stiff and long first segment of the expc:rimenlal

model SttJI\S to have affected the results of Ihc: measured and computed mode shapes, IS

can !>t sc:c:n from Figure 4.29; otherwise the first Ihrte compuled mode shapes represent

Ihe measured mode shapes (obtained from six acceleromelers only) very closely.

100



For a cracked backbone. the variation of frequencies against the length of crack II the

middle of the backbone is plotted in Figure 430. All four lRqucncies decrease as the

crack length increases. A$ long as the crack occurs in the upper flange only (0 less than

O.088m, at the center of the backbone), the frequencies do noI clwtgc: much; this is due to

the fact that the bending stiffness of the section is govcmcd by the depth of the section

than its width during vcnical vibr.ltions. Once the craclc pcnetmes the side webs of the

section. the frequencies begin to drop considerably. When the crack length (18) has

l'tllC'hed a.2m (gone through the [wo side webs 10 a depth of about 12mm, respectively),

the first frequency changes by nearly 11.3%. The second frequency is almost unchanged

since the crack is located vet)' close to the vibration node. As the location of the crack in

the backbone changes. the four frequencies also get changed. FigW"e 4.31 shows how the

frequencies decrease as the crack location changes along the backbone beam, for a mck

length of 0.1 m. For all the four modes. when the crack is near the ends, the frequencies

mnain almost unchanged. For the first mode. maximum freq~cy change oc:cws: near

the middle of the backbone where the bending moment duringthc vibration is very large.

For other modes. there are some locations at which the frequencies do not decrease or

decrease very little. This is due to the fact thaI these locations II'e vibration nodes

corresponding 10 that mode. Using the modal changes that oc:cur for any particular beam,

the probable location of the crack could be easily located by examining differ'Ct1l modes

together.

Results from vertical vibration analysis agree well with the earlier test results for cracked

beam [87J, however, some lRquencies, obtained &om the lests, could nol be calculated
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from vertical vibntion analysis. II is SUggesled !hat Ihese frequencies could come from

horizonlal vibration. which would be coupled ,,;th Imional vibration due to asymmmic

added fluid mass. Such coupled vibration as Io\'ell as crack detection will be analyzed in

the next chapl:er.

4.5 Closure

Variation of equivalent bending sliffuess and depth (along the length) for the cracked

beam are obtained using an energy-based model. Four modes are obtained for a simply

supported beam and a fixed-fixed beam by selecting proper Galerkin's functions.

Generally the crack would decrease the frequencies; however, the changes of frequencies

are also dependenl on the cn.ck location. If the crack coincides with the vibration node of

one mode, the frequency for thai mode remains almost unchanged. The crack near the

ends would influence the boundary conslI3.ints. and thus decrease the frequencies

significantly as shown for the ease of the fIXed-fixed beam. The conlour lines of

ftequency can be plotted ror various mocks for a beam containing one crack. The existing

crack (in the beam) will belong 10 one particular contour in each mode. When these

particular contours from different modes are planed together, the intersection poinl(s) of

the conlours would provide the location and depth or the cn.ck.

The ship model is modell~ as a hollow beam with varying stiffiless and mass. The

interaclion with water is taken into account by calculaling the added fluid mass, and the

beam is then asswned to vibrate in water with free..free boundary conditions. The results
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of vertical vibration agree well with tesr results (for uncrackecl beam). W'hen the

backbone of the ship model contains a lhickness-through crack, the frequencies decrease.

When the crack size grows beyond the width of the backbone. the frequencies drop

significanlly because ofmassive loss of its stiffness al the cnck location.

103



Tabl~ 4-1 Frequency comparison for four and eight tmns Galcrkin's method

(alh z O.15. cA""O.8)

Particulars T<nnS FiBIFreq. Second Freq. ThirdFreq. FourthFreq.

(C,f!f J «(,$) (CJf!f) (C.f!fJ-pi

c, C, C, C.

Simply 1.09275 4.34286 9.74582 17.38584

Supponed 8 1.09265 4.34162 9.74220 17.38066

Cracked Difference(%) 0.009 0.028 0.037 0.03

B,,,,,

Uncracked 1.0966 4.3865 9.8696 17.5460

Ilcom

Fixed 2.4847 6.8241 13.32706 22.05678

Crxked 2.43468 6.82344 13.32369 22.05164

Ilcom Oiffermce (%) 0.008 O.ot 0.025 0.023

Uncncked 2.4859 6.8522 13.4347 22.2061

Ilcom
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Tab[e 4-2 Frequency comparison for four and tight terms Galerkin's method

(aIh=IJ.5. eII-O.B)

particulars Tmns FirstFrcq. Second Freq. ThirdFreq. Founh Freq.

(C,~) (C,~) (CJ~) (c.f!f)
'Il' ",

C, C, C, C,

Simply 1.07]681 4.16]988 9.32906 16.89723

Supported , 1.071566 4.142[27 9.27774 16.8]074

Cracked Difference(%) 0.19 0.' 0.55 0.<

B,,,,,

Uucracked 1.0966 4.3865 9.8696 [7.5460

Ikam

Fixed 2.46262 6.64534 12.75247 2134871

Cracked 2.46185 6.618]8 12.65194 21..22287

Ikam Difference W.) O.oJ 0.' 0.19 0.0

Uucracked 2.4859 6.8522 13.4]47 22.2061

Ikam
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Table 4-3 Frequency comparison between simply supported beam with and withoul ofT·

ccntC!'"mass attaehcd

Parliculars FirslFrftI· Second Freq. ThirdFreq. FounhFreq.

(C,j!;> (c.j!;> (C,j!;) (C.j!;)."..

C, C, C, C.

Simply Suppot1td Beam 1.0966 43865 9.87 17.546

( nocmck)

WithOff-centerMass 1.045 4.0312 9.5246 17.546

Attached (no crack)

Difference (0/.) 4.7 8.1 l.S

Simply Supponcd Beam 1.0767 43822 9.7065 17.5121

(crack:aIh=O.2.cII-o.s)

WithOff-«rtterMass 1.0264 4.0271 9365 17.5121

(cnlCk.;a!IP<O.2.cfI=O..5)

Diffcrcncc (¥.) 4.7 8.1 JS
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Table 4-4 Properties ofCPF bydroclastic model

Sectional Weigbt(N) Lcngth(rn)

Segment I 1643.5 1.965

Segment 2 1392.7 1.170

Segment 3 972.3 0.781

Segment 4 823.3 0.778

Segment 5 615.5 0.777

Segment 6 222.2 0.753

Total 5669.5 6.225

Table 4-5 Stiffness of the Backbone at the COIUlections ofScgments

Between Segments

1-2

2-3

3-4

4-,
'-6

Table 4-6 Frequencies of Uncracked Backbone

Bending Stiffness EI (Nm"2)

672,103

787,894

650,109

562,123

426,291

Frequency (Hz) 2"d 3rd 4th 5th 6th

Calculation

T,,'
4.46 N/A

4.48 6.35

12.60 N/A 26.36 N/A

12.05 19.63 24.64 38.65
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'"Figure 4.1 Variation of nonnalized bending stiffiless and depth of a beam with a crnck
(crack location dl = 0.5); - oIh = 0.05; aIh = 0.25; - --- aIh = 0.5
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Figure 4.2 Energy distribution in ,,-direction for a finite cracked plate (U - the strain

energy over plate width, E - the elastic modulus); -elastic fracture mechanics
theory; theory used in Ihis paper
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Figure 4.3 Variation of nonnaJized bending stiffness and depth of a beam with two
cracks (crack locations c,11 = 113, ell .. 211) ; - aIh = 0.05; a/h = 0.15;
- -- aIh =0.5
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Figure 4.4 Simply supported experimental beam
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Figure 4.5 Experimental set up showing the electronic equIpment
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Figure 4.6 Experimental sn up showing a connttled txam
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Figure 4.7 Comparison ofexperimental and theoretical values offtequenc)' ratio
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Figure 4.8 Variations of Ihe firsl four frequencies as a function of crack depth for a
simply supponed beam (crack location ell ; 0.5, 14-'(J)- frequency ratio); (a) mode one;
(b) mode two; (c) mOlk three; (d) mode four (- experimental. - theory)
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Figure 4.9 Variations of the first rOW" frequencies as a function of end: location for a
simply supponed bum (crack depth ratio aIh - 0.15): <a> mode one; (b) mode two; (e)
mode three; (d) mode fout
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Figure 4.10 Frequencies vs. crack locations and ckplhs ror. simply supported beam; (.)
mode one; (b) mode rwo; (c) mode three; (d) mode rour
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FiglU'e 4.11 Variation of frequency as a function of crack depth for a simply supponed
beam with two cracks (cllI • 113. c.'" '" 113); (a) mode one; (h) mode [WQ; (e) mode
three; (d) mode four
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"'" "'"Figure 4.12 Variations of the filSl four frequencies as a function of crack depth for a
fixed-fixed beam (crack location ell '" 0.5); (a) mode one; (b) mode two; (e) mode three;
(d) mode four
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Figure 4.13 Variations of the first four frequencies as a function of crack depth for a
fixed-fixed beam (crack. location ell - 0); (a> mode one; (b) mode two; (e) mode thrtt;
(d)modefow
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Figure 4.14 Variations of me fi~[ four freqUC1lcies as a function of crack location for I
fixed-fixed cqcktd beam (crack depth ratio a/h = 0.15); (a) mode one; (b) mode lWO; (e)
mode three; (d) mode four
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Figure 4.15 Frequencies vs. crack depths and locations for I fixed-fixed beam; (a) mode
one; (b) mode two; (e) mode three: (d) mode four
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Figure 4.16 Frequency COfIIOUIS for a simply supported beam with • single crack; (al

mode: one; (b) mode two: (c) mode three: (d) mode four, -OJ~/(JJ- 0.9.1;

.......•. OJ~ IOJ = 0.98: •.•.• OJ, IOJ - 0.99
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Figure 4.17 Frequency conlours for a fixed-fixed beam with iI single: CJ1ICk; (a) mode

onc; (b) mode two; (c) mode thru; (d) mode four; -tu./QJ-O.96;·- ·-tu.ltu

0.98: _. _.• tu< Iw - 0.99
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Figtue 4.18 Cr.tek identifICation by frequcey conlours from three differmt modes in a
simply supported beam;-lIJ~/tJJ- 0.9708; ···_····wr/llJ· 0.9972; -_.- fI).'w
0.9144: (Deduction: Q/'h .. 0.15, dI: 0.5)
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Figure 4.20 Variations of the first four frequencies as a funclion of cn1ck depth for a
simply supported beam with an off-cenler mass attached (crack location ratio ell = O.J);
(a) mode one; (b) mode: two; (e) mode lhree; (d) mode four
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Figure 4.21 Variations of the first four frequencies as a function of crack location for a
simply supported beam with an off-centcr mass attached (crack depth ratio a/h '" 0.15);
(a) mode one; (b) mode two; (e) mode thm:; (d) mode rOW"
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Figure 4.22 Frequencies vs. crack depths and crack locations for a simply supported
beam with an off-cenler mass attached; (a) mode one; (b) mode two; (e) mode three; (d)
mode four
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Figure 4.24 Crack identification by frequency <:ontOUlS from three diffemlt modes in a
simply supported beam with off-center mns anached; - tuJw '" 0.9946;
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Figure 4.25 CPF ship model [87]
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Figure 4.26 Backbone ofship model
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Figure 4.27 Added mass oft'llo'O-dimensional body (91)
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Figure 4.28 Mode shapes for the uncracked backbone. W-displacement,
X---beam length
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Figure 4.29 Mode shapes from tests for the uncrad:ed backbone
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Figure 4.30 Variations of finl four nonnalized frequencies as a function of crack lenglh
ratio for the ship beam (backbone) model (crack location ratio c/l-O.S); (a) mode one; (b)
mode two; (c) mode three; (d) mode four.
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" "Figure 4.31 Variations of first four normalized frequencies as a function of crack location
ratio for the ship beam (backbone) model (crack length ratio a/(h+b)-O.I7); (a) mode
one; (b)modc two: (c) mode dtree; (d) mode four.
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Cbapter 5

Coupled Bending-Tonional Vibration of a Cracked Hollow

Beam Model in Water and Identification of Cracking

In an earlier study, details of which are given in section 4.4. "en.ieal vibration analysis of

the model floating in water was carri~ OUI. For numerical analysis. the model was

simplified as a hollow rectangular settlon beam of a single material with varying width.

and the computed frequencies agrml with the results (odd.numbered frequencies) of tests

(Table 4-6). However, even-numbered frequencies in tests~ missed in me numerical

analysis results. The missing ftequmcics must have come from some other vibralional

mocks which were not modelled in the nwneric:al analysis. The floating model would

vibrate vertically due 10 the heave exciting wave fon:es and horizontally due: 10 the:

horizontal wave forces exet1ed 011 lhc model. It should aIso be remembered that the

"Oiling body would W1dergo horizontal flexural and lonional motions due to the

eccentric nature of added mass and wave exciting force components. The combination of

horizontal flexwal and torsional vibrations would be the motions of missed frequencies

obtained from modal tests. The study reported herein considers coupled horizontal

flexural-torsional mocions of the floating body lhrough an approximate numerical

procedure, based on Galeron's weighted residual approach.
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For the bmding-Iorsional vibmion of an Euler beam, Tunshenko ~t al [92) derived the

coupled bending·torsion equations for a chamel whose cross section was a5)mmetric.

They asswned a simple trigonometric.form solwion in both transverse and torsional

displacements. and obtained vibrltion frequencies. Rao [71Jobtained the bending-torsion

equations for an asymmetric beam without warping using Hamilton's principle. In 1987,

Dokumaci (93J developed the exact solution for such coupled vibration equations without

warping. After applying boundary conditions, the nalunl frequencies and mode shapes

were detennined by lening the determinant of six coefficients equal 10 zero. In 1999,

Banerjee [94) presented essentially the same exact solution for coupled bending·torsional

vibration. The frequencies and mode shapes were calculated using a computing package

called REDUCE. Bishop ~t 01 (95) extended DoIcumaci's solution 10 allow for warping. II

was sho\loTl that warping could make a large difference to resuhs for thin-walled beams of

open cross sectton. Coupled bending·torsional vibralions of non-uniform Timshtnko

beams (including shear deflection and rotary inertia) with open crosHeCtion were

studied by Bishop and Price' (96) and Bc:rcin and Tanaka [97J. Warping was considered

in Bcn::in and Tanaka' srudy, and numerical results were also provided.

Mosl of the studies in coupled bending-torsional vibntion were carried out for

asymmetric cross sections which had their sitar centers misaligned with respect to their

centroids, and thus generated bending vibration coupled with torsion. Also for a non

uniform beam, it would be difficult if not impossible to derive exact solutions. The

present study will derive equations of coupled bmding.torsional vibrations due 10 added
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waler mass applied on the 10Wff portions ofrwo flanks during vibration in waler. For the

varying.stiffuess., varying mass. lIOfHmifonn hollow beam. Galer!On's method is applied

10 calculate frequencies and mode shapes. When !be beam contains a aad, equivalenl

bending and torsion sriffnessc:s are ddermincd by an magy procedure. Frequencies and

mode shapes for cracked backbone are also calculated. Finally detailed analysis of the

results is carried oullO develop a method for identifying the crack size and location.

S.2 Panmdrn or Model

The weight and length of the ship model are giwn in Table 4-4. The vertical stiffncsses

of the backbone at lhcjoinlS ofvarioos segmenlS ate given in Table 4-5. Other propctties

(used for horizontal bcnding.lorsional vibration) of the backbone at thejoinlS of various

~gmenlS are given in Table 5·1. The varying ~gmental stiffuessofthe backbone. givm

in Table 5.1 (861. was convened into a continuous stiffuess distribulion as shown in

seclion 4.4.2. 'The segmental mass was also converted into a conlinuous varying mass as

explained in section 4.42.

When the model of ship stJ'UCtW'e vibrates borizorually on water, fluid inertial effecl is

taken inlO account by considering added fluid mass as an extra distributed mass on !he

model. The added mass along the beam Imgth is calculated using the equation given for

a floaling rectangular section [91 J with a hull width of O.95m and a waterline draft of

O.3Im. Forhorizonlal motion, the equalion (see Figure 4.27) is given by
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('.1)

lnlerpolatingthe table in Figure 4.27, one obtains k1-o.89. a3().9512 and IrOJI;!hen

m. = 2xO.89xIOOOxO.95xO.JI/2 - 262.105 fkglm)
('2)

The added mass is considered lOW at O.lm below neutral plane oflhc backbone. i.e.

=, ;O.lm

S.J Equations of Coupled Vibrations in Water

('.3)

Since the backbone is the only continuous and clastic member, and rigid segments arc

merely used to simulate the mass of ship hull. vibralion analysis is applied to the

backbone which is considered as a h<Jllow rectangular Euler beam with varying width. In

the horizonu.l direction, bending vibration will be accompanied by lorsional motion duc

10 added water mass. To develop lhc coupled bcnding-torsional vibmion equations.

Hamilton's principle was used.

Without considering warping (figure 5.1). displac:ements of any point in me beam for

horizonlal bending and torsion are represented by (see Figure 5.2)

.... =-yv'

101, =v-z8

II, =yO
('.4)

where \I is displacemenl of neutral axis in y direction, 8 is torsional rotation of beam; :c

direction is parallel to the beam length. The prime in equation (5.4) denoles

differentiation with respect to position:c. Strains can be obtained as
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C.. :::-y\-.•

Tor :c-z(1'

Tc Eyfl

CI1 E£" =r}l< =0

Strain mergy is therefore dr!cnnincd by

u =1. IJ<EyV: +Gz:(J': + Gy:(J':)cUdA

"
=1.['(EI.,,·: +GI (1':\.1-
2.' ,,....

where I is me length of the backbone ~am.

I, = J<Z2 + y:)dA

I,. fy'dA

Negl«ting the axial inertia. velocities at any poinl in the ~am are given by

Ii, :::0

li
7
=v-z9

Ii, =y9

('-')

('.6)

('.7)

('.8)

where the dol: cknoles differentiation with respect to lime 1. The velocil)' ofadded mass is

given by

<'.')
where =. is the distance 10 neutral axis from the unitt of added mISS. The total kine1jc

energy could be cxpces.sed as
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where pA is mass of the model ship per unit length.

For free vibralion. applicalion ofHamihon's principle leads 10

" .,1 I I
O,!(T -U)dt ""o,!!'z(pA+m.)Y: +Z(pl, +m.za

l
)8:

+m.(-:aY8)--iEI,v·~ -~GI,8'lldtd/::0

Expansion of the above equation yields two coupled vibration equalions, viz.,

(EI,I/Or +(pA+m.)ii"::<m.zii

-(GI,8')' +(pI, +"..:/)8 ::m.z.v

(5.10)

(5.11)

('.12)

The ship segments prorruding owide the backbone are assumed 10 act as concentraled

masses al the two ends ofbeam (backbone); so are !he added waler masses on these parts

of ship model. According to the earlier discussions in section 4.4, the total. concentrated

masses at the [\YO ends are as follows

m.. ;)19.9k8

mtt ;[1.33kg

Effective radii of gyralion for these concentrated masses are

ra ;O.075m

r, =0.068m

I3S

(5.13)

(5.14)



Concentrated masses could be considered using delta functions; so the final coupled

vibr.1tion equations are given by

(E("j.+(JM + "'.)V +6'(x - O}lrl..v+o(x -/)"'dv - "'.=.8
-(Gl.8')'+(p/•• ",.=.l';8 +6(x-0)m..r.:jj +6(x-l)md ,/jj '" m.z.v

5,4 Natural Frequencies alld Mode Sb8pes

(5.15)

Since the vertical motion is not coupled with the horizontaVtmional motion of the beam.

the solutions are obtained separately; this was achieved in section 4.4 and the results are

given in Table 4-6 and Figure 4.28. Here the frequencies and modal vectors are compuled

for lIIe coupled horizonlal bending-torsional vibration. In order 10 get approximate

eigenvalues and eigenvectors for the problem, the hollow beam is firsl modelled as a

uniform beam to detennine the initial Dial functions and frequency values required in

Galerkin's procedure. For uniform beams. bending stiffness and torsion stiffness are

constant; then the above equations ( 5.12) could be expressed as

El,"" +(~+m.)v= m.zij

-Gl,fr +(pi, +m.z.l)ij :m.z.v
(S.16)

Equations (5.16) have exaci solutions (93,94]. However. forequalions (5.12) and (5.15).

bending sliffness. torsion Sliffness and line mass density are all varying along beam

length due 10 varying width; hence il is difficult 10 find exact solulions for this beam. So

Galerkin's method is used 10 calculate frequencies and mode shapes. First, average values

of bending stiffness, lorsion stiffiless and line mass density for the whole ship length are

calculated and used in equations (5.16), and the frequencies are computed using
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MAnAB. Then. the obtained frequencies and mode shapes are selected as trial functions

in Galerkin's method for coupled vibration.

Average values are obtained 3.S (refer Table 5-1)

£1: = 958.986.8

01, =630,677.08

pA==94.5

pi, == 2.5174
(5.17)

After introducing \l(x,l):= V(x)e'" ,8(x) "" B(x)e'" ,equations (5.16) can be written as

£/,V" -(pA +m.)wlV + m.z~w16 =0

GI,6'+(pi, +m.z~1)w16-m.zcwlV=0
(5.18)

The exact solution of the above equations are detennined. The first four frequencies are

obtained as

lV, -29.2,134.7.261.4.426.3 radlsec(;"'1.2,3.4).

The first four modal vectors are obtained as

", =[1, -.98225, .99233,-.97085, -.006278, -.00173]

[I, -1.00084, .97864, -.96927, '(KI719,·.00793]

[1, -.99996, .95955, -.93923, -.00303, -.02119 )

[I, ,ooסס1.0- .93923, -.90145, -.04656. -.04365]

where ;"'1,2.3.4 for rows,j=I,2.3A,5.6 fOf" columns.

The corresponding modes could be written as
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md

V, :: .04'1 cosh(a,xll) +A,I sinh(a.xll)+ A'J COS(fJ,x II)

+ A" sir(fJ,xll) + Ad cos(Y,xll) + A•• sin(y.xll)

a, = k.. A" cosh(a.xll) + k.. A;: sinh(a,xll)+k.. A" cos{fJ.xll)

+k..-A" sir(fJ,xll)+k..A" cos(y,xll)+k.. A.. sin(r,xll)

a, ",!2(q,l3)t.Jcos(,J3)-Oi13f"'

P. :[2(.J3)~""{(~-',)Il}+Q.Ill"
y, "'[2(q,I3)t.J c05{(n+,.>/3}+o,l3f

q, =b, +0,I/3

" '" arccos¥270,b,c, -9a,b, - 2a,J)/~(0,: +3b,)'"' ~

a, '" (pi, +m.zo
I
)t:u,ll~ I(GI,)

b, -(J}A+m.)ClJ}I'I(EI,l

c,: I-m;z/ l(pI, +m.z/)/(,tM+m.)

k.. -(b, -a,')EI, l(m.zoUJ,lt')

k .. "'(6, -fJ,')EI,/(m.zeW,1/')

k.. :(6, -r,')EI, f(m.zoQ),11')

(5.21)

(5.22)

('23)

For equations ( 5.15), assumptiono(a hannonic motion of frequency wwould lead 10

(£I,n· -(pot +m.)alV -6(x -O)m,.dV -6(x-l)mpV+"V.we '" 0
-(GI,frJ'+<P, +1,'.Z.I)ale+6(x-O)m~ro1wle+6(x-l)m...,/oia-m.zofllV:o (5.24)

Now soI.utions of eqUilions ( 5.24) are selected as
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v c t,C,I~

8- t,D,8,
(5.25)

....'here Ci and D; ate coefficients, Vi and 8, are trW fimctions which rome from equations

(5.21).

Upon making the rtSiduals (Galerkin' 5 method) for each of the aial functions equal to

zero, natural frequencies (btnding.l0nional) for lhe noaling hydroclastic model vibrating

on water could be calculated using MAnAB program. The first four frequencies arc

compared with the results of tests in Table 5-2. The mode shapes obtained for horizontal

and torsional mocions are shown in Figure 5.3. Figure 5.4 shows the mode shapes for

bending motion only, and Figure 5.S for lonion motion only.

5.S Formalatio.s for Cnc:k.ed Bac:kb<tM

When lbe hollow backbone contains a dvough cnck. sziffuesses of backbone will

decrease. Stiffilesses for cracked backbone will be detenni~ using an ennzy

procedure.
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5.5.1 HorizHtaI"dillC Stiff.as ofCrxktd ....

Under a constant cxternal bending momnu. strain cnttgy of beam is incTtaSed after

crack growth [72J. The incrnsc ofsnin energy equals to the energy consumed by Cl"ack

growth.

(5.26)

....'here VI: is the strain energy in beam after crack growth, V the strain energy prior to

mek growth. "< is energy for crack gro....th. For the uncm:ked backbone under consWlt

cxttmll bending moment M in horizontal dim:tion. the strain energy in the backbone

couldbewrinenas

(5.27)

When a crack is formed in the flank (or even in the flange when the crack grows) of

backbone under bending moment M in horizontal direction, and grows from zero to 10

(SC'C Figure 5.6), the energy consumed for mek growth. based on fracture mechanics

principle,wouldbe

Y"f'~•• £
(528)

where K I is the stress inlensity factor for filS( aack mode., and I is the wall thickness of

beam. For a rectangular hollow beam of close section, K I is given as [1]
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K, : (7• ..[i;F
Mba.-u:

F "" 0.9+ I.n( ":6)-11.42(,,:h») +140.17(11 :b)'
( 5.29)

v.~ II is the height of the beam. and 2b is the width at the position of the crack.

SubstiNUon ofcqn. ( 5.19) inlo eqn. ( 5.28) yields

( 5.30)

whue

(5.31)

and FII.Q) is given in cqualion (4.60). I(the horizonlal bending sliffuess ofcf1l.cked hollow

beam is denOltd by £/~ , the Sln.in energy in !he cracked beam could be a1temalively

expresseclas

( 5.32)

As stated above, y~ equals the increase o( sttain energy in the beam after crack growth.

From fracture mechanics considerations, stressesIstr.lins are very high around the crack

lip, bul remain unchanged in far field under constant load. Therefore. !he increase of

strain energy is mainly conct11trated neat the crack tip. Keeping this in mind. the

distribution of y~ along the btam could be then assumed as

(5.33)

where Qand Ie are coefficients to be determined so thai
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1', • 1--0-.dx

·,·[';;;'r
(534)

where c is the end location. II can be seen that equation ( 5.33) has the maximum value

al crack location (x ... c). and decreases quicldy as x moves away from the crack. from

equations (5.30) and (5.34), Q is determined as

(535)

Substitution ofequalions (5.27), (5.32) and (5.34) inlo (5.26) leads 10

(5.]6)

From the above equation. the bending sriffiless of cracked hollow beam is obtained as

EI•• ---%-R-
1+--'-,+[,;;;,)'

(5.37)

(5.38)

Moment of inenia I: could be detennined by the given dimensions of cross section of

hollow beam. AI the location of the crack, i.e. x-c. moment of inertia is decreased by
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the am. (lat) of the cn.ck multiplying square of die distance (bI2) from the crack 10 the:

newaluis.. So one has

£1, (nb] -(n-2t)(b-2t)JJJl2
Ei; "" (nb] -(n-lt)(b-2t)J)1I2 -latb: /4

Using equations (5.36) and (5.38). .. is ddennined as

5.5.2 Torslonl Sriffat!ss orCnteked Bum

(5.39)

(5.40)

Consider the hollow beam subjected to a constant eXlemaltorque T. After I crack forms

and grows. the strain energy in the beam will be equal to slrlin energy in the unctlCked

beam plus the energy consumed by crack growth. Following the same procedW"e given in

se-ction 5.5.1, the torsional stiffness ofcrad:ed hollow beam is obtained as

Gl,= ~jR
1+ 1+(;_'<)

t,a

""d
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F..(a). 2.25+ 2.28(~)-J7.04(~):+217.22(~)J-248.25(~"
b+1r b+h b+h b+1r

-269J.65(....!!...-)J + 18061.02(....!!..-)' -61797.91(.....!!....-)'
b+1r b+h b+1r

+128352.09(~)'-t49257.97(~)·+7S335.7(....!!...-)lo
b+h b+h b+1r (5.43 )

In equation ( 5.42), k, is an undetermined panuneter. and lhe crack geometry factor used

for energy calculation is determined by following lhe procedure for determination of

stress int~ity factor for a box (I]. In reference [I J. lhe crack gcomeuy factor F, is

determined, based on stress intensity factor for a center cracked rectangular plate

subjected to shear loading (98], IS

kt is determined usinglhe dimensions ofcross section in the location oflhe crack

/,.(1", _/ab1 /2 - 2Ja) Il)aF.. (a)

k,:: 2.S(tab1 12+ 2tal l)blh 11

( 5.44)

(5.45)

where J~ is polar moment inertia of uncracked hoJlow beam al x=c. Once the stiffnesses

for cracked beam arc determined. the natural frequmcies and modal vectors can be

calculated through equations (5.24) and (5.25), using the procedure outlined earlier.

5.6 Rauth and DisclllHioas

Frequencies and mode shape V¢!Onl are calculated numerically using the MATLAB

program. For bending--torsional and vertical vibration of uncracked backbone. lhe

frequencies arc compared with the test results in Tlble 5-2. It can be setn that the

calculated frequencies agret well with lest results. The missed frequencies in the earlier
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venial vibtation analysis for this ship model are now ginn by the coupled (horizontal)

bmding·torSional vibration. Two analyses rogether, viz.. Ven.iCilJ and coupled bending

torstonal vibntions, have provided full verification of the feSt mults. It is obsmted that

sometimes the horizontal bending vibration (alone) gives better correlation with

experimentl'll results. This is due 10 the fact thai the carbon/epoxy stiffener location was

niX exactly given and as such was assumed to be symmetrically localed along a

horizonlal line wilh respect to the centroidal axis on the lop and bonom flange of Ihe

hollow section. If the disWlCt'S were 001 the same and the stiffeners were localed at the

comers of the box section.. then the horizontal stilfnesses Vr"OUld be muc:h higher in the

horizonlal direction al differtnl sections along the beam length; this would have given

much larger errors for the horizontal bending vibralion. Frequencies and the Irmd of

results would have been similar 10 Ihe venical vibrnlion. where the test frequencies were

less than the analytical values.

For a cracked backbone. the flnt four frequencies of horizonlal bending·t~ional

vibration are obtained for differenl crack localions and crack depths. For. through crack

occwrin& in one flank at the middle ofbe:am length. the normalized frequencies (ratio of

frequencies betw«n the cradced one and uncnclted one) are shown for differenl crack

depths in Figure 5.7. All four frequencies decrease as the crack length increases. For

5e1:ond mode, !he frequency has very little decrease even though !he crack is large; this is

due to !he fact that Ihe crack occurs neal Ihe vibralion node of second mode. It can also

be noticed that for oIher modes the decreases in frequency values are significant when the

crack becomes larger. When cm:k length reaches O.2m (t2I(b+J1)-O.f) which
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considerably exceeds the width (0./27m) of flank al middle of the beam, the firsl

frequency decreases by aboul 12.4%. It also means !he stiffness of the beam is degraded

severely. Figure 5.8 and Figure 5.9 show the nonnali.zed frequencies for different crack

deplhs as !he crack is located at other two positions cJl""0.25 and dl a O.75. respectively.

It is observed that (Figures 5.8 and 5.9) the cnd: influence is much higher for the second

modes (of beam with crack al cJ/ .. 0.15 and 0.75) due to the fact that the maximum

bending moments tend to occur around these points.

For a constant crack length (a/(b+h)-O.2), nonnalized frequencies are shown for

different cnck locations in Figure 5.10. The changes in frequencies are very small when

the cnck is near the two ends. As crack localion moves along the beam. frequencies

decrease or increase showing a wave-type molion. There are some points where

frequencies remain almost unchanged or change very little. These points are the vibntion

nodes of the slructme. The crack close to vibralion node appears 10 have very little

influence on that vibration mode. This is due 10 fact that the crack is free of

stresses/strains at vibration node for the free vibralion of that mode. As is indicated. both

crack depth and crack localion affect the dynamic characteristics. Figure 5.11 and Figw-c

5.12 show nonnalized frequencies for different crack locations with the crack ratios of

aI(b+h)~O.08and a/(b+h)=OA. respectively. Nonnalized frequencies versus crack depth

and location are shown in Figure 5.13.
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5.7 Crack Detection Proced.re

The frequency values for a cncked beam~ dependenl on both crack location and depth.

II turns out that one: normalized l'mIucncy could correspond 10 different crack localions

and crack deptM. as can be seen from Figure 5.13. Based on this. !he frequency contour

line which has !.he same nonnal.ized mqucncy on th~ comOUl could be plotted in a figure

having !he crack localion and depth as its axes. Figure 5.14 shows three contours (0.99,

0.98 and 0.96) for all th~ four modes of coupl~d horizontal bending-Iorsional vibration.

Th~ 0.99 contour m~ans thaI th~ points on th~ conlour hav~ a 1% decr~ase of frequency

compared to uncracked beam; Ihe 0.96 contour has a 4% decrease. Similarly, any other

conlOur can be plon~d. If. crack is found 10 have the nonnatiled frequency of. cenain

valu~. any point on the contour of that value could give the possible crack localion and

depth. A crack should and must belong 10 one conlOur for each mod~. Each COnlour for

different modes conllins infonnation aboul: the crack.. The conlours for differcnl modes

could be ploned 1OgCthcr. and the: intmcction poinl(s) wouJd indicale the crack localion

and crack depth. Since the: frequencies could be measured ICCUmtly for lower modes and

cootow5 for klwer modes tend to be simple, the contours for~ modes (usually first

and second one) are planed together 10 obtain !he inlcrsection poinl(s). If more than one

inlmection points are obtained, the: conlour for another mode is IJ5Cd 10 get the correct

location of the point. which would indicate the crack localion and crack depth. If the

crack location and vibralion node coincide for a mode. the contour tends 10 disappear and

no intersections are obtained; then !he next mode is used. Basically. the tint four

frequencies are sufficienl to identifY the crack in the beam.

147



From the obla.ined results of coupled bending-torsional vibration, a crack with half

length a/(b+1I) .. 0.1 and location dl-O.5 has normalized frequencies of 0.9816 for the

first mode, 0.9786 for the third mode and 0.9922 for the fourth mode. These thtft

contours for three different modes are ploued together in Figure 5.15. The three contours

give one intersection which indicates cradc location and depth very well. Figure 5.16

sho...."S another example for a crack (a/(b+h)-O.14. en-a.l) which has the nonnalized

frequency of 0.9848 for the first mode, 0.9756 for the second mode and 0.9820 for the

third mode. The intersection of the three contours gives the crack depth and crack

location.

5.8 Closure

The hydroelastic ship model has a pure vertical bending and I coupled (horizontal)

bending-tOBKmaI vibrations due to added water mass in horizontal direction. Coupled

and uncnupIcd vibration equations are developed using Hamilton's principle. Analysis of

coupkd vibration Iiong with the vertical vibration provides a thorough theoretic:aI

dynamic analysis for the model. and gives a good verification for the lest results of an

uncnlCked hollow beam.

Wllen the backbone of ship model contains a crack, reduced equivalent stiffucsscs of the

cracked backbone are determined using an energy procedure. Coupled vibration analysis

is then camed out using Glleron's method. Basically. the frequencies decrease as crack
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length inausc:s; however the decrase is also depmdcnl on crack location. When a

crack is located at (or close to) a vibration node of a mode, m:quency for lhis mode

mnains almost unchanged. A cradc idcnriflCabon proccdW"t is developed by considering

frequency contows !hat have the same normalited frequency on the contour line as that

oblained for lhe cracked beam. The contours from different modes can be plotted

together, and intersection point shows the crac:k location as well as crack depth.
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Table 5·1 Properties of the Backbone {S6]

B<tW«n BendinS Stiffness EI. Torsion Stifliless Glp M", Moment of

Segments (Nm1
) (horizontal) (Nm2) Inertiaplp of Ship

(kgm) (including

masses of segments)

]·2 1,123,622 718,290 2.5198

2·J 1,401,718 875,868.2 2.5242

J-4 [,079,634 691,897.2 2.5191

4·' 723,853 514,394.8 2.5142

,-6 456,047 352,935.2 2.5097

Average 956,986.8 630,677.08 2.5174
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Table 5-2 Frequencies ofUnc:racked Backbone

FmjUl:Dt)'(Hz) "" "" "" Soh '" 'oh 80h

TCSl,""lts U8 'J' 12.05 19.63 24.64 ]1.65

Torsional·bendina 6.469 ]6.94 61.8

vibration

%EL'I'Of'SlTomtests 1.84'Y. 8.8% 4.4%

VeniclJ vibntion .... 12.6 26.]6

%Errors&omTnts 0.•5% ....% 6.98%

HorizonulviDraial 6.5]9 11.16 31.19 6-1.11

%Ernn&oln1dtS "." •."" 1.97%
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addedaws

Figure 5.1 Cross section of backbone at a point considering added mass

Z

p"

o'''''--------y
Figurt 5.2 Displacement ora point P in coupled torsional.bending vibration orlhe beam.
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Figure 5.3 Mode shapes for coupled (horizontal) bending-torsional motion (y 
horizontal displacement. 8 - torsional angle)
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Figure 5.S Mode shapes for torsional mOlion only
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Figure 5.6 A crack (2a) is located at one flank arthe hollow backboM.
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Figure 5.7 Normalized bending-torsional frequencies againsl crack length for a CT1iIck at
eIl-O.S
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Figure 5.8 Normalized bending.lorsional tn:quencies against crack length fOf a crack at
cJl-O.25
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Chapter 6

VibratioD aDd Crack Detectio. in Timosbenko Beam witb •

Crack

6.1 Energy ConKrntion Law lad H••Uton's Prladple

If the kinetic energy of an elastic body is T. and the potenlial energy is /I. then the lotal

energy of the elastic body will be constant, if the non-conservalive forces are zero. This

leads to the conservation of energy principle [70J. viz.,

T+V""Constanl (6.1)

In case the non-conservalive forces are not UfO, the change of total energy will be equal

10 the work. perfonncd by non-consnvative forces.

Hamilton's principle for. conservative system may be stated in the following form:

the real trajectory ohlle system is such that the integral [991

(6.2)

remains stationary with respect to any compatible virtual displacement, arbitrarily chosen

between both instants II and I} but vanishing a! the ends oflhe interval, i.e.,

with &1(") =&1(r,);;: 0 where q is the genemlized coordinate.
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6.2 Formulalioas ofVlbratioD for a TimoshcDko beam

For a short beam. shear defonnatiOll and rotary inertia should be considered in

formulaling the equation of motion. This is the case for I Timoshenko beam. The

vibration equations of I Timoshenko beam are formulated using Hamilton's principle.

For the transverse mOlion ofthe beam. the tlansvme displacement is given by (99)

w=w(.r.t)
(6.4)

The shear deflection of the cross seclion is taken inlo account by introducing a new

variable W= W(.r.l). the rotation of cross section. Both defonnations are shown in figure

3.1. The axial displacement at any tranSVerse location of the beam could be expressed as

u(.r.:.t)=-zlp

With small displlcemcnl approximalion. one obtains the suain expressions as

The bending moment is given by

M=E/~ax

(6.5)

(6.6)

(6.7)

where / is the moment of inertia of the cross section. / .. !z:dA A is the area of the

cross section and E the Young's modulus.
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The shear force is given by

(6.8)

where G is shear modulus and k'is a nwnericaJ factor depending on the shape of Ihe

cross section.

Strain energy of the beam could be "","ttm as

Y =± l!(a""E"" + Tcy.,}drdA

'"±!(£/(~)l + k'GA(-1l' +~)l)it
(6.9)

where £1 is the bending sliffuess of the cross section. The kinetic energy coold be

expressed as

where m = pA is me mass per unit ofbeam length and ,1 =;.

Applying the Hamillon's principle to equation ( 6.3), one obtains (see (99,100])

f<6r- 6Vld'= fW"n•.!W+m"~6~.J<.~
+ f ll[-EI~6<~)-k·GA(~-,,)6(~-,,)H,·0

From the above equation, the equations of motion for the beam can be obtained as
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a[. (aw l] a'w- /eGA --Ii' -m---;-=Oar ar or
~(EI2!!)+k'GA(~-\II)-r:ma:~ =0arm ax ar (6.12)

For an unifonn beam (k'GA and £/ are constant), eliminating 1jI, a fourth order

differential equalion in w is obtained as

The type afthe motion could be assumed as

w=W(x)e""

Substituting the equation (6.14) into (6.13), the following equation is obtained

Ifweassumethat

/If"" 't'(x}e'"

the following equation could be obtained by using equation (6.12)

.. =__'_._.(E/
dIW

+[£/(I/m +k'GAJ~l
k'GA -(l,rmr" del k'GA dx

The solution to equation (6.15) would be of the form.

W=Cc'"

Substitution into (6.15) yields the following algebraic equation,

The roots ofthe above equation are
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(6.14)

(6.15)

(6.16)

(6.17)

(6.18)



(6.19)

It can be seen thaI the roots an: also dependent on the frequency; two of them are

certainly complex values and other twos are nol complex values when

that is

• k'GA
fl.)" < ,,1

m

( 6.201

(6.21)

To be valid for both cases, the solution of equation (6.15) is expressed in lenns of the

following functions. viz..

For a simply supported beam. the boundary condilions are

W(O)=W(I)=O

(:~l... =(:~L =0
Applying the boundary conditions. the frequency equation is obtained as

(6.22)

( 6.231

(6.24)

NalUral frequencies of a uncracked simply supported beam could be calculated using

equation (6.24). Consider a rectangular cross seclion (k':SI6), beam length I .. 3m,

width b .. O.lm, modulus of elasticity E .. 62./-U! GPo, Density p = 2700 kglmJ
, and

shear modulus G .. lJ.J·IOP GPo. For l/h"'fJ. the first four frequencies are compared
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with the results ofEulabcam in Table 6-1. Comparisons an: also made for I/h-IO and

I/h-J in Table 6-2 and Table 6-3. It is seen from the results given in Tabk 6-1 to Table

6-3, that the differences bctwccn the Euler beam and Timoshenko beam become quite

significant when Ihe Vh ralio becomes smaller and smaller. Even for a beam with a I/h

nlllio of 1J. the difference in the founh frequency is more !han 10'/•.

6.3 Timsheako Beam with. Crack

For a beam with a crack. the vibrntion equations are obtained using Hamilton' principle

(6.25)

where £/<and k'GA<are bending stiffuess and shear stiffuess for the cracked beam.

which are obtained using the same procedure described in Chapler 4. From equalions

(4.I)to(4.11), in Chapter 4,

£1 =-_£/_-
< 1+ £/:(:,:} l

1+(-)k(o)o

k'GA .. k'GA

< I + £/:(:-:) l

1+[-)k(o)o
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EIR(o, c) = 31rFJo)o

'(a)h ""w>(-'-=-=-)+""w>(~)k(a)o k(a)a

Similarly, assuming w= W(x)e'" and '" '" '¥(x)e'''. we obtain

f[k'GA.(~-'¥ )]+mw1w=o

1;(EI<~)+k'GA« ~-'¥)+r:mw:\fI::o

From the above equations, one could derive

Substitution of equation ( 6.31) into equation (6.30) yields

f(k'GA<-f(£(~»)+f(EI.q.)m(zJl +fO<GA. ~~)rlmw!

-1;(Jc'OA,\fI)mw2
+,2m2w'~ "" 0

Integrating the above equation. one has

k'GA.,£r(El/!1')+f(EI,~)mW2+k'GA, ~; r
2
mw

1

-k'O.( 'f'mw1 +,lm 2w''P::0

For a simply supponcd beam, the boundary conditions are
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(6.31)

(6.32)

(6.33)
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£/~:O atx-Otmdxzl
dr

Using lhe four lerm Galerkin's method. the solulion is selected as

( 6.35)

(636)

...here C, are constants. and 't', are trial functions chosen &um the case of a simply

supponed uncracked Timoshenko beam, viz..,

(6.]7)

6.4 Frequency Changes Due to Crick

Natural frequencies ofa simply supponed beam could be calculated using equation (6.36)

using a four term Galerkin method. Consider a cracked simply supported beam of

rectangular cross section. k' - 5/6. beam lenglh I - 3m. widlh b - O.lm. modulus of

elasticity £ - 61.I"ul GPa, density p -1100kglmJ
• shear modulus G '" 13.3"10' GPo.

For Uh-Jj (\lotlich can tit seen as a slender beam). nonnalized frequency againsl cnck

depth ratio is shown in Figure 6.1. For Euler beams. !he fttquencies are nonnalized by

nuural frequencies of the uncracked Euler beam. For Timoshenko beams. the frequencies

are normalized by natural frequencies oflbe uncracked Timoshenko beam. It can be seen

that normalized frequency decreases as crack depth increases, and Timoshenko beam

shows almosl no difference with the Euler beam for firsl twO modes. For third and founh

modes, Euler beam shows a higher decrease in normalized frequency. For IIh""JO, shown

in Figure 6.2. Euler beam has a slightly larger decrease in normalized frequency

compared to the Timoshenk:o beam. For IIh-J. shown in Figure 63, large decrease in
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normalized frequency could be clearly observed in Euler beam compaml 10 the

Timoshenko beam. Differmce between Euler and Timoshenko beams becomes

significant &5 crack depth incRases. Table 6-4 shows the normaIiud frequencies for

Euler and Timoshenko beams with a/h"'-O.J. As the IIh ratio decreases (from slender 10

short), the Euler beam has larger and Iuga- decrease in nonna.lized frequency compared

to the Timoshenko bc2m, even for the same crack. It is aJso observed thai higher modes

would show larger diffmncn betw«n Euler and Timoshenko beams. This is due to the

fact Ihat basic bending length (represented by the length of a sine wave between two

adjacent nodes of vibration) by deplh ratio becomes smaller and smaller and this has

larger effect for higher modes; this makes the basic beam to be a very deep beam. Figures

6.4,6.5 and 6.6 show the normalized frequencies for different crack. locations. Variations

of normalized frequencies for Euler and Timoshenko beams~ similar. Frequency ratios

obtained by Ti~nko and Euler formulations are also compaml with lest results of

aluminum beam (with cenler cracks) in Figure 6.7. It is seen that the differmoes betwttn

Euler beam results and Timoshenko beam results are marginal for the first f'NO modes;

the differences become apparent for the third and fourth modes. The frequency contour

procedure. outlined in Chapter 4. can aJso be used for axk detection in Tim05henko

b••"".

Vibration equations and solutions for a cracked Timoshenko beam are developed.

Analysis results show that when length·t~heighl ratio of the beam is less than 10. the
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mor for flrSl frequency (berwtcn Euln and Tunoshmko beams) will be greater than

1.7%. The error ....ill be larger for higher frequencies: !hus Timshenko beam analysis is

necCSSU}' for lower length-Io-height ratios 10 take account of the effect of shear

deformalion and rotary inertia effect. For cracked beams. decreases of frequencies due 10

the presence of !he crack are almosl !he same for. Euler and Timoshenk.o beams. having

large length-ta-height ratios (>15). For low length-Io-height ratios «10). differences

be1:ome significant. especially for higher modes. and the ,",cked Euler beam has larger

nonnalized frequency decrease than the cracked Tunoshenko beam. This would indicale

a larger crack to be pn:se1It in the beam than it is actually existing inthe~.
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Table 6-1 First four frequencies for Euler and Tonoshenko beams with 1Ih - 15

FirstFreq. Second Freq. ThirdFrcq. FourthFreq.

(radiI) (radiI) (radiI) (radiI)

Euler Beam 303.64 1214.56 2732.71 4858.26

Tim05henko 301.34 1119.28 2565.03 4366.61

B"'"

Relative Error 0.76% 2.l}01o 6.1% 10.1%

Table 6-2 First four frequencies for Euler and Timoshenlc.o beams with l/h - 10

FilstFrcq. Second Freq. ThirdFreq. FourthFreq.

(radfs) (radiI) (radls) (radiI)

Euler Beam 455.46 1821.85 4099.15 728739

Timoshenko 447.84 1710.02 3599.00 5918.77

B,am

Relative Error 1.7"10 6.1'Y. 12.2% 18.8%
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Table (j.3 First four frequencies for Euler and Timoshenko beams with llh .. 5

FirstFreq. Second Freq. ThirdFreq. Founh Freq.

(radls) (radls) (radls) (radls)

Euler Beam 910.92 3643.72 8198.31 14574.77

Timoshenko 855.01 2959.38 5643.7 8551.5

B<am

ReialiveError 6.1% 18.8% 31.2% 41.3%

Table 6-4 Nonnalized frequencies for Euler and Timoshenko beams with aIh=0.5. cll9J.5

~l/wi ~2/~ "''''''' "'''''''
Vh 15 Euler Beam 0.8860 0.9808 0.9197 0.9683

Tim. Beam 0.8868 0.9813 0.9246 0.9716

VhIO Euler Beam 0.8301 0.9603 0.8922 0.9414

Tim. Beam 0.8326 0.9627 0.9043 0.9523

Vh 5 Euler Beam 0.6903 0.8759 0.8269 0.8578

Tim. Beam 0.7031 0.8969 0.8707 0.9093
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Cbapter7

Forced VlbratioD oro Cracked Beam 'Dd Crack

IdeDtifICatioD

7.1 Formu"tionJ for Forced Beam Vibrlltion with. Crack

For a cracked solid Euler beam. subject to a concentrated hannonic force exciulion, the

flexural vibration mOlion is given by

(7.1)

where £/~ is bending stiffuess for the cracked beam which is determined earlier in

equation (4.16), c is damping, m is line mass density and/iJ is the amplirude ofcxcitalion

foree: which is applied at x·x,. 1be damping is assumed 10 be the equivalent suucturaJ

damping which could be uncoupled for modal analysis; therefore, to make the nonnal

modes orthogonal. the damping is selected as [IOI}

(7.2)

where a and P atearbitratyCOOSWl15.

If q; are modal COOfdinates, the response w could be represented by

(1.])
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where w: s are nonnaJizcd mode functions which are obtained from mode shapes (W; s)

for free vibration of me cracked beam given in Chapter 4. The normalizing is done such

"",

(7.4)

(7.5)

Substituting equation ( 7.3) into equation ( 7.1 ), mulliplying by ~, and integraling over

the beam length. oneobUlins

(1.6)

where ~,s are damping fiilies or modal damping factors wh)ch are dependent on the

dampingc. Due to the presenccofdelta function. equation (7.6) is simplified as

q, +2{,tu,q, +w,:q, =1,p"-W:(x.)
(7.1)

(1.8)

where Q is the complex response amplitude. Then following the procedure for one-

degree-of-freedom system, the modal frequency response funtlion of equation ( 7.7)

could be obtained as

!oiv,(x.)
Q, - flJ} (Jl +~ilUi(JflJ)

178

(1.9)



From equations (73), (7.8) and (7.9). the frequency response au-x, could be derived

(7.10)

....ilh the f«ee excitation acting It x'=x... lben:fore, based on equation ( 7.10). the

frequency tranSftt function for displacmimt is obtained as

(7.11)

Acceleration response at x, for excitation at x, would be

(7.12)

For a specified location of the excitation, the displacement response varies along Ihe

beam length. Therefore, difTerenlialion with respect to x, will give the frequency response

function for the slope, viz.,

Similarly, the frequency response function for curvature would be given by

C(x"X"jfJJ)-:t • w:..~x.)W;(X,)
... fJJ; -()) + 24j(l),(jfJJ)
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7.2 Crack Identification by Acceleration CurVlhtre Response

TM presence of a CTEk in a beam ....wJd result in some clwJges in mode shapes of the

beam; these changes would inevitably introd~ changes in displacement and

acceleration frequency ttansfer function compared 10 the uncracked beam. However.

lhesc changes are global. no!: local. The crack could not ~ Icx:ated by direclly looking aI

lhe acceleration responses of the cracked beam. Figure 1.1 and Figure 1.2 show !he

frequency transfer functions for the uncracked and cracked beams. Figure 1J and Figure

1.4 show the acceleration response for the uncracked and cracked beams (beams

discussed in seclion 4.2.5). From lhese four figures. we can see that considerable global

changes occur due to the presence of the crack. but it would be difficult to indicale the

crack location or siz.e from lhese figures.

In order to identify the crack.. one can defllle the acceleration cwvalUrC: response (ACR)

overlhebe:amlcngthas

(7.15)

Due to differentiation twice over the beam. the local information of the crack is

incorporated into the acceleratioa curvature response (ACR) which could be used 10

identify the crack. For a single frequency excitation (natwal frequency would be bener).

and al the fixed excitation location. the acceleration curvature response could be

calculated direcl1y from measured acceleration response along the beam, using a

numerical method called cenlnl-difference fonnula.
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(7.l6)

where ACR., is acceleration curvature response, A., is measured accelerntion response, d

is me distance between adjacent acceleration sensors. To get accurate acceleration

curvature response from measurement, there should be enough acceleration sensors

placed over the beam.

To examine the acceleration curvarure response (ACR), a simply supported aluminum

beam is taken as an example for computation. The beam length is 3"" its depth is 0.2",

and its width is O. I",. The material Young's modulus £=62./GPa and the damping is set

to be O.OJ. The naturnl frequencies and mode shapes for free vibration ofa cracked beam

obtained in Chapter Four by Galerkin's method are used in equation (7.15).

The excitation point could be located at the middle point of the beam which would

generate larger response (large amplitude) for first mode as well as third modes.

However, the response for second mode would be very small, because the point is close

to its vibration node. If the second mode alone is of interest, the excitation point should

move to the location of one fourth of the beam length. For all modes (of interest), the

excitation force could be located at the point which is not close to any node of vibration

modes so that all these modes, which one expects to examine, can be excited. Consider

that the cracked beam is subjected to unit harmonic excitation. For a crack with depth

ratio a/h-O.5 and crack location ratio cR-5/6, Figure 7.S shows the acceleration response

along the beam for excitation at the middle of the beam. It is observed that the second

mode is almost not excited. Figure 7.6 shows the acceleration response along the beam
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for exciration location at one quarter of the beam. All the three modes are excited when

the excilation location is not at a nodal point. To identify the crnck.. Figure 7.7 shows the

resonant acceleration curvature response for a crncked beam. It can be seen that al the

crack location !he curve has an abrupt peak which would be a bener crack indicator.

Figure 7.8 shows resonant acceleration curvature response at the first resonant frequency.

The crack is identified at d/-jI6. A larger crack has a larger abrupt peak. II is also seen

thaI even for the small crack depth ratio of a1h-O.l. there is a clearly observed

discontinuity in the accelerntion response curvature at !he crack location. Figure 7.9

shows resonant acceleration response curvatures for different crack depth rntios at the

crnck location. The peak amplitude increases as the crack size grows and the increase is

quite significant; this is much higher than the increase observed for frequencies during

cracking. This resonant acceleration curvature response amplitude could be used to detect

the crack size and location.

From equation (7.15). it is known that the accelerntion curvature response (ACR) is also

dependent on the excitation frequency and amplitude of excitation force. When the

excitation frequency is close to the naruml frequencies. the acceleration curvature

response will have larger values including values near the crack location. Figure 7.10

shows ACRs for different excitalion frequencies. When the excitation frequency is close

to the first natural frequency. the indication for the crack is quite noticeable. So the

excitation frequency should be always selected to be the resonant frequency of a cracked

structure. This is facilitated when a fast sine sweep. sweeping over the requisite natural

frequency ranges. is used for excitation. As for the excitation force. the ACRs will
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inCf"C2SC as the force increases. Hence in order to gel sharp and ~'tll«fined responses. an

optimal magnirude ofexcilation for« should be used.

7.3 Cnck hlClication Using Resoaaat Acctltntioll A.pUlade ContoMr

Resonant amplitude for accelaation response could be expressed as

(7.17)

where s and r ace locations of response measurement and excitation. It is found that

resonant amplitude would change depending on crack depth and crack location. When

excitation and measurement points are localed at the middle of the beam. Figure 7.1 [

shows resonanl acceleration amplitudes (nOlmalized by thai of an uncracked beam)

against the crack depth (crack location: cJl.//6). II can be S«fl that amplilUdes for the

first and third modes decrease while !he crack size increases. Againsl this decrease. the

amplirudc:s for the second and fourth modes would incrust as the crack size increases.

For the second and fourth modes. acceleration response would be near zero for !he

uncracked beam because the middle poim is !he vibralion node. HOVo'eVer. the presence of

the excilation poinl at the cenler will slightly change mode shapes and vibmtion nodes;

therefore vibmtion node for !he second and fourth modes will move slightly away up and

down along with the excitation poin!, and yield the increasing acceleration response as

crack size increases. The crack will reduce the local stiffness, and consequently increase

the local accelenr.lion response and generally decrease response at a poinl away from the

crack.. If the response point is taken to be away from the vibration nodes. the innuence

relaled to vibration nodes could be neglected. For the aa<:k located at cI1=J/J. the
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resonant acceleration amplitude against crack depth plot is shown in Figure 7.12. II can

be seen tIuIt lhc cwves follow similar pancms shown in FiguR: 7.11. For the third mock.

the crack. is located at iu vilntion oode; theRfeR cnack has very linle influence on

resonant aca:leration amplitude. When the crack is located at the middle point of the

beam. normalized resonant acceleration amplitude against the axk depth ralio is shown

in Figure 7.13. For the fust and third modes. the resonant acceleration amplitudes

increase as the cnack size increases. while. for the second and fourth modes. the resonant

acceleration amplitudes deerease as the cmck size inc~. For the first and third modes

the crack is not close to the vibration node; the reduced local stiffness resulu in the

increase of response. However, for the second and fourth modes, the crack. is located at

its vibration node, and crack acts like I reducer of restraints which causes the responses

of other points to increase. The acceleration resonant amplitude also changes depending

on the crack location. Figure 7.14 shows nonnaliud resonant acceleration amplitude

against craclc location for cnck depth ratio a/h-O.Z5. Figure 7.15 shows normaliud

resonant acx:ekration amplirude against crack location for aack dcpch ratio a/h-O.5. To

give an ovcrall view of resonant acceleration amplitude. Figure: 7.16 shows nonnalized

resonant acceleration amplitude against both cnck location and crack size.

In order to identify the crack using normalized resonant acceleration amplirude. the

resonant acceleration amplitude contours are ploned. Figure 7.17 shows three contours

(0.95. 0.97, and 0.99) for first four modes. Figure 7.18 shows another three contours

(0.96. 1.1. and 1.6) for first four modes. On one contour curve. amplitude value is same

for differenl crack sizes and crack locations. Same amplitude value: for different modes
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will have ditremll curves. A ctllCk will show different amplitude values for diffmnl

modes. ContoutS for these values from different modes could be plotled together. and

intersection p:Mt would indicate the crack location and crICk siK. FigIR 7.19 shows the

crack location is cIl-fJ.5 and the crack depdt is oIh~O.1. The intersection poinl comes

from three conlours. the first one is /.0/91 from the firs! mode. the second one is J.()646

from Iilird mode and the third one is 0.9719 fi'om the fourth mode. Figure: 7.20 shows the

crack localion is cIl-1IJ or 1/3 and Iile crack deplil is tJIh-O.4. The intersettion poinl

comes from Ihrec COIltoutS. !he fust one is 0.9878 from the firsl mode. the second one is

0.9997 from third mode and the third one is /.1156 from the fourth mode. Funher

refinements could be made by using an off-center mass (as shown in Figure 4.20 to

Figure 4.24) and the cooecl crack localion is identified.

7.4 Closure

The forced vibration response for • cracked beam under • single Ilatmonic excitation is

developed. The accdemion response and frequency transfer functions for displacement,

slope and curvature are obtained over the beam length. Due to the fact that acceleration

response is easy to measure (using accelerometen), accclcntion curvat\lR response is

utilized 10 identify the cnck. The abrupt peak on the acceleration curvature response

would be the indication o(thc location o(me crack.

Resonanl acceleralion amplilUdc is also dependent on crack location and crack size.

Unlike natural frequencies for cracked beams. il could dcctcasc. but could also increase
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as the crack size increases. It is delmnined by the fact whether the crack location is close

10 Ihe measurement point and vibration node or far away from them. The crack would

inrn:ase local acceleration response if vilntion node has no significanl influence.

Normalized resonanl aa:ekntion amplitude contours are plotted. A crack will gmmlte

different contour values for differenl modes. These C'OOloun from differenl modes are

plotted together. and !he inlmection point of the Ihree l;UfVe5 is used 10 idallify the

crack.
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'"Figure 7.\ Displacement frequency responses for cracked and untracked beam excited at
first natural frequency (aIh=O.5, cll=1/6. excilation at the middle point), - cracked bearn,
- uncracked beam.
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'"Figure 7.2 Displacement frequency responses for cracked and uncracked beam excited at
first namral frequency (aIh=O.S, cII=ll2. excitation at the middle point), - cracked beam.
-lIDCrackcd beam.
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Figure 7.3 Acceleration rre:qu~cy responses for C1'2Cked and Wlcrackcd beam excited al
first natural frequency (aIh-<l.5, c/I..1/6, excitation at the middle poin!), - cracked beam.
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Figure 1.4 Acceleration frequency responses for cracked and uncracked beam excited II

first nanaral frequency (aIh-o.S, c/l"'II2, excitation at the middle point), - cracked beam,
- uncracked beam.
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Figure 7.5 Acceleration response along beam length for different excilalion frequencies
(excilation at the middle point of the beam, aIh=O.5. cJ)-SI6)
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Figure 7.6 Acceleration response along beam length for different excitation frequencies
(excitation at the quarter point of the beam, aIh=O.S, c1J-S/6)
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Figure 7.7 Acceleration curvature response along with beam length at different excitation
frequencies (with crack location cII=S/6. crack depth aIh=O.S. excitation at the middle
point)
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Figure 7.8 Acceleration curvarure response along with beam length at the first resonant
frequency (crack location cJl=S/6, excitation at the middle point of the beam)
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'"Figure 7.10 Acceleration curvature responses for the first resonant and non resonant
frequency excitations (excitation at the middle poin!)
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Figure 7.11 Resonant acceleration amplitude against crack depth (crack location cI1=1I6;
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Figure 7.12 Resonant acceleration amplitude against crack depth (mek location cJI:llJ;
excitation al the middle point, response at the middle point)
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Figure: 7.13 Resonam acceleration amplitude against crack depth (crack loc:ation c/I"O.5;
excitation al the middle point, response at the middle point)
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Figure 7.14 Resonant acceleration amplitude against CI1ICk location (crack depth
aIh=O.25; eXCilalion at the middle point, response al the middle point)
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Figure 7.15 Resonant acceleration amplitude against crack location (crack depth a1h=O.5;
excitation at the middle point, response al the middle point)
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the middle point, response at the middle point)
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Figure 7.20 Crack identir.calion by the intersection of three contours from three different
modes (deduction: aIh-o.4, c/I-lI3 or 213) (-0.9878: fml mode. --0.9997: third mode,
·-·-I.nS6: rounh mode)
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Cbapter 8

Summary and Conclusions

A vibration model has been developed for cracked beam str\lCtures by energy

considerations. The stiffness of the beam changes not only at the crack location, but also

along the beam length (mostly around the crack regionl, due 10 stress relief around the

crack. This stiffness change around the crack region has been modelled by considering

strain energy in the beam that would change due to the presence of a crack. Total strain

energy change is calculated under dead-load loading using &aCMe mechanics principles.

Actual energy change around the crack region is detennined from classical solution for

stresses around crack regions and compared with the approximate: formulations used in

this study. for different crack length ratios; final stiffness for cracked beam is obtained

using this approximate fonnulation. Due to this approach, the stiffness becomes a

continuously varying parameter over the beam length. It has a minimum value at the

crack location, and tends quickly to the stiffuess of uncracked beam away from the crack

location; using this fonnulation, the continuous beam vibration equation is derived. Due

to lack of c1ose-fonn solutions, Galerkin's method is used to solve the equation. in which

the trial functions are chosen from that of uncracked beams.

Free vibration analyses are carried out for simply supported rectangular beams and fLXed

fixed rectangular beams. One and two edge cracks are considered. Application of
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Galerkin '5 method co vibration equalions yields the natural tm{uencic:s and mode shapes

ofcracked beams.

NalUnl tm{umcies vary depending on crack sin and crack location. Consequenlly

normalized frequency contours have been drawn for various modes with crack depth

ralios along x-axis and crack location ratios along y.axis. From these coniOurs, it is

observed thai a crack depth ratio could COlTCSpond 10 different frequency ralios and crack

locations for differenl modes. In order 10 identify a crack WI gives predefined

normalized frequency ratios (obtained from experimental measurements on cracked

S01lCtures) for a nwnber of modes, frequency COntours for these modal frequency changes

could be drawn from previously compuled values (for different modes) and ploned in a

single diagram; the interseclion point would indicate the crack location and crack depth.

In addition to the above. a number of other srudies have brtn carried OUI. A hollow beam

model represe1tting a ship hull (which was IeSted earlier in the nearby Institute for Marine

Dynamics [NRCq. for dynamic response) has been investigated. The hollow beam, with

varying S1iffuess and varying thickness, vibrates in water with free·free boundary

conditions. Added water masses are considered. VeniC31 bending vibration responses,

and coupled torsional-bending (horizontal) vibration responses, are de'tennined withoul

and with a through.thickness crack. The natural frequencies and mode shapes are

obtained. Frequency contours are used to identify the crack, using the methodology

developed earlier.
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To consider the influence of shear deformation and rolaJy inenia in vibralion of cracked

beams. the Timoshenko beam vibrations are examined with/withoul a crack for different

length-to-height ratios. Comparisons of natural frequencies are made between the

Timoshenko beam and Euler beam. with/without a crack.

Forced vibration response of a cracked beam has also been determined. using the above

procedure. Excitation is considered as a concentrated harmonic force. The natural

frequencies and mode shapes used for calculation are Iaken from resullS obtained

previously in Chapter 4. Frequency transfer function. acceleration response. acceleration

curvature response and resonant acceleration amplitude are obtained.

The acceleration curvature response along the beam length shows that the acceleration

response curvature has a large increase at the crack location. which could be used to

identify the crack location; the crack depth could be detennined by curvature value at !he

location. Another crack detection procedure uses resonant acceleration amplitude

conlOur.;. The resonant acceleration amplitude also varies according to the crack size and

crack location. Similar 10 frequency contour.;. the resonant acceleration amplitude

contour.; are also ploned. The contoun for different modes are plolted together. and the

intersection point is used to identify the crack size and location.

The following observations. contributions and conclusions have been made from the

abovcslUdy:
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I. The vibralion model developed in this study is able 10 easily solve for dynamic

characteristics of crxkcd beam structw"e5. II has included stress concftltration at the

crack lip and stress ~Iief around the crack ~on wtUch leads to stiffness reduction

around the crack region. The cnck is thus better modeled. The obtained results using

the model agree very well with experimental results and other research results. giving

bener agreement than othen.

2. Results for simply supported and fixed-fIXed beams show that the natural frequencies

would decrease as the crack size inc~ascs. The natural frequencies also vary

depending on the crack location. Foe a simply supponed beam. the maximum

decrease of the first natural frequency is at the middle point, and the half-height

crack has 11.6". decrease of frequency. For a fixed-fixed beam, the maximum

dttreasc of the first natural frequency occurs at the ends. and the half-heighl crack

has 11.5% decrease offrequcncy.

J. Normalized frequency COOIour plots presenl a dear view of how nalunl1 frequencies

ch:mge as the crack size and its location change. Frequency contOUrs contain explicit

information 10 analyze influence of crack on dynamic behavior. For Cl1IC1c det:ection,

frequency contour procedure provides an easy way 10 identify the crack. giving its

size and location even for small cracks (alhz().OS 10 0.10). The similar frequency

reductions (crack at ends and at center) obtained for both fixed and simply-supported

beams (first mode) indicate that failure is generated by identical conditions. in spile

oftheit different boundary conditions.
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4. F~ueDCY conlour proce'Ciwe requires at kasl two nalUral frequencies. and usually

three narunJ frequencies. to gener2le lhe unique inlerseclton point thai would

identify the crack. The three frequmcies are selecled from lowe-r modes (rU'Sl four)

since frequencies for the lower modes could be accurately measured and COOlours for

lower mOdes lend to be simple.

s. For symmelric beam structures. frequency contour procedure would indicate two

possible crack locations. Adding an off-center mass 10 the beam would make

vibration modes asymmetric. and thus give the unique crack location.

6. The studies carried out in this thesis have dearly identified the additional frequencies

obtained during an eulier dynamic testing of I hydroelastic ship model as that due to

coupled lorsional-bending (horizontal) motion of the ship. Coupled horizontal

torsional-bending vibration is not due 10 5llUCtW3l asymmetry. but due to mass

asymmeuy caused by added water mass. The agreemml between earlier

experimmlal results and present analysis has bern found to be very good.

7. For the backbone with I m.ck, the natural frequencies would decrease. For vertical

bending vibralion. when the crack size grows beyond the flange of the backbone and

goes into twO flanlts. the stiffness drops significantly and natural frequencies have a

large decrease.
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8. Bending vibration analyses of Timoshenko beams show that frequency differences

between Timoshenko beam and Euler beam are very small for slender beams

(/Ih"'I5). with a difference of O. 76% for the first mode; but the differences become

considerable for higher modes. being more than /0./% for the fourth mode. For a

short beam with /lhr<5, the difference is 6.1% for the first. and becomes 41.3% for

fourth mode.

9. For cracked beams, when /Ih ~ 15, the results between Timoshenko beam and Euler

beam are very close. For short cracked beams with /Ih < /5, the Timoshenko beam

analysis becomes essential. Analyses snow thai Euler beam gives larger frequency

decrease than that of Timoshenko beam; this would indicate that the crack present in

the structure is much larger than its actual value.

10. Forced vibration analyses show thai frequency transfer function and acceleration

frequency response for a cracked beam change globally over the beam length

compared 10 an uncracked beam. It is difficult 10 use them to identifY the crack

dire(tly when the crack depth is small.

II. Acceleration curvature response has very large local change near the crack. The local

abrupt increase wouJd indicate the crack location. The value of curvature could be

used 10 infer the crack size. Acceleration cwvatw'e response should be obtained from

resonant frequency excitation.
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12. Resonant aceelcn.tion amplitudes vary according to cr.u::k sizes and cnck. locations.

Unlike natunl frequencies, resonant acceleralion arnplirudcs will nol alWlYS

dttrease. AI some crack b::ations. the resonant aa:cleration amplilUdes will increase

IS craclc size increases; while at other aw=k Iocalions !hey will decrease. Resonanl

acceleralion amplitude conlOUl'S also could be used to identify the crack.

For furure research. the following fm)tnmendations arc made:

I. The crack considered in dlis study remains always open. This is a limilation of this

srudy; since cracks open and close during their dynamic response, fully or panially.

dlis would influence the results oblained in this sNdy. Hence it would be worthwhile

to consider the influence of crack opening and c10sina on the dynamic behavior along

with the SIre$S reliefconsidered in this study.

2. The aa:deration response fwlction. and accelmlllion curvuure response function,

ha~ been considered only for lower modes. From the results given in this study, il

appears that bener" indication ofaxk size and location could be obtained by

considering a few more higher order modes.

3. Further studies could be canied out (using !he methodology developed in this thesis)

10 relate die crack size. crack localion and the remaining life ofa cracked StruclufC.
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4. In addition 10 the above, studies could also be carried 001 on frames. plalcs. shells and

other complex struetutes. utilizing !he methodology developed in this invcstigalion.
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