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Abstract 

Background: Hemorrhagic stroke (HS) is associated with loss of middle cerebral artery (MCA) 

autoregulation in the stroke-prone spontaneously hypertensive rat (SHRsp). We believe the MCA 

dysfunction may be due to increased inflammatory signalling (p38MAPK and ERK) and 

decreased contractile signalling (MLC and PKC) in the MCA during stroke, altered calcium 

(TRPV4) channel expression, accompanied with increased neuro-inflammation (astrocyte and 

microglia) and neuronal damage in brain after stroke. Methods: SHRsps were fed a high salt 

(4%NaCl) diet and sacrificed at nine weeks of age for pre-stroke and after evidence of stroke 

(~15 weeks) for post-stroke samples. The MCAs were isolated to measure protein levels and 

expression using immunofluorescence (IF), and western blot (WB) for inflammatory and 

contractile proteins. Tissues were analyzed for activation of neuro-inflammation, neuronal 

damage, for total and activated inflammatory proteins (ERK1/2 and p38MAPK), cerebrovascular 

contraction (PKC and MLC), and changes involved in transient receptor potential V4 (TRPV4) 

activation. Results: Results from both WB and IF indicate an increase in activated inflammatory 

proteins post-stroke, with an associated decrease in expression of activated contractile proteins 

and TRPV4 channel compared to pre-stroke SHRsp. The post-stroke samples also show 

significant increase in neuro-inflammation and neuronal damage compared to pre-stroke 

samples. Conclusion: The results show an increase in ratio of activated/total (p38 MAPK and 

ERK1/2) accompanied with a decrease in activated/total PKC and TRPV4 channel expression in 

post-stroke which may relate to a decrease in vessel structural integrity and alter vascular tone in 

the MCAs effecting its ability to contract in response to pressure. Significant neuro-inflammation 

and neuronal damage in the brain tissue surrounding the MCA in post-stroke samples confirm 

MCA dysfunction accompanies brain damage during stroke. 
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1. Introduction 

1.1. Stroke: Definition and Prevalence 

Stroke is one of the major cardiovascular diseases and a leading cause of functional 

impairment (partial paralysis, lapse in motor-coordination and instability) in North America (1,2).  

Approximately 795, 000 people in the United States have a stroke each year, out of which 610, 000 

experience their first attack and 185, 000 are recurrent stroke events, resulting in 6.8 million stroke 

survivors above 19 years of age (2,3). For patients who are above 65 years of age, 26% become 

dependent on others for their daily activities and 46% have cognitive deficits six months after stroke 

(2,3). 

Stroke is classically defined as a neurological deficit attributed to focal injury of the 

central nervous system (CNS) by a vascular cause; which mostly includes intracerebral hemorrhage 

(ICH), cerebral infarction and subarachnoid hemorrhage (SAH) (4). Stroke can be broadly classified 

as being ischemic or hemorrhagic. Ischemic stroke or cerebral infarcts are the result of development 

of emboli and/or thrombi leading to vessel blockages, resulting in deficiency of oxygen and 

nutrients in vital brain tissues (5). On other hand hemorrhagic stroke occurs mainly due to rupture 

of cerebral vessels, often as a result of high blood pressure exerting excessive pressure on the 

arterial walls already damaged by aneurysm, atherosclerosis or arteriovenous malformations (AVM) 

(6). The incidence of hemorrhagic stroke is approximately 20% of all strokes, however it is 

associated with having a high mortality and morbidity in adults (7), with the five year mortality rate 

being around 50% in patients older than 45 years (8).  

Intracerebral hemorrhage (ICH), a type of hemorrhagic stroke, encompasses 10% to 15% 

of all strokes (9). Epidemiologically, there is no definitive age at which one suffers ICH, but a trend 

towards growing incidence of ICH at younger age has been seen globally, which is a great cause of 
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concern (10). The only treatment option available for ICH is surgery, with long term hospitalization 

and rehabilitation being required upon surgical interventions as patients often suffer varying degrees 

of neurological dysfunction (11). Many factors play a vital role in contributing to hemorrhagic 

stroke development which are considered significant risk factors. 

 

1.2. Risk factors for hemorrhagic stroke 

In a major systematic review of cohort and case-control studies, the “REGARDS” study, 

the risk factors for ICH in African-American and Caucasian people in the United States was 

investigated. Out of many potential risk factors; age, male sex, high alcohol intake and hypertension 

were identified to be the most significant (12). “INTERSTROKE” Study, another major 

international case-control study performed in 22 countries highlighted the same major risk factors, 

accounting for around 80% of all risk factors for stroke (13). The study also included smoking, 

waist-to-hip ratio and diet as modifiable risk factors for hemorrhagic stroke (13). Interestingly, age 

was one of the main non-modifiable risk factors for ICH, with race also playing a significant factor 

in the development of hemorrhagic stroke. 

The “REGARDS” study indicated the risk of stroke increases five fold after the age of 45 

in African-American and declines slightly around the age of 65-75 (12). Broderick and colleagues, 

who also studied the risk of ICH in various populations indicated ICH risk in African-Americans 

was 1.8 times higher than Caucasians in the age group of 55-74 years (14). However after the age of 

75 years, the risk of stroke in African-Americans was decreased to 0.23 times that of Caucasians. 

The reason for this extreme change in ratio is believed to be due to the early occurrence of ICH in 

most African-Americans at risk, leaving those who survive into their 70s and 80s at lower risk 

((14)). Age-related increase in ICH risk was attributed to many internal changes occurring in the 
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body as we age: the stiffening of the vessels (15), the slowing down of the repairing process and the 

weakening of the immune system (16), which diminish the ability of the body to tackle any stress. 

Thus aging provides an environment for structural and functional cerebrovascular changes, leading 

to increase in ICH. Along with age, another non-modifiable risk factor involved in increasing the 

risk of ICH is sex. 

Males have been associated with nearly three times higher risk of ICH compared to 

females, particularly when it concerns age-specific stroke occurrence (12). Although age-specific 

stroke rates are higher in males, due to longer life expectancy females have been shown to have 

more stroke events, particularly at an old age. This phenomenon might be attributed to the loss of 

the protective role of estrogen on the healthy functioning of the vessels, which is lost after 

menopause (17). In females, estrogen affects the vascular functions greatly via increased endothelial 

nitric oxide (NO) leading to increase in required NO dependent-mechanisms such as regulation of 

appropriate myogenic tone possibly resulting in normal functioning of the vessels (18).  

Neuroprotective mechanisms attributed to estrogen and progesterone would be less in men 

compared to women due to their lower circulating hormone levels (17). Overall, the proper balance 

of estrogen and progesterone seems to have a beneficial effect and a vital role in delaying the 

occurrence of stroke until later in life of females compared to males. Interestingly it also appears 

that the age and sex-related difference in the risk of ICH between males and females can be 

supplemented to the difference in alcohol intake; Young and middle-aged men have been deemed to 

be more vulnerable to stroke than women possibly as men are more often heavy drinkers compared 

to women (19). 

Heavy alcohol use has been identified as a risk factor for ICH in case-control studies 

(20). The criteria of high alcohol intake differed across regions, with the heavy alcohol intake 
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mainly classified to be 0.5 oz of pure alcohol per day (21). The maintenance of high blood pressure 

by heavy drinking might promote degeneration of cerebral arterial vasculature, but the effect on 

aneurysm is unknown (19). Alcohol intoxication accompanied with acute increase in systolic blood 

pressure and/or alterations in cerebral arterial tone might serve as a mechanism triggering 

hemorrhagic stroke (19,22). Increased systolic blood pressure (hypertension) on its own is one of 

the main risk factors for stroke, especially in people aged 45 years or younger (13). Hypertension 

(raised blood pressure) is the biggest single contributor to many cardiovascular and cerebrovascular 

diseases (23).  

 

1.2.1. General Hypertension 

Hypertension is mainly classified into two: primary (essential) and secondary 

hypertension. Essential hypertension is defined as elevated blood pressure where secondary causes, 

such as renal disorder, are ruled out (24). The cause for essential hypertension is not clearly known, 

but many studies have shown different possible causes, such as high intake of salt leading to 

hypervolemia (25) and increased sodium retention, causing an increased total peripheral resistance 

leading to an overall increased cardiac index (cardiac output/body surface area) (26). Other possible 

causes of essential hypertension may be aging, African descent and low-potassium diet (24). 

Alternatively, secondary hypertension commonly has an earlier onset age, no family 

history and a clear cause such as renal or endocrine disorders (23). In association with kidneys, the 

renin-angiotensin system (RAS) is a powerful modulator of blood pressure, and its own activation 

causes hypertension (27).  The RAS system includes renin, an enzyme catalyzing the conversion of 

angiotensinogen to angiotensin (Ang) I, followed by angiotensin-converting enzyme (ACE) 

cleavage of Ang I to II and activation of AT1 receptors. This receptors are responsible for RAS 
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biological actions, leading to increased blood pressure (28). Ang II under condition of high salt 

intake is known to produce renal damage, and Ang II effects are partly mediated by aldosterone, 

whose secretions is also increased by Ang II (29). Aldosterone has shown to increase renal 

profibrotic factors and produce renal injury (29). Aldosterone activates the mineralocorticoid 

receptor in the distal renal tubule of the kidney to increase sodium and water retention, and 

potassium excretion, leading to an increase in blood volume and thus blood pressure (30). The RAS 

system in conjunction with aldosterone controls the changes in the systemic blood pressure. 

In the past few decades pharmacological blockade of RAS with renin inhibitors, 

angiotensin receptor blockers, or angiotensin-converting enzyme (ACE) inhibitors have been used 

to effectively lower blood pressure in a significant proportion of patients with hypertension (31), 

demonstrating the important role of RAS activation as a cause of human hypertension. Chronic 

kidney disease has also been linked with hypertension as it leads to impaired volume excretion and 

increased retention of sodium due to reduced renal function and mass (32). Kidney’s impaired 

capacity to excrete sodium in response to elevated blood pressure is a major contributor to sustained 

hypertension, irrespective of the initial cause (27).  Dysfunctional kidneys, vascular changes and 

altered cardiac index are known to be associated with the hypertension leading to ICH development 

(33). 

 

1.2.2. Hypertension in Hemorrhagic Stroke 

Hypertensive patients with underlying vascular disease are at higher risk of ICH (34). 

The extent to which hypertension contributes to ICH is different in males and females, as females 

are known to have a significant degree of intracerebral bleeding at a lower blood pressure, 

compared to males (35). This vulnerability of high bleeding in females can be linked to vascular 
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reactivity and sex hormone dependent functioning mechanism (35). Hypertension is seen in almost 

half of the elderly population and systemic arterial hypertension is considered to be an age-

dependent disorder (15). Increase in blood pressure (BP) trajectories are also closely associated with 

increased risk of stroke. A study measuring the rise in blood pressure (systolic BP range) over 10 

years found pre-hypertensive group (120-140 mm Hg) had significantly higher stroke risk relative 

to normotensive group (<120mm Hg); after adjusting for possible confounders, the highest risk of 

ICH and cerebral infarction was seen in individuals in the stage 2 hypertensive group (175-179mm 

Hg) (36). Hypertension is a systemic phenomenon, often associated with vessel wall thickening and 

stiffening in the major arteries in the systemic circulation. A strong and significant association 

between changes in vascular function and wall thickening were seen in the vasculature during 

hypertension (37). High blood volume in the body due to increased sodium retention and the 

kidney’s impaired capacity may have a direct effect on the vasculature, as isolated human 

endothelial cells have been shown to stiffen during minor increases in sodium concentration (38). 

The extent of alterations in vascular functions due to vascular wall thickening is being researched 

extensively. High risk hypertensive patients have vessels that lose their ability to vasodilate and 

regulate vascular function (39). The vasculature in the cerebral arterial system is extremely 

susceptible to high blood pressure and any drastic changes would affect its functioning and prove to 

be detrimental (40).  

Sustained elevation in blood pressure affects the structural integrity of cerebral blood 

vessels, causing adaptive changes (artery stiffening, changes in pulse wave velocity and resistance 

to mean flow) targeted at reducing the mechanical stress on the arterial wall and protecting the 

micro-vessels from the pulsatile stress of cardiac output (41). The cerebral circulation is innervated 

with neurovascular sensing control mechanism (neurons, astrocyte end-feet processes, etc.) that 
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assure the blood supply in the brain is proportionate to the energy and metabolic needs of its 

cellular constituents (42). In pathological conditions like hypertension, neurovascular coupling is 

disrupted and hence cerebral blood flow is no longer sufficient to maintain the metabolic demands 

of the brain tissue (42).  

 

1.3. Pathophysiology of hemorrhagic stroke 

In hemorrhagic stroke a ruptured or leaking artery occurs, likely due to the structural 

changes in the artery, due to high blood pressure (4) as discussed in section 1.2.2. The weakened 

vessels associated with ICHs are generally categorized as aneurysms, where the weak area of an 

artery bulges due to high blood pressure until it ruptures and bleeds. Arteriovenous malformations 

(AVM), another type of weakened cerebral vessel that tends to rupture or leak easily. AVMs are a 

bundle of dysplastic vessels fed by arteries and drained by veins without intervening capillaries, 

forming a high-flow, low resistance system between the arterials and venules (43). Once ruptured, 

the damage increases up to five-fold depending on the location, drainage and association with 

aneurysm (44). The ruptured vessels disrupt the flow of blood causing insufficient supply of oxygen 

and nutrients to other vital parts of the brain.  

Hemorrhagic stroke can most often develop spontaneously (due to the weakened vessels), 

but sometimes it can be instigated by different factors such as hypertension, angiopathy, tumours or 

head trauma. Intracerebral hemorrhage, the most common form of cerebral hemorrhage, is the most 

fatal and least treatable type of hemorrhagic stroke resulting in long term neurological deficiency 

and notable brain injury (45). The 30 day mortality for ICH is reported to be 30-55% (46). Because 

of underlying small vessel disease, ICH location is associated with the risk of future ICH recurrence 

(47). ICH in deeper brain region is fatal as accumulation of blood in the brain upon ICH causes 
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deposition of fibrous tissues, cholesterol clefts, macrophages and calcified tissue (48). This is 

followed by increase in oncotic pressure and tension inside the vasculature (49), contributing 

directly to a decline in clinical conditions (50). Significant deleterious effects of ICH may be 

directly associated with cytotoxicity, excitotoxicity and inflammation caused by the accumulation 

of blood and its components (51). Changes in vascular integrity might also affect the extent of 

damage and its implications when an ICH occurs. 

ICH can also arise due to underlying vascular dysfunction, which may be caused due to 

the presence of oxidative stress, reduction in nitric oxide (NO) bioavailability, imbalance in 

production of vasoconstrictor/vasodilator factors, pro-inflammatory environment, senescence of 

endothelial cells and impaired angiogenesis (15). Vascular injury is usually accompanied with 

vascular smooth muscle cells displaying plasticity leading to vascular remodelling (52), potentially 

causing the vessels to stiffen over time. Arterial stiffening of the large cerebral arteries is a major 

risk factor as the pulsatile component of cardiac output is transmitted directly to capillaries, 

increasing the risk of ICH, as the major cerebral vessels fail to auto-regulate blood flow to the brain. 

 

1.4.Cerebral Autoregulation 

Certain cerebral blood vessels are highly susceptible to changes in blood flow and 

pressure, hence they are always auto-regulated to provide consistent blood flow. Cerebral blood 

flow autoregulation is the ability of the brain to maintain relatively constant blood flow despite 

changes in the perfusion blood pressure (53). Autoregulation in the brain is distinct from the 

systemic components as it maintains relatively steady blood flow during fluctuating systemic 

blood pressure via metabolic, myogenic and neurogenic mechanisms (54). The most vital 
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objective of autoregulation is to maintain an optimum level of brain perfusion to suffice 

metabolic demands (55). 

The brain is very sensitive to over or under perfusion and the resistance provided by large 

arteries help protect the downstream vessels during changes in the systemic blood pressure. The 

cerebral endothelium in the blood vessels play a vital role in proper functioning of the cerebral 

arteries as it has specialized tight junctions that do not allow ions to pass easily, very low 

hydraulic conductivity and relatively low transcellular transport, all of which help retain ions in 

the vascular bed opposing outwards water movement (55). This strict water regulation is of 

prime importance as the brain has limited capacity for expansion within the skull. Sudden and 

sharp increase in blood pressure can cause ICH and lead to accumulation of blood causing 

serious damage to the brain. 

Alternatively, low blood flow or pressure may lead to a decrease in availability of oxygen 

(56), causing the brain tissues to experience hypoxia.. Although there is decrease in oxygen 

availability due to decreased blood flow. No clinical signs or symptoms of hypoxia are seen until 

the decrease in perfusion exceeds the ability of increased oxygen to meet metabolic demands. 

Once past the threshold, signs of hypo-perfusion such as dizziness and altered mental status are 

evident (56). The decrease in blood flow also stimulates release of vasoactive substances which 

help in increasing blood flow. Compared to reduced blood flow, unsuppressed high blood flow 

causes significant deleterious effects at a much faster rate on the brain, making it very important 

to control the higher end of blood pressure. 

When the cerebral blood flow fluctuates at the higher end of the auto-regulatory curve, 

the myogenic tone of the cerebral smooth muscle causes constriction in response to elevated 

pressure, known as pressure dependent constriction (PDC) (57). The larger diameter cerebral 
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vessels extending from the circle of Willis to pial arteries have been shown to play a crucial role 

in adjusting blood flow above the normal range of blood pressures (58). A further increase in 

pressure causes the vessels to undergo some instability, typically after few rapid dilations with 

only partial re-constriction. If the pressure is not decreased, complete loss of tone (forced 

dilatation) occurs (57). This loss of tone decreases cerebrovascular resistance producing a 

sudden, large increase in cerebral blood flow (300-400%), known as auto-regulatory 

breakthrough (58). In the cerebral circulation an impaired myogenic response results in impaired 

cerebral autoregulation and higher susceptibility to hypertension-induced cerebral hemorrhage 

(59). The MCA (Middle cerebral Artery), one of the main cerebral arteries, is directly associated 

with the pulsatile component of systemic blood circulation, making it highly vulnerable to any 

fluctuation in blood pressure (60). The signalling mechanism in smooth muscle cells and 

endothelium work in tandem to regulate the vascular tone and protect the middle cerebral artery 

during major fluctuations in blood pressure. 

 

1.5. Smooth muscle cells and endothelium in regulating vascular tone 

Vascular tone is regulated by two mechanisms, vasoconstriction and vasodilation, 

occurring through interactions between endothelial and smooth muscle cells. The endothelial 

layer plays an important role in regulating signalling mechanisms dependent on stimuli from the 

vascular lumen. Normal functioning of endothelium prevents abnormal blood clotting and 

bleeding, suppresses SMC proliferation and limits inflammation of the vascular body (39). 

Endothelial cells produce compounds such as nitric oxide (NO), endothelin, prostaglandin, 

angiotensin II and more, vital to regulating vascular homoeostasis (39). Endothelial nitric oxide 

synthase (eNOS) produces NO from l-arginine, NO then diffuses to underlying smooth muscle 
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cells and catalyzes the activation of guanylate cyclase (Figure 1.2). Activated guanylate cyclase 

signals the conversion of guanosine triphosphate to 3,5-cyclic guanosine monophosphate 

(cGMP), stimulating soluble guanylate cyclase leading to an increase in cyclic GMP levels and 

eventually leading to smooth muscle relaxation and dilatation of blood vessels (61,62). This 

vasodilation helps in increasing the lumen diameter and allowing optimal amount of blood to 

pass through the vasculature and reach distant cellular sites, which is vital during hypotension. 

Vasoconstriction of a vessel requires free intracellular calcium levels to regulate smooth 

muscle cell (SMC) contractility (62). Calcium levels in SMC are mainly regulated in two ways: 

calcium entry through voltage dependent calcium channels (like TRPV4) and by involvement of 

intracellular calcium stores (52). Activation of G-Protein coupled receptors (GPCR) generates 

phospholipase C which then converts phosphatidylinositol 4,5-diphosphate (PIP2) to inositol 

1,4,5-triphosphate (IP3) and diacyl glycerol (DAG). Intracellular IP3 directing releases calcium 

from cellular stores causing calcium dependent constriction of vessels (52). The homeostatic 

balance between vasodilation and vasoconstriction helps maintain constant blood flow  to the 

brain in the event of systemic high blood pressure. 

Sometimes vasoconstriction is also seen as a result of abnormally functioning 

endothelium in disease state like hypertension, where endothelial degradation due to shear stress 

may lead to hypertrophy of the SMC, promote thrombosis and increase vascular inflammation 

(39). Endothelial dysfunction predicts poor outcome in patients as it increases vascular reactivity 

and aggravates macrovascular disease (39). Any changes in the signalling mechanism regulated 

by endothelial and smooth muscle layer has a direct impact on functioning of the vessel. Changes 

in signalling pathways of protein kinase C (PKC), myosin light chain (MLC), mitogen activated 
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protein kinase (MAPK) and Rho-kinase have also been shown to affect the vascular smooth 

muscle cell contraction directly as well as indirectly (33). 

 

1.5.1. Role of Myosin Light Chain (MLC) in vascular contraction 

Vascular smooth muscle contraction is triggered by an increase in calcium release from 

the sarcoplasmic reticulum and/or entry of calcium from the extracellular space through calcium 

channels. The released calcium binds to calmodulin (CAM) to form calcium-calmodulin 

complex, which in turn activates myosin light chain kinase (MLCK) causing phosphorylation of 

MLC, actin-myosin interaction and vascular smooth muscle contraction (63,64). Figure 1.1 

shows a schematic representation of the signalling mechanisms potentiating smooth muscle 

contraction through the MLC pathway. Stimulation (activation) of MLC initiates the assembly of 

cytoskeletal/extracellular matrix adhesion complex proteins at the membrane orchestrating the 

polymerization and organization of sub-membranous actin filaments, leading to SMC contraction 

(65). The cytoskeletal network may serve to strengthen the membrane for the transmission of 

force generated by the contractile apparatus to the extracellular matrix enabling the SMC to 

adapt to mechanical stress (like high blood pressure) in the initial stages of the disease (65). 

The stage of MLC phosphorylation in vascular smooth muscle cell (VSMC) determines 

whether the cross-bridges are cycling, turned off, or in a semi-activated state. The extent of MLC 

phosphorylation is balanced by MLCK and MLC phosphatase (MLCP). Vasoconstriction is 

mostly evoked by myosin regulatory light chain phosphorylation at Ser 19 by MLCK, which is 

enhanced by Rho-associated kinase (ROCK) - mediated inhibition of myosin light chain 

phosphatase (MLCP) (66). In simplified terms, MLCK is responsible for activating 
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(phosphorylating) MLC leading to formation of actin-myosin bonds and eventually causing 

contraction, whereas MLCP is associated with recycling, as well as deactivating the 

phosphorylated myosin, resulting in relaxation (67). The relaxation of VSMC is initiated by a 

decrease in free calcium levels due to increased calcium uptake by sarcoplasmic reticulum and 

extrusion of calcium by the plasmalemmal calcium pump and sodium-calcium exchanger. The 

decrease in intracellular calcium is followed by dissociation of the calcium-calmodulin complex 

and the dephosphorylation of MLC by MLCP, causing vascular relaxation (68). 

MLCP enzyme can also be inhibited, to induce prolonged vascular constriction, by 

blocking the targeting site of MLCP termed the myosin binding site (MBS). When 

phosphorylated, the serine and threonine residues of MBS inhibit the activation of the catalytic 

domain, which  in turn reduce MLCP enzyme activity, leading to prolonged contraction (64). 

Another mechanism by which MCLP is inhibited is through activation of GPCR, resulting in 

releasing of arachidonic acid leading to activation of Rho-kinase pathway (69). Protein Kinase C 

activated by phorbol esters and/or DAG may also inhibit MLCP activity by phosphorylating and 

activating CPI-17 (an inhibitor of the subunit), resulting in a delayed phosphorylation-

dephosphorylation cycle of MLC and prolonged constriction (69). 
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Figure 1.1.: Schematic diagram of signal transduction pathway of MLC for SMC 

contraction and relaxation. Availability of calcium in the cell forms a calcium-calmodulin 

complex which activated MLCK to phosphorylate Myosin. Phosphorylated myosin binds to 

activated actin to produce SMC contraction. MLCP dephosphorylated myosin to initiate SMC 

relaxation. [Figure (copyright clearance obtained) adapted from IUMBM Life, Walsh M.P., 2011] 

ADP – Adenosine Diphosphate, ATP – Adenosine Triphosphate, CAM – Calmodulin, MLCK – 

Myosin Light Chain Kinase, MLCP – Myosin Light Chain Phosphatase, PIP2 - 

Phosphatidylinositol 4,5-diphosphate, IP3- Inositol 1,4,5-triphosphate 
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1.5.2. Role of Protein Kinase C (PKC) in Vascular contraction 

Protein Kinase C (PKC) is also one of the important signalling proteins which mediates 

vascular contraction and is activated partly through release of calcium. Activated Gq/11 proteins 

within the GPCR  (G-protein coupled receptor) signalling system induce calcium activation and 

sensitization of Phospholipase C (PLC) mediated conversion of phosphatidylinositol 4,5-

bisphosphate (PIP2) to inositol 1,4,5-triphosphate (IP3) and DAG, to cause release of calcium 

and activation of PKC (70). PKC can also be activated independent of calcium release as a study 

by Goyal et.al demonstrated calcium independent PKC-mediated contractility in ovine cerebral 

arteries (71). Most PKC isoforms are regulated either by calcium or DAG or by both, depending 

on the isoform. 

PKC isoforms are classified into sub-groups based on cofactor requirements, structural 

properties and specific in vivo activity, and spatial organization in the cell (72). The conventional 

PKC isoforms (α, βI, βII, and ɣ) are regulated by calcium and DAG, whereas the novel PKC 

isoforms (δ, ε, η, and θ) are regulated by DAG, but not calcium (73,74). Different PKC isoforms 

are expressed in smooth muscle of different vascular beds, for example: α, β and ɣ isoforms of 

PKC are mainly localized in the cytosolic component of unstimulated smooth muscle cells and 

are translocated to the cell membrane when cells are activated through stimuli (63). Brain tissues 

of spontaneously hypertensive rats (SHR) have shown PKC isoenzymes well distributed and 

expressed throughout the brain region (75), hence demonstrating a role of PKC in vital functions 

of the brain. PKC signalling pathways activated in the SMC also affect the functioning of the 

endothelial layer as changes to the PKC function and activation have been shown to affect 

endothelial and SMC function that lead to vascular dysfunction. 
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PKC activity in the endothelium is known to contribute towards the regulation of blood 

pressure and vascular function, as PKC has been associated with the endothelial dysfunction in 

blood vessels of SHR and deoxycorticosterone acetate (DOCA) hypertensive rats (76). A study 

by Schiffrin et al., showed that stimulation of ET-1 by angiotensin II increases vascular PKC 

activity to a large extent in blood vessels of SHR, compared to normotensive rats, indicating 

higher levels of PKC during hypertension (77). Studies in SHR rats have shown angiotensin II 

infusion causes endothelial dysfunction and hypertension, and increases production of free 

oxygen radicals in the vascular tissue (77), contributing to vascular changes such as vascular 

remodelling. Some PKC isoforms are known to induce signal transduction events mediating long 

term cellular functions such as cell differentiation (78), further causing vascular changes such as 

vascular remodelling. Additionally, upregulation of PKC has seen to be crucial in several co-

morbidities such as artherogenesis, hypertension and cancer prognosis (79). In diseases such as 

diabetes and hypertension, PKC has shown to aggravate inflammation of the vasculature (80) 

affecting the normal vascular tone. 

Defective PKC signalling contributes to abnormal vascular contraction as activation of 

PKC increases the myofilament force sensitivity to calcium, thus maintaining contraction (81). 

As mentioned earlier, the activation of PKC requires either calcium or DAG or both, irrespective 

of it being upregulated in disease states or functioning during normal conditions. The calcium 

needed for the PKC isoforms to be activated is mostly transported into the cell through different 

calcium channels, such as transient receptor potential cation channel - vanilloid, member 4 

(TRPV4). Conversely, the PKC alpha isoform has also been shown to mediate TRPV4 activation 

in the endothelial cells (82). Activation of TRPV4 channel in vasculature plays a significant role 
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in regulating calcium influx into the cell and influences the vascular contractile mechanism to a 

large extent. 

 

1.5.3. Transient Receptor Potential (TRP) Channels in vasculature 

The transient receptor potential (TRP) channels are a family of nonselective cation 

channels with a diverse degree of calcium permeability, which do not have a voltage sensor, but 

are susceptible to other stimuli including shear stress, mechanical stretch, pressure, oxidative 

stress and inflammatory proteins (83). TRP channels can be grouped into six subfamilies: 

Ankyrin (TRPA), canonical (TRPC), melastatin (TRPM), mucolipin (TRPML), polycystic 

(TRPP) and vanilloid (TRPV) TRP channels (84). Entry of calcium occurs through TRPA, 

TRPC and TRPV4 channels and studies have shown TRPA1, TRPC3, TRPV3 and TRPV4 are 

significantly involved in endothelium dependent vasodilatory response (85). TRP channels are 

known to regulate vascular tone by changing calcium levels in endothelial cells releasing 

mediators [nitric oxide and endothelium derived hyperpolarizing factors (EDHF)] causing 

vasodilation (86). TRP channels are found in both smooth muscle cells and the endothelial layer 

of the vasculature. 

Many TRP channels like the TRPV4 channel, have been detected in smooth muscle cells 

of different vascular beds, such as aorta and rat cerebral arteries (87), but is predominantly 

expressed in the endothelial cells compared to smooth muscle cells (88,89). TRPV4 channel is a 

shear stress sensing channel, mostly found in endothelial cells. During high blood flow TRPV4 

senses shear stress and causes a rapid influx of calcium, leading to release of EDHF  

(vasodilatory mediators) from the endothelium, leading to vasodilation (90). TRPV4 channels 
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are also activated by numerous other stimuli, such as heat and cell swelling  (91). One of the 

EDHF, epoxyeicosatrienoic acid (EET), a potent vasodilator produced by endothelial cells via 

cyctochrome P-450 enzymes, is known to activate the TRPV4 channels (89,92) causing a 

vasodilatory response in the vasculature. 

A study by Earley and colleagues showed an absence of EET-induced vasodilatory 

response in the isolated mesenteric artery of TRPV4 knockout mice, suggesting the importance 

of the channel and significance of the pathway in vasodilation (89). Activation of TRPV4 in 

cerebral myocytes by EET has been shown to elevate calcium level and transient potassium 

channel activity (89), resulting in vasodilation. The same group also showed that suppression of 

TRPV4 expression in intact cerebral arteries prevents EET induced hyperpolarization of smooth 

muscle cell and hence limits vasodilation (89). The role of TRPV4 channels in vasodilation was 

studied by Sonkusare and colleagues where they demonstrated endothelial TRPV4 channel 

activation led to hyperpolarization of the smooth muscle cell, establishing TRPV4 channel 

activation as a vital component in cerebral vascular vasodilation (93). TRPV4 channels have also 

been shown to activate calcium dependent potassium channels (BKca: big conductance 

potassium calcium channels and SKca: small conductance potassium calcium channels), leading 

to TRPV4 induced hyperpolarization in EC and eventually causing vasodilation (89). Figure 1.2 

demonstrates a schematic representation of TRPV4 activated vasodilation. TRPV4 when 

activated, hyperpolarizes the SMC resulting in vascular relaxation (vasodilation). TRPV4 

channels, like other TRP channels, perform several other supplementary functions in the 

vasculature. 

 TRP channels play an important role in pathophysiology of many cardiovascular 

diseases by regulating fundamental cell functions like proliferation, differentiation, contraction, 
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relaxation and cell death (84). TRPV4 has also been implicated in partially regulating cell 

proliferation of human brain capillary endothelial cells (HBCEs) (94), affecting the vasculature 

morphology. Hyper-activation of TRPV4 is also known to cause calcium overload leading to 

oscillating blood vessel diameters (93), potentially leading to vascular dysfunction during disease 

states such as hypertension.  
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Figure 1.2.: Schematic diagram for TRPV4 mediated vasodilation. TRPV4 channel is 

activated by stimuli (shear stress) during hypertension causing calcium influx and activating 

potassium channels resulting in hyperpolarization of SMC causing vasodilation. NO and PGI are 

known to activate downstream leading to vasodilation of the SMC.  [Figure (copyright clearance 

obtained) adapted from Pharmacological Research, Sukumaran et al., 2013] 

TRPV4 - Transient Receptor Potential Cation Channel (Vanilloid, member 4), eNOS – 

endothelial Nitric Oxide Synthase, GTP – Guanosine Triphosphate, ATP- Adenosine 

Triphosphate, BKCa and SKCa – Big and Small conductance potassium channels, EDHF - 

Endothelium Derived Hyperpolarizing Factors, cGMP - cyclic Guanosine Monophosphate, 

cAMP –cyclic adenosine monophosphate 
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1.6. Vascular “endothelial” dysfunction  

Vascular changes play a crucial role in cerebrovascular and neurodegenerative diseases. 

Vascular endothelial cells line the entire circulatory system and perform diverse functions which 

include fluid filtration, such as in the glomeruli of the kidneys, maintain blood vessel tone, 

hormone trafficking and neutrophil recruitment (95), making the endothelium a key player in 

vascular dysfunction. Endothelial cells are well known as a source of growth inhibitors and 

promoters, such as heparin and heparin sulphates (96), platelet-derived growth factor (97), and 

thrombospondin (98). Several vasoactive substances produced by the endothelium, such as nitric 

oxide, endothelin, and angiotensin II may also play a role in the regulation of vascular growth 

(96). Alterations of endothelial cells directly affect the vascular functioning, as the endothelium 

is directly involved in the maintenance of functional capillaries and vessels (96). Dysfunction of 

the endothelium is implicated in several diseases such as peripheral vascular disease, stroke and 

heart disease among others (96). 

Hence, dysfunction of endothelium dependent regulatory systems play a huge role in 

pathogenesis of cardiovascular diseases such as hypertension and diabetes (99). Concurrent to 

endothelial cells, chronic hypertension has also been shown to cause changes in smooth muscle 

cells, such as pressure-induced deformation of extracellular matrix (ECM) proteins and their cell 

surface receptors. This may initiate rapid contraction and cytoskeletal remodelling through 

modulation of ion channels, membrane depolarization and generation of reactive oxygen species 

(ROS) (100). 
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1.6.1. Role of Reactive Oxygen Species (ROS) in vascular dysfunction 

It is known that vascular cell homoeostasis depends on regulated levels of ROS (101). 

The imbalance in production of ROS likely promotes vascular inflammation, increased 

reactivity, endothelial dysfunction and structural remodelling, leading to elevated peripheral 

resistance and increased blood pressure (102). The presence of pro-hypertensive factors amplify 

blood pressure elevation during generation of ROS that not only affect the vasculature, but also 

affect vital organs such as heart, kidneys, nervous system and immune system (102). Thus, ROS 

have been expressed in different disease types and throughout the progression of a disease. 

The imbalance in ROS leads to free radical transformation of surrounding chemical 

metabolites and deterioration of nitric oxide (NO) signalling cascade and promotes oxidative 

post-translational protein changes that hinder cell and vascular signalling pathways, potentially 

resulting in cerebrovascular dysfunction (103).  Endothelial dysfunction, demonstrated by 

decreased NO bioavailability, is a familiar feature of many vascular diseases (61). Gradual loss 

of vascular homeostasis occurs due to molecular and morphological changes, such as reduction 

in NO, and increased vascular thickening, due to the increasing age, disease-induced oxidative 

stress, and the presence of inflammatory stimuli (103).  

During ICH, neutrophils are stimulated and release a large amount of ROS. This in turn 

causes excessive uptake of superoxide dismutase (SOD) followed by lipid peroxidation resulting 

in damage to the surrounding tissues (104,105). Free ROS damage nerve cells by injuring cell 

membranes, causing cell necrosis. As the brain tissue and vasculature is very sensitive to ROS, 

this can lead to increased cell membrane permeability and calcium influx into the vessels causing 

vascular dysfunction (7). Increased calcium ion concentration due to increased calcium influx 

activates phospholipase, leading to phospholipid “decomposition” and structural damage to 
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organelle membranes in the vasculature (106). Most ROS are well known to directly induce the 

production of acute pro-inflammatory cytokines such as interleukin-10 (IL-10), tumor necrosis 

factor (TNF-α) and also stimulate nuclear factor (NF-кB) all crucial in inflammation (107). 

 

1.7. Inflammation in vascular dysfunction 

Inflammation is a reaction to injury in living tissues induced by oxidative stress and can 

further exacerbate damage through an increasing oxidative stress (108).  Inflammatory responses 

in the vasculature involves a complex interaction between the extracellular matrix (ECM), 

vascular smooth muscle cells (VSMC), endothelial cells (EC) and inflammatory cells 

(neutrophils, lymphocytes, monocytes and macrophages) (109). Acute inflammation in blood 

vessels most often results in increased vasodilation, blood stasis and increased vascular 

permeability due to cytoskeletal changes in EC leading to disruptions of EC junctions (109). ECs 

when stimulated by inflammation, cause an increase in expression of adhesion molecules such as 

intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), 

integrin and selectins which promote the adherence of inflammatory cells and recruit cytokines, 

matrix metalloproteinases (MMPs) and growth factors (62).  

In a few chronic diseases, a delayed inflammatory response involves upregulation of 

inflammatory factors such as C-reactive protein (CRP), plasminogen activator inhibitor-1 (PAI-

1), and protease-activated receptor (PAR) signalling (110). Cytokines, a diverse group of mostly 

soluble short acting proteins, peptides and glycoproteins. They activate specific receptors of 

different cell types activating JAK-STAT, NF-кB and Smad signalling pathways leading to an 

inflammatory response in the form of increased cell permeability, adhesion and/or apoptosis 
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(109). Activation of cytokines (such as interleukins, tumor necrosis factor and interferon) leads 

to ECM deposition and changes in morphology of the vessel (110). Their interaction with 

mitochondria also result in increased production of ROS (111).  

Interestingly, activation of cytokine induced pathways in ECs modify the production of 

vasodilatory mediators such as NO, EDHF, prostacyclin, and bradykinin, as well as 

vasoconstrictive mediators such as endothelin and angiotensin II (112). Cytokines also interact 

with VSMC to activate calcium transport and regulate protein kinase C (PKC) and mitogen 

activated protein kinase (MAPK) pathways, which lead to cell growth, proliferation and 

migration (109), and have been associated with vascular inflammation (113) in diseases like 

hypertension and atherosclerosis.  

 

1.7.1. Role of MAPK and Extracellular Signal-Regulated Kinase (ERK) in vascular 

dysfunction 

MAPKs are known to transduce stress related signals through chains of interlinked 

pathways that lead to induction of inflammation (114). The MAPK signalling pathway is 

composed of a triple kinase cascade: a MAPK, a MAPK activator (MAPK kinase), and a 

MAPKK activator (MAPKK kinase, MEKK). Small G proteins can activate MAPKK kinase, 

causing phosphorylation and this in turn activate the downstream MAPK Kinase (115,116). 

Activated MAPKK phosphorylates the third member of the sequence, MAPK (Figure 1.3). This 

activation of MAPK leads to phosphorylation and activation of the transcription factors present 

in the cytoplasm or nucleus, leading to expression of target genes, resulting in biological 
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responses linking extracellular signals and fundamental cellular processes such as growth, 

proliferation, migration, apoptosis and metabolism (115,117). 

Activation of p38 MAPK requires dual phosphorylation of specific threonine (Thr) and 

tyrosine (Tyr) residues simultaneously (115) and is activated downstream from toll like receptors 

(TLR). MAPK pathway activation promotes production of various pro-inflammatory cytokines 

such as TNF-α, IL-1β, IL-6, and IFN-ɣ (118). TNF-α in VSMC has been shown to stimulate 

TNFR1 and activate MAPK, aiding in the process of VSMC migration. Migration and 

proliferation of VSMC promote their accumulation in vascular lesions (119). p38 MAPK is also 

involved in the stabilization and translation of multiple pro-inflammatory mRNAs, generating a 

larger inflammatory response. Phosphorylated p38 MAPK has been detected in neurons and 

microglia following ischemic brain injury suggesting it plays a role in the inflammatory response 

(120). Both MAPK and ERK have been implicated in many vascular diseases as they control a 

broad spectrum of cellular processes, stress and inflammatory responses. 

MAPKK1 and MAPKK2 activate ERK1 and ERK2, respectively, by catalyzing the 

phosphorylation at Thr185 and Tyr187. Once activated, ERK translocates to the nucleus where it 

phosphorylates and regulates different transcription factors ultimately resulting in changes to 

gene expression (121). ERK 1/2 can be activated by growth factors such as brain derived 

neurotrophic factor (BDNF), platelet derived growth factor (PDGF) and by pro-inflammatory 

stimuli (for example: IL-1β) (122). ERK is also activated by sensing patterns such as pathogens 

associated molecular patterns (PAMPS) and danger associated molecular patterns (DAMPS) 

during an inflammatory reaction in the vasculature and tissue surrounding the vessel (115). 

The ERK1/2 cascade is a central signal transduction pathway in the cell, but the same 

stimuli can also activate other cascades, such as PI3K-AKT, NF-κB, and others. These cascades 
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may interact with each other and hence modulate the signaling output by cross-phosphorylation 

between the cascades, by combinatorial effects on their downstream targets, or by modulation of 

activity (123). The final outcome of the activation of ERK1/2 also depends on many factors such 

as presence of scaffold proteins, substrate competition, temporal regulation, and subcellular 

localization by anchoring proteins (118). ERK1 and ERK2 are therefore crucial regulators of 

proliferation, differentiation and survival; hence dysregulation of ERK1/2 cascade is known to 

result in various pathologies, inducing neurodegenerative, vascular, developmental diseases, and 

cancer and diabetes (123). PKC dependent activation of MEK results in activation of ERK 

resulting in multiple downstream effects such as phosphorylation of actin binding caldesmon 

(124). The phosphorylation of caldesmon on Ser789 can reverse the caldesmon-mediated 

inhibition of myosin ATPase activity, resulting in the contraction of the smooth muscle cells in 

the vasculature (124). Cell culture studies have also shown that MAP kinase (ERK1 and ERK2) 

influences the cells' motility machinery by phosphorylating and, thereby, enhancing MLCK 

activity leading to phosphorylation of MLC (125). Thus, the activation of ERK1/2 is able to 

influence the phosphorylation of caldesmon, actin, and MLCK, in turn affecting the overall 

contractile mechanism of the vasculature in the disease state. 

 Studies have shown phosphorylated p38 MAPK and ERK to be localized in reactive 

microglia, indicating reactive microglia to be responsible for thrombin induced neuronal death 

(120,126). This recruitment of activated microglia is accompanied with phosphorylation of 

MAPK family contributing to ICH-associated neuronal loss (127). MAPK pathways and 

microglial signalling have been thought of as a potential target for pathogenic conditions related 

to hemorrhagic stroke (126), suggesting a crucial role of neuro-inflammation in diseases such as 

stroke. 
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Figure 1.3.: Schematic diagram of two main MAP Kinases: ERK and p38 MAPK. p38 and ERK 

require different stimuli to activate and once activated they signal downstream through similar 

but separate cascades ultimately activating transcription factors leading to release of pro-

inflammatory cytokines and gene regulation. [Figure (copyright clearance obtained) adapted 

from GUT (BMJ Journals), Hommes et al., 2003]  

ATF-2 - Activating transcription factor 2, ERK - Extracellular signal regulated kinase, MAPK - 

MAP kinase, MAPKK - MAP kinase kinase, MAPKKK - MAP kinase kinase kinase, MEF - 

Myocyte enhance factor, MKK - MAP kinase kinase, ASK - Apoptosis signal regulating kinase. 

 



28 
 

1.8.Neuro-inflammation  

Neuro-inflammation is generally the result of acute focal injury. The Central Nervous 

System (CNS) response to acute focal damage can be categorized into three distinct phases: 1) 

inflammation and cell death, 2) cell proliferation for tissue replacement and 3) tissue remodelling 

(128). The CNS response includes a rapid inflammatory response from intrinsic tissue cells by 

recruitment of inflammatory and immune cells, macrophage and leukocyte infiltration followed 

by death of parenchymal cells and debris removal, accompanied by platelet influx and 

aggregation of local cells (128). 

The inflammatory response in the brain differs from rest of the body, as the blood brain 

barrier (BBB) protects the brain by limiting what enters and leaves the brain (129). During 

damage to the CNS, select group of cells, namely microglial cells, astrocytes and mast cells serve 

as part of the primary immune response (129). Mast cells are important for attracting and 

potentially activating other immune cells by secreting pro-inflammatory cytokines and chemo-

attractants (130). Astrocytes and microglia contribute to the local immune response within the 

brain through production of cytokines, complement components and chemokines (131). 

 

1.8.1. Microglia in Neuro-inflammation 

Microglial cells are one of the major immune cells involved in the defence against brain 

damage. When activated by damage and pro-inflammatory cytokines, microglia have the 

capacity to disrupt neural cells and the BBB and aggravate damage. A study in mice after ICH 

showed significant expression of inflammatory factors (IL-17A) and microglial activation in the 

peri-hematomal region with impaired neurological function, suggesting a role of microglia in 
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ICH (132). The same study also demonstrated that inhibition of IL-17A prevented ICH induced 

cytokine expression and downstream signalling molecules resulting in diminished activation of 

microglia (132), stating a role of pro-inflammatory factors in activating microglia. 

Microglia have a modifiable and adaptable nature based on the situation. Beneficial for 

brain repair due to their neuro-protective role, or destructive, when they are activated by pro-

inflammatory stimuli (105). Microglia undergo morphologic transformation from resting state to 

an amoeboid state during distress, where they become indistinguishable from the circulating 

macrophages (133). They are myeloid derived cell, which can polarize into two distinct 

macrophages, M1 (pro-inflammatory) and M2 (anti-inflammatory). The polarization of microglia 

(also classified as M1 or M2) is mostly guided by the microenvironment of the site of injury and 

it serves as a deciding factor for the effect of neuro-inflammatory responses to the brain damage 

(134). The M1 phenotype is related with inflammatory responses increasing production of 

inflammatory cytokines and oxidative/nitrative compounds, such as TNF, interleukins and 

chemokine ligands (CCL2 and 3), and activating astrocytes, whereas M2 phenotype releases 

anti-inflammatory factors to promote tissue repair (134). The microglial M1 phenotype 

activation with a given stimulus plays an important role in determining the effect on neuronal 

survival and astrocyte activation and proliferation. It is the phenotype of microglial cells that 

dictates the cross-communication between astrocytes and microglia following brain injury (134). 

 

1.8.2. Astrocytes in neuro-inflammation 

Astrocytes regulate neuro-inflammatory responses in neurological diseases, as they are 

known to maintain the immune system at baseline by keeping a check on the permeability of 



30 
 

BBB and microglial activation (135). Astrocytic processes connect each synapse and they are an 

integral part of the internal layer of the BBB, which allow astrocytes to react to local changes as 

well as respond to systemic changes in the body. They are also known to provide functional and 

trophic support to neurons by transporting glucose, neurotransmitters (such as glutamate) and 

neurotrophic factors (136).  

Astrocytes regulate neuro-inflammatory responses by two mechanisms: 1) astrocytes 

have the ability to form physical barriers that can seal the site of injury and localize the 

inflammatory response; 2) they can indirectly regulate the response of neuronal injury by 

affecting neuronal health and axonal regrowth (135). Astrocytes are found to be highly activated 

after stroke and can form a scar around the area of damage (137). Astrocyte scars consist of 

narrow zones of newly generated astrocytes with elongated processes that intertwine and 

immediately surround the sides of the lesion core, and are generally devoid of other neural 

lineage cells (neurons or oligodendrocytes). The density of astrocytes in scar tissue is often twice 

that of healthy tissue (138).  

Inflammation is an integral component of the glial (astrocyte) scar. In the CNS, CD 36, 

an inflammatory mediator, occurs in the subset of astrocytes in the scar. It is suspected of being a 

novel mediator for injury induced astrogliosis and can serve as a target to reduce glial scar in 

stroke (137).  Astrocytes are also known to uptake glutamate in the CNS and they regulate 

activity of glutamatergic synapses, making them crucial in neuronal survival during diseased 

conditions (136). Glutamate-mediated excitotoxicity is believed to contribute to neurological 

issues in many neuro-degenerative diseases (139). The changes in expression of astrocytes and 

microglia in brain regions during the damage are accompanied by morphological changes in the 

neurons and cells surrounding the site of damage (140,141). 
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1.9. Neuronal damage  

Neurological disorder pathogenesis most often includes vascular damage, neuro-

inflammation, neuronal injury and neurodegeneration (142). After damage, two events 

characterize a brain injury: 1) primary, or immediate, damage that induces degeneration and cell 

death directly, and 2) secondary, or delayed, damage that effects cell death and degeneration 

through independent active mechanisms (143).  The secondary neural damage is proportional to 

the extent of the initial injury, hence a more extensive and longer-lasting primary injury results in 

higher secondary neuronal degeneration (143).   

Axonal damage (another type of neuronal damage) spread along the anatomical and 

functional connections and can be either anterograde or retrograde depending on the level of 

damage (144). During injury, the axons undergo shrinkage and neurons undergo series of 

changes such as reduction in cytoplasmic substances, nuclear eccentricity, nuclear and nucleolar 

enlargement, dendrite shrinkage and changes in morphology (145,146). Neural degeneration in 

the brain is accompanied by apoptotic processes that are regulated by mitochondria (147).  

The apoptotic process is responsible for degrading the degenerated cells and neurons 

surrounding the damage site. During ICH, the loss of blood flow leads to decreased availability 

of vital nutrients causing dysregulated autophagy, which often occurs through degradation of 

cytoplasm and organelles of the cell (148). The dysregulation of autophagic machinery is 

implicated in neuronal cell fate in several diseases such as cancer and neurodegenerative diseases 

(143). Brain damage is also accompanied by necrosis of neighbouring cells, including 

vacuolation of the cytoplasm, breakdown of the plasma membrane and induction of 

inflammation around the dying cell by release of cellular contents such as pro-inflammatory 

mediators and lysosomes (149). The damage during ICH results in a pool of blood at the site of 
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injury. This causes the surrounding cells to degrade due to the presence of inflammatory 

mediators as a result of blood decomposition (150-152). Thus, mechanisms of neuronal 

degeneration, cell vacuolation, edema, necrosis, apoptosis and axotomy are widely observed 

during damage in the brain in various diseases including stroke (49,153,154).  For studying and 

identifying the morphological changes accompanied with the cellular changes during brain 

diseases (such as stroke) animal models have been used for the past few decades. 

 

1.10. Animal models of hemorrhagic stroke 

Animal models have contributed to a large extent in our understanding of the pathology 

of various diseases and assisted in the development of potential therapeutic treatment strategies 

(155). A greater understanding of the underlying etiology of different subtypes of stroke have 

been possible only due to studies with animal models. Although the animal models have been 

very helpful in scientific studies, it is important to understand that the models do not attempt to  

demonstrate or replicate the whole disease process but aim to target details of specific aspects in 

carefully controlled and monitored conditions (156). Most studies use rodents as their animal 

model. The rodent models used for stroke can be divided into two broad classes: 1) models 

where stroke is artificially induced and 2) stroke that occurs spontaneously in the animal model 

(157). 

 

1.10.1. Animal models with artificially induced stroke 

The consequences of spontaneous ICH are mimicked in mice and rats by enzymatically 

inducing vessel rupture by intra-parenchymal injection of blood or blood products (158,159). 
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The pathological mechanisms of hemorrhagic brain damage and edema formation have been 

studied by “blood injection” surgical models (160). The collagenase injection model, one of the 

blood injection models, disrupts the basal lamina of vessels, causing spontaneous bleeding into 

the brain tissue. This then generates long-term neuro-functional deficits and hence this model has 

been an extensively used model for studying stroke (159,161,162). Other models of artificially 

induced stroke include the balloon inflation model and the cerebral avulsion method (163).  

The blood avulsion method (model for cortical injury) involves stripping the cortical 

surface of blood vessels, where avulsion creates cortical hemorrhages (164). The cortical 

avulsion by pial stripping might lead to a mixed form of injury with hemorrhage and non-

perfused ischemia occurring at the same time. Whereas balloon inflation models are a better fit 

compared to avulsion, they allow study of the effect of hematoma and its removal on brain injury 

in a more direct manner (165). The essential features of the artificially induced stroke models are 

the consequences or different types of vascular insult through acute vessel injury, but it does not 

mimic the entire vascular pathology itself which leads to irregular onset of ICH with variability 

in size and location (157). Hence spontaneously induced stroke animal models are a preferred 

choice for study by our research group and other researchers throughout the world. 

 

1.10.2. Animal models for spontaneously occurring stroke 

The spontaneously hypertensive stroke-prone rat is a rat model in which stroke 

occurrence is spontaneous (166). SHRsp is widely used model for essential hypertension and 

cerebrovascular dysfunction. SHRsp rats have shown genetic susceptibility to stroke, 

independent of its severe hypertension (167). SHRsp was selectively bred from a sub-strain of 
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the spontaneously hypertensive rat (SHR), which were developed by selective cross-breeding of 

outbred Wistar Kyoto rats (156). 

SHRsp develops high blood pressure at eight to nine weeks of age, leading to increase in 

cerebral blood vessel luminal pressure, increasing the chance of stroke development. 

Hemorrhagic stroke development in SHRsp is also accompanied by stroke like symptoms (limb 

weakness, motor incoordination, drooling, dehydration, twitching and seizures) which are seen 

by 11-15 weeks when fed high salt diet (156,166).  Middle cerebral artery (MCA) of SHRsp rats 

have been shown to lose their ability to constrict in response to elevations in transmural pressure 

(168) and show denervation of cerebral vessels increasing susceptibility of vessels to rupture 

(169), as experiments in SHRsp have demonstrated loss of pressure dependent constriction 

(PDC) in the MCA following hemorrhagic stroke (168).  

Smeda and colleagues observed that the MCAs of post-stroke SHRsp depolarized but did 

not constrict to elevated potassium levels, suggesting a dysfunctional voltage gated calcium 

channels (170). The ability to respond to endothelial mediated responses to endogenous 

mediators such as bradykinin and NOS inhibitors was lost in post-stroke MCA accompanied 

with diminished response on the post-stroke MCA to protein kinase C (PKC) activation and 

intracellular calcium release with vasopressin stimulation (171). Smeda and colleagues also 

showed a loss of cerebral blood flow auto-regulation prior to stroke in SHRsp and observed that 

the loss of cerebral auto-regulation led to enhanced cerebral perfusion and facilitated 

development of hemorrhage (172). 

SHRsp on a high salt diet, have increased vascular permeability up to two weeks before 

ICH, predicting hemorrhage, suggesting hypertensive ICH is preceded by vasculopathy (173). 

The development of endothelial dysfunction, inflammation, increased blood brain barrier leakage 
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and permeability are evident before the appearance of any stroke lesions (174,175). As 

mentioned earlier, vascular dysfunction and inflammation have been implicated in many diseases 

such as hypertension and stroke (39,102,114), and loss of cerebral autoregulation (and PDC) in 

the MCA of SHRsp suggest underlying signalling changes are taking place within the MCA as 

stroke develops indicating a need to investigate the progression to stroke. Previous studies on 

isolated post-stroke MCAs have shown diminished response to PKC activators (phorbol esters) 

indicating functional deterioration of the MCA, suggesting an underlying mechanism affecting 

the functioning of the vessel during stroke. 

 

1.11. Objectives and Hypothesis 

The major objective of this study is to determine cellular signalling changes 

(inflammatory and contractile) that occur before and after stroke in the vessel (MCA). The 

signalling changes may be responsible for loss of vascular tone and PDC in MCAs of SHRsp 

rats. The middle cerebral artery of pre-stroke and post-stoke SHRsp will be isolated after 

sacrifice, and flash frozen for use in either western blot or immunofluorescence. The expression 

and activation (phosphorylated and total) of both inflammatory (p38MAPK and ERK) and 

contractile (MLC and PKC) signalling pathways in the MCA before and after stroke will be 

determined using both western blot and immunofluorescence techniques. The study will also 

determine TRPV4 channel expression before and after stroke to identify the role of calcium 

channel signalling in MCA dysfunction. 

This study will also try to determine the extent of neuro-inflammation and neuronal 

damage in the surrounding brain tissue of MCAs in SHRsp before and after stroke, and to 
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evaluate corresponding brain damage in the enclosing area of MCAs. The degree of neuro-

inflammation will be compared between pre-stroke and post-stroke samples by 

immunofluorescent analysis of astrocyte and microglia activation in the brain region surrounding 

the MCAs. Similarly but independently, neuronal damage will be determined by hematoxylin 

and eosin staining analysis of cell vacuolation, neuron degeneration, cell infiltration and cell 

edema, in the pre-stroke and post-stroke samples. 

 

Specific hypotheses of the study: 

1. There will be a significant increase in the expression, as well as activation, of 

inflammatory signalling mechanisms (p38MAPK and ERK) in post-stroke MCAs, 

compared to pre-stroke MCAs. 

2. The post-stroke MCAs will show a significant decrease in the expression, as well as 

activation, of signalling pathway (MLC and PKC) involved in vascular contraction 

compared to pre-stroke MCAs. 

3. TRPV4 calcium channel expression will be higher in the post-stroke MCAs compared 

to pre-stroke MCAs. 

4. The degree of astrocyte spread and microglial activation (neuro-inflammation) will be 

significantly higher in the post-stroke SHRsp compared to pre-stroke SHRsp. 

5. Neuronal damage in the surrounding area of the MCA will be significantly higher in 

the post-stroke SHRsp compared to pre-stroke SHRsps. 
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2. Materials and Methods: 

2.1. Animals 

All experimental procedures and animal breeding were carried out in compliance with the 

guidelines and recommendations set forth by the Animal Care ethics committee (Protocol 

Number: 15-30 ND) and the Canadian Council of Animal Care (Guide to care and Use of 

Experimental Animals, Vol 1, 2nd Edition) at the Animal Care Facility situated in the Health 

Science Centre of Memorial University of Newfoundland and Labrador.  Stroke prone 

spontaneously hypertensive male rats (SHRsp; Charles River Laboratories, Quebec, Canada) 

were housed two per cage and bred in-house in ventilated cages under standard light cycle (12 

hour light followed by 12 hour dark), controlled humidity and temperature condition. The 

SHRsps used in the study were fed Japanese style stroke-prone high salt diet containing 4% 

NaCl (Zeigler Bros., Inc., Pennsylvania, USA) from 5 weeks of age. Ad libitum access to food 

and water was permitted. 

 

2.2. General Experimental Design 

The rats were divided into two experimental groups and sampled based on the timeline of stroke 

(Figure 1). SHRsp rats were sacrificed before 10 weeks of age (at 9.3 weeks of age) for obtaining 

pre-stroke samples (n=24 per group) (166). To obtain the post-stroke samples, rats were 

monitored for external signs of behavioural distress. This consisted of weakness, lethargy, non-

responsive to stimuli, pilo-erection, redness around eyes, hunched back, sluggish movement, 

twitching, immobility and full and continuous seizures. The appearance of any or a combination 

of the mentioned distress signs were the determining factors for post-stroke samples (generally 

around 15 weeks of age; n=24) (166). Animals were sacrificed for obtaining samples of MCA for 

immunofluorescence and western blot analysis. 
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Figure 2.1: Experimental Timeline for sampling of pre-stroke and post-stroke samples when 

SHRsp rats are on High Salt Diet. [Figure (copyright clearance obtained) adapted from Dr. Noriko 

Daneshtalab research presentation].  
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2.3. Sample isolation and tissue processing: 

At the time of sacrifice, rats were anaesthetized with an intraperitoneal injection of 50 mg: 10 

mg/kg of ketamine:xylazine (Ketamine: Ketalean, Bimeda MIC, Animal Health Inc., Ontario, 

Canada and xylazine: Rompun, Bayer Inc., Ontario, Canada). The animals were then 

exsanguinated by cardiac puncture in the left ventricle, using a heparinized 10 mL syringe and 22 

G needle. The blood samples were centrifuged at 45000 rpm for 10 minutes at 4C within 30 

minutes of sampling. The plasma was collected and stored at a -80 C until further analysis of 

pro-inflammatory cytokines. The brain was removed carefully and placed in 1x Phosphate 

Buffered Saline (PBS) for isolating MCA. For western blot experiments, both MCA’s were 

peeled, flash frozen in liquid nitrogen and stored until analysis at -80 C. For 

immunofluorescence analysis, MCA’s were cut alongside surrounding brain tissue, placed in a 

chip, and embedding medium (Tissue Tek : Sakura Finetech Inc. , California, USA) added. The 

chip was then placed on a small dish, flash frozen using liquid nitrogen, and stored in -80 C 

until experimentation. The rest of the brain was fixed in 10% neutral buffered formalin (NBF) 

for future histological examination of neurological damage. 

 

2.4. Immunofluorescence: 

2.4.1. Sectioning and standard process of immunofluorescence: 

The flash frozen MCA’s with surrounding brain tissue were brought to -20 C in a cryotome 

(Fisher Scientific, Pittsburgh, PA, USA) and 8 micrometer (µm) sections were cut and placed on 

charged slides (4 slices/slide) and then stored at -20 C until processed for immunofluorescence 

(IF) studies. The MCA were analysed for the expression of various receptors and proteins. These 

consisted of the calcium channel receptor Transient Receptor Potential Cation Channel (TRPV4), 

Phosphorylated and total Extracellular signal regulated kinases (ERK1/2) and p38 Mitogen 

Activated Protein Kinase (p38MAPK), the activated and total Protein Kinase C (PKC) and 

Myosin Light Chain (MLC). The brain tissue surrounding the MCA was analysed for activation 

of astrocytes and microglia to determine extent of neuro-inflammatory activation.   
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Slides containing sections of MCA were thawed [10 minutes at room temperature (RT)] and 

washed in 1x PBS. The slides then underwent different processing based on the primary antibody 

of interest, shown in Table 2.1. In general, the sections were fixed either with 4% 

paraformaldehyde (PFA) for 20 minutes at RT or acetone for 15 minutes at -20 C, then were 

rinsed with 1x PBS. Some samples underwent 3% hydrogen peroxide treatment for 15 minutes at 

RT to prevent oxidation. Antigen retrieval process was required by some antibodies, with either 

citrate buffer at 100 C for 30 minutes or 0.5% or 1% sodium dodecyl sulfate (SDS). The 

sections were then blocked [with 5% or 10% normal goat serum (NGS)] at room temperature for 

one hour. Primary antibody was then added, reconstituted in 2% NGS in 1x PBS, overnight at 4 

C.  

The next day, the sections were washed with Tris-buffered saline (TBS) 5 times for 10 minute 

intervals, followed by incubation with the secondary antibody specific against the species used to 

generate the primary antibody (made up in 2% NGS in TBS) for 30 minutes at room 

temperature. After further washing with TBS (5 times at 10 minute intervals), the sections were 

finally coated with 50/50 Glycerol: distilled water solution, coversliped and sealed with clear 

nailpolish. Samples were imaged within two hours of the staining process using an Olympus 

FV1000 confocal microscope (Olympus Inc., Miami, FL, USA). The Sections were imaged 

using FV10-ASW (Version 1.7) Software at either 40x (zoomed in 1.4 times) or 20x (zoomed in 

2.8 times). Parameters were kept constant among all samples being analyzed for quantification 

comparison.  
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Table 2.1.: Specific details for the blocking solution, antibodies and reagents used in protocols for 

immunofluorescence. 

Protein of 

interest 

Blocking 

Solution  

composition 

(length of 

incubation) 

Antigen 

Retrieval 

Procedure   

(length of 

incubation) 

Primary Antibody 

and Dilution (Day 

1) (Overnight at 4 

C) 

[company of purchase] 

Dilution of 

Secondary Antibody 

(Day 2) 

 (30 minutes at RT) 

[Jackson Immunoresearch 

unless otherwise indicated] 

P-p38MAPK 10% Normal Goat 

Serum +0.1% 

Triton-X in 1X 

PBS (1 Hour at RT) 

1% SDS  

(4 minutes at RT) 

P-p38MAPK 

(1:100) Rabbit 

mAb.  

[Cell Signalling 

(4511S)] 

Goat anti-rabbit Cy5 

(1:400) + 

DAPI (1:1000).  

 

T-p38MAPK 5% Normal Goat 

Serum +0.1% 

Triton-X in 1X 

PBS (1 Hour at RT) 

1% SDS 

 (3 minutes at RT) 

T-p38MAPK 

(1:100) Rabbit 

mAb. 

[Cell Signalling 

(9212S)] 

Goat anti-rabbit Cy5 

(1:150) + 

DAPI (1:1000).  

 

P-ERK1/2 10% Normal Goat 

Serum +0.1% 

Triton-X in 1X 

PBS (1 Hour at RT) 

1% SDS  

(4 minutes at RT) 

P-ERK1/2 (1:100) 

Rabbit mAb.  

[Cell Signalling 

(4370S)] 

Goat anti-rabbit Cy5 

(1:200) + 

DAPI (1:1000). 

 

T-ERK1/2 10% Normal Goat 

Serum +0.1% 

Triton-X in 1X 

PBS (1 Hour at RT) 

1% SDS  

(5 minutes at RT) 

T-ERK1/2 (1:75) 

Rabbit mAb.  

[Cell Signalling 

(4695S)] 

Goat anti-rabbit Cy2 

(1:300) + DAPI 

(1:1000).  

P-PKC 10% Normal Goat 

Serum +0.1% 

Triton-X in 1X 

PBS (1 Hour at RT) 

1% SDS  

(4 minutes at RT) 

P-PKC (1:75) 

Rabbit mAb.  

[Cell Signalling 

(9371S)] 

Goat anti-rabbit Cy5 

(1:400) + 

DAPI (1:1000).  

T-PKC 10% Normal Goat 

Serum +0.1% 

Triton-X in 1X 

PBS (1 Hour at RT) 

0.5% SDS  

(3 minutes at RT) 

T-PKC (1:50) 

Mouse mAb.  

[Santa Cruz (SC-

17804)] 

Goat Anti-mouse 

Rhodamine Red-X 

(1:400) + DAPI 

(1:1000).  



42 
 

Protein of 

interest 

Blocking 

Solution  

composition 

(length of 

incubation) 

Antigen 

Retrieval 

Procedure   

(length of 

incubation) 

Primary Antibody 

and Dilution (Day 

1) (Overnight at 4 

C) 

[company of purchase] 

Dilution of 

Secondary Antibody 

(Day 2) 

 (30 minutes at RT) 

[Jackson Immunoresearch 

unless otherwise indicated] 

P-MLC 2.5% Bovine 

Serum Albumin 

+0.1% Triton-X 

in 1X PBS  

(1 Hour at RT) 

NA P-MLC2 (1:75) 

Rabbit mAb.  

[Cell Signalling 

(3671S)] 

Goat anti-rabbit Cy5 

(1:400) + 

DAPI (1:1000).  

T-MLC 2.5% Bovine 

Serum Albumin 

+0.1% Triton-X 

in 1X PBS  

(1 Hour at RT) 

0.5% SDS  

(4 minutes at RT) 

T-MLC2 (1:250) 

Rabbit mAb.  

[Cell Signalling 

(3672S)] 

Goat anti-rabbit Cy2 

(1:400) + 

DAPI (1:1000).  

TRPV4 10% Normal Goat 

Serum +0.1% 

Triton-X in 1X 

PBS (1 Hour at RT) 

NA Anti-TRPV4 

(1:100) Rabbit 

pAb.  

[Abcam (ab39260)] 

Goat anti-rabbit Cy5 

(1:300) + 

DAPI (1:1000).  

Astrocytes 10% Normal Goat 

Serum +0.1% 

Triton-X in 1X 

PBS (2 Hour at RT) 

NA GFAP-Cy3 

(1:1000). [Sigma 

Aldrich (C9205)]  

DAPI (1:1000) 

Microglia 10% Normal Goat 

Serum +0.1% 

Triton-X in 1X 

PBS (2 Hour at RT) 

NA Iba 1 (1:1000). 

[Wako Chemical: (019-

19741)] 

Goat anti-rabbit Cy5 

(1:150) + 

DAPI (1:1000). 
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2.4.2. Quantification of immunofluorescent images:  

Each sample was imaged for a Z stack of 8 slices of 1 µm each followed by global calibration 

and conversion to grayscale in Fiji software (ImageJ, U. S. National Institutes of Health, 

Bethesda, Maryland, USA). The vessel area (V) was determined in a precise manner with 

freehand selection tool and the mean gray value (MGV) of the vessel was measured. Mean gray 

value is the total pixel intensity of the measured area divided by the total measured area. MGV is 

expressed as pixel intensity per square millimetre. Three random readings from the image 

background (B1, B2 and B3) were obtained and the mean gray value of the background was 

subtracted from the mean gray value of the vessel to get the actual optical fluorescence density of 

the vessel (M2), as shown in Figure 2.2.  
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Figure 2.2: Representation of the semi-quantification process for measuring immunofluorescent 

staining of protein of interest in the MCA by Image J. V is the Vessel Area used for determination 

of mean gray value for protein of interest. B1, B2 and B3 are background area measurements used 

for determination of mean gray value (MGV) for the background. 

Fluorescence for protein of interest = MGV (V) – MGV {(B1+B2+B3)/3} 
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2.5. Neurological Degeneration: 

2.5.1 Sampling and processing for H and E Stain 

The brain samples, fixed in 10% NBF were embedded in paraffin before slicing and 6 μm 

coronal sections where MCAs feed into the M2 section [anterior region extending from insula 

with the opercular segments [parietal and temporal] included]. The paraffin embedded sections 

were de-paraffinized in xylene for 35 minutes, and rehydrated by placing in decreasing 

concentrations of alcohol: Absolute, 95%, 80% and 70%, for 2 minutes each. A quick rinse (1 

minute in water) was performed and the slides were stained with Mayer’s haematoxylin for 15-

30 min. Slides were rinsed with water for 1 minute and placed in Scott’s Tap Water Substitute 

(S.T.W.S.) for 3 minutes until the sections turned blue. Slides were washed for 5 minutes with 

water and were stained with eosin for 2 minutes.  A quick dehydration was performed in 95% 

and absolute alcohol. The slides were then cleaned in xylene and sealed with a coverslip. This 

procedure stains nuclei in blue and tissue components in different shades of pink. Slides were 

used to determine neurological degeneration around the M2 region of the MCAs. 

 

2.5.2. Quantification for Neural Damage: 

Neural and brain damage were analyzed by assessing cell vacuolation, neuron degeneration, 

areas of edema and area of cell infiltration. A semi-quantitative scoring scheme was used to 

determine the extent of neural damage by combining the scores obtained from all four 

assessments outlined in Table 2.2 and adapted from Fedchenko et al. (176) .Cell vacuolation and 

neuron degeneration are two important parameters that can be morphologically assessed using H 

and E stain for determining the degree of cell death. It is characterized by axonal swelling and 

associated cell death in the white matter occuring spontaneously or via a wide range of stimuli 

(177). The grading scheme for this cell death are ranked from 0 to 10, where cell count were 

graded on a point system. The vacuolation was graded 10 cells per point, with the maximum 

number of vacuolation quantifiable being 80. The degenerating neurons were graded 2 cells per 

point. Areas of edema and areas of cell infiltration (also indicators of brain injury and damage) 

were quantified separately, and graded 10% for each point, the total being the complete image 

area. The grading scheme for the area detection is a modified version adopted from the 
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“quickscore” system (178), that assigns values from 1 to 6 in proportion, and multiplication is 

recommended instead of addition for processing of final score range. A total final score was 

determined via summation of the four separate parameters to indicate total neuronal damage 

evident in the samples.  
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Table 2.2.: Scoring system for four semi-quantifiable parameters (Cell vacuolation, degenerating 

neurons, area of cell oedema and area of cell infiltration) 

Score 

assigned 

Number of Cells 

undergoing 

vacuolation (A) 

Number of 

degenerating 

neurons (B) 

Percentage of 

area of oedema 

(C) 

Percentage of 

area of Cell 

infiltration (D) 

0     0  (Lowest Value)                    0 (Lowest Value) 0 (Lowest Value) 0 (Lowest Value) 

1 1-10 1-2 1-10 % 1-10 % 

2 11-20 3-4 11-20 % 11-20 % 

3 21-30 5-6 21-30 %  21-30 %  

4 31-40 7-8 31-40 % 31-40 % 

5 41-50 9-10 41-50 %  41-50 %  

6 51-60 11-12 51-60 % 51-60 % 

7 61-70 13-14 61-70 % 61-70 % 

8 71-80 15-16 71-80 % 71-80 % 

9 81-90 17-18 81-90 % 81-90 % 

10 91-100  

(Highest Value) 

19-20 

(Highest Value) 

91-100 % 

(Highest Value) 

91-100 % 

(Highest Value)  

 

Final Score for Neural Damage: A + B + C + D 

Final score is the total of the score assigned for cell vacuolation, neuron degeneration, area of 

oedema and area of cell infiltration. A High final score indicates higher brain damage. The data 

obtained from the images with objective magnification of 20x was used to determine the final 

score for each sample. 
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2.6. Western Blot  

2.6.1. Sample Lysis and Aliquot preparation 

MCA samples were lysed in radioimmunoprecipitation assay (RIPA) buffer (recipes for all 

solutions listed in Table 2.3) using precellys beater tubes (Bertin Corp, Maryland, USA). Two 

MCA’s from each sample were homogenized in 150 µl of RIPA Buffer. The protocol 2 (5000 

RPM for 2 minutes and 20 seconds) was run in the precellys instrument (Bertin Corp, Maryland, 

USA) for sample homogenization. The samples were allowed to sit on ice for 15-20 minutes for 

the foam to settle down and the supernatant was collected from the beater tube and transferred to 

a new microcentrifuge tube which was then sonicated for 7 minutes.  The beater tube was further 

centrifuged at 25000 RPM for 5 minutes at 5 C and the remaining lysate was transferred to the 

sonicated microcentrifuge tubes in order to maximise lysate yield per sample. The sample was 

then re-centrifuged at 25000 RPM for 5 minutes at 5 C and bicinchoninic acid (BCA) protein 

analysis was performed on the collected supernatant. 

 

2.6.2. BCA Protein Assay 

BCA Protein assay was performed to determine the amount of lysate sample present. One mL of 

BSA Stock was prepared in distilled water (1 mg/mL) for the protein assay and a standard curve 

was made in duplicate wells to make the following standard curve : 0, 2.5, 5, 10 and 20 µg ( 

BSA Stock Solution) and 2.5 µL RIPA Buffer was added to all wells Buffer (recipes for all 

solutions listed in Table 2.3). The lysate samples were then added to duplicate wells (2.5 µL of 

sample lysate) and 300 µL of BCA Reagent was added to all wells (Reagent A: Reagent B 

=1:20). The plate was covered and incubated for 30 minutes at 37°C and the absorbance was 

measured at 562 nm in a plate reader (Fluostar Optima, BMG Labtech, NC, USA). The 

absorbance values obtained for standard curve and samples were entered in an excel sheet. The 

amount of sample lysate required for 10 µg protein was calculated on the basis of standard curve 

obtained by using Microsoft Excel 2010 (Microsoft Corporation, Redmond, WA, USA).  

Aliquots were prepared for 10 µg protein for lysed sample in sample loading buffer (Laemmli 

Sample Buffer 5X + β-mercaptoethanol) and heated to 100°C for 3 minutes. Aliquots were 

allowed to cool down to room temperature for 5 minutes and stored at -20°C until use. 
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Table 2.3.: List of solutions used in western blot and immunofluorescence 

1.1. Reagents for Western Blot: 

1.1.1.  RIPA Buffer 

Stock Solutions Volume made 

2.5 mL 5 mL 10 mL 

10x PBS 0.25 0.5 1 

10% Triton-X 0.25 0.5 1 

10% Deoxycholic Acid 0.125 0.25 0.5 

1M Tris-HCL, pH 7.4 0.125 0.25 0.5 

1M Beta-glycerophosphate 0.125 0.25 0.5 

1M NaF 0.125 0.25 0.5 

0.5M EDTA, pH 7.5 25 µL 50 µL 0.1 

20% SDS 12.5 µL 25 µL 50 µL 

10x protease inhibitors 0.25 0.5 1 

10x phosphatase inhibitors 0.25 0.5 1 

PMSF* (50 microgram/L) 7.5 µL 15 µL 30 µL 

Sodium Orthovanidate (200mM) 25 µL 50 µL 0.1 

Autoclaved dH2O 0.93 1.86 3.72 

All units in mL, otherwise specified. 

*Water to be added first, PMSF just prior to use 

 

1.1.2. BCA Reagent (Thermo Scientific) #23225 

 Total Volume of BCA Reagent made 

Reagents 10 mL 20 mL 

Pierce BCA Protein Assay Reagent A 9.8 mL 19.6 mL 

Peirce BCA Protein Assay Reagent B 0.2 mL 0.4 mL 

 

1.1.3. Albumin Standard (Thermo Scientific) #23209 

Aliquots of 85 µL made out of 1 vial of 1 mL bovine Serum Albumin. 
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1.1.4. Sample Buffer 5X 

Solutions Volume made 

100 mL 200 mL 

Glycerol 10 mL 20 mL 

Stacking Buffer 2 mL 4 mL 

20% SDS 25 mL 50 mL 

Bromophenol Blue 0.125 g 0.250 g 

dH2O 58 mL 116 mL 

 

1.1.5. Denaturing Solution 

Solution used Volume Made 

500 µL 1000 µL 

laemmli Buffer 5X 475 µL 950 µL 

Β-mercaptoethanol 25 µL 50 µL 

 

1.1.6. Recipe for Gel 

 

1.1.6.1. Separating/Running Gel 

Solution used Percentage of Gel for 2 mini gels 

7.5% 8.5% 10% 12.5% 15% 

Water (mL) 9.22 8.54 7.54 5.88 4.22 

Acrylamide (mL) 5.00 5.67 6.67 8.33 10.0 

Running Gel Buffer (mL) 5.00 5.00 5.00 5.00 5.00 

20% SDS 100 µL 100 µL 100 µL 100 µL 100 µL 

TEMED 20 µL 10 µL 10 µL 10 µL 10 µL 

2.8% APS (mL) 0.66 0.66 0.66 0.66 0.66 
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1.1.6.2. Stacking Gel 

Solution used Recipe for Gels 

2 mini gels 1 mini gel 

Water (mL) 9.50 4.75 

Acrylamide (mL) 1.80 0.90 

Running Gel Buffer (mL) 1.50 0.75 

20% SDS 60 µL 30 µL 

TEMED 35 µL 17.5 µL 

2.8% APS (mL) 0.40 0.20 

 

1.1.6.3. Stacking Buffer (1 L) 

1. Dissolve 59.8 g Tris in approximate 400 mL of dH2O  

2. Adjust pH to 6.8 with 10N HCl (Do not go over) 

3. Add dH2O up to 1 L 

4. Filter Solution through 0.45 µm filter 

 

1.1.6.4. Running Gel Buffer (1 L) 

1. Add 181 g Tris to 600 mL of dH2O 

2. Adjust pH to 8.9 with 10N HCl (Do not go over) 

3. Add dH2O up to 1 L 

4. Filter Solution through 0.45 µm filter 

 

1.1.6.5. 2.8% APS (50 mL) 

1. 0.28 g Ammonium Persulfate 

2. 10 mL autoclaved dH2O 

 

1.1.6.6. 30% Acrylamide (37.5:1 Acrylamide:bisAcrylamide)  

2. 37.5 g Acrylamide 

3. 1g Bis-Acrylamide 
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4. Dissolve in 128 mL dH2O on heated stir-plate 

5. Filter Solution through 0.45 µm filter 

6. Measure pH to ensure pH is less than 7.0 

 

1.1.6.7. Electrophoresis Buffer (Protein Gel Running Buffer) 

Chemicals used Final Volume of 8 L 

Tris Base 24.2 g 

Glycine 115.4 g 

SDS 8 g 

dH2O Make up to 8 L 

 

1.1.7. TBST 

Chemicals used Final Volume of 8 L 

1 M Tris Base pH 8 80 mL 

2.5 M NaCl 240 mL 

Tween-20 50% 4 mL 

dH2O Make up to 4 L 

 

1.1.8.    1 M Tris Base pH 8 

1.  Dissolve 60.57 g of Tris Base in 500 mL of dH2O 

2.  Adjust the pH to 8 by 10N HCl 

3. Filter Solution through 0.45 µm filter 

 

1.1.9.  2.5M NaCl 

1. Dissolve 146.5g NaCl in 1 L dH2O in volumetric flask 

2. Stir it for 1 hour. Make upto 1 L by adding dH2O 
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1.2. Reagents for Immunofluorescence: 

 

1.2.1. TBS 

Chemicals used Final Volume of 8 L 

1 M Tris Base pH 8 80 mL 

2.5 M NaCl 240 mL 

dH2O Make up to 4 L 

 

1.2.2. Rest of the solutions: 

Solution Stock Solution Used Diluted in 

1X PBS (1 L) 10X PBX (100 mL) dH2O (900 mL) 

10% NGS (10 mL) 100% NGS (1 mL) 1X PBX (9 mL) 

1% SDS (10 mL) 10% SDS (1 mL) 1X PBS (9 mL) 

50/50 Glycerol (10 mL) Glycerol (5 mL) dH2O (5 mL) 
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2.6.3. SDS-PAGE and immunoblotting 

Each sample aliquot containing 10 µg of protein was loaded in to separate lanes for 

electrophoreses on 10% SDS-PAGE gels. The gels were run at 15 mA/gel while samples were in 

stacking gel and at 22 mA/gel after samples entered the running gel Buffer (recipes for all 

solutions listed in Table 2.3). The proteins on the gel were then transferred to polyvinylidene 

fluoride (PVDF) membrane (EMD, Millipore, MA, USA) at 100V for one hour, blocked for 60 

minutes by 5% non-fat dry milk (NFDM) in Tris-buffered Saline and Tween 20 (TBST), and 

incubated overnight at 4°C with  primary antibodies of interest (as listed in the Table 2.4). 

Primary antibody dilutions ranged from 1:1,000 to 1:3,000 based on the antibody. The membrane 

was washed 5 times at 5 minutes interval with TBST, followed by incubating the membrane in 

species-specific antibody conjugated with horseradish peroxidase (HRP) for 60 minutes at room 

temperature. The membrane was again washed 5 times at 5 min intervals before imaging. The 

bands were detected and visualized with chemiluminescent substrate (SuperSignal West Pico, 

Pierce, Rockford, IL, USA) using the enhanced chemiluminescence imager: LAS400 (GE 

Healthcare, Chicago, IL, USA). Densitometry analysis of imaged blots was performed on the 

same system by Imagequant TL (GE Healthcare, Chicago, IL, USA). After imaging the same 

membrane was stripped with stripping buffer for 10 minutes at 50°C. The membrane was washed 

once with TBST for 5 minutes and then re-blocked with 5% milk in TBST for an hour and 

incubated overnight with primary antibody (Phosphorylated or Total protein or GAPDH). The 

same process of the washes, incubation and detection was repeated for the detection of total 

protein and/or control protein. The loaded total protein was normalized to the Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) protein band density. Loading proteins like beta-actin and 

alpha-tubulin were initially attempted, but gave inconsistent detection between samples. 
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Table 2.4.: Specific details for the blocking solution, antibodies and reagents used in protocols 

for western blot. 

Protein of 

interest 

Blocking 

Solution: 

(Day 1: 1 

hour) 

Primary 

Antibody 

(Day 1: Overnight) 

[company of purchase] 

Secondary 

Antibody  

(Day 2: Afternoon) 

[Santacruz unless 

otherwise specified] 

Primary 

Antibody  

(Day 2: Overnight) 

[company of 

purchase] 

Secondary 

Antibody 

(Day 3: Afternoon) 

[Santacruz unless 

otherwise specified] 

ERK1/2 5% Milk 

in TBST 

P-ERK 1/2 

(1:1000) in 5% 

Milk (10 mL). 

Rabbit mAb.  

[Cell Signalling 

(4370S)] 

Anti-Rabbit HRP 

Labelled (1:3000) 

in 5% Milk (15 

mL). 

T-ERK1/2 

(1:1000) 

In 5% Milk (10 

mL).Rabbit 

mAb.  

[Cell Signalling 

(4695S)] 

Anti-Rabbit HRP 

Labelled (1:3000) 

in 5% Milk (15 

mL). 

p38MAPK 5% Milk 

in TBST 

P-p38MAPK 

(1:1000) in 5% 

Milk (10 mL). 

Rabbit mAb.  

[Cell Signalling 

(4511S)] 

Anti-Rabbit HRP 

Labelled (1:3000) 

in 5% Milk (15 

mL). 

T-p38MAPK 

(1:1000) in 5% 

Milk (10 mL). 

Rabbit mAb.  

[Cell Signalling 

(9212S)] 

Anti-Rabbit HRP 

Labelled (1:3000) 

in 5% Milk (15 

mL). 

PKC 5% Milk 

in TBST 

P-PKC (1:750) in 

5% Milk (10 mL) 

Rabbit mAb.  

[Cell Signalling 

(9371S)] 

Anti-Rabbit HRP 

Labelled (1:3000) 

in 5% Milk (15 

mL). 

T-PKC (1:50)  

in 5% Milk (10 

mL) Mouse 

mAb. [Santa Cruz 

(SC-17804)] 

Anti-Mouse HRP 

Labelled (1:2000) 

in 5% Milk (15 

mL). 

GAPDH 5% Milk 

in TBST 

GAPDH (1:1000) 

in 5% Milk 

(10mL) Rabbit 

mAb. 

[Cell Signalling 

(14C10)] 

Anti-Rabbit HRP 

Labelled (1:3000) 

in 5% Milk (15 

mL). 

As applicable As applicable 
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2.6.4. Quantification of bands 

The imaged blots were quantified by Imagequant TL Software. The sample lanes were first 

detected, followed by detection of the protein of interest. The band area was adjusted 

individually to accommodate entire band for each sample. The bands were then calibrated for 

background with rolling ball (50) option. The peaks of bands were determined manually and the 

densitometry intensity of bands were measured. A similar process was followed to obtain the 

densitometry for total protein or loading Control (GAPDH). For obtaining relative densitometry, 

the ratio of phosphorylated over total protein and total protein over GAPDH was determined by 

Microsoft Excel 2010 (Microsoft Corporation, Redmond, WA, USA). 

 

2.7.Statistical analysis 

Statistical analysis was performed using Excel 2010 (Microsoft Corporation, Redmond, WA, 

USA) and SigmaPlot 12.5 (Systat Software Inc., San Jose, CA, USA). Data were analyzed using 

unpaired 2 tailed Student’s T-test. Values of p < 0.05 were considered statistically significant. 
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3. Results: 

3.1. Detection of phosphorylated and total MLC in MCA by immunofluorescence 

MCA Vessels from pre-stroke and post-stroke SHRsp rats were stained for detection of 

phosphorylated and total MLC. Figure 3.1A shows representative images of vessels from each 

group stained for phosphorylated MLC. The intensity of fluorescent signals from phosphorylated 

MLC stain was relatively low in both experimental groups resulting in a low mean gray value. 

MLC was detected primarily in the smooth muscle cells of the MCA. Semi-quantitative analysis 

showed significantly increased localization of phosphorylated MLC in post-stroke MCA’s 

compared to pre-stroke (Figure 3.1B; P<0.05). The expression of total MLC is shown by 

representative images in Figure 3.2A. Figure 3.2B shows the semi-quantitative analysis of the 

fluorescence signal from the total MLC staining for both experimental groups. There was no 

statistically significant difference between the mean gray value of total MLC in MCA of pre-

stroke and post-stroke SHRsp rats (P>0.05).  
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Figure 3.1: (A) Representative images for phosphorylated MLC Staining (P-MLC2 (1:75), Cy5 

(1:400) and DAPI (1:1000)). 8µm slices of MCA were imaged as a Z-stack at 40x objective 

using confocal microscopy and fluoview software. Semi-Quantification of images performed by 

Image J software. (B) IF Analysis: Mean Gray Value for phosphorylated MLC in MCAs of pre-

stroke and post-stroke animals (n=6 per group). * indicates p<0.05 analyzed using unpaired 

Student’s t-test. White arrows indicate phosphorylated MLC staining in the smooth muscle cells 

of MCA. 
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Figure 3.2: (A) Representative images for Total MLC Staining (T-MLC2 (1:250), Cy5 (1:400) 

and DAPI (1:1000)). 8µm slices of MCA were imaged as a Z-stack at 40x objective using 

confocal microscopy and fluoview software. Semi-Quantification of images performed by Image 

J software. (B) IF Analysis: Mean Gray Value for total MLC in MCAs of pre-stroke and post-

stroke animals (n=5 per group). White arrows indicate total MLC staining in the smooth muscle 

cells of MCA. 
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3.2. Detection of phosphorylated and total MLC in MCA by western blot 

Western blot analysis to obtain a ratio of phosphorylated MLC over total MLC in the MCA 

samples did not yield any results despite making major and minor modifications such as: 

increasing sample loading, increasing concentration of primary and/or secondary antibody, 

consulting with technicians from the antibody company, trying antibodies from another 

companies and such. Although weak bands could be seen for total MLC after modifications in 

the procedure, the blots failed to show up any signal for phosphorylated MLC and hence the ratio 

of phosphorylated over total MLC could not be obtained. The bands of total MLC were 

normalised to loading control (GAPDH), but the signal for total MLC was very weak and hence 

it skewed the ratio of total MLC over GAPDH. 
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3.3. Detection of phosphorylated and total PKC in MCA by immunofluorescence 

Expression of phosphorylated and total PKC in MCA vessels of pre-stroke and post-stroke 

SHRsp rats was determined by immunofluorescent staining. Both phosphorylated, as well as 

total PKC, were highly expressed in the smooth muscle cells relative to the endothelium. Figure 

3.3A shows representative images for staining of phosphorylated PKC from both groups. Semi-

quantitative analysis of phosphorylated PKC staining, in the form of mean gray value showed 

significantly greater expression in pre-stroke compared to post-stroke (Figure 3.3B; P<0.001). 

Detection of total PKC was performed by staining MCA’s from both groups (Figure 3.4A). 

There was no difference in expression of total PKC between the groups.  (Figure 3.4B); P>0.05).  
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Figure 3.3: (A) Representative images for Phosphorylated PKC Staining (P-PKC (1:75), Cy5 

(1:400) and DAPI (1:1000)). 8µm slices of MCA were imaged as a Z-stack at 40x objective 

using confocal microscopy and fluoview software. Semi-Quantification of images performed by 

Image J software. (B) IF Analysis: Mean Gray Value for phosphorylated PKC in MCAs of pre-

stroke and post-stroke animals (n=6 per group). *** indicates p<0.001 analyzed using unpaired 

Student’s t-test. White arrows indicate phosphorylated PKC staining in the smooth muscle cells 

of MCA. 
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Figure 3.4: (A) Representative images for Total PKC Staining (T-PKC (1:50), Cy5 (1:400) and 

DAPI (1:1000)). 8µm slices of MCA were imaged as a Z-stack at 40x objective using confocal 

microscopy and fluoview software. Semi-Quantification of images performed by Image J 

software. (B) IF Analysis: Mean Gray Value for total PKC in MCAs of pre-stroke and post-

stroke animals (n=6 per group). White arrows indicate total PKC staining in the smooth muscle 

cells of MCA. 
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3.4. Detection of phosphorylated and total PKC in MCA by western blot 

The ratio of phosphorylated PKC over total PKC was obtained using western blot. 

Representative images of blots and statistical analysis for phosphorylated PKC and total PKC are 

shown in figure 3.5A. The ratio of phosphorylated over total PKC was significantly lower in the 

post-stroke samples compared to pre-stroke samples (P<0.05), and was consistent with IF data 

(Figure 3.3A), showing decreased levels of P-PKC. The representative images for the blots for 

total PKC and GAPDH (Loading Control) are shown in figure 3.5B. No statistical difference 

was observed in the ratio of total PKC over GAPDH between the sample groups (P>0.05) 
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Figure 3.5: (A) Representative image for Phosphorylated and Total PKC bands (P-PKC (1:750) 

and T-PKC (1:50)); WB Analysis: Relative densitometry for Phosphorylated/Total PKC. (B) 

Representative image for Total PKC and GAPDH bands; WB Analysis: Relative densitometry 

for Total PKC/GAPDH.  * indicates p<0.05 analyzed using unpaired Student’s t test. 

 

 

 

 

Pre-Stroke 

80 KDa (p-PKC) 

Post-Stroke 

80 KDa (t-PKC) 

(B)
  A 

(A)
  A 

Pre-Stroke Post-Stroke 

37 KDa (GAPDH) 

80 KDa (t-PKC) 

Pre-Stroke Post-Stroke Pre-Stroke Post-Stroke 



66 
 

3.5. TRPV4 Expression in MCA by immunofluorescence 

MCA vessels from the pre-stroke and post-stroke SHRsp rats was stained to detect the 

expression of TRPV4. Upon staining, TRPV4 was found to be expressed to a greater extent in 

the endothelial layer compared to the smooth muscle cell layer of the MCA. Figure 3.6A shows 

representative images for TRPV4 staining from both pre and post-stroke groups. The semi-

quantitative analysis of the mean gray value of TRPV4 staining showed significantly higher 

expression of TRPV4 in pre-stroke samples compared to post-stroke samples (Figure 3.6B; 

P<0.05). 
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Figure 3.6: (A) Representative images for TRPV4 Staining (TRPV4 (1:100), Cy5 (1:300) and 

DAPI (1:1000)). 8µm slices of MCA were imaged as a Z-stack at 40x objective using confocal 

microscopy and fluoview software. Semi-Quantification of images performed by Image J 

software. (B) IF Analysis: Mean Gray Value for TRPV4 in MCAs of pre-stroke and post-stroke 

animals (n=6 per group). * indicates p<0.05 analyzed using unpaired Student’s t-test. White 

arrows indicate TRPV4 staining in the endothelium of MCA. 
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3.6. Analysis of phosphorylated and total p38MAPK by immunofluorescence 

MCA vessels from pre-stroke and post-stroke SHRsp rats were stained for phosphorylated and 

total p38MAPK, and both were found to be expressed in greater quantity in the smooth muscle 

cells compared to the endothelium. Figure 3.7A shows representative images of vessels from 

each group for phosphorylated p38MAPK staining. The qualitative analysis of the cross section 

of a stacked image of the vessel showed phosphorylated p38MAPK was expressed mainly in the 

vascular smooth muscle cell layer of the MCA.  Figure 3.7B shows the semi-quantitative 

analysis of the phosphorylated p38MAPK staining on the MCA in the form of mean gray value. 

There was no statistically significant difference in expression of phosphorylated p38MAPK 

compared to post-stroke MCAs. The expression of total P38MAPK can be seen by representative 

images in Figure 3.8A. Figure 3.8B shows mean gray value (semi-quantitative) analysis of total 

p38MAPK in MCA of pre-stroke and post-stroke animals. The expression of total p38MAPK 

was significantly increased in pre-stroke samples in comparison to post-stroke samples 

(P<0.001). 
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Figure 3.7: (A) Representative images for Phosphorylated p38 MAPK Staining (p-p38MAPK 

(1:100), Cy5 (1:400) and DAPI (1:1000)). 8µm slices of MCA were imaged as a Z-stack at 40x 

objective using confocal microscopy and fluoview software. Semi-quantification of images 

performed by Image J software. (B) IF Analysis: Mean Gray Value for Phosphorylated p38 

MAPK in MCAs of pre-stroke and post-stroke animals (n=6 per group). White arrows indicate 

phosphorylated p38MAPK staining in the smooth muscle cells of MCA. 
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Figure 3.8: (A) Representative images for Total p38 MAPK Staining (T-p38MAPK (1:100), 

Cy5 (1:150) and DAPI (1:1000)). 8µm slices of MCA were imaged as a Z-stack at 40x objective 

using confocal microscopy and fluoview software. Semi-Quantification of images performed by 

Image J software. (B) IF Analysis: Mean Gray Value for total p38 MAPK in MCAs of pre-stroke 

and post-stroke animals (n=6 per group). *** indicates p<0.001 analyzed using unpaired 

Student’s t-test. White arrows indicate total p38MAPK staining in the smooth muscle cells of 

MCA. 
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3.7. Analysis of phosphorylated and total p38MAPK by western blot 

Western blot analysis was performed to obtain a ratio of phosphorylated (active) over total 

p38MAPK. Figure 3.9A shows representative images and quantification of the results for 

western blot bands for phosphorylated p38MAPK and total p38MAPK. The semi-quantitative 

analysis of the blots showed higher relative amounts of phosphorylated p38MAPK over total 

p38MAPK in post-stroke samples compared to pre-stroke samples; however, there was no 

statistical difference of phosphorylated p38MAPK over total p38MAPK between groups. The 

pre-stroke and post-stroke MCA samples were normalised for loading control by GAPDH. 

Figure 3.9B shows representative images of blots for total p38MAPK and GAPDH and it also 

shows semi-quantitative analysis of total p38MAPK and GAPDH which shows the ratio of total 

p38MAPK over GAPDH to be higher in pre-stroke compared to post-stroke. 
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Figure 3.9: (A) Representative image for Phosphorylated and Total p38MAPK bands (P-

p38MAPK (1:1000) and T-p38MAPK (1:1000)); WB Analysis: Relative densitometry for 

Phosphorylated/Total p38MAPK. (B) Representative image for Total p38MAPK and GAPDH 

bands; WB Analysis: Relative densitometry for Total p38MAPK/GAPDH.   
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3.8. Analysis of phosphorylated and total ERK1/2 by immunofluorescence 

Phosphorylated and total ERK1/2 levels were determined by immunofluorescent staining of 

MCA vessels in pre-stroke and post-stroke SHRsp rats. Upon staining, phosphorylated and total 

ERK1/2 were found in both smooth muscle, as well as the endothelial layer of the MCA in both 

groups. Figure 3.10A shows representative images for staining of phosphorylated ERK1/2 from 

each group. Semi-quantitative analysis of phosphorylated ERK1/2 staining, via mean gray value, 

showed higher levels in pre-stroke compared to post-stroke animals, however no statistical 

significant difference was found (Figure 3.10B; P>0.05). MCA vessels from both groups were 

stained for detection of total ERK1/2 (Figure 3.11A). Pre-stroke samples showed statistically 

significantly greater expression of total ERK1/2 compared to post-stroke samples (Figure 3.11B; 

P<0.05).  
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Figure 3.10: (A) Representative images for Phosphorylated ERK1/2 Staining (P-ERK1/2 

(1:100), Cy5 (1:200) and DAPI (1:1000)). 8µm slices of MCA were imaged as a Z-stack at 40x 

objective using confocal microscopy and fluoview software. Semi-Quantification of images 

performed by Image J software. (B) IF Analysis: Mean Gray Value for phosphorylated ERK1/2 

in MCAs of pre-stroke and post-stroke animals (n=6 per group). White arrows indicate 

phosphorylated ERK1/2 staining in the smooth muscle cells of MCA.                        
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Figure 3.11: (A) Representative images for Total ERK1/2 Staining (T-ERK1/2 (1:75), Cy2 

(1:300) and DAPI (1:1000)). 8µm slices of MCA were imaged as a Z-stack at 40x objective 

using confocal microscopy and fluoview software. Semi-Quantification of images performed by 

Image J software. (B) IF Analysis: Mean Gray Value for total ERK1/2 in MCAs of pre-stroke 

and post-stroke animals (n=6 per group). * indicates p<0.05 analyzed using unpaired Student’s t-

test. White arrows indicate total ERK1/2 staining in the smooth muscle cells of MCA. 
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3.9. Analysis of phosphorylated and total ERK 1/2 by western blot 

To determine the ratio of phosphorylated ERK1/2 over total ERK1/2, western blot analysis was 

performed on the MCA samples from both groups. Figure 3.12A shows representative images of 

blots and quantitative analysis for phosphorylated ERK1/2 and total ERK1/2. Post-stroke 

samples showed significantly greater relative levels of phosphorylated ERK1and2 over total 

ERK1and2 compared to pre-stroke samples (P<0.05). Samples from both groups were 

normalised by using GAPDH as the loading control (Figure 3.12B). No significant difference 

was seen between the two groups, as the ratio of total ERK1and2 over GAPDH was consistent in 

pre-stroke as well as post-stroke groups (P>0.05). 
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Figure 3.12: (A) Representative image for Phosphorylated and Total ERK1/2 bands (P-

ERK1/2(1:1000) and T-ERK1/2 (1:1000)); WB Analysis: Relative densitometry for 

Phosphorylated/Total ERK1/2. (B) Representative image for Total ERK1/2 and GAPDH bands; 

WB Analysis: Relative densitometry for Total ERK1/2/GAPDH.  * indicates p<0.05 analyzed 

using unpaired Student’s t test. 
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3.10 Neuro-inflammation: Astrocyte and Microglia Analysis by immunofluorescence 

The brain sections located near the MCA vessels of pre-stroke and post-stroke SHRsp rats were 

stained for microglia and astrocytes with anti-iba1, anti-GFAP (respectively), and DAPI. Figure 

3.13A shows representative images for immunofluorescent detection of DAPI, astrocytes, 

microglia and merge images for both groups. Post-stroke brain sections showed significantly 

higher immunofluorescent staining for astrocytes spread compared to pre-stroke samples (Figure 

3.13B). There was a significant increase in staining of activated microglial cells in post-stroke 

samples, particularly in the total cell count, which includes both cell types (slightly activated and 

completely activated) phenotypes of activated microglia (Figure 3.13C; P<0.05). 
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Figure 3.13: (A) Representative images for Astrocytes and Microglia (GFAP-Cy3 (1:1000), Iba 

1 (1:1000), Cy5 (1:150) and DAPI (1:1000)). MCA and brain tissue sliced at 8µm and imaged at 

20x objective using confocal microscopy and fluoview software. Semi-Quantification of imaged 

performed by Image J software. IF Analysis : (B)  Mean Gray Value for Astrocytes and (C) 

Total Cell count of activated microglia near middle cerebral arteries of pre-stroke and post-stroke 

animals (n=8 per group). * indicates p<0.05 analyzed using unpaired Student’s t test. 
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3.11 Neural damage: H and E Stain 

Brains from the pre-stroke and post-stroke groups were stained with H and E (Figure 3.14A-D) 

and imaged to determine the extent of neural and intracerebral damage, near the MCA, located in 

the area of the M2 section [anterior region extending from insula with the opercular segments 

(parietal and temporal) included]. Post-stroke samples showed a significant increase in total 

brain damage scoring represented by total of cell vacuolation, neuron degeneration, areas of 

edema, and cell infiltration, compared to pre-stroke samples (Figure 3.15). Out of all four 

parameters, the most characteristic sign of neural damage in the post-stroke group appeared to be 

the presence of cell vacuolation whereas the least occurring sign of neural damage in both 

experimental groups was edema. 
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Figure 3.14: Representative images of H and E stains of brain slices (6 µm) imaged at 10x (total 

magnification 100x)  and 20x objectives (total magnification 200x) for pre-stroke (A and B) and 

post-stroke (C and D). Areas of neural cell vacuolation (white rhombus), neural degeneration 

(white triangle), area of oedema (white circle), and cell infiltration of inflammatory origin (long 

white arrow) are indicated between the images (A–D). 
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Figure 3.15: Total Neural Damage Scoring by H and E staining of brains, for pre-stroke (n=6) and 

post-stroke (n=4) groups. * indicates p<0.05 analyzed using unpaired Student’s t-test. 
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4. Discussion: 

Previous research by our group found significant pathophysiological changes in the 

vascular function of the MCA in pre-stroke and post-stroke SHRsp, with a loss of autoregulation 

in the post-stroke MCAs (179). We wished to investigate the potential role of various cellular 

signalling mechanisms associated with the contractile properties of the vessel and inflammatory 

factors effected by stroke. The focus of the work was to investigate possible differences in the 

expression of cellular signalling components involved in contraction of the MCA, focusing on 

MLC and PKC, where the activation of PKC was significantly lower in the post-stroke MCA 

compared to pre-stroke MCA samples. We also analysed inflammatory mediators affecting the 

vascular integrity as represented by MAPK and ERK. Our work indicates the post-stroke MCAs 

expresses increased activation of MAPK & ERK compared to pre-stroke MCA. 

We also determined the degree of neural inflammation accompanied in the brain region 

surrounding the MCA (by investigating astrocytes spread and microglial activation) and 

identifying neuronal damage in the brains of pre-stroke and post-stroke SHRsp. Our experiments 

clearly display the increase in expression of inflammatory proteins in MCA is accompanied by 

significant neurological damage as well as inflammatory upregulation (activated astrocytes & 

microglia) in the brain region surrounding the MCAs in post-stroke compared to pre-stroke 

animals.. 

We used both qualitative and semi-quantitative approaches with immunofluorescence and 

immunohistochemistry to determine the expression and localization of proteins, and analyze cell 

morphology in cross-sections of MCA vessels and brain tissues. As well, expression of specific 

proteins in the entire MCA were quantified using western blot. In all we analysed the changes in 
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expression of cellular signalling involved in MCAs of pre-stroke (before stroke) and post-stroke 

(after-stroke) SHRsp rats..  

The MCA undergoes both vasodilation and vasoconstriction to maintain the consistent 

blood flow, with the vascular smooth muscle cells and endothelium being the contributors in 

both of the processes. The contraction of vascular smooth muscle is activated primarily by 

phosphorylation at S19 of the 20-KDa regulatory light chain subunits of myosin II. This 

phosphorylation is catalyzed by Calcium/calmodulin-dependent myosin light chain kinase, in a 

healthy vessel (67).  Numerous contractile stimuli, such as an increase in intraluminal pressure 

(180), membrane depolarization influenced by neurotransmitter release, blood-borne hormones 

and cytokines, or locally released factors from endothelial and surrounding cells trigger an 

increase in Ca[2+] (181) leading to smooth muscle cell contraction (67).  The released calcium 

binds to calmodulin, which in turn acts on an enzyme activating Myosin Light Chain Kinase 

(MLCK). The phosphorylation of MLCK further phosphorylates and activates MLC, causing 

cross-bridge cycling of myosin heads along the actin filaments and shortening or contraction of 

the smooth muscle cell causing vessels to contract (181). Any changes in the levels of MLC 

and/or MLCK might affect the normal functioning of the vessel. 

The loss of autoregulation in cerebral arteries that may occur at the onset of stroke is due 

to the loss of normal functioning of the vessels to respond to pressure and absence of the normal 

contractile cycle, therefore it is possible that changes in phosphorylation of MLC might be 

affecting the contractility of the vessel. Interestingly, the post-stroke MCA vessels showed 

significantly higher expression of phosphorylated MLC compared to pre-stroke MCA vessels 

which was not originally expected. However, the result may be due to changes in the availability 

of F-actin for binding.  
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Previous research in our lab comparing specific actin expression before and after stroke 

indicated a decrease in the ratio of filamentous actin (F-Actin) compared to globular actin (G-

Actin) available after stroke. Studies in isolated smooth muscle cells, as well as the tracheal 

smooth muscle layer, have indicated the importance of F-actin, as an increase in F-actin and 

decrease in G-Actin was observed during exposure to a contractile stimuli (65). Tropomyosin 

strands seen to be responsible for myosin-actin interaction, are present on the F-actin filaments in 

smooth muscles, which link together to form end to end polymeric strands on F-actin filaments 

to increase mechanical strength of the muscle contraction (182). The decrease in concentration of 

F-Actin directly affects the activity of tropomyosin leading to decreased contractility. Therefore, 

the decrease in F-Actin after stroke may result in less tropomyosin available for the P-MLC to 

bind to, keeping the level of the P-MLC higher as it stays unused during the event of stroke. As 

the development of contractile force in smooth muscle requires actin polymerization and the 

MLC phosphorylation to work in parallel signalling pathways, absence of either pathway hinders 

the normal functioning of the smooth muscle. 

Another possible reason for MCA dysfunction maybe that as the MCA loses its auto-

regulatory mechanism due to chronic high blood pressure, during which a compensatory 

mechanism may over activate and lead to hyper-activation of MLC. The vessels undergo 

remodelling during chronic hypertension leading to stiffened cerebral arteries (183). This may 

lead to the vessel having a lesser capacity to contract and the need of P-MLC is not same as it 

was before vascular remodelling, as vascular remodelling in hypertension has shown to modify 

contractile state of the vessel (184). The lack of difference in expression in the total MLC within 

the samples suggests that the phosphorylation of MLC is the primary issue that is likely 
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associated with the decrease in the contractile function of the smooth muscle cells, rather that the 

quantifiable amount of total MLC.  

Contraction of VSMC involves activation of multiple interlinked pathways that include 

phosphorylation of MLC, linked to activation of PKC. We have noted that PKC activity is 

significantly decreased in post-stroke vessels when stimulated with phorbol ester in pressure 

dependent constriction experiments (185). Therefore we investigated the importance of PKC in 

the contractile pathway following stroke. Activation of PKC has shown to increase the 

myofilament force sensitivity to [Ca2+], MLC phosphorylation and eventually maintenance of 

VSM contraction (81). Studies in ovine MCAs have shown that PKC increases vascular tone by 

decreasing myosin light chain phosphatase (MLCP) activity, thus increasing MLC 

phosphorylation (186). Any changes in the PKC activity will therefore affect the activity 

associated with MLC contractile activity. 

Our analysis of MCA’s was for phospho-PKC, which included both conventional and 

novel isoforms of PKC at the serine 660 site, one of the main phosphorylation sites regulating 

PKC subcellular localization (187). In our samples, phosphorylated PKC was significantly lower 

in post-stroke MCA, when compared to pre-stroke MCA. Lower levels of activated PKC in post-

stroke MCA may be due to decreased calcium influx after stroke, as studies have shown that 

calcium released from intracellular stores most often regulates activation of PKC (73). Similar to 

calcium, diacylglycerol (DAG) also independently regulates activation of different isoforms of 

PKC (73). The intracellular concentration of calcium triggers association of PKC isozymes with 

the membrane where DAG interacts with PKC to stimulate activity. The stimulation of PKC is 

therefore dependent on the duration as well as the magnitude of the DAG signal (188). Studies in 

diabetic vasculature have shown DAG and its analogues activate specific isoforms of PKC 
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(74,189). The down regulation of either DAG or calcium may directly lower the activation of 

different isoforms of PKC occurring in the post-stroke samples. The MCA’s in post-stroke 

SHRsp have shown decreased vascular functioning and loss of the auto-regulatory mechanism. 

This loss of functionality could be attributed to the underlying structural changes occurring in the 

MCA during the transition from pre-stroke to post-stroke, especially when exposed to chronic 

high blood pressure (183). Activation of PKC has been shown to mediate long term cell 

functions such as cell differentiation, that can contribute to vascular remodelling (78). Enhanced 

activation of PKC has also been linked to processes that contribute to acceleration of vascular 

inflammation and atherosclerosis, in diabetes, via a mechanism that includes modulation of gene 

transcription and signal transduction in the vascular wall (190). Significantly higher levels of 

phosphorylated PKC, over total PKC, at the pre-stroke stage may signal an over activated PKC 

pathway leading towards the vascular remodelling during the initial stage of high blood pressure 

development progressing over time towards loss in vascular integrity and eventually loss in 

vascular functioning post-stroke. The changes associated with over activation of PKC during the 

pre-stroke transitional stage may have therefore led to vascular remodelling and loss of PKC 

function post-stroke. 

A few PKC isoforms are calcium dependent and can further activate calcium channels. 

Interestingly, studies have shown upregulation of PKC signalling via light-sensitive Gq-coupled 

receptor results in TRPV4-mediated Ca [2+] influx in endothelial cells (82,191). The link between 

PKC activation and TRPV4 activity is further supported by a study in hypertensive mice 

showing TRPV4 activity being inhibited in aorta in the presence of a PKC inhibitor (192). The 

changes observed in PKC activity in the MCA likely affect TRPV4. As TRPV4 is essential in the 
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regulation of vascular function during mechanical stress, its role in MCA during stroke 

development was investigated. 

We expected TRPV4 expression to be increased in post stroke MCAs as the TRPV4 

channels, when activated, vasodilate vessels. This would likely contribute to the inability of 

MCAs to contract in response to pressure dependent constriction (PDC) during stroke. However 

the expression of TRPV4 was significantly lower in post-stroke compared to pre-stroke animals. 

One of the possible reasons may be that the decrease in PKC activation during stroke may have 

influenced the decrease in TRPV4 expression in post-stroke samples. A study in cell culture 

showed that PKC phosphorylates TRPV4 at Ser824 leading to enhancement of TRPV4 channel 

function in the presence of PKC (193). Several other studies have shown PKC to be an important 

mediator in regulating activation of TRPV4 channels in the endothelial cells and in the nephrons 

(82,194), which possibly reflect the reason for lower TRPV4 channel expression accompanied 

with lower activation of PKC in post-stroke MCA.  

The decrease in TRPV4 expression post-stroke may also be associated with the vascular 

remodelling and stiffening present in the post-stroke MCAs. Vascular remodelling is 

accompanied by deposition of calcium and thinning of the endothelial layer (195), making the 

vessel less responsive to various stimuli. As TRPV4 channels are highly osmo-sensitive and 

mechano-sensitive (196), the absence or diminished detection of either stimuli due to thinning of 

the endothelial layer during vascular stiffening may impact the expression of TRPV4, as seen in 

the post-stroke samples.  

Conversely, the increase in TRPV4 channels in pre-stroke MCA may be due to increased 

phosphorylation of PKC in the pre-stroke stage. TRPV4 channels are primarily responsible for 

calcium influx, but are also known to play a role in cell proliferation in the vasculature. A study 
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by Hatano et.al. evaluating TRPV4 expression in human brain capillary endothelial cells 

(HBCEs) showed TRPV4 activation could partially regulate cell proliferation of HBCEs (94), 

leading to the possible remodelling of the cerebral vessels during the pre-stroke transition stage 

and the changes in intima-media thickness and stiffening observed in post-stroke MCA.  

The post-stroke MCA samples showing decreased expression of TRPV4 accompanied 

with significantly lower ratio of activated PKC over total PKC suggest dysfunctional contractile 

mechanism during stroke. These changes are likely partly responsible for the loss of pressure 

dependent constriction seen in the post-stroke samples, associated with changes in inflammatory 

signalling in the post-stroke MCA. MAPK cascade which includes P38 MAPK and ERK1/2 are 

the main inflammatory signalling pathways involved, controling a broad spectrum of cellular 

processes, stress responses and inflammation (115). 

p38 MAPK and ERK are two MAPK signalling pathways we investigated, as p38 MAPK 

has been implicated in endothelial injury and inflammation (113) and ERK has been associated 

with signalling that governs cell proliferation, differentiation and cell survival through apoptosis 

(121). Activation of both p38 MAPK and ERK 1/2 activates transcription factors leading to 

generation of more inflammatory mediators and likely involved in remodelling and influencing 

contractile mechanisms. Our results indicate that the total pool of p38 MAPK and ERK1/2 is 

significantly higher in pre-stroke compared to post-stroke, leading to more total protein available 

for activation in the pre-stroke phase. However, the ratio of activated over total p38 MAPK and 

ratio of activated over total ERK1/2 was significantly higher in post stroke, suggesting the 

presence of inflammatory process after stroke. 

The ratio of activated 38 MAPK/total p38 MAPK, as well as activated ERK/total ERK, in 

post-stroke MCA may be due to the presence of stress related signals in the cerebral vasculature. 
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MAPKs are known to transduce stress related signals through a chain of interlinked pathways 

that lead to induction of inflammation (114). They serve as a link between extracellular signals 

and fundamental cellular processes (such as growth, proliferation, migration, apoptosis and 

metabolism) (117). p38 MAPK is also known to be activated downstream from TLR activation 

to promote production of various pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and 

IFN-γ (113,197), suggesting an increase in stress related signal causing more inflammation in the 

vessel and further increasing inflammatory signalling in the post-stroke MCA. An increase in 

MAPK signalling has been linked with increases in inducible nitric oxide synthase (iNOS) and 

cyclooxygenase-2 (COX-2) (113), serving as an intermediate responsible for recruiting 

mediators that are more inflammatory during the post-stroke stage.  

Similar to p38 MAPK, a significantly higher ratio of activated ERK over total ERK in the 

post-stroke samples could be because of an increase in pro-inflammatory stimuli (such as IL-1β) 

in the vessels itself (122). Different molecular patterns associated with sensing functional or 

structural changes in the vasculature, like pathogen associated molecular patterns (PAMPS) and 

danger associated molecular patterns (DAMPS) (197), activate and increase ERK 

phosphorylation in the post-stroke MCA. Other reasons for a higher ratio of activated over total 

ERK in post-stroke MCA may be due to accumulation of blood and its components, which 

causes generation of pro-inflammatory environment (152). The SHRsp rats may have suffered 

multiple micro-hemorrhages causing leaky blood vessels before suffering a major stroke which 

potentiates further damage to the MCA due to the local inflammation. It is also possible that the 

increase in activated over total ERK post-stroke is a compensatory mechanism for the loss of 

contractile function, as increase in ERK pathway has shown to activate actin through its 

downstream pathway causing vessels to contract (124). 
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The role of ERK in potentiating vascular dysfunction likely starts at the pre-stroke stage. 

Exposure to chronic high blood pressure prior to stroke can cause an increase in inflammatory 

signalling, as a study of cerebral and coronary arteries in SHR showed significantly higher levels 

of phosphorylated ERK1/2 (198), implicating its role in the response to sustained high blood 

pressure. During exposure to chronic high blood pressure, the vessels suffer extreme shear stress 

and circumferential stretch, causing extensive endothelial damage, and extracellular matrix 

imbalances (199). There is likely a resulting generation of a strong inflammatory response (200). 

The sustained high blood pressure throughout the transition phase from pre-stroke to post-stroke 

can activate inflammatory signalling due to the presence of numerous stimuli and pro-

inflammatory mediators leading to increase in the ratio of activated over total MAPK and ERK 

in post-stroke MCA. 

Studies have shown ERK to mediate vasoconstriction by activation of MLCK, leading to 

increased phosphorylation of MLC and causing contraction of the vessel (125). An interesting 

study in porcine palmar lateral vein showed inhibition of ERK caused reduction in MLC 

phosphorylation, inhibiting contraction of the vessel (201). Our data indicates an increase in 

activation of MLC alongside an increase in ratio of activated ERK, in post-stroke MCA’s, may 

be an indication of an inter-connected signalling pathway to help MCA compensate to chronic 

high blood pressure and contract in order to rescue normal functioning during the post-stroke 

stage. 

MAPK activity in the brain region has been linked with microglial activation associated 

with increased inflammatory activity. Phosphorylated p38 MAPK has been detected in neurons 

and microglia of ischemic brain tissue in the hippocampus of gerbils, demonstrating its role in 

the acute inflammatory response (120).  In striatal slices of Wistar rats, that had ICH artificially 
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induced, it was shown that inhibition of MAPK pathways in ICH, decreased survival of activated 

microglia (202). Therefore, we suspect higher inflammatory activity in the MCA is often 

accompanied by increased inflammation in the brain region near MCA, contributing to more 

damage in the brain during stroke. To determine the presence of neural inflammation, we 

analyzed the expression of microglia and astrocytes, as these two cell types have been implicated 

in numerous cerebral diseases (129). 

The brain regions surrounding the post-stroke MCAs, the anterior region extending from 

insula with the opercular segments (parietal and temporal), showed significantly higher levels of 

activated microglia compared to the brain regions around the pre-stroke MCA. This reflects an 

increase in neural inflammation in tandem with increased vascular inflammation. Microglial cells 

that are activated and/or displayed an inflammatory phenotype (an amoeboid shape and very 

short dendrites) generally reduce cell proliferation, survival and function of new neurons (129), 

in addition to inducing further inflammatory feedback to the MCA during stroke from the 

external surface of the vessel. Also, higher levels of activated microglia in post-stroke samples 

may be due to an innate tendency of the activated microglia to undergo apoptosis, seen in murine 

models of neurodegenerative diseases (203,204) and release more pro-inflammatory mediators, 

in turn recruiting and activating more microglia (203). Activated microglial cells also undergo 

phagocytosis during a strong inflammatory response and destroy themselves, releasing 

neurotoxic agents such as reactive oxygen species and pro-inflammatory cytokines (205), 

causing a further increase in the recruitment and activation of microglia. 

Microglial activation has been shown to involve activation of inflammatory pathways 

such as p38MAPK (206), and generate TNF-α and IL-1β, inducing a detrimental effect in the 

brain (207). The presence of high levels of pro-inflammatory mediators in the brain region 
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surrounding the MCA, due to activation of microglia, likely serves as a stimulus to further 

activate mediators such as MAPK (206), in the MCA during stroke. Microglial cell production of 

pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 (208), as well as chemokine CXCL2, 

promotes neuro-inflammation and recruitment of blood-derived leukocytes to the brain (209), as 

well as activates key factors affecting vascular integrity. A study by Del Zoppo et al. showed that 

the microglial cell activation led to metalloproteinase-9 (MMP-9) generation, a key factor in 

blood brain barrier damage (210). In conditions that activate microglial cells, the MCAs are 

likely exposed to undue stress and vascular remodelling, as MMP-9 is directly responsible for 

degrading extracellular matrix (ECM) proteins and activating cytokines and chemokines in the 

brain and cerebro-vasculature (210). 

The activation of microglia in the post-stroke samples was accompanied with 

significantly higher astrocytes spread in the post-stroke brain regions around the MCA. Both 

microglia and astrocytes are well known to show an immune response during brain damage (210-

212). Astrocytes are found throughout the brain and increase in astrocyte accumulation is seen 

near the site of damage as they contribute to local inflammatory responses by producing pro-

inflammatory cytokines (213). Astrocyte scar formation (astrogliosis) develops by new 

proliferative astrocytes that form an interface between viable CNS neural parenchyma and non-

neural cells at the site of damage (214) and contribute to neuro-inflammation on the 

neighbouring neurons. An interesting study showed astrogliosis induced detrimental effects on 

the CNS in the event of prenatal asphyxia, and it was accompanied by degeneration in the 

synapses and loss of axonal neuro-filaments (215) and thus the potential to cause harmful effects 

such as exacerbating inflammation (216), occurring during stroke and causing loss of neuronal 

conduction in the post-stroke samples. The trend toward astrogliosis and astrocyte spread near 
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the MCA region in post-stroke samples indicate the magnitude of damage after stroke is likely 

due to increase in inflammatory response. 

Astrocytes are also known to regulate vascular smooth muscle cells and affect structural 

integrity in small cerebral vessels in deep brain regions (217). A study in adult mice showed 

absence of astrocytic laminin led to impaired function of VSMC, and exhibited VSMC 

fragmentation, and vascular wall disassembly, making it an important mediator in structural 

integrity of cerebral vessels during stroke. An increase in astrocyte spread leads to scar formation 

and expression of proteoglycans that impede neuronal growth and inhibit structural and 

functional recovery (218) of the MCA and neighbouring blood vessels following stroke. 

The full involvement of astrocytes and microglia in the development and progression of 

stroke is a complex issue as they have been shown to be both neuro-toxic and neuro-protective 

based on the stage of growth and activation. Activated microglia are classified as M1 (pro-

inflammatory) and M2 (neuro-protective). Transient M2 phenotype shifts to M1 phenotype 

during an injury as a higher ratio of M1 to M2 has been witnessed in ischemic brain injury (219). 

M2 phenotype during the recovery stage phagocytise dead neurons in order to prevent secondary 

inflammatory response and promote tissue regeneration. Although we identified activated 

microglia by two cell types (slightly activated and completely activated) based on established 

morphology (short dendrites, large nucleus and an amoeboid shape) upon Iba-1 staining, we did 

not specifically check for M1 or M2 phenotype, therefore we cannot accurately establish the 

timeline of the injury process within our system without further research. 

Astrocytes can also serve dual roles depending on the type of receptor it activates and 

extent of damage. An astrocyte activation can act through tumour necrosis factor receptor-1 

(TNFR1) to increase neurotoxicity and induce apoptosis, while TNFR2 activation would be 
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neuro-protective in neurons and glia (215). The primary factor that plays an important role in 

determination of differential action of astrocytes is the extent of damage. In initial stages of 

damage, the astrocytes traffic the immune and inflammatory cells throughout the damaged area 

of the brain, and hence limit the spread of potentially neurotoxic inflammation. Once past a 

threshold, astrocytes reverse its role and becomes neuro-toxic by releasing reactive oxygen 

species and pro-inflammatory cytokines (216).  Activation of astrocytes have also shown to 

induce accumulation of excessive glutamate during brain damage (220) causing more brain 

damage in neighbouring brain tissue.  Analysis of the downstream signalling of astrocyte-

activated proteins would further illuminate the specific stage of the inflammatory process in our 

model. 

 In order to clarify the effect of stroke on the neighbouring cells and tissue we decided to 

further analyze neural changes by measuring changes in neural cell vacuolation, neural 

degeneration, area of edema and cell infiltration of inflammatory origin, originating from the 

brain regions near MCA.  Neuron degeneration and cell vacoulation have been associated with 

cell death, that is seen to occur spontaneously with a broad range of inductive stimuli (153) such 

as the presence of pro-inflammatory cytokines and blood derived factors. We used a modified 

scoring system to analyze and determine neuronal damage in other disease models (221-223).  

Brain regions near the post-stroke MCA showed elevated levels of neural damage 

compared to pre-stroke brain regions. Degenerating neurons and cell vacuolation were the two 

most prominent changes observed in the post-stroke samples that indicate higher neural damage 

in the brain regions near the MCA following stroke. Axon degeneration has been widely seen in 

neurodegenerative diseases including stroke and motor neuropathies (224). It is also believed to 

result in impaired delivery of impulses across the neural network and further leading to 
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cytoskeletal breakdown (224). This would cause a significant decrease in the neural network, 

leading to decrease in detection of the brain damage, and conduction of signals at the site of 

damage. I believe a similar prognosis occurs in the post-stroke samples, resulting in a prolonged 

delay in the repair processes to come into effect, making the brain regions during stroke less 

responsive and functional to the brain damage.  

 Edema, one of the signs of brain damage, was also seen to be increased in the post-stroke 

samples compared to the pre-stroke samples. Edema is generally seen after brain injuries such as 

stroke and head trauma, and can be either vasogenic or cytotoxic depending on the disease state 

(154). The greater edema in the post-stroke samples can result from accumulation of fluid 

resulting from disruption of BBB or cell swelling (154), leading to neuro-inflammation and 

neuro-degeneration (225), effecting the brain and vascular functioning in stroke. This disruption 

of the BBB directly affects the brain homeostasis, regulation of influx and efflux (225) of toxins 

in the brain and MCA, suggesting clear signs of damage after stroke due to increased 

inflammatory stimuli directly affecting neural and vascular function. 

 

4.1. Limitations and future directions 

Although we see clear changes in the inflammatory and contractile signalling pathways 

before and after stroke in the samples obtained from the SHRsp rats, there are several limitations 

to our data. Our data shows the catastrophic damage which is evident in the post-stroke samples, 

but the exact time frame of damage is unknown. The changes seen in post-stroke samples likely 

occur during the transition period from pre-stroke to post-stroke, particularly after exposure to 

chronic high blood pressure during this transition. To identify the stages at which the exact 

changes occur, it is necessary to obtain samples at regular intervals, such as every 7 days from 
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the pre-stroke stage to post-stroke stage. For future work, sampling at regular intervals will not 

only allow detection of the exact time frame for the underlying signalling changes but it will also 

allow for understanding the structural and functional changes associated with changes in 

signalling. 

For our experiments SHRsp rats were fed Japanese style high salt diet (4% NaCl), as it 

accelerates the stroke progression and reduces the experimental timeline, making it favourable to 

obtain specimens in a focused and predictable time frame. The focus of our experiments was to 

establish the changes occurring in the MCA before and after stroke rather than the effect of 

change in diet on stroke progression. An important control for disease progression would be 

obtaining samples from SHRsp fed normal salt diet (0.59% NaCl) and comparing the results with 

high salt diet SHRsp samples (age-matched). The data would serve as an appropriate comparison 

for the disease model and determine the role of salt in stroke. 

 The samples from both pre-stroke and post-stroke animals were analyzed for the 

expression of contractile proteins, calcium channels and inflammatory mediators by 

immunofluorescence, a semi-quantitative method. The method involves determining only one 

cross-section of the vessel and may not be a correct representation of the changes happening in 

the entire vessel. The sliced section of MCA used for detection may not be from the site of 

damage. Conversely, there are chances that the sliced MCA used for analysis may be a part of a 

vessel that is perfectly healthy, so the results from immunofluorescence cannot be considered to 

be a clear depiction of the changes occurring in the entire vessel. For future investigation, it 

would be recommended to analyze multiple sections at regular intervals from the same vessel to 

ensure the changes seen in the immunofluorescence studies resemble the actual changes in the 

entire vessel. Although the TRPV4 expression was significantly lower in the post-stroke samples 
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compared to pre-stroke samples, we did not measure the channel activity (conductance), which 

may have given us a better understanding of calcium channel activity in the MCA. 

 Further investigation is also warranted into determination of microglial phenotype and 

expression of activated astrocytes as their determination will help understand the role of 

astrocytes and microglia in stroke. Investigating specific markers such as MMP-9, CD-36, IL-1, 

IL-8 and TNF-alpha would help clarify the extent of inflammation in the MCA as well as in the 

brain during stroke.  

 

4.2. Conclusion 

 Our results demonstrate that the combination of increased inflammatory expression and 

decreased contractile signalling is responsible for the loss of auto-regulatory mechanisms in the 

MCA after stroke. These changes during stroke are accompanied with an increase in neural 

damage as well as neuro-inflammation, affecting the brain region surrounding the MCA during 

stroke. The presence of inflammation in the MCA and surrounding brain region induce the 

structural and functional changes seen in MCA after stroke. 
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