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Abstract 
 Symbiotic relationships between invertebrates and chemoautotrophic bacteria can be 

found in many marine environments. Here we focus on describing the genomic content of the 

extracellular symbionts of Thyasira cf. gouldi. Previous work described three symbiont 

phylotypes designated A, B, and C. These bacteria are all closely related sulfur oxidising 

gammaproteobacteria. 

 Investigation of the ribulose-1,5-bisphosphate carboxylase (RuBisCo) gene showed a 

high level of diversity between bacterial populations hosted by Thyasira cf. gouldi. The RuBisCo 

had a higher diversity than the 16S rRNA gene and showed possible horizontal gene transfer 

events within phylotype A. A small number of host individuals also appeared to contain mixed 

populations of RuBisCo phylotypes not identified in 16S rRNA sequences. 

 Draft genomes were created from sequencing of host gill tissue. These samples were 

selected to include bacteria of each phylotype. The draft genomes created were highly 

fragmented, but many genes were identified. The metabolic capabilities were very similar and 

encode for carbon fixation through the Calvin-Benson-Basham cycle. Energy for this process is 

obtained through oxidation of sulfur compounds through both a reverse dissimilar sulfate 

reduction cycle and a bacterial sulfur oxidation cycle. The bacteria may also be able to utilize 

nitrogen or hydrogen oxidation for respiration. A functional tricarboxylic acid cycle was also 

identified in all three genomes suggesting the bacteria may be capable of heterotrophy. All 

metagenomes contained chemotaxis and flagellar genes.  

 An extracellular chromosome encoding a type IV secretion system was identified in the 

draft genome of phylotype B. If this plasmid is truly from the symbiont it could be used to export 

compounds to the host. Both phylotypes A and B contained genes involved in biofilm formation. 

A biofilm would benefit extracellular bacteria by creating a barrier from the host immune system 

and creating a controlled environment where the symbiont can exclude other environmental 

bacteria. Some genes associated with host interactions were also identified, although these were 

less conserved than the metabolic functions. 

 Our results support the evidence that Thyasira cf. gouldi obtains its symbionts from the 

environment. The draft genomes contained evidence of a flexible metabolism that can adapt to 

changing sediment conditions.   
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Chapter 1: Introduction and Overview 
 

1.1 Symbiosis  

The term symbiosis is used to describe any relationship where distinct species live in 

close contact with each other for large portions of their life cycle. This definition includes 

mutualistic, commensal, and parasitic relationships, although symbiosis is commonly associated 

with mutualistic relationships (Sachs et al., 2011). Mutualistic relationships have been described 

between bacteria and animals from all major phyla (Douglas, 2014), and close contact has caused 

changes to both bacteria and their host over evolutionary time. Symbiotic relationships with 

prokaryotes are ubiquitous in nature and played major roles in shaping the evolution of 

eukaryotes, both the mitochondria and chloroplast are ancient endosymbionts that became 

cellular organelles (Margulis, 1981; Gil et al., 2010). 

While every animal is surrounded by bacteria, most of these relationships are transient 

and do not persist across host generations. A symbiosis that becomes heritable, with symbionts 

passed from generation to generation, can lead to new selective pressures on both organisms 

(McFall-Ngai et al., 2013; Bennett and Moran, 2015), and can be a driving force for evolution 

(Brucker and Bordenstein, 2012). Stable symbiotic relationships can open new niches for hosts, 

allowing them to live off diets or move into habitats that could not sustain their non-symbiotic 

counterparts; this can cause effective ecological isolation and lead to speciation over time 

(Brucker and Bordenstein, 2012). To understand how symbioses affect the organisms involved, it 

is important to study relationships at various evolutionary stages, and not only focus on the well-

established and highly derived obligate symbioses.  
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 1.1.1 Evolution of symbiosis  

 Many of the original theories describing symbiont evolution focused on parasitic 

interactions because of their impact on human health and economics (Van Valen, 1974). 

Theories regarding parasitic relationships viewed them as an evolutionary “arms race”. Parasites 

had to evolve quickly to avoid being destroyed by the host’s immune system. The host would 

evolve new immune responses to counteract the parasites evolution, and in this way the two 

organisms would evolve quickly; each trying to out maneuver the other. This arms race was first 

described in the Red Queen Hypothesis (Van Valen, 1974). Theories explaining the evolution of 

mutualistic relationships were developed later and built upon the parasitic models (e.g. the Black 

Queen Hypothesis, which was derived from the Red Queen Hypothesis; (Morris et al., 2012). 

Early researchers viewed beneficial relationships as being the reverse of parasitic relationships, 

leading to the "mutualistic environment" theory (Law and Lewis, 1983). A mutualistic 

environment was thought to select for genomic stasis in the partners by positive frequency-

dependant selection: the host and mutualistic symbiont evolve to accommodate the most 

common genotype in their partner with little genomic change over time (Law and Lewis, 1983; 

Sachs et al., 2011). These selective forces were thought to favor asexual reproduction and low 

recombination rates in the bacteria but not in the host, which requires sexual reproduction to 

adapt to shifting environmental conditions. It was believed that shifting conditions only affect the 

host because the bacteria are within an unchanging environment inside the host (Law and Lewis, 

1983; Sachs et al., 2011). However, an increase in the amount of genomic data available to 

researchers has brought these historical models under new scrutiny (Ochman and Moran, 2001; 

Sachs et al., 2011). Recent whole genome studies have shown that both parasitic and mutualistic 

bacteria undergo rapid molecular changes and share a range of genomic features. They often use 

the same molecular mechanisms for invasion/colonization of their host and genomic reduction is 
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common to both obligate parasites and symbionts (Ochman and Moran, 2001; Moran and 

Plague, 2004; Wernegreen, 2005). These unexpected similarities challenge the idea of 

mutualistic and parasitic relationships being opposites and have led to the understanding that 

even in purely mutualistic relationships, the “partners” are not working in harmony. Each 

organism “wins” by getting the most out of the other while giving back as little as possible 

(Ferriere et al., 2002; Sachs et al., 2011; Douglas and Werren, 2016).  It is clear that evolution 

within symbiotic relationships is much more complicated than originally thought.  

1.2 Invertebrate-Bacteria Nutritional Symbiosis 

  Invertebrates from a variety of environments rely on symbiotic bacteria for nutritional 

needs. In these relationships the nutrients the bacteria provide can vary from specific amino acids 

or vitamins that are lacking in the host’s diet, such as in phloem feeding insects or blood sucking 

parasites, to providing the host with most of their nutrients, as in some marine chemoautotrophic 

symbioses (Cavanaugh et al., 2006; Gündüz and Douglas, 2009). These relationships can open 

new environmental niches for the host and allow them to thrive on nutrient poor diets, removing 

competition from individuals without the symbiont (Brucker and Bordenstein, 2012; Joy, 2013). 

Aphids that specialize in feeding on phloem fluid sustain themselves on a diet low in vitamins 

and rely on complex relationships with symbiotic bacteria to supplement their diet. Aphid 

symbionts have severely reduced genomes yet maintain pathways to synthesize all 10 essential 

amino acids and many vitamins; this has allowed the insect to be sustained by phloem sap 

instead of the more nutritious xylem sap (Gündüz and Douglas, 2009). Nutritional symbioses can 

lead to radiation events, where many species arise quickly as the host moves into the new 

ecological niches (Brucker and Bordenstein, 2012).  

Symbionts may evolve to supply a very small part of the host's nutrition, for instance, 

they may provide only the few amino acids that are missing in the host diet (Hansen and Moran, 
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2011). This shows that natural selection can act on the symbiont genome, leading to a perfect 

specialization for the niche of supplementing the host's diet. In other nutritional symbioses, the 

host receives a wide range of nutrients from the symbiont. In these cases, nutrient transfer is 

often achieved through direct digestion characterized by phagocytosis of the bacteria, followed 

by digestion within lysozyme vacuoles. This has been observed in some species of thyasirid 

clams, lucinid clams, bathymodioline mussels and other bivalves (Le Pennec et al., 1988; 

Espinosa et al., 2013; Laurich et al., 2017).  

 When a wide variety of nutrients are received from the symbiont, the host can rely on 

them for various amounts of their nutritional needs. Some hosts are also able to obtain food from 

the environment. In these facultative relationships, the symbiont may act more as a food reserve, 

supplementing the host’s diet when environmental nutrients are scarce (Dufour and Felbeck, 

2006). Complete reliance on symbionts for nutrients can lead to morphological changes within 

the host, such as the reduction or loss of the digestive tract (Reid and Bernard, 1980; Felbeck, 

1981). Once this occurs the symbiosis has become obligate for the host. This is often associated 

with vertical transmission, (which is discussed in a later section); however, this is not always the 

case. Adult Riftia pachytila have no digestive system and completely relies on its symbionts for 

nutrition but acquires these symbionts from the environment rather than through vertical 

transmission (Nussbaumer et al., 2006). This appears to be a risky strategy: if a juvenile worm is 

not infected by an appropriate symbiont, it will perish.  

1.3 Chemosymbiosis 

 Chemosymbiosis is common in marine environments where reduced and oxidizing 

conditions meet. The first chemosymbioses were identified in giant tubeworms from deep-sea 

hydrothermal vents in 1981 (Felbeck, 1981). At that time, the recent discovery of large numbers 

of macrofauna around deep-sea vents was perplexing: without substantial photosynthetic energy 
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inputs how could these organisms be so abundant and grow to such a large size? The giant 

tubeworm Riftia pachyptila was found to lack a mouth and digestive system yet dominated the 

ecosystem. It was in 1981 that Colleen Cavanaugh identified dense populations of bacteria 

within Riftia pachyptila body tissues (Cavanaugh et al., 1981). Horst Felbeck later showed that 

these bacteria were chemoautotrophic, oxidizing reduced sulfur compounds for energy and 

supplying their host with all the nutrients necessary for their surprising growth (Felbeck, 1981). 

Since this discovery, similar chemosymbioses have been found at cold seeps, whale falls, and 

mud volcanoes as well as in other marine environments with high redox potentials, such as 

anaerobic sediments and sea grass beds (Goffredi et al., 2003; Duperron et al., 2007; Gros et al., 

2012; Batstone and Dufour, 2016). Symbioses from more accessible areas are now being studied; 

species from shallower areas are much easier to keep alive in the lab and have been used in 

controlled tank-based experiments (Ohishi et al., 2016; Zanzerl and Dufour, 2017).  

 Bivalves from many habitats have been shown to host symbiotic bacteria, usually on or 

within the gills which show some modifications (Dufour, 2005; Batstone et al., 2014). In 

bivalves that host their bacteria intracellularly, modified cells called bacteriocytes are found at 

the abfrontal end of the gill filaments (Distel, 1998). Bacteriocytes are modified cells that contain 

large vacuoles that hold the symbiotic bacteria. In less obligate symbioses, the bacteria are not 

intracellular, but are held between extracellular pockets limited by microvilli of gill epithelial 

cells (that are typically also called bacteriocytes) (Dufour, 2005). The gills in species with 

extracellular symbionts are often enlarged, with an expanded bacteriocyte zone increasing the 

surface area for hosting bacteria (Dufour, 2005; Batstone et al., 2014). Among bivalves, the 

interdependency of host-symbiont relationships varies greatly. Some associations are obligate for 

both parties (they are not found separately in nature), whereas in others, the bacterial symbionts 
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can have a free-living existence. In hosts that get most of their nutrition from their symbionts the 

digestive system is often reduced, and in extreme cases it is lost entirely (e.g. in Solemya reidi) 

(Stewart and Cavanaugh, 2006; Roeselers and Newton, 2012).  

 In the most evolved symbiotic relationships, the bacteria are passed vertically from parent 

to offspring through the gametes, ensuring transfer across generations. Some of the best studied 

bivalve symbioses fall within this category, and the relationship is obligate to both partners. 

Some clams within the genus Solemya are not found without their symbiotic bacteria and rely on 

them for all their nutritional needs (Stewart and Cavanaugh, 2006). In these relationships, 

because the bacteria cannot live outside the host, the symbionts have been isolated from free-

living relatives and closely related bacteria hosted by closely related clams, causing co-

speciation. (Moran et al., 2008). 

1.4 Modes of Transmission  

 Three main modes of symbiont transmission have been described: 1) vertical 

transmission, where symbionts are passed directly from parent to offspring and are never 

exposed to the environment; 2) horizontal transmission, where the young are born without 

symbionts and are exposed to the symbionts from adult populations; and 3) environmental 

transmission, where the young are inoculated with symbionts from a free-living bacterial 

population (Bright and Bulgheresi, 2010; Sachs et al., 2011). While all these modes of 

transmission have been documented in nature, it is important to note that symbioses may 

incorporate more than one of these modes of symbiont transmission.  

1.4.1 Vertical Transmission 

 In many of the relationships where the bacteria have become essential to the host, vertical 

transmission of symbionts within host gametes occurs, most commonly within the female 

gametes (Bright and Bulgheresi, 2010). Only a small number of symbionts can be transferred in 



 

7 
 

this manner, reducing the effective population size during transfer to subsequent host 

generations. A small population size allows genetic drift and founder effects to have a greater 

effect on genomic evolution (Moran, 2003). Vertical transmission leads to a number of genomic 

changes not usually seen in free-living populations; these changes are typically in the form of 

genomic reduction, which has been well documented in many symbionts that are unable to live 

outside their host (Moran and Plague, 2004; Moran et al., 2008; Bennett and Moran, 2015).  

 Genomic reduction occurs because selective pressures within the host are vastly different 

than the selective pressures that acted on the bacteria outside the host. Many of the genes 

required for a free-living lifestyle are no longer needed once the bacteria take up permanent 

residence within a dedicated host, and without selective pressures to maintain these genes, they 

are often lost (Moran and Plague, 2004). It has been proposed that there is a deletion bias within 

all genomes, such that it is much more common for DNA to be lost than gained (Ochman and 

Moran, 2001; Moran, 2003; Morris et al., 2012). Genomic bottlenecks also speed this process; as 

new generations may be inoculated with only a few bacteria, rare mutants can become common 

very quickly (Wernegreen and Moran, 1999).  

 Early in the process of genome reduction following host restriction, many genes lose their 

function and become pseudogenes. There is also a proliferation of mobile elements within the 

genome (Moran and Plague, 2004). Mobile elements can play a key role in generating 

pseudogenes, as well as playing a role in larger changes such as deletions and insertions. If two 

mobile elements of the same family are close in the genome, there may be an excision mistake, 

cutting at the far edges of the mobile elements and carrying along the genomic DNA in between. 

If this sequence fails to re-enter the genome, a large deletion occurs. The sequence can also move 
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within the genome, or be inverted (Wernegreen and Moran, 1999; Ochman and Moran, 2001; 

Moran, 2003; Moran and Plague, 2004).  

 After the initial proliferation of mobile elements and wide-spread loss of function in 

genes the genome begins to reduce itself in earnest. Without recombination to spread them the 

mobile elements are slowly lost. After a loss of function, there is no selective pressure on the 

pseudogenes and they are slowly degraded by the deletion bias (Moran et al., 2008). If mutations 

occur in DNA repair genes this can speed the process of genomic reduction, and a low GC 

(<40%) content within the genome. It was found that mutations of mutY were common in 

Calyptogena symbionts from multiple species. Those symbionts with non-functioning mutY 

genes had a much lower GC content, because this gene corrects mutations to adenine and 

thymine back to guanine and cytosine (Kuwahara et al., 2011). Obligate symbionts often have a 

low GC content. Hodgkinia cicadicola is a notable exception: they are obligate symbionts with a 

high GC content (58.4%), but reduced genomes (Kuwahara, et al., 2011). The inactivation of 

DNA repair genes increases the speed of gene mutation and increased genomic reduction.  

1.4.2 Horizontal Transmission 

 Horizontal transmission requires that the host releases viable symbionts, which can be 

taken up by a juvenile of the same species. Symbiont release may occur when the host is alive, or 

symbionts may escape after the death of the host. True horizontal transmission is observed in 

insect symbioses, but is rare in marine bivalves, occurring mostly alongside vertical or 

environmental transmission (Brissac et al., 2009; Stewart et al., 2009). Bivalve horizontal 

transmission events have been shown in the generally vertically transmitted symB symbiont type 

of Vesicomya sp. (Stewart et al., 2009). Rare horizontal transmission events within a largely 

vertically transmitted population would help counteract the effects of genomic reduction and 

increase the genetic diversity of the symbiont population.  
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When coupled with environmental transmission, the horizontal events release live 

symbionts into the environment, where they join the existing free-living population. This can 

increase genetic diversity for the free-living bacterial population, particularly if the host has 

transported symbionts from a different habitat. Theoretically, the adults could also inoculate a 

new habitat with symbionts, ensuring some bacteria are available for juveniles entering the area.   

1.4.3 Environmental Transmission 

 Environmental transmission occurs when juvenile hosts are inoculated with symbionts 

from a free-living population of bacteria. These symbiotic bacteria can flourish in the 

environment and do not require the host (Harmer et al., 2008; Dufour et al., 2014). These types 

of symbiotic relationships are often facultative, with the host retaining some ability to feed on its 

own. Notable exceptions are the deep-sea tubeworms Riftia pachyptila and Tevnia jericonana 

whose adult stages have no digestive system and rely entirely on environmentally transmitted 

symbionts (Nussbaumer et al., 2006). The bacteria in these relationships retain a diverse breeding 

population and show no signs of genomic reduction. They also retain genes for a free-living 

lifestyle and need to navigate in the external environment; therefore, genes for chemotaxis and 

flagella are often present (Robidart, 2006; Robidart et al., 2008; Dmytrenko et al., 2014). It is 

also common for facultative bacterial symbionts to have a diverse metabolism, able to deal with 

different redox conditions, fix carbon, and sometimes live heterotrophically as well (Dmytrenko 

et al., 2014; Reveillaud et al., 2018). 

1.5 Thyasirid bivalves 

 Thyasirid clams can be found in oceans around the world at a large range of depths but 

are restricted to cold waters. They are often associated with oxygen minimum zones, such as 

cold seeps, hydrothermal vents, mud volcanoes, and organically enriched sediments 

(Rozemarijn, 2011). Although thyasirid bivalves have long been grouped with chemosymbiotic 
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lucinids in the order Lucinoidea, recent molecular studies have shown showed that families are 

not closely related, and the superfamily Thyasiroidea was erected (Taylor et al., 2007a). 

Phylogenetic studies place the Thyasiridae near the base of the heterodont bivalves (Taylor et al., 

2007b; Combosch et al., 2017). The fossil record agrees with this placement, with the oldest 

thyasirid fossils being found in the early Cretaceous. Many early fossils are found at putative 

cold seep and hydrothermal vent sites (Kiel, 2008; Hryniewicz et al., 2017). It is likely that the 

thyasirids evolved earlier (Taylor et al., 2007a) and possibly outside reducing environments; 

however, due to their small size and indistinct shell morphology, earlier thyasirid fossils have not 

been reported.  

 Thyasiroidea contains 11 of genera, including both symbiotic (genera with symbionts) 

and asymbiotic (genera without symbionts) groups (Rozemarijn et al., 2011). Thyasirids are 

morphologically diverse; among bivalves, the Thyasiridae is the only family in which a variable 

number of gill demibranchs can be found. Dufour (2005) identified three distinct gill types 

within the family, and with an additional “tubular” morphology being described more recently 

(Oliver, 2014). Further, the genus Thyasira is unique among bivalves in being the only one 

known to contain both symbiotic and asymbiotic species. Although the high level of diversity led 

to some investigators questioning the phylogenetic validity of Thyasira molecular evidence has 

supported the placement of species within the genera (Taylor et al., 2007a).  

 Thyasirid shells are plain and lack many defining features, notably dentition. They do, 

however, show some distinguishing characters, including the presence of a prominent posterior 

sulcus in many species. The internal structure shows more distinct morphological features, 

including the visceral pouches that enclose the digestive gland and tubules, and, in many species, 

an elongate foot (Oliver and Killeen, 2002). Thyasirids do not have siphons and use their 
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extensible foot to create a single inhalent/exhalent tube to maintain contact with overlying water. 

Many thyasirid species also use their foot to construct elaborate, ramifying burrows, which can 

be used to access sulfide pockets in the anoxic sediments (Dufour and Felbeck, 2003).  

1.6 Thyasira cf. gouldi 

 Thyasira gouldi was first described off the coast of Massachutsetts in 1845 (Philippi, 

1845). This species has been described in both the North Atlantic and the North Pacific oceans. 

Clams closely resembling Thyasira gouldi were identified in Bonne Bay, Newfoundland, Canada 

(Batstone et al. 2014). Upon closer investigation, Bonne Bay Thyasira cf. gouldi specimens were 

found to form a complex of 3 closely related operational taxonomic units (OTUs), with OTUs 1 

and 2 being symbiotic, while no bacteria were found associated with OTU 3 (Batstone et al., 

2014).  

 Behavioural investigations showed that both symbiotic and asymbiotic Thyasira cf. 

gouldi from Bonne Bay create complex burrows (called pedal tracts) in surrounding sediments. 

Pedal tracts were thought to be a means of "mining" the reduced sulfide compounds required by 

the symbionts (Zanzerl, 2015), and the presence of this behaviour in asymbiotic species was 

puzzling. It now appears that pedal tract formation, coupled with bioirrigation of the biogenic 

structures, promotes the growth of sulfur oxidizing bacteria along burrow walls, and that 

thyasirids may collect these bacteria on the mucus lining of their foot, bring them to the mantle 

cavity, and consume them (Zanzerl and Dufour, 2017). Pedal feeding explains the similarity in 

isotopic profiles of asymbiotic thyasirids, which may gain a large portion of their nutrients from 

chemoautotrophic bacteria (Zanzerl, 2015). Symbiotic thyasirids may also acquire their 

symbionts by collecting them from burrow linings using their foot; this could explain the 

presence of magnetosomes (structures that some free-living sulfur-oxidizing bacteria employ to 

assist the location of oxic-anoxic interfaces, such as those present around burrow linings) in T. 
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cf. gouldi symbionts (Dufour et al., 2014). In thyasirids, bacterial farming may have been the 

precursor to chemosymbiosis. Asymbiotic thyasirids can live in close contact with sulfur 

oxidizing bacteria and promote their proliferation through their irrigation behaviours. It is 

plausible that some of these bacteria, having been brought into contact with the bivalve’s gills 

during pre-ingestive processing, established residence among the microvilli of gill epithelial cells 

(Zanzerl and Dufour, 2017).  

 The bacteria associated with symbiotic Thyasira cf. gouldi were identified as 

Gammaproteobacteria, closely related to the sulfur-oxidizing symbionts of Thyasira flexuosa. 

The 16S rRNA sequences of these two symbionts were significantly different, suggesting 

different bacterial species (Batstone and Dufour, 2016). Additionally, 16S rRNA sequencing of 

multiple T. cf. gouldi specimens revealed the presence of three distinct bacterial phylotypes (A, 

B, and C; Batstone and Dufour, 2016). There appeared to be no co-speciation between clam 

OTU and bacterial phylotype, and sequencing suggested the presence of a single bacterial 

phylotype per host clam. Additional PCR mediated sequencing showed that T. cf. gouldi 

symbionts contained a form II RuBisCo gene (Dufour et al., 2014). This enzyme is a key 

component of the Calvin Benson Bassham Cycle, which is used for carbon fixation. RuBisCo 

form II is less efficient than form I but is better suited to low oxygen levels (Badger and Bek, 

2008). The symbionts of Thyasira cf. gouldi likely encounter low oxygen levels both in their 

sedimentary environment, and periodically in the host’s gills (when hypoxic or anoxic water is 

pumped throughout burrow structures and into the mantle cavity; Hakonen et al., 2010).  

1.7 Research Objectives 

The main purpose of this study was to explore the genome of thyasirid symbionts, in 

order to: 1) describe features that might relate to the extracellular and facultative nature of these 

symbionts; 2) characterize potential metabolic capabilities in these symbionts; and 3) gain 
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insights on host-symbiont relationships and potential interactions. The work focuses on the 

gammaproteobacterial symbionts of Thyasira cf. gouldi from Bonne Bay, Newfoundland, and 

uses PCR amplification and sequencing, as well as next-generation shotgun sequencing, to 

explore the genome of these poorly-known symbionts. 

In Chapter 2, we investigate the potential of hidden heterogeneity within the symbiont 

population of a single host. The 16S rRNA sequences is very stable and evolves more slowly 

than most other genes. Bacteria sharing a 16S rRNA sequence can have very different metabolic 

genes within their genomes (Ikuta et al., 2016). By investigating the sequence of a more quickly 

evolving gene (RuBisCo), we investigate the possibility of different gene phylotypes within the 

symbiont population of a single host clam.   

Chapter 3 contains a preliminary description of the genomic features of symbiont 

phylotype B. This is the first attempt to create a draft genome of a thyasirid symbiont, and to the 

authors’ knowledge the first description of an extracellular bivalve symbiont genome. The main 

focus of this chapter is to create a general description of the symbiont’s metabolic capabilities 

and identify any genes that may be involved in host interactions and continuation of the 

symbiosis.  

In Chapter 4 we compare the similarities and differences between the draft genomes 

created for phylotypes A, B, and C. By understanding which genes are conserved and which 

genes differ between the phylotypes, we can make some inferences about the symbiotic 

relationship. We also look to identify genes that are present in all three genomes that may be 

involved in host/symbiont identification, colonization, and the persistence of the symbiosis.   
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Chapter 2: The bivalve Thyasira cf. gouldi hosts heterogeneous 

chemoautotrophic symbiont populations with strain level diversity2 
 

Bonita McCuaig, France Liboiron, Suzanne C. Dufour 

2.0 Abstract 

Symbioses are common in nature. In some cases, marine invertebrates host bacteria capable of 

chemosynthesis, and often provide nutrients for their host. In chemosynthetic symbiosis both the 

mode of symbiont transmission and the site of bacterial housing can affect the composition of the 

symbiont population. Vertically transmitted symbionts, as well as those hosted intracellularly, 

are more likely to form clonal populations within their host. Conversely, symbiont populations 

that are environmentally acquired and extracellular may be more likely to be 

heterogeneous/mixed within host individuals, as observed in some mytilid bivalves. The 

symbionts of thyasirid bivalves are also extracellular, but limited 16S rRNA sequencing data 

suggest that thyasirid individuals contain uniform symbiont populations. In a recent study, 

Thyasira cf. gouldi individuals from Bonne Bay, Newfoundland, Canada were found to host one 

of three 16S rRNA phylotypes of sulfur-oxidizing gammaproteobacteria, suggesting 

environmental acquisition of symbionts and some degree of site-specificity. Here, we use Sanger 

sequencing of both 16S rRNA and the more variable ribulose-1,5-bisphosphate carboxylase 

(RuBisCo) PCR products to further examine Thyasira cf. gouldi symbiont diversity at the scale 

of host individuals, as well as to elucidate any temporal or spatial patterns in symbiont diversity 

within Bonne Bay, and any relationships with host OTU or size. We obtained symbiont 16S 

rRNA and RuBisCo form II sequences from 54 and 48 host individuals, respectively, during nine 

                                                           
2 McCuaig B, Liboiron F, Dufour SC. 2017. The bivalve Thyasira cf. gouldi hosts chemoautotrophic symbiont 

populations with strain level diversity. PeerJ 5:e3597. 
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sampling trips to three locations over four years. Analyses uncovered the same three closely 

related 16S rRNA phylotypes obtained previously, as well as three divergent RuBisCo 

phylotypes; these were found in various pair combinations within host individuals, suggesting 

incidents of horizontal gene transfer during symbiont evolution. While we found no temporal 

patterns in phylotype distribution or relationships with host OTU or size, some spatial effects 

were noted, with some phylotypes being excluded from, or only found within, particular 

sampling sites. The sequencing also revealed symbiont populations within individual hosts that 

appeared to be a mixture of different phylotypes, based on multiple base callings at divergent 

sites. This work provides further evidence that Thyasira cf. gouldi acquires its symbionts from 

the environment and reveals that hosts can harbour symbiont populations consisting of multiple, 

closely related bacterial strains. 

2.1 Introduction 

 Symbioses between animals and bacteria are ubiquitous and, in many cases, 

advantageous to the host (McFall-Ngai et al., 2013). Animals often benefit from symbiont-

derived metabolic products, which may include essential or non-essential nutrients. In a class of 

animal-bacterial relationships called chemosymbioses, marine invertebrates receive nutrients 

from chemoautotrophic bacterial symbionts such as sulfur-oxidizing gammaproteobacteria. Since 

the discovery of chemosymbioses in giant tubeworms from hydrothermal vents (Felbeck, 1981; 

Jones, 1981), invertebrates from various phyla and marine habitats were found to establish 

symbioses with a wide diversity of chemoautotrophic bacteria (Cavanaugh et al., 2006; Dubilier 

et al., 2008). Chemosymbiotic host species differ in their degree of specificity for particular 

bacteria: some host species will associate with a single strain and harbour clonal populations, 

while others are more flexible and can form symbioses with more than one bacterial strain, in 

either single or mixed populations (Dubilier, et al., 2008). 
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The composition of a chemosymbiotic host’s symbiont population is affected by the 

mode of symbiont transmission. Some symbionts are transmitted vertically between host 

generations, resulting in highly specific and co-evolved relationships (Dubilier et al., 2008). 

Vertically transmitted symbionts often form clonal populations within a host, as only a few 

bacteria are transmitted each generation, leading to population bottlenecks. Among vertically 

transmitted symbionts, gene flow is restricted, and recombination events are rare, further 

reducing the genetic variation within the population (Goffredi et al., 2003; Wernegreen, 2005; 

Caro et al., 2007; Dubilier et al., 2008); nevertheless, rare horizontal transmission events can 

occur (Stewart and Cavanaugh, 2009; Stewart et al., 2009). In environmentally transmitted 

symbioses, hosts are inoculated every generation from a free-living bacterial population 

(Nussbaumer et al., 2006; Won et al., 2008; Vrijenhoek, 2010). Hosts that acquire symbionts 

from their environment have the advantage of associating with a locally adapted strain and may 

harbour mixed populations of symbionts (Vrijenhoek et al., 2007; Dubilier et al., 2008; Moran et 

al., 2008; Ikuta et al., 2016). Symbiont populations may become increasingly specific over a 

host’s lifetime: as lucinid bivalves mature, the most efficient strain of bacteria is selected from 

the original heterogeneous, environmentally acquired population (Brissac et al., 2016). The 

composition of the symbiont population in adult organisms is also affected by the amount of time 

a host is ‘competent’ and can be colonized by symbionts. Species such as Riftia pachyptila, 

Anodontia alba, and Codakia pectinella are only competent for a short time and are more likely 

to have clonal or nearly clonal populations as adults (Nussbaumer et al., 2006; Brissac et al., 

2016). Conversely, some species are competent throughout their lifetime and continually acquire 

new strains of bacteria from the environment (Wentrup et al., 2014; Ikuta et al., 2016). 

Examining the degree of symbiont specificity in a host can inform us on their potential for 
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adaptation when faced with environmental change and help us understand how symbioses evolve 

and break down (Sachs et al., 2011). 

Chemosymbiotic invertebrates differ in the degree to which symbionts are integrated in 

their bodies or cells, and this variation could affect specificity, especially in hosts that are 

colonized by free-living bacteria. In many invertebrates (e.g. vesicomyid bivalves and giant 

tubeworms; e.g. Cavanaugh et al., 2006) symbionts are maintained within host cells whereas in 

others, symbionts are internalized but extracellular (e.g. thyasirid and some bathymodiolin 

bivalves with symbionts held among microvilli of gill epithelial cells; e.g. Dufour, 2005; 

Duperron et al., 2008a), or are epibiotic, attached to the external surface of the body (e.g. 

nematodes; Ott et al., 1991). Among hosts with environmentally acquired symbionts, those that 

house symbionts intracellularly might be expected to show more specificity than those with 

external symbionts, as internalization processes could be selective (Brissac et al., 2016). Lucinid 

bivalves and vestimentiferan tubeworms are examples of hosts that are colonized by symbionts 

as juveniles, and contain one or two, metabolically divergent, locally sourced symbiont 

phylotype(s) as adults (Brissac et al., 2016). In contrast, hosts with extracellular symbionts might 

be expected to associate with a broader, more variable range of symbiont types; this has been 

observed in wood-fall mussels having mixed populations of 5-6 divergent phylotypes (Duperron 

et al., 2008b). A different situation has been observed more recently in thyasirid bivalves with 

extracellular symbionts: Thyasira cf. gouldi conspecifics from the same fjord (Bonne Bay, 

Newfoundland, Canada) associated with one of three highly similar 16S rRNA phylotypes of 

sulfur-oxidizing gammaproteobacteria (Batstone and Dufour, 2016). These observations 

highlight the fact that the mechanisms of symbiont selection in extracellular symbioses are not 

known and may differ markedly among host taxa. 
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Thyasira cf. gouldi inhabiting cold marine sediments within the glacial fjord of Bonne 

Bay (Canada) form a complex of three distinct operational taxonomic units (OTUs), with OTUs 

1 and 2 having elongated gill filaments housing thioautotrophic bacteria, while OTU 3 has 

shorter gill filaments and is asymbiotic (Batstone et al., 2014). Symbiotic and asymbiotic OTUs 

of Thyasira cf. gouldi create elaborate burrows within the sediment using their extensible foot 

(Zanzerl and Dufour, 2017). In symbiotic thyasirids, burrow formation has been interpreted as a 

mechanism to “mine” for the sulfur compounds the symbiont requires (Dufour and Felbeck, 

2003; Dando et al., 2004), while in some asymbiotic thyasirids, burrows have been associated 

with deposit feeding (Zanzerl and Dufour, 2017). Thyasirid irrigation leads to the establishment 

of oxic/anoxic interfaces around burrow linings (Dando et al., 2004; Hakonen et al., 2010) and 

likely favours colonization of sulfur-oxidizing bacteria. The presence of magnetosome particles 

in thyasirid symbionts suggests that, in their free-living state, symbionts navigate to burrow 

linings where hosts can collect them on the mucociliary surface of their extensile foot and bring 

them in contact with their gills (Dufour et al., 2014). This mode of symbiont uptake likely 

explains why different thyasirid species associate with symbionts belonging to different 

phylogenetic groups (Rodrigues and Duperron, 2011; Batstone and Dufour, 2016), and why 

conspecifics of co-occurring Thyasira cf. gouldi may associate with one of three 16S rRNA 

phylotypes (Batstone and Dufour, 2016). However, as stated previously, thyasirid species may 

show a high degree of symbiont specificity despite the extracellular location of their symbionts. 

Here, we examine the symbiont populations of Thyasira cf. gouldi from Bonne Bay 

(Canada) in greater detail by sequencing fragments of both the 16S rRNA gene and the ribulose-

1,5-bisphosphate carboxylase (RuBisCo) gene. The latter gene was chosen because it evolves 

more rapidly than the 16S rRNA gene and has been shown to be phylogenetically informative in 
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other studies of chemoautotrophic symbionts (Blazejak et al., 2006; Vrijenhoek et al., 2007). We 

examine: 1) the relationship between16S rRNA phylotype, RuBisCo phylotype, and host OTU; 

2) site specificity of phylotypes at three Bonne Bay sampling locations; 3) temporal patterns in 

phylotype presence; and 4) relationships between gene phylotype and host size. A more detailed 

investigation of symbiont gene sequences could reveal site specificity in host-symbiont pairings, 

temporal changes in symbiont identity within this fjord, or any apparent changes in symbiont 

identity during the thyasirid’s growth. These data should improve our understanding of host-

symbiont relationships in these bivalves. 

2.2 Materials & Methods  

 2.2.1 Sample Collection 

 Thyasirids were collected from Bonne Bay, Newfoundland, Canada on nine occasions 

between October 2009 and May 2012 (Table A1); permits for field sampling (NL-572-11 and 

NL-992-12) were obtained from Fisheries and Oceans Canada. Sediment was collected using a 

Peterson grab (radius = 10.5 cm, length = 30 cm, volume = 0.01 m3) from three sites within the 

fjord (Fig. 2.1): Neddy’s Harbour, Deer Arm and South East Arm. Thyasirids were retrieved 

from sediments using a sieve with 1 mm mesh, and symbiotic individuals (Thyasira cf. gouldi 

OTU 1 and 2, distinguished by their shell shape; Batstone et al., 2014), were retained.  
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Figure 2.1: Map of sampling sites, 16S rRNA, and RuBisCo phylotypes distributions of 

Thyasira cf. gouldi symbionts within Bonne Bay, Newfoundland, Canada. 

Sampling sites are located within the shaded ovals. N indicates the number of sequences 

acquired from each site. A) Distribution of 16S rRNA phylotypes; B) distribution of RuBisCo 

phylotypes. Adapted from McCuaig et. al, 2017.  

 

2.2.2 DNA Extraction and Gene Sequencing 

The gills of symbiotic Thyasira cf. gouldi specimens were dissected and immediately 

frozen or stored in 95% ethanol. Following the protocol for animal tissues, total DNA was 

extracted from gills using QIAGEN DNeasy® Blood and Tissue kit spin columns and stored at   

-20○C in the elusion buffer provided. The PCR amplification of 16S rRNA and RuBisCo gene 

sequences was conducted using 12.5 µl of Green Dream Master Mix, 1.5 µl of template DNA, 1 

µl of forward primer, 1 µl of reverse primer, and 9 µl of water. A 1323 bp fragment of the 16S 

rRNA gene was amplified using primers 27F (5'AGAGTTTGGATCMTGGCTCAG 3') and 

1492R (5' CGGTTACCTTGTTACGACTT 3') (Lane, 1991). Thermocycler settings were: 94○C 

for 3 min, 35 cycles of (94○C for 1 min, 50○C for 30 sec, 72○C for 1.5 min) and a final extension 

of 72○C for 10 min. A 296 bp fragment of the RuBisCo form II gene (previously identified 

within the symbionts of Thyasira  cf. gouldi; Dufour et al., 2014) was amplified using primers 

663F (5' ATCATCAARCTSGGCCTGCGTCCC 3') and  
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1033R (5' MGAGGTGACSGCRCCGTGRCCRGCMCRTG 3') (Widmer et al., 1998); initial 

denaturation was at 95○C for 2 min, followed by 30 cycles of 95○C for 1 min, 62○C for 1 min and 

72○C for 30 sec, and a final elongation at 72○C for 5 min. PCR products were cleaned using 

Agencourt AMPure XP Beads (Beckman Coulter, Brea, CA, USA) following the manufacturer’s 

protocol, and sent to The Center for Advanced Genomics, Toronto, Canada for Sanger 

sequencing.  

 2.2.3 Phylogenetic Analysis 

 Sequences were checked for quality, manually trimmed from both ends, and 

corresponding forward and reverse sequences from a single clam individual were combined into 

contiguous sequences (contigs) using SEQUENCHER® 5.1 (Gene Codes Corp.). Contigs were 

then aligned in MEGA 7 (Kumar et al., 2016) using the ClustalW algorithm (Thompson et al., 

1994). We paid particular attention to any sites with double peaks in the chromatographs (i.e. 

where IUPAC degenerate base symbols were assigned by the sequencing software) on 

corresponding forward and reverse sequences, as these could indicate the presence of more than 

one gene phylotype within a particular host bivalve; the alignment and corresponding 

chromatograms were examined closely for such eventualities.  

  Maximum likelihood phylogenies were constructed for both 16S rRNA and RuBisCo 

genes with the phylogeny for the former gene including additional sequences from Batstone et al. 

(2016). Sequences with degenerate bases were not included in the RuBisCo phylogeny as the 

high number of heterogeneous sequences reduced bootstrap numbers to unacceptable levels. 

Appropriate nucleotide substitution models were identified using MEGA7 (Figs. 2.2, 2.3). Three 

distinct clusters were identified in each phylogeny, and representative sequences of the highest 

quality (and without ambiguities) were chosen for comparison to sequences in the GenBank 

database (Table 2.1). For each gene, an additional phylogeny was constructed using 
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representative sequences from the phylotypes identified in this study, along with similar 

sequences in GenBank and from selected, well-studied chemosymbionts for which both 16S 

rRNA and RuBisCo form II sequences were available.  

The degree of divergence within phylotype groups, and between groups was calculated in 

MEGA 7, using the Jukes-Cantor model for 16S rRNA and the Tamura-Nei model with 5 

discrete gamma distributions for RuBisCo. Variance from the model was estimated with 1000 

bootstrap replicates.  

  



 

27 
 

 

Figure 2.2: 16S rRNA maximum likelihood phylogenies placing Thyasira cf. gouldi 

symbiont phylotypes near similar sequences identified in GenBank.  

This maximum likelihood phylogeny was created using the Kimura 2-parameter model (Kimura, 

1980). The log likelihood of this phylogeny was -5167.5557. A discrete Gamma distribution of 5 

was used to model evolutionary rate differences among sites, and the model allowed for some 

sites to be evolutionarily invariable ([I+] 35.941%). A total of 1323 positions were used in the 

final dataset. 1000 bootstrap replicates were conducted, with the percentage of phylogenies 

supporting each branch indicated at branching points. This phylogeny was constructed in 

MEGA7 (Kumar et al., 2016). Reprinted from McCuaig et. al, 2017.  
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Figure 2.3: RuBisCo maximum likelihood phylogenies placing Thyasira cf. gouldi symbiont 

phylotypes near similar sequences identified in GenBank 

This maximum likelihood phylogeny was created using the Kimura 2-parameter model (Kimura, 

1980). The log likelihood of this phylogeny was -5167.5557. A discrete Gamma distribution of 5 

was used to model evolutionary rate differences among sites. A total of 296 positions were used 

in the final dataset. 1000 bootstrap replicates were conducted, with the percentage of phylogneies 

supporting each branch written at the forks. MEGA7 was used for alignment of sequences and 

phylogeny construction (Kumar et. al., 2016). Reprinted from McCuaig et. al, 2017. 
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Table 2.1: GenBank accession numbers of sequences included in the phylogenies. 

Organism Name 
16S rRNA 

Accession numbers 

RuBisCO 

Accession Number 

Thyasira cf. gouldi symbiont phylotype A MF040754  

Thyasira cf. gouldi symbiont phylotype B MF040755  

Thyasira cf. gouldi symbiont phylotype C MF040756  

Thyasira cf. gouldi symbiont phylotype 1  MF040757 

Thyasira cf. gouldi symbiont phylotype 2  MF040758 

Thyasira cf. gouldi symbiont phylotype 3  MF040759 

Candidatus Vesicomyosocius okutanii HA AP009247.1 AP009247.1 

Bacterium symbiont of Acharax sp. Guiness HE863797.1 HE863799.1 

Lamellibrachia sp. endosymbiont FM165437.1 FM165442.1 

Sedimenticola thiotaurini strain SIP-G1 CP011412.1 CP011412.1 

Endosymbiont of Riftia pachyptila AY129116.2 AF047688.1 

Halothiobacillus sp. LS2 CP016027.1 CP016027.1 

Thioflavicoccus mobilis 8321 CP003051.1 CP003051.1 

Thiomonas sp. CB2 LK931616.1 LK931649.1 

Thiomonas intermedia K12 CP002021.1 CP002021.1 

 

2.3 Results  

 2.3.1 Description of Sequences and Evolutionary Patterns 

 From the bivalves examined in this study, we obtained 16S rRNA and RuBisCo form II 

sequences from 54 and 48 host individuals, respectively. For each gene a phylogeny was 

constructed using all sequences from this study; for the RuBisCo phylogeny, only unambiguous 

sequences with no degenerate bases were used. The 16S rRNA sequences formed 3 phylotypes, 

in agreement with Batstone et al. 2016; these are hereafter referred to as 16S A, 16S B, and 16S 

C. RuBisCo sequences could also be grouped into three phylotypes: RB1, RB 2 and RB 3.  

For each gene, evolutionary distances between and within phylotypes were calculated 

using the Jukes-Cantor model for 16S rRNA and the Tamura-Nei model with 5 discrete gamma 

distributions for RuBisCo (Table 2.2). No measurable evolutionary distances were observed 

within phylotypes of either gene, likely because most discrepancies within RuBisCo phylotypes 

were within wobble positions. Evolutionary distances between phylotypes were greater for the 

RuBisCo gene than for 16S rRNA. 16S A and 16S B are more similar to each other (distance = 
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0.002) than to 16S C (distance = 0.008 and 0.007 respectively). A similar pattern is seen among 

RuBisCo sequences, with RB 3 being the most distant, as we calculated distance values of 0.229 

and 0.267 in comparison to RB 1 and RB 2, respectively. A clear divergence in the evolutionary 

history of 16S rRNA and RuBisCo genes within the Thyasira cf. gouldi symbionts was evident 

upon examination of phylogenies that included sequences from the same free-living bacteria and 

chemosymbionts (Figs. 2.2, 2.3). 

Table 2.2: Evolutionary Distance matrices for 16S and RuBisCo phylotypes. 

  16S A 16S B  16S C  RB1 RB2 RB3 

16S A (29)  0.001 0.002 RB1 (2)  0.024 0.023 

16S B (21) 0.002  0.002 RB2 (33) 0.131  0.041 

16S C (4) 0.008 0.007  RB3 (13) 0.229 0.267  

16S distances calculated using the Jukes-Cantor model with 1000 bootstrap replicates within 

MEGA 7. RuBisCo distances calculated within MEGA 7 using the Tamura-Nei model and 5 

gamma distributions with 1000 bootstrap replicates. The number of sequences (specimens) for 

each phylotype are in parentheses. Standard Error values in italics. 

 

2.3.2 Evidence for Multiple Symbiont Phylotypes within a Host 

Sequences that included degenerate bases were commonly observed (Table A2). Of the 

54 16S rRNA sequences, 11 had a single instance of a high-quality call of multiple bases, while 

11 others showed 3 to 12 degenerate bases in more variable regions of the gene. Among the 48 

RuBisCo sequences, 21 showed high quality calls of multiple bases within variable gene regions. 

The position of degenerate bases in sequence alignments strongly suggests a mixture of bacterial 

phylotypes within those host individuals (Table A2).  
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2.3.3 Phylotypes and Associated Host or Symbiont Characteristics 

 Our expanded dataset included symbionts from 54 host individuals: 29 with 16S A, 21 

with 16S B, and 4 with 16S C symbiont phylotypes (Table A1). We obtained corresponding 16S 

rRNA and RuBisCo sequences from 34 host specimens and noted patterns in gene pairings 

within host individuals (Table 2.3). Phylotypes 16S C and RB 1 appeared associated with each 

other: two of the four host specimens with 16S C had RB 1 (no RuBisCo phylotype data could be 

obtained from the remaining two host specimens due to insufficient volumes of extracted DNA). 

Similarly, all 15 hosts containing the 16S B phylotype possessed RB 2. In contrast, seven of the 

29 Thyasira cf. gouldi individuals with symbiont phylotype 16S A had RB 2, while 10 had RB 3.  

Table 2.3: Co-occurrence of 16S rRNA and RuBisCo phylotypes within individual Thyasira 

cf. gouldi specimens. 

  RuBisCo Phylotype 

16S Phylotype 1 2 3 

A 0 7 10 

B 0 15 0 

C 2 0 0 

Values are numbers of specimens in which each combination of 16S and RuBisCo phylotype 

was identified. 

 

 Some patterns in the spatial distribution of symbiont 16S rRNA and RuBisCo phylotypes 

within Bonne Bay were observed. Phylotypes 16S A and B were identified from all the sampling 

sites. 16S A was more common than B at Deer Arm and South East Arm and was rare at 

Neddy’s Harbour (Fig. 2.1). Phylotypes 16S C (N = 4) and RB 1 (N = 2) were found in the same 

bivalve specimens, all collected in Neddy’s Harbour, suggesting site restriction. RB 3 was found 

at Deer Arm (N = 5) and South East Arm (N = 8), but not at Neddy’s Harbour. 
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Specimens were collected over a span of four years, and hosts with symbiont phylotypes 

16S A, 16S B, RB 2 and RB 3 were identified in all months and years (Table A1). Symbiont 

phylotypes 16S C and RB 3 were only identified in 2010 and 2011. We found no apparent 

correspondence between host OTU and symbiont phylotype; the more common OTU 1 

associated with all symbiont phylotypes, and the two individuals of host OTU 2 contained 

symbionts with 16S A/RB 2 and 16S C/RB 1, respectively. Finally, host size showed no obvious 

relationship with symbiont phylotype (Table A1).  

2.4 Discussion 

Thyasira cf. gouldi hosts a single species of gammaproteobacteria comprising three 16S 

rRNA subtypes, previously described as phylotypes A, B and C (Batstone and Dufour, 2016). 

Our phylogenetic investigation revealed a similar level of relatedness and phylogeny topology as 

reported previously (Batstone and Dufour, 2016). The 16S rRNA symbiont diversity observed in 

Thyasira cf. gouldi is unlike that in lucinid clams (Brissac et al., 2016), oligochaetes (Blazejak et 

al., 2006) and vestimentiferan tubeworms (Vrijenhoek et al., 2007), where a single, invariant 

symbiont 16S rRNA sequence is present across multiple host species. The evolutionary distances 

observed among the Thyasira cf. gouldi 16S rRNA sequences were small (0.002—0.008) with 

no measurable distance within phylotypes. In contrast, the multiple, co-occurring extracellular 

symbiont phylotypes observed in bathymodiolins are typically more phylogenetically divergent 

(Duperron et al., 2008b). This suggests that Thyasira cf. gouldi may associate with a more 

restricted group of symbionts than other chemosymbiotic hosts, at least with respect to 16S 

rRNA gene diversity. 

A comparably higher degree of variability and evolutionary distance was observed in the 

RuBisCo sequences, as was expected. Inter-phylotype distances were greater for the symbiont 

RuBisCo genes than for 16S rRNA sequences. RB 1 and RB 2 were evolutionarily the closest 
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(distance of 0.131), while RB 3 was the farthest, with distance metrics of 0.229 from RB 1 and 

0.267 from RB 2 (Table 2.2). Similar RuBisCo polymorphism was observed in Escarpia spicata 

and Lamellibrachia barhami, but not Riftia pachyptila (Vrijenhoek et al., 2007). This higher 

variability in the RuBisCo gene makes it a useful tool for examining symbiont diversity.  

2.4.1 RuBisCo Diversity and Spatial-Temporal Patterns 

The greater number of samples analyzed herein has led to a revision of the spatial 

distribution of 16S rRNA phylotypes since Batstone and Dufour (2016), notably through a 

greater 16S rRNA phylotype diversity at Deer Arm and South East Arm than previously 

reported. It is now apparent that 16S A and 16S B are widespread in Bonne Bay, while 16S C 

has only been identified in Neddy’s Harbour. Some RuBisCo phylotypes occurred at multiple 

sampling sites, but RB1, found only in hosts having 16S C, appeared restricted to the shallower 

Neddy’s Harbour site. The restriction of 16S C/RB 1 to a single site supports the symbiont 

environmental acquisition mode proposed for thyasirids (Duperron et al., 2012; Dufour et al., 

2014).  

The ecotype hypothesis proposes that bacterial strains assemble in relation to 

environmental factors such as sedimentary organic matter, grain size, and sulfur content. 

Therefore, in environmentally acquired symbionts, the distribution of symbiont phylotypes will 

reflect these habitat characteristics (Brissac et al., 2016). This hypothesis may explain the 

apparent absence of RB 3, and the possible restriction of the 16S C/ RB 1 phylotype in Neddy’s 

Harbour, which is the shallowest sampling site, with the lowest organic matter content and 

coarsest sediments (Batstone and Dufour, 2016). The Deer Arm and South East Arm sites had 

similar water depths and sediment characteristics (Batstone and Dufour, 2016) that may be 

conducive to all phylotypes but 16S C/ RB 1. The more widespread RB 2 phylotype may be able 

to function within a broader range of environmental conditions than RB 1 and RB 3. 
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Environmental patchiness on small, mm- to cm-scales can explain why thyasirids housing 

different symbiont phylotypes were found within the same Peterson grab sample (Table A1). At 

the Bonne Bay sites, a high degree of spatial patchiness in thyasirid abundance and sulfide 

concentrations was previously noted (Batstone and Dufour, 2016) and may support multiple 

bacterial strains.  

No temporal patterns were recognized within this sample set. We noted no relationship 

between symbiont phylotype and month or year of collection; the relative rarity of the 16S C/ RB 

1 phylotype may explain why it was not identified in all years. We therefore find no evidence for 

a change in symbiont populations over the span of 2009-2012, although further sampling would 

be useful to determine this with more confidence. 

2.4.2 Symbiont Evolution and the Relationship Between 16S and RuBisCo Phylotypes 

The Thyasira cf. gouldi symbiont16S rRNA and RuBisCo phylogenies are not entirely 

congruent, although some conservation of gene pairs was identified. While the three 16S rRNA 

phylotypes are closely related and form a single cluster, the RuBisCo genes in these same 

symbionts are more evolutionarily dispersed (Fig. 2.3). As noted previously, 16S C was only 

found in conjunction with RB 1, and 16S B was found in conjunction with RB 2. Phylotype 16S 

A was found in conjunction with RB 2 and RB 3 in almost equal numbers (Table 2.3). A similar 

pattern in associated 16S rRNA and RuBisCo gene sequences has been noted in autotrophic 

proteobacteria and cyanobacteria and attributed to horizontal transfer of the RuBisCo gene 

amongst different phylogenetic lineages (Delwiche and Palmer, 1996; Elsaied and Naganuma, 

2001). During their free-living existence, symbionts would be exposed to other species of 

bacteria in the sediment and could undergo horizontal gene transfer (HGT) events while outside 

the host (Dahlberg et al., 1998; Davison, 1999).  
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The phylogenies highlight the disparity in phylogenetic histories for the 16S rRNA and 

RuBisCo genes (Figs. 2.2, 2.3). The 16S rRNA phylotypes form a tight cluster near 

Sedimenticola thiotaurini strain SIP-G1, and RuBisCo phylotypes RB 1 and RB 2 are similar to 

other symbionts (Fig. 2.3). However, RB 3 clusters with free-living bacteria and was likely 

transferred from another bacterial species at the Deer Arm and South East Arm sites. Its absence 

from Neddy’s Harbour could be due to environmental conditions that exclude these bacteria 

from this site.  

While the slight variation in 16S rRNA genes amongst Thyasira cf. gouldi symbionts 

may not be reflective of physiological differences, RuBisCo gene variants may be biologically 

significant, providing fitness benefits to symbionts under particular environmental conditions. 

The horizontal transfer of genes in bacterial symbionts may increase their metabolic efficiency, 

and therefore thyasirid symbioses may be particularly flexible by acquiring symbionts that are 

locally adapted to their microenvironment. Bathymodiolus septemdierum, another bivalve with 

environmentally acquired sulfur oxidizing symbionts, shows symbiont genomic variation linked 

with differences in metabolic capabilities, thought to be the result of HGT (Ikuta et al., 2016). 

2.4.3 Host-Symbiont Interaction 

As observed previously, the Thyasira cf. gouldi OTUs present in Bonne Bay do not show 

co-speciation with their symbionts; rather, both host OTUs 1 and 2 can form symbioses with a 

restricted, but diverse group of bacteria present in the environment (Batstone and Dufour, 2016). 

Our data indicate that some Thyasira cf. gouldi individuals appear to host more than one 

symbiont phylotype (i.e., they show multi-inoculations, or have mixed symbiont populations). 

Therefore, the symbiont population is heterogeneous rather than the clonal population found in 

lucinid bivalves (Brissac et al., 2011; Brissac et al., 2016). Heterogeneous symbiont populations 

(at both the strain and species level) have been observed in the mytilid species with both 
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extracellular and intracellular symbionts (Won et al., 2003; Ikuta et al., 2016). The degree of 

symbiont selectivity appears to vary among chemosymbiotic bivalves, at least in adults.  

In lucinids, aposymbiotic juveniles may pick up multiple symbiont strains, which are then 

maintained in undifferentiated cells dispersed throughout the lateral zone of gill filaments 

(Brissac et al., 2011). These gill cells later differentiate into mature bacteriocytes (Gros et al., 

1997). Theoretically, from this mixed infection, the bacteriocytes with the best energetic yield 

are kept and imprinted with that bacterial strain throughout their lifetime, coupling the adult host 

with a specific strain of symbiont (Gros et al., 2012; Brissac et al., 2016). In contrast, Thyasira 

cf. gouldi can be co-infected by multiple symbiont strains, even as adults (shell sizes of host 

clams with the heterogeneous sequences are not smaller than those of clams having no evident 

symbiont heterogeneity; Table A1). Thyasirids may have the capability of acquiring new and 

genetically mixed symbionts over their lifetime, potentially increasing metabolic fitness of the 

holobiont in changing environments, such as temperate and subarctic fjords. The pedal mining 

behaviour of thyasirids is a possible mechanism for the uptake of new symbionts over the course 

of the host’s life (Dufour et al., 2014, Zanzerl and Dufour, 2017).   

2.5 Conclusions 

 In the Bonne Bay fjord, Thyasira cf. gouldi individuals can associate with a variety of 

symbiont phylotypes, and appear capable of hosting mixed symbiont populations, representing a 

level of host-symbiont specificity that is slightly lower than previously found (Batstone and 

Dufour, 2016). These findings provide evidence for the horizontal transfer of genetic material 

between symbionts and free-living bacteria and support the opportunistic environmental 

acquisition model proposed for this family (Batstone and Dufour, 2016). The capability of 

Thyasira cf. gouldi to associate with different strains of bacteria may lead to improved fitness 

within the variable environment of the fjord sediment and contribute to its phylogenetic diversity 
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and success in various ecological niches. Some symbiont phylotypes (16S B and RB 2) were 

found within all sampling sites, while others (16S C and RB 1) appeared restricted to a single 

site.  

 This work highlights the importance of looking past 16S rRNA diversity and 

investigating the functional diversity of symbiont populations. Further work should examine 

differences between the Thyasira cf. gouldi symbiont phylotypes in greater detail through 

genomic or proteomic investigations. Similar work in other chemosymbiotic hosts with 

extracellular symbionts would also be warranted for a more comprehensive understanding of 

specificity and selectivity in chemosymbioses. 
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Chapter 3: Metagenomic analysis suggests broad metabolic 

potential in extracellular symbionts of the bivalve Thyasira cf. gouldi 
 

Bonita McCuaig, Lourdes Peña-Castillo, Suzanne C. Dufour 

3.0 Abstract 

Next-generation sequencing has opened new avenues for studying metabolic capabilities 

of bacteria that cannot be cultured. Here, we provide a metagenomic description of a 

chemoautotrophic gammaproteobacterial symbiont population associated with Thyasira cf. 

gouldi, a sediment-dwelling bivalve from the family Thyasiridae. Symbionts of thyasirids differ 

from those of other bivalves by being located outside rather than inside gill epithelial cells, and 

recent work suggests that they are capable of living freely in the environment. The T. cf. gouldi 

symbiont genome shows no signs of genomic reduction and contains many genes that would 

only be useful outside the host, including flagellar and chemotaxis genes. The thyasirid symbiont 

may be capable of sulfur oxidation via both the sulfur oxidation and a reverse dissimilatory 

sulfate reduction pathways, as observed in other bivalve symbionts. In addition, genes for 

hydrogen oxidation and dissimilatory nitrate reduction were found, suggesting varied metabolic 

capabilities under a range of redox conditions. The genes of the tricarboxylic acid cycle are also 

present, along with membrane bound sugar importer channels, suggesting that the bacteria may 

be mixotrophic. In this study, we have generated the first thyasirid symbiont genomic resources 

and lay the groundwork for further research in tracking the changes required for life as a bivalve 

symbiont.  

3.1 Introduction 

 Many species of marine bivalves living near oxic-anoxic boundaries form nutritional 

symbioses with chemoautotrophic bacteria, which are maintained in or on the host’s gills 

(Stewart et al., 2005; Cavanaugh et al., 2006; Dubillier et al., 2008; Moya et al., 2008). In such 
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associations, called chemosynthetic symbioses or chemosymbioses, the bacteria provide the host 

with nutrients and protection from chemical stress, while the host constitutes a protective and 

suitable environment for the bacterial symbionts (Cavanaugh et al., 2006, Passos et al., 2007, 

Roeselers and Newton, 2012). The metabolism of symbionts allows hosts to colonize new and 

often nutrient-poor niches and contributes to their ecological and evolutionary success, as 

moving into a niche with less competition for resources can lead to evolutionary radiation 

(Gundus and Douglas, 2009; Stanley, 2014).  

 Symbionts can be acquired by new generations of hosts in various ways. Vertical 

transmission is the transfer of bacteria from one generation to the next through gametes, most 

commonly the eggs; through this pathway, symbionts tend to become obligate. In horizontal 

transmission, host larvae are inoculated by symbionts released by nearby adults, whereas in 

environmental transmission, juveniles are inoculated from a free-living symbiont population 

(Roeselers and Newton, 2012). While the latter mode of transmission does not guarantee 

symbiont transfer, it does confer some advantages to both partners. Bacteria can avoid genomic 

reduction (i.e. the deletion of genes that no longer improve symbiont fitness) by maintaining a 

free-living population. Once genomic reduction occurs, the bacteria cannot survive without the 

host, and become reliant upon them (Bennet and Moran, 2015); this does not occur in symbionts 

that maintain a functional environmental population. The maintenance of variation within 

bacterial populations can also benefit the host, which can be inoculated by symbionts that are 

well adapted for the local environment, and not necessarily the strain that their parents hosted. 

As the relationship between symbiotic partners becomes tighter, it may become obligate for both 

parties. In the case of the host, obligate nutritional symbioses can result in reduction or loss of 
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the digestive tract, as nutritional reliance upon symbionts increases (Roeselers and Newton 

2012).  

The symbiont can supplement nutrients that are lacking in the host’s diet, or simply 

provide an additional source of nutrients. The mode of nutrient transfer from symbiont to host 

varies by relationship, and in many cases, is not well defined. Some symbionts have been shown 

to actively transfer nutrients to their host, others have “leaky membranes” that allow nutrients to 

escape the bacteria, and in other cases the host consumes the bacteria through phagocytosis 

(Felbeck and Jarchow, 1998; Bright et al., 2000). Some metabolic cycles of the symbionts may 

remove toxins present in the environment, providing the host protection from these compounds 

(Waite et al., 2008; Podowski et al., 2010). The sox and dsr based sulfur metabolism may 

remove toxic sulfur compounds while providing energy for carbon fixation. The nitrite reduction 

(nir) pathway removes harmful nitrogen compounds by using them as an electron sink, but this 

process is not always coupled with carbon fixation (Liao et al., 2014). One approach to 

examining the metabolic potential of chemoautotrophic symbionts is to perform genomic, or 

metagenomic sequencing (Newton et al, 2007; Robidart et al., 2008; Dmytrenko et al., 2014; 

Konig et al., 2017). By identifying key genes in sequencing data, we can make inferences about 

the metabolic capabilities of the symbiont.  

The bivalve genus Thyasira (Family Thyasiridae) contains both symbiotic and asymbiotic 

species, a seemingly unique condition among bivalve genera (Taylor et al., 2007; Batstone et al., 

2014). In contrast to other clams, thyasirids maintain their symbionts among the microvilli of gill 

epithelial cells, as described in some mussels; such extracellular symbioses have been considered 

more primitive than intracellular symbioses (Dufour, 2005; Taylor and Glover, 2010; Rodrigues 

and Duperron, 2011; Roeselers and Newton, 2012). Chemosymbiotic thyasirids are mixotrophs 
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that appear to rely on particulate food to a greater extent when symbiont abundance is low 

(Dufour and Felbeck, 2006), or at times when environmental sulfide concentrations are low 

(Dando and Spiro, 1993). All thyasirid symbionts identified to date are gammaproteobacteria 

(Dando and Spiro, 1993; Fujiwara et al., 2001; Rodrigues and Duperron, 2011). The thyasirid 

symbionts are clustered into divergent groups which include both symbiotic and free-living 

sulfur-oxidizing bacteria (Rodrigues and Duperron, 2011). Enzymatic and PCR techniques have 

shown the presence of ribulosebisphosphate carboxylase (RuBisCo) and adenylylsulphate 

reductase in the symbionts of all chemosymbiotic thyasirids investigated (Dando and Spiro, 

1993; Rodrigues and Duperron, 2011).  

 In Bonne Bay, Newfoundland, Canada, gammaproteobacteria have been found living 

extracellularly on the gills of thyasirid clams identified as Thyasira cf. gouldi OTUs 1 and 2 

(Batstone et al., 2014). In these bivalves, large numbers of symbionts are found in an extensive 

bacteriocyte zone, with bacteria maintained in extracellular spaces surrounded by the microvilli 

of bacteriocytes (Batstone et al., 2014). Phylogenetic analysis using 16S rRNA sequences have 

identified three distinct symbiont phylotypes (A – C) hosted by the two T. cf. gouldi OTUs 

(Batstone and Dufour, 2016; McCuaig et al., 2017). There was no apparent co-speciation 

between host and symbiont as both clam OTUs could host any one of the three symbiont 

phylotypes, and there is some evidence of multiple strains infecting a single host, although this 

has not been confirmed (Batstone and Dufour, 2016; McCuaig et al., 2017). The three bacterial 

16S rRNA phylotypes cluster during phylogenic analysis and are closely related to the Thyasira 

flexuosa symbiont and to tubeworm symbionts (notably those associated with Riftia pachyptila) 

as well as free-living sulfur oxidizing bacteria (see references Batstone and Dufour, 2016 and 

McCuaig et al., 2017 for phylogenetic trees). Stable isotope analysis of T. cf. gouldi supports 
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chemoautotrophic activity, notably through a lower δ15N value than in non-symbiotic, co-

occurring bivalves; tissue δ13C values were less negative than in other chemosymbiotic 

thyasirids, as expected due to the presence of RuBisCo form II (Zanzerl, 2015). T. cf. gouldi 

symbionts have been identified within surrounding sediment samples, supporting an 

environmental mode of transmission and the existence of a free-living symbiont population 

(Dufour et al., 2014).  

We present here the first genomic analysis of a thyasirid symbiont, that of T. cf. gouldi 

symbiont phylotype B (one of the most common; Batstone and Dufour, 2016; McCuaig et al., 

2017). This investigation is of particular interest given the extracellular location and facultative 

nature of thyasirid symbionts and provides a contrast to genomic studies of intracellular (and 

often obligate) bivalve chemosymbionts. After providing an overview of the metagenomic data 

collected, we characterize important metabolic cycles, including carbon fixation and sulfur 

oxidation, and identify genomic characteristics that allow us to infer the mode of symbiont 

transmission and support the evidence for a free-living state in thyasirid bacterial symbionts. By 

identifying the genes for metabolic pathways in symbiont genomes, we lay the groundwork for 

future transcriptomic and proteomic studies. 

3.2 Methods 

3.2.1 Sample Collection and Sequencing 

 Sediment was collected in August 2010 using a Petersen grab from Neddy’s Harbour, in 

the fjord of Bonne Bay, Newfoundland, Canada (49˚31'21.44"N, 57˚52'11.07"W), at a depth of 

roughly 15 m under field sampling permits NL 572 11 and NL 992 12 obtained from Fisheries 

and Oceans Canada. Sediment was wet sieved using a 1 mm mesh and specimens of T. cf. gouldi 

were collected and transported to Memorial University, St. John's, Newfoundland. Host 

individuals were collected in late summer, when symbiont abundance is high (Laurich et al., 
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2015). To reduce environmental contamination of bacteria not associated with the gills, the latter 

were rinsed with 100% ethanol following dissection and before DNA extraction. Total DNA was 

extracted from the gills of a single individual (host OTU 1; reference Batstone et al., 2014) using 

a Qiagen Blood and Tissue Kit and stored at -20˚C in the elution buffer provided. Before 

sequencing, total DNA was transferred to nuclease free water. An Ion Plus Fragment Library Kit 

(Ion Torrent tm) was used and fragments of approximately 200 bp were selected using gel size 

selection and extraction (Qiagen Gel Extraction Kit), purified (Qiagen DNA Purification Kit) 

following manufacturer's instructions, and concentrations assessed with an Agilent Bioanalyser. 

Sequencing was conducted on an Ion Torrent PGM Sequencer following the manufacturer's 

protocols (V2.2). A 316 chip was used for sequencing. Due to poor load rates, two sequencing 

runs were conducted, and the data were combined before further processing.  

3.2.2 Assembly and Annotation 

 Reads were quality checked and trimmed using FastQC, FAstQ Groomer, FastQ Quality 

Trimmer, and Filter FastQ the Galaxy Website (usegalaxy.org) and FastQC software 

(Blankenberg et al., 2010; Afgan et al., 2016); any reads less than 50 bp long were removed at 

this stage. A quality score of 20 was used, allowing one base below the cutoff score within the 

read, and trimming was conducted on both ends. Filtered reads were assembled using SPAdes as 

described below and binned using MEGAN5 (Huson et al., 2007), which used BLAST to 

compare each contig to the nr database, and all contigs identified as “bacteria”, “unclassified”, 

“not assigned”, or “no hits" had their reads identified and retained for assembly. 

 Assembly of the binned data was conducted using SPAdes (Bankevich et al., 2012). Ion 

Torrent specific settings with kmers 27, 35, 55 and 77 were used. All contigs with lengths of at 

least 200 bp composed of 8 reads or more were entered into the pipeline. Annotation was run 

using the MG-RAST website (http://metagenomics.anl.gov/) (Meyer et al., 2008), the RefSeq, 



 

47 
 

KOG, and Subsystems databases were used with the e-value cut-off set at 5, % identity 60, min 

length 15, and min abundance 1. A secondary annotation was conducted using PROKKA with 

the default settings provided (Seeman, 2014).   

3.3 Results and Discussion 

3.3.1 Genomic overview 

 Sequence reads can be found on the SRA database under sample SRS1569030, 

sequencing runs SRR3928943 and SRR3928944. Assembled contigs were uploaded to GenBank 

under BioProject PRJNA327811, BioSample SAMN05358035, accession numbers 

MOXF01000001.1-MOXF01012504.1. The assembly resulted in a highly fractured draft genome 

with similar genes on multiple contigs, suggesting heterogeneity in the bacterial population 

(recently suggested in reference McCuaig et al., 2017) as genes assembled well, but intergenic 

spaces did not. Nevertheless, the symbiont population in the T. cf. gouldi specimen studied was 

likely comprised of a single species, as only one complete 16S rRNA sequence was found. A 

similarly fragmented genome despite the presence of a single 16S rRNA sequence was described 

in a metagenomic study of R. pachyptila symbionts, which are environmentally acquired 

(Robidart et al., 2008).   

The assembly resulted in 12,504 contigs, with an N50 of 1870. The average read depth 

coverage is 33, with 50% of bases having a depth coverage of 14 or higher. Bases within areas 

identified as genes had an average read depth coverage of 31 with 50% having a depth coverage 

of 20 or higher. The GC content is 42 ± 7%. In total, 20,843 putative genes were assembled. 

Possible functions were assigned to 3,339 of them allowing us to infer some of the metabolic 

capabilities of the T. cf. gouldi symbiont. A summary of Level 1 Subsystem Functions is 

presented in Table 3.1 below.  
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Table 3.1: The number of putative proteins assigned to level 1 subsystem functions by the 

MG-Rast website 

Level 1 Subsystem Functions 
Number of genes 

assigned 

Amino Acids and Derivatives 211 

Carbohydrates 177 

Miscellaneous 151 

DNA Metabolism 136 

Protein Metabolism 148 

Cell Wall and Capsule 113 

Cofactors, Vitamins, Prosthetic Groups, Pigments 109 

RNA Metabolism 107 

Regulation and Cell signaling 106 

Respiration 102 

Membrane Transport 90 

Stress Response 66 

Virulence, Disease and Defense 61 

Nitrogen Metabolism 54 

Phages, Prophages, Transposable Elements, Plasmids 42 

Fatty Acids, Lipids, and Isoprenoids 40 

Motility and Chemotaxis 38 

Nucleosides and Nucleotides 38 

Sulfur Metabolism 30 

Phosphorus Metabolism 25 

Cell Division and Cell Cycle 25 

Metabolism of Aromatic Compounds 22 

Other 382 

 

3.3.2 Genomic support of environmental transmission 

 Some general characteristics of the genome support the capability of T. cf. gouldi 

symbionts to have a free-living existence: there is no sign of genomic reduction (as discussed 

below). Mobile elements and phage are present in the metagenome. While these are not 

conclusive evidence of environmental transmission, they are uncommon in co-evolved vertically 

transmitted symbionts (Moran et al., 2008). Four different mobile elements (Tn10 transposons, 

ISPsy4, IS200, and a MULE transposase domain possibly from IS256) were identified using the 

MG-RAST website and PROKKA (see methods), although the exact number of copies was 

unclear. Phage genes belonging to the order Caudovirales, similar to T5 phages, were also 
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identified. Genes for phage tail, capsid, and recombinase were identified, although their exact 

number was again indiscernible.  

There was no apparent loss of genes for DNA repair in the T. cf. gouldi symbiont 

genome, in contrast to the reduced genome of the vesicomyid symbionts which lacks recA for 

genetic recombination and mutY for DNA repair (Kuwahara et al., 2011). The loss of genes for 

DNA repair has been observed in vertically transmitted symbionts, contributing to GC bias and 

the presence of many pseudogenes (Moran et al., 2008; Kuwahara et al., 2011). 

  One contig contained many plasmid related genes, and further analysis uncovered the 

presence of a circular extrachromosomal plasmid. The origin of this extrachromosomal plasmid 

is uncertain, as this is a metagenomic sample. However, the high number of reads aligned to the 

plasmid (4860 reads) and complete coverage suggest that it was fairly common within the 

sample. It is unlikely that a small population of contaminating bacteria would provide enough 

sequence for a complete plasmid to be assembled, and we therefore consider that it is likely 

associated with the numerically abundant T. cf. gouldi symbionts. A virB operon consisting of 10 

genes encoding a type IV secretion system was identified on the putative plasmid (Fig. 3.1). The 

type IV secretion system can be used in conjunction with pili for conjugation, however, the virB 

operon can also be critical in both pathogenic and mutualistic relationships as a secretion system 

that moves molecules from bacteria to the host (Dale and Moran, 2006). In many mutualistic 

relationships, these molecules act to identify, colonize, and communicate with the host in a non-

harmful way, with the most common molecules moved across cell walls by this secretion system 

being DNA (Christie and Vogel, 2000; Christie, 2004). However, in different bacteria the system 

can transport a number of different molecules; notably, in some pathogenic species (e.g. 

Helicobacter pylori and Bordetella pertussis), the system can transfer small effector proteins 
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such as toxins or virulence factors involved in avoiding the host’s immune system (Christie and 

Vogel, 2000). The genes virB1-5 are often transcribed together and virB7-11 form another co-

transcribed group (Christie, 2004). On the plasmid discovered in the T. cf. gouldi metagenome, 

the virB genes show a similar arrangement, with two hypothetical proteins placed between virB5 

and virB6 (Fig. 3.1). Effector sequences were not identified, and no putative function was found 

for the nine hypothetical proteins on the plasmid. The importance of this plasmid is unknown, 

and more investigation is needed to confirm its association with T. cf. gouldi symbionts and its 

potential involvement in host-symbiont translocation.  
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Figure 3.1: Arrangement of the type IV secretion system genes on the extrachromosomal 

circular plasmid. 

The virB T4SS genes are arranged in 2 operons, virB1-virB5 and virB6-virB11, in the same 

orientation and separated by 2 hypothetical proteins. The traG gene, relaxase/mobilization gene, 

as well as the DNA-invertase suggest that the T4SS is active as a conjugation system. 

 

The genomic data showed genes associated with flagellar assembly and function (flaG, 

flgA, B, C, E, F, G, H, I, J, K, L, flhA, B, F, fliD, E, G, H, K, L, M, N, P, Q, S, T, U, W, mcpB, 

mcpS, motB, motD, pctC, pomA, swrC, tar, ycgR, and an undefined flagellar motor protein). 

Also identified were the Che genes (cheA, B, R, V, W, Y, and Z), which can detect chemical 

conditions in the environment, and interact with the flagellar motor to help the bacteria move to 
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suitable areas within the environment (Ferrandez et al., 2002). These genes are essential to locate 

and move to the microaerobic, reduced sulfur rich areas of the sediment this bacterium needs for 

sulfur oxidation. An aerotaxis gene (similar to aer) was also identified, likely allowing the 

bacteria to locate the microaerobic areas where sulfur oxidation is most efficiently carried out. 

When associated with a host, reduced sulfur is made accessible to symbionts by the sulfur 

mining behavior of the clam; however, bacteria in the free-living population must retain key 

genes for substrate location and motility (Dufour et al., 2014).  Like the environmentally 

transferred R. pachyptila symbiont, the T. cf. gouldi symbiont has a full complement of flagellar 

genes, as well as an array of chemotaxis genes (Robidart et al., 2008). Surprisingly, no 

magnetotaxis genes were identified by our metagenomic analysis, although magnetosome 

particles were identified in the symbionts of T. cf. gouldi (Dufour et al., 2014). A directed 

BLAST search of our contigs using the known magnetosome genes mam, man, mms, and mad, 

also gave no results. Our inability to identify magnetosome genes could be due to the fact that 

there is little available information on magnetosome genes in gammaproteobacteria, in contrast 

to other lineages of magnetotactic bacteria. Alternatively, the fragmented nature of the genome 

may mean they were not found because they fell within gaps of the assembly.  

A schematic representation of inferred metabolic capabilities of the T. cf. gouldi 

symbiont is presented in Fig. 3.2. The symbiont may not be restricted to thiotrophy and may be 

able to use alternative metabolic pathways when reduced sulfur is not available. In culturing 

experiments, the sulfur oxidizing bacterium Sedimenticola thiotaurini SIP-G1 is unable to fix 

carbon in aerobic conditions, where it must instead rely on heterotrophy (Flood et al., 2015). A 

previous phylogenetic study (McCuaig et al., 2017) placed the T. cf. gouldi symbiont in a 

position near S. thiotaurini SIP-G1. Based on this phylogenetic placement and the genes 



 

53 
 

identified by this study, the T. cf. gouldi symbiont may have similar metabolic capabilities; 

however, without culturing the bacteria in the lab we cannot validate this theory.  

 

Figure 3.2: Schematic representation of inferred metabolic capabilities of the Thyasira cf. 

gouldi symbiont. 

Genes for complete CBB and TCA cycles were identified. Genes that were not identified within 

either annotation pipeline are in red. IM: inner membrane; OM: outer membrane.  

3.3.3 Amino acid and cofactor synthesis 

Symbionts commonly retain genes important for amino acid, vitamin, and cofactor 

production because the host selects for bacteria that provide the nutrients it requires (Newton et 

al., 2007). Many putative gene functions of the T. cf. gouldi symbiont are involved in amino acid 

transport and metabolism (229 assignments; Table 3.1), while cofactor transportation and 

metabolism are also frequently identified (112 times; Table 3.1). These functions are also present 
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in free-living bacteria, so while important for the symbiosis, they are also presumably essential to 

the bacteria outside the host.   

3.3.4 Thioautotrophy 

In the T. cf. gouldi symbiont, the metabolic cycles for carbon fixation and sulfur 

oxidation are of particular interest. Several genes for the sox and dsr pathways are present (see 

below), and the symbiont may conduct sulfur oxidation through both these pathways. Both these 

cycles have been found to function simultaneously in bivalve and vestimentiferan 

chemosymbionts (Harada et al., 2009; Roeselers et al., 2010; Li et al., 2018). Sulfur compounds 

within the benthic sediment are patchy, and therefore being able to utilize different forms would 

increase the habitat range for these bacteria and their bivalve hosts. 

SoxA, X, Y and Z, which are found in a cluster in the genome of vesicomyid symbionts 

(Harada et al., 2009) and form a multi-enzyme system that can oxidize various forms of reduced 

sulfur (sulfide, thiosulfate, elemental sulfur and sulfite) to sulfate (Friedrich et al., 2001; Harada 

et al., 2009), were found in the T. cf. gouldi metagenome. We found no evidence for soxCD, 

which is found in some sulfur-oxidizing bacteria but is lacking in others (including in the 

Calyptogena symbiont; Harada et al., 2009). The lack of soxCD can manifest itself by the 

presence of bacterial sulfur globules, which appear as white inclusions in transmission electron 

micrographs of T. cf. gouldi symbionts, due to sulfur removal during processing (e.g. Fig. 2B of 

reference Batstone et al., 2014). The T. cf. gouldi symbiont metagenome included soxH, a 

peripheral, thiosulfate inducible sox gene that is located in the periplasm but is not essential for 

growth on thiosulfate and has an unknown function (Rother et al., 2001). We also identified 

cysA, shown to import both sulfate and thiosulfate from the environment (Sirko et al., 1990). 

Adenylylsulfate reductase was found, and its activity was previously detected in thyasirid 

symbionts (Dando and Spiro, 1993; Rodrigues and Duperron, 2011). 
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Many of the genes in the dsr cycle were found, dsrA, B, and C as well as the peripheral 

dsrE suggesting that the pathway is running in an oxidative direction (Bradley ar al., 2011). 

These genes as well as dsrK, M, R, S are present in the symbiont genome. An oxidative dsr 

pathway is present in many well-studied symbionts, including those associated with multiple 

Calyptogena species, R. pachyptila, and Crysomallon squamiferum (Robidart et al., 2008; 

Harada et al., 2009; Nakagawa et al., 2014).  

Thirteen putative functions associated with the Calvin-Benson-Bassham Cycle were 

discovered in the T. cf. gouldi symbiont.  The Calvin-Benson-Bassham Cycle in the T. cf gouldi 

symbiont utilizes a form II RuBisCo enzyme (Batstone et al., 2014; McCuaig et al., 2017). 

Chemosymbionts of bivalves often have a reversible pyrophosphate-dependent 

phosphofructokinase in place of the sedoheptulose-1,7-bisphosphatase that this enzyme replaces, 

and the fructose 1,6 bisphosphatase genes, which are employed in a reverse TCA cycle 

(Roeselers et al., 2010; Dmytrenko et al, 2014). However, we were unable to identify any of 

these three genes in our analysis, but did find ribose 5-phosphate isomerase, which is used in the 

typical Calvin-Benson-Bassham pathway but is missing in the symbionts of Calyptogena 

magnifica and R. pachyptila (Newton et al., 2007; Robidart et al., 2008). It is not clear if the 

thyasirid symbiont has a traditional Calvin-Benson-Bassham cycle, or if the modifications 

common in other sulfur oxidizing symbionts are also present in this symbiont (Dmytrenko et al, 

2014; Roeselers et al., 2010). 

3.3.5 Hydrogen Oxidation 

 The symbiont also appears capable of hydrogen oxidation using the NAD+-reducing 

hydrogenase hoxHYUF, and a second set of closely related genes identified as coding the alpha, 

beta, delta, and gamma subunits of hoxS. The enzyme produced by these complexes is bi-

directional. It has been described previously in the symbiont of some vestimentiferan worms (Li 
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et al., 2018; Reveillaud et al., 2018) as well as free-living Sedimenticola selenatireducens 

(Narasingarao et al., 2014).  

3.3.6 Heterotrophy 

Genes associated with a complete tricarboxylic acid (TCA) cycle were identified in the T. 

cf. gouldi symbiont metagenome (Fig. 3.2). Interestingly, the TCA cycle in this symbiont does 

not appear to use the oxoglutarate shunt and contains both the α ketoglutarate dehydrogenase and 

citrate synthase enzymes which are commonly lost in chemosymbiotic bacteria and cause the 

loss of heterotrophic abilities (Dmytrenko et al., 2014). All genes for a functional TCA cycle 

have been found in the chemosymbiont of Solemya velum, which may occur outside of its host 

(Dmytrenko et al., 2014). The genome of the R. pachyptila symbiont also encodes a complete 

TCA cycle and contains evidence for response to carbon compounds in the environment, 

suggesting that it can survive heterotrophically outside the host (Robidart et al., 2008). Sugar 

phosphotransferase systems (PTS) were also identified in our dataset. These systems can import 

sugars from the environment, increasing the evidence for some heterotrophic ability. Sugar PTS 

were identified for fructose, mannose, galactose, and sucrose, suggesting that these substrates 

can be acquired from the environment, supplementing carbon fixation. In pure culture, the 

sediment bacterium S. thiotaurini SIP-G1 is unable to grow on sulfur oxidation alone and must 

be provided with heterotrophic nutrients (Flood et al., 2015). A similar system may exist within 

the T. cf. gouldi symbiont, with heterotrophic growth occurring when environmental conditions 

are unfavorable for carbon fixation. The ability to utilise multiple carbon sources would be very 

beneficial during a free-living stage, especially in fluctuating environments where sulfur 

compounds can be scarce. 
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3.3.7 Anaerobic respiration 

The T. cf. gouldi symbiont appears to be capable of performing denitrification, as the 

genes for the nar and nos pathways are present in the metagenome. Denitrification is the process 

that reduces potentially harmful nitrogen compounds (nitrates, nitrites, and nitric oxide) into 

harmless, inert N2 through anaerobic respiration. Denitrification may provide multiple 

advantages to both host and symbiont, in addition to allowing bacterial ATP synthesis. First, by 

reducing harmful nitrogenous compounds, the bacteria may protect their host from toxic effects. 

Second, by decreasing the symbiont’s oxygen requirements, there is less competition with the 

host for this limited resource in the thyasirid’s endobenthic environment. Third, the pathways 

could allow the bacteria to respire anaerobically in anoxic sediments, and therefore broaden the 

organism’s free-living niche. Notably, the closely related free-living bacterium S. thiotaurini 

SIP-G1 from salt marsh sediments is capable of anaerobic respiration using nitrate and nitrite but 

can also grow under hypoxic conditions (Flood et al., 2015). Dissimilatory nitrate respiration 

genes have also been identified in the symbionts of Vesicomyosocius okutanii, Bathymodiolus 

thermophilus, and a number of vestimentiferan tubeworms (Robidart et al., 2008; Kleiner at al., 

2012; Ponnudurai et al., 2017; Li et al., 2018).  

Recent work has shown some sulfur-oxidizing chemosymbionts can also fix atmospheric 

nitrogen into bioavailable forms (Konig et al., 2017; Petersen et al., 2016), however, we did not 

find any evidence of nitrogen fixation genes in the T. cf. gouldi symbiont. The closely-related 

free-living bacterium S. thiotaurini SIP-G1 does however have a complete nitrogen fixation 

pathway (Flood et al., 2015). 

3.4 Conclusions 

 The metagenomic data collected corroborates previous data suggesting a facultative 

relationship between T. cf. gouldi and its symbionts, with the host clams being inoculated from 
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the environment (Dufour et al., 2014; McCuaig et al., 2017). The timing of this inoculation 

during the host’s lifespan is still unclear and further research is needed to determine when and 

for how long the host is competent for symbiont uptake. The symbiont population is a collection 

of closely related individuals, although the population is not clonal and some variation is present; 

the apparent heterogeneity in the symbiont population is likely related to the extracellular 

location of the bacteria, which limits the host’s ability to select for unique strains. There is no 

evidence of genome reduction in these symbionts, and the metagenomic data supports evidence 

of an environmental (non-symbiotic) habitat. In particular, the presence of a functional flagellum 

and chemosensory abilities supports the presence of a free-living population, as reported 

previously (Dufour et al., 2014).  

 Our data suggests that the metabolic capabilities of the T. cf. gouldi symbionts are 

comparable to previously described sulfur oxidizing bacteria. The symbionts may utilize multiple 

pathways for sulfur oxidation, both sox and dsr, and the CBB Cycle for carbon fixation. The 

denitrification pathway that is also present would allow for carbon fixation in anaerobic areas; 

when outside the host, sulfides are predominantly found in micro-oxic areas. Unlike many 

obligate symbionts, the thyasirid symbiont appears to have a functional TCA cycle and sugar 

importers allowing it to be heterotrophic. The bacteria may utilize autotrophy or heterotrophy 

under different conditions, like S. thiotaurini SIP-G1 (Flood et al., 2015). 

  Further research into the thyasirid symbiont genome may be beneficial in tracking the 

changes required for life as a bivalve symbiont, and experimental studies could reveal whether 

symbionts are capable of reverting to a non-symbiotic state after they have become associated 

with their host. The T. cf. gouldi symbiosis provides a unique opportunity to investigate how 

symbioses evolve as this appears to be a relatively less derived and interdependent relationship 
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compared to other bivalve symbioses which are intracellular. More research into the metabolic 

capabilities of the symbiont and how they interact with the host would provide insights into how 

this relationship has evolved, and the mechanisms that allow it to be maintained. Comparing the 

different symbiont phylotypes capable of associating with a single host species would also 

improve our understanding of this relationship and of the potential benefits of flexible host-

symbiont pairings. 
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Chapter 4: Comparison of Metabolic Capabilities of Thyasira cf. 

gouldi Symbiont Phylotypes 
 

4.0 Abstract 

 The small clam Thyasira cf. gouldi hosts a symbiotic population of bacteria within the 

gill filaments. These bacteria are sulfur oxidizing gammaproteobacteria, that have been identified 

as three separate 16S rRNA phylotypes. The previous chapter describes the genomic 

characteristics of phylotype B, here we compare the gene content of the three metagenomes. All 

three genomes had a similar number of genes identified (A=2418, B=2574, C=2529) and 

metabolic capabilities were very similar between genomes. Genes associated with carbon 

fixation, sulfur oxidation, hydrogen oxidation, flagella and chemotaxis were found in all three 

metagenomes. Upon closer inspection it was found that conserved genes often showed more 

variation at the sequence level than the 16S rRNA comparisons suggest. Certain functions, while 

conserved, were achieved with alternate enzymes in phylotype C. This phylotype also lacked the 

putative biofilm genes found in phylotypes A and B. The creation of a biofilm on the gill surface 

may explain how the symbiont excludes other bacteria from colonizing the gills. Overall this 

data supports our theory of an environmental acquisition of symbionts by Thyasira cf. gouldi and 

does not dispute the possibility of heterogenous symbiont populations within a single host.   

4.1 Introduction 

 Symbiotic relationships between chemoautotrophic bacteria and invertebrates from at 

least seven phyla are well documented within marine environments (Dubilier et al., 2008). Some 

species of bivalve molluscs are known to host large populations of chemoautotrophic bacteria on 

or in their gills, and in return the bacteria provide the clam some or most of its required nutrients 

(Dubilier et al., 2008; Roeselers and Newton, 2012). These populations of bacteria are often 
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considered to be monocultures; however, exceptions have been found and mixed populations 

may be more common than once thought (Ikuta et al., 2016; McCuaig et al., 2017). These mixed 

populations of bacteria are much more likely when the symbionts are acquired from the 

environment and may provide more environmental flexibility to the symbiotic relationship, 

allowing the partners to thrive in changing environments (Cavanaugh et al., 2006; Bright and 

Bulgheresi, 2010; Wentrup et al., 2014).   

 To date genetic research is sparse on the symbionts of bivalves from the family 

Thyasiridae, which are, with some exceptions (Fujiwara et al., 2001; Passos et al., 2007), 

extracellular (Dufour, 2005; Duperron et al., 2013) and  environmentally acquired (Dufour et al., 

2014). All the symbionts described to date have been from the class Gammaproteobacteria, and 

all those tested have been capable of sulfur oxidation (Dando and Spiro, 1993; Rodrigues and 

Duperron, 2011; Duperron et al., 2013). Previous research on Thyasira cf. gouldi from a fjord in 

Newfoundland, Canada, has shown they can associate with three strains of gammaproteobacteria 

(phylotypes A-C; Batstone and Dufour 2006). While sequencing of 16S rRNA PCR products 

showed only one strain of bacteria being hosted by each individual clam, further investigation 

showed evidence of heterogeneity in the RuBisCo gene (McCuaig et al. 2017). Diversity in a 

gene with such an essential function suggested the different strains of symbiont may have 

different metabolic repertoires. The different RuBisCo phylotypes had divergent sequences, 

sharing 77%-87% sequence identity (phylotypes 1 and 2 being most similar, and phylotypes 2 

and 3 being the most divergent).  

An initial investigation of the metabolic capabilities of the Thyasira cf. gouldi symbiont 

phylotype B was conducted and previously described (Chapter 3). This phylotype was found to 

be capable of sulfur oxidation through both the sox and dsr pathways. It appeared to have a 
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functional TCA cycle and may be able to live heterotrophically as well as through 

chemoautotrophy. Phylotype B was also found to be capable of hydrogen oxidation and 

denitrification. The symbionts of Solemya velum and vestimentiferan tubeworms were also found 

to be very metabolically diverse (Robidart et al. 2008; Dmytrenko et al. 2014; Reveillaud et al. 

2018). These symbionts are thought to be acquired from the environment by the host, and these 

diverse metabolic cycles may be an adaptation to highly variable sediment conditions 

(Reveillaud et al. 2018). The free-living bacteria Sedimenticola thiotaurini shows  metabolic 

diversity similar to phylotype B, described in Chapter 3, and is within the top BLAST hits for 

multiple genes within the metagenome, including 16S rRNA (McCuaig et al. 2017). 

Sedimenticola thiotaurini have been cultured in the lab and employ different metabolic strategies 

under different environmental conditions. For example, the bacteria are heterotrophic in aerobic 

conditions, but rely on chemoautotrophy and sulfur oxidation under anaerobic conditions (Flood 

et al. 2015). The symbiont Endoriftia persephone, the endosymbiont of Riftia pachyptila, has 

also been shown to utilize different genes when living outside or inside the host (Robidart et al. 

2008).  

Here, we compare the metabolic capabilities of the three identified strains of the Thyasira 

cf. gouldi symbiont (phylotypes A, B, and C) using metagenomic data. We also compare the 

phylogenetic distance of key genes within metabolic cycles, to elucidate the relatedness of these 

different symbiont phylotypes. 

4.2 Methods  

 4.2.1 Sample Collection and Sequencing 

 Three specimens of Thyasira cf. gouldi were examined herein, including two that were 

collected from Neddy’s Harbour, Bonne Bay, Newfoundland, Canada. The first specimen was 

collected from South East Arm (Bonne Bay) in May 2012, as described in Batstone et al. 2014 
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and McCuaig et al. 2017. Previously identified samples collected from Neddy’s Harbor (Bonne 

Bay) in August 2010 for a previous study (Batstone & Dufour 2016) were then selected to ensure 

all 3 phylotypes were represented.  

Total DNA was extracted from the gills of single individuals (Batstone et al. 2014) using 

a Qiagen Blood and Tissue Kit and stored at -20˚C in the elution buffer provided. Before 

sequencing, total DNA was transferred to nuclease free water. An Ion Plus Fragment Library Kit 

(Ion Torrent tm) was used and fragments of approximately 200 bp were selected using gel size 

selection and extraction (Qiagen Gel Extraction Kit), purified (Qiagen DNA Purification Kit) 

following manufacturer's instructions, and concentrations assessed with an Agilent Bioanalyser. 

Sequencing was conducted on an Ion Torrent PGM Sequencer following the manufacturer's 

protocols (V2.2). A 316 chip was used for sequencing phylotypes B and C, a 318 chip was used 

for phylotype A. Due to poor load rates, two sequencing runs were conducted when sequencing 

phylotype B and the data were combined before further processing.    

 4.2.2 Assembly and Annotation 

 Reads were quality checked and trimmed using the Galaxy Website (usegalaxy.org) and 

FastQC software (Blankenberg et al. 2010). A quality score cutoff of 20 was used, allowing one 

base below the cutoff score within the read, and trimming was conducted on both ends. Any 

reads less than 50 bp long were removed.  

Two approaches were used for assembly and annotation. First, the reads were assembled 

into contigs using SPAdes (Bankevich et al. 2012) with settings for Ion Torrent and kmers of 27, 

35, 55 and 77. These contigs were annotated using MG-Rast, with default settings. 

 In the second pipeline, with PROKKA annotation, the quality control steps outlined 

above were also conducted, but contigs were binned using MEGAN5 (Huson et al. 2007). Reads 

from all bacterial, unknown, and unassigned contigs were removed and used for the second 
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assembly. We used SPAdes (Bankevich et al. 2012) to assemble the binned data, using settings 

for Ion Torrent and kmers of 27, 35, 55 and 77. Annotation of contigs 200 bp or longer was 

conducted using the PROKKA software with default settings (Seemann 2014). Comparison of 

gene content across symbiont phylotypes was done manually after the PROKKA assembly using 

gene lists with duplicates removed.  

4.3 Results and Discussion 

4.3.1 Metabolic Similarities 

 Assembly resulted in highly fragmented genomes, similar to the previously described 

phylotype B genome (Chapter 3), however, many genes were successfully assembled. The 

PROKKA and MG-RAst annotations are compared in (Table 4.1). We will focus on the 

PROKKA annotation pipeline results for most of this chapter, as the results of this pipeline were 

more easily compared between genomes.  

Table 4.1: Comparison of the output of the two annotation pipelines used here. 

 Predicted protein 

features 

# of Identified 

Functional Categories 

MG-RAst Phylotype A 33,669 3,239 

MG-RAst Phylotype B 20,843 3,339 

MG-RAst Phylotype C 20,614 4,057 

 Predicted Coding 

Sequences 

# of unique gene 

functions identified 

PROKKA Phylotype A 33,317 2,418 

PROKKA Phylotype B 18,677 2,574 

PROKKA Phylotype C 14,183 2,529 

 

The three genomes contained roughly the same number of unique, identified genes: 

A=2418, B=2574, C=2529. Of these, 1560 were found in all three symbiont genomes (Fig. 4.1). 

A large proportion of these shared genes had functions related to DNA synthesis and repair, 

protein synthesis, cellular replication, and other essential functions. Alongside the essential 

genes, many metabolic genes were also conserved, Table B1. Assuming that the host selects 
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bacterial symbionts based on function, these conserved metabolic functions are likely important 

to the symbiotic relationship (Petersen et al. 2012). Genes involved in sulfur oxidation, hydrogen 

oxidation, denitrification, and carbon fixation were all conserved throughout the genome 

annotations. The possible benefits to the host are discussed below. Metabolic capabilities that are 

less clearly beneficial to the host were also conserved, including a functional TCA cycle, 

flagella, and chemotaxis genes; however, these genes would provide benefits to the bacteria 

when it lives outside the host.  

Symbiont phylotype B was previously described to have both the bacterial sulfur 

oxidation (sox) pathway and a dissimilatory sulfite reductase (dsr) pathway that ran in the 

oxidative direction (Chapter 3); these pathways were also identified in phylotypes A and C. This 

is consistent with research conducted on other thyasirid symbionts, as all those examined to date 

have been capable of sulfur oxidation, however, in most cases the exact pathway is unknown 

Figure 4.1: Venn diagram of unique genes within each Thyasira cf. gouldi symbiont 

phylotype as identified by PROKKA 
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(Duperron et al. 2013). Genes associated with the Calvin-Bensen-Bassham (CBB) Cycle were 

present in all three assemblies. Three phylogenetically distinct form II RuBisCo genes were 

previously described in these symbionts, which were not directly linked to symbiont 16S rRNA 

phylotype (McCuaig et al., 2017). Each distinct RuBisCo phylotype was represented in one of 

the genomes discussed here, 16S rRNA phylotype A contained RuBisCo phylotype 3, 16S rRNA 

phylotype B contained RuBisCo phylotype 2, and 16S rRNA phylotype C contained RuBisCo 

phylotype 1.  

Table 4.2: Distance Matrix for Citrate Synthase sequences in the Thyasira cf. gouldi 

symbionts 

 Phylotype A 

Citrate Synthase 1 

Phylotype B Citrate  

Synthase 1 

Phylotype C Citrate  

Synthase 1 

Phylotype B Citrate 

Synthase 1 

0.209   

Phylotype C Citrate 

Synthase 1 

0.171 0.175  

Phylotype C Citrate 

Synthase 

0.647 0.625 0.599 

The number of base substitutions per site from between sequences are shown. Analyses were 

conducted using the Tamura-Nei model (Tamura & Nei 1993). The rate variation among sites 

was modeled with a gamma distribution (shape parameter = 5). All positions containing gaps and 

missing data were eliminated. There were a total of 1044 positions in the final dataset. 

Evolutionary analyses were conducted in MEGA7 (Kumar et al. 2016). 

 

Full TCA cycles were also found in all three genomes, suggesting the bacteria may also 

be able to live heterotrophically. The class 1 fumarate hydratase found in phylotype C was 

annotated as being aerobic, while those in phylotypes A and B were anaerobic. Phylotype C also 

contained a second, phylogenetically distinct citrate synthase (Table 4.2), and contained a 2-

methylisocitrate dehydratase instead of an aconitate hydratase. Sugar importer genes were also 

identified within all the symbiont genomes, increasing the evidence the bacteria are also capable 

of living heterotrophically. Symbionts that maintain an environmental population, such as the 
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Endoriftia persephone and the Solemya velum symbiont have also been shown to be mixotrophs 

(Robidart et al. 2008; Dmytrenko et al. 2014). The Thyasira cf. gouldi symbiont also clusters 

near free-living mixotrophic bacteria such as the genus Sedimenticola based on 16S rRNA 

sequence data (McCuaig et. al., 2017).  

Hydrogen oxidation pathways were found in all three genomes. This included two very 

similar groups of genes, hoxHYUF and all four subunits (α, β, γ, and δ) of the hoxS complex. 

This redundancy in all the symbiont strains suggests the function is important to the organisms, 

and whether this importance is during free-living or symbiotic stages remains unclear. Similar 

genes were identified in some vestimentiferan worm symbionts (Reveillaud et al. 2018). Another 

similarity with vestimentiferan symbionts is the presence of multi-drug efflux proteins and ABC 

transporters, which were suggested to potentially function as defence against the host 

(Reveillaud et al. 2018).  

 All the symbionts also contained nar, nos, and nir genes, which have all been identified 

in vestimeniferan worm symbionts (Markert et al. 2011; Gardebrecht et al. 2012; Reveillaud et 

al. 2018). It is possible the bacteria can function in both aerobic and anaerobic environments, 

which is consistent with the inferred free-living infaunal habitat: the bacteria are believed to live 

at the sedimentary oxic/anoxic interface, with the burrowing and burrow irrigation behaviours of 

the clam possibly attracting symbionts to oxic/anoxic interface zones along burrow linings 

(Dufour et al., 2014). Genes associated with identifying the conditions found at redox boundaries 

and controlling aerobic and anaerobic functions were also identified (aer, arcB, nreB).   

 Genes for chemotaxis and motility via flagella were also present in all three genomes. 

This supports previous work suggesting the symbionts retain a free-living population (Dufour et 

al. 2014). These genes become unnecessary and are often not identified in symbionts that do not 
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have a free-living stage, such as the vertically transmitted Calyptogena okutanii symbiont 

(Kuwahara et al. 2007), but have been identified in the environmentally transferred symbiont 

Endoriftia persephone (Robidart et al. 2008). 

The MG-RAst analysis also showed some biofilm formation and quorum sensing genes, 

Table 4.3. If the bacterial symbionts are able to produce a biofilm on the gills of the host, similar 

to the biofilm formed in the bioluminescence crypts of the bobtail squid (Shibata et al. 2012), 

this may protect them from the host’s immune system and help them exclude non-symbiotic 

bacteria. However, these genes were only identified by the MG-RAst analysis and this was not 

confirmed by the PROKKA analysis, although other polysaccharide synthesis and transport 

genes were identified by the latter. 

Table 4.3: Biofilm formation and Quorum Sensing Genes Identified by MG-RAst 

Gene Putative Function 
MG-RAst Assemblies 

Where Identified 

SypH Glycosyltransferase B 

SypR 
Sugar transferase involved in lipopolysaccharide 

synthesis 
A, B 

SypM Acetyltransferase B 

SypC Periplasmic protein involved in polysaccharide export A, B 

SypO Polysaccharide biosynthesis chain length regulator A, B 

SypG Sigma-54 dependent transcriptional regulator A, B 

SypB Outer membrane protein A 

RhlL N-acyl-L-homoserine lactone synthetase C 

  

The syp genes were first described in the symbiont Vibrio fischeri, which colonizes the 

bobtail squid from an environmental population. The syp genes were identified in an 18 gene 

locus (sypA-sypR), and the regulatory protein rscS was found in another area of the genome 

(Shibata et al. 2012). In the squid-Vibrio symbiosis, colonization was not possible following 

mutations of 16 of the 18 syp genes (Shibata et al. 2012). The Thyasira cf. gouldi symbionts may 
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have analogous genes that were too divergent at the sequence level to be identified or may be 

able to function with fewer surface proteins. The syp genes were only identified in phylotypes A 

and B, which are the more common symbiont phylotypes (McCuaig et al. 2017). Genes that may 

be associated with host-symbiont recognition were also found to be common among the 

symbionts. While the Thyasira cf. gouldi is extracellular, surface proteins may help the host 

identify symbiotic bacteria and distinguish them from other environmental bacteria (Shibata et 

al. 2012). Two genes associated with host invasion (invasin, and invasion associated locus B 

(IalB)) were identified in all three genomes. Invasin was identified as an important protein for 

enteric bacteria to enter mammalian cells (Isberg et al. 1987). IalB was identified in all three 

genomes, but there was no apparent locus A identified in any annotation. This gene is also 

involved in cell invasion, and has been shown to respond to changes in environmental cues 

(Coleman & Minnick 2001, 2003). The effect these genes have in this relationship is unclear. 

The bacteria do not invade the host cells (Batstone et al. 2014; Laurich et al. 2015), but perhaps 

they have some function in cell attachment or host recognition.  

4.3.2 Phylogenetic Diversity 

Variations among the three genomes were observed. Some of the annotated genes were 

uniquely identified in a particular phylotype (A= 14.3%; B= 19.4%; C=22.2% unique genes). 

Unlike the previously described phylotype B (Chapter 3), phylotypes A and C did not seem to 

contain a plasmid, or a type IV secretion system. 

 Upon closer examination, some of the genes with conserved functions and annotations 

were phylogenetically distinct (see appendix B). It is also possible that there are multiple strains 

of symbiont present in a single Thyasira cf. gouldi host. Attempts to bin out these multiple 

strains were unsuccessful: binning was attempted using GC content versus length of contigs, GC 

content versus read depth, and contig length versus read depth, all of which yielded one 
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continuous bin. Divergent genes with duplicate functions were identified (such as citrate 

synthase and citrate synthase 1 in phylotype C, see Table 4.2). It is possible that these genes 

could be present in a single bacterial genome; however, a previous study on the RuBisCo 

sequences also suggested multiple strains of symbiont within a bacterial population inhabiting a 

single host (McCuaig, 2017). While some bivalves have been shown to host multiple symbionts, 

these are phylogenetically diverse species, often utilizing different chemicals for 

chemoautotrophy (such as sulfide and methane) (Fujiwara et al. 2001; Duperron et al. 2009), 

very similar symbionts with diverse metabolic capabilities have been described in Bathymodiolus 

septemdierum (Ikuta et al. 2016). These multiple, highly similar strains would also explain some 

of the difficulty experienced in assembly. Even genes that were present in all three genomes 

showed phylogenetic variation. Different genes showed variation in the amount of phylogenetic 

distance among phylotypes. Distance matrices for 16S rRNA and RuBisCo were previously 

reported (Table 2.2). The 16S rRNA sequences are highly similar, but selected proteins from 

metabolic cycles show a much higher degree of distance (Tables B2-B4, Appendix B). This 

suggests that, while functions are highly conserved, the symbionts are not as closely related as 

the 16S rRNA analysis would suggest.  

 We also found multiple instances of genes with multiple copies in all three assemblies. 

One such gene was the denitrification regulatory protein NirQ, Table 4.4. Each genome 

contained 2 highly divergent copies of NirQ (genetic distance >0.67), but the distance between 

genomes within similar copies was similar to the other genetic distances reported for 

metabolically important genes (0.123-0.204). This may be a sign of functional redundancy in all 

symbiont genomes, or the divergent gene copies may function well under different 
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environmental conditions. The third possibility is that each metagenome was contaminated by 

similar, but divergent environmental bacteria.  

Table 4.4: Distance matrix for Denitrification regulatory protein NirQ in Thyasira cf. 

gouldi symbionts  

 Phylotype A 

Copy 1 

Phylotype B 

Copy 1 

Phylotype C 

Copy 1 

Phylotype A 

Copy 2 

Phylotype B 

Copy 2 

Phylotype B 

Copy 1 

0.204     

Phylotype C 

Copy 1 

0.201 0.181    

Phylotype A 

Copy 2 

0.671 0.656 0.652   

Phylotype B 

Copy 2 

0.686 0.683 0.669 0.191  

Phylotype C 

Copy 2 

0.673 0.670 0.682 0.186 0.123 

*Grey area is distance between copies within the same genome.  

Analyses were conducted using the Tamura 3-parameter model  with the rate variation modeled 

with a gamma distribution (shape parameter =5) (Tamura 1992). There were a total of 802 

positions in the final dataset. Evolutionary analyses were conducted in MEGA7 (Kumar et al. 

2016). 

 

4.4 Conclusion 

 The genomic data obtained in this study shows that the Thyasira cf. gouldi symbiont has 

a large range of metabolic capabilities. Sulfur oxidation may be carried out through the sox 

pathway, or a dsr pathway running in reverse. The bacteria may also possess the capability to 

live heterotrophically and has a suite of genes for chemotaxis and movement within the 

environment. They also appear to have the full suite of genes needed for denitrification and 

hydrogen oxidation. This metabolic flexibility has been seen in environmentally transferred 

symbionts, and further studies would be needed to identify which pathways are active within the 

host, and which are only active in the environment. The overall metabolic capacity of the 

symbionts matches those of vestimenteriferan worms more than other bivalve symbionts. 
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  Despite the highly conserved metabolic capabilities, and the very close relationship 

suggested by the 16S rRNA sequences, the three phylotypes of Thyasira cf. gouldi symbiont 

show a large phylogenetic distance when metabolically important gene sequences are analysed. 

This was confirmed with multiple genes from multiple pathways. It was also found that the 

function of aconitate hydratase is fulfilled by the bidirectional 2-methylisocitrate dehydratase in 

phylotype C.  

 More in depth sequencing would help clarify many of the results in this paper. Binning of 

the reads or contigs on length, GC content, and read coverage was unsuccessful in this dataset, as 

all attempts resulted in one bin including the host reads. This could be due to the bacteria having 

a low GC content similar to the host and non-uniform read coverage. Longer reads or paired end 

sequencing would improve the assemblies generated and may allow for binning. Examination of 

individual reads could also help answer the question of population heterogeneity, however, the 

samples are environmental in nature and will contain bacteria that are not symbiotic. 

Transcriptomic, proteomic, or enzymatic tests would need to be conducted to ensure that the 

metabolic capabilities described here are active in the symbiont, and if so, under which 

conditions they occur. While culturing of symbiotic bacteria is very difficult, the environmental 

nature of these bacteria may make them easier to culture than obligate symbionts.  
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Chapter 5: Conclusions and Future Research Suggestions 
 

5.1 Unexpected diversity in Thyasira cf. gouldi symbiont populations and among phylotypes 

 The main conclusion that can be made from this investigation is that the host-symbiont 

complex of Thyasira cf. gouldi and its bacterial symbiont is more complicated than early 16S 

rRNA based studies suggested (Batstone and Dufour, 2016; McCuaig et al., 2017). The three 

previously defined symbiont 16S rRNA phylotypes are also not as closely related, or clearly 

defined, as previous thought. Keeping in mind the 16S rRNA gene should be more conserved 

than other genes, we had nevertheless expected a high level of sequence similarity among 

symbiont phylotypes in other genes. However, we found unexpected diversity in functional 

genes that were also expected to be conserved (Chapters 2 and 4). In Chapter 2, we described 

two divergent RuBisCo sequences in phylotype A symbionts and suggest that the pattern is the 

result of horizontal gene transfer. Other functional genes, selected based on their functional role 

and presence in the genomes of the three phylotypes, also showed low percent identities (see 

Appendix tables B2-4). Based on the high 16S rRNA similarity across phylotypes, and the 

similar habitats, it was surprising to see the diversity in TCA cycles and biofilm related genes but 

note that all symbionts maintain similar overall metabolic capabilities (Chapter 4). It remains 

unclear whether the gene variants provide particular advantages to the symbiont under specific 

conditions. Different form II RuBisCo have different efficiencies in different environmental 

conditions (Badger and Bek, 2008). Further investigation would be needed to see if these form II 

RuBisCo forms provide an increased efficiency in the environments that the symbionts inhabit. 

These findings indicate that caution should be used when inferring physiological equivalency 

among bacteria based on the similarity 16S rRNA gene sequence and highlight the importance of 

genomic approaches to the study of symbioses.  
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Of the three phylotypes, phylotype C is the most genetically distinct of the symbionts 

(Chapter 4). This was the only rRNA phylotype to contain RuBisCo phylotype 1. It was also the 

only phylotype to utilize 2-methylisocitrate dehydratase within the TCA cycle. Phylotype C also 

contained the greatest number of unique genes, not found in either of the other symbiont 

assemblies (537). It also lacked syp genes (associated with biofilm formation) and is by far the 

rarest of the symbiont phylotypes (documented in 2/47 examined bivalves). Symbiont phylotype 

C was also only located in Neddy’s Harbor which had distinct sediment characteristics. It was 

the shallowest sampling site, had the courses sediment grain size, and the lowest organic matter 

content (Batstone and Dufour, 2016). The distinct RuBisCo and TCA genes may be related to the 

sediment characteristics, making phylotype C unsuited to life in the deeper, fine grained, organic 

rich sediments of Deer Arm and South East Arm.  

 In Chapter 2, we presented evidence of symbiont population heterogeneity within host 

individuals. It is not uncommon for environmentally transmitted symbionts to show some 

population heterogeneity in juvenile hosts, however, as the host matures the symbiont population 

is usually selected to be very homogenous (Brissac et al., 2016). This selection is theorized to 

take place as the symbiont is internalized into the host cells, because the Thyasira cf. gouldi 

symbionts are hosted extracellularly this selection process is unlikely to occur. The diversity 

within a symbiont population can also be affected by when the symbionts are acquired. If the 

host is competent for a short time as a juvenile the symbiont population can become less diverse 

as the host selects bacteriocytes with the most efficient symbionts and destroys the others 

(Brissac et al., 2016). Life long competency coupled with lack of selection may explain the high 

symbiont diversity we have seen in the Thyasira cf. gouldi. Symbionts could be brought into 

contact with the gills by the foot which is used for burrowing and pedal feeding. This theory has 
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been supported by the identification of bacteria with intact magnetosomes, as well as 

magnetosomes from digested bacteria suggesting they were acquired at different times (Dufour 

et al., 2014).  

  A more diverse symbiont population could provide the host with a more flexible 

metabolism. By hosting bacteria that can fix carbon more efficiently in different environmental 

conditions it ensures the host has a food source if conditions change. Continual acquisition from 

an environmental population allows the host to acquire new symbionts that are best suited to the 

current conditions. This heterogeneity may also have affected the quality of our assemblies. It is 

very difficult to assemble highly similar genomes with genetic variation within them. The 

approaches used herein did not allow us to identify how heterogeneous the bacterial populations 

are within individuals.  

5.2 Potential role for biofilm genes in controlling symbiont populations within a host 

One of the unexpected findings of this research was the presence of biofilm genes in the 

symbiont genomes of phylotypes A and B (Chapter 4), as such genes have not yet been reported 

in chemoautotrophic symbionts. The symbionts appeared to contain the genes necessary for cell 

adhesion and secretion of an extracellular matrix. In thyasirid bivalves, symbionts occupy 

extracellular pockets, limited by the epithelial cell membrane and extensions of microvilli 

(Dufour, 2005). The ability of symbionts to create biofilms may improve their ability to colonize 

the host by creating an environment where the bacteria will be able to exclude competitors. The 

symbiotic bacteria contained many membrane transporters and possible antibiotic production 

genes for beta-lactamase. If the symbiont can produce an antibiotic it would allow them to 

exclude other bacteria, reducing competition within the gills. Biofilms could also be beneficial in 

the symbiont’s sedimentary habitat providing many of the same benefits within the sediment. 
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5.3 Metabolic capabilities in the three T. cf. gouldi symbiont 16S rRNA phylotypes 

 Metabolic capabilities were highly conserved across all symbiont phylotypes, even in 

cases where individual genes were not conserved (Chapter 4). All symbionts appear to use both 

the sox and dsr cycles to oxidize sulfur compounds, providing energy for carbon fixation via the 

CBB cycle. The symbionts appear to be capable of mixotrophy, as all the draft genomes 

contained a full TCA cycle as well. The TCA cycle of phylotype C utilized a bifunctional 2-

methylisocitrate dehydratase rather than the aconitate hydratase found in phylotypes A and B. 

Mixotrophy was further supported by membrane transporters, suggesting the symbiont could 

acquire input compounds from the environment. Mixotrophy has been described in 

environmental sediment bacteria such as S. thiotaurini (Flood et al., 2015), environmentally 

transmitted symbionts in vestimeniferan tubeworms (Li et al., 2018; Reveillaud et al., 2018), and 

has been used as evidence that symbionts are not vertically transmitted in Solemya velum 

(Dmytrenko et al. 2014). The reduced compounds needed for chemoautotrophy are patchy within 

the environment and the ability to live heterotrophically would benefit the symbiont outside the 

host if reduced compounds become scarce.  

5.4 Further evidence for environmental transmission in T. cf. gouldi symbionts 

 In addition to exhibiting signs of metabolic versatility which would be adaptive in a 

variable sedimentary environment, the symbiont genomes show several additional characteristics 

of environmentally transmitted symbionts. There is no evidence of genomic reduction, they have 

mobile elements and many genes that are not commonly found within vertically transmitted 

symbionts. Symbiont phylotype B also had an extrachromosomal plasmid that encoded a type IV 

secretion system. The ability to move within the environment, in this case via flagella, and genes 

associated with sensing the environment were common to all three symbiont genomes. Again, 

these are often lost after vertical transmission is established, such as those symbionts found in 
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Calyptogena sp. (Kuwahara et al., 2007; Newton et al., 2007), and have been used as evidence of 

environmental transmission (Dmytrenko et al., 2014).  

 The symbionts are also well prepared to deal with external stresses. Each assembly 

contained two sets of hydrogen oxidation genes (hox and huy complexes). All genomes 

contained peroxidases and genes associated with oxygen sensing (aer). There are also many 

ABC transporters and multi-drug exporters identified in all the genomes. These could be utilized 

in defense against the host immune system, although these symbionts are extracellular 

(Reveillaud et al., 2018). All symbiont genomes also appear capable of assimilating nitrogen 

from the environment. A full suite of nar, nos, nir genes was found in each assembly. 

5.5 Implications for the thyasirid host 

 The relationship of Thyasira cf. gouldi and its symbiont is very flexible. The symbiont 

population grows when particulate food is readily available and is reduced when external food 

sources are scarce. In this way the symbiont appears to act as a food storage system (Laurich et 

al., 2015). The evidence presented here, as well as microscopic evidence presented in Laurich et 

al, (2017) suggest that the host is competent throughout its lifetime. The host can be inoculated 

with closely related bacteria, but there is no clear selection of a single strain. This allows the host 

to continually be inoculated by symbiont strains that are currently successful in that environment. 

This is important because the conditions of the fjord sediment the host inhabits are patchy and 

volatile. Changing conditions may reduce the efficiency of carbon fixation in a particular strain 

of bacteria and make a previously inefficient strain superior. In such conditions it would be 

beneficial for the host to be able to “swap” symbiont strains. While the evidence was not 

conclusive it does appear that a single host can contain multiple symbiont strains. This would 

also be beneficial with changing conditions, allowing different symbiont strains to flourish under 

different conditions (Ikuta et al., 2016). This flexible system allows the host to readily adapt to 
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changing sediment conditions, and to survive for long periods of low external food availability 

allowing Thyasira cf. gouldi to colonize areas that may be too volatile to sustain animals which 

rely on an external food source.  

5.6 Further Research 

 While this work provided a broad initial picture of the Thyasira cf. gouldi symbiont 

genomes, there is still much work to be done. Foremost is addressing the issue of multiple 

symbiont phylotypes or strains within a single host population. There are multiple ways this 

question can be addressed, 1) PCR of indicator genes (e.g. RuBisCo or 16S rRNA) followed by 

cloning into E. coli and resequencing; 2) resequencing of the metagenome with a more precise 

sequencing technology (the Ion Torrent PGM has been shown to have 1.5 homopolymer indel 

error per 100bp; Loman et al., 2012) followed by a bioinformatic investigation of individual 

reads; 3) resequencing with greater accuracy and depth, allowing for better binning and more 

complete assembly of the genomes in question.  

 While I am confident in our results, more information could be obtained through a higher 

quality draft genome. There are a number of ways to improve the quality of the draft created. 

The Ion Torrent PGM has been shown to produce more fragmented draft genomes than some of 

the more established next-generation sequencers; Loman et al., 2012), so alternative sequencing 

platforms could provide better results. There is also a wider range of programs designed for 

assembly of reads from these well-established sequencers than for the Ion Torrent PGM. While 

SPAdes does account for the specific miscalls that the Ion Torrent PGM is prone to making, such 

miscalls can still confound the assembly. Using paired-end reads or a technology that results in 

longer reads should improve the quality of the assembly. Improved quality would likely make it 

possible to bin the contigs, removing more of the environmental contamination, and making 

assembly from binned reads possible. 
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 We have also hypothesised that the symbionts are acquired from a free-living population 

found in the surrounding sediment. To support this statement, the eggs of Thyasira cf. gouldi 

should be investigated for symbionts, through genetic testing and/or possibly microscopic 

studies. Evidence of living symbiotic bacteria within the sediment would also be very supportive 

of this theory, as to date only a partial 16S rRNA sequence has been identified within sediment 

samples. Partial sequences could come from dead bacteria shed from the dying/deceased hosts. 

Living bacterial populations could be identified by culturing (perhaps after an initial enrichment 

of magnetotactic bacteria from sediment samples; (Wolfe et al., 1987; Sakaguchi et al., 1996; 

Lins et al., 2003) or fluorescent in situ hybridization (FISH) experiments.  

 Regarding the metabolic capabilities of the symbiont, successful culturing followed by 

testing under a variety of environmental conditions would be ideal. However, culturing of 

symbionts outside the host is very challenging, even if they are environmentally transmitted, and 

initial attempts I made to culture the symbionts on thiosulfate basal medium adapted from Tuttle 

and Jannasch (1972) were not met with success. Culturing attempts were run in liquid media as 

described in the paper, semi-solid stab tubes and solid plates incubated at 4○C and 20○C. Stab 

tubes had loose or tight lids to help create different oxygen levels. The semi solid and solid 

media had Daptomycin and Fungizone added to prevent growth of other organisms. Inoculant 

was obtained from magnetic racetracks designed following Wolfe et al., (1987) which showed no 

growth, and from sediment samples, which showed growth of non-target bacteria. 

Transcriptomic investigations may provide some insight into which metabolic cycles are active 

within the host, as this may differ from what is active outside the host. Proteomics is also an 

option. Verifying the presence of important proteins in the clam gills would provide good 
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evidence of bacterial metabolism. More direct metabolic testing using living clams may also be a 

viable option, although lab conditions may skew the results.  

 In conclusion, while we have laid the groundwork for further research, many avenues of 

investigation could improve our understanding of this symbiotic relationship. In the short term, 

verification of symbiont environmental transmission and population heterogeneity might provide 

the greatest benefits. 
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Appendices 
 

Appendix A Supplemental Data for Chapter 2  

Table A1: Individual Sampling Data 

  GPS 

Coordinates 
      

Sample ID Date N W 

Sample 

Depth 

(m) 

Shell 

Width 

(mm) 

Host 

OTU 
16S RB 

Deer Arm                 

D 5 10/09 10/09 - - - - - B - 

D 1 5/10 05/10 49˚33.236 57˚50.377 - 3 1 B - 

D 4 8/10 08/10 - - - 2 -  A - 

D 6 6/11 06/11 - - - 3.2 1 - 3 

D 9 6/11 06/11 - - - 3.2 1 A - 

D 2 10/11 10/11 49° 33.222 057° 50.445 31 3.5 - A 3 

D 5.2 12/11 12/11 49° 33.219 057° 50.384 34.3 4 - B 2 

D 5.3 12/11 12/11 9° 33.219 057° 50.38 34.3 4.7 - A - 

D 8.1 5/12 05/12 49° 33.236 057° 50.409 29 2.4 - - Mixed 

D 12.2 5/12 05/12 49° 33.201 057° 50.431 36 3.2 - - 2 

D 12.3 5/12 05/12 49° 33.201 057° 50.431 36 4.2 - A 3 

D 13.1 10/12 10/12 49° 33.210 057° 50.420 34 4 - B - 

D 13.2 10.12 10/12 49° 33.210 057° 50.420 34 5 - - Mixed 

D 13.4 10/12 10/12 49° 33.210 057° 50.420 34 3.1 - - 2 

D 13.5 10/12 10/12 49° 33.210 057° 50.420 34 4.3 - A 2 

D 13.6 10/12 10/12 49° 33.210 057° 50.420 34 4.2 - A 3 

D 13.7 10/12 10/12 49° 33.210 057° 50.420 34 3.9 - A - 

D 13.12 

10/12 10/12 49° 33.210 057° 50.420 34 3.5 - A 3 

Neddy's 

Harbour 
  

              

N 4 5/10 05/10 49˚27.372 57˚53.280 20 - 1 B 2 

N 5 5/10 05/10 49˚27.372 57˚53.280 20 - 1 C - 

N 3 8/10 08/10 - - - - 2 C - 

N 4 8/10 08/10 - - - - 1 B - 

N 5 8/10 08/10 - - - 2.5 1 B 2 

N 7 8/10  08/10 - - - 2.5 1 B 2 

N 8 8/10  08/10 - - - 3.5 1 B 2 

N 16.1 4/11 04/11 49° 31.460 057° 52.230 16.7 2.2 1 B 2 

N 16.2 4/11 04/11 49° 31.460 057° 52.230 16.7 2.8 1 B - 

N 14 6/11 06/11 - - - 2.3 1 - 2 



 

91 
 

N 15 6/11 06/11 - - - 3 - A 2 

N 20 6/11 06/11 - - - 3.1 1 B 2 

N 21 6/11 06/11 - - - 3.2 1 B 2 

N 27 6/11 06/11 - - - 2.7 1 - 2 

N 1 10/11 10/11 - - - 3 1 B - 

N 2 10/11 10/11 - - - 3.2 - C 1 

N 3 10/11 10/11 - - - 2.5 2 C 1 

N 11.3 5/12 05/12 49° 31.386 057° 52.186 29.8 3 - - 2 

N 7.1 10/12 10/12 49° 31.436 057° 52.234 - 2.5 - - 2 

N 7.2 10/12 10/12 49° 31.436 057° 52.234 - 2.3 - - 2 

N 9.1 10/12 10/12 49° 31.431 057° 52.275 - 2.5 - B 2 

N 17.1 10/12 10/12 49° 31.456 057° 52.246 - 2.7 - B 2 

N 19.1 10/12 10/12 49° 31.420 057° 52.240 - 2.6 - - 2 

N 19.2 10/12 10/12 49° 31.420 057° 52.240 - 2.6 - - 2 

N 19.3 10/12 10/12 49° 31.420 057° 52.240 - 2.5 - B 2 

South East 

Arm 
  

              

S 1 10/09 10/09 - - - - - A - 

S 3 10/09 10/09 - - - - - A - 

S 4 10/09 10/09 - - - - - A - 

S 102B 5/10 05/10 49˚27.774 57˚43.493 30 - 2 A 3 

S 103B 5/10 05/10 49˚27.774 57˚43.493 30 - 1 A 2 

S 401B 5/10 05/10 49˚27.723 57˚43.455 20 5 1 A - 

S 501A 5/10 05/10 49˚27.720 57˚43.466 20 - 1 A 2 

S 502A 5/10 05/10 49˚27.720 57˚43.466 20 - 1 A 3 

S 1.1 4/11 04/11 49° 27. 748 057° 42. 773 27.1 4 1 A 3 

S 1.2 4/11 04/11 49° 27. 748 057° 42. 773 27.1 3 1 B 2 

S 1.3 4/11 04/11 49° 27.752 057° 42.449 25.3 3.5 1 - 2 

S 3.1 4/11 04/11 49° 27. 751 057° 42. 822 30.2 4 1 B 2 

S 3.2 4/11 04/11 49° 27. 751 057° 42. 822 30.2 3 1 A - 

S 3.3 4/11 04/11 49° 27. 751 057° 42. 822 30.2 3.5 - A 2 

S 4.2 4/11 04/11 49° 27. 745 057° 42. 806 29.9 3.5 - A - 

S 12 6/11* 06/11 - - - 2.5 1 A 3 

S 13 6/11* 06/11 - - - 4 1 A 3 

S 15 6/11 06/11 - - - 2.7 - A 2 

S 4 10/11 10/11 - - - 4 - A 2 

S 6 10/11 10/11 - - - 3.8 - A - 

S 8 10/11 10/11 - - - 3.2 1 B 2 

S 13.1 12/11 12/11 49° 27.787 057° 42.482 34.6 - 1 A - 

S 13.2 12/11 12/11 49° 27.787 057° 42.482 34.6 - - A 3 

S 15.1 12/11 12/11 - - - 4.2 1 B 2 



 

92 
 

S 1.1 5/12 05/12 49° 27.837 057° 42.886 31.5 5 - - 3 

S 1.4 5/12 05/12 49° 27.837 057° 42.886 31.5 33 - - 2 

S 6.4 5/12 05/12 49° 27.827 057° 42.852 30 4 - - 3 

* 16S rRNA sequences unavailable for use in phylogenies 

Table A2: Variable sites within the RuBisCo sequence alignment.   
6 2 

1 

3 

6 

3 

9 

4 

2 

4 

5 

6 

0 

6 

9 

7 

0 

7 

1 

7 

2 

7 

5 

7 

9 

8 

0 

8 

1 

8 

4 

9 

0 

9 

3 

9 

9 

1 

0 

2 

1 

1 

1 

1 

1 

7 

S 1.1 4/11 G C T T G T G T G T G A A C C T A C C C T A 

S 1.1 5/12 G C T T G T G T G T G A A C C T A C C C T A 

S 13 6/11 G C T T G T G T G T G A A C C T A C C C G G 

D 12.2 5/12 G T C C G C A C A C C G G T T C G G T C C G 

D 13.4 

10/12 
G T C C G T A C A C C G G T T T G G T C C G 

S 12 6/11 G C T T G T G T G T G A A C C T A C C C K A 

D 13.12 

10/12 
G C T T R T G T G T G A A C C T A C C C K R 

S 13.2 

12/11 
G C T T G T G T G T G A A C C T A C C C K R 

S 6.4 5/12 G C T T G T G T G T G A A C C T A C C C K A 

D 2 10/11 G C T T A T G T G T G A A C C T G C C A T A 

S 103B 

5/10 
G T C C G C A C A C C G G T T T G G T C C G 

D 13.5 

10/12 
G T C C G Y A C A C C G G T T T G G T C C G 

D 8.1 5/12 G T C C G T A C A C C G G T T T G G T C C G 

S 15 6/11 G T C C G Y A C A C C G G Y Y T G G T C C G 

S 3.3 4/11 G T C C G C A C A C C G G T T Y G G T C C G 

S 501A 

5/10 
G T C C G C A C A C C G G T T Y G G T C C G 

N 15 6/11 G T M C G C A C A C C G G T Y Y G G T C C G 

D 5.2 12/11 G T C C G C A C A C C G G T T Y G G T C C G 

N 16.1 4/11 G T C C G C A C A C C G G T T Y G G T C C G 

S 4 10/11 G T C C G C A C A C C G G T T Y G G T C C G 

N 19.3 

10/12 
G T C C G C A C A C C G G T T C G G T C C G 

N 21 6/11 G T C C G C A C A C C G G T T C G G T C C G 

D 13.2 

10/12 
K Y C C G T R Y D B V R R Y C T R S Y C G G 

D 6 6/11 G C T T G T G T G T G A R C C T A C C C Y R 

D 12.3 5/12 G C T T G T G T G T G A A C C T G C C C K R 
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D 13.6 

10/12 
G C T T G T G T G T G A A C C T G C C C K R 

S 102B 

5/10 
G C T T R T G T G T G A A C C T R C C M T A 

N 11.3 5/12 G T C C G C A C A C C G G T T C G G T C C G 

N 14 6/11 G T C C G C A C A C C G G T T C G G T C C G 

N 17.1 

10/12 
G T C C G C A C A C C G G T T C G G T C C G 

N 19.1 

10/12 
G T C C G C A C A C C G G T T C G G T C C G 

N 19.2 

10/12 
G T C C G C A C A C C G G T T C G G T C C G 

N3 10/11 G T T C G T C G A T G G G T T C C A T C T G 

N 2 10/11 G T T C G T C G A T G G G T T C C A T C T G 

N 20 6/11 G T C C G C A C A C C G G T T C G G T C C G 

N 27 6/11 G T C C G C A C A C C G G T T C G G T C C G 

N 4 5/10 G T C C G C A C A C C G G T T C G G T C C G 

N 5 8/10 G T C C G C A C A C C G G T T C G G T C C G 

N 7 8/10 G T C C G C A C A C C G G T T C G G T C C G 

N 7.1 10/12 G T C C G C A C A C C G G T T C G G T C C G 

N 7.2 10/12 G T C C G C A C A C C G G T T C G G T C C G 

N 8 8/10 G T C C G C A C A C C G G T T C G G T C C G 

N 9.1 10/12 G T C C G C A C A C C G G T T C G G T C C G 

S 1.2 4/11 G T C C G C A C A C C G G T T C G G T C C G 

S 1.3 4/11 G T C C G C A C A C C G G T T C G G T C C G 

S 1.4 5/12 G T C C G C A C A C C G G T T C G G T C C G 

S 15.1 

12/11 
G T C C G C A C A C C G G T T C G G T C C G 

S 3.1 4/11 G T C C G C A C A C C G G T T C G G T C C G 

S 502A 

5/10 
G C T T A T G T G T G A A C C T G C C A T A 

S 8 10/11 G T C C G C A C A C C G G T T C G G T C C G 
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1 
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1 
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1 

8 

6 

1 

8 

9 

1 

9 

7 

1 

9 

9 

2 

0 

0 

2 

0 

1 

2 

0 

4 

2 

0 

7 

2 

1 

3 

2 

1 

6 

2 

1 

7 

S 1.1 4/11 G G G G A T C C C T T C A T G C A G G C T G 

S 1.1 5/12 G G G G A T C C C T T C A T G C A G G C T G 

S 13 6/11 G G G G A T T C C T T C A T G C A G G C T G 

D 12.2 

5/12 
C T A A G C C T T C C T C A A T C C A T C C 

D 13.4 

10/12 
C T A G G C C T T C C T C A A T C C A T C C 

S 12 6/11 G G G G A T C C C T T C A T G C A G G C T G 

D 13.12 

10/12 
G G G G A T Y C C T T C A T G C A G G C T G 

S 13.2 

12/11 
G G G G A T Y C C T T C A T G C A G G C T G 

S 6.4 5/12 G G G G A T C C C T T C A T G C A G G C T G 

D 2 10/11 G G G G A T C C C T T T A T G C A A G C T G 

S 103B 

5/10 
C K A G G C C T T C C T C A A T C C A T C C 

D 13.5 

10/12 
C K A G G C C T T C C T M A A T C C A T C C 

D 8.1 5/12 C K A G G C C T T C C T M A A T C C A T C C 

S 15 6/11 S K A G G C C T T C C T M W A T C C A T C C 

S 3.3 4/11 C K A A G C C T T C C T M W A T C C A T C C 

S 501A 

5/10 
C K A G G C C T T C C T M A A T C C A T C C 

N 15 6/11 C T A A G C C T T C C T M A A T C C A T C C 

D 5.2 

12/11 
C T A R G C C T T C C T C A A T C C A T C C 

N 16.1 

4/11 
C T A R G C C T T C C T C A A T C C A T C C 

S 4 10/11 C T A R G C C T T C C T C A A T C C A T C C 

N 19.3 

10/12 
C T A R G C C T T C C T C A A T C C A T C C 

N 21 6/11 C T A R G C C T T C C T C A A T C C A T C C 

D 13.2 

10/12 
S G G R V H T T Y H Y Y A T A T C G R C Y B 

D 6 6/11 G G R G A T C Y Y T T Y A T R Y M G R Y Y G 

D 12.3 

5/12 
G G G G A T C C C T T Y A T G C A R G C T G 

D 13.6 

10/12 
G G G G A T C C C T T Y A T G C A G G C T G 

S 102B 

5/10 
G G G G A T C C C T T Y A T G C A R G C T G 
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N 11.3 

5/12 
C T A A G C C T T C C T C A A T C C A T C C 

N 14 6/11 C T A A G C C T T C C T C A A T C C A T C C 

N 17.1 

10/12 
C T A A G C C T T C C T C A A T C C A T C C 

N 19.1 

10/12 
C T A A G C C T T C C T C A A T C C A T C C 

N 19.2 

10/12 
C T A A G C C T T C C T C A A T C C A T C C 

N3 10/11 T C G G G C T T C C C T T A G T T G A T T G 

N 2 10/11 T C G G G C T T C C C T T A G T T G A T T G 

N 20 6/11 C T A A G C C T T C C T C A A T C C A T C C 

N 27 6/11 C T A A G C C T T C C T C A A T C C A T C C 

N 4 5/10 C T A A G C C T T C C T C A A T C C A T C C 

N 5 8/10 C T A A G C C T T C C T C A A T C C A T C C 

N 7 8/10 C T A A G C C T T C C T C A A T C C A T C C 

N 7.1 

10/12 
C T A A G C C T T C C T C A A T C C A T C C 

N 7.2 

10/12 
C T A A G C C T T C C T C A A T C C A T C C 

N 8 8/10 C T A A G C C T T C C T C A A T C C A T C C 

N 9.1 

10/12 
C T A A G C C T T C C T C A A T C C A T C C 

S 1.2 4/11 C T A A G C C T T C C T C A A T C C A T C C 

S 1.3 4/11 C T A A G C C T T C C T C A A T C C A T C C 

S 1.4 5/12 C T A A G C C T T C C T C A A T C C A T C C 

S 15.1 

12/11 
C T A A G C C T T C C T C A A T C C A T C C 

S 3.1 4/11 C T A A G C C T T C C T C A A T C C A T C C 

S 502A 

5/10 
G G G G A T C C C T T T A T G C A A G C T G 

S 8 10/11 C T A A G C C T T C C T C A A T C C A T C C 
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S 1.1 4/11 T C A C G C T T G C T G A T 

S 1.1 5/12 T C A C G C T T G C T G A T 

S 13 6/11 T C A C G C T T G C T G A T 

D 12.2 5/12 C T G G T T C C C C C C C C 

D 13.4 10/12 C T G G T T C T C C C C C C 

S 12 6/11 T C A C G C T T G C T G A T 

D 13.12 10/12 T C A C G C T T G C T G A T 

S 13.2 12/11 T C A S G C T T G C T G A T 

S 6.4 5/12 T C A C G C T T G C T G A T 

D 2 10/11 T C G C G C T C G T T G A T 

S 103B 5/10 C T G G T T C C C C C C C C 

D 13.5 10/12 C T G G T T C C C C C C C C 

D 8.1 5/12 C T G G K T C T S C C C C C 

S 15 6/11 C T G G T T C C S C C C C C 

S 3.3 4/11 C T G G T T C C C C C C C C 

S 501A 5/10 C T G G T T C C C C C C C C 

N 15 6/11 C T G G T T C C C C C C C C 

D 5.2 12/11 C T G G T T C C C C C C C C 

N 16.1 4/11 C T G G T T C C C C C C C C 

S 4 10/11 C T G G T T C C C C C C C C 

N 19.3 10/12 C T G G T T C C C C C C C C 

N 21 6/11 C T G G T T C C C C C C C C 

D 13.2 10/12 Y T R G G B T T G C T G A Y 

D 6 6/11 Y Y R S G Y Y T G C Y S M Y 

D 12.3 5/12 T C R C G C T Y G C T G A T 

D 13.6 10/12 T C R C G C T Y G C T G A T 

S 102B 5/10 T C R C G C T Y G Y T G A T 

N 11.3 5/12 C T G G T T C C C C C C C C 

N 14 6/11 C T G G T T C C C C C C C C 

N 17.1 10/12 C T G G T T C C C C C C C C 

N 19.1 10/12 C T G G T T C C C C C C C C 

N 19.2 10/12 C T G G T T C C C C C C C C 

N3 10/11 C C G G T C T C T T T T C T 

N 2 10/11 C C G G T C T C T T T T C T 

N 20 6/11 C T G G T T C C C C C C C C 

N 27 6/11 C T G G T T C C C C C C C C 

N 4 5/10 C T G G T T C C C C C C C C 

N 5 8/10 C T G G T T C C C C C C C C 

N 7 8/10 C T G G T T C C C C C C C C 
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N 7.1 10/12 C T G G T T C C C C C C C C 

N 7.2 10/12 C T G G T T C C C C C C C C 

N 8 8/10 C T G G T T C C C C C C C C 

N 9.1 10/12 C T G G T T C C C C C C C C 

S 1.2 4/11 C T G G T T C C C C C C C C 

S 1.3 4/11 C T G G T T C C C C C C C C 

S 1.4 5/12 C T G G T T C C C C C C C C 

S 15.1 12/11 C T G G T T C C C C C C C C 

S 3.1 4/11 C T G G T T C C C C C C C C 

S 502A 5/10 T C G C G C T C G T T G A T 

S 8 10/11 C T G G T T C C C C C C C C 

 

Appendix B Supplemental Data for Chapter 4 

Table B1: Number of genes placed in Level 1 Subsystem functional categories by MG-

RAst annotation.   

level1 

Phylotype 

A 

Phylotype 

B 

Phylotype 

C 

Clustering-based subsystems 365 404 513 

Amino Acids and Derivatives 209 234 328 

Carbohydrates 175 193 362 

Miscellaneous 165 179 266 

DNA Metabolism 139 158 125 

Protein Metabolism 176 156 306 

Cell Wall and Capsule 115 137 152 

Cofactors, Vitamins, Prosthetic Groups, 

Pigments 161 127 201 

Regulation and Cell signaling 118 126 60 

RNA Metabolism 118 122 148 

Respiration 152 119 214 

Membrane Transport 97 112 159 

Stress Response 80 75 150 

Virulence, Disease and Defense 48 75 81 

Nitrogen Metabolism 76 65 59 

Phages, Prophages, Transposable elements, 

Plasmids 32 64 64 

Fatty Acids, Lipids, and Isoprenoids 50 45 82 

Motility and Chemotaxis 63 45 80 

Nucleosides and Nucleotides 48 44 118 

Sulfur Metabolism 29 33 48 

Phosphorus Metabolism 22 29 52 
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Cell Division and Cell Cycle 34 26 35 

Metabolism of Aromatic Compounds 21 26 23 

Potassium metabolism 18 16 26 

Iron acquisition and metabolism 3 11 33 

Dormancy and Sporulation 6 7 8 

Secondary Metabolism 3 3 4 

The phylotype C assembly was much more fragmented than the others, and may have had more 

duplicate genes because of this, accounting for the higher number of genes given functional 

annotations.  

 

Table B2: Distance Matrix of SoxZ Genes  

Base substitutions per site from between sequences are shown, all ambiguous nucleotide 

positions were removed from each pair. Analyses were conducted using the Kimura 2-parameter 

model (Kimura 1980a). A total of 315 positions were analysed in the final set using MEGA7 

(Kumar et al. 2016). 

 Phylotype A Phylotype B 

Phylotype B 0.265  

Phylotype C 0.177 0.252 

 

Table B3: Distance Matrix of hoxS subunit beta   

The number of base substitutions per site from between sequences are shown. Analyses were 

conducted using the Tamura 3-parameter model (Tamura 1992). The rate variation among sites 

was modeled with a gamma distribution (shape parameter = 5). All positions containing gaps and 

missing data were eliminated. There were a total of 1011 positions in the final dataset. 

Evolutionary analyses were conducted in MEGA7 (Kumar et al. 2016). 

 Phylotype A Phylotype B 

Phylotype B 0.200  

Phylotype C 0.208 0.209 

 

Table B4: Distance Matrix of dsrE   

The number of base substitutions per site from between sequences are shown. Analyses were 

conducted using the Kimura 2-parameter model (Kimura 1980b) in MEGA7 (Kumar et al. 

2016). The rate variation among sites was modeled with a gamma distribution (shape parameter 

= 5). All positions containing gaps and missing data were eliminated. There were a total of 393 

positions in the final dataset. 

 Phylotype A Phylotype B 

Phylotype B 0.145  

Phylotype C 0.151 0.123 

 


