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ABSTRACT 

The present study introduces a novel hybrid methodology for fault detection and diagnosis 

(FDD) and fault prediction and prognosis (FPP). The hybrid methodology combines both 

data-driven and process knowledge driven techniques. The Hidden Markov Model (HMM) 

and the auxiliary codes detect and predict the abnormalities based on process history while 

the Bayesian Network (BN) diagnoses the root cause of the fault based on process 

knowledge. In the first step, the system performance is evaluated for fault detection and 

diagnosis and in the second step, prediction and prognosis are evaluated. In both cases, an 

HMM trained with Normal Operating Condition data is used to determine the log-

likelihoods (LL) of each process history data string. It is then used to develop the 

Conditional Probability Tables of BN while the structure of BN is developed based on 

process knowledge. Abnormal behaviour of the system is identified through HMM. The 

time of detection of an abnormality, respective LL value, and the probabilities of being in 

the process condition at the time of detection are used to generate the likelihood evidence 

to BN. The updated BN is then used to diagnose the root cause by considering the 

respective changes of the probabilities. Performance of the new technique is validated with 

published data of Tennessee Eastman Process. Eight of the ten selected faults were 

successfully detected and diagnosed. The same set of faults were predicted and prognosed 

accurately at different levels of maximum added noise. 

Keywords: HMM, Bayesian Network, Fault Prediction, Prognosis, Fault Diagnosis  
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CHAPTER 1 : INTRODUCTION AND OVERVIEW 

1.1 Introduction 

This thesis presents validated techniques for both early ‘detection and diagnosis’ and 

‘prediction and prognosis’. The proposed technique addresses the problem of early 

detection and diagnosis of industrial process faults. 

Hybrid approaches have shown improved performance in fault detection and diagnosis 

(FDD) over individual techniques (Venkat et al., 2003). The current study proposes a 

hybrid technique which consists of a component which considers the process historical data 

and another component which extracts process knowledge for this FDD process. As a 

further development, the system is upgraded such that it can be used to predict potential 

faults and prognose the most probable root causes (FPP). The core of this research is the 

development of a methodology to combine the two systems, data-driven and knowledge-

driven, to perform the tasks FDD and FPP. The Hidden Markov model (HMM) is used as 

the data-driven technique while Bayesian Networks (BN) is used as the knowledge-driven 

technique which acquires the process knowledge to FDD and FPP processes. The 

prediction and its weight giving out from HMM are used to establish BN. The diagnosis 

and prognosis are done based on the developed BN. The proposed techniques are tested for 

performance by applying in a real-world problem called FDD in Tennessee Eastman 

process (TE). The proposed hybrid technique can early detect and predict all the selected 

faults while successfully diagnose and prognose 80% of the faults. 

CPL1.0 is the software code developed to determine the Conditional Probability Tables 

(CPT), Prior Probabilities (PP), and Likelihood Evidences (LE). It is presented as an 
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integral component of the study and made available online for future users. There are no 

such techniques published in the literature to satisfy similar needs arise in future studies. 

The entire process proposed is highly transparent and can be reproduced. The code is 

developed to make the modifications more convenient. Future researchers working on the 

BN combined with another machine learning techniques can use the developed code with 

minimum alterations. 

1.2 Objectives 

The primary objective is to develop a novel robust methodology to detect and diagnose 

process faults from a safety perspective. Secondly, to develop an extended methodology 

such that it can predict and prognose the faults with added noise. Thirdly, to present a 

complete software code which can be utilized in future developments related to hybrid 

machine learning techniques where BN is a component. 

1.3 Co-authorship Statement 

Galagedarage Don Mihiran Pathmika is the principal author of this thesis. He has 

undertaken the research and prepared the first draft. Professor Faisal Khan, the co-author 

of this thesis, shared the problem and conceptualized the methodology. Prof Khan guided 

author throughout the entire process of the methodology development, testing, validations 

and its application development. Further, the co-author contributed by reviewing, and 

revising the thesis. The software code and analysis of results were solely contributed by 

the principal author, and the results were validated for correctness by the co-author.  
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1.4 Thesis outline 

The contribution of the rest of the chapters to the thesis is described under this topic. This 

thesis follows the manuscript format and each chapter are prepared as ‘standalone’ 

documents. Hence, chapter 2, chapter 3, and chapter 4 are allocated for the manuscripts 

submitted for review. In addition to the prediction methodology described in chapter 3, it 

utilizes the techniques developed in chapter 2 for the prognosis step. The complete software 

code used in studies presented in chapter 2 and 3 is presented as a separate manuscript in 

chapter 4 with links to the respective repositories.  

As shown in Figure 1-1, the developments in chapter 2 and 4 are used to achieve the main 

goal of the thesis described in chapter 3. Chapter 2 mainly discusses the newly developed 

FDD system and how the two machine learning techniques are integrated to get a more 

robust system. It provides a detailed explanation of the methodology to detect and diagnose 

the root cause. Evaluation of the detectability and the ability to diagnose the actual root 

cause is essential for the next step, which is called prediction and prognosis. 

Chapter 3 presents the manuscript developed based on fault prediction and prognosis. It 

provides a detailed explanation of the procedure to use HMM toolbox to predict a potential 

fault, based on the historical data of the system. This will be helpful to the researchers who 

will work with HMM tool box in variety of applications. Further, it uses the technique 

developed in chapter 2 to combine the two machine learning techniques to prognose the 

most probable root cause. 

In chapter 4, the software code (CPL1.0) which is developed for the analysis done in 

chapter 2 and 3 is introduced as a manuscript. The strengths and potential applications are 
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described in detail. Further, all the important metadata are also provided with links for the 

repository of the software code. 

As the final step, in chapter 6, the summary of the entire study is provided followed by a 

conclusion. 

 

Figure 1-1: The contribution of each chapter to the formation of the thesis 
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CHAPTER 2 : DYNAMIC PROCESS FAULT DETECTION AND DIAGNOSIS 

BASED ON A COMBINED APPROACH OF HIDDEN MARKOV 

AND BAYESIAN NETWORK MODEL1 

 

Co-authorship Statement 

Galagedarage Don Mihiran Pathmika is the principal author of this thesis. He has 

undertaken the research and prepared the first draft. Professor Faisal Khan, the co-author 

of the manuscript, shared the problem and conceptualized the methodology. In addition, 

Prof. Khan contributed by reviewing, and revising the manuscript. He also guided the 

author throughout the entire process of the methodology development, testing, validation 

and its application development. The software code and analysis of results were solely 

contributed by the principal author, and the results were validated for correctness by the 

co-author. 

 

Abstract 

The present study introduces a novel methodology for fault detection and diagnosis (FDD), 

based on a combined approach of data and process knowledge driven techniques. The 

Hidden Markov Model (HMM) is used to detects the abnormalities based on process 

history while the Bayesian Network (BN) diagnoses the root cause of the fault based. An 

HMM is trained with standard operating condition data while the structure of BN is 

developed based on process knowledge. The log-likelihoods (LL) of process history data 

string used to define the conditional probability tables of the BN. Abnormal behaviour of 

the system is identified through HMM. The time of detection of abnormality, respective 

                                                 
1 This chapter is submitted as a manuscript to the journal of Chemical Engineering Science and currently under review 
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log-likelihood value, and the probabilities of being in the process condition, at the time of 

detection, are used as evidence to BN. The updated BN is then used to diagnose the root 

cause by considering the respective changes in the probabilities. Performance of the new 

technique is tested and validated with published data of Tennessee Eastman Process. Eight 

of the ten selected faults were successfully detected and diagnosed. 

Keywords: Process fault diagnosis; Hidden Markov model; Bayesian network, Process 

fault detection 

  

2.1 Introduction 

Fault detection and diagnosis (FDD) is an essential component in process industries. As 

mentioned in (Mu and Venkatasubramanian, 2003), successful early detection and 

diagnosis of abnormalities in the petrochemical industry can save 20 billions of dollars per 

year, so-called the 'number one problem' that needs to be solved. This is considered as the 

core of Abnormal Event Management (AEM) which includes the detection, diagnosis, and 

correction of abnormal conditions of faults in a process. The main idea is to diagnose the 

fault before it reaches the un-correctable territory. Industrial practitioners and academic 

researchers have made a variety of approaches to solve this problem. It ranges from 

mathematical modelling to artificial intelligence (AI) and statistical approaches. 

According to (Venkat et al., 2003), no single method has all the desirable features for a 

diagnostic system. In their study, they have proposed a set of desirable characteristics that 

should be possessed by a diagnostic system. Then they have systematically evaluated a set 

of currently used diagnostic systems to reach the above conclusion.  As they suggest, 

integrating the complementary features is one way to develop hybrid systems that could 
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overcome the limitations of individual solution strategies. (Mu and Venkatasubramanian, 

2003). 

Current work is planned with the objective to develop a novel robust methodology to detect 

and diagnose process fault from a safety perspective. This objective is achieved by 

integrating two techniques Hidden Markov Model (HMM) and Bayesian Network (BN). 

The HMM does the fault detection based on process history, while BN makes the fault 

diagnosis based on process knowledge. HMM also provides inputs to Conditional 

Probability Tables (CPT) of the BN. Further, these two techniques are amalgamated such 

that, the output of the HMM is fed to BN to do further analysis. Therefore, either method 

do work independently and hence no compromise on the performance of respective 

capabilities. 

Section 2 of this paper present a comprehensive literature survey on fault detection and 

diagnosis using HMM and BN. Towards the end of the section, a detailed summary and 

knowledge have been identified. Section 3 provides details of the methodology which 

covers steps to detect the fault and diagnose the fault. Each step such as the training of 

HMM, generation of CPTs, generation of prior probabilities, and generation of likelihood 

evidence are described in detail. Section 4 is allocated for testing and validation of the 

proposed methodology. Results and Discussion are provided in section 5. Sample detection 

and diagnosis results are provided followed by a summary of results. Discussion includes 

the practical problems faced in detection and diagnosis and how they solved. A description 

of the coding procedure is also provided as a guide for the users. Finally, the conclusion is 
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presented in section 6 with descriptions of contributions made, the strengths of the 

proposed technique and future work. 

2.2 Literature Survey 

According to (Ding, 2014), the major and well-established technologies in FDD can be 

classified into the following categories, namely, Hardware redundancy-based fault 

diagnosis; Signal processing-based fault diagnosis; Statistical data-based fault diagnosis; 

Analytical model-based fault diagnosis; and Knowledge-based fault diagnosis. 

As explained in (Ding, 2014), hardware redundancy-based fault diagnosis is a costly but 

highly reliable technique. The hardware redundancy is commonly used in mission and 

safety-critical systems such as digital fly-by-wire flight systems and nuclear reactors 

(Sawaragi, Soeda and Omatu, 1978). The cost goes up because it uses identical components 

to develop a redundant system. Comparison of the process component output with that of 

the redundant component is the concept in this approach. Although the concept is simple 

and straightforward, it is highly reliable as the fault can be isolated directly. 

As further explained in (Ding, 2014), signal processing-based fault diagnosis is ideal for 

steady-state processes but has limited applications in dynamic processes. It can be 

performed in both the time domain and frequency domain. It looks for ‘symptoms' by 

analyzing the changes in magnitudes and patterns of signals. Statistical data-based fault 

diagnosis techniques are also used for static process FDD. The main characteristic of this 

technique is, it requires process historical data to train a system and online real-time data 

to provide available evidence so that the trained system can provide useful outputs.  
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It is also mentioned in (Ding, 2014), analytical model-based fault diagnosis requires a 

mathematical model of the process being examined. The mathematical process model is 

always compared with the actual operation and generated a residual signal which is later 

analyzed to make decisions. The strength of this approach is it can even be used to analyze 

dynamic process systems. Knowledge-based fault diagnosis has a high potential being 

applied in FDD of complex processes. A qualitative model brings the prior knowledge of 

a process into the analysis. It consists of a knowledge base; a database; and inference 

engine; and an explanation component. BN is an example. As further explained in (Mu and 

Venkatasubramanian, 2003), the entire range can be categorized in various ways such as 

qualitative and quantitative; model driven, and entirely data-driven. 

According to (Venkatasubramanian, Rengaswamy and Kavuri, 2003), a fundamental 

understanding of the underlying physics and chemistry involved with the process is 

essential for qualitative models. According to (Venkatasubramanian, Rengaswamy and 

Kavuri, 2003), there are  two primary divisions namely topographic and symptomatic 

search techniques. A qualitative model of normal operation is required for topographic 

searches to perform malfunction analysis. On the other hand, symptomatic searches detect 

symptoms to direct the search to the fault location. Model-based approaches require a 

residual generator and a residual evaluator. The residual generator provides the residuals 

by comparing the plant output with the model output, and residual evaluator decides the 

faulty or average state of a process. Here the model can be a mathematical model. The data, 

or process history, based on techniques eliminate the requirement of a mathematical model. 

Instead, it generates correlations using the historical data. A significant amount of historical 
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data is transformed to construct the monitoring scheme for FDD. This transformation 

technique is known as the feature extraction. As mentioned in (Mu and 

Venkatasubramanian, 2003), data-based methods can be divided into two categories 

depending on the extraction process, namely, qualitative, and quantitative. Qualitative 

methods include the expert systems and qualitative trend analysis (QTA), while 

quantitative methods include the statistical tools PCA, ICA, ANN. 

2.2.1 History of Data-based FDD 

Dynamic risk assessment and fault detection technique is presented by (Zadakbar, Imtiaz 

and Khan, 2013) using Principal Component Analysis (PCA). In this study, they have 

coupled PCA with quantitative operational risk assessment model to detect process 

abnormalities early. In addition to that, a novel algorithm to detect and diagnose some of 

the previously undetectable stochastic faults in the Tennessee Eastman (TE) process has 

been discussed by (Du and Du, 2018). This detection task is performed by the combined 

approach of Empirical Mode Decomposition (EEMD) with the PCA while the diagnosing 

is done using the Cumulative Sum (CUSUM). To enhance FDD performance, EEMD is 

combined with PCA as a pre-filtering tool in this work to extract fault signatures that can 

be further used to infer the occurrence of faults while CUSUM based statistics is especially 

suitable for detecting small changes in the process mean. Therefore, this combined 

approach has a better performance in comparison with pure PCA approach. (Du and Du, 

2018). First, the measured variables are decomposed into different scales with the EEMD 

based PCA. Through this, the fault signatures can be extracted which can be used in FDD. 

CUSUM is used to minimize the detection delay. It is combined with 𝑇2 and 𝑄 statistics. 
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In summary, they propose an enhanced approach based on multivariate and multiscale 

statistical analysis to improve the FDD; introduce an effective algorithm to detect and 

diagnose a specific set of faults which were undetectable with previous efforts; and 

successfully use empirical models to infer faults in chemical processes with dynamic 

changes between normal and faulty operating conditions. 

A combined approach of Kernel Principle component analysis (KPA) and BN is presented 

by (Gharahbagheri, Imtiaz and Khan, 2017), which utilizes the diagnostic information 

given by KPCA, and the process knowledge acquired through BN. This technique was 

validated by applying in a benchmark process, and root cause diagnosis of abnormal 

conditions was successfully achieved. 

A self-organizing map (SOM) based methodology is proposed by (Yu et al., 2014) for FDD 

of processes with nonlinear and non-Gaussian features. The classification of state of the 

process is done concerning a SOM, trained with normal Operating Condition (NOC) data. 

The classification comes with a dynamic loading factor. The divergence of the dynamic 

loading factor is used to develop the contribution plots which is later used for fault 

diagnosis. Also (Yu et al., 2014) introduces a new approach based on the Self-Organizing 

Map is proposed to detect and assess the risk of fault. The risk of fault is characterized 

using probabilistic analysis. The sensitivity of identifying the root cause of the fault is 

found to be comparatively high in the proposed method. 

Further, (Yu et al., 2014) have proposed a probabilistic multivariate fault diagnosis 

technique for industrial processes. The Gaussian copula is used to develop a dependence 

structure of the process variables and captures the non-linear relationships between process 
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variables. The online data string probabilities are calculated and compared with the defined 

limits and classified to faulty and non-faulty accordingly. Fault diagnosis is made based on 

reference dependence structures of the process variables which are determined from NOC 

data. These reference structures are then compared with those obtained from the faulty data 

samples and are a basis for fault diagnosis.  

On the other hand, a Nonlinear Gaussian Belief Network (NLGBN) based fault diagnosis 

technique is proposed by (Yu et al., 2014) for industrial processes. In this method, the 

features are extracted from process data using an NLGBN which is trained using NOC 

Data and a variational Expectation and Maximization algorithm. For fault diagnosis 

purposes, a multivariate contribution plot is also generated. The performance of this 

technique is found to be higher than that of conventional techniques such as KPCA, KICA, 

SPA, and Moving Window KPCA. 

Also, (Onel et al., 2018) have made a successful attempt to retrieve process measurements 

for FDD, utilizing high dimensional process data with nonlinear Support Vector Machine 

based feature selection algorithm. Further, as proposed by (Zadakbar, Imtiaz and Khan, 

2012), PCA combined with quantitative operational risk assessment model can distinguish 

between operational deviations and abnormal conditions. The proposed method 

demonstrated better performance in early warning in comparison with univariate methods. 

An application of Logical Analysis of Data (LAD) to diagnose faults in industrial chemical 

processes is done by (Ragab et al., 2018). In this approach, LAD discovers hidden 

knowledge in training datasets in the form of interpretable patterns that characterize the 

physical phenomena in process operation under normal or faulty conditions. The 
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discovered patterns are then combined to build a decision model that is used to interpret 

and to diagnose faults during the process operation. The proposed method performs better, 

in terms of accuracy, in comparison with, the Artificial Neural Network (ANN), Decision 

Trees (DT), Random Forests (RF), k Nearest Neighbors (kNN), Quadratic Discriminant 

Analysis (QDA) and Support Vector Machine (SVM) for the scenarios in consideration. 

A novel copula subspace division strategy is proposed by (Ren et al., 2017) for FDD. 

Margin distribution subspace (MDS) modelled by joint margin distribution, and 

dependence structure subspace (DSS) modelled by copula are used to analyze high 

dimensional industrial data. The proposed methodology is found to be better in 

performance in comparison with PCA, ICA, and KPCA. 

2.2.2  Hidden Markov Model (HMM) 

 

According to (Rabiner, 1989), there are two types of signal or data models namely, 

Deterministic Models, and Statistical Models. In Deterministic Models, all that required is 

to determine values of the parameters of the data model such as amplitude, frequency, the 

phase of a sine wave, amplitudes and rates of exponentials. On the other hand, Markov and 

Hidden Markov Process, Gaussian Process, and Poisson Process can be introduced as 

Statistical Models. 

As further explained in (Rabiner, 1989), the HMM is favourite in a wide variety of 

applications due to two strong reasons. The models are very rich in mathematical structure 

and hence can form the theoretical basis for use in a wide range of applications; and the 
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models, when appropriately applied, work very well in practice for several critical 

applications such as speech recognition. 

To make the HMM model to be useful in the real-world applications, there are three main 

problems to be solved (Rabiner and Juang, 1986). This problem-solving approach for 

characterizing the theoretical aspects of hidden Markov modelling is introduced and 

successfully used by Jack Ferguson of IDA (Institute for Defense Analysis). (L. R. R. 

Rabiner, 1989)  

The first problem is the evaluation of the probability (or likelihood) of a sequence of 

observations given a specific HMM. In other words, Given the observation sequence                                                   

𝑂 = 𝑂1 𝑂2 … 𝑂𝑛 alternatively, and a model λ= (A, B, π), the method to efficiently compute 

the probability of the observation sequence. i.e. 𝑃(𝑂|𝜆). In simple terms, it is a problem of 

determining the most likely state path, given a sequence of emissions. 

The second problem is the determination of the best sequence of model states. In other 

words, given the observation sequence 𝑂 = 𝑂1 𝑂2 … 𝑂𝑛 alternatively, and the model λ, the 

method of choosing a corresponding state sequence 𝑄 = 𝑄1 𝑄2 … 𝑄𝑟, which is optimal. In 

other words, it is the best “explains” the observations. 

In practical applications, we cannot find a hundred percent correct state sequence, but an 

optimum sequence. The disadvantage is, there can be many reasonable optimality criteria 

can be applied in one case, and the result strongly depends on the criteria we selected. 

The third problem is to adjusting model parameters so that it best accounts for the observed 

signal. In other words, it is adjusting the model parameters 𝜆 =  (𝐴, 𝐵, 𝜋) such that 

maximize 𝑃(𝑂|𝜆). Once the optimum state sequence is determined, the model parameters 
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can be fine-tuned to make it the best explanation for a given observation sequence. The 

process of adjusting the model parameters using an observation sequence is called 

‘Training' of the HMM. This is the most crucial step in creating the best model for real 

phenomena. 

2.2.3 Mathematical Formulation 

As described in (de Almeida & Park, 2008), HMMs are a particular kind of Bayesian 

Networks (BN). The factorization of 1st order HMMs joint probability distribution is 

represented by Equation [1] where, 𝑞1..𝑇 = {𝑞1, 𝑞2, … , 𝑞𝑇} is a sequence of states, 𝑜1..𝑇 =

{𝑜1, 𝑜2, … , 𝑜𝑡} is a sequence of observations or outputs, and 𝑡 is an integer valued index.   

 𝑃(𝑞1..𝑇, 𝑜1..𝑇) = 𝑃(𝑞1)𝑃(𝑜1|𝑞1) ∏ 𝑃(𝑞𝑡|𝑞𝑡−1)𝑃(𝑜𝑡|𝑞𝑡) 

𝑇

𝑡=2

 [1] 

As further explained in (de Almeida & Park, 2008), once the state-transitions rule follows 

the Markov property, the HMM concept also can be considered as an extension of Markov 

chains. Here Markov property means 𝑞𝑡 depends only on 𝑞𝑡−1. The hidden term in HMMs 

is exactly due to its introduction since the underlying sequence of states, i.e. the Markov 

chain, is not directly observable. sequence of states, i.e. the Markov chain, is not directly 

observable. The factorization of the joint probability distribution in Equation [1] based BN 

representation is depicted in Figure 2 (de Almeida & Park, 2008). 

The parameters required to define discrete HMMs are presented in Table 2- 1. Here 𝑀𝐷 is 

the number of distinct observation symbols in the emission probability distributions, and 

𝑁 is the size of the discrete state space. 𝜆 is the compact notation for the above parameters. 

Hence, 𝜆 = (𝜋, 𝐴, 𝐵) (de Almeida & Park, 2008). 
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Figure 2: First order HMM in the form of BN representation (de Almeida & Park, 2008) 

 

Table 2-1: Discrete HMM elements (de Almeida & Park, 2008) 

Parameters Description 

𝐴 = {𝑎𝑖𝑗} State transition probability distribution 

𝑎𝑖𝑗 = 𝑃(𝑞𝑡+1 = 𝑗|𝑞𝑡 = 𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 

𝐵 = {𝑏𝑗(𝑘)} 𝑏𝑗(𝑘) = 𝑃(𝑜1 = 𝑣𝑘|𝑞𝑡 = 𝑗), 1 ≤ 𝑘 ≤ 𝑀𝐷 , 1 ≤ 𝑗 ≤ 𝑁 

𝜋 = {𝜋𝑖} Initial state distribution 

𝜋𝑖 = 𝑃(𝑞1 = 𝑖), 1 ≤ 𝑗 ≤ 𝑁 

 

In the continuous case, probability density functions replace the 𝐵 matrix. Usually they are 

represented as a finite mixture of Gaussian distributions which is described in Equation 

[2]. Here, 𝑜𝑡 is the observation vector, 𝑀𝑐 is the number of mixture components, 𝜇𝑗𝑘 is the 

mean vector, and Σ𝑗𝑘 is the covariance matrix, for the kth mixture component in the state 𝑗.  

 𝑏𝑗(𝑜𝑡) =  ∏ 𝑐𝑗𝑘 𝑁 (𝑂𝑡, 𝜇𝑗𝑘, Σ𝑗𝑘),

𝑀𝑐

𝑘=1

  1 ≤ 𝑗 ≤ 𝑁 [2] 

 

∑ 𝑐𝑗𝑘

𝑀𝑐

𝑘=1

= 1, 1 ≤ 𝑗 ≤ 𝑁 

[3] 

 𝑐𝑗𝑘 ≥ 0, 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀𝑐 [4] 
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2.2.4 HMM-based FDD 

As mentioned in (Li et al., 2005), HMM has a variety of strengths. HMM is very suitable 

for modelling the dynamic time series, and has a robust capability of pattern classification, 

especially for a signal with abundant information, non-stationarity, poor repeatability and 

reproducibility. At the same time, HMM can process the long random sequences in theory. 

They have used HMM as a classifier of features derived by Fast Fourier Transform (FFT), 

wavelet transform, spectrum. The proposed approach mainly targets speed-up and speed-

down process in rotating machinery and have shown that it is useful and efficient to be 

used in the same area. Also, a fascinating study has been done by (Boyraz, Acar and Kerr, 

2007) to detect abnormal driving patterns of a person by observing the movement pattern 

of a vehicle. 

Conventional FDD techniques find it is challenging to diagnose faults in processes with 

multiple operational modes and transitions. A novel FDD method is proposed by (Wang et 

al., 2016) which works based on HMM. Here they use two different HMM models for 

steady, and transition processes respectively. The Bayesian information criterion (BIC) 

does the model evaluation. After an appropriate model is acquired, an index named 

negative log likelihood probability is employed for transition process fault detection. 

A modified HMM (MHMM) is successfully used by (Lee et al., 2010) to diagnose the 

degradation processes of multiple failure modes. To rapid detection of an abnormality, 

MHMM is coupled with statistical process control. The proposed methodology has been 

successfully applied in detecting tool wear states of known states and in addition to that 

the unknown tool wear states also can be identified in the early stages. Further, (de Almeida 
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and Park, 2008) have proposed a method to investigate both unexpected and incipient 

faulty events. To the former, detection and diagnosis tasks were immediately satisfied; and 

to the latter, they were carried out in a progressive and correct course. 

 Condition Based Maintenance (CBM) is a useful maintenance method as it minimizes 

downtime of a process. A method was proposed by (Choi and Yoo, 2014), as a pattern 

recognition tool, to detect, locate, and quantify structural flaws such as cracks. Again, in 

this study, FFT is used as a feature extraction tool.   

PCA is a well-known feature extraction tool while HMM is a good classifier. Both these 

strengths are combined for FDD by (Choi and Yoo, 2014). The moving window for 

tracking dynamic data is used and have come up with useful results. A similar study is 

presented by (Huang and Zhang, 2009), for FDD of Diesel Engines. Here they have used 

PCA and Discrete HMM (DHMM) for classification. Nevertheless, PCA is not a successful 

feature extraction tool in extracting nonlinear relationships among process variables. 

Therefore, (Wang et al., 2015) have proposed a switched feature extraction procedure using 

PCA and KPCA based on nonlinearity measure. 

Independent Component Analysis (ICA) is also another powerful tool in FDD. Several 

methods are proposed in the literature using a combined approach of ICA and HMM. 

Nevertheless, (Li et al., 2006) has proposed a methodology called ICA-FHMM 

(Independent Component Analysis-Factorial HMM) which has shown superior 

performance over ICA-HMM. In the proposed method, ICA is used for the redundancy 

reduction and feature extraction of the multi-channel detection, and FHMM as a classifier 

to recognize the faults of the speed-up and speed-down process in rotating machinery. 
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Wong & Lee (2009) proposed a technique for abnormality detection in financial 

applications based on HMM. They have presented a detailed performance analysis of the 

proposed abnormality detection algorithm, along with a comparison with the maximum 

likelihood-based data mining method. This method detects abnormalities in financial 

applications while giving minimum false alarms. Further, they have presented algorithms 

to as a solution for dynamic multiple fault diagnosis (DMFD) problems based on HMM. 

They have solved each of the DMFD problems by combining Lagrangian relaxation and 

the Viterbi decoding algorithm iteratively. Also (Cao et al., 2015) have introduced a 

method to detect abnormal deviations of market prices (i.e. price manipulations). In this 

approach, Wavelet Transformations, and gradients are taken as the feature extraction 

methods to support Adaptive HMM with Anomaly States Model (AHMMAS) to detect 

price manipulations.    

Forward-backward (FB) procedure and the Baum-Welch (BW) algorithm are used for 

parameter estimation in HMMs which make the computation considerably complicated. 

To address this issue (Li, Fang and Xia, 2014) introduced an increasing mapping based 

HMM, which is called IMHMM, which needs a lower storage requirement, and training 

time than that of HMM. Moreover, the higher performance was observed in comparison 

with PCA.  

For FDD, PCA and ICA are not perfect choices always for chemical processes with 

multiple operating conditions and system uncertainty. An HMM-based ICA approach is 

proposed by (Li, Fang and Xia, 2014) for fault detection. Trained HMM along with the 

localized ICA models to identify various states of operation. Classification of operation 
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modes is done by HMM-based state estimation. Further, HMM is built from measurement 

data to estimate dynamic mode sequence. After that, the localized ICA models are 

developed to characterize various operating modes adaptively. HMM-based state 

estimation is then used to classify the monitored samples into the corresponding modes, 

and the HMM-based 𝐼2 and SPE statistics are established for fault detection. 

HMM is widely used in stock market predictions and abnormality detection. A combination 

of HMM with Fuzzy models is presented by (Hassan, 2009) to identify similar data patterns 

from history to predict future market changes. The next day market behaviour has predicted 

using a weighted average and Fuzzy Logic to forecast the value. Log-likelihood for a given 

data string can be introduced as a measurement for the compatibility to the trained HMM 

with a given set of data. This log-likelihood value is used to generate a fuzzy rule so that 

the value of the stock market can be predicted. It has shown superior performance in 

comparison with Auto-Regressive Integrated Moving Average (ARIMA), and Artificial 

Neural Network (ANN). 

HMM, and its combinations are widely used in FDD in mechanical systems such as 

bearings, gear systems, and other rotating machinery. A Mixture of Gaussians HMM for 

failure diagnostic and prognostic is presented by (Tobon-Mejia et al., 2010), which is tested 

for benchmark data related to bearings. In this study, the off-line component is mainly 

about feature extraction from the sensor outputs and train the models. In an online 

component, the learned models are used to diagnose failures by estimating the asset's 

current health state, its remaining useful life and the associated confidence degree. Same 

models can be used to prognosis the faults. In (Wang et al., 2009), Wavelet Transform 
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(WT), Wavelet Lifting Scheme (WLS) and Empirical Mode Decomposition (EMD), are 

used for feature extraction. Thereafter, Singular Value Decomposition (SVD) is utilized to 

extract an intrinsic characteristic of the signal from the obtained matrix. These singular 

value vectors are regarded as inputs to HMM for system FDD. The classification rate found 

to be excellent in bearing FDD. Also, (Sadhu, Prakash and Narasimhan, 2017) proposes a 

method which involves preprocessing of data to improve the sensitivity of HMM 

classification. In their approach, wavelet transformation is used to extract features from 

denoised data. The decision tree is used to extract the most relevant data and a Gaussian 

mixing model-based HMM is then employed for fault detection. The proposed technique 

has a better performance over the traditional HMM in multiple fault states. On the other 

hand, (Yuwono et al., 2016) have also proposed a methodology based on HMM and Swarm 

Rapid Centroid Estimation (SRCE) to detect bearing faults automatically. Here also defect 

frequency signatures are extracted with Wavelet Kurtogram and Cepstral Liftering. 

Neighborhood Component Analysis (NCA) and Coupled HMM techniques are combined 

with the methodology proposed by (Zhou et al., 2016). The experiment results show that 

the proposed NCA-CHMM can remove redundant information, fuse data from different 

channels and improve the diagnosis results. 

Also, (Soualhi et al., 2012) has proposed a method to diagnose faults in induction motors 

using HMM. An HMM is trained for each fault type, based on the current and voltage data 

that it drags during operation. While in operation, the features of the voltage and current 

readings are matched with the trained models and the classification is done based on it. The 

experiment results prove the efficiency of the proposed method in comparison with 



 

 

22 

techniques such as neural-networks based approaches. The fault identification of induction 

motors by HMM has been further improved by (Yusuf et al., 2013), with the introduction 

of a secondary classification tool called Naïve Bayes classifier. 

According to (Yusuf et al., 2013), fault diagnosis approaches of systems can be divided 

into three crucial areas namely, physical based model, AI based model and data-driven 

based model. As further explains, the first type model requires specific mechanistic 

knowledge and theory relevant to the monitored system structure which is hard to realize; 

and the second type model needs massive amounts of condition monitoring data which are 

also not always available; while data-driven model investigate proper statistical model to 

describe system state which is used widely in fault diagnosis domain. Among many data-

driven techniques, (Jia, Sun and Teng, 2012) compares the strengths of Particle Filtering 

method and HMM method. As they conclude, particle filtering method has better detection 

performance, while HMM has better computation efficiency in the area of gearbox fault 

detection. 

The performance comparison between HMM and GMM in baring fault classification is 

presented by (Nelwamondo, Marwala and Mahola, 2006). The time-domain vibration 

signals of a rotating machine with standard and defective bearings are processed for feature 

extraction. Both linear and non-linear features are extracted using two feature extraction 

techniques. The extracted features are then used to classify faults using Gaussian Mixture 

Models (GMM) and HMM. The results show that HMM outperforms GMM in the 

application area of bearing fault classification. 
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As described by (de Almeida & Park, 2008) The reliability of an event (𝜆) classification 

increases with the use of observed data (𝑜) in comparison with the sole use of prior 

probability (𝑃(𝜆)). The conditional probability can be determined using Bayes Rule. 

Further,  𝑃(𝜆)) is the likelihood of occurrence of 𝜆 with respect to 𝑜. As the probability 

distribution of the data (𝑃(𝑜)) is independent of 𝜆, Equation [5] can be presented as 

Equation [6]. In a fault detection operation, it is considered a characteristic normal 

operation (i.e. 𝑃(𝜆) = 1). The detection is made based on the observed data. In other 

words, it is the likelihood function (𝑃(𝑜|𝜆)), which is exactly the output of HMMs. 

 𝑃(𝜆|𝑜) = 𝑃(𝑜|𝜆)𝑃(𝜆)/𝑃(𝑜) [5] 

 𝑃(𝜆|𝑜) ∝ 𝑃(𝑜|𝜆)𝑃(𝜆) [6] 

When the HMMs are used in diagnosis applications, the winner HMM (𝜆∗) is the one with 

a maximum value of 𝑃(𝑜|𝜆)𝑃(𝜆) for the models (𝜆) where 𝜆∗ =  𝑚𝑎𝑥 [𝑃(𝑜|𝜆)𝑃(𝜆)]. 

Therefore, it is clear that the main target of HMM is to model sequential data. As shown in 

Figure 3, the input is a temporal sequence of 𝑇 vectors (𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑇}), and the output 

is a likelihood value (−log [𝑃(𝑂|𝜆)]) which measures the compatibility of the model 

(𝑖. 𝑒. 𝜆) in generating the observed data (𝑂). Therefore, this technique can be identified as 

a sequential pattern recognition tool. (de Almeida & Park, 2008) 

 

Figure 3: Input-output relationship of HMM (de Almeida & Park, 2008) 
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A summary of contributions discussed under this topic in journals is presented in Table 2-2 

and it is clear that still a considerable amount of hybrid options to be explored such as 

HMM-BN hybrid FDD. 

2.2.5 HMM Tool Box for MATLAB 

Murphy (2005) provide open source toolbox support inference and learning for HMMs 

with discrete outputs, Gaussian outputs, or mixtures of Gaussians output. The Gaussians 

can be full, diagonal, or spherical. It also supports discrete inputs. On the other hand, the 

inbuilt HMM toolbox in Matlab supports discrete input and outputs. It requires state 

probabilities and transition probabilities to be defined or generated by the user hence have 

limited capabilities. 

Table 2-2: Summary of HMM-based fault diagnosis 
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2.2.6 BN based FDD 

An offline fault diagnosis method for industrial gas turbines in a steady-state is presented 

by (Lee et al., 2010). They have shown that the accuracy can be increased by using multiple 

Bayesian models which are trained to identify specific faults. Also, that method can handle 

more than one faults occurring in more than one component. Further, it can identify random 

faults and systemic faults such as sensor bias. 

A method of BN fault diagnosis in the satellite power system is presented by (Xie, 2013). 

In establishing the CPT of BN, it uses an algorithm to adopt a statistical strategy for the 

rule library provided by many experts, extracts a causal relationship from the expert 

knowledge base. It is shown that the proposed technique is useful in fault diagnosis of 

satellite power systems. 

Even based on the uncertain knowledge and incomplete information, BNs can perform 

better than back-propagation neural networks and probabilistic neural networks. The 

method is proposed by Cai, Huang, & Xie (2017) in the application area of gear train 

systems. 

Object-oriented Bayesian networks (OOBNs) is applied in a scenario of the subsea 

production system by (Cai, Huang and Xie, 2017) and shown improved performance. This 

methodology can be used in real time fault detection and diagnosis. There are two phases 

namely off-line and On-line. During the off-line OOBN construction phase, historical 

sensor data and expert knowledge are collected and processed to determine the faults and 

symptoms, and OOBN-based fault diagnosis models are developed subsequently. In the 
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on-line phase, operator experience and sensor real-time data are placed in the OOBNs to 

perform the fault diagnosis. 

In (Chan and McNaught, 2008), the authors employ Bayesian networks (BNs) to model 

the domain knowledge that comprises the operations of the System Under Test, and the 

diagnostic skill of experienced engineers. This enhances the efficiency and reliability of 

the diagnostic process. This diagnostic tool is named ‘Wisdom,' which is applied in the 

area of manufacturing tests of mobile telephone infrastructure. 

An exciting review is done by (Cai, Huang and Xie, 2017) which presents the flowchart in 

Figure 2-4. In this review, they insist that future research should focus on hybrid 

approaches with BN and other fusion techniques. Further, (Cai, Huang and Xie, 2017) 

presents information on Fault Diagnosis for Process Systems; Energy Systems; Structural 

Systems; Manufacturing Systems; and Network Systems.  

As further mentioned in (Cai, Huang and Xie, 2017), attempts for fault detection and 

diagnosis made in various process engineering applications can be listed as shown in Table 

2-3. As ongoing and up-coming research directions, they introduce, Integrated Big Data 

and BN Fault Diagnosis Methodology; BN-Based Non-permanent Fault Diagnosis; Fast 

Inference Algorithms of BNs for Online Fault Diagnosis; BNs for Closed-Loop Control 

System Fault Diagnosis; Fault Identification Rules; and Hybrid Fault Diagnosis 

Approaches. 

2.3 Main observations from the Literature Survey 

It is highly unlikely to have a pure single method to provide robust detection and diagnosis 

performance. Therefore, experts recommend taking the path of hybrid approaches to 
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improve the accuracy of detection. Further, HMM is a powerful tool in the classification 

of Faults in a vast area of applications. 

Moreover, HMM has a strong theoretical background. Also, some powerful open source 

toolboxes, with proper documentation, are available for advanced data analysis with HMM. 

On the other hand, BN has a proven ability to diagnose the root cause of faults in a wide 

variety of applications. It can bring the process knowledge, expert judgements and 

experience into the FDD process. Considering the above facts, a hybrid method comprising 

of HMM, and BN is proposed. This combined approach will strengthen the FDD process 

by incorporating the process history, and the process knowledge. 

Table 2-3: FDD in process engineering applications 

Author Journal Proposed Method and 

Application 

Qi & Huang (2011) Automatica Bayesian-method-based fault node 

diagnosis approach for control 

Loop: Distillation column process 

Jin, Liu, Lai, Li, & He (2017) IJAMT Ceramic-shell deformation root-

cause analysis and fault diagnosis 

Liu, Zhang, & Shi (2014) IEEE TSE BN-based process monitoring and 

fault diagnosis approach to study 

sensor allocation methods for 

process control application 

Verron, Tiplica, & Kobi (2010) EAAI A novel BN based fault diagnosis 

approach for industrial process 

control. 

Dos Santos, Ebecken, 

Hruschka, Elkamel, & 

Madhuranthakam (2014) 

Risk Analysis BNs as a classifier to detect and 

diagnose faults in process systems 
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Figure 2-4:Flowchart of BN based Fault Diagnosis (Cai, Huang and Xie, 2017) 

 

2.4 The Methodology 

The outline of the FDD approach is discussed under this topic which is graphically 

represented in Figure 2-2. HMM is employed to extract information from the process 

history, which is trained with NOC data. In addition to the process history, the process 

knowledge is also used to make the detections and diagnosis more accurate. BN is 

employed to extract information from process knowledge. A systematic approach, using 
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Sign Directed Graphs (SDG), is used to develop the structure of BN. Moreover, the CPTs 

of BN are filled with the use of HMM outputs in NOCs. Prior probabilities of the BN are 

also determined using the output of HMM. 

In the fault diagnosis step, the likelihood evidence is generated for incoming or testing data 

strings, using the same HMM, and then the BN is updated accordingly. After updating with 

likelihood evidence, the node in the BN with the maximum change in the probability of 

failure is identified as the cause if it is a root node. If not, the highest percentage in the 

preceding successive node is selected as the root cause. 

Two different data types were used namely, training data of NOCs (TRD_1), and testing 

data of operating conditions with faults (TED_1). Initially, an HMM (HMM_1) was trained 

using the training data set with NOCs. The trained HMM_1 was then used to generate a 

history of LL values for each data string of TRD_1. This data history with LLs is used to 

calculate the conditional probabilities which are later used to prepare the CPTs of the BN. 

In other words, this BN is trained with the NOCs outputs of HMM_1. Further, the prior 

probabilities were calculated based on the history of LL values using HMM_1 which is 

later used in parent nodes of BN. 

2.4.1 Illustration of the methodology using tank model 

The simple tank model illustrated in Figure 2.6 will be employed to illustrate the 

methodology developed for FDD of process system faults. The primary measurable 

variables are F_1 and F_2; where F_1 has a positive effect on the level (L), and F_2 has an 

adverse effect on L. 
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Figure 2-5: The overall procedure of FDD 

 

 

Figure 2-6: Tank model 

2.4.2 Training of HMM_1 

The first half of TRD_1 (NOC) is used to train the HMM_1. Many hidden states (Q), 

number of mixtures of Gaussians (M) were set such that they give the maximum detection 

accuracy. K-fold cross-validation was used to determine the optimum number of hidden 

states. Here, the total data set is separated in to (say N) sets. Then any N-1 sets were 

selected as training data, and the remaining one can be used for validation. This value of N 
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can be varied over a possible range, and the mean and standard deviation can be used in 

making the decision. 

2.4.3 Development of the Bayesian Network 

Under this section, the development of BN is illustrated for the defined scenario.  

Figure 2-7 illustrates the procedure to develop the quantitative BN. Initially, the structure 

of the BN is developed based on the process knowledge. Then it is trained using the output 

of HMM_1. 

 

Figure 2-7: Procedure to develop the Quantitative BN 

 



 

 

32 

2.4.4 Development of Qualitative BN 

Based on  (Mallick, 2013), the steps for developing the SDG are presented under this topic. 

Firstly, the random variables involved with the process are identified. (i.e. 𝐹1, 𝐹2, 𝑉, 𝑎𝑛𝑑 𝐿 

where, inflow, outflow, valve resistance, and tank level respectively). Then the causalities 

are identified and illustrated using the arrow and respective sign. For example, consider 

level (𝐿), and inflow (𝐹1). 𝐹1 can cause an increase of Level (𝐿). In other words, when 𝐹1 

is increasing, 𝐿 will receive a positive effect. It can be graphically presented as shown in  

Figure 2-8. The inverse is also true. As further shown in  Figure 2-8, the SDG is cyclic 

between F_2 and L, which makes it impossible to map into a BN which is acyclic. 

Therefore, the modification shown is introduced. To keep the feedback into 𝐿 from F_2, a 

recycled F_2 (i.e. F_2_R) is introduced as a new variable. This is a duplicate dummy node 

introduced in order to keep the acyclic nature of the BN while keeping the feedback from 

F_2. 

2.4.5 Mapping the SDG to BN 

According to (Mallick, 2013), the following algorithm can be used to map SDG to BN. As 

further explained, after developing SDG, it is mapped to the Bayesian Belief Network 

(BBN) based on both graphical and numerical translation. The structure of BBN is obtained 

from the graphical translation. The nodes are connected in the same way as they are 

connected in the SDG. The root nodes, intermediate nodes and effect nodes are mapped 

into the BBN as parent nodes, intermediate nodes and child nodes. The mapped BN is 

shown in Figure 2-10. 
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 Figure 2-8: Development of SDG 

 

 

Figure 2-8: Mapping of SDG to BN (Mallick, 2013) 
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Figure 2-10: The BN representing the Tank Model 

2.4.6 Training the BN 

This is an essential step in the entire study. First, as shown in  

Figure 2-10, all values in NOC data are classified into the following 3 zones using Matlab 

code. Safe Zone was given the designation ‘𝑁' with the meaning ‘No-Fault.' Because it is 

less likely to fault a particular parameter if it is inside the Safe Zone. Also, the Danger Zone 

was given the designation ‘𝐹' (‘Faulty') as it is more likely to fault a particular parameter 

if it is inside the Danger Zone. Further, the constants 𝑎𝑁𝐿 and 𝑎𝑁𝐻 are the lower limits 

and Higher limit of the safe zone respectively. 

 

 

 

Figure 2-10: Different Zones in NOC Data 
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The constants 𝑎𝑁𝐿 and 𝑎𝑁𝐻 were calculated using the equations [7] and [8]. 

 𝑎1𝐿 = 𝑚𝑒𝑎𝑛(𝐴(: ,1)) +  (𝑚𝑖𝑛(𝐴(: ,1)) − 𝑚𝑒𝑎𝑛(𝐴(: ,1)))/𝑟 [7] 

 𝑎1𝐻 = 𝑚𝑒𝑎𝑛(𝐴(: ,1)) +  (𝑚𝑎𝑥(𝐴(: ,1)) − 𝑚𝑒𝑎𝑛(𝐴(: ,1)))/𝑟 [8] 

Here, 𝐴(: ,1) stands for the 1st column of the matrix 𝐴. Matrix A represents the concatenated 

matrix of past NOC data and the respective LL values generated through HMM. The value 

of 𝑟 was selected such that it gives a proper distribution of data in the safe zone and danger 

zone.  Based on 𝑎𝑁𝐿, and 𝑎𝑁𝐻 the entire data set is classified according to all possible 

sequences. A sample output of the HMM can be illustrated as follows. 

Sequence Log-likelihood(𝑳𝑳) 

𝐹 𝑁 𝐹 𝐹 2.5 × 10−5  

This means, in the NOC data set, this is a data string where 1st, 3rd, and fourth variables are 

in the Danger Zone while the 2nd variable is in the Safe Zone. The whole idea of this 

classification into zones is to generate a set of events and their likelihood values through 

HMM. This outcome is used to calculate the CPTs of each node in BN. As it can be seen 

in the sample output, the LL is generally a minimal value. This LL is the parameter which 

carries the information of probability of a given sequence. As it is purely not a probability 

value, following mathematical procedure can be followed to normalize it and generate 

probability values to establish the CPTs. 

If a relative precision of 𝜖 is required (say, 𝜖 = 10−𝑑 for 𝑑 digits of precision) and if 

have 𝑛 likelihoods are available, any result less than the logarithm of 
𝜖

𝑛
 can be eliminated. 

Then it can proceed as usual to exponentiate the resulting values and divide each one by 
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the sum of all the exponentials. In mathematical terms, let the log-likelihood values be 

𝜆1, 𝜆2, … 𝜆𝑖 … , 𝜆𝑛 with      𝜆𝑛 = 𝑚𝑎𝑥(𝜆𝑖). For the logarithm to the base 𝑏 > 1. 

Define; 

 𝛼𝑖 = {
𝑏𝜆𝑖−𝜆𝑛 , 𝜆𝑖 − 𝜆𝑛 ≥ log(ϵ) − log (n)

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 [9] 

The normalized likelihoods equal to;  𝛼𝑖/𝐴 

 𝐴 = ∑ 𝛼𝑗  

𝑛

𝑗=1

 [10] 

Where, 𝑖, 𝑗 = 1,2,3, … , 𝑛 

This technique is applicable because by replacing all of the otherwise under flowing 𝛼𝑖 by 

zero makes a total error of at most  
(𝑛−1)𝜖

𝑛
< 𝜖. As because 𝛼𝑛 = 𝑏𝜆𝑖−𝜆𝑛 = 𝑏0 = 1 and 

all 𝛼𝑖 are non- negative, the denominator 𝐴 = ∑ 𝛼𝑗𝑗 ≥ 1. Hence, the total relative error due 

to the zero- replacement rule is minimal then ((𝑛 − 1)𝜖/𝑛)/𝐴 < 𝜖 as desired. 

Based on the above normalizing method, the entire detection history can be classified into 

all possible combinations of events and their respective probabilities can be determined. 

Prior probabilities were also determined based on the detection history generated through 

HMM_1. Matlab codes are developed to do all the calculations. The code can be extended 

to complicated BNs by following the pattern. 

2.4.7 Introduction of Likelihood Evidence to the trained BN 

There can be an inherent delay in fault detection by HMM due to the physical and chemical 

behaviour of the process being observed. Therefore, in calculating the likelihood evidence, 

data strings in the recent past are also considered. This assumes that HMM detects the fault 
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after 𝑡0 number of seconds. The value of 𝑡0 depends on the complexity of the fault. If the 

LL value clearly shows a deviation soon after introducing the fault, 𝑡0 can be a minimal 

value and vice versa. An output similar to Figure 2-11 can be taken through HMM. The 

Matlab function ‘findchangepts’can be employed to detect the point where the abnormal 

conditions start appearing. 

Once the fault is detected, the respective time (𝑡𝑓) and data string can be determined. Based 

on the values of on 𝑎𝑁𝐿, 𝑎𝑁𝐻, and data strings from 𝑡𝑓 − 𝑡0 to 𝑡𝑓, the probability of giving 

𝐹 𝐹 𝐹 𝐹 sequence at 𝑡 = 𝑡𝑓 is calculated with Matlab code. The respective probabilities of 

respective nodes are taken as the likelihood evidence for the BN. As mentioned in  

Figure 2-5, The fault is diagnosed. 

 

Figure 2-11: Output of HMM 

2.5 Application of the methodology in Tennessee Eastman (TE) Process 

2.5.1 Tennessee Eastman Process 

The TE chemical process produces a broad range of advanced materials, chemicals and 

fibres for everyday purposes. It has five significant units namely; a reactor, a product 

condenser, a vapour-liquid separator, a recycle compressor and a product stripper. Three 
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gaseous reactants are fed to the reactor, where a catalyzed chemical reaction forms the 

liquid products. The product stream enters the condenser as vapour and gets condensed. 

Then product stream passes through the vapour-liquid separator, where the condensed and 

non-condensed products are separated. A centrifugal compressor recycles the non-

condensed product back to the reactor, and the condensed product moves into the stripper 

to be stripped. The final product stream exits from the base of the stripper and is pumped 

to the downstream for further refinement (Downs and Vogel, 1993). 

The PFD of the TE chemical process is shown in Figure 2-10. The TE chemical process 

consists of 41 measured variables and 12 manipulated variables. Among the measured 

variables, 22 variables are continuous process variables, and 19 variables are related to 

composition measurements. These 22 continuous process variables have been considered 

in this work, and their description is shown in the Table2- 4. There are 15 known and five 

unknown types of faults in the TE chemical process (Downs and Vogel, 1993); (Yu, Khan 

and Garaniya, 2015). Among them, ten widely studied fault scenarios are tested. This study 

is focused on these ten faults because of the availability of data and to compare the 

effectiveness of the methodology against previous studies. The tested fault IDs and their 

true root causes for each fault type are summarized in Table2- 5. 

2.5.2 Fault detection by HMM 

Similar to the illustration given in 0, the HMM_1 is trained using the NOC data extracted 

from all ten faults in TRD_1. The idea is to detect the change in LL value once the incoming 

data string becomes abnormal. 
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It is normal to have some fluctuations of LL value due to the physical and chemical 

behaviour of the system. Due to this reason, there are some faults which cannot be 

identified as soon as introduced to the system. Most of the practical process systems do not 

show a measurable abnormality at the instant of the introduction of the fault. Therefore, 

there is an inherent delay in fault detection. 

 

Table2- 4: Continuous process variables of TE chemical process (Amin, Imtiaz and 

Khan, 2018) 

Variable Number Description Unit 

XMEAS (1) A Feed (Stream 1) kscmh 

XMEAS (2) D Feed (Stream 2) kg/hr 

XMEAS (3) E Feed (Stream 3) kg/hr 

XMEAS (4) A and C Feed (Stream 4) kscmh 

XMEAS (5) Recycle flow (Stream 8) kscmh 

XMEAS (6) Reactor feed rate (Stream 6) kscmh 

XMEAS (7) Reactor pressure kPa gauge 

XMEAS (8) Reactor level % 

XMEAS (9) Reactor temperature ⁰ C 

XMEAS (10) Purge rate (Stream 9) kscmh 

XMEAS (11) Product separator temperature ⁰ C 

XMEAS (12) Product separator level % 

XMEAS (13) Product separator pressure kPa gauge 

XMEAS (14) Product separator underflow (Stream 10) m3/hr 

XMEAS (15) Stripper level % 

XMEAS (16) Stripper pressure kPa gauge 

XMEAS (17) Stripper underflow (Stream 11) m3/hr 

XMEAS (18) Stripper temperature ⁰ C 

XMEAS (19) Stripper steam flow kg/hr 

XMEAS (20) Compressor work kW 

XMEAS (21) Reactor cooling water outlet temperature ⁰ C 

XMEAS (22) Separator cooling water outlet temperature ⁰ C 
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Table2- 5: Faults in the TE process and their respective root causes 

 (Rato and Reis, 2013), (Amin, Imtiaz and Khan, 2018) 

 

Fault 

ID 

Description Type Root Cause 

A E Feed Loss Step XMEAS (3) 

B Reactor cooling water inlet temperature 

 

Random variation 

 

XMEAS (9) 

C Condenser cooling water inlet 

temperature 

 

Random variation 

 

XMEAS (11) 

D Reactor cooling water valve 

 

Sticking 

 

XMEAS (9) 

E Condenser cooling water valve 

 

Sticking XMEAS (11) 

F A/C feed ratio, B composition constant 

Stream 4. 

 

Step XMEAS (4) 

G Reactor cooling water inlet temperature 

 

Step XMEAS (9) 

H Condenser cooling water inlet 

temperature 

 

Step XMEAS (11) 

I A feed loss (Stream 1) 

 

Step XMEAS (1) 

J Stripper steam valve stiction Sticking XMEAS (19) 

 

 

Figure 2-12: Process Flow Diagram of the TE process (Ding, 2014) 



 

 

41 

2.5.3 Bayesian Network Training 

First, an HMM is trained using the fault-free data. Then the first half of the test data were 

analyzed through HMM to get the detected data strings and their respective log-likelihood 

values. From this generated data library, the different combinations of states and their 

respective probabilities can be estimated. The log-likelihood values can be taken as the 

respective loading of the detected data strings by HMM. The loading value needs to be 

normalized to be used as conditional probabilities in CPT tables. By establishing the CPTs, 

and the prior probabilities, BN gains the ability to detect the process abnormalities. The 

successfully implemented BN is shown in Figure 2-13. 

2.6 Results and Discussion 

2.6.1 Fault detection step 

As shown in Figure 2-14, the ‘findchangepts’ function in Matlab indicates the abnormality 

and the point where it is detected. From Table 2-5, it is clear that XMEAS_3 gives the 

maximum change in the probability of failure. Therefore XMEAS_3 is considered as the 

root cause of fault A. Rest of the faults were also analyzed by employing the same 

methodology. Results are listed in Table 2-6. Other than fault F and J, rest of the eight 

faults are successfully detected and diagnosed by the HMM-BN hybrid approach. There 

are three probable reasons for the root cause diagnosis inaccuracy of faults F and J. Firstly 

it can be a weakness of the CPTs. Secondly, inaccuracy of the calculated prior probabilities, 

and lastly, inaccuracy of the generated likelihood evidence. 
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Figure 2-13: BN developed for TE process 

 

Figure 2-14: Detection of Fault A with HMM trained with NOC data 
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Table 2-6: Detection times of All ten faults 

Fault ID Time of Detection 

A 1125 

B 1335 

C 1325 

D 1335 

E 1090 

F 1092 

G 1325 

H 1090 

I 1241 

J 1139 

 

Table 2-7: Diagnosis of fault A using BN 
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Table2- 8: Performance Comparison of the proposed technique 

 

 

As shown in Figure 2-11, there are three important outputs of HMM namely, time of 

detection; data string at the time of detection; and LL at the time of detection. One can 

argue that the data string at the time of detection can be converted into a sequence of ‘F,' 

and ‘N' and the LL can be converted into the respective weight (i.e. probability) and send 

to the BN as likelihood evidence. It was also tested and found less accurate due to the 

uncertainty of the data sequence. Therefore, once the fault is detected, the Matlab code 

instantly scans the data strings in the recent past and calculate the probability of failure of 

all the variables. In other words, the probability of giving a sequence of 𝐹 𝐹 𝐹. . 𝐹. The 

respective probabilities are then used to update the BN with likelihood evidence. 

Also, it should be noted that the BN in Figure 2-13 has two XMEAS (5) nodes, one as a 

child node and the other one as a parent node. This is because XMEAS (5) is a cyclic 

variable in TE chemical process. As a BN is acyclic, and it is still required to capture this 

Fault 

ID 

Original Fault ID Root Cause Accurate Diagnosis 
PCA-T2 PCA-T2-BN 

(Hard 

Evidence) 

PCA-T2-BN 

(Multiple 

likelihood 
evidence) 

HMM-BN 

(Current 

Study) 

A E Feed Loss XMEAS (3) YES YES YES YES 

B IDV 11 XMEAS (9) NO YES YES YES 

C IDV 12 XMEAS 

(11) 

NO YES YES YES 

D IDV 14 XMEAS (9) YES NO YES YES 

E IDV 15 XMEAS 

(11) 

NO YES YES YES 

F IDV 1 XMEAS (4) NO YES YES NO 

G IDV 4 XMEAS (9) YES NO YES YES 

H IDV 5 XMEAS 

(11) 

NO YES YES YES 

I IDV 6 XMEAS (1) YES YES YES YES 

J Stripper steam valve 

stiction 

XMEAS (19) YES YES YES NO 
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cyclic nature into BN, a duplicate dummy node of the recycle flow, XMEAS (5) R, has 

been created.  

2.6.2 A method to simplify the Matlab coding task 

The calculation of conditional probabilities using Matlab code can be a tedious task if the 

correct pattern is not identified. In a complicated Bayesian Network, it will save time by 

following the procedure below. 

Follow a sequence in naming the different nodes in the Bayesian Network (Eg: XMEAS 

(1), XMEAS (2)). Next, identify and cluster the nodes which are similar in the number of 

parent nodes (i.e. Nodes with one parent node, two-parent nodes and higher). First, do the 

coding for a cluster with the highest number of incoming arrows. A simple modification 

can easily generate the rest of the codes following the pattern. Find and replace option can 

be effectively used in this step. All possible conditions can be listed in the sequence of 

binary numbers. For example, if there is a node with two incoming arrows, that means there 

are four different combinations present. (i.e.22). So ‘Faulty’ and ‘No-Fault’ state sequence 

can be presented as follows. This can be extended with the use of MS Excel with a 

minimum effort. These generated sequences can be used directly as variables in Matlab 

code. When exporting the conditional probabilities to ‘GeNIe,' the user can directly copy 

and paste the values to CPT without doing a single manual typing. In brief, the CPT 

preparation will not be a tedious task if a systematic approach is made. Find and Replace, 

Copy and Paste options can be used effectively. The entire code can be accessed through 

https://github.com/mihiranpathmika/CPL1.0. 

 

https://github.com/mihiranpathmika/CPL1.0
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Table 2-9: Sequences for a node with two parent nodes 

F F 

F N 

N F 

N N 

  

2.7 Conclusions 

A novel hybrid methodology HMM-BN is proposed in process FDD. The HMM has been 

used at the first stage to detect the fault using process historical data. A BN is employed to 

determine a precise diagnosis by reviewing the detection made by HMM. The BN uses the 

process knowledge and inputs from HMM to perform the diagnosis. Higher diagnostic 

accuracy is achieved in comparison with PCA-T2 approach. In addition to that, fault ‘D’ 

and ‘G’ are accurately diagnosed which were not successfully diagnosed by PCA-T2-BN 

hard evidence approach. Due to the inherent fluctuations in LL and practical aspects such 

as sensitivity of the devices, the HMM does not detect the fault instantly.  However, the 

accuracy of diagnosis demonstrates the strength of new methodology.  

The present study has contributed by introducing a new HMM-BN combined approach 

enhances the FDD capacity of HMM; a novel method to extract information from NOC 

data, through HMM, to establish the CPTs of BN; a unique and precise way to extract 

likelihood evidences from HMM to update the BN; and a detailed procedure with Matlab 

codes of how to adopt the current work to any process system for FDD purposes. 

The unique aspect of this study includes: integration of data-driven and knowledge-based 

methods; easy to implement as a software based on the HMM toolbox Murphy (2005); 

computationally inexpensive; has the potential to be used as a real-time FDD application 
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and more importantly does not pre-process the data so useful hidden details are also not 

filtered. 

This work could further be advanced by implementing the developed methodology into 

software which can detect and diagnose the fault real-time in an industrial application. The 

Bayes Net Toolbox by Kevin Murphy (Murphy, 2005); can be utilized to do useful 

computations in the Matlab itself without exporting the data to a separate software such as 

GeNIe. Also, the delay in detection can be further reduced by optimizing the code. The 

proposed methodology can be used to predict and prognosis of faults in process systems. 
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CHAPTER 3 : PROCESS FAULT PREDICTION AND PROGNOSIS USING A 
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Abstract 

Prediction and management of the process faults could save billions of dollars per year. 

This study proposes a hybrid approach to predict and prognosis process faults. The hybrid 

approach is comprised of a Hidden Markov Model (HMM) and Bayesian Network (BN). 

HMM predicts the abnormalities using process historical data while the BN uses the 

process knowledge to prognose the fault. In the off-line component, an HMM which is 

trained with Normal Operating Condition data is used to determine the log-likelihoods (LL) 

of each process history data string. The generated LL values are then used to develop the 

Conditional Probability Tables of BN while the structure of BN is established based on 

                                                 
2 This chapter is submitted as a manuscript to the journal of Chemical Engineering Research and Design and currently under review 
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process knowledge and with the help of Sign Directed Graphs. In addition to that, a separate 

historical data set with known faults is used to generate a database of LL values concerning 

the same HMM trained with standard operating condition data. In the online component, 

the trained HMM is used to check the LL values of incoming data strings continuously and 

compares with the LL historical database. Based on the comparison, the system decides the 

most likely future condition of the system in 𝑛 number of seconds. The time of prediction 

of abnormality and probabilities of being in specific operational state at the predicted time 

is used to generate the likelihood evidence to BN. The updated BN along with likelihood 

evidence is then used to prognose the cause. Performance of the proposed approach is 

tested using published data of Tennessee Eastman Process. The system can predict all the 

selected ten faults while accurately prognosis eight of them. 

Keywords: Process fault prognosis; Hidden Markov model; Bayesian network, Process 

fault prediction 

 

3.1 Introduction and Review of the Relevant Literature 

There are many options available in fault prediction using machine learning approaches. 

This topic discusses a variety of machine learning algorithms can be used in process fault 

detection and prediction. As illustrated in Figure 3-1, machine learning approaches can be 

divided into two basic categories called, supervised learning and unsupervised learning. In 

supervised learning, the algorithms assess the input data and corresponding outputs to learn 

the mapping function from input to the output. In unsupervised learning, the algorithms 

identify the hidden structures of data for further evaluation of data.  
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Figure 3-1: Different machine learning techniques (The Mathworks, 2016) 

Classification and Regression come under supervised learning while clustering comes 

under unsupervised learning. Examples for each category are also illustrated in Figure 3-1. 

(The Mathworks, 2016). 

As further mentioned about supervised learning in (The Mathworks, 2016), to predict 

future outputs, a model needs to be trained based on input and respective output data. It 

builds a model, with the available known inputs and respective outputs, which can be used 

to predict the output of an unknown input. In classification, the incoming data can be 

classified into predefined groups. For example, it can be used to detect whether an e-mail 

is spam or not. On the other hand, regression techniques can predict continuous changes of 
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quantities such as changes in temperature or pressure of a polymer melt. They are widely 

used in electricity load forecasting (The Mathworks, 2016). 

Binary classification problems can be adequately handled using logistic regression by using 

as the first step. It can be used to predict the probability of a binary response by fitting a 

suitable model. It is more efficient when the data is separable by one linear boundary. Also, 

k Nearest Neighbor (kNN) is a simple algorithm which is useful to use when the concern 

on memory usage and prediction speed are less concern. The primary assumption in kNN 

is that the objects near each other are similar. It can categorize objects based on the classes 

of their nearest neighbours in the data set. Distance matrices are used to locate the nearest 

neighbour. Further, Neural networks can be used for modelling highly nonlinear systems. 

It can also facilitate the constant update of data with the availability. It is a characteristic 

of a neural network having highly connected networks of neurons that interconnect the 

inputs with the respective outputs, inspired by the human brain (The Mathworks, 2016). 

As further explained in (The Mathworks, 2016), on the other hand, Naïve Bayes classifies 

incoming data by assessing the probability of belonging to a particular class. It also 

assumes each class has unique features which do not have any similarities. This technique 

performs well for a small dataset containing many parameters. The discriminant analysis 

finds linear combinations of features to classify data. The primary assumption in the 

discriminant analysis is that Gaussian distribution is the basis for the generation of data for 

training. If there is a requirement of an easily interpretable simple model, discriminant 

analysis is a good option. The model created using discriminant analysis are fast to predict, 

and memory usage can be optimized during the training process. A decision tree is also a 
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technique that has a minimum memory usage. It does not give a high predictive accuracy 

but easy to interpret and fast to fit. When the decision trees are lower in performance, 

several low-performance decision trees are combined to an ensemble called Bagged and 

Boosted Decision Trees. Each tree is trained independently. This version of decision trees 

is much suitable when the time taken to train a model is not critical. 

It is also mentioned in (The Mathworks, 2016) that linear regression is a technique that is 

easy to interpret and train. Therefore, it is the first model to fit into a   given data set. A 

continuous response variable can be described using this technique as a linear function of 

one or more predictor variables. On the other hand, to describe nonlinear relationships, 

nonlinear regression technique is used. The effectiveness of this technique is evident when 

the data has a strong nonlinear tends and cannot be quickly transformed into a narrow 

space. Gaussian process regression (GPR) models are used for predicting the value of a 

continuous response variable. GPRs are non-parametric models which are widely used in 

spatial analysis. When there is uncertainty, GPR can make interpolations to make 

predictions. Support Vector Machine Regression (SVMR) is also has a similar operation 

to SVM Classification. SVM regression algorithms work similar to that of SVM 

classification algorithms though they are modified to be able to predict a continuous 

response. This technique is effectively used in high-dimensional data. 

Further, when the response variables have non-normal distributions, Generalized Linear 

Model can be successfully used which is a particular case of nonlinear models which 

utilizes linear methods. Similar to decision trees used in classification, the decision trees 

developed for regression are called Regression Trees. These are specially modified to 
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predict continuous responses. When the predictors are nonlinear and discrete, this 

technique can be successfully used (The Mathworks, 2016). 

The specialty of unsupervised learning is, it can find hidden patterns or data structures in 

input data. The most widely used unsupervised learning technique is called Clustering. It 

is used for exploratory data analysis to uncover hidden patterns or groupings in data. 

Clustering can again be divided into two basic categories namely; hard, and soft. Regarding 

hard clustering examples, k-means and k-medoids are closely related to each other. The 

only difference is the latter does coincide data points, and the former does not. In 

hierarchical clustering, the data are grouped into a binary hierarchical tree while the self-

organizing map is a Neural-network based clustering technique that transforms a data set 

into a 2D plot. About Fuzzy C-means, which is a soft clustering technique, can be used 

when data points belong to more than one cluster. This technique is widely used in pattern 

recognition. Similar to Fuzzy C-means, the Gaussian Mixture Model (GMM) is also a 

partition-based clustering technique where data points come from different multivariate 

normal distributions (Chelly and Denis, 2001a). 

On top of this, there are three most widely used dimensionality reduction techniques 

namely: Principal component analysis (PCA); Factor analysis; and Nonnegative matrix 

factorization. In PCA, few principal components can capture a high dimensional data set 

by performing a linear transformation on data. The strength of this method is, the principal 

components can catch most of the variance or information of the entire data set. The 

relationships between variables in a given data set can be identified by factor analysis and 

representation regarding a lesser number of latent, or common factors. 
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Figure 3-2: Different techniques in Clustering 

Nonnegative (ℝ0
+) matrix factorization is employed when dealing with non-negative 

quantities (Chelly and Denis, 2001b). 

Machine learning techniques used as prediction tools in a variety of applications are 

discussed under this topic. There are numerous examples available in the literature for both 

individual and combined use of machine learning techniques. 

A failure prediction methodology of a partially observable system is presented by (Kim et 

al., 2011). They have modelled the system behaviour three hidden state continuous time-

homogeneous Markov process. States 0 and 1 are not observable. Those two states 

represent normal and warning conditions respectively. Only visible failure state is 2. EM 

algorithm is employed to model parameters estimation. Further, a cost-optimal Bayesian 

fault prediction scheme is also applied. A comparison concerning other prediction 

techniques is given. The Effectiveness of the proposed approach is clearly illustrated. 
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Logistic Regression Classifier (LRC) is a powerful tool in predicting linearly separable 

classes. It is a commonly used analytical model for classification problems. When a 

training feature matrix 𝑋 is provided along with the corresponding target vector 𝑌, a logistic 

regression model can be trained to predict 𝑌 for even unseen instances of 𝑋. The input has 

two main components namely; data, and parameters. The data component includes the 

training and predicted datasets. The training dataset requires the feature values and their 

corresponding target values, while the test dataset only requires the feature values to predict 

their unknown target values (Predix, 2016a). 

As further mentioned in  (Predix, 2016b), Random Decision Forests (RDF) is a combined 

approach of learning methods for tasks such as classification, and regression. Initially, a 

set of decision trees is generated during training time. As outputs, the class that is the mode 

of the classes (classification) or mean prediction (regression) of the individual trees can be 

mentioned. It trains some decision trees from bootstrap samples from the training set with 

replacement. On the other hand, the algorithm also draws a random subset of features for 

training the individual trees. This approach makes the trees more independent in 

comparison with the conventional approach. In the case of classification, the majority rule 

is used on trained decision trees to classify the new data. While each decision tree comes 

up with a decision, the next prediction is selected based on the number of votes. Random 

Forest results provide better performance in prediction. Random Forest is practically tuning 

free therefore it is not required to do any parameter tuning to find the optimal model. 

Two alternatives of Genetic Programming (GP) approaches introduced by (Hamerly and 

Elkan, 2005a). They can be used in intelligent online performance monitoring of electronic 
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circuits and systems. A stressor susceptibility interaction model is introduced to assess the 

reliability of circuit systems. When a stressor exceeds the susceptibility limit, the system 

is identified as a failure. Direct measurements through sensors are used to generate the 

validated stressor vectors and then they are fed to the GP model. The results are compared 

with ANN outputs and found to be useful in performance. 

Further, (Hamerly and Elkan, 2005b) propose a technique to predict hard disk failures 

which are rare but costly. Two Bayesian methods are introduced namely; a mixture model 

of Naïve Bayes sub-models, and Naïve Bayes Classifier. A former method used the EM 

algorithm while the latter is a supervised learning approach. Both techniques show good 

prediction accuracy on real-world data. Also, (Murray, 2003) confirms that the rank-sum 

method outperforms other techniques in comparison with the performance of support 

vector machines (SVMs), unsupervised clustering, and non-parametric statistical tests. 

Two improved versions of Self-Monitoring and Reporting Technology (SMART) failure 

prediction system are proposed by (Hughes et al., 2002). The proposed techniques give 

several times higher prediction accuracy than error thresholds on hard disk drives which 

are prone to fail, at 0.2 % false alarm rate. 

Bearing failure prediction was successfully done by (Fulufhelo V. Nelwamondo, 2006) 

using HMM and GMM. They introduce feature extraction methodologies that can facilitate 

early detection of faults. Time domain vibration signals of faulty and standard bearings in 

rotating machinery are used for feature extraction. HMM and GMM is then used to classify 

faults based on the extracted features. Based on the classification performance, HMM is 
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superior to that of GMM. They further mention that HMM has a disadvantage of being 

computationally expensive.  

Euclidean distance based feature selection is proposed by (Kim, Han and Lee, 2016). It is 

used for fault detection and prediction model in the semiconductor synthesizing process. 

As the first step, the features of the semiconductor manufacturing process are measured 

regarding Mean Absolute Value (MAV) and Standard deviation (SD). After that, using the 

Euclidean distance, the most appropriate features are selected using the classification 

model. Finally, with the filtered features, the neural network is trained to generate a fault 

prediction model. The proposed method performs well in the semiconductor manufacturing 

process fault prediction. 

Neural network modelling is used by (Bekat et al., 2012) to predict the amount of bottom 

ash accumulated in a pulverized coal-fired power plant. Operating data collected 

throughout the one-year period and the properties of the coal processed are used in the 

prediction process. Network architecture used is Feedforward. Backpropagation learning 

is used with three layers. The sigmoid function is used as the activation function. The 

authors have determined the ideal parameters for accurate predictions along with the most 

useful metrics to be monitored based on a sensitivity analysis.  

To minimize the error and reduce the maintenance cost, prediction of an incipient fault in 

transformer oil is essential. Artificial neural network (ANN), and particle swarm 

optimization (PSO) based methodology is presented by (Illias et al., 2015) to predict the 

incipient transformer fault. It has been found that the ANN-PSO method proposed gives 

the leading percentage of correct identification. 
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On the other hand, (Jiang, Wey and Fan, 1988) propose an algorithm to predict faults in 

analog circuits. The central concept is continuously monitoring the component values 

which are evaluated according to the consecutive voltage measurements. These 

measurements are taken at the accessible test points, at each periodic maintenance. This 

approach makes it possible to locate the faulty components as well as components which 

are predicted to be failed shortly.  

Based on multi-PCA model, (Ma and Xu, 2015) present a methodology for multiple mode 

process fault detection. It also includes techniques for fault estimation and fault prediction. 

Multi PCA model is initially used to detect faults in a process which is operated under 

steady state and different conditions. For the transition process, a weighted algorithm is 

used. Fault amplitude is made consistent by using a consistent estimation algorithm, and 

finally, SVM is used to predict the fault amplitude changing pattern. This method has a 

proven performance by applying and testing in Tennessee Eastman process data. 

A prediction technique is introduced by (Gao and Liu, 2017), which is developed based on 

an improved version of kernel principal component analysis (KPCA) method. 

Indiscernibility and eigenvector concepts are used. The application area is process fault 

prediction of distillation columns. This version of KPCA can remove variables with almost 

no correlation to the fault being monitored. On the other hand, it can reduce the number of 

data strings used several times. Proposed methodology gives better performance over the 

traditional technique. By applying the method in a distillation column scenario, the authors 

have shown that the KPCA method is capable of predicting the process failures caused by 

small disturbance. 
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Weighted least square vector machines regression is used by (Gao and Liu, 2017) to 

develop a Hammerstein model to predict the dynamic behaviour and the possible faults in 

Imperial Smelting Furnace (ISF). The proposed model is capable of accurate fault 

predictions of ISF. Further, (Ramana, Sapthagiri and Srinivas, 2017) have introduced a 

prediction methodology for the quality of injection moulding products based on a machine 

learning approach, which has shown a prediction accuracy of 95%. It is an effective method 

to increase the productivity by eliminating defectives during a production process. To build 

the data mining models, Decision Tree, and k-NN techniques are used and trained using a 

training data set developed using actual production data of a given product. Then the 

prediction accuracy is tested using a testing dataset developed similarly.  

The use of Computer Aided Engineering (CAE) tools on fault prediction in Copper 

processing line is studied by (Jahani and Razavi, 2016). The outcome of the study is highly 

useful in the predictive maintenance of critical equipment such as slurry pumps and hydro-

cyclones. Further, the simulations can be used to make decisions on optimum-measuring 

parameters, intervals, and their respective locations. 

Prediction of emerging faults of dynamic industrial processes is achieved by (Hu et al., 

2017), using an approach based on Canonical Variable Trend Analysis (CVTA). Canonical 

Variable is the leading information carry forward to make the predictions. They are the un-

correlated latent features extracted through the analysis of process dynamics. The initial 

analysis is done Canonical Variate Analysis (CVA) algorithm while SVM is employed to 

identify the relationship between past and future values. It facilitates the development of a 

time series prediction model for the canonical variables. Change of the process status is 
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forecasted, using an overall monitoring statistic and based on the predicted canonical 

variables. They have demonstrated the effectiveness of the technique by applying it in a 

simulation on a Continuous Stirred Tank Reactor (CSTR) system. 

An intelligent algorithm for fault prediction of turbine pitch system is proposed by (Deng, 

2018), based on Least Squares Support Vector Machines (LS-SVM) parameter 

optimization. Initially, the data of the SCADA system are analyzed. Through this, four 

kinds of parameters are selected as the input of the model, which are strictly related to the 

turbine pitch system fault. Then the minimum output coding (MOC) is introduced to 

construct multiple classifications LS-SVM to understand the multi-class classification of 

pitch fault. Later, to select the optimal feature parameters for the multi-class LS-SVM 

classifiers, the algorithm of particle swarm optimization is employed. The proposed 

methodology is applied to a pitch fault prediction scenario of wind farms. The performance 

is compared with the neural network algorithm (back propagation) and the standard SVM 

algorithm. The proposed method is found to be superior in performance.  

A method for line trip fault prediction in power systems is proposed by (Zhang et al., 2017). 

It is done based on long-short-term memory (LSTM) networks and SVM. Further, LSTM 

networks are used to capture temporal features of multisource data as they perform well in 

extracting the features of time series for a long-time span. To get the final prediction results, 

SVM is used for classification. The actual data for experiments is obtained from the 

Wanjiang substation in the China Southern Power Grid. Improved performance of the 

proposed combined approach of LSTM and SVM is evident in comparison with the current 

data mining methods. 
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A novel approach for power converter fault prediction in power conversion systems is 

presented by (Di et al., 2018). Decision tree and SVM are used. Those two will take in to 

account the changes in working conditions and imbalances of data respectively. It was 

validated with an industrial application to be useful in predicting the power converter 

failures.  

A prediction method for cement rotary kiln process is proposed by (Sadeghian and Fatehi, 

2011), using a nonlinear system identification method. First, the suitable inputs and outputs 

are selected, and a model of inputs and outputs are identified for the complete system. To 

identify various operating points of the kiln, Locally Linear Neuro-Fuzzy (LLNF) model 

is used. An incremental tree structure algorithm is employed to train the model. The 

methodology is used to develop three models, one for normal operating conditions and the 

other two for two faulty situations. The proposed technique can predict the fault occurrence 

7 minutes in advance. 

In order to calculate the probability of fault prediction, a method has been proposed by 

(Chen, Zhou and Liu, 2005). This method can be used for nonlinear time-varying systems. 

It is a particle predictor-based method. As illustrated by the use of simulations, the 

proposed methodology is capable of giving an early alarm can be triggered before the 

system reaches the faulty state. Although the conventional Particle Filter cannot perform 

with unknown time-varying parameters, the Particle Predictor has the ability. As further 

explained in (Chen, Zhou and Liu, 2005), it is almost impossible to make a prediction on 

the abrupt faults of a system. Nevertheless, the slowly developing faults can be predicted 

with the use of an online monitoring system. 
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In a nonlinear stochastic system, incipient faults prediction methodology is proposed by 

(Ding and Fang, 2017). This fault estimation algorithm is developed based on particle filter. 

Some simplifying assumptions on the incipient faults are made without losing critical 

details. A novel fault detection strategy called ‘intuitive fault detection’ is presented. When 

the incipient faults are detected, nonlinear regression is used to identify the respective 

parameters. Based on the parameters determined, the oncoming fault signal is predicted. 

Finally, a standard simulation has been employed to verify the performance of the new 

methodology. 

Remaining useful life (RUL) of a wind turbine is an important parameter to know, in order 

to maintain the reliability of the service. By employing an adaptive neuro-fuzzy inference 

system (ANFIS) along with particle filtering (PF) approaches, (Cheng, Qu and Qiao, 2017) 

propose a method for fault prognosis and gearbox RUL prediction. The fault features are 

extracted from the stator current of the generator coupled with the gearbox. The extracted 

fault features are used to train ANFIS, and the PF predicts the RUL. For this, new 

information of the fault features is also used. The proposed method is found effective based 

on the experimental results. A similar problem is successfully solved by (Zhao et al., 2017). 

It is shown that RUL of the wind turbine is predictable 18 days ahead, with nearly 80% 

accuracy. The generator faults are diagnosable with an accuracy of 94% once occurred. 

The benefit of the proposed system is, it does not require any additional hardware 

installation. Already available SCADA system serves as the source of information hence 

cost efficient. With a detailed analysis, the authors have selected the SVM as the most 



 

 

73 

suitable classification technique for this particular application among ANN, Bayes 

classifier, k-NN classifiers.  

Prediction of the foreign exchange rate is also a profoundly explored researched area. A 

nonlinear ensemble forecasting model is proposed by (Yu, Wang and Lai, 2005). It is 

recommended as an alternative tool for exchange rate forecasting. It consists of generalized 

linear auto-regression (GLAR) with artificial neural networks (ANN) for accurate 

predictions. Performance of the new combined model is compared with the two individual 

forecasting tools (i.e. GLR, and ANN). According to further explanation by (Yu, Wang 

and Lai, 2005), the new integrated approach is more accurate in comparison with the 

GLAR, and ANN individual systems. Similar to foreign exchange prediction, stock market 

forecasting is also a well-researched area. An HMM-based tool is developed by (Hassan 

and Nath, 2005). An HMM is used to scan for the similar patterns from the past data. Based 

on the previous trends, the forecasting is done by interpolating the adjacent log-likelihood 

values of the data sets. The results show the high potential that the HMM approach has in 

predicting stock exchange. 

On the other hand, (Hassan, 2009) proposes a combined model of HMM and the Fuzzy 

models. The HMM identifies hidden data patterns, and fuzzy logic is used to generate a 

forecast value. The entire data space is partitioned based on the log-likelihood for each data 

string. They are used to generate the fuzzy rules. The performance of the proposed system 

is outperforming in comparison with ANN, and ARIMA. As a further improvement, (Cao 

et al., 2015) proposes an addition to the methodology introduced by (Nguyen, 2016). In 

addition to the process historical data, they use the likelihoods of the model of the most 
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recent data set. Further, they use the developed models to predict stock closing prices of 

Apple, Google, and Facebook using single observation data and multiple observation data. 

It has concluded that the results from multiple observation data perform better in stock 

price predictions. 

Also, the Maximum a Posteriori HMM approach is introduced by (Gupta and Dhingra, 

2012) which is another prediction tool. Given historical data, this method can forecast stock 

values for the coming day. To train the continuous HMM, they utilize the high and low 

values in a given day and the fractional change in the stock value of the stock. A Maximum 

a Posteriori decision is made using the trained HMM. This approach has also shown the 

excellent potential of HMM in stock price prediction. 

Real-time supervision of bioprocesses is very useful in quality control. A novel efficient 

modelling and supervision technique based on multiway partial least squares (MPLS) is 

presented by (Ündey, Tatara and Çinar, 2004). The method can predict the quality of the 

batch at the end of the growth. A real-time knowledge-based system (RTKBS) is employed 

for process monitoring, quality estimation, and fault diagnosis. Using a fed-batch penicillin 

production benchmark process simulator, they have validated the performance of the 

methodology. 

A data-driven fault prediction method is proposed by (Wang et al., 2018), which can 

quantify the degree of abnormality, based on probability density estimation. The method 

can be used to monitor the state of a complex system quantitatively. They first define an 

index to quantify the degree of abnormality. Next, a single slack factor multiple kernel 

SVM probability density estimation model is employed to improve the computational 
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efficiency. In addition to that, this improves the data mapping performance. The resulting 

model is capable of providing a rapid estimation with higher precision. The degree of 

abnormality is found to be accurately measurable by the abnormality index. 

In most of the applications, the systems tend to show some characteristic signals before the 

actual appearance of a fault. Nevertheless, the extraction of those features for fault 

prediction process is challenging. A novel study is done by (Baek and Kim, 2018) to 

address this issue. They introduce two crucial definitions called symptom pattern and 

symptom period. Then they present a methodology for symptom pattern extraction. It 

collects all evidence from sensor signals related to faults can occur shortly. This study is 

based on the assumption that there is a period before the occurrence of a fault, which carries 

the characteristic symptoms to that particular fault. The proposed method is validated using 

a scenario related to abnormal cylinder temperature in a marine diesel engine and 

automotive gasoline engine knocking.  

Process fault prediction a and prognosis is currently a highly tricky area as it can reduce 

most of the risks including financial, health, and reputation. There are numerous studies 

have been done over the years to solve this problem in applications such as software, 

electronic circuits, cement manufacturing, distillation columns, computer disk drives, 

mechanical bearings, chemical and biological processes, metal smelting, semiconductor, 

stock market prediction and foreign exchange. Among the techniques used, ANN, GP, 

Bayesian Methods, Naïve Bayes sub-models, Naïve Bayes Classifier, HMM, GMM, PCA, 

KPCA, Decision Tree, k-NN, CAE, CVTA, LLNF, Particle Predictor, GLAR, Fuzzy 

Models, and MPLS can be found in most of the applications. It is clear that HMM-BN 
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combined fault prediction and prognosis is not explored and there is an excellent potential 

to outperform the available techniques. Therefore, the present work is aimed to propose a 

novel hybrid approach of fault prediction and prognosis. The method comprises two robust 

techniques: Hidden Markov and Bayesian Network. The remaining paper is organized as 

section two provide fundamentals of two techniques and how they are integrated. Section 

three details the methodology and its testing. Section 4 discusses results while section 5 

presents the conclusions. 

3.2 Preliminaries 

3.2.1 Hidden Markov Model (HMM) 

A Markov chain is a random process that involves several different states. There are 

relationships between the states due to the state transitions. Each of these transitions has an 

associated transition probability. Also, each state has an associated observation. The main 

characteristic of a Markov process is that the state transition to the next state only depends 

on the current state and not on any of the former states. The specialty of this technique is, 

the actual state sequence is not observable. Therefore, it is called the Hidden Markov 

model. HMM with a discrete output probability distribution can be represented as; 𝜆 =

{𝐴, 𝐵, 𝜋}; where 𝜆 is the model. On the other hand, 𝐴 = {𝑎𝑖𝑗}, 𝐵 = {𝑏𝑖𝑗(𝑘)}, and 𝜋 = 𝜋𝑖 

stand for transition probability distribution; observation probability distribution; and initial 

state distribution respectively. 

If 𝑆𝑖 is a given state, parameters can be defined as; 𝑎𝑖𝑗 = 𝑃(𝑞𝑡+1 = 𝑆𝑗|𝑞𝑡 = 𝑆𝑖 ), 1 ≤ 𝑖, 𝑗 ≤

𝑁, 𝑏𝑖𝑗(𝑘) = 𝑃(𝑂𝑘|𝑞𝑡 = 𝑆𝑖), 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀, and Π𝑖 = 𝑃(𝑞1 = 𝑆𝑖), 1 ≤ 𝑖 ≤ 𝑁. 

Here, 𝑞𝑡, 𝑁, 𝑂𝑘, and 𝑀 stand for State at time t, Number of states, kth Observation, and 
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some sharp observations. Model λ can generate the probability of the observation sequence 

of visible states. The probability is calculated using equation [11] based on 𝑏𝑖𝑗(𝑘). 

 𝑃(𝑂, 𝜆) =  ∑ 𝜋𝑆0

𝑎𝑙𝑙 𝑆

∏ 𝑎𝑆𝑦
𝑆𝑡+1𝑏𝑆𝑡+1

(𝑂𝑆𝑡+1
)

𝑇=1

𝑇=0

 [11] 

Some key algorithms are running in HMM, namely the k-means algorithm, the Expectation 

Maximization Algorithm (EM), and the Viterbi Algorithm. 

k-means is almost a binary algorithm. This algorithm allows finding the cluster centers. 

This converges to local minima. It is required to know the number of cluster centers (𝑖. 𝑒. 𝑘 

as an input). As the initiation, the value of 𝑘 (i.e. number of clusters) is randomly guessed. 

As the repeating step, the data corresponds to the nearest cluster and then clusters are 

updated using corresponding data points. If the cluster is empty, the process re-starts at a 

random point until no change.  

On the other hand, the EM algorithm is one who uses other probability distributions. EM 

is a probabilistic generalization which also allows finding the cluster centers. It modifies 

not only the shape of the clusters but also the co-variant matrix. This is probabilistically 

sound and can be proven that it converges in a log likelihood space. Similar to k-means, 

this gets converged to local minima. We need to know the number of cluster centers 

(𝑖. 𝑒. 𝑘), similar to the k-means algorithm. 𝑃(𝑥) =  ∑ 𝑃(𝐶 = 𝑖)𝑘
𝑖=1 . 𝑃(𝑥|𝐶 = 𝑖) Where; 

𝑃(𝐶 = 𝑖) = 𝜋𝑖 is the Prior probability to the cluster center, 𝑃(𝑥|𝐶 = 𝑖) is the Gaussian 

parameter for each of the individual Gaussian (i.e. 𝜇𝑖, Σ𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3 …). The code can 

be divided into two sections namely Expectation Step (E-Step) and Maximization Step (M-

Step). 
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In the E-Step, it is assumed that 𝜋𝑖 , 𝜇𝑖 and Σ𝑖 are known values. If 𝑒𝑖𝑗 is the Probability of 

𝑗𝑡ℎ data point corresponds to cluster point 𝑖; 

 𝑒𝑖𝑗 = 𝜋. (2𝜋)−𝑀/2|Σ|−1exp
1

2
(𝑥𝑗 − 𝜇𝑖)

−1
∑ (𝑥𝑗 − 𝜇𝑖)

−1

𝑖
  [12] 

Where; 𝜋 stands for the prior probability to the cluster center, (2𝜋)−𝑀/2|Σ|−1 is the 

Normalizer and exp
1

2
(𝑥𝑗 − 𝜇𝑖)

−1
∑ (𝑥𝑗 − 𝜇𝑖)

−1
𝑖  is the Gaussian expression. 

In M-Step, 𝜋𝑖 can be taken from ∑ 𝑒𝑖𝑗/𝑀𝑗 ; 𝜇𝑖 can be taken from ∑ 𝑒𝑖𝑗 . 𝑥𝑋𝑗/ ∑ 𝑒𝑖𝑗𝑗𝑗 ; and Σ𝑖 

can be taken from ∑ 𝑒𝑖𝑗 (𝑥𝑗 − 𝜇𝑖)
𝑇

(𝑥𝑗 − 𝜇𝑖)/ ∑ 𝑒𝑖𝑗 𝑗𝑗 . Here 𝑒𝑖𝑗 works as a soft 

correspondence of a data point which works as a weight for the calculation.  

Defining the value of 𝑘 is the next problem to be solved. This number is not known in real-

world applications. However, it is assumed a constant. In practical cases, we guess the 

value of 𝑘 and minimize the following expression, which is called the Log Likelihood. 

 𝐿𝐿 =  − ∑ log 𝑃(𝑥𝑗|𝜎1Σ1𝑘) + 𝐶𝑂𝑆𝑇 × 𝑘

𝑗

 [13] 

Here, 𝐿𝐿 is the Log-likelihood, and 𝐶𝑂𝑆𝑇 is a constant penalty. Further, the posterior 

probability (i.e. 𝑃(𝑥𝑗|𝜎1Σ1𝑘)) is maximized of data. As shown in the equation, if the 

number of clusters of data is increased, the penalty will be high. Nevertheless, typically, 

this minimizes at a certain value of 𝑘. 

Fault diagnosis and prediction system is proposed by (Li et al., 2017), which is made up of 

three parts, namely: data preprocessing; degradation state detection, and fault diagnosis. 

For feature extraction, the wavelet transforms correlation filter is employed. To enhance 

the performance of HMM, they further propose an HMM-based semi-nonparametric 
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method by the probabilistic transition frequency profile matrix and the average 

probabilistic emission matrix. The proposed methodology is validated to be capable of 

identifying the system operating state and hence facilitate to predict the system behaviour.  

3.2.2 Bayesian Networks (BNs) 

BN is a type of probabilistic graphical models (GMs) (Ruggeri, Faltin and Kenett, 2007). 

These graphical structures can acquire the knowledge about the uncertain domain. 

Probabilistic causal relationships are demonstrated by the arrows, and each node connected 

by an arrow represents a random variable. To estimate the conditional dependencies in the 

graph, known statistical and computational methods are used. Hence, BNs combine 

principles from graph theory, probability theory, computer science, and statistics. Further, 

as per (Neapolitan, 2010), a BN model can be used to study the structures of gene 

regulatory networks. It can join in information from both prior knowledge and 

experimental data. BNs can be considered as a powerful tool for fault diagnosis. It has 

shown remarkable performance in FDD in work presented by (Amin, Imtiaz and Khan, 

2018). Therefore, the predicted fault by HMM can be prognosed by BN. 

As mentioned in (Wu et al., 2017), The basic principles of BN are conditional 

independence and joint probability distribution: 

 𝑃(𝑉1, 𝑉2, … , 𝑉𝑘|𝜈) =  ∏ 𝑃(𝑉𝑖|𝜈)

𝑘

1

       (𝑖 = 1,2, … , 𝑘) [14] 

 𝑃(𝑉1, 𝑉2, … , 𝑉𝑘|𝜈) =  ∏ 𝑃(𝑉𝑖/𝑃𝑎𝑟𝑒𝑛𝑡(𝑉𝑖))

𝑘

1

   (𝑖 = 1,2, … , 𝑘) [15] 
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BNs based rare event prediction has been studied by (Cheon et al., 2009) and (Cózar, Puerta 

and Gámez, 2017). BN has both causal and probabilistic semantics. Hence, it is ideal to 

combine actual process historical data, and background knowledge. To be used when there 

are not many details available about all possible values, (Cózar, Puerta and Gámez, 2017) 

have proposed a general-purpose decision support system tool. It consists of two BN 

models: one represents the failure-free behaviour of the system, and the other represents 

abnormal behaviours. This novel system is a robust tool that can be used for health 

management in industrial environments. The core of the system is a probabilistic expert 

system based on dynamic BNs. Fault detection is based on both conflict analysis and the 

likelihood-ratio test. 

3.3 The Methodology 

Under this topic, the pre-processing of data, training of HMM, prediction of abnormalities, 

training of BN, and prognosis of the predicted fault using BN are discussed. As illustrated 

in Figure 3-3, data is pre-processed to extract standard operating condition data, and the 

extracted data is used to establish HMM. The trained HMM is then used to generate 

conditional probabilities for BN. On the other hand, the PFD is used to develop the 

qualitative BN (i.e. the structure of BN), through the development of Signal Directed Graph 

(SDG). Then the CPTs of qualitative BN are filled using the generated conditional 

probabilities to establish the quantitative BN. The methodology is explained in detail in 

working paper (Pathmika and Khan, 2018a). 

In using the established HMM and BN, the procedure illustrated in Figure 3-4 is followed. 

The incoming real-time data is fed to the trained HMM, and the possible data string after 
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50 𝑠 is predicted. The predicted data strings are carefully assessed to detect potential future 

abnormalities. Once an abnormality is detected, that information is sent to the trained BN 

as likelihood evidence, and the cause for the particular abnormality is proposed. 

 

 

 

Figure 3-3: Establishing HMM and BN Figure 3-4: Overview of prediction 

and prognosis 

3.3.1 Data preprocessing 

Initially, there are ten datasets for ten different faults as shown in Table 3-1. For example, 

in dataset A, first 1000 data strings represent normal operating conditions. 1001 to 1500 

data strings represent the respective faulty state. First, standard operating condition data 

are extracted from each data set and used to train the HMM. On the other hand, to generate 

a testing data set, ±0.002% of random noise for all 22 variables were added using a Matlab 

code. This noise level is gradually reduced to find the maximum possible noise level that 

the testing data set can go up to while keeping the accuracy of prognosis through BN. 
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3.3.2 Training of HMM and prediction of 𝑡ℎ𝑒 𝑛𝑡ℎ data string  

The open source HMM toolbox for Matlab by (Murphy, 2005) is used in this study. Figure 

3-5 illustrates the training process of HMM. mu0 and sigma0 are an initial assumption for 

mean for the mixture of Gaussians and Initial assumption for standard deviation for the 

mixture of Gaussians respectively. They are derived through mixgauss_init function, based 

on the inputs 𝑄, 𝑀, 𝑑𝑎𝑡𝑎, 𝑂, 𝑇, 𝑎𝑛𝑑 𝑛𝑒𝑥. 

Table 3-1: Faults in the TE process and their respective causes 

Fault ID Actual Root Cause 

A XMEAS (3) 

B XMEAS (9) 

C XMEAS (11) 

D XMEAS (9) 

E XMEAS (11) 

F XMEAS (4) 

G XMEAS (9) 

H XMEAS (11) 

I XMEAS (1) 

J XMEAS (19) 

 

Then, prior0, transmat0, mixmat0, and data along with mu0, and sigma0 are updated by 

an EM algorithm to determine LL, prior1, transmat1, mu1, sigma1, and mixmat1. This 

provides a trained HMM which can give a higher log likelihood when it is provided with a 

data set with similar features. Table 3-2 provides a description of each variable which is 

useful in training an HMM using HMM Toolbox developed by (Murphy, 2005). Further, 

Figure 3-5 illustrates the connection between functions used in HMM tool box such as 

mixgauss_init, mhmm_logprob, mixgauss_prob, and viterbi_path. This figure is solely 
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presented to illustrate the information flow from one function to another. Detailed 

explanation on the function of HMM tool box is not presented for clarity. 

In selecting the number of hidden states (𝑄), cross-validation technique is used. If there 

are 𝑁 training samples and 𝑁 parameters, a perfect score can be achieved, means free of 

errors. However, this can be done only for available data. That does not mean that the 

model is strong enough to predict the unseen data. For example, the stock price variation 

in the coming month can be given.  

If the data are not correctly fitted, it is called under fit. Moreover, if all the noise is also 

taken into account, it is called overfitting. Therefore, this careful separation of correct data 

is essential. As a solution to this, the following approach can be taken. 

The entire data set is separated into several portions, and one set is kept as a validation data 

set while the rest of the data are taken as training data. After that, the cost of each validation 

data set is considered. Through this method, we can choose the optimum number of states 

that give the highest validation accuracy. 

A standard way of doing this is K-fold cross-validation. Here, the total data set is separated 

in to (say 𝑁) sets. Then any (𝑁 − 1) sets can be selected as training data, and the remaining 

one can be used for validation. This 𝑁 can be varied over a possible range, and the mean 

and standard deviation is used in making the decision. On top of this, the knowledge on the 

physical system can also be used in deciding the number of hidden states. 

In training the HMM, the test data are fed as a 3D matrix to the HMM toolbox as shown 

in Figure 3-6. The number of observation sequences (𝑇) is the number of rows in the data 

set while the number of different observations in a given data string (𝑂) is the number of 
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columns in the data set. Also, there is a provision for datasets from similar processes called 

𝑛𝑒𝑥. In the current study, 𝑛𝑒𝑥 = 1. 

 

Figure 3-5: Training and application process of an HMM 

 

Figure 3-6:3D matrix of data 
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Table 3-2: Description of notations used 

Notation Stands for Description 

Q Number of hidden states 
The optimum value of this to be 

determined by cross-validation 

M 
Number of mixtures of 

Gaussians 

The optimum value of this to be 

determined by cross-validation 

Data Training data 

This is the historical standard operating 

condition data of the process used to 

train the model 

O 
Size of a given vector-

valued sequence 

The number of different observations 

for a given sequence. i.e. the number of 

different sensors that give readings per 

unit time. 

T 
Length of a given vector-

valued sequence 
The number of observation sequences 

Nex 
Number of vector-valued 

sequences 

The observations (i.e. 𝑇, 𝑎𝑛𝑑 𝑂) taken 

from similar processes 

Full/spherical/diag Co-variance matrix type Trial and error selected optimum one 

mixgauss_init Function 

Estimates initial parameters for a 

mixture of Gaussians using K-means 

algorithm. 

mu0 Initial parameter: mean 
The initial assumption for mean for the 

mixture of Gaussians 

mu1 Updated mean  
Updated through a mixgauss_init 

function for the mixture of Gaussians 

Sigma0 
Initial parameter: standard 

deviation 

The initial assumption for standard 

deviation for the mixture of Gaussians 

sigma1 Updated standard deviation 

Updated standard deviation through a 

mixgauss_init function for the mixture 

of Gaussians 

prior0 
Initial state probability 

estimate 

The initial assumption for state 

probability 
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Prior1 Updated state probability 
Updated state probability through EM 

algorithm for the mixture of Gaussians 

transmat0 
Initial state transition 

probability 

Assumed value for transition 

probability 

transmat1 
Updated state transition 

probability 

Updated state transition probability 

through EM algorithm for the mixture 

of Gaussians 

mixmat0 
Initial Gaussian mixture 

matrix 
Assumed values for the GM matrix 

test data New observations 
Real-time incoming data can be fed 

through this variable 

LL Log-likelihood ℒ(Θ|𝜘) 

  

ℒ(Θ|𝜘) =  ∏ 𝑝(𝑥𝑖|Θ) =

𝑁

𝑖=1

 𝑝(𝜘|Θ) 

mhmm_logprob Function 

This evaluates the log likelihood of a 

trained model given test data. This 

computes the log likelihood of a data 

set using a (mixture of) Gaussians. 

mixgauss_prob Function 
Evaluate the pdf of a conditional 

mixture of Gaussians 

viterbi_path Function 

Determines the most likely hidden state 

path the system may take for the given 

set of observations. 

loglik  
Log likelihood of the test 

data 

Determines the log likelihood of the 

given data sequences. i.e. likelihood of 

occurrence 

path  Path of hidden states 

Path of most probable hidden states for 

the given set of observations (i.e. test 

data) 

 

Once the data is fed, the HMM can be trained. The training curve can be plotted as shown 

in Figure 3-7. It shows that the LL value gets consistent with the number of iterations. It 

means that the parameters estimated (𝑖. 𝑒. 𝜆) for HMM are consistently compatible with 

the training dataset. In brief, the HMM is trained for the given data set. 
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In addition to the above work done offline, the trained HMM is then used to predict the 𝑛𝑡ℎ 

data string by following the online procedure shown in Figure 3-8. Prediction with HMM 

requires experience on similar past incidents. Once the system understands the current 

state, it scans its memory (i.e. the LL value history) for a similar state, and the prediction 

is made concerning that. This is the central concept used in the prediction process. 

If 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current time, up to (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑛)𝑡ℎ data string is predicted. Once the 

actual time reaches (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑛) the system reviews the predicted and observed data 

strings and creates knowledge which assists in predicting the next 𝑛 data strings. 

In the first step, three adjacent incoming data strings are fed to the HMM, and the respective 

LL values are evaluated. The LL values are then compared with the history of adjacent LL 

values. As a result, the most approximate three adjacent LL and the respective data string 

can be detected from past knowledge. Here it is assumed that the same pattern occurred in 

the history is likely to occur again. Based on that assumption, the 𝑛𝑡ℎ data string is 

predicted. This approach is a modified version of the work presented by (Hassan and Nath, 

2005). As a further improvement of the prediction, the procedure illustrated in Figure 3-9 

is used. It can be observed from Figure 3-10, that the predicted and actual LL values follow 

a pattern which is almost similar. Here the solid line represents the actual variation of LL 

values during the previous data window and the dotted line represents the prediction made 

by the HMM for the same data window. Therefore, during the revision process shown in 

Figure 3-9, the correction of the mean value of predicted data concerning the previous data 

window is found to be satisfactory. 

 



 

 

88 

 

Figure 3-7: Training Curve for HMM 

 

 

Figure 3-8: Prediction of 𝑛𝑡ℎ data string using trained HMM 
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Figure 3-9: Refining process of the initial prediction 

3.3.3 Development of structure and training of BN 

This is the section that process knowledge is brought in to the prediction and prognosis 

process. The BN structure development begins in the Process Flow Diagram (PFD). The 

PFD can be converted to an SDG based on the knowledge of causality and effect. Then it 

is converted to a BN while maintaining the acyclic nature of BN. 

 

Figure 3-10: Predicted Vs. Actual LL of Fault A 

Actual 

Predicted 
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A detailed explanation of the methodology is presented in the working paper (Pathmika 

and Khan, 2018a). On the other hand, the conditional probabilities derived through HMM 

are used to establish the CPTs of BN. The complete training process is also presented in 

(Pathmika and Khan, 2018a). The developed BN for the TE process is illustrated in Figure 

3-11. 

3.3.4 Introduction of Likelihood Evidence to the trained BN 

As further mentioned in working paper (Pathmika and Khan, 2018a), in this step, the time 

of a fault is predicted using HMM. Assuming HMM detects the fault after a delay of 𝑡0 

number of seconds of actual introduction, data strings in the recent past (𝑡0 seconds) are 

also considered to calculate the probability of being all the nodes in ‘Faulty State.' The 

value of 𝑡0 depends on the complexity of the fault. If the LL value clearly shows a deviation 

soon after introducing the fault, 𝑡0 can be a minimal value and vice versa. For example, 

𝑡0 = 50 𝑠 was taken. 

3.3.5 Prognosis using BN 

The methodology for prognosis is adopted from the study by (Amin, Imtiaz and Khan, 

2018). Once the BN is updated with the likelihood evidence, the percentage change is 

evaluated in each node. If the highest percentage increase is in a root node, that node is 

taken as the cause for the particular problem. If not, the highest percentage change in the 

preceding successive parent node is taken as the cause. 
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Figure 3-11: BN for the TE process (Pathmika and Khan, 2018a) 
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Figure 3-12: Procedure for prognosis of the fault 

3.4 Results and Discussion 

Under this topic, prediction and prognosis results of fault A are presented as a sample. 

Prediction on testing data set of fault A is illustrated in Figure 3-13. According to the same 

figure, fault A is detected at 995 s, which is introduced to the system at 1000 s. As 

mentioned in the working paper of (Pathmika and Khan, 2018a), the fault in the same data 

set grows to a detectable level at 1020 s. Therefore, this is a decent prediction of the 

abnormality. Table 3-3 indicates the change in probabilities in each node after introducing 

the likelihood evidence. As illustrated, the highest percentage change is in XMEAS (3) 

which is the actual cause of fault A. This completes the prediction and prognosis of        

Fault A. 

In a similar approach, the rest of the faults were also tested. It was observed that the 

prognosis performance varies for each fault. Therefore, the noise level was gradually 

reduced until the system accurately predicts the fault. Table 3-4 shows the performance of 
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the prediction of each fault based on the maximum level of noise that can be handled by 

each system.  

 

Figure 3-13: Fault A prediction using HMM 

Table 3-3: Prognosis of fault A 

 



 

 

94 

Table 3-4: Summary of results 

Fault 

Maximum Noise level can 

(for accurate prediction) 

 

Actual Root Cause 
Accurate Prediction 

A 10−2 XMEAS (3) Yes 

B 10−7 XMEAS (9) Yes 

C 10−3 XMEAS (11) Yes 

D 10−7 XMEAS (9) Yes 

E 10−3 XMEAS (11) Yes 

F N/A XMEAS (4) No 

G 10−8 XMEAS (9) Yes 

H 10−6 XMEAS (11) Yes 

I 10−8 XMEAS (1) Yes 

J N/A XMEAS (19) No 

 

The data set used in the current study contains unexpected failures which are difficult to 

predict in comparison with gradually occurring faults. There is a little discussion about 

trend prognosis of abrupt faults available in the literature (Li et al., 2014). The prediction 

using HMM mainly utilizes the experience of faults and the variation characteristics before 

a fault. In other words, it tracks the features (symptoms) that a system will show just before 

the start of a fault.  Therefore, the proposed technique is recommended for systems which 

show some characteristics or symptoms before failure. It can be a pattern of variation of 

pressure or any physically measurable parameter. These are not rare in practical 

applications, and HMM is mighty in classifying those features.  

The testing data used has ±10−2 to ±10−8 of variation in all 22 parameters in comparison 

with the training data. Some of the faults are not proposed adequately at higher noise levels. 

Faults A, C, and E were accurately prognosed even at comparatively higher noise levels. 

Because the system is composed of 22 sensors, the information of an abnormality may have 
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been diluted by the rest of the sensor readings and the failure detection of F, and J may 

have become unsuccessful. 

3.5 Conclusions  

A hybrid methodology of HMM-BN is proposed in process fault prediction and prognosis. 

HMM was used at the first stage to predict the fault using process historical data and real-

time data. A BN is employed to determine a precise prognosis by reviewing the prediction 

made by HMM. The BN uses the process knowledge and inputs from HMM to perform the 

prognosis. Higher prognostic accuracy is achieved with this combined approach of HMM 

and BN. Depending on the complexity of the fault and the magnitudes of variations of each 

parameter, the accuracy of prediction varies. However, the proposed methodology can 

improve prognosis eight of the faults accurately with different levels of noise in testing 

data. 

The present study contributes a new knowledge on process fault prediction and prognosis 

based on HMM and BN combined approach. The unique aspect of this study is the 

integration of HMM and BN for fault prediction and prognosis of process applications. 

Faults F and J were predictable, as abnormalities, but the prognosis was not accurate. 

Prognosis of fault F and J, using the HMM-BN hybrid system will be a useful contribution. 

The false alarm frequency needs to be reduced which is a practical problem that arises 

when implementing the proposed method in a real-world application. This can be done by 

implementing a suitable algorithm which defines when to indicate a potential fault. Further, 

it can be developed into a stand-alone computer programme based on Matlab. 
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CHAPTER 4 : AUXILIARY CODES FOR FAULT PROGNOSIS PROCESS OF 

TENNESSEE EASTMAN PROCESS USING A HYBRID MODEL 

(CPL1.0)3 
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Abstract  

CPL1.0 is a Matlab code which can generate fault predictions of Tennessee Eastman (TE) 

process. It facilitates the calculation of Conditional Probabilities (CP), Prior Probabilities 

(PP), and Likelihood Evidences (LE) which are useful in establishing the Bayesian 

Network (BN), which is later used in fault prognosis. Determination of the CP, PP, and LE 

is the most time-consuming component in the BN establishing process. Hence, users of this 

code can follow the methodology proposed for effective use of their time for new 

contributions. Sensor readings and their respective log-likelihood values are used to 

                                                 
3 This chapter is submitted as a manuscript to the journal of SoftwareX and currently under review 
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determine CP, PP, and LE. The code is presented in such a way that it can be adopted to 

any BN structure with minimum alterations. Further, HMM can be easily replaced with 

any other machine learning technique. Therefore, CPL1.0 is a facilitator to communicate 

between BN and the other machine learning technique in a hybrid fault prediction and 

prognosis system. 

Keywords: Conditional Probabilities; Prior Probabilities; Likelihood Evidence; Bayesian 

Networks 

 

4.1 Motivation and Significance 

Use of hybrid systems has shown enhanced performance in fault prediction and prognosis. 

Bayesian Networks (BN) combined with other machine learning techniques is a current 

trend and many combinations still to be explored. Establishing the BN, based on the outputs 

of fellow machine learning technique, is a bit of a challenge as extensive coding is 

involved. This is mainly because of the conditional probability tables to be established in 

BNs. A systematic approach can simplify the problem of coding which can save a lot of 

valuable time that a scholar can effectively utilize to make their original contributions.  

The importance of the current code is that it can generate the required information to 

establish BN, based on the outputs of the Hidden Markov Model (HMM). The code is 

specifically written for prediction and prognosis of potential faults in the Tennessee 

Eastman (TE) process based on a hybrid approach of HMM and BN. Nevertheless, it can 

be easily altered to fit any type of BN by using the basic functions available in Matlab 

software. Therefore, the code will contribute to the process of scientific discovery in the 

future by solving an intermediate problem of bridging the BN with other machine learning 

techniques, which will be a recurrent step in future work. 
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4.2 Software Description 

CPL1.0 is a tool to determine essential inputs to a BN, which is 100% Matlab based code. 

It helps to combine BNs with another machine learning technique. The whole code is 

available on GitHub repository thus possible to clone or fork. 

4.3 Software Architecture 

To use the proposed code, the user should have access to Matlab software and HMM 

toolbox developed by Kevin Murphy. Once the HMM toolbox is loaded in Matlab, 

following the method mentioned in (Murphy, 2005), the CPL1.0 code can be used 

according to the procedure shown in . CPL1.0 is responsible for the operations mentioned 

in the shaded boxes in Figure 4-1. The user can feed the process normal operating condition 

(NOC) data to train the HMM. The trained HMM and a different set of NOC data to be 

used to generate a data history along with the respective log-likelihood (LL) values. The 

data history and the LL values are then used to generate the Conditional Probability Tables 

(CPT), and the respective data strings (i.e. data history) are used to generate the prior 

probabilities. 

On the other hand, the real-time process data and the trained HMM is used for fault 

prediction and the generation of likelihood evidences. Later, all three types of information 

need to be manually fed to the BN, which has a structure developed using GeNIe. The user 

can just copy and paste the respective data strings into the CPTs of BN. Completion of this 

step facilitates making decisions on the root cause of the potential fault. The proposed code 

is used in the working paper (Pathmika and Khan, 2018b). The transfer of data from Matlab 

to GeNIe can be eliminated by using the BayesNet toolbox by (Kevin Murphy, 2001). 
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Figure 4-1: The procedure to use CPL1.0 

 

Figure 4-2: The input data format (Chapter 3, Figure 3-6) 

4.4 Sample code snippets analysis. 

A history of loglikelihood values (i.e. loglikeALL) is developed using the mhmm_logprob 

function in HMM toolbox. Next, the lower and higher limits of the safe zone are defined 
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using the code presented in equations [16] and [17] which are denoted by 𝑎𝑁𝐿, and 𝑎𝑁𝐻 

respectively. Here 𝑁 stands for the number of the node. Here 𝑃𝐻 denotes the history of 

NOC data and the respective LL while 𝑟 denotes a constant that can be altered to get a 

suitable fluctuation of states. If a parameter is in the Danger Zone, it will be considered as 

a potential fault hence given the designation 𝐹. If not, the designation 𝑁 is given. 

 𝑎1𝐿 = 𝑚𝑒𝑎𝑛(𝑃𝐻(: , 1)) +  (𝑚𝑖𝑛(𝑃𝐻(: , 1)) − 𝑚𝑒𝑎𝑛(𝑃𝐻(: , 1)))/𝑟 [16] 

 𝑎1𝐻 = 𝑚𝑒𝑎𝑛(𝑃𝐻(: , 1)) +  (𝑚𝑎𝑥(𝑃𝐻(: , 1)) − 𝑚𝑒𝑎𝑛(𝑃𝐻(: , 1)))/𝑟 [17] 

 

Figure 4-3: Safe and danger zones of each parameter reading (Chapter 2,  

Figure 2-10) 

In a BN, for a given node with six parent nodes, there will be 26 number of conditional 

probability values to be determined. In other words, the combinations will vary from 

𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 to 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁. The probabilities for each possible combination are 

determined using the code. Further, the prior probabilities are calculated for root nodes 

considering the history. Most importantly, when calculating the likelihood evidences, the 

CPL1.0 considers 50 data strings backwards from the point where the abnormality is 

detected. It is done in order to determine a most probable state combination at the point of 

detection. 
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In predicting, the code scans the history of LL values which shows three adjacent closely 

similar cases to the most recent three LL values. Then the next data string is predicted 

assuming a similar pattern to the LL history. Noise is added to each parameter of the 

original data set in the range of 10−2% to 10−8% of their respective values. Then the 

system is tested for the prediction performance for different noise levels. 

4.5 Illustrative Example 

Figure 4-4 illustrates the training curve of HMM using NOC data. The LL value 

approximately becomes a constant after 10 iterations. During this process, the parameters 

of HMM get tuned up such that it gives the best explanation to the training dataset. 

Initially, the conditional probabilities and prior probabilities are determined using the code 

and then used to establish the BN. This component is a calculation done based on the data 

fed into CPL1.0. The user is recommended to run the code with the use of Matlab software 

and HMM Toolbox by Kevin Murphy. The output is a somewhat large matrix of data which 

contains the conditional and prior probability values. The user can just copy and paste the 

values in the correct cell of GeNIe. This is not a difficult task as the values are in the same 

pattern of GeNIe CPT table cells. 

Once a new data string is provided to the trained HMM, it calculates the LL accordingly 

and plots the curve similar to the one shown in Figure 4-5. It illustrates the point where the 

system identifies the abnormality (i.e. 1130 s). On the other hand, Figure 4-6 illustrates the 

prediction of abnormality which occurs around 995 s. This is a decent prediction of the 

fault for a testing dataset with added noise of 10−2 %. 
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The predicted fault is then used to determine the likelihood evidences, which are later fed 

to BN. This leads to determine the percentage changes in failure probability in each node. 

The detailed procedure is explained in the working paper by (Pathmika and Khan, 2018b) 

 

 

Figure 4-4: The training curve of HMM (Chapter 3, Figure 3-7) 

 

 

Figure 4-5: The actual LL variation of fault 
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Figure 4-6: Predicted LL variation of the fault with 10-2 % of noise 

4.6 Impact 

With the availability of CPL1.0, new research problems on fault prediction and prognosis 

using BNs can be pursued conveniently. There are many different combinations still to be 

explored in this area. The proposed code will simplify a major recurrent step in that process. 

The improvement made through CPL1.0 code can be considered as a solution given to a 

common problem faced by the researchers who work related to BN. Future researchers can 

develop CPL1.0 up to a Matlab based stand-alone software. It can be made flexible to train 

any given BN, based on the outputs of the fellow machine learning technique. On the other 

hand, those who solely work on predictions using HMM will also get the benefit as the 

initial part of CPL1.0 deals with fault prediction using HMM. 

The current practice of establishing CPTs include subjective approaches such as expert 

judgement. Nevertheless, the proposed code provides a better objective and transparent 

approach in determining the conditional probability values. Hence, rather than allocating 
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time on a problem that one has already solved, people can reuse this code while 

contributing to its development. 

In addition to the intended user group of this code, the researchers who work in the areas 

of finance, weather forecasting, maintenance, and medical fields will also get the benefit. 

Therefore, the proposed code will have a wide spread of users. Further, this study provides 

an excellent example of how to apply HMM in a given problem. It will be valuable for 

HMM users as there is a very limited number of documented applications available in the 

literature. 

Table 4-1: Code Meta Data 

Nr Code metadata description   

C1 Current code version CPL1.0 

C2 Permanent link to code/repository 

used of this code version 

https://github.com/mihiranpathmika/CP

L1.0  

C3 Legal Code License MIT License 

C4 Code versioning system used none 

C5 Software code languages, tools, and 

services used 

Matlab R2018a 

C6 Compilation requirements, operating 

environments & dependencies 

Matlab R2015 onwards 

C7 If available Link to developer 

documentation/manual 

https://github.com/mihiranpathmika/CP

L1.0  

C8 Support email for questions Official: gdmpathmika@mun.ca 

Personal: mihiranpathmika@gmail.com  

https://github.com/mihiranpathmika/CPL1.0
https://github.com/mihiranpathmika/CPL1.0
https://github.com/mihiranpathmika/CPL1.0
https://github.com/mihiranpathmika/CPL1.0
mailto:gdmpathmika@mun.ca
mailto:mihiranpathmika@gmail.com
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4.7 Conclusions 

CPL1.0 is a Matlab based software code which can be used to bridge BNs with other 

machine learning techniques. It provides a transparent and objective technique in 

establishing the CPTs of a BN which is somewhat challenging for BN users. On the other 

hand, CPL1.0 facilitates fault prediction and prognosis, with the use of HMM and 

BayesNet toolboxes introduced by Kevin Murphy. It has a wide spread of applications in 

several different fields hence a large number of potential users. 

 

4.8 References 

Kevin Murphy. (2001). How to use the Bayes Net Toolbox. Retrieved September 3, 2018, 

from http://www.cs.ubc.ca/~murphyk/Bayes/usage.11dec01.html 

Murphy, K. (2005). Hidden Markov Model (HMM) Toolbox for Matlab. Retrieved July 

19, 2018, from https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html 

Pathmika, M., & Khan, F. (2018). Process fault prediction and prognosis using a hybrid 

model. St. John’s. 

 

 



 

 

111 

CHAPTER 5 : SUMMARY AND CONCLUSION 

 

Early detection or prediction of a fault, along with the respective root cause identification 

is extremely valuable in terms of process operations and safety concerns. A validated 

solution methodology for the problem is proposed through this thesis based on a hybrid 

approach of fully data-driven and fully knowledge driven techniques namely HMM and 

BN respectively. 

As the first step, a method was proposed to detect the fault using HMM and diagnose the 

root cause using BN. It showed successful early detection for 100% of the faults and 

successful diagnosis for 80% of the faults. 

As the second step, the methodology was further developed to predict faults even with 

some degree of added noise to the original data sets. It also predicted the faults with a 100% 

success and diagnosed the fault with an 80% of accuracy. 

While providing a transparent methodology for the entire process, this study introduced a 

software code (CPL1.0), which can be effectively used in future researches related to 

hybrid FDD or FPP systems which includes BNs. The introduced software code and the 

procedure will save a considerable amount of time that a researcher allocates to establish 

CPTs of BN, with the use of outputs of other machine learning techniques. 

In conclusion, the thesis proposes a successful solution methodology for FDD and FPP of 

process engineering applications in safety perspective. It detects and predicts 100% of the 

abnormalities while accurately diagnose and prognose 80% of the selected faults of 

benchmark TE process. Further, it presents a valuable software tool segment which has a 

potential to be used in future related research. 
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APPENDIX A: DETECTION OF FAULTS FROM FAULT A TO J 

 

 

 
 

Figure A-1: Detection of fault B, C, and D 
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Figure A-2: Detection of fault E, F, and G 
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Figure A-3: Detection of fault H, I, and J 
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APPENDIX B: DETECTION OF FAULTS FROM FAULT A TO J 

 
Figure B-1: Prediction of fault B, C, and D 
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Figure B-2: Prediction of fault E, F, and G 
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Figure B-3: Prediction of fault H, I, and J 

 


