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Abstract

Miscible displacement processes are increasingly feasible methods for the recovery of

oil from depleted reservoirs as an enhanced oil recovery (EOR) method. However, a

fundamental understanding of the dependency of transport phenomenon to medium

properties and their consequent impact on oil recovery efficiency is lacking. Moreover,

it is generally believed that miscibility may repeatedly develop and break down in a

reservoir due to dispersion arising from velocity and reservoir heterogeneity. Thus,

miscible processes are assumed to be dependent on the pore geometry of the reservoir.

The current research uses mathematical and unique experimental approaches to inves-

tigate miscible displacement in two-dimensional media with focus on pore structure

to comprehend the relationship between the transport properties to its pore struc-

ture. Transport phenomena significantly influence EOR efficiency and this raises the

importance of dispersion and miscibility. The mathematical section of this research

uses a statistical oriented mathematical approach to investigate miscible displacement

assuming various pore properties to comprehend the relationship between dispersion

during miscible displacement and the pore structure. This study focuses on examin-

ing the dependence of dispersion in both the longitudinal and transverse directions

on heterogeneity and pore geometry using statistical models. The pore element is

defined by adjustable distribution functions indicating tortuosity and connectivity of

the porous medium. Using random walk theory that assumes the mass transfer occurs

as a sequence of discrete physical events as particles move between a series of discrete

pore elements, the stochastic functions are used to develop a model to estimate the

mechanical dispersion properties of the porous media. The introduced model decou-

ples dispersion in the longitudinal and transverse directions and shows a more specific

relationship between dispersion and pore size distribution. An analytical approach is

applied to model miscible displacement in a fractured medium to study the effect of

velocity on the magnitude of mechanical dispersion. Various displacement scenarios
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are assumed to find the the effect of pore properties on dispersion. Results illustrate a

strong dependence of mechanical dispersion on pore properties of the medium. Both

longitudinal and transverse dispersion coefficients increased by increasing the velocity

and heterogeneity ratio. In the experimental section, a new experimental approach

has been developed to estimate the average longitudinal and transverse dispersion co-

efficients in a homogeneous anisotropic porous medium during miscible displacement.

A series of miscible flooding tests are conducted and studied. Traditionally, most

studies of miscible injection have focused on recovery and mechanism of the method

and Peclet number that have been used to find the dispersion and diffusion coefficients

from a mathematical correlations. This study utilizes a unique method to estimate

the mass transfer properties. A unique image processing tool is developed and used to

analyze the developing mixing zone in the process and consequently processed images

are used to collaborate with a developed Bayesian estimator tool to fit the dispersion

coefficients in analytical solution of Advection-Diffusion Equation (ADE). The de-

tails of the approach are explained and obtained images are analyzed and interpreted.

The results confirm the strong dependency of the velocity of the displacing fluid and

dispersion coefficients in both longitudinal and transverse directions. The effects of

anisotropy on miscible mass transport are investigated in this study too.
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Chapter 1

Introduction

1.1 Preface

Demand for oil as a source of energy continues to grow leading to new research to

produce more oil from the reservoirs. Production from reservoirs is divided into three

levels. Primary recovery comes from the natural energy source associated with rock

and fluid in the reservoir. Approximately 5% to 10% of the oil in the reservoir can be

recovered this way [57]. Secondary recovery involves maintaining the reservoir pres-

sure which has already been depleted due to primary oil production, this is achieved

by water injection into the aquifer or gas injection into the gas cap. Secondary recov-

ery allows for an additional 25% to 30% of the oil in the reservoir to be produced [57].

Tertiary or enhanced oil recovery (EOR) is used to produce as much of the remaining

oil as possible. Various EOR methods have been introduced to improve oil recovery

efficiency. A suitable EOR method usually depends on economic or technical limita-

tions, therefore, numerous methods and techniques have been studied from the lab

to field scale. The goal of any EOR process is to mobilize any remaining oil. This is

achieved by enhancing oil displacement and volumetric sweep efficiencies by the two
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different methods as below:

1. Oil displacement efficiency is improved by reducing oil viscosity (e.g. thermal

methods) or by reducing capillary forces or interfacial tension (e.g. miscible

displacements). When gas is injected at the pressure above the minimum misci-

bility pressure (MMP) of the reservoir fluid, the process is called near miscible

and miscible displacement [72]. An influential factor in the economics and effi-

ciency of a miscible displacement process design is the mass transfer phenomenon

between solvent (displacing) and oil (displaced), which involves mechanical dis-

persion and molecular diffusion [64].

2. Volumetric sweep efficiency is improved by developing a more favourable mo-

bility ratio between the injectant and the remaining oil in place (e.g., water-

alternating-gas processes)

Miscible displacement EOR techniques are very efficient methods and broadly used

in the world. However, the complexities along with the miscibility in porous media

arising from the heterogeneity and fluid properties if displacing and displaced fluids

have still remained. For this reason, it is essential to study the acting parameters and

physical aspects of this process.

1.2 Motivation

The studies of fluid flow in porous media have become almost essential in many scien-

tific and engineering applications. The increasing demand for energy and consequently

oil as the primary source of energy, water as an arising crisis, and in the overall any

fluid transport in porous media has importance, such as petroleum and water pro-

duction. The broad scope of fluid flow through porous media in various branches is
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Table 1.1: Classification of studies of fluid flow in porous media

Study Field Study Category

Functional and Factorial Analysis
Pure Mathematics Partial Differential Equation (PDE) Approach

Uniqueness and Existence of Answer Studies

Ground Water Flow and Contaminant Studies
Civil Engineering Encroachment Studies

Moisture Flow and Adsorption Studies in Soil

Flotation, Adsorption and Filtration Process Studies
Chemical Engineering Flow Through Process Towers

Mixing Process in Pharmaceutical

Enhanced Oil Recovery (EOR)
Petroleum Engineering Fingering and Imbibition Studies

Oil Flushing by Solvent in Reservoir Studies

Biological Studies (Plant and Animal Mechanisms)
Bio Science Nuclear Waste Disposal

Fluid Flow in Environmental and Natural Studies

shown in Table 1.1. Numerical modeling of multiphase flow in porous media is of

interest to characterize and quantify the complex transport phenomena but require

experimental validation. Groundwater hydrology is regarded as specific science which

includes geology, hydrology and fluid mechanics. This thesis is principally concerned

with the modeling of miscible fluid flow through a porous medium. The motivation

behind studying these flows lies in the recovery of oil in a process known as miscible

displacement, in which a solvent, such as a short-chain hydrocarbon or pressurized

carbon-dioxide, is injected into the oil reservoir. The fluid flows through the reservoir

along tortuous paths of interconnected pores and pore-throats. The heterogeneity

of the porous medium complicates the effectiveness of miscible processes as an EOR

method. This complication arises from the difference in path resistance for fluid flow

that caused by heterogeneity. Since, the oil tends to be bypassed, as the displacing
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fluid follows paths of least resistance; the oil recovery decreases. Hence, the character-

ization of heterogeneity including the pore size distribution, orientation, connectivity,

and sorting are essential factors in miscible processes but need to be investigated.

A study of such complicated system from the modern mathematical point of view asso-

ciated with advanced programming techniques such as image processing is the primary

motivation of the present investigations. In this study, a probabilistic approach is used

to describe dispersion of miscible fluids in a heterogeneous porous medium. This will

lower the risk of choosing an inappropriate EOR methodology. To achieve this goal,

this research consists of a conceptually simple but powerful approach to analyze the

transport phenomena in porous media. The mathematical part uses a Random Walk

Theory (RWT) technique, which considers that the transport occurs as a sequence of

transitions as particles move between a series of discrete pore elements while solved

analytical within the Advection-Diffusion Equation (ADE) solution. Depending on

the injection condition, different flow regimes are introduced and characterized. The

relationship between important pore geometry parameters and transport phenomena

are also addressed in this work. The experimental part of the study uses a custom

and unique image processing technique with pixel level accuracy to study miscible

displacements in complex porous media experimentally.

1.3 Fundamentals

The reservoir here is a porous medium with fluid filled pore space [82]. A porous

medium consists of two components of spaces and solids. The void spaces are called

pores and are free of solids, embedded within the solid or semi-solid matrix. The

pores usually contain a variety of fluids, such as water, oil, or a mixture of different

fluids.
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1.3.1 Rock properties

The most important geometric properties of rock are porosity and permeability [11].

Porosity (φ) is defined as a ratio of pore space over the total volume and permeability

(K) is the ability of a porous media to allow fluid pass through it. Grain alignment,

pore throat size, pore throat diameter and grain size sorting are a result of sediment

deposition and burial history. Tortuosity (τ) as a key parameter describing the geom-

etry and transport properties of porous media is defined as a ratio of average length

of fluid paths over the geometrical length [28].

1.3.2 Heterogeneity

The critical challenge in the characterization of porous media is high spatial hetero-

geneity which makes this class of problems very scale dependent. The scale depen-

dence of heterogeneity can best visualized by the representative elementary volume

(REV) concept [8]. Figure 1.1 shows the different domains of scale and their struc-

tural properties classification.

Figure 1.1: The REV depicting zones of different scales of heterogeneity and their
relationships. The y axis is any rock properties such as porosity, permeability, and
heterogeneity, and x is the volume under investigation. Vmin and Vmin are the mini-
mum and maximum volume, representing the elementary
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Heterogeneity can be classified into four different categories [40]:

1. Microscopic heterogeneities that exist at the level of the pore surfaces and grains

and can be characterized using Scanning Electron Microscopy (SEM) or X-ray

computed tomography (CT scan). Characterization and simulations at this scale

called pore-scale modeling.

2. Macroscopic heterogeneities that are observed at the core scale where different

components of the core may belong to different lithologies with different minerals

and transport characteristics. To understand this variability, however, we should

use microscopic scale characterization tools.

3. Megascopic heterogeneities that are at the reservoir scale and include faults

as well as fractures. A reservoir is an infinitely large number of cores, and

its behavior depends on flow properties of cores and their spatial distribution.

Also, some heterogeneities only appear at this scale and can change the overall

behavior of the flow system drastically. For example, a fault between injection

and production wells affects the water-flood performance by reducing the sweep

efficiency and recovery factor.

4. Gigascopic heterogeneities that appear at the landscape scale, where reservoirs

are studied in the geologic settings relative to rivers, mountains, etc. The charac-

terization at this scale is considered during the exploration phase where seismic

techniques are utilized to image the underground rocks.

1.3.3 Miscibility

Fluid displacement in porous media are classified as immiscible or miscible. Immis-

cible displacement implies that displacing and displaced fluids have clear interface
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during the process. When the two phases mix in all properties, it is a miscible dis-

placement and there is no distinct interface between two fluids [68]. Several factors

such as fluid density, fluid viscosity and pore properties affect miscibility at the mi-

croscopic (pore level) and macroscopic level depending on whether the displacement

is a secondary or tertiary recovery process. Under developing miscibility and miscible

displacement, mixing of the displacing and displaced fluids by dispersion and diffusion

can be significant.

1.3.4 Advection

The amount of material traversing the cross-section depends on the nature of the

transporting process. If this process is the passive entrainment of the material by the

carrying fluid, then the flux can be related to the concentration and the fluid velocity

as follows:

flux =
amount

volume of fluid
× volume of fluid

area× time
= cv (1.1)

where c is fluid concentration and v is the entraining fluid velocity. This phenomenon

is called advection, a term that means passive transport by the moving fluid that

contains the substance. Depending on the fluid flow velocity and properties advection

appears in forms of dominant mechanical dispersion, imperative molecular diffusion or

combination of both processes. Advection could play a significant role in accelerating

the mixing process and expanding the interface area between the two miscible flu-

ids. Diffusion process works to homogenize the solvent concentration inside the pore

spaces. The process of diffusion is slow and does not have ample time to reduce the

local solvent concentration at high velocity. Therefore, mechanical dispersive spread-

ing is the main mechanism of dispersion at high velocity. The mechanisms of mixing

in capillaries are relatively well studied. Dispersion in porous media uses the same
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mechanisms that are active in capillaries. However, additional mechanisms arise from

the fact that the flow taking place in capillaries is non-uniform, has variable cross

sections, different conductivity, and many other uncertainties in addition to local ve-

locity variation, and heterogeneous permeability [75]. Dispersion coefficients are used

to quantify the mixing during solvent based recovery methods.

1.3.5 Dispersion

Dispersion is a transport mechanism of a substance or conserved property by a fluid

due to the fluid’s bulk motion [75]. A distinction is commonly made between dis-

persion occurring in the flow direction, longitudinal (DL), or perpendicular to it,

transverse (DT ). The Advection Diffusion Equation (ADE), mass conservation law,

has been commonly used [8] to describe solute dispersion in two-dimensional porous

media:

DL
∂2C

∂x2
+DT

∂2C

∂y2
− vx

∂C

∂x
− vy

∂C

∂y
=
∂C

∂t
(1.2)

where C is the solute concentration, t is time, vx and vy are the components of flow

velocity and DL and DT are the hydrodynamic longitudinal and transverse dispersion

coefficients, respectively. It must be stated that the advection and diffusion phe-

nomena occur on very different time and length scales. Therefore, it is required to

effectively average out the dynamics on smaller/faster scales to determine what is the

net effect on the larger/slower scales. Assuming that the advection is nearly periodic

in time, this then sets the stage for an averaging process by which the faster scale

dependence of the solution can be averaged out, leaving us with an effective equation

governing the evolution of the solution over the slower time scales.

Direct measurement of dispersion coefficients is not possible but they can indirectly
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calculated knowing the velocity and concentration profile. Laboratory studies regard-

ing dispersion have shown that dispersion coefficients are affected by:

• Fluid properties and process conditions: velocity (v), density (ρ), viscosity (µ)

• Pore properties: pore size distribution, pore and grain shape, permeability

These parameters affect dispersion in different ways. One parameter may increase or

decrease the effects of other parameters.

1.3.6 Diffusion

Diffusion in this study refers to molecular diffusion, which is the movement of molecules

caused by random molecular motion due to the thermal kinetic energy of the solute

from a high concentration region to low concentration region [88]. Momentum is

transferred through intermolecular collisions. Hence there is no loss of momentum in

the mixture in general. Diffusion coefficients represent the molar flux due to molec-

ular diffusion and the gradient in the concentration (the driving force of diffusion).

Diffusion coefficient were first introduced in Ficks law as Equation 1.3 in one-direction

(x):

J = −Dm
∂C

∂x
(1.3)

where J is the diffusion flux, Dm the diffusion coefficient, and C is the concentration.

There are three descriptions of the diffusion coefficient including the mutual diffusion

coefficient, the self-diffusion coefficient, and the tracer diffusion coefficient [69]. In this

thesis, the diffusion coefficient refers to the mutual diffusion coefficient that is denoted

by Dm and defines the diffusion of one component in a system. When both the solute

and the solvent have simple molecules, the diffusion coefficient can be considered as a

constant value during the miscible process. In general, the molecular motion in liquids
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is smaller than in gases but larger than in solids [60]. Also, the effective molecular

diffusion is smaller in a porous medium than in a bulk fluid because of the collision of

molecules with the solid walls of the porous medium and the tortuous pathway. The

molecular diffusion coefficient depends on the fluid’s properties in a porous medium,

but it usually ranges between 10−9 and 10−11 m2s−1[60].

1.3.7 Peclet Number

Diffusion and dispersion are two of the mechanisms that may lead to mixing and

dissipation of a fluid. On the other hand, dispersion may tend to damp out viscous

fingers that may be channel through the miscible slug [66]. Hence, dispersion may be

detrimental or beneficial (if it prevents fingering through the miscible zone) therefore

it is vital to decouple the effect of dispersion and diffusion. The Peclet number (Pe)

is defined as the ratio of the rate of advection (mechanical dispersion) to the rate of

molecular diffusion driven by an appropriate gradient and defined as below:

Pe =
lv

Dm

(1.4)

where v is the fluid velocity, l is a characteristic length and Dm is the molecular diffu-

sion coefficient. Considering the definition of Peclet number, the higher the velocity,

the larger the Peclet number and under this condition mechanical dispersion plays a

major role in mass transfer, inversely with a lower Peclet number molecular diffusion

is dominant. As the Peclet number is a function of characteristic length, it is used in

this study to understand the mass transfer at various scales. Dispersion mechanisms

may be divided into four categories as Figure 3.6 and listed below [37]:

1. Zone (I) Pure molecular diffusion or dominant diffusion (0 ≤ Pe ≤ 5): In this

region molecular diffusion dominates the dispersion process or if mechanical
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dispersion appears, it is on the same order of magnitude as molecular diffusion.

2. Zone (II) Diffusion and dispersion both are acting. Dispersion is dominant (

5 ≤ Pe ≤ 300):

3. Zone (III) Pure mechanical Dispersion (300 ≤ Pe ≤ 105):

4. Zone (IV) Turbulent flow (Pe ≥ 105): In this region, turbulence affects dis-

persion. The corresponding fluid velocities are rather large and fall outside the

validity of Darcy's Law.

Log(Pe)

L
og

(D
L
/D

m
)

Figure 1.2: Flow regimes for increasing flow velocity [66]

Diffusion causes mixing due to random molecular motions and, on average, particles

move from regions of high concentration to regions of low concentration. Diffusion

becomes less important at larger fluid velocities as other mechanisms overwhelm dif-

fusion. Variation in fluid properties (density and viscous differences between fluids,

saturation levels, and turbulence) cause one fluid to move faster or in different di-

rections than the bulk flow. Fluids may vary simply in viscosity and density. An
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important consideration is how easily the different fluids mix; miscible fluids freely

mix; immiscible fluids do not mix. This affect appears in the Reynolds dimensionless

number. Pore geometry (tortuosity, pore size sorting, dead end pores and recircula-

tion) cause spreading due to the nature and alignment of the pores. Some pores will

be longer or wider and will have faster average velocities than others. This causes

mixing when the fluid in one pore reaches a downstream location at a different time

than the fluid in a different pore. The pore structure may also trap some fluid in

a dead end or recirculation zone. These mechanisms may be dominant in cases of

anomalous dispersion. Fluid pore interactions (wettability, hydrodynamics, and het-

erogeneity effects) cause spreading through the pore space. Finally, boundary and

initial conditions can skew results when they are not properly described. Entrance

and exit affects can cause large changes in fluid velocities and directions over small

distances. These effects can be compensated for by measuring actual concentrations

around the inlet and outlet. The flux of an individual solute contains contributions

from advection and diffusion. This is modelled by including the effect of the local

velocity field to Ficks law [62]. Some parameters and coefficients in fluid transport

models can be independently obtained from experimental measurements such as re-

covery factor, permeability, and porosity, etc. However, some parameters, such as the

dispersion coefficient, cannot be determined directly [89]. We expect that there are

different scaling regimes depending on the Pe number ( vl
Dm

) [20]. This study because

of broader coverage of higher velocity displacements, assumes higher Peclet number

condition where advection (mechanical mixing) dominates.
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1.3.8 Reynolds Number

The Reynolds Number (Re) corresponds to the ratio between inertial and viscous

forces and is defined as equation below:

Re =
ρvlc
µ

(1.5)

Where ρ is density, v is velocity, lc is a characteristic linear dimension, and µ is

viscosity. For a Reynolds number (Re) below (1) in porous media, the flow regime

is classified as laminar and therefore, Darcy's law is valid. The order of magnitude

of the characteristic length can be obtained from the absolute permeability (K) and

porosity (φ) of the medium as below [68]:

Re =
ρv

µ

√
K

φ
(1.6)

In this study, the flow regime is assumed to be laminar and Darcy’s law is valid.

1.4 Objectives and Novelty

The purpose of this thesis is to investigate the mass transfer during miscible processes

as a function of pore geometry and velocity using novel mathematical and experi-

mental methods. This study uses a combination of mathematical and experimental

methods. The significant novelty of this thesis is each approach is as following:

• Mathematical Part: This thesis uses a statistical oriented mathematical ap-

proach to investigate the miscible displacement process assuming various pore

properties to better understand the relationship between dispersion during mis-

cible displacement and pore structure. Previous literature solely studies either
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longitudinal or transverse dispersion, the introduced model examines dispersion

in both longitudinal and transverse directions and shows a more detailed rela-

tionship between dispersion and pore size distribution. The approach improves

the processing speed and time for field scale simulations and also covers a broad

range of flow velocities and regimes.

• Experimental Part: While previous studies use known correlations (e.g., Tay-

lor concentration correlation) to estimate experimental dispersion coefficients,

this thesis utilizes a unique method to estimate the mass transfer properties.

The novel image processing tool is developed and used to analyze the devel-

oping mixing zone in the process, and consequently processed images are used

to collaborate with a developed Bayesian estimator tool to fit the dispersion

coefficients in analytical solution of Advection-Diffusion Equation (ADE).

1.5 Thesis Structure

Efficient oil production and conservation requires a good knowledge of the fluid dis-

placement in a porous environment. In the following, the thesis provides the funda-

mentals of geology, science and mathematics. Such is the scope of the thesis. The

specific problems within its proper field are almost unlimited in number, and hence

it is necessary to make a reasonable preference to include typical problems of inter-

est from a practical point of view, as well as to illustrate the various mathematical

and experimental methods that may be used in the thesis. The problems considered

involves miscible fluids and homogeneous non-uniform porous media.

• Chapter 1 gives a brief introduction to objective, motivation, structure of the

study and basic principals of the study.
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• Chapter 2 presents a review of existing literature on experimental and mathe-

matical studies of miscible processes. Previous studies models are summarized

in a table at the end of this chapter.

• Chapter 3 explains the developed mathematical and experimental methodolo-

gies in this study in details. The mathematical models are developed to model

the effect of pore geometry on key factors within miscible processes. In this

chapter, the unique developed image processing technique is explained as well.

explains all three of the mathematical approaches including statistical, numer-

ical and analytical in detail and the methodology for analyzing the results is

presented. The mathematical models are developed to model the effect of pore

geometry on key factors within miscible processes.

• Chapter 4 includes the mathematical and experimental results of the misci-

ble processes using a 2D glass micromodels. This chapter also explains and

analyze the effects of several parameters including pore structure properties on

dispersion coefficients. And in the following,

• Chapter 5 includes conclusions and outlines proposed future work.

This study attempts to address specific questions regarding miscible processes that

are not yet well characterized or understood:

• How is miscibility affected by the heterogeneity of a porous medium during

miscible displacement process?

• How is dispersion dependent on pore geometry and what is its physical inter-

pretation?

• What is the effect of mathematical moments of pore throat size distribution

function on longitudinal and transverse dispersion coefficients?
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• What are the deficiencies of the most widely used models in predicting dispersion

of miscible process?

• How do the dominant forces, including mechanical dispersion and molecular

diffusion, change by injection rates and pore geometry?

The main objective of this study is to attempt to overcome the inadequacies observed

in the existing models to answer the questions above.



Chapter 2

Literature Review

In this chapter, the existing literature from previous studies on mass transfer in mis-

cible displacement is reviewed. The main goal in this chapter is to summarize the

existing dispersion models and their validity. The literature survey is divided into

experimental and mathematical studies. Since dispersion is scale dependent, in both

categories different scales of studies are considered. Dispersion in porous media in-

volves mechanical dispersion (advection) and diffusion, and it is complicated to model

because of its dependence on a wide range of parameters, e.g., pore geometry, fluid

properties and, pore-fluid properties [58]. Dispersion in the past has been studied by

many researchers from either theoretical or an experimental point of view. Generally

speaking, mathematical modeling efforts can be classified as stochastic and deter-

ministic. In either approach, a distinction has been made between longitudinal and

transverse dispersion because of inequality.

2.1 Mathematical Studies

Mass transfer due to advection in porous media continues to be of considerable inter-

est in the past and recent years. In various fields of science such as pure mathematics,
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chemistry, and biology, and applied science areas such as chemical engineering appli-

cations in hydrology, waste management, cosmetics and pharmaceutical industry, or

petroleum engineering such as secondary oil recovery from oil reservoirs, oil adsorp-

tion processes in downstream industry and more, dispersion and mass transfer have

been studied. Depending on the field of the interest different aspects of the process

have been focused on and analyzed [73]. The mathematical approach to modeling

advection regularly focused on applying the partial differential equation referred to

as the Advection-Diffusion Equation (ADE) from continuum mechanics [9]. Advec-

tion is mainly characterized by contributions of molecular diffusion and mechanical

dispersion expressed as a function of the Peclet number. Many mathematical mod-

els including imperial correlations have been studied and proposed over the years.

Some of the notable advances include the following. Taylor [87] in 1954 described

the principles of solute transport in porous media. He envisioned the porous me-

dia as a bundle of capillaries and viscous fluid flowing through a tube of a circular

cross-section. Taylor defined dispersion D (m2s−1) as:

D =
a2v2

48Dm

(2.1)

where a is the radius of the tube (m), v is the velocity (ms−1) and Dm is the molecular

diffusion (m2s−1). Taylor [87] showed that the proposed model was valid when 6.9�

Pe� 4l
a

. Aris [6] in 1956 removed the limitation imposed on some of the parameters

at the expense of describing the distribution of the solute in terms of its moment

in the direction of flow. Aris also showed that the rate of growth of the variance

is proportional to the sum of molecular diffusion and Taylor dispersion [6]. Coats

and Smith [23] in 1964, Hoopes and Harleman [45] in 1967, and Brigham [12] in

1986 used Taylor’s assumptions and approach to study different physical aspects,
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Table 2.1: Contributions and gapsof the statistical study of Taylor (1954) [88] and
Aris (1956) [6]

Researcher Study Type Contributions Gaps

Taylor [88]
and Aris [6]

Statistical Introduced the first statistical
concept

Longitudinal and transverse
dispersion are not decoupled

such as pore heterogeneity and its effects on dispersion. Studies by De Josselin de

Jong [51] in 1958 and Saffman [74] in 1959 employed same statistical techniques as

Taylor [87] and Aris [6] and built models for longitudinal and transverse dispersion

as separate, yet coupled, processes. These studies assumed a porous medium as a

series of interconnected, randomly oriented, and uniformly distributed straight tubes

of equal length and diameter. Saffman [74] and De Josselin de Jong [51] proposed

separate models for longitudinal and transverse dispersion coefficients as below, that

are valid when the diffusion is negligible. Equations 2.2 and 2.3 show the proposed

models by Saffman and De Josselin, respectively.

Saffman’s Model :


DL
Dm

= Pe
6

(
ln(3

2
Pe)− 1

4

)
, where Pe = lv

Dm

DT
Dm

= 3
16
Pe,

(2.2)

De Josselin’s Model :


DL = vl

(λ+3/4−lnλ
6

)
, where Pe = lv

Dm

DT = 3vl
16
,

(2.3)

In the Equation 2.3, parameters λ and γ are variables. The dispersion models proposed

by Saffman indicate that both components are proportional to the mean velocity

of fluid flow. Based on Saffman’s and also De Josselin’s model, the ratio between

longitudinal and transverse dispersion is not constant and increases over the distance
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traveled. Schematic of assumed flow through a random porous medium in De Josselin

de Jong (1958) [51] and Saffman (1959) [74] studies as been shown in Figure 2.1. As

this figure shows, the Newtonian flow passes through randomly selected pathways in

a porous medium with different length, angle, and diameter. Haring and Greenkorn

Table 2.2: Contributions and gapsof the statistical study of De Josselin De Jong
(1958) [51] and Saffman (1959) [74]

Researcher Study Type Contributions Gaps

De Josselin
De Jong
(1958) [51]

Statistical
Modelled a pore system of a
packed bed by a system of
canals

Pore properties (except l
pore- throat length) are not
taken into account

Saffman
(1959) [74]

Statistical

Modelled the micro-structure
of a porous media as a
network of capillary tubes of
random orientation

Pore Size Distribution (PSD)
is assumed to be normal and
uniform

[42] in 1970 employed a statistical approach to obtain a model for dispersion in non-

uniform porous media. They assumed a beta function as a distribution function

for pore throat length and diameter and followed the same procedure by Saffman.

Haring and Greenkorn concluded that dispersion is a function of the non-uniformity

of the porous medium even though tortuosity and resistance are constant. Koch and

Brady [54] in 1985 developed a model (Equation 2.4) for calculating the longitudinal

dispersion in a disordered medium, within a range of 5 ≤ Pe ≤ 300.

DL

Dm

= 1 +
3

8
Pe+

π2

20
Pe ln(

Pe

2
) (2.4)

Buyuktas and Wallender [15] in 2004 applied the method of volume averaging to or-

dered and disordered spatially periodic porous media in two dimensions and proposed

Equation 2.5 to compute the components of the longitudinal dispersion tensor for low
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Figure 2.1: Schematic of assumed flow through a random porous medium. Modified
from De Josselin de Jong (1958) [51] and Saffman (1959) [74]

Peclet numbers (0.1� Pe� 100).

DL

Dm

= 0.026Pe1.854 (2.5)

This study showed that the longitudinal dispersion coefficient decreased with an in-

crease in disorder while the longitudinal dispersion coefficient increased. Further,

the longitudinal and transverse dispersion coefficients are independent of Reynolds

number and depend only on Peclet number [58]. Most of the mathematical and com-

putational studies in 3D use random network approaches to model flow through porous
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media too. Continuous Random Walk Theory (CRWT) is an attractive approach as

well that is used and implemented to solve the ADE by many researchers. One of

the latest studies by Sahimi (2012) [76], applied this approach to the modeling of

anomalous (non-Gaussian) dispersion in flow through heterogeneous porous media.

The results were consistent with experimental data, both at the laboratory and field

scales, however this study does not take pore properties into account.

Table 2.3: Contributions and gapsof the statistical studies of Hearing, Greenkorn
(1970) [37], Koch and Brady (1985) [54], Buyuktas and Wallender (2004) [15] and,
Sahimi (2012) [76]

Researcher Study Type Contributions Gaps

Hearing,
Greenkorn
(1970) [37]

Statistical
Introduced non-uniform Pore
Size Distribution (PSD) (β-
function)

Not valid for other PSD
functions.

Koch, Brady
(1985) [54]

Numerical
Identified the underlying
physical mechanisms of
dispersion

Calibrated by curve-fitting
method from limited
outputs of experimental
studies. Pore properties
are not taken into account.

Buyuktas,
Wallender
(2004) [15]

Continues
Random
Walk
Theory
(CRWT)

Volume averaging method
has been applied to ordered
and disordered spatially
periodic porous media

Calibrated by
experimental results of
field scale studies. Not
valid for micro and macro
scale. Pore properties are
not taken into account.

Sahimi (2012)
[76]

Analytical

Introduced anomalous
(non-Gaussian) dispersion in
flow through heterogeneous
porous media

Pore properties are not
taken into account.

2.2 Experimental Studies

Mixing processes that occur during miscible or near-miscible injection have been stud-

ied at different scales, from the laboratory to field scale, using various experimental

approaches. One of the initial leading studies was published by Brigham et al. [13]
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(1961) and describes the result of experiments on miscible displacement in various

porous media. Both glass bead packs and natural cores were used to represent the

porous media. Since the required experimental parameters were not directly measur-

able, appropriate assumptions were made to obtain such values by Brigham. After

analyzing the error function, he proposed Equation 2.6 to calculate the longitudinal

dispersion.

DL =
1

t

(
x90 − x10

3.625

)2

(2.6)

where t is time in s and x10 is defined as the distance to the point of 10% displacing

fluid and x90 is the distance to the point of 90% displacing fluid. However, Brigham

related the dispersion coefficient to the error function by drawing the best straight

line through the data points values of U (the error function parameter). The modified

equation based on this method is given in Equation 2.7 as:


DL = 1

VPT

(
L(U90−U10)

3.625

)2

with U = VP−V√
V

(2.7)

where VP is the pore volume of the porous medium in cm3 and V is the volume of

the recovered fluid at the time in cm3. Figure 2.2 shows the logic behind the corre-

lation 2.6 when U is plotted against the percentage of displacing fluid on arithmetic

probability coordinates and provided the advection-dispersion model holds, a straight

line results. This investigation showed that the viscosity ratio during displacement

and flow velocity greatly affects dispersion rate. For transverse dispersion, Grane

and Gardner [36] (1961) carried out a series of experiments in homogeneous porous

media media to study the influence of fluid flow velocity and pore structure prop-

erties on transverse dispersion. These experiments consisted in keeping a constant

fluid velocity, 0.02 m/s and increasing the difference in density up to 10%. Porosity
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Figure 2.2: Introduced probability plot for determination of longitudinal dispersion
coefficient (DL) by Brigham et al. (1961) [13]

is reported to be around 40% for an average grain diameter 1.5 mm, molecular dif-

fusion Dm = 1.2 × 10−9 m2/s, viscosity µ = 1.38 × 10−3 Pa.s and permeability is

calculated using the Carmen-Kozeny relationship yielding K = 2.2× 10−9 m2. They

observed that by increasing the difference in density, mechanical dispersion signifi-

cantly decreased and therefore the density difference has significant effect. Perkins

and Johnston [66] (1963) performed experimental investigations using the Brigham

method. They studied the impact of various parameters including density contrast

and pore geometry. Fried and Combarnous [33] (1971) published the result of fairly

extensive laboratory experiments to investigate the influence of the increase in veloc-

ity on dispersion in porous media. Most of the later experimental studies applied the

same methodology as Brigham (1961) [13] to refine the understanding of longitudinal

and transverse mixing and effective parameters by directly considering the physical

mechanisms governing solute transport. For instance, systematic measurements of the
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Table 2.4: Contributions and gapsof the experimental studies of Brigham et al. (1961)
[13], Grane and Gardner (1961) [36], Perkins and Johnston (1963) [66] and Fried and
Combarnous (1971) [33]

Researcher Medium Contributions Gaps

Brigham
(1961) [13]

Glass bead packs

Introduced the first
experimental estimation
model for calculation of
dispersion coefficient

Only studied
longitudinal dispersion,
the linear estimation
was not accurate
enough

Grane,
Gardner
(1961) [36]

Glass beads
packs

They investigated
turbulent rates of flow and
measured the steady-state
distribution due to a point
source in a cylindrical
fluid stream

Only studied the
transverse dispersion
coefficient, assumed the
transverse dispersion is
independent of flow
rate, whereas
longitudinal dispersion
increases significantly
with flow rate in the
same range

Perkins,
Johnston
(1963) [66]

Packs of granular
material

Studied the effect of
particle diameter to
column diameter and
studied wider range of
velocity

All calculations were
based on Brigham et
al., The theoretical
were not validated with
any experimental
results.

Fried,
Combarnous
(1971) [33]

Field scale- Soil

Studied the effect of
presence of sodium on
dispersion coefficient in
soil and sulphate

The quatified results
were all estimated
using the same method
as Brigham et al. Only
longitudinal dispersion
has been studied.

longitudinal dispersion coefficient have been done by Ujfaludi [90] (1986) in uniform

and non-uniform porous media. Analysing results from both types of media, they

concluded that irregular dispersion arises from the irregular pore size distribution of

the non-uniform samples. Hassanizadeh and Leijinse [43] (1990) carried out vertical

displacement experiments in homogeneous columns. In these experiment, fresh water
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was displaced by a high concentration brine. Hassanizadeh concluded that the lon-

gitudinal dispersion coefficient decreases with increasing concentration difference and

also non-linear behaviour was observed as well. By displacing the brine by another

brine with approximately the same density (concentration) the author showed that

the difference in dispersion plays a major role when the density contrast is not sig-

nificant. Hassanizadeh et al. [44] (1995) completed this study and accentuated that

the observed non-linearity and deviations from the classical Ficks law was not caused

by heterogeneity as their study involved the use of homogeneous column systems.

However, due to the small number of experimental runs, no statement was made on

the dependence of non-linearity on fluid flow velocity. Later on, Nick et al. [39] (2009)

completed this study by further investigations and revealed that the main cause of the

non-linear behavior in dispersion, which is the interaction between density contrast

and vertical velocity, needs to be explicitly accounted for in a macro-scale model.

More recent experimental studies include using slices and casts of rock in an attempt

to make more realistic models of pore space. For example, core flooding has been

used to obtain relative permeabilities, dispersion coefficients, and relevant hydraulic

variables [81]. For general summaries, two studies particularly provide satisfactory

summaries of the various approaches to current micromodel design and fabrication.

Buckley [14] (1992) revealed the successes and limitations of micromodels in illus-

trating mechanisms of multiphase flow, while Dawe et al. [67] (1987) highlight pore

scale events which depend on network and pore morphology. Watson et al. [92]

(2002) showed velocity dependency of deviation from Fick’s law by analysis of con-

stant density contrast experiments that velocity varies. Sternberg [84] (2004) carried

out experiments to confirm the significant impact of heterogeneity on dispersion. The

experimental observations indicated that heterogeneity plays a major role in macro-

scale dispersion during miscible fluid injection. A series of experiments were carried
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Table 2.5: Contributions and gapsof the experimental studies of Ujfaludi (1986) [90],
Hassanizadeh and Leijinse (1990, 1995) [43][44], Watson et al. (2002) [92], Sternberg
(2004) [84], Starke and Koch (2006) [83], Fayazi et al. (2015) [30]

Researcher Medium Contributions Gaps

Ujfaludi
(1986) [90]

Glass bead packs Uniform and non-uniform
media were studied using
Brigham et al. method

Only longitudinal disper-
sion was studied, one di-
mensional study

Hassanizadeh
and Leijinse
(1990, 1995)
[43][44]

Plexiglas cylinder A non-linear theory of
dispersion has been sug-
gested

Uniform porous medium
only has been studied,
only longitudinal disper-
sion was studied, one di-
mensional study

Sternberg
(2004) [84]

Glass bead packs Heterpgeneity and pore
properties affect the dis-
persion coefficient

One-Dimensional study,
dispersion coefficients
have not been calculated,
quantitative analysis
have not been conducted

Starke and
Koch (2006)
[83]

Plexiglas tank Studied the interplay be-
tween porous media het-
erogeneity and density
contrast on transverse
dispersion

Only transverse disper-
sion was studied, one di-
mensional study

Fayazi et al.
(2015) [30]

Micromodel Compared the exper-
imental results with
simulated CRWT out-
puts

Length of the mixing
zone has been assumed
constant for all condi-
tions, calculations of the
experimental dispersion
coefficients have not been
explained

out by Starke and Koch [83] (2006) to study the interaction between heterogeneity

and difference in density on transverse macro dispersion. Fresh water and brine were

used as a fluid system. They concluded that dispersion increased with increasing

heterogeneity and decreasing density contrast, but the effect of density difference was
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reported to be much higher. Fayazi et al. [30] (2015) performed micromodel exper-

iments to validate numerical simulation results using the Continuous Random Walk

Theory (CRWT) approach. This study showed good agreement between model results

and experimental data indicating that CRWT is an accurate method for simulating

miscible displacements.

2.3 Summary of Review

Solute dispersion during fluid flow in porous media has attracted interest since the

early years of the 19th century, but it was only since 1950 that the general subject

of dispersion or miscible displacement turned into the topic of more study. This

subject has intrigued hydrologists, geophysicists, petroleum, and chemical engineers

to study the miscible phenomenon. The literature review of miscible injection process

including investigation of longitudinal and transverse dispersion shows that however

this process has been well established concerning both mathematical and experimental

concepts, yet a lack of understanding persists due to the complex dependency of

this process to a variety of parameters. Inhwan Park (2018) [48] summarized the

mixing scenarios in two-dimensional studies in hydrology in Figure 2.3. As it is shown

from the different point of views the mixing zone spreads the different velocities over

the depth in both the longitudinal and transverse directions. Figure 2.3 (a) shows

miscible displacement in porous media in the intermediate mixing region where the

Re number is lower than unity (Re ≤ 1) leading to the completion of transverse

mixing. This study considers co-existence of longitudinal and transverse dispersion

at the same time. In this mixing process as it is shown in Figure 2.3 (b) and (c) the

displacing fluid column stretched due to variation in velocity in both the longitudinal

and transverse directions. In the following, the displacing fluid is widely dispersed and
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Figure 2.3: Schematic diagram of the dispersion mechanism in two-dimensional
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mixing zone spreads as it is shown in 2.3 (d). Among the various mixing mechanisms,

the mechanical dispersion due to velocity profile is assumed the most important factor

in this study. A summary of previous studies of longitudinal and transverse dispersion

and the effect of density contrast, fluid flow velocity, and porous media heterogeneity

(proportional) is presented in this chapter. Table 2.3 illustrates a number of proposed

models for dispersion in porous media including assumptions and the valid range.

Considering the experimental literature review, the current study uses an unique

methodology to cover the lack of coupled longitudinal and transverse dispersion in

experimental studies. However, there is still room to improve the current methodology.

The contributions and persisting gaps of the developed method in this thesis are listed

in Table 2.6.

Table 2.6: Contributions and gaps of the used experimental methodology in micro-
model study

Contributions Gaps

1- Uniform and non-uniform media are
studied

1- Density contrast is not considered

2- Two-Dimensional porous media is studied
2- Molecular diffusion is assumed
negligible

3- Coupled longitudinal and transverse
dispersion coefficients are calculated
4- Advanced image processing technique are
implemented to take advantage of pixel-level
accuracy
5- More adjustable parameters such as pore
diameter, pore- throat length and
orientation are implemented to tune the
method and improve accuracy
6- The proposed technique can be developed
for a broader range of Peclet number
7- The technique can be developed for
heterogeneous porous media
8- Parallel calculations potential in
statistical estimation to decrease the
processing time significantly lower than
analytical and numerical simulations
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Author Study Type of media Remarks

Taylor; Aris, 1953, [6, 88] Mathematical Capillaries of length l and radius a DL
Dm

= 1 + Pe2

48

6.9� Pe� 4l
a

Danckwerts, 1953, [24] Experimental Raschig rings Data point agree with F curve derived

from dispersion model

Kramers, 1953, [55] Experimental Raschig rings Mixing of the liquid is increasing with

liquid velocity

Carberry, 1958, [17] Experimental Glass spheres Significant bed height effect for bed of

less than 0.6m in length

Saffman, 1959, [74] Mathematical Capillaries of length l and radius a DL
Dm

= Pe
6

(ln(3
2
Pe)− 1

4
)

Pe� 8a
l

2

Blackwell et al., 1959, [10] Mathematical Packed bed of sand DL
Dm

= 8.8Pe1.17

Pe ≥ 0.5

Gunn, Pryce, 1960, [38] Mathematical Random packing of spheres DL
Dm

= 0.7Pe1.2

Pe ≥ 1



32

Stoyanovskii, 1961, [49] Experimental Sand and glass bead packs DL is proportional to velocity and pore

diameter and decreases with increasing

dispersion. No effect of length, rate and

surface tension of the fluids was intro-

duced.

Perkins, 1963, [66] Mathematical Unconsolidated sand of bead packs DL
Dm

= 0.701 + 1.75Pe

2 < Pe < 102

Miyauchi, 1975, [63] Experimental Glass spheres Dispersion data in the stokes flow

regime presented

Carbonell, 1979, [70] Mathematical Array of parallel pores DL
Dm

= 1 + 0.57Pe+ 0.033Pe2

Pe < 102

Eidsath et al., 1983, [29] Mathematical In-line array of cylinders DL
Dm

= 0.7Pe1.7

10 ≤ Pe

Koch and Brady, 1985, [54] Mathematical Randomly packed fixed beds DL
Dm

= 1 + 3
8
Pe+ π2

20
Pe ln(Pe

2
)

5 ≤ Pe ≤ 300

Han et al., 1985, [41] Experimental Glass beads For beds of uniform particles, disper-

sion is strong function of packing



33

Edwards, 1991, [25] Mathematical Staggered arrays of cylinders DL
Dm

= 0.174Pe1.76

10 ≤ Pe

Edwards, 1991, [25] Mathematical Hexagonal arrays of cylinders DL
Dm

= 0.032Pe1.66

10 ≤ Pe

Sahraoui, 1994, [77] Mathematical In-line array of cylinders DL
Dm

= 0.048Pe1.71

10−2 ≤ Pe ≤ 103

Sahraoui, 1994, [77] Mathematical Staggered arrays of cylinders DL
Dm

= 0.018Pe1.26

10−2 ≤ Pe ≤ 103

Delgado, 2001, [26] Experimental Glass beads Influence of Schmidt number on longi-

tudinal dispersion

Buyuktas, 2004, [16] Mathematical In-line array of discs DL
Dm

= 0.026Pe1.854

10 ≤ Pe

Buyuktas, 2004, [16] Mathematical Random array of discs 0.0924Pe1.356

10 ≤ Pe

Freund et al., 2005, [32] Mathematical Structured cubic sphere array DL
Dm

= 0.719 + 0.0345Pe2

0.2 ≤ Pe ≤ 3000

Freund et al., 2005, [32] Mathematical Randomly packed fixed beds DL
Dm

= 0.790 + 0.303Pe1.21

5 ≤ Pe ≤ 300
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Wood, 2007, [7] Mathematical In-line array of spheres DL
Dm

= 0.763 + 0.22Pe1.17

Pe ≤ 5000

Alkindy et al.[4] (2010) Mathematical Glass of bead packs DL
Dm

= 0.63 + 0.077Pe1.2

10−2 ≤ Pe < 104

Golfier et al., 2011, [34] Experimental Glass flow cell column Low permeability contrast is not a suf-

ficient criterion to establish displace-

ment.

Scheven, 2014, [79] Mathematical Random particle packs DL
Dm

= 0.77 + 0.01Pe+ 0.0145Pe ln(Pe)

1 ≤ P

Majdalani et al., 2015, [61] Experimental Tracer in sand column Scale sensitivity of dispersion has been

investigated and observations show

strong dependency. High resolution

sampling improves the accuracy of the

result

Table 2.7: Summary of mathematical and experimental dispersion models including validity range of Peclet number and
assumed porous media since 1953 [59]



Chapter 3

Methodology

Transport phenomena in porous media have been extensively well examined, using dif-

ferent concepts and approaches. The fundamental transport properties are important

parameters with an application in the groundwater hydrology, filtration in processes

towers, enhanced oil recovery (EOR), and more. As discussed in the literature review,

the geometry and topology of the porous media control transport properties, e.g., dis-

persion and permeability [75], thus characterization of the porous media in this study

is vital. In this study a statistical approach is developed to model the dispersion in

two-dimensional porous media. Also, an anlytical modeling that is used in the image

processing tool for the experimental investigation has been explained in details. In

the following the numerical simulation as an alternate methodology is developed to

be utilized in computational simulation of the experimental work.

3.1 Mathematical Development

A porous medium can be defined and classified according to its pore geometry and

structure, considering this character, the porous medium is defined to be either ho-

mogeneous or heterogeneous at the macroscopic level. Properties at the macroscopic
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level are averaged over a sufficiently large volume, called the macroscopic volume av-

eraging, to define continuous, stable functions of spatial position [8]. A homogeneous

medium contains two subcategories uniform or non-uniform. A uniform homogeneous

medium with has the same pore size and shape distribution, whereas a non-uniform

porous medium contains variations at the microscopic scale, yet is homogeneous at

the macroscopic level for parameters such as the permeability or porosity [51]. A

porous medium is also either isotropic or anisotropic at the macroscale. In an isotropic

porous media properties do not vary with direction; in anisotropic porous media prop-

erties vary directionally [31]. The transport phenomena are dependent on the type

of medium. The porous media studied in this work is a homogeneous, non-uniform,

anisotropic porous medium, shown by light gray color blocks in Fig 3.1. However,

even heterogeneous porous media is often modeled as a homogeneous media with an

overall mean flow direction and macroscopic dispersion coefficient, since data on the

exact nature of the heterogeneities are usually not available [86]. Scales of interest

associated with porous media may vary from the molecular level (on the order of µm)

to a mega level (Km). Modelling fluid flow at the pore scale can provide a predictive

tool for estimating rock and flow properties at larger scales and serve as a platform

to study the physics of transport phenomena in porous media.

In the current study, a statistical approach has been applied at the pore level to

find the describing models for the coupled longitudinal and transverse in a randomly

generated model. The main benefits of statistical approach is listed in the following:

• The most natural and biological phenomena, such as solute transport in porous

media, show variability which can not be modeled using deterministic approaches.

There is evidence in natural phenomena to imply that some observations can-

not be explained using deterministic approaches. Stochastic methods have a

rich repository of objects which can be utilized to represent the randomness
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integrated into the system and the development of the system over time.

• The statistical methods lead to a stochastic remodeling of porous media in three

dimensions based on statistical information acquired from one or several two-

dimensional images of thin sections of the actual material. This application

can help advanced computational methods (higher accuracy and resolution, yet

faster processing) where the computational procedure tries to imitate the phys-

ical processes that commence during the formation of the medium.

• Transport processes are usually modeled by initial and boundary value problems

for a Partial Differential Equation (PDE) describing the regional balance of the

concentration fields. However, during probabilistic analysis of flow and trans-

port properties in porous media, the uncertainties due to spatial heterogeneity

of governing parameters will often be taken into account. The definition of the

characteristics of porous media in space and time using the concept of random

functions enables studying the built-in heterogeneity, evaluating the spatial vari-

ability of the properties, and estimating the uncertainty associated with their

estimated values.

We prove that the introduced model can describe the strong dependency of the disper-

sion displacement to pore geometry factors including pore throat length, orientation

and size distribution. The digital reconstruction of porous materials is a relatively

new, powerful methodology that enables the reliable representation of the complex

structure induced by porosity. The introduced model is a reliable mathematical ap-

proach to study flow at the micro-scale to predict averaged macroscopic properties of

porous media that are not possible or difficult to obtain experimentally.
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Porous media

Heterogeneous Homogeneous

Variable pore structure

Uniform Non uniform

Isotropic (α, β = 1)
no variation in direction

Anisotropic
variation in direction

Spatial Variation No spatial variation

Figure 3.1: Classification of porous media based on pore geometry, α and γ are adjustable parameters for defined function
of pore size distribution in Section 3.2
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3.2 Characterization of Porous Media

The probabilistic concept used in this study, conceptualizes porous media as an in-

terconnected network of randomly orientated straight capillaries characterized by a

probabilistic pore throat length (l) and pore throat diameter (R) density functions

and orientation respect to flow direction (θ), starting and ending in each intersection.

A marked particle in this model moves along a random succession of straight inde-

pendent steps through capillaries, of variable directions and distances as indicated

in Fig 3.2. We assume that the pore diameter and pore length vary independently

and randomly according to their respective frequency distributions. It is assumed

that the diameter, length and orientation of pore elements are independent. Various

Figure 3.2: Assumed porous media as an interconnected network of randomly orien-
tated straight capillaries characterized by a probabilistic pore throat length (l) and
pore throat diameter (R) density functions and orientation respect to flow direction
(θ), starting and ending in each

probability density functions (PDFs) could be considered for R and l. As discussed

in literature review, Haring and Greenkorn (1970) assumed a beta function for non-

uniform porous media parameters [42]. In this study, the general form of f(R) and
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g(l), shown in equation 3.1, are assumed for the pore throat diameter and length.


f(R) = αβγRγ−1e−(Rβ)γ ,

g(l) = αβγlγ−1e−(lβ)γ ,

(3.1)

Parameters α, β, and γ are adjustable. Equation 3.1 is one of the Kernel functions

in Bayesian statistics. This model is chosen for three reasons. 1) it is a continuous

probability distribution so it covers the range of pore sizes, 2) the function shows the

probability that any real observation will fall between two real limits of minimum and

maximum pore sizes, which means the curve approaches zero on either sides of the

function. 3) the Gaussian distribution is immensely useful because of the central limit

theorem. The central limit theorem states that, under mild conditions, the mean of

many random variables independently drawn from the same distribution is distributed

approximately normally, irrespective of the form of the original distribution. Parame-

ters α , β, and γ are adjustable and positive parameters that we can relate to the pore

geometry which is under investigation in this study. The acceptable interpretation for

the physical significance of α, β, and γ is their relevance to pore entry pressure (α),

the pore throat (β) and the pore size sorting (γ), respectively [52]. In this model, if

we assume α = 1, β = 1√
2
, and γ = 2, the model will converge to Gaussian normal

distribution.

3.2.1 Adjustable Parameters α, β, and γ

The PDF model relates adjustable parameters α, β, and γ to the pore geometry such

as porosity, permeability, pore sorting, totuosity, and aspect ratio. The presented

functions can describe a wide variety of distribution features by tuning the adjustable

parameters. The parameter α is related to entry pressure. When the pore size goes
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to infinity (capillary pressure goes to zero) parameter α approaches zero (pipe flow).

Parameter β is the second moment of PDF related to pore-throat geometrical factor

that effects the mechanism of displacement. Since β is related to second moment

of PDF, we can relate β to the permeability- porosity ratio and tortuosity that is

affected by pore shape. The size and shape of the pores and their packing density

affect the β factor. With decreasing particle size or packing density, the pore and

throat sizes, as well as their variation increase. A general correlation exists between

the size and shape of the pores. The larger the pore size relative to the particle size,

the more spherical the pore shape. This correlation, however, becomes weaker as

packing density decreases. The connectivity between pores is represented by throat

size and channel length. With decreasing packing density, the throat size increases

and the channel length decreases. Considering this, we can describe the dimensionless

parameter β as Equation 3.2:

β =
β′√
K
φ

(3.2)

where K is the absolute permeability and φ is total porosity of model. Equation

3.2 shows that the parameter β is directly related to porosity (Φ), and permeability

(K), and indirectly related to tortuosity. Figure 3.3 illustrates the effect of β on the

shape of the PDF curve. Parameter γ illustrates the effect of pore sorting. the Pore

size distribution for different values of γ are illustrated in Figure 3.4. Sorting refers

to the uniformity of grain size, i.e. a well sorted sediment has similar grain sizes.

Particles are sorted on the basis of density due to the energy of the transporting

medium. Parameter γ is believed to be highly influential with respect to transport

mechanism as it represents heterogeneity. The proposed function has a wide variety

of flexibility to match with the most common pore size distribution functions such as

normal, log-normal and power-law PDFs.
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Figure 3.3: Effect of β on the shape of PDF curve. Decreasing particle size or packing
density, the pore and throat sizes, as well as their variation increase and β decrease.
Lower β values implies wider range of pore sizes which leads to higher heterogeneity
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Figure 3.4: Parameter γ and its effect on PDF curve. γ represents heterogeneity,
higher γ implies higher heterogeneity

3.2.2 Orientation Angle

As is shown in Fig 3.2, the pore element is defined to be oriented with θ respect to

the flow direction (here x) which is within a range of −π
2
≤ θ ≤ π

2
as shown in Figure

3.2. The probability of a given angle, θ, of the capillary tube axis relative to the

mean flow direction within a range dθ is given by the proportion of area (or amount
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of solid angle) on a unit sphere swept out by the pore axis, cos θdθ. Accordingly,

the probability distribution of the angle is h(θ) = cos θ and for a range of preferred

possible angles is illustrated in Fig 3.5.
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Figure 3.5: Probability of orientation angle respect to flow direction

3.2.3 Probability of Path Existence

Assuming steady, laminar flow in each tube, the flux of fluid through a given tube

may be calculated using Poiseuille’s law with the orientation and diameter of the

tube [56]. The capillary tube is randomly oriented and the length and diameter vary

independent of the orientation [37]. The probability that a given pore exists with size

in the range l to l + dl, R to R + dR, and θ to θ + dθ is given by the product of the

independent probabilities as Equation 3.3 [52]:

dψ = N
[
f(R)dR× g(l)dl × cos θdθ

]
(3.3)

where N is the normalization factor to ensure that the distribution has unit variance

and therefore also unit standard deviation. Thus, the normalization factor (N) is
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found below. It should be mentioned that for f(R) and g(l) the integration is equal

to unity (summation of probabilities equals 1). It should be mentioned that for f(R)

and g(l) the integration is equal to unity.

∫
ψ

dψ = 1⇒ N

∫ Rmax

Rmin

f(R)dR︸ ︷︷ ︸
1

∫ lmax

lmin

g(l)dl︸ ︷︷ ︸
1

∫ π/2

−π/2
cos θdθ︸ ︷︷ ︸
2

= 1 (3.4)

The normalization factor is obtained N = 1
2
, so the probability of the existence of a

certain pore element is as equation 3.5:

dψ =
1

2
f(R)dRg(l)dl cos θdθ (3.5)

At each intersection, the probability of the path choice must be related to the proba-

bility of the existence of a pore element (Equation 3.5) and the fluid velocity (Equation

3.8). Accordingly, the certain path probability is as below:

dΨ = ζqdψ where q =
πR2

4
v (3.6)

where ζ is the normalization factor. Substituting Equations 3.5 and 3.8 into Equation

3.6 and integrating results in ζ.

ζ = − 512µLn
π2∆p 〈R4〉

⇒ dΨ =
2

π 〈R4〉
g(l)dl R4f(R)dR cos2 θdθ (3.7)

3.3 Calculation of Average Velocities

The permeability of the described model is found by relating the average velocity

in a pore element to the average velocity. We follow the same procedure as Kozeny-

Carman to find the absolute permeability [18]. We assume that the inertia of the fluid
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is negligible and the motion through the pores is dominated by viscosity. Consider

that the bulk flow through the model is only in the x direction, and the Reynold’s

number of flow through capillaries is low (Re ≤ 1), then according to the Hagen-

Poiseuille Equation [50]:

v = − R2

32µ

∆p

Ln
cos θ (3.8)

The components of the x and y directional velocity are:

vx = v cos θ ; vy = v sin θ (3.9)

The average velocities in each direction for the ensemble of pores can be found by the

integrating the velocity components in Equation 3.9 over the entire range of size and

orientation as below:

〈vx〉 =
∫
ψ
v cos θdψ (3.10)

= −1
2

1
32µ

∆p
Ln

∫ Rmax
Rmin

R2f(R)dR
∫ lmax
lmin

g(l)dl
∫ π/2
−π/2 cos3 θdθ (3.11)

= 1
64µ

∆p
Ln
× 〈R2〉 × 1× 4

3
= −〈R

2〉
48µ

∆p
Ln

(3.12)

〈vy〉 =
∫
ψ
v sin θdψ (3.13)

= −1
2

1
32µ

∆p
Ln

∫ Rmax
Rmin

R2f(R)dR
∫ lmax
lmin

g(l)dl
∫ π/2
−π/2 sin θ cos2 θdθ (3.14)

= 1
64µ

∆p
Ln
× 〈R2〉 × 1× 0 = 0 (3.15)

where 〈〉 means average or expected value (See Appendix A.5). The expected value

of the flow velocity for porous media represented by a bundle of capillaries is given

by Equation 3.16:

〈vx〉 = −〈R
2〉

48µ

∆p

Ln
(3.16)
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where 〈R2〉 refers to the second moment of the pore throat diameter.

3.4 Model of Fluid Transport

The macroscopic transport of a non-reactive solute in a porous medium can be de-

scribed by three main transport processes: the advective motion with the mean ve-

locity field of the flow, the molecular diffusion, and the hydrodynamic dispersion of

the solute [28]. On the pore scale, dispersive flux is due to sub scale variations in

velocity caused by the varying thickness of pores, the bending of streamlines around

the grains, and the variation of the velocity profiles within the pores [76]. This study

because of broader coverage of higher velocity displacements, assumes a higher Peclet

number condition where advection (mechanical mixing) dominates.

3.5 Mass Conservation Model

The Advection-Diffusion Equation (mass conservation law) to describe solute disper-

sion in porous media in two dimensions is commonly written as[8]:

∂C

∂t
= DL

∂2C

∂x2
+DT

∂2C

∂y2
− v∇C = DL

∂2C

∂x2
+DT

∂2C

∂y2︸ ︷︷ ︸
Advective term

−vx
∂C

∂x
− vy

∂C

∂y
(3.17)

where C is the solute concentration, t is time, vx and vy are the components of flow

velocity, and DL and DT are the longitude and transverse dispersion coefficients.

In order to use Random Walk Theory (RWT), we need to define the longitudinal

and transverse dispersion components from statistical theory to obtain the statistical

models. The main advantages of statistical models are lower processing time and

higher customizability which leads to higher accuracy and better results of miscible
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displacement simulation. For this purpose, the Mean Squared Displacement (MSD)

for a random variable (X) is defined as Equation 3.18 with expansion:

MSD = 〈(X − 〈X〉)2〉 = 〈X2〉+ 〈X〉2 − 2〈X〉 × 〈X〉 (3.18)

= 〈X2〉 − 〈X〉2 (3.19)

Using the moment generating function, which is used to describe the moments of

the PDF, it is possible to prove that MSD is related to the statistical definition of

dispersion coefficient by Equation 3.20.

Mean Squared Displacement = 〈X2〉 − 〈X〉2 = 2DT → D =
〈X2〉 − 〈X〉2

2T
(3.20)

Equation 3.20 shows that the time-average squared displacement is not zero unless the

particle has no movement. Hence, the dispersion coefficient, D, exists for any velocity

higher than zero. In order to define the longitudinal and transverse dispersion we

need to find the displacements in the x and y directions. Based on equation 3.20, the

longitudinal and transverse dispersion coefficients (using statistical concept of fluid

flow) can be defined as equation 3.21:

DL =
〈(Xn − 〈v〉T )2〉

2T
DT =

〈Y 2
n 〉

2T
(3.21)

where Xn and Yn are displacements of the particle in x (parallel to flow direction) and

y (perpendicular to flow direction) after n steps and 〈V 〉 is the velocity of the most

probable fluid path.
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3.6 Categorization of Flow Regimes

A random particle is a marked fluid particle as it wanders through the porous medium

selecting elemental pores for each step, according to the prescribed probability func-

tion. Each passage of a particle through an individual pore is a step in the random

walk. As explained, in this study, we take a coordinate system with the x- axis in

the direction of the average velocity, and denote the length of a step l, by θ the angle

between the direction of motion along the step and that of the average velocity, t is

the duration of the step, and v = l/t is the velocity of the marked particle along the

step. The properties derived here will be fulfilled after a particle has completed a very

large number, n, of statistically independent steps. In order to find the average time

step, an average of l
v

over the probability area (dΨ) is required.

〈t〉 =
∫

Ψ

(
l
v

)
dΨ =

4〈R2〉
3π〈R4〉〈vx〉

∫ Rmax
Rmin

R4

R2f(R)dR
∫ lmax
lmin

lg(l)dl
∫ π/2
−π/2 cos θdθ (3.22)

=
4〈R2〉

3π〈R4〉〈vx〉 × 〈R
2〉 × 〈l〉 × 2 =

8〈l〉〈R2〉2
3π〈R4〉〈vx〉 (3.23)

Equation 3.22 shows the average duration for each step over a large number of n steps.

As is shown in Equation 3.22, if the velocity is very low (low Peclet number Pe ≤ 5),

the average pore throat length is very large or the variance of the pore throat diameter

is significantly large which means a higher heterogeneity; the average time 〈t〉 is higher;

and molecular diffusion has a large effect. This is physically permissible. However,

even if the molecular diffusivity is very small for a high velocity (or Pe ≥ 300), there

will still be solute that reside sufficiently long in a pore that molecular diffusion may

be significant. It is not clear whether it is consequential to regard them as moving

like idealized fluid particles. The effect of molecular diffusion can be described in two

possible ways. First, the material quantity diffuses sideways across the pore so that an
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element of the material quantity does not stay on a streamline constant but spreads

out over neighbouring streamlines. It may be expected that this effect is negligible

if 〈t〉 � tcritical, where tcritical is the time for appreciable molecular diffusion over a

distance comparable with that in which the velocity differs by a factor of order unity.

Molecular diffusion can also be responsible for solute transport along a pore when

the velocity is significantly low and mechanical dispersion is negligible. To estimate

the required time for molecular diffusion to be effective by either way, (as introduced

definition in Equation 3.20), could be used, as below:

Mean Squared Displacement = 2Dmtcritical . (3.24)

Here, we assume that if MSD is comparable with the average pore throat radius 〈R〉
2

(named tcritical) then the first effect of molecular diffusion is appreciable and if the MSD

is comparable with the average pore throat length 〈l〉 then a component has ample

time to diffuse through pores. Therefore, molecular diffusion is the dominant regime

and the effect of mechanical dispersion (advection) is negligible. The prior assertion

may be combined in an approximation to give the following rule for specifying the

duration of a step by a particle as below:


if 〈t〉 = 8〈l〉〈R2〉2

3π〈R4〉〈vx〉 � tcritical = 〈R〉2
8Dm

molecular diffusion is negligible

if 〈t〉 ≈ tcritical dispersion and diffusion are important

if tcritical ≤ 〈t〉 ≤ t∗critical = 〈l〉2
2Dm

mechanical dispersion is negligible

(3.25)

Equation 3.25 shows three different regimes including, advective, coupled advective

and diffusive, and diffusion dominated regimes. The challenge is when both me-

chanical dispersion and molecular diffusion are important in lower Peclet numbers
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(0.1 ≤ logPe ≤ 1). Figure 3.6 illustrates the three regimes. Region I (logPe ≤

Log(Pe)

L
og

(D
L
/D

m
)

Figure 3.6: Flow regimes for increasing flow velocity [66]

0.1) represents the range of Peclet numbers where diffusion is dominant, region II

(0.1 ≤ logPe ≤ 1) illustrates the dispersion and diffusion are important, region

III (1 ≤ logPe ≤ 12) represents the advection dominant regime, and region IV

(logPe ≥ 12) shows the condition under which Darcy’s law is no longer valid[66].

3.7 Region III

In general, if 〈t〉 is assumed to be small compared to the time required for molec-

ular diffusion to be appreciable, advection or mechanical mixing (dispersion) is the

dominant mass transfer regime. In this section, the limit of very large Pe number

is considered, where the Central limit theory (CLT) is valid. In this limit, the effect

of molecular diffusion is insignificant compared to dispersion so both DL and DT are

assumed to be dependent only on velocity.
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3.7.1 Probabilistic Properties after n Steps

To find the expressions in Equation 3.21, we need to first calculate the variances of

the displacements in the x− and y−directions. For this purpose, we need to find the

displacement of a marked particle after n steps in both directions. Fig 3.7 shows the

proposed procedure to find the dispersion coefficients.

Define pore element Equation 3.1

Calculate the displacement mean Equation 3.24

Calculate the displacements Equation 3.26, 3.30

Transfer into dimensionless coordinates Equation 3.39

Calculate the mean squared displacement Equation 3.35, 3.36

Determine the dispersion coefficient Equation 4.11d, 4.11c

Figure 3.7: Procedure for calculation of dispersion coefficient

Following this procedure, we need to find the mean displacement in each direction.

Displacement in the x−direction is cos θ component of displacement and sin θ in the

y−direction. Substituting the probability of the path choice from Equation 3.7 yields:

〈Xn〉 = n
∫

Ψ
l cos θdΨ = 2n

π〈R4〉

∫
Ψ
lg(l)dlR4f(R)dR cos3 θdθ (3.26)

= 2n
π〈R4〉

∫ lmax

lmin

lg(l)dl︸ ︷︷ ︸
〈l〉

∫ Rmax

Rmin

R4f(R)dR︸ ︷︷ ︸
〈R4〉

∫ π/2

−π/2
cos3 θdθ︸ ︷︷ ︸
4
3

(3.27)

= 8n〈l〉
3π

(3.28)
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For this level, the velocity of the most probable transport path can be found by finding

the ratio of average x and average t as below:

〈v〉 =
〈x〉
〈t〉

=
8n〈l〉
3π

8〈l〉〈R2〉2
3π〈R4〉〈vx〉

=
〈R4〉
〈R2〉2

〈vx〉 (3.29)

The same procedure is followed in the y−direction below:

〈Yn〉 = n
∫

Ψ
l sin θdΨ = 2n

π〈R4〉

∫
Ψ
lg(l)dlR4f(R)dR sin θ cos2 θdθ (3.30)

= 2n
π〈R4〉

∫ lmax

lmin

lg(l)dl︸ ︷︷ ︸
〈l〉

∫ Rmax

Rmin

R4f(R)dR︸ ︷︷ ︸
〈R4〉

∫ π/2

−π/2
sin θ cos2 θdθ︸ ︷︷ ︸

0

(3.31)

= 0 (3.32)

The average time step is calculated in Equation 3.22. As a second step we need to

find the variances of the total displacements in x and y and also the variance of the

time steps. Using the definition of variance (See Appendix A.7) we get:

〈
Squared︷ ︸︸ ︷

( Xn︸︷︷︸
veriable

−〈Xn〉︸︷︷︸
mean

)2〉

︸ ︷︷ ︸
mean

= n〈(xn − 〈xn〉)2〉 = n〈x2〉 − n〈x〉2︸ ︷︷ ︸
see Equation 3.18

(3.33)

= n
∫

Ψ
l2 cos2 θdΨ− n(8〈l〉

3π
)2 = n 〈l〉2 σ2

x (3.34)

Substituting dΨ from Equation 3.7 results in a variance of displacement in the x−direction

σx (See Appendix A.7 for full proof) as below:

σ2
x =

3〈l2〉
4〈l〉2

− 64

9π2
(3.35)
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Following the same approach results in σy (See Appendix A.7 for full proof):

σ2
y =

〈l2〉
4〈l〉2

(3.36)

And for the time variance we assume that, the CLT is valid for the time distribution

as well, which is generally correct for random processes occurring in nature [19].

This assumption means that 〈(Xn−〈V 〉T )2〉
2

tends to be independent from the value of

T . Considering this assumption, σt could be defined as (See Appendix A.7 for fully

detailed proof):

n
〈l〉2

〈vx〉2
σ2
t = 〈(Tn − 〈Tn〉)2〉 ⇒ σt =

8〈R2〉2〈l2〉
9 〈R4〉 〈l〉2

− 64 〈R2〉4

9π2 〈R4〉2
. (3.37)

Considering Equation 3.21 we need to find the covariance of x and t as well, which is

illustrated below (See Appendix A.8 for fully detailed proof):

n
〈l〉2

〈vx〉
σ2
xt = 〈(Tn − 〈Tn〉)(Xn − 〈Xn〉)〉 ⇒ σxt =

2〈R2〉2〈l2〉
3 〈R4〉 〈l〉2

− 64 〈R2〉2

9π2 〈R4〉
(3.38)

As a next step, using Equations 3.35, 3.36 and 3.37, we define dimensionless variables

as below:

χ =
Xn − 〈Xn〉
〈l〉
√
n

η =
Yn − 〈Yn〉
〈l〉
√
n

τ =
(Tn − 〈Tn〉)〈vx〉
〈l〉
√
n

(3.39)

χ, η and τ are defined to have a mean equal to zero and variance equal to σ2
x , σ2

y and

σ2
t , respectively (See Appendix A.9). It is assumed that χ, η and τ follow from the

CLT which means that the probability distribution of χ, ξ and τ are converging to

be normal and independent as n→∞. For τ , the rate of convergence depends on σ2
t

and thus the number of steps. In this study, we assume n is a large number to satisfy
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this condition.

3.7.2 Probabilistic Properties at a Given Time

So far, the mean of displacements in the x− and y−directions and the mean of time

steps after n steps that are significantly large and fixed has been calculated. In order

to calculate the dispersion, we need to analyze the probabilistic properties at a given

time Tn, which is significantly larger than l
v
. This assumption is in agreement with

assuming a large value for n. Set of defined dimensionless variables in Equation 3.39

are used to find the probability distribution of n in a given time Tn and n appears as

Equation 3.47.

τ = (Tn−〈Tn〉)〈vx〉
〈l〉
√
n

From Equation 3.22−−−−−−−−−−−→ τ = Tn〈vx〉
〈l〉
√
n
−
(

8n〈l〉〈R2〉2
3π〈R4〉〈vx〉

)(
〈vx〉
〈l〉
√
n

)
(3.40)

= Tn〈vx〉
〈l〉
√
n
− 8

√
n〈R2〉2

3π〈R4〉
×
√
n−−−→ τ
√
n = Tn〈vx〉

〈l〉 −
8n〈R2〉2
3π〈R4〉

subtract τ
√
n−−−−−−−→ (3.41)

8〈R2〉2
3π〈R4〉n+ τ

√
n− Tn〈vx〉

〈l〉 = 0 (3.42)

The Equation 3.40 can be solved by squared equations rule for n as below:

(
16〈R2〉2
3π〈R4〉

√
n+ τ

)2

= τ 2 + 32〈R2〉2Tn〈vx〉
3π〈R4〉〈l〉 ⇒ 16〈R2〉2

3π〈R4〉
√
n = −τ + (3.43)√

τ 2 + 32〈R2〉2Tn〈vx〉
3π〈R4〉〈l〉 ,

√
n = − 3π〈R4〉

16〈R2〉2 τ + 3π〈R4〉
16〈R2〉2

√
τ 2 + 32〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉 (3.44)

n = 9π2〈R4〉2
256〈R2〉4 τ

2 + 9π2〈R4〉2
256〈R2〉4

(
τ 2 + 32〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉

)
− 9π2〈R4〉2

128〈R2〉4 τ (3.45)√
τ 2 + 32〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉 (3.46)
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The positive square root is taken to make n positive from 0 to ∞. Hence, final

statement for n at a given time Tn is:

n =
3π〈R4〉〈vx〉Tn

8〈R2〉2〈l〉
+

9π2〈R4〉2

128〈R2〉4
τ 2 − 9π2〈R4〉2

256〈R2〉4
τ

√
τ 2 +

32〈R2〉2Tn〈vx〉
3π〈R4〉〈l〉

(3.47)

It is assumed that the distribution of the dimensionless variable τ follows the CLT

and it tends to be asymptotically normal. This means (as is shown in Equation 3.47)

that the mean value of n appears when τ → 0 and therefore Tn and T〈n〉 are identical

and values of n and 〈n〉 are compareable. Hence O(τ) = τ and τ 2 is negligible1. Thus,

the mean of n at a given time Tn becomes:

〈n〉 =
3π〈R4〉〈vx〉Tn

8〈R2〉2〈l〉
− 9π2〈R4〉2

256〈R2〉4
τ

√
32〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉
(3.48)

The other probabilistic properties that should be found after a given time are the

mean of variance of displacements in each direction.

3.7.3 Transverse Dispersion Calculation

Starting in the y−direction, which is perpendicular to the dominant flow, the statisti-

cal transverse displacement after a given time (Tn) can be calculated using Equations

3.30, 3.36 and 3.39, as:

η = Yn−〈Yn〉
〈l〉
√
n

〈Yn〉=0−−−−→ Yn = η 〈l〉
√
n⇒ Y 2

n = η2 〈l〉2 n⇒ 〈Y 2
n 〉 = 〈η2〉 〈l〉2 〈n〉 (3.49)

where η is defined as a dimensionless variable with a mean of zero and variance of σ2
y

so 〈η2〉 = σ2
y and σ2

y is σ2
y = 〈l2〉

4〈l〉2 from Equation 3.36. The average number of steps is

1O(X) describes the limiting behavior of a function when the argument tends towards a particular
value. Here τ tends to 0
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found in Equation 3.48. Substitution of the values yields:

〈Y 2
n 〉 = 〈l2〉

4〈l〉2 〈l〉
2
(

3π〈R4〉〈vx〉Tn
8〈R2〉2〈l〉 −

9π2〈R4〉2
256〈R2〉4 τ

√
32〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉

)
(3.50)

= 3π〈R4〉〈l〉2〈vx〉Tn
32〈R2〉2〈l〉 − 9π2〈R4〉2 〈l〉2

128〈R2〉4
〈τ〉

√
2〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉︸ ︷︷ ︸
negligible as 〈τ〉→0

(3.51)

We know that at a given time n is a large number and therefore τ approaches zero

and we can therefore neglect the effect of the second term. Referring to Equation

3.21, and rearranging Equation 3.50 results in:

DT =
〈Y 2

n 〉
2T

=
3π

64

〈l2〉
〈l〉
〈R4〉
〈R2〉2

〈vx〉 (3.52)

This statement for transverse dispersion is valid under the considered assumptions.

The main assumption is a higher Peclet number, which infers higher velocity and

consequently a smaller time step. This causes mechanical dispersion to be dominant

and molecular diffusion to be negligible.
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3.7.4 Longitudinal Dispersion Calculation

The mean variance of longitudinal displacement occurring after Tn can be calculated

from definition of χ as below:

χ =
Xn − 〈Xn〉
〈l〉
√
n

〈Xn〉= 8n〈l〉
3π−−−−−−→ Xn −

8n 〈l〉
3π

= χ 〈l〉
√
n⇒ Xn = χ 〈l〉

√
n+

8n 〈l〉
3π

Xn = χ 〈l〉

√√√√3π〈R4〉〈vx〉Tn
8〈R2〉2〈l〉

− 9π2〈R4〉2
128〈R2〉4

τ

√
32〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉︸ ︷︷ ︸
Term 1

+

8 〈l〉
3π

(3π〈R4〉〈vx〉Tn
8〈R2〉2〈l〉︸ ︷︷ ︸

Term 2

−9π2〈R4〉2

128〈R2〉4
τ

√
32〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉

)
︸ ︷︷ ︸

Term 3

=

〈R4〉
〈R2〉2

〈vx〉Tn −
3π〈R4〉2〈l〉

16〈R2〉4
τ

√
32〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉
+

χ〈l〉

√
3π〈R4〉〈vx〉Tn

8〈R2〉2〈l〉

(
1− 3π〈R4〉〈l〉

32〈R2〉2〈vx〉Tn
τ

√
32〈R2〉2Tn〈vx〉

3π〈R4〉〈l〉︸ ︷︷ ︸
Negligible when multiplied by χ〈l〉

) 〈R4〉
〈R2〉2

〈vx〉Tn=〈v〉Tn
−−−−−−−−−−−→
From Equation 3.29

Xn = 〈v〉Tn − τ

√
3π〈R4〉〈〈l〉vx〉Tn

8〈R2〉2
+ χ

√
3π〈R4〉〈〈l〉vx〉Tn

8〈R2〉2

(3.53)

Since Tn is large and τ is small, the Taylor expansion rule2 is used to linearly ap-

proximate it. In Term 2 of Equation 3.53 the product of χτ is negligible when τ and

χ both approach zero, while Tn is significantly larger than l
〈v〉 and Xn is identical to

X〈n〉. All of the simplifications produce calculation error in the dispersion coefficient

that is estimated at the end, however results show that the error is not not significant.

Rearrangement of Equation 3.53 and subtracting 〈v〉Tn from both the sides produces

a longitudinal displacement term on the left side. Squaring both sides and taking the

2Based on Taylor expansion
√

1− x→ 1− x
2 when x→ 0
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average yields:

Xn − 〈v〉Tn =

√
3π〈R4〉〈〈l〉vx〉Tn

8〈R2〉2
(χ− τ)⇒ (Xn − 〈v〉Tn)2 =

3π〈R4〉〈l〉〈vx〉Tn
8〈R2〉2

(χ2 + τ 2 − 2χτ)⇒ 〈(Xn − 〈v〉Tn)2〉 = 〈3π〈R
4〉〈l〉〈vx〉Tn
8〈R2〉2

〉
(
〈χ2〉+ 〈τ 2〉 − 2〈χτ〉

)︸ ︷︷ ︸
From Equation 3.39

⇒ 〈(Xn − 〈v〉Tn)2〉
2Tn︸ ︷︷ ︸
DL

=
3π〈R4〉〈l〉〈vx〉

16〈R2〉2
(
σ2
x + σ2

t − 2σxy
) σxt from Equation 3.38−−−−−−−−−−−−−−−−−−→

σ2
x, σ2

t from Equation 3.35, 3.37
=

3π〈R4〉〈l〉〈vx〉
16〈R2〉2

( 3〈l2〉
4〈l〉2

− 64

9π2︸ ︷︷ ︸
σ2
x

+
8〈R2〉2〈l2〉
9 〈R4〉 〈l〉2

− 64 〈R2〉4

9π2 〈R4〉2︸ ︷︷ ︸
σt

− 4〈R2〉2〈l2〉
3 〈R4〉 〈l〉2

+
128 〈R2〉2

9π2 〈R4〉︸ ︷︷ ︸
σxt

)

DL =
9π

64

〈l2〉
〈l〉
〈R2〉2

〈R4〉
〈vx〉+

π〈l2〉
12〈l〉

〈vx〉 −
( 4〈R4〉

3π〈R4〉
+

4〈R2〉2

3π〈R2〉2
− 8

3π

)
〈l〉〈vx〉︸ ︷︷ ︸

Negligible in comparison with other the two terms

(3.54)

DL =
9π

64

〈l2〉
〈l〉
〈R4〉
〈R2〉2

〈vx〉+
π

12

〈l2〉
〈l〉
〈vx〉 (3.55)

The assumptions for validity of this statement for longitudinal dispersion are that i)

the effect of mechanical dispersion is an order of magnitude larger than molecular

diffusion; ii) the flooding time is sufficiently long; and iii) the total length of the

system in significantly larger than the pore throat length. As is shown in Equation

4.11d and 4.11c, the transverse and longitudinal dispersion coefficients are dependant

on three main parameters. First, the ratio of 〈l
2〉
〈l〉 , which is the normalized variance

probability density function of the pore throat length distribution and is the degree of

heterogeneity in statistical analysis of porous media. This ratio is not dimensionless

and the units do not cancel, therefore the ratio has a unit of length. Hence, the

dispersion coefficient obtained from the presented analysis is scale dependent, which

is physically acceptable. Secondly, dispersion coefficients are dependant on the ratio
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of 〈R
4〉

〈R2〉2 , which is the normalized kurtosis (fourth moment) of the probability density

function of pore throat diameter distribution. Kurtosis represents the shape of the

pore throat diameter distribution and the height and width of the distribution function

(Appendix A.5). In simple terms, this ratio shows that for two porous media, if the

mean and variance of the two pore throat diameter distributions are identical, the

transverse and longitudinal dispersion can still be different, due to the complexity

of pore structure. Finally, injection velocity affects dispersion which appeared in all

proposed models to date, including both mathematical outcomes and experimental

correlations [46]. Equation 4.11d and 4.11c indicate that increasing injection velocity

results in increasing dispersion in both directions3.

3.8 Analytical Solution

The theory of hydrodynamic dispersion of miscible fluid has been extensively studied

during the past decades [26], and some analytical [8] and numerical models [76] have

been developed for estimating the dispersion coefficients. In this section, an analytical

solution is developed as a part of the image processing tool to estimate the exper-

imental longitudinal and transverse dispersion coefficients. Analytical solutions are

very useful in determining the physical feasibility of boundary conditions, evaluating

the accuracy of numerical solution methodologies, as well as measuring the solute

transport parameters under laboratory and field conditions. Some analytical solu-

tions for one, two, and three-dimensional ADEs have been developed for predicting

the transport properties. For example, van Genuchten and Alves [91] formulated sev-

eral analytical solutions for the one dimensional, ADE subject to various initial and

boundary conditions. Most two-dimensional available analytical solutions are based

3All analysis are valid under considered assumption and when mechanical dispersion is an order
of magnitude larger than molecular diffusion
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on point solute sources in an infinite medium [47]. Equation 1.2 presents the as-

sumed mathematical model for miscible displacement in 2D porous media. The main

objective of this section is a derivation of the two-dimensional Advection-Diffusion

Equation (ADE) solution for a model that is finite in width and has a finite length.

The obtained solution is used in finding the longitudinal and transverse dispersion

coefficients in 2D micromodel miscible displacement experiment.

3.8.1 Methodology

The following section details a generalized two-dimensional analytical solution that

is developed for hydrodynamic dispersion in a unidirectional bounded porous media

flow field. In the mathematical analysis, the Laplace transform, and Fourier analysis

techniques are used simultaneously, and a general equation, in infinite series form has

been obtained. The Advection Diffusion Equation (ADE) for two dimensional porous

media is as Equation 3.56:

∂C

∂t
= DL

∂2C

∂x2
+DT

∂2C

∂y2
− vx

∂C

∂x
− vy

∂C

∂y
(3.56)

where C is the concentration of the solute (mass of solute per unit volume of the

fluid) [ML−3], DL is the longitudinal dispersion coefficient [L2T−1], DT is the trans-

verse dispersion coefficient [L2T−1], vx is the average pore velocity in the longitudinal

direction [LT−1], vy is the average pore velocity in the transverse direction [LT−1].

3.8.2 Assumptions

Equation 3.56 is subject to the following assumptions; constant average velocity in

both directions, constant porosity, constant longitudinal and transverse dispersion

coefficient, negligible off-diagonal dispersion coefficient since flow is assumed to be
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dominant in the longitudinal direction, and that the fluid is of constant density and

viscosity and incompressible.

To solve the ADE, a complete set of boundary and initial conditions must be spec-

ified. Initial conditions are used to define the solute concentration at the time the

solute is introduced. For the analytical solutions presented in this work, the initial

conditions are specified that all initial concentrations are zero. If the solute is con-

servative, a constant initial background solute concentration can be added to the

calculated concentrations. Also, three types of boundary conditions are associated

with the solute-transport equation. The first-type or Dirichlet boundary condition

specifies the value of the concentration along a section of the flow-system boundary.

The second-type or Neumann boundary condition specifies the gradient in solute

concentration across a section of the boundary. The third-type or Cauchy boundary

condition must be applied where the flux of solute over the boundary is dependent on

the difference in a specified concentration on one side of the boundary and the solute

concentration on the other side of the boundary. These three models of boundary

conditions are applied to describe conditions at the entrance and exit of two- and

three-dimensional systems. The third-type boundary condition best describes solute

concentrations at the injection end in a uniform flow system [62], where a well-mixed

solute penetrates the system by advection across the boundary and is transported from

the boundary by advection and diffusion. The boundary conditions can be presented

as:

vxC −DL
∂C

∂x
= vxC0 at x = 0 (3.57)

where C0, is the known measured concentration in the injected fluid. The third-type

boundary condition allows for solute concentration at the injection boundary to be

lower than C0, initially and then to increase as more solute enters the system. Over
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time, the concentration gradient across the boundary, ∂C
∂x

, decreases the concentra-

tion at the injection boundary approaches C0. Alternatively, a first-type boundary

condition can be specified at the injection end, such that:

C = C0 at x = 0 (3.58)

Application of this simpler form of boundary condition presumes that the concen-

tration gradient across the boundary equals zero as soon as flow begins. However,

this may cause the mass of solute in the system at early times to be overestimated.

Equation 3.57 indicates that the difference between concentrations predicted for a sys-

tem having a first- type source boundary condition and a system having a third-type

boundary condition should decrease as the quantity Dm
vx

decreases. When the system

has finite dimensions, and solute concentrations near the production boundary are of

interest, selection of an appropriate boundary condition becomes more difficult. In

general, if the system discharges to a large, well-mixed reservoir and the additional

solute will not significantly alter reservoir concentrations, then a third-type or first-

type boundary condition can be used. If the porous medium is small or not well

mixed, concentrations would equal solute concentration at the production end of the

system, and therefore no concentration gradient would exist across the boundary. A

second-type boundary condition can define this condition as below:

∂C

∂x
= 0 at x = L (3.59)

where L shows the length. Van Genuchten and Alves [91] analyzed the difference be-

tween predicted concentrations obtained using analytical solutions for a semi-infinite

system and a finite system having a second-type boundary condition regarding two

dimensionless numbers. First, the Peclet number (Pe) and second the number of
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displaced pore volumes (PV ), which are defined by:

Pe =
Lvx
Dm

, PV =
vxt

L
(3.60)

They found that the predicted concentration at points near the production boundary

begins to differ significantly for greater than 0.25 pore volume (PV ) and that the dif-

ferences increase as PV approaches 1 (corresponding to movement of the solute front

closer to the production boundary). In two- and three-dimensional systems, imper-

meable or no-flow boundaries may be present at the base, top, or sides of the aquifer.

Because there is no advective flux across the boundary, and molecular diffusion across

the boundary is assumed to be negligible, the general third-type boundary condition

simplifies to a second-type boundary condition, expressed below as:

∂C

∂y
= 0 at y = 0 and y = W (3.61)

where W shows the width of the system. Following our discussion above, the boundary

and initial conditions for this case is assumed as below:

C = 0 at y = 0, y = W

C = 0 at x = L

C(0, y, t) = C0 at Y1 < y < Y2

C(x, y, 0) = 0 at Initial condition

(3.62)

3.8.3 Transformation

A variable transformation is used to remove the advective terms in Equation 3.56, to

make it easily solvable. Ozsik [65] gave a generalized variable transformation of the
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dependent variable ψ into a new dependent variable Ψ. Consider a Partial Differential

Equation (PDE) with a dependent variable ψ as Equation 3.63:

∂ψ

∂t
= α1

∂2ψ

∂x2
+ α2

∂2ψ

∂y2
− β1

∂ψ

∂x
− β2

∂ψ

∂y
(3.63)

where α and β are constants. A new dependent variable Ψ can be defined from ψ by

multiplying ψ by an appropriate transformation parameter.

Ψ(x, y, t) = ψ(x, y, t) exp[
−β1x

2α1

+
β2

1t

4α1

] exp[
−β2x

2α2

+
β2

2t

4α2

] (3.64)

Multiplying Equation 3.63 by the defined transformation parameter from Equation

3.64 results in;

∂Ψ

∂t
= α1

∂2Ψ

∂x2
+ α2

∂2Ψ

∂y2
(3.65)

Equation 3.65, which does not have a advective term, is a result of a variable transfor-

mation of Equation 3.63. The dependent variable of the ADE C can be transformed

to a new dependent variable c by multiplying by the transformation parameter defined

below:

c(x, y, t) = C(x, y, t) exp[
−vxx
2DL

+
v2
xt

4DL

] exp[
−vyy
2DT

+
v2
yt

4DT

] (3.66)

The resulting PDE after the variable transformation is given as below:

∂c

∂t
= DL

∂2c

∂x2
+DT

∂2c

∂y2
(3.67)
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subject to the following boundary condition:

c(0, y, t) = C0 exp[
v2
xt

4DL

] exp[− vyy

2DT

+
v2
yt

4DT

] at Y1 < y < Y2

c = 0 at y = 0, y = W

c = 0 at x = L

c(x, y, t) = 0

(3.68)

The partial derivative of x in Equation 3.67 is removed by applying the Fourier sine

transform defined by Churchill [21] as:

SαF (x) =

∫ ∞
0

F (x)sin(αx)dx = fs(α) (α > 0) (3.69)

whose basic operation property can be expressed as:

Sα
d2F (x)

dx2
= −α2fs(α) + αF (0) (3.70)

The inverse of the finite sine transformation is given as:

S−1
α fs(α) = F (x) =

2

π

∫ ∞
0

fs(α) sin(αx)dα (x > 0) (3.71)

The transformed equation, with its boundary and initial conditions is expressed as:

∂c∗

∂t
+ α2DLc

∗ −DT
∂2c∗

∂y2
= αDLC0 exp[

v2
xt

4DL

+
v2
yt

4DT

]exp[− vyy

2DT

] (3.72)
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subject to the boundary and initial conditions:


c∗ = 0 at y = 0, y = w

c∗(x, y, 0) = 0

(3.73)

The partial derivative of y in Equation 3.72 is removed by applying the finite Fourier

cosine transform defined by Churchill [22] as:

CF (y) =

∫ W

0

F (y) cos(
nπy

W
)dy = fc (0 < y < W ) (3.74)

whose basic operation property can be expressed as:

C
∂2F (y)

dy2
= (−1)n

dG

dy y=W

− dG

dy y=0

− (
nπ

W
)2fc (3.75)

The inverse of the Finite cosine transformation is given as:

C−1fc =
fc(0)

W n=0
+

2

W

∞∑
n=1

fc(n) cos(
nπy

W
) (3.76)

let η = nπ
W

nd applying the finite Fourier cosine transform:

dc∗∗

dt
+ (α2DL + η2DT )c∗∗ = αDLC0 exp[

v2
xt

4DL

+
v2
yt

4DT

]Iy (3.77)

where:

Iy =

∫ Y2

Y1

exp[
−vyy
2DT

cos(ηy)dy] (3.78)

The above integral is over Y2 to Y1 rather than from 0 to W because C0 only has

non-zero values between Y2 to Y1. Equation 3.77, which is the transformed Ordinary

Differential Equation (ODE), is solved by an integrating factor. Given an ODE of the
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form below:

dω

dt
+ gω = h(t) (3.79)

the solution is given as (Wexler [93]):

ω =
1

p(t)

∫ t

t0

p(τ)h(τ)dτ + ω0
p(t)

p(t0)
(3.80)

where p(t) is the integrating factor and it is expressed as:

p(t) = exp[

∫
g(τ)dτ ] (3.81)

Applying these equations to the transformed ODE gives:

p(t) = exp[

∫ t

0

(α2DL + η2DT )dτ ] = exp[α2DLt+ η2DT t] (3.82)

c∗∗ =
αDLC0Iy

exp[α2DLt+ η2DT t]

∫ t

t=0

exp[α2DLτ + η2DT τ +
v2
xτ

4DL

+
v2
yτ

4DT

] (3.83)

after integrating:

c∗∗ =
αDLC0Iy

α2DL + η2DT + v2x
4DL

+
v2y

4DT

{
exp[

v2
xt

4DL

+
v2
yt

4DT

]−exp[−α2DLt−η2DT t]
}

(3.84)

The inverse Fourier sine transform is applied to remove the α term.

c∗∗ = C0Iy

{
exp[

v2
xt

4DL

+
v2
yt

4DT

]S−1
α

{ α

α2 + η2DT
DL

+ v2x
4D2

L
+

v2y
4DLDT

}
− exp[−η2DT t]S

−1
α

{ α exp[−α2DLt]

α2 + η2DT
DL

+ v2x
4D2

L
+

v2y
4DLDT

}} (3.85)
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The table of inverse Fourier sine transform in Churchill [22] is used to resolve the first

inverse.

S−1
α

{
α

α2 + η2DT
DL

+ v2x
4D2

L
+

v2y
4DLDT

}
= exp

[
− x
(
α2 + η2DT

DL

+
v2
x

4D2
L

+
v2
y

4DLDT

)1/2
]

(3.86)

There is no match for the second inverse transform in the inverse table. Therefore an

integration of the form below is performed:

S−1
α

{
α exp[−α2DLt]

α2 + η2DT
DL

+ v2x
4D2

L
+

v2y
4DLDT

}
=

2

π

∫ ∞
0

α exp[−α2DLt]

α2 + η2DT
DL

+ v2x
4D2

L
+

v2y
4DLDT

sin(αx)dα

(3.87)

The solution of this integral is as below (used from Gradshteyn and Ryzhik [35]):

S−1
α

{
α exp[−α2a]

α2 + b2

}
=

2

π

{
− π

4
exp[ab2]

[
2 sinh(xb)

+ exp[−xb]erf [b
√
a− x

2
√
a

]− exp[xb]erf [b
√
a+

x

2
√
a

]

]} (3.88)

where:

a = DLt

b = (η2DT

DL

+
v2
x

4D2
L

+
v2
y

4DLDT

)1/2

sinh(xb) = 0.5(exp[xb]− exp[−xb])

(3.89)

Re-arranging the equation gives,

S−1
α

{
α exp[−α2a]

α2 + b2

}
=

1

2
exp[ab2]

[
exp[−xb]erf [b

√
a− x

2
√
a

]

− exp[xb]erf [b
√
a+

x

2
√
a

]

]
(3.90)
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where erfc(x) = 1−erf(x). Substituting the inverse transform into the solution gives:

c∗ = C0Iy

{
exp[

v2
xt

4D2
L

+
v2
yt

4DT

− xγ]− 1

2
exp[

v2
xt

4D2
L

+
v2
yt

4DT

]

(
exp[−xγ]erfc

[
γ
√
DLt−

x

2
√
DLt

− exp[xγ]erfc
[
γ
√
DLt+

x

2
√
DLt

])}
(3.91)

Using the identity erfc(−x) = 2− erfc(x), equation can be simplified:

c∗ = C0Iy

{
1

2
exp[

v2
xt

4D2
L

+
v2
yt

4DT

]

(
exp[−xγ]erfc

[x− 2DLtγ

2
√
DLt

+exp[xγ]erfc
[x+ 2DLtγ

2
√
DLt

])}
(3.92)

The integral Iy can be simplified with the following conditions. When vy = 0 and

n = 0:

Iy,vy=0,n=0 =

∫ Y2

Y1

dy = Y2 − Y1 (3.93)

if vy 6= 0 and n = 0:

Iy,n=0 =

∫ Y2

Y1

exp[
−vyy
2DT

]dy =
2DT

vy

{
exp[
−vyY1

2DT

]− exp[
−vyY2

2DT

]
}

(3.94)

and for n > 0:

Iy,n>0 =

∫ Y2

Y1

exp[
−vyy
2DT

] cos(ηy)dy =
1( −vy

2DT

)2
+ η2{

exp[
−vyY2

2DT

]

(
η sin(ηY2 −

vy cos(ηY2)

2DT

)
− exp[

−vyY1

2DT

]

(
η sin(ηY1 −

vy cos(ηY1)

2DT

)}
.

(3.95)
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Applying the inverse finite Fourier cosine transform and simplifying; we obtain:

c =
C0

W

∞∑
n=0

LnPn cos(ηy) exp[
v2
xt

4D2
L

+
v2
yt

4DT

]

(
exp[−xγ]erfc

[x− 2DLtγ

2
√
DLt

+ exp[xγ]erfc
[x+ 2DLtγ

2
√
DLt

])
.

(3.96)

The dependent variable c is transformed back to C by multiplying by the transforma-

tion parameter:

C(x, y, t) = c(x, y, t) exp[
vxx

2DL

− v2
xt

4DL

] exp[
vyy

2DT

−
v2
yt

4DT

] (3.97)

The final solution is:

C(x, y, t) =
C0

W

∞∑
n=0

LnPn cos(ηy) exp[
vxx

2DL

+
vyy

2DT

]

(
exp[−xγ]erfc

[x− 2DLtγ

2
√
DLt

+ exp[xγ]erfc
[x+ 2DLtγ

2
√
DLt

]) (3.98)
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where:

Ln =


1
2

n = 0

1 n > 0

Pn =


Iy,vy=0,n=0 vy = 0, n = 0

Iy,n=0 vy 6= 0, n = 0

Iy,n>0 n > 0

γ =
(
η2DT

DL

+
v2
x

4D2
L

+
v2
y

4DLDT

)1/2

η =
nπ

W

Iy,vy=0,n=0 = Y2 − Y1

Iy,n=0 =
2DT

vy

{
exp[
−vyY1

2DT

]− exp[
−vyY2

2DT

]
}

Iy,n>0 =
1( −vy

2DT

)2
+ η2

{
exp[
−vyY2

2DT

]

(
η sin(ηY2 −

vy cos(ηY2)

2DT

)

− exp[
−vyY1

2DT

]

(
η sin(ηY1 −

vy cos(ηY1)

2DT

)}

(3.99)

In the following, this solution will be implemented in the Athena Visual Studio solver

to estimate the experimental dispersion coefficients.

3.9 Numerical Solution

In this section, the numerical approach has been applied to find the longitudinal and

transverse dispersion coefficients during a miscible displacement in 2D porous media.

In many industrial applications the advection-diffusion equation is often discretized
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by finite difference methods (FDM) or finite element methods (FEM). The statisti-

cally calculated dispersion coefficients for each model is implemented in the numerical

simulation to compare with the experimental output.

3.9.1 Assumptions

The same assumptions, initial, and boundary conditions as section 3.8 applies in this

solution that is summarized as below:

• Assumptions:

1. Inlet pressure (P1) and outlet pressure (P2) are constant.

• Initial conditions:

1. ∀x, y ⇒ C(x, y, 0) = 0

• Boundary conditions:

1. C = 0 at y = −W/2, y = +W/2

2. C = 0 at x = L

3. C(0, 0, t) = C0

3.9.2 Methodology

Equation 3.100 presents the assumed mathematical model for miscible displacement

in porous medium with defined assumptions. The set of equations is solved using a

upwind numerical approximation.

∂C

∂t
+ v

∂C

∂x︸︷︷︸
advection

− DL
∂2C

∂x2︸ ︷︷ ︸
Longitudinal dispersion

− DT
∂2C

∂y2︸ ︷︷ ︸
Transverse dispersion

= 0 (3.100)
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The solution domain of the problem is covered by a mesh of grid-lines:

xi = i∆x i = 1, 2, ...,M ∆x =
L

M

yj = j∆y j = 0, 1, ..., K ∆y =
W

K

tn = n∆t n = 0, 1, ..., N ∆t =
T

N

where xi, yj and tn are parallel to the space and time coordinate axes. For a better

understanding of the sensitivity of the solution, the dimensionless formulation of the

transport equation is used. The dimensionless parameters are defined as below:

xD =
x

L
dimensionless x-coordinate (3.101)

yD =
y

W
dimensionless y-coordinate (3.102)

CD =
C

C0

dimensionless concentration (3.103)

tD =
vt

L
dimensionless time (3.104)

The advection-diffusion equation in dimensionless form is as below:

∂CD
∂tD

+
∂CD
∂xD

− DL

Lv

∂2CD
∂x2

D

− DT

Lv

∂2CD
∂y2

D

= 0 (3.105)

When an increased concentration Cn
Di enters the first cell with the flow, that affect

the concentration distribution in the entire system. To keep it simple it is assumed

that the concentration in each cell has a single value. The concentration in the

i − th cell at the time step nth is designated as Cn
Di. The transport problem is to

compute the concentrations Cn
Di, depending on time and the transport parameters.

Consider the following approximations of the derivatives in the ADE in x-direction
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which incorporate time and space as follows:

∂CD
∂tD

=
Cn+1
Di − Cn

Di

∆tD
n = 0, 1, 2, 3, ..., N

∂CD
∂xD

=
Cn
Di+1 − Cn

Di−1

2∆xD
i = 1, 2, 3, ...,M + 1

∂2CD
∂x2

D

=
Cn
Di+1 − 2Cn

Di + Cn
Di−1

∆xD
2

∂2CD
∂y2

D

=
Cn
Dj+1 − 2Cn

Dj + Cn
Dj−1

∆yD
2

substituting in Equation 3.105 results in:

Cn+1
Di − Cn

Di

∆tD
+
Cn
Di+1 − Cn

Di−1

2∆xD
− DL

Lv

(Cn
Di+1 − 2Cn

Di + Cn
Di−1

∆x2
D

)
− DT

Lv

(Cn
Dj+1 − 2Cn

Dj + Cn
Dj−1

∆y2
D

)
= 0 (3.106)

The Figure 3.8 illustrates the solution approach for this modeling. The numerical

At t0 = 0

Solve Equation 3.106 for
C(x, y, t0 + ∆t) for ∀x, y

t0 = T?

Finish

t0 = t0 + ∆t

Yes

No

Figure 3.8: Solution approach for numerical simulation in 2D porous media

scheme needs to move in the same direction as the differential equation. Upwind

schemes are designed to do it as described: Generally, it has been proved that accu-
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Xtn+1

Xxi,tiXxi−1

Figure 3.9: Forward differences, if the velocity is positive

X

Xxi

tn+1

Xxi+1,tn

Figure 3.10: Backward differences, if velocity is negative

racy of the numerical methods are acceptable if the initial and boundary conditions

are properly defined [27]. This is discussed in details in next chapter.

3.10 Experimental Study

This sections uses an experimental approach with a new image processing technique

to find the longitudinal and transverse dispersion occurring during miscible displace-

ment in a randomly generated two dimensional porous medium. In this study, we

have a high resolution digital camera to detect fluid concentrations using a newly

developed pixel resolution image analysis method. We use a novel custom developed

pixel resolution image analysis method to estimate the coupled longitudinal and trans-

verse dispersivity coefficients. In the following, micromodel flooding experiments are

designed to evaluate the validity of the obtained mathematical model using statisti-

cal and numerical approaches. The determination of dispersivity coefficients through

experimentation has been extensively developed for a single dispersivity in either the
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longitudinal or transverse directions in the past. From the most influential stud-

ies, Silliman et al. (1987) [80] investigated the longitudinal dispersion in anisotropic

porous media using sodium chloride as a tracer, and then found a relationship be-

tween dispersion and hydraulic anisotropy. Aksoy and Guney (2010) [2] investigated

the longitudinal and transverse dispersivities reproducing a homogeneous 3-5 mm

sandy aquifer. Kim et al. (2004) [53] conducted a laboratory tracer test representing

a two-dimensional aquifer with the aim of estimating the longitudinal dispersivity

(DL) and the ratio (DT
DL

) of transverse to longitudinal dispersivity of sandy aquifer

material. Miscible dyed-water and water injections in a glass micromodel have been

used in this study to investigate the coupled longitudinal and transverse dispersion.

In the following, a unique pixel resolution image processing technique is used along

with a Beysian estimator tool to fit the experimental results with analytical solution

of the Advection-Diffusion Equation (ADE) introduced in Equation 3.8. The used

method has following advantages compared to traditional methodologies:

• The developed image processor has the advantage that inferences and predic-

tions fully include parameter uncertainty. The Bayesian estimator tool collects

data from spatially random locations.

• Decreasing inconsistency of image processing using advanced colour calibrations

to overcome inconsistencies in back lighting as well as intensity variation due to

pore depth (since the sides of the pore and pore throats are not the same depth

of etching as the center).

• Decreasing the random errors of manual selection and cropping of the images.
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3.11 Materials

The materials used in this study are classified in three groups of chemicals, appara-

tus, and instruments. Chemicals include distilled water and distilled dyed-water.

The physical properties of test fluids and materials at room temperature (25◦C) and

ambient pressure (14.7 psi) are shown in Table 3.1. Properties of the distilled clear

and dyed-water are illustrated in Table 3.1. The apparatuses include a Cole Parmer®

Table 3.1: Chemical and physical properties of water at room temperature (25◦C)
and ambient pressure (14.7 psi) [69].

Chemical Formula Polarity Density Viscosity
(g/cm3) (cP )

H2O Polar 0.997 0.894

880195 syringe pump, micromodel holder, Porta Trace® fluorescent light-box, and

Swagelok® tubing, valves, fittings, tee, caps, plugs, nuts, male and female connectors

and Teflon tape. Instruments include cylinder, OMEGA® OM-CP-PRTEMP1000

Table 3.2: Apparatus and required instruments for experiments

Apparatus Instruments

Syringe pump (Cole Parmer 880195) Graduated cylinder
Micromodel Pressure transducer
Micromodel holder Digital Camera
Tubing
Fittings
Caps
Valves
Nuts
Plugs

pressure transducers, 200 mL graduated cylinders, weighing paper, and an EOS 6D

Canon digital camera connected to computer with 100 mm Macro lens (Table 3.2).

Figure 3.11 shows a schematic of the experimental set up for this study. A high inten-
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Figure 3.11: Experimental set up

sity halogen light source had to be used to supply enough illumination since the light

will be powerful enough to be transmitted through the model. All required equipment

and supplies are available in the Hibernia EOR lab.

3.12 Calculation of Experimental Parameters

Various experimental parameters have been used in the experimental analysis in-

cluding total pore volume, cross-sectional are, pore depth, injection area, porosity,

absolute permeability, effective width of the porous medium and injection velocity. In

the following, the measurement of all parameters are explained.

3.12.1 Pore volume

The pore volumes of both glass micromodels were determined by flooding a dyed

liquid into the porous domain through a syringe pump. The volume injected to fill

the whole domain represents the total pore volume of a micromodel.
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3.12.2 Average pore depth

The depth of the micromodels refers to the average distance between the flat glass

surface and the sandblasted etched surface in which the fluid flowed. The calculation of

this parameter is required because the actual depth of cut after the etching operation

was unknown. The pore depth was obtained by dividing the total pore volume by the

surface area of the whole domain.

3.12.3 Average pore and grain diameter

The average pore and grain diameter of the micromodel were estimated using the

developed image processing program. For this purpose, the captured image of the

fully saturated micromodel with dyed water was analyzed and the cumulative pore and

grain size distribution were obtained. Calculating the average pore and grain diameter

using image analysis was used to estimate the average pore diameter with a reasonable

accuracy of ±10% using a pore portioning algorithm in the image processing program.

To improve the accuracy, knowledge of the pore morphology is used to refine the pore

portioning algorithm.

3.12.4 Cross-sectional area

The cross-sectional area of the inlet channel was determined by multiplying the width

and the depth of the inlet port. The width of the inlet channel of both micromodels

was adjusted by 800 µm during the designing of the patterns. This cross-sectional

area was used in the simulation study in order to specify the inlet velocity.
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3.12.5 Effective width

The effective width is the average width available to the fluids to propagate in the

grains domain. This can be obtained by using the following relation:

Effective width = φ×W (3.107)

where φ is the porosity and the W is the width of the porous medium.

3.12.6 Porosity

The porosity estimation in micromodel is a ratio rather than a percentage and is

characterized as the ratio between the surface area and the total area. Therefore, to

calculate the porosity of micromodels in this study, 100% dyed water was injected

and the captured image was analyzed to find the dyed area and surface area.

φ =
Saturated area with dyed water

Total surface area
(3.108)

3.12.7 Absolute permeability

Absolute permeability of micromodel was achieved by measurement of pressure drop

in the micromodel during a known constant injection rate and using Darcy law. We

followed the steps below in this order:

1. The micromodel was fully saturated with clear water.

2. The clear water was injected at two different injection rates by the and the

pressure drop across the micromodel length was measured by inlined pressure

transducers at each injection rate.
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3. The absolute permeability was calculated from the Darcy Law as below:

K = Q
µL

A∆P
(3.109)

Where K is absolute permeability, Q is injection rate, L is length of the mi-

cromodel, A is cross-sectional area from Section 3.12.4, and ∆P is the pressure

drop during water injection.

3.12.8 Description of the Models

A porous medium can be defined and classified according to its pore geometry and

structure, considering this character, porous medium is defined to be either homoge-

neous or heterogeneous at the macroscopic level. Properties at the macroscopic level

are averaged over a sufficiently large volume, called the macroscopic averaging volume,

to define continuous, stable functions of spatial position [8]. A homogeneous medium

contains two subcategories uniform or non uniform. A uniform homogeneous medium

with has the same pore size and shape distribution, whereas a nonuniform porous

medium contains variations in grain scale pore structure, but is homogeneous at the

macroscopic level for quantities such as the permeability or porosity [51]. A porous

medium is also either isotropic or anisotrpic at the macroscale. In an isotropic porous

media properties do not vary with direction; in anisotropic porous media properties

vary directional [31]. In this study two different porous media have been selected with

single and dual permeabilities. In the following, the two different porous media are

explained in detail.
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3.12.9 Single Permeability Medium

One of the selected porous media in this study is a homogeneous, non uniform,

anisotropic type. ADE is found to be valid for the medium. Although the mech-

anisms of dispersion are the same, non uniformity and heterogeneity provide greater

variations in solute speed and tortuosity. The result of this is increased dispersion in

non-uniform media. For heterogeneous, isotropic porous media, a generalization of the

ADE is possible if the spatial variations of all the macroscopic properties are known.

The effects of anisotropy on miscible mass transport are not completely understood

therefore it is selected in this study. Even heterogeneous porous media is often mod-

eled as a homogeneous media with an overall mean flow direction and macroscopic

dispersion coefficient, since data on the exact nature of the heterogeneity are usually

not available.

Figure 3.12 shows the pore size distribution for the fabricated micromodel. The dis-

tribution is a log-normal Probability Distribution Function (PDF) with a sharp peak

that implies as a great fourth moment so-called Kurtosis that appeared in statistical

modeling results as in Equation 4.11c and 4.11d. The qualitative or quantitative in-

terpretation of the kurtosis is complicated and unintuitive, however, in this study, we

tried to relate it pore geometry of porous media. Table 3.3 illustrates the properties

of the single permeability micromodel in this study. Table 3.4 shows the designated

objectives along with gapsin this study.

Table 3.3: Properties of the fabricated micromodel, where W is width, L is length, φ
is porosity, K is absolute permeability, Rave is average pore diameter, Dave is average
pore depth, rave is average grain diameter, P.V. is estimated pore volume

W L φ K Rave Dave rave P.V.
(cm) (cm) (%) (mD) (mm) (mm) (mm) (cm3)

16 32 48% 787 0.63 0.23 3.33 11.5
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Figure 3.12: Histogram of Pore Size Distribution for the single permeability porous
medium

Figure 3.13: Glass micromodel fabricated with single permeability porous medium-
saturated with dyed water
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Table 3.4: Advantages and disadvantages of the miscible displacement experiments in
a single permeability porous medium

Advantages

1- Miscible injection tests at 5 different velocities to determine the experimental

relationship of the coupled dispersion coefficients (longitudinal and transverse) in

two dimensional

2- The experimental results are used to validate the predicted mathematical results

achieved from the developed statistical approach and compared to previous models

Disadvantages

1- Only one micromodel has been used in this study to investigate the effect of pore

properties

3.12.10 Dual Permeability Medium

In the field scale of oil reservoirs, the formations are typically dual media, as domi-

nated by a primary permeability system and affected by a secondary permeability or

in some cases fractures. In this section, the assumed two-dimensional porous medium,

which consists of high permeability (1) and low permeability (2) regions merged in one

single medium, has been explained in details. In this model, inlet pressure (P1) and

outlet pressure (P2) are constant and high permeability region is very low in height

(h) (assumed 1D) and region 2 is higher in height (H) and considered two dimensional

(h << H). The comparison of properties of two regions is shown in Table 3.5. The

calculation of the experimental parameters are explained in the Section 3.12. As Fig-

ure 3.15 illustrates the region 2 or low permeability zone has a stronger peak double

exponential pore size distribution. Although the high permeability zone (region 1)
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has a wider and smooth peak (Figure 3.16) in overall the porous medium has strong

peak with more rapid decay.

Figure 3.14: Glass micromodel fabricated with dual permeability porous medium,
Saturated with dyed (red) water

Table 3.5: Properties of the fabricated dual permeability micromodel, W is width, L
is length, φ is porosity and K is absolute permeability

Region K φ L W Rave Dave P.V.
(D) (%) (cm) (cm) (mm) (mm) (cm3)

1 5.6 52.2 32 0.5 1.35 0.28 0.45
2 1.8 39.6 32 6× 2 0.68 0.23 8.83

Overall 1.9 40.4 32 12.5 0.68 0.23 9.28

Figures 3.5 and 3.14 show the dual permeability porous medium in a assumed and

actual design, respectively. This approach can be applied in simulation of heterogene-

ity and its effect on longitudinal and transverse dispersion in miscible displacements.

Figure 3.15, 3.16, and 3.17 show the pore size distribution for the fabricated dual

permeability micromodel. The distribution for low permeability region is log-normal

Probability Distribution Function (PDF) with a sharp peak that is similar to single
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Figure 3.15: Histogram of the pore size distribution for the dual permeability porous
medium, low permeability, region (2)

Figure 3.16: Histogram of pore size distribution for the dual permeability porous
medium, high permeability, region (1)

permeability porous medium. The high permeability region has a wider distribution

with β distribution. The beta distribution implies the behavior of random variables
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Figure 3.17: Histogram of pore size distribution for the dual permeability porous
medium, coupled high and low permeability zones

limited to intervals of finite length in a wide variety of disciplines (pore size). In Fig-

ure 3.17 we see the over PDF looks like log-normal function again but with less sharp

peak. Table 3.5 illustrates the properties of the used single permeability micromodel

in this study. Table 3.6 shows the objectives along with gaps in this study for dual

permeability porous medium.
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Table 3.6: Objectives of the miscible displacement experiments in dual permeability
porous medium

Advantages

1- Miscible injection tests are studied at 5 different velocities to determine the experi-

mental relationship of the coupled dispersion coefficients (longitudinal and transverse)

in two dimensions

2- The experimental results are used to validate the predicted mathematical results

achieved from the numerical and statistical approaches

Disadvantages

1- The effect of the pore scale properties is characterized using permeability instead of

detailed pore structure properties

3.13 Micromodel Fabrication

The glass micromodels were custom designed and manufactured for this study. Below,

details of the glass micromodel preparation and the experimental procedure followed

are discussed. Figure 3.18 shows the overall steps in fabrication of micromodel. As a

Pattern Design

Laser Engraving

Chemical Etching

Oven Bonding

Figure 3.18: Micromodel fabrication procedure
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first step to design the pattern, a program was developed to account for the influence

of particle aspect ratio, area fraction, and orientation on representative length scales

in two dimensional porous medium. This program includes the ability to generate

the solid particles with various distributions of particle sizes and orientations. In this

program the directional form is used to assess the directional dependence of the length

scale of the underlying structure. Patterns can be directly designed with lines/pixels

with a variety of methods using any software. In this study Adobe Illustrator and a

custom developed Java code are used. The program was applied for distribution of

grains in the two dimensional medium.

For laser engraving the ©Trotec Speedy 300 with the configuration shown in Table

3.7 was used. Glass etching can be done by applying a cream such as Armour Etch or

Table 3.7: Applied configuration for laser engraving. PPI is Pulse Per Inch

Material Applied Speed Applied Power Applied PPI

Glass 35cm/s 15W 1000

soaking the engraved plate in a liquid acidic bath (has been used in this study). The

depth of penetration depends on the etching rate of the acid and time. Consequently,

the type of cream used and the exposure time are determined by trial and error. The

desired depth is 200 to 300 µm and it was determined that approximately 90 minutes

of etching was required. In the following, the etched glass plate must be bounded to

another plate (same material/same size). The is ramped to achieve optimal smooth

bonding, as illustrated in Table 3.8.

3.14 Experimental Procedure

In this section the experimental procedures are described. The micromodel has two

ports. One is used for fluid injection and the other one is used as production port.
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Table 3.8: Applied configuration for oven bonding with a 1
◦C
min

heating and cooling
rate

Level Applied Temperature Applied Time
(◦C) (hr)

Level I 85− 90 12− 24
Level II 125− 140 24− 48
Level III Cooling down 12− 24

The micromodel is placed between two frames. The upper frame has two holes to

allow access to the two ports on the micromodel. In the system, cleaning fluids and

test fluids are pumped through the micromodel using a pump. The syringe pump is

used to inject the clear and dyed water. Good control of flow rates and absence of

pressure pulsing are essential during the micromodel test. Injection of dyed water and

fully saturation of the micromodel is needed for calculation of porosity and absolute

permeability. To avoid trapping any air bubbles, the dyed-water injection rate is

high initially and then decreased to ensure full saturation. The miscible flood is

then conducted by injecting clear water while taking a high quality picture every 60

seconds (1 min) The custom pixel-level image processing technique is used to analyze

the pictures and calculate the longitudinal and transverse dispersion components.

Figure 3.19 illustrates the taken steps for experimental procedure. During the miscible

displacement tests, we do not have a distinct interface between the displacing and

displaced fluids. However, a mixing zone exists between the pure displacing fluid

and the displaced fluid. The mixing zone contains a range of concentrations from

zero (a clear displacing fluid) to 100 (a pure displaced fluid). Images taken during

miscible injection at known times are used to approximate the concentration profile.

The most challenging part is distinguishing the concentration of the solvent across

the porous medium; this requests a strong calibration of color intensity. To relate

the different colors to corresponding concentrations, several images will be taken to
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Vacuum the Micromodel

Dyed Water Saturation

Image Processing

Clear Water Saturation

Image Processing

Figure 3.19: Experimental procedure for miscible displacement experiments

obtain a unique correlation (explained in details in Section 3.15.1). A specific color

identifies a particular concentration. After extracting the concentration profile, the

longitudinal and transverse dispersion will be estimated by fitting the experimentally

measured transient solute concentration profiles with the aid of the Bayesian estimator

to an analytic solution of Equation 3.98. Figure 3.20 illustrates the cropped raw image

(A), selected-analyzed mask image (B) and processed image (C).

3.15 Image Processing

The dispersion calculations for miscible displacements in experimental studies of trans-

port process are challenging to the difficulty of measuring concentration at a particular

location. Recently, the availability of high-quality digital images and image processing

tools made the development of new techniques for the investigation of the dispersivity

coefficients in 2D more possible. This section shows the application of new image

processing technique, along with a matching tool that allows a detailed estimation

of longitudinal and transverse dispersion coefficients in experimental studies. The
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Figure 3.20: Image processing technique- (A) is the cropped raw image, (B) is selected-
analyzed mask image, and (C) is processed image at 0.02 cc

min

developed methodology uses various images of fully saturated media with multiple

known saturations for the concentration calibration and accurately identifying the

color changes in mixing zones. The program is then rendered with captured pictures
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with known time intervals during the displacement and to implement a unique tech-

nique for estimating the concentration map. In the following, processed images are

converted to data sets and the program matches the results with the analytical so-

lution of (Advection-Diffusion Equation) ADE using Bayesian estimator technique.

In the following, the averaging technique is applied to filter the unreliable pixels and

average the estimated dispersivities for each pixel. Despite the more number of calcu-

lations, the proposed method provides more accurate and detailed results along with

faster processing time. The method has also the advantage of extendibility to work

from homogeneous to heterogeneous media.

3.15.1 Colour calibration

The proposed technique is based on the combination of image processing algorithms

and the analytical solution of ADE. Figure 3.21 shows the designed steps for calcu-

lation of longitudinal and transverse dispersion from taken images during miscible

displacement. During the miscible displacement tests, we do not have a distinct in-

terface between the displacing and displaced fluids. However, a mixing zone exists

between the pure displacing fluid and the displaced fluid. The mixing zone contains

a range of concentrations from zero (a pure displacing fluid) to 100 (a pure displaced

fluid). Images taken during miscible injection at known times are used to approximate

the concentration profile. The most challenging part is distinguishing the concentra-

tion of the solvent across the porous medium; this requests a strong calibration of

color intensity. For this purpose, a MATLAB code has been developed which is used

to measure the percentage of the specific pattern covered with the fluid based on the

color (3.27). The code provided has two input parameters of reference image contain-

ing image of the grid pattern fully saturated with dyed water and folder containing
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Raw image taken at known time

Crop, filter, and mask off to Region Of Interest (ROI)

Find the colour intensity correlation
for each pixel and calibrate the image

Generate matrix of [x,y,c] for each pixel

Match the matrix with Equation 3.98 and estimate DL and DT

Generate the distribution function of estimated DL and DT

Use Bayesian average technique to
find the average of each distribution

Show longitudinal and transverse dispersion coefficients

Figure 3.21: Image processing procedure for miscible displacements in 2D micromodel

images of the same grid pattern on different stages of the miscible displacement ex-

periment. The output should contain the measurement (in percents from the area of

the grid) of different degrees of fluid coverage.
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Figure 3.22: Randomly selected RGB values in different sample points for the same
saturation (25% blue dyed water)

Table 3.9: RGB values in different randomly selected sample points for same satura-
tion of 25% blue dyed water

Pixel 1 2 3 4 5 6 7 8 9 10

R 75 77 80 73 74 73 72 84 78 78

G 147 152 151 150 146 147 147 149 147 150

B 167 168 165 165 166 164 166 167 166 168
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(a) 25% Saturation (b) 50% Saturation

(c) 75% Saturation (d) 100% Saturation

Figure 3.23: Difference in color intensity of the same pore channel at different satu-
ration

To reduce the uncertainty, it is assumed that the color conditions can be slightly

different between different frames. Figure 3.27 and Table 3.9 show non-uniform color

intensity in a same saturation for the the pore space of micromodel. This is due

to different pore depth caused by the laser engraving and chemical etching step in

micromodel fabrication. The developed image processor is programmed to extract a

different correlation for different pixel points on the model. The program asks for all

of the calibration images (Figure 3.23), then for a specific pixel point extracts the

color intensity related to each concentration and determines the correlation between

concentration and color intensity for that specific point. For example, we pick the

chosen pixel in Figure 3.23. We follow the steps below to find the colour intensity

correlation for that specific pixel:
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1. Covert the RGB (Red, Green, Blue) value to intensity. To find the linear inten-

sity from RGB, we first divide RGB value by 255, and compute the equation

below:

Linear Intensity = 0.2126×R + 0.7152×G+ 0.0722×B (3.110)

2. Compute non-linear gamma correction 4 of the colour intensity.

3. Find the correlation of concentration versus intensity. For example for this

specific pixel:

Gamma Corrected Intensity

C
on

ce
n
tr

at
io

n

Figure 3.24: Correlation of concentration and colour intensity for the specific pixel.
C in concentration and IGC is Gamma corrected colour intensity

The program repeats this for all of the pixel points in the pore space section of the

micromodel image. This means that for an image with thousands of pixels, we would

have thousands of correlations. Figures 3.25 and 3.26 show the selected pore space

before and after calibration.
4Gamma encoding of the image is used to optimize the usage of bits when encoding an image
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Figure 3.25: Selected pore space before colour intensity calibration

Figure 3.26: Selected pore space after colour intensity calibration



99

The overall saturation range from 0 to 1 is divided in several grades and number of

(a) Raw image (b) Processed image

(c) Raw image (d) Processed image

Figure 3.27: Pixel by pixel processing of the fully saturated pores (a, b) and mixing
zone during miscible displacement (c, d)- Images (a,c) are raw and (b,d) are processed

pixels in each grade is computed. The final prepared map is used to be fitted with the

introduced analytical solution in Equation 3.98 to estimate the dispersion coefficients.

In order to avoid pattern misclassifications white balancing algorithm is applied. The

adaptation of the Grey world white balancing algorithm is used. In this approach

it is expected that the average color of the image should be gray and the deviation

from this is assumed to be caused by the illuminant color. The updated algorithm
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differs from the original one by only considering candidate grey pixels except all the

pixels of the image. In the developed image processing tools, the grid pattern color

estimation is based on the analysis of the peaks of the histogram of pixel saturation

and hue in Hue- Saturation- Value (HSV) format. Initially the algorithm finds first

peak of the saturation and uses it as the limit for selection of the grid. All the

pixels below this level are assumed to be white and not relevant to the grid. Next,

verification is done based on the brightness of the pixels. Pixels which have very low

brightness are considered to be black, pixels with high brightness are considered to be

white. Parameters ”blackCutoff” and ”whiteCutoff” define threshold limits. When

the uncolored pixels are excluded from the analysis histogram of the pixels hue is

analyzed in order to estimate number of different peaks which should be related to

different colors of the image. The number of maximum expected colors is set up with

parameter ”colorNum”. Finally the color covering the largest area is selected as grid

color. Finally when the image and the mask are aligned it is possible to compute

areas covered by different fluids. It is assumed that areas which have more fluids have

less intensive color and though smaller saturation. The overall saturation range from

0 to 1 is divided in several grades and number of pixels in each grade is computed.

3.15.2 Matching the Calibrated Concentration Map with the

Analytical Solution of ADE

After obtaining the concentration indirectly for all of the pixel points (Figure 3.30), we

can analyze the miscible displacement images in time. Different tests were conducted

with different injection flow rates to determine the effect of the fluid velocity on

longitudinal and transverse dispersion. The time intervals and exact time of each

image were recorded. With this information, the concentration map for each time

step was extracted from the processed images as Figure 3.32 shows an example. The
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program reads the image point by point and uses the specific correlation (extracted

from the calibration step) for each point to calculate the concentration from the R

(Red), G (Green), and B (Blue) values for each pixel.

3.15.3 Calculation of Dispersion Coefficients

The development of a process model typically goes through several steps. These steps

include model formulation, a collection of data from designed experiments, model

testing and discrimination, and extensions of the database with sequential experi-

ments. The statistical investigation of the ADE model begins with the estimation

of its parameters from experimental observations (longitudinal and transverse disper-

sion coefficients). To achieve this goal, experimental observations with independent

Normal error distributions and given relative variances, Baye’s theorem leads to the

method of least squares. Least squares were introduced by Legendre [3] in 1805 as a

curve-fitting method, and by Gauss [3] in 1809 as a Bayesian procedure for estimating

parameters from data with independent Normal distributions of error. An engaging

account of these developments and related events is given by Stigler [85] (1986). Gauss

included models non-linear in the parameters and weighted the observations according

to their precision. He gave an efficient solution scheme for the normal equations of

the least-squares problem and showed how to calculate the variances of the resulting

parameter estimates. Later work has been largely built on this foundation, refining

the posterior density function and adding interval estimates, hypothesis tests, model

discrimination methods, and efficient procedures for the design of experiments. In

this study the Athena Visual Studio solver is used for estimation of parameters (lon-

gitudinal and transverse dispersion coefficients).

To do this, the developed program reforms the image using the extracted data. The

apparent longitudinal and transverse dispersion coefficients are estimated by fitting
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experimental concentration map obtained from the image processing to the analytical

solution with the use of the Bayesian estimator. In this code, the objective func-

tion, a weighted sum of squares of deviations of model predictions from observations,

is expanded as a quadratic function of the parameters, around the initial values of

the current iteration. The resulting parameter minimization problem is solved with

quadratic programming by using a modified Gauss-Jordan algorithm [1]. Interval

estimates of the parameters are computed by using a posterior density function con-

structed from the final quadratic expansion of the objective function, this is done

automatically in the subroutine package GREGPLUS of the software Athena Visual

Studio. Figure 3.28 shows the segmentation of written source code in Athena Visual

Studio.

Source Code Model Equations

Initial Condition

Response Models

Connector

Figure 3.28: Source code segmentation for estimation of dispersion coefficients

Figures 3.29, 3.30, 3.31 and 3.32 show the followed steps as an example of analyzing

procedure for a miscible displacement in a micromodel experiment from cropping to

processing.
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Figure 3.29: Sample raw image taken during the experiment

Figure 3.30: Cropped and calibrated images

Figure 3.31: Processed image

Figure 3.32: Analyzed masked image and concentration map
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3.16 Design of Experiments (DOE)

Design of Experiment (DOE) in academic and industrial research is a systematic

method to design, perform, and analyze an experimental process and determine the

relationship between input factors of a process and the output of that process that

has been measured or calculated. Input variables are categorized into two types:

1. Controllable variables that can be varied easily during experiments and such

variables have a key role to play in process characterization.

2. Uncontrollable variables are difficult to control during experiments and defined

under errors caused by random uncertainties.

Figure 3.33 shows the output as a response characteristic of input. Responses, or

output measures, are the elements of the process outcome that the experiment is

studying. To gain the maximum advantage from a series of experiments, they must

Process

Uncontrollable variables

Controllable variables

Response

Figure 3.33: Experimental process input factors and output responses

be properly designed. Starting with a series of organized trails and screening tests

to obtain the experimental information DOE is implemented. Before we start the

design of the experiment, the input and output variables need to be characterized.

This experimental study is looking at the effect of pore geometry and fluid velocity
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on dispersion (longitudinal and transverse) during miscible displacement. The inputs

and responses in this study are shown in Table 3.10. The difference between the two

types of variables is that the experimental variable is one that we have control over

and should be randomized to reduce the human error [28]. The responding variable

is the variable that we will be observing to see if there is any effect on it.

Table 3.10: List of input factors and output responses in experimental study

Parameter Symbol Type Subject to study

Mean pore throat diameter 〈R〉 Input Yes

Mean pore throat length 〈l〉 Input Yes

Variance of pore throat diameter 〈R2〉 Input Yes

Variance of pore throat length 〈l2〉 Input Yes

Kurtosis of pore throat diameter 〈R4〉 Input Yes

Pore volume of micromodel PV Input No

Porosity φ Input No

Fluid viscosity µ Input No

Fluid density ρ Input No

Pressure P Input No

Temperature T Input No

Molecular diffusion Dm Input No

Flow velocity v Input Yes

Peclet number Pe Input Yes

Time t Response Yes

Permeability K Response Yes

Concentration C Response Yes

Longitudinal dispersion DL Response Yes

Transverse dispersion DT Response Yes
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In this study for single permeability experiments we choose single factor (velocity)

multilevel design (Table 3.11). This design is more efficient to detect the possible

non-linear effects of velocity on dispersion. For the dual permeability pattern we use

optimal design for two factors including velocity with 5 levels and permeability with 2

levels (Table 3.12). The input factor permeability in dual permeability porous media

represents different pore geometry such as pore size distribution in one single factor.

Table 3.11: Design of miscible displacement experiments in single permeability porous
media

Factor Level

Velocity 5 (0.002, 0.004, 0.006, 0.008, 0.010 cc/min)

Table 3.12: Design of miscible displacement experiments in dual permeability porous
media

Factor Level

Velocity 5 (0.002, 0.004, 0.006, 0.008, 0.010 cc/min)

Permeability 2 (Low, High)

3.16.1 Response analysis

In this study, we use the Design Expert to analyze the responses (output) measured

or calculated from each experiment. For this purpose we use the tools below:

• Residuals: The unexplained remainder of the squared deviations from the mean

is called residuals or random uncertainty.

• Box-Cox plot: The results need a transformation when the residual is a function

of the response, otherwise, results are biased. Design-Expert provides diagnostic
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capabilities to verify if the statistical assumptions are satisfied. The normal

plot of the residuals examines their normality. The residuals versus predicted

response value plot checks if a pattern exists. The Box-Cox plot provides a

recommended transformation from the power family if it is needed.

3.17 Error and Uncertainty Analysis

Experimental investigations maintain operational errors and uncertainties. In this

section, some sources of errors including experimental (systematic) and random have

been highlighted which should be taken into account when considering the results.

3.17.1 Random Errors

Random errors are statistical fluctuations in the measured data due to the precision

limitations of the measurement devices. Random errors usually result from the ex-

perimenter’s inability to take the same measurement in exactly the same way to get

exactly the same number. In this study, the most important sources of random errors

are as discussed below.

• Camera adjustment: To avoid this error a wide-angle lens has been used that

can be used as a starting point for optimization. The image processing tool has

been designed to minimize the effect of camera angle and picture coverage to

capture only the flow domain; however, sometimes there was a little bend in the

tripod adjustment so the captured flow domain was not straight and cropping

of the image was needed to include this dead area. This process created some

error of calculations in image processing. Also error during mounting the glass

model as it was based on local observation and not by some instrument. This

caused a slight difference in the angle adjustment.
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• Breakthrough Estimations: Misjudgment in estimating when the fluid ar-

rived into the system, which affected the start and the ending time of the exper-

iments. To avoid this error besides using a high-accuracy, low-rate pump, the

fixed time intervals of images allows the image processing program to capture

the accurate time of breakthrough and also the total time of displacement.

• Experimental Environment: The experiments were replicated as best as

possible in terms of the colour intensity of the room light, however, the ideal

condition might not happen. Although the image processing tool is designed

to correct this error, the amount error might have varied from one experiment

to another as they have been carried out in the different condition of the room

light. This affected the image processing of the final image.

3.17.2 Systematic Errors

Systematic errors, by contrast, are replicable inaccuracies that are consistently in

the same direction. Systematic errors are often due to a problem which persists

throughout the entire experiment.

• Syringe pump precision to operate low flow rates. The pumps accuracy was (0.1

cc/hr)

• Leaks caused bubbles and reduced flow rates.

• Some areas were not invaded by either the injected or in-place solvent as air

blocked those channels.

• Error due to image processing as the final image might not have been 100%

saturated, but it was considered as it is fully invaded by the injection fluid. To
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avoid this error, a color calibration tools have been built in the image processing

program.

• Images were cropped to select only the flow domain of the micromodel. However,

sometimes the frame was not straight which resulted in bad cropping. Thus, an

image processing, the small area was also considered. To minimize this error, a

javascript plugin has been developed for Photoshop to crop all of the images of

the same experiment in a consistent manner.

• For the small concentration values in the porous domain when mixing occurred

at the microscopic level, the lower values of reddish tint were ignored.



Chapter 4

Results and Discussions

4.1 Mathematical Results

A conceptual model of dispersion using random walk theory and the probabilistic

properties of particle movement in porous media has been introduced. The model is

assumed valid when molecular diffusion is negligible (10 ≤ Pe ≤ 106). The domi-

nant mechanical dispersion is decoupled into transverse and longitudinal dispersion.

The established model predicts dispersion using pore geometry parameters including

degree of heterogeneity or normalized variance of pore throat length and normalized

kurtosis of pore throat diameter. Experimental relationships for both longitudinal

and transverse dispersion, under similar conditions show that they are proportionally

dependent to velocity which concurs with the theoretical model. A dimensional ra-

tio of 〈l
2〉
〈l〉 also proves the scale dependency of dispersion, which is in agreement with

observational studies [13]. Obtained models for dispersion are shown in Equation 4.1:

DT =
3π

64

〈l2〉
〈l〉
〈R4〉
〈R2〉2

〈vx〉 and DL =
9π

64

〈l2〉
〈l〉
〈R4〉
〈R2〉2

〈vx〉+
π

12

〈l2〉
〈l〉
〈vx〉 (4.1)

In the following section, the proposed models are discussed in detail.
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4.1.1 Ratio of Longitudinal and Transverse Dispersion

As shown in Equation 4.2, using the statistical relationships for dispersion coefficients,

the ratio of longitudinal to transverse dispersion, is always higher than three.

DL
DT

=
9π
64
〈l2〉
〈l〉

〈R4〉
〈R2〉2

〈vx〉+ π
12
〈l2〉
〈l〉 〈vx〉

3π
64
〈l2〉
〈l〉

〈R4〉
〈R2〉2

〈vx〉
= 3 + π

12
〈R2〉2
〈R4〉 (4.2)

Results show that increasing the 〈R
2〉2
〈R4〉 increases the ratio of longitudinal and trans-

verse dispersion coefficients. Also, the Equation 4.2 shows that the ratio of DL to

DT depends on pore throat diameter and independent from the distribution of pore

throat length. The ratio of 〈R
2〉2
〈R4〉 is the inverse of the normalized forth moment of

the Probability Distribution Function (PDF) and is a measure of the distribution

flatness. Heavier tailed distributions have a smaller 〈R
2〉2
〈R4〉 . Hence, for a uniform, un-

consolidated, isotropic porous media, 〈R
2〉2
〈R4〉 << 1 is very small and therefore a value

of DL
DT

approaches 3. For consolidated media, the pore throat diameter distribution

is skewed meaning a higher 〈R
2〉2
〈R4〉 leading to higher values of DL

DT
. It is also shown in

Equation 4.2 that the ratio of longitudinal to transverse dispersion is independent of

velocity, as the velocity term in Equation 3.54 was neglected and vx cancels out in

Equation 4.2. The result is that the dependency of DL
DT

on vx is considered very weak

or negligible for the assumed range of Peclet number (10 ≤ Pe ≤ 1012)1.

4.1.2 Effect of Heterogeneity

The common term in both the longitudinal and transverse dispersion coefficients is

normalized variance of pore throat length (l). As Equation 4.1 illustrates increasing

the term of 〈l
2〉
〈l〉 increases both the longitudinal and transverse dispersion coefficients.

The ratio 〈l2〉
〈l〉 describes the degree of heterogeneity of the porous media denoted by

1Within the range of valid Darcy fluid behaviour and negligible molecular diffusion
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DHet. This ratio shows the extent of variability in relation to the mean of the pore

throat length. As a result, higher value of 〈l
2〉
〈l〉 means broader length distribution and

higher degree of heterogeneity which leads to higher variability in flow velocity and the

rate of spreading. It should be noted that longitudinal dispersion, due to a stronger

dependency, is more sensitive to the degree of heterogeneity. The dimension of [L] or

length of this ratio also shows scale dependency of dispersion.

4.1.3 Effect of Pore Size Distribution

The second mutual term in equations of DL and DT (Equation 4.1) is 〈R
2〉2
〈R4〉 , which

describes the distribution of pore throat diameter f(R). The pore throat diameter

distribution affects dispersion coefficients similarly to permeability. The interpretation

of this effect is complex. However, it is valid to say that smaller pores and pore throats

have shorter residence time and most particles may move quickly through the larger

pores with maximum opportunity for longitudinal and transverse dispersion. Hence,

both components of dispersion increase proportionally by increasing the 〈R
2〉2
〈R4〉 , while

the ratio of longitudinal to transverse (DL
DT

) decreases.

4.1.4 Effect of Pore Geometry

Four different porous media with the same average grain size and porosity are as-

sumed. Statistical heterogeneity of the system increases by increasing the variance

of pore throat length. Hence, the medium with the largest value of variance is the

most heterogeneous medium. The statistical properties of the assumed porous media

are shown in Table 4.1. Since in the experimental section of this study a pixel-based

method has been used to develop an unstructured pore network model to conduct

micromodel experiments, higher porosity media have been considered here. Besides
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the petroleum industry, higher porosity media are found in many industrial applica-

tions such as metallic thin-fiber material and metallic powder, which are used in the

transportation industry. Longitudinal dispersion over molecular diffusion (assumed

Table 4.1: Statistical properties of the assumed porous media to investigate the effect
of pore geometry on calculated longitudinal and transverse dispersion

Porous Media φ 〈R〉 〈l〉 〈R2〉 〈R4〉
〈R2〉2 〈l2〉 〈l2〉

〈l〉
% (µm) (µm) (µm2) [1] (µm2) (µm)

1 48 324 640 0.1885 1.8369 0.6448 0.0010
2 44 286 631 0.1082 1.3087 0.6503 0.0011
3 38 238 580 0.0637 1.3854 0.3997 0.0007
4 34 234 495 0.0627 1.4296 0.2701 0.0005

10−9m2s−1) versus increasing velocity is illustrated in Fig 4.1. As shown in Figure 4.1

Flow velocity (×10−6[ms−1])

D
L
/D

m

Figure 4.1: Relative longitudinal dispersion over molecular diffusion vs fluid velocity
for different pore geometries (fluid velocity in ×10−6[ms−1]).

dependency of the dispersion coefficient on velocity increases as the heterogeneity of

the medium increases. The Peclet number is directly proportional to fluid velocity,

so the same behaviour is expected for dispersion versus Peclet number. Fig 4.2 also

shows the variation of transverse dispersion. According to Fig 4.1 and 4.2, the effect of

heterogeneity on the longitudinal and transverse dispersion coefficients decrease with
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Flow velocity (×10−6[ms−1])

D
T
/D

m

Figure 4.2: Relative transverse dispersion over molecular diffusion vs fluid velocity for
different pore geometries (fluid velocity in ×106[ms−1]).

decreasing fluid velocity. This means that for a high fluid velocity (Peclet number),

heterogeneity has a greater effect on increasing the dispersion coefficient. This effect

could be concluded from reducing the importance of advective spreading on the mix-

ing process by decreasing the fluid velocity. In Fig 4.3, longitudinal and transverse

dispersion for porous medium 1 is shown. As shown in the Table 4.1 porous medium

has higher variance of pore diameter (〈R2〉) which implies higher level of heterogene-

ity. As illustrated, longitudinal dispersion is higher than transverse dispersion and

this difference increases as velocity (Peclet number) increases.

4.1.5 Visual Simulation of Assumed Porous Media

In this section, we implement the estimated dispersion coefficients from the statistical

model into the numerical simulation introduced in Section 3.9 to observe the ability

of the developed model in simulating the behavior of the miscible displacement and

capturing the special phenomena during the process. We assume the four pore geome-

tries introduced in Table 4.1 to simulate the apparent mixing as a result of advective

spreading in longitudinal and transverse directions.
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Flow velocity (×10−6[ms−1])
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Figure 4.3: Relative longitudinal and transverse dispersion over molecular diffusion
vs fluid velocity for certain pore geometries (fluid velocity in ×106[ms−1]).

The relative importance of these two dispersion sources at a different injection veloci-

ties of the different pore geometry is shown in Figure 4.4. The injection velocity is the

same for all four media, but the longitudinal and transverse dispersion coefficients are

different due to a difference in pore properties (as per Table 4.1). Figures 4.4, 4.5, and

4.6 show the results of the miscible displacement of continuous injection of displacing

fluid in four anisotropic porous medium. The color spectrum is representative of con-

centration. Continuity of the color spectrum in the mixing zone could be used as a

characteristic for effective mixing. In order to determine the concentration profile of

displacing fluid in a miscible displacement for each porous media, the calculated con-

centrations of all of the pixel points from the found correlations (explained in Section

3.15.2) over the desired cross section are averaged at the chosen time. Figures 4.4

and 4.5 show the results of the calculated concentration of each porous media at the

chosen time step in parallel and normal directions to injection. The effect of higher

dispersion coefficient is visible in concentration profiles, for instance, higher transverse

dispersion coefficient in porous medium 1 leads to more compact concentration lines

in Figure 4.5c compared to porous medium 4 in Figure 4.4a. Simultaneously, the
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same effect happened on concentration profiles in x-direction (Figures 4.5d and 4.4b)

which implies the faster development of the displacement process.
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(a) Concentration versus y direction for porous medium 4 (b) Concentration versus x direction for porous medium 4

(c) Concentration versus y direction for porous medium 3 (d) Concentration versus x direction for porous medium 3

Figure 4.4: Concentration profile versus x and y-directions for assumed porous media 3 and 4 in Table 4.1 in different time
steps (∆t = 10minute)
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(a) Concentration versus y direction for porous medium 2 (b) Concentration versus x direction for porous medium 2

(c) Concentration versus y direction for porous medium 1 (d) Concentration versus x direction for porous medium 1

Figure 4.5: Concentration profile versus x and y-directions for assumed porous media 1 and 2 in Table 4.1 in different time
steps (∆t = 10minute)
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(a) Concentration map in porous medium 4 (b) Concentration map in porous medium 3

(c) Concentration map in porous medium 2 (d) Concentration map in porous medium 1

Figure 4.6: Snapshots of continuous displacing fluid injection in 4 assumed pore geometries in Table 4.1. Injection velocity
for all four media are same as 0.01 cc/min and captured time-step is same as 120 min after the first drop enters the media.
The x− axis is the length and y− axis is the width of the porous medium
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Figure 4.6 displays the examples of the concentration maps for each media under the

same conditions. As figures show higher dispersion coefficient in either direction of

parallel or normal causes a thinker mixing zone for different pore geometries. By

comparing Figures 4.6d, 4.6c, 4.6b, and 4.6a one observes that, for all porous media,

the displacement front is broader in the direction parallel to the average flow (longi-

tudinal dispersion), compared to the normal direction (transverse dispersion). While

their amplitude is very different in 4 examples, indentations of the front appear at the

same places, implying that they are closely related to the injection velocity which is

the same for all 4 examples. In particular, a larger mixing zone is observed for media

with higher heterogeneity observed in Table 4.1.

4.2 Experimental Results

In this study an experimental approach to estimate the average longitudinal and trans-

verse dispersion coefficients in a single and dual permeability homogeneous anisotropic

porous medium have been used. While the most previous studies of miscible injection

have focused on using mathematical correlations to estimate the dispersion coeffi-

cients,this study utilizes a unique method to estimate the mass transfer properties.

To study the dispersion in a single and dual-permeability porous media using experi-

mental and numerical investigations the following results have been accomplished.

4.2.1 Experiment With Single Permeability Model

To gain the aimed objectives in this study a series of different injection rates and

consequently different fluid velocities has been conducted. The difference between

the injection rates lead to different mixing regimes during the miscible displacement

and dispersion coefficients in both longitudinal and transverse directions. Using the
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developed image processing tools, the processed images are obtained and longitudinal

and transverse dispersion coefficients are approximated. Figure 4.7 shows the A series

(cropped images) and B series (processed images) of miscible displacement experi-

ments with the injection rate of 0.002 cc/min. The breakthrough times are reported

and shown in Figure 4.11b for each experiment in the following too. This time is used

in processing tool to estimate the dispersion coefficients. Visual comparison of the

raw and processed images are demonstrated in Figures 4.7 and 4.8. The injection rate,

interstitial velocity, longitudinal and transverse dispersion coefficients are reported in

Table 4.2. As expected, increasing the injection rate in a manner consistent with the

increase in average velocity for each set of experiments. The dispersion coefficients

also increased with increasing fluid velocity as expected as it’s shown in Figures 4.11c

and 4.11d. The Peclet number (Pe = vR
Dm

where v is average velocity, R is average

pore diameter and Dm is molecular diffusion) is also included.
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Figure 4.7: Images from the miscible displacement experiments. Scenario A is with injection rate of 0.002 cc/min, Scenario
B is with injection rate of 0.004 cc/min and Scenario C is with injection rate of 0.006 cc/min. The left column of each
scenario shows the actual experimental images while the right columns show the processed images (with injection from
right to left of each image)
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Figure 4.8: Images from the miscible displacement experiments. Scenario D is with injection rate of 0.008 cc/min, Scenario
E is with injection rate of 0.01 cc/min. The left column of each scenario shows the actual experimental images while the
right columns show the processed images (with injection from right to left of each image). Part F shows the comparison
of mixing behaviours in mixing zones with different velocities.
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For our experiments, the molecular diffusion coefficient is assumed 2.3 × 10−9m2/s

[75] for the experimental condition (atmospheric pressure and room temperature).

The estimated average longitudinal dispersion coefficients for various injection rates

and the corresponding average fluid velocity is illustrated in Table 4.2. The velocity

for each experiment is calculated using the injection rate and cross sectional area as

below:

v =
q

A
(4.3)

where q is the injection rate in m3/s and A is the cross sectional are of the injection

port in m2. The dispersion coefficient increases with increasing the injection rate. For

the sake of simplicity, the average dispersion coefficients are estimated, however the

Bayesian estimator is able to fit the matching dispersion coefficients for each pixel.

The velocity distribution in the processed images in Figures 4.7 and 4.8 reflects the

effect of pore size distribution of the micromodel versus fluid velocity too.

The distribution of the velocity shows more dispersion and scattering in both direc-

tions of the longitudinal and transverse (lateral) in higher velocities. The average lon-

gitudinal dispersion coefficient varies from 4.8×10−6 to 2.1×10−5 (Figure 4.11c) and

respectively the transverse dispersion coefficient varies from 2.0× 10−7 to 4.7× 10−7

(Figure 4.11d). Transverse dispersion observation on the pore scale is significantly

more challenging and fitting the analytical solution in Equation 3.98 is consequently

more complicated. Dispersion in the lateral direction is caused by particle deviation

from the flow path and cross from one flow path to another. The corresponding Peclet

number in different scenarios varies from 3.95 to 4.65 as it is shown in Table 4.2. As

shown in Figure 4.11a, the log of ratio of the longitudinal to transverse dispersion

coefficient linearly increases with the log of the Peclet number. This observation is

in a strong agreement with the expected behavior with the range of the displacement

velocity in this experiment. The comparison of the different injection scenarios and
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respectively, mixing behaviours are illustrated in Figure 4.8 part D that shows the

different mixing regimes. The scattering of the fluid by increasing the velocity signif-

icantly develops in both longitudinal and lateral directions. At higher values of Pe,

the distribution of the channel widths induces short range variations of the magnitude

and the direction of the local velocity. One can then consider that displacing particles

experience a random walk inside the pore volume with a velocity varying both in

magnitude and direction relative to the mean flow velocity (v).

Figure 4.10 and 4.9 illustrate the Box-Cox plots for the calculated transverse and

longitudinal dispersion coefficients in this experiment. The Box-Cox plot gives a fit-

ting power-law transformation based on the best lambda value found at the minimum

point of the curve of the natural log of the sum of squares of the residuals. If the 95%

confidence interval around the λ includes 1, then there is no need for transformation,

since the error (residuals) is not a function of the magnitude of the response. As

Figure 4.10 and 4.9 show, there is no power transformation is required to interpret

the results.
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Figure 4.9: Box-Cox plot for power transformation of transverse dispersion coefficient.
Current λ is 0 and best is 1.67, therefore no transformation is suggested
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Figure 4.10: Box-Cox plot for power transformation of longitudinal dispersion co-
efficient. Current λ is 1 and best is 0.95, therefore no transformation is suggested

Table 4.2: Total time of the injection, longitudinal and transverse dispersion coeffi-
cients, and Peclet numbers for various injection rates, where q is injection rate, v is
injection interstitial velocity, Ttot is total displacement time, DL is average longitu-
dinal dispersion, DT is average transverse dispersion coefficient, and Pe is average
Peclet number

Scenario q v Ttot DL DT log(DL/DT ) logPe
(cc/min) (m/s) (min) (m2/s) (m2/s) [1] [1]

A 0.002 6.0× 10−5 781 4.8× 10−6 2.0× 10−7 1.38 3.95
B 0.004 1.2× 10−4 387 8.9× 10−6 3.1× 10−7 1.48 4.26
C 0.006 1.8× 10−4 303 1.3× 10−5 3.7× 10−7 1.54 4.43
D 0.008 2.4× 10−4 238 1.6× 10−5 4.1× 10−7 1.59 4.56
E 0.010 3.0× 10−4 159 2.1× 10−5 4.7× 10−7 1.64 4.65
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(a) Relative dispersion vs Peclet number (b) Breakthrough time vs Peclet number

(c) Longitudinal dispersion vs Peclet number (d) Transverse dispersion vs Peclet number

Figure 4.11: Dispersion coefficients calculated from the homogeneous micromodel experiments as a function of the Peclet
number
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4.2.2 Experiment With Dual Permeability Model

During the experiments in the dual permeability micromodel, we observed a develop-

ing mixing zone over time. As Figure 4.19 shows, the mixing zone in the high per-

meability region is caused by longitudinal dispersion, and in lower permeability zone

longitudinal and transverse dispersion are coupled. From the Taylor Equation 2.1,

two factors are affecting on miscible displacement including advection and dispersion

terms, especially in the case of lower injection rate. Comparison of the contribution of

longitudinal dispersion in each region shows larger dispersion in the high permeability

region than the low permeability zone. This may caused by presence of dominant flow

velocity and lower height of the region 1. As it has been shown in Figure 3.20, in

the high permeability zone the piston-like displacement takes place from left to right

direction.
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Figure 4.12: Images from the miscible displacement experiments. Scenario A is with injection rate of 0.002 cc/min,
Scenario B is with injection rate of 0.004 cc/min and Scenario C is with injection rate of 0.006 cc/min. The left column
of each scenario shows the actual experimental images while the right columns show the processed images (with injection
from right to left of each image)
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In the high permeability region due to very low height for the medium, advection

and longitudinal dispersion terms have been taken into account and in the lower

permeability medium, advection, longitudinal and transverse dispersion have been

considered.

Table 4.3: Breakthrough time, longitudinal and transverse dispersion coefficients for
various injection rates, where q is injection rate, v is interstitial velocity, Ttot is break-
through displacement time, DL is average longitudinal dispersion in the high perme-
ability region, Dl is average longitudinal dispersion in the low permeability region,
and Dt is average transverse dispersion coefficient in the low permeability region

q v Ttot DL Dl Dt

(cc/min) (m/s) (min) (m2/s) (m2/s) (m2/s)

0.002 8.2× 10−5 579 2.1× 10−5 1.4× 10−7 0.8× 10−7

0.004 1.6× 10−4 312 3.9× 10−5 3.8× 10−7 2.0× 10−7

0.006 2.5× 10−4 262 5.7× 10−5 5.1× 10−7 3.2× 10−7

0.008 3.3× 10−4 194 7.4× 10−5 6.6× 10−7 3.8× 10−7

0.010 4.1× 10−4 147 8.6× 10−5 7.7× 10−7 4.8× 10−7

4.2.3 Comparison of the Models

In this section, using the previously developed statistical and numerical models in

this study, the longitudinal and transverse dispersion coefficients for single and dual

permeability media are calculated. The sample of calculations for each experimental

model is explained in the following and the comparison of three different developed

models in this study and two well known models of Taylor [88] (Equation 2.1), De

Josselin [51] (??), Schevan et.al [78] (2.3) and Saffman [76] (Equation 2.2) have been

discussed. For statistical calculations, based on the Equation 3.21 longitudinal and

transverse dispersion coefficients are defined as:

DL =
9π

64

〈l2〉
〈l〉
〈R4〉
〈R2〉2

〈vx〉+
π

12

〈l2〉
〈l〉
〈vx〉 (4.4)
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Figure 4.13: Comparison of experimental longitudinal dispersion coefficent with calcu-
lated ones from different models. The green (dash-dot) line is the proposed statistical
model, blue (solid) line is the experimental results, blue (dot) line is the calculated
coefficients from Taylor model and gray (dash) line is the calculated dispersion using
Scheven et al., model (2014)

Using pore properties of the single permeability micromodel we can estimate the

dispersion coefficients as:

DL =
9π

64
×
(

1.86× 0.0052
)
×
(

1.92
)
× 〈vx〉+

π

12
×
(

1.86× 0.0052
)
× 〈vx〉 (4.5)

for the longitudinal dispersion coefficient and as follows for the transverse dispersion

coefficient:

DT =
3π

64

〈l2〉
〈l〉
〈R4〉
〈R2〉2

〈vx〉 (4.6)

DT =
3π

64
×
(

1.86× 0.0052
)
×
(

1.92
)
× 〈vx〉 (4.7)

The developed image processing tool have been used to estimate each of the required

parameters as summarized in the Tables 3.3 and 3.5. Statistical calculations: Same

as the single permeability medium the required parameters have been calculated for

both regions of high and low permeability zones. For statistical calculations, based on
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Figure 4.14: Comparison of experimental transverse dispersion coefficent with calcu-
lated ones from different models. The green (dash-dot) line is the proposed statistical
model, black (solid) line is the experimental results, red (dash) line is the calculated
coefficients from Saffman model and gray (dash) line is the calculated dispersion using
De Joselin’s model

the equation longitudinal and transverse dispersion coefficients are defined as below:

DL =
9π

64
×
(

1.12× 0.021
)
×
(

2.1
)
× 〈vx〉+

π

12
×
(

1.12× 0.021
)
× 〈vx〉 (4.8)

Dl =
9π

64
×
(

1.93× 0.0044
)
×
(

1.28
)
× 〈vx〉+

π

12
×
(

1.93× 0.0044
)
× 〈vx〉 (4.9)

and for transverse dispersion in the low permeability region:

Dt =
3π

64
×
(

1.93× 0.0044
)
×
(

1.23
)
× 〈vx〉 (4.10)

To accomplish the numerical simulation, the ADE introduced in the Equation 3.56

has been solved for the experimental condition. Although both regions have longitu-

dinal dispersion terms, the longitudinal coefficient in the high permeability region is

considered 20 times larger than the lower permeability zone. The assumptions appear

reasonable in circumstances of the relatively smaller contribution of dispersion terms
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Figure 4.15: Comparison of experimental longitudinal dispersion coefficent black
(solid) line for the high permeability region of the dual permeability micromodel with
calculated one from the proposed statistical model (green dash-dot line)

Figure 4.16: Comparison of experimental longitudinal dispersion coefficent black
(solid) line for the low permeability region of the dual permeability micromodel with
calculated one from the proposed statistical model (green dash-dot line)
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Figure 4.17: Comparison of experimental transverse dispersion coefficent black (solid)
line for low permeability region of the dual permeability micromodel with calculated
one from the proposed statistical model (the green or dash-dot line)

to spreading of displacing fluid when there is a clear difference in velocity between

the two regions. The numerical simulation shows a solid agreement with experimental

results.

As illustrated in the Figures 4.15, 4.16, and 4.17 the statistical model shows higher

values for the dispersion coefficients than experimental results. As it was discussed in

the section 3.6, the residence time for displacing particles plays a significant role in

the precision of the statistical models. The better agreement at lower velocities im-

plies a better agreement of the residence time estimation and consequently dispersion

coefficients. This can be explained qualitatively by noting that low flow velocities

have ample time to occupy wider stream tubes than high velocities because of fluid

volume conservation.

4.2.4 Numerical-Statistical Simulation Validation

In this section, the calculated dispersion coefficients for the porous medium using the

statistical estimation is implemented in introduced numerical simulation in Section
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3.9. In the high permeability region due to very low height for the medium, advection

and longitudinal dispersion terms have been considered and in the lower permeability

medium, advection, longitudinal and transverse dispersion have been considered. Ta-

ble 4.3 shows the assumed parameters and coefficients for the set of equations. The

assumptions appear reasonable in circumstances of the relatively smaller contribution

of dispersion terms to spreading of displacing fluid when there is a clear difference in

velocity between the two regions.

As Figure 4.19 shows the implemented statistical dispersion coefficients in longitudinal

and transverse directions shows an acceptable agreement qualitatively. Experimental

results illustrated that the mixing zone is larger in high permeability region than lower

permeability region. This observation also, concludes higher longitudinal dispersion

coefficient in high permeability region due to dominant velocity and pore structure

(higher pearmeability).
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(a) Concentration change in y direction

(b) Concentration change in x direction

Figure 4.18: Concentration change in x and y direction in dual permeability porous
medium during the miscible discepalcement at breakthrough time for injection rate
0.002cc/min, simulation output



138

Figure 4.19: Numerical (with statistical dispersion coefficients) vs experimental results
of miscible displacement progress over time for dual permeability porous medium



Chapter 5

Conclusions

This study presented the results of a statistical modeling and laboratory experiments

in a two-dimensional porous media. The effects of varying displacing fluid velocity

and porous media characteristics on the coupled longitudinal and transverse disper-

sion coefficients were estimated. A new methodology to estimate the experimental

dispersion coefficients are proposed.

5.1 Conclusions

In this study, a systematic mathematical and experimental study is introduced on

the water/water miscible displacement in a homogeneous anisotropic micromodel. A

mathematical model to relate the dispersion coefficients to the pore properties of

porous media, using a statistical approach has been developed. Assuming, the me-

chanical dispersion is dominant and molecular diffusion is negligible, the new equations

for longitudinal and transverse dispersion coefficients have been introduced. In the fol-

lowing, four different porous media with different pore geometries have been assumed

to investigate the effect of various parameters on longitudinal and transverse disper-

sion coefficients. The dispersion in both directions are non-linear functions of velocity
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and depends on pore geometry of porous media. Pore throat diameter distribution

affects dispersion similarly to permeability and increasing the degree of heterogeneity

increases both DL and DT . However, longitudinal dispersion is more sensitive. The

ratio of DL to DT is inversely proportional to dimensionless pore throat diameter and

independent from distribution of pore throat length. Increasing dimensionless pore

throat diameter decreases the ratio and lower values of of it leads to higher differ-

ence of DL from DT . An experimental approach to estimate the average longitudinal

and transverse dispersion coefficients in a homogeneous anisotropic porous medium

with and without fracture during a miscible displacement was designed and used to

conduct a series of miscible flooding tests. Traditionally, most studies of miscible

injection have focused on recovery and mechanism of the method and Peclet number

that have been used to find the dispersion and diffusion coefficients from a mathemat-

ical correlations. This study utilizes a unique method to estimate the mass transfer

properties. A custom and unique image processing tool was developed and used to

analyze the developing mixing zone in the process and consequently processed images

are used to collaborate with a developed Bayesian estimator tool to fit the dispersion

coefficients in analytical solution of Advection-Diffusion Equation (ADE). The details

of the approach are explained and obtained images are analyzed and interpreted. The

results confirm the strong dependency of the velocity of the displacing fluid and dis-

persion coefficients in both directions of longitudinal and transverse. The effects of

anisotropy on miscible mass transport are investigated in this study using an unique

method. Some highlights of the research is listed below:

• The whole miscible displacement of dyed water by clear water is recorded and

analyzed using a unique developed image processing tools and using analytical

solution and Bayesian estimator, longitudinal and transverse dispersion coeffi-

cients are estimated. In this study a successful methodology to quantify the
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coupled longitudinal and transverse dispersion in a miscible displacement have

been demonstrated while the previous micromodel studies discuss only one di-

rection.

• In this study, the Random Walk (RW) technique was used to develop a statistical

modeling of dispersion in two-dimensional porous media. The extracted models

were implemented into numerical solutions to simulate miscible displacement

in heterogeneous porous media. The introduced statistical model is able to

provide a more accurate initial assumption for current numerical and analytical

models to simulate miscible displacement in porous media by taking the pore

geometrical properties into account. Particularly, this method can help a more

accurate simulation of the spreading of the fluids that is calculated by following

the motion of a collection of particles.

• Experimental results showed that the mathematical models fit the miscible

displacement dispersion coefficients in both parallel (longitudinal) and normal

(transverse) directions respect to dominant injection velocity direction. obtained

from miscible tests.

• Dispersion coefficients increase with fluid velocity in both directions.

• The effect of interstitial velocity on breakthrough time is carefully reported and

decreasing breakthrough time (Ttot) with increase in velocity is observed.

• Experimental results illustrate that mixing is larger in high permeability regions

than lower permeability regions. This observation also concludes that longitudi-

nal dispersion is larger in high permeability region due to wider velocity profile

and tortuous flow.

• Despite the significantly dominant longitudinal dispersion in high permeability
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zones, longitudinal and transverse dispersion are on the same order of magnitude

in low permeability regions. This indicates the effect of the presence of dominant

velocity in the x-direction on the amplitude of the longitudinal dispersion.

• Simulation and experimental results show that longitudinal and transverse dis-

persion in low permeability regions are on the same order of magnitude. This

is most possibly caused by absence of dominant velocity in the region.

5.2 Future Studies

In the current research using the given assumptions, the mathematical model pre-

sented is only valid for high Peclet numbers meaning mechanical dispersion is domi-

nant and molecular diffusion is negligible. Further investigations to incorporate lower

Peclet numbers where molecular diffusion is a significant contributor to hydrodynamic

dispersion seems very interesting field to be followed up. For this purpose the problem

needs to be reframed for when t =
8〈l〉〈R2〉2
3π〈R4〉〈vx〉 is comparable with 〈R〉2

8Dm
. Another avenue

could be the investigating the problem for the conditions when mechanical dispersion

and molecular diffusion are both contributing, the random walk approach used in this

research is not valid for this condition for two reasons.

1. The residence time is only crudely accounted for in the random walk theory.

2. the basis for the selection of a pore by a particle at a junction does not follow the

simple probability density function previously derived, since diffusion becomes

significant in comparison to advection. Particles no longer choose streamlines

in proportion to the advective velocity along the streamline.

In this case, both mechanisms of advection and molecular diffusion are acting and the

assumptions are no longer valid. In this situation, the average time step is sufficient
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for molecular diffusion to ravel variations in concentration across the cross section

of a the assumed pore element. Accounting for the motion caused by the effect of

molecular diffusion, velocity is defined as a random function of the time. If follows

that, the covariance of the velocity at a given time t and a later time t + dt be

considered a Lagrangian correlation function as 〈vtvt+dt〉. The displacement in the x

and y−directions could be mathematically developed and experimentally studied.
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Appendix A

Mathematical Details

A.1 Fundamentals of Statistics

In statistic distributions of random variables can be stated in terms of a Cumulative

Distribution Function (CDF), F (x), which is the probability that the pore diameter

is equal to or less than x, or in terms of the Probability Density Function (PDF),

f(x), which is equal to the derivative of F (x) with respect to x as Equation A.1.

f(x) =
dF (x)

dx
(A.1)

Since F (x) is continuous and monotonically increasing, its derivative exists for all

values of x. f(x) is equal to the number of pores with diameters between x − δx

and x + δx divided by 2δx, in the limit as δx approaches zero. In fact, the pore

structure of a porous medium is described by the pore size distribution and a pore

size distribution curve represents the cumulative fraction of the total pore volume

within a porous sample composed of particular ranges of pore sizes [5].
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A.2 Central Limit Theorem

The central limit theorem and the law of large numbers are the two fundamental

theorems of probability. Roughly, the central limit theorem states that the distribution

of the sum (or average) of a large number of independent, identically distributed

variables will be approximately normal, regardless of the underlying distribution. The

importance of the central limit theorem is hard to overstate; indeed it is the reason

that many statistical procedures work. [71]. Let X1, ..., Xn be a random sample of

size n, that is, a sequence of independent and identically distributed random variables

drawn from distributions of expected values given by µ and finite variances given by

σ2. Suppose we are interested in the sample average:

Sn :=
X1 + · · ·+Xn

n
(A.2)

of these random variables. By the law of large numbers, the sample averages converge

in probability and almost surely to the expected value µ as n −→ ∞. The classical

central limit theorem describes the size and the distributional form of the stochas-

tic fluctuations around the deterministic number µ during this convergence. More

precisely, it states that as n gets larger, the distribution of the difference between

the sample average Sn and its limit µ, when multiplied by the factor
√
n (that is

√
n(Sn − µ)), approximates the normal distribution with mean O and variance σ2.

For large enough n, the distribution of Sn is close to the normal distribution with

mean µ and variance σ2/n. The usefulness of the theorem is that the distribution of

√
n(Sn − µ) approaches normality regardless of the shape of the distribution of the

individual Xi’s.
√
n

((
1

n

n∑
i=1

Xi

)
− µ

)
d−→ N(0, σ2) (A.3)
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A.3 Adjustable Parameters Description

We can define the dimensionless wetting phase saturation, SD, as below [50]:

SD =
Sw − Swr
1− Swr

=
Vx
Vtot

(A.4)

Where SD is based on the pore space available at irreducible water saturation. Hence,

the wetting phase saturation of an ideal porous medium is:

SD =

∫ Rmax

Rmin

f(R)dR⇒ f(R) =
dSD
dR

=
d( Vx

Vtot
)

dR
(A.5)

Where Vx is the cumulative volume of water in the throat and voids connected to

them and Vtot is the total cumulative volume of water. If you feed the Equation A.5

with considered function for pore throat diameter Equation 3.1, we can perform the

integration and find the statement for α.

f(R) = αβγRγ−1e−(Rβ)γ = dSD
dR
⇒ SD =

∫ Rmax
Rmin

αβγRγ−1e−(Rβ)γdR (A.6)

SD = α(1− e−(βR)γ )⇒ α = SD
(1−e−(βR)γ )

R=Rmax−−−−−→ α = 1
(1−e−(βRmax)γ )

(A.7)

Theoretically as Rmax goes to infinity, α should be zero, and the entry capillary

pressure will be zero as well.

A.4 Normalization Factor

In probability theory, a normalizing constant is a constant by which an everywhere

non negative function must be multiplied so the area under its graph is 1, to make

it a probability density function or a probability mass function. We defined our pore

size and length distribution function before. To find the normalization factor (ζ) of
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probability function we can write:

1 = N

((∫ lmax

lmin

f(l)dl

)(∫ Dmax

Dmin

f(D)dD

)(∫ π/2

−π/2
cos θdθ

))
(A.8)

However, ∫ lmax

lmin

g(l)dl = 1 ;

∫ Rmax

Rmin

f(R)dR = 1 (A.9)

Substituting the values in normalization equation results in:

N(

∫ π/2

−π/2
cos θdθ) = 1 ⇒ 2N = 1⇒ N =

1

2
(A.10)

Same procedure can be applied for normalization factor in probability of path exis-

tence.

∫
Ψ

dΨ = ζπR2

4

(
− R2

32µ

∆p

Ln
cos θ︸ ︷︷ ︸

Velocity

)(
1

2

∫ Rmax

Rmin

f(R)dR

∫ lmax

lmin

g(l)dl

∫ π/2

−π/2
cos θdθ︸ ︷︷ ︸

pore probability

)
(A.11)

= ζπ∆p
256µLn

(∫ Rmax

Rmin

R4f(R)dR︸ ︷︷ ︸
〈R4〉

)(∫ lmax

lmin

g(l)dl︸ ︷︷ ︸
1

)(∫ π/2

−π/2
cos2 θdθ︸ ︷︷ ︸
π/2

)
(A.12)

ζπ2∆p 〈R4〉
512µLn

= 1⇒ ζ = − 512µLn
π2∆p 〈R4〉

(A.13)

Substituting of ζ in Equation 3.6 results the final statement for dΨ:

dΨ =
−512µLn
π2∆p 〈R4〉

πR2

4

(
−R2

32µ

∆p

Ln
cos θ

)(
1

2
f(R)dR g(l)dl cos θdθ

)
(A.14)

dΨ =
2

π 〈R4〉
g(l)dl R4f(R)dR cos2 θdθ (A.15)
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A.5 Theory of Moments

In statistic, a moment is a specific quantitative measure of the shape of a set of points.

The zeroth moment is the total probability, the first moment is the mean, the second

moment is the variance, and the third moment is the skewness. The normalised n−th

central moment or standardized moment is the n− th central moment divided by σn;

the normalised n− th central moment of

x =
〈(x− µ)n〉

σn
. (A.16)

These normalised central moments are dimensionless quantities, which represent the

distribution independently of any linear change of scale. For example Let f(x) be any

function which is defined and positive on an interval [a, b] . We might refer to the

function as a distribution, whether or not we consider it to be a probability density

distribution. Then we will define the following moments of this function:

〈M〉 = M0 =
∫ b
a
f(x)dx

〈
M2
〉

= M1 =

∫ b

a

xf(x)dx (A.17)

〈M3〉 = M2 =
∫ b
a
x2f(x)dx

〈
M4
〉

= M4 =

∫ b

a

xnf(x)dx (A.18)

(A.19)

• Mean (Average): The first raw moment is the mean.

• Variance: The second central moment is the variance. Its positive square root

is the standard deviation σ.

• Skewness: The third central moment is a measure of the lopsidedness of the

distribution.

• Kurtosis: The fourth central moment is a measure of whether the distribution
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is tall and skinny or short and squat. If a distribution has a peak at the mean

and long tails, the fourth moment will be high and the kurtosis positive; con-

versely, bounded distributions tend to have low kurtosis. The kurtosis can be

positive without limit. Based on Equation A.16 if σ is the variance of f(x) then

normalized kurtosis can be defined as below:

KN =
〈(x− µ)4〉

σ2
(A.20)

A.6 Random walk theory

A random walk is a mathematical formalization of a path that consists of a succes-

sion of random steps. Random walks are related to the diffusion models and are a

fundamental topic in discussions of Markov processes. Several properties of random

walks, including dispersal distributions, first-passage times and encounter rates, have

been extensively studied.

A.7 Calculation of Variances

In probability theory, variance measures how a set of random variables is spread out

around the average (mean). A variance of zero indicates that all the values are iden-

tical. Variance is always non negative value and playing a main role in understanding

the heterogeneity of a distribution. Find the σx and σy in chapter 3 in full details is
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presented here.

n 〈l〉2 σ2
x = n〈(xn − 〈xn〉)2〉 = n

∫
Ψ
l2 cos2 θdΨ− n(8〈l〉

3π
)2 (A.21)

= 2n
π〈R4〉

∫ lmax

lmin

l2g(l)dl︸ ︷︷ ︸
〈l2〉

∫ Rmax

Rmin

R4f(R)dR︸ ︷︷ ︸
〈R4〉

∫ π/2

−π/2
cos4 θdθ︸ ︷︷ ︸
3π
8

(A.22)

−n(8〈l〉
3π

)2 = 3n〈l2〉
4
− 64n〈l〉2

9π2 ⇒ σ2
x = 3〈l2〉

4〈l〉2 −
64

9π2 (A.23)

Same work has been done for y direction below:

n 〈l〉2 σ2
y = n〈(yn − 〈yn〉)2〉 = n

∫
Ψ
l2 sin2 θdΨ− 0︸︷︷︸

from Equation 3.30

(A.24)

= 2n
π〈R4〉

∫ lmax

lmin

l2g(l)dl︸ ︷︷ ︸
〈l2〉

∫ Rmax

Rmin

R4f(R)dR︸ ︷︷ ︸
〈R4〉

∫ π/2

−π/2
sin2 θ cos2 θdθ︸ ︷︷ ︸

4π
32

(A.25)

= n〈l2〉
4
⇒ σ2

y = 〈l2〉
4〈l〉2 (A.26)

Variance of time:

n
〈l〉2

〈vx〉2
σ2
t = 〈(Tn − 〈Tn〉)2〉 = n〈(tn − 〈tn〉)2〉 = n

∫
Ψ

( l
v
)2dΨ− n〈t〉2(A.27)

v from Equation 3.8−−−−−−−−−−−→ = 8n〈R2〉2
9π〈R4〉〈vx〉2

∫ lmax

lmin

l2g(l)dl︸ ︷︷ ︸
〈l2〉

∫ Rmax

Rmin

f(R)dR︸ ︷︷ ︸
1

∫ π
2

−π
2

dθ︸ ︷︷ ︸
π

−n〈t〉2 (A.28)

= 8n〈R2〉2〈l2〉
9〈R4〉〈vx〉2 − n

(
8〈l〉〈R2〉2
3π〈R4〉〈vx〉

)2

⇒ σt = 8〈R2〉2〈l2〉
9〈R4〉〈l〉2 −

64〈R2〉4
9π2〈R4〉2 (A.29)

A.8 Covariance

In probability theory and statistics, covariance is a measure of how much two random

variables change together. If the greater values of one variable mainly correspond with
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the greater values of the other variable, and the same holds for the smaller values, the

variables tend to show similar behaviour, the covariance is positive. In the opposite

case, when the greater values of one variable mainly correspond to the smaller values of

the other, the variables tend to show opposite behaviour, the covariance is negative.

The sign of the covariance therefore shows the tendency in the linear relationship

between the variables. The magnitude of the covariance is not easy to interpret. In

this study, we require to calculate the covariance two random variables x and t. For

this purpose we need to define the covariance mathematically first.

n〈l〉2
〈vx〉 σ

2
xt = 〈(Tn − 〈Tn〉)(Xn − 〈Xn〉)〉 = 〈TnXn〉 − 〈Tn〉〈Xn〉 − 〈Tn〉〈Xn〉+(A.30)

〈Tn〉〈Xn〉 = 〈TnXn〉 − 〈Tn〉〈Xn〉 = n〈tnxn〉 − n〈tn〉〈xn〉 = n
∫

Ψ
l2 cos θ
v

dΨ−(A.31)

n〈tn〉〈xn〉 = n 4〈R2〉
3π〈R4〉〈vx〉

∫ lmax

lmin

l2g(l)dl︸ ︷︷ ︸
〈l2〉

∫ Rmax

Rmin

R2f(R)dR︸ ︷︷ ︸
〈R2〉

∫ π
2

−π
2

cos θdθ︸ ︷︷ ︸
π/2

− (A.32)

n〈tn〉〈xn〉 = n2〈R2〉2〈l2〉
3〈R4〉〈vx〉 − n

(
8〈l〉〈R2〉2
3π〈R4〉〈vx〉

)(
8〈l〉
3π

)
simplification and rearrangement−−−−−−−−−−−−−−−−−−→ (A.33)

σxt = 2〈R2〉2〈l2〉
3〈R4〉〈l〉2 −

64〈R2〉2
9π2〈R4〉 (A.34)

A.9 Dimensionless Variables Analysis

It is stated that the dimensionless variables χ, η and τ are defined to have mean equal

to zero and variances equal to σ2
x, σ

2
y and σ2

t respectively. The calculation for mean

is as below:

χ =
Xn − 〈Xn〉
〈l〉
√
n

⇒ 〈χ〉 = 〈Xn−〈Xn〉〉
〈l〉
√
n

= 〈Xn〉−〈Xn〉
〈l〉
√
n

⇒ 〈χ〉 = 0 (A.35)

η =
Yn − 〈Yn〉
〈l〉
√
n

⇒ 〈η〉 = 〈Yn−〈Yn〉〉
〈l〉
√
n

= 〈Yn〉−〈Yn〉
〈l〉
√
n

⇒ 〈η〉 = 0 (A.36)

τ =
Tn − 〈Tn〉
〈l〉
√
n

〈vx〉

⇒ 〈τ〉 = 〈Tn−〈Tn〉〉
〈l〉
√
n

〈vx〉
= 〈Tn〉−〈Tn〉

〈l〉
√
n

〈vx〉
⇒ 〈τ〉 = 0 (A.37)
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And for variances as below:

〈χ2〉 =
〈(Xn − 〈Xn〉)2〉

〈l〉2 n
From Appendix A.7−−−−−−−−−−−→ 〈χ2〉 = 〈l〉2nσ2

x

〈l〉2n ⇒ 〈χ2〉 = σ2
x (A.38)

〈η2〉 =
〈(Yn − 〈Yn〉)2〉
〈l〉2 n

From Appendix A.7−−−−−−−−−−−→ 〈χ2〉 =
〈l〉2nσ2

y

〈l〉2n ⇒ 〈η2〉 = σ2
y (A.39)

〈τ 2〉 =
〈(Tn − 〈Tn〉)2〉

〈l〉2n
〈vx〉2

From Appendix A.7−−−−−−−−−−−→ 〈χ2〉 =
〈l〉2nσ2

t
〈l〉2n
〈vx〉2

⇒ 〈τ 2〉 = σ2
t (A.40)

A.10 Mean Squared Displacement

To find the MSD, one can take one of two paths: one can explicitly calculate 〈x2〉 and

〈x〉, then plug the result back into the definition of the MSD; or one could find the

moment generating function, an extremely useful, and general function when dealing

with probability densities. The moment generating function describes the kth moment

of the PDF. The first moment of the displacement PDF shown above is simply the

mean: 〈x〉. The second moment is given as 〈x2〉. So then, to find the moment generat-

ing function it is convenient to introduce the characteristic function:[disambiguation

needed]

G(k) = 〈eikx〉 ≡
∫
I
eikxP (x, t|x0)dx = G(k) =

∑∞
m=0

(ik)m

m!
µm (A.41)

ln(G(k)) =
∑∞

m=1
(ik)m

m!
κm =

∑∞
m=1

(ik)m

m!
κm (A.42)

, where κm is the mth cumulant of x. The first two cumulants are related to the first

two moments, µ, via κ1 = µ1; and κ2 = µ2 − µ2
1, where the second cumulant is the so

called the variance, σ2. With these definitions accounted for one can investigate the

moments of the Brownian particle PDF,

G(k) =
1√

4πDt

∫
I

exp(ikx) exp

(
−(x− x0)2

4Dt

)
dx (A.43)
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by completing the square and knowing the total area under a Gaussian one arrives at:

G(k) = exp(ikx0 − k2Dt) (A.44)

Taking the natural log, and comparing powers of ik to the cumulant generating func-

tion, the first cumulant is κ1 = x0. which is as expected, namely that the mean

position is the Gaussian centre. The second cumulant is κ2 = 2Dt, the factor 2 comes

from the factorial factor in the denominator of the cumulant generating function.

From this, the second moment is calculated,

µ2 = κ2 + µ2
1 = 2Dt+ x2

0 (A.45)

Plugging the results for the first and second moments back, one finds the MSD,

〈X2〉 − 〈X〉2 = 2Dt (A.46)


